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Gold Oxide as a Masking Layer for Regioselective Surface Chemistry 

 

Abstract  

The work in this dissertation is focused on the development of methods for 

spatially controlling the adsorption of self-assembled monolayers (SAMs) on selected 

gold electrodes in an array.  This research draws from synthetic organic and inorganic 

chemistry, electrochemistry, and surface science to provide a unique solution to the 

problem of directing the formation of SAMs, which are potentially useful in sensing and 

photovoltaic applications.  To meet this need, we developed a facile electrochemical 

method that utilizes gold-oxide thin films as protecting layers to allow the selective 

placement of SAMs on specific gold electrodes.  This approach is analogous to the 

‘‘protection–deprotection’’ strategy used successfully by synthetic organic chemists for 

decades and is potentially applicable for a broad range of chemical functionality.  The 

gold-oxide thin film can easily be added or removed, allowing convenient incorporation 

into the synthetic scheme.  We used a combination of x-ray photoelectron spectroscopy 

(XPS), variable-angle spectroscopic ellipsometry (VASE) and contact-angle 

measurements to demonstrate that distinct monolayers can be formed on the neighboring 

electrodes and microelectrodes with no evidence of cross-contamination. 

In order to characterize the thin oxide films used in this method, as well as to 

assess their lability in various chemical environments, we also developed a method for 

measuring their wavelength-dependent, complex refractive index (n + ik).  We first 

measured the thickness of the thin film independently by angle-resolved XPS.  Using that 

thickness value, we determined the values of n and k by VASE.  Using this unique 

combination of XPS and VASE, we were able to obtain values for the complex refractive 
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index of an electrochemically formed thin film of gold oxide for wavelengths between 

350 and 800 nm.
 
  

 Exploratory studies involving silver (I)-thiolate polymers were conducted to 

examine their possible use as precursors to monolayer films and metallic nanoparticles.  

X-ray photoelectron spectroscopy (XPS) measurements suggested that these polymers 

adsorb onto gold surfaces from solution, but decomposition produced surfaces that were 

not the same as those formed by self-assembly of alkanethiols on gold bearing a 

submonolayer of underpotential-deposited silver.  In separate studies, the silver(I)-

thiolate polymers could be decomposed into nanoparticles by thermolysis or photolysis as 

confirmed by transmission electron microscopy (TEM) and UV/vis spectrophotometry.   
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Chapter 1 

 

 

Formation and Characterization of Organosulfur Self-Assembled Monolayers 

(SAMs) on Gold and Use of Gold Oxide to Make the Formation Selective 

 

 

1.1  Introduction 

Since their discovery,
1-3

 self-assembled monolayer (SAMs) films have been a 

major focus of research concentrated on the control of surface chemistry.
4
  These films 

consist of a single oriented layer of molecules that spontaneously chemisorb to a solid 

surface from either the gas or solution phase.  The formation of monolayer films is 

spontaneous due to the minimization of interfacial free energy of the substrate and 

stabilization within the films from van der Waals forces.
4-6

  Adsorbates typically consist 

of a “head” group, which attaches to the substrate, a “spacer” chain and a terminal “tail” 

group (Figure 1.1).  These adsorbates form uniform, ordered and stable monolayer films 

on a variety of substrates,
7-10

  with a breadth of functional “head” groups specific to the 

particular substrate.
4,5

   

Research in this area has focused not only on understanding self-assembly, but 

also on implementing this surface modification for use in devices.
4,5,11

  Historically, the 

self-assembly of organosulfur (e.g., alkanethiol, dialkyl disulfide) compounds on metals 

such as gold has provided a convenient route for the control of surface properties that is 

easy to implement, adapt, and tailor.
4,5

  After monolayer formation, the tail group is 

exposed at the surface of the monolayer, imparting its chemical properties, so control of 

the functionality of monolayer tail groups allows control of surface chemistry.  Our 

 



4 

 

 

 

 

 

Figure 1.1.  A schematic representation of a substrate surface bearing a SAM. 

 

  

head group

spacer chain

tail group

x x x x x x x x x

substrate
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group has previously shown that surface chemistry can be controlled by the 

electrochemically directed formation of SAMs from alkyl thiosulfates.  As discussed 

below, however, this chemistry is not compatible with all functional tail groups because 

of side-reactions that can occur.
12-14

  The work described in this dissertation addressed 

this problem by using gold oxide as a masking layer to allow regioselective formation of 

SAMs from dialkyl disulfides.  This chapter provides a review of topics relevant to the 

work that follows, including the formation and characterization of organosulfur SAMs 

formed from solution on gold, previous methods for regioselective formation of SAMs, 

and the chemistry of gold oxide. 

 

1.2  Organosulfur SAMs on Gold 

The molecules most commonly used as precursors for self-assembly on gold are 

alkanethiols and dialkyl disulfides, though others have been reported
4
 and will not be 

discussed in this work.  Both types of molecule give similar SAMs on gold, with thiolate 

sulfur covalently bound in three-fold hollow sites on the surface of the gold, and with 

alkyl chains tilting slightly relative to the surface normal (Figure 1.1).
6,10,15-18

  The 

reaction pathways leading to SAMs from these molecules, however, are different.  The 

formation of a SAM from an alkanethiol proceeds with the formal loss of a proton and an 

electron (equation 1.1),
4,6,19,20

 whereas that from a dialkyl disulfide precursor involves 

       u    u          e                                           .   

oxidative addition of the disulfide bond (equation 1.2).
4,6,20,21

  

         u     u                                                 .   
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The process of assembly occurs in three stages:  1) adsorption of headgroups to 

the substrate, with adsorbed molecules orientied horizontally and forming “stripped 

phases” along the surface;    alignment of the chains; and 3) reorientation of terminal 

groups and relaxation of the layer into a crystalline state, wherein the adjacent chains are 

oriented as depicted in Figure 1.1.
22

  At the end of the second stage, the layer is 

considered to be in an amorphous or glassy state with 80 – 90% of the surface sites 

occupied. 
22

  The final and longest stage requires 12 – 24 h for completion.  

 

1.2.1  Conditions for the Spontaneous Formation of SAMs from Solution 

As mentioned above and implied in Figure 1.1, a complete monolayer contains 

close-packed thiolate sulfur on the gold surface and alkyl chains tilted and aligned with 

one another.  Although driven by the formation of strong covalent bonds and stabilized 

by the van der Waals interactions of adjacent chains, successful formation depends on 

experimental conditions.  To create a high-quality SAM from the solution phase, 

important parameters include the precursor concentration, precursor chain length, the 

solvent, immersion time, and cleanliness of the substrate.   

The concentration of the monolayer precursor must be sufficiently high, typically 

1 – 10 mM, to enable the formation of a complete SAM.
4,18,21

  The length of the alkyl 

chains has a profound effect on the ability of n-alkanethiols and n-dialkyl disulfides to 

form an ordered SAM on a substrate.
18,19,21

  Longer alkyl chains provide greater van der 

Waals stabilization, resulting in higher quality and more thermodynamically stable 

films.
18,21,23

  As a result, SAMs formed from longer chains of n-alkanethiols are more 

resistant to thermal desorption than those formed from short chains.
18,21

  Monolayers 
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formed from thiols or disulfides with shorter (C2 – C9) chains are less ordered than those 

formed from longer (C10 – C18) chains, as measured by grazing-angle IR, ellipsometric 

thickness, and contact angles.
18,19,21,24

   

The choice of solvent influences the quality of SAMs because some solvent 

molecules (e.g., hexadecane) can intercalate into the SAM as it forms, preventing 

precursor molecules from reaching the substrate and completing the monolayer.
18,25

  This 

complication can be avoided with solvents such as ethanol or THF, which cannot 

intercalate within the monolayer.
18,21

  Depending on the solvent, the immersion time 

required for formation of a complete monolayer varies, but 12 – 24 h is typical.
18,21

   

Although gold is inert towards chemisorption of oxygen and water, the surface of 

nominally clean gold substrates are still covered with a layer of physisorbed contaminants 

from the ambient atmosphere (e.g., water, organic materials).
18

  Substrates typically have 

been cleaned by one of two related methods.  The first is treatment with ultraviolet light 

in the presence of ozone (UV/O3), which oxidizes the surface to form a layer of gold 

oxide.
26,27

  Surface contamination is removed during oxidation or when the oxide is 

reduced in ethanol, providing a gold surface free of chemisorbed or strongly physisorbed 

material.
17,28-32

  This method was examined by Rubinstein and coworkers, who used x-ray 

photoelectron spectroscopy (XPS) and ellipsometry to show that not only contamination 

could be cleaned from gold, but also that a previously formed SAM could be removed 

from a substrate surface.
30,31

  The surface of gold becomes slightly roughened during this 

treatment, but is otherwise unaffected and available for monolayer formation.
31

  The 

second cleaning method often used is electrochemical cycling of a gold electrode in a 

solution of 0.1 – 0.5-M H2SO4.
16,31,33

  In this process, the electrode is repeatedly oxidized 
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and reduced in cycles until a clean gold surface is produced.  Similar to treatment with 

UV/O3, this process can remove surface contamination from a gold electrode, with or 

without a previously formed SAM.  This method also can roughen the surface of the gold 

electrode, but again without affecting the quality of SAMs formed after treatment.
31

 

 

1.2.2 Treatment of Gold and Gold Oxide with Alkanethiols and Dialkyl Disulfides 

As noted above, monolayers from alkanethiols form by the spontaneous 

chemisorption of the thiol group on the gold surface (equation 1.1).  This reaction allows 

variation of functional groups at the tail of the molecule.
8,34-36

 Adsorption from mixtures 

of precursors allows the formation of mixed monolayers, giving an added degree of 

control over surface wetting properties.
7,18,35,37-39

  Once formed, thiolate SAMs are also 

prone to exchange with thiols in solution.
18,35,37-39

   

The spontaneous formation of SAMs on gold from dialkyl disulfides is very 

similar to that from alkanethiols:  many of the same solvents are used, typical 

concentrations of precursors are the same, and the time of immersion required is only 

slightly longer.
1,7,21,40

  The formation of SAMs from a disulfide does not proceed to as 

high a degree of completion as those from the corresponding thiol because as surface 

sites on the substrate are occupied by bound thiolate groups, the approach to the surface 

of the large disulfide molecules is sterically hindered.
21

  As a result, methyl-terminated 

monolayers formed from disulfides have slightly lower contact angles than those formed 

from thiols, and exchange of disulfides with thiolate monolayers occurs at a very slow 

rate.
21

  Monolayers form more readily from alkanethiols than from dialkyl disulfides, as 

evidenced by the preferential adsorption of thiols from mixed solutions containing both 
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types of molecule
7,18

  Monolayers can be formed from symmetric (RSSR) or asymmetric 

     ’  disulfides, allowing for the incorporation of different molecules into a 

monolayer from a single precursor.
1,36,40,41

  Similar to thiols, the formation of mixed 

monolayers from the coadsorption of different dialkyl disulfide molecules is also 

possible.
40,41

   

As the formation of SAMs from alkanethiols is a redox process, the rate of 

formation of these monolayers can be accelerated via an applied oxidative  

potential.
20,42-48

  This process allows the formation of a complete monolayer in minutes, 

rather than hours, as well as the in situ electrochemical monitoring of the assembly 

process.
20

  Potential-assisted formation of SAMs from dialkyl disulfides has also been 

reported, though using reductive potentials.
20

  Potential-assisted formation of complete 

SAMs from dialkyl disulfides can also be monitored electrochemically in situ and 

achieved in minutes.
20

  The ability to activate selected electrodes and the decreased time 

required during potential-assisted SAM formation have helped to facilitate the inclusion 

of these monolayers in many advanced applications, such as senor arrays.
11,49

   

The contrast in reactivity between alkanethiols and dialkyl disulfides with gold 

oxide is particularly important in this dissertation.  When a gold-oxide surface is exposed 

to thiol, the oxide is reduced as a SAM forms (equation 1.3),
20,30,31,50-52

 sometimes  

 u                  u                                                   .   

 

encapsulating islands of the oxide underneath the monolayer in the process.
30

  In contrast, 

gold oxide does not react with solutions of dialkyl disulfides.
1,20,31

  This difference 
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presented an opportunity to use gold oxide as a masking layer for directed formation of 

SAMs from disulfides. 

 

1.3  Characterization of SAMs 

 Early work on the characterization of SAMs confirmed the presence of these films 

and determined the orientation of the molecules on the substrate surface.
6,10,15-17,19

  Since 

then, these materials have been extensively studied using a wide variety of techniques, 

including contact-angle goniometry,
9,18,21,23

 ellipsometry,
18,20,21,23

 grazing-angle 

IR,
15,23,24,53

 x-ray diffraction (XRD),
17

 high-energy electron loss spectroscopy 

(HREELS),
54

 near edge x‐ray absorption fine structure spectroscopy (NEXAFS)
55

 x-ray 

photoelectron spectroscopy (XPS),
18,21,23,56,57

 and scanning tunneling microscopy 

(STM).
58-62

  Once the formation of SAMs was understood, some of the same methods of 

characterization could be employed in order to give a quick, reliable measure of the 

formation of SAMs, and their use in devices and technical applications could be easily 

monitored.  The studies described in this dissertation utilized contact-angle goniometry, 

spectroscopic ellipsometry, and XPS to characterize SAMs, and this section provides 

background information for these three methods. 

 

1.3.1  Contact-Angle Goniometry 

 The formation of a monolayer films provides a means for manipulating the 

composition, and thus interfacial free energy, of a surface.  A fast and convenient 

measurement related to interfacial free energy is the contact angle, θ, of a static liquid 

droplet on the surface of a flat solid (Figure 1.2).
63

   The balance of the forces at the 
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three-phase contact line determines the angle at which the drop meets the surface, 

according to Young’s equation   .4 ,
64

 where the interfacial free energy between  

                                                                   .4  

the solid and liquid phases is denoted γsl, the interfacial free energy between the vapor 

and liquid phases  i.e., "surface tension"  is denoted γlv, and the interfacial free energy 

between the solid and vapor phases is denoted γsv.   n advancing contact angle, θa is the 

angle that a drop makes after it has been advanced across the surface, and a receding 

contact angle, θr is the angle it makes after it has been receded across the surface.
63

  The  

difference between these two measurements is referred to as the “contact-angle 

hysteresis,” and can give a measure of the degree of order in a   M.
63

  Contact angles 

depend strongly on the type of end groups present on the SAM (e.g., methyl, hydroxyl).  

For instance, a SAM formed from a 1-mM solution of hexadecanethiol in ethanol has an 

advancing contact angle of hexadecane of 47° ± 2°,
18

 whereas a SAM formed from a 1-

mM solution of 18-nonadecene-1-thiol has an advancing contact angle of hexadecane of 

39° ± 2°.
18

 

 

1.3.2  Ellipsometry 

 Ellipsometry is an optical technique used to probe thin films and surfaces that 

relies on the interaction between polarized light and a material.  Light may be polarized 

in a plane parallel to the plane of incidence  “p”  or perpendicular to it  “s” .  Reflection 

of a beam of polarized light from the surface of a material results in the loss of some of 

the light through transmittance, and a change in the polarization of all reflected light  
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Figure 1.2.  A diagram representing the balance of the forces at the three-phase contact 

line, where a liquid droplet meets a solid surface, that determines the contact angle. 
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(Figure 1.3).  For a beam of light reflecting from the interface between a medium and the 

surface of a material, the ratio of the amplitude of the reflected wave to the amplitude of 

the incident wave is given by the Fresnel reflection coefficients in the p (rp equation 1.5) 

and s (rs equation 1.6) planes,
65

 where the subscript  

r  
p
   

  cos     cos  
  cos      cos  

                                               .   

r  
s    

  cos      cos  
  cos      cos  

                                              .   

12 denotes the interface between medium 1 and medium 2, n1 is the refractive index of 

medium 1, n2 is the refractive index of medium  , θ1 is the angle of incidence, and θ2 is 

the angle of the transmitted light.  For samples with two interfaces, the total reflection 

coefficient can be derived from the ratio of the resultant total amplitude of the reflected 

wave to the amplitude of the incident wave, resulting in coefficients for the p (R
P
 

equation 1.7) and s (R
S
 equation 1.8) planes,

65
 where the subscript 23 denotes the  

 p   
r  
p
 r  

p
exp  i   

   r
  

p
 r

  

p
exp  i   

                                             .   

 s   
r  
s  r  

s exp  i   

   r  
s  r  

s exp  i   
                                             .   

interface between medium   and medium  ,   is the film "phase thickness"  the change in 

the phase of the light due to the film) given by equation 1.9, and d is the film thickness.   

       
d

 
   cos                                                   .   

The fundamental equation of ellipsometry  equation  . 0  defines the parameters, Ψ and  

 p

 s

   tan Ψ ei                                                   . 0  
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Figure 1.3.  The interaction of light with a thin film (component 2) of thickness d on a 

substrate (component 3). 
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Δ, which are measured experimentally.  The parameter Ψ is defined as the angle whose 

tangent is equal to the ratio of the magnitudes of the total reflection coefficients (equation 

1.11), which gives a measure of the change in amplitude of the perpendicular and parallel 

tan Ψ   
  p 

  s 
                                                      .    

components of the wave after reflection.
65

   n the other hand, Δ is defined as the change 

in “phase difference” between the parallel component and perpendicular components of 

the wave after reflection (equation 1.12),
65

 where δ1 is the phase difference of the  

Δ   δ    δ                                                     .    

incident wave, and δ2 is the phase difference of the reflected wave.   

In order to obtain useful film properties, such as thickness and refractive index 

from Ψ and Δ, a regression analysis of the optical data is required.  In this dissertation, 

the software used for this analysis was WVASE32
TM

, provided by the J.A. Woollam 

Company.
66

  This software does the regression analysis by fitting an optical model 

system with variable film thickness and/or refractive index to the experimental data.  To 

evaluate the quality of the regression match between the calculated fit and observed data, 

the software uses an expression called the mean-squared error (MSE), which represents a 

sum of the squares of the differences between the measured and calculated data, with 

each difference weighted by the standard deviation of that measured data point.
66

  

Equation 1.13 shows this expression, where N is the number of  Ψ, Δ  pairs, M is the  

M    
 

   M
   

Ψi
mod Ψi

exp

 
Ψ,i

exp  

 

    
 i
mod  i

exp

 
 ,i

exp  

 

 

 

i  

                          .     
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number of variable parameters in the model, and   is the standard deviation of the 

experimental data points.  The software tries to minimize the MSE through successive 

iterations until the MSE converges and no additional improvement is generated.  The key 

to this analysis, however, is the choice of an accurate optical model to describe the 

experimental system.  If an inaccurate model is applied, the software can generate 

unrealistic values of the physical properties of the system.  For this reason, we have used 

spectroscopic ellipsometry in conjunction with x-ray photoelectron spectroscopy (XPS) 

to eliminate film thickness as a variable in our optical model to determine refractive 

index, and we have used known values of refractive index to calculate thickness. 

 

1.3.3  X-ray Photoelectron Spectroscopy (XPS) 

 X-ray photoelectron spectroscopy is based on the photoelectric effect, wherein an 

incident x-ray causes the ejection of photoelectrons from core-level and valence states of 

atoms in a sample of interest.
67

  In our Scienta ESCA-300 instrument, high energy 

(1486.6 eV) Al-Kα x-rays irradiate the sample surface at a set angle between 20 and 45°.  

The kinetic energy of emitted photoelectrons can be measured by a detector held at 

various angles relative to the plane of the surface, referred to as the take-off angle.  The 

binding energy of the atomic states giving rise to photoemission can be determined using 

equation 1.14,
67

 where h is Planck’s constant, ν is the frequency of the x- ray, Ek is the  

 b  hν    k                                                         . 4  

kinetic energy of the emitted photoelectron, Eb is the binding energy of the state from 

which it was produced, and   is the work function of the instrument.  During calibration 

of the instrument, the work function is determined by the measurement of a 
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photoemission standard, such as the 4f level of gold, for which the value of Eb is known 

to a high degree of accuracy.  The binding energy of the emitted electron is characteristic 

of the energy level it vacated, and thus corresponds to a specific electronic state of a 

particular element.  Chemical shifts in this binding energy reflect the oxidation state of 

the element, with higher oxidation states giving rise to more positive binding energies. 

