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Abstract 

Porous materials are of expanding scientific interest because of their ability to interact 

with atoms, ions, and molecules at their large interior pore surfaces at nanoscale throughout 

the bulk of the material. In this dissertation, a series of microporous materials and a 

mesoporous material are discussed.  

In the first part, the synthesis of new anionic porous organic frameworks with 

phosphate groups (PA-POFs) through Yamamoto coupling reactions is presented. These 

materials have high adsorption capacity and exceptional adsorption kinetics towards 

bisphenol A (BPA) in water, a wide-spread organic pollutant and a known endocrine 

disruptor. The maximum adsorption capacity of BPA at equilibrium is found as high as 

3,366 mg g-1 by Langmuir adsorption model, which is more than ten times greater than 

peer materials. The polymer also rapidly removes various other organic micropollutants 

with more than 90% removal efficiencies. In addition, the PA-POF material can be 

regenerated at least five times by mild washing using methanol without significant loss in 

removal efficiency. The CO2 adsorption capacity of these materials were also studied. The 

carbon dioxide uptake capacities of the PA-POFs reach up to 103 cc g-1 (1.0 bar and 273 

K), making them promising candidates for CO2 capture. 

In the second part, the crystallization of an amorphous Al-SBA-15 material under a 

strong flux of Li+ with the retention of mesostructure is discussed. The crystalline lithium 

aluminosilicate (LAS) material was fully characterized by XRD, solid state NMR, TEM, 

SAXS, ICP-OES and EDS. The acidity and ion-exchange properties are studied. 
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Chapter 1 

Introduction 

 

1.1 Overview of porous materials 

Porous materials exist widely in nature such as soil, sponges, zeolites, honeycombs, 

biological tissues such as bones and wood, and man-made materials such as activated 

carbons and porous ceramics. Porosity plays an important role in the properties of a 

material, yet whether it is beneficial or harmful depends on its purposes. For example, 

pores are treated as structural defects in super-hard materials because porosity weakens the 

strength and hardness. On the other hand, porosity in materials is of great value in many 

fields such as gas storage, materials separation, catalysis, and drug delivery.1 

According to the International Union of Pure and Applied Chemistry (IUPAC), porous 

materials can be classified into three categories based on the pore sizes: pore sizes less than 

2 nm are called micropores, those in the range of 2 nm to 50 nm are mesopores, and those 

above 50 nm are denoted macropores. The term “nanoporous” is frequently used to 

describe porous materials if the pore size falls in the range of nanometer scale, despite they 

are micropores, mesopores, or macropores. The development of nanoporous materials 

began from the study of zeolites. Zeolites are a class of crystalline microporous 

aluminosilicates, and the discovery of the first zeolite mineral, stilbite, dates back to 1756, 

by Swedish mineralogist A.F. Cronsted.2 The word “zeolite” is derived from two Greek 

words, zeo and lithos, meaning “to boil” and “stone”. From 1777 through about the 1800s 



 

3 

various authors described the properties of zeolite minerals, including adsorption 

properties and reversible cation exchange and dehydration properties.2 In 1862, the first 

hydrothermal synthesis of a zeolite, levynite, was reported by St. Claire Deville.2 By the 

mid-1930s, the synthesis of a number of zeolites as well as the ion exchange, adsorption, 

molecular sieving and structural properties of zeolite minerals are described.2 The early 

synthetic work remains unsubstantiated because of incomplete characterization and the 

difficulty in experimental reproducibility.2 In 1948, Richard M. Barr reported the first 

definitive synthesis of the zeolitic mineral mordenite and its sorption and molecular sieve 

properties.3–5 Between 1949 and 1959, R. M. Milton, D. W. Breck, T.B. Reed and D.W. 

Breck, et al. discovered a number of commercially significant zeolites, types A, X and Y.2,6 

Union Carbide also commercialized synthetic zeolites as a new class of industrial materials 

for separation, purification, and catalysis.6,7 In 1962 Mobil Oil introduced the use of 

synthetic zeolite X as a hydrocarbon cracking catalyst. Later between 1967 and 1969 Mobil 

Oil reported the synthesis of the high silica zeolites beta and ZSM-5, which was soon used 

widely as a catalyst for several reactions carried out in the petrochemical industry.8  

Today, millions of kilograms of synthetic zeolites are produced throughout the world 

using revised synthesis recipes that were initially discovered by the early pioneers. Zeolites 

have made great contributions to human society, with major applications as catalyst, 

detergent, deodorant, molecular sieves, etc., and the field is still developing rapidly. 

Zeolites are not the only class of porous materials that practically benefit human society, 

other porous materials have also stepped onto the stage during the past three decades, such 

as porous carbons, mesoporous silicas, metal-organic frameworks (MOFs), covalent 

organic frameworks (COFs), and porous organic frameworks (POFs).  
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In this dissertation, a series of microporous anionic POFs with terminal phosphate 

functional groups with fully characterized structures are described in Chapter 2 to 4. The 

CO2 adsorption properties of these anionic POFs are studied, and the results show that these 

materials have much higher CO2 uptakes than their structurally related POF material. In 

addition, the massive and fast adsorption towards organic pollutants by these materials are 

investigated in Chapter 4, with a maximum bisphenol A adsorption capacity of 3,366 mg 

g-1. In Chapter 5, a mesoporous aluminosilica material is crystallized using a novel flux-

grown technique. 

Figure 1-1 presents examples of a variety of porous materials, roughly classified as 

zeolites, mesoporous silicas, nanoporous carbons (NPCs), metal-organic frameworks 

(MOFs), covalent organic frameworks (COFs), and porous organic frameworks (POFs). 

 

Figure 1-1. Examples of porous materials. (a) zeolite, (b) mesoporous silica, (c) 

nanoporous carbon, (d) metal-organic framework (MOF), (e) covalent organic framework 

(COF), and (f) porous organic framework (POF). 
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      The history of zeolites has been briefly discussed in the beginning of this chapter. The 

building units of zeolites are SiO4 and AlO4 tetrahedra. The interconnected tetrahedra 

linked by corner-sharing O atoms therefore form an inorganic polymer. It is obvious from 

this building principle that negative charges reside at each AlO4 tetrahedron, so cations are 

needed to balance the overall charges. Thus when H+ ions are exchanged into the 

framework, Brønsted acid sites are created in the form of bridging OH groups. The 

Brønsted acid sites are very important to zeolites because the surface acidity enables the 

application of zeolites as catalysts. Among all the applications of zeolites, catalysis in 

petroleum industry is one of the most important applications of zeolites with an estimated 

annual market value of more than 1 billion USD by 2020.9 

      However, catalytic performance of zeolites is limited by their pore sizes. In general, 

zeolites are microporous materials, which restricts the transport of large organic molecules 

into the pores for catalytic reactions. Ordered mesoporous silicas were discovered in 1991 

by ExxonMobil, and it was believed that they would soon replace zeolites in long chain 

hydrocarbon cracking because of their larger pore sizes. The pore size of mesoporous 

silicas can be tuned up to 30 nm.10 The synthesis of mesoporous silicas is discussed in 

detail later in Section 1.3. Despite the much larger pore sizes in mesoporous silicas, the 

replacement of zeolites as catalysts was not successful mainly because of two reasons. 

First, there are inferior surface acidity in the mesoporous silicas. Secondly, the amorphous 

pore channel walls are not hydrothermally stable under the catalyst regeneration conditions 

in the petroleum cracking industry. To address the first problem, researchers have 

developed several strategies to introduce heteroatoms into the pore walls to give the 

materials potential surface acidity. To address the second problem, a novel method for the 



 

6 

production of a crystalline mesoporous aluminosilicate is presented as the second part of 

this dissertation in Chapter 5. 

Nanoporous carbon materials (NPCs) are usually classified as ordered mesoporous 

carbons and disordered porous carbons based on the periodicity of the pore structures. 

Ordered mesoporous carbons can be synthesized by either the soft-templating method or 

hard-templating method, producing mesoporous carbon materials with certain pore 

structures including cubic, body centered cubic, gyroid, and hexagonal structures. 

Compared with ordered mesoporous carbons, disordered activated carbons (ACs) can be 

produced in fewer steps and in larger scale, and are less expensive because of the much 

cheaper carbon sources, e.g. charcoal. Recently, an increasing number of researchers have 

prepared ACs from agricultural by-products such as hazelnut shell, durian shell, almond 

shell, olive bagasse, palm shell, coconut shell, and so on.11–14 

Zeolites, mesoporous silicas and nanoporous carbons are the three largest classes of 

inorganic nanoporous materials. The surface areas of zeolites, mesoporous silicas and 

ordered mesoporous carbons are usually not larger than 1,500 m2 g-1, while the surface 

areas of disordered ACs could reach to more than 3,000 m2 g-1, which are mostly 

contributed by interconnected micropores smaller than 2 nm.15 These materials have been 

widely employed in industry because of their relatively low cost and high physicochemical 

stability. However, generally speaking, the surface functionalization of the pores in these 

materials cannot be easily controlled because of the relatively inert nature of the materials 

compared with organic nanoporous materials including metal-organic frameworks 

(MOFs), covalent organic frameworks (COFs), and porous organic frameworks (POFs). 

Besides, organic nanoporous materials are generally more porous than inorganic porous 
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materials, with surface areas as large as more than 6,000 m2 g-1, making them more 

promising for applications such as gas adsorption and storage. 

      Metal-organic frameworks (MOFs) are a class of highly crystalline porous materials 

connected by dative bonds between metal nodes and organic linkers.16 A large variety of 

MOFs with desirable functionalities and pore structures are synthesized by the selection 

from a tremendous choice of metal centers and organic building blocks. Developed from 

the construction of MOFs, Yaghi et. al. established a method called reticular chemistry 

which is now widely used in the design of periodic nanoporous materials by assembling 

molecular building blocks into pre-designed structures.17 This chemistry has led to the 

design and synthesis of new crystalline porous organic materials for which the 

composition, structure, metrics, and functionality can be systematically adjusted. The last 

15 years have witnessed a tremendous development of MOFs, with more than 20,000 

papers and more than 15,000 structures reported.18 A number of review articles give 

comprehensive description and detailed explanation of MOFs in regard to their design, 

synthesis, modification, processing, and applications.19–22 

      Covalent organic frameworks (COFs) are another class of crystalline organic porous 

polymers which are two-dimensional or three-dimensional frameworks linked by bi-, tri- 

or tetravalent organic ligands. The crystallinity of the COFs is due to the reversibility of 

the covalent bond formation in the polymerization reactions, which favors the production 

of thermodynamically controlled polymers. The first work on COFs was reported in 2005 

by the Yaghi group.23 They reported the synthesis of COF-1 and COF-5 through the self-

condensation reaction of 1,4-benzenediboronic acid (boroxine anhydride formation 

reaction) and the co-condensation reaction of 1,4-benzenediboronic acid with 
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2,3,6,7,10,11-hexahydroxytriphenylene (boronate ester formation reaction), respectively.23 

Similar to MOFs, the variety of molecular building blocks and customized 

functionalization have made it possible for the synthesis of COFs with pre-designed pore 

structures and a wide range of properties including gas adsorption and storage, catalysis, 

energy storage, etc.24 

      Porous organic frameworks (POFs), or porous organic polymers (POPs), include many 

kinds of porous polymers such as microporous organic polymers (MOPs), porous 

coordination polymers (PCPs), covalent triazine frameworks (CTFs), conjugated 

microporous polymers (CMPs), hypercrosslinked polymers (HCPs), microporous polymer 

networks (MPNs), porous polymer networks (PPNs), porous aromatic frameworks (PAFs), 

etc. These materials are a big family of amorphous polymers that possess high surface areas 

and tunable pore structures. Usually POFs are covalently connected by simple organic 

ligands with light elements such as C, H, O, N, S. The complicated post-synthetic 

modifications with certain functional groups or metal/non-metal ions further enrich the 

diversity of POFs and their functions. For example, lithiation imparts conjugated 

microporous polymers (CMPs) with competence for H2 storage (6.1 wt % at 1 bar and 77 

K), thereby making them useful for clean fuel applications.25 The applications of POFs 

include molecular adsorption, catalysis, and separation. Moreover, carefully chosen 

building blocks produce POF materials with special properties. Taking CMPs as an 

example, CMPs are built up from aromatic linkers that have alternating single and multiple 

bonds.26 The overlapping p orbitals (or d orbitals) create a system of delocalized π 

electrons, which allows high capability for optical and electronic applications. 

Among organic nanoporous materials, MOFs and COFs are superior in terms of 
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crystallinity compared with POFs, from which a better understanding of their structures at 

both atomic and nanometer scales is attained. However, due to the relatively weak strength 

of metal-nonmetal dative bonds in MOFs and the reversibility in the formation of the 

covalent bonds in COFs, these two kinds of materials are generally not as thermally and/or 

hydrothermally stable as POFs. In addition, COFs are so far only produced through 

condensation reactions, while the reaction pathways for producing POFs are highly diverse 

and ranging from not only condensation reactions such as metal-catalyzed coupling 

reactions and metal-free imide-formation reaction, but also addition polymerization 

reactions such as ethynyl cyclo-trimerization. A detailed discussion for the synthesis of 

POFs is presented below in section 1.2. 

 

1.2 Synthesis of porous organic frameworks 

1.2.1 Synthetic methodology for porous organic frameworks 

      The past years have witnessed an expansion of synthetic methodologies for preparing 

porous organic frameworks (POFs). Generally, polymerizable monomers are used for the 

production of POFs using various chemical reactions. Two key issues are required to be 

addressed for the successful preparation of POFs. First, it is necessary to judiciously choose 

the correct monomer to ensure that the resultant frameworks have sufficient mechanical 

stability. The monomers are generally needed to have multiple reaction sites and rigid 

structures to form a framework or a distorted linear polymer. Secondly, effective chemical 

synthesis reactions are required to link the monomer building blocks together. Moreover, 

with the help of efficient synthetic protocols, incorporating certain key components into 

the polymeric scaffold plays an important role in giving rise to porous polymers with 
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fascinating properties. 

      The representative chemical synthetic routes for POFs are summarized in Table 1.1. A 

typical example of POFs is PAF-1, which is formed through nickel-promoted Yamamoto 

coupling reaction (Figure 1-2). 27 The strategy of the design of PAF-1 is to mimic the stable 

structure of diamond, in which each carbon atom is tetrahedrally connected to four 

neighboring atoms by covalent bonds. In PAF-1, tetrakis(4-bromophenyl) methane was 

used as monomer in order to replace the C-C covalent bonds of diamond with rigid phenyl 

rings. 27 

 

 

Figure 1-2. Synthesis scheme of a PAF-1 with ultrahigh surface area by the Yamamoto-

type Ullmann cross-coupling reaction. Ref. 27. 

 

PAF-1 shows an ultrahigh BET surface area, 5,600 m2 g-1.27 It also shows high thermal 

and hydrothermal stability, retained its structure in air up to 520 oC and in boiling water 

for 7 days.27 By replacing the monomer tetrakis(4-bromophenyl) methane with tetrakis(4-

bromophenyl) silane, PPN-4 was synthesized with an even higher BET surface area of 

6,461 m2 g-1 and Langmuir surface area of 10,063 m2 g-1.28 The material showed excellent 

gas adsorption properties including hydrogen, methane, and CO2 because of its 

exceptionally large surface area and pore volume.28  
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Table 1-1. Summary of Representative Chemical Reactions for the synthesis of POFs. 

# 
Reaction 

Type 
Reaction Ref. 

1 
Schiff-base 

Reaction 

 

29 

2 

Friedel-

Crafts 

Alkylation 

 

30 

3 

Yamamoto 

Coupling 

Reaction 

 

27,28 

4 

Suzuki 

Coupling 

Reaction 

 

31 

5 

Sonogshira 

Coupling 

Reaction 

 

32 

6 

Gilch 

Coupling 

Reaction 

 

33 



 

12 

7 
Oxidative 

Coupling 

 

34 

8 

Ethynyl 

Cyclo-

trimerization 

 

35 

9 

Acetyl 

Cyclo-

trimerization 

 

36 

10 
Cyano Cyclo-

trimerization 

 

37 

11 
Click 

Chemistry 

 

38 

12 Imidization 

 

39 

13 Amidization 

 

40 
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In addition to Yamamoto coupling, other coupling reactions such as Suzuki 

coupling,31 Sonogashira coupling,32 Gilch Coupling,33 and Buchwald–Hartwig (BH) 

coupling reactions41 for generating strong C-C or C-N covalent bonds are also used in the 

preparation of POFs. Control over pore size, surface area, and gas uptake of the POFs could 

be enabled by the change of the lengths, rigidities, and functionalities of the building 

blocks. For example, as shown in Figure 1-3 and 1-4, the BET surface area decreases from 

1,018 to 512 m2 g−1 from CMP-0 (conjugated microporous polymer-0) to CMP-5, as the 

length of monomer strut increases.42 The pore size distribution is systematically shifted to 

larger pore diameters (Figure 1-4 b), and the overall micropore volume falls from 0.38 to 

0.16 cm3 g−1 over the series.42 This work represents an important step towards the fine 

control of the structure of the micropores in POFs. These conjugated frameworks can be 

further functionalized by attaching pendant functional substituents such as methyl, 

hydroxyl, carboxyl and amine groups onto the building blocks.32,43 This combination of 

changes in lengths of the linkers and functional groups variates the properties of the POFs 

such as pore structure, hydrophobicity, and incorporation of surface functional groups for 

applications such as CO2 capture and catalysis. 
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Figure 1-3. Representative molecular structures for CMP-0 to CMP-5. Ref. 42. 
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Figure 1-4. (a) N2 adsorption-desorption isotherms measured at 77.3 K. For clarity, the 

isotherms of CMP-0, CMP-1, CMP-2, and CMP-3 were shifted vertically by 400, 300, 200, 

and 100 cm3 g-1, respectively. (b) NL-DFT pore size distribution curves. (c) Cumulative 

pore volume curves calculated by application of NL-DFT. Ref. 42. 

