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Quantifying Adhesion between Polyelectrolyte Multilayers 

Abstract: 

The adhesion between poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) 

deposited on oxygen plasma-treated polydimethylsiloxane (PDMS) and a glass sphere (along 

with a number of controls) was investigated using indentation.  Experiments were analyzed to 

quantify adhesion by estimating the energy release rate (ERR) and in terms of the maximum 

pull-off force for various pairings.  Polyelectrolyte-treated pairings had toughness two to three 

times in excess of the controls, and a maximum pull-off force approximately 12 times that of the 

controls.  Although attraction between opposite charges clearly drives the multilayer deposition, 

it was found that after two opposing surfaces have been brought into contact, adhesion was 

highest for surfaces with PAA, i.e. like-charges, on both sides. 
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1. Introduction: 

Polyelectrolyte layer-by-layer deposition consists of adsorbing alternating layers of 

polyanions and polycations to a surface.1  This is accomplished, for example, by placing a 

negatively charged surface in a polycation solution during which process the polycation adsorbs 

onto the surface, rendering it positively charged.  The substrate is then moved into a polyanion 

solution where it acquires a negative surface charge upon adsorption.  This process is repeated 

to place additional layers on the surface. 

This method can be used to fabricate photo-active surfaces, electro- or photo-chromatic 

devices, solar cells, semiconductor devices, and to modify the hydrophobic/hydrophilic 

character of a surface.  In biochemical applications, these layer-by-layer polyelectrolyte 

structures can be used in gas filtration, free radical trapping, controlled DNA delivery, pH-

sensitive gated porous capsules or films, and can be used to build biological reactors.2  

Polyelectrolyte deposition in this fashion can also be used to inhibit bacterial growth, support 

mammalian cellular growth, or engineer tissues.3,4   

Polyelectrolyte multilayers are assembled by taking advantage of their adhesive 

qualities, and their potential to encounter mechanical loads or other polyelectrolyte-treated 

surfaces in use makes their mechanical behavior and interaction crucial to function.  

Additionally, understanding relationships between the cohesive and adhesive nature of 

polyelectrolyte multilayers and their structure may help develop additional uses for 

polyelectrolyte treatments, such as for use in creating selectively adhesive surfaces.5,6 

Mechanical tests using indentation have previously been performed on these types of 

polyelectrolyte layers.  However the focus of these tests has been on the determination of 

Young’s modulus of the polyelectrolyte films themselves. Moreover, tests are often performed 

on free-standing films rather than on films serving as surface treatments to modify properties of 

other substrates.3,4,7-11  Observations about adhesion based on these studies are usually 

qualitative or semi-quantitative.  The studies typically utilize micron-scale glass spheres 
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attached to atomic force microscope (AFM) cantilevers, either coated in polyelectrolytes 

themselves or simply cleaned using oxygen plasma.12 

Macroscopic mechanical tests have been performed on polyelectrolyte layers, including 

shear tests13,14 and “zero motion” tests with treated surfaces being placed together and pulled 

apart slowly enough to approximate the absence of kinetic effects.15   It appears that material 

transfer does often occur, with contact, yielding differing results upon repeated contacts in the 

same location.  The bulk of these studies were conducted in air, with relatively little focus on 

aqueous environmental effects, as would be the case in most biological applications. 

Here, we report on a study of adhesion in an aqueous environment between 

polyelectrolyte multilayers using indentation by a rigid sphere of an elastomeric substrate, with 

each side of the interface optionally coated by polyelectrolyte layers.  Raw force-deflection data 

are analyzed to extract interfacial toughness and maximum tensile load sustained by the 

contact. 