 The penetration depth of x-rays is on the order of microns, but detectable 

photoemission is only generated from atoms within a much smaller region nearer to the 

surface.  The thickness of this region depends on the characteristic mean free path, or 

attenuation pathlength,  , of photoelectrons through that material.
67

  The attenuation 

length is a measure of the average distance travelled by a photoelectron between 

collisions with atoms in the sample.  Each material has its own value of   that depends on 

its crystal structure, density, and scattering cross-section of the constituent atoms.  

 pproximately   % of photoelectrons emitted at a depth of   are scattered prior to 

reaching the surface, and 95% of photoelectrons from a depth of    are scattered.
67

  

Typical values of   are between   – 3 nm, so sampling depths are 3 – 10 nm for XPS 

measurements.
67

  The angular dependence of this sampling depth, z, is given by equation 

 .  , where θ is the take-off angle at which photoemission is collected.  For the case of a 

       sinθ                                                           .    

substrate with a uniform thin overlayer of thickness z, the measured photoemission 

intensity, I
z
, is given by equation 1.16 for the substrate, and equation 1.17 for the  

Is
    Ise

     sinθ                                                   .    

Io
    Io   e     sinθ                                             .    
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overlayer, where Is is photoemission from an infinite substrate, and Io is photoemission 

from an infinitely thick overlayer.  It is therefore clear from these relations that the 

measured photoemission intensity is dependent on both the sampling depth, and the take-

off angle. 

 Varying the take-off angle at which photoemission is collected allows the use of 

XPS for the depth-profiling of materials.  Depth-profiling is especially important for the 

study of thin films on a substrate, such as those in this dissertation.  For instance, when 

photoemission is collected at a take-off angle of 45° from a sample with a thin film 

overlayer, the photoemission from the underlying substrate is attenuated to a larger extent 

than if photoemission were collected at a take-off angle of 90° (Figure 1.4).  

Additionally, more photoemission is collected from the overlayer at an angle of 45°, than 

would be at 90°.   

Data from XPS are typically first collected over a wide range of the binding-

energy spectrum  a “survey spectrum”  in order to determine which elements are present 

at a surface and to obtain their approximate amounts.  For quantification, high-resolution 

spectra are usually collected within much smaller regions of interest.  These high-

resolution scans can be fit to provide quantitative data and information about chemical 

structure and oxidation state(s).    

Commercial software allows photoemission to be fit by the insertion of 

component peaks with a mixture of Gaussian and Lorentzian character that is determined 

by the user.  The user may also choose to specify the values allowed for other fitting 

parameters, such as component position, full-width at half maximum (fwhm) of the 

components, and ratios of component areas.  Once a quality fit of experimental data has  



19 

 

 

 

 

 

 

 

 

 

Figure 1.4.  Schematic representation of the effect of take-off angle on observed ratio of 

intensities for a thin overlayer (Io) and substrate (Is). 
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been achieved, a quantitative analysis of the data can be performed using the integrated 

intensities of photoemission.  It is important to note that quantitative analysis should only 

be performed using data taken from the same sample, on the same day, and under the 

same experimental conditions (i.e., take-off angle, pass energy, etc.), and after correcting 

for the number of scans and relative sensitivity factors for each initial electronic state to 

adjust the integrated photoemission intensities. 

 

1.4  Patterned SAMs on Uniform Substrates 

 Producing patterned SAMs on uniform substrates can be achieved through a 

variety of methods, including microcontact printing and lithographic techniques (e.g. 

photolithography, e-beam lithography, and x-ray lithography).
4,68

  In microcontact 

printing, a patterned stamp containing or wetted with the molecule of interest is applied 

to a surface for a brief period of time (5-10 s), allowing monolayer formation in the 

pattern present on the stamp with resolution of features down to ~ 20 nm.
69,70

  

Lithographic techniques involve the initial formation of a SAM across the entire 

substrate, followed by removal from specific areas to form a patterned surface.
68,71

  

Typically, resists are fabricated for this use, allowing degradation of the monolayer not 

protected by the applied pattern.
68

  For example, electron-beam lithography can be used 

to generate features on a substrate with resolutions as small as ~ 10 nm.
4,72

   

 

1.5  Directed Self-Assembly on Patterned Substrates 

Directed self-assembly of molecules onto a substrate bearing a pre-existing 

pattern is a goal in present research due to the promise such modified surfaces hold for 
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use in sensors (eNoses, eTongues, etc.), photovoltaics, and microelectronics.
4
  Many of 

these applications require a technique that allows the user to apply monolayers with 

different types of functionality on electrodes adjacent to one another.  As mentioned 

above, accelerated formation of SAMs by potential-assisted chemisorption of 

organosulfur compounds has been studied extensively by many authors.
20,31,42,44,48

  

Reductive potentials can also be used to either desorb monolayers from specific 

electrodes, or to prevent spontaneous formation of films.
43,45,47,73-75

  Sequential formation 

of SAMs from these techniques are potentially problematic though, as the ability of thiols 

from solution to interchange with thiolate monolayers can give rise to cross-

contamination of neighboring electrodes. 

In previous work, the Ferguson group developed a method for the site-selective 

formation of SAMs from alkyl thiosulfates on both macroscopic gold electrodes and 

microelectrodes and with the ability to introduce ω-functionality.
12,13,76

  This method 

relied on the anodic activation of alkyl thiosulfates at selected electrodes in an array 

(equation 1.18), and allowed the sequential placement of SAMs of varying functionality 

     
 
    u  

 e 

    u                                                .    

without cross-contamination (Figure 1.5).
12-14,76,77

  This process occurs at potentials 

sufficiently anodic to also cause concurrent oxidation of the gold surface which may 

mediate oxidation of the alkyl thiolsufates as the SAM forms.
78

  This method, however, is 

not compatible with nucleophilic end groups because the SO3 by-product is a strong 

Lewis acid and leads to side-reactions at the surface of the SAM.  Monolayers formed 

from hydroxyl-terminated alkyl thiosulfates, for example, contained large amounts of  
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Figure 1.5.  Sequential adsorption of SAMs on individually addressable gold electrodes 

by oxidation of alkyl thiosulfates.  Reprinted (adapted) with permission from Labukas, J. 

P.; Ferguson, G. S., Langmuir 2011, 27 (7), 3219-3223.  Copyright 2011 American 

Chemical Society. 

CH3(CH2)15S2O3Na           - e-, - SO3

HO2C(CH2)10S2O3Na           - e-, - SO3

CF3(CF2)9(CH2)2S2O3Na          - e-, - SO3

CH3O2C(CH2)10S2O3Na            - e-, - SO3
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sulfate, resulting presumably from the reaction of SO3 with the terminal hydroxyl 

groups.
13

   

The work described in this dissertation was undertaken with the goal of 

developing an alternative method for the regioselective formation of SAMs without the 

limitations of the alkyl-thiosulfate system.  Our approach used the fact that dialkyl 

disulfides spontaneously form SAMs on gold but not oxidized gold surfaces,
1,20,31

  to 

allow regioselective formation of SAMs on selected gold electrodes.  This strategy is 

similar to the well-established ‘‘protection–deprotection’’ approach used successfully by 

synthetic organic chemists for decades.   

 

1.6  Gold Oxide 

A unique characteristic of gold is that its oxides are not thermodynamically stable.  

Nonetheless, they are kinetically inert in air or vacuum for periods of days.
30,79,80

  

Therefore, gold oxides can be produced through synthetic methods such as 

electrochemical oxidation,
81-86

 chemical treatment,
30,31,79,80,87

 or UV/O3 exposure
27,29-32,50

  

and studied or used.  The work in this dissertation uses oxide films, formed 

electrochemically or by UV/O3 exposure, as masking layers to prevent monolayer 

formation.   

The most well-studied gold oxide is Au2O3, which has been characterized by 

XPS,
26,27,80,84,87,88

 ellipsometry,
89-94

 measurements of resistivity,
95

 and temperature-

programmed desorption (TPD),
26,27,80

 as well as examined using density functional theory 

(DFT) calculations.
96,97

  The DFT calculations predicted Au2O3 to be a semiconductor 

with a band-gap of 0.85 eV, and to crystallize in an orthorhombic structure.
97

  A detailed 
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discussion of the XPS and ellipsometric data found in the literature for gold oxide will be 

presented in Chapter 2.  Depending on the method of formation, this oxide may occur as 

an anhydrous
26,27,80

 or hydrous compound, with the hydrous type most typically resulting 

from electrochemical oxidation (equation 1.19).
82-86,98

  Hydrated Au2O3 is also commonly  

   u             u         
      e                                           .    

described as gold hydroxide, Au(OH)3, in the literature as it is difficult to discern the 

differences in the oxygen species present.
82,83,85,98

  Due to the ambiguity of the 

composition of gold-oxide films, mixed oxides of the general formula AuxOy(OH)z are 

often reported.
81-83,85

  Other oxides are also known, such as gold peroxide, AuO2, but this 

species is considered to be highly unstable, decomposing readily to Au2O3 and O2.
98

  The 

gold oxide formed by exposure to UV/O3 is thought to be anhydrous Au2O3.
26,27,30

   

Formation of gold oxides electrochemically proceeds by the initial formation of a 

submonolayer of OH and/or O on the metal surface, which then extends to a full 

monolayer.
86

  Continued oxidation and film growth proceeds by interchange between 

metal atoms in the substrate and the OH or O species in the ad-layer, which results in the 

transition of these species from reversibly adsorbed to irreversibly adsorbed 

(kinetically).
86

  Two forms  α and    of electrochemically formed gold oxide have been 

reported in the literature.
82-85

    thin, compact  α  oxide, which –based on XPS
81,83,84

 and 

quartz-crystal microbalance measurements
82
– is thought to contain mostly Au (II), and a 

thicker, hydrous     oxide, which is thought to be predominately  u  III .
82-85

  The α 

form is typically produced at potentials below 2.0 V (vs. reversible hydrogen electrode, 

RHE) under potentiostatic and potential-cycling conditions, whereas the   form is 

produced potentiostatically above 2.0 V or by cycling between a lower (~ 0.5 – 1.0 V) 
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and upper (1.8 – 2.6 V) limit using a symmetric square-wave periodic potential or linear 

potential cycling.
82,83,85

   

 

1.7  Dissertation Structure 

 Each of the chapters in this dissertation describes a major component of research.  

The second chapter describes our studies of electrochemically formed gold oxide to gain 

an understanding of its composition, and to determine its complex refractive index over 

much of the visible range of wavelengths.  We used these values of the refractive index in 

an ellipsometric study of the lability of thin films exposed to various solvents and 

supporting electrolytes, described in Chapter 3.  That work established conditions under 

which the oxide film is inert over a timeframe suitable for experimentation.  Chapter 4 

focuses on the development of a protection-deprotection scheme for the directed 

formation of SAMs from dialkyl disulfides, using gold oxide as a temporary masking 

layer.  Chapter 5 then describes the demonstration of the compatibility of this method 

with nucleophilic functional groups, as well as our extension of this technique to 

microelectrodes.  In Chapter 6, exploratory work on the use of silver(I)-thiolate polymers 

as precursors to SAMs and nanoparticles is presented.  Finally, in Chapter 7, future work 

is proposed for the continuation of these projects.  
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Chapter 2 

 

 

Determination of the Wavelength-dependent Refractive Index of a Thin Film of 

Gold Oxide 

 

 

This chapter includes material that has been reproduced in part with permission from: 

Cook, K. M.; Ferguson, G.S.; Journal of Physical Chemistry C 2011, 115(46), 22976-

22980 

 

 

2.1  Abstract 

 A two-step procedure is described for measuring the complex refractive index of 

an anodically produced oxide film on a gold electrode.  Both the composition and the 

thickness of the oxide were determined independently using x-ray photoelectron 

spectroscopy.  These measurements served to define the system and thereby avoid 

assumptions regarding the film stoichiometry that would otherwise be required.  The 

thickness was then used to calculate values of n and k from ellipsometric data collected 

across the visible spectrum (350-800 nm).   

 

2.2  Introduction 

 In order to develop our protection-deprotection approach, using gold oxide as a 

masking layer to direct the formation of SAMs from dialkyl disulfides, we needed a 

convenient method to monitor the presence or absence and the thickness of gold-oxide 

thin films.  Spectroscopic ellipsometry would provide an ideal method, but requires 

knowledge of the wavelength-dependent refractive index of these films. This chapter 

describes a method for measuring these optical constants. 
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Gold has been valued throughout history for its scarcity and lack of chemical 

reactivity.  A remarkable example of this chemical uniqueness is the instability of its 

oxide, relative to the component elements, under ordinary conditions.  Thus, whereas the 

surfaces of the other metals (except mercury) immediately form a native oxide on contact 

with air, gold does not.  In part for this reason, detailed characterization of thin films of 

other metal oxides has, in general, been more straightforward than for gold oxide(s).  As 

discussed in Chapter 1, two forms  α and    of electrochemically formed gold oxide have 

been reported in the literature.
1-3

  The α form is typically produced at potentials below  .0 

V (vs. RHE) under potentiostatic and potential-cycling conditions, and the   form is 

produced potentiostatically above 2.0 V or by cycling between a lower (~ 0.5 – 1.0 V) 

and upper (1.8 – 2.6 V) limit using a symmetric square-wave periodic potential or linear 

potential cycling.
1-3

  The thin compact  α  oxide is thought to contain mostly  u  II , 

while the thicker hydrous     oxide is thought to be predominately  u  III .
1-3

   

Determination of the complex refractive index (N = n + ik) of gold-oxide thin 

films by ellipsometry requires that film thickness (tox) be measured independently 

because an accurate thickness and index cannot be determined simultaneously by 

ellipsometry.  Approaches to solving this problem have included estimating film 

thicknesses by coulometric measurements,
4-6

 and determining n, k, and tox simultaneously 

by using ultraviolet-visible specular reflection spectroscopy
7
 to measure both reflectance 

 Δ     and ellipsometric parameters  Ψ, Δ .
8,9

  The coulometric method involves 

measuring the charge associated with reduction  and represented by the area under the 

cathodic stripping peak of the film.  Assuming a uniform composition and density of the 

film (usually taken to be Au2O3), as well as the redox reaction responsible for stripping, 
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the coulometric measurement can be used to calculate the thickness of the film.  These 

assumptions, however, can introduce error if the films are actually mixed oxides.
4-6,8

   

Reflectance measurements, on the other hand, require a linear approximation to be made:  

the oxide film thickness is estimated to be proportional to the change in reflectivity of a 

gold surface as it is oxidized.  In this technique, however, the oxide and gold films must 

be non-absorbing in this regime in order to determine n, k, and tox simultaneously.  As 

gold (and likely gold oxide) adsorbs light below 600 nm,
10

 substantial errors occur for 

measurements made below 600 nm, and values for the complex refractive index are only 

reported for wavelengths in the range of ~600–715 nm.
7-9

   

To avoid these weaknesses, we used angle-resolved x-ray photoelectron 

spectroscopy (XPS) to measure both the composition and the thickness of a single gold 

oxide thin film.  We were then able to use the known thickness to determine wavelength-

dependent values of the complex refractive index of the film with variable-angle 

spectroscopic-ellipsometry (VASE, Figure 2.1).  Although the value of film thickness 

obtained by XPS depends on a calculated value of attenuation length of the 

photoelectrons, the choices for the values assumed in the calculation (the density and 

formula weight of Au2O3) could be verified by the measured elemental composition.   

 

  2.3  Results and Discussion 

 

2.3.1  Formation and Composition of the Gold Oxide   

Brief application of an anodic potential (1.2 V, 10 s) to a gold electrode immersed 

in aqueous sulfuric acid (0.5 M) produced a thin film of oxide on the electrode surface  
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Figure 2.1.  Schematic representation of the approach used to determine the complex 

refractive index of a thin film of gold oxide formed electrochemically on a gold substrate.  

The thickness of the oxide film was determined independently by angle-resolved XPS, 

and this thickness was then used to determine the complex refractive index by variable-

angle spectroscopic ellipsometry (VASE). 
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(Figure 2.2).
6,7,11-13

 High resolution XPS in the Au 4f region (take-off angle, 20°) 

confirmed the presence of the oxide film, with a broad spin-orbit doublet (fwhm, 1.3 eV) 

consistent with Au (III) (85.7 eV, 4f7/2; 89.4 eV, 4f5/2) and a narrower doublet (fwhm, 0.7 

eV) due to the underlying elemental gold (84.0 eV, 4f7/2; 87.7 eV, 4f5/2; Figure 2.3, 

top).
11-15

  A high resolution spectrum in the oxygen 1s region (take-off angle, 20°) 

contained a broad envelope that could be fit with four components at:  529.3 eV, fwhm, 

0.793 eV; 530.1 eV, fwhm, 1.215 eV; 531.1 eV, fwhm, 2.073 eV; and 532.5 eV, fwhm, 

1.533 eV (Figure 2.3, bottom).  Similar binding energies have been attributed to a mixed 

oxide containing both oxo and hydroxyl species (Au2O3 and Au(OH)3, respectively).
13-15

  

Nonetheless, the ratio of Au
3+

 to oxygen calculated from these spectra is 36:64, close to 

that expected for the oxide, Au2O3 (40:60). 

To determine the extent to which adsorbed contamination might have contributed 

to the slight excess of O 1s photoemission, a control experiment was performed to sample 

the contaminants that may adsorb from the atmosphere.  In this experiment a freshly 

evaporated gold electrode was exposed to the ambient laboratory atmosphere, allowing a 

layer of contamination to collect.  The growth of this layer was monitored by 

ellipsometry until a constant thickness was reached (12 Å over ~48 h, Figure 2.4), after 

which the sample was analyzed by XPS.  Ellipsometric data were collected over a 

wavelength range of 350 – 800 nm, and the model used to analyze the data comprised a 

substrate with the optical constants of the unaltered gold, and an overlayer of hexadecane, 

for which optical constants had been measured previously.  These values of n and k for 

hexadecane were chosen because they are likely to be close to those of hydrocarbon  
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Figure 2.2.  Schematic representation of an electrochemical cell used to oxidize the gold 

electrodes. 
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Figure 2.3.  High resolution XPS spectra in the Au 4f and O 1s regions of an oxidized 

gold electrode. 
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Figure 2.4.  Growth in thickness of a contamination layer on a gold film over time, 

monitored ellipsometrically.  The accuracy of ellipometric measurements of thickness is 

typically ±2Å. 
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contamination deposited from the atmosphere.  A high resolution spectrum in the carbon 

1s region (Figure 2.5) contained photoemission that could be fit by peaks at:  284.2 eV, 

fwhm, 1.155 eV; 284.9 eV, fwhm, 1.444 eV; and 287.1 eV, fwhm, 2.803 eV.  A high 

resolution spectrum in the oxygen 1s region (Figure 2.6) contained photoemission that 

could be fit by peaks at:  530.5 eV, fwhm, 1.098 eV; 531.6 eV, fwhm, 1.416 eV; and 

532.4 eV, fwhm 2.399 eV, which are consistent with similar measurements reported by 

others,
13-17

 as well as similar to some of the components found in the fit of our gold-oxide 

spectrum.  The sum of photoemission intensities from these peaks was ~ 20% of the total 

Au 4f photoemission, compared to that for our oxide spectra (~ 65% of the total Au 4f 

photoemission from the metal and the oxide).  It is likely then, that contamination 

contributed to the intensity of the O 1s peaks at 530.1, 531.1 and 532.5 eV, and thereby 

decreased the Au:O ratio below that expected for Au2O3.  Compared to the two forms (α 

and    of electrochemically formed gold oxide reported in the literature, our results 

indicate a hydrous Au (III) oxide formed over a timeframe (10 s) and at a potential (1.2 

V) at which a compact Au(OH)2 or AuO is normally reported to be produced.
1-3

   

 

2.3.2  Determination of Oxide Thickness   

Angle-resolved XPS provided an independent estimate of the thickness of the 

electrochemically produced oxide film.  High-resolution spectra in the Au 4f region were 

collected at take-off angles from 60° and 90° (between the detector and the plane of the 

sample) in 5-degree increments because the estimated attenuation length used in the 

analysis is most accurate in this regime (Figure 2.7).
18

  The thickness of a thin overlayer 

on a thick substrate can be estimated fitting only attenuation of the photoemission from  
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Figure 2.5.  High resolution XPS spectrum in the C 1s region of contamination on a gold 

electrode. 
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Figure 2.6.  High resolution XPS spectrum in the O 1s region of contamination on a gold 

electrode. 
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Figure 2.7.   High resolution XPS spectra in the Au 4f region of an oxidized gold 

electrode with take-off angles between 60 and 90°. 
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the underlying substrate, or by using the ratio of photoemission intensities from both the 

overlayer and the substrate. We have analyzed our data using both methods and offer a 

comparison.  Equation 2.1 describes the attenuated photoemission from the substrate (Is)  

              –                 (2.1) 

as a function of take-off angle, where Is refers specifically to the intensity of the Au 4f7/2 

peak for the substrate measured through the oxide, I∞ is the intensity of that peak for an 

infinite slab clean gold,  ox is the attenuation length for a gold 4f photoelectron through 

the oxide overlayer, θ is the take-off angle, and tox is the thickness of the oxide film.  The 

constant, I∞, was determined experimentally on the same electrode after sputtering with 

Ar ions to remove the oxide.
19

  The attenuation length for gold oxide   ox) was estimated 

using the NIST electron effective-attenuation-length database,
18

  which gave a practical 

attenuation length of 18 Å (see experimental section).  A plot of ln(Is/I∞) versus     ox sin 

θ  gave a straight line for take-off angles between 60 and 80°, but deviated from linearity 

at higher angles.  The slope of the best-fit line including all the data indicated an oxide 

thickness of 21 Å (Figure 2.8).  This result is almost certainly an overestimation of the 

oxide thickness, due to an inherent weakness of the approach:  photoemission from the 

Au substrate bearing an oxide will be attenuated not only by the oxide, but also by a thin 

layer of contamination on the oxide surface.  Subsequent sputtering within the UHV 

chamber to produce the bare gold substrate removes both the oxide and the 

contamination.  As a result, the measured ratio of Is/I∞ is smaller than it should be, 

leading to an overestimation of the oxide thickness.  The deviation from linearity at high 

take-off angles is consistent with the presence of pinholes in the oxide layer, which could 

give rise to enhanced photoemission intensity due to the substrate (Is) at high take-off  
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Figure 2.8.  Linear fits of angle-dependent XPS Au 4f7/2 photoemission intensities plotted 

according to equation 2.1, with all points included and with the two points at highest 

take-off angle excluded.  The error bars represent the propagated error of the measured 

photoemission intensities.   
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angles.  Fitting only the linear regime of the data (points at the two highest angles 

omitted) gave an oxide thickness of 18 Å (Figure 2.8). 

