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Abstract 

  Macroions (2 - 10 nm in size) behave quite differently from simple ionic salts or 

colloidal systems in solution. In this size range and with moderate charge, they tend to 

slowly self-assemble into a single-layered, spherical, hollow, “blackberry” type structure. 

Both macroanions and macrocations form the similar blackberry structures which 

indicate it is a universal phenomenon. The driving forces for the blackberry structure 

formation are believed to be the counterion mediated attraction and hydrogen bonding, 

but not through chemical bonds or van der Waals attractions. Interestingly, counterion 

mediated attraction has been proposed and tested in biological systems with limited 

examples. The current research on the counterion distribution of Hepatitis B viral capsids 

has shown the importance of charge effect during their self-assembly process. 

Furthermore, by functionalizing giant inorganic polyoxometalate macroions with organic 

groups, a new family of hybrid surfactants are achieved which provide great potentials 

toward developing new materials for catalysis, polymerization, drug delivery, and 

medicines.   
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Chapter 1: Introduction to Macroions 

1.1 Introduction 

The solution behaviors of polyelectrolyte are complicated. The primary reason is the 

long range Coulomb interaction between charged particles. Historically, the most famous 

method to describe a simple diluted ionic solution is Debye-Hückel theory which was 

first formulated by Peter Debye and Erich Hückel in 1923.
1
 However, in general, the 

Debye-Hückel theory is only valid for very diluted ionic solutions in which ions can be 

treated as point-like charges. On the other hand, charged colloids with size dimension 

ranging from ~ 100 nm to several microns are fundamentally different from simple ions. 

To explain and interpret solution behaviors of these large charged colloidal particles, a 

theoretical framework of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory 

developed in the 1940s is widely applied.
2,3

 The DLVO potential consists two major parts, 

one is the attractive van der Waals interaction and the other is the purely repulsive 

Coulomb interaction. Small counter-ions are believed to take a distribution of thermal 

equilibrium in a stationary configuration around colloidal particles. The effective 

interaction U = UR + UA controls the dynamical behavior of colloidal particles. In other 

words, the stability of colloids in solution stems from the competition between these two 

interactions. Although these two theories have been successfully applied to various 

polyelectrolyte systems, they failed to explain or predict the solution behavior of 

macroions with size between 2 to 10 nm. In this range, the size disparity between 

macroions and counterions (~ 10 to 1) is much smaller compared with that of colloids 

and counterions (~ 1000 to 1); at the same time, the macroions are large enough that they 
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could not be treated as point-like charges. Therefore, it is interesting and important to 

study macroions within this size range. 

1.2 Polyoxometalates type macro-anions and functionalized hybrid 

POMs 

1.2.1 Polyoxometalates (POMs) 

Polyoxometalates (POMs) represent a large group of structurally well-defined, giant 

macro-anions assembled from multiple transition metal oxides, which are linked through 

shared oxygen atoms.
4
 Owing to the tunable valence and coordination geometry of the 

central metal ions, various POMs with different sizes, shapes and charges have been 

synthesized. The field of polyoxometalates has been rapidly expanding from 

isopolyoxometalates to heteropolyoxometalates, from early transition metal POMs (Mo, 

V, Cr, Fe, W, Mn, etc.) to late transition metal POMs (U, Nb, Au, Pd, etc.), and from 

pure inorganic molecular clusters to hybrid clusters.
5-7

 Fig. 1.1 gives several examples of 

well-characterized POM molecular clusters. Most of the POMs are negatively charged 

because of their oxo ligands. The surface charge density of POMs can be readily tuned by 

substituting the central transition metals, changing the oxidation state of the metal ions, 

or simply changing the solution pH. Because of their rigid molecular structure and well-

defined geometry, POMs are perfect model systems to study the solution behaviors of 

polyelectrolytes. The detailed solution study of POMs type macro-anions will be covered 

in Chapter 2.  
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Figure 1.1 Several well-characterized polyoxometalate clusters (a) Lindqvist; (b) 

Anderson; (c) Keggin; (d) Dawson; and (e) {Mo154}. 

 

1.2.2 Inorganic-organic hybrid POMs 

The POM family can be further extended by grafting organic functional motifs onto 

purely inorganic POM clusters to create a novel group of hybrid macroions. Such 

inorganic-organic molecular hybrids are expected to render amphiphilic properties to the 

POMs and consequently improve their applications by expanding their compatibility in 

organic media. Furthermore, these organic ligands can also be applied to adjust some 

important features of POMs, including electronic and luminescent properties.
8
 Exploring 
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the amphiphilic nature of such hybrids and understanding their self-assembly behavior in 

solution and at interface would be important initial steps for scientists. The majority of 

inorganic-organic hybrid POMs can be classified into two groups, the hybrids with weak 

interactions (e.g. electrostatic interactions, hydrogen bonding, or van der Waals 

interactions etc.) and the hybrids with strong interactions (e.g. covalent bonds) between 

the inorganic and organic components. The study of their unique solution behaviors will 

be discussed in Chapter 4.  

1.3 Nanocage type macro-cations 

Transition metal mediated organic-inorganic supramolecular nanostructures have 

drawn great attention ever since the last two decades. These novel macromolecules are 

self-assembled from small organic ligands and metal ions. Their shape, size, charge, and 

composition can be rationally designed by choice of the transition metals and the organic 

ligands.
9
 The successful self-assembly process takes advantage of the coordination bonds 

formed between metal centers and organic ligands. Unlike natural bio-macromolecules 

(DNA, RNA and proteins) or most organic compounds, these coordination bonds are of 

intermediate strength compared to the weak interactions (hydrogen bonding, van der 

Waals forces and electrostatic interactions) and the strong covalent carbon-carbon bonds. 

By carefully choosing reaction conditions, one can select either a thermodynamic or 

kinetic product. Moreover, owing to the kinetic liability of the heteroatom-metal bonds, 

defect structures can often be healed through the self-assembly process.  

According to Stang and co-workers, two design principles of metal mediated organic-

inorganic macromolecules have been developed: The „symmetry interaction model‟
10,11
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and the „molecular library model‟
12

. Using these models in principle the preparation of 

cages of any symmetry and size is possible.   

  Among various defined structures (bowls, boxes, tubes, and spheres), three dimensional 

nanocages and polyhedral are particularly interesting because of their highly symmetric 

structure, large central void and the ability of encapsulating guest molecules.  

1.3.1 Self-assembled prisms and cylinders. 

Triangular prisms. 

In 1995, Fujita et al. reported a one-port direct synthesis procedure for constructing a 

triangular nanoprism, which is the simplest and smallest three-dimensional complex in 

the nanocage family.
13

 Specifically, a tridentate ligand 1, 3, 5-tris(4-pyridylmethyl)-

benzene (B1) was reacted with ethylenediamine palladium dinitrate (A1) in the presence 

of a guest molecule of sodium 4-methoxyphenylacetate at room temperature in water. 

The three-dimensional, prism-like complex (C1) was formed exclusively as the 

thermodynamically stable product, as shown in Fig. 1.2.  

Cylindrical complex. 

A more complicated multi-component nanocylinder complex was synthesized by Lehn 

and coworkers (Fig. 1.2). By slowly adding a solution of [Cu(CH3CN)4]BF4 (B2) to a 2:3 

mixture of hexaphenylhexaazatriphenylene (A2) and the tetraphridine (C2), the 

cylindrical complex (D2) as a dark-purple, air-stable solid was assembled after 20 h.
14
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Figure 1.2 The self-assembly processes of one nano-sized trianglar priasm and one nano-

sized cylindrical complex. (Copyright: American Chemical Sociaty 2000) 

 

1.3.2 Self-assembled truncated tetrahedra (Octahedra). 

The nanosized octahedral 3D cage was first constructed by Fujita‟s group through the 

metal-directed self-assembly. Specifically, ethylenediamine Pd (II) dinitrate and the 

tritopic aromatic ligands were employed as building blocks, and under mild reaction 

conditions, those starting molecules were self-assembled into a highly symmetric M6L4 

type adamantanoid structure in a quantitative yield. The final cage structure has 

remarkable thermodynamic stability. Even if the starting stoichiometry of Pd dinitrate 
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and aromatic ligands was not in the correct 3:2, the final cage with a 3:2 ratio was still 

formed quantitatively and excess starting molecules remained unreacted. 
15

 

  Although structurally quite similar to complex C6, the Pt complex D7 is formed only 

under harsh conditions with the help of a templating guest.
16

 The synthesis reaction was 

carried out by mixing the platinum dinitrate, A6, and the organic linker B7 in boiling 

water in the presence of sodium adamantyl carboxylate C7. After 24 h stirring, a high-

yield formation of D7 was achieved. Once formed, the cage compound D7 demonstrates 

remarkable kinetic stability as the result of the stronger Pt-pyridine bond. In contrast to 

the palladium analogous C6, this Pt induced complex is stable under highly acidic and 

basic conditions (it can survive from pH 1 to pH 11). Consequently, a pH-responsive 

molecular capture-release system can be realized based upon the cage D7. For instance, 4 

small guest molecules (N,N-dimethylaniline) can be encapsulated in the hydrophobic 

cavity in a 1:4 (host: guest) mode under basic conditions, whereas under acidic conditions, 

the guest molecules are instantly released due to the decreased hydrophobic interaction as 

well as the cationic repulsion between the cage and the protonated N,N-dimethylaniline. 
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Figure 1.3 The self-assembly processes of two turncated nano-sized tetrahedra. 

(Copyright: American Chemical Sociaty 2000) 

 

1.3.3 Self-assembled truncated cuboctahedra. 

Although in nature highly symmetrical structures have been observed, like the protein 

shell structure of human Rhinovirus, the similar artificial structures are difficult to make 

by ordinary organic synthesis. However, recently, Stang and coworkers have 

demonstrated the one-step construction of a cuboctahedral supramolecular structure via 

coordination-driven self-assembly.
17

 Specifically, by combining 8 equivalent planar 

tritopic ligands (platinum tris(triflate), A8) and 12 equivalent ditopic angular subunits 

(bispyridyl acetal B8) together in the solvent of dichloromethane, a single highly 

symmetrical complex C8 was quantitatively formed. The formation of a second 

cuboctahedron (C9) was also achieved by using different building blocks (A9, B9), 
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which in turn, reveals the facility of the method of coordination-driven self-assembly to 

construct highly symmetric supramolecular structures. The solution behaviors of two 

nanocages are summarized in Chapter 3. 

          

Figure 1.4 The self-assembly processes of two turncated nano-sized cuboctahedra. 

(Copyright: American Chemical Sociaty 2000) 

 

1.4 Introduction to bio-macroions 

  Highly charged bio-macromolecules with size in nanometer scale can also be treated as 

macroions, for instance, DNA, RNA, F-actin, and microtubules. In these bio-macroionic 

systems, electrostatic interactions are fundamental to various phenomena, especially in 

regulating nucleic acids (DNA and RNA) condensation and folding, maintaining protein 

ternary structure and directing the assembly of viral capsids. For example, recent studies 



11 
 

of one short DNA (25 base pairs, about 8 nm) in solution have shown a short ranged 

attraction between like-charged DNAs, and the magnitude is quite sensitive to the 

valence and the concentration of small counterions. In this case, DLVO theory fails to 

predict the biologically important attraction of like-charged bio-macroions. Counterion 

condensation around DNA macroions is not the only example that demonstrates the 

complex nature of electrostatic interactions in biological systems. Viral capsids formation, 

an important however, poorly understood process in the life cycle of viruses, deserves a 

closer look. Counterion mediated attraction during the viral capsids formation will be 

discussed in Chapter 6.  
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Chapter 2: Solution Behaviors of POM Type Macro-

anions: Theories and Experimental Observations 

2.1 Introduction 

POM type macro-anions with size between 2 to 6 nm demonstrated quite unique 

solution behaviors: Instead of distributing in aqueous solutions to form stable, 

homogeneous real solutions, those fully hydrophilic clusters slowly self-assemble into 

spherical, hollow, single-layered vesicular structures, which are named as “blackberry” 

type structures. It seems quite contradictive to the common sense that macroions with the 

same type of charge should repel each other. In order to understand this unique 

phenomenon, it is necessary to exam two classic theories that commonly used to describe 

polyelectrolyte solutions.   

2.2 Derivation of the Debye-Hückel’s limiting theory 

The fundamental and central idea of the D-H theory is the concept of ionic atmosphere. 

It states that because there is an electrostatic attraction between opposite charged ions and 

an electrostatic repulsion between the same charged ions, for any given ion in the 

solution, there is an excess of its counter ions, and those counter ions have a net opposite 

charge equal to that on the central ion. This time-averaged, spherical cloud is called the 

ionic atmosphere, as illustrated in Fig. 2.1. Since the electrostatic interactions between 

ions are responsible for the non-ideal behaviors of an electrolyte solution, we can express 

the chemical potential of an i
th

 ion as  
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                                                     (1) 

For an ideal solution 

  
        

                                                           (2) 

For an electrolyte solution 

     
                                                            (3) 

where γi is the activity coefficient of the i
th

 ion. Compare equation 1 to 3, it is clear that 

the contribution from electrostatic interaction is  

   
                                                                  (4) 

So now the problem becomes how we can calculate γi. 

Assume that in the electrolyte solution there is 1, 2 … i kinds of ions with bulk 

concentration being n1, n2 … ni per unit volume and their charge number is z1e, z2e … zie 

(z is the valence and e is the unit charge). If we choose one cation as our target (as shown 

in Fig. 2.1), then in a small volume dV which is separated from the central cation by a 

distance r, the local concentration for the i
th

 ion ni
’
 can be written as  

  
         

    

  
                                                    (5) 

according to the Boltzmann distribution equation, in which φ is the central cation mean 

electrical potential averaged by time, and k is the Boltzmann constant. Since the mean 

charge density ρ in dV is actually a sum of charge density all ions Σ ni
’
zie, we have  

             
    

  
                                                 (6) 

Also, according to Poisson’s equation,  
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                                                            (7) 

Where     
  

    
  

    
  

     and ε is the dielectric constant of the solution. Since the 

solution is homogeneous and isotropic at thermal equilibrium, the counter-ion 

distribution in the ionic atmosphere is highly symmetric; a simpler form of this equation 

can be derived 

 

 

      

     
 

 
                                                     (8) 

Combine equation 6 and 8,  

 

 

      

     
 

 
           

    

  
                                  (9) 

This equation does not have an explicit general solution because there is a fundamental 

inconsistency and it can be solved only for certain limiting cases. Therefore, if we assume 

that this electrolyte solution is so dilute that the electrostatic energy between ions is much 

smaller that the thermal energy, zieφ << kT, equation 6 can be simplified as 

    
    

   

  
                                                    (10) 

And now equation 9 becomes  

 

 

      

    
  

   
     

 
                                          (11) 

If we define  

  
  

  

   
     

 
                                                 (12) 

Then equation 11 becomes 

 

 

      

      
                                                    (13) 
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where rd
-1

 is called the Debye length. By applying two boundary conditions: a) when r  

∞, φ  0, and b) r  0, φ φ0 when no counter-ions present around the central ion; we 

can solve this Poisson-Boltzmann equation as  

  
   

    
       

                                                 (14) 

This electrostatic potential also can be viewed as a sum of two potentials: one is 

introduced by the central ion alone and the other is generated by its ionic atmosphere, as 

shown below 

  
   

    
 

     

   
                                                  (15) 

In which we applied the assumption that for extremely diluted solution rd is very small, 

thus         becomes (     ). By using the charge-up strategy, the total work of 

charging the i
th

 ion can be calculated as 

   
  
   

    
 

  
     

    
                                                (16) 

If the total number of the i
th

 ion is Ni, then the total work of charging all ions is 

    
    

   

       
    

     

                                           (17) 

When the solute is extremely diluted, rd  0, the solution can be treated as ideal, then  

    
    

   

    
 

 

Therefore, in an electrolyte solution, the work done by the electrostatic interactions 

between ions is equal to  

                 
    

     

                                (18) 
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where Gel is the Gibbs free energy change raised by the electrostatic interactions. Since 

   
   

     

   
        

We have  

      
  
     

     
 
         

   
 
   

                                        (19) 

or 

         
                                                        (20) 

where I is the ionic strength of the solution. From the derivation of the D-H theory we 

can notice that several important assumptions are used and we should keep in mind that 

without these limiting conditions, the D-H theory will not hold.  

1. The ion distribution follows the Boltzmann distribution form and Poisson equation 

holds. 

2. Ions are point-like charges with no polarizability. 

3. The Coulomb interaction is the only interaction that dominants the ion behaviors. 

The attraction between ions is relatively small, which is lower than 1 kBT. 

4. The solvent is treated as a continuous dielectric medium.  
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Figure 2.1 Illustration of (A) the ionic atmosphere and (B) electrostatic interactions 

between a central cation and its counterions in the volume of dV. 

 

2.3 General features of the DLVO theory
1
 

Colloids are heterogeneous and thermodynamically unstable systems compared to 

simple ionic solutions. The colloidal particle (diameter larger than 100 nm) has a well 

defined surface and volume. Common methods to increase the system stability are either 

modifying the surface to include stereo interaction or modifying the surface to have 

charge. There are two possible ways to charge up colloidal particles. An initially 

uncharged surface may preferentially adsorb ions from the solution. The other way is the 

ionization of functional groups on the colloid’s surface. Counterions tend to accumulate 

close to the surface of colloids to form an electrical double layer. To describe the 

electrical potential of this double layer, Helmholtz first came up with a capacitor model, 

which simplify the situation of the interface of charged colloidal particle surface and the 
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accumulated counterions in solvent as a parallel plate capacitor. These two charged 

surfaces are separated by a dielectric solvent medium. The potential difference between 

these two plates is φ, which decays in a linear fashion inside the double layer. This 

model is oversimplified in a sense that it totally ignored the thermal motion of the small 

counterions which tends to diffuse in solution. Gouy (1910) and Chapman (1913) 

improved this parallel capacitor model by replacing the static counterion layer into a 

diffuse layer. This diffuse layer contains two parts: one part is closely associated with the 

colloidal particle’s surface while the other part is loosely interact with the colloidal 

particle’s surface and graduate diffuse into the bulk solutions. In this case, the counter-

ion distribution can be described by Boltzmann distribution. Recall that in D-H theory the 

ionic atmosphere around a central ion is also in Boltzmann distribution, therefore, the 

approximation that applied in D-H theory to describe the electrical potential of a point 

charge may also be applied here. The only difference is that in the colloidal systems, the 

size of the colloidal particles needs to be taken into consideration since they are no longer 

point-like charges. By solving the linearized Poisson-Boltzmann equation for spherical 

electrical double layer under the D-H approximation, the mean electrical potential can be 

written as  

    
  

 
                                                             (21) 

where κ
-1

 is the Debye screening length, r is the distance from the particle center to any 

point in the double layer and Rs is the radius of the spherical particle. Since this 

relationship between φ and r is derived based upon the D-H approximation, equation (21) 

is only valid at low surface potential. The parameter κ is similar to rd in the deviation of 
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the D-H theory for simple ionic solutions, and κ
-1 

represents the thickness of the diffuse 

double layer.  

2.3.1  Gouy-Chapman approximation 

  Consider that we have a positively charged plate immersed into a solvent with a 

dielectric constant of ε, and a diffuse layer of counter-ions is adsorbed onto the plate 

surface. We define the direction perpendicular to the plate as the x direction and the plate 

extends to infinity in the y and z directions. Now, equation (7) is written 

 
   

   
   

 

 
                                                           (22) 

Combine equation (6) with (22) and multiply 2      to both sizes, we have 

         
   

 
         

    

  
                                   (23) 

If the electrolyte in solution is the symmetrical z:z type, equation (23) can be further 

integrated as  

         
     

 
      

   

   
      

   

   
  

 

                    (24) 

Integrate equation (24) to give us the Gouy-Chapman expression for the relationship 

between potential φ and distance x within the double layer, which is without the D-H 

assumption of low surface potentials.  

                                                                 (25) 

Where Υ is defined as  

       
   

   
          

   

   
                                        (26) 

In the case of large x (outside the double layer), the above equation can be simplified as 
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 Υ                                                     (27) 

From equation (25) and (27), we can notice that instead of φ that varies exponentially 

with x in the D-H theory, it is the ratio Υ that changes with x in the Gouy-Chapman 

theory. However, when the surface potential is low (zieφ << kT), equation (25) can still 

return to equation (14).  

2.3.2  Repulsion between two parallel charged plates in electrolytes 

The next step in developing the DLVO theory is to consider the interactions between 

two parallel plates with the same charges immersed in an electrolyte, as shown in Fig. 2.2. 

