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Model powder and fully formulated monolithic lean NOx trap (LNT) catalysts were used 
to investigate the effect of ceria on desulfation behavior.  Temperature-programmed 
reduction (TPR) experiments (model catalysts) showed each of the oxide phases present 
is able to store sulfur and possesses distinct behavior (temperature at which desulfation 
occurs).  La-CeO2 or CeO2-ZrO2-containing samples (monoliths) showed a greater 
resistance to deactivation during sulfation and required lower temperatures to restore the 
NOx storage efficiency to its pre-sulfation value. 
 
Fully formulated monolithic LNT catalysts containing varying amounts of Pt, Rh and 
BaO were subjected to accelerated aging to elucidate the effect of washcoat composition 
on LNT aging.  Elemental analysis revealed that residual sulfur, associated with the Ba 
phase, decreased catalyst NOx storage capacity and that sintering of the precious metals 
resulted in decreased contact between the Pt and Ba phases. 
 
Spatially-resolved inlet capillary mass spectrometry (SpaciMS) was employed to 
understand the factors influencing the selectivity of NOx reduction in LNT catalysts 
(degreened and thermally aged) containing Pt, Rh, BaO and Al2O3, and in one case 
contained La-stabilized CeO2.  Stretching of the NOx storage and reduction zone (NSR) 
zone resulted in increased selectivity to NH3 due to the fact that less catalyst was 
available to consume NH3 by either the NH3-NOx SCR reaction or the NH3-O2 reaction.  
Additionally, the loss of oxygen storage capacity (OSC) and NOx storage sites, along 
with the decreased rate of NOx diffusion to Pt/Rh sites, led to an increase in the rate of 
propagation of the reductant front after aging, in turn, resulting in increased H2:NOx 
ratios at the Pt/Rh sites and consequently increased selectivity to NH3. 
 
Finally, a crystallite scale model was used to predict selectivity to NH3 from the LNT 
catalysts during rich conditions after a fixed amount of NOx was stored during lean 
conditions.  Both the experimental and model predicted data showed that the production 
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of NH3 is limited by the rate of diffusion from the Ba storage sites to the Pt particles at 
200°C.  At 300°C, the process is limited by the rate at which H2 is fed to the reactor. 
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Chapter 1. General Introduction. 

 

During the past 40 years, two interrelated changes in our society, environmental 

awareness and the desire for improved fuel economy, have increasingly impacted the 

lives of the population of the United States of America.  On July 9, 1970, the 

Environmental Protection Agency was created as a response to growing concern over 

environmental protection and conservation [1].  Also during the 1970’s, two oil crises 

occurred in response in disruptions to global oil supply.  These trends of increased 

environmental awareness and efforts towards decreased fuel consumption have continued 

into the present day.  Although not necessarily obvious, the desire for increased fuel 

economy and reduced emissions are problems with solutions that involve a common 

feature: lean-burn engine operation. 

 

1.1. Air Pollutants and Their Effect on Human Health. 

To understand the need for automobile emissions control, one has to look no further than 

the major components present in automotive emissions and their negative effects on 

humans and the environment. While air pollution can be associated with natural sources 

such as volcanic eruptions, forest fires, or dust storms, the major sources of air pollution 

are from human activities [2].  A large portion from human activity corresponds to the 

tailpipe emissions from automobiles as shown in Figure 1.1.  The major components of 

this pollution are carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM) 

and oxides of nitrogen (NOx).  CO is a colorless and odorless gas that is poisonous to 

humans.  Some HCs are linked to cancer in humans while others contribute to the 

greenhouse effect.  PM is the term given to the fine particles that are present as aerosols 

during combustion processes, which have been linked to heart disease and lung cancer.  

Likewise, NOx has many negative effects on our environment, including the smog that is 

present in many cities across the United States.  Another derives from the reaction of NOx 

with HCs to produce ground level ozone that can cause breathing complications.  NOx 

also reacts in the atmosphere to create acid rain.  Acid rain is detrimental to vegetation 

and aquatic species.  The impact exerted by these air pollutants on human health is 

evident in the Centers for Disease Control (CDC) estimate that exposure to air pollution  
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results in $40 to $50 billion dollars in health care costs per year and 50,000 to 120,000 

premature deaths per year [4]. 

 

 

Figure 1.1. Sources of air pollution in the United States for fiscal year 2006. [3] 

Source: pscleanair.org. Figure reprinted with permission. 

 
1.2. Response to Air Pollution:  Clean Air Act and its Amendments. 

In response to rising concerns over the health effects attributed to these pollutants, the 

United States government has established legislation to determine and set limits on these 

different pollutants.  These targets for air emissions are the result of regulations that have 

evolved over the past half century.  The origin of air quality standards can be traced to 

1955 with the passing of the Air Pollution Control Act that empowered states to control 

air pollution.  These standards continued with the Clean Air Act in 1963, the Air Quality 

Act in 1967, the Clean Air Act Extension of 1970, and the Clean Air Act Amendments of 

1977.  Subsequent additions were made in the 1990s which are particularly important 
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when considering automobile exhaust.  Programs for the control of acid rain were added 

in 1990, and the National Ambient Air Quality Standards lowered the levels of ground-

level ozone that make up smog as well as the fine airborne particulate matter that makes 

up soot. 

 

1.2.1. Tier 1. 

The origin of today’s automotive emission standards originated with the Clean Air Act 

Amendments in 1990.  These amendments established more stringent Tier 1 standards 

that were phased in between 1994 and 1997.  These standards assigned emission levels to 

all vehicles under 8500 lbs. gross vehicle weight rating (GVWR) [5].  The standards were 

comprised of two milestones:  5 years/50,000 mi. and 10 years/100,000 mi.  These 

standards divided personal vehicles such as cars, light trucks, minivans, and sport utility 

vehicles into categories based on the GVWR.  Also the NOx standard was dependent on 

whether the vehicles used gasoline or diesel as fuel.   

 

Tier 1 standards are enforced using the federal testing procedure (FTP) 75 cycle [5].  The 

FTP-75 cycle has been used since 1978 and is divided into three segments as shown in 

Figure 1.2.  Emissions are measured after the engine is started; this is referred to as the 

cold start.  Emissions continue to be measured during the transient phase and during the 

last phase, in which the engine is turned off and restarted.  The total cycle is 11.04 miles 

total, lasting 1874 s, and using an average speed of 21.2 mph. 

 

While this procedure is effective in measuring emissions, there exist some shortcomings 

when trying to capture real world driving conditions.  In response to this issue, 

supplemental federal testing procedures (SFTP) were instituted.  The USO6 is a 

representation of aggressive, high speed, and/or high acceleration driving behavior [5].  

This test is comprised of an 8.01 miles loop, average speed of 42.4 mph with a maximum 

speed of 80.3 mph, and a duration of 596 s.  The other supplement test accounts for the 

emissions associated with the use of air conditioning in a vehicle.  This test is 3.6 miles in 

length with an average speed of 21.6 mph, maximum speed of 54.8 mph, and duration of 

596 s. 
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Figure 1.2. FTP-75 Cycle [5]. Source: DieselNet.com. Figure reprinted with 

permission. 

 

1.2.2. Tier II. 

As part of the Tier 1 initiative, a study on the effectiveness of reducing emissions even 

further and the economic impact of those more stringent standards was conducted.  The 

study resulted in the adoption of the Tier II standards in 2007 after a phase in period 

beginning in 2004.  The main difference between Tier I and Tier II standards is that the 

standards in Tier II apply to all vehicles, regardless of weight up to 8500 lbs. GVWR.  

Also, the standards are the same irrespective of  the fuel type.  The Tier II standards are 

structured into different emissions levels referred to as bins, as shown in Table 1.1 [6].  

On account of HC and CO levels being inherently lower from diesel engines as compared 

to stoichiometric engines, the abatement of NOx emissions will be the focus of this 

dissertation.  Tier II mandates that every manufacturer must average a NOx standard of 

0.07 g/mi as tested on the FTP 75 cycle for the full useful life of either 10 years or 

120,000 miles.  As with Tier I, SFTP standards exist to correct for the aforementioned 

shortcomings of the FTP test.   
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In addition to the emission standards, Tier II also mandates that sulfur levels in gasoline 

be reduced to an average of 30 ppm with a cap of 80 ppm and in diesel be reduced to 15 

ppm.  As will be discussed later in this dissertation, sulfur interferes with the 

effectiveness of emission control systems. 

 

Table 1.1. Tier 2 emission standards, FTP 75 cycle, g/mi [6]. Source: DieselNet.com.  

 

 

An interesting feature of Tier II concerns whether or not a vehicle meets, exceeds, or fails 

to meet the Tier II, Bin 5 standard.  If the manufacturer exceeds Tier II, bin 5, a credit is 

earned that can be used later or traded to another manufacturer.  If bin 5 is not met, the 

manufacturer must obtain sufficient credits no more than 3 years after the violation 

occurred.  This is where credit trading or redemption occurs. 

 

Figure 1.3 is effective in summarizing the preceding discussion on the degree to which 

tailpipe emissions have been tightened by ever increasing governmental regulations.  

Every drop in NOx levels as shown in the figure represents new standards coming into 

effect.  The 0.07 g/mi. value achieves Tier II, Bin 5 levels for the full useful life of the 

vehicle.  From 1966, beginning with the original Clean Air Act, to the enactment of Tier 

II, NOx limits have been reduced by slightly more than 98%.  To illustrate how stringent 

the emissions standards have become, in order to achieve Tier II, Bin 2 status (0.02 

g/mi.), a further 71% reduction in NOx tailpipe emissions would be required. 

 

Copyright © Vencon Glenn Easterling 2013 

NMOG CO NOx PM HCHO NMOG CO NOx PM HCHO

8 0.1 3.4 0.14 - 0.015 0.125 4.2 0.2 0.02 0.018
7 0.075 3.4 0.11 - 0.015 0.09 4.2 0.15 0.02 0.018
6 0.075 3.4 0.08 - 0.015 0.09 4.2 0.1 0.01 0.018
5 0.075 3.4 0.05 - 0.015 0.09 4.2 0.07 0.01 0.018
4 - - - - - 0.07 2.1 0.04 0.01 0.011
3 - - - - - 0.055 2.1 0.03 0.01 0.011
2 - - - - - 0.01 2.1 0.02 0.01 0.004
1 - - - - - 0 0 0 0 0

Bin#
Intermediate life (5 years / 50,000 mi) Full useful life
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Figure 1.3. NOx emission standards for automobiles and light trucks from 1966 to 

2008 [7,8,9].  Source: fhwa.dot.gov and cta.ornl.gov.  Figure reprinted with 

permission. 

 

1.3. Current State and Future of NOx Emissions. 

Despite these legislative efforts, NOx emissions now are actually greater than they were 

in 1970.  This increase is not an indictment of the failure of governmental regulation, but 

a result of more vehicles being driven more miles on American highways.  Figure 1.4 

demonstrates that these regulations have reduced NOx levels to one-fifth of the levels that 

would exist without emissions controls in place [10]. 
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Figure 1.4. Impact of control programs on mobile source nitrogen oxide emissions 

[10].  Source epa.gov.  Figure reprinted with permission. 

 

1.4. The Role of Fuel Economy on Emissions Regulations. 

While environmental awareness and the subsequent responses were occurring, another 

trend was also driving the response of suppliers to consumer demand.  Twice during the 

1970’s, an oil crisis occurred in the United States, leading to increased gasoline prices 

and shortages.  Since then global events (as shown in Figure 1.5), such as government 

volatility in oil producing countries (e.g. Iran, Venezuela), wars (both Gulf Wars) and 

terrorist attacks (the events of 9/11) have resulted in increased fuel prices [11].  These 

events, along with decreasing oil supplies, have contributed to a public desire for more 

fuel-efficient automobiles.  In this context, the most recent Corporate Average Fuel 

Economy (CAFE) standards hold significant implications for vehicle emissions.  The 

CAFE standards are applicable from 2012 to 2016, and the standards state that all 

vehicles with a GVWR of 10,000 lbs. or less must average 35.5 mpg.  The average is 

subdivided into an average of 42 mpg for cars and 26 mpg for trucks, which must be met 

by 2016.  Failure to meet this regulation will result in the manufacturer being charged $5 

per vehicle for every tenth of a mile that the vehicle is short of the standard.  However, as 

engine operation becomes more efficient, the additional changes to engine operation are 
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necessitated as a part of the vehicle design implemented to meet the CAFE standard 

might increase NOx emissions to levels above Tier II, bin 5. 

 

 

Figure 1.5.  Crude oil prices in 2010 dollars from 1947 to October 2011 [11]. Source:  
www.wtrg.com.  Figure reprinted with permission. 

 

1.5. Automobile Manufacturers’ Response to Emissions Regulations. 

In response to these government standards, the automobile industry has sought solutions 

to decrease vehicle emissions.  The first measures involved “de-tuning” engine operation 

in which variables such as air to fuel ratios, valve timing, etc., were modified to produce 

exhaust gases that meet the emission standards.  Some of these methods include excess 

air injection and exhaust gas recirculation.  In both of these methods the exhaust gas is 

diluted and more complete combustion is obtained.  Over time, though, the standards 

could not be met, while at the same time they reduced fuel efficiency.  The next measure 

taken in combating emission levels was the development of the catalytic converter.   The 
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catalytic converter is comprised of a ceramic or metal honeycomb monolith upon which a 

washcoat is applied.  The washcoat contains a high surface material such as alumina or 

titanium oxide that provides a high surface area for the platinum group metals (PGM) 

(i.e., platinum, rhodium and or palladium) which catalyze the reaction of the exhaust 

gases to more desirable products.  The first catalytic converters were two-way or 

oxidation converters that converted CO and HC into CO2 and water.  In a response to 

lower NOx emission standards, three-way or oxidation-reduction converters were 

developed to also reduce NOx to nitrogen.  The three-way converters are still in use to 

this day. 

 

This desire for increased fuel efficiency helped spur the development of the catalytic 

converter because as mentioned previously, changing engine operation tends to decrease 

the efficiency of the engine.  How an engine operates can be described by the ratio of air 

to fuel fed to the cylinder.  The three possible modes of engine operation are 

stoichiometric, rich, and lean.  Stoichiometric engine operation occurs when the weight 

ratio of air to fuel is equal to 14.7.  This value corresponds to the point at which sufficient 

air is present to just consume all of the fuel (assuming that combustion of the fuel goes to 

completion).  If the ratio is less than 14.7, the mixture is considered to be fuel-rich, while 

values greater than 14.7 are considered to be fuel-lean.  Figure 1.6 shows how the 

conversion of pollutant species can vary depending on the air to fuel ratio.  Under 

stoichiometric to rich conditions, high conversions for HC, CO, and NO are possible 

albeit at the cost of reduced fuel efficiency.  Looking at these conversions in the lean 

range, CO and HC values are still very high while NO conversion plunges to levels well 

below 50%.  This low level of conversion is due to the fact that NO and NO2 cannot be 

reduced in an environment containing an excess of oxygen.  As the demand from 

consumers for more fuel efficient vehicles increases and emission regulations concerning 

NOx tailpipe levels become more stringent, the problem of NOx reduction during lean 

burn engine operation will present a larger obstacle for manufacturers to overcome. 
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Figure 1.6.  Three-way catalyst (TWC) performance determined by engine air to 

fuel ratio. Reprinted from Applied Catalysis A: General, Vol. 221, R.H. Heck, R.J. 

Farrauto, Automobile exhaust catalysts, Pages No. 443-457, Copyright (2001), with 

permission from Elsevier [12]. 

 

1.6. Viable Solutions to Obtain Improved Fuel Efficiency and Meet Emissions 

Regulations. 

The above discussion gives one an idea of what should be expected from an automobile 

in terms of emissions and fuel efficiency.  Currently there are many ultra-low emission 

vehicles available to the public.  These are vehicles that meet the emission standard for 

Tier 2 Bin 5 for NOx levels of less than 0.07 g/mi over the full useful life of the vehicle.  

For the 2012 model year, there are over 250 spark injected (gasoline) vehicle available 

that meet or exceed thee Tier 2 Bin 5 standard [13].  In addition, several hybrids, electric, 

and natural gas powered vehicles meet this standard.  However, each of these options has 

drawbacks.  Hybrids have the looming cost to replace the battery sets over the useful life 

of the vehicle.  Electric vehicles are limited by driving range.  Natural gas vehicles do not 

yet have the infrastructure to support them. 
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Light duty diesels (LDDs) present an interesting option due to their high fuel efficiency 

(up to a 30% increase compared to gasoline engines) [13],while producing significantly 

lower levels of HC and CO compared to stoichiometric gasoline engines.  Due to the air 

to fuel ratios of ~ 22 (and even as high as 50) at which diesel engines operate, almost 

none of the NOx is converted in the oxygen-rich exhaust which is disappointing 

considering the advantages (i.e., greater torque and durability) of diesel engines as 

compared to spark-injected gasoline engines.  But what if there were a way to meet NOx 

emission standards while retaining the benefits of diesel engines? 

 

1.6.1. Three-Way Catalysts. 

The development of current three way catalysts was the result of the initial efforts by 

manufacturers to reduce emissions as required by the adoption of the Clean Air Act in 

1970 [14].  The first control systems were oxidation catalysts that converted HC and CO 

to CO2 and H2O to levels mandated by the Clean Air Act.  These catalysts consisted of a 

combination of Pt and Pd supported on either γ-alumina beads or a honeycomb monolith 

with a washcoat containing the Pt and Pd supported on γ-Al2O3 applied to the channels 

present.  This system performed well in oxidizing the desired pollutants but also suffered 

from sintering of the precious metals due to high operating temperatures and poisoning 

by Pb that was present in gasoline formulations at the time.  For this reason unleaded 

fuels were developed in the 1970s.  Stabilizers such as CeO2 and La2O3 were added to the 

washcoat to address the sintering problem. 

 

Towards the end of the 1970s, NOx emission standards were lowered further to less than 

1.0 g/mi [12].  A new control strategy was needed because NOx could not be reduced to 

N2 in the present oxidizing system.  The initial design consisted of a two stage catalyst in 

the exhaust manifold with the ability to inject air in between the stages.  An upstream 

catalyst would use CO and HC present to reduce NOx to N2, and a downstream catalyst 

would then oxidize the remaining CO and HC remaining in the exhaust.  Here additional 

oxygen would be supplied by air to convert the remaining CO and HC species present 

after the upstream catalyst. 
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The next step in the development of the three-way catalyst was the development of 

oxygen sensors that could provide feedback to the engine during operation.  Designers 

discovered that if the air to fuel ratio was held to stoichiometric conditions (14.7 as 

shown in Figure 1.6) throughout the engine cycle, NOx could be reduced by CO and HC 

[12].  This system was made possible by the development of sophisticated oxygen 

sensors that could control engine operation and air input into the exhaust stream.  

Because the catalyst could convert all three pollutants simultaneously, the name three-

way catalytic (TWC) converter was adopted.  The components were similar to the first 

generation converter.  Pt oxidized CO and HC while Rh reduced NOx.  Because of the 

modulation of the air to fuel ratio around the stoichiometric point, an oxygen storage 

component was added.  High surface area CeO2 acted as a buffer in the three-way 

catalyst.  CeO2 provided additional oxygen when remaining reductants (e.g., CO and HC) 

were present after the NOx had been reduced to N2 and acted as an oxygen storage 

material when conditions were lean.  Again using γ-Al2O3 as a support material, these 

components were applied as a washcoat to a ceramic, honeycomb material. 

 

From the mid-1980s to the present, the third and then fourth generation catalytic 

converters were developed [12].  The third generation was necessitated by the desire for 

increased fuel economy and higher operating speeds.  To address fuel economy, fuel was 

shut off during deceleration events.  This change in operation, combined with the higher 

operating speeds, led to the exposure of the catalyst to highly oxidizing, high temperature 

conditions.  Catalysts were modified by adjusting the locations of the precious metals on 

the CeO2 and γ-Al2O3 support, and by adding additional stabilizing materials such as 

ZrO2 and La2O3 to reduce the interactions that lead to deactivation at high temperatures.  

Pd was added to the fourth generation of catalyst in an effort to reduce the cost of using 

Pt and Rh.  While Pd was more cost effective, Pd usage requires separation of the Pd and 

Rh due the risk of Pd-Rh formation at high temperature, an alloy which displays 

diminished activity for NOx reduction. 

 

 

Copyright © Vencon Glenn Easterling 2013 
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In summary, the development of three way converters led to the use of: 

 

 ceramic, honeycomb supports 

 precious metals such as Pt, Rh, Rd for the required oxidation and 

reduction reactions 

 addition of stabilizers such as La2O3 and ZrO2 

 addition of CeO2 to act as an oxygen buffer during engine operation 

 washcoat utilizing γ-Al2O3 as a support 

 

These innovations would subsequently lead to the catalysts used in current lean-burn 

applications. 

 

1.6.2. Diesel Emission Control Systems. 

The attractiveness of diesel engine applications is attributed to their fuel efficiency 

relative to gasoline spark-ignited engines.  This increased efficiency is a result of the very 

lean engine operation at air to fuel ratios of greater than 22.  While diesel exhaust 

contains less NOx, CO, and HC species due to lean operating conditions as compared to 

gasoline engines, high particulate emissions exist.  The particulate matter is comprised of 

dry soot, inorganic oxides, and liquids.  If the operation of a diesel engine is changed to 

lower particulate emissions by increasing the combustion temperatures, more NOx is 

produced. 

 

As a response to the initial adoption of the Tier II standards, diesel oxidation catalysts 

(DOC) and diesel particulate filters (DPF) were added to the exhaust system.  The dry 

soot present as particulate matter is oxidized by NO2 in the exhaust stream.  Since NO is 

the predominate NOx species from the engine, the NO is oxidized upstream by a DOC 

such as Pt or Pd on γ-Al2O3.  The reaction sequence is as follows [13]: 

 

 

 

 



14 
 

NO + ½ O2 ↔ NO2       (1.1) 

2 NO2 + C ↔ CO2 + 2 NO      (1.2) 

NO2 + C ↔ CO + NO       (1.3) 

 

The first reaction occurs in the DOC, and the last two reactions occur in the DPF. 

 

1.6.3. Selective Catalytic Reduction (SCR) Catalysts. 

As the Tier II standards were instituted, the more relaxed standards for NOx from diesel 

engines disappeared, as standards for gasoline and diesel had become the same.  Once 

diesel exhaust was treated by the DOC and DPF, most of the CO and HC had been 

converted to CO2 and H2O, whereas the NOx had been oxidized to NO2 and reduced back 

to NO as the gases passed through the tailpipe.  The exhaust gas at this point was a 

mixture of NO and NO2 in an oxidized atmosphere.  However, the catalytic converters 

utilized for spark-injected applications were not capable of reducing NOx in the oxygen-

rich environment.  The first solutions to this quandary involved using the hydrocarbons 

that were present in diesel fuel as a reductant.  After an extensive search, several 

candidate catalysts were proposed.  For example, using propene as the HC, NO can be 

converted to CO2, H2O and N2 over an appropriate catalyst: 

 

C3H6 + 2 NO + 7/2 O2 ↔ 3 CO2 + 3 H2O + N2   (1.4) 

 

Unfortunately, the reductant can be consumed by oxygen, and incomplete reduction of 

the NO can result in N2O formation: 

 

C3H6 + 9/2 O2 ↔ 3 CO2 + 3 H2O     (1.5) 

C3H6 + 2 NO + 5/2 O2 ↔ 3 CO + 3 H2O + N2O   (1.6) 

 

Pt and Al2O3 is effective in reducing the NOx over the Pt sites but only in a very narrow 

operating window of 180°C to 275°C.  This limits the effectiveness of the catalyst as the 

exhaust temperature can vary from about 150°C to 450°C in diesel exhaust depending on 

the engine speed and load requirements.  Another problem with using Pt/Al2O3 in this 
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application is that Pt catalyzes the reduction of NOx to N2O, which is a powerful 

greenhouse gas. 

 

The other approach to NOx reduction under lean conditions involves the use of NH3 as a 

reductant, the NH3 being generated on board the vehicle via the hydrolysis of urea.  