 

2. Experimental Methods: 

2.1.  Materials Selection: 

Much work has been reported on surface modification through polyelectrolyte deposition 

using polydimethylsiloxane (PDMS), glass, and silicon as substrates.  Several methods for 

attaching charges to the surface of these structures have been well explored.16,17,18  For the 

purposes of this work, PDMS and glass were favored over silicon as it is necessary to use at 

least a single compliant surface, and oxygen-plasma cleaned PDMS and glass can be treated 

using the same methods in order to apply polyelectrolyte surface layers. 

While it is necessary that one of the two surfaces be compliant in order to study 

adhesion energy by means of change in contact area, it is convenient for the other to be 

relatively rigid.  (See 2.3. Measurement of Adhesion:, page 6.)  For this reason, one PDMS 

surface and one glass surface were used. 
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The PDMS utilized in this experiment was Sylgard ® 184 Silicone Elastomer Kit using 10 

wt% curing agent.  The PDMS films were 0.78 mm thick.  Indenters were produced from soda-

lime glass rods with a nominal radius of 1.0 mm, held and rotated by hand under a propane 

flame until a desired tip radius of approximately 2.10 mm was reached.  Polyelectrolytes were 

chosen based on previous studies19 and availability of molecular weights.  Poly(acrylic acid) 

25% solution in water (PAA) (average Mw = 50,000), purchased from Polysciences Inc., and 

poly(allylamine hydrochloride) (PAH) (average Mw = 58,000), purchased from Sigma-Aldrich, 

were used. 

2.2 Surface Modification: 

Polyelectrolyte layers, while not covalently bound to each other or to the substrate, can 

be produced in minutes using no more than a phosphate or sodium chloride buffer, 19,20 and the 

constituent polyelectrolytes are safe enough to be used in diapers.21  Both PDMS and glass can 

be modified by oxygen-plasma treatment to form hydroxyl groups on their surfaces.18  In an 

aqueous environment, these groups function as a negative charge modification.  This treatment 

was used as a control for surfaces that had been modified with polyelectrolytes.  The 

polyelectrolytes used in these experiments were poly(acrylic acid) (PAA) and poly(allylamine 

hydrochloride) (PAH).   The two were deposited according to the method published by 

Elzbieciak et al.19  The details of the procedures used to activate and treat surfaces in these 

experiments can be found in the supporting information.  The various forms of surface treatment 

used in this series of experiments can be seen below in Figure 1 as measured by AFM. 

It can be observed here, as well as in other studies,19 that the adsorbed polyelectrolyte 

multilayers do not form smooth, flat surface coatings.  In polyelectrolyte-treated surfaces, an 

obvious pattern of peaks and valleys can be observed.  

The multilayers were added by submerging PDMS or glass into baths of 0.5 g/l 

polyelectrolyte under “strongly charged” conditions (pH = 3.0 for PAH, 11.0 for PAA) as outlined 

by Elzbieciak et al.19  Multilayers prepared for these experiments were terminated at 5 or 6 
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layers (PAH or PAA, respectively).  After oxygen plasma treatment, the first layer deposited was 

always PAH, followed by PAA, followed by PAH again and so on.  The surface treatments thus 

resulted in multilayers of the form (PAH-PAA)X-PAH or (PAH-PAA)X, abbreviated PAH(2x+1) 

and PAA(2x) (in these cases, PAH(5) & PAA(6) representing (PAH-PAA)2-PAH or (PAH-PAA)X 

and (PAH-PAA)3, respectively).  Each layer was deposited with a ten-minute submergence in 

the electrolyte solution, then rinsed three times for two minutes in de-ionized water before 

having another layer added to the surface. 