In this case, as the distance between the two plates decreases, the potential of each of the 

plates starts to overlap and the counter-ion concentration in the middle of the plates starts 

to increase. At equilibrium, the electrostatic forces and the osmotic pressure operate on 

any volume element between the two plates must balance with each other. Therefore, we 

can write an expression for one volume element between the two plates at equilibrium as  

        
  

  
    

  

  
                                           (28) 

Combine equation (7), we have 

 
  

  
  

 

 
 
   

   
  

  

  
                                               (29) 

which can be further written as 

 
 

  
    

 

 
 
  

  
 
 
                                                (30) 

This result indicates that to achieve equilibrium between osmotic pressure and electric 

field, it is requires that 
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                                                     (31) 

Since φ goes through a minimum at the midpoint position, where 
  

  
    at x = l/2, 

the constant in equation (31) equals to the pressure at the midpoint Pl/2. We can rewrite 

equation (28) as 

                                                               (32) 

Substituting equation (6) for ρ in a z:z type electrolyte, we have 

              
   

  
      

   

  
                               (33) 

Since              , equation (33) can be written as 

             
   

  
                                             (34) 

Take the limiting conditions under consideration in which P = P0 at φ = 0 and P = Pl/2 at 

φ = φl/2; equation (34) is integrated as 

                     
      

  
                                 (35) 

where FR is the repulsive force acting on the unit area. When the distance l between two 

plates is large, the potential at the midpoint can be written as 

             
   

  
                                           (36) 

Equation (36) is only valid when the overlap of the double layer is small and 

consequently the potential is low. With these restrictions, equation (35) can be simplified 

into 

           
                                                    (37) 
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Since          , we have 

             
                                               (38) 

Integrate equation (38) with the boundary condition of ΦR = 0, when l = ∞, yielding 

           
                                                    (39) 

Equation (39) gives the general expression for the repulsive potential between two 

parallel plates with the same charges immersed in a dielectric medium, and is only valid 

when the distance between the two plates is relatively large and the electric potential is 

relatively low. To describe the repulsive interaction between two spherical particles, an 

easy way is to use the Derjaguin approximation. And the repulsive potential can be 

written as 

              
                                                (40) 

Where Rs is the radius of the two spherical particle and s is the closest distance from the 

surface of the two spheres.  

2.3.3 DLVO potential and the primary and secondary minima 

In the DLVO theory, the only possible source of attraction between two colloidal 

particles is believed to be the van der Waals forces, which can be written as 

    
 

  
 

  

 
                                                    (41) 

For two spheres with s is the closest distance from the surface of the two spheres, Rs is 

the radius of the colloidal particles and A is the Hamaker constant. 

Now, with the knowledge of repulsive potential and attractive potential, the DLVO 

potential can be written as 
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               (42) 

for two large spherical colloidal particles immersed in a dielectric medium. From 

equation (42), we can see that the repulsive potential ΦR depends sensitively on the 

concentrations of small counter-ions and large particles through κ, however, for the 

attractive potential ΦA, it is nearly insensible to the change of salt concentrations. 

Therefore, it gives us a great opportunity to study the solution behaviors of colloidal 

particles simply by varying the salt concentration, e.g. ionic strength.  

  As shown in Fig. 2.3, we can plot the DLVO potential Φnet versus the distance between 

two particles. And we notice that when the repulsive potential energy barrier becomes 

lower than the thermal energy of kBT under high salt concentration, the colloidal particles 

fall into the primary minimum because of the strong van der Waals’ attraction. This is an 

irreversible process called coagulation. However, under certain circumstances the 

superposition of ΦR and ΦA may produce a relatively shallow minimum called the 

secondary minimum. The depth of the secondary minimum is quit sensitive to the salt 

concentration and if it is larger than the thermal energy kBT, the colloidal particles tend to 

flocculate and form colloidal crystallites. This flocculation is a reversible process.  
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Figure 2.2 Illustration of two parallel plates with the same charges immersed in an 

electrolyte.  

 

Figure 2.3 Plot the DLVO potential Φnet versus the distance between two particles. 

2.3.4 Limitations of the DLVO theory and the like-charge attraction 

As a successor to the D-H theory, for the first time, the DLVO theory gives people a 

general tool to explain and predict some important solution behaviors of colloidal 
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systems. However, in the last 40 years, people observed new experimental phenomena 

which could not be explained by the DLVO theory. For example, Ise and co-workers 

noticed large void regions in equilibrium with densely packed region for highly charged 

silica latex particles.
2
 Hachisu in 1973 found that an increase of the salt concentration 

results in melting of colloidal crystals, which according to DLVO theory, the increase of 

salt concentration should deepen the secondary minimum therefore stabilize the colloidal 

crystals.
3
 Moreover, Schurr and co-workers observed a strange “ordinary-extraordinary 

phase transition” when they study the effect of adding salt to the dynamics of poly-L-

lysine (lys)955 solutions. Over a narrow ionic strength range, they found the apparent 

diffusion coefficient Dapp - monitored by dynamic light scattering (DLS) - dropped 20 

times; indicating there is some sort of clustering is formed in solution.
4,5

 From these 

experimental results, it seems the cause of failures of applying DLVO theory to these 

systems is stem from the basic assumption that the short-ranged van der Waals is the only 

attraction source in the colloidal systems. In fact, to explain these experimental 

phenomena another long-ranged attraction source is needed, which is the counterion 

mediated electrostatic attraction between colloidal particles.  
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2.4 Self-assembly of POM type macro-anions in solution 

2.4.1 Blackberry type structure formed by {Mo154} POM 

As mentioned in Chapter 1, POM type macro-anions are excellent model systems to 

study because of their high surface charge density, giant size, and well-defined structure. 

One typical example is the {Mo154} giant wheel cluster anions. This molecular cluster, 

(NH4)28[Mo154(NO)14O448H14(H2O)70]·nH2O, was first identified by Dr. Achim Müller 

and his colleagues.
6
 It has been shown that the {Mo154} inorganic macro-anions do not 

exist as discrete ions; instead, they tend to slowly further aggregate into large spherical 

assemblies. The “aggregates” do not look like regular aggregates formed by less soluble 

species, which usually have broad size distributions and tend to continue to grow until 

precipitating from the solution. This self-assembly process is contradictory to our 

common sense that fully hydrophilic macro-anions should not be attracted to each other 

but homogeneously distribute through the solution to decrease the total Gibbs free energy. 

As shown in Fig. 2.5, the transmission electron microscopy (TEM) studies on a dilute 

{Mo154} aqueous solution demonstrate that many spherical assemblies with a relatively 

uniform size of about 90 nm are formed.
7
  

To thoroughly explore the unique self-assembly of {Mo154} macro-anions, a 

combination of dynamic light scattering (DLS) and static light scattering (SLS) 

techniques are employed. In general, SLS gives information such as weight-average mass 

(Mw), radius of gyration (Rg), as well as the nature of interparticle interactions of the 

studied solute (the second virial coefficient A2) through measuring the scattered intensity 

from sample solutions at different scattering angles and concentrations. On the other hand, 
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DLS measurements are intended to determine the hydrodynamic radius (Rh) and the size 

distribution of particles (e.g., polymers, colloids, or bio-macromolecules) in solution. 

DLS measures the intensity-intensity time correlation function (then converted to electric 

field time correlation function). Using constrained regularized (CONTIN) method, the 

time correlation function is analyzed to provide the apparent diffusion coefficients of the 

solute which can be further used to calculate the Rh through the Stokes–Einstein equation. 

As shown in Fig. 2.5, a CONTIN analysis of the DLS measurement on a highly diluted 

{Mo154} aqueous solution (0.01mg/mL) at pH = 3.0 shows that large assemblies with an 

average Rh of 45 ± 1 nm present in the solution which has a narrow size distribution. SLS 

study show that the average Rg of the large assemblies is 45.2 ± 1.4 nm, which simply 

reflect that Rg = Rh. indicating the aggregates are hollow in nature. Recall that the large 

assemblies are spheres as shown previously in the TEM images; we can conclude that 

{Mo154} macro-anions form spherical, vesicle-like hollow structures in solution. 

Meanwhile, the apparent molecular weight (Mw) of the large assemblies can be estimated 

from the Zimm plot, which has a value of (2.54 ± 0.3)10
7
 g/mol. This Mw value 

equivalent to ~ 1165 single {Mo154} macro-anions also suggests a hollow interior of the 

aggregates, because a solid {Mo154} nanocrystal of 45-nm radius would contain a much 

bigger number of individual {Mo154} macro-anions, greater than 14,000, and would be 

much heavier. Therefore, we believe that all these giant wheels are homogeneously 

distributed to form a single layer on the surface of the assemblies. The accurate 

intermolecular distance is estimated to be ~ 1 nm. The above experimental results 

inspired us to construct a model system as shown in Fig. 2.5, and we give the vesicles the 

nickname “blackberry structure” due to the similarities between these two species. One 
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thing needs to be mentioned is that the current blackberry structure is fundamentally 

different from the bilayer hollow spherical assemblies such as micelles or biolipids, 

because on the surface of one blackberry structure, individual {Mo154} macro-anions 

have no obvious hydrophobic regions and they are not in touch with each other.  

Not only limited in the {Mo154} system, similar giant blackberry structures are also 

observed in many other POM macro-ionic polar solutions (e.g. {Mo132}, {Mo72V30} and 

{Mo368} in various polar solvents),
8-10

 indicating that this type of self-assembly is quite a 

general process for hydrophilic macro-anions in solution, as long as the macro-ions are 

large in size (from 2 nm to 6 nm) and carry a moderate number of charges. Currently, the 

smallest POM cluster shows this self-assembly behavior is {W48P8Cu20}.
11

  

 

Table 2.1 Some general features of giant, hydrophilic POM macro-anions covered in this 

chapter. 

 

POM abbreviation
a
 

Counterion 

number 

Total charge 

number 
Size (nm) 

Charge density 

(C/m
2
) 

{Mo154} 
12

 15 -15 3.6 0.08 

{Mo132}
13

 42 -42 2.9 0.25 

{Mo72V30}
14

 34 -34 2.5 0.28 

{Mo72Fe30}
15

 0
b
 -4 ~ -8 2.5 0.04 ~ 0.07 

{Mo72Cr30}
16

 0
b
 -4 ~ -8 2.5 0.04 ~ 0.07 

{W48P8Cu20}
17

 25 -25 2.0 0.21 

{Mo368}
18

 48 -48 6.04.0 0.38 

{P4Y8W43}
19

 21 -21 ~ -30
c
 2.04.0 0.11 ~ 0.16 

 

a: Detailed formulas can be found in references listed next to each of the POM abbreviation. b: For these two molecular clusters, they are 

neutral in the crystal state but undergo deprotonation when dissolved in aqueous solutions. Therefore, their total surface charge number 

depends on the degree of deprotonation. c: For this cluster, besides 15 K
+
 and 6 Na

+
 counter-ions, it also contains 9 H3O

+
 counter-ions. 

Therefore its surface charge density is also affected by solution pH.  
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Figure 2.4. Some typical giant polyoxometalate molecular clusters (and their sizes) 

described in the chapter. Their surface charge densities are listed in Table 1. 

 

 

Figure 2.5 (A) Tyndall effect of a {Mo154} aqueous solution when a green laser passes 

through the solution. (B) TEM image of the blackberry structure formed by {Mo154} 

macro-anions. (C) Zimm plot of a series of {Mo154} aqueous solutions reveals the radius 

of gyration Rg and weight averaged molecular weight (Mw) of the large blackberry 

structure. (D) A cartoon illustrates the blackberry structure. (Copyright: Nature publishing 

group 2003)  
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2.4.2 The driving forces that responsible for the self-assembly of POMs 

In order to uncover this extraordinary self-assembly process in highly charged, fully 

hydrophilic macro-anionic systems, we need to recognize the forces that surpass the 

electrostatic repulsion and can bring these macro-anions together. In general, van der 

Waals forces and hydrogen bonding are two important attractive interactions that are 

widely observed in different systems. 

2.4.2.1 Van der Waals attractions 

Van der Waals forces, which are generally attractive in nature, are short ranged and 

decay rapidly to zero away from a surface. The origin of the van der Waals forces lies in 

the instantaneous dipole generated by the fluctuation of electron cloud surrounding the 

nucleus of electrically neutral atoms. In colloidal systems sometimes the van der Waals 

forces are significant because of the relatively large size of colloidal particles that the 

contribution from all the atoms are added up, as indicated in equation (41). Therefore, we 

would expect weaker van der Waals attractive forces because POM macro-anions have 

relatively small sizes. We can use equation (42) to estimate the effective distance S at 

which the van der Waals attractive potential will have the same magnitude as the 

repulsive potential. For instance, in a 0.01mg/mL {Mo154} aqueous solution at pH = 3.0, 

this effective distance can be easily calculated as ~ 0.2 nm. Compared with the inter-

particle distance estimated from our SLS results (~ 1 nm between two adjacent {Mo154} 

macro-anions), this value indicates the van der Waals forces cannot be the primary or 

dominant attractions in the blackberry formation process. A more systematic study on a 

“Keplerate” {Mo132} cluster in water/acetone mixed solvents reveals further evidence 

that van der Waals cannot be the major attraction force.
20
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2.4.2.2. Hydrogen bonding. 

Recent experimental results from our group and other groups indicate that the 

hydrogen bonds formed between adjacent POMs on the blackberry surface may be one of 

the important driving forces for the stability of blackberries. For example, by using 

dielectric relaxation measurements, Oleinikova et al. noticed that, during the self-

assembly of {Mo154} wheel-shaped macro-ions in aqueous solution, “the strength of the 

hydration extends as cluster aggregation takes place with more water molecules being 

more strongly bound between the wheels and the presence of relatively fewer less 

strongly bound water molecules”; that is, the water stays between {Mo154} macro-ions 

and shows higher viscosity (i.e. more hydrogen bonds formed).
21

 In other words, the 

additional hydrogen bonds help to “glue” the hydrophilic surface of POMs together. The 

special hydrogen bonding formed between macro-ions on the blackberry surface is 

reflected by the softness of the blackberry wall. Moreover, Schmitz provides an 

interesting hypothesis of hydrogen bonded water molecule “fingers” to explain the 

spherical geometry of blackberries.
22

 Fig. 2.6 illustrates the general picture of how the 

hydrogen bonds may glue {Mo154} macro-ions together on the blackberry surface. 

However, this middle-ranged attraction still could not explain why highly charged macro-

anions tend to pull towards to each other especially when the electric double layer of the 

macro-anions is large (κ
-1

 ~ 10 nm for 0.01mg/mL {Mo154} solutions at pH = 3.0). There 

must be some long-ranged attractive interactions which responsible for the blackberry 

formation. 
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Figure 2.6 Illustration of how the hydrogen bonded water molecules and small counter-

ions arrange them on the surface of the blackberry structure to create a curved spherical 

shape.  

 

2.4.2.3 Counter-ions mediated attractions 

The high surface charge density and much larger size of macro-ions make the macro-

ions behave fundamentally different from simple electrolyte solutions. In other words, the 

D-H approximation is no longer suitable to describe the macro-ion solutions. Actually, 

the electrostatic interactions between macro-ions-macro-ions, macro-ions-counterions 

and counterions-counterions are much more complex than the simple electrolyte solutions. 

For example, in bio-macroionic systems, the self-association of cylinder shaped DNA 

macro-ions induced by divalent or multi-valence counterions was observed under many 

solution conditions.
23-25

 In these systems, counterions with high valence are strongly 

adsorbed on to the surface of DNA macro-ions and may eventually reverse the sign of 

DNA surface charge, which is known as over-charging. The reversed DNA macro-ions 

then attract other DNA macro-ions with a layer of counterions in between. This 
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counterion mediated attraction is named counterion condensation, a concept developed 

by Manning and Oosawa in the late 1960s.
26,27

 However, the counterion condensation is 

normally seen in cylinder macro-ions with high valence counterions, for spherical macro-

ions with monovalent counterions, this effect is believed to be very small. In the POMs 

case, the size of POMs is much smaller than colloidal particles or bio-macroions but large 

enough to display the size disparity (The size ratio between the Keplerates and cations is 

approximately 10:1, which is noticeable but not as significant as in colloidal suspensions 

with a size ratio on the order of 1000:1. In this latter case, the counterions can be 

effectively treated as point charges.); and most of the POMs have spherical or disk shapes. 

More importantly, during the blackberry formation, no extra or high valence counterions 

are required. All these conditions indicate that the blackberry structure formation is 

indeed quite unique. 

2.4.3 Interactions between discrete macro-ions and counter-ions  

For very large POMs such as the Keplerate clusters, the counterion-macroion 

interaction is expected to be more significant compared with small POMs, such as 

Keggin POMs. One way to evaluate the macroion-counterion interaction is done by 

comparing the directly measured conductivity values of two POM macro-anionic 

solutions with their theoretic values.
28

 The measurements indicated the change of 

counter-ion states with {W148} and {Mo132} concentration. At very low POM 

concentrations (< 110
-5

 mol/L), nearly all the counter-ions are free in solution. However, 

some cations (mainly NH4
+
 and Na

+
) are found to closely associate with {W148} or 

{Mo132} macro-anions at higher macro-ionic concentrations, and thus do not contribute to 

solution conductivity. The degree of counter-ion association shows obvious concentration 
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dependence before and after dialysis, with large fraction of counter-ions associated with 

macro-ions at higher concentrations. The disparity on ionic size and charge density 

between small cations and large macro-anions is the major reason for the counter-ion 

association.  

Another way to directly mapping the counterion distribution around the central macro-

ions is to use small-angle X-ray scattering (SAXS), a powerful technique to explore the 

counterion-macro-ion interactions in many systems. Considering the small size (1 ~ 3 Å) 

and low concentration (0.4 mM ~ 20 mM) of counterions, it is critique to choose a 

suitable model system, in order to see the correlation between macro-ions and 

counterions. {Mo72V30} (a 2.5 nm size Keplerate cluster carrying 31 charges with the 

counterions being 14 K
+
, 8 Na

+
, 2 VO

2+
, and 5 H

+
) was used as the primary probe. This 

POM macro-ion is a uniform molecular cluster which is stable in dilute solutions. Owing 

to its simple and highly symmetrical structure, the SAXS scattering curve can be 

calculated based on their form factors and can be compared with experimental result. 

{Mo72V30} carries a practically large number of charges to ensure the prospect of 

counterion interactions; and it has a sensible amount of metal counterions to generate a 

detectable X-ray scattering contrast. Moreover, it does not have co-ions and/or excess 

salts so that the true physical picture of counterions can be revealed. At the mean time, a 

powerful synchrotron X-ray source is employed to make sure we can get sufficient X-ray 

scattering intensity from dilute solutions. As demonstrated in Fig. 2.7, in a diluted 0.26 

mM aqueous solution of {Mo72V30}, the overall SAXS curve can be nicely fit by the 

form factor of {Mo72V30} cluster with a spherical shell model. When the {Mo72V30} 
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concentration is less than 0.052mM, the Rg value obtained from the Guinier plot (10.8 ± 

0.5 Å) suggests that there is no counterion association around the macro-ions.  

Not only does the counterion association show concentration dependency, it is also 

influenced by the solvent dielectric constant. As shown in Fig. 2.8, the Guinier plot for a 

series of {Mo72V30} solutions with different amount of acetone reflects that the average 

Rg increases with the acetone content, which means the counterion association becomes 

stronger when more acetone is introduced. Meanwhile, a more physically meaningful 

description of the particle morphology, the distance pair distribution p(r), which is the 

probability of finding the vector length r in a molecule that will become zero at the 

maximum vector length, can be generated from the Moore analysis. For {Mo72V30} in 

dilute aqueous solutions, the p(r) curves shown in Fig. 2.8 (top) correspond to discrete 

{Mo72V30} clusters (a core shell spherical particle with a maximum linear dimension of ~ 

26 Å) with no counterion association. When certain amount of acetone is introduced into 

the solution, another relatively small and isolated peak appears which is centered at ~ 30 

Å and extends the effective distribution to ~ 34 Å (Fig. 2.8, bottom). The peak 

distribution from 0 to 26 Å remains unchanged, indicating that the {Mo72V30} macro-

anions are still existing as discrete ions without self-assembling into blackberries 

(blackberry formation is a very slow process). This additional peak which responsible for 

additional electron density found outside the {Mo72V30} macro-anions, suggests that 

some counterions are closely associated with the macro-ions and distribute in the range of 

2-9 Å to the surface of macro-ions. The appearance of the peak due to associated 

counterions is consistent with the appearance of the blackberry structures, indicating the 

direct connection between these two issues.
29
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Figure 2.7 Calculated SAXS patterns for {Mo72V30} generated by using CRYSOL from 

the atomic coordinates from the single crystal data (dashed line), calculated form factor 

of a 2.5-nm-diameter spherical shell (solid line), and experimental scattering data for 0.26 

mM {Mo72V30} aqueous solution (dotted line). 

 

Table 2.2 Table of Rg values measured at different {Mo72V30} concentrations in aqueous 

solutions. 
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Figure 2.8 (A) Rg of 0.26 mM {Mo72V30} macro-ions in water and water/acetone mixed 

solvents containing various amount of acetone (in vol %) (solid line: 75%, open circles: 

65%, dashed line: 45%, dotted line: 10 %, open squares: pure water). (B) Pair-distance 

distribution function plots based on calculated and experimental scattering curves for 

{Mo72V30}. (closed circles: 0.013 mM, open circles: 0.052 mM, red line: calculated).  (C) 

Experimental distance distributions for 0.26 mM {Mo72V30} in water and acetone/water 

mixed solvents.  (green: 75%, blue: 65%, red: 45%, light blue: 10%, magenta: pure 

water). 