 An alternative approach (equation 2.2), which treats the photoelectron intensity of  

                                            (2.2) 

both the gold substrate and the oxide overlayer,
20

 avoids the problem of differential 

attenuation due to contamination because both intensities are generated from the same 

spectrum and are thus attenuated to the same extent by the contamination.  In this 

equation, Iox is the intensity of theAu 4f7/2 peak of the oxide overlayer, and Is is the 

intensity of the same peak from the underlying elemental gold.  The constant, R, is a 

composite ratio of materials constants (equation 2.3), where As is the atomic weight 

                               (2.3) 

of gold, Aox is the formula weight of gold oxide (Au2O3, 44 .   g mol , ρs is the density 

of gold (19.3 g/cm
3
 , ρox is the density of gold oxide (11.34 g/cm

3
),

21
 and  s is the 

attenuation length for gold (19 Å).
18

  Using equation 2.2, the average value of tox 

calculated for angles between 60° to 90° (inclusive, 5° increments) gave an oxide 

thickness of 11 Å (Table 2.1).  We believe that this value is the best estimate of oxide 

thickness, as it quantitatively accounts for both the substrate and oxide photoemission 

intensities.  Averaging the values of thickness calculated at each angle avoids the effects 

of any forward focusing as a function of emission direction.
22-24

 

Equation 2.1 can also be modified to include the contamination layer explicitly, 

by adding a second term to the right-hand side of the equation to account for the 

additional attenuation  equation  .4 , where  c is the attenuation length of a layer of  
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Table 2.1.  Oxide film thicknesses calculated using equation 2.2, and photoemission 

intensities for gold (Is) and gold oxide (Io) 4 f7/2 peaks at take-off angles between 60 and 

90°.  The error is the standard deviation of the thickness values.  

        

Takeoff Angle (°) Io (arb. units) Is (arb. units) Oxide Thickness (Å) 

60.00 52.5 202.5 11.4 

65.00 51.2 214.8 11.2 

70.00 50.1 226.9 11.0 

75.00 47.3 236.2 10.5 

80.00 45.2 245.2 10.1 

85.00 46.3 255.8 10.0 

90.00 47.1 266.4 9.9 

    Average Thickness: 11 Å 

  
Error: 1 Å 
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                   -                    (2.4) 

organic contamination (assumed to be 30 Å)
24

 and tc is the thickness of the contamination 

layer.  Using the value of tox obtained from equation 2.2, ln(Is/I∞) could be plotted versus 

    c ox sin θ to obtain a value of tc.  As with the two-layer model, this plot was best fit 

with a line when the two highest angles were omitted, giving a tc value of 13 Å (Figure 

2.9).  This value is higher than reported in the literature for contamination layers on gold 

(~6 Å),
25,26

 which could be due to inconsistency inherent in comparisons of absolute 

intensities (Is and I∞) taken from separate sets of spectra, or to differences in the 

propensity for contamination of gold and gold oxide.  It is very close, however, to the 12 

Å we found by ellipsometery. 

 

2.3.3  Wavelength-dependent Refractive Index   

Values of the ellipsometric parameters, Ψ and Δ, were measured for a freshly 

deposited  u substrate before and after oxidation.  Plots of Ψ and Δ, for gold and gold 

oxide —used to calculate film thickness— are shown in Figure 2.10.  Data were collected 

using light with wavelengths between 350 and 800 nm.  These data are close to those 

reported previously for Au2O3 films formed by UV/ozone treatment of gold.
27

  The 

oxidized sample was then immediately transferred into the XPS instrument for the angle-

resolved measurements described in the previous section.  The film thickness derived by 

XPS was then input as a fixed parameter in the ellipsometric software to obtain the 

complex refractive index of the oxide over this range of wavelength (Figure 2.11).  The 

value of n was relatively constant (~2.75) between 350 and 550 nm, but then abruptly fell 

to ~0.25 at and above 600 nm.  The value of k increased sharply (from ~0.3 – 1.0 to  
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Figure 2.9.  Linear fits of angle-dependent XPS Au 4f7/2 photoemission intensities plotted 

according to equation 2.4, with all points included and with the two points at highest 

take-off angle excluded.  The error bars represent the propagated error of the measured 

photoemission intensities.   
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Figure 2.10.  Measured ellipsometric parameters, Ψ and Δ, plotted as a function of 

wavelength for gold (solid line) and electrochemically formed gold oxide (dotted line) in 

air.  These data were collected at an angle of incidence of 70°.  
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Figure 2.11.  Complex refractive index of a thin film of gold oxide, formed 

electrochemically, as a function of wavelength.  The primary source of uncertanty in 

these values is the thickness of the oxide film calculated from equation 2.2.  To show the 

variation in this uncertanty as a function of wavelength, we have bracketed our data by 

values of n and k that result from thicknesses one standard deviation above (            ) and 

below (            ) the average value used. 
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~1.0 – 1.4) in the same region of the spectrum, consistent with an adsorption edge.  

Although the band-gap is calculated to be ~ 0.85 eV (~ 1459 nm),
28

 ~ 1.36 eV (~ 912 

nm),
29

 or ~ 1.6 eV (~ 775 nm)
30

 those authors note that the methods used in their 

calculations very likely gave  underestimated values.  

Previous studies of the refractive index of electrochemically formed gold oxides 

have generally taken one of two approaches:  either the thickness of the oxide was 

estimated using coulometric measurements,
4-6

 or it was measured simultaneously with the 

refractive index.
8,9

  Kolb and McIntyre, for example, used coulometric measurements to 

estimate a thickness of 6 Å (based on an assumed density of 6 g/cm
3
 for Au2O3) of an 

oxide film formed anodically on gold at 1.6 V.
7
  They then used UV/Vis specular 

reflection spectroscopy to measure the differential reflectance (the difference in 

reflectance from the surface of two beams of light with different polarization) of the film 

and obtained ranges of n (~1 – 15) and k (~5 – 10), using a Kramers-Kronig analysis to 

relate the transmitted (real) to the absorbed (imaginary) components of the complex 

refractive index between wavelengths of 225 and 950 nm.  They found a large increase in 

n (from ~ 2 to 15) around 565 nm, which is opposite to what is observed in our data, 

whereas their values of k remain relatively constant (between ~5 and 7).  Kim and 

coworkers used a constant potential of 1.3 V (vs. saturated calomel electrode, SCE) to 

form an oxide film, and then coulometric stripping to estimate the thickness of  the 

(assumed) Au2O3 layer to be 3.7 Å.
5
  They reported values of n (~6.5 – 11) and k (~5.5 – 

8) at wavelengths between 388 and 827 nm.  Kim et al. also observed a sharp increase in 

n ( from ~ 3 to 11) at ~ 500 nm, similar to the results of Kolb and McIntyre.  Their 

reported increase in k (~ 5.5 to 7.5) at close to the same wavelength, however, is similar 
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to our data.  Vela and coworkers studied “hydrous” gold-oxide layers formed by applying 

a square-wave periodic potential from 2.7 V to 0.45 V (vs. reversible hydrogen electrode, 

RHE).
6
  Their samples were then held at 1.5 V and ellipsometric data collected in the 

range of 400–700 nm.  Using thicknesses (1 – 400 nm) estimated by coulometric 

stripping measurements, values of n (1.76 – 1.93) and k (0 – 0.24) found were lower than 

most reported in the literature, which they attributed to the hydrous nature of the oxide.
6 

 

These values of n are within the range of those we measured, but the values of k are 

lower, and no adsorption edge was found for these films. 

Horkans and coworkers used ellipsometric and reflectance measurements to 

determine the film thickness and complex refractive index simultaneously.
8
  They 

measured the optical intensity during cyclic voltammetry (0 – 1.6 V) and at a constant 

potential (1.35 V) versus normal hydrogen electrode, NHE.  At the constant potential, 

they reported an oxide thickness of 5.4 ± 0.6 Å and a complex refractive index of 3.3 – 

1.3i for wavelengths between 602 and 715 nm, with an estimated precision of 10%.  

These authors also noted that two-parameter (Ψ and Δ  solutions below  00 nm could not 

be found because the error in this region was larger than the measurement, likely due to 

the absorbance of light by the material starting at this wavelength.  The value of n 

obtained in this manner (3.3) is close to our values found at shorter wavelength, but not to 

those in the same region of wavelength.  Their value of k does not correspond to our 

value at the same wavelengths.  Similarly, Ohtsuka used ellipsometric and reflectance 

measurements at 632.8 nm to determine the thickness and refractive index of an oxide 

film formed anodically during a linear potential sweep from -0.26 V to 1.64 V (vs. 

Ag/AgCl).
9
  Optical data obtained at 1.64 V (once the film thickness stopped changing) 
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gave a thickness of 8.6 Å and complex refractive index of 3.1 –1.25i, which is in good 

agreement with the work of Horkans.   

With the benefit of an independent measure of film thickness in our study, 

comparisons to these literature values indicate that direct optical measurements of 

thickness tend to give more consistently reliable results than indirect coulometric 

measurements.  The discrepancies in the values of n and k found in different studies 

could have several sources, including differences not only in the accuracy with which 

thickness can be determined, but also in the nature of the films produced  e.g., “hydrous” 

or “compact”  by the different methods.    systematic study of the various 

electrochemical protocols would be required, and may be warranted, to test this 

hypothesis. 

 

2.4  Conclusion 

In summary, we have obtained values for the complex refractive index of an 

electrochemically formed thin film of gold oxide for wavelengths between 350 and 800 

nm.  The thickness of the film was determined independently, using angle-resolved XPS, 

to be 11 Å.  This thickness gave a real part of the refractive index (n) of 2.5–3.0 at 

wavelengths between 350 and 550 nm, and ~0.25 between 600 and 800 nm.  The 

extinction coefficient also changed abruptly at the absorption edge, from ~0.6–0.8 

between 350 and 550 nm, to ~1.0–1.4 between 600 and 800 nm.  These results 

correspond more consistently to those from studies in which the oxide thickness was 

determined optically than to those in which it was determined coulometrically.  In 

estimating the thickness of our oxide, an approach based on equation 2.2 proved to be the 
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most reliable, by avoiding anomalies due to surface contamination or to ratioing data 

from more than one set of spectra.  This study demonstrates the value of combining XPS 

and VASE for determining the complex refractive index in a challenging system. 

 

2.5  Experimental  

General.  Silver nitrate (Fisher, 99.8%), hydrogen peroxide (EMD, 30%), and 

sulfuric acid (EMD, 95%) were used as received.  Gold (99.999%) was used as supplied 

by VEM Vacuum Engineering.  Water was purified with a Millipore Simplicity® UV 

system    .  MΩ·cm . 

Preparation of Samples.  Gold electrodes were prepared on ~ 1 cm x 2 cm glass 

slides that had been cleaned using piranha solution.  Caution: Piranha solution, a 4:1 

(v/v) mixture of concentrated H2SO4 and 30% H2O2, reacts violently with organic 

material and should be handled carefully.  Approximately 50 Å of Ti (as an adhesion 

promoter) and then 1000 Å of Au were deposited at a rate of ~ 3.4 Å/s onto the substrates 

by e-beam evaporation.   

A thin film of gold oxide was produced electrochemically in aqueous 0.5-M 

sulfuric acid using a standard three-electrode cell comprising a gold working electrode, a 

platinum wire as the counter-electrode, and an aqueous Ag/AgNO3 (10 mM) reference 

electrode. To oxidize each electrode, its potential was held at -0.2 V for 10 s, followed by 

 .  V for  0 s.  The sample was then rinsed with deioni ed water    .  MΩ·cm  and 

dried under a stream of N2. 

X-ray Photoelectron Spectroscopy.  Spectra were collected using a Scienta 

ESCA- 00 spectrometer with monochromatic  l Kα X-rays generated using a rotating 
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anode and a 300-mm radius hemispherical analyzer.  Samples were grounded by placing 

screws in contact with both electrode surface and the sample holder.  The pressure in the 

sample chamber was ∼2×10
-9

 Torr, and samples were analyzed at multiple take-off 

angles between the sample surface and the path to the analyzer.   

High-resolution spectra of the oxide samples in the O 1s region were collected 

with a pass energy of 150 eV and a step energy of 0.05 eV (as for all high-resolution 

scans).  The O 1s photoemission was best fit by four peaks in which the full-widths at 

half-maximum (fwhm) were allowd to vary.  Gold 4f photoemission was collected at a 

pass energy of 300 eV for oxide-coated samples and at 150 eV for Ar-sputtered surfaces 

(to avoid detector saturation for the sputtered substrate).  To normalize the Au 4f data, 

additional spectra were obtained for the sputtered (bare) Au at both pass energies using a 

sufficiently low x-ray power that the signals were not saturated at either pass energy.  The 

ratio of these peak intensities was then used to normalize the two sets of data.  For 

example, multiplication of the original 4f intensity from the sputtered sample (150 eV 

pass energy) by the ratio of intensities from the low-power spectra (300 eV/150 eV) 

allowed direct comparison of the original spectra (as in equation 2.1).  To fit the Au 4f7/2 

and 4f5/2 peaks, the fwhm were allowed to vary, but were constrained to be equal to each 

other, and the area of the 4f5/2 peak was constrained to be 75% that of the 4f7/2 peak.   

Survey spectra were collected with a pass energy of 300 eV, and a step energy of 

1 eV.  Spectra were referenced to the elemental Au 4f7/2 peak, set at 84.0 eV.  Samples 

were analyzed within 1 h of oxide formation, and the spectra were analyzed using 

CASAXPS
®
 software (version 2.3.15dev77).   
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The attenuation length of gold oxide, used to determine oxide thickness, was 

estimated using the NIST electron effective-attenuation-length database.
18

  The database 

calculates effective attenuation lengths (EALs) from expressions derived from the 

solution of a kinetic equation under the transport approximation.
31

  The values of EAL 

are then plotted as a function of thickness, and an average value is given for a selected 

thickness range.  Effects of elastic-electron scattering are neglected.  Input parameters for 

the EAL estimation included the configuration of the XPS experiment (angles of x-ray 

incidence and of photoemission detection), the formula weight of gold oxide, and the 

density of gold oxide.  The oxide composition of our films, indicated by the Au:O ratio 

measured at low take-off angle (15°), was approximately Au2O3.  We therefore used a 

formula weight of 441.93 g/mol and a density of 11.34 g/cm
3
.
21

  The precision of the 

oxide thickness is determined by that of the calculated attenuation length and is reported 

to the nearest Å.  All values from the work of others appear with the precision reported in 

the cited references. 

Variable Angle Spectroscopic Ellipsometry.   llipsometric parameters, Ψ and 

Δ, were measured using a J.A. Woollam W-VASE variable-angle spectroscopic-

ellipsometer.  Data were collected between 350 and 800 nm at 50-nm intervals with 

angles of incidence of 60° and 70°.  Complex refractive indices were determined from 

these parameters using provided WVASE32® analysis software. 
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Chapter 3 

 

 

Relative Lability of Gold-Oxide Thin Films in Contact with Air, Solvents, or 

Electrolyte Solutions 

 

 

This chapter includes material that has been reproduced in part with permission from: 

Cook, K. M.; Ferguson, G.S.; Journal of Vacuum Science & Technology A, 2013, 31, 

DOI: 10.1116/1.4791687 

 

 

 

3.1  Abstract 

 

The lability of gold-oxide thin films in contact with air, pure solvents, or 

electrolyte solutions was investigated by monitoring film thicknesses using spectroscopic 

ellipsometry.  The compositions of selected surfaces were verified using low-energy ion 

scattering (LEIS).  The oxide was inert in air over 24 h, but decomposed partially in 

tetrahydrofuran (THF) and water, and completely in ethanol, within the same period.  The 

film thicknesses quickly decreased significantly in THF solutions of Bu4NPF6 and 

Bu4NBF4, but were more inert in solutions of Bu4NClO4 and LiClO4 in the same solvent, 

making the latter more suitable choices as supporting electrolytes in electrochemical 

studies. 

 

3.2  Introduction 

Gold oxides are thermodynamically unstable,
1
 with the exemplar Au2O3 having a 

significantly positive standard free energy of formation (78.70 kJ/mol).
2
  As a result, gold 

oxides are powerful oxidizing agents, potentially important in the conversion of CO to 

CO2 on gold/metal-oxide catalysts
3-5

 and even capable of carbonizing organic polymers.
6
  

Nonetheless, oxide films on gold can be sufficiently inert under ordinary laboratory 
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conditions to allow spectroscopic characterization and use in certain applications.  Thin 

oxide films can easily be produced on gold electrochemically,
7-10

 via chemical 

oxidation,
11,12

 and by photochemical oxidation with O3.
13,14

   In addition to their use as 

masking films on gold electrodes to allow selective surface chemistry,
15

 oxide films have 

also proven useful as model systems for the study of interfacial phenomena such as 

corrosion and catalysis.
3-5,16

 

The inherent instability of gold oxide has sometimes led to cautious approaches to its 

study and use in order to avoid uncertainty regarding the composition of samples due to 

spontaneous decomposition.  For example, some studies on electrochemically formed 

oxides have been performed under an applied anodic potential.
17,18

  Others, however, 

have estimated a substantial activation energy for thermal decomposition of the oxide.  

Temperature-programmed desorption (TPD) spectra, for example, indicated an activation 

energy for the desorption of O2 from oxide monolayers on Au(111) of 30 kcal/mol (126 

kJ/mol).
19

  Measurements of surface resistance on thicker films (> 40 Å)  gave a lower 

activation energy for the decomposition of Au2O3 (57 kJ/mol) and a half-life at 22 °C of 

22 h.
20

  This difference may reflect nonlinearity in the relationship between surface 

resistance and composition or reduction of the film by primary and secondary electrons 

generated by exposure to x-rays during analysis by XPS in the latter study.
21

  In addition, 

recent examples of supported gold-oxide nanoparticles suggest that this inertness extends 

to the sub-micron size regime.
22-25

   

In Chapter 2, we developed an analytical approach, combining x-ray 

photoelectron spectroscopy and spectroscopic ellipsometry, to determine the complex 

refractive index of gold-oxide thin films.
26

  Using these data, the thickness of gold-oxide 
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thin films can be determined easily using ellipsometry, allowing kinetic studies of the 

decomposition of the films.  In this chapter, we examine the relative lability of these 

films in contact with air and with various condensed phases, in order to determine under 

what conditions they would remain intact.  The results allow the rational choice of 

solvents and electrolytes for the use of gold oxide, for example as passivation layers for 

selective formation of SAMs (Chapter 4).  Although isolated pieces of data were 

available in the literature —e.g., its behavior in vacuum,
19

 air,
20,27

 and a few aqueous 

solutions,
27

 and its fast decomposition (reduction) in ethanol
14
— this chapter provides 

kinetics data under a range of conditions and provides  a practical guide for our use of 

gold oxide. 