 

 

 

Figure 1: Surface treated PDMS shown in shared z-scale.  Left to right: bare 
oxygen plasma-treated PDMS substrate, PAH(5), PAA(6). 
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2.3. Measurement of Adhesion: 

Adhesion was measured by means of indentation: a glass sphere (radius = 2.10 ± 0.07 

mm) attached to a motor was brought into contact with a treated PDMS substrate (thickness = 

0.78 ± 0.005 mm, indentation velocity = 0.001 mm/s, maximum depth of indentation = 0.03 mm), 

causing slight deformation as the sphere pressed into the surface.  The sphere was then 

retracted from the surface at the same speed.  These tests were performed in a phosphate 

buffered saline (PBS) medium, with a pH set to 7.4 to simulate in-vivo conditions22.   An inverted 

microscope beneath the apparatus observed the area of contact, and a capacitance 

displacement sensor was used to determine the depth of penetration into the substrate.  A force 

gauge placed in-line between the glass sphere and motor monitored the force applied by the 

indenter to the PDMS substrate during this process.  The area of contact was continually 

monitored.  This apparatus is represented schematically below in Figure 2. 

 

Figure 2: Indentation setup schematic. 
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Displacement of the glass indenter and the force exerted thereupon (Figure 3) are 

measured.  The associated area of contact is observed through the microscope over which the 

test is performed.  Using these three pieces of information and previously developed methods,23 

the associated energy release rate of contact can be calculated using a model-independent 

method.  The technique reported by Vajpayee et. al.23 was modified as follows. 

Data from pairs of surfaces modified by polyelectrolytes (red, Figure 3, below) is 

compared to data from a “zero-adhesion control case, wherein hysteresis and maximum pull-off 

force are minimal (black, Figure 3, below).  To calculate the strain energy requires knowledge of 

the loading path, absent adhesion, which has been previously termed the “Hertz curve”.  It is 

assumed that the adhesion upon indentation and prior to retraction is negligible.   

For the entire process of indentation and retraction, the energy deficit is the whole of the 

area enclosed by the force-displacement indentation and retraction curves.  The ERR is the rate 

of change in this deficit with respect to area of contact.  To match areas of contact to known 

ERR values, energy deficit values must be found for a series of areas of contact. 

The area of contact will be greatest at the deepest point of indentation.  For all other 

depths, there will be points on both the indenting and retracting force-depth curves that share 

equal areas of contact.  These pairs of points must be found, matched, and assigned an energy 

deficit value. 

Equal areas of contact also share a single compliance value.  Thus, to find the point ‘O’ 

on the retracting curve with area of contact equal to that of the indenting curve, a tangent line is 

drawn to the retracting line from a point ‘OH’ on the indenting curve.  An example tangent line 

can be seen below in Figure 3, and the corresponding mathematical term provided in Equation 

1.   

 

 
xma

O
retract

xma

O
indent

O

O
nta dFdFdFDeficitEnergy

H

H 



 

 

(1) 
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where F is force of a particular curve, δ displacement (δ > 0 representing indentation into the 

substrate, δ < 0 representing retraction from the nominal surface), and δmax the displacement at 

greatest indentation into the substrate.   

Areas of contact for ‘OH’ points along the indenting curve (and therefore also for the 

associated ‘O’ points) were calculated using the theoretical area of contact of Hertzian non-

adhesive elastic contact.24  The equations used are reproduced below in Equations 2 and 3.  

These values were confirmed with measurements of area of contact from still images 

taken from the microscope viewing the experiment.   
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
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Rearranging and substituting to solve iteratively for A, 
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(3)

where δ is the depth of penetration into the substrate for an infinitely thick substrate (equal to 

a2/R), δ’ is the corrected depth of penetration into the substrate, a is the radius of the area of 

contact, h is the substrate thickness, and A is the area of contact.  The latter calculation is 

repeated until the difference between Ai+1 and Ai is less than one percent. 