Researchers at Engelhard in 1957 [15] discovered that NH3 reacts with NO over Pt even 

in the presence of oxygen, in a reaction termed selective catalytic reduction (SCR).  NH3 

is hydrolyzed from urea by: 

 

CO(NH2)2 + H2O ↔ 2 NH3 + CO2    (1.7) 

 

NH3 is stored on the catalyst and reacts with NOx as it is adsorbed from the exhaust 

stream.  How NH3 reacts with NOx is dependent on the exhaust temperature and the ratio 

of NH3 and NOx on the catalyst surface.  The standard SCR reaction involves a 1:1 ratio 

for NH3 and NO: 

 

4 NH3 + 4 NO + O2 ↔ 4 N2 + 6 H2O    (1.8) 

 

Comparatively without the presence of oxygen, this reaction is much slower and is not 

relevant under these conditions [16].  Another reaction involving both NO and NO2 with 

NH3 is called “fast” SCR [17,18]: 

 

4 NH3 + 2 NO + 2 NO2 ↔ 4 N2 + 6 H2O   (1.9) 

 

NOx conversions resulting from these reactions are typically in the range of 80% to 90%.  

Some deNOx performance is lost due to the consumption of NH3 by oxygen and the 

conversion of NOx to N2O as follows [19]: 

 

4 NH3 + 5 O2 ↔ 4 NO + 6 H2O     (1.10) 

4 NH3 + 4 NO + 3 O2 ↔ 4 N2O + 6 H2O    (1.11) 
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Because diesel exhaust has a broad temperature window due to the variation in engine 

speed and load, it has proven difficult to find a catalyst which can span the entire 

operating range; as shown in Figure 1.7, different catalysts tend to operate in different 

temperature regions. 

 

 

Figure 1.7. Comparison of three different catalysts for NOx reduction with NH3.  

Reprinted from R.H. Heck, R.J. Farrauto, Catalytic Air Pollution Control: 

Commercial Technology, 2nd Edition, John Wiley and Sons, Inc. New York 2002.  

Page 206. [13]. 

 

Regarding concerns arising from the use of SCR catalysts in this application, NH3 slip 

from the catalyst is possible if the correct NOx:NH3 ratios are not maintained on the 

catalyst, while there is also the possibility of N2O production.  NH3 is a respiratory 

irritant and N2O is a well-known greenhouse gas.  Finally, the use of a SCR catalyst 

requires installation of the catalyst, injection and control system, and urea storage tank.  

All of these add weight to the vehicle which decreases fuel efficiency numbers and adds 

to the purchase price and maintenance costs. 
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1.6.4. Lean NOx Trap (LNT) Catalysts. 

An alternative to SCR catalyst is the NOx storage and reduction (NSR) or Lean NOx trap 

(LNT) catalyst.  This type of catalyst was developed in the mid-1990s by Toyota and 

consists of a washcoat containing platinum group metals (PGM), storage materials (alkali 

or alkaline-earth metals) and a high surface area support (γ-Al2O3) [20,21].  The LNT is 

able to reduce NOx to N2 by operating under two modes of engine operation:  lean and 

periodic switches to rich.  The LNT operates by storing NO2 which is formed from NO 

oxidation on PGM sites during normal lean operating conditions.  Before the storage 

capacity of the trap is reached, the engine operation is switched to net rich conditions 

upon which the stored NOx is released and reduced at the PGM sites to N2.  The LNT has 

an advantage over SCR in that an external supply of reductant is not required, since the 

necessary reducing agents are supplied by modifying the engine operation.  This 

advantage does not add weight or require space on the vehicle. 

 

Although LNTs show great promise as a technology to reduce NOx emissions from diesel 

engines to levels that would allow their use in all 50 states, the LNT does have some 

problems associated with its use.  While Tier II standards reduced the amount of sulfur 

present in diesel fuel from 500 to 15 ppm as previously mentioned, sulfur still presents a 

hindrance to LNT operation.  The most common storage material for LNTs is BaO.  

Under lean conditions, NOx is stored at the Ba sites as a mixture of barium nitrates and 

barium nitrites, the form depending on conditions such as temperature and gas 

composition at the time of storage.  Herein lies the problem.  While Ba is an excellent 

storage material for nitrates and nitrites, Ba has a greater affinity for sulfur.  Upon 

exposure to sulfur that is created during the combustion cycle from the sulfur present in 

the fuel, SO2 is formed.  The resulting BaSO4 is thermodynamically more stable than 

Ba(NO3)2 [22].  What this means to LNT operation is that high temperatures and long 

rich durations are required to desulfate the trap.  This requirement means that the engine 

must operate under rich conditions for longer periods, which can negate the fuel savings 

associated with lean burn engine operation inherent in diesel engines.  These higher 

temperatures can also lead to sintering of the PGMs and side reactions within the 

washcoat that will reduce the storage capacity of the catalyst.  Finally, the cost of the 
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PGMs render LNT catalysts sometimes cost prohibitive as compared to other emission 

control technologies. 

 

1.7. Synergy of LNT- SCR Systems. 

What if these problems could be solved by modifying the composition and application of 

LNTs?  The scope of this dissertation is to address these issues by suggesting the addition 

of ceria to the LNT and to use this LNT formulation in conjunction with a SCR catalyst 

to meet the upcoming emission standards.  As will be discussed, this configuration 

provides a means to deal with the presence of sulfur in the exhaust stream by using ceria 

to preferentially store SO2 at ceria sites instead of barium sites.  The LNT-SCR system 

has the potential to eliminate the external supply of reductant by forming NH3 over the 

LNT and to reduce the amount of PGM required for the LNT since the end result of the 

LNT will not be complete conversion of NOx to N2, but rather to supply NH3 for the SCR 

catalyst.  The addition of the SCR catalyst also solves the problem of NH3 slipping from 

the LNT.  The most attractive attribute of this synergistic system is that for a given level 

of NOx reduction (with the addition of the SCR) the volume of the LNT catalyst, and 

hence the amount of PGMs and their associated cost, can be reduced. 

 

1.8. Scope of the Dissertation. 

The research reported in this dissertation has three aims:  1) to gauge the effectiveness of 

ceria to act as a sulfur sink and to reduce the sintering of PGM in LNT catalysts; 2) to 

demonstrate the effects of catalyst composition on the NH3 selectivity of LNT catalysts 

during regeneration; and finally 3) to test a model designed to predict product selectivity 

from a LNT catalyst loaded with a fixed amount of stored NOx.  Since HC and CO 

emissions are already low in lean burn applications, the focus of this dissertation will be 

on technologies capable of reducing NOx levels in lean burn engine exhaust. 

 

The next chapter in this dissertation provides the essential background information 

concerning LNT composition and the chemistry involved during their operation.   
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Chapter 3 examines the effect of ceria incorporation on sulfation and aging of LNT 

catalysts.  The addition of ceria to LNTs is a response to the problems that the sulfur 

content in fuels and engine oil presents.  Ceria provides an alternative to Ba storage sites 

for sulfur adsorption during lean operation thereby helping to preserve NOx storage 

capacity.  Additionally, ceria has the ability to reduce sintering of the PGM sites by 

limiting agglomeration of the precious metals that occurs during high temperature events, 

i.e., during desulfation of the catalyst. 

 

Chapter 4 examines at the effects of washcoat composition on LNT aging characteristics.  

LNT catalysts with varying amounts of precious metals and storage components are 

exposed to sulfur and to high temperatures to see how NOx conversion and selectivity to 

NH3 change in response to aging. 

 

The objective of chapter 5 was to understand the factors governing NH3 formation (and 

consumption) in LNTs, including the state of catalyst with respect to aging and the 

oxygen storage capacity (OSC) of the catalyst. 

 

In chapter 6, the results of an experiment studying the reduction selectivity obtained from 

a fixed amount of NOx stored on a LNT are compared to a model derived to predict these 

results.  Modeling is essential in the design of a LNT-SCR system that promotes NH3 

formation in the LNT while reducing PGM content. 

 

Finally, in chapter 7, all of the significant findings from this work are summarized along 

with suggestions for future work on this subject.  Additionally, the most common 

abbreviations used throughout this dissertation are included in Appendix 1.  Lastly, 

Appendix 2 contains the derivation of the balances used by the model. 

 
 
 
 
 

Copyright © Vencon Glenn Easterling 2013 
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Chapter 2. Lean NOx Trap Catalysts:  Design and Operational Considerations. 

 

Lean NOx Traps (LNTs) were developed by Toyota in the mid-1990s as a means to 

achieve higher fuel efficiency while reducing NOx (NO + NO2) emissions that are inherit 

in the use of lean burn, diesel engines [1,2].  The amount of CO2 emitted from a diesel 

engine is less than a similar sized spark-injected gasoline engine (in terms of power 

output) due to the increased thermodynamic efficiency the diesel possesses [3].  The 

principle behind the use of these LNT catalysts is that NOx is stored during lean operation 

(the engine exhaust contains stoichiometrically excess oxygen).  Concurrently, any 

hydrocarbons (HCs) and CO in the exhaust are oxidized over the platinum group metals 

(PGMs) to CO2 and H2O.  Before the maximum NOx storage capacity of the LNT catalyst 

is reached, the engine operating conditions are adjusted such that the engine exhaust is 

net rich.  At this point the stored NOx is released and then reduced to nitrogen.  Other N-

species, such as NH3 and N2O, are also potential products depending on the temperature 

and composition of the exhaust and duration of the rich event.  The length of the lean and 

rich phase is dependent on the operating regime of the engine, the quality of the fuel, and 

the operational history of the LNT catalyst. 

 

2.1. Components of LNT Catalysts. 

2.1.1. Cordierite Substrate. 

The design of the LNT catalyst is comprised of four main components:  substrate, 

support, storage material, and PGMs.  The LNT may also include certain additives to 

improve catalyst performance.  The main function of the substrate is to provide a high 

surface area material that possesses mechanical and thermal durability upon which a 

washcoat containing the other ingredients can be applied.  The most common substrate 

used today is synthetic cordierite, 2MgO·2Al2O3·5SiO2.  Cordierite mainly consists of 

kaolin (Al2O3·SiO2·2H2O), talc (3MgO·4SiO2·H2O) and alumina (Al2O3) that are 

ground, blended, and extruded into a paste.  The cordierite is usually configured as a 

honeycomb monolith which provides a high surface area to volume ratio (e.g., 852 ft2/ft3) 

[4].  The honeycomb monolith also has a low pressure drop across the catalyst which 

eliminates the risk of creating a back pressure to the engine.  Cordierite also possesses the 
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necessary mechanical and thermal properties required for operation of a catalyst located 

down-stream of an internal combustion engine.  The low thermal expansion coefficient of 

cordierite (10*10-7/°C) makes it resistant to cracking when cycled over a wide 

temperature range [4].  The mechanical axial strength of over 3000 psi is required for 

operation underneath an automobile.  Moreover, the melting point of greater than 1300°C 

is well above the operating range of a LNT [5]. 

 

2.1.2. Catalyst Support. 

A washcoat that contains PGMs, NOx storage materials, and catalyst support is applied to 

the cordierite monolith.  Different types of supports, such as TiO2, SiO2, ZrO2, CeZrO2, 

TiO2-ZrO2, CeO2, and γ-Al2O3, have been studied by several groups.  Each of these 

materials behaves differently with the other catalyst components with regards to 

performance under different operating regimes.  Johnson et al. stated a simple goal for all 

catalyst supports:  to provide a durable, high surface area to aid in the maintenance of the 

dispersion of the metallic promoters or PGMs [7].  Using this as a metric, γ-Al2O3 was 

used as the support in all of the catalysts studied for this dissertation.  Since the goal of 

this research effort was to look at the addition and the variation of different catalyst 

components, the use of γ-Al2O3 as a support is ideal because γ-Al2O3 is a well-known 

support material that has been utilized in three-way catalytic (TWC) converters, oxidation 

catalysts, and even in the first SCR catalysts.  Additionally, the results of a study by 

Fekete et al. [8] studying TiO2, ZrO2, and γ-Al2O3 revealed that γ-Al2O3 is the most 

suitable support because TiO2 and ZrO2 have high reactivity with the Ba storage 

component which can lead to unwanted side reactions within the washcoat. 

 

The properties of γ-Al2O3 (surface area, pore size distribution, surface acidic properties 

and crystal structure) depend on its preparation, purity, and thermal history [4].  A high 

surface area is created by heat-treating or calcining in air, typically at about 500 °C, 

where a network is formed from Al2O3 particles 20-50Å in diameter which bond together, 

forming polymer-type chains.  As temperature is increased between the ranges in which a 

given Al2O3 crystal structure is stable, there is gradual dehydration, which causes an 

irreversible loss in physical surface area and loss in its surface hydroxyl or Brønsted acid 
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sites.  Continued heating causes a complete transformation to another crystal structure 

with a continuing loss in physical surface area and surface OH- groups.  This 

transformation is shown by the following [3]: 

 

Boehmite: γ-monohydrate (500-850 C), internal surface area 100-200 m2/g → 

δ-monohydrate (850-1050 °C) → θ-monohydrate (1050-1150 °C) →  

α-monohydrate (>1150 °C), 1-5 m2/g 

 

As shown, γ- Al2O3 is the structure that is most attractive for use as a support for an LNT 

because it exists in the operating temperature window of diesel engine operation (150 °C 

to 500 °C) and possesses the highest surface area.  γ-Al2O3 with Pt and Ba species 

impregnated on the surface has a surface area of ~150 m2/g [4].  The surface of γ-alumina 

is covered in OH- groups onto which storage material and precious metals are applied. 

 

To improve certain properties such as thermal durability and bonding with the support 

and PGM materials, different additives have been added to γ-Al2O3.  This addition is also 

known as doping.  Schaper et al. and Pijolat et al. [9,10] pointed to two phenomena as 

being responsible for the loss of surface area at high temperatures (>900 °C):  initial 

sintering due to the collapse of micropores and phase transformation from γ-Al2O3 into α-

Al2O3.  Schaper et al. [11] believed the transformation from the γ to the α phase 

proceeded via a surface diffusion of the oxygen ions changing the crystal lattice from a 

cubic to a hexagonal closed packed structure.  To add additional thermal stability to the γ-

Al2O3 support, lanthanum was added.  Lanthanum oxide, La2O3, decreases the sintering 

of γ-Al2O3 by formation of lanthanum aluminate, LaAlO3, on the γ-Al2O3 surface [11,12].  

The addition of the La2O3 was found to postpone the phase transformation by 100°C by 

promoting the rate of nucleation of cubic LaAlO3 on the γ-Al2O3 surface and thereby 

inhibiting the surface diffusion of species responsible for sintering [13]. 

 

2.1.3. NOx Storage Materials. 

As the name suggests, the main function of the NOx storage material in LNTs is to store 

NOx during lean engine operation.  NO2 has been shown to be preferential to NO for 
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storage; this will be discussed later in this chapter in the section describing the 

mechanisms inherent in LNT operation.  As the basicity of the storage material increases, 

so does its ability to store NOx [14-19].  For this reason, either alkali metals (Na, K, Cs) 

or alkaline earth metals (Mg, Ca, Sr, Ba) or combinations of these are used as storage 

materials.  The criteria for determining which material is the best choice include a 

number of factors such as NOx storage capacity, NOx conversion, stability in the 

washcoat, and sulfur resistance.  Many of these desired properties are determined by the 

basicity of the storage material.  In order of increasing basicity, the metals follow the 

order: Mg ≤ Li < Ca < Na ≤ Sr < Ba < K < Cs [19,20].  While Cs has the highest basicity 

of this list of metals, the HC conversion performance is the worst, which eliminates it as a 

suitable choice [19].  Han et al. compared Pt/Al2O3 catalysts that contained BaO, CaO, or 

SrO.  Overall, BaO and SrO showed the highest NOx storage capacity, but BaO showed 

the best NOx conversion [21]. 

 

Although most of the literature uses BaO as the storage component, K has been the 

subject of increasing research.  For diesel exhaust applications, the use of K has some 

drawbacks.  Light duty diesels (passenger cars and light trucks) have exhaust 

temperatures between 100 and 500 °C depending on operating load and engine speed.  

Looking at the NOx storage capacity, Ba and K have two different temperature ranges for 

maximum efficiency.  BaO has a higher NOx storage capacity below 400 °C, and K has a 

higher capacity above 400 °C [19].  Gill et al. postulated that the increased performance 

of K at a higher temperature was attributed to the increased stability of the nitrates 

formed by alkali metals [22].  Conversely, the low temperature NOx conversion was less 

than that of BaO due to K inhibiting the formation of NO2.  Another factor in determining 

whether K is suitable as a storage material is the water solubility of KNO3.  Moreover, K 

has the potential to react with the cordierite substrate that is common in most auto 

catalyst applications.  The mobility of K due to its affinity for water makes maintaining K 

sites in the desired location on the catalyst support problematic.  Additionally, as will be 

discussed, the formation of sulfates follows the same general mechanism as nitrates with 

the resulting sulfates having a greater thermodynamic stability on the LNT.  On account 

of this, the nitrates stored at K sites are more stable than the ones stored at Ba sites; 
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similarly, the sulfate stored on K sites is more difficult to remove than sulfates associated 

with Ba.  The results of the increased efforts required to remove sulfates from K are 

longer rich periods and/or the necessity of increased reductant concentrations.  This 

change decreases the potential fuel savings gained by the selection of a diesel engine.  

The implications of sulfur for LNTs will be discussed shortly. 

 

Lastly, it is worth mentioning that the choice of the storage component will affect the 

product selectivity during regeneration of the LNT.  Studies by Castoldi et al [23] and 

Lesage et al. [24] have shown that the selectivity to N2 is higher while the NOx “puff” is 

smaller from catalysts using K versus Ba (the NOx “puff” phenomenon will be discussed 

below). 

 

In light of the above discussion and following the suggestions from Miyoshi et al [1], 

BaO seems to be the best choice for use a NOx storage material.  As with the choice of γ-

Al2O3 as the catalyst support, because Ba-based storage materials have been thoroughly 

researched, they represent a good choice when studying the addition of other components 

and the modification of the PGMs.  Ba is present in the LNT as BaO, Ba(OH)2, and/or 

BaCO3, depending on the composition of the exhaust stream [14].  In most of the 

experiments discussed in this dissertation, CO2 and H2O were present, so all three types 

of Ba-compounds would be expected to be present on the catalyst surface at the end of 

the rich phase.  During the subsequent lean phase as NOx is preferentially stored at the 

BaO and Ba(OH)2 sites, the majority of the sites available for storage will be BaCO3.  An 

exception was a set of the experiments described later in this dissertation which deal with 

the modeling of the release of a fixed amount of NOx from different catalysts, in which 

CO2 and H2O were excluded.  Because of that, the form of Ba could be identified as 

Ba(OH)2 (due to the use of hydrogen during the rich phase).  According to Lietti et al 

[14], NOx storage occurs first at the BaO sites, followed by Ba(OH)2 and BaCO3, in line 

with the higher basicity of the former compound. 

 

 

Copyright © Vencon Glenn Easterling 2013 
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2.1.4. Platinum Group Metals (PGM). 

The final ingredient of LNTs consists of the PGM component:  platinum, rhodium, and 

palladium.  While there have been many different studies on PGMs in three-way catalysts 

and LNTs, one common finding is that these metals behave differently under varying 

feed gas streams and reaction conditions.  The choice of which PGM to use depends on 

the metal’s chemistry during lean and rich operation.  During the lean phase, the PGM 

must be able to oxidize NO to NO2 that will subsequently spillover to the storage sites. 

Under rich conditions, the PGMs must adsorb reductants such as CO, H2, and HC as well 

as to provide sites close to the stored nitrates and nitrites which can dissociatively adsorb 

NOx as part of a reverse spillover mechanism.  Pt is the primary choice for oxidation of 

NO, but Rh and Pd are more active for NOx reduction [25-28].  Moreover, Kobayashi et 

al. showed that a combination of Pt/Rh had a higher trapping activity than either Pd/Rh or 

Pd [20].  Additionally, Theis et al. reported that a combination of Pt and Rh had the best 

overall NOx conversion at low temperatures (250°C) for fresh and aged catalysts as 

compared to Pt only samples [29].  Theis proposed the Rh increased reduction capability 

and also enhanced the purging of the trap by creating a concentration gradient between 

the catalyst surface and the exhaust that promoted the decomposition of the stored NOx 

and a more thorough purge [29].  The gradient was created by the ability of Rh to 

promote the thermodynamic instability of NO3
- stored on the catalyst at the Ba sites by 

more efficiently removing the NOx in the gas phase.  Lastly, Amberntsson et al. showed 

that an alloy of Pt and Rh increased the overall efficiency of the NOx storage catalyst 

despite storing a lower amount of NOx than a Pt-only catalyst [27]. 

 

2.2. Mechanisms Involved LNT Catalysis. 

Although a large number of experimental studies have focused on determining the 

mechanisms involved when using a LNT catalyst to convert NOx to N2, a precise, 

definitive mechanism still proves elusive.  Fortunately, the following series of steps are 

both accepted in the catalysis community and provide enough description to enable one 

to gain a well-informed idea of how an LNT catalyst is operated.  The discussion will be 

focused on the type of catalysts used in the experiments that will be presented in the later 

chapters, rather than involving all of the different combinations of PGMs, storage 
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materials, supports, and reductants that have been presented in the literature.  Arguments 

have already been made for why different catalyst components are preferred, and the 

effects of gases present in the exhaust during the lean and rich phases will be presented as 

the different steps are explained. 

 

The steps involved in the operation of LNTs are [30,32]: 

1. NO oxidation to NO2 on Pt, 

2. NOx (NO+NO2) storage on BaO on the catalyst surface 

3. Reductant evolution, 

4. NOx release from the trapping site, 

5. NOx reduction to N2. 

 

Although many authors agree on these five steps, the details about each step, particularly 

steps 1 and 2, are subject to debate. 

 

2.2.1. Oxidation of NO to NO2. 

The oxidation of NO to NO2 is a very important step in the operation of most 

aftertreatment systems.  LNTs are based on NOx present in the form of NO2 for efficient 

trapping to occur [6,33-38].  As will be discussed in section 2.2.2., most trapping metals 

as described previously more effectively adsorb NO2 as compared to NO [6].  Therefore, 

the more efficiently a LNT can oxidize NO to NO2, the greater the potential NOx storage 

capacity. 

 

The oxidation of NO to NO2 is affected by the temperature and composition of the 

exhaust stream and the state of the PGMs on the catalyst.  The oxidation reaction is 

subject to limitations based on temperature.  At low temperatures (below 250 °C), the 

reaction is kinetically limited from reaching equilibrium.  As the temperature is increased 

(> 200 °C), the process changes from one that is limited by kinetics to one that is limited 

by the thermodynamic equilibrium that exists between NO, O2, and NO2.  Where the 

equilibrium occurs is dependent on the temperature, oxygen concentration, and space 

velocity of the LNT.  The space velocity can create kinetic limitations that prevent the 
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reaction from reaching equilibrium.  The equilibrium will shift to higher temperatures as 

the concentration of O2 increases.  Mahzoul et al. [32] noticed that the NOx storage 

capacity of a Pt/BaO/Al2O3 catalyst increased as O2 concentration was increased from 0 

to 3%, but above 3% no additional effect was observed.  As the space velocity or 

residence time of the system increases, not only does the temperature required to reach 

equilibrium increase (the increase in temperature is required to overcome limited 

kinetics), but the equilibrium conversion at that temperature decreases.  Above this 

temperature, the oxidation of NO is under thermodynamic control, and below it, the 

process is kinetically controlled.  The integral nature of LNTs presents an additional 

factor influencing when or if equilibrium can be reached, since as NO2 is produced and 

stored on the catalyst, the equilibrium is shifted towards additional NO2 production [39]. 