 

3.3  Results and Discussion 

Gold electrodes were oxidized electrochemically at 1.2 V (vs. 10-mM AgNO3/Ag) 

in 0.5-M aqueous sulfuric acid to produce thin oxide films having an average 

ellipsometric thickness of 9 ± 1 Å (calculated using the complex refractive index of gold 

oxide found in Chapter 2).
7-10,26

  The presence of an oxide was confirmed by the 

appearance of a large cathodic wave in a linear sweep of potential from 0.5 V to -0.2 V in 

0.5-M sulfuric acid, corresponding to reduction of the oxide to the metal (Figure 3.1).  As 

also shown in Figure 3.1, this peak is absent from a scan of unoxidized gold.  After the 

initial film thickness was measured, each sample was placed into a separate 20-mL 

scintillation vial containing air or a test liquid.  The thickness of the oxide films was 

monitored as a function of the amount of time the film was in contact with the ambient  
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Figure 3.1.  Cathodic linear potential sweep (0.1 V/s) in 0.5-M aqueous sulfuric acid of a 

clean gold electrode (solid line) and an electrochemically oxidized gold electrode (dotted 

line).   

 

 

 

  

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

-0.2 0.0 0.2 0.4

C
u
rr

en
t 
(m

A
)

Potential (V)

Gold

Gold Oxide

gold

gold oxide



66 

 

atmosphere, solvents, or electrolyte solutions (Figure 3.2).  Initial measurements of the 

oxide thickness within 5 min of their formation are treated as occurring at t = 0 in our 

plots of the data.  The film thicknesses were monitored by collecting ellipsometric data 

after removing the sample and rinsing with THF and deionized water (for THF solutions), 

or with just deionized water (for the water-soaked sample), and drying under a stream of 

N2.  After each measurement, the samples were placed back into their respective vials.  

Data were collected at 15-min intervals over the course of an hour, followed by a final 

measurement after 24 h.  These choices reflect the timescale of typical electrochemical 

experiments.  Each experiment was repeated in triplicate, and data are reported as the 

average of each set of measurements.  

 

3.3.1  Lability in Air and Solvents   

Figure 3.4 shows the thickness of oxide films on gold electrodes in contact with 

air, THF, deionized water, or ethanol.  In air, the thickness remained unchanged over the 

entire 24-h period, which is more consistent with the large activation energy reported 

from TPD studies
19

 than that based on measurements of surface resistance.
20

  A low-

energy ion scattering (LEIS) spectrum of a sample taken after 1 h of exposure to air 

confirmed the presence of the oxide layer, revealing peaks due to elastic, binary 

collisions with both gold and oxygen (Figure 3.5).   The large reionization tail on the 

lower-energy side of the Au peak is consistent with the presence of a thin oxide overlayer 

at the surface of the sample.
28

  A more detailed description of this tail is provided in the 

Experimental Section. 
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Figure 3.2.  Summary of the process used to monitor the lability of gold-oxide thin films.  

In the first step, the thickness of a newly formed oxide film was measured 

ellipsometrically.  The film was then exposed to air, solvent, or electrolyte solution.  In 

the final step, the oxide film thickness was again measured ellipometrically to determine 

if any change had occurred as a result of the exposure. 
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Figure 3.4.  Ellipsometric thickness of gold-oxide thin films in air (open square), THF 

(filled square), water (open circle), and ethanol (filled circle) as a function of time.  The 

values reported are the average of three measurements, and the error bars represent one 

standard deviation of these measurements.  All data were taken at 15-min time intervals; 

overlapping points have been shifted slightly in the horizontal direction for clarity. 
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Figure 3.5.  Low-energy ion scattering spectra from thin films of gold oxide that had been 

exposed to air, or solutions of Bu4NPF6 or Bu4NBF4 in THF for 1 h. 
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In THF, the film thickness was constant during the first hour of immersion, but 

decreased by about 33% over the next 23 h.  Samples immersed in water behaved  

similarly, though decomposition occurred at a somewhat faster rate:  their thickness 

decreased slightly during the first hour, but degraded by ~50% over the next 23 h.  This 

behavior is consistent with, but does not demand, the presence of a mixed oxide (e.g., 

compact and hydrous oxide, α and  , respectively 
10,29,30

 having components of differing 

solubility in water or in THF that contains water adsorbed from the ambient atmosphere.  

Gold (III) hydroxide, for example, is reported to be soluble in water by formation of 

complex ions.
31,32

  The data in Figure 3.4 also show that ethanol is a sufficiently strong 

reducing agent to quickly reduce oxide films on gold, consistent with previous 

reports.
14,15

  In this case, the oxide was completely removed within the first 30 min of 

immersion.  Atomic force microscopy indicated little or no change in surface morphology 

between an electrode surface prior to oxidation and after oxidation and reduction in 

ethanol, however, an increase in root mean square roughness from 2.0 to 2.6 nm did 

occur (Figure 3.6). 

 

3.3.2  Lability in Electrolyte Solutions   

To examine the behavior of gold oxide under conditions relevant to 

electrochemical applications, the oxide thickness on gold electrodes was monitored in 

0.1-M THF solutions of salts commonly used as supporting electrolytes in organic 

solvents, Bu4NClO4, LiClO4, Bu4NBF4, and Bu4NPF6 (Figure 3.7).  Consistent with the 

results for pure THF, films immersed in each of the electrolyte solutions decreased in  
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Figure 3.6.  (Top) Atomic force micrograph of a gold electrode surface after cleaning by 

cycling its potential seven times from -0.9 V to 1.2 V in 0.5-M aqueous sulfuric acid.  

(Bottom) Atomic force micrograph image of the same gold electrode after oxidation at 

1.2 V (10 s) in 0.5-M aqueous sulfuric acid, followed by reduction in ethanol (30 min).  
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Figure 3.7.  Ellipsometric thickness of gold-oxide thin films in THF solutions of 

Bu4NClO4 (open square), LiClO4 (filled square), Bu4NPF6 (open circle), and Bu4NBF4 

(filled circle) as a function of time.  The values reported are the average of three 

measurements, and the error bars represent the standard deviation of these measurements.  

All data were taken at 15-min time intervals; overlapping points have been shifted 

slightly in the horizontal direction for clarity. 
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thickness significantly over 24 h, though there were large differences in both rate and 

extent of decomposition.  The oxide was most inert in solutions of the perchlorate salts, 

for which the film thickness gradually degraded somewhat (by 10-30%) during the first 

hour and ultimately lost 40-50% of its thickness over the 24-h period.   

In stark contrast to the perchlorate results, the solution containing 

tetrafluoroborate ion caused complete loss of the oxide film within 30-45 min.  This 

behavior was confirmed with LEIS:  the spectrum of a sample immersed in a solution of 

tetra-n-butyl ammonium tetrafluoroborate for 1 h showed a large peak due to gold, and  

no peak due to oxygen (Figure 3.5).  These results, as well as the low intensity of the 

low-energy tail, suggest the lack of an oxide overlayer on this sample.  The accelerated 

decomposition in this solution may reflect etching of the oxide by HF (equation 3.1),
33

  

  u    
x
  s      F  soln      u

  
 soln      F-  soln     x      l  (3.1) 

which could be formed by hydrolysis of tetrafluoroborate ion.
34

  Although the THF used 

in these experiments was initially dry, the solutions were handled in air and thus 

contained small amounts of water that could lead to hydrolysis.   

For comparison, the behavior of samples in solutions containing 

hexafluorophosphate ion was intermediate between those in solutions of perchlorate and 

tetrafluoroborate salts.  Their thickness fell by more than 50% during the first 30-45 min, 

but remained relatively constant thereafter.  As shown in Figure 3.5, a sample immersed 

in a solution of tetra-n-butyl ammonium hexafluorophosphate ion solution for 1 h and 

analyzed by LEIS indicated a much-diminished oxide layer.  The spectrum contained a 

prominent peak due to gold and only a hint of oxygen.  The larger intensity of the low-

energy tail, relative to that of the sample exposed to tetrafluoroborate ion, is consistent 
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with the presence of at least a partial oxide layer at the surface.  The slower 

decomposition in the presence of PF6
–
, relative to BF4

–
, is consistent with the lower 

susceptibility of the former to hydrolysis.  The equilibrium constant for hydrolysis of 

PF6
–
 in water, for example, is 1.5 x 10

-15
 at 25 °C, whereas that of BF4

–
 is 2.7 x 10

-3
 at 30 

°C.
35,36

  To the extent that this difference in reactivity may be reflected in wet THF, it 

could influence the concentration of HF available to etch the oxide. 

 

3.4  Conclusions 

In summary, the lability of gold-oxide thin films varies significantly in different 

environments.  The thickness of these films remain unchanged in air for at least 24 hours, 

though significant decomposition occurred over the same period upon immersion in pure 

solvents, water or THF.  In ethanol, a mild reducing agent, the oxide was quickly reduced 

to the metal.  The behavior in electrolyte solutions depended strongly on the anion of the 

electrolyte.  Fluorine-containing ions had the strongest effect on film thickness.  

Solutions of Bu4NPF6 in THF caused a significant decrease of the oxide film thickness in 

less than an hour, and solutions of Bu4NBF4 caused complete decomposition within 45 

min.   The action of these solutions, as well as the difference between them, may reflect 

the susceptibility of the anions to hydrolysis to produce HF.  Oxide films were more inert 

in solutions of Bu4NClO4 or LiClO4 in THF, making these electrolytes better candidates 

for short-term electrochemical experiments involving gold oxide.  For this reason, we 

used LiClO4 solutions in THF for our studies in this dissertation.   
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3.5  Experimental 

General.  Silver nitrate (99.8%) and tetrabutylammonium perchlorate 

(Bu4NClO4, 99.9995%) were used as received from Fisher Scientific.  Ethanol 

(Anhydrous, J.T. Baker, 95%) was used as received.  Tetrahydrofuran (THF, 

Mallinckrodt, 99%) was purified and dried using a Pure Solv system (Innovative 

Technology, Inc.).  Hydrogen peroxide (30%), and sulfuric acid (95%) were used as 

received from EMD.  Gold (99.999%) was used as supplied by VEM Vacuum 

Engineering.  Lithium perchlorate (LiClO4, anhydrous, Alfa-Aesar, 99%), 

tetrabutylammonium tetrafluoroborate (Bu4NBF4, TCI, 98%), and tetrabutylammonium 

hexafluorophosphate (Bu4NPF6,  Adlrich, 98%) were used as received.  Water was 

purified with a Millipore  implicity® UV system    .  MΩ·cm . 

Electrochemical Formation of Gold oxide.  Gold electrodes were prepared on ~ 

1-cm x 2-cm glass slides that had been cleaned using piranha solution.  Caution: Piranha 

solution, a 4:1 (v/v) mixture of concentrated H2SO4 and 30% H2O2, reacts violently with 

organic material and should be handled carefully.  Approximately 150 Å of Ti (as an 

adhesion promoter) and then 1500 Å of Au were deposited at a rate of ~ 3.4 Å/s onto the 

substrates by e-beam evaporation.  Prior to use in experiments, gold electrodes were 

cleaned by cycling their potential seven times from -0.9 V to 1.2 V in 0.5-M aqueous 

sulfuric acid. 

A thin film of gold oxide was produced electrochemically in 0.5-M aqueous 

sulfuric acid using a standard three-electrode cell comprising a gold working electrode, a 

platinum wire as the counter-electrode, and an aqueous Ag/AgNO3 (10 mM) reference 

electrode. To oxidize each electrode, its potential was held at -0.2 V for 10 s, followed by 
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 .  V for  0 s.  The sample was then rinsed with deioni ed water    .  MΩ·cm) and 

dried under a stream of N2. 

Variable Angle Spectroscopic Ellipsometry (VASE).  Ellipsometric parameters, 

Ψ and Δ, were measured using a J. . Woollam V-VASE variable-angle spectroscopic 

ellipsometer.  Data were collected at a single spot on each sample between 350 and 800 

nm at 50-nm intervals with angles of incidence of 60° and 70°.  Film thicknesses were 

determined by fitting these parameters to an optical model using WVASE32® analysis 

software.   The model consisted of a gold substrate of optically infinite thickness coated 

in a thin film of gold oxide of undetermined thickness and having the values of n and k 

determined in Chapter 2.
26

  The software solves for a consistent thickness of gold oxide 

corresponding to the measured values of Ψ and Δ for each sample.  The optical constants 

of our bare gold electrodes were determined after electrochemical cleaning, and prior to 

their oxidation 

Low Energy Ion Scattering (LEIS).  Spectra of samples that had been exposed to 

air, solvent, or solutions of interest were generated using an ION-TOF Qtac 100 

instrument.  An iridium filament was used to produce a beam of He
+
 ions with 3000 eV 

of kinetic energy.  The ion beam struck the surface of the sample at normal incidence, 

and scattered ions were collected at an angle of 55°.  The energies of the scattered ions 

were measured using an azimuthal detector operating with a pass energy of 3000 eV.  

Samples were analyzed under an ion current of 1.22 x 10
-2

 μ , with the beam rastered 

over a square region  000 μm across, to give a total ion dose of  .   x  0
14

 cm
-2

 for a 

single scan.   
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Each scan sputters away a fraction of the atoms at the surface, so initially, 

contaminants adsorbed from the air are removed to reveal the underlying material of 

interest.  Surface contamination or overlayers (e.g., oxides) can lead to more efficient 

reionization of scattered He atoms that were neutralized during inelastic collisions with 

the sample.  These ions appear as a “tail” of intensity on the lower-energy side of peaks 

due to elastic, binary collisions.  As such, the intensity of this tail can be used as a 

qualitative measure of the amount of contamination or oxide on the sample surface.  We 

therefore monitored the intensity of the low-energy tail after successive scans until the 

change from scan to scan was (qualitatively) small and peaks due to elastic binary 

collisions with the ion beam were observed.  At this point, we considered the last scan to 

best represent the composition of the uncontaminated surface.  To minimize the removal 

of any oxide during this process, we also monitored the region of the spectrum (~ 1140 

eV) where ions scattered elastically from single collisions with oxygen on the surface 

would be expected.  The eighth scan is reported for the samples aged either in air or in a 

solution containing tetrafluoroborate ion, whereas the fifth scan is reported for the sample 

exposed to a solution containing hexafluorophosphate ion. 

Atomic Force Microscopy.  An Asylum Research MFP 3D-BIO atomic force 

microscope was used to generate lateral-force images of each surface.  Data were 

collected over an area of   μm
2
 in tapping mode using an AppNano ACTA probe 

operating at a scan rate of 2 Hz and at an angle of 90°, with respect to the surface. 
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Chapter 4 

 

 

Gold Oxide as a Protecting Group for Regioselective Surface Chemistry 

 

 

This chapter includes material that has been reproduced in part with permission from The 

Royal Society of Chemistry:  Cook, K. M.; Ferguson, G.S.; Chemical Communications 

2011, 47(46), 12550-12552 

 

 

4.1  Abstract 

Selective modification of electrode surfaces is a vital step in the development of 

practical applications of self-assembled monolayers (SAMs).   In this chapter, a 

protection-deprotection approach similar to that commonly utilized in organic synthesis 

was used to direct self-assembly on one gold electrode in the presence of another.  Gold 

oxide was used as the protecting layer, which prevented spontaneous adsorption of 

dialkyl disulfide on the protected electrode.  A neighboring unprotected electrode could 

then be modified regioselectively by adsorption of a SAM.  Analysis of electrodes at each 

step by x-ray photoelectron spectroscopy (XPS) was used to characterize the process and 

revealed the presence of monolayers only on electrodes where assembly was directed.  

The wetting behavior and ellipsometric thicknesses of these SAMs were also consistent 

with directed assembly of SAMs on individual electrodes.   

 

4.2  Introduction 

Spontaneous formation of self-assembled monolayers (SAMs) of organosulfur 

compounds is a convenient route to the uniform modification of gold surfaces.
1
  Some 

applications (e.g. sensors, photovoltaics, microelectronics, and diagnostic chips), 

however, require selective modification only on specific regions of a substrate.
2
  As 
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discussed in Chapter 1, methods have been developed to print patterns of SAMs on 

uniform substrates,
1-3

 as well as to modify particular features selectively on pre-patterned 

substrates (e.g., electrode arrays).
1,4-10

  This chapter describes our development of a facile 

electrochemical method using gold oxide as a protecting layer to allow the directed self-

assembly of monolayers from dialkyl disulfides on selected gold electrodes.  This 

approach integrates the well-established ‘‘protection–deprotection’’ strategy used 

successfully by synthetic organic chemists for decades into an electrochemical method 

with potentially broad applicability for the regiochemical control of surface structure.  

This approach complements our previous work on the site-selective formation of SAMs 

from alkyl thiosulfates and may provide a route to ω-functionality (e.g. hydroxyl, vinyl) 

not amenable to that method.
11-14

 

The work described in this chapter builds on that in Chapters 2 and 3.  In Chapter 

2, a thin film of electrochemically formed gold oxide was characterized by a combination 

of XPS and spectroscopic ellipsometry to determine its composition and to find its 

complex refractive index over the visible range of wavelengths.  Those data allowed us to 

monitor the lability of these thin films ellipsometrically when they were exposed to 

various solvents and supporting electrolytes, thereby establishing conditions under which 

the films are inert over a timeframe suitable for the experiments described in this chapter.   

 

4.3  Results and Discussion 

Previously, Rubinstein and coworkers demonstrated that although dialkyl 

disulfides spontaneously adsorb on gold to form SAMs, they do not adsorb on oxidized 

gold.
15-17

  This behavior contrasts with that of alkanethiols, which form SAMs on both 
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gold and gold oxide, presumably by initial reduction of the latter to produce elemental 

gold followed by adsorption.
17-21

  The inherent difference in the reactivity of disulfides 

with gold and gold oxide, coupled with the ease of formation and removal of oxide 

coatings on gold, offered a convenient strategy for differentiating electrodes in an array.  

The approach would be analogous to protection–deprotection sequences common in 

synthetic organic chemistry, for example in the use of silyl groups to temporarily block 

reactivity at a protected hydroxyl group.
22

  The gold/gold oxide/disulfide system also 

served as an appropriate target because it would extend the types of precursors that can 

be used for the regioselective formation of SAMs and because dialkyl disulfides 

exchange much more slowly than alkanethiols with pre-formed monolayers.
23

 

In preliminary studies, we examined whether reduction of a gold oxide thin film 

could be done concurrently with adsorption of a SAM on the same electrode.  In these 

experiments, pulsed voltammetry was performed on an oxidized gold electrode in a 

solution containing dihexadecyl disulfide (1 mM, Figure 4.1, top) as an adsorbate and 

LiClO4 (0.1 M) as a supporting electrolyte in tetrahydrofuran (THF).  Trace H2O in the 

solvent would need to serve as a source of protons in this system.  The electrode potential 

was stepped from + 0.3 V to a reductive potential (vs. Ag/AgNO3, 3 mM in acetonitrile), 

with 5 s at each potential.  To optimize conditions for reduction/SAM formation, the 

reductive potential (-0.3 – -1.2 V) and number of pulses (10 – 60) were varied.  In each 

case, however, the resulting surfaces were wet by hexadecane, indicating the lack of a 

SAM.  Ellipsometric measurements indicated that the gold oxide was still present on the 

electrode after even sixty pulses from + 0.3 V to -0.9 V, as well as after forty such pulses 
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Figure 4.1.  The molecules used in the regioselective surface modification of gold 

electrodes.  At top, dihexadecyl disulfide, [CH3(CH2)15S]2.  At bottom, 

[CF3(CF2)9(CH2)2S]2. 
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from + 0.3 V to -1.2 V.   Therefore, we concluded that the oxide layer could not be 

reduced under these conditions, and that the protective oxide must be reduced prior to 

SAM formation. 

To test this “protection-deprotection” approach, we used glass substrates bearing 

two independently addressable gold electrodes.  As shown schematically in Figure 4.2, 

both electrodes initially represented viable sites for chemisorption of disulfide.  Oxidation 

of one of these electrodes produced an oxide coating that rendered it inert to 

chemisorption, so a monolayer could be adsorbed on the other electrode selectively.  