 

      There are a lot more reactions that can be used to fabricate POFs other than the coupling 

reactions mentioned above, such as hyper-cross-linked styrenic polymers formed through 

Friedel−Crafts alkylation reaction,30 microporous polymers formed through 

cyclotrimerization reactions among ethynyl, acetyl or cyano groups,35–37 the POFs formed 

through the formation of amides or imides,39,40 polyphenylene networks with surface areas 

above 2,000 m2 g-1 through one step AlCl3-mediated coupling of aromatic hydrocarbons,44 

etc. Different POFs with a great variety of properties through chemical processes are 
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produced by careful selection of building blocks in the molecular design. In addition to the 

direct synthesis for the assembly of functional groups, a diverse range of chemical 

functionalities can also be precisely incorporated into the surface or interior of the 

polymeric frameworks by post-synthetic modification. The functional groups can provide 

additional interesting properties to the porous polymers, including responding selectively 

and reversibly to external stimuli such as pH, temperature, and applied electrical fields, 

which are often impossible for inorganic porous materials such as zeolites and activated 

carbons.45 Furthermore, with the rapid development in synthetic chemistry, new tools are 

available for the design and construction of POFs, providing unprecedented opportunities 

for creating novel POFs with uniform or hierarchical porous structures and site-specific 

functionalities. 

 

1.2.2 Synthesis of weakly coordinating anionic porous organic frameworks (WCA-

POFs) 

 

      Weakly coordinating anions (WCAs) are a class of anions that interact weakly with 

cations.46 This type of anions should have low overall charge and more importantly, a high 

degree of charge delocalization. In most cases, weakly coordinating anions have a -1 charge 

(e.g. ClO4
-), but in some cases a species with a -2 charge (e.g. SiO6

2-) can also exist. The 

charge is widely delocalized over the entire anion usually because of the stronger electron 

negativity on the periphery atoms or group of atoms, so that no individual moiety bears a 

high concentration of charge density. This spread of the negative charge over the entire ion 

further suggests a larger anion may have more delocalized charge and therefore be more 
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weakly coordinating. In addition, the central atom of a WCA is usually in its highest 

coordination state, therefore direct coordination between the central atom and the cation is 

forbidden. Weakly coordinated ion pairs are of fundamental importance to a variety of 

chemistries. For example, anionic [HB(C6F5)3]
- ion weakly coordinates with catalytically 

active Zr complexes in olefin polymerization, because the boron center is surrounded by 

highly electronegative functional groups, and is resistant to electrophilic attack of metal 

complexes.47 Due to the very low tendency of WCAs to interact with cations, highly 

electrophilic and strong oxidative cations such as [NO2]
+ can be stabilized by WCAs.48 

George A. Olah prepared the so-called magic acids that show the ability to protonate 

hydrocarbons to produce carbocations, which fundamentally are WCAs with protons as the 

cations.49 

      In most cases, POFs/COFs are constructed with neutral ligands or linkers. Recently, 

weakly coordinating anionic porous organic frameworks and covalent organic frameworks 

were reported in which a suitably functionalized organic WCA was polymerized to form a 

porous network.50–53 In these materials, the combination of porous polymers with anions 

provides these materials with novel properties. For example, Figure 1-5 shows the 

synthesis of an anionic framework, ICOFs.52 In ICOFs, spiroborate linkages are directly 

synthesized through the slow condensation of polyols with trimethyl borate under basic 

condition. The anionic centers form in the reaction and link the monomers together. The 

presence of immobilized anion centers in ICOFs enables the transportation of cations. 

ICOF-2, where lithium ions exist as cations in the polymer, shows room-temperature 

lithium-ion conductivity of 3.05 x 10-5 S cm-1 and an average Li+ transference number value 

of 0.80 ± 0.02. The ICOFs enable the transportation of lithium ions, suggesting their 
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potential applications as solid electrolytes.52 

 

Figure 1-5. Synthesis of ICOF-1 and ICOF-2. Ref. 52. 
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       As opposed to the above mentioned one-pot synthesis in which anionic centers form 

in the polymerization reaction, WCAs can also be synthesized as monomers before 

polymerization. As shown in Fig. 1-6, the tetra-coordinated borate anion (lithium 

tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate (Li[B(C6F4Br)4])) was firstly 

synthesized, bearing Ph-Br functional groups for later polymerization.50 Then the authors 

copolymerize the borate anions with 1,3,5-triethynylbenzene through Sonogashira 

coupling between bromobenzene and ethynyl functional groups. The network Li-ABN 

showed a surface area of 890 m2 g-1 and a pore volume of 0.61 cm3 g-1. After Li ions were 

exchanged by Na ions in the networks by stirring in saturated sodium chloride solution, a 

slightly reduced surface area of 731 m2 g-1 and pore volume of 0.48 cm3 g-1 were observed, 

which could be explained by the higher molecular mass and larger size of the sodium ions 

compared to lithium ions. This work confirmed another novel property of WCA-POF: pore 

size and pore volume of WCA POFs/COFs can be simply adjusted by exchanging cations 

with different sizes. 

 

Figure 1-6. Synthesis of Li-ABN. Ref. 50. 
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      The structure and properties of WCA-POFs are distinct from neutral POFs because of 

their weakly coordinating character towards cations. Solid super acid may be realized by 

exchanging protons into the framework. Since the framework only weakly interacts with 

cations, high cation mobility is expected, and therefore WCA-POFs may also be used as 

solid electrolytes, whose eligibility has already been proved in Ref. 52. Opportunities for 

heterogeneous catalysis could be realized in WCA-POFs if catalytically active cationic 

metal complexes are introduced into the framework. The large surface areas in WCA-POFs 

enable much more catalytically active sites compared with nonporous catalysts. The 

specific pore size may be beneficial for size and shape selectivity in catalytic reactions. In 

all of the very few WCA-POF materials known to date, tetra-coordinated boron and hexa-

coordinated silicon are the carriers of the formal negative charge. It is expected to expand 

the scope of WCA-POFs to other central elements such as hexa-coordinated phosphorus, 

and the synthesis of such materials is introduced in Chapter 2. 

 

1.3 Synthesis of mesoporous silica materials 

1.3.1 Synthesis of mesoporous silica materials 

      The first examples of mesoporous silicas, M41S, are discovered by Mobil in 1992.54 

These mesoporous materials are formed by a mechanism in which surfactant liquid crystal 

phases serve as soft templates (Figure 1-7). 55 
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Figure 1-7. Schematic synthesis pathways of self-assembly of surfactant for the formation 

of MCM-41: (a) liquid crystal phase initiated, and (b) silicate initiated. Ref. 55. 

 

      It is well known that self-assembly occurs when molecules spontaneously organize 

through a balance of attractive and repulsive interactions. These interactions are generally 

weak and noncovalent, e.g. van der Waals interactions, π- π interactions, and hydrogen 

bonds. In the formation of the M41S family, silica precursors and the surfactant molecules 

self-assemble to form hexagonal, lamellar, or cubic structures. As shown in Figure 1-7, the 

composite hexagonal mesostructure could be formed in two ways: 1. by condensation of 

silicate precursor around the pre-organized hexagonal surfactant liquid crystals, or 2. by 

adsorption of silicate species onto the external surfaces of randomly ordered rod-like 

micelles through coulombic or other types of interactions, and next these randomly ordered 

composite species spontaneously pack into a highly ordered mesoporous phase with an 

energetically favorable hexagonal arrangement, accompanied by silicate condensation.55 

Upon removal of the surfactant micelles, the ordered hexagonal mesoporous structure was 

retained.  
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Figure 1-8. Phase sequence of surfactant-water binary system. CMC = critical micellization 

concentration. Ref. 56. 

 

      The pore structures of mesoporous silicas are based on the various structures of 

surfactant micelle assemblies, and the structures of micelle assemblies rely greatly on the 

concentration of surfactant molecules in the solution. Figure 1-8 shows the liquid crystal 

structures that surfactant molecules form with increasing concentrations in a simple water-

surfactant binary system.56 At low concentrations, the surfactants energetically exist as free 

single molecules. With increasing concentration, surfactant molecules start to form 

micelles when the critical micellization concentration (CMC) is met. As the concentration 

continues to increase, rod-shaped micelles start to pack into hexagonal close packed arrays, 

producing the hexagonal liquid crystal phases. Higher concentration in the process causes 

the coalescence of the adjacent, mutually parallel cylinders to produce the lamellar phase. 

In some cases, the cubic phase appears prior to the lamellar phase. According to Myers, 

the particular liquid crystal phase formed in an aqueous surfactant solution depends not 

only on the concentration of surfactant but also on the following characteristics of the 

surfactant and environmental parameters: length of the hydrophobic carbon chain, 
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hydrophilic head group, counterion, pH, temperature, the ionic strength, and other 

additives.57 These parameters are reflected by the effect on the CMC. Generally, the CMC 

decreases with the increase in the number of carbon atoms in the unbranched chain of a 

surfactant, the valency of the counterions, and the ion strength in a solution, respectively. 

On the other hand, CMC changes with different pH, temperature, nature of hydrophilic 

group, and the nature of the counterion. 57 

      To obtain a mesostructure with the soft-templating approach, there are four conditions 

to fulfill: 1) the soft template must self-assemble into ordered liquid crystals, 2) at least one 

precursor must interact with the template and form a framework surrounding the micelles, 

3) the template must not decompose before the precursors transform to a rigid structure, 4) 

the precursors must form a highly crosslinked framework that is strong enough to support 

the porous structure without collapse.58 According to these rules, a handful of mesoporous 

silica materials have been produced with different pore structures. To name a few, MCM-

48 (Cubic Ia3̅d),54 SBA-15 (Hexagonal p6mm),59 SBA-16 (Cubic Im3̅m),60[56] and KIT-

6 (Cubic Ia3̅d),61 etc. have been reported and extensively studied. 

 

1.3.2 Synthesis of mesoporous aluminosilica materials 

 

      The initial motivation of the development of mesoporous silicas was to replace zeolites 

for long-chain hydrocarbon cracking in the petroleum industry. However, soon researchers 

found that mesoporous silicas were not able to accomplish the task because of the lack of 

acid sites. As known, the active acid sites in zeolites are from heteroatoms. Much attention 

has therefore been devoted to dope heteroatoms such as Al into the amorphous silica 
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framework. Generally, direct synthesis and post-synthetic grafting are two typical ways 

used for the introduction of heteroatoms. 

      A direct synthesis is very efficient for achieving high aluminum loadings in the silica 

networks. However, the resulting materials could have many extra-framework aluminum 

species.62 The major difficulties of direct synthesis of aluminum-substituted mesoporous 

materials are: (1) the easy dissociation of Al-O-Si bond under acidic hydrothermal 

condition which is usually used in mesoporous silica synthesis and (2) the very different 

hydrolysis rates of siliceous sources and aluminum sources. To address the first problem, 

a “pH-adjusting” method has been applied to the direct synthesis.63 In this method, the 

heteroatom source (Al or Ti) is added into the pre-hydrolyzed silicate sol in strongly acidic 

media (pH < 0). When the mesostructure is basically formed, the pH value of the system 

is adjusted from strongly acidic (pH < 0) to neutral (pH ~ 7.5), followed by a hydrothermal 

treatment, during which a large amount of heteroatoms can be introduced into the 

mesophase. Based on the pH-adjusting method, Li et al. further enhanced the ordering and 

the hydrothermal stability of Al-SBA-15 material with the help of high aging temperature 

and the addition of sodium chloride.64  

      In order to incorporate Al atoms in a silica network, an effective method is to bring the 

hydrolysis and condensation rates of Al and Si precursors close to each other, which is 

meant to address the second difficulty. This difficulty could be resolved by two strategies: 

(1) decrease the hydrolysis rate of Al, and (2) accelerating the hydrolysis rate of silicon. 

Yue and coworkers reported a direct synthesis of an aluminium-incorporated SBA-15 

material using aluminum tri-tert-butoxide (Al(OC(CH3)3)3) as an aluminum precursor at a 

pH of 1.5.62 The hydrolysis rate of Al precursors were considerably slowed down by 
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complexing them with chelating agents. Zhang and coworkers prepared Ti-SBA-15 by 

controlling the hydrolysis rate of the siliceous source in the presence of fluoride under 

strong acidic conditions.65 In 2004, Li and coworkers directly fabricated Al-SBA-15 

materials also by using fluoride in accelerating the hydrolysis of tetraethyl orthosilicate 

(TEOS).66 Simply changing the silica precursor from TEOS to tetramethyl orthosilicate 

(TMOS) could have a similar effect because TMOS hydrolyzes faster than TEOS does, 

due to the steric hindrance at ethoxide moieties and reduced salvation of the resulting 

ethanol.64,67 Other studies suggested that structurally ordered Al-SBA-15 samples can be 

synthesized at slightly higher pH (2-5) conditions, with the rate of hydrolysis of the silica 

source and condensation with Al ions controlled by adjusting the H2O to HCl molar ratio 

of the synthesis gel.68,69  

      Post-synthetic grafting is the other commonly used method to introduce Al into the 

silica framework. Grafting is a post-synthesis method to modify the surface of inorganic 

mesoporous materials by attachment of functional groups. In this regard, silanol groups on 

the wall surfaces of mesoporous silica are used for the reaction with the aluminum sources. 

For example, the grafting with trimethylaluminium (TMA),70 aluminium chloride,71 

aluminium isopropoxide,72 and (NH4)3AlF6 
73 were performed and then followed by 

calcination. The post-synthetic grafting method normally keeps the mesostructural order 

intact, however, it limits the amount of incorporated aluminium.  

      Aluminosilicas obtained by either direct synthesis or grafting have amorphous pore 

channel walls. The amorphous pore walls of mesoporous aluminosilicas make them less 

hydrothermally stable during the catalyst regeneration process and hence limits their 

applications in petrochemical industry compared to microporous zeolites. Therefore, 
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various efforts were made for the production of periodic mesoporous aluminosilica 

materials with crystalline pore channel walls. 

       

1.3.3 Synthesis of mesoporous aluminosilica materials with crystalline pore channel 

walls 

       At ambient pressure, amorphous silica crystallizes at very high temperature (> 1500 

oC) through melting. Amorphous silica can also recrystallize through dissolution under 

hydrothermal conditions at ~300 oC and a pressure of 10-30 MPa.74,75,76 However, under 

these conditions, the original ordered mesostructure collapses. The Landskron group has 

established a method called nanocasting at high pressure.77 In this technique, the 

mesoporous silica/aluminosilica-carbon composite starting material is treated with high 

pressure (2-14 GPa) and temperature (300 – 800 oC). Owing to the high surface area and 

porous structure of mesoporous silicas/aluminosilica, they usually exhibit higher reaction 

activity during the high pressure reaction than the bulk materials. Under high pressure, the 

silica can be transformed into the high-pressure crystalline phase. The mesostructure does 

not collapse because the pores are supported by the infiltrated carbon. Upon oxidation of 

the carbon support, a periodic mesoporous high-pressure phase is obtained. Mesoporous 

coesite,78 quartz,79 stishovite,80 and a mesoporous crystalline aluminosilica material 81 were 

successfully synthesized using the nanocasting at high pressure technique. However, this 

technique requires a special high-pressure apparatus which is not very readily available. 

Besides, the size of the materials synthesized using this technique is usually very small (on 

the scale of several milligrams), which is not applicable for industrial uses. 