The energy lost between these two points OH and O is the area of the enclosed region of 

the indenting curve, the retracting curve, and this tangent line.  This was calculated numerically 

for sets of experimental data.  If there is little hysteresis between indentation and retraction, the 

loss of energy between the two stages is small, as in the dashed data set, oxygen plasma on 
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oxygen plasma, Figure 3A, below.  If, however, the hysteresis is large, the loss of energy is 

correspondingly great, as in the solid data set, PAA(6) on PAA(6), Figure 3A.  The energy deficit 

calculated for a specified O-OH point pairing and the associated area over a series of such sets 

of points can be used to calculate the energy deficit as a function of area.  The derivative of this 

relationship is the ERR for a given pairing of surfaces.  These relationships are derived for the 

example data in Figure 3A below in Figure 3B.  The low adhesion dashed plot represent an 

oxygen plasma-oxygen plasma control set and the adhesive solid plot represent a PAA(6)-

PAA(6) pairing. 
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Figure 3: (A) Low hysteresis, low energy loss indentation typical of oxygen 
plasma-treated glass indenter and PDMS substrate (dashed) and high hysteresis, 
high energy loss indentation from PAA(6) treated glass indenter against PAA(6) 

treated PDMS (solid, shown shifted right).  Observe similarity of indentation 
curves.  A single paired set of O and OH points and the associate energy deficit 

(shaded region) are shown.  Note adhesion indicated by negative force, or pull-off 
force, at negative depth of indentation (indicating a point above the surface).  (B) 

Corresponding calculated energy deficit values and linear slopes.  (A, Inset) 
Overlaid indentation data for the two cases are nearly identical, showing that 

there is little influence of adhesion in either case. 
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Observation of the influence of surface treatment on resulting energy release rates, and 

thus losses due to adhesion, provides a quantitative tool for the comparison of adhesion 

between different systems. 

Energy release rates (ERR) and maximum pull-off force (MPO) values were measured 

for five repeated indentations at the same location on the substrate.  The hypothesis that the 

mean slope of these curves was zero was tested.  The average slope for ERR was found to be -

0.000710 Jm-2/indent, with a standard deviation of 0.000402 Jm-2/indent.  At 95% confidence, 

this results in possible slopes ranging from +0.000079 to -0.001498 Jm-2/indent.  For MPO 

values, the average slope was found to be -4.138x10-7 N/indent with a standard deviation of 

3.619x10-6 N/indent.  At 95% confidence, the possible range of slopes for these data are 

+6.679x10-6 to -7.507x10-6.  Because both of these ranges cross zero, the null hypothesis is 

accepted.  See supporting information for data used in these calculations.  These trends are 

shown below in Figure 4. 
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Figure 4: Stability of extracted interfacial properties over tested ranges. 

Based on the hypothesis test, the results and discussion of this work assumes that there 

is no significant difference between indentations one through five. 

3. Results: 

ERR and maximum pull-off force (MPO) values for pairings of polyelectrolyte treated 

surfaces are in excess of pairings of control surfaces, regardless of the pair of polyelectrolytes 

in question.  ERR and MPO values for pairings of oxygen-plasma control surfaces with 

polyelectrolyte treated surfaces fell somewhere between the two (Figure 5). 

These data can be corrected to treat all energy loss during oxygen plasma to oxygen 

plasma contacts as bulk energy dissipation by subtracting the oxygen plasma-oxygen plasma 

ERR value from all ERR values.  This results in a corrected Energy Release Rate (cERR) based 

on the oxygen plasma control. 

Assuming a system of surfaces terminated with one of two surface treatments, A and B, 

three possible combinations of surface contact are possible: A-A, A-B, and B-B.  Assuming 
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there is significant differentiation between the adhesive strength of these three combinations, 

adhesion between the surfaces in the system will be selectively adhesive.  The cERR and MPO 

values shown in Figure 5 are reorganized into possible combinations of these two-type systems 

below in Figure 6.  These data show that a system of PAA and PAH-terminated surfaces will 

show relatively little selectivity with all surfaces adhering on contact, while a system of PAA and 

oxygen plasma-terminated surfaces will result in strong adhesion between PAA-terminated 

surfaces, weaker adhesion between PAA and oxygen plasma-terminated surfaces, and 

effectively no adhesion between pairs of oxygen plasma-terminated surfaces. 
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Figure 5: ERR, corrected ERR (cERR), and MPO over first five indentations into 
surface sorted by pairing.  Note consistency of trends between ERR and MPO 

measurements.  Standard deviation of measurements shown in error bars. 
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Figure 6: Surface interactions between different possible pairings in various two-
surface systems.  Note various degrees of selectivity in systems combining one 

polyelectrolyte treated surface and one oxygen-plasma treated surface. 
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4. Conclusions: 