After this adsorption step, the first electrode could be deprotected, regenerating a bare 

gold substrate, onto which a second, distinguishable monolayer could be adsorbed.  As 

discussed in Chapter 1, gold oxide can be produced electrochemically, by application of 

an anodic potential in sulfuric acid, and the nature of the oxide can be controlled by the 

particular potential used.
24-26

 

Although gold oxide is thermodynamically unstable, as discussed in Chapter 3, 

films formed in this way are (kinetically) inert over the timescale of the experiments 

described in this chapter.
18,27,28

  In these studies, gold oxide was produced 

electrochemically in 0.5-M sulfuric acid using a standard three-electrode cell comprising 

a gold working electrode, a platinum wire as the counter-electrode, and an aqueous 

Ag/AgNO3 (10 mM) reference electrode.  To oxidize electrode 1 (Figure 4.2), its 

potential was held at -0.2 V for 10 s, followed by 1.2 V for 10 s.  The sample was then 

rinsed with deioni ed water    .  MΩ·cm  and dried under a stream of  2. 
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Figure 4.2.  Schematic representation of a protection-deprotection approach to the 

selective, sequential modification of neighboring  gold electrodes.  In the first step, 

electrode 1 is oxidized electrochemically, which allows electrode 2 to be modified 

selectively.  The oxide on electrode 1 is then reduced to regenerate the bare gold surface, 

and a second SAM is adsorbed on it.  For clarity, the thicknesses of the gold electrodes 

and glass substrates are not drawn to scale. 
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A detailed discussion of gold oxide formed in this manner was given in Chapter 2, 

but a brief synopsis will be given here.  Analysis by X-ray photoelectron spectroscopy 

(XPS) confirmed the addition of an oxide coating.  A survey scan revealed the presence 

of gold, oxygen and a small amount of carbon (contamination).  A high resolution 

spectrum in the Au 4f region contained both narrow peaks (fwhm, 0.7 eV) due to 

elemental gold (84.0 eV, 4f7/2; 87.7 eV, 4f5/2) and broad peaks (fwhm, 1.3 eV) consistent 

with a mixed oxide (~85.7 eV, 4f7/2; 89.4 eV, 4f5/2).
25,26,29-31,32

  A high resolution 

spectrum in the oxygen 1s region contained a broad peak that could be fit with four 

components at 529.3, 530.1, 531.1, and 532.5 eV.  These binding energies are similar to 

those reported for gold oxide grown by pulsed-laser deposition and are consistent with a 

mixed oxide containing both oxo and hydroxyl species.
28-30,33,34

  The ratio of Au
3+

 to 

oxygen in this sample was 38 : 62, very close to that expected for Au2O3 (40 : 60).   

To accelerate formation of a SAM on the unmodified electrode (2, Figure 4.2),
17

 

its potential was stepped from 0.3 V to -0.9 V, with 5 s at each potential, in the presence 

of dihexadecyl disulfide.  This method reduced the time required to accomplish the 

synthetic sequence, and thus minimized decomposition of the protective gold oxide film 

on the adjacent electrode, 1.  Forty voltammetric pulses were applied to electrode 2 in a 

solution containing dihexadecyl disulfide (1 mM) and LiClO4 (0.1 M) in THF.  In 

optimization studies, we found that this combination of limiting potentials and number of 

pulses gave the highest quality monolayers.  A schematic diagram of this electrochemical 

cell is provided in Figure 4.3, and typical plots of potential and current versus time are 

shown in Figure 4.4.  As outlined in Chapter 3, LiClO4 was found to be an ideal  
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Figure 4.3.  Schematic diagram of the electrochemical cell used to form SAMs on a gold 

electrode adjacent to an oxidized gold electrode. 
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Figure 4.4.  Typical plots of potential (top) and current (bottom) versus time for the 

accelerated formation of a SAM from dihexadecyl disulfide.   
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supporting electrolyte for these studies, as gold-oxide films were stable in THF solutions 

of this salt within the timeframe of our experiments.     

The sample was then removed from solution, rinsed with THF, and water, and 

dried under a stream of N2.  The contact angles of hexadecane (θa, 48°; θr 43°) and of 

water (θa,    °; θr 97°), as well as the ellipsometric thickness (16 Å), were consistent 

with formation of an ordered monolayer film on the surface.
13,35,36

  The contact angles of 

hexadecane (wetting) and water (55°) on the oxidized electrode 1 indicated that a SAM 

had not adsorbed on this surface.  Ellipsometry also indicated the continued presence of 

the oxide coating.
33

 

High-resolution XPS spectra in the Au 4f region confirmed that electrode 2 

remained in a reduced state after this step (Figure 4.5 c). A slight reduction of the oxide 

film on electrically isolated electrode 1 occurred, consistent with our studies of this 

system presented in Chapter 3.  To determine the selectivity of SAM formation, high-

resolution spectra were also collected in the sulfur 2p region (Figure 4.6 a), and these 

data revealed the presence of thiolate only on electrode 2 (162.1 eV, S 2p3/2; 163.3 eV, S 

2p1/2), consistent with SAM formation only on that electrode.
37

  Weak photoemission 

intensity centered at ~167.5 eV for electrode 1 is consistent with a small amount of 

sulfate at the surface of the electrode, presumably from the solution in which that 

electrode was oxidized.
38

  Subsequent treatment of electrode 1 in ethanol (Figures 4.5 d 

and 4.6 b) reduced the oxide on that electrode (84.0 eV, Au 4f7/2; 87.6, Au 4f5/2), while 

the SAM on electrode 2 remained intact (84.0 eV, Au 4f7/2; 87.6, Au 4f5/2; 162.0 eV, S 

2p3/2; 163.3 eV, S 2p1/2).  A SAM was then adsorbed on electrode 1 by stepping its  



91 

 

 

Figure 4.5.  High resolution x-ray photoelectron spectra of electrodes 1 and 2 in the Au 4f 

region:  a) both electrodes unmodified; b) after electrochemical oxidation of electrode 1; 

c) after adsorption of a SAM on electrode 2 from (C16H33S)2; and d) after reduction of the 

oxide coating on electrode 1.  Spectra were referenced to the Au 4f7/2 peak, set at 84.0 

eV, and intensities normalized to the largest Au 4f7/2 peak. 
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Figure 4.6.  High resolution x-ray photoelectron spectra of electrodes 1 and 2 in the sulfur 

2p region:  a) after adsorption of a SAM on electrode 2 from (C16H33S)2; and b) after 

reduction of the oxide on electrode 1.  Intensities were normalized to the largest sulfur 

2p3/2 peak. 
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potential from 0.3 V to -0.9 V, with 5 s at each potential, in the presence of 

[CF3(CF2)9(CH2)2S]2 (Figure 4.1, bottom). The contact angles of hexadecane (80°) and 

water (121°), as well as the ellipsometric thickness (9 Å), on this electrode indicated the 

presence of a fluorinated SAM.
13,39

  The contact angles and ellipsometric thickness of the 

dihexadecyl disulfide SAM on electrode 2 remained the same as before the adsorption of 

a SAM on electrode 1.  

High resolution XPS spectra in the S 2p region verified the presence of a SAM on 

both electrodes (electrode 1, 161.9 eV, S 2p3/2; 163.1 eV, S 2p1/2; electrode 2 162.0 eV, S 

2p3/2; 163.2 eV, S 2p1/2). Furthermore, a high resolution spectrum in the F 1s region 

showed the presence of fluorinated SAM only on electrode 1 (688.3 eV, fwhm 1.6 eV), 

verifying that no cross-contamination of electrode 2 occurred during monolayer 

formation (Figure 4.7, left).
13

  As expected, a high resolution spectrum of electrode 1 in 

the C 1s region showed three major peaks corresponding to the CF3, CF2 and CH2 

carbons (293.3 eV, fwhm 1.0 eV; 290.9 eV, fwhm 1.1 eV; and 284.3 eV, fwhm 1.5 eV, 

respectively; Figure 4.7, right).
13

  A high resolution spectrum of electrode 2 in the C 1s 

region showed only one peak corresponding to the carbon atoms in the dihexadecyl 

disulfide (284.8 eV, fwhm 1.1 eV; Figure 4.7, right). These results unambiguously 

demonstrate that this protection–reaction–deprotection sequence allows the regioselective 

modification of independently addressable electrodes on a single substrate. 

 

4.4  Conclusions 

In summary, we have developed a method that successfully uses gold oxide as a 

temporary protecting layer for the directed self-assembly of monolayers from  
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Figure 4.7.  High resolution x-ray photoelectron spectrum of electrodes 1 and 2 in the F 

1s and C 1s regions after the selective adsorption of a hydrocarbon SAM on electrode 2 

and a fluorocarbon SAM on electrode 1.   
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dihexadecyl disulfide on gold. This approach is similar to the protection–deprotection 

scheme used for analogous reasons in synthetic organic chemistry. The analogy is not 

strict, of course, because the electrodes are independently addressable, and therefore can 

be selectively protected or deprotected without relying on inherent differences in 

chemical kinetics. Although there are alternative strategies for reaching a similar target—

e.g., reductive desorption,
4
cathodic blocking,

8
 or directed electrochemisorption

11-14
—the 

approach described here may have important advantages in certain applications. For 

example, this method does not involve thiols or thiolates that could exchange with 

components in previously adsorbed SAMs, nor does it produce reactive by-products 

(such as SO3) that could complicate incorporation of nucleophilic functionality into the 

SAM.  This procedure holds promise for microelectronic applications, including sensors, 

biosensors, and photovoltaics, and the work in Chapter 5 focuses on its applicability to 

microelectrodes and its use with ω-functionalized disulfide precursors. 

 

4.5  Experimental  

 General.  Hexadecanethiol (92.0%) and iodine (99.8%) was purchased from 

Aldrich and used as received.  Lithium perchlorate (LiClO4, 99.0%), 1-iodo-

1H,1H,2H,2H-perfluorododecane (97%), and sodium thiosulfate pentahydrate (99%) 

were used as received from Alfa Aesar.  Reagent grade methanol (99.9%) and hexanes 

(95.8%) were used as purchased from Pharmco-AAPER.  Ethanol (Anhydrous, J.T. 

Baker, 95%) was used as received.  Acetonitrile (ACN, Acros, 99.8%) and 

tetrahydrofuran (THF, Mallinckrodt, 99%) were purified and dried using a PureSolv 

system (Innovative Technology, Inc.).  Silver nitrate (Fisher, 99.8%) was used as 
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received.  Hydrogen peroxide (30%) and sulfuric acid (95%) were used as received from 

EMD.  Hexadecane (99%, Aldrich) was passed through activated alumina twice before 

use in contact-angle measurements.  Gold (99.999%) was used as supplied by VEM 

Vacuum Engineering.   

 Preparation of Gold Electrodes.  Two gold electrodes were prepared on a single 

substrate by the application of 5-mm-wide polyimide tape along the center of a piranha-

cleaned glass slide prior to metal deposition.  Caution: Piranha solution, a 4:1 (v/v) 

mixture of concentrated H2SO4 and 30% H2O2, reacts violently with organic material and 

should be handled carefully.  Approximately 50 Å of Ti (as an adhesion promoter) and 

then 1000 Å of Au were evaporated onto the substrates by e-beam vapor deposition.  

After metal deposition, the tape was removed to produce two electrically isolated 

electrodes, ~1 cm wide and separated by a ~5-mm space.  Electrodes were used within a 

week after deposition, or cleaned prior to use by adsorption of a SAM from  

hexadecanethiol in ethanol (1 mM, 24 h) and subsequently cycling its potential (-1.2 V to 

1.5 V, 100 mV/s) ten times in 0.5 M aqueous sulfuric acid to remove the SAM and any 

contaminants.  

 Synthesis of C16 Disulfide.  Dihexadecyl disulfide, [CH3(CH2)15S]2, was 

synthesized using a procedure adapted from the literature.
17

  Briefly, hexadecanethiol  

(2.0 g, 7.7 mmol) was dissolved in 150 mL of hexanes, and I2 (0.50 g, 2.0 mmol) was 

dissolved in 5 mL of methanol.  The I2 solution was slowly added to the thiol solution 

with stirring, and the reaction was allowed to proceed for 24 h.  The yellow/brown color 

of the I2 in the methanol phase persisted.  The clear hexanes phase was separated and 

washed with methanol to remove the remaining thiol, and the crude product was 
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crystallized by adding ethanol.  The product was then recrystallized from hexanes/ethanol 

and analyzed by NMR (isolated yield based on I2, 62%).   

 Synthesis of [CF3(CF2)9(CH2)2S]2.  The starting material, 

CF3(CF2)9(CH2)2S2O3Na, was synthesized using a previously published procedure.
13

  

This compound (0.50 g, 0.73 mmol) was dissolved in 200 mL of ethanol, and I2 (0.185 g, 

0.730 mmol) was dissolved in 50 mL of methanol.  The I2 solution was slowly added to 

the alkyl-thiosulfate solution with stirring, and the reaction mixture was allowed to stir at 

room temperature for 48 h.  A few drops of 3 M aqueous NaHSO3 were added to reduce 

the excess I2.  A 50/50 (v/v%) mixture of water and ether was then added to the reaction 

mixture, and the ether phase was separated. The solvent was removed from this phase by 

rotary evaporation.  The product was then washed with water and analyzed by NMR 

(isolated yield, 67%; CAS # 118552-82-2). 

 Contact-Angle and Ellispometry Measurements.  Advancing contact angles of 

water and of hexadecane were measured with a Rame-Hart NRL model 100 goniometer. 

A minimum of six measurements on three independent drops were made for each sample.  

Ellispometric parameters (psi and delta) were collected using a J. A. Woollam variable-

angle spectroscopic ellipsometer (VASE).  Data were collected at angles of 60.00° and 

70.00° in the range of 300-800 nm, and thicknesses were calculated with the WVASE32
®
 

software using the refractive index of hexadecane over this range of wavelength 

(measured independently) as a model for both monolayers.  This approach allowed very 

good fits of the experimental values of psi and delta, despite the difference in 

composition of the fluorinated SAM. 
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 Electrochemistry.  Gold oxide was produced electrochemically in 0.5-M sulfuric 

acid using a standard three-electrode cell comprising a gold working electrode, a 

platinum wire as the counter-electrode, and an aqueous Ag/AgNO3 (10 mM) reference 

electrode. To oxidize each gold electrode, its potential was held at -0.2 V for 10 s, 

followed by 1.2 V for 10 s.  The sample was then rinsed with deionized water (18.1 

MΩ·cm  and dried under a stream of  2.   

To form a monolayer, a three-electrode cell comprising an oxidized gold working 

electrode, a platinum wire counter-electrode and a Ag/AgNO3 (3 mM in ACN) reference 

electrode was used, and the potential was stepped from 0.3 V to -0.9 V, with 5 s at each 

potential, in the presence of a disulfide.  Forty of these voltammetric pulses were applied 

to the electrode in a solution containing [CH3(CH2)15S]2 or [CF3(CF2)9(CH2)2S]2   (1 mM) 

and LiClO4 (0.1 M) in tetrahydrofuran (THF).  The sample was then removed from 

solution, rinsed with THF, and water, and dried under a stream of N2. 

 X-ray Photoelectron Spectroscopy.  Spectra were collected using a Scienta 

ESCA- 00 spectrometer with monochromati ed  l Kα X-rays generated using a rotating 

anode.  Photoemission was measured with a 300-mm-diameter hemispherical analyzer.  

Samples were grounded by placing screws in contact with both electrode surfaces and the 

sample holder.  The pressure in the sample chamber was ∼2×10
-9

 Torr, and samples were 

analyzed at a 20° take-off angle between the sample surface and the path to the analyzer.  

The pass energy for high-resolution spectra in the Au, O and S regions were 75 eV, 150 

eV, and 300 eV, respectively, and the step energy for all high-resolution scans was 0.05 

eV.   Survey spectra were taken at a 300-eV pass energy and a step energy of 1 eV.  High 

resolution Au spectra were referenced to the Au 4f7/2 peak, set at 84.0 eV, and intensities 
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normalized to the largest Au 4f7/2 peak.  High resolution S photoemission intensities were 

normalized to the largest sulfur 2p3/2 peak.  Samples were analyzed by XPS within 1 h of 

monolayer formation, and the spectra were analyzed using CASAXPS
®
 software.   
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Chapter 5 

 

 

Spatially Selective Formation of Hydrocarbon, Fluorocarbon, and Hydroxyl-

terminated Monolayers on a Microelectrode Array 

 
This chapter includes material that has been reproduced in part with permission:  Cook, 

K. M.; Nissley, D. A.; Ferguson, G. S., Spatially Selective Formation of Hydrocarbon, 

Fluorocarbon, and Hydroxyl-Terminated Monolayers on a Microelectrode Array. 

Langmuir 2013, DOI:  10.1021/la401250d. 

 

 

5.1  Abstract 

 The protection–deprotection strategy, using gold oxide as a passivating layer 

developed in Chapter 4, was used to direct the self-assembly of monolayers (SAMs) 

selectively at individual gold microelectrodes in an array.  This approach allowed the 

formation of hydroxyl-terminated monolayers, without side-reactions, in addition to 

hydrocarbon and fluorocarbon SAMs.  Fluorescence microscopy was used to visualize 

selective de-wetting of hydrophobic monolayers by an aqueous dye solution, and 

spatially-resolved x-ray photoelectron spectroscopy was used to demonstrate a lack of 

cross-contamination on neighboring microelectrodes in the array.   

 

5.2  Introduction 

 The study of self-assembled monolayers (SAMs) has focused on scientific 

questions regarding their formation, structure, and properties,
1,2

 as well as on 

technological applications such as their use to control wetting properties,
3,4

 create 

biocompatible surfaces,
5,6

 impart chemical resistance,
7
 and fabricate sensors.

8-10
  In 

Chapter 1, we discussed the fact that many of these applications require the formation of 

SAMs in specific patterns, and although the application of patterned SAMs on uniform 
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substrates is relatively straightforward, the regioselective formation of SAMs on specific 

features on a complex substrate remains challenging.
11-14

  Even more challenging is the 

production of a chemically diverse set of SAMs on such a substrate while maintaining the 

purity of each monolayer.  

 Our group has previously studied the anodic activation of alkyl thiosulfates at 

selected electrodes in an array, which provides one solution to the regioselective 

placement of SAMs of varying functionality,
15-19

 though the SO3 by-product of oxidation 

can lead to side-reactions at the surface of the SAM.  Monolayers formed from hydroxyl-

terminated alkyl thiosulfates, for example, contained large amounts of sulfate, resulting 

presumably from the reaction of SO3 with the terminal hydroxyl groups.
17

  To address 

such problems with monolayer precursors bearing nucleophilic functional groups, we 

developed a protection-deprotection approach that uses gold oxide as a masking layer on 

particular electrodes to allow selective formation of SAMs from dialkyl disulfide on 

others.
20

  As discussed in Chapter 4, this method relies on the inability of dialkyl 

disulfides to reduce gold oxide,
21-23

 and we used it successfully to form hydrocarbon and 

fluorocarbon SAMs on neighboring macroscopic (~ 1-mm widths and 5-mm spacings) 

electrodes without cross-contamination.  This chapter describes the extension of this 

approach both to the functionalization of microelectrodes and to the inclusion of 

hydroxyl-terminated monolayers.  
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Figure 5.1.  Adsorbate used in the formation of hydroxyl-terminated SAMs on gold, 

[HO(CH2)11S]2. 

  



105 

 

5.3  Results and Discussion 

 To demonstrate that the protection-deprotection approach can be used to form 

hydroxyl-terminated SAMs regioselectively on gold, we investigated the use of 

[HO(CH2)12S]2 as an adsorbate (Figure 5.1).  For ease of analysis, macroscopic (1-cm x 

2-cm) gold electrodes were used as substrates in our initial studies.  Monolayers were 

formed by the application of forty stepped-potential pulses from 0.3 V to -0.9 V, for 5 s 

each, to the working electrode in a THF solution containing [HO(CH2)12S]2 (1.13 mM) 

and LiClO4 (0.105 M) as a supporting electrolyte.  The electrode was then rinsed with 

THF, water, and dried under a stream of N2.  The advancing contact angle of water (31°) 

was consistent with the formation of a hydroxyl-terminated monolayer from disulfide, 

and the surface was wet by hexadecane, as expected.
24,25

  The ellipsometric thickness (11 

Å) was also consistent with the particular disulfide used.
24,25

   

High resolution x-ray photoelectron spectra of this surface confirmed the presence 

of a hydroxyl-terminated monolayer (Figure 5.2).  A spectrum in the C 1s region 

contained an asymmetric peak with additional photoemission intensity on its high-

binding-energy side, indicating the presence of more than one component.  This spectrum 

could be adequately fit by two peaks, located at 284.5 eV (fwhm, 1.2 eV) and assigned to 

the aliphatic chain, and at 285.9 eV (fwhm, 2.0 eV) and assigned to the carbon bound 

directly to the hydroxyl group.
26

  A spectrum in the O 1s region could be fit with a single 

peak at 532.4 eV (fwhm, 1.4 eV) corresponding to the hydroxyl oxygen.
27

  A spectrum in 

the S 2s region revealed the expected spin-orbit doublet due to thiolate bound to the gold 

electrode (161.8 eV, S 2p3/2, fwhm, 1.1 eV; 163.2 eV, S 2p1/2, fwhm, 1.1 eV),
28

 and 

indicated that no contamination by other sulfur species was present on the surface.   
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Figure 5.2.  High resolution x-ray photoelectron spectra, in the C 1s, O 1s, and S 2p 

regions, of a gold electrode modified with [HO(CH2)12S]2. 
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To demonstrate that this method could be extended to the regioselective 

placement of SAMs on microelectrodes, each of the three microelectrodes on a triple-

track tester (TTT) was functionalized with a different SAM.  Prior to monolayer 

formation, the TTT was cleaned by UV/O3 oxidation.  Like electrochemical oxidation,
20

  

this process produces a thin oxide film on the gold, which can serve as a masking layer 

until removed.  To reduce the oxide present on an individual track and make that track 

active to monolayer formation, a potential of -0.9 V (vs. Ag/AgNO3) was applied in a 

solution of 0.500-M H2SO4.
29-31

  A monolayer was then formed on the reduced track of 

interest by the application of forty stepped-potential pulses from 0.3 V to -0.9 V, for 5 s 

at each potential, in a THF solution containing 1 mM of the dialkyl disulfide of interest 

and 0.1 M LiClO4 as a supporting electrolyte.
20

  After rinsing and drying, the next 

oxidized track to be used was reduced electrochemically, and the next SAM formed.  