  

A 

B 

C 
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2.4.4 Effect of surface charge density 

Previous studies indicate that the number of charge on the POMs cluster surface also 

plays an important role during the blackberry formation. The blackberry size can be 

accurately tuned by changing the surface charge density. A typical example is {Mo72V30}, 

which does not show self-assembly behavior in dilute aqueous solutions due to its high 

surface charge density. To decrease this electrostatic hindrance, a small amount of water-

soluble surfactants, such as cetyltrimethylammonium bromide (CTAB), 

trimethyltetradecylammonium chloride (CTAT), dodecyltrimethylammonium bromide 

(DTAB), and octyltrimethylammonium bromide (OTAB) is introduced into the {Mo72V30} 

solutions, such that the charge density on {Mo72V30} macro-ions is expected to decrease 

and enter the blackberry-formation regime. We found that the long-chain CTAB and 

CTAT surfactants can interact with {Mo72V30} stoichiometrically. As a result, {Mo72V30} 

blackberries can be observed at the {Mo72V30} to surfactant molar ratio of 1:1.2, and the 

average Rh of the blackberries continues to increase with increasing surfactant 

concentration, as shown in Fig. 2.9. The hydrophobic interaction from the surfactant tails 

might also contribute to the self-assembly, but the effect should be very minor as there 

are only a few alkyl chains on the relatively large surface area of each macro-ion.
30

 

For weak electrolytes of {Mo72Fe30}, its surface charge comes from the partial 

deprotonation of water ligands attached to its 30 Fe
III

 centers, so that its surface charge 

density can be easily tuned by changing the solution pH. By adding a small amount of 

NaOH or HCl solution, the deprotonation degree of {Mo72Fe30} and its charge density 

can be adjusted. Fig. 2.10 shows the blackberry formation in {Mo72Fe30} aqueous 

solution. At pH < 2.9, {Mo72Fe30} clusters are almost uncharged and stay as soluble 
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molecules in solution. At pH > 2.9, {Mo72Fe30} clusters are more charged. Self-assembly 

occurs with the blackberry size decreasing with increasing pH, from Rh ~ 50 nm at pH = 

3.0 to Rh ~ 15 nm at pH = 6.0. The transition from single clusters to blackberries with the 

change in pH again confirms that van der Waals attractions are not the major attractive 

forces for the self-assembly.
31

  

Not only the Debye screening length (κ
-1

) can be influenced by the ionic strength, it is 

also proportional to the dielectric constant εr of the solvent. In other words, when the 

polarity of a solvent decreases, the Debye length also decreases and the electric double 

layer is compressed. Therefore, counter-ions should be more closely associated with 

macro-ions. In reality, we observed that the average blackberry size increases linearly 

with increasing 1/εr for {Mo132}, {Mo72V30} and {W72Mo60} in water/acetone mixed 

solutions.
32-34

 Similar trends have also been identified in other POM solutions.  
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Figure 2.9 Top: Average hydrodynamic radius (Rh) of the {Mo72V30} blackberries in 

aqueous solution increases with surfactant (CTAB or CTAT) concentration. The 

concentration of {Mo72V30} is 0.026 mM. Bottom: Charge density on {Mo72V30} 

decreases with the increment of surfactant  concentration, which leads to the increment of 

blackberries size. (Copyright: American Chemical Society 2009) 
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Figure 2.10 Average Rh of blackberries changes with the solution pH in 0.5 mg/mL 

{Mo72Fe30} aqueous solutions. Left: TEM images of blackberries at pH ~ 3.0. Right: pH 

~ 4.6. (Copyright: American Chemical Society 2006) 

 

 

Figure 2.11 Plot of the average blackberry radius versus the inversed dielectric constant 

(1/ε) of the solvent for different POMs in water/acetone mixed solvents, demonstrating a 

linear relationship for these systems. (Copyright: American Chemical Society 2009) 
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Figure 2.12 A possible scenario of macro-anion association mediated by counterion 

effect. 

The counterion valence state, their hydration size, and the total ionic strength of the 

solution are all critical parameters that will affect the counterion mediated attractions 

between POMs, which will lead to the change of blackberry structure.  The ITC studies 

provide direct confirmation that the binding strength between {Mo72Fe30} and 

monovalent cations follows the order of (Li
+
, Na

+
) < H3O

+
 < K

+
 < Rb

+
 < Cs

+
, which is 

completely consistent with the observed corresponding blackberry formation processes. 
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This is also compelling evidence that the counterions cannot be treated as dimensionless 

point charges in the macro-ionic solutions.  

2.5 Conclusions 

  From the above discussions, we can identify that the dominant driving forces for the 

blackberry formation are the counterion mediated attraction plus hydrogen bonding. The 

properties of the attraction can be summarized as follows: The attraction is intensified 

with decreasing dielectric constant ε when the charge number is practically fixed. The 

attraction exists with monovalent counterions. When the salt concentration and/or the 

charge number are very low, the attraction is not strong enough to be detected. When the 

two parameters become larger, the attraction is intensified. With further increase, the 

attraction becomes weaker again. Even when two macro-ions are far apart, a large part of 

their charge is already compensated by their counterions. Consequently, the enthalpy 

change that accompanies macro-ion association is modest. However, when the macro-

ions do associate, a number of opposite charges on the two macro-ions are brought in 

close proximity and a proportional number of counterions are no longer needed and can 

be freed. It is the entropy gain of these released counterions that is largely responsible for 

the binding process (Fig. 2.12). The release of water molecules, associated with changes 

in solvent structure is also important. To account for the spherical geometry of blackberry 

structure, first form dimer or oligomers, then form a sheet, then to decrease edge energy, 

the sheet collapses into a vesicle. This also clearly distinguishes soluble macro-ions with 

large colloidal suspensions. In the blackberry region, the blackberry size decreases 

monotonically with increasing water content, suggesting that the blackberry size can be 
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accurately controlled. By simply adjusting the solvent content with mild heating, the 

transitions between the blackberries and discrete macro-ions, and between the 

blackberries with different sizes, can be achieved. It confirms that the blackberry 

formation is a physical process which does not involve major chemical reactions. 
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Chapter 3: Self-assembly of Nanocage Type Macro-

cations in Solution 

3.1 Introduction 

All the POMs we have mentioned in the previous chapters are macro-anions in nature, 

and their unique self-assembly behaviors in aqueous solutions indicate counterion 

induced like-charge attractions play a dominant role. Naturally, we want to ask the 

following questions: Does this unique self-assembly only hold true for macroanions or it 

is a universal phenomenon? Will macrocations also self-assembly into large structures in 

solution? To answer these interesting and important questions, in this chapter, we will 

focus our attention to nanocage type macrocations.  

3.2 Materials and instrumentations  

3.2.1 Materials 

  Two metal-organic hybrid nanocages were chosen as model systems. The first one 

Pd6L4(NO3)12 {Pd = ethylenediamine palladium(II), L = 2,4,6-tris(4-pyridyl)-triazine} 

metal-organic nanocage is commercially available (Wako), which has an octahedral 

shape and a diameter of ~ 2 nm.
1
 

The second M12L24 nanocages were synthesized based on a procedure in literature and 

characterized by 
1
H NMR.

2
 For a typical experiment, 37 mg (160 mmol) of Pd(NO3)2 

was dissolved in 10 mL of dimethyl sulfoxide DMSO-d6 in a 30-mL round bottom flask. 

The mixture was heated at 70°C for four hours. The resulting mixture was then filtered 

using a membrane filter with 0.20 μm pore size. A quantitative analysis of the palladium 
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content was performed by atomic absorption analysis, and typically the resulting Pd 

concentration was ~10 mM. Next, in a 10-mL test tube, 5.9 mg (20 μmol) of ligand (2,6-

bis(4-pyridylethynyl)toluene) was dissolved in 1.0 mL (10 μmol) of the Pd(NO3)2 

solution. The mixture was heated at 70°C for 2 – 5 hours. The resulted nanocage 

concentration was ~ 835 μmol/L. After cooling down the test tube, the solution was 

transferred into a 5-mm standard NMR tube and sealed; then followed by 
1
H NMR 

studies. The diluted nanocage samples were prepared by transferring 10 ~ 100 μL 

solutions from the original solution into a clean light scattering sample cell containing 4 – 

5 mL dust-freed DMSO. The dilution of stock solutions was executed before the slow 

self-assembly process in solution. 

3.2.2 DLS and SLS 

Both Dynamic Light Scattering (DLS) and Static Light Scatting (SLS) were used to 

characterize the dilute nanocage solutions. A Brookhaven Instruments Inc. light 

scattering spectrometer, equipped with a diode-pumped solid-state (DPSS) laser 

operating at 532 nm and a BI-9000AT multi-channel digital correlator were used for this 

purpose.  

The SLS was performed over a broad range of scattering angles from 30° to 130°, with a 2° 

interval. The raw data was analyzed to give the radius of gyration (Rg) and the weight-

average molecular mass (Mw) of the large assemblies, using the Rayleigh-Gans-Debye 

equation:  

Hc/R90=1/Mw+2A2*c                                                    (43) 
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where H is an optical parameter; Mw is the weight-average molecular mass of the solutes; A2 

is the second virial coefficient and c is the solute concentration. The nanocage solutions 

examined in this study had very low concentrations; therefore, the 2A2c term can be 

neglected during calculations.  

For DLS measurements, the intensity-intensity time correlation functions were 

analyzed by the constrained regularized (CONTIN) method in order to ascertain the 

average hydrodynamic radius (Rh) of the large assemblies. Specifically, an average 

apparent translational diffusion coefficient, Dapp was determined from the normalized 

distribution function of the characteristic line width, Γ(G); and the hydrodynamic radius 

Rh is related to D through the Stokes–Einstein equation: 

                                                              (44) 

where kB is the Boltzmann constant and η the viscosity of the solvent at temperature T. 

The particle size distribution in solution can be obtained by plotting ΓG (Γ) versus Rh, 

with ΓiGi (Γi) being proportional to the angular-dependent scattered intensity of particle i 

having an apparent hydrodynamic radius Rh,i. The temperature in the sample chamber 

was controlled to within ± 0.1 °C.  

3.2.3 Electron microscopy 

  Samples for electron microscopy characterization were prepared by pipeting 5 µL of 

diluted nanocage solution onto a carbon-coated TEM grid. The TEM samples were left 

under ambient conditions for several hours while the solvent evaporated. Bright-field 

(BF) TEM imaging was performed on a JEOL 2000FX transmission electron microscope 

having an accelerating voltage of 200 kV. High-angle annular dark field (HAADF) 
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imaging in a scanning transmission electron microscope (STEM) was used to provide Z-

contrast information of the sample. The atomic-resolution STEM-HAADF imaging 

experiments were performed on a JEOL-2200FS (S)TEM equipped with a CEOS 

spherical aberration corrector. The samples were illuminated by a strong and broad 

electron beam for a few seconds (also known as „beam shower‟) before the high 

resolution STEM-HAADF imaging in order to fix the mobilized hydrocarbon molecules 

on the sample surface. The HAADF images presented have been low-pass filtered in 

order to reduce the background noise. 

3.2.4 Nuclear magnetic resonance (NMR) 

Two dimensional Diffusion-Ordered Spectroscopy (DOSY) 
1
H NMR was performed 

on a Bruker 500 MHz spectrometer with the magnetic field gradient (g) varying from 0 to 

32 G/cm in 32 ~ 128 steps. The length of the gradient ( ) was from 6000 s to 8000 s, 

and the time interval between two pulsed-gradients () was from 0.1 s to 0.15 s. All 

spectra were taken at room temperature. After the data collection, FIDs were processed 

and analyzed with the NMR software TopSpin 2.0 provided by Bruker. Both T1/T2 

relaxation and CONTIN methods were used to fit the raw data. The observed proton 

signal I in a standard DOSY spectrum is expressed through equation: 

                   
                                          (45) 

where I0 is the reference intensity, γ is the gyromagnetic ratio of the proton. If only one 

diffusive component exists in the solution, a straight line will occur in a plot of ln(I/I0) 

versus g
2
, and the apparent diffusion coefficient D can be calculated from the slope using 

linear regression analysis.  
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3.3 Solution behaviors of M6L4 type nanocages 

3.3.1 Self-assembly process in water/acetone mixed solvent 

The Pd6L4(NO3)12 {Pd = ethylenediamine palladium(II), L = 2,4,6-tris(4-pyridyl)-

triazine} metal-organic nanocage (Fig. 3.1) carries 12 positive charges attributed to 6 

Pd
2+

 ions, after releasing 12 NO
3-

 counterions into solution. The Pd6L4(NO3)12 solutions 

were studied by dynamic and static light scattering (DLS and SLS) techniques. In a pure 

aqueous solution, very low scattered intensity was collected by SLS after several weeks, 

indicating that there was no large structure forming in solution; i.e., the cages existed as 

discrete macrocations. This is due to the high charge density of the nanocages and not a 

surprise for highly soluble ions. However, when different amounts of acetone were added 

into the aqueous solutions of nanocages, a significant and continuous increase of the total 

scattered intensity from SLS was observed, suggesting the formation of much larger 

structures. The nanocages are still quite soluble in such water/acetone mixtures (up to 75 

v% acetone at 0.20 mg/mL) and form clear, stable, homogeneous solutions. Therefore, 

the growth of the scattered intensity is not due to the aggregation of insoluble species but 

a slow self-association process of individual cages. As revealed in Fig. 3.2, the peaks 

obtained by Constrained Regularization (CONTIN) analysis
3
 from DLS studies of a 0.20 

mg/mL nanocage solution with 22 v% acetone are attributed to supramolecular structures 

which are dominant in solution and have narrow size distributions. The average 

hydrodynamic radius (Rh) of the large structures does not change with time, indicating 

that such supramolecular structures have preferred curvatures in solution. Besides, in a 

0.06 mg/mL nanocage solution containing 40 v% acetone, the average Rh is 38 ± 1.0 nm 
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measured at a 90°scattering angle. Extrapolating the Rh values to a 0°scattering angle 

results in an Rh,0 of 40.5 nm. SLS measurements performed on the same solutions 

indicate that the average radius of gyration (Rg) of the supramolecular structures is 40.8 ± 

0.8 nm. Therefore, the ratio Rg/Rh is very close to 1. It serves as strong evidence that the 

assemblies formed by Pd6L4 cationic nanocages observed at this circumstance have a 

hollow, vesicle-like structure. TEM studies also clearly show the presence of uniform, 

hollow, vesicle-like structures formed by Pd6L4 cationic nanocages, with the average 

radius of 40 nm in 40 v% acetone solutions, which is consistent to the DLS and SLS 

studies. It is known that the amphiphilic surfactants and phospholipids form bilayer 

vesicle structures due to the hydrophobic interactions. In contrast, fully hydrophilic 

inorganic polyoxometalate (POMs) macroanions can form single layer, vesicle-like 

“blackberry” structures due to the counterion-mediated attraction and hydrogen bonds. 

 

Figure 3.1 (A) Three-dimensional structure of a single metal-organic nanocage molecule. 

(B) The supramolecular blackberry type structure determined by laser light scattering 

measurements and TEM.  
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Figure 3.2 Hydrodynamic radius (Rh) distributions of 0.20 mg/mL Pd6L4 cationic 

nanocage aqueous solution with 22 v% acetone after 1, 5, 10, 21, and 30 days. The 

scattering angle is set at 90°. 

 

3.3.2 Driving forces for the self-assembly of Pd6L4 nanocages 

The current Pd6L4 nanocages are macrocations, which certainly show similarities to 

POM macro-anions. A major difference between nanocages and POMs is that the POMs 

are fully hydrophilic while the nanocages contain both hydrophilic (Pd
II
 ions) and 

hydrophobic parts (tritopic aromatic ligands). On the other hand, the nanocages also 

differ from amphiphilic surfactants, which usually have a hydrophilic polar head and a 

hydrophobic “end”. The nanocages lack such “ends” because of their highly isotropic 



55 
 

symmetry. Therefore, both electrostatic and hydrophobic interactions could contribute to 

their vesicle formation.  

To clarify the driving force for the self-assembly of nanocages, we first investigated 

the effect of solvent polarity (in the form of dielectric constant ƐR) on the vesicle size. At 

a concentration of 0.20 mg/mL, the Rh of nanocage vesicles increases monotonically from 

25 to 80 nm with increasing acetone content, as shown in Fig. 3.3. By plotting the Rh of 

the vesicles versus 1/ ƐR of the solvent, a linear relationship is demonstrated, indicating 

that the cage vesicles with preferred curvatures are stabilized by the charge regulation 

mechanism. It suggests that the nanocage macrocations can spontaneously and reversibly 

form vesicle-like structures in polar solvents as long as they possess appropriate charge 

density. The hydrophobic interaction raised from the aromatic ligands does not play a 

major role in the self-assembly. If the hydrophobic interaction is the dominant driving 

force, then it would be much easier and probably faster for the nanocage vesicle 

formation in pure water than in water/acetone mixtures, because a stronger hydrophobic 

interaction is expected to be present in the former solution (the hydrophobic ligands 

become better solvated when acetone is introduced). However, no supramolecular 

structures formed in pure water, which is a clear argument against the possibility of 

hydrophobic interaction being the major attractive force. Similar results were obtained in 

other mixed solvent systems such as water/EtOH. Therefore, we conclude that the 

nanocage macrocations behave similarly to macro-anionic POMs in solution, i.e., form 

“blackberry”-type structures with the help of counterion mediated attractions. Additional 

evidence comes from the very slow vesicle formation process (takes days to weeks, 

revealed by the very slow increment of the scattered intensity), which is very similar to 
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the process of the POM blackberry formation but certainly different from the formation 

of bilayer vesicles.  

 

Figure 3.3 Average Rh of vesicle-like structures in 0.20 mg/mL nanocage aqueous 

solutions containing different volume of acetone is plotted over the inverse dielectric 

constant of the solvent.  

 

3.4 Solution behaviors of M12L24 type nanocages 

3.4.1 Self-assembly process in DMSO 

Unlike our previously studied M6L4 type nanocages which have an octahedral 

geometry with 4 open faces, the M12L24 type nanocages {M = Pd, L = 2,6-bis(4-

pyridylethynyl)toluene} type nanocage possess a cuboctahedral structure with 12 Pd
II
 

metal cations (hydrophilic centers) evenly distributed on the almost spherical cage 

surface (Fig. 3.4) and linked by hydrophobic linkers. We previously reported the vesicle 
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formation but did not have direct evidence to prove our single-layer model of the large 

assemblies. Herein, we explore the possible self-assembly process of the M12L24 

macrocations and compare it with other systems. In particular, we use M12L24 as a model 

system to test a new approach of studying the equilibrium between discrete and 

aggregated nanocages by NMR. This information is crucial for interpreting laser light 

scattering results in order to obtain the average inter-cage distance in the assemblies, an 

important value for understanding the nature of the interactions between the macroions. 

M12L24 nanocages can be readily synthesized in DMSO, acetonitrile and other polar 

solvents, and each nanocage cluster carries 24 positive charges, balanced by 24 nitrates. 

They are thermodynamically stable and our 
1
H NMR results also confirm that once being 

synthesized in DMSO-d6, these nanocages can stay in solution for months without any 

decomposition or precipitation (Fig. 3.5), which enables us to explore their solution 

behavior.  

 

Figure 3.4 The molecular structures of the M12L24 type nanocage. 
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Figure 3.5 
1
H NMR spectra of M12L24 nanocages synthesized in DMSO-d6 with no 

additional NO3
-
 counter-ions at initial day 0 (A) and subsequent days (B).  
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The cationic cages are found to self-assemble into larger structures in DMSO-d6, as 

confirmed by the continuous increase of the total scattered intensity of the solution from 

SLS studies and a mode corresponding to large structures from DLS studies. DLS data 

presented in Fig. 3.6 indicate that the large assemblies have narrow size distributions and 

their average sizes (in Rh) do not show an obvious angular dependence (Fig. 3.7), which 

suggests a spherical shape for the assemblies. Meanwhile, the apparent average Rg values 

of the large assemblies obtained from SLS studies reveal how the mass of the large 

assembles is distributed. As shown in Fig. 3.8D, a series of M12L24 solutions were 

prepared by diluting a concentrated M12L24 solution in DMSO (for this sample, the molar 

ratio of nanocage/NO3
-
 is 1/36). By extrapolating the Rg values to zero nanocage 

concentration, a final Rg,0 value of 38.0 ± 2.0 nm was obtained, very similar to the 

average Rh,0 value of 37.8 ± 1.8 nm obtained from DLS measurements. Generally, the 

ratio of Rg,0 /Rh,0 reflects the shape and morphology of the particles in solution, whereby a 

solid sphere normally has a value of 0.77, while a hollow sphere has a value close to 1. 

Therefore, the relation of Rg,0 ~ Rh,0 in this case indicates that the self-assembled large 

structures are hollow spheres. 
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Figure 3.6 The self-assembly process of three M12L24 nanocages samples with different 

NO3
-
 concentrations in DMSO-d6 as monitored by SLS and DLS. The size distributions 

of the aggregates formed in solution, as calculated using CONTIN, when the molar ratio 

of nanocage/(NO3
-
) is 1/24 for (A); 1/29 for (B) and 1/36 for (C). (Inset is the average Rh 

value versus time.) (D) The total scattered intensity changes with time for the three 

samples.  
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Figure 3.7 Hydrodynamic radius (Rh) recorded at different scattering angles for the large 

vesicle-like structures self-assembled from M12L24 nanocages in diluted DMSO solutions. 

Inset: Rh,0 calculated from extrapolating the Rh values obtained at different angles.  