      A flux-grown technique is used for slow growth of bulk single crystalline materials 
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such as GeO2 and GaPO4 under ambient pressure.82 Compared with the hydrothermal 

growth method, the single crystals grown from this method have higher quality, less 

numbers of hydroxyl groups and structural defects. In 2013, Sanchez and coworkers 

reported the growth of epitaxial thin films of α-quartz on single crystal silicon substrates 

from amorphous silica.83 The key to this process is the combined use of a strontium (Sr2+) 

or barium (Ba2+) catalyst with an amphiphilic molecular template. The epitaxial growth of 

quartz on the silicon (100) plane is induced by the low mismatch in the lattice parameters.83 

Later in 2015, the same group reported that hollow mesoporous silica nanoparticles were 

transformed from amorphous phase into pure polycrystalline α-quartz using catalytic 

quantities of alkaline earth metals as devitrifying agent without the use of carbon support.84  

 

 

Figure 1-9. Preparation of a single-crystalline mesoporous quartz superlattice by 

crystallization of amorphous silica, which constitutes a colloidal crystal, by using a Li+ flux 

and a reinforcing carbon framework. Ref. 85. 

 



 

28 

      In 2016, Kuroda and coworkers used a strong flux of Li+ to induce the crystallization 

from silica nanospheres constituting a colloidal crystal to single crystalline mesoporous 

quartz superlattice (Figure 1-9).85 The mesopores are supported by a carbonized furfuryl 

alcohol polymer. The silica nanospheres have an average size of 32 nm, and this thickness 

of the nanospheres are strong enough from collapse during crystallization. The authors 

failed to maintain the mesostructure on KIT-6 mesoporous silica using the same method, 

and claimed that the thinness (~2 nm) and/or low density of the framework were the 

reason.85 The work in Chapter 5 was inspired by Kuroda’s work and it is believed this 

method would be effective for the crystallization of mesoporous aluminosilica materials, 

because the Al-SBA-15 material have relatively thick pore walls (~ 7 nm), which might be 

able to be retained with a shorter crystallization time. This work is described in detail in 

Chapter 5. 
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Chapter 2 

Synthesis of anionic porous organic frameworks with 

phosphate functional groups (PA-POFs) 

 

2.1 Design of phosphorus-based anionic porous organic 

frameworks 

As described in Chapter 1, the term “weakly coordinating anionic porous organic 

frameworks (WCA-POFs)” combines weakly coordinating anions (WCAs) and porous 

organic frameworks (POFs). Compared with neutral POFs, WCA-POFs have many novel 

properties due to the combination of porosity and weakly coordinating character. In order 

to make weakly coordinated anionic porous organic frameworks, hexa-coordinated 

phosphorus [P(O2Ar)3]
- (Ar = Aryl) was designed as nodes to be incorporated into the 

framework. At the outset of the work in WCA-POFs in this dissertation, no such materials 

were known. A few examples of WCA-POFs were published while the work in this 

dissertation was underway.1–3 However, among the published examples, only tetra-

coordinated borons are used as the carriers of formal negative charges, which are 

distinctive from the research in this dissertation. 

The chemistry of phosphates with hexacoordinated phosphorus became prosperous 

since Allcock reported that the reaction of phosphonitrilic chlorides with pyrocatechol led 

to the unexpected tris(benzenediolato)phosphate anions, in which the central phosphorus 
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atom was coordinated by six oxygen atoms.4–7 Figure 2-1 lists a few examples of phosphate 

ions with hexacoordinated P atoms. Compound 1 is composed of three identical 

benzenediolato ligands, compound 2 consists of three bidendate bisphenylidene ligands, 

compounds 3 and 4 are composed of both benzenediolato and bisphenylidene ligands in 

different ratios, whereas compounds 5 and 6 contain both P-C bonds and P-O bonds on the 

same chelating ligand. The very different and complicated synthesis strategies for 

compounds 2-6 are beyond the scope of this dissertation because each compound requires 

a different order of addition of chelating ligands as well as a proper order of P-C and P-O 

bond formation.  

 

Figure 2-1. Selection of hexacoordinated phosphate anions. Ref. 4–12. 

 

For the synthesis of anionic phosphates containing three identical dioxo ligands 

around the phosphorus similar to compound 1, a simple synthesis protocol was developed 

that involved the one-time addition of 3 equivalents of bidentate ligands to PCl5 to produce 

the hexacoordinated phosphate anions.13 Aromatic 1,2-diols such as catechol are especially 



 

35 

good ligands because the chelate effect can be exploited. The reaction can be easily driven 

to completion by the addition of a base to the reaction mixture, which promotes the 

formation of hexa-coordinated P from penta-coordinated P. As shown in Figure 2-2, 3 

equivalents of aromatic 1,2-diols are added towards a solution of PCl5 to yield a penta-

coordinated phosphorus species with the release of five equivalents of HCl gas. Later, a 

base (amine, lithium salts, etc.) is added to the reaction mixture to afford a hexa-

coordinated phosphate anion. 
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Figure 2-2. Schematic synthesis of hexacoordinated phosphorus species. A+ represents the 

cation to balance the negative charge on the WCA. 
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    As discussed in the first Chapter, one-pot syntheses and two-step syntheses are the two 

strategies that are currently applied to the synthesis of WCA-POFs. In the one-pot synthesis, 

the anionic nodes are formed as connections during polymerization. 

A direct synthetic route was first proposed between the reaction of PCl5 with monomer 

that has multiple aromatic ortho-diol sites such as 1,2,4,5-tetrahydroxyl benzene or 

2,3,6,7,10,11-hexahydroxytriphenylene, hoping to obtain a network of WCA-POF, as 

shown in Figure 2-3. 

 

Figure 2-3. Proposed synthesis of 1,2,4,5-tetrahydroxy benzene and PCl5 for the 

construction of a two-dimensional porous framework. 

 

Efforts were made to realize the synthesis shown in Figure 2-3. In this synthesis, PCl5 

and 1,2,4,5-tetrahydroxy benzene were mixed in a solvent at elevated temperatures. After 

1-3 days, a base (triethylamine/n-butyl lithium) was added to the reaction mixture in order 

to promote the formation of hexa-coordinated phosphorus from penta-coordinated 

phosphorus complex. The reaction conditions were systematically adjusted with the 

expectation to yield the desired WCA-POF, which included the use of different solvents 

such as benzene, toluene or mesitylene; the reaction temperatures that span from room 

temperature to 150 oC; and the varied composition of the starting materials. However, non-
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porous materials were obtained as shown in Figure 2-4. From the 31P solid state NMR 

shown in Figure 2-5, only a small amount of P could be assigned to hexa-coordinated 

phosphorus (-81.3 ppm), while the majority of P existed in the product as tetra-coordinated 

phosphate (1.3 ppm). Similar results were observed when 2,3,6,7,10,11-

hexahydroxytriphenylene reacted with PCl5. The failure of the direct synthesis might be 

due to the high reactivity of PCl5. Because PCl5 reacts with many organic solvents, only 

very inert solvents such as benzene and toluene could be used, which restricted the 

solubility of 1,2,4,5-tetrahydroxyl benzene or 2,3,6,7,10,11-hexahydroxytriphenylene, and 

might not be preferential for the polymerization. 
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Figure 2-4. Representative N2 sorption isotherm of the products from the reaction between 

1,2,4,5-tetrahydroxy benzene and PCl5. 

 



 

38 

 

 

Figure 2-5. Representative 31P solid state NMR spectrum of the products from the reaction 

between 1,2,4,5-tetrahydroxy benzene and PCl5. 

 

Therefore, the synthesis was redesigned into a two-step synthesis strategy. In this 

strategy, a hexa-coordinated phosphorus-based weakly coordinating anion ([P(O2Ar)3]
-) 

was synthesized from PCl5 and a R-catechol as the first step. In the second step, the P-

WCA was polymerized with a carefully chosen linker to form a porous structure with the 

retention of [P(O2Ar)3]
- structure. The reaction conditions for the polymerization step are 

more flexible using this method because [P(O2Ar)3]
- ions have reasonable stability and a 

greater range of solvents can be chosen in the second step. 

The following synthetic route was therefore designed. An aryl bromide, 4-

bromocatechol, was selected because it had peripheral bromine functional groups on the 

phenyl ring. Aryl bromides are known to have strong reactivity to cross-couple with other 

ligands through various reactions, such as through Suzuki cross-coupling reactions with 

boronic acid, Sonogashira coupling reactions with phenylacetylene, Yamamoto coupling 

reactions with aryl halide, etc. In this work, the Yamamoto coupling reaction was used to 
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polymerize the [P(O2Ar)3]
-monomers. The synthesis of the first step and the second step 

are discussed in sections 2.2 and 2.3.  

 

2.2 Synthesis of TTBP and LTBP 

The synthesis of the monomers was carried out using the protocol from Ref. 14 with 

minor changes. Triethylammonium [tris(4-bromocatecholate)] phosphate (V) (TTBP) and 

lithium [tris(4-bromocatecholate)] phosphate (V) (LTBP) were synthesized as shown in 

Figure 2-6. 

OH

OH

Br
PCl5

3

O
O

P
O
O

O
OH

Br

Br

O
O

P
O
O

O

OBr

Br

Br

Br

5HCl

N-butyl Lithium
OR

Triethylamine(TEA)
RT

Toluene
50 C - 60 C

A = Li : Lithium [tris(4-bromocatecholate)] Phosphate (V) (LTBP)

A = HN(Et)3 : Triethylammonium [tris(4-bromocatecholate)] Phosphate (V) (TTBP)

A

 

 

Figure 2-6. Synthesis scheme of TTBP and LTBP. 

 

The experiment details are shown as following. 

A solution of phosphorus pentachloride (4.4 mmol, 918 mg, Sigma Aldrich) in 

anhydrous toluene (30 mL, Acros Organics) was added into a three-neck flask with 

nitrogen gas flowing. The flask was heated and stirred in an oil bath at 50 °C. Into the flask 

4-bromocatechol (13.2 mmol, 2.5 g, TCI) was added while nitrogen flushing. The resulting 

mixture was kept refluxing and stirring for 24 hours before being cooled gradually to room 

temperature. Triethylamine (0.5 mL, Fisher Scientific) or n-Butyl lithium (1.6 M in 



 

40 

hexanes) (4.4 mmol, 2.75 mL, Sigma Aldrich) was then added dropwise into the reaction 

mixture via a syringe for the synthesis of TTBP or LTBP, respectively. Upon adding the 

base, the clear orange solution turned white or grey cloudy immediately, for the synthesis 

of TTBP or LTBP, respectively. The reaction mixture was stirred for 24 hours after which 

the mixture was vacuum filtered. The solid was washed several times with toluene.  

TTBP was obtained as a white solid powder in 92% yield (2.8 g). 1H NMR (acetone-

d6): δ (ppm) = 1.41 (triplet, 9H, J = 2.3 Hz), 2.90 (singlet,1H), 3.46 (quartet, 6H, J = 2.3 

Hz), 6.51 (doublet, 3H, J = 7.6 Hz), 6.74 (doublet, 3H, J = 7.6 Hz), 6.76 (singlet, 3H). 13C 

NMR (acetone-d6): δ (ppm) = 8.1, 46.8, 109.2, 109.8, 111.8, 120.7, 145.0, 146.9. 31P NMR 

(acetone-d6): δ (ppm) = -80.5. 

LTBP was obtained as a silver grey solid powder in 87% yield (2.3 g). 1H NMR 

(acetone-d6): δ (ppm) = 6.50 (doublet, 3H, J = 7.7 Hz), 6.73 (doublet, 3H, J = 7.7 Hz), 6.76 

(singlet, 3H). 13C NMR (acetone-d6): δ (ppm) = 109.2, 109.8, 111.8, 120.7, 145.1, 147.0. 

31P NMR (acetone-d6): δ (ppm) = -80.3. 7Li NMR (acetone-d6): δ (ppm) = 0.67. 

The liquid state NMR spectra of TTBP and LTBP shown in Figure 2-7 to 2-11 confirm 

the correct structures of monomers for the copolymerization in the second step. Especially, 

the clean spectra of 31P NMR with chemical shifts located at ~ -80 ppm of both TTBP and 

LTBP are characteristic for [P(O2C6R4)3]
-. The preparation of triethylammonium ion in 

TTBP is to investigate the influence of a large organic cation on the porosity of the resulting 

polymer, which is discussed in detail in chapter 2.3. 
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Figure 2-7. 1H NMR spectrum of TTBP.  

 

 

Figure 2-8. 13C NMR spectrum of TTBP. 
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Figure 2-9. 31P NMR spectrum of TTBP. 

 

 

Figure 2-10. 7Li NMR spectrum of LTBP. 
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Figure 2-11. 31P NMR spectrum of LTBP. 

 

2.3 Synthesis of P-WCA-POFs and PA-POFs 

The first attempt was to polymerize TTBP alone in a Yamamoto coupling reaction. 

The polymerization succeeded and P was found to have a chemical shift of -80 ppm (Figure 

2-12), which is characteristic for [P(catecholate)3]
- type hexacoordinated P.15 However, the 

reaction products proved to have a surface area of only 88 m2 g-1 according to N2 adsorption 

(Figure 2-13). The cations inside the polymer should only interact very weakly with the 

anionic framework and be easily exchangeable by another cation. Therefore, it was 

attempted to exchange the triethylammonium ions in the framework by sodium ions. 
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However, the absence of Na signal in EDX after ion-exchange showed that the cations 

were not ion-exchangeable (Figure 2-14). The reason for the failure of the ion-exchange 

may be the small surface area and/or the closed pores. 

 

 
Figure 2-12. 31P solid state NMR spectrum of polymerized TTBP. Asterisks (*) indicate 

peaks arising from spinning side bands. 
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Figure 2-13. Nitrogen adsorption (red squares) and desorption (black squares) isotherms of 

polymerized TTBP measured at 77K. 

 

 

 
Figure 2-14. EDX spectrum of polymerized TTBP after ion exchange in NaCl solution. No 

Na can be found in the EDX spectrum shows that the cation was not exchangeable. 

 

In a revised strategy TTBP was co-polymerized with a commercially available 

building block which was used to build PAF-1,16 tetrakis(4-bromophenyl) methane 

(TBPM), to form a phosphorus-based WCA-POF (P-WCA-POF-1), Figure 2-15.  
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Figure 2-15. Synthesis of P-WCA-POFs and PA-POFs through Ni-promoted Yamamoto 

coupling reactions. 

 

The resulting P-WCA-POF-1 was expected to have a high surface area because it was 

known that TBPM formed PAF-1 which had a surface area as high as 5,600 m2 g-1.16 Indeed, 

the surface area was much improved when TTBP and TBPM were co-polymerized in a 

molar ratio of 1:1 showing values of 434 m2 g-1 according to N2 adsorption (Figure 2-16) 

and 31P MAS NMR demonstrated that the [P(O2Ar)3]
- octahedra remained intact during the 

polymerization (Figure 2-17), however, the cations were still not ion-exchangeable. The 

reason for this may be that the large triethylammonium ions are located within the pore 

walls and are tightly surrounded by organic polymer. Furthermore, EDX analysis of the 

material showed substantial amounts of Ni inside the material (Figure 2-18) and it might 

be that the trapped Ni coupling agent blocks the pore openings which prevents ion-

exchange. Concentrated hydrochloric acid is usually used to quench the reaction mixture 

in Yamamoto reactions for the removal of Ni, and thus it was attempted to remove the Ni 
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from the material by washing it with concentrated HCl. It was found that the HCl did 

remove almost all Ni (Figure 2-19), however 31P MAS NMR (Figure 2-20) showed that 

the hexa-coordinated [P(O2Ar)3]
- units were transformed into PO4 phosphate functional 

groups (Figure 2-15 and 2-20). The acid treated material (here-after named PA-POF-1) 

showed a type I N2 isotherm and an apparent BET surface area of 478 m2 g-1 (Figure 2-21). 

The material was ion-exchangeable by Na+ (Figure 2-22) according to EDX, suggesting 

that the pores are now open, which is possibly because of two reasons: firstly, the Ni 

impurities were removed; secondly, more pores may be created when P-O bonds break and 

ligands are etched away by the acid. Although PA-POF-1 did not have the desired PO6 

building unit, it was still worthy of further investigation because of its high surface area 

and ion-exchange properties. 
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Figure 2-16. Nitrogen adsorption (red squares) and desorption (black squares) isotherms of 

P-WCA-POF-1 [1:1] measured at 77K. 

 

 



 

48 

 

Figure 2-17. 31P solid state NMR spectrum of P-WCA-POF-1 [1:1]. Asterisks (*) indicate 

peaks arising from spinning side bands. 

 

 

 
Figure 2-18. EDX spectrum of P-WCA-POF-1 [1:1]. 
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Figure 2-19. EDX spectrum of P-WCA-POF-1 [1:1] after treatment of concentrated HCl. 

