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Abstract

In following the use of graphite through history as it evolved from a simple writing

implement to being used in advanced electronics and secondary storage batteries, graphitic

materials continue to be developed and modified. For the current study electron rich graphite­

like carbon nitride, CsN, is synthesized and evaluated for the associated properties. Repeating

the literature-prescribed synthesis of CsN (Pyrolyti~ondensation of pyridine with chlorine)

required method optimization which gave rise to the discovery of a key kinetic factor in

producing large quantities of the pyrolytic carbon in high purities by affecting high utilization of

the chlorine gas. Extensive analysis of this CsN confirms its highly amorphous structure to be

composed of Sp2 carbon containing an equal distribution of Sp3 and sp2 nitrogen centers.

Determining the nature of the amorphous CsN required direct contrast with graphite but was

not directly possible without also comparing to a pyrolytic carbon produced similarly to CsN

(reaction of benzene with chlorine). Each of the three carbons was reacted with the powerful

intercalant, S206F2, in order to evaluate the extent of graphitic character and the fate of the

nitrogen. The presence of graphitic domains was confirmed to be minimal and contrary to

expectations, oxidation with S206F2 did not react at the nitrogen atom to affect rehybridization

but rather bonded to carbon, indicating a much more settled electronic structure than originally

believed. In order to unlock the full potential of such a material and understand it from a true

fundamental level, it will be necessary in future work to provide CsN in a highly ordered format

in order to validate its structure.
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Introduction

Graphite, one of the basic forms of carbon, has been a material of interest and

importance for a considerable amount of time having appeared in an array of commercial

products ranging from pencils to lithium storage batteries. Today, many forms of natural and

synthetic graphites are known and have been exhaustively studied and characterized. The

substitution of graphite with more electropositive elements, such as the extensively studied

systems containing boron, disrupts the aromaticity of the graphene sheets in the neutral state

but is practically restored when the boron or similar atom adopts a negative charge.

Constituting an area of considerably less research are the more electron-rich graphite materials,

especially those substituted or doped with nitrogen. These are conversely affected and may

very well be homologous and isoelectronic with graphite when the nitrogen, or similar atom,

bears a positive charge and an appropriate counter ion is present. As will be seen in the

following supporting information, existing reports of graphitic nitrogen-containing carbons are

limited to those haVing extremely limited nitrogen content except for the graphite-like CsN

reported in the 1980's; this includes enough nitrogen to perceptibly influence its bulk chemical

properties. Thus, this work covers carbon-nitrogen, CsN, graphite research of which the target is

)

to develop fundamental knowledge and experience regarding its chemical and structural nature.

This study was made possible by the application of improved analytical techniques and attempts

of comparative intercalation with peroxydisulfuryl difluoride.

Background

Graphite-like CsN was first reported in 1986 by Bartlett and colleagues1 giving little

description of experimental methodol~gies. A following publication from the same group2

2



provided few additional details. Their final publication, in the form of a dissertation3
, contained

considerable detail that was missing in the former communications. In general, the CsN material

was synthesized by the reaction of pyridine [Equation 1] with chlorine at temperatures greater

than 680°C in an atmospheric-pressure, chemical vapor deposition (CVO), flow reactor.

CsHsN + 5/2 CI2 -7 CsN + 5 HCI Equation 1

The high temperatures for this conversion are necessary as the reaction of chlorine with

pyridine at sub-ambient temperatures produces the pyridine-chlorine complex that decomposes

[Equation 2] to the chlorinated pyridine upon warming4
• These are the same products that are

afforded by room temperatureS combination of pyridine and chlorine.

Equation 2

Ideally, an ordered graphite with planar pyridine rings would be obtained based on the concept

that benzene should react with chlorine to provide graphite and volatile HCI with quite a

. favorable free energy [Equation 3].

C6H6 + 3 CI2 -7 Graphite + 6 HCI 6.Go = -27.92 kcal/mol Equation 3

Attempts of this latter reaction were not reported by this group nor were any comparisons of

the CsN produced experimentally with graphite synthesized as such.

In these original studies, CsN was characterized by powder X-ray diffraction (XRO),

electrical resistance/conductivity, X-ray photoelectron spectroscopy (XPS), density, Auger

electron spectroscopy (AES), and electron energy loss spectroscopy (EELS). While intercalation

of other graphitic materiCltswas routinely attempted6with the powerfully oxidizing S206F2 to

demonstrate graphene stacking, there is only one publication which broadly alludes that this

was also attempted with CSN
7 but no data was provided. In this context of potential CsN

intercalates it was only directly stated that the CsN material did not uptake elemental bromine
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as some other graphitic materials had. All of this analytical work led to the conclusion that that

a poorly crystalline (i.e. amorphous), non-uniform, non-ordered, non-volatile, It-conjugated,

conducting material with CsN stoichiometry was formed. The graphite-like"character was

attributed to experimental comparison with graphitic B/C/N compositions and the formation of

highly ordered graphite with thermal treatment and decomposition of CsN at extreme

temperatures which unfortunately also forced out the contained nitrogen.

Using similar chemistry and techniques during the same time period, Labes and

colleagues reported graphite-like CVD products from the high temperature reaction of various

aromatic hydrocarbons and heterocycles with halogens or thermolysis of halogenated

aromatics8
,9,lO,11,12,13. Aside from alsoproducing and example of reacting pyridine with chlorine

as mentioned above, this group extended the comparison to other aromatics, including

benzene, and demonstrated the viability of using elemental bromine as an alternate halogen

source. In addition to some of the characterization techniques used by Bartlett's group, Labes

and coworkers employed Raman spectroscopy and electron spin resonance (ESR or EPR for

electron paramagnetic resonance) spectroscopy. The conclusions regarding the nature ofthe

CVD-synthesized materials were similar to those proposed by Bartlett's group. It is noteworthy

to point out that Labes' group had previously worked on the synthesis and pyrolysis of poly­

cyanogen to afford a material of approximate composition CSN
14

,lS,16,17. Reporting relatively high

yields, the products of pyrolysis were analyzed by UV-Vis, IR spectroscopy, and electrical

'\conductivity providing sufficient evidence for the authors to claim a certain degree of graphitic

character for the materials. Despite the relatively limited analytical support for Labes' CsN

materials, it is possible that these might be structurally similar to those formed by the halogen
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condensation reactions. Nonetheless, no attempts to intercalate any of the materials made by

Labes, et al. have been reported.

Chemical Abstract Services (CAS) was used to determine other sources that cited the key

references noted above. A majority of the returned citations represented papers that were

focused on the B/clN systems18,19,2!l that Bartlett and coworkers included in their .original

publications. Most of the references that focused on CN systems were found to be concerned

with the theoretical21, diamond-like carbon nitride, C3N4, networked solids22.23,24.2s.26 noting that

CsN and its analogs are too devoid of nitrogen to be of any interest for this particular endeavor.

Some search results included those covering CN materials with a nitrogen content considerably

lower than CsN
27; those where CN films were coated over graphite28, one in particular where a

comparative and idealized CsN bonding structure is proposed29. Some where CN materials were

studied electrochemicalllo, and one where the near edge X-ray absorption fine structure

(NAXAFS) technique was employed to aid in the structure determination of various graphitic CN

compositions31,32.

CAS was also used to search for compositions of CsN and CN containing graphite. Using

the CsN search term and aside from the original Bartlett papers and numerous hits regarding

diamond-like carbon nitrides, other concepts pertaining to N-containing carbon nanotubes33,

CsN micro-domain analysis in CN laser-ablation matrices34, and other claims of CVD-produced CN

graphitic materials3s were also found.

The carbon-nitrogen graphite search term yielded significant numbers of references that

were reviewed by title and abstract browsing. The great majority of the returned publications

were dedicated to the diamond-like carbon nitrides. The extracted references pertained to

those noting CN graphitic materials and those describing analysis methodologies for elucidating
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structural information for less ordered nitrogen-containing carbons. Included are publications

specifically addressing detailed vibration spectroscopic structural assignments36,37.38, sources

describing in-situ electron beam and X-ray techniques for observing the change that nitrogen

doping induces on' graphites39,40, others demonstrating additional analytical methods not yet

covered here such as mass spectrometry41 and solid state NMR42, proposed CNx fullerene and

nanotube structures43
,44, and additional reports of carbon nitrides45. Also of particular mention

are publications covering computational modeling46,47,48 of carbon-nitrogen sheet-like

structures.

In comparison with extensive work done over nearly a century on studying and

validating the structure of graphite49.50,51.52 and avast number of its intercalates53.54,55.56.57,58, very

little was found regarding the intercalation of CNx materials. CNx structures, including hard

carbon nitrides, have been intercalated with lithium as asynonymous application to graphite in

battery and capacitor applications59.60,61, with nitric acid62 where oxygen was incorporated into

the graphite matrix, and most notably with fluorine63 into a catalytic-CVD-derived CNx
64

•
65 as it

correlates closely with the well-known g~aphite'·fluorides66,67,68. However, even though some of

the most uniform graphite and boron nitride intercalates have been produced69,70,71.p,73 by

reaction with the access-limited peroxydisulfuryl difluoride74,75.76.77,78,79.8o,81 (S206F2), no reports

were found where graphitic CNx or even diamond-like carbon nitrides were interacted with

S206F21 a subject of the present thesis.

According to the present search, there is no evidence of any attempted purification

attempts on CNx deposits. In addition, there do not appear to be any reports of researchers

attempting to elucidate the structure and bonding of the nitrogen centers by chemical

modification beyond the aforementioned intercalation work. The use of detailed thermal .
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analysis to extract phase change information and decomposition energies has also not been

reported for CNx materials. Also, there were no reports found of actual yields or synthetic rate

capabilities for the production of the graphitic carbon nitrides, a trend that is not altogether

uncommon in the field of solid-state, thin-film synthesis82
,8382.83.

In sl::!!"marizing the open literature in regards to nitrogen-doped graphite, it .can be

shown that graphite-like materials of composition CsN have been produced independently by

two separate research groups more than 15 years ago. Reproduction of these original syntheses

were afforded and further optimized in the current thesis, enabling the study and comparison of

the carbons of interest. InitiallY,it makes sense to utilize the standard X-ray and electron beam

techniques covered in these earlier reports to verify composition and some structural

information. Advances in analytical technology and electronics since the original work on CsN

were exploited in an attempt to extract additional information from the materials.

All of this work would be for naught without a careful definition of graphite and other

states of carbon. The following discussion surrounding states and definitions of carbons is

consolidated based on the text of Weiss, et al.84 Graphite is defined as carbon arranged in a

completely unsaturated and infinite sheet of 6-membered rings, arranged in lamellar format

with identic.al sheets stacked infinitely perpendicular to the planar sheets called graphenes. The

sheets, although not directly bonded to other sheets, are held close together by Van der Waals

forces. As with just about any chemical crystalline substrate, perfection in perpetuity in all

directions is statistically improbable and dictates that imperfections will exist. Such

imperfections include but are not limited to: elemental contamination, puckering of the sheets,

particulate inclusions, substituent contamination, surface exfoliation, graphene edge terminal
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substituents, ring size variations, and crystal twinning zones; all of these will be present in the

bulk of even the most pristine graphite samples.

Once the imperfections of agraphitic system increase in quantity and size providing a

more macroscopic effect, the carbon domain is loosely defined as amorphous. The designation

as amorphous indicates little more than a lack of order for any continuous domain. In fact,

materials that resemble graphite structurally but have disrupted sheet spacing such as

turbostratic graphites are also included in the amorphous continuum. Of even less order are

those carbons deemed as graphite-like amorphous materials which cannot be structurally

elucidated because of the lack of order but resemble graphite in terms of physical properties

such as electrical conductivity, chemical reactivity, density, and hardness. Most graphite-like

designations can be structurally associated with small and numerous graphene domains present

in the structure. Once the Sp2 bonded centers give way to sp3cbonding modalities, the material

enters the continuum of hard carbons which have mixed properties of diamond and graphite.

Amorphous carbons with increasing diamond characteristics are termed diamond-like. Finally,

order of the diamond-like continuum increases until crystalline diamond is obtained.

The inclusion of periodic impurities into agraphite matrix produces a "graphitic"

derivative at the epitome of maximum order. Similar to the terminology for amorphous

carbons, continued introduction of disorder derives graphite-like materials and so on. This is the

applicable basis for discussions surrounding the nitrogen-doped carbons of the current

investigation. It is worthwhile to note that references to "CsN" within this text are intended to

represent the graphite-like CsN reproduced from the reports of the 1980's.
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Theory

If one wishes to make agraphite matrix more easily oXidizable, contracting the energy

difference between the HOMO and LUMO levels thus better stabilizing acharge in the oxidized

state it is desirable to increase the electron donor capacity of the system by incorporating

electron-rich heteroatoms. Graphite represents a2-dimensional planar network of carbon

stacked in a hexagonal configuration; the substitution of a heteroatom into the matrix often

dramatically affects this planarity and thus its properties. Nitrogen as a dopant is no exception

to this effect; however, if ternary nitrogen in an-conjugated system is oxidized to the

corresponding nitrogen cation, it adopts the planar Sp2 hybridization and is capable of bearing

charge as evidenced in the wealth of literature on N-fluorinated salts and a number of cyclic N­

oxides.