3.4.2 Estimation of inter-nanocage distance 

One piece of crucial information in exploring the unique blackberry structure 

formation and understanding the macro-ion-counterion interaction is the inter-particle 

distance between monomers on the surface of the blackberry, which can be used for 

judging the nature of the attractive interactions between cationic cages. Our previous 

studies on POMs type blackberries show the interparticle distance is in the range of ~ 1 

nm, which is based on the assumption that all single monomers form blackberries.
4
 

However, to accurately measure this distance is a major difficulty in reality because the 

blackberry structure is always in dynamic equilibrium with monomers in solution. 
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Therefore, normal separation methods like filtration, centrifugation or running columns 

may disrupt and shift this equilibrium. Without knowing the exact population of 

monomers and blackberries, it is hard to estimate the real number of monomers on each 

blackberry surface.  

This problem is solved by using of NMR and SLS. Time-resolved SLS studies reveal 

more information about the slow self-assembly of nanocages into supramolecular 

structures. As shown in Fig. 3.6D, in the freshly prepared nanocage solution (the molar 

ratio of nanocage/NO3
-
 is 1/24), very weak scattered intensity was recorded, indicating 

that initially the M12L24 nanocages exist as single cations in solution, which is also 

confirmed by NMR-DOSY (diffusion-ordered spectroscopy) analysis (Fig. 3.8A). The 

total scattered intensities recorded at 90° scattering angle from this nanocage solution 

increases slowly with time. Moreover, as shown in the inset in Fig. 3.6A, the size of the 

large structures (in Rh) stays nearly constant during the whole self-assembly process, 

indicating that the structures are quite stable. This observation is also consistent to our 

previous studies on the self-assembly of POM macroanions. Therefore, the increment of 

the scattered intensity with time is most likely due to an increase in the number of the 

assemblies in solution. Since single M12L24 nanocages are remarkably stable in DMSO 

and other polar solvents, the larger structures formed in the current case must be built-up 

from these single nanocage entities. It is also important to note that single free nanocages 

are always in equilibrium with the large self-assembled structures in solution, which is 

demonstrated by the bimodal size distribution shown in Fig. 3.6A. 

Two-dimensional DOSY 
1
H NMR is a powerful technique for determining molecular 

size and measuring the molecular interactions via the self-diffusion coefficient.
5
 In a 
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standard DOSY spectrum, as shown in Fig. 3.8A, the F2 domain represents the 
1
H 

chemical shift, and the F1 domain is the diffusion coefficient corresponding to different 

protons. The spectrum clearly shows that immediately after synthesis, the M12L24 

nanocages stay as monomers, and no large structures are observed. From the slope of the 

linear regression shown in Fig. 3.8B, the self-diffusion coefficient for a single nanocage 

is determined to be 5.45×10
-11

 m
2
/s, which corresponds to an average Rh value of 1.8 ± 

0.3 nm. As the single nanocages progressively self-assemble into larger structures in 

solution, as demonstrated by LLS, the proton signals originating from the nanocage 

species decreased with elapsing time. This can be explained by the fact that as the single 

nanocages start to interact with each other to form larger structures, the strong spin-spin 

interactions of two or more neighbouring nanocages make the transverse relaxation 

process so fast, that the proton peaks from those nanocages in assemblies become too 

broad to be detected. It is worthy to note that similar phenomenon of the proton signal 

decay has been reported during the vesicle formation process.
6
 However, in our current 

system, the proton signal decay is rather slow.  
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Figure 3.8 (A) Two dimensional DOSY 
1
H NMR spectra of M12L24 nanocages in 

DMSO-d6, with the nanocage/NO3
-
 ratio of 1/24. (B) Normalized nanocage signal decay 

as a function of the gradient strength squared (g
2
). The measurement was taken at 298 K 

immediately after synthesis of the nanocages. (C) The 
1
H NMR signal decay as a 

function of time for proton a of the nanocage. All data points are normalized against the 

initial intensity at t = 0. (D) Zimm plot of a series of diluted M12L24 nanocage samples in 

DMSO (a concentration amendment for large aggregates was made based upon NMR 

signal decay results).  
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Assuming that in solution nanocages only have two states in dilute solution: as free 

monomers and in the aggregates, the total proton signal intensity from 
1
H NMR spectra 

will only be from the free monomers. This assumption is reasonable because we have 

demonstrated earlier that the oligomers, an important intermediate stage for the assembly, 

have a very limited concentration.
7
 Therefore, when the two states achieve equilibrium, 

the fraction of nanocages that form aggregates can be determined by measuring the decay 

of the proton signal intensity. As illustrated in Fig. 3.8C, by taking proton a as an 

example, the peak area associated with proton a (integrated from 9.00 ppm to 9.40 ppm) 

on day 0 was set as the reference value, and then relevant measurements under the same 

conditions (i.e. temperature, probe, receiver gain, number of scans, etc.) performed on 

subsequent days were compared to the reference. As shown in Fig. 3.8C, all three 

nanocage solutions studied show a slow but continuous decay of proton intensity (Similar 

trends can be obtained if using DMSO-d6 solvent peak as the internal reference). By 

fitting the data with a first-order exponential decay function, the concentration of 

nanocage assemblies under equilibrium conditions can be estimated. Our results show 

that 41.6% of the total nanocages will form large assemblies when no extra NO3
-
 counter-

ions present. 

The above information is especially valuable for calculating an important parameter: 

the inter-cage distance on the assembly surface, which can be used for judging the nature 

of the attractive interactions between cationic cages. From the Zimm plot shown in Fig. 

3.8D, the weight averaged molecular weight (Mw) of the large structures can be 

calculated using the Rayleigh-Gans-Debye equation. The SLS technique favors large 

particles and the total scattered intensity in the current SLS measurement is almost 
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exclusively from the large particles. From the NMR results, an appropriate correction to 

the assembly concentration c was made, resulting a final Mw value for the large structures 

of (9.4 ± 0.8) 10
6
 g/mol, which corresponds to 956 ± 81 single nanocages when the 

molar ratio of nanocage/NO3
-
 is 1/36. Based upon all the experimental results presented 

above, we propose a model for this self-assembled structure in solution, which is a single-

layered, hollow, spherical, vesicle-like entity with individual nanocages homogenously 

distributed on the surface, as illustrated in Fig. 3.9. If we assume all the nanocages are 

arranged with pseudo-hexagonal close packing, then the averaged centre-to-centre 

distance between two adjacent nanocages would be 4.7 ± 0.3 nm, indicating a very close, 

but non-touching, proximity of the two adjacent nanocages (the diameter of an individual 

nanocage is ~ 4 nm as determined by DOSY). We have demonstrated before that the 

distribution of counter-ions around macroions plays an important role in attracting like-

charged macroions together and forming blackberry structures, The calculated inter-

nanocage distance (0.7 ± 0.3 nm) confirms that the counter-ion-mediated attraction is 

indeed possible because there is enough space between the nanocages to accommodate 

the small counter-ions (here NO3
-
). 

3.4.3 TEM reveals the single-layered nature of blackberries 

More direct evidences for this novel vesicle-like structure can be obtained from 

(scanning) transmission electron microscopy ((S)TEM) imaging studies. As shown in Fig. 

3.10A, the vesicle-like structures have a reasonably uniform size. Some of the vesicle-

like structures were found to have shrunk and/or collapsed due to the evaporation of the 

solvent from within the hollow structure. However, these collapsed vesicles provide an 
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interesting opportunity to analyze the hollow sphere structure. As marked by the red 

square in Fig. 3.10A, a thin single layer structure having a lighter contrast can be seen at 

the edge of the broken sphere, whereas the other part of the sphere displays a 

considerably darker contrast level generated by overlap of the top and bottom layers of 

the vesicle-like structure. Besides the large vesicle-like structures, individual nanocages 

were also observed by TEM bright field (BF) imaging via mass-thickness contrast. Both 

the individual nanocages and vesicle-like structures can be better visualized with STEM 

high-angle annular dark-field (HAADF) imaging containing atomic number (z) contrast 

information. In Fig. 3.10B, the cluster of Pd atoms associated with each nanocage 

displays a higher intensity than the dark background of the carbon film due to the more 

effective electron scattering by Pd. It is also clear that the vesicle-like structure is formed 

by the assembly of large number of nanometre size “building blocks”, i.e. the nanocages. 

It should be noted that the observed spatial arrangement of individual nanocages seen in 

Fig. 3.10B no longer reflects the real structural motif that would exist in the solution 

phase, because the vesicle-like structure has deflated and collapsed due to the evaporation 

of solvent from within the structure. However, it is still noticeable from the HAADF 

images that the individual nanocages in the vesicle-like structure are well separated, 

which is consistent with our SLS results. 

In order to further investigate the validity of our proposed mono-layer hollow sphere 

model, through-focal STEM-HAADF imaging was performed. The correction of the 

spherical aberration on our STEM instrument allows the use of a larger probe forming 

aperture, which in turn results in a significant reduction in the depth-of-focus of the 

images.
8
 By systematically changing the focus setting of the microscope lenses, it is now 
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possible to obtain a series of images that are focused at different depth levels in the 

sample along the incident electron beam direction. The HAADF images shown in Fig. 

3.10C and 3.10D were obtained from the general same area of a broken edge of a vesicle-

like structure at different focus settings. The red rectangles in Fig. 3.10C indicate the 

identical area of the sample. It is clear that by changing the focus value, different parts of 

the image go in and out of focus. In fact, all the Pd clusters from the nanocages shown in 

Fig. 3.10C and 3.10D can be sorted into two different focus levels as indicated by the two 

different color circles, which further confirms our structure model since a vesicle wall 

comprised of a single layer of nanocages can be expected to collapse on a flat substrate to 

give a bilayer of nanocages. And to our knowledge, this is the first time people can reveal 

the true “face” of the blackberry-type structure. 

 

Figure 3.9 A cartoon illustrates the self-assembly process of M12L24 nanocages in DMSO 

solutions (blue dots are NO3
-
 counter-ions). 
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Figure 3.10 TEM and STEM images of collapsed vesicle-like structures and individual 

nanocages dispersed on a carbon support film. (A), Low magnification BF images; (B) 

STEM-HAADF image of one typical collapsed vesicle-like structure which is surrounded 

by an atmosphere of individual nanocages. STEM-HAADF images obtained from a 

broken edge of a vesicle-like structure at two different focus settings, with (C) focussed 

on the bottom layer, and (D) focussed on the top layer. For comparative purposes the red 

rectangles in the images indicate the exact same area of the sample. The green circles 

highlight the Pd clusters in the bottom layer, while the yellow ones indicate the clusters in 

the top layer. The blue rectangle indicates the broken edge of the vesicle-like structure 

where the top layer is gone. 
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3.4.4 Effect of counterion concentration on blackberry size 

To examine the counter-ion effect on the self-assembly of the nanocages, extra 

Pd(NO3)2 solutions were introduced to a couple of freshly prepared nanocage solutions to 

give the final molar ratios of nanocage/NO3
-
 as 1/29 and 1/36. When a different amount 

of additional NO3
-
 counter-ions was introduced, initially, the individual nanocage size 

didn‟t show any obvious difference based upon DOSY results. As illustrated in Fig. 3.6D, 

when no additional NO3
-
 is present in the solution (i.e., no additional counter-anions, the 

molar ratio of nanocage/NO3
-
 is 1/24), the increase of the scattered light intensity with 

time is much slower as compared with the other two solutions, and a significant lag 

period (~30 days) exists before the scattered intensity starts to significantly increase. 

Furthermore, the kinetic curves for all three samples are sigmoidal, indicating a 

nucleation step followed by a rapid self-association process. As the concentration of NO3
- 

ions increases, the lag period for the self-assembly process to initiate becomes much 

shorter. Such types of kinetic curves are readily seen in many viral capsid formation 

processes and also some polyoxometalates solutions.
7,9

 These observations, taken 

together with the fact that larger self-assembled structures are formed at higher NO3
-
 

concentrations (Fig.3.6B and 3.6C), indicate that the additional counter-anions (NO3
-
) 

play an important role in the self-assembly process of nanocages, most likely by lowering 

the activation energy barrier between individual nanocage macrocations and the self-

assembled structures. More importantly, when extra NO3
-
 counter-ions are added into 

nanocage solutions, the proton signal decays much faster (Fig. 3.8C) and the total 

intensity loss is also more significant (this value increases to 50.8% and 62.6% 
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respectively when the nanocage/NO3
-
 ratios are 1/29 and 1/36), indicating that the 

presence of additional NO3
-
 counter-ions favors the formation of assemblies. 

3.4.5 Effect of solvent polarity on blackberry size 

As noted above, when additional NO3
-
 counter-ions are present in solution, i.e. the 

ionic strength of the solvent increases, significantly more nanocages will self-assemble 

into vesicle-like structures and the overall size of the vesicle-like structures will also 

increase. Moreover, when a less polar solvent such as acetonitrile was introduced into the 

freshly prepared nanocage solutions (the CH3CN content varies from 20 - 80 vol%), we 

noticed that the self-assembly process of the nanocages accelerated. And when the self-

assembly approached to equilibrium, we found that the size of the vesicle-like structures 

displays a linear relationship with the inverse dielectric constant of the solvent, 

suggesting that the their size could be determined by their renormalized charge density, 

as shown in Fig. 3.11.
10

 These results all indicate that the counter-ions play an important 

role in this interesting self-assembly process, which is analogous to the case for POM 

macroanions. The effective surface charge density of the macroanions is significantly 

lowered due to the counter-ion association, which in turn reduces the repulsion force 

between two macroanions. In the cationic M12L24 solution, we believe that counter-ion 

mediated attraction is the major driving force for the self-assembly. Since each nanocage 

contains a large portion of aromatic organic ligands, hydrophobic interactions and/or π-π 

stacking interactions of the organic-ligand entities may also provide additional 

stabilization to the vesicle-like blackberry structure once it forms. Comparing with purely 

hydrophilic POM clusters which have similar surface charge density to the M12L24 
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nanocages, the blackberries formed by the POM clusters have an average, roughly 

estimated interparticle distance of ~ 1.0 nm, but the vesicle-like structures formed by 

M12L24 nanocages show a smaller interparticle distance (~ 0.7 nm), indicating an 

additional contribution from other attractive forces, most likely from hydrophobic 

interactions. A possible scenario is that the existence of the hydrophobic interaction leads 

to some very close contacts between the nanocages, which shorten the average inter-cage 

distance obtained from SLS measurements. Such a distance still allows the counter-ions 

to get involved in the assembly process. 

 

 

Figure 3.11 The average Rh of the vesicle-like structures in M12L24 nanocage DMSO 

solutions containing different volumes (40 - 80 vol%) of CH3CN is plotted against the 

inverse dielectric constant (εr) of the solvent. 
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3.4.6 Similarity between blackberries and viral capsids 

The co-existence of the electrostatic interaction and hydrophobic interaction makes the 

self-assembly process of the nanocages remarkably similar that of to some biological 

processes, such as viral capsid formation. Similar to the viral capsids, the vesicle-like 

structures self-assembled from nanocages are also mono-layer spheres with individual 

nanocages evenly distributed in the wall of the vesicle-like structures. It has also been 

noticed that the viral capsid formation process can be accelerated under high salt 

concentration. In the case of nanocages, the presence of additional salts will also speed up 

the self-assembly process and induce the formation of larger vesicle-like structures. 

However, for single nanocages to self-assemble into blackberry structures, it normally 

requires days or even months to achieve equilibrium; in contrast, for viral capsid 

formation, the time frame for formation is of the order of hours or several days. A 

possible reason for this time-scale difference could be due to the specific interaction sites 

and geometrical restrictions of the viral capsid dimers, which are missing for our 

cuboctahedral nanocages. In other words, the degree of freedom of individual nanocages 

on the vesicle-like structure surface is larger than that for protein dimers. The different 

surface charge density of nanocages and protein dimers may also be an important factor. 

In addition, the viral capsid is a dynamic structure in the sense that its size can vary 

reversibly in response to different environmental stimulus (i.e. pH, ionic strength, 

temperature) by tuning the dimer-dimer distance and the capsid protein structure.
11-14

 

This breathing or swelling mode is quite important in the life cycle of a virus, not only for 

maintaining the structural integrity of the virus but also for influencing the virus-host 
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interaction and the release of the packaged nucleic acid. In the current case, the vesicle-

like structures formed by nanocages can also “sense” the change of surrounding 

conditions (i.e. ionic strength and solvent polarity) and subsequently change their size. 

These interesting properties of the vesicle-like structures formed by nanocages suggest 

that a “charge effect” plays an important role in the macro-ion self-assembly process as 

well as in viral capsids formation and stability. 
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3.5 Conclusions 

In summary, we demonstrate for the first time that cationic metal-organic nanocages 

can self-assemble into unique supramolecular blackberry type structures in solution. The 

vesicle size can be accurately adjusted by varying the solution polarity and/or counterion 

concentration. The counter-ion mediated interactions between nanocages are likely the 

major driving force for the assembly, while hydrophobic interactions and/or π-π stacking 

interactions of the organic-ligand entities may also contribute to the supramolecular 

structure. This vesicular structure indicates the self-assembly process is a universal 

phenomenon for macroions in dilute solution: they also tend to strongly attract with each 

other and form conserved, stable supramolecular structures with the help of counterions. 

More importantly, the self-assembly process of nanocages shares some remarkable 

similarities with viral capsid formation. Indeed it may be feasible to use them as a model 

system to mimic viral capsids, possibly leading to a more fundamental understanding of 

protein-protein interactions. Also, the self-assembled nanocages can provide blackberry 

structures a wide range of organic functionalities that are impossible to reach with purely 

inorganic systems, which may open the door to new types of biomembranes, 

hierarchically structured delivery systems, nanocontainers, nanoreactors, sensors, and 

nanocatalysts.  
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Chapter 4: Self-assembly of Functionalized Macroions 

in Solution 

4.1 Introduction 

In this chapter, a novel group of functionalized macroions: inorganic-organic hybrid 

macroions, i.e. chemically grafting organic ligands to hydrophilic POMs will be 

discussed. Such inorganic-organic molecular hybrids are expected to render amphiphilic 

properties to the POMs and consequently improve their applications by expanding their 

compatibility in organic media, a challenging but also highly rewarding strategy. 

Furthermore, these organic ligands can also be applied to adjust some important features 

of POMs, including electronic and luminescent properties. Exploring the amphiphilic 

nature of such hybrids and understanding their self-assembly behaviour in solution and at 

interface would be important initial steps for scientists. 

 Amphiphilic molecules which are ubiquitous in nature normally combine hydrophilic 

and hydrophobic components together into one structure. Such arrangement gives them 

the ability to interact with two different phases and self-organize into highly ordered 

structures. We are interested in, from colloidal chemists’ point of view, exploring the 

amphiphilic nature of the hybrid POMs and their nano-scaled assemblies.  
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4.2 Synthesis of amphiphilic hybrid POMs. 

The majority of inorganic-organic hybrid POMs can be classified into two groups, the 

hybrids with weak interactions (e.g. electrostatic interactions, hydrogen bonding, or van 

der Waals interactions etc.) and the hybrids with strong interactions (e.g. covalent bonds) 

between the inorganic and organic components.
1
 In this chapter, we will mostly focus on 

the second scenario.  

4.2.1 Amphiphilic hybrid POMs with non-covalent bonds 

For the first group, hydrophilic POM macroions interact with organic cations or 

cationic surfactants mainly through electrostatic interactions to construct inorganic-

organic amphiphilic hybrids. One example is the surfactant encapsulated POM clusters 

(SECs).
2
 These clusters normally consist of a core-shell structure having hydrophilic 

POMs in the centre surrounded by hydrophobic functional groups.
3-6

  The surface 

properties of POMs may still be retained according to a recent study of Li
+
 uptake and 

release process from SECs.
7
 Similar synthetic approach can be extended to fabricate 

POM/polymer hybrids.
8,9

 Mizuno’s group has reported a group of organic 

macrocations/POM ionic crystals.
10-12

 Owing to the hydrophilic and hydrophobic 

channels inside these ionic crystals, they demonstrated exceptional adsorption and 

catalytic properties.  Cronin et al. showed that some protonated bulky organic amines can 

not only serve as counter-cations but also influence the final POM structure by limiting 

the reorganization rate of different POM isomers in solution.
13

 More details regarding 

these hybrids formed by non-chemical bonds can be found in corresponding early 

reviews.
14,15
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4.2.2 Amphiphilic POMs with covalent bonds 

The covalently modified amphiphilic hybrid POMs are attractive because: 1. the 

terminal and bridging oxygen atoms are relatively reactive and can be replaced by other 

atoms or form direct M-O-R bonds; 2. some POM clusters possess multiple sites 

available for functionalization, which can be done by linking one or more hydrophobic 

organic functional groups to one POM; 3. the amphiphilic nature of these hybrids extends 

the functionality of POM clusters in organic media; 4. amphiphilic hybrid POMs can 

probably be used as multifunctional oxidation or acidification catalysts with good 

selective recognition of substrates.  Although there are many different synthetic pathways 

to covalently link organic functional groups with POMs, we will only focus on several 

facile preparation methods (some commonly used synthetic strategies are summarized in 

Fig. 4.1). More details regarding the synthesis of hybrid POMs can be found in another 

well-written review.
1
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Figure 4.1 Several commonly applied synthetic strategies to covalently link organic 

groups to the POM units.  