 

As previously discussed, Pt has unparalleled NO oxidation capacity [25-27,35].  In the 

literature, NO oxidation is studied using Pt and a support (γ-Al2O3) or with a model or 

fully formulated LNT containing Pt and a storage material such as Ba on a support (γ-

Al2O3).  The amount and dispersion of Pt and the interaction between Pt and γ-Al2O3 

impacts the kinetics of NO oxidation.  Lee et al. [40] noted that higher dispersions (i.e., 

smaller particles) did not always lead to higher NO oxidation rates.  Indeed, Pt particles 

with lower exposed surface areas generally exhibit increased catalytic activity for NO 

oxidation.  Olsson et al. [41] similarly noted that after aging while the onset of oxidation 

was unaffected, the rate of NO oxidation increased.  This is consistent with Lee, given 

that thermal aging results in Pt particle sintering [42-44].  Pt oxides are present as a 

surface layer on the Pt particles [41].  Smaller particles of Pt are more likely to form PtOx 

relative to larger particles [45].  This occurrence is one reason why catalysts are subjected 

to slightly elevated temperatures (≥500 °C) under neutral conditions before using them in 

experiments and real-world applications.  After the particles become larger, it is less 

likely that PtOx will form, and catalyst performance is improved.  Mulla et al. observed a 

4-fold increase in the NO oxidation turnover rate (TOR) for a sintered catalyst as 

compared to a fresh one [46].  This observation, TOR increasing with increasing Pt 

particle size, is supported in the literature [40,41,47-49]. 
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The presence of Ba has the ability to reduce the activity of the Pt particles due to the 

potential for increased formation of Pt oxides during lean periods of operation.  Many 

authors have reported that the presence of Ba in a Pt/BaO/Al2O3 LNT decreases the rate 

of oxidation reactions over Pt as compared to a Pt/Al2O3 catalyst [30,41,50-53].  The high 

surface coverage by oxygen prevents the adsorption of NO on Pt.  Indeed, the presence of 

Ba decreases the NO oxidation activity of Pt as compared to a Ba-free catalyst for the 

following possible reasons.  First, during the preparation by impregnation of the catalyst, 

some of the Pt might dissolve into the Ba phase.  If the Pt dispersion is decreased due to 

Ba masking Pt, the activity for the oxidation of NO will decrease.  Second, as NOx is 

stored at the Ba sites, some of the Pt sites might become sterically hindered by the 

resulting Ba(NO3)2, since the molar volume of Ba(NO3)2 is 3 times larger than that of 

BaO [30].  The final possible reason for the decrease in activity caused by the presence of 

Ba is proposed by Yoshia et al.  Yoshia considered the acidity or alkalinity of the support 

by noting that if the support was acidic, Pt oxide formation was suppressed [52].  In a 

Pt/Al2O3 catalyst, the γ-Al2O3 is electrophilic and electrons are donated from the outer 

band in the Pt atoms to the support.  When Pt oxides are formed, electrons are transferred 

from the Pt to the oxygen.  With an acidic support, there is a lower electron density in the 

Pt present, and the formation of the oxides is suppressed.  When added, the alkalinity of 

BaO decreases some of the acidic nature of the support so that there are more available 

electrons for the formation of PtOx [52].  Olsson and Fridell [41] did indeed observe from 

XPS data that after exposure to NO2, Pt/BaO/Al2O3 had a higher occurrence of PtOx than 

Pt/γ-Al2O3. 

 

An additional source of chemisorbed oxygen is NO2 itself.  NO2 is an effective source of 

atomic oxygen because of its high sticking coefficient.  The chemisorbed oxygen 

prevents the adsorption of other species thereby inhibiting the NO oxidation reaction 

[54,55]. 

 

The different components, Pt, NO, NO2, and O2, have been discussed in terms of their 

contributions to the oxidation of NO over Pt.  Turning to the mechanism involved on the 

catalyst surface, some debate exists in the literature as to which type of mechanism is 
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occurring.  Olsson et al. [39] first proposed the oxidation of NO over Pt followed an 

Eley-Rideal (ER) mechanism that contained the following adsorption and desorption 

steps: 

 

   O2 (g) + 2 Pt ↔ 2 O-Pt     (2.1) 

   NO (g) + Pt ↔ NO-Pt      (2.2) 

   NO2 (g) ↔ NO2-Pt      (2.3) 

 

and the reversible oxidation step [56] 

 

   NO (g) + O-Pt ↔ NO2-Pt     (2.4) 

 

Olsson noted that ER was preferred to a Langmuir-Hinshelwood (LH) NO oxidation step: 

 

   NO-Pt + O-Pt ↔ NO2-Pt + Pt     (2.5) 

 

since a high oxygen coverage in (2.5) hinders a high NO2 formation rate, and Olsson’s 

experimental results did not indicate that NO oxidation will be self-poisoned by a high 

coverage.  Conversely, Mahzoul et al [32] suggested a LH mechanism occurring at Pt 

sites close to the Ba storage sites as follows: 

 

   NO + Pt ↔ NO-Pt      (2.6) 

   NO2 (g) ↔ NO2-Pt      (2.7) 

   O2 (g) + 2 Pt ↔ 2 O-Pt     (2.8) 

 

The actual oxidation of NOx is discussed in section 2.2.2.3. 

 

Later, Olsson et al. [30] considered that either ER, LH, or a combination of ER and LH 

mechanisms might be occurring.  The initial adsorption steps for NO, NO2, and O2 are the 

same as in the previous report, but now Olsson considers the LH and ER mechanisms for 

adsorbed NO and NO2 reacting with chemisorbed oxygen on the Pt sites: 
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   LH:  Pt-NO + Pt-O ↔ Pt-NO2 + Pt    (2.9) 

   ER:  NO (g) + Pt-O ↔ Pt-NO2    (2.10) 

 

For the model using LH and ER mechanisms, both of the above reactions (2.9 and 2.10) 

would be involved.  Although all 3 of these possibilities provided satisfactory fits for 

their data, Olsson decided that a LH mechanism would be more probable based on 

reasoning by Bartram [57].  Bartram stated that NO2 should be bridge bonded to 

decompose to NO and oxygen on the Pt surface.  This implies that NO2 would require 

two Pt sites to decompose, making a LH mechanism most probable.  Nova et al. [58] also 

favored NOx adsorption and oxygen dissociation over Pt (LH), while Muncrief et al. [46] 

also used Langmuir-Hinshelwood and Eley-Rideal mechanisms for these steps. 

 

From the literature, evidence is given in support of each of these scenarios that describe 

NO oxidation over Pt.  The LH mechanism is probably the most likely to occur for the 

reasons suggested by Bartram.  The most important aspect of this step is that NO2 is 

formed and adsorbed at the Pt sites. 

 

2.2.2. Storage of NOx at BaO Sites. 

Mechanisms presented in the literature agree on the following: 

 

1. NO2 is preferred to NO for storage at the BaO sites. 

2. BaO, Ba(OH)2, and BaCO3 are present on the catalyst surface. 

3. NOx stored as Ba(NO3)2 is more stable than Ba(NO2)2; as temperatures 

and storage times increase, Ba(NO2) 2 is eventually oxidized to Ba(NO3)2 

as the oxidation state of N is increased from 3+ to 5+. 

4. Proximity of Pt to Ba is critical for efficient storage on the LNT. 

In general, there is no consensus on the following: 
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1. After NO is oxidized over Pt, does it travel to the Ba sites on the 

catalyst surface as an adsorbed species or does it desorb from Pt 

and readsorb onto Ba from the gas stream? 

2. While chemisorbed oxygen is necessary in every mechanism, is the 

oxygen supplied by spillover from the Pt sites, or is it supplied by 

NO2 or through BaO2?  This point will be discussed later in this 

chapter. 

 

2.2.2.1. Effects of Components in the Engine Exhaust. 

The components present in the engine exhaust influence the storage of NOx and the phase 

of the Ba storage component.  Two potentially reactive components that are present in 

large quantities (5 to 10 vol%) in the exhaust gases from diesel engines are CO2 and H2O.  

Although γ-Al2O3 is capable of NOx storage [32,36,59-62], the presence of H2O in the 

gas stream reduces NOx storage on the γ-Al2O3 support.  Without H2O present, 

researchers [32,59-63] have estimated that between 1% and 8% of the NOx stored on the 

LNT is stored on the γ-Al2O3 support.  Toops [64] reported a decrease of 92% of NOx 

stored on γ-Al2O3 when H2O was present.  The reason for this decrease is due to the 

presence of molecular H2O on the γ-Al2O3 which hinder the NOx sorption process by 

limiting the amount of storage sites available.  Since H2O is present in the experiments 

that will be discuss in the later chapters in this dissertation, the remaining summary on 

NOx adsorption and desorption will focus on the Ba component. 

 

2.2.2.2. Identity of Ba Storage Component. 

Although the Ba component in most mechanisms is assumed to be BaO, when H2O and 

CO2 are present, Ba(OH)2 and BaCO3 co-exist on the catalyst support.  The impact of 

these three phases can be realized by comparing their basicities.  Lietti [14,65] ranked the 

following compounds involving Ba in order of increasing basicity, which is also a 

ranking of the stability of the Ba component on the catalyst. 

 

BaO < Ba(OH)2 < BaCO3 < Ba(NO2)2 < Ba(NO3)2 < BaSO4 
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BaSO4 is formed when sulfur is present in the gas stream and will be discussed later in 

this chapter.  NOx adsorption occurs at the Ba components that are the least stable first.  

As such, NOx is stored preferentially at the BaO sites, followed by Ba(OH)2, and finally 

at BaCO3 sites.  Evidence for the type of Ba compound present is provided by Lietti et al. 

[14] from NOx storage experiments.  A LNT was regenerated with varying amounts of 

CO2 and H2O present in the gas feed.  Whether or not CO2 or H2O was present during the 

regeneration determined the duration of the delay before NOx slip occurred.  NOx slip 

occurred the earliest when regeneration was performed in dry air (CO2, no H2O).  Under 

these conditions, the Ba storage component would be expected to be BaCO3.  This was in 

line with the negative effect that CO2 has on NOx storage [14,64,66,67].  When the LNT 

was regenerated with H2 only, NOx slip occurred later with less CO2 produced as the 

stored NOx displaced the OH- and  CO3
2- species present in the Ba compounds.  During 

this step the BaCO3 compounds are gradually becoming Ba(OH)2.  As this transition 

occurred, the increase in the amount of Ba(OH)2 accounted for an increase in NOx 

storage.  Finally (once again with H2 only) NOx slip occurred even later with more H2O 

and almost no CO2 produced.  At this point in the experiment, nearly all of the BaCO3 

sites had become Ba(OH)2.  In the last two cases, H2O reduced the impact of CO2 by 

converting the BaCO3 species into Ba(OH)2. 

 

BaCO3 + H2O ↔ Ba(OH)2 + CO2    (2.11) 

 

The trends seen in this set of experiments follow the reported thermodynamic predictions 

in the literature [2,14, 20,66,68].  Although not present during regeneration, CO has a 

similar effect as CO2 is produced, according to eqn. (2.12) [31] 

 

CO + NO2 ↔ CO2 + NO     (2.12) 

 

The presence of CO results in an increase in the concentration of NO according to (2.12).  

This reaction reduces the trapping efficiency of the LNT.  The ratio of the two depends 

on the duration and temperature of NOx storage. 
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The increased stability of Ba(NO2)2 and Ba(NO3)2 compared to BaO and Ba(OH)2 is a 

desired result because NOx stored as nitrites and nitrates will remain at the Ba sites during 

lean conditions, rather than being replaced by other species; conversely, the stability of 

BaSO4 means that sulfur compounds will preferentially store at the Ba sites.  As 

discussed later, BaSO4 leads to a decrease in the available Ba sites for NOx storage over 

time.  Ultimately, the storage capacity of the LNT is compromised. 

 

In summary, NOx is stored as nitrites and nitrates at BaO, Ba(OH)2 and BaCO3 sites, in 

that order.  Individually, CO2 and H2O have a negative effect on NOx storage because the 

resulting Ba phase is more stable than BaO; this degrades NOx storage efficiency.  When 

CO2 and H2O are both present in the exhaust stream, the negative effects of CO2 are 

reduced because the BaCO3 sites can be hydrolyzed to Ba(OH)2. 

 

2.2.2.3. Mechanisms of NOx Storage. 

Based on the preceding discussion, only BaO storage sites will be considered hereafter in 

order to simplify the discussion of the mechanisms in operation during the storage of NOx 

on a LNT.  Additionally, it should be noted that the formation of nitrates is favored over 

nitrites given that the range of temperatures studied in the experiments discussed in later 

chapters was 200 °C to 300 °C.  Nitrites are reported to be present from 150 °C to 200 °C 

[62,68] and at the beginning of the storage process [32,69-72].  The likelihood of the 

presence of nitrates at higher temperatures is due either to oxidation of the nitrites being 

easier as temperatures increase or to nitrites being more unstable than nitrates at these 

temperatures with respect to decomposition [32,36,62,69-74]. 

 

The storage of NO and NO2 formed from the oxidation of NO over Pt is thought to be a 

sequential process [5,30,75-77].  Fridell et al. [39] described the NOx adsorption process 

in 3 steps.  NO2 formed at the Pt sites is at first loosely adsorbed on BaO as a BaO-NO2 

species, and then BaO-NO2 decomposes to BaO2, a peroxide, and NO which is released 

to the gas phase: 
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BaO + NO2 ↔ BaO-NO2     (2.13) 

BaO-NO2 ↔ BaO2 + NO     (2.14) 

 

The BaO2 would ultimately react with NO2 in the gas phase to produce Ba(NO3)2 

 

BaO2 + 2 NO2 ↔ Ba(NO3)2     (2.15) 

 

While this mechanism does explain the NOx slip that is seen during storage and has been 

suggested by other authors as an intermediate step [71,78-80], direct experimental 

evidence for the Ba-peroxide has yet to be found [81]. 

 

Mahzoul et al. proposes that two kinds of sites are present [32].  Pt particles close to BaO 

crystallites (sites 1) are responsible for nitrate formation (* denotes adsorbed species).  

Continuing from the previous discussion of Mahzoul’s study, eqn. (2.6) through (2.8):   

 

O2 + 2 Pt1 ↔ 2 (O*)1      (2.6) 

NO + Pt1 ↔ (NO*)1      (2.7) 

NO2 + Pt1 ↔ (NO2*)1      (2.8) 

BaO + 2 (NO*)1 + 3 (O*)1 ↔ Ba(NO3)2   (2.16) 

Or 

BaO + 2 (NO2*)1 + (O*)1 ↔ Ba(NO3)2   (2.17) 

 

Pt sites far from the Ba crystallites (sites 2) allow the Pt to behave as an oxidation 

catalyst, forming nitrites. 

 

(NO*)2 + (O*)2 ↔ (NO2*)2     (2.18) 

 

Kabin et al. 77, Kromer et al.84, Bhatia et al.85, Cant el al. and Kwak et al 86 have also 

postulated proximity theories [75, 82-84]. 
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Lietti et al. [14] also proposed two pathways for this series of reactions to occur but 

differed from Mahzoul by exploring whether or not NO is adsorbed or is first oxidized to 

NO2.  If NO is adsorbed at Pt sites close to BaO, then the following occurs with oxygen 

again being dissociated over Pt: 

BaO + O* + 2 NO ↔ Ba(NO2)2    (2.19) 

Ba(NO2)2 + 2 O* ↔ Ba(NO3)2    (2.20) 

 

If NO is oxidized to NO2 at Pt sites close to BaO sites first, then: 

 

NO + 1/2 O2 ↔ NO2      (2.21) 

BaO + 2 NO2 + O* ↔ Ba(NO3)2    (2.22) 

 

If the reaction sequence provided by Olsson [30] is continued (in which NO oxidation 

occurs either by ER, LH, or ER-LH mechanisms), then NOx is stored on the Ba 

component by NO or NO2 spilling over from the Pt sites as opposed to adsorbing on the 

surface directly from the gas phase: 

 

Pt-NO2 + BaO-(NO3) ↔ Ba(NO3)2 + Pt   (2.23) 

 

 

 

The other possibility of NOx storage would involve NO being adsorbed on the oxidized 

BaO sites: 

 

2 NO (g) + O-BaO ↔ Ba-(NO2)2    (2.24) 

 

 

Similarly, adsorbed NO2 can react with an adsorbed oxygen atom and nitrate formed: 

 

NO2 (g) + BaO-O ↔ BaO-(NO3)    (2.25) 
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with the nitrate localized on the Ba part of BaO. Another NO2 (g) molecule is then 

adsorbed on the oxide part and Ba(NO3)2  is formed: 

 

NO2 (g) + BaO-(NO3) ↔ Ba(NO3)2    (2.26) 

Probably the most accepted views on NO oxidation and subsequent storage as Ba(NO3)2 

or Ba(NO2)2 are provided by Nova et al. and Forzatti et al [58,73,74,85-87].  Nova et al. 

presented a mechanism involving NOx adsorption and oxygen dissociation over Pt [58]: 

 

O2 + 2 Pt ↔ 2 Pt-O      (2.27) 

NO + Pt-O ↔ NO2-Pt      (2.28) 

 

Nitrites are stored at BaO sites in close proximity to Pt sites, whereas the nitrate is 

formed on the catalyst surface and NO is released.  This is described by the 

disproportionation reaction: 

 

BaO + 3 NO2 ↔ Ba(NO3)2 + NO (g)    (2.29) 

 

In this reaction, NO2 is the source of adsorbed oxygen needed for NO3
- formation to 

occur.  The NO released into the gas stream is available to be oxidized again over a Pt 

site located downstream in the catalyst.  As the catalyst becomes saturated with NOx, 

there is less opportunity for NO to be oxidized and readsorbed and therefore would pass 

unreacted through the rear of the LNT.  The stoichiometry for (2.29) has been proved by 

several research groups.  Nova et al. [74] monitored the ratio of moles of NO evolved at 

the reactor outlet to moles of NO2 consumed.  Nova found as NOx storage approached 

saturation, this ratio approached 0.33 which corresponds to 1 mole of NO released for 

every 3 moles of NO2 consumed. 

 

Forzatti et al. [74,85-87] also supports the inclusion of the disproportionation reaction.  

Using FTIR under In Operando conditions, Forzatti also observed that 1 mol of NO was 

released for every 3 mol of NO2 adsorbed [85].  Forzatti postulates two parallel routes for 

NOx storage in the presence of oxygen.  In the nitrate route, NO2, from NO oxidation on 
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Pt, spills over to Ba sites in close proximity to Pt to form Ba(NO3)2 with the evolution of 

NO into the gas phase, eqn. (2.29). 

 

In the other route, NO is directly oxidized on Pt to form Ba(NO2)2 that is oxidized by 

oxygen that spills over from Pt to form Ba(NO3)2 (as shown in eqn. 2.31). 

 

2 NO + O2 –Pt-Ba → Pt-Ba(NO2)2    (2.30) 

Pt-Ba(NO2)2 + 2 O-Pt → Ba(NO3)2 + 2 Pt   (2.31) 

 

The ratio of nitrites to nitrates formed is dependent on the Ba loading on the catalyst and 

the temperature.  Forzatti found more nitrites were formed as the Ba loading increased 

due to enhancement of the interface existing between Pt and Ba [74,85,86].  Kumar et al. 

[88] demonstrated the dependence of temperature by measuring the ratio of oxygen to 

nitrogen stored on BaO.  Using Ba(NO3)2 and Ba(NO2)2 standards, Kumar determined the 

theoretical ratio of O:N to be 2.5 and 1.5, respectively.  Using NO pulse experiments, at 

350 °C the ratio was calculated to be 2.3 corresponding to NOx stored as Ba(NO3)2.  As 

the temperature was reduced to 250 °C, the ratio decreased to 1.8, indicating a mixture of 

Ba(NO3)2 and Ba(NO2)2. 

 

2.2.2.4. Proximity of Pt and Ba Components. 

The proximity of the Pt and Ba phases has been well researched in the literature 

[31,32,49,58,66,74,77,82,89,90-108].  The effect of their proximity was confirmed in 

powder experiments that revealed that NOx storage was decreased when Pt and BaO were 

not on the same nanoparticle [89].  The proximity is considered in terms of either the type 

of Ba or the type of Pt.  At Ba sites close to Pt, a rapid uptake of NOx occurs, while at Ba 

sites far from Pt, NOx uptake still occurs but at much slower rate [1,6,37].  If one 

considers Pt sites, the following remarks can be made.  Pt in contact with Ba is thought to 

be responsible for NOx storage pathways involving the dissociative adsorption of O2 on 

Pt that could provide the proximal Pt and Ba sites with a source of O-atoms for the 

oxidation of NO2 to NO3
- [31].  Pt far from Ba is thought to play an important role in NO 

oxidation [32,109,110].  At these far sites, NO2 formed is likely to be involved as the 
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oxidant in the disproportion reaction, eqn. (2.32).  The proximity of Pt and Ba also helps 

to explain the changes in the rate of NOx uptake with NOx loading [87].  At the beginning 

of NOx uptake, the spillover of NOx from Pt to the Ba sites is fast and complete uptake of 

NOx is observed in the LNT.  Uptake of NOx decreases as the formation of Ba(NO3)2 or 

Ba(NO2)2 creates a diffusion barrier for NO2.  The development of this diffusion barrier 

increases the likelihood of NOx slip. 

 

2.2.2.5. Summary of NOx Adsorption. 

Even though there appear to be several pathways for the oxidation and adsorption of NOx, 

three distinct pathways have been suggested by Epling et al. [6] which can summarize the 

oxidation and adsorption steps and which are based on the topology of the active sites. 

 

1. When Pt and Ba are close to one another, a rapid uptake of NOx occurs.  

O2 and NO2 act as the oxygen source for oxidation of nitrite species to 

nitrate.  The sites further away trap NO2 from the phase exclusively via the 

NO2 disproportion mechanism with no O2 participation. 

2. Pt close to Ba sites are involved in NO oxidation, trapping of NO, and 

further oxidation to nitrates.  Pt sites far from Ba are only involved in NO 

oxidation. 

3. A NO3
- spillover type mechanism describes the migration of NO3

- species 

away from the Pt sites as they become saturated from the rapid uptake of 

NO2 and adsorbed atomic oxygen.  This is similar to a two-dimensional 

shrinking core mechanism. 

 

2.2.3. Reductant Evolution. 

As reported by Epling [6], three means exist to change the exhaust from a diesel engine 

from lean to rich conditions.  If fuel is injected into the exhaust, reductants are produced 

from hydrocarbons (HC) present reacting with PGM in the LNT.  The reductants are also 

produced by fuel reacting over a partial oxidation catalyst or reformer located upstream 

of the LNT.  Lastly, the engine operation is manipulated to produce rich exhaust gases 

that will contain reductants. 
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The most common reductants utilized to reduce the stored NOx on the LNT are H2, CO, 

and HC such as C3H6 or C3H8.  Studies on the effectiveness of these reductants have 

shown that H2 is the most effective at reducing NOx and facilitating the release of SO2 

from Ba storage sites (to be discussed shortly) and regenerating the LNT [28,63,111-

117].  CO itself or from the partial oxidation of HC is known to poison the Pt sites at low 

temperatures ( ≤ 200 °C) and limit the regeneration of the Ba sites in the LNT [28,118].  

H2 is supplied directly in the case of experiments or in real world scenarios.  H2 is 

produced from the other reductants by means of: 

 

steam reforming ( > 300 °C and HCs present) 

 

CnHm + n H2O ↔ n CO + n  H2   (2.32) 

 

water gas shift (WGS) reaction 

 

CO + H2O ↔ CO2 + H2     (2.33) 

 

Based on the effectiveness of H2 and complications involving CO, most of the 

experiments discussed in this dissertation were performed using H2 as the only reductant. 

 

2.2.4. Factors Influencing NOx Release. 

Any reductant used to regenerate a LNT has to fulfill three functions: 

 

1. Create a net reducing environment by consuming any oxygen present in 

the exhaust gas and adsorbed on the PGM, storage components, and 

catalyst support. 

2. Facilitate the release of NOx. 

3. Reduce the NOx to either N2 for LNT stand-alone applications or NH3 for 

LNT-SCR applications. 
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A reductant is passed over the catalyst to begin the regeneration of the catalyst.  The Pt 

sites become saturated with excess oxygen present in the lean phase.  The reductant 

reduces the Pt sites by scavenging the oxygen from the Pt-O species.  The reductant is 

one or a combination of CO, H2, and a HC.  For the conditions to be considered rich, a 

net reducing environment must exist in the exhaust stream.  This condition is qualified by 

a lambda value of less than 1.  The lambda value represents the ratio of the air to fuel 

ratio to the ratio of the stoichiometric air to fuel ratio.  The air to fuel ratio is the ratio 

between the mass of air in the exhaust to the mass of fuel at any given moment.  A 

stoichiometric exhaust stream would have a lambda value equal to 1.  The reductants 

react with barium nitrites and nitrates present on the surface.  The Ba sites are now 

returned to their original form and ready for storage.  NOx is converted to N2 on the 

platinum sites freed by the reaction of surface oxygen and reductants present in the 

exhaust stream [51]. 