This capability of a material to stabilize charge is quite important. Graphite is well

known for its ability to undergo intercalation by a number of chemical moieties. One notable

example is exemplified by its reaction with alkaline earth metals to effectively produce anionic

graphite with the alkaline earth metals bearing positive charges. This concept has for years laid

the foundation for the storage capacity known for rechargeable lithium ion batteries as it

pertains to the negative electrode. Countless examples of graphite oxidation also exist as

exemplified by examples such as graphite oxide and that which has been treated with S206F2'

However, agreat majority of the cases of graphite oxidative intercalation lead to the formation

of a covalent bond with the oxidant, rather than an ion pair, rendering the process irreversible.

Now imagine that nitrogen is incorporated into the graphene layers in a way that

provides ageneral and homogeneous effect. For the purposes of this study, CsN is presumed to

fulfill this criterion on the basis that with a consistent spacing of nitrogen, any 6-membered

9



carbon ring unit is bonded directly to at least one nitrogen atom. If a graphene structure with 6­

membered rings is presumed for the theoretical material one would expect a system possessing

nitrogens on the internal portions of the sheets and those on the edge as in the pictoral

representation in Figure 185
•

Figure 1· Structural rendition of CxN

It becomes readily apparent that the nitrogen atoms in the central portions of this

hypothetical structure should possess some Sp3 character in the neutral state and as such should

not be in the plane, creating a distortion to the supposed theoretical structure. This is where

oxidative rehybridization can aid in the formation of nitrogen-doped graphene. Either centrally

situated or edge nitrogen environments when oxidized and bearing a charge should in theory

adopt the cationic Sp2 hybridization as depicted in Figure 2; this reasoning is also extended to

the unlikely neutral trigonal planar structure.
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Figure 2 - Rationalization of Nitrogen Hybridization Before and After Oxidation

Once graphitic CsN or other conjugated structure is obtained, it should feasibly be

oxidizable and capable of intercalation. The originators of graphite-like CsN in Neil Bartlett's

research groupl-3,6-7 published numerous intercalation attempts and results for a plethora of

graphites and graphitic material. The reasons are unknown, but the same attempts were never

reported in regards to CsN which could have shed much detail about the nature of the material.

This observation forms one of the cornerstones of the current work where the carbons and

carbon nitrides produced are reacted with the quintessential oxidative intercalant

peroxydisulfuryl difluoride, S206F2, with the aim of revealing the reactivity and potential

graphitic character of CsN.

Despite the noble attempts of previous researchers, the true structural nature of CsN

remains unsolved. One aim of the current study is to exploit the advances in electronics and

instrumentation in the 20+ years since the graphite-like CsN was last reported in the literature.

While some of the original techniques used to characterize CsN in the 1980's were repeated in

this study, the quality and value of the data is considered to be greatly improved based solely on
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the advanced capabilities of modern instruments. In addition, newer techniques were also used

in order to gain further insights; such methods include solid stateNMR, high resolution electron

microscopy, electrochemical cyclic voltammetry, electron spin resonance (ESR), and

thermoanalytical techniques.

Another improvement which led to a better understanding in the chemistry and

preparation of CsN is the enhanced control over reaction conditions. The original researchers

were forced to use cold baths in order to control the vapor concentration of the reactants, a

technique which is ingenious but troublesome because the true temperature of the bath can

never be equilibrated due to the evaporation of substrate constantly cooling the medium and

thus changing the reactant concentration in the vapor phase. In this study, serial dilution of

static room temperature solutions of substrates can be directly measured for content by optical

spectroscopy and serially diluted using very accurate flow control and mixing equipment (see

Experimental section).

While direct structural characterization of CsN was not possible as a result of

randomized or poor order characteristics, additional insights can be gleaned by comparative

analysis of CsN. with graphite. Anticipating the dissimilarities between CsN and well-ordered

graphite a pyrolytic carbon prepared in the same manner as CsN was for providing a three-way

comparison in regards to the affect of the nitrogen.

Results

Synthesis

The literature descriptions for the synthesis of graphite-like CsN from Bartlett, Labes,

and Shen all lacked specific details regarding absolute rates, concentrations, reactant ratios, and
12



yields. Given this challenge it was worthwhile repeating the synthetic optimization described by

Shen. Using an updated flow system (described in greater detail in the Experimental section)

pyridine vapors from a 20 sccm gas flow at O°C were carried into a quartz furnace tube in either

nitrogen or helium. By incrementally increasing the reactor temperature under flow, it was

verified in accordance with Shen's thesis that pyridine is stable in the reactor alone at

temperatures up to 950°C for both carrier gases where it begins to form a black tar on the

cooler surfaces at the reactor exit. The FTIR of the reactor effluent also confirmed that pyridine

remained unchanged in the designated temperature range proving that pyridine alone was not

responsible for the formation of CsN. The same experiment was repeated with benzene

showing adecomposition onset at around 980°C.

Secondarily, it was important to optimize the reaction temperature. We knew from the

review above that nitrogen content in the prepared materials is compromised by excessive

temperatures, thus necessitating the lowest reaction temperature tolerable. Pyridine readily

reacts with chlorine gas under ambient conditions to produce chlorinated pyridine which is

sequestered as a salt by the hydrogen chloride byproduct. Accordingly, the two reactant

streams were kept separate up to the heating zone of the reactor. This was accomplished by

flowing nitrogen or helium at 20 sccm through dry pyridine at O°C into the reactor through a

smaller quartz inner-tube. This flow was complemented by the theoretical 5/2 stoichiometric

equivalents of chlorine gas diluted in an additional 20 sccm of the same diluent gas (N 2 or He) as

used for the pyridine. Starting at room temperature, the pyridine chlorination reaction was

readily apparent by the instant growth of white, needle-like crystals of the chloropyridine

hydrochloride salt. Small traces of HCI gas could be observed in the IR for the reactor effluent

possibly arising from multipl~ substitution reactions of pyridine by chlorine. The temperature of

13



the reactor was elevated in 100C increments. The first step change in behavior was at 120°C

where the pyridinium salts inside the reactor were volatilized and redeposited on the cooler

surfaces near the reactor exit. As the temperature increased, the HCI signal in the IR increased

steadily with temperature. At 400°C for both carrier gases, the deposit at the reactor exit began

to appear yellow which was later found to be perchloropyridine as evidenced by GC-MS analysis

in chloroform. No deposits were observed in the reactor heat zone when using nitrogen as the

carrier gas until the temperature of 760°C. Maximum deposition rates were observed at around

800°C, as reported as operating conditions by both Bartlett and labes when nitrogen was used

as the carrier gas. For helium, the deposition onset began at 6S00Cand maximum deposition

was realized at 700°C as described by Shen. The product possessed a lustrous-metallic

appearance as described in the Ii~erature. Under these conditions, copious amounts of HCI and

traces of HCN and cyanogen were observed in the IR of the reactor effluent. The dramatic

temperature difference between the onset temperatures when using the two different carrier

gases can be explained by the improved thermal conductivity and kinetic transport of helium

over nitrogen. Given this demonstration, helium was chosen as the carrier gas for all

subsequent studies and syntheses. As shown later, this disparity in temperature effect is also an

indicator of an apparent kinetic factor in the product's deposition. The procedure of optimizing

temperature, flow, stoichiometry, and carrier gas was not repeated for the preparation of the

benzene analog of CsN but rather directly transferred conditions for purposes of making a direct

comparison.

Following the optimization of conditions for the synthesis of CsN, it was important to

evaluate the appropriate stoichiometry of reactants, similarly to those laid out by Shen. Using

the W' quartz reactor tube, the initial optimization was targeted toward maximum yield.
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Operating at 700°C, the helium diluent flow for each reactant was kept at 20 sccm and the

pyridine purge solution was held at O°C; the chlorine stoichiometric equivalent relative to

pyridine was varied from 1 to 5. In general it was found that CsN could be deposited under all of

these conditions. However, at ratio equivalents less than 5/2 chlorine/pyridine, the

chloropydine-HCI salt and extensive tar depositions at the colder reactor exit were strong

indications of a loss of yield; the IR analysis of the exit gases indicated only increasing HCI

content as chlorine concentration increased and included traces of unreacted pyridine and

hydrogen cyanide. At concentrations of chlorine greater than 5/2 equivalents per pyridine, the

tar byproduct observed at the reactor exit transitioned to the crystalline, yellow

perchloropyridine. Analysis of the eXit gas by IR indicated no free pyridine while a steady HCI

concentration and chlorine gas became apparent its UV-Vis spectrum. The 5/2 chlorine per

pyridine indicates the optimum theoretical stoichiometry but in reality indicated the maximum

-
conversion of C-H bonds as evident by the concentration of HCI observed in the gas phase

without having excess free chlorine which tended to produce chlorinated impurities in the CsN

product. This stoichiometric ratio was carried throughout the synthetic regime. The

optimization procedure for stoichiometric balance of chlorine to aromatic substrate was not

~epeated for the benzene analog. Rather, the conditions were assumed to transfer ideally so

that the chlorine/benzene stoichiometric balance was changed to 3:1 in order to accurately

reflect the commensurate number of hydrogens on the benzene molecule.

Using the same %" reactor, an increased deposition yield was realized by increasing the

pyridine throughput by raising the bath temperature to 22°C and adjusting the chlorine to

match the optimum stoichiometry. Under these conditions, 20-22% isolated yields of CsN were

routinely obtained, but netting only 70mg of product per run. Repeating the above optimization

15



procedures at the higher rates of reactant throughput led to the same conclusions and did not

improve the net yield beyond the 22% listed above. The product thus obtained possessed

relatively high amounts (about 3% atom-mole) of chlorine as will be discussed later in greater

detail. All of the development work to this point was performed using a clam-shell furnace with

a 6/1 heat zone. The same reaction was then carried out using a furnace of 12/1 in length

affording double the yields ranging from 40-44% netting about 140mg of product per run.

Product thus obtained was found to contain about 1-2% atom-mole of residual chlorine.

This increase in yield by doubling the reactor heat zone was originally believed to be due

to increased surface area. Therefore, crossed quartz fins were placed through the length of the

reactor's heated zone to affect a three-fold increase in effective surface area but only to

discover that yields decreased to below 20% of theoretical. This was assigned to the effect of

the volume displaced by the fins and the commensurate decrease in residence time of the

reactants in the heat zone which will flow faster through the reactor because of the reduced

volume.

Without varying the feed flow conditions the %/1 reactor was replaced by a 1-1/4/1

reactor effectively tripling the reactor radial volume and consequently the reaction's residence

time. With this larger reactor diameter, a longer reaction heat zone, and optimized

stoichiometry the synthetic yield was increased to 70-74% netting an average of 4S0-S00mg of

product per 8 hour run. This product was found to have less than 0.1% atom-mole chlorine

which is believed to be the result of more efficient chlorine utilization. The enhanced residence

time affected by a larger reaction volume has been shown to directly affect yield and based on

the exclusion of surface area affects leaves few other explanations other than the concept that

the deposition reaction, although conducted at exceptional temperatures is kinetically limited.
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While the extension of quantitative kinetic evaluation of the CsN synthesis is obvious, it was

foregone in this study in order to assign the bulk of the focus on better understanding the

chemical nature of CsN in addition to its oxidized adduct.

In an attempt to vary the statistical probability of interconnecting nitrogen containing

rings and biasing the 'system with Sp3 rather than pyridinic nitrogen, piperidine was used as an

alternative reagent to pyridine. The reaction of piperidine with 10 equivalents of chlorine under

the same optimized conditions did not result in any deposition in the reactor hot zone but

rather the extensive production of a black tar on the colder portions of the reactor exit. Other

alternative reagents were also used in an attempt to derive better ordered or higher yielding

synthetic methodologies. These included 3-chloropyridine, 3-cyanopyridirie, 2,6-

dichloropyridine, and 2,6-dicyanopyridine each of which contained a pendant substituent likely

to eliminate to produce a thermodynamically stable and entropically favored gas byproduct of

either HCI or HCN. All of these materials are problematically solids of limited volatility,

precluding their transport into the reactor by the carrier gas. This was overcome by nebulizing a

solution of the precursor dissolved in the nitrogen-containing solvent, acetonitrile, directly into

.
the reactor heat zone. All the above precursors produced CsN but gave poor yields of less than

5% based on added substrate and barely produced enough product for elemental analysis. The

cyanopyridines did produce the gaseous HCN byproduct expected at 700°C as evidenced by IR,

and significant amounts oftar deposition were observed in addition'to CsN. The chlorine

substituted precursors reacted in similar fashion producing HCI as agas byproduct as observed

by IR of the reactor effluent, with the same distribution of tar and CsN formation. The poor yield

can be rationalized to some extent based on the absolute hydrogen to basic leaving group

(dither CN or CI) ratio. Elemental analysis confirmed that all of the deposits possessed a
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stoichiometric balance of CsN and it is worth noting that no chlorine contamination was present

in any of the products except for the dichloropyridine which contained only traces of the

undesirable element. It was determined to forgo development of these novel syntheses in

pursuit of generating multi-gram quantities of CsN and characterizing its structure by analysis

and chemical reactivity.