4.2.2.1 Organoimido derivatives of POMs    

Since Zubieta’s group reported the first example,
16

 the organoimido derivatives of 

POM have been extensively investigated and a number of organoimido derivatives of the 

Lindqvist hexamolybdate ion, [Mo6O19]
2-

, have been reported.
17

  The hexamolybdate ion 

[Mo6O19]
2-

 is a chemical robust cluster with good thermal stability. The terminal oxygen 

atoms are reactive enough to be directly replaced by various nitrogenous species, for 

instance, diazenido, diazoalkyl, and imido groups. The six terminal oxo groups and some 

bridging –oxo groups in the hexamolybdate cluster can be partially or completely 

substituted with organoimido ligands, as shown in Fig. 4.2. Recently, a large number of 

monosubstituted, disubstituted and polysubstituted organoimido derivatives of 
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hexamolybdate have been synthesized and structurally characterized. Also, the synthesis 

of such clusters can be dramatically improved in the presence of 

dicyclohexylcarbodiimide (DCC). Since the π electrons in the organic component may 

extend their conjugation to the inorganic framework and dramatically modify the 

electronic structure and redox properties of the corresponding POMs, exciting synergistic 

effects due to the close interaction of delocalized organic p-π orbits with the POM 

cluster’s d-π orbits are expected for the POM organoimido derivatives with aromatic 

functional groups. The multi-stage redox properties of these POMs and the possibility of 

generating mixed-valence electronic structures make them attractive building blocks for 

the development and design of new electrical and magnetic nano-scale materials.  

4.2.2.2 Tris-Anderson hybrid POMs    

Another strategy to covalently modify POMs is through the use of a “tris” 

(tris(hydroxymethyl)aminomethane) linker with three pendant hydroxyl groups. It is an 

one-pot reaction of [α-Mo8O26]
4-

 precursor, M(acac)3 (M = Mn
III

, Fe
III

) or M(OAc)2 (M = 

Zn
II
, Ni

II
) and tris derivatives in acetonitrile under refluxing conditions. The trisalkoxo 

ligand with a secondary functional group can be further modified through an imination or 

amidation reaction. As the result, a variety of tripods that allow further functionalization 

through imine and peptide bonds are generated, as shown in Fig. 4.3.
18

 Only recently, the 

unsymmetrical tris-Anderson hybrid POMs with two different functional groups attached 

to the same central POM was achieved by Cronin’s group.
19,20

 Not only limited to the 

Anderson POMs, amphiphilic hybrid Lindqvist and Dawson POMs capped with tris 

functional groups have also been synthesized. Zubieta et al. synthesized a series of hybrid 

polyoxovanadate [V6O13Hx{(OCH2)3CR}2]
n-

 (x,n = 0,2; 2,0; 4,2; 6,2; R = NO2, CH2OH, 
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CH3) with trisalkoxo µ-bridging tripodal ligands.
21

 Hill and co-workers developed a way 

to functionalize Dawson type POMs with tris ligand.
22

 These state-of-art synthetic tools 

could provide numerous hybrid POMs with great potential as multi-functional materials.  

 

Figure 4.2 Covalently modified Lindqvist type POMs through the formation of 

organoimido bond at terminal and/or bridging oxygen atoms. (a) Mono-substituted, (b) 

di-substituted and (c) hexa-substituted Lindqvist POMs through terminal oxygen. (d) 

Covalent modification of Lindqvist POMs through bridging oxygen. (Copyright 1992, 

2000 American Chemical Society. 2008 John Wiley and sons)  
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Figure 4.3 The formation of Tris-Anderson hybrid POMs with different organic 

functional groups. (Copyright 2010 the Royal Society of Chemistry)  

4.2.2.3 POM-modified polymers    

In those hybrids, the POM clusters could serve as functional groups on side-chains or 

directly get involved in main polymer chains. The first covalently bonded POM–polymer 

hybrid was reported by Judeinstein in which a lacunary Keggin cluster was linked to a 

polystyrene or polymethacrylate backbone through the formation of Si-O bonds.
23

 Later, 

Maatta et al. reported a polymer–POM hybrid synthesized via free radical-

copolymerization. Peng and co-workers have recently incorporated hexamolybdate 

clusters into poly(phenylene ethynylene) as side-chain pendants through the Pd-catalyzed 

coupling reactions.
24

 Fluorescence studies demonstrated that polymers with conjugated 

POMs exhibited considerably higher fluorescence quenching effect than those without 

conjugated POMs, indicating that the photo-induced electron transfer is more effective 

through conjugated bridges. Using the same approach, main-chain-hexamolybdate-
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containing hybrid polymers were also achieved by this group.  

 

4.3 POMs based supramolecular Assemblies 

4.3.1 One dimensional (1D) assemblies 

1D nanostructures with low dimensionality and high aspect ratio possess unique 

optical and photoelectronic properties. These materials can be incorporated in future 

electronic and photonic devices such as photodetectors, light emitting diodes (LEDs), and 

field effect transistors (FET). 

One strategy to construct 1D supramolecular assembly takes advantage of self-

assembly through weak interactions (hydrogen bonding, van der Waals interactions, 

hydrophobic interactions, and π-π stacking interactions). A typical example is the 1D 

nanofibrils self-organized at the solvent-air interface, which is reported by Cronin’s 

group (Fig. 4.4).
20

 Three different Anderson POM based hybrids can self-assemble into 

single-layered, long nanofibrils with the length of several microns and they are stacked 

together through multiple weak interactions.  
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Figure 4.4 Self-assembled monolayer of amphiphilic hybrid Anderson POMs on Si-OH. 

(a) and (b) SFM images; (c) a cartoon showing the proposed hierarchical arrangement of 

hybrid POMs in the nanofibrils through multiply weak interactions. (Copyright 2010 

American Chemical Society) 

4.3.2 Thin films formed by amphiphilic hybrid POMs 

Thin films are important for photoluminescent sensors, electrochromic devices and 

catalysis. However, POMs alone lack the ability to form stable films; therefore a special 

film-forming matrix such as surfactants or polymers is needed. Chambers and co-workers 

reported the synthesis of the first bis(alkyl) substituted, amphiphilic, asymmetrical POM 

species, a bis(dodecyl) derivative {[CH3(CH2)3]4N}4{[CH3(CH2)11Si]2OSiW11O39}. It 

reversibly forms stable Langmuir-Blodgett (LB) monolayer at the air–water interface.
25

 

The stability of the LB film depended largely on the organosilyl groups rather than the 

bulky counter-cations of tetrabutylammonium (TBA
+
). Our recent studies on a group of 
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novel POM-(organic linker)-POM dumbbell type amphiphilic hybrids also show the 

formation of LB films at the air-water interface with TBA
+
 as counter-cations.

26
 These 

nano-dumbbells are hydrophilic on both ends, and the middle linker part is hydrophobic, 

as shown in Fig. 4.5. The air/water interfacial behaviors, obtained from the π-A 

isotherms, for hybrids with linear alkyl chain linkers are relatively similar. However, 

hybrids with bipyridine and ether linkers present a different air/water behavior. Liquid 

expanded and liquid condensed phases are clearly located and connected through a 

plateau. We believe that the hydrophobicity and composition of the organic linkers play 

dominant roles. 

Self-assembled monolayers (SAMs) represent an attractive approach to anchor hybrid 

POMs to the surface, which exhibits a high degree of structural order, and can be 

patterned easily. Therefore, it allows a better control of the assembled structures. 

Cronin’s group reported an interesting self-assembled monolayer of hybrid POMs on 

gold surface which shows cell adhesion properties.
27

 As shown in Fig. 4.6, a monolayer 

of 16-mercaptohexadecanoic acid (MHA) moieties was stamped on gold surface, which 

was further covalently coupled with Mn-Anderson POMs via N3-(dimethylaminopropyl)-

N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS). Finally, 

different functional groups, such as pyrene, were grafted onto the POMs. The human 

fibroblasts have high affinity to the pyrene platform, and the central POMs are essential 

to the cell adhesion performance. Similar strategies can be found in Errington’s and 

Tour’s papers.
28,29
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Figure 4.5 Monolayer formation for the dumbbell-shaped hybrid surfactants at the 

water/vapor interface: (a) Liquid expansion (LE)/G phase, (b) LE phase, and (c) Liquid 

condense (LC) phase. TBA
+
 counter-cations are not shown.  (Copyright 2011 American 

Chemical Society) 

 

Figure 4.6 The structures of self-assembled monolayers of Mn-Anderson POM/pyrene 

complexes on gold surface with selective cell adhesion properties. Self-assembled 

monolayers contain only POMs or pyrene has no cell adhesion properties. (Copyright 

2009 American Chemical Society) 
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4.3.3 Supramolecular assemblies formed in solution 

In solution the POM-organic hybrids can be treated as ionic surfactants with large 

polar head groups (the POMs). Amphiphilic surfactants can interact with two immiscible 

solvent phases and lower the interfacial tension, and self-organized into supramolecular 

architectures when their concentration is above the critical association concentration 

(CAC). Sulfate, sulfonate, phosphate, carboxylate and ammonium are common head 

groups for regular ionic surfactants, which are much smaller than the POMs. 

Consequently, POM-based surfactants could greatly change the surfactant packing 

parameter Ns, which is widely applied to explain and predict the self-assembly behavior 

of a surfactant through the relationship Ns = Vc/(Lc A0) ≈ Ac/A0 , in which Vc is the volume 

of the hydrocarbon tail, Lc is the length of the hydrocarbon tail, and A0 is the area per 

head group.
30

 When Ns is small (< 0.37), spherical micelles are expected to form in 

solution; when Ns is close to 0.5, cylinder micelles become the favourable assemblies; 

when Ns approaches 1, lamella phase or vesicles should be observed. If Ns is larger than 

1, reverse vesicles or micelles are two possible structures (as illustrated in Fig. 4.7). 

Therefore, fundamentally it is important to study how the giant POM affects the 

surfactant packing parameter. Moreover, by tethering different organic functional groups 

to the hydrocarbon tails, the POM-based hybrid surfactants could show better bio-

compatibility, better catalytic performance and stronger sorption ability in different 

systems. 
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Figure 4.7 Illustration of how different geometries of surfactant molecules will lead to 

various supramolecular assemblies.  

 

4.4 Solution behaviors of polyoxovanadate-pyrene hybrid macroions 

4.4.1 Methods 

4.4.1.1 X-ray crystallography.  

X-ray quality crystals of [V6O13{(OCH2)CNH3}]2.4DMSO(NH3V6), [(n-

C4H9)4N]2[V6O13{(OCH2)3CNH2}2] (TBANH2V6), and (TBA
+
)22 were coated with 

Paratone N oil and mounted on a small fiber loop for index and intensity data collection. 

The X-ray diffraction data were collected under a nitrogen stream at 173 K on a Bruker 

D8 SMART APEX CCD single-crystal diffractometer with graphite monochromated Mo 

KR (λ = 0.71073 Å) radiation. Data collection, indexing, and initial cell refinements were 

processed using the SMART43 software while frame integration and final cell 
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refinements were carried out using the SAINT44 software. The final cell parameters were 

determined from the least-squares refinement of total reflections. The structures were 

determined through direct methods (SHELXS97) and difference Fourier maps 

(SHELXL97). The Cambridge Crystallographic Data Centre deposition number for 

NH3V6, TBANH2V6, and (TBA+)22 are CCDC 821763, 821764, and 821765, 

respectively.  

4.4.1.2 Cation exchange 

Counterion replacement of TBA
+
 with H

+
 was achieved by using a cation-exchange 

resin column. For a typical experiment, 5 mg of hybrid cluster 1 or 2 was dissolved in 2 

mL of acetonitrile. This solution was then applied to a pre-packed, cation-exchange resin 

column (Amberjet 1200 hydrogen form purchased from Sigma-Aldrich) rinsed with D.I. 

water and acetonitrile. An additional 20 ~ 50 mL of acetonitrile was used to elute the 

column, and the yellow fraction was collected. The post elution was further washed with 

5mL of diethyl ether to remove organic impurities. The final solution was transferred into 

a glass culture plate and kept in the dark for several days to fully evaporate the solvent. 

Yellow colored fine powders were collected and could be easily dissolved in water or 

DMSO for further study.  

 

4.4.1.3 Laser light scattering 

Both dynamic light scattering (DLS) and static light scatting (SLS) techniques were 

used to characterize the self-assembly of hybrids in solution. A Brookhaven Instruments 

Inc. light scattering spectrometer, equipped with a diode-pumped solid-state (DPSS) laser 

operating at 532 nm and a BI-9000AT multichannel digital correlator was used for all 



91 
 

experiments. The SLS was performed over a broad range of scattering angles from 30 

degree to 130 degree, with a 2 degree interval. The radius of gyration (Rg) and the 

weight-average molecular mass (Mw) of the large assemblies were calculated using the 

Rayleigh-Gans-Debye equation as shown in chapter 3 For DLS measurements, the 

intensity-intensity time correlation functions were analyzed by the constrained 

regularized (CONTIN) method in order to ascertain the average hydrodynamic radius (Rh) 

of the large assemblies. The average apparent translational diffusion coefficient, Dapp, 

was determined from the normalized distribution function of the characteristic line width, 

Γ(G). The hydrodynamic radius Rh is converted from D through the Stokes-Einstein 

equation. The particle size distribution in solution can be obtained by plotting ΓG(Γ) 

versus Rh, with ΓiGi(Γi) being proportional to the angular-dependent scattered intensity 

of particle i having an apparent hydrodynamic radius Rh,i. The temperature in the sample 

chamber was controlled to within ± 0.1˚C. More details about SLS and DLS can be found 

in our previous publications. 

4.4.1.4 Transmission electron microscopy (TEM).  

Samples for electron microscopy characterization were prepared by pipeting 5 μL of 

diluted solution onto a carbon-coated TEM grid. The TEM samples were left under 

ambient conditions for several hours until the solvent completely evaporated. Bright-field 

(BF) TEM imaging was performed on a JEOL 2000FX transmission electron microscope 

having an accelerating voltage of 200 kV. 
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4.4.1.5 Zeta (ζ) potential analysis.  

All the ζ potential analysis measurements were performed on a Brookhaven 

Instrument Inc. Zeta PALS Analyzer. The instrument is equipped with a red laser 

operating at 660 nm wavelength and has an accuracy of (2% for filtrated samples. The 

sample chamber was kept at 25 ± 0.1˚C, and all sample solutions were loaded 30 min 

prior to measurements in order to achieve thermal equilibrium with the chamber. Nuclear 

4.4.1.6 Magnetic resonance spectroscopy (NMR) 

All 1D and 2D 1H NMR measurements in the liquid state were performed on a Bruker 

Avance 500 spectrometer equipped with a 5 mm triple-axis gradient (TXI) probe. 2D 

nuclear Overhauser enhancement spectroscopy (2D NOESY) spectra were recorded with 

256 t1 increments and 64 scans under the pulse program of noesygpph 19 provided with 

Topspin 1.3. The relaxation delay D1 varied from 1 to 2 s, and the mixing time D8 

changed from 0.1 to 0.5 s. Baseline correction and noise reduction were performed when 

appropriate. All spectra were taken at room temperature, and FIDs were processed and 

analyzed with the NMR software provided by Bruker. 

4.4.1.7 Fluorescence measurements 

Fluorescence spectra were recorded at room temperature on a Cary Eclipse 

fluorescence spectrophotometer. The excitation wavelength, λexc, used was 335 nm, and 

the spectrum width was from 350 to 700 nm. An emission filter of 360-1100 nm was 

used. Each spectrum was obtained by averaging three scans and corrected for scatter of 

the equivalent blank sample. In calculations of the excimer-to-monomer intensity ratio, 

the monomer (IM) and the excimer (IE) were determined by taking the integrals under 
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the fluorescence peaks from 350 to 430 nm for the pyrene monomer and from 430 to 700 

nm for the pyrene excimer.  

 

4.4.2 Results and discussion 

Applying fluorescent probes to investigate biochemical microenvironments is a 

powerful technique that can often provide unique and critical information. Pyrene, a 

highly symmetrical polyaromatic hydrocarbon fluorophore possessing restricted modes of 

motion, can exhibit fine structure in its absorbance and fluorescence spectra at room 

temperature.
31

 One important application of the pyrene fluorescence stems from its ability 

to probe the polarity of the local microenvironment, either in a hydrophobic or 

hydrophilic media, from the change of specific emission peaks in the spectrum.
32,33

 

Therefore, amphiphilic hybrid POM clusters with pendent pyrene fluorescent probes are 

of potential interest for the construction of smart supramolecular assemblies via 

macroion- counterion interaction. 

It is an interesting question how the hybrid surfactants arrange themselves to form 

closely packed regions in the supramolecular structures. These hybrids differ from 

conventional surfactants in that they have large polar head groups making close packing 

of hydrophobic domains very difficult due to the spatial obstruction. We proposed, but 

without solid evidence, that the counterions might be important by perturbing the 

solvophobic layer formation.
34

 The newly synthesized hybrid clusters with pyrene as 

fluorescent probes offer a unique opportunity to study this phenomenon.  
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Figure 4.8 The molecular structure of two novel polyoxometalates hybrid cluster anions 

1 (A) and 2 (B) shown in combined ball-and-stick representation. Atoms are represented 

by: V green, N blue, O red, C black, H white. 

 

4.4.2.1 Characterization of the amphiphilic properties of hybrids 1 and 2 in polar 

solvents.  

As shown in Fig. 4.8, two novel POM based inorganic-organic hybrids are constructed 

by incorporating one or two pyrene functional groups onto one Lindqvist-type 

polyoxovanadate [V6O13{(OCH2)3CNH2}]
2-

. The linkage of flexible, hydrophobic 

organic tails to the inorganic POM head groups renders these new species amphiphilic. 

Hybrids (TBA
+
)21 and (TBA

+
)22 are insoluble in water but can be readily dissolved in 

dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), and other polar organic 

solvents. For 0.1 mg/mL of hybrid (TBA
+
)21 in DMSO, a very low scattered intensity (~ 

45 kcps) was collected from SLS measurements (for comparison, the scattered intensity 
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of pure solvent is ~ 40 kcps), indicating that the hybrid molecules prefer to remain as 

monomers in solution rather than large assemblies. However, when additional water was 

introduced to make a solvent containing up to 70 vol% water, the total scattered intensity 

starts to increase significantly, and supramolecular structures are observed under DLS, as 

shown in Fig. 4.9. The CONTIN analysis of the DLS measurement on this solution 

reveals a peak corresponding to assemblies with a very narrow size distribution and an 

average hydrodynamic radius (Rh) of 50 nm. The Rh value does not show angular 

dependence that suggests that the supramolecular structures are likely spherical. The 

radius of gyration (Rg) of the assemblies measured by SLS is 48 nm. The relation of Rh,0 

≈ Rg strongly suggests that the supramolecular structures have a hollow spherical 

vesicular structure, which is also clearly confirmed by the TEM studies (Fig. 4.9C). The 

TEM image showed in Fig. 4.9D reveals several important aspects. First, the different 

contrast shown inside (lighter color) and around (darker color) the vesicular structures 

indicate they are hollow, which is quite similar to the vesicles formed by phospholipids.
35

 

Second, these vesicles collapsed on the carbon film due to the evaporation of internal 

solvent under high vacuum condition, indicating a soft and flexible nature of the vesicles’ 

membrane. In order to form such vesicular structures in the mixed solvents as shown here, 

it is reasonable to assume that the hybrids use their polar POM clusters to face the 

hydrophilic solvent while their organic tails form a hydrophobic domain. The addition of 

water induces dissociation of the TBA
+
 counterions from the POM cluster and increases 

the overall negative charge on the polar head groups, which in turn changes the 

Amphiphilicity of the hybrid molecules and leads to the vesicle formation. The above 

discussions focus on one set of condition (0.1 mg/mL hybrid 1 in 80:20 v/v 
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water/DMSO); however, similar vesicular structures are also observed in different 

solvents, that is, in water/ acetonitrile, or in water/methanol. When the original TBA
+
 

counterions of 1 are replaced by tetraethylammonium (TEA
+
) or tetramethylammonium 

(TMA
+
), similar vesicular structures were observed. However, compared with the case of 

TBA
+
, the total scattered light intensity becomes lower, and more water is needed to 

trigger the vesicle formation. The Rh of the large vesicular structures also changes from 

50 to 30 nm and 23 nm in the same solvent system (80:20 v/v H2O/DMSO) (Fig. 4.9A 

and B), respectively. The decrease of the vesicle size should be attributed to the shorter 

alkyl chains of the counterions, which decreases the size of the hydrophobic domain and 

consequently increases the curvature of the vesicles. These results indicate that the 

counterions play an important role in regulating the amphiphilic nature of the hybrid 

clusters and the electrostatic interactions between them. Hybrid (TBA
+
)22 in mixed 

solvents (H2O/DMSO, H2O/ acetonitrile, etc.) shows similar self-assembly behavior as 

hybrid (TBA
+
)21. However, the vesicular structures formed by hybrid 2 are smaller than 

those formed by hybrid 1 under the same conditions. This is because an additional 

bending energy is needed to properly fold the two hydrophobic tails of hybrid 2 into the 

vesicular structure and therefore leads to a higher curvature or smaller vesicles.  
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Figure 4.9 (A) The total scattered intensity recorded by SLS for hybrid cluster 1 with 

different counterions in H2O/DMSO mixed solvents. (B) CONTIN plot of the size 

distribution of vesicular structures formed by hybrid cluster 1 with different counterions 

in 80:20 v/v H2O/DMSO mixed solvents. (C) A TEM image of the vesicular structure 

formed in 80:20 v/v H2O/DMSO mixed solvents (bar = 0.2 μm). (D) An enlarged region 

of (C) in order to show the structural details of the hollow spherical vesicular structures. 
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4.4.2.2 Counterions affect the packing of hybrid clusters in vesicles.  