 

 
Figure 2-20. 31P solid state NMR spectrum of PA-POF-1s. Asterisks (*) indicate peaks 

arising from spinning side bands. 
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Figure 2-21. Nitrogen sorption isotherms of PA-POF-1s. The curves are offset for better 

visualization. 

 



 

51 

 
Figure 2-22. EDX spectrum of PA-POF-1s after ion exchange in NaCl solution. 
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In subsequent experiments the TTBP:TBPM molar ratio was decreased in the hope 

that a greater portion of TBPM in the polymer would further increase the surface area. 

Analysis of the N2 sorption isotherm of PA-POF-1 [TTBP:TBPM] materials by the 

Brunauer-Emmett-Teller (BET) method within the relative pressure range of 0.02 - 0.12 

showed that when the TTBP:TBPM molar ratio decreased from 1:1 to 0.6:1 to 0.3:1, the 

apparent specific surface area increased from 478 m2 g-1 to 979 m2 g-1 to 1,548 m2 g-1, 

respectively (Figure 2-21). This result confirmed that a higher ratio of TBPM leads to 

higher surface area. PA-POF-1s were ion-exchangeable, as proven by EDX analysis from 

Figure 2-22. The absence of Na in EDX spectrum of PA-POF-1 [0.3:1] after ion exchange 

(Fig. 2-22) was because of the low content of P. 

Next, the synthesis of P-WCA-POF with lithium as the cation was attempted. It was 

hoped that the small Li+ cations were more easily ion-exchangeable, and that the acid-

treatment would not be needed. As shown in Figure 2-15, the synthesis of P-WCA-POF-2 

[1:1] was carried out using the same method as P-WCA-POF-1 [1:1], however the 

triethylammonium ions were replaced by lithium ions. The polymerization succeeded with 

LTBP and TBPM in a molar ratio of 1:1 in the Yamamoto coupling reaction and P was 

found to be in the desired coordination number 6 as shown by the 31P MAS NMR spectrum 

(Figure 2-23). The product showed a BET surface area of 490 m2 g-1 according to N2 

adsorption (Figure 2-24). However, the cations are not exchangeable after the ion-exchange 

in NaCl solution (Fig. 2-25). The reason for this may be the same as P-WCA-POF-1 [1:1] 

which is that the lithium ions are located within the pore walls and are tightly surrounded 

by organic polymer.  
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Figure 2-23. 31P solid state NMR spectrum of P-WCA-POF-2 [1:1]. Asterisks (*) indicate 

peaks arising from spinning side bands. 
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Figure 2-24. Nitrogen adsorption (red squares) and desorption (black squares) isotherms of 

P-WCA-POF-2 [1:1] measured at 77K. 
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Figure 2-25. EDX spectrum of P-WCA-POF-2 [1:1] after ion exchange in NaCl solution. 

No Na can be found in the EDX spectrum shows that the cation was not exchangeable. 

 

EDX analysis of the material showed substantial amounts of the Ni used as a coupling 

agent inside P-WCA-POF-2 [1:1]. This phenomenon has been observed in P-WCA-POF-

1 [1:1]. In the synthesis of PA-POF-1, concentrated hydrochloric acid was used to remove 

the Ni impurities from P-WCA-POF-1 [1:1] and produced PA-POF-1 [1:1]. Here the same 

acid treatment was done to P-WCA-POF-2 [1:1]. The acid wash did remove almost all Ni 

(Figure 2-26), and also converted the hexa-coordinated [P(O2Ar)3]
- units into PO4 

phosphate functional groups (Figure 2-15) as confirmed by 31P MAS NMR (Fig. 2-27). 

The acid treated material (PA-POF-2 [1:1]) showed a type I N2 isotherm and a surprisingly 

high apparent BET surface area of 1,536 m2 g-1 (Figure 2-28). The material is ion-

exchangeable by Na+ (Figure 2-29) according to EDX, suggesting that the pores are now 

open. 
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Figure 2-26. EDX spectrum of P-WCA-POF-2 [1:1] after treatment of concentrated HCl. 
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Figure 2-27. 31P solid state NMR spectrum of PA-POF-2s. 
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Figure 2-28. Nitrogen sorption isotherms of PA-POF-2s. 
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Figure 2-29. EDX spectrum of PA-POF-2s after ion exchange in NaCl solution. 
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In the study of PA-POF-1s, it was found that a greater portion of TBPM in the polymer 

increases the surface areas of PA-POF-1s. Analysis of the N2 sorption isotherms of PA-

POF-2 [TTBP:TBPM] materials by the BET method within the relative pressure range of 

0.03 - 0.2 showed that the apparent BET surface area of PA-POF-2 [LTBP:TBPM] ranging 

from 1,291 m2 g-1 to 2,408 m2 g-1 as the LTBP:TBPM molar ratio changed from 2:1 to 

0.2:1 (Figure 2-28). This result confirmed that a higher ratio of TBPM leads to higher 

porosity. However, compared with the surface areas of PA-POF-1s, the surface area of PA-

POF-2s were much larger, possibly because different cations have different templating 

effects that influence the structure of the polymerizing frameworks. It is worthwhile to 

mention that no product was collected after the hydrochloric acid treatment in the synthesis 

of PA-POF-1 [2:0] and PA-POF-1 [2:1], as well as PA-POF-2 [2:0]. The reason for this is 

that the acid treatment breaks P-O bonds and leaves only terminal PO4 units. If 

TTBP/LTBP is used as the sole starting monomer, the framework is linked by a large 

number of [P(O2Ar)3]
- nodes. The breakage of these nodes by acid depolymerizes the 

framework to give smaller, soluble molecules. PA-POF-2s were also ion-exchangeable, as 

proven by EDX analysis in Figure 2-29. In PA-POF [0.6:1], PA-POF [0.4:1] and PA-POF 

[0.2:1], the Na signals were below the detection limit in the EDX spectra after Na+ ion 

exchange because of the low content of P in these materials. These observations are also 

in accordance with PA-POF-1s. 

The synthesis procedures of P-WCA-POFs and PA-POFs are listed as following. 

P-WCA-POF-1: 1,5-cyclooctadiene (cod, 0.7 mL, 5.55 mmol, Acros Organics) was 

added to a solution of bis(1,5-cyclooctadiene) nickel (0) ([Ni(cod)2], 1.125 g, 4.09 mmol, 

Acros Organics), and 2,2’-bipyridyl (640 mg, 4.09 mmol, TCI) in anhydrous DMF (30 mL, 
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Acros Organics). To the purple solution, TTBP (312 mg, 0.449 mmol) and TBPM (213 mg, 

0.336 mmol, TCI) were added. The reaction mixture was stirred and heated at 90 °C for 

three days to obtain a deep purple suspension. After cooling to RT, the suspension was 

vacuum filtered. The residue solid was washed with acetone and methanol, and dried in 

vacuo to give P-WCA-POF-1 [1:1] as a deep green powder (612 mg, 197%). 

P-WCA-POF-2: 1,5-cyclooctadiene (cod, 0.7 mL, 5.55 mmol, Acros Organics) was 

added to a solution of bis(1,5-cyclooctadiene) nickel (0) ([Ni(cod)2], 1.125 g, 4.09 mmol, 

Acros Organics), and 2,2’-bipyridyl (640 mg, 4.09 mmol, TCI) in anhydrous DMF (30 mL, 

Acros Organics). To the purple solution, LTBP (269 mg, 0.449 mmol) and TBPM (213 mg, 

0.336 mmol, TCI) were added. The reaction mixture was stirred and heated at 90 °C for 

three days to obtain a deep purple suspension. After cooling to RT, the suspension was 

vacuum filtered. The residue solid was washed with acetone and methanol, and dried in 

vacuo to give P-WCA-POF-2 [1:1] as a deep greyish green powder (379 mg, 142%). 

The yields of P-WCA-POFs were more than 100% because the materials included 

substantial amounts of Ni as shown by EDX. 

PA-POF-1 [1:1]: 1,5-cyclooctadiene (cod, 0.7 mL, 5.55 mmol, Acros Organics) was 

added to a solution of bis(1,5-cyclooctadiene) nickel (0) ([Ni(cod)2], 1.125 g, 4.09 mmol, 

Acros Organics), and 2,2’-bipyridyl (640 mg, 4.09 mmol, TCI) in anhydrous DMF (30 mL, 

Acros Organics). To the purple solution, TTBP (312 mg, 0.449 mmol) and TBPM (213 mg, 

0.336 mmol, TCI) were added. The reaction mixture was stirred and heated at 90 °C for 

three days to obtain a deep purple suspension. To this purple suspension, concentrated HCl 

(10 mL x 2, EMD Millipore) was added and stirred for 15 min. The reaction mixture 

became hot and a lot of bubbles were released. The purple color of the reaction mixture 
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faded to green, and a lot of light yellow precipitates formed. This yellow precipitate was 

then vacuum filtered. The residue solid was washed with H2O, acetone and methanol, and 

dried in vacuo to give PA-POF-1 [1:1] as a light yellow powder (106 mg). Elemental 

analysis (%) found: C (80.55), H (4.90), N (1.05), P (1.66). 

PA-POF-1 [2:0], [2:1], [0.6:1], [0.3:1] were also synthesized using the same method 

except the amounts of TTBP and TBPM were added as below. 

PA-POF-1 [2:0] (0 mg): TTBP (312 mg, 0.449 mmol) 

PA-POF-1 [2:1] (0 mg): TTBP (312 mg, 0.449 mmol), TBPM (106 mg, 0.168 mmol) 

PA-POF-1 [0.6:1] (98 mg): TTBP (187 mg, 0.269 mmol), TBPM (213 mg, 0.336 

mmol). Elemental analysis (%) found: C (82.20), H (5.17), N (1.25), P (1.22). 

PA-POF-1 [0.3:1] (103 mg): TTBP (94 mg, 0.135 mmol), TBPM (213 mg, 0.336 

mmol). Elemental analysis (%) found: C (91.58), H (6.09), N (0.90), P (< 0.4). 

PA-POF-2 [1:1]: 1,5-cyclooctadiene (cod, 0.7 mL, 5.55 mmol, Acros Organics) was 

added to a solution of bis(1,5-cyclooctadiene) nickel (0) ([Ni(cod)2], 1.125 g, 4.09 mmol, 

Acros Organics), and 2,2’-bipyridyl (640 mg, 4.09 mmol, TCI) in anhydrous DMF (30 mL, 

Acros Organics). To the purple solution, LTBP (269 mg, 0.449 mmol) and TBPM (213 mg, 

0.336 mmol, TCI) were added. The reaction mixture was stirred and heated at 90 °C for 

three days to obtain a deep purple suspension. To this purple suspension, concentrated HCl 

(10 mL x 2, EMD Millipore) was added and stirred for 15 min. The reaction mixture 

became hot and a lot of bubbles were released. The purple color of the reaction mixture 

faded to green, and a lot of light yellow precipitates formed. This yellow precipitate was 

then vacuum filtered. The residue solid was washed with H2O, acetone and methanol, and 
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dried in vacuo to give PA-POF-2 [1:1] as a light yellow powder (92 mg). Elemental 

analysis (%) found: C (83.14), H (5.18), N (1.09), P (0.93). 

PA-POF-2 [2:0], [2:1], [0.8:1], [0.6:1], [0.4:1], [0.2:1] were also synthesized using 

the same method except the amounts of LTBP and TBPM were added as below. 

PA-POF-2 [2:0] (0 mg): LTBP (269 mg, 0.449 mmol) 

PA-POF-2 [2:1] (43 mg): LTBP (269 mg, 0.449 mmol), TBPM (106 mg, 0.168 mmol). 

Elemental analysis (%) found: C (84.14), H (4.92), N (1.04), P (1.44). 

PA-POF-2 [0.8:1] (101 mg): LTBP (215 mg, 0.359 mmol), TBPM (213 mg, 0.336 

mmol). Elemental analysis (%) found: C (87.01), H (4.88), N (0.85), P (<0.4). 

PA-POF-2 [0.6:1] (90 mg): LTBP (161 mg, 0.269 mmol), TBPM (213 mg, 0.336 

mmol). Elemental analysis (%) found: C (87.23), H (5.46), N (0.63), P (<0.4). 

PA-POF-2 [0.4:1] (97 mg): LTBP (108 mg, 0.180 mmol), TBPM (213 mg, 0.336 

mmol). Elemental analysis (%) found: C (88.26), H (5.15), N (0.91), P (<0.4). 

PA-POF-2 [0.2:1] (97 mg): LTBP (54 mg, 0.0898 mmol), TBPM (213 mg, 0.336 

mmol). Elemental analysis (%) found: C (88.91), H (5.34), N (0.84), P (<0.4). 

 

2.4 Characterization of PA-POFs 

The scanning electron microscopy (SEM) images and energy dispersive X-ray 

spectroscopy (EDX) spectra were taken using a Hitachi S-4300 SEM. Samples were 

dispersed over a sticky carbon surface adhered to a flat aluminum platform sample holder. 

Samples were coated with 5 nm thick iridium for SEM imaging. Samples analyzed by EDX 

were not coated with any material for a better understanding of element analysis. X-ray 

diffraction data were recorded using a Rigaku Rotaflex diffractometer with a Cu Kα 
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radiation source (λ = 0.15405 nm). The thermogravimetric analysis (TGA) experiments 

were carried out both in air and nitrogen using a TA instrument Q-500 series thermal 

gravimetric analyzer, with a heating rate of 10 °C min-1. Solution phase 1H, 13C, 31P and 

7Li NMR spectra were obtained on a Bruker Avance 500 MHz instrument. 31P solid state 

NMR spectra were obtained on a Bruker Avance III HD 400 MHz instrument. Samples 

were packed into 4 mm outer diameter zirconia rotors and inserted into a Bruker magic 

angle spinning (MAS) probe. One pulse experiments were employed with a 20 s relaxation 

delay. The acquisition time was 0.041779 us. The number of scans were between 1000 to 

5000. The 31P chemical shift of NH4H2PO4 was set to zero using external reference standard. 

Nitrogen and carbon dioxide sorption measurements were collected using a Quantachrome 

Autosorb-1 instrument. Before analysis, all the samples were outgassed five hours at 

200 °C in vacuum. The Brunauer-Emmett-Teller surface area analysis was carried out 

using five data points in the pressure range between 0.05 and 0.2 P/P0. 

The scanning electron microscopy (SEM) images of the PA-POFs showed that the 

materials are composed of spherical or near-spherical particles (Figure 2-30 and 2-31) 

which is typical for highly cross-linked polymers. No or small Ni signals can be found in 

EDX spectra of PA-POF-1s and -2s, proving HCl treatment is effective in removing the Ni 

impurities. According to powder X-ray diffraction (PXRD) patterns (Figure 2-32), no long-

range-ordered structures are observed for all the PA-POFs. This result was expected 

because the inert nature of the C-C bonds formed during the coupling reaction prohibits 

crystallization. The thermal and oxidative stability of the PA-POFs was also studied. 

Thermogravimetric analysis (TGA) shows that all the PA-POF materials are stable up to 

450 °C in air (Figure 2-33), and up to 600 °C in N2 environment (Figure 2-34). The FTIR 
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spectra of PA-POFs are shown in Figure 2-35. Because of the similar chemical nature of 

the building blocks and the rather low content of phosphate groups in the material, the 

spectra of PA-POFs and PAF-1 are very similar. 

All the PA-POF materials show type I nitrogen sorption isotherms, which means all 

the PA-POFs are microporous materials. The CO2 adsorption isotherms of PA-POFs were 

measured from P/P0 = 10-3 to P/P0 = 1 at 273 K to analyze the micropore size distribution. 

As shown in Figure 2-36, all the PA-POFs showed a similar pore size distribution based 

on non-local density functional theory (NLDFT) calculations from CO2 adsorption 

isotherms at 273 K. Two distinct pore sizes at 0.57 nm and 0.82 nm can be seen in all PA-

POFs. The pore sizes of PA-POFs are very different from PAF-1, whose micropore size 

distribution is centered at 1.4 nm.17 As shown in Table 2-1, the cumulative pore volume of 

the PA-POF materials increased with increasing TBPM molar ratio, ranging from 0.4 cm3 

g-1 to 0.75 cm3 g-1, and 0.74 cm3 g-1 to 1.09 cm3 g-1 for PA-POF-1s and PA-POF-2s, 

respectively. 
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Figure 2-30. SEM images of PA-POF-1s. A: PA-POF-1 [1:1]; B: PA-POF-1 [0.6:1]; C: 

PA-POF-1 [0.3:1]. 
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Figure 2-31. SEM images of PA-POF-2s. (A) PA-POF-2 [2:1]; (B) PA-POF-2 [1:1]; (C) 

PA-POF-2 [0.8:1]; (D) PA-POF-2 [0.6:1]; (E) PA-POF-2 [0.4:1]; and (F) PA-POF-2 

[0.2:1]. 
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Figure 2-32. XRD patterns of PA-POF-1s and PA-POF-2s. Patterns are offset for 

clarification. 
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Figure 2-33. (A) PA-POF-1s and (B) PA-POF-2s thermograms measured in air. 
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Figure 2-34. (A) PA-POF-1s and (B) PA-POF-2s thermograms measured in nitrogen. 
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Figure 2-35: FTIR spectra of (A) PA-POF-1s and (B) PA-POF-2s. The FTIR spectrum of 

PAF-1 was inserted in each figure for comparison. Spectra are labeled by compound names. 