Monolayers were formed on the three microelectrodes in the following order and with the 

following disulfides:  track A, [CH3(CH2)15S]2; track C, [CF3(CF2)9(CH2)2S]2; and track 

B, [HO(CH2)12S]2 (Figure 5.3).   

As two of these tracks (A and C) should be hydrophobic and one (B) hydrophilic, 

we used dewetting by an aqueous solution of fluorescent dye (rhodamine 6G) to 

differentiate the two types of surface by fluorescence microscopy (Figure 5.4, top).  The 

layer of dye solution on the wetted electrode was sufficiently thick that quenching of the 

fluorescence by the Au was not a problem.   This approach had been used successfully in 

our group previously for similar analyses. 
15,19

 The solution spontaneously de-wet the 

hydrophobic tracks, bearing hydrocarbon or fluorocarbon chains, which therefore appear 

dark in the image; whereas, the solution formed a wetting film on the hydrophilic track,  
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Figure 5.3.  Summary of the sequential protection–deprotection approach used to modify 

neighboring gold microelectrodes in an array selectively.  In the first step, all of the 

microelectrodes were protected via oxidization by UV/O3.  Electrode A was then reduced 

electrochemically and modified selectively with [CH3(CH2)15S]2.  In the next step, track 

C was reduced and then modified selectively with [CF3(CF2)9(CH2)2S]2.  In the final step, 

track B was reduced and then modified with [HO(CH2)12S]2 .  The size and spacing of the 

gold electrodes on the alumina substrate are not drawn to scale. 
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Figure 5.4.  (Top) Fluorescence micrograph of a chemically modified TTT, covered with 

a thin film of a 1-mM aqueous solution of the dye rhodamine 6G.  Electrodes A and C 

bore hydrophobic hydrocarbon and fluorocarbon monolayers, respectively, and were de-

wet by the solution.  Electrode B bore a hydrophilic hydroxyl-terminated SAM and 

remained wet by the solution.  (Bottom) Spatially-resolved XPS data collected in the F 1s 

region.  The horizontal axis defines spatial position across the TTT, whereas the vertical 

axis defines binding energy of the detected photoelectrons.  The color scale from blue to 

red indicates increasing intensity of photoemission, thus the red intensity on electrode C 

indicates strong F 1s photoemission.  The scale bar in each figure corresponds to 200 
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μm.bearing a SAM terminated by hydroxyl groups, and obscured it by fluorescence in the 

image.   

 To distinguish between the two hydrophobic tracks, we used spatially resolved 

XPS to map the location of F 1s photoemission across the sample.  Spatially resolved 

measurements were made by moving the x-ray beam in linear increments across the gold 

electrodes of the TTT and collecting data at each location.  The false-color image in 

Figure 5.4 (bottom) is a composite of these spectra, with the horizontal axis indicating the 

relative spatial position of the beam on the sample and the vertical axis indicating binding 

energy in the F 1s region.  The Au tracks appear uniformly green in the figure, indicating 

an elevated baseline intensity due to the higher yield of inelastically scattered 

photoelectrons from gold relative to the alumina substrate (uniformly blue). The presence 

of strong F 1s photoemission only on track C confirmed the selective placement of the 

fluorocarbon SAM on that microelectrode.  No fluorine was detected on tracks A or B, 

indicating that these microelectrodes were not contaminated by the fluorocarbon 

adsorbate when a SAM was added to track C.   

 

5.4  Conclusions 

 Unlike the oxidative adsorption of SAMs from alkly thiosulfates, which liberates 

the potent Lewis acid SO3, a protection-deprotection approach can be used to form 

hydroxyl-terminated SAMs regioselectively on gold without complicating side-reactions.  

Extension of this method to allow the stepwise formation of a chemically diverse array of 

microelectrodes bearing hydrocarbon, fluorocarbon, and hydroxyl-terminated SAMs 

demonstrates its potential usefulness in applications involving such complex substrates.  
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The combination of fluorescence microscopy and spatially resolved XPS showed not 

only that each SAM formed selectively on the individual track to which it was directed, 

but that it occurred without cross-contamination of neighboring SAMs.  We anticipate 

that this approach may be general enough to accommodate other nucleophilic functional 

groups, thus providing a viable synthetic route to a broad range of technologically and 

biologically relevant surfaces.  

5.5  Experimental  

General.  Hexadecanethiol (92.0%) and iodine (99.8%) were purchased from 

Aldrich and used as received.  Lithium perchlorate (LiClO4, 99.0%), 1-iodo-

1H,1H,2H,2H-perfluorododecane (97%), and sodium thiosulfate pentahydrate (99%) 

were used as received from Alfa Aesar.  12-Bromo-1-dodecanol (98.0%) was used as 

received by TCI America.  Reagent-grade methanol (99.9%) and hexanes (95.8%) were 

used as purchased from Pharmco-AAPER.  Ethanol (Anhydrous, J.T. Baker, 95%), silver 

nitrate (Fisher, 99.8%), and rhodamine 6G dye (Acros, 99%) were used as received.  

Acetonitrile (ACN, Acros, 99.8%) and tetrahydrofuran (THF, Mallinckrodt, 99%) were 

purified and dried using a PureSolv system (Innovative Technology, Inc.).  Hydrogen 

peroxide (30%) and sulfuric acid (95%) were used as received from EMD.  Hexadecane 

(99%, Aldrich) was passed through activated alumina twice before use in contact-angle 

measurements.  Gold (99.999%) was used as supplied by VEM Vacuum Engineering.  

Dihexadecyl disulfide, [CH3(CH2)15S]2, was synthesized by the oxidation of 

hexadecanethiol with iodine.
23

  The fluorinated disulfide, [CF3(CF2)9(CH2)2S]2, was 

synthesized using a previously published procedure.
20
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Preparation of Gold Electrodes.  Macroscopic (1 cm x 2 cm) gold electrodes 

were formed on glass substrates by e-beam vapor deposition.  Approximately 150 Å of Ti 

(as an adhesion promoter) and then 1500 Å of Au were evaporated onto the piranha-

cleaned glass slides.  Caution: Piranha solution, a 4:1 (v/v) mixture of concentrated 

H2SO4 and 30% H2O2, reacts violently with organic material and should be handled 

carefully.  The microelectrodes on a triple-track tester (TTT) –a gift from AT&T Bell 

Laboratories (previous company name)– were used to demonstrate the selective 

formation of SAMs on closely spaced microelectrodes.  This substrate comprised a 

serpentine pattern of three gold microelectrodes (~ 50-μm wide  separated by ~  00-μm 

spacings on an alumina substrate.  

Synthesis of [HO(CH2)12S]2.  The alkyl thiosulfate, HO(CH2)12S2O3Na (0.200 g, 

0.62 mmol), was dissolved in a mixture of 50 mL of water and 25 mL of ethanol and 

stirred.  Iodine (0.087 g, 0.34 mmol) was dissolved in 25 mL of ethanol, added to the 

other solution, and this mixture was stirred for 20 h at room temperature.  The excess 

iodine was then reduced by addition of 3 drops of 3-M aqueous NaHSO3.  The total 

volume was then reduced to ~25 mL by rotary evaporation, and the remaining mixture 

was refrigerated overnight.  A white precipitate was collected by vacuum filtration, rinsed 

with deionized water, and dried under vacuum.  The isolated yield was 83%.  
1
H NMR 

(in CDCl3):  [HOCH2 CH2(CH2)8CH2 CH2S]2, 3.62 (t, 4H); [HOCH2 CH2(CH2)8CH2 

CH2S]2, 1.64 (m, 4H); [HOCH2 CH2(CH2)8CH2 CH2S]2, 1.21-1.37 (m, 32H); 

[HOCH2CH2(CH2)8CH2 CH2S]2, 1.54 (m, 5H, obscured by water); [HOCH2 

CH2(CH2)8CH2 CH2S]2, 2.66 (t, 4H). 
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Contact-Angle and Ellipsometry Measurements.  Advancing contact angles of 

water and of hexadecane were measured with a Rame-Hart NRL model 100 goniometer.  

A minimum of six measurements were made on three independent drops at various 

locations on each sample.  Ellipsometric parameters (psi and delta) were collected using a 

J. A. Woollam variable-angle spectroscopic ellipsometer (VASE).  Data were collected at 

angles of 60.00° and 70.00° in the wavelength range of 350-800 nm, and thicknesses 

were calculated with the WVASE32
®
 software using the complex refractive index of 

hexadecane over this range of wavelength (measured independently) as a model for all 

three monolayers.  This approach allowed very good fits of the experimental values of psi 

and delta, despite the significant differences in composition. 

Electrochemistry.  To form a monolayer, a three-electrode cell comprising a gold 

working electrode, a platinum wire counter-electrode, and a Ag/AgNO3 (2.94 mM in 

ACN) reference electrode was used.  The potential at the working electrode was stepped 

from 0.3 V to  -0.9 V, for 5 s at each potential, in a solution containing the dialkyl 

disulfide of interest (~ 1 mM) and LiClO4 (~ 0.1 M) in tetrahydrofuran (THF).  Forty of 

these voltammetric pulses were applied, and the sample was then removed from solution, 

rinsed with THF and water, and dried under a stream of N2.   

For the selective formation of SAMs on the TTT, all of the gold tracks were 

oxidized by irradiation with ultraviolet light in the presence of ozone, followed by 

reduction of the resulting oxide only from the track of interest by applying a potential of -

0.9 V for 30 s in 0.500-M aqueous H2SO4.  The TTT was then rinsed with water and 

dried under a stream of N2 before SAM formation on the reduced surface. 
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X-ray Photoelectron Spectroscopy (XPS).  Spectra of SAMs on macroscopic 

electrodes were collected using a Scienta ESCA-300 spectrometer with monochromatized 

 l Kα X-rays generated using a rotating anode.  Photoemission was measured with a 

300-mm-diameter hemispherical analyzer.  Samples were grounded by placing screws in 

contact with both the electrode surface and the sample holder.  The pressure in the sample 

chamber was ∼2×10
-9

 Torr, and samples were analyzed at a 20° take-off angle between 

the sample surface and the path to the analyzer.  Spectra were collected within 1 h of 

monolayer formation and analyzed using CASAXPS
®
 software (version 2.3.15dev77).  A 

survey spectrum was taken at a 300-eV pass energy and with a step energy of 1 eV.  The 

pass energy for high-resolution spectra in the C, O, and S regions was 150 eV, and the 

step energy was 0.05 eV.  The C 1s photoemission was fit with two peaks whose full-

widths at half-maximum (fwhm) were allowed to vary.  The sulfur 2p photoemission was 

fit with peaks due to the 2p3/2 and 2p1/2 spin-orbit components, with the fwhm allowed to 

vary but constrained to be equal to one another, and areas in a 2:1 ratio, respectively.  The 

O 1s peak could be fit by a single component with a fwhm of 1.5 eV.  

Spatially resolved spectra were collected using a Thermo Scientific K-Alpha 

spectrometer with monochromati ed  l Kα X-rays.  Photoemission was measured with a 

180° micro-focused hemispherical analyzer.  The sample was grounded by placing 

screws in contact with the electrode contacts and the sample holder.  The pressure in the 

sample chamber was ∼2×10
-8

 Torr, and samples were analyzed at a 45° take-off angle 

between the sample surface and the path to the analyzer.  A survey spectrum was taken 

using a 400-μm spot si e  long axis  and at a  00-eV pass energy with a step energy of 1 

eV.  This spectrum indicated small amounts of iodine (0.59 at. %) and silver (1.56 at. %) 
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contamination on the surface of the TTT.  The likely source of iodine is I2, which has a 

high affinity for gold, from the ambient atmosphere of our laboratory.  The silver may 

have leached from our reference electrode and been reduced during the electrochemical 

treatment of the TTT.  These minor contaminants did not, however, interfere with the 

selective formation of SAMs on the substrate.   

High resolution, spatially resolved data were collected in the F 1s region by 

sequentially moving the x-ray spot linearly across the microelectrodes.  A spot size of 30-

μm
 
 long axis  was used, and the spot was moved in increments of    μm.  The pass 

energy for high-resolution spectra was 150 eV with a step energy of 0.169 eV.   The 

sample was stored under N2, and spectra were collected within 12 h of monolayer 

formation and analyzed using Avantage
®
 software.   

Fluorescence Microscopy.  Fluorescence images of the TTT were collected 

using a Nikon Eclipse E800 fluorescence microscope, through a Nikon G-2E/C filter at 

4x magnification, and with a 10-mM aqueous solution of rhodamine 6G fluorescent dye 

as the probe liquid.  No alterations to the color of the images were performed. 
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Chapter 6 

 

Exploratory Studies of Silver (I)-thiolate Polymers:  Their Use as Potential 

Precursors to Monolayers and Nanoparticles 

 
 

 

6.1  Abstract 

 Exploratory studies involving silver (I)-thiolate polymers were conducted to 

explore their possible use as precursors to monolayer films and nanoparticles.  Low-

energy ion scattering (LEIS) and x-ray photoelectron spectroscopy (XPS) measurements 

suggested the adsorption of these polymers onto gold surfaces from solution, but the 

surfaces produced were not the same as those formed by self-assembly of alkanethiols on 

gold bearing a submonolayer of underpotential-deposited silver.  In separate studies, the 

silver(I)-thiolate polymers could be decomposed into silver nanoparticles by thermolysis 

or photolysis as confirmed by transmission electron microscopy (TEM) and UV/vis 

spectrophotometry.   

 

6.2  Introduction 

Polymeric silver (I)-thiolate complexes, with the general formula (AgSR)n were 

first characterized in 1964.
1
  Polymers derived from n-alkanethiols (with chain lengths of 

3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, and 18 carbons) are insoluble in benzene, chloroform, 

acetone, alcohols, and dimethyl sulfoxide,
2-4

 and only appear to be soluble in hot 

toluene.
5
   Crystallographic data indicate that these polymers form layered assemblies of 

linear structures with pendant alkyl groups (Figure 6.1 d) at room temperature.
3-5

  Results 

from differential scanning calorimetry (DSC) are consistent with transitions to lamellar, 
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micellar, and amorphous states, whose characteristic temperatures depend on the length 

of the alkyl chain.
4,5

   

Silver(I)-thiolate polymers with secondary or tertiary α-carbon atoms are soluble 

and capable of crystallization in non-polar solvents such as chloroform, benzene, and 

toluene.
1-3,6,7

  The structure of these materials has been studied in pure form and in 

solution.  For example, Åkerström et al., and Dance et al. described the dependence of 

both solution-phase species and crystal structure on the degree of branching at the α-

carbon atom.
1-3,6

  Polymers having a secondary α-carbon, i.e., those derived from 4-

methyl-2-pentanethiol, 2-hexanethiol, 3-hexanethiol, and 3-methyl-2-pentanethiol, tend 

to exist as dodecamers (n = 12) in benzene solution.
2
  The authors suggested that the 

structures of the solution species are twelve-membered rings (Figure 6.1 a).  

Crystallographic data indicate that the dodecameric compounds crystallize as solids with 

the same cyclic arrangements.  An exception is the polymer derived from 2,2-dimethyl-3-

butanethiol, which exists as an octomer (n = 8) in benzene solution.   

Polymers having a tertiary α-carbon, i.e., those derived from 3-methyl-3-

pentanethiol, 2-methyl-2-pentanethiol, 2,3-dimethyl-2-butanethiol, 2-methyl-2-

butanethiol, and 2-methyl-2-propanethiol are also octomers in benzene.
2,6

  The octameric 

compounds may have 8-membered-ring structures in solution (Figure 6.1 b), but they 

crystallize as two intertwined and unconnected (AgSR)∞ chains (Figure 6.1 c).
2,6

  The 

solution-phase and crystallographic behavior of a polymer derived from cyclohexanethiol 

mirrored that of (AgSR)12 compounds.
7
   

Silver(I)-thiolate polymers have previously been used in antibacterial 

applications
8
 and as precursors for nanoparticles of silver and silver sulfide (both free in  
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Figure 6.1.  Proposed structures for silver(I)-thiolate polymers:  a) twelve-membered 

rings,  b)  eight-membered rings,  c) intertwined chains,  and d) linear chains  

a)
b)

c) d)
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solution, and embedded in a polymer matrix).
9-12

  For example, silver(I)-

dodecylmercaptide embedded in amorphous polystyrene was thermally decomposed at 

200 °C to form silver clusters capped with mixed thiol monolayers.
12

  Schaaff and 

Rodinone generated semi-conducting silver sulfide nanocrystals by the reaction of a 

silver(I)-thiolate polymer derived from dodecanethiol with sodium sulfide.
10

  This 

synthesis, however, did not have a high yield, nor did it provide great control over the 

size of the nanocrystals.  Morsali and coworkers reported a synthesis of silver 

nanoparticles by the thermolysis of a silver(I)-polymer.
9,11

  For example, a silver(I)-malic 

acid polymer was synthesized by the reaction of silver nitrate and malic acid.
9
  This 

polymer formed a two-dimensional network that could be thermolyzed neat (673 K) to 

form Ag clusters, or dispersed in oleic acid solution (523 K), resulting in aggregates of 

oleic acid-capped silver nanoparticles (Figure 6.2).  It is unclear, however, if these 

particles aggregated permanently, or if they are soluble in common solvents.  Analogous 

gold(I)-thiolate polymers have been converted to small (2 – 4 nm) Au nanoparticles by 

treatment with various reducing agents.
13

   

We initiated the work described in this chapter as an attempt to utilize the silver-

sulfur bond already present in silver(I)-thiolate polymers as a convenient starting material 

for the formation of monolayer films and silver nanoparticles.  If successful, the latter 

process would provide a potentially attractive alternative to reduction as a route to 

nanoparticles.  Of particular interest were:  thermolysis in free solution at lower 

temperatures, not constrained in a polymer matrix or coordination network; and 

photolysis to induce decomposition in a controlled way. 

 



122 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.2.  Pathways to the formation of silver nanoparticles from a silver(I)-malic acid 

polymer.   
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6.3  Results and Discussion 

 Our studies focused on the synthesis of soluble silver (I)-thiolate polymers, 

solubility studies of these polymers, adsorption of monolayer films on gold from the 

polymers, and thermolytic or photolytic decomposition of the polymers to form silver 

nanoparticles.   

 

6.3.1  The Synthesis of  Silver (I)-thiolate Polymers 

 Initially, the synthesis of (AgSR)n polymers was carried out in acetonitrile by the 

reaction of AgNO3 and a thiol in the presence of triethylamine (TEA) (equation 6.1).
2
   

           g    
T  
     g                                               .   

The presumed role of the triethylamine was to consume the HNO3 byproduct (0.05 M) of 

the reaction.  This approach allowed the synthesis of [AgS(CH2)11CH3]n, 

[AgSCH2CHOHCH2OH]n, [AgSCH2CH2COOH]n, and [AgSC(CH3)2(CH2)5CH3]n.  The 

commercially available starting material for the [AgSC(CH3)2(CH2)5CH3]n polymer was a 

mixture of isomers, nonetheless, we will follow the manufacturers' nomenclature and 

refer to it as the tert-nonyl polymer for the sake of simplicity.  The n-alkyl and diol 

polymers were brittle, pale yellow solids.  The carboxylic-acid polymer was a brittle, 

white solid, and the tert-nonyl polymer was separated as a pale yellow oil.  These colors 

are consistent with previous literature accounts of similar silver (I)-thiolate polymers.
1-5

  

This synthesis, however, did not result in a consistent physical appearance or color for the 

diol and acid polymers.  In these cases, reproducible results were obtained after the 

omission of triethylamine from the procedure. 
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6.3.2  Solubility  of  Silver (I)-thiolate Polymers 

 The n-dodecyl polymer, [AgS(CH2)11CH3]n, was only soluble in refluxing toluene 

(~ 111 °C), forming a yellow solution.  It was not soluble in chloroform, 

dichloromethane, hexanes, tetrahydrofuran, acetonitrile, ethanol, acetone, or toluene at 

room temperature.  This lack of solubility severely limited the study of its solution-phase 

properties.  Upon cooling, this solution formed an orange solid, which could be isolated 

by filtration, and then re-suspended in toluene upon heating.  Removal of solvent from 

the filtrate solution left a white solid with a 
1
H NMR spectrum consistent with didodecyl 

disulfide, indicating some thermal decomposition of the polymer at this temperature.   