Fluorescent probes are highly useful in monitoring polarity changes of 

microenvironments in macromolecules and membranes. The general dependence of probe 

fluorescence on polarity has been attributed to the dipole-dipole interaction between the 

singlet excited state of the fluorophore and the solvent molecules. Specifically, the fine 

structural pattern in the fluorescence of the pyrene monomers is found to be independent 

of excitation conditions or collisional quenching but highly dependent on solvent polarity. 

Therefore, any changes in the pyrene fluorescence will reveal interactions between 

counterions and the hybrid clusters. As shown in Fig. 4.10, when counterions are TBA
+
, 

TEA
+
, or TMA

+
, the fluorescence intensity primarily comes from the pyrene monomer, 

and no excimer peak is observed. Under these conditions, vesicular structures have 

already formed in the solution. Therefore, the fluorescence spectra indicate that the 

pyrene groups on the vesicle surface are not spatially close enough to form excimers. 

However, the fluorescence spectra are significantly different when H
+
 counterions are 

present in the solution. The emission peaks of the monomer become less well-defined, 

and the peak of the excimer centered at 480 nm becomes the dominant one for both H21 

and H22. Second, it has been shown in the literature that the polarity of the 

microenvironment around the pyrene group is reflected by the ratio of the emission peak 

at 375 nm to the peak at 395 nm: the lower the ratio, the less polar the pyrene 

environment. Fig. 4.10B clearly shows that the pyrene groups are more solvated when 

large counterions (for example TBA
+
) are present in the assemblies. In contrast, when H

+
 

ions are the counterions, the pyrene groups stay closer to each other. This data confirms 
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that counterions with long alkyl chains can prevent the close packing of the hybrid 

clusters in the vesicular structures. 

More direct evidence comes from the 2D NOESY NMR measurements. In general, 

when a saturated or inverted proton undergoes dipolar cross-relaxation, another spatially 

close proton may experience an intensity enhancement; a common phenomenon termed 

the nuclear Overhauser effect (NOE).
36

 The NOE is unique among the NMR phenomena 

because it does not rely on through-bond J couplings but depends only on the spatial 

proximity between protons.
37,38

 In other words, the strength of the NOE can be used to 

estimate how close two protons are. In the current system, there are two possible 

scenarios for TBA interaction with the vesicular structure, either strongly bound to the 

vesicles or as free counterions in solution. Since no covalent chemical bonds are present 

between TBA
+
 cations and the hybrid cluster, it is quite possible that a dynamic exchange 

and equilibrium exists between bound and free cations. Free TBA
+
 cations show very 

weak to no NOE, while the bound TBAs are explicitly revealed through strong, negative 

NOE cross peaks. Moreover, the strong, negative NOE from bound TBA
+
 cations will 

outweigh that from free cations and dominate the NOESY spectrum, even when the free 

TBAs are in considerable excess. Fig. 4.12 shows that in a 0.25 mg/mL (TBA
+
)21 

solution in pure DMSO-d6, the TBA protons exhibit positive NOE cross peaks between 

adjacent protons indicating that the TBA
+
 counterions exist as free ions. 
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Figure 4.10 (A) Fluorescence spectra of hybrid clusters 1 and 2 with different 

counterions.  (For the TBA, TEA and TMA salts, the solvent is 80:20 v/v H2O:DMSO; 

for the H salt, the solvent is H2O). (B) Plot of the pyrene monomer fluorescence peak I 

(375nm)/I(395nm) versus the counterion size for hybrid clusters 1 and 2 with different 

counterions.  

 

Figure 4.11 An illustration of possible vesicular structures formed by hybrid clusters, 2, 

in polar solvents, and how the TBA
+
 counterions may be arranged in the packing of 

individual clusters. The hexagons, parallelograms and four-legged stars represent the 

POM, pyrene, and TBA
+
 cations, respectively.  
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Figure 4.12 (A) 2D NOESY spectrum of TBAI in DMSO-d6. (B) 2D NOESY spectrum 

of (TBA
+
)21 in DMSO-d6. (C) An enlarged region of B showing the TBA cross peaks. (D) 

An enlarged region of E showing the TBA-pyrene cross peaks. (E) 2D NOESY spectrum 

of (TBA
+
)21 in 90:10 v/v D2O:DMSO-d6 mixed solvent. (F) An enlarged region of E 

show the TBA cross peaks. (Positive NOE peaks are in dark green color while negative 

NOE peaks are in light green color.) 
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The NOE cross peak pattern is identical to that of the control compound TBAI 

(tetrabutylammonium iodide). This is because there is no vesicle formation in solution. 

The TBA
+
 counterions interact with the {V6O19}

2-
 POM portion through electrostatic 

interactions. However, when vesicular structures form in 90:10 v/v D2O/DMSO-d6 

solution, the NOE spectra for (TBA
+
)21 dramatically changes. First, the previously 

positive NOE cross peaks become negative, indicating strong binding between the TBA
+
 

cations and the vesicles. More interestingly, a set of new negative NOE cross peaks 

appears between cations and the fluorescent pyrene groups on 1 (Fig. 4.12D), which do 

not appear in Fig. 4.12B. This clearly indicates that the amphiphilic TBA
+
 cations interact 

with the hydrophobic domains in the vesicles. It is almost certain that this interaction 

interrupts the formation of pyrene excimers that in turn greatly affects the fluorescence 

pattern of the pyrene (Fig. 4.11). Previously, we noticed that the dumbbell shaped POM 

hybrids could form vesicles in water/acetone mixed solvents. The interesting question is 

how these hybrids could form closely packed hydrophobic layers in their vesicles. The 

giant POM head groups make the close packing of the alkyl chains very difficult due to 

spatial hindrance. We speculate that the alkyl chains of the TBA
+
 cations interact with the 

hydrophobic domains, but there is no direct evidence for this. From the 2D NOESY 

NMR study, we can confirm that the amphiphilic TBA
+
 cations are distributed partly into 

the hydrophobic regions of the vesicular structures. pH Sensitive Vesicles. When two 

pyrene groups are spatially close to each other (less than 0.5 nm) without any interruption, 

an excimer peak appears. We have shown earlier in the paper that replacement of the 

original TBA
+
 counterions by H

+
 through cation exchange changes the fluorescence 

spectra of the appended pyrene: the peaks due to pyrene excimers become dominant 
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relative to those from pyrene monomers, indicating a much closer packing of the hybrid 

clusters in the vesicular structure. This unique property gives us a great opportunity to 

construct a smart, pH sensitive vesicular structure and to study the effect of pH on the 

assembly and disassembly of vesicular structures. Fig. 4.13 shows that the initial pH for 

an aqueous solution of hybrid cluster 2 (ca. 0.44 mg/mL based on UV absorption 

calibration) after counterion exchange is 3.41 and the dominant fluorescence comes from 

the pyrene excimers. The molar ratio of hybrid 2 divided by free H
+
 in solution is 0.87 

based on solution pH, which indicates only a portion of the H
+
 ions are released into 

solution and contribute to the pH, while a large amount of H
+
 counterions are closely 

associated with the hybrids. (If protons are free in solution, the molar ratio should be 0.5). 

When dilute NaOH solution is slowly titrated into the solution of POM hybrid, a gradual 

decrease of the excimer peak along with a continuous increase in the pyrene monomer 

peaks occurs, indicating that the distance between pyrene excimers increases (larger than 

0.5 nm). Because Na
+
 has a weaker affinity for the hybrid macroanions in solution than 

H
+
 does, which leads to less screening of the POM cluster from neighboring groups, the 

drop of proton concentration in solution will increase the repulsion between adjacent 

POM groups in the vesicles. When the solution pH approaches 7, the decrease in the ratio 

of [excimer]/[monomer] peak areas becomes much slower, indicating that the distance 

between hybrid clusters becomes less sensitive to pH due to the limited amount of 

available protons. More interestingly, in the pH range of 1-7, the whole process is 

reversible. In other words, the average pyrene-to-pyrene distance between adjacent 

clusters is reversibly tunable by changing pH. The average vesicle size recorded by DLS 
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at 90°scattering angle also shows pH dependence: the Rh of vesicles decreases with 

increasing pH. Stronger electrostatic repulsion between hybrid clusters will result in a 

high curvature, that is, a smaller vesicle, for the assemblies; this trend shows how 

counterions affect the close packing of hybrid clusters. Meanwhile, the zeta potential of 

the vesicular structures becomes more negative with increasing pH and becomes nearly 

neutral at a low pH, indicating that the net charge on the vesicles increases with 

increasing pH. 
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Figure 4.13 (A) Fluorescence spectra of hybrid clusters (H
+
)22 in water at different pH 

values (the fluorescence intensity has been normalized). (B) Plot of pyrene 

excimer/monomer intensity ratio versus solution pH for hybrid clusters (H
+
)22. (C) 

Change in the vesicular structure size with solution pH for (H
+
)22. (D) Zeta potential of 

the vesicular structure with solution pH for (H
+
)22.  
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4.5 Conclusions 

In summary, two novel POM-based hybrid clusters were synthesized by connecting 

one or two organic pyrene tails with a Lindqvist type polyoxovanadate head cluster 

through trimester capping groups. These two hybrid clusters demonstrate noteworthy 

amphiphilic properties by forming spherical vesicular structures in polar solvents. Four 

different counterions (TBA
+
, TEA

+
, TMA

+
, and H

+
) have been used to study the 

counterion effect on the vesicular structures and their consequent role in the fluorescent 

properties of the pyrene groups on vesicle surface.  

TBA
+
 counterions not only interact with POM polar head groups but also move into 

the hydrophobic regions and interrupt the close packing of pyrene groups. More 

importantly, when TBA
+
 counterions are replaced by protons, a dramatic change of the 

pyrene fluorescence pattern occurs, and the vesicle size, the fluorescence pattern, and the 

effective charge on the vesicles change correspondingly and reversibly with solution pH. 

The construction of pH sensitive vesicular structures could well have application to 

artificial cell studies, nanoreactors, as well as drug and gene delivery systems. 

The exploration on the amphiphilic hybrid POMs and their assemblies is still in its 

infancy. Only a few amphiphilic hybrid POMs have been studied and their assemblies 

show various interesting properties. However, systematic studies of their chemical and 

physical properties are needed for a comprehensive understanding their fascinating 

features. The current achievements and remaining problems have inspired chemists to 

design rational synthetic strategies and synthesize novel amphiphilic hybrid POMs. There 

are several directions in this field deserving more attention and they may rapidly expand 
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during the next decade. For example, amphiphilic hybrid POMs with chiral ligands 

attached may demonstrate interesting self-assembly behaviors and they could find 

important applications for enanotioselective catalysis and separation. The incorporation 

of amino acids or peptides with POMs is expected to create novel hybrid materials that 

combine the biological functionality of biomolecules with good chemical stability of 

POMs. Moreover, surface modification of POMs with dendrimers, cyclodextrins, or 

functional polymers could be synthesized in the near future. Smart supramolecular 

assemblies that can response to different environmental stimuli is another important 

research direction for designing and synthesizing amphiphilic hybrid POMs, which may 

be employed as drug delivery vehicles and magnetic resonance imaging (MRI) agents. 
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Chapter 5: Nucleation and Molecular Recognition in 

Macroionic Solutions 

5.1 Introduction 

In previous chapters, we have shown that macro-anions and macro-cations could self-

assemble into spherical, hollow, single-layered, vesicular blackberry type structures in 

solution when their size is between 2 to 6 nm, and with moderate charge density. To 

better understand this unique phenomenon, it would be helpful to study the 

thermodynamic and kinetic behaviors of macroions during the self-assembly process. 

Therefore, in this chapter, we will examine the nucleation and molecular recognition 

process in macroionic solutions.  

5.2 Materials and methods 

5.2.1 Sample preparation 

Single crystals of {Mo72Fe30}
*
, {Mo72Cr30}

†
, and {U28}

‡
 were synthesized according 

to well-established methods.
1-3

 Solution samples were prepared by dissolving certain 

amount of crystals in water or other specified polar solvents. For {U28}, samples were 

prepared by dissolving crystals in basic solvents. We first prepared the basic solvent of 

MOH (M = Li, Na, K, Cs, TMA (tetramethylammonium), TEA (tetraethylammonium), 

TPA (tetrapropylammonium), and TBA (tetrabutylammonium)) with different 

                                                             
* [Mo72Fe30O252(CH3COO)12{Mo2O7(H2O)}2{H2Mo2O8(H2O)}(H2O)91] ·ca.150H2O) 
† [{Na(H2O)12}⊂{Mo72Cr30O252(CH3COO)19(H2O)94}]·ca.120H2O) 
‡ Cs15[(Ta(O2)4)Cs4K12(UO2(O2)1.5)28]·20H2O) 
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concentrations and then dissolve certain amount of {U28} crystals in the solvent to make 

a final {U28} concentration of 0.5 mg/mL. {U28} was also dissolved in NH4Cl bulk 

solvents in order to study the effect of NH4
+
. All solutions were filtered with Millipore 

0.1 µm membranes to remove any dust particles prior of light scattering measurements.  

5.2.2 DLS and SLS  

Both Dynamic Light Scattering (DLS) and Static Light Scatting (SLS) were used to 

characterize the sample solutions. A Brookhaven Instruments Inc. light scattering 

spectrometer, equipped with a diode-pumped solid-state (DPSS) laser operating at 532 

nm and a BI-9000AT multi-channel digital correlator were used for this purpose.  

The SLS was performed over a broad range of scattering angles from 30° to 130°, with a 2° 

interval. The raw data was analyzed to give the radius of gyration (Rg) and the weight-

average molecular mass (Mw) of the large assemblies, using the Rayleigh-Gans-Debye 

equation: Hc/R90 = 1/Mw+2A2*c, where H is an optical parameter; Mw is the weight-average 

molecular mass of the solutes; A2 is the second virial coefficient and c is the solute 

concentration. The sample solutions examined in this study had very low concentrations; 

therefore, the 2A2*c term can be neglected during calculations. For {Mo72Fe30} or other 

POM solutions, the continuous increase of scattered intensity is mainly due to the increase 

of the number of blackberries while the mass of the blackberries only slightly increases. 

Discrete {Mo72Fe30} macro-anions have only negligible contribution to the total scattered 

intensity. 

For DLS measurements, the intensity-intensity time correlation functions were 

analyzed by the constrained regularized (CONTIN) method in order to ascertain the 

average hydrodynamic radius (Rh) of the large assemblies. Specifically, an average 
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apparent translational diffusion coefficient, Dapp was determined from the normalized 

distribution function of the characteristic line width, Γ(G); and the hydrodynamic radius 

Rh is related to D through the Stokes–Einstein equation:              where kB is 

the Boltzmann constant and η the viscosity of the solvent at temperature T. The particle 

size distribution in solution can be obtained by plotting ΓG (Γ) versus Rh, with ΓiGi (Γi) 

being proportional to the angular-dependent scattered intensity of particle i having an 

apparent hydrodynamic radius Rh,i. The temperature in the sample chamber was 

controlled to within ± 0.1 °C.  

5.2.3 Partial specific volume (ῡ) measurements.  

The partial specific volume of {Mo72Fe30} in water was determined by using DA-210 

Density/Specific gravity meters (KYOTO Electronics) to measure the densities of 

macroanion solutions at different concentrations. As shown in Fig. 5.1, the value of 

{Mo72Fe30} was determined as 0.37004 mL/g.
4
 

 



113 

 

 

Figure 5.1 Change of densities of {Mo72Fe30} solutions with solute concentrations. 

 

5.2.4 Sedimentation velocity (SV) experiments 

SV experiments were performed using a Beckman model XL-A analytic 

ultracentrifuge equipped with a photoelectric absorbance optical detection system. 

Samples (440 μL) and reference solutions (450 μL) were loaded into a conventional 

double-sector quartz cell and mounted in a Beckman An-60 Ti rotor. Experiments were 

carried out at 20 °C and a rotor speed of 30 000 rpm. Data were collected in continuous 

mode at a single wavelength of 450 nm and a step size of 0.005 cm. Multiple scans at 

different time points (∼230 scans within 3 h) were fit to a continuous size distribution 

using the program SEDFIT.
5
 

The theoretical sedimentation coefficients for the monomer and different types of 

oligomers of {Mo72Fe30} can be calculated by using equation: 
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                                                        (46) 

where M is the molecular weight (accounting for the loss of 150 water molecules) of 

{Mo72Fe30} as 15944 g/mol, ῡ is the partial specific volume as 0.37004 mL/g, ρ is the 

density of the solvent as 1.0052 g/mL at 20 °C, NA is Avogadro’s number, and f is the 

frictional coefficient. The Stokes equation can be used to determine the f value for 

smooth, compact spherical particles:  

                                                               (47) 

where f0 is the frictional coefficient of the spherical particles, η is the viscosity of the 

solution as 1.0162 mPa·S, and R0 is the radius of the sphere, which can be expressed as 

follows:  

    
   

    
 
 
  

                                                   (48) 

The s value for a sphere can be obtained by combining eqn. (46) to (48): 

        
 

 
        

         
   

                                               (49) 

 By using Eqn. (49), the sedimentation velocity coefficients for smooth, compact 

spherical particles can be predicted. This ssphere value is the maximum s value that can be 

obtained for a particle with a given molecular weight, because a compact sphere has the 

minimum surface area in contact with the solvent and consequently the particle would 

have a minimum frictional coefficient, f0. For nonspherical particles,  f/f0 > 1.  
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5.3 Identify oligomer states during blackberry formation 

5.3.1 High activation energy barrier of blackberry formation 

Typically, the blackberry formation is a very slow process. For example, it requires 

several months for the blackberry formation process of a 0.5 mg/mL {Mo72Fe30} solution 

to achieve equilibrium at room temperature.
6
 The slowness of the blackberry formation is 

attributed to the high energy barrier for the transition from single macroions to 

blackberries. Time-resolved SLS studies are used to determine the initial “reaction” rates 

in {Mo72Fe30} aqueous solutions at different temperatures. By using the Arrhenius 

equation 

       
  

                                                 (50) 

the activation energy of the oligomer formation can be calculated as ~115 ± 8 kJ/mol, 

which is indeed high.
7
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Figure 5.2 (A) The increment of scattered intensity of two {Mo72Fe30} samples in 0.9 wt% 

NaCl salt solution and salt-free solution. (B) Continuous size distribution c(s) analysis of 

{Mo72Fe30} solution versus sedimentation coefficient, s. Experiments were performed at 

a {Mo72Fe30} concentration of 10 mg/mL in 170 mM NaCl solution at 20 °C. 
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5.3.2 Slow nucleation and fast aggregation 

A close look at the time-resolved SLS studies on {Mo72Fe30} aqueous solutions and 

other POMs solutions reveals that there is a short lag period at the beginning of 

blackberry formation (in minutes or days). In a 10.0 mg/mL {Mo72Fe30} solution with 

NaCl (0.9 wt% or 0.17 mol/L) added, this lag phase extended to about 20 days, as shown 

in Fig. 5.2A. After filtering out the minor precipitates due to the addition of salts, the 

remaining solution is a stable, saturated {Mo72Fe30}/NaCl solution (~ 7 mg/mL) at room 

temperature. The initial scattered intensity from this solution is very low, suggesting that 

almost all the {Mo72Fe30} macroanions exist as discrete ions. However, after a lag period 

of almost 20 days, the scattered intensity jumped up and continued to increase until it is 

finally stabilized after several months, indicating a slow formation of large structures. 

The overall kinetic picture is a sigmoidal shaped curve with a long lag phase. Normally, a 

sigmoidal curve is considered as a typical feature of a two-step process: slow nucleation 

and fast aggregation. In the initial lag period, because of the high activation energy 

barrier between macroions, oligomer nucleus slowly form in the solutions, and once a 

critical value of the rate limiting nucleus has reached, subsequent oligomers or monomers 

are quickly added to the growing assembly structures at a time until it is completed. 

Sedimentation velocity (SV) experiments performed on the 18
th

 day after the sample 

solution was prepared show direct proof of the existence of oligomers in the lag phase. 

As illustrated in Fig. 5.2B, the sedimentation coefficients (s) of sedimentating species and 

their corresponding sedimentation coefficient distributions c(s) show the coexistence of 

two species: s ~ 6.6 S with the dominant abundance (56%) and s ~ 9.5 S (10%). The 

experimental results are fairly close to the theoretical sedimentation coefficients for 
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{Mo72Fe30} monomers (6.9 S), dimers (11.0 S) and timers (14.5 S) by solving the Lamm 

equations. The experimental values are slightly lower than the theoretical ones, possibly 

due to the fact that the dimers are not spherical. Besides the concentration of additional 

salts, the length of the lag period also depends on temperature, the valent state of the 

cations and the anions, as well as the solvent content. 

Combining the above information, we conclude that the formation mechanism of the 

blackberry formation should follow such a process: at the beginning, the monomers 

slowly associate into dimers (or oligomers). This is the rate-determining step. Once 

enough oligomers are available, they quickly assemble into large blackberries. This step 

is fast so that no “small” blackberries are observed during the whole process.  