As will be discussed in greater detail in following sections, the products obtained by the

ambient pressure CVD process employed in this study produced a mixture of particle

morphologies as observed by electron microscopy, including lamellar graphite-like structures

and soot-like spheres. An initial attempt to bias the formation of the desired lamellar

morphologies was to significantly reduce concentration and throughput of the reactants to

about 100 parts per million (pp'!1) by volume in the reactor at any given moment and reduce the

flow of the carrier gases to less than 1 sccm as well. Numerous attempts at varying precursor

concentrations, ratios, and temperatures failed to produce any difference in this distribution but

only affected the independent size of the particles formed. It was concluded that the lamellar

structures are formed on surfaces while the spherical particles generated in the gas phase by

the same reaction and subsequently deposited at the surface. It seems reasonable that the

distribution of the morphologies remain unaffected with any changes because the reactants can

combine in the vapor space or at the surface in the same ratio regardless of concentration or

flow. In order to overcome this, a surface-specific reaction/deposition would be reqUired as is

often employed in vacuum CVD operations and catalytic point growth mechanisms, both of

which are not possible given the reaction enthalpy driving force for the system currently under

study.
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One final set of experiments toward the preparation of the most pristine CsN sample

were done to remove contaminant chlorine or undesirable particle morphologies. The first

attempt was based on flotation of particles in a tuned density mixture of bromoform and

chloroform; separation was unsuccessful. The solid products were also treated with room

temperature and refluxing solvents including acetonitrile, dimethylsulfoxide, N,N'-

dimethylformamaide, and N-methylpyrrolidinoneresulting in absolutely no extraction of soluble

solids or chlorine containing species. Thermal annealing of the product at temperatures greater

than 760°C for long periods of time induced some removal of chlorine as evidenced by TGA-IR

analysis but it was in the form of CICN and was accompanied by traces of HCN, cyanogen and

HCI indicating a net loss of nitrogen in excess of chlorine removal. At temperatures above 500°C

a reaction with hydrogen gas induced chlorine removal but was also accompanied by significant

"'

loss of nitrogen in the form of HCN gas. The addition of excess pyridine at 700°C induced

chlorine reduction in the product but enhanced the hydrogen content to undesirable levels.

Treatment of the solid with lithium deuteride, butyllithium, methyllithium, and

cyclohexylmagnesium bromide also significantly compromised the nitrogen content of CsN while

eliminating chlorine except in the case of the Grignard reagent for which only nitrogen was

removed. These latter reactions have led to the conclusion that CsN as produced in this work is

reductively unstable and possibly indicating why the work of so many researcher to make highly

ordered CxN with high nitrogen contents by metal-catalyzed CVD were unsuccessful since many

of them produce ammonia or hydrogen as byproducts.

In summary of all of the synthetic methods tested here, it was decided to proceed with

the synthesis as modified from the reports of Bartlett and Labes. Net yield and overall yield
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were optimized to an acceptable level and the reduction of chlorine contamination was realized

in the process of driving to higher yields and thus better chlorine utilization.

In order to provide a thorough description of the best selected conditions for this

investigation that is also the basis for the bulk preparation of CsN, they are reiterated here for

completeness; a more thorough description of peripheral equipment can be found in the

Experimental section. Using a 1-1/4" diameter quartz furnace tube and a tube furnace with a

12" long heat zone, pyridine and chlorine were reacted to deposit CsN on a repeated basis at

700°C. Pyridine was introduced into the reactor by passing helium gas at 20 seem through a

solution of the liquid at 22°C; since the lab temperature was continuously above 25°C there was

no risk of reactant condensation wlikh could change the vapor concentration of pyridine.

Chlorine was introduced at 5/2 the stoichiometric balance of pyridine and was diluted in a

second stream of helium at 20 seem before being carried to the reactor. The deposition was

allowed to continue for 8 to 10 hours followed by collection of the cooled product in air.

The benzene derived analog material was prepared in as similar a manner as possible.

For comparative reasons, it was deemed important to maintain the same vapor concentration of

precursor as used in the CsN synthesis. Since benzene is considerably more volatile than

pyridine, its method of introduction to the carrier gas was slightly modified. To accomplish this,

helium was passed through liquid benzene at a rate of 7.8 sccm. This stream of gas was further

diluted with 12.2 seem of additional helium before entering the reactorr The ratio of chlorine to

benzene was modified to 3:1 now reflecting the C6H6 +3 Ch 7 6 C+ 6 HCI reaction

stoichiometry. Otherwise, the conditions were identical.

Additional details on each of the synthetic developments and endeavors can be found in

the Experimental Section of this work.
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CSN Characterization and Comparison

The critical analysis of CsN as produced in this study has confirmed some aspects of the

previous literature and brought to light some different or interesting observations. The analyses

described here were performed on material provided by the optimized synthetic process.

One of the simplest and potentially introspective analys~s of modified materials is
.. .' . . .

usually possible using vibrational spectroscopy. However, black-body materials such as the

pyrolytic carbons derived from this study do not offer themselves simply to analysis by reflective

surface IR spectroscopy or transmission spectroscopic methods. Both of these methods were

tried on film and powder samples with no observable signals. High pressure attenuated total

-
reflectance-FTIR analysis of CsN on a diamond anvil press enabled very weak duplicate spectra

to be obtained as seen in Figure 3 from the same sample pressed twice for analysis.
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Figure 3 - ATR-FTIR spectrum of CsN
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It is difficult to discern any distinct vibrations in relation to CN moieties but there are

weak signals observed in the low frequency region that coincide with graphitic planar

deformations. In light of this result, the benzene analog to CsN and pure graphite were not

comparatively analyzed by this method.

Because ofthe scattering nature of confocal Raman spectroscopy, it does however offer

the ability to analyze the surfaces of black bodies. The Raman spectra of CsN obtained from the

various synthetic conditions showed no significant differences. In general, the spectrum of CsN,

shown in Figure 4, was very weak but does show broad bands for the Gand 0 vibrations of

graphite-like carbons. The weak signal, broadness, and lack of intensity difference for the Gand

obands indicate a relatively amorphous material86
•

Figure 4 • Raman spectrum of CsN

It is reasonable to expect that the symmetry of the normal vibrational modes of graphite would

be seriously disrupted by the nitrogen substituent giving rise to spectra of poorly ordered

materials, thus the Raman spectrum of the benzene analog to CsN was obtained as shown in

Figure 5.

22



Figure 5 - Raman Spectrum of Benzene Derived Analog of CsN

The apparent-improved signal intensity and line sharpness ofthe Gand Dbands of the benzene

analog relative to CsN supports the idea that nitrogen distorts the order and symmetry of the

vibrational modes of a graphite-like material, assuming that the materials are structurally

similar. The ratio of the bands for this analog, however are indicative of a highly amorphous

material. A comparison to graphite and amorphous carbon soot is provided in Figure 6. The

sharp features, high intensity, and peak ratios of the Gand D bands all indicate a relatively high

quality graphite material while the soot spectrum resembles that for the benzene analog

discussed above.
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Figure 6 - Raman Spectra of Commercial Graphite (top) and Amorphous carbon (bottom)

In summary, the vibratio"!al spectrum of CsN indicates that it is highly amorphous but

with the desira~le Sp2 hybridized features of a,graphite-like material. None of the observed

spectral bands indicate the presence or nature of the entrained nitrogen.

Another analytical measure of order and function is X-ray diffraction (XRD). CsN

continues to display poor orderihgcharacteristics as seen in its powder XRD pattern (Figure 7).

Two broad features show lattice spacing consistent with those of graphite. The broadness and

reduced intensity of this spectrum indicate either a very limited amount of order or order on a

micro-crystalline basis. The d-spacing of 3.6-3.7 angstroms coincides with the graphitic inter-

planar spacing.
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Figure 7 - XRD ofCsN

The benzene analog also produces aweak XRD pattern as displayed in Figure 8. This

continues to confirm the poor ordering of materials produced by low temperature pyrolytic

condensation.
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Figure 8 - XRD of Benzene Analog to CsN
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In stark comparison, the XRD of agraphite standard displays more considerable detail as

seen in Figure 9, showing strong, sharp features of a well-defined crystalline matrix with pristine

interlayer spacing.
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Figure 9 - XRD of Graphite Standard

X-Ray photoelectron spectroscopy (XPS) coupled with electron spectroscopy for

chemical analysis (ESCA) is a method for validating the elemental composition and chemical

environment for atoms near the surface of asubstrate. Both films and ground powders gave

similar results for CsN at the surface and ESCA confirmed the CsN composition but also indicated

the presence of chlorine as discussed earlier. Sputtering into the surface in order to ascertain

homogeneity caused damage to the specimen in the form of nitrogen loss as confirmed by bulk

elemental analysis; this point app~ars to have been missed in Shen's thesis as he concluded that

nitrogen content actually decreases as the surface is penetrated with ion sputtering. Oxygen

was observed in the ESCA analysis of all materials in this study. The carbon and nitrogen
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C1'S

environments in the XPS spectrum shown in comparison with graphite in Figures 10 and 11,

respectively, indicate graphite-like Sp2 hybridization and reduced order as seen in the broad

features of the Cis binding energies. The Nls shows two distinct regions of binding energies

assigned as a distorted tertiary-amino Sp3 at 401 eV and pyridyl Sp2 at 397 eV in nearly equal

amounts.
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Figure 10 - XPS C1s Region of CsN (broad) Compared with Graphite (sharp)
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Figure 11- XPS N1s Region of CsN (signal) Compared with Graphite (baseline)

This 1:1 ratio of pyridyl to amino nitrogen sites is quite different from that reported by Shen at

nearly a 1:5 pyridyl/amino comparison. There may be several explanations for this. One

concept to consider is that the synthesis employed in this study produced smaller domains or
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more defects with increased edge sites. Another explanation may be that modern equipment
,.(

ehables a deeper analysis into the sample surface giving a much broader representation of the

material. Assuming that pyridyl nitrogen atoms represent sheet edges and amino nitrogens

represent internal sheet placement, a1:1 ratio of each would limit sheet size from 5-12 pyridine

equivalent units pe~ sheet assuming that the sheet bears a 2-dimensional proportional balance

and allowing for rantiom orientation of the nitrogen atoms. These would be considered very

small domains and would give an explanation to the extensive lack of order described thus far. .

for CsN.

The benzene.analog to .c~N also displays a broad, graphite-like C1s band as seen in

Figure 12 and iJ also consistent with a disordered material.
.'
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Figure 12 - XPS Cis Region of Benzene Analog of CsN

Of course, chlorine was not observed for the graphite standard but was present in both

CsN and its benzene analog. Figures 13 and 14 show the CI2p XPS spectra of each indicating two

chlorine environments bonded to carbon; the signal at 202 eV appears to be consistent with Sp3

hybridized or internal sheet bonded carbonwhile its complement at 200 eV primarily indicates

chlorine bonded to aryl units or to the edge of a sheet. The quantitative ratio of internal to edge
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for each is very similar, 1:3 respectively. This number is not used in similar fashion as nitrogen

to determine sheet size as too many unreasonable assumptions must be made in order to do so.

Both materials also show a small signal at approximately 195 eV which coincides with chloride

ion, a phenomenon'that currently raises no explanation except for the possibility of trace

contaminants such as metals or silicon, none of which could be detected directly by XPS.
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Figure 13 - XPS CI2p Region for CsN
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Figure 14- XPS CI2p Region for the Benzene Analog

It is noted that the chlorine content for CsN obtained from the optimized synthesis is relatively

low at less than 0.1% mole as opposed to the benzene analog which possessed nearly 1% mole

of chlorine. Neither group originally reporting these materials in the 1980's indicated the nature

of the chlorine contaminants as described here.
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Closely following the ESCA results, it was necessary to validate the surface analysis with

bulk elemental composition analysis for both CsN and its benzene analog (graphite was not

analyzed). Table 1 below shows the comparison of elemental composition for each material

bearing in mind that only C, H, N, and CI analyses were obtained of which the balance is

assumed to be represented by oxygen.