 The diol polymer, [AgSCH2CHOHCH2OH]n, was insoluble in ethanol, methanol, 

acetone, THF, as well as the  non-polar solvents, hexanes and toluene.  Prolonged (~ 24 

h) periods in ethanol or methanol caused the surface of the solid to blacken, consistent 

with reduction of the Ag
+
 to Ag

0
 by the solvent.  The polymer was soluble, however, in 

water after gentle heating (to 30 °C), resulting in a pale yellow solution.   

 As expected, the tert-nonyl polymer, [AgSC(CH3)2(CH2)5CH3]n, was by-far the 

most soluble polymer of those synthesized.  This oil was soluble in hexanes, hexadecane, 

toluene, THF, chloroform, dichloromethane, and ethanol.   

 The carboxylic-acid polymer, [AgSCH2CH2COOH]n, was insoluble in all solvents 

examined, except for aqueous NaOH.  A minimum molar ratio of hydroxide to repeat unit 

of 1:1 was required for solubility.   

We expected that the chemistry of these polymers would depend on the particular 

species present in solution (e.g., polymer, cyclic oligomer, monomer), so we attempted to 

determine the molecular weight of the diol polymer in water and tert-nonyl polymer in 
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hexanes, by freezing point depression and vapor-phase osmometry, respectively.  

Unfortunately, these studies did not yield consistent or conclusive results.   

 

6.3.3  Adsorption of  Silver (I)-thiolate Polymers on Gold 

 Under-potential deposition (UPD) of a sub-monolayer of silver onto gold has 

been shown to impart added stability to SAMs formed from alkanethiols.
14-16

  The ratio 

of Ag to S in these stabilized SAMs is 1:1, so we hypothesized that adsorption of silver 

(I)-thiolate polymers on gold might provide a direct route to these materials (Figure 6.3).   

 In an attempt to form a SAM on gold from [AgSCH2CHOHCH2OH]n in water, a 

gold film was immersed in a 1-mM solution (based on repeat units) of the polymer for 24 

h.  The sample was then rinsed with warm water and dried under a stream of N2.  The 

advancing contact angle of water was 49°, and a receding drop wet the surface.  For 

comparison, a SAM formed from the corresponding thiol (HSCH2CHOHCH2OH, 1 mM 

in water, 24 h) on a UPD-Ag/Au surface had an advancing contact angle of water of 35°, 

and a receding drop wet the surface.  The difference in these contact-angles may indicate 

either that the adsorption of [AgSCH2CHOHCH2OH]n on gold did not form the same 

structure as results from adsorption of the thiol on UPD-Ag/Au, or that the surface 

derived from the polymer was contaminated. 

An XPS survey spectrum of this sample revealed the presence of silver, carbon, 

oxygen, and sulfur (Figure 6.4).  A high-resolution spectrum in the Ag 3d region (Figure 

6.5) revealed a spin-orbit doublet that could be fit by peaks at 368.3 eV (Ag 3d5/2, fwhm, 

0.63 eV) and 374.4.6 eV (Ag 3d3/2, fwhm, 0.63 eV).  Although the data were truncated at  

the high-binding energy side of the 3d5/2 peak, the peak locations and quantitative data 
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Figure 6.3.  Established (top) and proposed (bottom) pathways to the formation of SAMs 

on UPD-Ag/gold.   
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Figure 6.4.  An XPS survey spectrum of a gold film immersed in a 5-mM aqueous 

solution of [AgSCH2CHOHCH2OH]n for 24 h. 
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Figure 6.5.  A high-resolution XPS spectrum in the Ag 3d region of a gold film immersed 

in a 5-mM aqueous solution of [AgSCH2CHOHCH2OH]n for 24 h. 
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could still be obtained.  These binding energies are 0.5-eV higher than those reported for 

UPD-Ag on gold bearing a SAM derived from octadecanethiol (Ag 3d5/2, 367.8 eV),
15

 

and correspond instead to metallic silver or Ag2S, suggesting some decomposition to 

form those species.
17

  A high-resolution spectrum in the C 1s region (Figure 6.6) 

contained photoemission that could be adequately fit by two peaks, at 286.1 eV (fwhm, 

1.4 eV) consistent with carbon atoms bound to the hydroxyl groups, and at 284.7 eV 

(fwhm, 1.1eV) arising from the methylene carbon.
18

  The ratio of the peak areas for these 

peaks, however, is ~ 4:5 which is different from the expected ratio of 2:1, and indicates 

the loss of some of the hydroxyl groups.  A spectrum in the O 1s region (Figure 6.7) 

could be fit by two peaks, located at 532.5 eV (fwhm, 1.7 eV) assigned to the hydroxyl 

groups, and at 530.8 eV (fwhm, 1.4 eV) perhaps due to contamination.
19-21

  The ratio of 

these components was 14:1, respectively, indicating only a small amount of the second 

component.  A high-resolution spectrum in the S 2p region (Figure 6.8) revealed 

photoemission that could be fit by two spin-orbit doublets, at 162.3 eV (S 2p3/2, fwhm, 

1.0 eV) and 163.6 eV (S 2p1/2, fwhm, 1.0 eV), and at 161.2 eV (S 2p3/2, fwhm, 0.84 

eV)and 162.9 eV (S 2p1/2, fwhm, 0.84 eV).  The higher-binding energy doublet (72.4% of 

the S 2p photoemission) is consistent with a thiolate SAM on a silver surface and a UPD-

Ag/Au surface.
15,22

 Although the chemical state of sulfur in the lower-binding energy 

doublet (26.6% of the S 2p photoemission) is unclear, it is consistent with Ag2S, 

suggesting the presence of this species.
17

  The overall ratio of Ag:S was 2.0:3.6, not 1:1 

as in the precursor polymer.  A possible explanation for the high sulfur content could be 

partial decomposition to Ag2S or silver metal and disulfide, which could then assemble 

on the gold surface, resulting in a lower Ag:S ratio than expected.   
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Figure 6.6.  A high-resolution XPS spectrum in the C 1s region of a gold film immersed 

in a 5-mM aqueous solution of [AgSCH2CHOHCH2OH]n for 24 h. 

 

 

 

291 288 285 282

Binding Energy (eV)



131 

 

 

 

 

Figure 6.7.  A high-resolution XPS spectrum in the O 1s region of a gold film immersed 

in a 5-mM aqueous solution of [AgSCH2CHOHCH2OH]n for 24 h. 
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Figure 6.8.  A high-resolution XPS spectrum in the S 2p region of a gold film immersed 

in a 5-mM aqueous solution of [AgSCH2CHOHCH2OH]n for 24 h. 
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We used low-energy ion scattering (LEIS) to provide information about atomic 

composition with respect to depth.  As probe ions strike the surface in this experiment, 

atoms are removed by sputtering so that over successive scans a depth profile of 

composition can be obtained.  The initial spectrum indicated the presence of Au, Ag, C, 

O, and S.  As the scans progressed, the silver and gold signals became more prevalent 

(Figure 6.9), consistent with the Ag atoms on top of the Au surface and with sulfur and 

carbon on top of silver.   

An attempt to replace any adsorbed thiolate with a different thiol, while leaving 

the Ag in place was not successful.  When films were immersed in a 1-mM solution of 

hexadecanethiol for 24 h., there was little change in the advancing contact angle of water 

on the surface (42°), indicating that replacement of the original thiolate groups was not 

achieved. 

We also attempted to form SAMs from the tert-nonyl polymer, 

[AgSC(CH3)2(CH2)5CH3]n.  A gold film was treated with a 5-mM solution (based on 

repeat units) of the polymer in ethanol for 24 h.  Samples were then removed and rinsed 

with ethanol, water, and dried under a stream of N2.  The advancing contact angle of 

water was 95°, and the receding angle was 68°.  An XPS survey spectrum revealed the 

presence of gold, silver, carbon, and sulfur (Figure 6.10).  A high-resolution spectrum in 

the Ag 3d region (Figure 6.11) could be fit with two spin-orbit doublets, in a ratio of 

5.8:1.0.  The larger doublet appeared at 367.8 eV (Ag 3d5/2, fwhm, 0.78 eV) and 373.8 

eV (Ag 3d3/2, fwhm, 0.78 eV), and the smaller at 368.3 eV (Ag 3d5/2, fwhm, 0.80 eV) and 

374.8 eV (Ag 3d3/2, fwhm, 0.80 eV).  In contrast to the SAM formed from the diol  
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Figure 6.9.  Low-energy ion scattering spectra of a gold film immersed in a 5-mM 

aqueous solution of [AgSCH2CHOHCH2OH]n for 24 h.  The change in the spectra during 

the progression of scans is indicated by arrows.  As the number scans increases, the peaks 

associated with silver (~ 2420 eV) and gold (~ 2625 eV) became more pronounced, while 

the peak associated with sulfur (~ 1750 eV) and the scattering that results from carbon 

(below ~ 700 eV) decreased. 
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polymer,the predominant Ag 3d doublet appears at the same binding energy as reported 

for a SAM formed on UPD-Ag (Ag 3d5/2, 367.8 eV).
15

  The smaller component appears 

at the same binding energy found for the diol polymer, possibly indicative of the presence 

of a small amount of Ag2S or silver metal, as speculated for that system.  A spectrum in 

the S 2p region (Figure 6.12) revealed a spin-orbit doublet (161.8 eV, S 2p3/2, fwhm, 0.94 

eV; 163.0 eV, S 2p1/2, fwhm, 0.94 eV) consistent with thiolate sulfur.  The ratio of Ag:S 

was 2.0:3.6, however, rather than the expected 1:1.  As with adsorption of the diol 

polymer, this ratio may indicate some decomposition of the polymer to Ag2S or silver 

metal and disulfide, which could then assemble on the gold surface. 

We also attempted to form SAMs from the carboxylic-acid polymer, 

[AgSCH2CH2COOH]n.  A gold film was immersed in an aqueous solution containing 5-

mM polymer (based on repeat units) and 0.397-M NaOH for 24 h, then removed from 

solution and rinsed with deionized water, 0.20-M HCl, and dionized water again.  To 

determine if the surface of these films contained any carboxylic-acid groups, a contact-

angle titration was performed:
23-25

  Aqueous solutions of various pH values were used as 

probe liquids for contact-angle measurements.  The variation in contact angle as a 

function of pH can give an indication of the acidic or basic nature of a surface.  As shown 

in Figure 6.13, the contact angle was relatively constant from pH 1 to 4, decreased 

between 4 and 6, and was again relatively constant at high pH.  This behavior is 

consistent with the presence of carboxylic-acid groups at the surface, with the charged 

carboxylate ion being more hydrophilic than the uncharged acid form. 

A XPS survey spectrum revealed the presence of gold, silver, carbon, and sulfur, 
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Figure 6.10.  An XPS survey spectrum of a gold film immersed in a 5-mM solution of 

[AgSC(CH3)2(CH2)5CH3]n in ethanol for 24 h. 
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Figure 6.11.  A high-resolution XPS spectrum in the Ag 3d region of a gold film 

immersed in a 5-mM solution of [AgSC(CH3)2(CH2)5CH3]n in ethanol for 24 h. 
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Figure 6.12.  A high-resolution XPS spectrum in the S 2p region of a gold film immersed 

in a 5-mM solution of [AgSC(CH3)2(CH2)5CH3]n in ethanol for 24 h. 
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Figure 6.13.  Contact-angle titration of a gold film immersed in a 5-mM solution of 

[AgSCH2CH2COOH]n in aqueous 0.397-M NaOH for 24 h.  The error bars represent the 

standard deviation of six measurements on the sample. 
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but no oxygen (Figure 6.14).  The lack of photoemission from oxygen in this spectrum is 

not consistent with a surface terminated by carboxylic-acid groups.  A high-resolution  

spectrum in the Ag 3d region (Figure 6.15) revealed a spin-orbit doublet at 367.8 eV (Ag 

3d5/2, fwhm, 0.78 eV) and 373.8 eV (Ag 3d3/2, fwhm, 0.78 eV) which corresponded well 

to that of UPD-silver coated with a SAM from octadecane thiol,
15

 as well as that of the 

tert-nonyl polymer.  A high-resolution spectrum in the C 1s region (Figure 6.16) 

contained photoemission that could be adequately fit by a single peak at 284.6 eV (fwhm, 

1.1 eV), with no peak at higher binding energy (~ 289.3 eV) characteristic of a carboxyl 

carbon.
18

  The absence of this peak is consistent with the absence of oxygen in the survey 

scan, but not the contact-angle titration on an analogous sample.  These spectra may 

suggest some decarboxylation, possibly catalyzed by the presence of Ag
+ 

(Figure 6.17),
26

  

though this seems unlikely given the affinity of sulfur for silver.  A high-resolution 

spectrum in the S 2p region (Figure 6.18) revealed a spin-orbit doublet (161.8 eV, S 2p3/2, 

fwhm, 0.94 eV; 163.0 eV, S 2p1/2, fwhm, 0.94 eV) consistent with thiolate sulfur, close to 

that found for the tert-nonyl polymer on gold.  The ratio of Ag:S was 7:3, in contrast to 

the other polymers.  Although this ratio is indicative of some decomposition to deposit 

Ag metal or Ag2S, the spectrum in the silver region indicated only thiolate-bound silver. 

 From the XPS data for these polymers, we conclude that the diol polymer appears 

to significantly decompose, resulting in a mixture of species being adsorbed on gold.  

High-resolution XPS spectra in the silver and sulfur regions suggest the presence of silver 

metal and/or Ag2S, rather than thiolate species, and the Ag:S ratio inconsistent with the 

formation of a SAM on UPD-Ag/Au.  The contact-angle data for this surface are slightly  
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Figure 6.14.  An XPS survey spectrum of a gold film immersed in a 5-mM solution of 

[AgSCH2CH2COOH]n in aqueous 0.397-M NaOH for 24 h. 

 

  

1000 800 600 400 200 0

Binding Energy (eV)

C 1s Ag 4d

Ag 3p3/2

Ag 3d

Ag 3p1/2

Ag 4p

Au 4s

Au 5p

Au 5d

Au 4f

Au 4d

Au 4p3/2Au 4p1/2

S 2p
S 2s



142 

 

 

 

Figure 6.15.  A high-resolution XPS spectrum in the Ag 3d region of a gold film 

immersed in a 5-mM solution of [AgSCH2CH2COOH]n in aqueous 0.397-M NaOH for 

24 h. 
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Figure 6.16.  A high-resolution XPS spectrum in the C 1s region of a gold film immersed 

in a 5-mM solution of [AgSCH2CH2COOH]n in aqueous 0.397-M NaOH for 24 h. 
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Figure 6.17.  Mechanism proposed for silver-catalysed decarboxylation in reference 25. 
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Figure 6.18.  A high-resolution XPS spectrum in the S 2p region of a gold film immersed 

in a 5-mM solution of [AgSCH2CH2COOH]n in aqueous 0.397-M NaOH for 24 h. 
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higher than with that on a surface formed by adsorption of the thiol on a UPD-Ag/Au 

surface, though LEIS spectra of a similar film are consistent with the desired structure.   

Results from gold exposed to the tert-nonyl polymer were similar to those of the 

diol polymer.  High-resolution XPS spectra in the silver region indicated the adsorbed 

material was predominately thiolate-bound silver, however, a peak corresponding to 

silver metal or Ag2S was also present, indicating some decomposition of the polymer.  A 

high-resolution spectrum in the sulfur region confirmed the presence of thiolate, 

however, the Ag:S ratio was inconsistent with the formation of a SAM on UPD-Ag/Au, 

and indicated a large excess of silver.  Contact-angle data for the gold film exposed to the 

tert-nonyl polymer, however, are consistent with that of adsorption of a monolayer on the 

surface.   

The silver and sulfur XPS binding energies for films formed from the carboxylic-

acid polymer on gold most closely matched those of a SAM on UPD-Ag/Au, however, 

the Ag:S ratio was inconsistent and the surface contained no oxygen (by XPS).   

 

6.3.4  The Formation of Silver Nanoparticles from Silver (I)-thiolate Polymers 

 Given the evidence for the decomposition of silver(I)-thiolate polymers 

summarized above, we attemped to utilize this instability to our benefit. Therefore, the 

second focus of our interest in silver (I)-thiolate polymers was in their possible role as 

precursors to silver nanoparticles.  We hypothesized that controlled decomposition of 

these polymers might produce of Ag
0
 nanoparticles and dialkyl disulfides (equation 6.2).   

 g    
Δ or  ν
             g

0
   P                                            .   
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The remaining thiolate polymer might then act as a capping agent for the nanoparticles 

and prevent uncontrolled growth of the nanoparticles in size.  Some indication that this 

process might be viable was provided by the high temperature thermal decomposition of 

the silver containing metal-organic polymer, [ g μ3-malic acid)]n.
9
  Our work indicated 

that low-temperature synthesis of soluble silver nanoparticles from silver(I)-thiolate 

polymers might be possible.  We examined both thermolysis and photolysis of our 

polymers as possible routes to controlled decomposition.  

 

6.3.4.1  Thermolysis of  Silver (I)-thiolate Polymers 

 A 5-mM aqueous solution of the diol polymer, [AgSCH2CHOHCH2OH]n was 

heated at 90 °C.  Over 5 h, the color of the solution changed from an initial pale yellow to 

olive green.  Analysis by UV/vis spectrophotometry showed the growth of two 

absorbances, centered at ~460 nm and ~600 (Figure 6.19), as well as scattering of light at 

wavelengths below ~425 nm.  These peak maxima are consistent with some literature 

examples of surface plasmon peaks for Ag nanoparticles,
27-29

 though more commonly 

these peaks appear at shorter wavelengths (360 – 450 nm for particles with diameters of 

~2 – 50 nm).
29,30

  Filtration of these solutions through 200 nm syringe-tip filters did not 

significantly affect the spectra.  Upon storage at room temperature, the spectra of these 

heated samples changed over the course of days, indicating that the products formed were 

not stable.  The solutions were stable, however, when heated in the presence of the 

polyethylene glycol surfactant, Pluronic L62
®
.  A sample (5-mM solution) of the diol 

polymer was thermolyzed for 30 min and analyzed by transmission electron microscopy 

(TEM) to confirm the presence of irregularly shaped  nanoparticles with sizes ranging  
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Figure 6.19.  Time-dependent UV/vis spectra of a 5-mM aqeuous solution of 

[AgSCH2CHOHCH2OH]n heated in water at 90 °C.  The arrow indicates the progression 

of spectra taken of samples heated for 12, 15, 20, 45, and 60 min, respectively. 
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from 2 – 20 nm (Figure 6.20).   The range of sizes indicates that the decomposition of the 

diol polymer is not sufficiently controlled by the available thiolate groups or the disulfide 

byproduct.   

Heating a 5-mM solution of the tert-nonyl polymer in refluxing toluene produced 

no visible color changes, and analysis by UV/vis spectrophotometry did not reveal the 

appearance of any absorbances.  Heating a 5-mM aqueous solution of 

[AgSCH2CH2COOH]n in basic solution did produce color changes, from pale yellow to 

orange, over 1 – 3 h.  If the solution were heated for a longer period, however, it became 

brown and a solid precipitated.  When the concentration of OH
-
 was varied, the solution 

color after thermolysis would also vary, but no clear trend in this variance could be 

ascertained.  Despite the color changes, UV/vis spectra of solutions that had been heated 

for 1 – 3 h revealed only scattering at short wavelengths (< 400 nm) and did not contain 

any peaks. 