5.4 Molecular recognition of POMs 

Molecular level recognition is an important factor that influence the self-assembly of 

macroions in solution. It is also a critical regulation mechanism in many biological 

systems.
8
 Even a small change in molecule’s size, shape, or polarity could largely affect 

the final assembled supramolecular structures. Therefore, it is an interesting question we 

want to ask: What would happen if two similar macroions (for instance, POM type 

macro-anions) are mixed together in solution? Will they form two different types of 

blackberries or just one type of blackberries containing the two different macroions? We 

use two POM type macro-anions {Mo72Fe30} and {Mo72Cr30} as model systems whose 

surface structures are identical to test this idea.  

The aqueous solutions of {Mo72Fe30} and {Mo72Cr30} were mixed to determine 

whether they form homogeneous or heterogeneous blackberry structures. At 30 or 40 °C, 
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the self-assembly process takes about several weeks to achieve equilibrium. The resulting 

solutions contain two different large species (indicated as two separated peaks in the size 

distribution plot) are strong evidence that these two POM macro-anions can recognize 

each other and form homogeneous blackberries. Further studies of centrifugation of the 

mixed solutions by using differently sized membranes followed by atomic absorption 

analysis proved that the two peaks observed from DLS are indeed homogeneous 

blackberries. Therefore, the current studies provide a new example of molecular level 

self-recognition in solution, even though it is not easy or straight forward to explain the 

mechanism behind this self-recognition phenomenon. Based on our previous studies, it is 

reasonable to say that the nucleation process or the formation of the energetic 

unfavorable oligomer state is the critical step for the self-recognition and the overall 

blackberry formation. The surface charge density of individual POM macro-anions, the 

surface water ligand liability, and the solvent polarity are the essential factors that 

influence the self-recognition. 

However, one possibility of the self-recognition needs to be excluded: the kinetic 

effects (i.e., one type of POMs assembles faster than the other). Therefore, we monitored 

the kinetics of the blackberry formation process by using static light scattering. Our 

results showed that the two assembly processes occur at almost the same speed (Fig. 5.3), 

especially in the initial stages (Fig. 5.4). The kinetic curves obtained can approximately 

be explained by a two-step nucleation-growth process: (i) the macroanions slowly 

associate into thermodynamically unfavorable intermediate oligomers and dimers; (ii) 

when enough oligomers of appropriate shape and metal content are present, formation of 

the two different blackberries is accelerated. 
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Figure 5.3 (A) Increment of the total scattered intensity as function of time at 30 °C for 

three different solutions (0.5 mg/mL for the {Mo72Cr30} and {Mo72Fe30} scenarios while 

the “mixture” contains 0.25 mg/mL of each). The curve for the {Mo72Cr30} case shows 

stronger scattered intensity because of the larger blackberries. The scattered intensity 

from the mixed solution is lower due to the lower individual macroionic concentrations. 

(B). Increment of total scattered intensity as function of time at 40 °C (same macroionic 

concentrations as above). The self-assembly process is accelerated at a higher 

temperature. 
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Figure 5.4 Increment of the total scattered intensity (from time-resolved SLS studies) as 

function of time at 40 °C and at the early stage. The curves for the freshly prepared 

solutions of {Mo72Cr30} and {Mo72Fe30} are almost identical in slope and both show 

minor lag periods, suggesting that the dimer/oligomer formation processes in the 

solutions are kinetically similar. 
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5.5 Critical size of POMs to form blackberries 

As we discussed in chapter 2, a large group of POM type macro-anions with different 

size and shape can self-assemble to form blackberry type supramolecular structures in 

polar solvents. The size disparity between large macroions and small counterions is 

critical (~ 10 to 1), which is much smaller compare with that of colloidal particles and 

counterions (~ 1000 to 1). In this range, counterions could no longer be treated as point-

like charge, i.e. the effect of counterion size needs to be considered when calculating the 

macroion-counterion interactions. Ion-pairing and/or like charge attraction may be 

enhanced under this circumstance.  

Now, we want to explore further this unique phenomenon by asking: What is the 

difference between small POM versus large POM when they form blackberries? Is there 

a size limitation of POMs to be able to form blackberries? Answer these questions would 

greatly help us to better understand the fundamental driving forces associated with self-

assembly and provide valuable insight to many other colloidal or biological phenomena. 

At present, the smallest macro-anion that was shown to be able to form blackberries is 

{Cu20P8W48}, a nanowheel with size being 2.2 × 1.1 nm. We want to push this limit to 

even smaller POMs, and in the following sections, we will discuss the self-assembly 

process of one smaller POM of {U28}.  

5.5.1 Self-assembly of {U28} macro-anions in basic aqueous solutions 

{U28} represents an unprecedented family of actinyl peroxide nanoclusters which were 

recently discovered and described by Burns et al..
3
 It has an overall spherical geometry 

with a diameter of 1.77 nm, and is assembled from 28 identical uranyl peroxide 
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polyhedra within the clusters, as shown in Fig. 5.5 {U28} and other similar actinyl 

peroxide nanoclusters were obtained from alkaline solutions containing peroxide under 

ambient conditions. As indicated from its formula, 

Cs15[(Ta(O2)4)Cs4K12(UO2(O2)1.5)28]·20H2O, each {U28} anionic cluster is balanced by 15 

Cs
+
 outside the cluster and 4 Cs

+
, 12 K

+
 inside the cluster. In solution, those small 

counterions could dissociate from {U28} cluster and the inside Cs
+
 counterions may 

exchange with outside counterions or they may be released into solution. Therefore, 

consider the small size of this cluster; its surface charge density may be higher than 

previous mentioned giant POMs. Because of the peroxide ligands that link the uranyl 

peroxide polyhedral, {U28} is more stable in basic conditions. In our experiments, most 

of the samples were prepared by dissolving {U28} crystals in basic solvents.  

 

Figure 5.5 Molecular structure of {U28} POM.  
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As shown in Fig. 5.6, for a typical {U28} sample of 0.5 mg/mL in 0.05 mol/L KOH 

solution at 30 ˚C, the scattered intensity recorded by SLS shows a sigmoidal shaped 

curve with a long lag period of 41 ± 2 days. The scattered intensity reaches a plateau after 

120 days, representing the end of the self-assembly process. Interestingly, the Rh value of 

the assembled structures increases with time during this process, as shown in Fig. 5.6, 

and is finally stabilized at ~ 70 nm. Similar trend was observed in solutions with different 

counterions. From TEM studies, we identified spherical, hollow vesicle-like structures, 

which indicate {U28} indeed form blackberry structures (Fig. 5.7).   

There are two interesting and important phenomena in the self-assembly of {U28}, 

which quite different from previously mentioned large POMs. The first one is the 

elongated lag phase during the self-assembly process and the second one is the increment 

of Rh with time. As summarized in Table 5.1, we noticed that the length of the lag period 

is sensitive to the counterion hydration size, the counterion concentration, and 

temperature. For instance, Li
+
 ion cannot trigger the self-assembly of {U28} even at a 

high concentration of 1.0 mol/L, probably due to its large hydration shell. Meanwhile, 

Na
+
 and K

+
 can effectively decrease the length of the lag period, with K

+
 has a stronger 

effect than Na
+
 under the same concentration. Cs

+
 will immediately precipitate {U28} 

even with a concentration below 0.01 mol/L, implying it has an even stronger effect than 

K
+
. Ammonium type counterions can also affect the lag period of {U28}, especially for 

small NH4
+
 and TMA

+
. However, TEA

+
, TPA

+
, and TBA

+
 may interact with {U28} in a 

different way so that there is no clear lag phase during the self-assembly process (the 

overall scattered intensity is also lower than alkaline counterions at the same 

concentration when system reached equilibrium), probably due to the hydrocarbon chains 
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which prevents the formation of tight ion-pairing between the {U28} cluster and 

counterions.  

Temperature also plays an important role in regulating the lag period. For instance, at 

room temperature, the lag period of {U28} in 0.05 mol/L KOH is about 67 days, which 

decreases to 41 ± 2 days at 30 ˚C and further reduces to 36 ± 2 days at 40 ˚C. The 

decrease of lag period is an indication that the energy barrier is lowered at higher 

temperature.   

There are several other interesting points need to be mentioned for the lag period. First, 

as shown in Fig. 5.8, in a wide concentration range, the change of the lag period does not 

have a simple linear relationship with the alkaline concentration. Instead, the lag period 

follows a roughly exponential decay manner with the alkaline concentration. At low 

counterion concentration range, there is one critical concentration above which the lag 

period is measurable and the self-assembly process will proceed. For example, the critical 

concentration for Na
+
 is 0.08 mol/L; for K

+
 is 0.05 mol/L; for NH4

+
 is 0.05 mol/L; and 

for TMA
+
 is 0.1 mol/L. Second, the lag period is more sensitive to different counterions 

in lower concentration range. As shown in Fig. 5.8, at 0.1 mol/L counterion concentration 

the lag period difference between K
+
, NH4

+
, and TMA

+
 is much larger compared with 

that of 0.5 mol/L. Meanwhile, at high counterion concentration, the lag period is 

eliminated for most of the counterions around 1.0 mol/L. Counterions have duel effects 

on the lag phase: one is the specific ion-pairing formation and the other is the increment 

of total ionic strength. Therefore, the current plot indicates at lower concentration, the 

specific ion-pairing effect of different counterions is more critical; while at higher 
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concentrations, the effect of total ionic strength increment takes over and the difference 

between lag periods shrinks.  

The second phenomenon that the self-assembly of {U28} is different from large POMs 

is the continuous increment of Rh with time before it reaches equilibrium. Our previous 

blackberry formation model for large POMs indicates that once the blackberries are 

formed in solution, their size normally remain the same throughout the overall self-

assembly process and only the number of blackberries increases. However, it is not the 

case for {U28}, as shown in Fig. 5.8. Instead of directly forming the final blackberry 

structures, individual {U28} clusters may form intermediate states with different Rh which 

continuously grow until reach the final, thermodynamically stable blackberries in 

solution.  

The above mentioned phenomena could be explained by the high surface charge 

density of {U28}, and its small size. From our previous studies we know that the 

blackberry formation is a spontaneous, free energy favorable process with a huge 

activation energy barrier between single POMs and blackberries. In other words, the 

oligomers state in the early nucleation step is unstable and only when the oligomers’ 

concentration reaches a critical value the whole self-assembly process can move forward 

quickly, which is evidenced by the fact of the sigmoidal curve. Therefore, the elongated 

lag period (much longer than normal large POMs) indicates there is an even higher 

activation energy barrier between the single macroion state and the blackberry state. 

Another possibility is because of the small size of the {U28} POM, thermal fluctuation 

may have a stronger influence on the stability of the POM-counterion-POM ion-pairings 

in solution, so the ΔG between the single POM state and the blackberry state becomes 
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smaller. Under extreme conditions when the activation energy barrier is large enough or 

the ΔG is small enough, it is reasonable to assume that POMs can no longer form 

blackberries in solution. 

 

Figure 5.6 (A) Total scattered intensity change with time for a 0.5 mg/mL {U28} sample 

in the 0.05 mol/L KOH bulk solution. (B) Rh change of the same sample at different days. 
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Figure 5.7 (A) and (B) TEM images of blackberry structures formed by {U28} in 

solutions. (C) EDS analysis of the individual blackberry structure.  

 

Figure 5.8 The lag period of blackberry structure formation in different alkaline solutions. 
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Table 5.1 The lag period of blackberry structure formation in different alkaline solutions. 
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5.6 Conclusions 

In summary, kinetic studies show that the self-assembly of POMs into blackberries in 

solution is a free energy favorable process with a high activation energy barrier. The total 

scattered intensity recorded by SLS during the self-assembly shows a sigmoidal curve, 

indicating a two-step formation process which includes a slow nucleation step followed 

by a fast aggregation step. The slow nucleation step is critical to the molecular level self-

recognition of two almost identical POMs {Mo72Fe30} and {Mo72Cr30} in water. The 

similar increment speed of the scattered intensity of the two POMs in the initial couple of 

hours indicates that the molecular recognition is not because of different association rate.  

More interestingly, small POMs such as {U28} has shown different self-assembly 

behaviors than large POMs in solution. Besides the fact of an extended lag phase which is 

sensitive to counterion type, counterion concentration, and temperature, the {U28} 

macroions do not directly from blackberry structures but maybe through some 

intermediate states, as shown from the continuous increment of Rh. These unique 

behaviors may stem from the high surface charge density and the small size of the {U28}, 

which would affect the activation energy barrier height and the stability of macroion-

counterion ion pairing.  
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Chapter 6: Counterion distribution around Hepatitis B 

viral capsid and dimer protein probed by SAXS 

6.1 Introduction 

Highly charged bio-macromolecules with sizes on the nanometer scale can also be 

treated as macroions. In these bio-macroionic systems, electrostatic interactions are 

fundamental to various phenomena, especially in regulating nucleic acid (DNA and RNA) 

condensation and folding, maintaining protein tertiary structure, and directing the 

assembly of viral capsids. For example, recent studies of a short DNA oligonucleotide 

(25 base pairs, about 8 nm) in solution have shown a short-range attraction between like-

charged DNAs, and the magnitude is quite sensitive to the valence and the concentration 

of small counterions.
1
 In this case, DLVO theory fails to predict the biologically 

important attraction of like-charged bio-macroions. 

The Hepatitis B virus (HBV) belongs to the hepadnavirus family and is one of five 

different viruses that cause liver disease in humans.
2
 Despite the development of antiviral 

drugs, it remains as a public health issue worldwide. The HBV capsid plays an important 

role in the virus’ replication cycle, which provides a vehicle for protecting and 

transferring genetic materials. The core antigen (cAg) of the HBV capsid protein is a 

polypeptide of 183 residues, which can be divided into two functional domains: One is 

the “core” domain of residues 1-140 and the other is a “protamine” domain (residues 150-

183). The two domains are connected by a linker peptide (residues 141-149). The 
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protamine domain strongly binds nucleic acids to the inner surface of the capsid due to its 

highly basic nature.
2
 It is believed that the electrostatic interactions between the 

negatively charged nucleic acids and the positively charged protamine domain stabilize 

the overall capsid structure.
3
 However, a recent study on a Cp149 protein (a truncated 

capsid protein without the protamine domain) has shown that it can also form stable 

capsid like structures in the presence of 0.15- 0.70 M NaCl.
4
 The capsids assembled from 

the Cp149 protein have an average size of 36 nm with 240 copies of the Cp149 subunits, 

which are nearly identical to the native T = 4 (triangulation number) type HBV capsids.
5
 

Cryo-EM reconstruction studies also revealed the well-defined structure of the capsids 

assembled from Cp147 proteins, which formed the same type capsids as Cp149.
6
 These 

studies show that the interactions between HBV capsid proteins, especially the assembly 

domain, not the interactions between capsid proteins and nucleic acids play the major role 

for the capsid structure formation.  
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Figure 6.1 (A) An illustration of the self-assembly of HBV dimer proteins into a 

complete capsid in solution (B) Addition of NaCl into buffered Cp149 dimer solutions 

triggers the formation of HBV capsids, as evidenced from the increment of scattered 

intensity. The light scattering was recorded by a fluorometer at 320 nm, and at 20°C for 

about 600 s. The dimer protein concentration was 5 µM, and the buffer was 0.1 M 

sodium bicarbonate (pH 9.5). Different salt concentrations were used to induce the 

assembly of by the addition of buffered NaCl at 50 s. (Copyright: American Chemical 

Society, 1999) 
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Hydrophobic interactions, Coulomb interactions, hydrogen bonding, and salt bridges 

are the possible driving forces for the assembly of HBV capsids.
7,8

 Ceres and Zlotnick 

studied the self-assembly process of HBV capsids in detail and they found that the 

formation of capsids is largely affected by the protein concentration, solution pH, and the 

ionic strength.
4
 Fig. 6.1A shows the general formation process of HBV capsids in 

solution: The homodimeric Cp149 proteins first form a trimer of dimers during the 

nucleation step, after which individual dimers are quickly added to the trimer until the 

complete capsid is formed. At neutral pH, the strength of the attractive interaction 

between the Cp149 dimer proteins is about -4.4 kcal/mol of each subunit contact at 37˚C. 

The attractive interaction increases with temperature and ionic strength, and 75% of the 

surface areas buried between adjacent dimers are hydrophobic, suggesting at neutral pH 

hydrophobic interactions are the major attractive forces.
4
 

Further studies also demonstrated the importance of ionic strength and solution pH in 

regulating the capsid formation. As shown in Fig. 6.1B, the assembly rate and the 

percentage of capsids dramatically increase with NaCl concentration, as evidenced from 

the total scattered intensity recorded by light scattering. The kinetic curves are sigmoidal, 

indicating a slow nucleation and fast aggregation process. With the addition of NaCl, not 

only does the lag phase become shorter but also the slope of the aggregation phase gets 

steeper, and the maximum scattered intensity also increases, indicating more capsids are 

formed at higher ionic strength. The size of the capsids assembled by Cp149 dimers is the 

same as the native HBV capsid protein, and they have the same mobility in the native 

agarose gel and density in the sucrose gradient, indicating that these assemblies are nearly 
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identical to native HBV capsids.
5
 The stability of the Cp149 capsids is lower than the 

native ones, but they are stable in high pH condition because of the hysteresis effect, 

which prevents the dissociation of HBV capsids. 

The purified Cp149 dimer proteins are stable in 0.1 M bicarbonate buffer (pH 9.5), and 

they do not self-assemble until the NaCl concentration is higher than 0.6 M (Fig. 6.1B). 

Kegel et al.
8
 calculated the surface charge density of the Cp149 dimer proteins based 

upon experimental results and argued that the surface charge density of Cp149 dimer 

should decrease with solution pH, because the surface charges come from the ionic 

residues on the protein surface that exposed to solution. In other words, under high pH 

conditions, the Cp149 dimers are highly charged while at neutral pH, their surface 

charges are largely diminished. The addition of large amount of NaCl dramatically 

screens the Coulombic repulsion between dimers and facilities the formation of capsids.    

Not only limited to NaCl, Zlotnick et al. also found that other cations, including K
+
, 

Mg
2+

, Ca
2+

, Zn
2+

, and Ni
2+

 can induce the formation of HBV capsid, although probably 

through different mechanisms.
9
 Fig. 6.2 summarized the critical concentration of mono- 

and di-valent counterions that induces the formation of HBV capsids by 5 µM of Cp149 

dimer proteins in 50 mM HEPES buffer (pH 7.5) at room temperature. For example, it 

requires more than 0.2 M of Na
+
 or K

+
 ions to induce the assembly, judging from the 

large increment of scattered intensity. Divalent cations of Mg
2+

 and Ca
2+

 require lower 

concentrations (~ 50 mM) to induce a significant assembly. Zn
2+

 and Ni
2+

, on the other 

hand, only need ~ 200 µM to induce the assembly, indicating a selective and specific 

binding to Cp149, probably through the formation of coordination bonds. However, in 
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the current study, changes in scattered light intensity could not provide detailed 

information on the possible formation of oligomers, as the oligomers may have a low 

concentration. But the presence of oligomers is critical to understanding the role of 

counterions in the formation of HBV capsids. A more sensitive and more accurate 

technique, such as small angle X-ray scattering, may provide more valuable information 

to resolve this problem.
1,10,11

 

Meanwhile, to some extent, the formation of HBV capsids is similar to the formation 

of blackberry-type structures in solution.
12

 Both systems form highly symmetrical, 

hollow, shell structures self-assembled from well-defined monomers through weak 

interactions (no chemical bond formation). The monomers (proteins versus POMs) are 

equivalently distributed on the surface of the shell (capsids versus blackberries). Both 

types of self-assembly process have similar kinetic properties: a two-step process of slow 

nucleation and fast aggregation formation. There is a lag phase due to the nucleation step 

which is sensitive to ionic strength and temperature in both systems. Since Cp149 

proteins can also be treated as nano-scaled macroions, the study of the counterion 

distribution around HBV capsid and Cp149 dimer proteins would be of great help in 

understanding the effect of counterion mediated interactions during the formation of 

HBV capsids.  
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Figure 6.2 Mono- and divalent cations can induce the assembly of 5 µM HBV Cp149 

proteins into capsids in 50 mM HEPES pH 7.5 at room temperature, as monitored by 

static light scattering at 90˚. All of the samples were incubated for 24 hours before 

assessing the sample by light scattering. All metal ions tested here were in the form of 

chloride salts. (Copyright: American Chemical Society, 2004) 
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6.2 Instrumentation 

6.2.1 Small angle X-ray scattering (SAXS) 

Small angle X-ray scattering (SAXS) is a powerful technique that provides valuable 

information on macromolecules in solution. It normally uses elastic scattering of X-rays 

and is performed at small angels (0.1 – 10 degrees). The scattering of the incident X-ray 

leads to interference effects which results in a specific scattering pattern. Critical 

parameters of the macromolecules such as the radius of gyration Rg, molecular shape, 

persistence length, molecular weight, and intermolecular interactions can be extracted 

from the scattering data.
10

 Although it is a relatively low resolution (~ 1 nm) probe for 

illustrating structural information compared with X-ray crystallography, the power of 

SAXS actually lies in its ability to work with dynamic or unconstrained systems.  