 

Three factors, occurring independently or in combination, can cause NOx to be released 

from the surface of the catalyst: temperature increase, change in the gas composition in 

contact with the surface, and/or the creation of a net reducing environment.  The increase 

in temperature is a result of exothermic reactions, such as the oxidation of the reductant 

by the oxygen present both in the gas stream and stored on the surface [119].  The 

releases of NOx can be particularity pronounced when the amount of NOx stored on the 

catalyst is close to the equilibrium coverage at a given temperature, and the temperature 

increase is large.  The reducing environment is due to a lack of oxygen present in the gas 

stream [114,121].  The equilibrium stability of nitrate species is dramatically reduced.  

This instability creates a driving force for nitrate decomposition and NOx release from 

nitrites, which are substantially less stable than nitrates.   

 

2.2.5. Rich phase product selectivity. 

2.2.5.1. Mechanisms of NOx reduction. 

Having established the reason as to why NOx release occurs, the focus is shifted to the 

reduction of NOx to various N-species.  The principle of reduction of stored NOx either 

involves the spillover of NOx from the Ba storage sites to the Pt particles 
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[30,76,89,110,121,122] or the spillover of adsorbed hydrogen from Pt to Ba [113].  For Pt 

particles in close proximity to Ba sites, H2 oxidation, nitrate decomposition, and 

formation of N-species occur during the regeneration [59].  For Pt sites located away 

from Ba, H2 scavenges oxygen adsorbed on the Pt sites, and provides a clean surface for 

the decomposition of NO to N2 and N hydrogenation to NH3 [59]. 

 

Many authors [24,68,89,125-129] have reported the possibility of NOx, N2, N2O, and 

NH3 as possible products formed during LNT regeneration.  The “richness”, temperature, 

and relative coverages of NO, N, and H adspecies on the Pt particles during the rich 

phase dictate the product distribution [130].  The “richness” of the regeneration of the 

LNT determines the identity and quantity of products evolved.  Shorter purges or purges 

with limited amount of reductants lead to partial release of NOx and product mixes with 

NO, NO2 and N2.  Longer and deeper purges lead to the presence of N2O and NH3 in the 

product mix [131,132].  During shorter purges any NH3 that is produced is consumed by 

NO and NO2 to form N2.  The effects of the length of purge should be viewed in terms of 

the diffusion of NOx from the storage sites back to the PGMs.  If the rate of surface 

diffusion of NOx is less than the rate of NOx reduction, the storage sites are only partially 

regenerated [131,133]. 

 

Pihl et al. [123], and subsequently others, have suggested that the ratio of H2 to NO, 

along with the reaction temperature, determine the product selectivity.  Xu et al. 

presented a summary of these relationships [130]:   

 

For H2:NO ratios <  0.5 (feeds containing excess NO and temperatures below 150 °C): 

   NO + 1 2 H2 ↔ 1 2 N2O + 1 2 H2O    (2.34) 

 

For 0.5 < H2:NO < 2 (about stoichiometric amounts of H2 and NO, and temperatures 

above 150 °C): 

 

   NO + H2 ↔ 1 2 N2 + H2O     (2.35) 
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For H2:NO ratios >  2 (feeds containing excess H2 and temperatures above 150 °C): 

 

NO + 5 2 H2 ↔ NH3 + H2O     (2.36) 

At temperatures above 350 °C, NH3 decomposes to: 

 

   NH3 ↔ 1 2 N2 + 3 2	H2     (2.37) 

 

Many pathways have been proposed in the literature to describe the reactions between 

CO and HC with stored NOx [22,45].  For H2 as the reducing agent, Nova [135] presented 

the following: 

 Fast formation of NH3: 

 

Ba(NO3)2 + 8 H2 ↔ 2 NH3 + BaO + 5 H2O   (2.38) 

 

Slower selective formation of N2: 

 

3 Ba(NO3)2 + 10 NH3 ↔ 8 N2 + 3 BaO + 15 H2O  (2.39) 

NH3 produced can also reduce NO: 

 

6 NO + 4 NH3 ↔ 5 N2 + 6 H2O    (2.40) 

8 NO + 2 NH3 ↔ 5 N2O + 3 H2O    (2.41) 

 

Again, at temperatures above 350 °C, NH3 decomposition occurs: 

 

2 NH3 ↔ N2 + 3H2      (2.42) 

Overall, adding reactions (2.38) and (2.39): 

 

Ba(NO3)2 + 5 H2 ↔ N2 + BaO + 5 H2O   (2.43) 
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Lietti [14] provides a more comprehensive picture of the chemistry involved, taking into 

account the presence of different components in the gas stream (where O*’ represents 

poorly active oxygen species and H* represents a hydrogen species associated with Pt): 

 

Reduction of the nitrate at the Ba sites: 

 

Ba(NO2)2 + 3 H2 ↔ BaO + N2 + 3 H2O   (2.44) 

Ba(NO3)2 + 5 H2 ↔ BaO + N2 + 5 H2O   (2.45) 

BaO + H2O ↔ Ba(OH)2     (2.46) 

O* + H2 ↔ H2O      (2.47) 

H2 ↔ 2 H*       (2.48) 

H2 + ½ O2 ↔ H2O      (2.49) 

H2 + O*’ ↔ H2O      (2.50) 

 

O* represents oxygen species associated with Pt sites, H* represents a hydrogen species 

associated with to Pt, and O*’ represents “poorly reactive oxygen species” from the 

catalyst [14]. 

 

Formation of NO and N2O: 

 

Ba(NO2)2 + H2 ↔ BaO + 2 NO + H2O   (2.51) 

Ba(NO2)2 + 2 H2 ↔ BaO + N2O + 2 H2O   (2.52) 

Ba(NO3)2 + 3 H2 ↔ BaO + 2 NO + 3 H2O   (2.53) 

Ba(NO3)2 + 4 H2 ↔ BaO + N2O + 4 H2O   (2.54) 

 

In the presence of Ba, N2O is not favored because Ba increases the rate of NO 

dissociation that reduces the probability of N2O formation by [14]: 

 

N* + NO* ↔ N2O      (2.55) 
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Desorption of CO2: 

 

BaCO3 + H2O ↔ Ba(OH)2 + CO2    (2.56) 

Again, the water gas shift (WGS) reaction: 

 

CO + H2O ↔ CO2 + H2     (2.33) 

 

As previously stated, the WGS reaction is desired because the reaction enables the CO 

present to be converted into H2 which has been shown to be a better reductant of NOx and 

SO2 (to be discussed shortly) [112-116]. 

 

2.2.5.2. NH3 as an Intermediate. 

The formation of NH3 as a product during LNT regeneration can be an unwanted or 

wanted effect.  In a standalone LNT application, NH3 is an undesirable product from the 

reduction of NOx due to the fact that the NH3 is toxic, corrosive, and is capable of being 

oxidized back to NOx (e.g. if NH3 adsorbs to the surface during rich periods and then 

reacts with oxygen after the switch back to lean conditions).  Conversely, NH3 can be a 

desired product in a LNT-SCR application.  The balance between the amounts of NH3 

and N2 produced from the LNT depends on the application of the system.  In a situation 

where NOx is emitted from the LNT during lean conditions, the selectivity of NH3 should 

be optimized based on the amount of unreacted NOx from the LNT in a LNT-SCR 

application.  This coupling is described at the end of this chapter. 

 

As a means to minimize or maximize NH3 selectivity, it is important that the sequence of 

events present during rich conditions is considered using the idea of a reductant front 

propagating along the length of the catalyst surface [123,125,130,134-136].  The 

beginning of this front is created when the conditions of the engine exhaust are adjusted 

from net oxidizing to net reducing.  At this transition, a plug-like flow of the leading edge 

of the reductant front encounters stored NOx and chemisorbed oxygen on the Pt sites and 

catalyst surface.  These oxidizing species consume hydrogen upon contact with the 

leading edge of the front.  As more reductant passes these sites in the entrance to the 



48 
 

LNT, the ratio of H2:NO at the Pt sites gradually increases.  How this ratio influences the 

product selectivity was explained in the previous section. 

 

Considering the reductant front in spatial and temporal terms, different zones are present 

on the catalyst surface.  Pihl et al. [123] envisioned three zones:  upstream of the front, at 

the front, and downstream of the front.  Clayton et al. [14,59] and Cumaranatunge et al. 

[126] also describe NOx reduction using this idea of a front traveling the length of the 

catalyst.  Using Pihl’s description of the reduction front, NH3 formation and consumption 

is readily understood. 

 

Upstream of the front:  The leading edge of the front has already passed this region of the 

LNT, and most of the Pt and Ba storage sites in close proximity are regenerated.  While 

the hydrogen coverage of the Pt sites is increasing, NOx that is stored on Ba sites located 

far from the Pt sites is transported back to the sites.  By the time this NOx reaches the Pt 

sites, the H2:NO ratio is high enough to favor NH3 formation.  The resulting NH3 is 

released into the gas stream where it is either oxidized by NOx to N2 or emitted from the 

catalyst.  Given that N2 is formed from the reaction of NH3 and NOx, Cumaranatunge 

[127] likened NH3 to a H2 carrier.  NH3 is just effective as a reductant as H2 to reduce 

NOx to N2. 

 

At the leading edge of the front (located further downstream in the catalyst):  There is an 

intermediate level of reductant and stored oxidants.  The PGM sites in this region have a 

mixture of adsorbed oxygen, NO, and reductant species.  Initially, an unreacted NOx 

“puff” is seen, and thereafter, a mixture of N2O and N2 is released from the PGM sites.  

The selectivities of N2O and N2 are dependent on the temperature on the catalyst surface 

during this period and on the ratio of H2:NO.  At low temperatures (T <150-200 °C) and 

low H2:NO (~ 0.5) N2O selectivity is favored [59,123,126-129,136].  Cumaranatunge et 

al. [125] believed N2O was produced from the reaction between adsorbed NO from the 

gas phase and reduced Pt in the absence of adsorbed hydrogen as is the case at the 

leading edge of the front as the hydrogen concentration is depleted.  The hydrogen on the 

surface of Pt reduces NO and N2O before spilling over and releasing more NO.  As 
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Cumaranatunge et al. reports [125], the production of N2O continues until the Pt surface 

is oxidized from Pt to Pt-O at which point the reaction ceases.  The Pt surface is 

eventually reduced back to Pt as the hydrogen concentration in the gas phase increases as 

the reduction front continues along the catalyst.  As the coverage of adsorbed hydrogen 

on the Pt sites increases, so selectivity to N2 and then NH3 is increasingly favored [125]. 

 

Downstream of the front:  The catalyst Pt and Ba species have yet to be regenerated.  

Here exists an oxidized state with most of the stored oxygen and NOx still present on the 

surface.  Any of the NH3 produced upstream of the front that slips past the leading edge 

of the reductant front reacts with oxygen and NOx adsorbed on the catalyst sites.  The 

products from the oxidation of NH3 by oxygen adatoms and/or NOx depend on their 

relative coverages on the PGM and include a mixture of NO, N2, and N2O. 

 

Based on this model, the temporal sequence of H2 and NH3 leaving the reactor is readily 

explained.  Most authors [58,89,137] have reported that NH3 is detected only after H2 

breakthrough from the LNT.  The concentration of H2 in the gas stream over the catalyst 

increases with time as the reductant front travels from the front to the rear of the catalyst.  

By the time H2 reaches the catalyst outlet, all of the Pt sites are at least at a stoichiometric 

ratio of H2:NO.  The presence of H2 at the outlet of the LNT implies all of the oxidizing 

species adsorbed on Pt are reduced or H2 would have been consumed and would not have 

reached the end of the catalyst.  For NH3 to be detected at the exit of the catalyst, almost 

all of the NOx absorbed at the proximal Pt/Ba sites has been released and reduced.  Any 

of the remaining NOx stored at the other Ba sites reaches the Pt sites with conditions that 

favor additional NH3 formation.  For NH3 to reach the end of the catalyst, all of the 

oxygen adatoms and NOx at the proximal Pt/Ba sites has to be reduced, given that these 

species are capable of oxidizing NH3 to N2 and H2. 

  

The ability of NH3 to reduce NOx is presented in the literature in terms of its ability to act 

as a hydrogen carrier or hydrogen intermediate as shown by equations (2.38) and (2.39). 
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2.3. Drawbacks to LNT Utilization. 

2.3.1. Sulfur. 

 Based on the foregoing discussion, the effectiveness of the LNT to oxidize, store, 

release, and reduce NOx to N2 is easily appreciated.  However, there are some difficulties 

in its operation due to other components in the exhaust stream.  The main concern is 

sulfur.  Sulfur present in diesel fuel and engine oil, after conversion to sulfur dioxide 

(SO2) through the combustion cycle of engine operation, leads to poisoning of the NOx 

storage sites.  In the presence of O2, the precious metals, such as Pt and Rh, are able to 

convert SO2 to sulfur trioxide (SO3).  Based on thermodynamic calculations, BaSO4 is 

more stable than Ba(NO3)2; also the sulfate is more basic than the nitrate (stability 

increases with basicity) [14-18].  If the sulfates are not removed periodically, eventually 

the NOx conversion of the LNT to N2 will approach zero as all of the available sites will 

be filled with sulfur-species.  To remove the sulfates, prolonged rich conditions at 

elevated temperatures are required.  Breen et al. performed thermodynamic calculations 

to evaluate the effects of gas composition and temperature on the various reactions of 

BaSO4 and BaCO3 under oxidizing and reducing conditions [138].  Breen found that 

BaSO4 is very stable under oxidizing conditions.  For rich conditions, Breen looked at 

various possible reactions in which BaSO4 is reduced by calculating the Gibbs reaction 

energy, ΔG .  The ΔG  is used to establish the conditions under which a reaction should 

proceed spontaneously.  For example, for the following reaction: 

 

BaCO3(s) + SO2(g) + 1/2 O2(g) ↔ BaSO4(s) + CO2(g) (2.57) 

∆ ∆ ln	 .     (2.58) 
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The following partial pressures were used to calculate ∆  [140]: 

 

CO2   1 x 10-1 bar 

H2O   1 x 10-1 bar 

O2   5 x 10-2 bar 

CO   5 x 10-2 bar 

H2   5 x 10-2 bar 

SO2 or H2S  5 x 10-5 bar 

 

If the temperature is greater than the temperature at which ∆  = 0, then the forward 

reaction will occur spontaneously.  Considering the composition of the exhaust stream 

with Ba as the storage material, the following reactions are possible [138]: 

 

T(∆  = 0) = 617 °C 

2 BaSO4(s) + H2(g) + CO2(g) + CO(g) ↔ 2 BaCO3(s) + H2O(g) + SO2(g) (2.59) 

 

T(∆  = 0) = 984 °C 

2 BaSO4(s) + H2(g) + CO(g) ↔ 2 BaO(s) + 2 SO2(g) + CO2(g) + H2O(g) (2.60) 

 

T(∆  = 0) = 622 °C 

BaSO4(s) + 3 H2(g) + CO(g) ↔ BaO(s) + H2S(g) + CO2(g) + 2 H2O(g) (2.61) 

 

These results confirm that high temperatures are required to decompose BaSO4. 

 

Kim et al. [139] also described the sulfation of the Al2O3 sites on the support material of 

a LNT.  As with NO oxidation, the Pt sites are oxidized by the dissociative adsorption of 

oxygen over Pt.  The activated oxygen species then reacts with SO2 to form SO3 which 

then spills over to the Al2O3 support to form Al2(SO4)3: 
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O2 + 2 Pt ↔ 2 Pt-O      (2.62) 

SO2 + PtO ↔ Pt + SO3     (2.63) 

3 SO3 + Al2O3 ↔ Al2(SO4)3     (2.64) 

 

Kim went on to state that due to the greater basicity of the BaO molecule compared to 

Al2O3, BaO should be more reactive with the acidic SO2 molecule [139]. 

 

The sulfates formed on the surface are classified according to their proximity to Pt sites.  

Sulfates located near Pt sites are typically considered to be surface sulfates, and on 

locations far from Pt, they are considered to be bulk sulfates.  Additionally, the BaSO4 

can continue to react under rich conditions to form BaS [140].  The formation of BaS 

begins at 550 °C and the particles continue to grow up to 800 °C.  If water is present, BaS 

can be hydrolyzed at 550 °C to form BaO and hydrogen sulfide, H2S.  This reaction 

sequence is shown below: 

 

BaSO4 + 4H2 ↔ BaS + 4H2O     (2.65) 

BaS + H2O ↔ BaO + H2S     (2.66) 

 

In addition to the sulfation of the storage materials, the precious metals are also 

vulnerable to blockage by sulfur.  Apesteguia et al. [141] stated that sulfate in close 

proximity to Pt sites can be reduced by H2 at 500°C, resulting in the formation of 

platinum sulfide: 

 

3 H2 + (SO4
2-)support + Pt ↔ PtS + (O2-)support + 3 H2O  (2.67) 

 

Sedlmair et al. stated that this reaction begins at 350 °C and an increase of temperature to 

500 °C results in an increase of PtS in the bulk phase of the catalyst [73].  In both cases, 

the Pt sites could be recovered by exposing them to oxidizing conditions at 450 °C.  More 

evidence for the formation of PtS is the increased N2O formation seen during the rich 

phase under increasing sulfation [140].  As discussed earlier, Ba reduces the likelihood of 

N2O formation.  Another consequence of the sulfation of the Pt sites is that after the Pt 
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sites are oxidized by exposure to lean conditions, the SO2 released from the sites spills 

over to the surrounding Ba sites where BaSO4 is formed [40,139]. 

 

The decomposition of BaSO4 requires the LNT to be exposed to rich conditions and high 

temperatures (650 to 800 °C) for several minutes.  This need results in a fuel penalty that 

reduces the gains in fuel efficiency of lean-burn engines and gives rise to sintering of the 

precious metals and NOx storage components.  Sintering occurs when particles such as Pt 

agglomerate and form less dispersed, large clusters.  As discussed above, the platinum 

particle size affects the NO oxidation rate [40].  Larger particles can lead to sites 

becoming blocked due to steric hindrances or by the component species [6].  The growth 

of Pt particles due to sintering decreases the NOx storage efficiency [141-143].  Although, 

under normal operating temperatures (150 °C - 400 °C), the growth of Pt particles has 

been shown to increase NO oxidation rates [40,41], at elevated temperatures the loss in 

the surface area of Pt results in reduced NO oxidation rates [6].  This decrease in 

efficiency is caused by the reduced spillover rate of NO2, formed from the oxidation of 

NO over Pt, to the storage material, i.e. Ba [8,42,91]. 

 

High temperatures can also result in the migration of the storage components (i.e., 

sintering of Pt, redistribution of the Ba phase), which is problematic based on the above 

discussion of the requirement of the Pt and Ba sites to be in close proximity.  Another 

problem is the occurrence of side reactions of components in the washcoat.  Barium 

cerate, BaCeO3, and barium aluminate, BaAl2O4, are formed at 800 and 850 °C, 

respectively [91,144-147].  These compounds are not able to store NOx and therefore 

decrease the activity of the LNT. 

 

The aforementioned problems (sintering of the precious metals, migration of the storage 

components on the surface, and unwanted side reactions between the storage components 

and the support) can be avoided if desulfation temperatures can be reduced.  A potential 

solution that would enable lower desulfation temperatures is the addition of ceria, CeO2, 

as a storage material.  Recent studies have shown that ceria can store some of the sulfur 

in the exhaust with the consequence that fewer barium sites are poisoned [3,17,18,146-
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164].  The use of ceria as a component of three-way catalysts has been well-established 

because of its oxygen storage capacity that acts as a damper in maintaining stoichiometric 

conditions during various engine operating ranges, and also because of its ability to 

maintain high precious metal dispersions in the washcoat [165].  The main function of 

ceria in a LNT is to store and release oxygen when the LNT is functioning as a TWC.  

Moreover, under rich conditions, platinum-promoted ceria is known to promote the WGS 

reaction that produces H2 and CO2 from CO and water [155,166]. 

 

CO + H2O ↔ CO2 + H2     (2.33) 

 

The additional hydrogen produced is available to regenerate and desulfate the trap.  

Additionally, ceria has demonstrated NOx storage capacity at low to moderate 

temperatures (< 400 °C) which is significant since diesel exhaust temperatures are 

usually lower than exhaust from gasoline engines [159].  

 

Different research groups have reported additional benefits from the addition of ceria to 

LNTs.  Theis et al. reported that the addition of ceria improved the sulfur tolerance of the 

LNT [3].   Peralta et al. reported that sulfur can be stored as Ce(SO4)2 instead of BaSO4, 

thereby freeing up the Ba component for NOx storage [167].  In addition to improved 

sulfur tolerance, Kwak et al. reported that ceria-containing catalysts provide excellent 

resistance against Pt sintering as compared to alumina-based catalysts [18].  Using 

DRIFTS, Ji et al. showed that the addition of ceria improved sulfur resistance by reducing 

sulfur accumulation on BaO sites due to the presence of CeO2 sites [164].  Ji also 

proposed that the addition of ceria would lower the fuel penalty and precious metal 

sintering associated with catalyst desulfation because sulfur stored at Ce sites can be 

removed under rich conditions at temperatures below 500 °C, which is lower than the > 

650 °C required for Ba sites.  Furthermore, as stated in the previous paragraph, under rich 

conditions, Pt-promoted ceria is known to catalyze the water-gas shift reaction that 

produces hydrogen and CO2 from CO and water [155,166].  The additional hydrogen 

produced is available to regenerate the trap, which is highly beneficial because H2 has 
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been shown to be a better NOx reductant than CO [113,114,116].  Likewise, H2 is a more 

efficient reductant for LNT desulfation than CO [32,112,115,117]. 

 

2.3.2. Additional Concerns of LNT Utilization. 

In addition to the problems present when an LNT is exposed to an exhaust stream 

containing sulfur species, the costs inherent to the use of PGMs and undesired product 

formation have limited the penetration of LNT use into the automobile marketplace.  Pt 

and Rh are two of the most expensive precious metals traded on the open market today.  

The one year averages for Pt and Rh are $1538.18/oz. and $1409.21/oz, respectively 

[168], thus making these metals as precious as gold.  It is these high prices that are 

driving research efforts to reduce or replace their use in LNT catalysts. 

As discussed previously, depending on the NOx loading and reaction conditions present 

during the rich phase, products such as NOx, N2O, and NH3 can be released from an 

automobile’s exhaust.  NOx is a key component in photochemical smog and acid rain, 

N2O is a powerful greenhouse gas (7 times as powerful as CO2), and NH3 is toxic and 

corrosive.  What if there existed a means of not only reducing the use and therefore the 

costs of PGMs while eliminating the release of unwanted compounds? 

 

2.4. LNT-SCR. 

As methods of reducing NOx emissions, both LNT and SCR catalysts have drawbacks 

associated with their usage.  The high cost of PGMs and susceptibility to sulfur 

deactivation limit application of LNT catalysts.  Thermal durability and the need for an 

on-board reductant such as NH3 and its required injection system limit SCR catalyst use.  

In the past 4 to 6 years, significant efforts have been made to investigate the effects of 

using LNT and SCR catalysts together [169-189].  One of the first commercial 

applications of this technology was demonstrated on the 2007 Mercedes E320 Bluetec 

automobile.  The catalyst system on the E320 was a LNT with a high-loading of PGM 

and a Fe-based zeolite SCR catalyst [189]. 

 

SCR catalysts were originally developed by Engelhard Corporation (now BASF 

Corporation) in 1957 for reducing NOx emissions from coal-powered installations such as 
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boilers and power plants.  SCR catalysts are either base metal catalysts such as 

V2O5/WO3/TiO2 or ion-exchanged zeolites [190]  These zeolites have higher thermal 

durability than the base metal SCR catalysts [191].  Two of the most common ion-

exchanged zeolites, and the most active for the urea/NH3-SCR process are Fe- and Cu-

ZSM-5 [6,193,194].  ZSM-5 is aluminosilicate zeolite composed of five membered rings 

named pentasils that form its structure. 

 

As stated before, a LNT possesses the ability to produce NH3 during the rich phase as 

NOx is released and reduced by H2 depending on the temperature and composition of the 

exhaust emitted from the engine.  When a SCR catalyst is positioned downstream of the 

LNT, the NH3 that manages to “slip” from the LNT is trapped and stored on the SCR.  