These data suggest that, counter to expectation, polyelectrolyte-treated surfaces adhere 

regardless of the charge-group of their terminally-adsorbed layer.  It is clear that before contact 

the amine groups present in PAH attract the hydroxyl groups present on PAA or on oxygen-

plasma treated surfaces; this attraction is used to assemble the multilayered suface.  However, 

our experiments show that forces resisting separation after contact are attractive between all 

polyelectrolyte sufaces, with a significantly reduced attraction to oxygen-plasma treated 

surfaces.  This could be explained by the structures formed atop polyelectrolyte treated 

surfaces, which continue to grow with additional adsorption of layers but do not appear to fully 

merge (see Figure 7 and Figure 8, below). 

 

Figure 7: Isometric and top-down example views of surface structures of 
differently-treated surfaces.  Left to right: bare oxygen plasma-treated PDMS 

substrate, PAH(5), PAA(6), PAH(13), PAA(14).  Note relatively constant diameter of 
finger-like surface extensions regardless of number of deposited surface layers. 

While early experiments in selective surface treatment showed these surface profiles do 

not reach all the way to the substrate at their bases and be form fully merged structures lower 
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down (see supporting information), there are ever-present a series of similarly sized and spaced 

finger-like extensions off of the surface of the substrate.  It appears likely that it is the interaction 

of these uppermost structures that causes strong adhesion regardless of terminal surface 

treatment. 
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Figure 8: Schematic of hypothesized development and interaction of 
polyelectrolyte structures in two dimensions (not to scale).  1: Oxygen plasma-
treated PDMS develops hydroxyl groups.  2: PAH adheres to surface in some 
areas forming amine-rich zones.  3. PAA adheres to PAH areas.  4. Process of 
adsorption continues to form multilayers.  5. Multilayers from another treated 

structure are encountered. 

1 

2 

3 

4 

5 
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Through the course of this study, a method of indentation has been developed to 

quantify adhesion and compare changes to adhesion resulting from polyelectrolyte surface 

treatments to a compliant substrate.  Except for energy losses attributed to bulk deformation of 

the substrate, repulsive controls appear to have small adhesion compared to pairings of treated 

surfaces.  This method of examination can be used to study the influence of differing conditions 

of surface deposition, such as varying polyelectrolyte solution pH or number of adsorbed layers, 

or between differing conditions of indentation, such as variations in salt concentration. 
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7. Supporting Information: 

7.1 Testing Accuracy of Method Used to Calculate Energy Deficit 

The program used to calculate energy deficit values from a given set of data points was 

tested using a hypothetical data set with a predictable result.  It was first tested with a simple, 

linear data set, then with the hypothetical and more realistic hyperbolic data set presented 

below.  Error was found to be less than 5% in either case. 

 

OH point ≡ a point on the indenting curve for which a corresponding point O on the retracting 

curve with the same area and calculable energy deficit exists.   

Since area of contact determines the compliance of the substrate, lines of constant compliance 

connect OH to O.  These lines are tangent to the indenting curve at their respective OH points. 

Tangent line ≡ the line tangent to the indenting curve at OH. 

The O point of an OH is the minimum intersection of the tangent line with the retracting curve. 

 curveindentlinengenttaOO H min)(   
(4) 

Deficit, as defined in equation 1, 

 
xma

O
retract

xma

O
indent

O

O
nta dFdFdFDeficitEnergy

H

H 



 

(5)
 

Each of these lines is highly visible in the below diagram (a depiction of the test data used in 

this supporting information). 
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Figure A1: Simulated indentation curve. 