Table 1 - CHN & CI analysis of CsN and Its Benzene Analog

Product %molC %molH %molN %molCI

CsN 76 1.1 18 0.2

Benzene Analog 90 Not detected 1 4

This confirms the bulk empirical formula of CsN and agrees reasonably with XPS results. Also

consistent with the XPS comparisons is the significant difference in chlorine content between

the two species. It may be reasonable to conclude that benzene condensation is kinetically

more limited than pyridine and may have required additional synthetic optimization to enable

more efficient use of chlorine as was found for the CsN case. This could possibly be the subject

of a future study.

Additional insightinto the prepared materials was also obtained by scanning electron

microscopy (SEM) with simultaneous energy dispersive spectroscopy (EDS). Both CsN and its

benzene analog show a mixture of two different morphologies. The prominent and more

desirable morphology is the lamellar or plate-like structure that resembles graphite as shown in

Figures 15 and 16 for each. For both samples, these plate-like particles represent about 75% of

the observed morphologies.
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Figure 15 - SEM Micrograph of CsN Lamellar Structure

Figure 16 • SEM Micrograph of the Benzene Analog Lamellar Structure

The EOS spectra of each of these particles are as they appear in Figures 17 and 18. The nitrogen

signal forCsN cannot be resolved as it appears only as avery weak signal on the shoulder of the

carbon peak. Chlorine is observed for the CsN lamellar structures but not for the benzene

analog which is unexpected based on the elemental composition analyses already discussed.

The metal content in the benzene analog are attributed to focal devolution picking up scattering

from the support grid.
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Figure 15 . SEM Micrograph of CsN lamellar Structure

Figure 16 - SEM Micrograph of the Benzene Analog Lamellar Structure

The EDS spectra of each of these particles are as they appear in Figures 17 and 18. The nitrogen

signal for CsN cannot be resolved as it appears only as a very weak signal on the shoulder of the

carbon peak. Chlorine is observed for the CsN lamellar structures but not for the benzene

analog which is unexpected based on the elemental composition analyses already discussed.

The metal content in the benzene analog are attributed to focal devolution picking up scattering

from the support grid.
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Figure 18 - EDS of Lamellar Structure of Benzene Analog

The second morphology observed in both cases is a soot-like spherical particle as in

Figures 19 and 20. These represent nearly the balance of the particles observed for both

condensation products. Neither of the original authors described the presence of such
'--

morphologies in their materials. They were se.en in all products obtained throughout the

synthetic optimization process and did not change in relative quantity with varying conditions

(most likely a result of operating at atmospheric pressure).
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Figure 19· SEM of Soot Particles of CSN

Figure 20 - SEM of Soot Particles the Benzene Analog

It is hypothesized that these spherical particles are formed and propagated in the vapor phase

while the plate-like materials more likely grow on a surface. As already discussed, attempts to

separate materials these two morphologies was unsuccessful.

The EDS spectra of these spherical materials are displayed in Figures 21 and 22. Bearing

in mind that it is important to be cautious when drawing quantitative conclusions from EDS, it

does appear that chlorine content in the spherical particles is higher than those of lamellar

structure. This may support the concept that they are formed and propagated in the vapor
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"< Figure 19 - SEM of Soot Particles of CSN

Figure 20 - SEM of Soot Particles the Benzene Analog

It is hypothesized that these spherical particles are formed and propagated in the vapor phase

while the plate-like materials more likely grow on a surface. As already discussed, attempts to

separate materials these two morphologies was unsuccessful.

The EDS spectra of these spherical materials are displayed in Figures 21 and 22. Bearing

in mind that it is important to be cautious when drawing quantitative conclusions from EDS, it

does appear that chlorine content in the spherical particles is higher than those of lamellar

structure. This may support the concept that they are formed and propagated in the vapor
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phase where the chlorine reactant is likely to be more abundant than at the surface where the

plate-like structures are more likely to grow.
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Figure 22 • EDS of Soot-like Benzene Analog
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At this point it is presumed that these spherical particles are 3-dimensional solids and are not

hollow based o,n the concept that fragments of these spheres are not observed and that

multiple attempts at their microtomy were unsuccessful.

Obtaining additional structural and morphological information using SEM is not

practically feasible, so the samples were further studied using high-resolution tunneling electron

microscopy, or HRTEM. CsN was observed at high resolution as shown by the micrograph in

Figure 23.
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Figure 23 • HRTEM of CsN

This micrograph shows a material that is largely amorphous although some layers and molecular

sheeting can be observed indicating some graphitic character. It is important to note that all of .

the particles observed under high magnification appeared lamellar in nature and did not present

the spherical morphology that was seen in the SEM. Also, none of the observed particles

displayed diffraction behavior or fringes indica~ing the consistent amorphous nature of the

material at hand.

The benzene analog HRTEM displayed in Figure 24 shows similar traits to that of CsN

confirming the amorphous products derived from the synthetic methods employed. This edge

feature at a slightly reduced resolution is representative of both materials, showing no evidence

of long-range stacking or scattering features indicating at best the presence of very small

crystalline domains.
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Figure 24 - HRTEM of Benzene AnalC?g

The magnitude of disorder in the these samples is brought into sharp contrast when compared

to the remarkable regularity observed in pristine, crystalline graphite as reported in the

literature87 and reproduced in Figure 25.

Figure 25 - HRTEM of Graphite
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Electron energy loss spectroscopy, or EELS, was also performed during the HRTEM

experiment in order to provide additional information. The peak position in EELS does not

reveal much about materials other than the identity of an individual element and is not helpful

in quantitative determinations. EELS can, however, reveal some electronic characteristics about

a material based on the shape, intensity, and broadness of the spectrum. The EELS spectra of

CsN flakes displayed in Figures 26 and 27 were acquired at particle edges where the zero loss

peak intensity relative to the nitrogen and carbon edges indicates the correct thickness of the

sampling area. These spectra are representative of multiple sampling sites.
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Figure 26 - EELS spectrum of CsN Carbon K-edge

37



Nitrogen K-edge of Particle 1

15000

Fullspeclrum

10000

5000

400 410 420
energy 1088, eV

430 440 450

Figure 27 - EELS spectrum ofcsN K~edge

Both of these spectra show very broad 0-0* transitions indicating a suppressed

conduction band and thus reduced order as compared with graphite. Both also show a

prominent and somewhat broadened n-n* transition at the lower energy indicating a modest

participation ofthe n electrons in a delocalized bonding system. Figure 28 shows for

comparison, the EELS spectrum of the carbon-edge for the benzene analog to CsN. It is

relatively similar to that of CsN with the exception that the n-n* transition appears to be

somewhat shifted and diminished possibly due to reduced conductivity of the sample that may

be a result of the relatively high chlorine substitution that in theory would disrupt aromaticity.

The chlorine edge could not be observed for either sample.
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Figure 28 - EELS Spectrum of Benzene Analog Carbon K-edge

The EELS spectrum of graphite as known from the Iiterature88 displays a significant n-n*

transition shifted to lower energies owing to the conduction band of the highly ordered

-
material. The main 0-0* transition is represented by avery sharp peak spanning only 10 eV.

From this comparison, one can co.nclude that the CVD materials obtained in this study should

display suppressed conductivity as a result of extended and overlapping aromatic structures.

This conductive behavior was confirmed for films deposited for both CsN and its

benzene analog by measuring conductivity using a4-point probe. As the inverse of conductivity,

sheet resistance was measured for CsN and was consistent with that reported by Shen at 300 O.

Commensurate with the EELS determination the benzene analog to CsN displayed a higher

resistance 460 O. The Iiterature89 sheet resistance value of graphite is 47 O. This comparison

further demonstrates the disrupted order of the materials prepared in this study as a result of

reaction conditions and possibly due to bonded elemental impurities including chlorine.

Cleaning of the surface of the films with solvents reduced the conductivity values by about 5-

10% indicating either contaminating of the surface with impurities or by the removal of doping

impurities, none of which could be detected by evaporation of the wash liquids as described in

the experimental section.
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The conductivity in graphite is made possible by singly occupied molecular orbital

conduction bands. Electron paramagnetic resonance (EPR, or Electron Spin Resonance/ESR) of

CsN was performed in order to evaluate the material for evidence of such a conduction band.

The spectrum in Figure 29 clearly indicates that CsN truly possesses unpaired electrons. Many

amorphous carbons produce EPR signals that are due to open radical sites of stabilized radicals

rather than associated with conduction bands. We can see that CsN's EPR signal is due to a true

conduction band because of its shift from the free electron g-value of 2.0023 to a smaller

number of 1.9983 in addition to the dysonian line shape which is acertain sign of a true

conductor9o
• The original tactic of the EPR work was to use the line shape, intensity, and

broadness to estimate the actual size of graphitic sheet domains91
• It was discovered in the

process, however, that in order to use the known correlations it is imperative to account for all

of the carbon in the sample gravimetrically and in the EPR. This was not possible because it

became apparent that not all domains in the sample were conductive and the attempt was

abandoned. This experiment did, in contrast, confirm the graphite-like conductivity that is

desirable for truly nitrogen-doped graphite. A more highly ordered material would provide a

most interesting future study for EPR analysis. Due to lack of accessibility, cost, time, and the

inconclusive nature of the results for CsN the EPR spectra of the benzene analog and graphite

were not pursued.
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Figure 29 - EPR Spectrum of CsN

Solid state NMR analysis has only become a mainstream method in recent years and

was not previously performed with CsN or any of the materials similarly produced. One

potential problem with the analysis of the materials considered in this investigation is that they

are all conductive and could possibly induce damage to the instrument by causing electrical

arcing during magnetic pulse sequences. Another concern was that the paramagnetism of the

materials may preclude seeing any signals. Very small samples were used to avoid the former

problem. As presented here, signals were obtained including for that of the highly conductive,

crystalline graphite. Figure 30 displays the stacked 13C-NMR spectra of 13C-enriched commercial

amorphous carbon, commercial natural graphite, commercial synthetic graphite, CsN, and its

benzene analog.
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Figure 30 - 13C_NMR Spectra of Various Carbons

It was surprising to find that CsN and its benzene analog share asimilar spectrum

indicating aromatized Sp2 carbons. These spectra are remarkably simpler than would be

expected. The signals overlap similar regions observed for graphite and amorphous carbon

while the latter show additional complexity attributed to varying chemical domains. This

supports the designation of the materials under study as graphite-like.

In order to obtain improved chemical information about the nature of the nitrogen in

CsN, a lsN-enriched product was obtained from the enriched pyridine precursor and its lsN-NMR

spectrum was obtained as displayed in Figure 31.
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Figure 31- 1SN-NMRof lSN-enriched CsN

Here there are two clear chemical environments at approximately -200ppm and -100ppm. The

signal near -100ppm possesses a spinning side band at higher fields. This peak is assigned to Sp2.

hybridized pyridyl nitrogen while that at -200ppm is consistent with aryl-bonded tertiary amine.

The integral analysis of each of these indicates approximately 1:1 quantitative correlation. This

is remarkably consistent with the XPS results and supports that the XPS analysis most likely

represents the bulk material and is not just a partial sampling limited to achemically unique

surface. Again, this information supports the concept that the CsN produced in this study

possesses the correct structural bonding of a nitrogen-doped graphite-like material that is

lacking order.

Finally, it was deemed important to evaluate the oxidation onset potential for CsN in

comparison with its benzene analog and graphite. This experiment can potentially say
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something about the chemical environment in CsN. Preparing each carbon substrate as an

active electrode (see experimental section) enabled cyclic voltammetry to be performed on CsN,

its carbon analog, and graphite in a 1M solution of LiPF6 in a mixture of ethylene carbonate and

dimethyl carbonat~. The oxidation onset potential as classically defined92 for CsN at 5.20 V

(Li/Li+) was nearly 170 mV lower than that of its benzene analog and 620 mV less than graphite.

This general trend is expected based on what is>,known about relative order and the effects due

to nitrogen. CsN also demonstrated semi-reversible behavior indicating the presence of some

graphitic character, however the current for the reversible behavior decreased by nearly 10-fold

for each potentiometric sweep cycle. The benzene analog did not display any reversible

behavior while graphite displayed crisp reversible behavior, validating its robust properties that

enable its commercial exploitation in battery electrodes. A summary of the comparative

electrochemical data can be found in Table 2. These electrochemical relationships are difficult

to summarize but do confirm that nitrogen doped carbons are more easily oxidized. Having a

more highly ordered CsN may enable more suitable reversibility allowing a more direct

comparison with graphite. The non-reversible behavior of the benzene analog remains a

curiosity.