NH3 storage continues for the remaining duration of the rich phase until the exhaust gas 

is switched back to lean conditions.  As mentioned during the description of NOx storage 

during lean conditions, when the storage capacity of the LNT is reached, NOx will also 

slip from the catalyst.  The NOx from the LNT reacts with stored NH3 on the SCR 

catalyst.  This reaction can occur according to several different pathways, i.e., via the 

standard and so-called “fast” SCR reactions. 

 

 Standard SCR reaction: 

   4 NO + 4 NH3 + O2 ↔ 4 N2 + 6 H2O    (2.68) 

 

Here the advantage of the SCR is realized as NOx is now reduced to N2 in the presence of 

oxygen.  The efficiency of the ion-exchanged zeolite is increased as the concentration of 

NO2 from the LNT increases, since this facilitates the occurrence of the so called “fast” 

SCR reaction [194,195]. 

 

 Fast SCR reaction 

   NO + NO2 + 2 NH3 ↔ 2 N2 + 3 H2O    (2.69) 

 

This is also facilitated by the fact that Fe- and Cu-ZSM-5 SCR catalysts have the 

capability to oxidize NO to NO2 in the presence of oxygen.  Wang et al., Xu et al., and 
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Corbos et al. have reported that NOx can additionally be reduced by a non-NH3 

mechanism if hydrocarbons are present in the exhaust [175,191,196].   

 

Examples of the improved performance afforded by the LNT-SCR synergy are provided 

by Forzatti et al., Lindholm et al., and Xu et al. [176,183,193].  Forzatti reported reduced 

amounts of NH3 from a LNT-SCR system at 150 °C as compared to a LNT-only system.  

As the temperature was increased to the 200 °C  to 300 °C range, complete N2 selectivity 

was seen with the fast SCR reaction more likely to occur due to more NO2 being 

produced by the LNT at these temperatures [176].  Lindholm reported an improvement in 

NOx removal efficiency from 86% to 99.5% at 300 °C and a decrease in NH3 yield from 

34% to 21% [183].  Lastly, Xu reported that their LNT-SCR configuration (a low PGM-

loaded LNT paired with a Cu-ZSM-5 catalyst) had a NOx conversion of > 90% at 175 °C 

after aging for the equivalent of 70,000 miles.  Xu summarized the benefits of the 

placement of a SCR downstream of a LNT [191]: 

 

1. Reduced levels of NH3 emitted from the catalyst system with neither the 

fuel consumption penalty nor the need to operate the LNT as a NH3 

generator. 

2. Enhanced NOx conversion 

3. Potential PGM reduction as seen by the performance of LNTs with 30% 

less PGMs 

4. H2S emissions mitigated. 

 

As will be discussed in the Chapter 3 concerning LNT sulfation, the majority of the sulfur 

is emitted as H2S as the LNT undergoes desulfation.  The placement of the SCR after the 

LNT enables the H2S and COS present to be converted back to SO2.  This conversion 

allows the system to operate with quicker desulfation events without exceeding the odor 

threshold of H2S [197]. 

 

The arrangement of the LNT-SCR system has been studied by Theis et al. and Morita et 

al. [186,198].  Theis investigated the effect of the arrangement of the catalysts on system 
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performance as measured by NOx and NH3 concentrations.  In this study, 4 and 8 

alternating catalysts were compared to LNT-and SCR-only systems before and after 

hydrothermal aging and sulfur deactivation.  The LNT-SCR systems with the alternating 

configurations demonstrated higher conversions of NOx to N2, along with lower NH3 and 

N2O yields.  The improved NOx to N2 conversion was due to an improved balance of NOx 

and NH3 in the SCR segments.  The lower amount of N2O generated was a result of more 

NOx conversion in the SCR segments, since SCR catalysts are less prone to produce N2O 

than a Pt-containing LNT [186].  The findings reported by Corbos et al. support this idea 

of alternating the catalysts based on similar studies with powder catalysts [175].  The 

selectivity to N2 was increased with less NOx and NH3 slip for a physical mixture than for 

a configuration with a bed of LNT catalyst powder followed by a SCR bed.  Morita et al. 

deposited the SCR catalyst on top of the LNT in a dual layer application to a support.  

This arrangement was reported to ensure sufficient NOx and NH3 adsorption even at low 

temperatures while offering high NOx reduction efficiency [198]. 
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Chapter 3. Effect of Ceria on the Desulfation Characteristics of Model Lean NOx 

Trap Catalysts. 

 

Note - This chapter was published as an article in the following journal: 

 

V. Easterling, Y. Ji, M. Crocker, J. Ura, J.R. Theis, R.W. McCabe, Effect of Ceria on the 

Desulfation Characteristics of Model Lean NOx Trap Catalysts. Catalysis Today 151 

(2010) 338–346. 

 

The article appears in this dissertation with permission from the publisher. 

 

3.1. Introduction. 

Lean-burn engines have the potential to provide better fuel economy than current 

stoichiometric engines though reduced pumping losses and enhanced combustion 

thermodynamics [1].  Although reduced CO2 and hydrocarbon emissions are seen from 

lean-burn engines, NOx emissions do not meet current emission standards when these 

engines are coupled with three-way catalytic converters.  This short-coming is caused by 

the inability of NOx to be reduced to nitrogen in atmospheres containing excess oxygen.  

To date, two main solutions have been proposed and implemented.  One method is 

selective catalytic reduction (SCR) where ammonia is used as the reductant to convert 

NOx to nitrogen [2].  The other method is the use of lean NOx traps (LNTs).  A LNT 

catalyst usually consists of a platinum group metal to oxidize the NO to NO2, an alkali or 

alkaline earth metal oxide to store NOx, and a high surface area support material (e.g., γ-

alumina) [3]. 

 

Although LNTs are starting to find commercial application, the issue of LNT durability 

remains problematic.  Sulfur present in fuel and engine oil is converted to SO2 through 

the combustion cycle of engine operation, and the SO2 can subsequently undergo 

oxidation over platinum group metals (PGMs), such as Pt and Rh, to form SO3.  Barium 

oxide has a greater affinity for SO3 than NO2 (the resulting BaSO4 being 
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thermodynamically more stable than Ba(NO3)2 [4]), resulting in poisoning of the NOx 

storage sites.  The decomposition of BaSO4 requires the LNT to be exposed to rich 

conditions and high temperatures (650 to 800 °C) for several minutes.  This requirement 

results in a fuel penalty that reduces the gains in fuel efficiency of lean-burn engines and 

gives rise to sintering of the precious metals and NOx storage components.  The high 

temperatures also enable unwanted side reactions between the LNT washcoat 

components (e.g., resulting in formation of BaAl2O4 and BaCeO3) [5-8].  The formation 

of BaAl2O4 and BaCeO3 and growth of Pt particles due to sintering decreases LNT NOx 

storage efficiency [9-11].  Some researchers have attributed this decrease in efficiency to 

the reduced spillover rate of NO2, formed from the oxidation of NO over Pt, to the 

storage material [5,12,13]. 

 

Recent studies have shown that ceria in LNTs is able to store some of the sulfur in the 

exhaust with the consequence that fewer barium sites should be poisoned [1,14-17].  The 

use of ceria as a component of three-way catalysts is well established based on its ability 

to reversibly store oxygen (that acts as a damper in maintaining stoichiometric conditions 

during various engine operating ranges) and its ability to maintain high precious metal 

dispersions in the washcoat [18].  The main function of ceria in lean burn gasoline LNTs 

is similarly to act as an oxygen storage material, thereby enabling the LNT to function as 

a conventional three-way catalyst when the engine is operating under stoichiometric 

conditions.  However, different research groups have reported additional benefits from 

the incorporation of ceria in LNTs.  Theis et al. reported that the addition of ceria 

improved the sulfur tolerance of the LNT [1].  In addition to improved sulfur tolerance, 

Kwak et al. reported that ceria containing catalysts provide excellent resistance against Pt 

sintering as compared to alumina-based catalysts [16].  Using DRIFTS, Ji et al. showed 

the addition of ceria improved sulfur resistance by reducing sulfur accumulation on BaO 

sites [17].  In addition, Ji proposed that the addition of ceria would lower the fuel penalty 

and precious metal sintering associated with catalyst desulfation because the operating 

period between desulfation events could be extended.  The presence of ceria has also 

been shown to improve the NOx storage and reduction properties of LNTs, particularly at 
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low temperatures [19-21].  Furthermore, under rich conditions, Pt promoted ceria is 

known to catalyze the water-gas shift reaction that produces hydrogen and CO2 from CO 

and water [22,23].  The additional hydrogen produced is available to regenerate the trap, 

which is very beneficial given that H2 has been shown to be a better NOx reductant than 

CO [24-29]; likewise, H2 is a more efficient reductant for LNT desulfation than CO 

[29,30]. 

 

Although ceria possesses these attractive characteristics when used in LNT catalysts, to 

date relatively few reports have dealt directly with its role in LNT sulfation and 

desulfation.  In this study the effect of ceria on sulfation and desulfation behavior was 

investigated, using both model powder catalysts and fully formulated monolithic 

catalysts.  The effect of precious metal loading and the importance of Pt location (relative 

to the Ba phase) on the ease of LNT desulfation were also examined. 

 

3.2. Experimental. 

3.2.1. Preparation of Powder Catalyst Samples. 

Powder samples were prepared by incipient wetness impregnation.  Pt/Al2O3 was made 

by impregnating γ-alumina (Sasol, surface area of 132 m2/g) with an aqueous solution of 

tetraamine platinum (II) nitrate.  The sample was then dried under vacuum at 100 °C 

overnight and calcined in air at 500 °C for 3 h.  Pt/CeO2 was prepared by the same 

method using ceria (Rhodia, surface area of 119 m2/g).  A stepwise method was used to 

make the Pt/BaO/Al2O3 sample (denoted PBA).  γ-alumina was impregnated with 

aqueous Ba(NO3)2, dried and calcined at 500 °C in air.  The Ba-loaded Al2O3 was then 

impregnated with aqueous tetraamine platinum (II) nitrate and again calcined at 500 °C.  

Finally, in order to investigate the effect of ceria addition on the Pt/BaO/Al2O3 catalyst, a 

sample was prepared by physically mixing the Pt/BaO/Al2O3 and Pt/CeO2 powders in a 

76:24 weight ratio (denoted PBAC).  All of the powders were pressed into pellets using 

an IR pellet press and then crushed and screened to a size of ASTM 20 to 40 mesh. 
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3.2.2. Temperature Programmed Sulfation-Desulfation Experiments. 

Each of the powder catalysts was subjected to a temperature-programmed reduction 

(TPR) procedure to determine the temperature required to decompose the sulfates stored 

on the different storage components.  The microreactor used consisted of a ¼ inch o.d. 

quartz tube in which a section of ca. 3 inch length contained the 150 mg of powder 

catalyst.  The tube was heated by a programmable Lindberg Blue furnace.  A V&F 

Airsense 2000 chemical ionization mass spectrometer (CI-MS) analyzed the product 

gases from the reactor.  A gas flow rate of 120 sccm was used, corresponding to a gas 

space velocity of ca. 30,000 h-1.  Table 3.1 shows the lean and rich feed gas compositions 

for the powder reactor.  All of the inlet and outlet lines for the reactor were heated using 

heat tape to above 100 °C to prevent water condensation prior to analysis in the CI-MS. 

Prior to the experiments, each sample was subjected to pretreatment at 450 °C.  The 

sample was first oxidized in a mixture of 8% O2, 5% CO2 and 5% H2O (with Ar as the 

balance) for 15 min, after which it was purged with 5% CO2 and 5% H2O (with Ar as the 

balance) for 10 min.  The sample was then reduced in 2% H2, 5% CO2, 5% H2O, and 

balance Ar.  Finally, the sample was cooled to 350 oC while it was exposed to 5% CO2 

and 5% H2O (with Ar as the balance). 

 

Table 3.1. Feed composition for experiments utilizing powder catalysts. 

 

 

The powder samples were sulfated by exposure to a feed containing 100 ppm SO2, 8% 

O2, 5% CO2, 5% H2O, and balance Ar (feed rate of 120 sccm) for 34 minutes at 350 °C.  

Component Pre-Oxidation Pre-Reduction Sulfation TPR

SO2 0 0 100 ppm 0

O2 8% 0 8% 0

H2 0 2% 0 2%

CO2 5% 5% 5% 5%

H2O 5% 5% 5% 5%

Ar Balance Balance Balance Balance
Total Gas Flow, sccm 120 120 120 120

GHSV, h-1 30,000 30,000 30,000 30,000
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Assuming complete sulfur uptake, these conditions resulted in a loading equivalent to 1 g 

sulfur/L for a monolithic catalyst with a washcoat loading of 260 g/L.  Higher loadings 

were achieved by extending the duration of the sulfation.  The catalysts were then 

subjected to desulfation under reducing conditions for the TPR.  The procedure consisted 

of exposing the sample to 2% H2, 5% CO2 and 5% H2O (with Ar as the balance) as the 

temperature was increased from 350 to 800 °C at a rate of 5 °C /min.  The product gas 

stream was analyzed using the CI-MS. 

 

3.2.3. Preparation of Monolith Catalyst Samples. 

The samples, listed in Table 3.2, are categorized into three groups according to the 

variation in components.  The preparation of the catalysts has been described in detail 

elsewhere [21].  In brief, the samples were prepared using the incipient wetness method.  

In a first step, Pt and Rh were co-impregnated in a 1:1 weight ratio (using Pt(NH3)4(OH)2 

and Rh(NO3)3 as the precursors) onto γ-alumina stabilized with 3 wt% La2O3, after which 

the powder was calcined for 2 h at 500 °C.  Separately, BaO/Al2O3 was prepared by 

impregnating Ba(O2CCH3)2 onto γ-alumina, followed by calcination (also at 500 °C for 2 

h). To this the required amount of CeO2 or CeO2-ZrO2 was added.  To achieve the total Pt 

loading, the balance of the Pt was then impregnated onto the mixture as (as 

Pt(NH3)4(OH)2 ), after which it was calcined at 500 °C for 2 h.  The Pt and Rh containing 

powder (in an amount corresponding to 30 g/L) and the powder containing BaO/Al2O3 

and CeO2 was added to a balance of γ-alumina powder to achieve the overall washcoat 

loading of 260 g/L.  A small amount of boehmite sol was used as a binder.  The resulting 

slurry was washcoated onto a 4” x 6” cordierite 400 cpsi/6.5 mil monolith by DCL 

International Inc. (Toronto, ON) using a proprietary vacuum coating process.   The 

monoliths were calcined at 550 °C for 2 h. 
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Table 3.2. Composition of monolith catalysts. 

 
a Nominal loadings.  Total washcoat loading = 260 g/L 
b Stabilized with 5 wt.% La2O3 
c Ce0.7Zr0.3O2 
d Stabilized with 3 wt.% La2O3 

 
In series 1, the sample codes reflect the amount of barium (held constant at 30 g/L) and 

the amount of CeO2 present (0, 50, or 100 g/L).  Series 2 is composed of two samples 

designated 30-50z and 30-100z.  The “z” refers to amount of ceria-zirconia (Ce0.7Zr0.3O2) 

present in the sample instead of CeO2.  Series 3 differs from the two other series in the 

amount of precious metal present in the washcoat.  The Rh concentration was reduced 

from 0.71 to 0.35 g/L for the two samples, and the Pt concentration varied at 1.77 g/L (50 

g/ft3) and 3.53 g/L (100 g/ft3).  The two samples in series 3 are designated by the amount 

of platinum present:  Pt-50 and Pt-100.  The CeO2 loading was held constant for both 

samples at 50 g/L.  The total washcoat loading for all of the samples was 260 g/L and 

was held constant by adjusting the amount of  balance Al2O3 present. 

 

3.2.4. Monolith Catalyst Sulfation and Desulfation. 

1.75 cm x 2.54 cm (d x l) sample cores were drilled from the monolith samples.  A small 

hole was drilled in the center of each core so that a K-type thermocouple could be 

inserted to measure the temperature of the gas stream at the front face of the sample.  The 

catalyst cores were contained in a vertical quartz tube reactor (1” outer diameter) heated 

by a Lindberg Blue electric furnace.  Prior to sulfation/desulfation experiments, samples 

Series 1 Series 2 Series 3

Pt, g/L (g/cuft) 3.53 (100) 3.53 (100)
3.53 (100), 
1.77 (50)

Rh, g/L (g/cuft) 0.71 (20) 0.71 (20) 0.35 (10)
BaO, g/L 30 30 30

CeO2
b, g/L 0, 50, 100 0 50

CeO2-ZrO2
c, g/L 0 50, 100 0

Al2O3
d, g/L Balance Balance Balance

Catalyst Code/Component Loadinga

Component
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were degreened (stabilized) by heating at 800 °C for 3 h in a slightly rich gas.  The 

composition of the feed gas is listed in Table 4.3.  The overall flow rate was 3 L/min, 

resulting in a GHSV of 30,000 h-1. 

 

Monolith samples were sulfated at 350 °C for 16 h using the gas stream shown in Table 

3.3.  The gas stream alternated between one min lean periods to one min rich periods (1/1 

cycles).  The length of the rich period was chosen to ensure that the trap was completely 

purged of NOx before the next lean cycle.  NOx concentrations were measured using a 

heated chemiluminescence detector (Beckman Industrial Model 951 NO/NOx analyzer).  

The data were used to calculate the NOx storage efficiency at every hour from the start of 

sulfation to the end of the 16 h period.  

 
Sample desulfation was performed at one of the following temperatures:  650 °C, 675 °C, 

700 °C, 725 °C, or 750 °C.  To begin the desulfation, the sample was ramped to the 

desired desulfation temperature.  During the ramp, 1 min lean /1 min rich alternating 

cycles were used until the temperature reached 580 °C, at which point the feed was 

switched to the lean gas mixture to prevent desorption of the sulfur stored on the 

monolith sample before the desulfation temperature was reached.  Once the desulfation 

temperature was obtained, the conditions were switched to rich and the temperature was 

held constant for 5 min before cooling to 580 °C under lean conditions.  At this point, the 

gas composition was switched from lean to alternating 5 min lean, 3 min rich cycles until 

the sample reached 350 °C.  At 350 °C data were taken from three 5/3 cycles and then 

five 1/1 cycles, corresponding to “steady state” cycling conditions (i.e., reproducibly 

periodic).  The schedule of heating to the desulfation temperature, cooling to 350 °C, and 

then evaluating the catalyst during the 5/3 and 1/1 cycles was repeated three times.  After 

the third time the SO2 was turned off and the sample was heated to 750 °C under rich 

conditions for 10 min using the method described above.  This part of the cycle is 

referred to as the clean-off.  After the clean-off, the sample was evaluated at 350°C as 

before using 5/3 and 1/1 cycles.  At this point the sample was ready to be sulfated again 

so the catalyst could be studied at another desulfation temperature.  It should be noted 

that the data from the 1/1 cycles are very similar to the 5/3 cycles in both the storage 
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efficiency values obtained and the resulting trends, and consequently, the 1/1 cycle data 

are not discussed in this paper. 

 
Copyright © Vencon Glenn Easterling 2013 

Table 3.3. Feed gas composition during determination of NOx storage efficiency. 

 

 

3.2.5. Measurement of Total Sulfur Release During Desulfation. 

In these experiments, the same lean and rich gas mixtures were used as for the sulfation-

desulfation experiments described in section 3.2.4 with the exception that in order to 

expedite catalyst sulfation, the samples were sulfated with 90 ppm SO2 at 350°C (for 1 h 

under lean conditions; see Table 3.4).  After sulfation, the SO2 was shut off, and the 

sample was heated to the desired desulfation temperature under lean conditions to avoid 

any loss of SO2.  Once the desulfation temperature was reached, the feed was switched to 

the rich gas mixture containing CO and H2 for 10 min.  Each desulfation ended with 

heating the sample to 750 °C under lean conditions and then switching to rich conditions 

for 10 min.  Again, the period at 750 °C is referred to a clean-off and was performed to 

remove as much sulfur as possible before the next sulfation experiment and to confirm 

the total amount of sulfur originally stored on the catalyst.  This allowed the calculation 

of the fractional sulfur release as a function of temperature by comparing the amount of 

the total sulfur released at the desulfation temperature to the amount of sulfur released 

during the clean-off period.  The gas composition at the catalyst outlet was continuously 

monitored during desulfation using a V&F Systems, Inc. chemical ionization mass 

spectrometer (CI-MS) equipped with three ion sources of different energies.  Mercury is 

Component Lean Rich

CO2 10% 10%

H2O 10% 10%

NOx 500 ppm 500 ppm

SO2 9 ppm 9 ppm

O2 5% 0

CO 0 1.20%

H2 0 0.40%

N2 Balance Balance
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the low energy source and is used to detect H2S.  Xenon is the medium source and is used 

to detect SO2 and COS.  Krypton is the high energy source and was not used in this study.  

From the concentrations of the sulfur species evolved, the data were integrated to 

calculate how much of each species was released during desulfation and during the clean-

off.  The fraction of total sulfur released was used to compare and evaluate the 

performance of the monolith catalysts. 

 

Table 3.4. Feed gas composition during determination of fraction of sulfur 

released/stored. 

 

 

3.3. Results and Discussion. 

3.3.1. Powder Model Catalysts. 

3.3.1.1. Temperature Programmed Reduction. 

Four model catalysts were examined in this study, comprising Pt/Al2O3, Pt/CeO2, PBA, 

and PBAC.  The Pt/Al2O3 and Pt/CeO2 samples were used as references to distinguish 

between release events from alumina, ceria, and barium sites.  Prior to TPR, the samples 

were sulfated to loadings of 1, 2.5, and 7.5 g sulfur adsorbed per L equivalent of 

monolithic catalyst (assuming a typical monolith washcoat loading of 260 g/L).  A typical 

release of the sulfur species observed during TPR is shown in Figure 3.1 for Pt/Al2O3.  

The first species seen is SO2 which is then followed by H2S.  COS is also seen when SO2 

release begins, but unlike the concentration of SO2, which decreases for the remainder of 

the TPR, the concentration of COS continues to increase until about 750 °C.  Given that 

Component Lean Rich

CO2 10% 10%

H2O 10% 10%

NOx 500 ppm 500 ppm

SO2 90 ppm 90 ppm

O2 5% 0

CO 0 1.20%

H2 0 0.40%

N2 Balance Balance
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H2S is the main product during the TPR experiment, in the following TPR plots only the 

H2S release events are shown.  Table 3.5 and Figure 3.2 summarize the results of the TPR 

experiments performed using Pt/Al2O3.  At a loading equivalent to 1 g S/L, the H2S 

release began at 369 °C, peaked at 399 °C, and ended at 627 °C.  As the sulfur loading 

was increased to 2.5 g S/L equivalent and then 7.5 g S/L, also shown in Figure 3.2, the 

release of H2S began at temperatures slightly lower than at the 1 g S/L loading (358 and 

356 °C, respectively).  The reason for the lowering of the first release temperature as the 

sulfur loading was increased is not totally clear; however, it is probably due to the fact 

that at low loadings sulfur is stored at the strongest adsorption sites (e.g., the most basic).   

 

 
Figure 3.1. Sulfur species released from Pt/Al2O3 sulfated to 2.5 g sulfur/L of 

catalyst equivalent during TPR.  Gas composition:  2% H2, 5% CO2 and 5% H2O, 

balance Ar, GHSV=30,000 h-1. 

 
As the loading is increased, these sites are filled and sulfur is increasingly stored at sites 

where it is more weakly adsorbed.  The maximum for this release event occurred at 368 

°C for the 2.5 g S/L loading and 381 °C for the 7.5 g S/L sample.  As the sulfur loadings 

increased so did the amount of sulfur released during TPR.  In all three samples, the 

majority of the sulfur released was seen as H2S, its release peaking below 400 °C.  This 
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result is broadly comparable with results reported in the literature.  Wei et al. reported 

that peak H2S evolution from Pt/Al2O3 occurred at 410 °C [31], while Elbouazzaoui et al. 

reported H2S release from Pt/Al2O3 starting at 300°C and peaking at 450 °C [11]. 

 

Table 3.5. Relative amounts of H2S released from different storage components 

during temperature-programmed reductiona 

 
a Rich phase for TPR: 2% H2, 5% CO2, 5% H2O, Ar balance, GHSV = 30,000 h-1 
b N/D:  Not detectable by CI-MS during the experiment 
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Figure 3.2. Comparison of H2S released from Pt/Al2O3 sulfated to 1.0, 2.5, and 7.5 g 

sulfur/L of catalyst during TPR.  Gas composition as for Figure 3.1. 