Because of the low content of phosphorus, P-O stretching is not obvious in the spectra. 
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Figure 2-36. Pore size distribution of (a) PA-POF-1s and (b) PA-POF-2s calculated from 

CO2 sorption isotherms collected at 273 K by NLDFT method (carbon slit pore model). 
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Table 2-1. Summary of apparent BET surface area and pore volume of PA-POFs. 

 

SAMPLE ID 

BET SURFACE AREA 

(M2 G-1) 

DFT & MONTE-CARLO 

CUMULATIVE PORE 

VOLUME (CM3 G-1) 

PA-POF-1 [1:1] 478 0.40 

PA-POF-1 [0.6:1] 979 0.56 

PA-POF-1 [0.3:1] 1548 0.75 

PA-POF-2 [2:1] 1291 0.74 

PA-POF-2 [1:1] 1536 0.86 

PA-POF-2 [0.8:1] 1761 0.84 

PA-POF-2 [0.6:1] 2084 1.03 

PA-POF-2 [0.4:1] 2220 1.08 

PA-POF-2 [0.2:1] 2408 1.09 
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Chapter 3 

CO2 adsorption properties of PA-POFs 

 
3.1 Introduction 

    CO2 is widely considered as a greenhouse gas which is a key cause for global warming. 

Serious issues such as the rise of temperature, the increase in sea level, drop in pH of the 

surface sea water, and species extinction is believed to be associated with the massive 

emission of CO2. Over the last half century, the atmospheric CO2 concentration has 

increased from ~300 ppm to 390 ppm.1 For the past 400,000 years, such a level of 

atmospheric CO2 concentration has never been reached.2,3 The pH value of sea surface 

water could drop from 8.2 to 7.8 by 2095 due to the accumulative effect of the dissolved 

CO2.
4 Based on the possible scenarios presented in the International Panel on Climate 

Change (IPCC) climate report in 2007, the average global temperature is expected to rise 

by between 1.8 and 6.4 oC by the end of the 21st century. 

    As shown in Figure 3-1, approximately 77% of the greenhouse gas emission is attributed 

to CO2, among which 74% was released from the combustion of fossil fuels, including coal, 

natural gas, and oil. Global CO2 emissions have increased by approximately 80% over the 

period of 1970 - 2004 (from 21 to 38 Gt per year), and these emission levels are projected 

to increase further over the next several decades owing to rises in energy demands 

associated with a growing global population and economic and industrial development, 

especially in developing countries.5 
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Figure 3-1. Global greenhouse gas emission sources in 2004. Ref. 5.  

 

In order to reduce carbon emission, various approaches are being studied, which 

include the following: 

1. Improving the thermal efficiency of fossil fuels. Normally the heat efficiency in a 

fossil fuel power station is ~33%. The combustion thermal efficiency of any fuel 

in a traditional generator or engine is limited by the Carnot cycle. For example, 

the theoretical maximum thermal efficiency of a car engine is ~74%, despite that 

the real efficiency is only ~30%. This limitation can be broken if fuels are used in 

a fuel cell. The theoretical heat efficiency of fuel cell could reach 100%. Even 
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though normally only 40% ~ 60% is reached, it is already much higher than 

traditional combustion methods. However, this technology is limited by 

immaturity as well as the very high price in production.  

2. Switch to non-carbon fuel sources such as hydrogen. The hydrogen is abundant 

on earth because of the massive amount of water, and hydrogen gas is an 

acknowledged clean fuel because its only product is water. However, the 

continuous production of hydrogen is still challenging and pricy. In addition, 

because hydrogen is highly explosive when mixed with air, the safe storage and 

transportation of hydrogen still require many years of research, development and 

implementation. 

3. Use of renewable energy such as solar energy, wind energy and nuclear energy. 

The wide use of solar energy needs high capital investment, and new technologies 

including the discovery of advanced materials are still developing for high 

conversion efficiency. The use of wind and water energy are strictly limited by 

locations. Nuclear fusion power, the ultimate energy solution, is undergoing a 

slow development. According to David Kingham, CEO of Tokamak Energy, 

Oxford, UK, humans are only half way towards the controllable use of fusion 

energy, and it is unlikely to use fusion energy at commercial scale before 2030.6 

4. CO2 capture and sequestration (CCS). Due to the abovementioned limitations of 

clean energy methodologies, fossil fuels would remain as the major energy source 

for a considerable amount of time. According to the U.S. Energy Information 

Administration, global energy-related CO2 emissions will rise from 32.2 billion 

metric tons in 2012 to 35.6 billion metric tons in 2020 and to 43.2 billion metric 
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tons in 2040 -- an increase of 34% over the projection period (Figure 3-2).7 

Although the tremendous usage of fuel combustion for energy use is of significant 

concern, it does not mean humans are unable to prevent CO2 emission. CCS have 

gained much attention because it allows the capture of the released CO2 from fossil 

fuel power plants for further utilization or storage.  

 

    CO2 capture and sequestration (CCS) is generally a three-step process that includes CO2 

separation and capture from sources, compression and transportation, and further 

utilization or permanent storage on the ocean floor in the form of solid gas hydrate.9 Indeed, 

the installation of CCS systems within fossil fuel power stations that selectively remove 

CO2 from the flue gas is able to significantly reduce the worldwide CO2 emissions. CCS 

can lower the environmental impact of CO2 until more environmentally sustainable energy 

sources are widely employed.8 Currently, one of the greatest challenges in this process is 

the discovery of excellent adsorbent materials that display suitable physical and chemical 

properties and would remain stable in the long term. POFs, due to the permanent porosity, 

high surface areas and high thermal and chemical stabilities, are good candidates for CO2 

adsorption. 



 

78 

     

Figure 3-2. Projected growth in CO2 emissions until 2040 by U.S. Energy Information 

Administration. Ref. 7. 

 

3.2 CO2 adsorption properties of PA-POFs 

PA-POFs have high apparent BET surface areas up to 2408 m2 g-1. In this section, the 

CO2 adsorption properties of these materials is discussed. The CO2 sorption measurements 

are shown in Figure 3-3, which were collected using a Quantachrome Autosorb-1 

instrument. Before analysis, all the samples were outgassed five hours at 200 °C in vacuum. 
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The CO2 adsorption isotherms at 258 K, 273 K, and 298 K (Figure 3-3) were measured. 

The BET surface areas, pore volumes, CO2 uptakes, and heats of CO2 adsorption of all the 

PA-POFs are summarized in Table 3-1.  

 

Table 3-1. Summary of BET surface areas, pore volumes, CO2 uptakes, and heats of CO2 

adsorption of PA-POFs. 

 

Sample ID 

BET surface 

area 

(m2 g-1) 

DFT & Monte-

Carlo Cumulative 

Pore Volume 

(cm3 g-1) 

CO2 uptake at 1 bar 
(cc g-1) 

Isosteric Heat of 

CO2 Adsorption 

(kJ mol-1) 
258 K 273 K 298 K 

PA-POF-1 [1:1] 478 0.40 66 56 34 23.8 

PA-POF-1 [0.6:1] 979 0.56 89 85 54 20.8 

PA-POF-1 [0.3:1] 1548 0.75 101 88 64 15.7 

PA-POF-2 [2:1] 1291 0.74 78 73 43 22.2 

PA-POF-2 [1:1] 1536 0.86 132 98 57 21.4 

PA-POF-2 [0.8:1] 1761 0.84 126 91 64 23.8 

PA-POF-2 [0.6:1] 2084 1.03 135 103 66 19.8 

PA-POF-2 [0.4:1] 2220 1.08 133 97 59 20.4 

PA-POF-2 [0.2:1] 2408 1.09 107 94 53 20.3 

 

For PA-POF-1s, in general, CO2 uptakes increase with the surface areas (Table 3-1). 

For PA-POF-2s, PA-POF-2 [2:1] has significantly lower CO2 uptake than the other PA-

POF-2s at all three temperatures. This is possibly because of the dense structure of PA-

POF-2 [2:1]. As seen in the SEM images of PA-POFs (Figure 2-28), PA-POF-2 [2:1] has 

a much denser structure and larger particle size than all the other PA-POF-2s, which makes 

PA-POF-2 [2:1] lacking of macropores for a clear adsorption path of CO2. The CO2 uptakes 

of PA-POF-2s are generally greater than PA-POF-1s, which can be attributed to the larger 

surface areas of PA-POF-2s. Among all PA-POF materials, PA-POF-2 [0.6:1] adsorbs the 
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most CO2 with an uptake of 103 cc g-1 (4.59 mmol g-1) at 273 K and 1 bar (Table 3-1). This 

adsorption capacity is remarkable compared with PAF-1. PAF-1 (Figure 3-4 a) only shows 

a CO2 uptake of 45 cc g-1 at 273 K and 1 bar.10 The CO2 adsorption capacities of PA-POFs 

are about twice as much as that of PAF-1, despite the smaller BET surface areas of the PA-

POFs. The CO2 adsorption capacity of PA-POF-2 [0.6:1] is also comparable to the best 

performing CO2 adsorbing POF materials such as azo-linked polymers (ALPs; 3.52−5.37 

mmol g-1),11 microporous polycarbazole (CPOP-1; 4.82 mmol g-1),12 imine-linked porous 

polymer frameworks (PPFs; 2.1−6.12 mmol g-1),13 benzimidazole-linked polymers (BILPs; 

2.91−5.34 mmol g-1)14-16, aminal-linked porous organic polymers (APOPs; 2.27−4.45 

mmol g-1),17 and covalent triazine polymers (PCTPs; 3.46−4.92 mmol g-1).18 
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Figure 3-3. CO2 adsorption isotherms of PA-POF-1s at (a) 258 K, (b) 273 K, and (c) 298 

K; CO2 adsorption isotherms of PA-POF-2s at (d) 258 K, (e) 273 K, and (f) 298 K. 
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Figure 3-4. (A) CO2 uptakes at 273K and 1 bar and (B) isosteric heats of CO2 adsorption 

(Qst) of PAFs. Ref. 10. 

 

As can be seen in Table 3-1 and Figure 3-3, the CO2 uptake does not directly correlate 

with the BET surface areas of the materials. For example, PA-POF-2 [0.2:1] possesses the 

highest BET surface area among all the PA-POFs, but adsorbs slightly less CO2 than PA-

POF-2 [1:1] at all three temperatures. This can be explained by the interactions between 

CO2 molecules and the framework. Isosteric heats of CO2 adsorption (Qst) were calculated 

from the adsorption at three temperatures (258 K, 273 K, and 298 K) using the Clausius-

Clapeyron equation which is shown as following: 

 

Qst values of all the PA-POFs except PA-POF-1 [0.3:1] vary between 20 kJ mol-1 and 

25 kJ mol-1 (Figure 3-5), which is higher than PAF-1 (Qst = 15 kJ mol-1).10 The higher Qst 

values suggest that PA-POFs have stronger interactions to CO2 molecules than PAF-1, 

possibly due to ion-dipole force between the anionic framework and CO2. The higher heats 
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of adsorption may explain why PA-POFs adsorb more CO2 than PAF-1 despite the smaller 

surface areas. PA-POF-1 [0.3:1] has a similar Qst value as PAF-1 probably due to the low 

content of phosphorus. 

 

 

Figure 3-5. Isosteric heats of CO2 adsorption (Qst) of (a) PA-POF-1s and (b) PA-POF-2s. 
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Chapter 4 

Rapid adsorption of organic pollutants from water by 

PA-POFs 

 

4.1 Introduction 

Water safety is crucial to human life. It is estimated that more than 20 million people 

die because of waterborne pathogens, in addition to non-fatal infection of more than 200 

million people every year.1 The emerging organic pollutants, such as pesticides and 

endocrine disrupting compounds are becoming an issue in polluted water/waste water. The 

discharge of these pollutants into the environment affects not only human beings, but also 

all living organisms. For example, according to a 7-year, whole-lake study at the 

Experimental Lakes Area in northwestern Ontario, Canada, the long-term exposure of 

fathead minnow (Pimephales promelas) to 17α-ethynyl estradiol (a synthetic estrogen used 

in birth-control pills) at low concentrations (5–6 ng L−1) led to feminization of males and, 

ultimately, a near extinction of this species in the lake.2 

Adsorption of hazardous organic compounds is one of the simplest and the most 

effective methods for the removal of organic pollutants from water. Porous materials play 

a vital role in water purification processes due to their strong adsorption ability. To date, 

activated carbons are the most used adsorbent materials to remove organic micropollutants 

from water because of their high surface areas and economic prices.3 However, certain 

weaknesses of these materials such as slow adsorption rate (in hours), low uptake capacity, 
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difficulty in regeneration (heating to 500 oC with loss of performance), and poor removal 

of relatively hydrophilic micropollutants are significant drawbacks. Other porous materials 

such as zeolites,4 mesoporous silicas,5 covalent organic frameworks (COFs),6 porous 

organic polymers,7 metal organic frameworks (MOFs),8,9 and porous non-covalent 

frameworks,10 have also been investigated with respect to their adsorption properties 

towards organic pollutants from water, though slow uptake remains a problem. In 2015, a 

porous β-cyclodextrin polymer (P-CDP) material was reported to have rapid adsorption 

towards various organic micropollutants.11 This material showed outstanding adsorption 

kinetics towards bisphenol A (BPA), a component that is generally used in polymer 

production such as phenol resins, epoxy resins and polyesters, and is considered to be one 

of the most frequently detected pollutants in aquatic environments and in waste water.12 

Figure 4-1 shows the removal of ~ 90% BPA from 1 mL 0.1 mM solution by 1 mg P-CDP 

in less than 1 min, while under the same conditions, commercial activated carbons (ACs) 

require more than five minutes to reach equilibrium. However, the maximum BPA 

adsorption capacity at equilibrium by P-CDP was found to be only 88 mg g-1, which is 

relatively low even compared with ACs. For example, a coconut shell based activated 

carbon AC–PCB has a maximum BPA uptake of 227 mg g-1, with the adsorption 

equilibrium reached in approximately one hour.13 To date, the discovery of materials that 

adsorb organic contaminants with different hydrophilicity in both large quantity and at fast 

removal rate remains a challenge. 

PA-POFs offer such an opportunity because of their high porosity and good thermal 

stability. In the following context, the BPA adsorption properties of PA-POF materials as 
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well as the removal of other representative organic micropollutants by PA-POFs are 

presented. 

 

Figure 4-1. Time dependent adsorption of 0.1 mM aqueous bisphenol A (1 mL mg-1) by 

each adsorbent. P-CDP: porous β-cyclodextrin polymer (SBET = 263 m2 g-1); NP-CDP: 

nonporous β-cyclodextrin polymer (SBET = 6 m2 g-1); EPI-CDP: a non-porous β-

cyclodextrin polymer crosslinked with epichlorohydrin (SBET = 23 m2 g-1); NAC: Norit RO 

0.8 activated carbon (SBET = 984 m2 g−1); GAC: DARCO granular activated carbon 

(SBET = 612 m2 g−1); Brita AC: the hybrid AC/ion exchange resin used in commercial Brita 

point-of-use filters (SBET = 507 m2 g−1). Ref. 11. 

 

4.2 Methods and materials 

      2,2-bis(4-hydroxyphenol) propane (BPA), 1-naphthylamine (1-NA), bis(4-

hydroxyphenol) sulfone (BPS), 2-naphthol, 2,4-dichlorophenol (2,4-DCP) and propranolol 

hydrochloride were purchased from TCI. Ethinyl oestradiol, and metolachlor were 

purchased from Sigma Aldrich. Brita activated carbon was obtained from a Brita on tap 
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faucet water filter and was ground into fine powder before use. PAF-1 was synthesized 

following a previously published protocol.14  

      Ultraviolet-visible (UV-Vis) spectroscopy was performed on a Shimadzu UV-2101PC 

UV-Vis scanning spectrometer. UV-vis spectra were recorded at RT over the range of 200 

- 400 nm, and normalized to zero absorbance at 400 nm. The concentrations of the 

pollutants were calculated from the UV-vis spectra, based on their molar extinction 

coefficients using Beer’s Law: bisphenol A (3,343 M-1 cm-1 at λmax = 276 nm), bisphenol 

S (20,700 M-1 cm-1 at λmax = 259 nm), 2-naphthol (4,639 M-1 cm-1 at λmax = 273 nm), 1-

naphthyl amine (5,185 M-1 cm-1 at λmax = 305 nm), 2,4-dichlorophenol (2,255 M-1 cm-1 at 

λmax =284 nm), ethinyl oestradiol (8,430 M-1 cm-1 at λmax = 220 nm), propranolol 

hydrochloride (5,310 M-1 cm-1 at λmax = 290 nm) and metolachlor (213 M-1 cm-1 at λmax = 

15,330 nm). 