Table 2 - Electrochemical Behavior of Carbon Substrates in LiPF6 solution.

Substrate Oxidation Onset (V vs. Li/Li+) Reversibility Per CV Cycle

CsN 5.20 ~10%

Benzene Analog 5.37 0%

Graphite 5.82 >95%

The culmination of the analytical evaluations described for CsN in comparison with its

benzene analog and graphite largely indicates that the material as formed in this study is highly
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amorphous but possesses the appropriate bonding to be classified as a graphite-like carbon.

Many of the studies described here confirm much of that reported by Bartlett and labes in the

1980's. The major difference in the reports and observations in this study are mainly centered

on the relative qua-ntity of the two different types of nitrogen centers. This difference may be

real, but may also be attributable to the application of more precise and advanced analytical

instrumentation. By comparison with the benz~ne analog of CsN and pristine graphite, it is

concluded that the synthetic method and conditions are the determining factor in the

acquisition of the poorly ordered products leaving way for future improvements in synthetic

methodology. Some of these improvements may include but are not limited to the use of

catalysts to enhance surface-specific growth, the application of hydrogen-deficient precursors

such as cyanogens, and a high-pressure, high-temperature curing method such as the

application of a multi-anvil press as suggested by Professor landskron.

Intercalation/Reaction

One quite novel application of the current study is the attempt to oxidatively intercalate

CsN and its benzene analog, which is historically aquintessential test for graphitic character and

oxidative chemistry. One of the most controllable and clean oxidants for intercalations of

graphitic materials is peroxydisulfuryl difluoride, or S206F2'

The utilized preparation of S206F2 closely follows that developed by Bartlett, et al.93 and

is based on the reaction of xenon difluoride with fluorosulfuric acid and is described in greater

detail in the Experimental section. One new observation in regards to its preparation and

storage is that FEp™ appears to be unsuitable as the S206F2 was found to swell the polymer and

bleed through hydrolyzing on the exterior in contact with moist air. To solve this problem, CTFE

polymer or alloy 400 vessels were used without additional problems.
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The method of reaction of CsN, its benzene analog, and graphite with S20SF2 was

adapted from one of the experiments described by Biagioni94 in which the solid carbon

substrates were treated with the peroxide's vapor at room temperature until no further

pressure drop was observed, over a number of hours. All three substrates adopted a blue-tint

upon completion of the S20SF2 addition, indicating at least a minimum graphitic character; the

graphite produced a deep blue material, CsN wa$.slightly blue, and the benzene analog only

produced a blue hue when illuminatedwith a bright halogen or incandescent source. After

thorough evacuation, the gravimetric uptake of S20SF2 was equated to an empirical formula of a

fluorosulfate derivative as summarized in Table 3.

Table 3 - Gravimetric Uptake of SzOsFzon Carbon Substrates

Substrate %wt Increase Estimated Empirical Formula

CsN 12 CSSNll-OS02F(or [CSN]11-0S02F)

Benzene Analog 7 C120-OS02F

Graphite 42 C20-OS02F

This variable uptake of peroxide demonstrates the lack of order in the samples prepared

by atmospheric reactive condensation. If the original investigators of CsN attempted its

intercalation with S20SF2, it is possible that it was never reported as a result of the poor success

of the test; alternatively it may have been determined to be of little value since the

characterization of amorphous materials is often inconclusive. Nonetheless, this is the first

report the reaction of graphite-like CsN and its benzene analog with S20SF2 and their analysis as

covered in the following section.
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Analysis of Sz06Fz reacted material

The carbon materials treated with SZ06FZ were analyzed by Raman confocal

spectroscopy inside of FEP sample tubes. In general CsN and its benzene analog do not show

any shifts in frequency or relative intensity for the Gand D-bands indicating little actual

intercalation of graphitic domains but rather surface oxidation. These can be observed in

Figures 32 and 33 respectively. The strong signals at 800cm·1 for fluorosulfate86 are present in

both species. The fluorosulfate signal in the CsN is relatively stronger than that of the benzene

analog which is consistent with the observations in the gravimetric uptake of SZ06FZ'

Subtraction Result:·101619.021WB-C5N·~t in FEP tube 120X! 532nm, 20mW 1600 sec x 1 aa:u
llYR·1 JC5N Jblack zone J80Xulwd J532nm.10mW J16sec x1accum

3000 1500 1000 500

Figure 32 - Comparative Raman Spectra of CsN (bottom) and CsN Treated with Sz06Fz (top)
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Figure 33 - Raman Spectra of The Benzene Analog (bottom) and That Treated with Sz06Fz (top)

In stark contrast, graphite (Figure 34) shows a significant reduction in the G-band intensity and a

shift in band frequencies indicating contracted bond order due to the oxidation of the graphite

matrix. As expected, the intercalation markedly reduced the order of the system as apparent in

the relative G/D band intensities. The fluorosulfate bands are also much larger than those from

the CsN and mirrors the gravimetric observations;
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Figure 34 - Comparative Raman Spectra of Graphite (bottom) and Graphite Treated With SI06FI (top)

The XRD analysis of the same carbons treated with Sz06Fz indicate a significant loss of

order to all carbons including the graphite shown in the overlaid spectra of Figure 35.
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Figure 35 - XRD of CsN (bottom), its Benzene Analog (middle) and Graphite (top) Treated With Sz06FI
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Here the peaks at 23-250 26 indicating the correct spacing for non-intercalated graphites have

been somewhat diminished in intensity relative to the untreated materials indicating further

loss of order upon reaction. Very small signals for graphite and the benzene analog can be

observed at 11-120 26 indicating increased c-spacing to 7.6A from 3.7A and some ordered

intercalated layers. The CsN spectrum does not show such a peak. It is not unlikely for

intercalated graphites to show diminished order parameters at intermediate or excessive levels

of intercalation, however, shifts in the observed spacing does validate the presence of graphitic

domains.

The XPS analysis of the S206Frtreated carbons was also recorded in order to better

understand the nature of the materials after oxidation with the peroxide. The Cis spectra of

each (Figures 36-38) show the original binding energies for aromatic Sp2 carbons at 285 eV in the

addition to a shoulder at 288 eV indicating carbons bound to the fluorosulfate intercalate. The

quantitative analysis of these peaks relative to one another are consistent with the correct

stoichiometry estimated by the gravimetric method described earlier with peroxide uptake

decreasing on the order of Graphite»CsN>Benzene Analog.
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Figure 36 - Cis Spectrum of SZ06FZ Trea~ed CsN
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Figure 37 - Cis Spectrum of Sz06Fz Treated Benzene Analog
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Figure 38 - Cis Spectrum of Sz06F2 Treated Graphite

The Nis spectrum (Figure 39) of the treated CsN does not vary much from that of the starting

material indicating no apparent shift in charge from the nitrogen and no change in bond order

as might have been expected from such a powerful oxidizer as S206F2' However, the Cis spectra

which do indicate shifts in bonding order and hybridization as a result of oxidative substitution.
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Figure 39 - Nls Spectrum of Sz06Fz-treated CsN
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The comparative ESCA analyses of each of the treated carbons indicates that no chlorine

was lost in the course of the reaction and no nitrogen appears to have been lost from CsN as it

retains the appropriate C/N stoichiometry. The F, S, and 0 binding energies are consistent with

those of fluorosulfate for each material at 686, 168, and 532 eV, respectively. The F/S/O/C

ratios are all consistent with the estimates of gravimetric uptake with the exception that the

oxygen in all samples are on the order of 2-3% mol higher than expected, possibly due to having

already been in the starting material or due to some hydrolysis of the fluorosulfate anion by

adventitious moisture. The CHN, S, CI, and Felemental analysis of each material confirmed

these results to within 2% mol deviation. The XPS analysis has confirmed the reactive

substitution of S206F2 onto each of the three carbon substrates, and does indicate a lack of order

on the laboratory prepared mate~ials as a result of their reduced uptake but still indicates a

small amount which escalates expectations for future studies to produce higher ordered

materials without loss of nitrogen.

In following the results of the XPS chemical environment analysis, solid-state NMR was

performed in order to complement this understanding. The 19F-NMR of the three materials

(Figure 40) shows a relatively interesting phenomenon in regards to the fluorosulfate signals.

There appears to be two different peaks; the most prominent peak in each of the materials is

attributed to anionic fluorosulfate while a second signal at higher fields is indicative of carbon­

bound fluorosulfate. In addition, some traces of HF at lower fields can be observed, possibly

due to handling methods.
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Figure 40 - 19FNMR of Sz06FrTreated CsN (center), Benzene Analog (top), and Graphite (bottom)

The Be NMR spectra for the treated materials are similarly displayed in Figure 41. Overlaid with

their spectra prior to fluorination, one can see that little change is observed in absolute

chemical shift within experimental uncertainty. The exception to this is in regards to the carbon

spectrum of the intercalated graphite now showing an extremely sharp peak possibly due to the

disruption of the systemic conductivity upon intercalation allowing a sharper spectrum to be

obtained.
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Figure 41· 13CNMR of Sz06Fz·Treated CsN (center), Benzene Analog (top), and Graphite (bottom)

The signals due to nitrogen as seen in Figure 42 show no deviation from those of the starting

materials. This is consistent with the observations made by XPS and further indicates that there

is no definite change in electronic structure for the nitrogen regions of the CsN after oxidative

treatment.
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Figure 42 - lSNNMR spectrum of S206F2-Treated, lsN-enriched CsN
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High resolution TEM of the treated materials (Figures 43-45) shows asignificant

reduction in order in comparison with the untreated precursors. The graphite image does show

a measurable increase in the interlayer spacing which is consistent with intercalation theory but

also displays considerable domains of relatively amorphous clustering. While some layering and

extended networks could be observed in the CsN and benzene analog precursors, none of these

features could be found after treatment with S206F2, making difficult the direct observation of

microscopic intercalation mechanisms.

Figure 43 • HRTEM of S206F2-Treated Graphite
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Figure 44 - HRTEM of Sz06Fz-Treated CsN

Figure 45 - HRTEM of Sz06Fz-Treated Benzene Analog

The EELS spectra collected from these images confirm the detracted order of each of the

treated samples. As seen in the comparative examples of Figures 46-48, the broadness of the

carbon edge signals generally indicate amorphous carbons which maintain a reasonable amount

of Sp2 character as evident from the n to n* position and intensity.

57



2DC1lOOO

ooסס50

475425375

erIuev,eV

o~-.....-......,......-.......-......,.......,._.........,......,.......-..........,.....,
275
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Figure 48 - EELS C-Spectrum of Sz06Fz-Treated Benzene Analog

The nitrogen-edge EELS of treated CsN was also obtained and may be viewed in Figure 49. Here,

the spectrum appears to be subdued in intensity and is attributed to signal dilution caused by

the additional atoms represented by the fluorosulfate substituents. The spectrum has not

changed, though, from its precursor, still showing measurable Sp2 character as evident from the

n to n* position and intensity.
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Figure 49 - EELS N-Spectrum of Sz06Fz-Treated CsN

The EELS spectra in this case are confirming the loss of order and lack of an effect on the general.
chemical environment that reaction with S206F2 has on these carbon substrates.

Due to the prohibitive cost and time required for continued analysis, the pursuit of S, F, 0, and

CI edge spectra were not ensued; these however, may prove interesting to study in future

investigations in order to evaluate if and how they may affect the delocalized electrons of the

graphite-like materials.

Summary

The nature of CsN is based on poorly ordered Sp3 and Sp2 nitrogens bound in a matrix of

Sp2 carbon. Hydrogen and chlorine contamination is also present in small quantities. As

previously reported for CsN, it is electrically conductive but somewhat less so than pure

graphite. The diminished order is not due to random placement of or sheet deformation caused

by nitrogen but appears to be primarily due to the synthetic process conditions as discerned

from the analog produced by reacting of benzene with chlorine. XRD analysis does indicate

trace evidence of sheet spacing similar to that of graphite but on a sparse and very small scale.

This was confirmed by HRTEM observatio.ns of non-planar sheets overlapping in isolated

domains. The presence of nitrogen does have an apparent effect of reducing the oxidation

onset potential.
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Attempts to "intercalate" CsN have led to an interesting set of results. The reaction of

all three carbon substrates led to materials that were poorer in order, possibly due to the

disruption of inter-sheet order even on the smallest scale. The spectroscopic analysis of the

products confirms the presence of fluorosulfate substituted carbon in all three substrates. This

latter point does not confirm the presence of graphitic domains but does prove aromatic

oxidation chemistry. It is interesting to point out that the nitrogen atoms did not adopt some

positive charge upon reaction with S206F2 as was originally ~ypothesized. This could be due to

an effect of the tertiary amino nitrogen atoms activating the extended carbon rings toward

oxidation substitution chemistry.