 

6.3.4.2  Photolysis of  Silver (I)-thiolate Polymers 

 Photolysis of silver (I) salts is a well-established route to the formation of silver 

nanoparticles.
31-34

  The process is similar to black-and-white photography in that silver 

salts, such as silver halides, silver nitrate, and silver perchlorate, are photoreduced to 

silver metal in the presence of an electron donor.  The mechanism in solution is thought 

to occur by the electron transfer from a solvent molecule to a silver ion,
35

 though this 

effect can be enhanced by the addition of electron donating species to the reaction 

mixture such as TiO2 or ketones.
32,33,36

  We attempted to use this process with our 

polymers as precursors.  Photolysis of the carboxylic-acid and diol polymers in water (5  
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Figure 6.20.  A TEM image at 250K magnification of nanoparticles formed by the 

thermolysis of [AgSCH2CHOHCH2OH]n in aqueous solution at 90 °C for 30 min. 
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mM) using a UV photoreactor with emission in the range of 300 – 4   nm and a  max at 

350 nm generated little change in the color of the solutions. 

Photolysis of [AgSC(CH3)2(CH2)5CH3]n in hexanes (5 mM) in a glass 

roundbottom flask    cut-off of 275 – 320 nm) fit with a condenser for times ranging 

from 15 min to 5 h did, however, produce changes in the solutions.  Hexanes was chosen 

as a solvent because it does not absorb between 300 and 415 nm.  Analysis of these 

samples by UV/vis (Figure 6.21) revealed the growth of an absorbance near 500 nm, 

which shifted to longer wavelengths and became more intense with longer exposure, 

indicative of a plasmon reasonance shifting as particle size increases.  Scattering above 

~450 nm also became more prominent over time, consistent with the formation of large 

nanoparticles.  The solution progressed from colorless, through yellow and orange, to 

deep red over 5 h.  To explore the effect of higher-energy light provided by the 

photoreactor, a quartz flask was used to allow transmittance of light down to a 

wavelength of ~ 200 nm, compared to a cut-off of ~ 275 – 320 nm for a glass flask.  

Surprisingly, although a similar color and spectral progression proceeded, it did so at a 

slower rate.  The effect of the silver(I)-thiolate polymer concentration on photolysis (in 

quartz) was also studied.  The concentrations of photolyzed solutions were increased to 

9.73 mM and 33.69 mM, which resulted in a more prominent absorbance near 525 nm for 

the polymers photolyzed in solution (Figure 6.22).  The polymer was also photolyzed as a 

neat oil in a quartz cuvette, then suspended as a 16 mM solution in hexanes for UV/vis 

analysis, which showed a smaller absorbance near 510 nm (Figure 6.22).   

We attempted to purify the polydisperse samples of nanoparticles, made from 

photolysis of samples in quartz flasks, to produce a more monodisperse composition.   
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Figure 6.21.  Time-dependent UV/vis spectra of a 5-mM hexanes solution of 

[AgSC(CH3)2(CH2)5CH3]n photolyzed in a glass flask.  The arrow indicates the 

progression of spectra taken of samples heated for 1, 2, 3, and 5 h, respectively. 
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Figure 6.22.  UV/vis spectra of hexanes solutions of [AgSC(CH3)2(CH2)5CH3]n 

photolyzed in quartz for 2 h at different concentrations. 
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The solvent was removed from a 33.69-mM sample, leaving behind yellow oil spotted 

with red.  The yellow color was similar to that of the unreacted polymer.  The oil was 

stirred in warm (30 °C) methanol until the solvent picked up most of the red color, 

generating a pinkish solution, and leaving behind the yellow oil.  This solution was 

decanted, then cooled in an ice bath, which resulted in the formation of a cloudy white 

precipitate, consistent with di-t-nonyl disulfide.  The precipitate was removed by 

filtration through a 250-nm syringe-tip filter, giving a clear pink solution.  The UV/vis 

spectrum of this solution displayed a large peak at ~ 535 nm, with considerably less 

scattering than previously seen (Figure 6.23).  The reason for the red-shift in this 

spectrum is not immediately clear.  Analysis by TEM confirmed the presence of 

nanoparticles, however, the sample was not monodisperse (Figure 6.24).  Images indicate 

a bi-modal distribution of large particles (~ 10 – 50 nm) smaller (~ 2 – 5 nm) particles.  

From these images, it is not clear if the particles formed are composed of Ag metal or 

AgS2, or if the particles are two- or three-dimensional.  Although there is a literature 

example of ~ 25-nm Ag nanoparticles having an absorbance maximum near 535 nm,
28

 

typically, large particles around 100 nm have absorbances near 535 nm, and particles on 

the order of 2 – 50 nm absorb near 360 – 450 nm.
29,30

  An attempt to purify this sample 

further by centrifugation at a speed of 50,000 rpm for 2 h, resulted in the separation of a 

similar red-spotted yellow oil, and leaving behind a pink solution.  Analysis by UV/vis 

revealed little change across the wavelength region (Figure 6.23).  Transmission electron 

microscopy images of the centrifuged sample (Figure 6.25) showed a gradated 

distribution of particle sizes, from large particles in the range of 10 – 15 nm to smaller 

particles around 2 – 5 nm. 
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Figure 6.23.  UV/vis spectra of a 33.69-mM solution of [AgSC(CH3)2(CH2)5CH3]n 

photolyzed in a quartz flask for 2 h before extraction from methanol, after extraction 

from methanol, and after extraction from methanol and centrifugation at 50,000 rpm. 
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Figure 6.24.  A TEM image at 250K magnification of nanoparticles formed by the 

photolysis in a quartz flask of a 33.69-mM solution of [AgSC(CH3)2(CH2)5CH3]n in 

hexanes for 2 h. 
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Figure 6.25.  A TEM image at 500K magnification of nanoparticles formed by the 

photolysis in a quartz flask of a 33.69-mM solution of [AgSC(CH3)2(CH2)5CH3]n in 

hexanes for 2 h and have been purified by extraction from methanol, filtration and 

centrifugation at 50,000 rpm. 
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6.4  Conclusions 

   The silver(I)-thiolate polymers described in this chapter adsorbed onto gold 

surfaces from solution, however, it is likely that decomposition of the polymers occurred 

during this process.  Analysis by XPS indicated that the diol polymer decomposed 

significantly with no evidence for a thiolate-bound structure similar to a SAM on UPD-

Ag/Au.  High-resolution XPS spectra in the silver and sulfur regions indicated that silver 

metal or Ag2S may have formed as the polymer decomposed.  Analysis of films from the 

tert-nonyl and carboxylic-acid polymers, however, did confirm the presence of thiolate 

species for those systems, though decomposition of the polymers was also observed.   

High-resolution XPS spectra of the tert-nonyl polymer in the silver and sulfur regions 

indicated the adsorbed material was predominately thiolate-bound silver, however, some 

silver metal or Ag2S was likely also present.  High-resolution XPS spectra in the silver 

and sulfur regions for films formed from the carboxylic-acid polymer resembled that 

from SAMs on UPD-Ag/Au, however, an XPS survey spectrum did not reveal the 

precence of any oxygen, and a high-resolution spectrum in the carbon region was not 

consistent with a carboxylic-acid terminated surface. 

 Silver nanoparticles can be formed from these polymers by either thermolysis or 

photolysis, as shown by UV/vis spectra and TEM images.  The UV/vis spectra contained 

peaks assigned to surface plasmon reasonances of silver nanoparticles, and  

TEM images show polydisperse distributions of nanoscale silver-metal particles.  

Thermolysis of the diol polymer in water resulted in spherical nanoparticles with a size 

distribution of 2 – 20 nm, but thermolysis of the other polymers was unsuccessful.  

Photolysis of the diol and carboxylic-acid failed to produce any silver nanoparticles, 
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photolysis of the tert-nonyl polymer in hexanes resulted in the formation of a bi-modal 

distribution of large ( ~ 10 – 50 nm) and small (~ 2 – 5 nm) particles after purification by 

extraction from methanol.   Further purification of this sample by centrifugation reduced 

this particle size distribution to 2 – 15 nm.    

 

6.5  Experimental 

General.  Tert-nonyl mercaptan (95.0% mixture of isomers) was purchased from 

TCI America and used as received.  3-Mercaptoproprionic acid (99+ %) and 3-mercapto-

1,2-propanediol were used as purchased from Aldrich.  Reagent grade acetone (99.9%), 

methanol (99.9%), and hexanes (95.8%) were used as purchased from Pharmco-AAPER 

and Commercial Alcohols.  Ethanol (Anhydrous, J.T. Baker, 95%) was used as received.  

Acetonitrile (ACN, Acros, 99.8%) and tetrahydrofuran (THF, Mallinckrodt, 99%) were 

purified and dried using a PureSolv system (Innovative Technology, Inc.).  Silver nitrate 

(99.8%) and chloroform (99.9%) were purchased from Fischer and used as received.  

Hexadecane (99%, Aldrich) was passed through activated alumina twice before use in 

contact-angle measurements.  Gold (99.999%) was used as supplied by VEM Vacuum 

Engineering.  Dichloromethane (99.5%), toluene (99.9%), hydrogen peroxide (30%), 

sodium hydroxide (97%), and sulfuric acid (95%) were used as received from EMD.  

Pluronic L62
®
 surfactant was purchased from BASF and used as received.  

Preparation of Gold Films.  Gold films were prepared on piranha-cleaned glass 

slides.  Caution: Piranha solution, a 4:1 (v/v) mixture of concentrated H2SO4 and 30% 

H2O2, reacts violently with organic material and should be handled carefully.  

Approximately 50 Å of Ti (as an adhesion promoter) and then 1000 Å of Au were 
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evaporated onto the substrates by e-beam vapor deposition.  Electrodes were used soon 

after deposition, or cleaned prior to use by cycling its potential (-1.2 V to 1.5 V, 100 

mV/s) seven times in 0.5-M aqueous sulfuric acid to remove any contaminants. 

Synthesis of Ag(I)-thiolate Polymers.  The starting thiol was dissolved in 25 mL 

of the acetonitrile (0.1 M).  In another beaker, a 0.1-M solution of AgNO3 was prepared 

in 25 mL of acetonitrile.  The thiol solution was then added to the silver nitrate solution 

with stirring, and immediately a precipitate formed, or in the case of the tert-nonyl 

polymer, an oil.  The solution was stirred for 24 h to allow the reaction to proceed to 

completion.  In the case of the solid polymers [AgS(CH2)11CH3]n, 

[AgSCH2CHOHCH2OH]n, and [AgSCH2CH2COOH]n, the slurry was filtered to collect a 

crude product, which was then washed with acetonitrile and dried under vacuum.  In the 

case of the oily tert-nonyl polymer, the solvent was decanted, and the oil was stirred in 

methanol for 24 h.  The methanol was then decanted and remaining solvent was removed 

under vacuum.  The soluble products, [AgSCH2CHOHCH2OH]n, [AgSCH2CH2COOH]n, 

and [AgSC(CH3)2(CH2)5CH3]n ,were analyzed by NMR.  The isolated yield of 

[AgSCH2CHOHCH2OH]n was 85%.  
1
H NMR (in D2O):  [AgSCH2CHOHCH2OH]n, 3.53 

– 3.72 (br, 2H); [AgSCH2CHOHCH2OH]n, 3.53 (br, obscured); 

[AgSCH2CHOHCH2OH]n, 3.50 (br, obscured); [AgSCH2CHOHCH2OH]n, 2.85 – 3.20 

(br, 2H,).  The isolated yield of [AgSCH2CH2COOH]n was 89%.  
1
H NMR (in D2O):  

[AgSCH2CH2COOH]n, 2.72 – 3.22 (br, 2H); [AgSCH2CH2COOH]n, 2.25 – 2.45 (br, 2H).  

The isolated yield of [AgSC(CH3)2(CH2)5CH3]n was 85% for the mixture of isomers.  
1
H 

NMR (in CDCl3):  [AgSC(CH3)2 CH2 (CH2)4CH3]n, 1.38 – 1.52 (m, obscured by 
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isomers); [AgSC(CH3)2 CH2 (CH2)4CH3]n, 0.92 – 1.38 (m, obscured by isomers); 

[AgSC(CH3)2 CH2 (CH2)4CH3]n, 0.80 – 0.92 (m, obscured by isomers). 

Contact-Angle Measurements.  Advancing contact angles of water and of 

hexadecane were measured with a Rame-Hart NRL model 100 goniometer.  A minimum 

of six measurements were made on three independent drops at various locations on each 

sample.  To perform contact-angle titration measurements, solutions were prepared by 

combining phosphoric acid (14.7 M, pH -0.47) with 2.0-M aqueous NaOH to give 

solutions of pH 1.00, 1.99, 3.00, 4.00, 5.01, 6.00, 8.00, and 11.99.  The solutions between 

pH 1.99 and 11.99 were buffered. 

X-ray Photoelectron Spectroscopy (XPS).  Spectra of gold films exposed to 

[AgSCH2CHOHCH2OH]n, and [AgSCH2CH2COOH]n polymer solutions were collected 

using a Scienta ESCA- 00 spectrometer with monochromati ed  l Kα X-rays generated 

using a rotating anode.  Photoemission was measured with a 300-mm-diameter 

hemispherical analyzer.  Samples were grounded by placing screws in contact with both 

the electrode surface and the sample holder.  The pressure in the sample chamber was 

∼2×10
-9

 Torr, and samples were analyzed at a 20° take-off angle between the sample 

surface and the path to the analyzer.  Spectra of gold films exposed to 

[AgSC(CH3)2(CH2)5CH3]n solutions were collected using a Thermo Scientific K-Alpha 

spectrometer with monochromati ed  l Kα X-rays.  Photoemission was measured with a 

180° micro-focused hemispherical analyzer.  The sample was grounded by placing 

screws in contact with the electrode contacts and the sample holder.  The pressure in the 

sample chamber was ∼2×10
-8

 Torr, and samples were analyzed at a 45° take-off angle 

between the sample surface and the path to the analyzer.  Spectra produced by this 
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instrument had a lower signal-to-noise ratio than those produced by the Scienta ESCA-

300.  Spectra were collected within 1 h of removal from solution and analyzed using 

CASAXPS
®
 software (version 2.3.15dev77).  Survey spectra were taken at a 300-eV pass 

energy and with a step energy of 1 eV.  The pass energy for high-resolution spectra in the 

Au, Ag, C, O, and S regions was 150 eV, and the step energy was 0.05 eV.  The carbon 

1s and oxygen 1s photoemission was fit with peaks whose full-widths at half-maximum 

(fwhm) were allowed to vary.  The silver 3d photoemission was fit with peaks due to the 

3d5/2 and 3d3/2 spin-orbit components, with the fwhm allowed to vary but constrained to 

be equal to one another, and areas in a 3:2 ratio, respectively.  The gold 4f photoemission 

was fit with peaks due to the 4f7/2 and 4f5/2 spin-orbit components, with the fwhm allowed 

to vary but constrained to be equal to one another, and areas in a 4:3 ratio, respectively.  

The sulfur 2p photoemission was fit with peaks due to the 2p3/2 and 2p1/2 spin-orbit 

components, with the fwhm allowed to vary but constrained to be equal to one another, 

and areas in a 2:1 ratio, respectively.   

Low Energy Ion Scattering (LEIS).  Spectra of the gold sample bearing adsorbed  

[AgSCH2CHOHCH2OH]n were generated using an ION-TOF Qtac 100 instrument.  An 

iridium filament was used to produce a beam of He
+
 ions with 3000 eV of kinetic energy.  

The ion beam struck the surface of the sample at normal incidence, and scattered ions 

were collected at an angle of 55°.  The energies of the scattered ions were measured using 

an azimuthal detector operating with a pass energy of 3000 eV.  Samples were analyzed 

under an ion current of 1.22 x 10
-2

 μ , with the beam rastered over a square region  000 

μm across, to give a total ion dose of  .   x  0
14

 cm
-2

 for a single scan.   
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Transmission Electron Microscopy (TEM).  Nanoparticle samples were 

analyzed by TEM using a JEOL JEM-2000FX microscope equipped with a tungsten 

filament and a background pressure of ~ 2.5x10
-5

 Pa. Samples were prepared by drop-

casting solutions onto copper grids.  Images were obtained at 180 kV and at various 

magnifications 

Adsorption Studies of Ag(I)-thiolate Polymers.  Polymers were dissolved in 

solution (1- or 5-mM, see text) prior to adsorption.  Gold films were immersed in these 

solutions for 24 h.  The samples were then removed from soliution,  rinsed (see text) and 

dried under a stream of N2.  Samples were then analyzed by contact angle and XPS.  

Thermolysis of Ag(I)-thiolate Polymers.  Polymers were dissolved in solution 

and heated in a round bottom flask fitted with a condenser.  The color of the solution was 

observed throughout heating.  When a significant change in color had occurred, the 

samples were cooled in a room-temperature water bath and analyzed by UV/vis 

spectrophotometry. 

Photolysis of Ag(I)-thiolate Polymers.  Polymers were photolyzed in solution, or 

neat in a Rayonet Model 100 photorector.  The reaction chamber has a diameter of 10 in, 

is 15-in deep, and contains twelve T-5 ultraviolet lamps that each produce ~ 35 W 

between 300 – 415 nm.  Polymer solutions were contained in a glass or quartz round 

bottom flask fitted with a condenser to prevent loss of solvent.    Neat polymers were 

placed in a quartz cuvette during photolysis.  At various intervals, the UV lamps would 

be switched off for a few seconds in order to observe samples, and when a significant 

change in color occurred, the samples would be removed and analyzed by UV/vis 

spectrophotometry. 
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Ultraviolet/visible Spectrophotometry (UV/vis).  Nanoparticle samples in 

solution were analyzed using a Shimadzu UV-2101 PC spectrophotometer equipped with 

a dual light source for a wavelength range of 190 – 900 nm and a resolution of 0.1 nm.  

Samples were analyzed within 1 h of formation and absorbance spectra were taken from 

370 – 800 nm in a quartz cuvette.   
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Chapter 7 

 

 

Future Work 

 

 

7.1  Future Work 

 

7.1.1  Future Work with Regioselective SAM Formation from Dialkyl Disulfides 

 The formation of mixed dialkyl disulfide monolayers using the protection-

deprotection technique should be explored.  This preparation can be accomplished by 

including two dialkyl disulfide precursors in solution during potential-assisted SAM 

formation.  Work with mixed monolayers should include disulfides of varying chain 

length (i.e., shorter alkyl chains  mixed with longer alkyl chains) and with a wider range 

of functional groups.  For instance, methyl ester-terminated and amide-terminated 

disulfides should be easily synthesized in the same manner as the disulfides in Chapters 4 

and 5. 

 The attachment of nanoparticle assemblies to the surface of a SAM-coated gold 

electrode should also be attempted.  For example, TiO2 nanoparticles should attach to a 

carboxylic acid-terminated surface.
1,2

  Assemblies such as these have been shown to hold 

promise for photovoltaic applications as well as photocatalysis.
1-3

  The attachment of 

TiO2 nanoparticles to a gold surface would allow for the creation of a photovoltaic cell by 

the collection and transfer of photocurrent (Figure 7.1).  Another example of this process 

is the attachment of CdS particles to a thiol-terminated SAM, wherein a photovoltaic cell 

was created.
4,5
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Figure 7.1.  Schematic representation of the collection of photocurrent in a TiO2 – Gold 

system.  
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7.1.2  Future Work with Silver (I)-thiolate Polymers 

There remains much work to be done concerning the use of silver (I)-thiolate 

polymers as precursors for monolayer films and nanoparticles.  The formation of films 

from solutions of [AgSCH2CH2COOH]n on gold should be repeated in order to rectify the 

contrasting results of the contact-angle and XPS studies with regards to the presence of 

the carboxylic-acid groups.  As this system was the closest to that of a SAM on UPD-

Ag/Au it deserves further study to determine if the polymer is decomposing during 

adsorption.  With the understanding of the solution-phase species of this polymer gained 

from 2D-NMR studies, it should also be possible to suggest a mechanism for the 

association of this polymer with gold. 

For future studies of these polymers as nanoparticle precursors, one should further 

develop the photolytic methodology.  Specifically, a greater use of electron microscopy 

in addition to UV/Vis spectrophotometry can give a more direct indication of the 

conditions that allow for more uniform size distributions.  The centrifugation of 

suspensions of Ag nanoparticles should be pursed as well.  An improvement in particle 

size distribution was noticed after 2h of centrifugation, so longer centrifugation times 

should be explored as they may produce a more narrow size distribution of particles.  

Once well-defined synthetic parameters have been established, applications of these 

nanoparticles could include the synthesis of various core@shell structures.  The creation 

of Ag or Au@TiO2 structures would be especially interesting for the study of CO 

oxidation.  This may be able to be achieved through the hydrolysis of titanium(IV) 

bis(ammonium lactato)dihydroxide (TiLn), in the presence of Ag or Au nanoparticles.  

The hydrolysis of TiLn results in the formation of TiO2 which may nucleate and form on 
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the surface of the nanoparticles.
6,7

  Controlling the conditions of hydrolysis may allow for 

control over the amount of TiO2 formed, and thus the size of the Ag or Au@TiO2 

structures. 
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