       

4.3 Adsorption of bisphenol A from water by PA-POFs 

      Firstly, in order to determine which PA-POF material adsorbs the most BPA, the 

following experiments were conducted. 1 mg of each material (measured using Cahn C-35 

microbalance) was stirred in 100 mL 0.1 mM BPA solution at RT for 1 hour (defined as 

100 mL mg-1 adsorption study), after which 4 mL of the suspension was taken via a syringe 

and filtered through a VWR 0.45 μm PTFE syringe filter. The filtrate was collected for 

UV-vis analysis to determine the residual concentration of the pollutant.  

      The UV-vis spectra after the adsorption are shown in Figure 4-2. The removal 

efficiency of each material was calculated using the following equation, and is plotted in 

Figure 4-3.  
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   Pollutant Removal Efficiency =  
𝑪𝟎 − 𝑪𝒕

𝑪𝟎
 x 100% 

 

where C0 (mmol l-1) and Ct (mmol l-1) are the initial and residual concentration of pollutant 

in the stock solution and the filtrate, respectively. 

      The amount of pollutant adsorbed by the adsorbent was determined by the following 

equation: 

𝑸𝒕 =  
(𝑪𝟎  −  𝑪𝒕)𝑴𝒘𝑽

𝒎
 

where C0 (mmol l-1) and Ct (mmol l-1) are the initial and residual concentration of pollutant 

in the stock solution and the filtrate, respectively. Qt (mg g-1) is the amount of the pollutant 

adsorbed. Mw (g mol-1) is the molar mass of the pollutant. V (l) is the volume of the 

pollutant solution. m (g) is the mass of adsorbent used in the experiment. 

      PA-POF-2 [0.8:1] was found to remove ~ 88% of BPA from a 100 mL mg-1 solution 

in one hour, corresponding to an equilibrium uptake of 2,015 mg g-1, which is the highest 

among all PA-POFs. Other PA-POF materials such as PA-POF-2 [1:1], PA-POF-2 [0.6:1], 

and PA-POF-2 [0.4:1] also show good adsorption ability towards BPA with the removal 

efficiencies over 80%. Compared with the rest of PA-POFs, PA-POF-2 [2:1] showed much 

smaller removal efficiency of ~ 7%. This small removal efficiency may be due to the 

homogeneous structure of PA-POF-2 [2:1], resulting in the lack of macropores for easy 

access of BPA molecules and much longer adsorption pathways. PA-POF-1s have less 

adsorption of BPA than PA-POF-2s except PA-POF-2 [2:1] probably because of the 

smaller surface areas of PA-POF-1s. PAF-1 was also tested using the same method and the 
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removal efficiency was found to be only ~ 4.5%. Even though PAF-1 has a much larger 

surface area than PA-POFs, it shows little uptake towards BPA.  

200 250 300 350 400
0.0

0.5

1.0

1.5

2.0

A
b

s
o

rb
a

n
c
e

Wavelength [nm]

 0.1 mM

 PA-POF-2 [2:1]

 PA-POF-2 [1:1]

 PA-POF-2 [0.8:1]

 PA-POF-2 [0.6:1]

 PA-POF-2 [0.4:1]

 PA-POF-2 [0.2:1]

 PA-POF-1 [1:1]

 PA-POF-1 [0.6:1]

 PA-POF-1 [0.3:1]

 PAF-1

 

Figure 4-2. UV-vis spectra of BPA solutions after 100 mL mg-1 adsorption studies for one 

hour by PA-POFs and PAF-1. 
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Figure 4-3. Bisphenol A removal efficiency of PA-POFs and PAF-1 from 100 mL mg-1 0.1 

mM BPA solution. 
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      The adsorption capacity of PA-POF-2 [0.8:1] was further examined by simulating the 

BPA adsorption isotherms using the following procedures. 1 mg of PA-POF-2 [0.8:1] was 

stirred in a closed bottle with 40 mL (for 40 mL mg-1 study), 50 mL (for 50 mL mg-1 study), 

until 140 mL (for 140 mL mg-1 study) 0.1 mM BPA stock solution at RT for one hour to 

reach equilibrium. 4 mL of the suspension was then taken out via a syringe and 

subsequently filtered through a VWR 0.45 μm PTFE syringe filter. The filtrate was 

collected and measured by UV-vis spectroscopy and is shown in Figure 4-4. The spectra 

clearly show a trend that feeding with increased amount of BPA solution, the residual BPA 

concentration in the filtrate is increased after the treatment. The removal efficiency in each 

study was calculated and shown in Figure 4-5. A 90% removal efficiency can be reached 

in one hour when PA-POF-2 [0.8:1] was treated with as much as 80 mL mg-1 solution. 
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Figure 4-4. UV-vis spectra of BPA solutions after 40-140 mL mg-1 adsorption studies for 

one hour by PA-POF-2 [0.8:1]. 
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Figure 4-5. Bisphenol A removal efficiency of PA-POF-2 [0.8:1] from 40-140 mL mg-1 

0.1 mM BPA solution. 

 

 

      Two classic sorption isotherm models, Langmuir and Freundlich models were fitted to 

the experiment data. The Langmuir isotherm model assumes that the adsorption occurred 

in a monolayer.15 The Freundlich model was shown to be in accord with an exponential 

distribution of active sites which hypothesizes that a multilayer adsorption takes place on 

the heterogeneous surface.16 The two models are expressed in the following equations: 

Langmuir Model                                               
𝟏

𝑸𝒆
 = 

𝟏

𝑲𝑳𝑸𝒎𝑪𝒆
 +  

𝟏

𝑸𝒎
 

Freundlich model                                                𝑸𝒆 =  𝑲𝑭𝑪𝒆
𝟏/𝒏

                               

where Ce (mg L-1) and Qe (mg g-1) are the concentration of the pollutant in the solution 

after the adsorption and the adsorbate uptake at equilibrium, respectively. Ce and Qe were 

calculated based on the UV-vis spectrum for each study. KL (L mg-1) describes the intensity 
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of the adsorption process, and Qm (mg g-1) reflects maximum adsorption capacity. KF (mg 

(L mg-1)1/n g-1) is a constant related to binding energy, and represents the general capacity 

of adsorbate adsorbed onto adsorbents for a unit equilibrium concentration. 1/n gives an 

indication of the favorability of adsorption. Values of n > 1 represent favorable adsorption 

condition.17 

      The BPA uptake of PA-POF-2 [0.8:1] at equilibrium as a function of residual BPA 

concentration after adsorption was fitted into both models (Figure 4-6). The Langmuir and 

Freundlich adsorption isotherm parameters are shown in Table 4-1. The maximum 

adsorption capacity obtained from the Langmuir model was as high as 3,366 mg g-1. This 

adsorption capacity is more than 10 times higher than that of all the published materials. A 

few examples are selected and presented in Table 4-2 for comparison, for example, 

Fe/OMC (311 mg g-1),19 hydrophobic zeolite (125 mg g-1),4 meso-SiO2 (353 mg g-1),20 

MIL-101-Cr (252.5 mg g-1),22 and activated carbon-PCB (227 mg g-1).13 Compared with 

the Langmuir adsorption capacity of P-CDP (88 mg g-1), the BPA adsorption capacity of 

PA-POF-2 [0.8:1] is more than 35 times higher. The KF value, 1,276 mg g-1 (L mg-1)1/n 

(Table 4-1), obtained from the Freundlich model also indicates a large maximum 

adsorption capacity. The Langmuir equation makes the assumption of a homogeneous 

surface monolayer coverage and the Freundlich model is an empirical multilayer 

adsorption model.15,16 Based on the correlation coefficient R2 values, the adsorption 

isotherm fit is slightly better with the Freundlich model compared to the Langmuir model, 

suggesting multilayer adsorption rather than monolayer adsorption. 
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Figure 4-6. Langmuir (red) and Freundlich (blue) adsorption isotherms of BPA by PA-

POF-2 [0.8:1]. 

 

 

Table 4-1. Langmuir and Freundlich adsorption isotherm parameters for the adsorption of 

BPA by PA-POF-2 [0.8:1]. 

 

 

Langmuir Freundlich 

qm  

(mg g-1) 

KL  

(L mg-1) 
R2 KF 1/n R2 

3,366 0.5424 0.9256 1,276 0.4185 0.9527 
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Table 4-2. The comparison of removal performance of several adsorbents used for BPA 

removal. 

 

 

Adsorbent qm (mg g-1) 
Isothermal 

Model 
References 

CNTs/Fe3O4 46 Freundlich 18 

Graphene 182 Langmuir 15 

Fe/OMC 311 Freundlich 19 

Activated carbon–

PCB 
227 Freundlich 13 

Merck AC, 

K27350518015 
263.1 Langmuir 21 

meso-SiO2 353 Langmuir 20 

MIL-101-Cr 252.5 Langmuir 22 

hydrophobic zeolite 141 Redlich–Peterson 4 

PA-POF-2 [0.8:1] 3366 Langmuir This work 

 

 

      The adsorption kinetics of PA-POF-2 [0.8:1] were studied using the following 

procedures. A glass vial was charged with 1 mg of PA-POF-1 material and 10 mL 0.1 mM 

BPA aqueous solution. This procedure is called hereafter “the removal of BPA from a 10 

mL mg-1 0.1 mM BPA solution”. The vial was closed and placed on a stirring plate with a 

300 r.p.m stirring rate for a certain amount of time. 4 mL of the aqueous suspension 

obtained during the adsorption experiment was filtered through a VWR 0.45 μm PTFE 

syringe filter. The filtrate was collected for UV-vis analysis.  

      The uptake rate of BPA was determined by a simple and popular model, pseudo-

second-order model,23 shown in the following equation:  
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𝒕

𝑸𝒕
 =  

𝒕

𝑸𝒆
 +  

𝟏

𝒌𝒐𝒃𝒔𝑸𝒆
𝟐 

where Qt (mg g-1) and Qe (mg g-1) are the adsorbate uptakes at time t (min) and at 

equilibrium, respectively. kobs (g mg-1 min-1) is the second-order rate constant. 

      As shown in Figure 4-7, the UV-vis spectra of the filtrates after being treated for 

different amounts of time are recorded. The absorbance of all the spectra at 276 nm is low, 

showing great removal efficiencies. The removal efficiency of each removal for different 

contact time is calculated and plotted in Figure 4-8. 
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Figure 4-7. UV-vis spectra of the filtrates as a function of contact times for PA-POF-2 

[0.8:1]. 
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Figure 4-8. Effect of contact time on the adsorption of 10 mL mg-1 BPA by PA-POF-2 

[0.8:1] and Brita AC. 

 

      As can be seen in Figure 4-8, PA-POF-2 [0.8:1] removes 98% of BPA from a 10 mL 

mg-1 solution when the equilibrium is reached. More importantly, the removal reached its 

equilibrium in less than 2 min, with 91% removal efficiency reached in 10 s. For 

comparison, P-CDP, a material that so far possesses the record for fast BPA removal rate, 

removes 90% BPA in 10 s,11 however the amount of BPA adsorbed was 10 times less (a 1 

mL mg-1 solution was used for P-CDP compared to the 10 mL mg-1 solution used for PA-

POF-2 [0.8:1]). The uptake kinetics were determined by a pseudo-second-order adsorption 

model. As shown in Figure 4-9, the equation fit with the data very well showing a 

correlation coefficient R2 value 0.99998 and a pseudo-second-order rate constant (kobs) of 

0.15 g mg-1 min-1. The adsorption capacity at equilibrium estimated by the kinetic model, 
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qe = 222 mg g-1, also coincided with the experimental data, qe(exp) = 223 mg g-1. The 

kinetic model shows that 35 s contact time is enough to reach 95% of equilibrium 

adsorption capacity for PA-POF-2 [0.8:1], which is 211 mg g-1 adsorption in 35 s. For 

comparison, the time-dependent adsorption of a commercially available activated carbon 

(AC), Brita AC, was also tested using the same method, as shown in Figure 4-8. In 10 

seconds, only 6.4% BPA was adsorbed by Brita AC, showing a much slower uptake rate 

compared with the removal efficiency of 91% reached in 10 s by PA-POF-1 material. In 

30 minutes, only 70% removal efficiency was achieved for the Brita AC and the 

equilibrium was still not reached.  

 

Figure 4-9. Pseudo-second-order plot of the PA-POF-2 [0.8:1] kinetics study (qe = 222 

mg g-1, kobs = 0.15 g mg-1 min-1). 
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      Regeneration and reuse of an adsorbent are essential for practical applications. In this 

study, regeneration experiments for used PA-POF-2 [0.8:1] was conducted using a simple 

methanol washing procedure, and the regenerated material was evaluated for its removal 

efficiency in an 80 mL mg-1 solution. A detailed procedure is listed below. 

      1 mg of PA-POF-2 [0.8:1] was placed in a glass vial equipped with a magnetic stirring 

bar, to which 80 mL 0.1 mM BPA solution was added. The mixture was stirred at RT for 

1 hour, and 4 mL of the suspension was taken via a syringe and then filtered through a 

VWR 0.45 μm PTFE syringe filter. The filtrate was collected and measured by UV-vis 

spectroscopy. PA-POF-2 [0.8:1] was regenerated by washing with MeOH (10 mL x 3) and 

recovered by filtration. PA-POF-2 [0.8:1] was then dried in vacuo and collected for the 

next cycle. This adsorption-desorption cycle was performed five times as shown in Figure 

4-10. The data shown are the average of triplicate experiments. 
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Figure 4-10. The average percentage BPA removal efficiency by PA-POF-2 [0.8:1] and 

Brita AC after regeneration cycles.  
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      As shown in Figure 4-10, no significant decrease in removal efficiency was observed 

for the as-synthesized material in at least five cycles. In each cycle, more than 90% removal 

efficiency was achieved, indicating no loss in the performance of PA-POF material. Brita 

AC was tested with 10 mL mg-1 BPA solution, and regenerated using the same method, 

however decreased performance in each cycle was found (Figure 3d). For the first cycle by 

Brita AC, an 85% removal efficiency was reached in one hour. In the second cycle, it was 

observed that only 49% efficiency was reached, showing a 42% loss in the performance. 

Then the performance keeps decreasing in each cycle by nearly 20%, until only 29% 

removal efficiency was observed in the fifth cycle. 

      To further support recyclability of PA-POF-2 [0.8:1], solid phase extraction 

experiments were conducted. The procedures of solid phase extraction experiments are 

described as follows. 1 mg of PA-POF-2 [0.8:1] was placed in a glass vial equipped with 

a magnetic stirring bar, to which 10 mL 0.1 mM BPA solution was added. The mixture 

was stirred at RT for 10 min, and 4 mL of the suspension was taken using a syringe and 

filtered through a VWR 0.45 μm PTFE syringe filter. The filtrate was collected and 

measured by UV-vis spectroscopy. PA-POF-2 [0.8:1] was regenerated by washing with 

MeOH (5 mL x 3) and recovered by filtration. PA-POF-2 [0.8:1] was dried in vacuo and 

collected for the next cycle. The methanol washing filtrate was evaporated, and the residual 

solid was dissolved in 10 mL DI water and measured by UV-vis spectroscopy to determine 

whether BPA that had been adsorbed by PA-POF-2 [0.8:1] could be fully extracted by 

MeOH. This adsorption-desorption-recovery cycle was performed three times as shown in 

Figure 4-11.  
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Figure 4-11. The UV-vis spectra of the filtrate after adsorption and the redissolved BPA 

solution recovered by extraction with MeOH.  