Now entering synthetic data set calculations 
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Point slope equation of a line: 
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  2
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Substitute into point slope form: 
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to find intersection with retract curve (O point): 
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Solve using quadratic equation 
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Now using that to find the energy deficit 
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7.2 Statistical Analysis to Support Hypothesis that Adhesion Remains Unchanged Upon 

Repeated Indentation 

Complete Fitting Parameters on Slope Values 

 

Fitting Parameters: (Supporting Figure 4) 

 

PAA-PAH PAA-PAA PAH-PAH Oxy-PAH Oxy-PAA Oxy-Oxy 

Indent ERR (J/m^2) 

    1 0.06596 0.09159 0.06378 0.05444 0.04881 0.0303 

2 0.05654 0.07879 0.06546 0.04769 0.03911 0.02967 

3 0.06859 0.0943 0.05528 0.03886 0.0455 0.0222 

4 0.07114 0.07961 0.0532 0.04414 0.04121 0.03077 

5 0.05816 0.08958 0.0685 0.0445 0.04187 0.02957 

Avg 0.06408 0.08677 0.06124 0.04592 0.0433 0.0285 

Slope -1E-04 -0.0003 -0.0003 -0.0023 -0.0012 -4E-05 

 

Slope 

Average 

Slope 

Std 

Slope 

Max 

Slope 

Min 

  

 

-0.0007 0.0004 7.9E-05 -0.0015 

  
       Indent MPO (N) 

     1 0.00282 0.00305 0.0025 0.0009 0.00101 0.00018 

2 0.00283 0.00314 0.00252 0.00095 0.00088 0.00032 

3 0.00281 0.00314 0.00245 0.00092 0.00093 0.00015 

4 0.0028 0.00305 0.0026 0.00102 0.00096 0.00021 

5 0.0028 0.00311 0.00242 0.00093 0.00098 0.00021 

Avg 0.00281 0.0031 0.0025 0.00094 0.00095 0.00022 

Slope -8E-06 3.8E-06 -8E-06 1.3E-05 2.1E-06 -5E-06 

 

Slope 

Average 

Slope 

Std 

Slope 

Max 

Slope 

Min 

  

 

-4E-07 3.6E-06 6.7E-06 -8E-06 

  Appendix 2: ERR & MPO values over multiple indentations and surface 
combinations showing fitting equations. 

Column headers indicate the surface pairing whose data are shown in the below column.  

After data for the individual indents is shown, their average is calculated.  The calculated slope 

and intercept for these measurements is calculated below.  The standard error of each of these 

calculated slopes is given in the “Slope Err” row.  The mean of the slopes calculated for all ERR 

and MPO values are shown in the first highlighted column and the standard deviations for these 

slopes in the second.  The maximum and minimum slopes for a 95% confidence interval are 

shown in the third and fourth highlighted columns, respectively.  Note that for both ERR and 

MPO calculations, these ranges cross zero.  
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7.3 Calculation for area of contacts 

These calculations are used prior to their correction in accordance with equation 3. 

depthindenter  

indenterofradiusr   

areacontactofradiusx   
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7.4 AFM Images of Surface Potential & Edges: 

The following image sequence was taken using glass treated with PAH(13) deposited 

through micropipette dropping rather than dipping.  The cutoff between the treated and 

untreated areas represents where a piece of PDMS was placed on the glass to allow for 

comparison after treatment.  The PDMS was removed with forceps prior to imaging. 