These points confirm the original designation of CsN as "graphite-like". The need to

better understand the utility and properties of a single phase of CsN which is graphitic still exists.

The thermal annealing of CsN to agraphitic state is not directly possible due to the excessive

loss of nitrogen. Dr. Landskron has suggested that annealing the CsN at high temperature and

pressure may be a more direct route to obtaining small quantities of highly ordered material to

study and learn from. Future investigations may need to be centered around attempts to

graphitize CsN as it is known today in order to better characterized its beneficial properties as a

highly ordered material rather than attempting numerous other methods of depositing a

thermally and reductively sensitive material. Alternative synthetic methodologies would most

likely be pursued upon finding evidence of promising and useful properties. Such syntheses

should be designed to maximize deposition at the surface and incorporate substrates that do

not induce hydrogen and chlorine contamination in the product. Without obtaining a more

highly ordered CsN, complex and expensive analytical methods such as neutron diffraction­

paired distribution function analyses would be required.
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Experimental

Safety

A number 'of the reactants and byproducts employed in the synthetic schemes in this

study are potentially hazardous and/or toxic. Chlorine, xenon difluoride, benzene, pyridine,

hydrogen fluoride, peroxy disulfuryl difluoride, cyanogen, cyanogen fluoride, and hydrogen

cyanide each represent materials that are either highly reactive, highly toxic, or both and should

be researched thoroughly and hazards considered carefully before using or making them. Of

particular concern is the potential for HF exposure, which has the unique ability of inducing

fluoride intoxication even with small exposures to any surface of the body. Calcium gluconate

antidote should be considered as an anti-active in the chance that an HF exposure is obtained.

High temperatures are employed in various steps of experimental procedures and may

present potential for burns. High temperature surfaces and heating elements may also provide

active surfaces that can initiate violent reactions or ignition of flammable materials.

Glassware-and quartz are used under extreme conditions and slight pressures giving the

possibility for fracturing and exposure to sharp pieces. Glassware should be carefully inspected

for defects and cleaned thoroughly before and each use.

Gases under high pressure are also employed in this study. Careful consideration and

designs should be exercised in their deployment to ensure that no other system components

can be over-pressurized or expose the operator to any toxic gases.
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Analytical Tools

Numerous analytical instruments were employed in the analylsis of CsN, its benzene

analog, graphite, and their respective S206F2 treated adducts. Listed here are the instruments

and services employed:

The XPS experiments were carried out on a PHI 5000VersaProbe XPS spectrometer,

which is equipped with multi-channel plate detectors (MCD) and an AI monochromatic X-ray

source. The XPS data were collected using AI X-ray excitation (50W and 15 kV). The low­

resolution survey spectra were collected at 117.4 eV pass energy, 50 msec dwell time, and 1.0

eV/step. The high-resolution regional spectra were collected at 23.5 eV pass energy, 100 msec

dwell time, 0.1 eV/step. The profile data were collected at 58.7 eV pass energy, 100 msec dwell

time and 0.150 eV per step. The analysis area is 200 Iilm and atake-oft-angle of 4SIil. The

quantitative elemental analyses were determined by measuring the peak areas from the high­

resolution regional spectra and applying the transmission-function corrected atomic sensitivity

factors. The PHI SUMMITI software was used for data collection and the CASA software was

used for data analysis. Where applicable, the etch rate is calibrated against 20.3 nm Si02/Si

from Sigma Optical Metrology Consulting. The ion gun settingsare 5 kV, 2 uA, 4mm x 4mm

raster. XPS samples were loaded on conductive silicon adhesive tape to the analysis puck in an

argon-purged glove box and transferred into the instrument in a sealed inert transfer vessel

ensuring that the samples do not become exposed to atmospheric moisture.

High resolution STEM and EELS spectra were obtained with the JEOL 2010FasTEM

located at the University of Delaware (W.M.Keck Microscopy Center). This is a transmission

electron microscope equipped with aSchottky field emission source typically operated at

200keV. Point to point imaging resolution in TEM mode is 1.9 Aand lattice imaging resolution is
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1 A. Imaging in STEM mode provides a lattice resolution of 1.9 A. The JEOL 2010FasTEM is also

equipped with a GATAN imaging filter (GIF) that allows for energy filtered imaging and electron

energy loss spectroscopy (EELS) in both TEM and STEM modes. EELS spectra can be captured

with atypical energy resolution of 1.5 eV and a spatial resolution down to 2 Ain STEM mode

(dependent on sample). The JEOL 2010FasTEM is also equipped with an EDAX energy dispersive

X-ray spectrometer that can be operated in either TEM or STEM mode with an energy resolution

of 132 eV.

X-ray diffraction was performed using a Panalytical X'Pert PRO MRD with a Cu X-ray

tube, an X-ray mirror equipped with an automatic 0.2mm Cu/Ni beam attenuator and W

divergence slit on the incident beam, a parallel-plate collimator with 0.090 of collimation on the

diffracted beam, and a proportional gas-ionization detect,or with adetection efficiency of 84%

and a linear range up to 106 cps. Samples were mounted as sealed capillaries on a horizontally

mounted, high resolution goniometer with a minimum step size of 0.00010
• Diffraction patterns

were collected over a range of 100 S ra S 85°.

The 13C-NMR static echo experiments for natural and synthetic graphites were performed with

an echo time of 2 ms and pulse delay of 20 sat the Bruker™ DMX-SOO FT-NMR spectrometer equipped

with a Doty XCS probe. The 13C static echo experiment with 2 ms of echo time and lSN MAS NMR

experiment with spinning speed of 5 kHz for lsN-enriched CsN sample were performed at Bruker

Avance™ 11-300 FT-NMR spectrometer equipped with a BL7-VTN probe with pulse delays of 60 s. The

pulse delays for 13C, lSN and 19FMAS are 5-30 s, 20 sand 1-5 S, respectively. The chemical shifts of lH,

13C and 19Fwere referenced to TMS, TMS, and CFCI3, respectively. The chemical shifts of lSNwere

referenced to CH3NOz using asecondary standard lsNH/sN03 (-358 ppm for NH4 peak). All samples

were packed into a 3.2mm zirconia rotor with a Kapton™ sealing cap.
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Raman spectra were obtained with a Kaiser Holoprobe™ Raman spectrometer coupled

to an Olympus BX 60 microscope under the following operating with a 532 nm laser at 5 mW

power. The microscope was equipped with a 20x ultra-long working distance objective and the

spectral path was composed of multimode optical fibers. All samples were collected using a 90

second integration time.

FTIR analysis was afforded using aThermo Nicolet Smart Orbit™ ATR accessory and

diamond ATR crystal. A portion of the sample was pressed qnto the crystal and a spectrum

obtained by co-adding 128 scans at 4.0 cm-l resolution using a Nicolet Nexus™ 750 FT-IR

interferometer.

Gas phase FTIR analysis of the pyrolytic CVD reactor's effluent was performed using a

MIDAC M-Series FTIR fitted with KBr optics. The gas celll:!mployed was fabricated from Nickel­

200 alloy to resist corrosion, possessed a pathlength of 10cm, and was terminated with paired

25x2mm ZnSe and AgCI windows with the AgCI facing the internal portion of the cell. The

spectrometer was cClntrolled and spectra were collected and analyzed using the EssentialFTIR™

software package.

Scanning electron microscopy (SEM) was performed on ground samples of carbons by

mounting directly on double-stick carbon tape on aluminum SEM sample stubs. No conductive

coating was applied to the specimens. Scanning electron microscopy (SEM) observation was

performed using a Hitachi S-4800 field-emission SEM. Images were obtained at Xl00, Xl000,

X5000, X20,000, and X50,000 magnification using the upper secondary electron detector, mixing

in 50% low angle backscattered electrons. All images were obtained using an accelerating

voltage of 2 kV with 10 microamps of beam current. Energy-dispersive x-ray microanalysis (EDS)

was performed in the Hitachi S-4800 using aThermo Noran™ System Six EDS system. EDS
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spectra of typical areas were acquired at 10 kV accelerating voltage in high beam current mode

using the Noran Point & Shoot method using aspectrum acquisition time of approximately 40

seconds per point or area.

CHN and chlorine analysis was performed by Schwarzkopf Microanalytical Laboratories

located in Woodside, NY. The methods used incorporated combustion followed by secondary

analysis by gas or ion chromatography.

Deposition Reactions

The atmospheric vapor deposition reactor is a simple flow reaction system for

combining two reactants in a heated zone. For referenc~ to the description, refer to Figure 50.
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Figure 50 - Reaction Flow System For CsN Synthesis

The chlorine diluent gas (either N2 or He) is fed into the front end of the process by

Brooks mass flow controllers (model 5850). The chlorine is directly blended down with the
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diluent gas and passed into the reactor's outer sheath or can be diverted arounCl the reactor to

ascrubber. The second reactant stream is produced by bubbling diluent gas95 through a

hydrocarbon precursor, which is presumed to saturate the gas at a particular temperature to

enable a specified vapor concentration to be produced. This stream can be diluted further by

blending with additional diluent gas, eliminating the need for strict temperature control over

the hydrocarbon which may have the tendency of freezing at the temperatures needed to

obtain relatively low vapor concentrations. The hydrocarbon stream can be diverted around the
•

deposition reactor if needed or passed directly to the heated zone of the reactor through an

inner quartz tube because some hydrocarbons (Le. pyridine) may react with chlorine to produce

non-volatile products before even entering the heated reactor.

The reactor was comprised of a quartz tube with,inner tube. The outer quartz tube was

either 19 or 30mm in diameter, both with a length of 18 inches. This length is somewhat shorter

than conventional furnace tubes because it was desirable that these could be placed into aglove

box ante-chamber. The position of the inner tube of W' outside diameter could be varied to

affect yield and positional delivery of the hydrocarbon precursor. Quartz or sapphire plates, if

desired, could be placed in the reactor in order to collect deposits at any position throughout

the reactor. The exit of the reactor was stuffed with quartz-fiber wool to trap any fine

particulates or condensing matter that may fowl the down-stream lines. From the exit of the

reactor, the stream of gas could be diverted through FT-IR (10cm Alloy 200 cell with AgCI and

ZnSe windows) and UV-Vis spectroscopy (Scm glass cell with sapphire windows) cells to analyze

for product gases including HCI, HCN, CICN, ~CCN, precursors, and chlorine (UV-Vis). All gases

exit the system by first bubbling through a 60mL caustic sulfite scrubber (10% Na2S03 and 20%

NaOH) then passing into the hood ventilation system.
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The vulnerable components of the system were protected against over-pressurization

by placement of pressure relief valves (500 series Circle Seal valves set to 3 psid cracking

pressure) near each of the pressurized gas inlet sources. Gauges were also installed nearby

these locations to aid in diagnosing any system flow problems or component malfunctions.

The quartz tubes were inserted into a horizontal tube furnace. The 19mm tube was

matched with aW' X6" single zone furnace96 while the 30mm tubes were used with a 1.5" X12"

single zone furnace, both of which were temperature regul~ted using fuzzy-logic control with

over-temperature protection for safety.