 

      Figure 4-11 shows the UV-Vis spectra of the solutions obtained from the solid phase 

extraction experiments. The UV absorbance at 276 nm of the filtrates are significantly 

lower than the stock solution and close to zero, showing that more than 95% of BPA from 

the treated solution was removed by PA-POF-2 [0.8:1] in each cycle. The UV-vis 

absorbance of BPA recovered from MeOH in each cycle equals the absorbance of the stock 

BPA solution which proves that all the BPA adsorbed by adsorbents can be fully extracted 

by MeOH. The spectra clearly show that adsorbed BPA can be fully washed out using 

methanol for at least three cycles. 
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4.4 Adsorption of various organic micropollutants from water by 

PA-POFs 

      To better elucidate its rapid removal ability for different organic pollutants with 

variable size and functionality, PA-POF-2 [0.8:1] was also treated with a number of other 

micropollutants. These pollutants are described as following: 2-naphthol, a model for 

various naphthol compounds; 1-naphthyl amine, a known carcinogen and precursor to a 

variety of dyes;24 bisphenol S, a substitute of BPA in some epoxies but also a known 

endocrine disruptor, and even more resistant to environmental degradation than BPA;25 

metolachlor, a widely used herbicide which induces cytotoxic and genotoxic effects in 

human lymphocytes;26 ethinyl oestradiol, an orally active oestrogen used in combined oral 

contraceptives that may cause male feminization of fathead minnow at concentrations as 

low as 5-6 ng L-1;2 propranolol hydrochloride, a beta blocker which is used for the treatment 

of high blood pressure; and 2,4-dichlorophenol, an intermediate in herbicide production 

and degradation product of the antibacterial agent triclosan.27 

      Similar adsorption studies were performed with these compounds by treating 10 mL of 

each solution with 1 mg of PA-POF-2 [0.8:1]. The UV-vis spectra recorded at different 

contact time (10 s to 1 hour) of each pollutant and the corresponding time dependent 

removal efficiency are shown in Figure 4-12 and Figure 4-13. It is obvious that PA-POF-

2 [0.8:1] rapidly removes each organic pollutant with more than 90% efficiency in 10 

minutes, and the time dependent removal curves are similar to that of BPA. For example, 

the removal of 10 mL mg-1 0.1 mM metolachlor reached its equilibrium value in 1 minute 

and over 96% removal efficiency was achieved.  
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Figure 4-12. UV-vis spectra recorded at different contact time and time dependent removal 

efficiency of 10 mL mg-1 (a) 0.1 mM 2-naphthol, (b) 0.1 mM 1-naphthyl amine, and (c) 

0.1 mM bisphenol S. 
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Figure 4-13. UV-vis spectra recorded at different contact time and time dependent removal 

efficiency of 10 mL mg-1 (a) 0.09 mM propranolol hydrochloride, (b) 0.1 mM metolachlor, 

(c) 0.04 mM ethinyl oestradiol, and (d) 0.1 mM 2,4-dichlorophenol. 
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      The outstanding performance of PA-POF-2 [0.8:1] can also be seen visually if a colored 

pollutant is used. 4-nitrophenol was chosen as the pollutant for two reasons. First, 4-

nitrophenol is a relatively hydrophilic organic compound. Secondly, the aqueous solution 

of 4-nitrophenol has a bright yellow color even at low concentrations. As shown in the 

supporting video 1, 4 mg of PA-POF-2 [0.8:1] was transferred into a vial which contained 

4 mL 0.1 mM 4-nitrophenol solution. After a couple of shakes, the color disappeared 

immediately. For comparison, PAF-1 and Brita AC were not able to effectively adsorb 4-

nitrophenol under the same conditions. The remarkable performance of the PA-POF 

material for adsorbing organic contaminants suggests potential application for the removal 

of multiple contaminants that span a wide range of molecular weight, polarity, and 

functional groups. 

 

4.5 Summary and discussion 

      The adsorption properties towards organic pollutants from water by PA-POFs were 

systematically discussed. The PA-POF materials suggest excellent BPA adsorption 

capacity. In a 100 mL mg-1 study, PA-POFs remove as much as 88% BPA from the solution 

within one hour. Compared with 4.5% removal efficiency of PAF-1, the removal capacities 

of PA-POFs are enormous. Since the linkers in the frameworks of PA-POFs and PAF-1 

are both tetraphenyl methane, this huge difference is surprising. Given that PA-POFs are 

built through the co-condensation reactions between TTBP/LTBP and TBPM, while PAF-

1 is only built by TBPM, the reason of the huge uptakes should be attributed to the addition 

of TTBP/LTBP during the polymerization. The anionic building blocks, TTBP/LTBP, 

might behave as templating agents in the polymerization, and promote the formation of the 
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structure that is preferable for the adsorption of organic molecules. PA-POF-2 [0.8:1] was 

found to have a maximum Langmuir adsorption capacity of 3366 mg g-1. This adsorption 

capacity is more than ten times higher than those of all reported high-performance 

adsorption materials in BPA removal. 

      Before the discovery of PA-POFs, it was reported the fastest removal rate in the 

adsorption of a variety of organic micropollutants by P-CDP, with pseudo-second-order 

rate constants (kobs) 15 to 200 times greater than those of activated carbons.11 For example, 

the kobs of BPA adsorption to P-CDP was 1.5 mg g-1 min-1, and the authors claimed that 

this number is 15 times higher than activated carbons and two or more orders of magnitude 

higher than the other studied adsorbents. However, a greater number of kobs does not always 

represent a higher removal rate. For example, PA-POF-2 [0.8:1] adsorbs 10 times more 

BPA in the same time range, yet the kobs is only 0.15 mg g-1 min-1 (Figure 4-9). This result 

can be explained by the following pseudo-second-order model equation. 11 

𝒕

𝑸𝒕
 =  

𝒕

𝑸𝒆
 +  

𝟏

𝒌𝒐𝒃𝒔𝑸𝒆
𝟐 

The physical meaning of Qt and Qe is mg(adsorbate) per g(adsorbent). The physical 

meaning of the rate constant kobs is g(adsorbent) per mg(adsorbate) per minute. If the mass 

of the adsorbent and the mass of the adsorbate are constant and the time required for 

reaching equilibrium is shorter, the value of kobs is of course greater. In this case, a larger 

number for kobs means faster kinetics. However, if the amount of sorbent is constant but 

the amount of adsorbed adsorbate is larger, the value of kobs actually gets smaller. For 

example, if 1 g of material A adsorbs 1 mg adsorbate in 1 minute, then kobs (A) = 1 g mg-1 

min-1; if 1 g material B adsorbs 10 mg adsorbate in 1 minute, kobs (B) = 0.1 g mg-1 min-1. 
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In this case, a larger value of kobs does not mean faster but slower kinetics. To give another 

example, if 100 g material C adsorbs 0.1 mg adsorbate in 10 minutes, kobs (C) = 100 g mg-

1 min-1, which is a high value, however it doesn’t mean faster kinetics. Even though this is 

not exactly how kobs was calculated, it helps for a better understanding of the meaning of 

kobs. One can conclude from here that the reason of a smaller pseudo-second-order rate 

constant of PA-POF-2 [0.8:1] than P-CDP is the higher BPA uptake. 

      PA-POF-2 [0.8:1] was also studied for its regeneration ability. Experiments proved that 

a convenient methanol-washing procedure was able to regenerate PA-POF-2 [0.8:1] 

without significant loss in performance. In contrast, Brita AC was found to lose more than 

65% in removal efficiency after five regeneration cycles. The solid phase extraction 

experiments show that the adsorbed BPA in PA-POF-2 [0.8:1] can be fully recovered from 

the methanol-washing filtrate. 

      It is also noteworthy that PA-POF-2 [0.8:1] removes various organic pollutants of 

different size, functionality, and hydrophobicity. The pollutants studied span simple 

aromatic compounds such as 2,4-dichlorophenol, pesticides such as metolachlor, and 

pharmaceuticals such as ethinyl oestradiol. In all the studies, PA-POF-2 [0.8:1] removes 

more than 90% of the pollutants from water within 5 minutes and equilibrium 

concentrations are reached in 10 minutes. This result further supports the fast and massive 

removal of organic pollutants from water by PA-POF material. 
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Chapter 5 

Synthesis of a periodic mesoporous crystalline 

aluminosilicate material 

      The discovery of mesoporous silicas in 1992 was intended to replace microporous 

zeolites for long-chain hydrocarbon cracking.1 However, it was soon found that 

mesoporous silicas were not able to fulfill the task because of the lacking of catalytically 

active acidic sites. In order to incorporate acidity into the silica framework, heteroatoms 

such as Al have been introduced. The synthesis of such amorphous aluminosilica materials 

was discussed in Chapter 1.3.2. Still, the application of amorphous aluminosilica materials 

in the petrochemical industry was limited because of the inferior hydrothermal stability of 

the amorphous pore channel walls.  In Chapter 1.3.3, strategies to crystallize the amorphous 

pore channel walls of mesoporous silicas were discussed. Among all the techniques, 

Kuroda’s work that a strong flux of Li+ induced the crystallization from a silica colloidal 

crystal to a single crystalline mesoporous quartz superlattice is especially important 

because it introduced an easy and scalable method to produce single crystalline 

mesoporous silica materials.2 So far, no such attempts using the flux-grown technique were 

applied to crystallize mesoporous materials other than mesoporous silica. Herein, the flux-

grown technique was expanded to a mesoporous aluminosilica material. The research led 

to the synthesis of a periodic mesoporous hexagonal spodumene material, and its 

corresponding acidity was investigated. 
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5.1 Experimental methods and procedures 

5.1.1 Materials and methods 

      Pluronic P123 triblock copolymer was purchased from BASF. Lithium nitrate, TEOS, 

furfuryl alcohol, and oxalic acid was purchased from Sigma Aldrich. Al2(SO4)3 xH2O was 

purchased from Alfa Aesar. All the materials were used as received without further 

purification. 

      Powder X-ray diffraction (PXRD) data were obtained on a Rigaku MiniFlexII 

instrument using Cu K radiation. The Rietveld refinements of the XRD pattern were 

calculated using the PDXL software (Rigaku). The small-angle X-ray scattering (SAXS) 

patterns were recorded using an Anton Paar SAXSpace instrument. Samples were placed 

into the hole of an aluminium sample holder and secured on both sides using tape. Gas 

adsorption measurements were taken with a Quantachrome AS-1 instrument. The samples 

were outgassed 6 hours at 300 °C prior to measurement.  The pore size distributions of the 

materials were calculated using the Barrett-Joyner-Halenda (BJH) model from the 

adsorption branch of the isotherm. The surface area was determined using the multipoint 

BET method in the relative pressure range between 0.05 and 0.3. Transmission electron 

microscopy (TEM) images were recorded on a JEOL 2000FX instrument operated at an 

accelerating voltage of 200 kV. Energy dispersive X-ray spectroscopy (EDS) was carried 

out using Oxford ISIS EDS with a light element detector connected with the TEM. The 

samples were ground and dispersed in acetone, then drop-casted onto copper grid supported 

carbon films (SPI supplies). One pulse 29Si, 27Al and 7Li solid state NMR spectra were 

obtained on a Bruker Avance III HD 400 MHz instrument with a spin rate of 12 kHz. 

Samples were packed into 4 mm outer diameter zirconia rotors and inserted into a Bruker 
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magic angle spinning (MAS) probe. The 29Si chemical shift was referred to 3-

(Trimethylsilyl)-1-propanesulfonic acid sodium salt at 0 ppm as an external reference 

standard. The 29Si pulse length was 5 μs with the recycle delay time of 30 s. The spinning 

rate of the rotors was 12 kHz. The number of scan is between 3000 to 4000. The 27Al MAS 

NMR spectra were recorded using 1 us pulse length and 1 s recycle delays. The MAS rotors 

were spun at 12 kHz. The 27Al chemical shift was referenced to AlCl3 6H2O at 0 ppm as 

an external reference standard. The 7Li chemical shift was referred to LiCl at 0 ppm as an 

external reference standard. The silicon/aluminum contents of LAS materials were 

determined using an Inductively Coupled Plasma Optical Emission Spectrophotometer 

(ICP–OES, PerkinElmer Optima 2000 DV). The samples for ICP-OES were prepared as 

follows: 10 mg of material was dissolved in 20 mL 5% HF solution at RT. The solution 

was later neutralized to pH = 7 using ammonium hydroxide solution and then quantitatively 

diluted as needed. 

 

5.1.2 Synthesis of mesoporous aluminosilica material (Al-SBA-15) 

The mesoporous aluminosilica material with a two-dimensional hexagonal structure 

was synthesized following the in situ pH adjusting method similar to literature 

procedures.3,4 In a typical synthesis, 0.8 g of Pluronic P123 (PEO-PPO-PEO) triblock 

copolymer was dissolved in 25 ml of 2 M HCl solution at a temperature of 40 oC by 

vigorously magnetic stirring in a closed polypropylene bottle. 1.7 g of tetraethoxysilane 

(TEOS) was then added to this solution. After stirring for 4 h, 1.36 g of Al2(SO4)3 xH2O (x 

=14–18) was added to the mixture and stirring was continued for 1 day at the initial 

synthesis temperature. The whole solution was hydrothermally treated for 2 days at 100 oC. 



 

113 

Then, the pH of the reaction mixture was adjusted to 7.5 by adding concentrated NH4OH 

solution drop-wise and then again treated hydrothermally for 2 days at 100 oC. The 

resulting material was then centrifuged, washed with deionized water, and dried in an oven 

at 80 oC. Finally, the surfactant was removed by calcination under air at 550 oC (heating 

ramp rate = 2 oC min-1) for 5 h to obtain white mesoporous aluminosilica material, Al-

SBA-15. 

 

5.1.3 Li induced crystallization of Al-SBA-15 

      Lithium nitrate (80 mg), oxalic acid (8 mg) and Al-SBA-15 (100 mg) were mixed and 

ground into fine powders in a mortar. Lithium nitrate was used as a flux and the oxalic acid 

was used as an acid catalyst for the polymerization of furfuryl alcohol. The powder mixture 

was transferred into a Schlenk tube. Into the tube, 2 mL furfuryl alcohol was added, 

followed by the evacuation for 15 min to allow the infiltration of the furfuryl alcohol into 

the pores of Al-SBA-15. Then, the wet sample was transferred to an alumina boat crucible 

and the crucible was placed into an alumina tube furnace. Furfuryl alcohol polymerized at 

90 oC for 3 days under Ar atmosphere. Later, the tube furnace was heated to 870 oC at a 

heating rate of 5 oC min-1, and kept at 870 oC under Ar atmosphere for 30 min. This 

procedure is to carbonize the polymer and induce the crystallization of Al-SBA-15. The 

obtained black sample was then calcined in air at 550 oC for 6 h to remove the carbon 

support. A grey powder sample was collected after the combustion for subsequent 

characterizations. 
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5.2 Results and Discussions 

5.2.1 Characterization of mesoporous aluminosilica material (Al-SBA-15) 

Nitrogen adsorption was used to characterize the mesoporosity of Al-SBA-15 (Fig. 5-

1). The nitrogen isotherm shows a capillary condensation step between P/P0 = 0.6 to P/P0 

= 0.8 indicating that the material is mesoporous. The material has a specific BET surface 

area of 324 m2 g-1, a pore volume of 0.64 cm3 g-1 and a BJH pore size of ~7.2 nm with 

narrow distribution (Figure 5-2). TEM image of Al-SBA-15 was taken to visualize the 

mesopores in Al-SBA-15 material. As shown in Figure 5-3, mesopores with a pore size of 

about 7 nm can be clearly seen on TEM images. SAED pattern shows that the material is 

amorphous. The material is only composed of Al, Si and O as shown in EDS spectrum. 

 

Figure 5-1. Nitrogen adsorption isotherm of Al-SBA-15.  
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Figure 5-2. Pore size distribution of Al-SBA-15 calculated by BJH method from the 

adsorption branch. 
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Figure 5-3. Top: TEM image of Al-SBA-15 (inset shows corresponding SAED pattern 

collected from the encircled area). Bottom: EDS spectrum of Al-SBA-15. 

       

5.2.2 Characterization of lithium aluminosilicate (LAS) 

      The PXRD pattern of the as-synthesized LAS material shows successful crystallization 

of Al-SBA-15 (Figure 5-4). The peaks with the highest intensity are assigned to hexagonal 
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lithium aluminosilicate (LiAlSi2O6, JCPDS card 01-073-2336). The rest of the peaks can 

be assigned to two kinds of lithium silicates, Li2SiO3 (JCPDS card 00-029-0829) and 

Li4SiO4 (JCPDS card 01-076-1085). By quantitatively analyzing the XRD pattern using 

WPPF method (Figure 5-5), the as-synthesized LAS material was found to contain 58.3 

wt% hexagonal spodumene, 30.8 wt% Li2SiO3, and 10.9 wt% Li4SiO4. Based on the 

quantitative analysis result, a Si/Al ratio of 3.51:1 by mole is thus calculated. The actual 

Si/Al content ratio of the as-synthesized LAS was determined by Inductively Coupled 

Plasma Optical Emission Spectrophotometer (ICP–OES). A Si/Al mole ratio of 3.71:1 was 

obtained by ICP-OES. This result is in good accordance with the quantitative analysis from 

XRD data. 
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Figure 5-4. XRD pattern of as-synthesized LAS material, compared with hexagonal 

spodumene, Li2SiO3, and Li4SiO4. 
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Figure 5-5. Quantitative analysis (WPPF method) of as-synthesized LAS material. Relative 

percentages of crystalline phases are shown in the upper-right corner. The blue line is the 

original pattern; the red line is the calculated pattern using crystal information from JCPDS 

cards listed in the graph; the purple line in the lower box shows the errors. 