 

 

 

Figure A3: Isometric (top), side (middle), and top-down (bottom) 3D views of 
height (left) and charge map (right) of PAH(13) droplet-deposited on glass next to 

a protected area of glass for comparison. 
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7.5 Detailed Sample Preparation and Testing Procedure (Instrucional): 

PDMS samples are mixed from Sylgard 184 Silicone Elastomer Kit at 10 wt% curing 

agent.  The PDMS was degassed under vacuum until no bubbles were present, then cured at 

80 °C for 2 hours between hydrophobic glass using 0.78 mm spacers.  Glass indenters were 

prepared from Heat-Resistant Borosilicate glass purchased from McMaster-Carr, 2 mm 

diameter.  Indenters were then melted to a diameter of approximately 4 mm by hand using a 

blowtorch.  PDMS samples were pressed onto a glass slide.  Indenters were inserted into a 

PDMS rack assembled on a glass slide. 

Samples, glass or PDMS, were then placed in a Harrick plasma sterilizer/cleaner with 

attached Plasmaflo unit for pressure control.  Pressure was reduced from atmospheric to 20 

millitorr six times, then raised to 400 millitorr and held isobaric for 60s while the plasma chamber 

was set on HI RF and powered on. 

Immediately from plasma cleaning, samples that were meant to be oxygen-plasma 

terminated were immersed in water.  Samples meant to be polyelectrolyte terminated were 

immersed in PAH polyelectrolyte solution.  Polyelectrolytes were purchased from Sigma Aldrich, 

PAH in dry salt form, PAA in liquid form.  Polyelectrolyte solutions were created in accordance 

with Elzbieciak, at 0.50 g/l.  PAH (poly(allylamine hydrochloride)) was mixed in pH 7.0 and pH 

3.0 solutions.  PAA (poly(acrylic acid)) was mixed in pH 7.0 and pH 11.0 solutions.  Solvents 

were created from 0.15m NaCl solutions; pH was adjusted to desired value by adding NaOH or 

NaCl prior to the addition of polyelectrolyte.  PAH was added 60 min prior to solution treatment 

to allow time for complete dissolution.  PAA was added within a few minutes of treatment and 

mixed with a micropipette. 

Polyelectrolytes were added to surfaces starting with PAH, then PAA, then PAH again 

and so on until the desired number of surface layers was reached.  The first two bilayers (four 

individual monolayer treatments) were performed at pH 7.0.  Subsequent layers were added at 

pH 3.0 or 11.0.  Each layer was added by a 10-minute immersion in polyelectrolyte solution 
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followed by three separate immersions in deionized water for 2 minutes each.  After the addition 

of the last surface layer, the samples were placed in deionized water until they could be tested. 

Tests were performed on the mechanical setup in the lab depicted in Figure 2.  The 

indenter was removed from the deionized water and a timer was started.  Prior to reaching 5:00 

minutes, the PDMS sample was placed beneath the indenter and surrounded by a PDMS 

barricade.  The indenter was then lowered to just above the surface of the PDMS sample.  At 

5:00 minutes, PBS (phosphate buffered saline) was added to the surface of the PDMS sample 

forming a meniscus covering both surfaces.  The program indentation_displ_10g.vi was run.  

The program was set for an indentation velocity = 0.001 of mm/s, maximum depth of indentation 

= 0.03 mm, 5 indentations.  The program saves the information to a specified user-input 

filename and location, default Trial_1.  After the conclusion of the indentation, the radius of the 

indenter must be measured precisely by digital caliper. 

The filename and location must then be entered into the DefecitCalculatorIX.m program.  

It also assumes a file to be in the same location as Trial_1.lvm: Indenter.txt.  This file should 

contain only the radius of the indenter used in the experiment measured in millimeters.  The 

variable Check in DefecitCalculatorIX.m can be set to 1 to ascertain the degree of slip present in 

the test: this produces a mechanical data graph similar to that shown by 

indentation_displ_10g.vi using capacitor data instead of motor data.  Setting this variable to 0 

produces graphs for individual indentations and their associated ERR (energy release rate) data 

and prints the collected ERR values to the Matlab control screen.  Setting it to 2 prints collected 

MPO (maximum pull-off forces) to the control screen.
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