By'calculation, the concentration of hydrocarbon in diluents gas could be estimated as a

function of temperature. Indepenaent of the gas composition, the concentration of

hydrocarbon was determined as afunction of its vapor pressure relative to the absolute

pressure (atmospheric pressure, or approximately 760 torr) of the carrier gas at the given

temperature. The vapor pressure of pyridine97 and benzene98 were calculated based on

literature-based Antoine relationships. A spreadsheet program was developed to accurately

estimate vapor concentration of volatile liquids in gases by assuming vapor saturation and

correcting for temperature dependent vapor density relationships99. Key temperatures that are

easy to obtain and maintain were used in the approximation to determine the correct flow of

carrier gas and additional diluent. Flow rate of carrier gas could then be converted into mass

and molar flow of reactant and the correct addition of chlorine can then be dialed in. These

calculations for specific temperature regions of pyridine and benzene are shown in Tables 4 and

5.
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Table 4 • Pyridine vapor conveyance calculations

PyrflDw Pyrflow Cl2Fk1w
~ Cone (ghrjat (1lCCtlI) at Needed

Temp. VP VP (moI/r.nl) (gImL)@ 20sccm 20accm for 2.5eq
(C) (mmHgJ (aCm) @STP STP gillI gH (mtImin}

-2 3.723 0.00490 2.04s.o7 1.611:-05 .1.93E-02 9.12S4J'2 2.28E-01
-1 3.998 0.00526 2.19E-07 1.73E4J5 2.08s.o2 9.80E-0'2 2.45E-01
0 4.290 0.00564 2.35E-07 1.86E-05 2.23E-02 1.05E-O'1 2.63s.o1
1 4.600 0.00605 2.52£.Q7 1.99E-05 2.39s.02 1.13E-&1 2.82E-01
2 4.930 . 0.00649 2.7GE-07 2.13E4J5 2.56E-02 1.21E-&1 3.02E-01

19 14.542 0.01913 7.95E-07 6.29E-05 7.55E-02 3.56E-&1 8.91E-01

~ ·fWiifS.llfB ~:lO.0m29 ~a~ iBJ1lSJ5 :f:ll.tHBD2 ;;9:78Ei11f ~9.'45I;.(J'
16.339 0.02150 8.!UE-07 7.071:-05 8.48s.o2 4.ool:-C11 1.00800

22 17.305 0.02277 9.47s.o7 7.49E-05 8.99E-02 4.24E-{Jl1 1.06E+00
23 18.322 0.02411 1.00E-06 7.93E-05 '9.51s.o2 4.49E41 1.12E+00
24 19.387 0.02551 1.0GE-06 8.39E-05 1.01s.of 4.75&-C11 1.19E+OO
25 20.504 0.02698 1.12E-06 8.87E-05 1.06E-01 5.02E-C11 1.26E+00
26 21.674 0.02852 1.19E-06 9.38E-D5 1.13s.o1 5.31E-&1 1.33E+00
27 22.901 0.03013 1.25E-06 9.91E-05 1.19E-Of 5.61E41 1.401:+00
40 44.968 0.05917 2.4GE-06 1.95E-D4 2.33s.of 1.10E+00 2.75E+OO
60 111.585 0.14682 6.1GE-Q6 4.83E-D4 5.79s.o1 2.73E+OO 6.84E+00
80 243.731 0.32070 1.33E-05 1.05E'{}3 1.27E+OO 5.97E+OO 1.491:+01

100 480.525 0.63227 2.63E-05 2.08E.{}3 2.49E+OO 1.18E+01 2.94E+01
115.2 760.569 1.00075 4.1GE-05 3.29E'{}3 3.95E+OO 1.B6E+O1 4.66E+01

Table 5 • Benzene vapor conveyance calculations

Bzffow Bzfiow C/2Row
Cone Cone (gIhr) at (sccm}at Needed

Temp. VP VP (moIhnI) (gtn1.)~ 2Osa:m 20sccm for3eq
(e) (mmHg) (alm) @S1P Sf? ga3 gas (mLhnin)

-2 20.886 0.02748 1.14E:-06 8.92E-05 1.07s.o1 5.12&01 1.54E+OO
-1 22.484 0.02958 1.~ 9.61E-05 1.15s.o1 ti5fE-01 1.65E+00
0 24.19CJ 0.03183 1.32E-06 1.03s.04 1.24s.01 5.93E-C11 1.78E+OO
1 26.009 0.03422 1.42'E-06 1.11E:-D4 1.33s.o1 6.37E:-C11 1.91E+OO
2 27.S4' 0.03678 1.53"E-06 1.19E-04 1.43E-Of 6.85E-Of 2.05EtOO

18 68.251 0.0898C 3.73E-06 2.92E-04 3.50S-01 1.67E+OO 5.02E+00
19 71.657 0.09429 3.92E-06 3.06C-04 3.67s.o1 1.76E+OO 5.271:+00

::;"·<",·20. >:mi203 <:O.0S895 }4:f1E-06 {3121E04 //3:86E-O, (1;1HE+OO 5;53E+OQ
21 78.892 0.10381 4.32'E-06 3.37s.04 4.04E-0f 1.93E+O'O 5.8OE+OO
22 82.730 0.10886 4.53'E-06 3.53s.04 4.24s.o1 2.03E+OO 6.08E+OO
23 86.721 0.11411 4.74E-06 3.71s.04 4.45s.o1 2.13E+OO 6.38E+OO
24 80.869 O.11!67 UTIW6 3.88E-04 4.6SE-01 2.23E+OO 6.68E+OO
25 95.18Q 0.12524 5.21E-06 4.071:-04 4.8Ss.o1 2.33E+OO 7.001:+00
26 99.658 0.13113 ti45E-06 4.26s.04 5.111:-01 2.44E+O'O 7.33E+OO
27 104.307 0.13725 ti71,E-06 4.46E-04 5.35s.o1 2.56E+OO 7.671:+00
40 182.785 0.24051 1.00E-05 7.81E-04 :9.37s.of 4.48E+OO f.34E+<J1
50 271.286 0.35696 1.48E-05 1.16E-03 1.39E+OO 6.65E+OO 1.99E+01
60 391.472 0.51509 2.14s.0S 1.67E-03 2.01E+OO 9.59E+OO 2.88E+01
7fJ 550.832 fJ.'I247H 3,011:-05 2.35E-03 2,H2E+OO 1.35E+rJl1 4.05E+fJ1
80 757.662 0.99692 4.14E-05 3.24E-03 3.88E+OO 1.86E+&1 5.571:+01
81 781.298 1.02802 4.27s.oS 3.34E-03 4.01800 1.91E+Of 5.74E+01

In a typical reaction, the reactor tube was assembled and purged with inert gas for at

least 24 hours. Prior to a deposition experiment, the furnace was heated to the desired
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temperature and maintained for at least 1 hour. In all cases, the hydrocarbon component was

introduced first into the reactor followed by flow of the chlorine. At the completion of a

synthetic run, chlorine flow was first stopped followed by the hydrocarbon. The reactor was

then purged at thereaction temperature for 1 hour before returning to room temperature.

Product was'isolated from the quartz tube by scraping from the surface with a long

stainless steel spatula or directly extracting the sample plates with long forceps. All products

were ground with aclean agate mortar and pestle while yields were calculated as mass of

isolated product referenced to the stoichiometric ideal quantity of product based on the limiting

reagent.

Preparation of CsN by alternative substrates .

Some alternative test precursors for the synthesis of CsN including 3-cyanopyridine, 2,6­

dicyanopyridine, 3-chloropyridine, and 2,6-dichloropyrdine were used in the deposition reactor

without co-adding chlorine. Each of these materials does not have asufficient vapor pressure

for transport into the reactor alone. Their introduction into the heated zone of the reactor was

accomplished by dissolution in anhydrous acetonitrile1
°O to produce a 20%wt solution which was

passed through a quartz nebulizer101 that replaced the inner tube of the deposition reactor and

extended well into the heat zone. The nebulizer was fed with the liquid precursor solution at a

rate of 1ml per hour using a metering syringe pump. The support and spray gas was comprised

of 60 seem of helium.

All reaction cases produced extremely poor yields of CsN under a reactor temperature of

700°C giving less than 5% of the theoretical yield based on available nitrogen and carbon not

including that of the solvent. Barely enough product was isolated from each reaction to verify

,
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the CsN stoichiometry and demonstrate no detectable chlorine except in the case utilizing the

dichloropyridine precursor where 0.06 mol% chlorine was found.

Electrochemica,.l Setup

In order to ~valuate the electrochemical performance of the carbons under study, they

first must be made into an electrode that can be attached to the leads of a potentiometer as

they are not soluble in any known solvent. First, 50 mg of the groundcarbons were weighed

into separate 30mL polypropylene round-bottomed centrifuge tubes with 8% relative weight (4

mg) polyvinylidene difluoride, 1 mL of N-methylpyrrolidinone, and three 10mm diatmeter

ceramic bearings. To reduce the carbon particle size and homogenize the suspension, the tube
~ .

contents were milled by rotating the tubes at a 45° angle at 0.5 revolutions per second over 48'

hours.

The conductive substrate for the carbons consisted of platinum gauze102 of 100 mesh

cut into Smm by 50mm strips. 1 cm of the platinum gauze tip was immersed into the carbon

slurry and allowed to dry in a 60°C oven for 24 hours to allow hardening. This coating process

was performed a total of three times to build up a sufficient a~ount of substrate for evaluation.

The electrodes were then fully dried in a 120°C vacuum for 48 hours then stored in an argon-

purged glove box for use.

Cyclic voltammetry experiments were conducted using athree electrode cell inside of

an argon purged glove box. Alligator lead clamps were attached directly to the untreated end of

the platinum gauze, forming the working electrode. A bare platinum coil wire electrode103

comprised the counter electrode and pure lithium metal foil was used as a pseudo-reference.

The electrodes were assembled into a 30mL cell using commercially available components104
,lOS.
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The electrochemical cell was filled with 10mL of an electrolyte solution as previously

described in the Iiterature106. This solution was composed of 1M UPFlo7 in a 3:7 by weight

mixture of ethylene carbonate108 and dimethyl carbonate109, respectively. The electrodes were

placed in the solution and allowed to equilibrate for 10 minutes to ensure wetting of all

surfaces.

A potentiostat (CHI model 660A) was used to measure the open circuit potential (OCV)

of the cell to ensure proper connection of all electrodes. The same potentiostat was then used

to perform cyclic voltammetry in multiple forward and reverse segments ranging from 3.0V to

6.0V versus U/U+ at a scan rate of 0.01 mV per second. The voltammograms were then analyzed

to determine the oxidation potential onset as evident by a sharp deflection in the differential in

the lower potentials of the curve.

Synthesis of Peroxy-disulfuryldifluoride (Sz06Fz)

The S20~F2 used to react with the carbon test substrates was synthesized using a

modified method described by BartlettllO as recounted here. AYz" fluorinated ethylene

propylene (or FEp™.1ll) reactor tube112 was fabricated by heat-sealing one end in avise and

forming a connection on the other using aSwagelok™ reducing fitting113
• Asecond similar

reactor was attached to the first using a length of 1/8" FEP tubing divided using a PFA plug

valve114. The 1/8" tubing was fed into each reactor via a bored-through tee connectionll5

enabling avalve116 to access each reactor. In a nitrogen-purged glove box, xenon difluoridell7

(8.546 g, 0.0505 mol) was added to one tube and triple-distilled fluorine sulfonic acid1l8 (10.100

g, 0.101 mol) was added to the other witb the dividing valve closed. The sealed reactors were

removed from the glove box and attached to a Monel™ vacuum manifold. The vessel

containing XeF2was cooled in liquid nitrogen and the one with the FS03Hwas cooled in
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powdered dry ice. The XeF2tube was evacuated to less than 10-3torr then the Te'flon valve

dividing the two vessels was opened allowing the cold FS03Hto flow in under the nitrogen

pressure of the gas remaining from the loading process. Under these conditions, the FS03H

solidified immediately upon contact with the wall of the vessel containing the XeF2. The reactor

was evacuated again imd the remaining FS03H was allowed to slowly distill away from the walls

of the vessel under its own vapor pressure to quantitatively condense over to the XeF2.

The Teflon valve was closed and the mixture was allowed to warm to -7SoC in powdered

dry ice where the mixture slowly turned to a homogeneous yellow liquid. After standing for 4

hours, the mixture was allowed to warm to O°C in an ice-water bath where, according to the

literature, the complete conversion of XeF2is obtained. After 2 hours at O°C the deeply yellow

reactor contents were cooled back to -78°C. At this stage, the effective stoichiometric balance is

represented by the equation:

XeF2 + 2 FS03H 7 Xe(S03Fh + 2 HF.

HF and traces of Xe gas were removed at -7SoC under vacuum leaving behind the unstable

xenon bis(fluorosulfate). Warming this material slowly to room temperature and allOWing to

stand for 48 hours decomposes the fluorosulfate complex to liberate Xe gas to produce high

purity peroxydisulfuryl difluoride, or (FS03h as represented in the equation:

Xe(S03Fh 7 Xeg + S206F2.

The reactor was cooled once again to -78 to affect easy removal of xenon gas under vacuum and

the reactor was sealed to contain the highly reactive peroxide until need for intercalation

chemistry.

The gas phase infrared spectra obtained at 8 torr in a nickel10cm cell fitted with ZnSe

windows. Two spectra from duplicate samples are overlaid in Figure 51 showing the absence of
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FS03H, HF, and S20SF2 rather only the strong vibrational modes of S206F2 reported in the

Iiterature119
•
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Figure 51- Gas-phase FTIR spectrum of Sz06Fz

Reaction of Carbons with Sz06Fz

The carbons used in this study were dried by grinding in an agate mortar and pestle and

heating to 400°C under a 20sccm flow of helium in a 1.5" quartz flow reactor. 150mg each of

CsN, lsN-enriched CsN, the benzene analog of CsN, the BC-enriched benzene analog of CsN, and

graphite were loaded to 3/8" FEP reactors heat-sealed at one end and capped with a stainless

steel Swagelok ~tting and Kel-F stem-tipped needle valve. Following the experimental

descriptions of Biagioni120, each reactor with its contents was attached to a metal vacuum

manifold where a similar reactor containing liquid S206F2 was also attached. The reactor
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containing the carbon was evacuated. Under static vacuum and at room temperature the

carbons were exposed to vapor S206F2 in aliquots no greater than the room temperature vapor

pressure of the liquid or approximately 130 torr. The pressure of the reactive gas was

replenished every 30 minutes until no more uptake was observed by tensimetry.The total

reaction time ranged from 1-4 hours. If a halogen flashlight was shined through the solid

product, a blue hue was observed for all products. All volatiles were evacuated from the reactor .,

and the solid was moved to an argon-purged glove box for storage and repackaging for analysis.