 

TPR results for Pt/CeO2 are shown in Table 3.5 and Figure 3.3.  For the sulfur loadings of 

g S/L, 2.5 g S/L and 7.5 g S/L, H2S evolution commenced at 459, 415, and 423 °C, 

respectively, with the corresponding peak H2S releases at 518, 463, and 451 °C.  These 

values compare well with the temperatures reported by Ji et al. (450 °C) [17], Bazin et al. 

(400-500 °C) [32,33], and Waqif et al. (480-550 °C) [34] for sulfate reduction and 

concomitant sulfur release from sulfated ceria.  Similar to the Pt/Al2O3 samples, the total 

amount of sulfur released from Pt/CeO2 during TPR increased with increasing sample 

exposure to SO2, while for all three sulfur loadings H2S was the main species released by 

mass.  In addition, there were indications of a possible minor secondary H2S release event 

centered at approximately 750 ºC (see inset, Fig. 3.3).  However, the magnitude of this 

event was such that it is hard to distinguish it from analytical noise, and consequently we 

have chosen not to include it in Table 3.5. 
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Figure 3.3. Comparison of H2S released from Pt/CeO2 sulfated to 1.0, 2.5, and 7.5 g 

sulfur/L of catalyst during TPR.  Gas composition as for Figure 3.1. 

 

Turning to catalyst PBA, for the 1 g S/L loading (Table 3.5 and Figure 3.4), SO2 release 

was observed at 400 °C, followed by the release of H2S that peaked at 477 °C.  The 

evolution of these sulfur species can be assigned to sulfur release from alumina as seen 

for the Pt/Al2O3 reference sample.  A second release event started at about 573 °C and 

continued until 800 °C with the peak H2S concentration occurring at 729 °C.  This is 

second release event for both loadings took place at 550 °C and in the case of the 2.5 g 

S/L sample reached a maximum concentration at 706 °C, a slightly lower value than for 

the sample sulfated to 1 g S/L.  This result is consistent with the increase in sulfur loading 

and shift to a lower release temperature observed for the other samples.  In the case of the 
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7.5 g S/L sample, a double peak was observed at high temperature.  The first maximum 

of this double peak occurred at 682 °C, and the second occurred at 773 °C.  The first of 

the maxima can be assigned to the release of sulfur stored as surface BaSO4, while the 

second can be attributed to sulfur stored as bulk BaSO4. 

 

 

Figure 3.4. Comparison of H2S released from PBA sulfated to 1.0, 2.5, 6.0, and 7.5 g 

sulfur/L of catalyst during TPR.  Gas composition as for Figure 3.1. 

 

Several authors have made similar observations that temperatures above 700 °C are 

required for the decomposition of bulk BaSO4 [4,11,35].  Sedlmair et al. reported that 

during sulfation surface sulfates can undergo migration into the support material to 

become bulk sulfates [36].  Elbouazzaoui et al. concluded that peaks corresponding to 

surface and bulk BaSO4 were present in the TPR profile of a sulfated Pt/BaO/Al2O3 

catalyst [4,11].  These workers postulated that Pt promotes the reduction of surface 

BaSO4 deposited in the vicinity of Pt but has no effect on BaSO4 located far from the 
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metal sites.  Using Raman spectroscopy, Wei et al. concluded that BaSO4 close to Pt 

particles has a small crystallite size (< 3 nm) and is reduced at moderate temperatures 

(~650 °C).  On the other hand, bulk sulfate has a larger crystallite size (> 10 nm) and is 

reducible only at high temperatures (~750 °C) [31].  Stakheev et al. also proposed that the 

presence of two peaks is due to surface and bulk barium sulfates or to BaSO4 located 

close to and far away from Pt particles [35]. 

 

Based on the results from the two reference samples and catalyst PBA, the effects of ceria 

addition to PBA can be demonstrated.  Looking at the TPR result for the PBAC sample 

loaded to 1 g S/L (Figure 3.5), two desorption maxima occur at 465 and 737 °C.  The first 

release event can be assigned to release from ceria as seen with the Pt/CeO2 sample, 

while the second corresponds to the release of sulfur from BaSO4, as seen with PBA.  

Comparing the PBAC and PBA samples at 1g S/L, Table 3.5, the amount of H2S released 

from Ba sites reflects the presence of ceria with a difference of 26% less H2S released 

from the Ba in PBAC compared to PBA.  Comparing the release from the Al sites in PBA 

to the Ce sites in PBAC, a 26% difference is again seen in the amount of H2S evolved.  

The release of sulfur species from the Ce phases in PBAC demonstrates the additional 

storage provided by the Ce sites.  As seen in Figure 3.5, when the loadings were 

increased from 1 to 2.5 to 7.5 g S/L, the height of the peak from the release of CeO2 sites 

increased faster than the peak from the Ba sites.  This increase is also reflected in Table 

3.5, where the amount of H2S released from the Ce sites in PBAC increased from 35% of 

the total for 1 g S/L loading to 43% for 2.5 g S/L and 62% for 7.5 g S/L.  This implies 

that sulfur was preferentially stored at the CeO2 sites as opposed to the BaO sites as the 

loading increased. 

 

 

 

 

 

Copyright © Vencon Glenn Easterling 2013 
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Figure 3.5. Comparison of H2S released from PBAC sulfated to 1.0, 2.5, 6.0, and 7.5 

g sulfur/L of catalyst during TPR.  Gas composition as for Figure 3.1. 

 

3.3.1.2. Effect of Platinum Location on Desulfation Efficiency. 

In order to demonstrate the influence of Pt location (with respect to the Ba sites) on LNT 

desulfation, a sample was prepared in which the Pt and Ba phases were separated.  This 

was done by physically mixing 1 wt% Pt/Al2O3 and 20 wt% BaO/Al2O3 powders in a 1:1 

weight ratio.  As shown in Table 3.5 and Figure 3.6, during TPR the physical mixture 

displays several H2S release events.  For the sample loaded to 1 g S/L, the first release of  

H2S is seen at 356 °C and extends up to 580 °C, with a maximum at 378 °C.  The second 

release begins at 580 °C, peaks at 748 °C and extends up to 752 °C, and the third begins 

at 752 °C and continues until the end of the TPR experiment at 800 °C, with a maximum 

at 791 °C.  As the sulfur loading is increased to 2.5 g S/L, these maxima are slightly 

shifted towards lower temperature, as typically observed for the other catalyst samples 

discussed above. 
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Comparing the results for the physical mixture and sample PBA, although both samples 

release about the same amount of sulfur at the 1 g/L S loading (and correspondingly more 

at the 2.5 g/L loading), several significant differences are observed.  First, sulfur release 

in the range 350-500 ºC is observed to occur at lower temperatures and in relatively 

greater amounts for the physical mixture than for PBA.  The release in this temperature 

range is consistent with the decomposition of sulfate on alumina [11,31], while the 

releases seen from both samples at the higher temperatures (>580 ºC) can be assigned to 

the decomposition of BaSO4 [4,11,35].  Second, whereas PBA shows a single H2S release 

event corresponding to the decomposition of surface BaSO4, the physical mixture shows 

a double peak corresponding to H2S release from both surface and bulk BaSO4. Third, the 

maxima for H2S release from surface BaSO4 are shifted by between ~20 and 40 °C to 

higher temperature for the physical mixture as compared to PBA (the exact value being 

dependent on the sulfur loading).  We note that a similar observation has been reported 

by Wei et al. during related TPR experiments [31]: for a physical mixture of Pt,Rh/Al2O3 

and BaO/Al2O3, the high temperature BaSO4 release maximum occurred at a temperature 

that was 60 °C higher than for the corresponding peak observed for an impregnated 

sample containing BaO/Pt,Rh/Al2O3. 
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Figure 3.6. Comparison of H2S released from PBA and 1:1 physical mixture of 

Pt/Al2O3 and BaO/Al2O3 sulfated to 1.0 and 2.5 g sulfur/L of catalyst during TPR.  

Gas composition as for Figure 3.1.  Note that for clarity the plots have been stacked.  

 

From the foregoing it is apparent that in PBA most of the sulfur is stored on surface BaO 

sites, whereas in the physical mixture sulfur is stored on both Al2O3 and BaO sites.  

Sulfur storage on the Al2O3 sites can be attributed to spillover of SO3 from Pt to the 

Al2O3 support during sulfation.  More significantly, the fact that the desulfation 

temperature of the Ba storage component is shifted towards higher temperature for the 

physical mixture relative to PBA is consistent with the idea that the decomposition of 

surface BaSO4 is facilitated by adsorbed H atoms which spill over from the Pt sites onto 

the sulfated Ba phase.  Physical separation of the Pt and Ba phases appears to inhibit this 

process, with the consequence that the surface BaSO4 behaves more like bulk BaSO4 with 

respect to its desulfation properties.  We note that somewhat analogous findings have  
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been reported for nitrate decomposition on physical mixtures of Pt/Al2O3 and BaO/Al2O3 

[37]: in the absence of hydrogen spillover from Pt to the Ba phase, considerably higher 

temperatures are required to achieve nitrate decomposition than is usual for 

Pt/BaO/Al2O3 catalysts. 

 

3.3.2. Monolith Catalysts. 

3.3.2.1. Effects of Sulfur on NOx Storage Efficiency and Regeneration Temperature. 

In order to shed further light on washcoat component effects in LNT sulfation and 

desulfation, two experiments were performed using fully formulated monolithic catalysts 

in which the loadings of the various components (ceria, ceria-zirconia, and precious 

metals) were systematically varied.  In the first experiment, the effect of desulfation at 

different temperatures on the lean phase NOx storage efficiency (NSE) during lean-rich 

cycling was examined.  In the second experiment, the ability of the monolith sample to be 

desulfated under rich conditions was determined by calculating the amount of sulfur 

released during desulfation. 

 

Considering the results of the first experiment (Figure 3.7), sample 30-0, containing no 

ceria, showed the largest decrease in the NSE during the lean period, corresponding to a 

loss of 60% after sulfation of the sample.  Furthermore, the 30-0 sample was not able to 

achieve its pre-sulfation NSE value at any of the desulfation temperatures from 650 to 

750 °C, as shown in Figure 3.8.  The highest value was seen at 750 °C, corresponding to 

only 95% of the original NSE.  Compared to the other catalysts, the NSE of 30-0 showed 

the greatest dependence on desulfation temperature (difference of greater than 20% over 

the temperature range).  This finding can be explained on the basis of the TPR results 

presented above for catalyst PBA.  Looking at Figure 3.8, it is evident that a temperature 

of less than 750 °C is insufficient to completely desulfate sample 30-0. 
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Figure 3.7. Comparison of lean NOx storage efficiency values for fresh and sulfated 

monolith samples.  Samples were sulfated with 9 ppm SO2 for 16 h at 350 °C under 

1 min lean/1 min rich conditions.   

 

Turning to the 30-50 and 30-100 samples containing 50 and 100 g/L of ceria, 

respectively, the presence of ceria in the monolith results in a higher NSE after sulfation 

(relative to 30-0) and a clear lowering of the desulfation temperatures required to 

approach the pre-sulfation NSE values of the catalysts.  The NSE values after sulfation 

for 30-50 and 30-100 are roughly twice the value for 30-0 (Figure 3.7).  As shown in 

Figure 3.8, sample 30-50 reached 94% of its clean-off NSE value at 675 °C and 97% at 

700 °C.  Sample 30-100 was even better than 30-50, reaching 95% of its clean-off value 

at 650 °C.  Indeed, in general the NOx storage efficiency of 30-100 was higher over the 

entire temperature range used for desulfation than 30-0 or 30-50.  The reason for the 
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superior performance of 30-50 and 30-100 over 30-0 can be assigned to the presence of 

CeO2 in the sample.  As seen for PBAC, CeO2 can store sulfur, thereby decreasing the 

extent of bulk BaSO4 formation.  Further, the CeO2 phase can be desulfated at relatively 

low temperature.  An additional factor may be the high water-gas shift (WGS) activity of 

Pt/CeO2.  Indeed, in previous work we have demonstrated the superior WGS activity of 

30-50 and 30-100 relative to 30-0 and the higher intra-catalyst H2 concentrations that 

result during rich operation [21]. 

 

 

Figure 3.8. Comparison of normalized lean NOx storage efficiency values (NOx 

storage efficiency after desulfation divided by the NOx storage efficiency after clean-

off) for samples 30-0, 30-50, 30-100, 30-50z, and 30-100z.  Desulfation conditions: 

1.2% CO, 0.4% H2, 10% CO2, 10% H2O, balance N2, GHSV=30000 h-1. 
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The effects of CeO2 addition to the monolith catalysts are further supported by studying 

the fraction of sulfur released from the stored sulfur.  Starting with series 1 (see Figure 

3.9), the effect of CeO2 is evidenced by the fact that larger fractions of the stored sulfur 

are released at lower temperatures (650 and 675 °C) as compared to catalyst 30-0.  

Indeed, sulfur release at these low temperatures increases with ceria loading.  The amount 

of sulfur released during desulfation for the 30-0 sample is lower than 30-50 or 30-100 

until 700 °C and higher.  The increased fraction of sulfur released is attributed to the 

additional SOx storage sites provided by the ceria present in the sample, which as shown 

by the TPR results presented in section 3.3.1.1 above, releases H2S and SO2 at 

significantly lower temperatures than the BaO phase. 

 

 

Figure 3.9. Comparison of fraction of sulfur released/stored after sulfation with 90 

ppm SO2 for 1 h for samples 30-0, 30-50, 30-100, 30-50z and 30-100z.  Desulfation 

conditions as for Figure 3.8. 
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In addition to the ceria containing samples, two samples were examined that contained 

CeO2-ZrO2 so that the effects of CeO2 and CeO2-ZrO2 could be compared.  Both samples 

contained 30 g/L of BaO, as for the series discussed above; the full compositions are 

given in Table 3.2 (series 2).  The results obtained for this series are also shown in 

Figures 3.7 and 3.8.  While the fresh NOx storage efficiency value for 30-50z was only 

7% lower than the value for 30-50 (84% vs. 91%), the measured value for 30-50z after 

sulfation was 20% lower:  in absolute terms, the sample 30-50 lost 34% of its NOx 

storage efficiency and the 30-50z lost 47%.  Comparing samples 30-100 and 30-100z, the 

difference in the fresh NSE values was slightly larger (91% for 30-100 versus 76% for 

30-100z).  However, the difference in the NSE values after sulfation for 30-100 and 30-

100z was only 9%.  Looking at the NSE values after desulfation for these four samples 

(Figure 3.8), the differences were less than 7% at 650 °C and less than 4% over the 

remaining temperature range. 

 

Data pertaining to the sulfur release during desulfation supports the observation that the 

catalysts containing CeO2-ZrO2 display inferior desulfation characteristics as compared 

to their La-stabilized CeO2-containing analogs (see Figure 3.9).  This may be attributed to 

the less basic nature of the CeO2-ZrO2 (relative to CeO2), which may lower the ability of 

CeO2-ZrO2 to store sulfur and hence result in comparatively more severe sulfation of the 

Ba phase.  Indeed, Rohart et al. have reported that the basicity of Ce-mixed oxides affects 

their SOx storage capacity [38], sulfate adsorption being higher on ceria-rich oxides than 

on zirconia-rich oxides.  Also relevant in this context are the results of a recent study by 

Bazin et al. [33], who found that the addition of zirconia into ceria limits sulfation in the 

bulk of the oxide, thereby limiting the total sulfur uptake.  The same authors also report 

that zirconia addition raises the required desulfation temperature slightly; for example, 

weight loss maxima of 733 K and 753 K were observed during hydrogen reduction of 

sulfated CeO2 and Ce0.63Zr0.37O2, respectively.  Note that the surface areas of the La-

stabilized CeO2 and CeO2-ZrO2 used in the monolithic catalysts in the present study were 

very similar (119 m2/g and 114 m2/g, respectively), hence surface area should not be a 

factor with respect to their differing sulfation-desulfation behavior. 
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Finally, we note that ease of catalyst desulfation (as reflected in the fraction of sulfur 

released/sulfur stored) holds implications for long term catalyst use, given that the 

catalyst is subjected to repeated sulfation-desulfation cycles over the course of its useful 

life.  For additives or specific compositions which negatively affect sulfur release from 

the catalyst, there is a greater tendency to accumulate residual sulfur during repeated 

sulfur/desulfation events, eventually leading to reduced NOx storage efficiency.  In an 

accompanying paper [39] we describe the results of accelerated aging experiments 

performed on catalysts 30-0, 30-50, 30-100 and 30-100z in which repetitive 

sulfation/desulfation cycles were performed, and we correlate the residual sulfur contents 

of the catalysts with their composition.  The resulting data confirm that ceria-containing 

catalysts exhibit superior sulfation and desulfation characteristics as compared to their 

non-ceria analog; more particularly, the ability of ceria to trap sulfur results in decreased 

sulfur accumulation on the main Ba NOx storage component.  In addition, while the 

results presented above suggest that catalyst 30-100z should perform less well in this 

respect than 30-100, the NOx conversion of 30-100z after aging is in fact slightly better 

than that of 30-100 [39].  The reason for this is not entirely clear, although it may be a 

consequence of the superior stability of the Ce0.7Zr0.3O2 mixed oxide with respect to 

thermally induced sintering as compared to La-stabilized CeO2. 

 

3.3.2.2. Effect of Precious Metal Loading on NOx Storage Efficiency and Regeneration 

Temperature. 

In the last group of catalysts (Series 3, Table 3.2), the amount of Pt was varied and the 

amount of Rh was halved.  The two samples examined corresponded to Pt-50, containing 

50 g/ft3 (1.77 g/L) Pt and 10 g/ft3 (0.35 g/L) Rh, and Pt-100, containing 100 g/ft3 (3.53 

g/L) Pt and 10 g/ft3 (0.35 g/L) Rh.  The BaO and CeO2 loadings were fixed at 30 g/L and 

50 g/L, respectively (i.e., as for catalyst 30-50).  Looking at the comparison of NOx 

storage efficiency values for fresh and sulfated monolith samples (Figure 3.7), it is 

evident that the 30-50 sample, with double the amount of Rh, is less susceptible to 

poisoning than the Pt-50 or Pt-100 samples.  Furthermore, as shown in Fig. 3.10, clear 

trends emerge when considering the NSE of the catalysts subjected to desulfation in the 
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range 700 - 750 °C.  Specifically, the NSE of sample 30-50 is found to be slightly higher 

than that of  Pt-100 after desulfation at temperatures of 700 °C and above, a finding 

which can be ascribed to the lower Rh loading in the latter sample.  These results are 

consistent with the reports of Amberntsson et al. [40,41], who for Ba-based LNTs 

containing either Pt, Rh or Pt + Rh observed that the recovery of NOx storage capacity 

after desulfation in H2 at 750 °C was complete only for the samples containing both Pt 

and Rh.  This was attributed to the fact that Rh is more easily sulfur-regenerated than Pt 

[40].  Furthermore, it was found that Rh suffered from severe deactivation with respect to 

its NO oxidation function under SO2 exposure but retained high NOx reduction activity 

under rich conditions; in contrast, the opposite behavior was observed for Pt.  

Consequently, it was concluded that a combination of Pt and Rh is preferable for 

minimizing the effects of sulfur deactivation [40,41].  In the case of Pt, it is known that 

under rich conditions Pt sulfides and/or elemental sulfur can form which block the Pt 

sites with respect to the adsorption of reductants [36,42].  From this it follows that 

desulfation should proceed most efficiently when a high concentration of Rh is present, 

since the Rh will be less susceptible to poisoning by the released sulfur and will enable 

the continuous adsorption and spillover of reductant molecules onto the sulfated oxides 

present.  
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Figure 3.10. Comparison of normalized lean NOx storage efficiency values (NOx 

storage efficiency after desulfation divided by the NOx storage efficiency after clean-

off) for samples 30-50, Pt-50, Pt-100.  Desulfation conditions as for Figure 3.8. 

 

Catalyst Pt-100, in turn, displays higher NSE at each of the desulfation temperatures 

when compared to catalyst Pt-50, a result which can be directly attributed to the extra Pt 

present.  As a consequence of the additional platinum in Pt-100, the average distance 

between the Pt sites and the storage components should be decreased as compared to Pt-

50 [43].  The effect of the increased proximity of the Pt to the sulfates stored at BaO was 

demonstrated in the PBA and Pt/Al2O3 + BaO/Al2O3 powders in section 3.1.2.   

 

Specifically, decreasing the Pt-Ba distance can be anticipated to result in more efficient 

spillover of reductants from the Pt sites and hence, more extensive desulfation.  Figure 

3.11 shows the effects of precious metal loading on the fraction of sulfur released from 
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the samples by comparing the results for the series 3 catalysts to those obtained for 30-50.  

At almost every temperature, Pt-100 released a greater amount of stored sulfur than Pt-

50, consistent with this reasoning. 

 

Overall, in comparing all three of the series of monolith catalysts, the CeO2 loading is 

observed to exert a greater influence on catalyst desulfation characteristics than the Pt 

loading (within the range studied), particularly at temperatures below 700 °C.  

Correspondingly, the results from the experiments in which sulfur evolution was 

monitored parallel the results gained from the NOx storage efficiency experiments.  

Comparing the three series of catalysts, the catalysts with the highest amounts of CeO2 or 

CeO2-ZrO2 have the best performance, as measured by the temperature required during 

desulfation to reach each individual catalyst’s clean-off NSE value.  A second measure of 

performance is the resistance to sulfur deactivation in the first place, where again the 

higher CeO2 and CeO2-ZrO2 containing samples have the best performance.  Catalyst 30-

100, the sample with the highest amount of CeO2, showed the best performance in NOx 

storage efficiency across all of the desulfation temperatures. 
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Figure 3.11. Comparison of fraction of sulfur released/stored after sulfation with 90 

ppm SO2 for 1 h for samples 30-50, Pt-50 and Pt-100.  Desulfation conditions as for 

Figure 3.8. 

 

3.4. Conclusions. 
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physically separated, the desulfation temperature of the surface BaSO4 is shifted by 20-40 

°C towards higher temperature, i.e., towards the position characteristic of bulk BaSO4.  

This observation is consistent with the idea that decomposition of surface BaSO4 is 

facilitated by H ad-atoms which spill over from the Pt sites onto the sulfated Ba phase.  

Physical separation of the Pt and Ba phases appears to inhibit this process, with the 

consequence that the surface BaSO4 behaves more like bulk BaSO4 with respect to its 

desulfation properties.  This finding is analogous to the results of nitrate decomposition 

studied on physical mixtures of Pt/Al2O3 and BaO/Al2O3 [37]. 

 

From the monolith studies, it was found that relative to a sample containing no ceria, 

samples containing La-stabilized CeO2 or CeO2-ZrO2 showed:  1) a greater resistance to 

deactivation during sulfation (as reflected by the NOx storage efficiency), and 2) required 

lower temperatures to restore the NOx storage efficiency to its pre-sulfation value.  

Additionally, the CeO2 containing catalysts (series 1) released greater fractions of stored 

sulfur during desulfation.  In addition to the ability of ceria to store sulfur and release it at 

relatively low temperatures under reducing conditions, these results can be attributed to 

the high water-gas shift activity displayed Pt/CeO2, which result in increased intra-

catalysts concentrations of H2 under rich conditions.  The results also showed that 

precious metal loadings can significantly impact desulfation efficiency and that both high 

Rh and Pt loadings are beneficial for catalyst desulfation. 
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Chapter 4. Effect of Aging on the NOx Storage and Regeneration Characteristics of 

Fully Formulated Lean NOx Trap Catalysts. 

 

Disclaimer:  The work provided in this chapter is the result of collaboration with Dr. 

Yaying Ji of the Center for Applied Energy Research at the University of Kentucky.  Dr. 

Ji was responsible the material characterization of the catalysts used in this chapter.  This 

information is described in sections 4.2.3. through 4.3.1. 

 

Note - This chapter was published as an article in the following journal: 

 

Y. Ji, V. Easterling, U. Graham, C. Fisk, M. Crocker, J.-S. Choi, Effect of Aging on the 

NOx Storage and Regeneration Characteristics of Fully Formulated Lean NOx Trap 

Catalysts.  Applied Catalysis B:  Environmental 103 (2011) 413-427. 