The excess scattered intensity of solutes (macromolecules and small ions) is generated 

from the electron density difference as compared with the solvent background. If target 

molecules have the same electron density as the solvent, they become invisible and do 

not give any useful information. For molecules that have different electron density as the 

solvent, the scattered intensity I(q) can be expressed as: 

                                                                  (51) 

where F(q) is the form factor and S(q) is the structure factor of the molecules. The form 

factor represents the size and shape of the molecules and the structure factor is 

determined by interparticle interactions which can be assumed as 1 in the absence of 

interparticle interactions in dilute solutions. The scattering vector, q, is defined as: 

  
  

 
                                                          (52) 
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in which λ is the wavelength of the incident X-ray and Ɵ is one half of the scattered angle.  

In diluted system where there is no interparticle interaction, the scattered intensity for 

isolated particles can be described by Guinier’s law: 

           
 

 
  
                                               (53) 

where I0 is the forward scattered intensity and Rg is the radius of gyration of the 

molecules in solution. The Guinier plot, ln(I(q)) versus q
2
, should be fitted with a linear 

function whose intercept gives I(0) and the slope yields Rg. Guinier’s law is only valid for 

small angles, i.e. qRg < 1.3; therefore, this method is only suitable for analyzing 

scattering data in the low q range. The linearity of the Guinier plot represents the sample 

homogeneity and deviations indicate either attractive or repulsive inter-particle 

interactions. 

A useful tool for visibly detecting conformational changes within the target molecule 

is the pair-density distribution function P(r) plot, which is used to describe the paired-set 

of distances between all of the electrons within the molecular structure: 

      
      

             
 

 
                                         (54) 

I(0) and Rg can be derived from P(r): 

               
    

 
                                           (55) 

 

  
           

    

        
    

 
                                  (56) 

where r is the distance between the paired scattering elements in the molecules and Dmax 

is the maximum diameter of a given molecule. 
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 For proteins or nucleic acids which may contain non-regular tertiary structures, the 

knowledge of Rg is apparently not enough. More structural information can be extracted 

from the scattering data by using Kratky plots of I(q)q
2
 versus q, which emphasize the 

shape of I(q) for q beyond the Guinier region.  

All SAXS experiments were performed at the 12-ID-B/C beamline, Advanced Photon 

Source (APS), Argonne National Laboratory. The incident photon energy was 12 KeV at 

12-ID-B beamline and 15 KeV at 12-ID-C beamline. To minimize the X-ray exposure 

damage and to get better averaged scattering signal, a stop-flow device was used. The 

flow rate was programmed as ± 20 µL/step. 10 camera shots were taken for one typical 

measurement with an exposure time of 1 second. Raw data were averaged and the 

background scattered intensity from solvent was subtracted. 

Characterization of the counterion distribution around HBV capsids. The HBV 

capsids were dialyzed against HEPES buffer (50 mM HEPES, 10 mM BME, pH 7.5) for 

12 hours before the SAXS experiments. The counterion (KCl, RbCl, CsCl, MgCl2, and 

CaCl2) solutions of ~ 0.50 M were prepared by using the same HEPES buffer. A 200 µL 

of HBV capsid solution was used for one typical SAXS experiment. For example, after 

collecting the initial scattered curve for capsids in HEPES buffer, K
+
 was added into the 

capsid sample by pipeting 2 µL of KCl solution each time. A total of 20 µL of KCl 

solution was used. A similar procedure was done for other counterion solutions.    

Counterion induced self-assembly of HBV dimer. The HBV dimers were dialyzed 

against buffer N (50 mM NaHCO3, 10 mM BME, pH 9.6) for 12 hours before the SAXS 

experiments. The counterion (KBr, RbCl, CsCl, and MgCl2) solutions of ~ 0.50 M were 

prepared by using the same buffer N. A 300 µL of HBV dimer solution was used for one 
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typical SAXS experiment. For example, after collecting the initial scattered curve for 

dimers in buffer N, Rb
+
 was added into the dimer sample by pipeting 3 µL of RbCl 

solution each time. A total of 54 µL of RbCl solution was used. A similar procedure was 

done for other counterion solutions. 

6.3 Synthesis of HBV capsid protein 

6.3.1 Cp149 gene optimization, transfer, and expression 

The Cp149 gene was ordered from GenScript and optimized for expression in E. 

coli.with an N-terminal NdeI restriction site and a C-terminal XhoI restriction site. The 

whole gene sequence is shown below: 

 

Insertion of Cp149 genes from the original pUC57 vector into the pET24a vector was 

done by routine DNA insertion and ligation procedure. DNA and vector quantitation was 

done by gel electrophoresis on a 1% agarose gel. Ligation of the DNA with the pET 

vector was carried out using a 1: 4 ratio of pET vector to insert and 1 µL of T4 DNA 

5’CATATGGACATCGACCCGTACAAAGAATTCGGTGCG

ACCGTTGAACTGCTGTCTTTCCTGCCGTCTGACTTC

TTCCCGTCTGTTCGTGACCTGCTGGACACCGCGGCG

GCGCTGTACCGTGACGCGCTGGAATCTCCGGAACAC

TGCTCTCCGCACCACACCGCGCTGCGTCAGGCGATC

CTGTGCTGGGGTGACCTGATGACCCTGGCGACCTGG

GTTGGTACCAACCTGGAAGACCCGGCGTCTCGTGAC

CTGGTTGTTTCTTACGTTAACACCAACGTTGGTCTG

AAATTCCGTCAGCTGCTGTGGTTCCACATCTCTTGC

CTGACCTTCGGTCGTGAAACCGTTCTGGAATACCTG

GTTTCTTTCGGTGTTTGGATCCGTACCCCGCCGGCG

TACCGTCCGCCGAACGCGCCGATCCTGTCTACCCTG

CCGGAAACCACCGTTGTTCTCGAG-3’ 
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ligase. The reaction was incubated at 16˚C overnight. Next, 1 µL of the ligation reaction 

was used to transform DH5α cells. Since the pET vector is kanamycin resistant and 

contains the T7lac promoter, the DH5α cells were grown on LB plates containing 

kanamycin. Clones containing the accurate DNA sequence were then transformed into E. 

coli BL21(DE3) cells for large scale expression. 

6.3.2 Cell growth 

6.3.2.1 Starter preparation 

4.46 mL of D.I. water was added into each of two 10 mL plastic culture tubes. After 

autoclaving for 20 minutes, 10 µL of 1M MgSO4, 1µL of 1000× trace metals, 50 µL of 

25% aspartate, 100 µL 50×M, 62.5 µL of 40% glucose, 100 µL of 17 amino acids, and 40 

µL of methionine were added to each of the two tubes. Then, about 1 mg of E. coli. cells 

carrying pET vector with Cp149 DNA was added to the two tubes. The two starter tubes 

were kept in warm room at 37˚C overnight, shaking at 225 rpm.  

6.3.2.2 Cell growth media preparation 

We used ZYM-5052 media as the cell growth media. In a 4 L Erlenmeyer flask, 20 g 

of NZ-amine AS, 10 g of yeast extract, and 1916 mL of D.I. water were added. The 

solution was autoclaved for 20 min and cooled down to room temperature. Next, 4 mL of 

1M MgSO4, 400 µL of 1000× trace metals, 40 mL of 50× 5052, and 40 mL of 50×M 

buffer were added into the flask.  
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6.3.2.3 Cell growth 

For a cell growth test, we monitored the UV absorption change at 600 nm of the 

solution each hour until the absorption reached equilibrium. Specifically, 10 mL of starter 

was first transferred into the flask with 2 L growth media. After shaking the solution for 

several minutes, we took 0.2 mL of the solution and diluted it to 1 mL with D. I. water. 

We recorded its UV absorption as the starting point. Then we loaded the flask into a 

shaker in the warm room at 37˚C. For each hour, we took 0.2 mL of the solution and 

diluted it to 1 mL and recorded the UV absorption value. After 8 hours, the UV 

absorption reached a plateau and we removed the flask from the warm room. For future 

cell growths, we always grew the cells for 8 hours.  

After the solution cooled down to room temperature, we transferred all of the solution 

into two plastic 1 L sized centrifuge bottles. The two bottles were then loaded into a 

Beckman J6-MC Centrifuge and spun at 5000×g for 30 min at 4˚C. Later, all the 

supernatant solution was dumped, and 80 mL of 0.9 wt% cold NaCl salt solution was 

added to dissolve the cell pellet at the bottom of the centrifuge bottles. A total of ~100 

mL of homogeneous cell solution was transferred to a 250 mL centrifuge bottle and spun 

in JA-14 rotor at 5000×g for 30 min at 4˚C. After that, the supernatant was removed and 

the cell pellet was stored at -80˚C for future use. 
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6.3.3 Protein purification 

6.3.3.1 Cell lysis 

 One cell pellet was taken out from -80˚C freezer and thawed on ice for 1 hour. The 

pellet was transferred into a glass beaker and 40 mL of lysis buffer (100 mM Na2HPO4, 

300 mM NaCl, and 10 mM imidazole at pH 8.0) was added. The mixture was sonicated 

for 15 minutes at 4˚C to lyse cells and transferred into a 250 mL plastic centrifuge bottle. 

The mixture was spun at 27500×g for 30 minutes at 4˚C. The resulting pellet was 

discarded and the supernatant was collected for the next step. 

6.3.3.2 Ni-NTA agarose column 

The supernatant was mixed with 25 mL of Ni-NTA agarose gel (purchased from 

QIAGEN) and the mixture was stirred for 1 hour before being loaded into a plastic 

column at 4˚C. About 50 mL of washing buffer (100 mM Na2HPO4, 300 mM NaCl, and 

70 mM imidazole at pH 8.0) was used to wash out any non-binding proteins. About 60 

mL of elution buffer (100 mM Na2HPO4, 300 mM NaCl, and 250 mM imidazole at pH 

8.0) was slowly added to the column and protein fractions (in total about 40 1.5 mL 

fractions) were collected. After checking the fractions for purity using SDS-PAGE gel 

analysis, we combined the fractions that containing pure Cp149 protein and dialyzed 

against buffer N (50 mM NaHCO3, 10 mM BME, pH 9.6) overnight at 4˚C. 

6.3.3.3 Gel filtration column 

The dialyzed protein solution was first concentrated by using an Amicon 15 mL 

ultrafiltration concentrator (30K MWCO) to about 8 mL, followed by adding solid urea 
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into the solution to a concentration of 3 M. The mixture was incubated on ice for 2-3 

hours to break capsids into capsid protein dimers. 5 mL of the dimer sample was injected 

onto a Hiprep 16/60 Sephacryl S-300 column at 4˚C equilibrated with buffer N. The flow 

rate was 0.5 mL/min. The void peak normally came out at 70 minutes, and the dimer 

peak normally came out at 130 minutes. The dimer faction was checked by SDS-PAGE 

and then concentrated to ~ 5 mL by using Amicon 15 mL ultrafiltration concentrator 

(10K MWCO). This concentrated protein solution was dialyzed against a 50 mM HEPES 

buffer (pH 7.5 with 10 mM BME) for overnight at 4˚C. NaCl was added into this dimer 

solution to a final concentration of 0.5 M NaCl to induce the formation of HBV capsids. 

The mixture was incubated on ice for at least 2 hours (HBV dimer protein is reassembled 

and redissociated to ensure protein activity) and then injected onto a Hiprep 16/60 

Sephacryl S-300 column at 4˚C equilibrated with buffer N. The flow rate was 0.5 mL/min. 

The capsid peak normally came out at 70 minutes. The capsids were redissociated by 

adding solid urea to 3M and rechromatagraphed by gel filtration in buffer N. The same 

procedure was followed to collect the dimer protein. The final dimer solution was filtered 

and stored at -80 ˚C. 

6.4 Counterion distribution around HBV capsids 

 Small angle X-ray scattering (SAXS) is used to study the counterion distribution 

around HBV capsids in solution. SAXS is a powerful probe for macromolecules which 

provides information about the size, shape, compactness, and molecular weight of the 

target molecules in solution.
10

 To one sample of 200 µL HBV capsids (1.2 mg/mL) in 50 

mM HEPES buffer at pH 7.5, different metal chloride salts were added to change the 
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counterion concentration. Then the radius of gyration (Rg) of the capsids was calculated 

based on the scattered curves in Guinier region (Eqn. 53). As shown in Fig. 6.3, we found 

that Rg of the capsids increased with all five counterions introduced to the system, and for 

all different counterions, the increment of Rg approaches to a plateau at higher salt 

concentration. Di-valent counterions (Ca
2+

, Mg
2+

) showed more pronounced effect of 

increasing Rg than mono-valent counterions (K
+
, Rb

+
 and Cs

+
) did. Since there is no 

aggregation of capsids under these conditions monitored by SAXS, and it has been shown 

that the size of the capsids does not change with different counterions,
5
 the most 

reasonable explanation would be the increment of Rg is attributed to the counterions that 

closely surrounding the capsids. Studies on counterion distribution around biological 

macroionic molecules, such as DNA, have shown that counterions with higher valent 

state tend to bind macroions more strongly than mono-valent counterions.
13

 Since SAXS 

is sensitive to the change of electron density of the target particles, strongly adsorbed di-

valent counterions should contribute more in changing Rg of the capsids than loosely 

adsorbed mono-valent counterions. As mentioned before, it requires more than 200 mM 

of Na
+
 or K

+
 ions to induce the assembly but only 50 mM of divalent cations of Mg

2+
 or 

Ca
2+

. In other words, mono-valent counterions only weakly interact with HBV capsids; at 

least in the current concentration range (0 – 100 mM). Moreover, as listed in Table 6.1,
14

 

the hydrodynamic radii of di-valent counterions are larger than that of mono-valent 

counterions. This could also be another reason why the Rg of the capsids is larger for di-

valent counterions than mono-valent counterions under the same counterion 

concentration.  
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Table 6.1 Ionic radii of unhydrated and hydrated cations. 

  

 

 

Figure 6.3 The change of Rg of HBV capsids as a function of different salt concentrations. 

Inset is a model of how counterions may distribute around HBV capsids.  

 

Cation Unhydrated Radii (pm) Hydrated Radii (pm)

Li+ 94 382

Na+ 117 358

K+ 149 331

Rb+ 163 329

Cs+ 186 329

Mg2+ 72 428

Ca2+ 100 412

Zn2+ 74 430
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 6.5 Counterion induced self-assembly of Cp149 dimers 

To further test the role of counterions in the self-assembly process of HBV capsids, we 

studied the counterion induced self-assembly of the Cp149 dimers. Unlike previous 

results, we found under high pH (9.6) and low ionic strength (50 mM NaHCO3) 

conditions, the highly charged Cp149 dimers could self-assembly into larger structures, 

as shown in Fig. 6.4. For example, in the initial place where no K
+
 was around, the 

scattered curve of pure Cp149 dimers had only one broad, structureless peak, with the 

maximum locating around 0.075 Å
-1

. When K
+
 ions were added into the dimer solution 

and the K
+
 concentration is higher than 40 mM, several new peaks gradually emerged, 

which were nearly identical to the characteristic scattered peaks of HBV capsids (the red 

curve on the bottom of each plot in Fig. 6.4), indicating that the Cp149 dimers started to 

self-assemble into oligomers a with well-defined structure, but not irregular aggregates. 

Those new peaks became clearer with increasing K
+
 concentration, indicating the 

formation of nearly complete capsids. Divalent counterions, for example, Mg
2+

, only 

required ~ 1 mM to induce the self-assembly process.  

These results indicate the critical counterion concentration of inducing the formation 

of HBV capsids should be lower than previous reported.
9
 Further studies of finding the 

binding affinity between counterions and HBV dimers by isothermal titration calorimetry 

(ITC) may help us understand the role of counterions in regulating the formation of 

capsids.  
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Figure 6.4 Kratky plots of SAXS intensity Q
2
I(Q) versus q for HBV dimers in 50 mM 

sodium bicarbonate buffer (pH 9.6) with different counterions. (A) K
+
, (B) Rb

+
, (C) Cs

+
, 

and (D) Mg
2+

. The blue curve is the initial scattering curve for dimer solution without any 

additional salt and the red curve represents the fully assembled capsids. Other color 

curves in between represent the scattering curves with different counterion concentrations.  
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6.6 Conclusions 

The current SAXS studies on the counterion distribution around HBV capsids have 

shown that the Rg of the capsids increases with the addition of counterions. The 

increment is more sensitive for di-valent counterions compared to mono-valent 

counterions. At relatively high salt concentrations, the increment approaches to a plateau, 

indicating the saturation of counterions around HBV capsids. These results imply that the 

HBV capsids are still highly charged in solution and have a strong effect on condensing 

di-valent counterions.  

Another interesting finding is that the formation of HBV capsids from the dimer 

proteins is sensitive to counterion type and concentration. It is possible that under this 

condition, the counterion condensed on the Cp149 dimer surface may provide attractions 

and leads to the self-association of HBV dimers. This result supports our previous 

findings that counterion mediated attraction exists among macroions in solution and is 

critical to understand their solution behaviors. Future studies of mapping counterion 

distribution around HBV dimers by anomalous SAXS (ASAXS) and finding the binding 

affinity between counterions and HBV dimers by isothermal titration calorimetry (ITC) 

will be conducted to better understand the role of counterions during the formation of 

HBV capsids.  
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Chapter 7: Conclusions 

The solution behaviors of macroions are intriguing and complicated. Our studies have 

shown that instead of homogeneously distributing in solution, nanometer-sized POMs 

with moderate amount of charges tend to slowly self-assemble into spherical, hollow, 

vesicular “blackberry” type structures. Counterion mediated attraction and hydrogen 

bonds are identified as the major driving forces responsible for the unique structure 

formation. Kinetic studies show that the self-assembly of POMs into blackberries in 

solution is a free energy favorable process with a high activation energy barrier. The total 

scattered intensity recorded by SLS during the self-assembly shows a sigmoidal curve, 

indicating a two-step formation process which includes a slow nucleation step followed 

by a fast aggregation step. The slow nucleation step is critical to the molecular level self-

recognition of two almost identical POMs {Mo72Fe30} and {Mo72Cr30} in water.    

More interestingly, small POMs such as {U28} has shown different self-assembly 

behaviors than large POMs in solution. Besides the fact of an extended lag phase which is 

sensitive to counterion type, counterion concentration, and temperature, the {U28} 

macroions do not directly from blackberry structures but maybe through some 

intermediate states, as shown from the continuous increment of Rh. These unique 

behaviors may stem from the high surface charge density and the small size of the {U28}, 

which would affect the activation energy barrier height and the stability of macroion-

counterion ion pairing.  
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POM-based hybrid clusters demonstrate interesting self-assembly properties in 

solution due to their amphiphilic nature. Two of these hybrids were synthesized by 

connecting one or two organic pyrene tails with a Lindqvist type polyoxovanadate head 

cluster through trimester capping groups. These two hybrids form spherical vesicles in 

polar solvents. Four different counterions (TBA
+
, TEA

+
, TMA

+
, and H

+
) have been used 

to study the counterion effect on the vesicular structures and their consequent role in the 

fluorescent properties of the pyrene groups on vesicle surface. TBA counterions not only 

interact with POM polar head groups but also move into the hydrophobic regions and 

interrupt the close packing of pyrene groups. More importantly, when TBA counterions 

are replaced by protons, a dramatic change of the pyrene fluorescence pattern occurs, and 

the vesicle size, the fluorescence pattern, and the effective charge on the vesicles change 

correspondingly and reversibly with solution pH. The construction of pH sensitive 

vesicular structures could find applications in artificial cell studies, nanoreactors, as well 

as drug and gene delivery systems. 

Furthermore, we have shown that the blackberry formation is a universal phenomenon 

for both macro-anions and macro-cations, through studies of nanocage typed macro-

cations. Two different nanocages in different solvent conditions all confirmed the 

formation of blackberries and we estimated the inter-particle distance between adjacent 

nanocages in the blackberries is about 0.7 ± 0.3 nm, which is similar to the distance 

observed in blackberries formed by POMs. The vesicle size can be accurately adjusted by 

varying the solution polarity and/or counterion concentration. The counter-ion mediated 

interactions between nanocages are likely the major driving force for the assembly, while 
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hydrophobic interactions and/or π-π stacking interactions of the organic-ligand entities 

may also contribute to the supramolecular structure. 

Our studies on POMs and nanocages not only show an interesting formation of 

blackberries but also could help people better understand the formation of viral capsids. 

SAXS studies on the counterion distribution around HBV capsids have shown that the Rg 

of the capsids increases with the addition of counterions. More importantly, the increment 

is more obvious and quicker for divalent counterions compared to monovalent 

counterions. At relatively high salt concentrations, the increment approaches to a plateau, 

indicating the saturation of counterions around HBV capsids. These results imply that the 

HBV capsids are still highly charged in solution and have a strong effect on condensing 

small counterions. The formation of HBV capsids from the dimer proteins is sensitive to 

counterion type and concentration, even under high pH condition where the protein 

surface residues are highly charged. We believe under this condition, the counterion 

mediated attractions are enhanced and leads to the self-association of HBV dimers. This 

result supports our previous findings that counterion mediated attraction exists among 

macroions in solution and is critical to understand their solution behaviors.  

In summary, macroions is a unique class of structurally well-defined polyelectrolytes 

whose solution behaviors are fascinating and attractive. They could serve as an excellent 

model to link simple ionic systems with colloidal systems and important knowledge of 

some fundamental questions (such as viral capsid formation) could be answered or better 

understood by illustrating their self-assembly process.  
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