Conductivity measurements

During the synthesis of carbons by pyrolytic deposition, some material was deposited on

a 1in2quartz wafer placed in the middle of the reaction zone. The quartz wafer acquired a

carbon film during the reaction and was handled under dry nitrogen after the reaction was

complete. The conductivity of the film was measured using a Keithly 4-point probe fitted with a

gold-contact lcm bench installed in a nitrogen purged glove bag. The conductivity of the film

was measured by direct contact. For comparison, anhydrous acetonitrile was used to rinse the

films in an attempt to remove contaminants that may affect conductivity. The rinsed film was

then dried by placing on a 100°C hot plate for 1 hour then the wafer was allowed to cool before

measuring again. In all cases, the conductivity decreases somewhat after rinsing indicating

either disruption of conductivity by the solvent directly or by removal of doping contaminants

that enhance conductivity.

Purification of Pyrolytic Carbons

The pyrolytic CsN and its pyrolytic carbon analog each were obtained as mixtures of

lamellar and spherical structures; the lamellar structures being the desired ones. In addition
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both could potentially have lower molecular weight impurities co-deposited in the matrix.

Analysis of the carbons also indicated contamination by chlorine. Attempts to purify the

products are described here.

Flotation methods were attempted in order to separate the lamellar carbon products

from the spherical kfnd. This was done by placing asample of the carbon in aglass vial and

adding about 1 mL of dichloromethane in which all of the carbon rested on the bottom.

Bromoform was added drop-wise to the liquid and allowed to equilibrate for 1 minute between

each drop. Bromoform was added until some of the carbon began to rise from the bottom of

the vial. The vial was allowed to equilibrate for one hour and samples were taken from the top

and bottom for SEM analysis. All analyses indicated no difference in composition or morphology

from the different samples.

Both carbon products were also treated with solvents in a Soxhlet extractor in an

attempt to purify these of small rriOlecules. NMP, DMF, and DMSO were passed through 1 gram

of each carbon held in a quartz thimble for 24 hours. Each resulting solvent was evaporated

away in an attempt to observe residue; no solid residues were obtained for any of the products

indicating that any removable impurities were probably volatilized to cooler parts of the reactor

during the synthesis.

Since chlorine contamination would apparently induce increased disorder and

complexity to CsN, its removal was attempted by athermal annealing method. This was

evaluated using aTGA-IR. Initially the sample was heated at 1°C per minute under a nitrogen

purge of 90 seem to see where chlorine losswould be prominent. It became apparent that at

about 760°C chlorine content is lost in the form of CICN which occurred simultaneously with

additional cyanogens and traces of HCI (probably from the combination of CICN and HCN). In an
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attempt to give chlorine a donor atom to react with, pure H2gas was used in place of nitrogen.

In this case, HCI was observed leaving at atemperature of 500°C but was accompanied by

enormous quantities of HCN. Both of these experiments indicate the ability to remove chlorine

contamination but compromising the nitrogen content. This apparent reductive instability may

indicate why ~igher roadings of nitrogen could not be obtained for pyrolytic carbons by

researchers who employed catalytic deposition methods where hydrogen is the expected

byproduct.121

Another approach to chlorine removal was also attempted as described here. Since XPS

analysis indicates that the chlorine contamination is primarily covalently bonded to Sp2 carbon,

aggressive means of extraction seemed to be in order. Since the solid carbons are not soluble in

any known solvent, they were suspended in a supporting medium. Heptane was chosen for its

large liquid temperature range, somewhat suppressed flash point, its resistance to strong

reducing agents, and its ability to wash away oils protecting certain reagents. For separate cases

n-butyllithium in hexanes, methyllithium in pentane, lithium deuteride covered in mineral oil,

and cyclohexyl magnesium chloride in ethyl ether were each used at -7SoC and at room

temperature. The reactions were quenched with 020 give rise to deuterium substitution in the

event of successful metallation.

The experimental procedure included placing 100mg of the carbon in a 2SmL round

bottom flask with Sml of heptanes under an argon purge. After adjusting the reactor to the

appropriate temperature, 1 mole equivalent of the reducing agent per six-membered unit of

carbon atoms was added drop-wise with vig9rous stirring from a glass-coated magnetic stir bar.

After allowing the reduction to take place for 30 minutes, it was quenched by adding lmL of

020. If necessary, the reactor was allowed to warm to room temperature, then 5 ml of water
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was added and the resulting slurry was filtered through a0.45 micron element and rinsed

thoroughly with water to remove any inorganic salts.

The results were tracked by CHN and CI elemental analysis122
• In all cases and at both

temperatures nitrogen content relative to carbon was significantly reduced (see results section).

It is notable that elemental analysis also indicated almost quantitativeremoval of chlorine

content in all experiments except those employing the cyclohexylmagnesium chloride where no

reduction in chlorine content was observed. Following these attempts it was concluded that the

best way to remove chlorine was to employ syntheses minimizing its incorporation by either

optimizing yields or using reactants that do not contain halogens.

It was thus concluded for purposes of expediency that the synthesis procedure be

optimized to make the most efficient use of chlorine by maximizing yields through allowing the

longest possible kinetic soak time for the reactants in the reactor hot zone. This did not remove

all chlorine, but significantly reduced its presence as apparent by XPS-ESCA and CHN & CI

analyses. This was chosen in contrast to methods described earlier utiliZing alternative

precursors devoid of chlorine as they gave poor stoichiometric yields on both an actual and

theoretical basis.

Future Work

The structural characterization of poorly ordered materials remains a difficult task. In

I
order to provide insight into the structures of truly graphitic carbon nitrides with sufficient

nitrogen content such as CsN, it will be necessary to eventually develop asynthetic method that,

will allow such a material to be studied. One method would be to develop a catalytic deposition

method that does not produce a reducing byproduct such as hydrogen, possibly by using a
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precursor such as cyanogen or tetracyanomethane. Another very promising idea provided

directly by Dr. landskron is to graphitize the pyrolytic CsN as produced in this study under very

high pressures and temperatures. Performed in a multi-anvil press, the high pressures used

would, in theory, prevent nitrogen from escaping under the temperatures used in the annealing

process. Even miniscule yields of the highly ordered CsN products would prove invaluable to

furthering th~understanding of its chemical and structural nature, with the obvious application

of re-attempting a demonstration of intercalation and allowing a more direct comparison with

truly crystalline graphite rather than another poorly characterized analog.

Even without obtaining highly ordered CsN materials, one may still wish to evaluate

potential properties in alternative commercial applications. As a relatively broadly featured

carbon, the current CsN material may prove useful as an alternative to activated carbons for

specialty purposes. Aside from the obvious future investigation of its surface adsorption

properties related to inert gases, it may be desirable to exploit the 'potentially basic nature of

the incorporated nitrogen atoms for acid trapping applications. Building on the observation that

the current CsN material appears to be reductively unstable, it may also prove an interesting

material for the selective reaction and removal of undesirable contaminants in feed stocks such

as hydrogen sulfide. Another possibly useful quality of this product is its conductivity coupled

with its somewhat restricted oxidation onset potential relative to graphite itself. These

electrical properties may prove useful in the growing field of fail-safe circuitry being deployed in

ever-increasing numbers in modern electronics to make them safer to use and transport.

Another consideration of the current CsN material is to use the nitrogen as a tether to
-<

chemically modify the surface in order to obtain properties not otherwise possible for pure

carbons. Examples of such modifications could include N-oxides, hard-carbon based
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quarternary amines, and solid-state azides. Each of these potential products could have

possible applications in water purification, drug delivery, selective ion recovery, and in high-

stability explosives.

Failing any of these endeavors~ one has the option of waiting yet another 20 years for
C>

analytical advancements to enable absolute and finite characterization of the pyrolytic products

obtained here. One plan in this area for the near future is to attempt the Neutron Diffraction

elucidation of the complex structure in the CsN material obtained in this study123.

In all, any additional advances in the understanding of truly graphitic carbons with a

I sufficiently high nitrogen content to affect the bulk electronic environment and chemical

properties will enable future scientists to realize their potential utility.

Conclusions

This work has been an attempt to evaluate an electron-rich graphite, one that is

substantially substituted with nitrogen. The material selected from the literature is the ~nly one

reported to be graphite-like in nature and have considerable nitrogen content with an empirical

formula of CsN. Here the reproduction of the graphite-like synthesis was pursued and the

product analyzed by a greater range of more advanced techniques. Its comparison with

graphite was facilitated by the study of a pyrolytic carbon that was produced in exactly the same

manner as CsN. Finally, the attempted oxidative intercalation of all three materials was

performed in order to complete the comparison.

The synthesis of CsN by the pyrolytic condensation of chlorine with pyridine was

reproduced with some difficulty as the original literature did not provide adequate experimental

details. As a result the synthetic method was re-developed by scoping the major variables of
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temperature, carrier gas, relative stoichiometry, absolute concentration, and alternative

precursors. Because nitrogen loss is observed for CxN materials at high temperatures, a helium

carrier gas was employed with a reactor temperature of 700°C. The optimum chlorine to

pyridine ratio was chosen at 5/2 as a balance between efficient use of chlorine and optimum

yield. In an attempt to increase net yields, a powerful kinetic factor was discovered and yield

was dramatically increased to nearly 75% isolated material relative to theoretical simply by

increasing reaction residence time. Optimizing yield also reduced the contamination of the

sample by chlorine and excess hydrogen. AU-of this is consistent with previous publications with

the exception that yields were never reported by the originating authors.

The structural nature of CsN as determined by numerous analytical methods was also

generally consistent with earlier literature reports. The material is electrically conductive, bears

extended Sp2 carbon centers with a mix of Sp2 and Sp3 nitrogens in addition to traces of

hydrogen and chlorine contamination. Vibrational and micro-analytical methods indicate the

material to be highly amorphous although some layering effects can be observed. Combined,

these features confirm the current state of CsN as graphite-like. While it may be tempting to

assign the lack of order to the presence of the nitrogen and the potential for its random

distribution throughout the matrix, the comparison of CsN with its analog produced from the

reaction of benzene with chlorine indicated that the synthetic method is the most likely origin of

poor order. The amorphous solids obtained from both were composed of morphologies

represented by both lamellar and spherical particles, the latter of which was not reported in the

original literature. The redox properties of the carbons produced in this study directly confirm

the lower oxidation onset potential of the nitrogen containing substrate as was expected.
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Consistent with many other solid state synthesis examples, the numerous attempts to

anneal or purify CsN were unsuccessful. In the process of these attempts, it was discovered that

the nitrogen content of CsN was easily compromised in the presence of reducing agents such as

hydrogen and alkyl organometallics at temperatures where the compound is otherwise stable.

Although this latter point has not been discussed in the literature, it appears that it may

represent one of the reasons why researchers world-wide have routinely produced nitrogen­

poor examples of CxN resulting from the presence of reducing catalysts in addition to the

expected generation of other reducing byproducts such as ammonia and hydrogen gases.

The reaction of S206F2 with CsN, its benzene analog, and graphi~e was also performed in

this study. While this interaction is known for graphite, it has never been reported for the other

two pyrolytic materials. All thre~ compounds adopted a blue color upon reaction with the

peroxide indicating at least some degree of true inter-layer intercalation. The uptake of

peroxide decreased from graphite»CsN>Benzene analog. Careful analysis of all three materials

indicated a bonding of the fluorosulfate adductto carbon. This was unexpected for CsN where

the oxidation was expected at the ~itrogen atom and may be an indication that the nitrogen is

simply behaving as an activating specie rather than a reactant site. Empirical and first principle

evidence of actual intercalation of graphitic domains was only seen for the graphite and the

benzene analog cases. We found no direct evidence of any extended layering of CsN. It was

noted that order of all three samples was severely compromised upon treatment with S206F2'

This work has confirmed and thereby reactivated previous knowledge about CsN.

However, it has been discovered in the process that it is not as highly ordered as the original

founding literature might have led one to believe. Future studies in this area would most likely

be centered on attempts to improve order rather than yield either by improved synthetic
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methodologies or by treatment methods of the currently available C5Nto induce order. In

addition, the advent more powerful analytical methods in the future may help glean even more

information from the current system which has now been described in sufficient detail for direct

and nearly exact reproduction.
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