 

The article appears in this dissertation with permission from the publisher. 

 

4.1. Introduction. 

Lean NOx traps (LNTs), also known as NOx storage-reduction (NSR) catalysts, represent 

a promising technology for the abatement of NOx emissions from lean burn gasoline and 

diesel engines.  LNT catalysts typically comprise precious metals (generally Pt and Rh)  

and an alkali or alkaline earth metal storage component (most commonly BaO) supported 

on a high surface area metal oxide such as -Al2O3 [1]. LNT catalysts require cyclic 

operation between lean and rich conditions.  Under lean conditions, NO is first oxidized 

to NO2 over the precious metal, which is followed by NOx storage on the storage 

component as nitrates and nitrites.  Stored NOx species are subsequently released and 

reduced to N2 after switching to rich (i.e., net reducing) conditions.  The trapping ability 

of the LNT catalysts is thus restored after a lean-rich cycle [2].  Although LNTs have 

been commercialized for some applications, the durability of LNT catalysts still remains 

problematic.  Sulfur poisoning and thermal aging are recognized as two major causes of 

deactivation.  The BaO NOx storage component of a LNT catalyst has a greater affinity 

for SO3 than for NO2, and the resulting sulfate cannot be removed under typical rich 
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purging conditions as for nitrates; hence sulfur accumulates on the catalyst and blocks the 

Ba sites with respect to further NOx storage [3-9].  Desulfation requires high temperature 

treatment under rich conditions [10-14], and such treatments give rise to deactivation 

mechanisms such as precious metal sintering, total surface area loss, and solid state 

reactions between the various oxides present in the washcoat. 

 

The presence of Pt in LNT catalysts is required not only to facilitate NOx storage through 

spillover of NO2 from Pt to the Ba phase (subsequent to NO oxidation on Pt), but also to 

facilitate NOx reduction during rich purging.  Both functions are related to the proximity 

between the Pt and Ba phases, and both can be significantly deteriorated by Pt sintering 

which results in decreased interaction between the two phases.  An early study by 

Mahzoul et al. [15] showed that only the Pt sites close to BaO crystallites are responsible 

for nitrate formation (i.e., NOx storage), although other Pt sites can act as centers for the 

oxidation of NO. Nova et al. [16] studied the role of the Pt-Ba interaction in the 

regeneration behavior of LNTs.  A comparison between Pt/BaO/Al2O3 and a Pt/Al2O3-

BaO/Al2O3 physical mixture showed that the promoting effect of Pt on the rate of nitrate 

reduction required Pt and Ba dispersed on the same support, this being in line with the 

role of the Pt-Ba interface in nitrate decomposition suggested by Coronado et al. [17] and 

the involvement of NOx spillover from Ba to its nearest Pt sites suggested by Olsson et al. 

[18].  Similarly, Cant and co-workers [19] inferred the occurrence of forward and reverse 

spillover of NOx during exchange between gaseous 15NO and stored NOx, these processes 

being five times faster when Pt and BaO were located on the same support.  

 

In another study, Büchel et al. examined the influence of Pt location – on BaCO3 or Al2O3 

– for Pt/Ba/Al2O3 catalysts prepared by flame spray pyrolysis [20].  The benefit of a close 

interaction between Pt and Ba was confirmed for NOx storage, although Pt on Al2O3 

exhibited better NO oxidation activity which was limiting for NOx storage at low 

temperatures. During NOx reduction, Pt on Ba showed superior activity to Pt on Al2O3, 

which was attributed to the importance of reverse spillover and the promotional effect of 

Ba on the Pt reduction activity.  A recent TAP reactor study by Kumar et al. has provided 

further evidence of the role of spillover processes and the importance of the Pt/Ba 
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interface during NOx storage and reduction [21].  Their data suggests that NOx storage 

proceeds radially outward from the Pt sites and that the stored NOx possesses some 

degree of mobility. In essence, Pt acts as a conduit for spillover to and from the Ba phase, 

in addition to playing a key role in catalyzing the NO oxidation and reduction reactions 

themselves.  In another recent study [22] concerned with fast NOx storage on 

Pt/BaO/Al2O3 (that is, the initial phase of storage when there is essentially no NOx slip 

from the LNT), it was concluded that the Pt-Ba interface plays a key role, associated with 

the spillover of dissociated oxygen atoms from Pt to Ba which participate in the 

adsorption of NO and NO2 on the Ba sites via nitrite and nitrate formation.  In summary, 

therefore, close proximity of Pt and Ba is required to achieve both efficient NOx storage 

and NOx reduction during lean-rich cycling.   

 

Pt sintering mainly occurs under oxidizing conditions during thermal aging. Graham et al. 

compared the behavior of Pt under both reducing and oxidizing conditions [23], and 

found that the most significant Pt particle growth occurred under oxidizing conditions.  A 

recent study by Datye and co-workers supports the notion that Pt sintering in air results 

from the formation of volatile Pt oxide, PtOx, leading to enhanced interparticle transport 

and sintering via Ostwald ripening [24].  However, sintering was significantly inhibited 

in reducing atmospheres, probably due to the low vapor pressure of metallic Pt; 

consequently, particle migration and coalescence was suggested to be the major 

mechanism of Pt sintering under reducing conditions.  Pt sintering has a permanent 

impact on catalyst performance due to its irreversibility and consequently it has been 

recognized as a key issue associated with thermal deactivation.  Indeed, a number of 

studies have provided evidence that Pt sintering can result in decreased interaction 

between the Pt and Ba phases (i.e., phase segregation) which in turn leads to degraded 

NOx storage and regeneration behavior [25-31].  Fekete et al. [25] attributed the observed 

decrease in NOx storage capacity after aging to loss of contact between the precious 

metals and the storage material, in addition to the formation of mixed metal oxides from 

unwanted side reactions between the storage material and the support.  It was suggested 

that the diminished contact leads to a reduced spillover rate of NO2 from the precious 

metal to the adsorbent, thereby decreasing NOx storage efficiency.  Uy et al. [26] 
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characterized fresh and aged Pt/Ba/Al2O3 catalysts using in situ UV and visible Raman 

spectroscopy and found evidence for Ba particles “separating from” or behaving 

independently from the Pt/Al2O3 in aged Pt/Ba/Al2O3. 

 

Unwanted side reactions between Ba and the support is another effect associated with 

thermal aging, resulting in the formation of Ba aluminate, zirconate, cerate, etc., as 

applicable [31-39].  From studies with Pt-Ba/Al2O3 catalysts, Jang et al. [31] emphasized 

the importance of Ba-Al mixed oxide formation as a cause of degraded NOx storage 

capacity.  Upon heating Pt-Ba/Al2O3 from 550 to 850 °C, they observed the gradual 

conversion of Ba/Al2O3 to BaAl2O4.  Several other authors have similarly found that 

BaAl2O4 forms at about 850 °C [33-35] and concluded that the formation of such mixed 

oxides is a significant factor in thermal deactivation.  However, recent studies have 

shown that the formation of BaAl2O4 and BaCeO3 is largely reversible in nature [34-39].  

For example, Casapu et al. [34] studied LNT catalysts that contain CeO2 as a support 

material and observed the formation of BaCeO3 at 800 °C.  Decomposition of BaCeO3 

was found to occur at 300-500 ºC in the presence of NO2/H2O or CO2 [34,35], resulting 

in an improvement in NOx storage capacity.  Another recent report indicates that BaCeO3 

formation is inhibited in the presence of CO2 at a concentration as low as 5% [39].  In 

comparison, BaAl2O4 is much more stable under typical operating conditions but can be 

converted to BaCO3 and Al2O3 at room temperature in the presence of liquid water 

[36,37]. 

 

In a previous paper [40], we reported the results of a study into the effect of catalyst ceria 

content and type (La-stabilized CeO2 or CeO2-ZrO2) on LNT aging characteristics.  Two 

main causes of LNT aging were discerned, corresponding to (i) sintering of the precious 

metals present and (ii) the accumulation of sulfur in the washcoat as BaSO4.  In addition, 

spectacular improvement in LNT durability was observed for catalysts containing CeO2 

or CeO2-ZrO2 relative to a non-ceria containing analog.  This was attributed to the ability 

of ceria to participate in NOx storage/reduction as a supplement to the main Ba NOx 

storage component, the fact that Pt and the CeO2(-ZrO2) support remain in intimate 

contact, and the ability of ceria to trap sulfur, resulting in decreased sulfur accumulation 
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on the Ba component.  In this chapter, we report the results of a study aimed at 

investigating the effects of precious metal (Pt, Rh) loading and BaO loading on catalyst 

durability. 

 

4.2. Experimental. 

4.2.1. Catalyst Preparation. 

Four fully formulated Ba-based LNT catalysts were used in this study, the compositions 

of which are shown in Table 4.1.  Details of the catalyst preparation have been described 

elsewhere [41].  Briefly, the powders for washcoating were prepared using the incipient 

wetness method.  Three different powders were required to prepare the washcoat.  First, 

Pt-Rh/Al2O3 powder was prepared by co-impregnating 3 wt% La2O3-stabilized γ-alumina 

(Sasol Puralox SCFa-140 L3, BET surface area of 140 m2/g) with an aqueous solution of 

Pt(NH3)4(OH)2 and Rh(NO3)3, followed by calcination at 500 °C for 2 h.  Second, 

BaO/Al2O3 powder was prepared by impregnating γ-alumina (Sasol Puralox SCFa-140 

L3) with aqueous Ba(O2CCH3)2, followed by calcination at 500 °C for 2 h to give a 

powder containing either 21.5 wt% or 32 wt% BaO as appropriate (for a final BaO 

concentration in the catalyst of 30 or 45 g/L, respectively).  Subsequently, the BaO/Al2O3 

material was ball milled with La-stabilized CeO2 (Advanced Material Resources, BET 

surface area of 119 m2/g) in a weight ratio of 140:50, after which the physical mixture 

was impregnated with aqueous Pt(NH3)4(OH)2 to achieve the total Pt loading required in 

the washcoat.  To prepare the washcoat, 30 g/L of the Pt-Rh/Al2O3 powder was slurried in 

deionized water with 190 g/L of the Pt/[BaO/Al2O3 + CeO2] mixture to which -alumina 

powder (34 g/L) was added as balance to achieve a nominal washcoat loading of 260 g/L.  

Additionally, a small amount of boehmite sol (6 g/L) was added to the washcoat as a 

binder during preparation of the slurry.  As shown in Table 4.1, these four catalysts have 

the same nominal loadings of CeO2 (50 g/L) while the BaO, Pt and Rh loadings were 

varied as indicated.  A detailed breakdown of the Pt loadings on the three different types 

of powder in the catalyst washcoats is given in Table 4.2, while Figure 4.1 provides a 

schematic representation of the composition and function of the different powders.  As 

shown, Pt/CeO2 functions as a supplement to the main Pt/BaO/Al2O3 NOx storage-

reduction component, while the function of the Pt-Rh/Al2O3 component is mainly to 
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improve NOx reduction during rich purging.  In all cases, the washcoat was applied to a 

4” x 6” cordierite monolith substrate, possessing a cell density of 400 cpsi and a wall 

thickness of 6.5 mil. 

 

Table 4.1. Composition of catalysts subjected to simulated road aging. 

 
a Nominal loadings. Total washcoat loading = 260 g/L.   
b Stabilized with 5 wt% La2O3. 
c Stabilized with 3 wt% La2O3.  

 

Table 4.2. Nominal Pt loading in the three different powders used for washcoat 

preparation. 

 

  a Rh loading same as for Pt loading.  

 

 

 

 

 

 

Copyright © Vencon Glenn Easterling 2013 

Pt-50 Pt-100 30-50 45-50
Pt, g/L (g/cuft) 1.77 (50) 3.53 (100) 3.53 (100) 3.53 (100)

Rh, g/L (g/cuft) 0.35 (10) 0.35 (10) 0.71 (20) 0.71 (20)
BaO, g/L 30 30 30 45

CeO2
b, g/L 50 50 50 50

Al2O3
c, g/L Balance Balance Balance Balance

Catalyst code / loadinga

Component

Total Pt-Rh/Al2O3
a Pt/BaO/Al2O3 Pt/CeO2

Pt-50 1.77 0.35 1.05 0.37
Pt-100 3.53 0.35 2.34 0.84
30-50 3.53 0.71 2.08 0.74
45-50 3.53 0.71 2.08 0.74

Catalyst
Nominal Pt loading in powder (g/L)
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Figure 4.1. Schematic showing the functions of the three different powders 

contained in the prepared catalysts.  In addition, alumina powder was added to the 

washcoat as a balance. 

 

4.2.2. Aging Protocol. 

Catalyst aging was performed on a synthetic gas bench using cores (2.1 cm diameter x 

7.4 cm long) drilled out from the LNT monoliths.  The protocol used for the rapid aging 

has been detailed in earlier publications [40,42].  This method is designed to simulate the 

road aging of a LNT catalyst used in conjunction with a diesel particulate filter (DPF).  

Each aging cycle is composed of three modes: sulfation, desulfation, and simulated DPF 

regeneration, the corresponding gas compositions used being shown in Table 4.3.  

Sulfation was carried out under cycling conditions (60s lean/5s rich) at 300 oC to give an 

equivalent sulfur loading of 1.0 g/L (assuming complete uptake of sulfur).  Desulfation 

was performed under cycling conditions (5 s lean/15 s rich) at 700 oC for 10 min, after 

which the catalyst was held under lean conditions at 650 oC for 30 min (to simulate DPF 

regeneration).  A maximum mid-bed catalyst temperature of 770 ⁄  10 ºC was observed 

during desulfation due to the exotherm resulting from the fast lean-rich cycling.  

Depending on actual fuel sulfur levels, one aging cycle is estimated to be equivalent to 

1,000-1,500 miles of road aging.  50 cycles were used for the aging runs, requiring a total 

aging time of ca. 100 h per sample.  At the end of each aging run a final desulfation was 

performed under constant rich conditions, corresponding to 2% H2 in the presence of 5% 

H2O and 5% CO2 at 750 ºC for 10 min, in order to remove as much residual sulfur as 

possible. 

 

Pt/BaO/Al2O3

Pt/CeO2

NOx storage/reduction

Pt-Rh/Al2O3

NOx storage/reduction NOx reduction
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Table 4.3.  Gas compositions used for rapid aging, oxygen storage-reduction and 

NOx storage-reduction cycling experimentsa. 

 
a GHSV = 30,000 h-1 for all conditions. 

 

4.2.3. Catalyst Evaluation. 

Catalyst evaluation was performed on a synthetic gas bench reactor.  Catalyst cores were 

wrapped in Zetex insulation tape and inserted into a horizontal quartz reactor tube (2.2 

cm inner diameter).  The reactor tube was heated by an electric furnace, and simulated 

exhaust gas mixtures were introduced from pressurized gas bottles (ultra high purity 

grade, Air Liquide).  The gases were metered with mass flow controllers (Unit 

Instruments Series 7300, Kinetics Electronics) and pre-heated before entering the quartz 

reactor.  Water was introduced by a peristaltic cartridge pump (Cole-Parmer) to a heated 

zone, vaporized and added to the simulated exhaust mixture.  A rapid switching 4-way 

valve system was used to alternate between the lean and rich gas mixtures so that the 

lean/rich/lean transitions in these experiments were almost instantaneous (within 0.2 s).  

Three K-type thermocouples were placed just before the LNT, at the LNT mid-point and 

just after the LNT to monitor the temperature profiles.  A multi-gas analyzer (MKS 

Model 2030) was used to monitor NO, NO2, N2O, NH3, CO, CO2, H2O at the reactor 

outlet.  Determination of intra-catalyst hydrogen concentrations during oxygen storage 

capacity (OSC) measurements was performed using SpaciMS (Spatially Resolved 

Lean Rich Lean Rich Lean Rich Lean Rich

Duration, s 60 5 5 15 1800 60 5 60 5

Temperature (oC) 300 300 700 700 300 350 350 150-450 150-450

NO, ppm 300 300 300 300 0 0 0 300 0

SO2, ppm 45 45 0 0 0 0 0 0 0

O2, % 8 0 8 0 8 10 0 10 0

H2, % 0 1.3 0 1.3 0 0 4.2 0 1.575

CO, % 0 4 0 4 0 0 0 0 2.625

H2O, % 5 5 5 5 5 5 5 5 5

CO2, % 5 5 5 5 5 5 5 5 5

N2, % Balance Balance Balance Balance Balance Balance Balance Balance Balance

Simulated 
DPF 

Regeneration 
During Aging

Parameter
Oxygen Storage-
Reduction Cycling

NOx  Storage-

Reduction Cycling
Sulfation During 

Aging
Desulfation During 

Aging
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Capillary Inlet Mass Spectrometry) [43,44] with a removable capillary probe inserted into 

the channel of the core sample near the centerline.  Activity evaluation and OSC 

measurements for the catalysts were performed under the conditions given in Table 4.3.  

During the cycling conditions described in Table 4.3, the observed catalyst breakthrough 

profiles stabilized to a fixed limit cycle in about 2 h, at which point it was possible to 

characterize the performance in terms of the ‘stationary’ concentration cycles.  The 

selectivity to N2 during the rich purge was determined by difference (i.e., SN2 = 100% - 

SN2O - SNH3).  In the case of measurements performed on fresh catalysts, the samples were 

in all cases first de-greened by exposing them to lean-rich cycling conditions at 500 ºC 

for 5 h. 

 

4.2.4. N2 Physisorption. 

Surface area and pore volume measurements were performed according to the BET 

method by nitrogen adsorption at -196 °C using a Micromeritics Tri-Star system.  Prior to 

the measurements catalyst samples (washcoat and monolith) were ground to a fine 

powder and outgassed overnight at 160 °C under vacuum.  

 

4.2.5. Pulsed H2 Chemisorption. 

The dispersion of precious metal (Pt+Rh) was determined with a Micromeritics 

AutoChem II Analyzer by means of pulsed H2 chemisorption at dry ice temperature (-78 
oC).  This temperature was chosen in an effort to minimize H spillover from the metal to 

the support material [45].  Unlike static volumetric methods, the total amount of 

chemisorbed hydrogen, as opposed to irreversibly chemisorbed hydrogen, was used to 

determine the metal dispersion in this study. 1 g of sample (as a fine powder), including 

both washcoat and substrate, was loaded into the reactor.  After being oxidized at 400 ºC 

in 10% O2/He for 15 min, followed by reduction at 300 ºC in 10% H2/Ar for 15 min, the 

catalyst was heated up to 400 ºC (hold time 10 min) in flowing Ar to remove adsorbed H.  

Pulsed H2 chemisorption was initiated using a four-way valve after the catalyst had been 

cooled to -78 ºC.  During this measurement, 0.5 ml of 10 % H2/Ar was pulsed into the 

reactor every 2 min, the H2 signal at the reactor outlet being monitored with a thermal 

conductivity detector (TCD).  H2 pulsing was terminated after the TCD signal had 
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reached a constant value, i.e., the total precious metal (Pt+Rh) sites were saturated with 

H2.  Assuming a 1:1 ratio of atomic hydrogen to surface Pt or Rh, the metal dispersion 

was calculated based on the amount of H adsorbed. 

 

4.2.6. HRTEM-EELS. 

Electron microscopy studies (EM) were performed using a JEOL 2010F STEM outfitted with a 

URP pole piece, GATAN 2000 GIF, GATAN DigiScan II, Fischione HAADF STEM detector, and 

EmiSpec EsVision software.  STEM images were acquired using the high resolution probe at 2 Å.  

EELS spectrum imaging was performed using the 1 nm probe, an alpha of 30 mrad, and a beta of 

6 mrad.  Materials for the EM analysis were powdered samples and minute amounts were 

supported on copper grids. 

 

4.2.7. Postmortem Sulfur Analysis. 

The amount of residual sulfur in the aged catalysts was measured by detecting the SO2 

evolved during heating of the ground catalyst sample to 1425 oC, using an ELTRA CS 

500 Carbon Sulfur Determinator.  Powder X-ray diffraction (XRD) measurements were 

performed on a Phillips X’Pert diffractomer using Cu K radiation (λ = 1.5406 Å) and a 

step size of 0.02°. 

 

4.3. Results and Discussion. 

4.3.1. Characterization. 

Physical data for the fresh and aged catalysts used in this study are listed in Table 4.4.  

From these data it is evident that aging resulted in a decrease in washcoat BET surface 

area.  The decreased pore volumes and increased pore radii of the aged catalysts infer the 

collapse of some of the smaller pores after aging.  This deterioration can be ascribed 

mainly to sintering of the CeO2 component of the washcoat.  Sintering of CeO2 is 

unavoidable under the aging conditions used in this study, albeit that the CeO2 used was 

stabilized by La2O3.  Indeed, in our previous study [40] ceria-containing catalysts 

(including catalyst 30-50 used in the present study) were found to undergo a more 

pronounced decrease in BET surface area compared to a ceria-free analog.  It is also 

worth noting that relative to the other three catalysts, catalyst 45-50 displayed lower BET 

surface area and pore volume in both the fresh and aged states relative to 30-50, which 
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can be ascribed to increased blockage of the pores in the alumina support at the higher 

BaO loading. 

 

In principle, aggregation of the Ba phase might occur during aging as a consequence of 

its high mobility in the presence of water [39].  Unfortunately, the BaCO3 peaks in the X-

ray diffractograms of the fresh and aged catalyst were too weak (due to sample dilution 

by the cordierite substrate) to permit determination of the average BaCO3 particle size.  

However, TEM data obtained for catalyst 45-50 (see below) support the idea that 

migration and aggregation of the Ba phase does indeed occur upon aging. 

 

Consistent with our previous study [40], loss of platinum group metal (PGM) surface area 

represented the most significant impact of aging.  As shown in Table 4.4, the overall 

PGM dispersion decreased by 62-82% (relative) after aging regardless of the Ba and 

PGM loading.  In addition to precious metal sintering, the loss of PGM surface area after 

aging can be attributed to the sintering of the support materials, which can result in 

encapsulation of the PGM [46,47].  While sintering of the La-stabilized Al2O3 support is 

negligible at the maximum temperature experienced by the catalysts during aging (770 

ºC) [48], sintering of the La-stabilized CeO2 under these conditions is significant, as 

indicated in our earlier study [40]. 

 

Table 4.4.  Physical properties and oxygen storage capacity of fresh and aged 

catalysts. 

a  Estimate calculated from washcoat loading and surface area of 1 m2/g for cordierite 

substrate. 

 

Fresh Aged Fresh Aged Fresh Aged Fresh Aged Fresh Aged Fresh Aged

Pt-50 119 95 44.8 35.7 0.146 0.132 6.51 7.43 30.1 11.5 19.2 n/a
Pt-100 126 96 51.1 38.9 0.167 0.143 6.52 7.37 48.2 11.2 49.4 31.7
30-50 126 88 47.5 32.7 0.156 0.12 6.56 7.35 51.2 9.2 38.1 26
45-50 120 82 43.7 30 0.134 0.109 6.13 7.28 43.1 12.4 30.1 24.3

Pore Volume

(cm3/g)

Average Pore 
Radius

(nm)

PM Dispersion

(%)

Oxygen Storage 
Capacity

(mmol/L)
Catalyst

Estimated 
Washcoat BET 

SA (m2/g)a

Total BET Surface 

Area (m2/g)
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Another effect associated with catalyst aging under simulated road conditions is the 

accumulation of sulfur in the washcoat.  Table 4.5 summarizes the results of sulfur 

analyses performed on the aged catalysts.  Similar sulfur contents were found in the Pt-

50, Pt-100 and 30-50 washcoats after aging (0.35 wt% − 0.38 wt%), whereas a sulfur 

content of 0.7 wt% was measured for 45-50.  This result is expected, given that residual 

sulfur is associated with only the Ba phase in the catalysts (see discussion of TEM results 

below), i.e., the higher the BaO loading, the higher the residual sulfur concentration.  In 

the case of Pt-50, Pt-100 and 30-50, if it is assumed that all of the sulfur to which the 

catalysts were exposed during aging was adsorbed during sulfation, then ~95% of the 

adsorbed sulfur was removed during desulfation (including the final desulfation step at 

750 ºC).  This assumption is consistent with a recent characterization study on a 

commercial catalyst which also contained PM, Ba, Ce, Al as major washcoat components 

[49].  Table 4.5 also reports the residual sulfur levels in the catalysts normalized to the Ba 

loading determined by elemental analysis.  From the resulting S:Ba mole ratios, it can be 

seen that between 28% and 33% of the Ba sites in the catalysts containing 30 g BaO/L 

were in the sulfated state and were thus unavailable for NOx storage (assuming sulfur is 

located only on the Ba phase after aging), while the same figure for catalyst 45-50 was 

43%.  In our previous study, residual sulfur in a series of related catalysts was found to be 

present exclusively as sulfate according to XPS data [40].  In the present work, the 

presence of crystalline BaSO4 (JCPDS# 76-2013) was confirmed for aged 45-50 by 

powder XRD (not shown).  No other sulfur species were observed, nor was BaAl2O4, the 

latter result being consistent with the fact that the maximum temperature experienced by 

the catalysts during aging did not exceed 780 ºC. 