 

      Nitrogen adsorption analysis, SAXS, and TEM were used to confirm the periodic 

mesoporosity in the as-synthesized LAS material. The nitrogen sorption isotherm (Figure 

5-6) showed the hysteresis loop at relative pressure of 0.5 to 0.7, proving the mesoporosity 

of the material. The isotherm also showed macroporosity in the material. The apparent BET 

surface area was 85 m2 g-1, and the BJH pore volume was 0.23 cm3 g-1. The decrease in the 

surface area and pore volume is probably due to a higher density of the crystalline pore 

channel walls compared with the amorphous pore walls and the deterioration of some 

mesostructures. The BJH pore size distribution is centered at about 5 nm (Figure 5-7). In 

Figure 5-8, Al-SBA-15 exhibits well-resolved diffraction peaks that can be indexed as the 
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(100), (110), (200), (210), and (300) diffractions associated with p6mm hexagonal 

symmetry. The SAXS pattern of the as-synthesized LAS material confirmed the periodic 

mesostructure, however, the peaks at higher angles are missing showing that the 

mesostructure was not as ordered as the starting Al-SBA-15 material, which is consistent 

with nitrogen sorption data. The (100) peak in the SAXS pattern of as-synthesized LAS is 

at higher angle than the (100) peak in Al-SBA-15. The unit cell parameter (a) was 

calculated from the SAXS pattern, which is 11 nm for Al-SBA-15 and 10.2 nm for LAS, 

which suggested a smaller pore size of LAS compared with Al-SBA-15. The smaller pore 

size in LAS could be caused by the smaller sizes of carbon support than the pores. During 

the crystallization, some pore walls collapse, and smaller pores form based on the sizes of 

carbon supports. The wider pore size distribution of the as-synthesized material (Figure 5-

7) could be explained by the uneven size distribution of carbon support. 

      TEM images of as-synthesized LAS material were also taken to examine its pore 

structure. As shown in Figure 5-9, the well-retained ordered mesopore structure can be 

easily observed. 
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Figure 5-6. Nitrogen adsorption isotherm of as-synthesized LAS material. 
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Figure 5-7. BJH pore size distribution of as-synthesized LAS calculated from the 

adsorption branch. 

. 



 

122 

0.5 1.0 1.5 2.0 2.5 3.0

R
e

la
ti
v
e

 I
n
te

n
s
it
y

2 Theta

 Al-SBA-15

 As-synthesized LAS100

110

200

210

300

100

 
Figure 5-8. SAXS patterns of Al-SBA-15 and as-synthesized LAS material. 

 

 
 

Figure 5-9. TEM image of as-synthesized LAS (inset shows corresponding SAED pattern 

collected from the encircled area). 
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      The 29Si, 27Al and 7Li solid state NMR spectra were used to characterize the as-

synthesized LAS material. As shown in Figure 5-10, the chemical shift of the 29Si NMR 

signal in Al-SBA-15 is centered at -118 ppm. While the as-synthesized LAS has two major 

peaks at -75 ppm and -103 ppm. The peak at -75 ppm can be assigned to Li2SiO3,
5 which 

shows a composition of about 30% from XRD data. The signal of Li4SiO4, which should 

be at -65 ppm,6 is probably covered by the peak of Li2SiO3. The peak at -103 ppm can be 

assigned to hexagonal spodumene. The 29Si NMR chemical shift value of hexagonal 

spodumene is not reported in the literature, but it is probably comparable to the chemical 

shift of beta-quartz because hexagonal spodumene is a high quartz solid solution (space 

group P6222).7 The 29Si NMR chemical shift of beta-quartz resides at -102 ppm,8 which is 

similar to the observation in Fig. 5-10. 
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Figure 5-10. 29Si solid state NMR spectra of Al-SBA-15 and as-synthesized LAS. 

 

 

       The 27Al solid state NMR spectra of Al-SBA-15 and as-synthesized LAS material is 

shown in Figure 5-11. Significant differences in 27Al chemical shifts in LAS as compared 

with the starting material can be observed from the spectra. The major peak in Al-SBA-15 

is located at 4 ppm, which represents octahedrally coordinated AlO6 species. Relatively 

broad and small components were found at ~30 ppm and ~60 ppm. These peaks are 

possibly due to AlO5 and AlO4 species, respectively. As shown in Figure 5-11, the main 

peak in the 27Al spectrum of as-synthesized LAS is found to be at 60 ppm, which means 

that after the crystallization the majority of Al atoms in the material have a coordination 

number of 4. This result is desired because it proved the existence of a large amount of 
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[AlO4] species, which can potentially act as Brønsted acid sites. In zeolites the latter are 

the key active sites for a number of catalysis processes in the petrochemical industry. The 

7Li NMR spectrum of LAS confirmed the presence of Li+ ions in the material (Figure 5-

12). 

      Raman spectroscopy was also used to confirm the formation of hexagonal spodumene. 

As shown in Figure 5-13, the sharp signal at 480 cm-1 in Raman spectrum of the LAS 

material is in accordance with the literature value for hexagonal spodumene.9  

 

 
 

Figure 5-11. 27Al solid state NMR spectra of Al-SBA-15 and as-synthesized LAS. 
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Figure 5-12. 7Li solid state NMR spectrum of as-synthesized LAS. 

 

 
 

Figure 5-13. Raman spectrum of as-synthesized LAS material. 
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5.2.3 Treatment of LAS in acid 

      It is known that some alkali silicates have a considerable solubility in water, 

hydrolyzing to silicic acids and basic solutions.10 Silicic acids exist in the forms of 

orthosilicic acid (H4SiO4), pyrosilicic acid (H6Si2O7), metasilicic acid (H2SiO3), disilicic 

acid (H2Si2O5), etc., and readily decompose to form polymeric silica gel. In order to obtain 

pure hexagonal spodumene, the as-synthesized LAS material was treated with a strong acid, 

in the hope that the strong acid will produce the weak silicic acid, and the resulting silicic 

acid/silica gel may be therefore removed by filtration or centrifugation.  

      The treatment was carried out using the following procedures. The as-synthesized LAS 

material (50 mg) was stirred in 20 mL concentrated HCl solution at RT for three hours. 

After stirring, the mixture was centrifuged at 3000 rpm for 20 min, and the solid was 

separated by decanting the acid solution. This stir-centrifuge-decant process was repeated 

three times to assure the full removal of lithium silicates. The resulting solid was washed 

with DI water and acetone, dried in an oven overnight, and collected for the following 

characterizations. 

      The acid-treated material (LAS-HCl) was analyzed by X-ray diffraction. As shown in 

Figure 5-14, no peaks from either Li2SiO3 or Li4SiO4 can be found after the acid treatment, 

proving HCl is effective in removing lithium silicates. All the peaks in the XRD pattern 

can be assigned to hexagonal spodumene. Rietveld refinement of the XRD pattern was 

performed using PDXL software as compared with hexagonal spodumene (JCPDS card 

01-073-2336). A good fit was observed with a Rwp value of 8.61%. A halo peak at 20 – 30o 

can be observed from the XRD pattern, which is possibly due to either the unreacted Al-

SBA-15 or the amorphous silica gel formed through decomposition of silicic acids. 
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Because this halo peak is absent in the as-synthesized LAS material (Figure 5-4), the broad 

amorphous peak in LAS-HCl more likely comes from the silica gel. 

      The acid-treated material was also analyzed by nitrogen sorption, SAXS, and TEM. 

Figure 5-15 shows that the material is mesoporous after the acid treatment, with the BJH 

pore size still at ~5 nm (Figure 5-16). However, the BET surface area increases from 85 

m2 g-1 to 139 m2 g-1. This increase in BET surface area is probably because the acid 

treatment removes lithium silicates. The SAXS pattern and the TEM image show that the 

acid-treated material has the same mesostructure as as-synthesized LAS material (Figure 

5-17 and 5-18). 

 

 

 
Figure 5-14. Rietveld refinement plot of LAS-HCl. The blue line is the original pattern; the 

red line is the calculated pattern using crystal information from JCPDS cards listed in the 

graph; the purple line in the lower box shows the errors. The Rwp value for the refinement 

is shown in the upper right corner. 

 



 

129 

 
Figure 5-15. Nitrogen adsorption isotherm of the acid treated material, LAS-HCl. 

 

 

0 50 100 150 200
0.000

0.002

0.004

0.006

0.008

0.010

0.012

d
V

(d
) 

[c
c
/A

/g
]

 LAS-HCl

Pore size [A]
 

Figure 5-16. BJH pore size distribution of LAS-HCl calculated from the adsorption branch. 
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Figure 5-17. SAXS patterns of LAS-HCl as compared with Al-SBA-15 and as-synthesized 

LAS material. 

 

 
 

Figure 5-18. TEM image of LAS-HCl (inset shows corresponding SAED pattern collected 

from the encircled area). 
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      The 27Al solid state NMR was also used to characterize the LAS-HCl material. As 

shown in Figure 5-19, after the acid wash, the relative amount of tetra-coordinated Al (δ = 

~ 60 ppm) to hexa-coordinated Al (δ = ~ 14 ppm) ratio has decreased significantly, which 

is possibly due to dealumination in hexagonal spodumene caused by the strong 

hydrochloric acid. The Si/Al ratio of LAS-HCl was also determined by ICP–OES. Before 

acid treatment, the Si/Al mole ratio was 3.71:1. After the acid treatment, the Si/Al mole 

ratio in LAS-HCl decreased to 2.47:1. A smaller Si/Al ratio means that HCl did remove 

lithium silicates. However, it is still greater than the Si/Al ratio for pure hexagonal 

spodumene which is 2:1. This could be caused by either the existence of additional silica 

gel or dealumination. Taking both the 27Al solid state NMR spectrum and ICP-OES data 

into consideration, it is plausible to conclude that HCl has selectively removed 

tetracoordinated Al from the pore surfaces of hexagonal spodumene.  

 
 

Figure 5-19. 27Al solid state NMR spectra of LAS-HCl in comparison with Al-SBA-15 and 

as-synthesized LAS. 
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      Treatment of as-synthesized LAS material with concentrated sulfuric acid was carried 

out at 300 oC. The nitrogen sorption isotherm and TEM image show that sulfuric acid 

destroyed the mesoporous structure almost completely at this temperature. LAS-H2SO4 

material shows a Si/Al mole ratio of 10.98:1 by ICP-OES analysis, which shows a strong 

dealumination effect caused by sulfuric acid. 
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Figure 5-20. Nitrogen adsorption isotherm of LAS-H2SO4. 
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Figure 5-21. TEM image of LAS-H2SO4. 

 

 

5.2.4 Acidity study of LAS material 

      In order to investigate the acidity in the LAS material, the following ion exchange 

experiments were conducted on the as-synthesized LAS material. The as-synthesized LAS 

material (30 mg) was ion exchanged at RT (6 h) three times in 30 mL 1M aqueous solution 

of NH4Cl. The obtained LAS-NH4 sample was dried at room temperature (RT) for 48 h 

and was then kept in a sealed container. Later this material was characterized by IR using 

temperature-programmed desorption (TPD) of ammonia.  

Dehydration of LAS-NH4 was carried out using the following procedures. LAS-NH4 

material was loaded into the Harrick Cell, 10 % O2/Ar was flowed through the cell at a rate 

of 30 mL min-1.  The sample was then heated to 400 ºC at 10 ºC min-1, and maintained at 
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400 ºC for 1 hr under flowing 10% O2/Ar.  Subsequently, the sample was cooled to 115 ºC 

under flowing 10 % O2/Ar. Ammonia TPD was then conducted using the following 

procedures. After the temperature of the dehydrated sample stabilized at 115 ºC, the 

flowing 10% O2/Ar was turned off, and replaced by flowing Ar (30 mL min-1; 15 min).  

Subsequently, the Ar flow was stopped, and replaced by flowing 2000 ppm NH3/He (30 

mL min-1; 30 min).  At the end of this time, the NH3/He flow was shut off and replaced by 

flowing Ar (30 mL min-1; 15 min at 115 ºC).  With continued Ar flow (30 mL min-1), the 

temperature of the cell was increased to 150 ºC, and an IR spectrum recorded.  If needed, 

the temperature of the cell was again increased by 50ºC and an IR spectrum recorded.  This 

procedure was repeated until no changes in successive IR spectra were observed 

(maximum temperature = 450 ºC). 

      Figure 5-22 shows the FTIR spectra collected during the above steps. The obtained 

LAS-NH4 at ambient conditions (black curve) before dehydration shows a weak peak at 

3750 cm-1 which represents non-acidic terminal silanol groups,11  a broad peak at about 

3500 cm-1 corresponds to adsorbed hydrates, and the ∼1620 cm−1 peak which is associated 

with NH4 ions attached on Lewis acid sites.12 After dehydration (red curve), the peak at 

∼1620 cm−1 disappeared, showing the desorption of NH3 by oxidative heating. The peak 

at 3750 cm-1 became relatively stronger due to the dehydration. However, no peak at ~3610 

cm-1 was observed,11,13 indicating that the acidic hydroxyl groups that bridge Si and Al 

framework atoms either does not exist in this material or is invisible using the FTIR 

technique (or the peak is below detection threshold). Later, after the adsorption of ammonia 

for 30 min (blue curve), the peak at ∼1620 cm−1 became larger, showing the adsorption of 

NH3 by Lewis acid sites. Still, no peak at ~1550 cm-1 shows the absence of Brønsted acid 
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sites.14 The FTIR spectra of the material after the Argon flush for 15 min (pink curve) and 

the desorption at 150 ºC (green curve) are almost the same as the blue curve, therefore the 

TPD was stopped at this stage because there is no sign of ammonia adsorption or desorption 

on Brønsted acid sites. 

 

 
Figure 5-22. Ammonia TPD of LAS-NH4. 

 

 

      The ammonia TPD experiment indicates that no Brønsted acid sites are available in the 

LAS material. In order to examine if ion exchange can be realized for the as-synthesized 
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LAS (30 mg) was ion exchanged at RT (6 h) three times in 30 mL 1M aqueous solution of 
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successful. However, the small signal also means that only a very limited amount of Li was 

exchanged by Na. This phenomenon is probably due to the small surface area of the LAS 

material. Lithium ions in the bulk walls may not be very easily exchanged by another ion, 

and only the Li ions on the inner pore surfaces can be exchanged. This result also confirms 

the surface AlO4 moieties on the pores. Therefore, that the NH4
+ signal was not seen in 

FTIR spectra could be due to the small amount of surface AlO4 species and the low 

sensitivity of the FTIR technique.  

 
 

Figure 5-23. EDS spectrum of LAS-Na. 
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5.3 Conclusions 

      It is well demonstrated that a mesoporous lithium aluminosilicate material with 

crystalline pore channel walls was successfully synthesized by the flux-grown technique. 

This study presents the first example of a mesoporous hexagonal spodumene. The material 

was characterized by SAXS, nitrogen sorption, TEM to confirm its mesoporosity. The 

mesostructure was well retained because the pore channel walls were reinforced by carbon 

support. 29Si and 27Al solid state NMR spectra assured the tetra-coordinated forms of Si 

and Al. 

      The fabrication of crystalline mesoporous aluminosilica is of great scientific 

importance because of its potential catalytic properties to replace zeolites for long chain 

hydrocarbon cracking. With AlO4 moieties in the lithium aluminosilicate material, ion 

exchange of lithium ions by NH4
+ ions was conducted with the hope that heat treatment of 

NH4 replaced LAS material could create bridging OH groups on the pore surfaces. 

However, no bridging OH functional groups were found in the FTIR spectrum. The 

subsequent ammonia TPD also showed no ammonia was adsorbed to Brønsted acid sites. 

The Na exchange experiment proves the successful ion exchange by Na ions, but also 

indicates that only a small amount of surface Li ion could be exchanged. This result 

suggests that NH4 exchange is not visible in the FTIR spectra possibly because the amount 

of bridging OH is below the detection limit for FTIR. Even though the Brønsted acid sites 

are not detectable by FTIR, these acid sites may still be useful in catalytic processes. In the 

future, isomerization or hydrocarbon cracking experiments might be performed using 

thermally treated LAS-NH4 to investigate its catalytic properties. 
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      The flux-grown technique has proven its effectiveness in inducing the crystallization 

of amorphous aluminosilica. Compared with nanocasting at high pressure and high 

temperature, the flux-grown technique is more promising in producing lithium 

aluminosilicate in larger quantities. This method could also be extended to a general and 

flexible synthetic route for other mesoporous materials. Different mesoporous structures 

may have different reaction pathways which is also worthwhile for investigation.  
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