 

Table 4.5.  Summary of elemental analysis data for aged catalysts. 

 

Catalyst
Measured Ba 

in Catalyst  
(wt%)

Residual Sulfur 
in Catalyst 

(wt%)

Residual Sulfur 
in Washcoat 

(wt%)
S:Ba Mole 

Ratio 

Pt-50 5.79 0.38 1.02 0.28
Pt-100 4.61 0.35 0.86 0.33
30-50 4.98 0.38 1.02 0.33
45-50 7.75 0.78 2.12 0.43
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It is also worth noting that the higher S:Ba ratio observed for catalyst 45-50 relative to the 

other catalysts is consistent with a previous report that as the BaO loading on an alumina 

support is increased,  the BaO becomes increasingly more difficult to desulfate [50].  This 

is explained by the fact that as the BaO loading is increased, the amount of bulk BaO 

increases (as opposed to monolayer BaO) which in turn gives rise to bulk BaSO4 upon 

sulfation.  Several studies have shown that the decomposition of bulk BaSO4 - 

corresponding to large BaSO4 crystallites and/or Ba sulfate located far away from Pt sites 

- requires higher temperatures than surface BaSO4 under typical reducing conditions [13]; 

indeed, we have previously found that complete decomposition of bulk BaSO4 under 

conditions similar to those used in the present study requires temperatures slightly in 

excess of 750 ºC [51].  Consequently, the high loading of BaO in catalyst 45-50 (32 wt% 

BaO/Al2O3 versus 21.5 wt% BaO/Al2O3 in the other catalysts) results in a higher 

concentration of bulk BaSO4 relative to the other catalysts and hence a greater amount of 

residual sulfate after the final desulfation at 750 ºC. 

 

In addition to the foregoing analytical methods, detailed EM studies were performed on 

catalyst 45-50 in both the fresh and aged states in order to observe the impact of aging.  

The fresh catalyst is illustrated in Figure 4.2.  At low magnification (Fig. 4.2a), the STEM 

image shows that the Al2O3 support has been coated with a thin BaO layer.  At higher 

magnification in Figure 4.2b, the rod-like morphology of the Al2O3 support can be 

recognized even after addition of the thin BaO coating.  It was also observed that the BaO 

coating is not covering all areas of the Al2O3 support.  No large BaO agglomerates or 

crystallites were observed in the fresh catalyst as those would otherwise be imaged in 

STEM mode as bright areas next to Al2O3 due to the major difference in material density. 
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Figure 4.2(a-c).  Illustration of fresh catalyst sample 45-50 using STEM imaging. 

 

Figure 4.2c illustrates Al2O3 with ultra small Pt nanoparticles on the surface that range in 

size from 2-8 nm and show excellent dispersion on the support surface.  The aged 45-50 

catalyst material is depicted in the STEM images in Figure 4.3.  The Ba-rich areas now 

occur in clusters over the Al2O3 support surface and in certain locations have formed 

coarse crystals.  Note that the STEM image does not distinguish between BaO and 

BaSO4.  From Figure 4.3a it appears that in the aged catalyst more of the Al2O3 surfaces 

are exposed without a BaO layer, suggesting a possible migration and aggregation of the 

BaO phase during thermal treatment.  Additionally, Figure 4.3b highlights a magnified 

area showing the rod-shaped Al2O3 support with Pt nanoparticles on the surface.  In 

comparison with the fresh material, the aged sample is characterized by a significant 

degree of Pt nanoparticle sintering; indeed, the image shows a Pt particle that is >20nm.  

Not all of the Pt nanoparticles participate in the sintering process, however, as there is 

evidence of residual Pt nanoparticles in the original size range of 2-8 nm.  Figure 4.3b 

also illustrates the presence of a dense Ba phase.  In the Al2O3-rich areas the EM study 

did not reveal any encapsulation of Pt nanoparticles by the support media. Figure 4.4 
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shows the presence of Al2O3 and CeO2 particles side-by-side in the aged catalyst material.  

Figure 4.4b has a STEM insert that shows a dense CeO2 particle with Pt nanoparticles 

that do not appear to have undergone such significant sintering as those on the Al2O3 

support.  The presence of a Ba-rich phase was also noticed in the vicinity of the CeO2 

grains using EELS measurements, which is illustrated in Figure 4.4b; this shows the 

typical M4 M5 peaks for Ba and Ce, as well as a small contribution for the La peaks 

which are associated with the La-stabilized CeO2.  A line-scan spectrum image was 

collected across the aged catalyst material to observe any special relationship of sulfur in 

the vicinity of Ba-rich phase that segregated over the catalyst support material.  The 

spectrum image is a compilation of EELS measurements along a particular area or line 

which is depicted in Figure 4.4a as the red line that spans approximately 250 nm in length 

across the catalyst.  Along this line EELS measurements were performed and the results 

are plotted in 4.4c, showing the presence and relative concentration of Al, Ba, Ce, S and 

Pt.  It is important to note that sulfur (red line) is typically associated with the Ba-rich 

phase, suggesting the presence of BaSO4, and also that the line representing Pt indicates 

that the Pt nanoparticles are in a size-range that suggests Pt sintering took place during 

aging. 

 

 

Figure 4.3. Rod-shaped Al2O3 crystals in aged 45-50 with local agglomeration of 

dense Ba-rich phase. (b) Al2O3 support with large, sintered Pt nanoparticles. 
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Figure 4.4.  STEM imaging of aged 45-50 and EELS spectrum imaging. (a) Aged 

catalyst with area of EELS line scan (red line). (b) STEM insert showing area of 

(sintered) La-stabilized CeO2 after aging process. The red spot indicates the area of 

the EELS measurement shown in (b). (c) Relative elemental concentration obtained 

during EELS spectrum imaging for the line-scan shown in (a).  

 

4.3.2. Oxygen Storage Capacity. 

Oxygen storage capacity (OSC) was determined under lean-rich cycling conditions at 350 

ºC.  From Table 4.4, catalyst Pt-100 showed the highest OSC among the four catalysts in 

both the fresh and aged states, while catalyst Pt-50 had the lowest.  This finding is 

evidently related to the Pt loading on the CeO2 washcoat component.  It is well known 

that CeO2 is the main oxygen storage component in LNT catalysts and that dynamic 

oxygen storage under lean-rich cycling conditions is dependent on oxygen mobility [52].  

This mobility is promoted by Pt which facilitates O2 dissociation followed by spillover to 

CeO2 during oxygen storage and H2 dissociation followed by spillover to CeO2 during 
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reduction.  One means of increasing oxygen mobility is to increase the Pt loading and 

hence the degree of Pt-CeO2 contact.  From this it follows that catalyst Pt-100, with the 

highest Pt loading on the CeO2 washcoat component (Table 4.2), shows the greatest 

ability to store and reduce oxygen relative to the other catalysts (the actual CeO2 loading 

of the catalysts being the same in all cases).  All of the catalysts showed a significant 

decrease in OSC after aging, as evidenced by a drop of 35.8% for aged Pt-100 as 

compared to the fresh catalyst, which can be explained by the decreased surface area of 

the CeO2 phase and by the decreased contact between the Pt and CeO2 as a result of Pt 

sintering. 

 

4.3.3. NOx Storage. 

NOx concentration profiles for both fresh and aged catalysts under “stationary” cycling 

conditions are shown in Figures 4.5 and 4.6, respectively.  Comparatively high lean-phase 

NOx slip was observed at 150 ºC and 450 ºC relative to the results obtained at 250 ºC and 

350 ºC, regardless of the state of the catalysts.  It should be noted that the observation of 

lean phase NO2 slip for all of the catalysts at 150 ºC implies that NOx storage capacity at 

this temperature was not limited by the kinetics of NO oxidation.  While we cannot 

completely exclude the possibility that the kinetics of nitrate/nitrite formation may be a 

limiting factor at 150 ºC, our previous studies [53] suggest that it is mainly the inability 

to remove nitrates and nitrites at low temperature during the rich phase regeneration that 

limits the lean phase NOx storage efficiency.  At 250 ºC and 350 ºC fresh Pt-50 showed 

higher lean-phase NOx slip than the other catalysts, indicative of an inferior NOx storage 

function, while almost no lean-phase NOx breakthrough was observed for fresh 30-50 and 

45-50.  Relative to the fresh catalysts, aging in all cases resulted in increased lean-phase 

NOx slip, with earlier breakthrough times in the range 250-450 ºC.  Evidently, NOx 

storage efficiency (NSE) was deteriorated by aging. 
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Figure 4.5.  NOx storage and release during lean-rich cycling for fresh catalysts. 

 

 

Figure 4.6.  NOx storage and release during lean-rich cycling for aged catalysts. 

 

From Table 4.6 it is apparent that increased lean-phase NO2 slip was observed for the 

aged catalysts relative to the fresh ones, indicating that the deteriorated NOx storage 

function after aging was not due to a limitation in the kinetics of NO oxidation.  
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Examination of the lean-phase NSE calculated from the lean-rich cycling data reveals 

that aging caused a decrease in NSE for all the catalysts in the range 150 to 450 ºC.  As 

shown in Table 4.6, with the exception of Pt-50, the catalysts showed only small 

differences in NSE in the range 250-350 ºC before aging, while aging enlarged the 

differences between the catalysts.  Pt-100 showed a less pronounced decrease in NSE 

than 30-50 and 45-50 after aging, as evidenced by a NSE drop of only ~5%.  

Consequently, Pt-100 was still able to achieve a NSE of 94% at 250 ºC and 350 ºC after 

aging. 

 

Table 4.6.  Comparison of NOx storage and release during lean-rich cycling. 

 
a The total amount of input NO per lean-rich cycle was 171.5 μmol. 
b (NOx released in rich purge/NOx stored in lean phase) x 100%. 
 

As discussed in our previous study [40], the NSE under “stationary” cycling conditions is 

different from the initial NSE measured under continuous lean conditions, the NSE under 

stationary cycling conditions being dependent on both the initial NSE (i.e., the NSE for a 

catalyst initially totally free of NOx) and the extent to which the NOx storage sites are 

regenerated by rich purging during lean-rich cycling.  To identify the NSE-limiting step 

Fresh Aged Fresh Aged Fresh Aged Fresh Aged

150 45.3 48.6 22.6 14.3 50.9 44.2 11.1 8

250 9.7 25.1 91.4 80.9 3 15.1 88.7 68.7

350 1.5 17.7 98.7 84.6 0.5 2.4 98.1 82.5

450 13.8 30.6 80 50.7 12.6 11.4 69.9 45

150 24.5 69.1 42.8 17.4 41.7 37.6 25 10.8

250 0.5 7.4 99.6 94.3 0.1 7.9 99.5 86.9

350 0.4 7.2 99.7 94.3 0.2 1.1 99.5 93.2

450 5.6 22.9 88.9 61.9 11.8 12.6 78.4 54.1

150 52.5 47.6 35.2 21.2 27.7 28.3 25.5 15.2

250 0.4 14.3 99.7 89.1 0.1 6.3 99.6 83.5

350 0.1 14.2 99.8 88.7 0 2.3 99.8 86.7

450 4.5 35.3 94.2 44.3 9.2 17.6 85.5 36.5

150 24.1 57.1 33.3 15.6 31.9 35.6 22.6 10.1

250 0.3 9.1 99.7 92.7 0.2 16.1 99.5 77.7

350 0 17.4 99.9 86.7 0.1 3.3 99.8 83.9

450 2.3 40.6 95.8 39.3 11.7 19.7 84.6 31.6

Pt-100

30-50

45-50

Temperature 
(°C)

Catalyst

Lean-phase NO2 Slip 

(μmol)
a

Lean-phase NOx 

Storage Efficiency 
(%)

Rich-phase NOx 

Release (%)
b

Cycle-averaged     
NOx  Conversion (%)

Pt-50
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under lean-rich cycling, a comparison between the initial and the cycle-averaged NSE 

was made, as shown in Figure 4.7.  Herein, the NSE obtained in the first lean cycle after 

complete catalyst regeneration at 500 ºC is regarded as the initial (or “first-cycle”) NSE 

whereas the NSE obtained in the lean cycle under stationary cycling conditions is 

regarded as the “cycle-averaged” NSE.  All of the fresh catalysts showed a very high 

initial NSE at the four temperatures tested, and only slight differences were observed 

between them.  The drop in NSE under subsequent cycling was observed to be small in 

the range 250-450 ºC, showing that the fresh catalysts were able to retain a good balance 

between NOx storage and regeneration under cycling conditions.  After aging only small 

decreases in initial NSE were observed in the range 150-350 ºC, which can be attributed 

to the contribution of ceria to NOx storage, as a supplement to the main BaO NOx storage 

phase.  Given the inability of ceria to store NOx at 450 ºC [54], a significant drop in initial 

NSE at 450 ºC after aging indicates that the NOx storage function of the Pt/BaO/Al2O3 

component was severely degraded.  A further drop in NSE during lean-rich cycling in the 

range 250-450 ºC can be ascribed to the degradation of the regeneration function after 

aging, i.e., incomplete release of NOx from the storage sites during rich purging resulted 

in cycle-averaged NSE well below that of the initial NSE.  
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Figure 4.7.  Comparison of NOx storage efficiency during the first cycle and during 
subsequent lean-rich cycling for fresh and aged catalysts. 
 

Considering the data collected at 450 ºC in Figure 4.7, it is interesting to note that the 

small difference in the first-cycle and cycle-average NSE for the fresh and aged catalysts, 

this being especially pronounced for catalyst Pt-50.  In contrast, virtually no difference 

was observed at 350 ºC for the fresh catalysts, indicating complete catalyst regeneration 

at this temperature (and by implication at higher temperatures).  This discrepancy 

between the first-cycle and cycle-average NSE values at 450 ºC is plausibly due to the 

creation of an exotherm from the combustion of reductants on the catalyst during the rich 

to lean transition, resulting in higher effective storage temperatures during the beginning 

of the lean phase and hence lower NSE.  This effect has previously been reported by 

Epling et al. [55].  In this work, measured exotherms during cycling at 450 ºC spanned 

the range 16-22 ºC for the fresh catalysts and 8-12 ºC after aging.  Given that dispersed 

Ba nitrates are reported to decompose close to 450 ºC [56], even a relatively modest 

temperature rise could be expected to exert a destabilizing effect on NOx storage.  

Futhermore, surface temperature swings at the precious metal sites (adjacent to the stored 
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NOx) could be much larger, as shown in a recent paper [57].  Scrutiny of the NOx 

concentration profiles at 450 ºC failed to show clear indications of a link between the 

exotherms and decreased NOx storage as reported by Epling et al. [55]; however, given 

the relatively small magnitude of the discrepancy between the first-cycle and cycle-

average NSE values, this is unsurprising. 

 

Turning to the role of Pt in NOx storage and reduction, in the fresh state a slight 

improvement in the initial NSE was observed in the range 150-250 ºC with increase of 

the Pt loading from 1.77 g/L (Pt-50) to 3.53 g/L (Pt-100) (Figure 4.7).  Aging magnified 

the impact of Pt loading on both the initial and cycle-averaged NSE, the decreases in both 

the initial and cycle-based NSE observed for Pt-50 at 250 ºC and 350 ºC after aging being 

of a greater magnitude than for Pt-100.  As confirmed by our TEM analysis, Pt is highly 

dispersed in the fresh catalysts and consequently the Pt particles and the NOx storage 

components (BaO/Al2O3 and CeO2) are in close proximity, i.e., there is a large interfacial 

perimeter between the Pt and NOx storage phases.  As discussed above, aging resulted in 

significant sintering of the Pt and as a consequence the interfacial perimeter between the 

Pt and Ba decreased, as did that between the Pt and CeO2 (although to a lesser extent).  

Based on the mechanism of NOx storage and reduction, as proposed in the literature [18], 

the limiting step during cycling is believed to be transfer of NOx between Pt and Ba, and 

the distance between the Pt and Ba phases can significantly impact the NOx spillover 

from Pt to Ba during NOx storage and reverse NOx spillover from Ba to Pt during NOx 

reduction.  As a result, both NOx storage and reduction capability are degraded after 

aging due to segregation of the Pt and Ba; however, our results indicate that increasing Pt 

loading can, to a certain extent, alleviate the effect of aging.  A further comparison 

between Pt-100 and 30-50 infers that a higher Pt loading on NOx storage components 

(BaO and CeO2, see Table 4.2), as for Pt-100, can benefit the LNT performance of aged 

catalysts albeit the total Pt loading is the same in both of them.  Consistent with these 

findings, Clayton et al. [58] observed that during lean-rich cycling, the amount of stored 

NOx increased with increasing Pt dispersion in the temperature range studied (125-340 

°C) for Ba-based model catalysts; this was similarly attributed to the enhanced NOx 

spillover from Pt to the Ba phase that should result from the larger Pt surface area and 
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Pt/Ba interfacial perimeter.  Likewise, a tendency for slower catalyst regeneration with 

increasing Pt particle size was also noted, suggesting that a kinetic process, such as 

reverse spillover of stored NOx or the spillover of reductant from Pt to the NOx storage 

phase, may limit the overall rate. 

 

The effect of Ba loading on initial NSE also became more evident after aging.  Whereas 

in the fresh state catalysts 30-50 and 45-50 showed little difference in initial or cycle-

averaged NSE, after aging 45-50 displayed superior initial NSE at 250 ºC and 350 ºC. At 

450 ºC this trend was reversed for reasons that are not clear. However, there was little 

difference in the NSE values of the two catalysts under cycling conditions, implying that 

cycling performance was limited by catalyst regeneration rather than initial NOx storage 

efficiency. In other words, degradation of the NOx regeneration function is the critical 

issue for these catalysts with respect to their NSE after aging.  

 

4.3.4. NOx Release and Reduction. 

NOx release under rich purging is shown in Figures 4.5 and 4.6. The fresh catalysts 

showed much higher NOx release at 150 ºC than the aged catalysts.  The kinetics of NOx 

reduction are slow at low temperature [59], a fact which is exacerbated by the presence 

CO in the rich phase gas feed; at low temperatures CO coverage on the PM sites is high, 

thereby effectively poisoning the sites for NOx adsorption and reduction [43].  

Consequently, the fresh catalysts, possessing high initial NSE, showed considerable rich 

phase NOx slip due to their limited NOx reduction ability.  In contrast to the low 

temperature behavior, the rich phase slip in the range 250-350 ºC increased after aging, 

reflecting deterioration in NOx reduction activity, and a resulting imbalance in the rates of 

NOx release and reduction.  This is most clearly illustrated by catalyst 45-50, peak NOx 

concentrations of 1300 ppm being observed at 250 ºC after aging, corresponding to 

release – without reduction – of 16% of the stored NOx. At 450 ºC this effect is reversed, 

i.e., rich phase NOx slip is lower for the aged catalysts relative to their fresh counterparts, 

a finding which can be attributed to the significantly lower NSE after aging.  However, 

even at 450 ºC the amount of rich phase NOx slip expressed as a percentage of the total 

amount of NOx stored is generally higher for the aged catalysts compared to their fresh 
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analogues, e.g., 19.7% versus 11.7% for 45-50 (Table 4.6).  This again reflects 

deterioration in the NOx reduction function of the catalysts caused by aging.  

 

The overall impact of aging under lean-rich cycling is reflected in the cycle-averaged 

NOx conversions reported in Table 4.6.  Overall, NOx conversion is observed to decrease 

after aging as a consequence of decreased NSE and increased rich phase NOx slip.  

Whereas cycle-averaged NOx conversion in the range 250-350 ºC is similar for the four 

catalysts in the fresh state (being close to 100% for Pt-100, 30-50 and 45-50, and only 

slightly lower for Pt-50), after aging a clear ordering is observed, namely: Pt-100 > 30-50 

> 45-50 > Pt-50.  Given the importance of the Pt-Ba interface, it follows that high Pt 

loadings are beneficial for catalyst performance since they provide one means of ensuring 

a high degree of Pt-Ba contact.  On this basis, and bearing in mind that the Pt dispersions 

in the aged catalysts were very similar, the inferior performance of Pt-50 is readily 

explained.  As discussed in section 4.3.3, the superior performance of Pt-100 relative to 

30-50 and 45-50 is ascribed to the higher Pt loading on the BaO and CeO2 NOx storage 

components, albeit the total Pt loading is the same in the three catalysts. 

 

Interestingly, after aging catalyst Pt-100 was able to outperform 30-50 and 45-50 despite 

the fact that the Rh loading in Pt-100 was only half that of the other two catalysts.  From 

Table 4.6, it is apparent that Pt-100 displayed superior NSE than 30-50 in both the fresh 

and aged states.  This is not surprising, given that Rh is not considered to contribute 

significantly to NO oxidation, being less active than Pt.  Comparing rich phase NOx 

release, it is found that 30-50 generally outperformed Pt-100, particularly at low 

temperatures when the kinetics of NOx reduction are slow.  This is consistent with the 

superior activity of Rh, as compared to Pt, in anaerobic NOx reduction [60].  However, in 

general the superior NSE of Pt-100 is seen to outweigh the lower rich phase NOx release 

displayed by 30-50, with the consequence that aged Pt-100 showed slightly better cycle-

averaged NOx conversion than aged 30-50 in the temperature range 250-450 ºC. 
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4.3.5. Selectivity of NOx Reduction. 

The selectivity to NOx reduction products during rich purging is summarized in Figure 

4.8.  For the fresh catalysts, N2O was the dominant product at 150 ºC, while N2 was the 

main product in the range 250-450 ºC.  Compared to the other three catalysts, in the fresh 

state Pt-50 exhibited higher N2O and lower N2 selectivity, with only small differences in 

product selectivity being observed among Pt-100, 30-50 and 45-50.  After aging, all of 

the catalysts exhibited decreased selectivity to N2O at 150 ºC and significantly increased 

NH3 production in the range 250-450 ºC, although N2 remained the dominant product at 

350 ºC and 450 ºC. 

 

Due to the slow response time of the FT-IR analyzer, the inherent time resolution of the 

data collected in this study is significantly longer than the 5 s duration of the rich phase.  

Consequently, it proved impossible to establish reliably the time dependence of N2O 

release relative to the other N-containing species evolved (NO, NO2 and NH3).  However, 

a number of previous studies have indicated that N2O is formed immediately after the 

lean to rich transition, and that NH3 is observed after a slight delay [61-63].  This implies 

that N2O is formed in the reaction front, in a reaction which must proceed in close 

association with removal of oxygen from the surface of the Pt particles via reaction with 

H2.  Under these conditions, the local H2/NO stoichiometry at Pt will be low, due to the 

simultaneous release of NOx and consumption of H2 in the reaction front by stored 

oxygen, including that on the oxidized Pt particles (in addition to oxygen stored on the 

ceria washcoat component).  At low temperature (75-150 ºC) low H2/NO ratios are 

known to favor the formation of N2O [64].  This can be understood in terms of the 

formation of N2O via the reactions of molecularly adsorbed NO according to equations 

(4.1) and/or (4.2) [65,66]: 

 

2 Pt-NO ↔ N2O + Pt-O + Pt     (4.1) 

Pt-NO + Pt-N ↔ N2O + 2 Pt     (4.2) 

 

Based on energy barriers determined from DFT calculations, Burch et al. [66] reasoned 

that equation (4.1), which proceeds via an adsorbed (NO)2 intermediate, should be 
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favored at low temperatures (ca. 100 °C), whereas equation (4.2) is likely to be 

responsible for N2O formation at higher temperatures (> 200 °C). 

 

 

Figure 4.8.  Selectivity to N2O (top), NH3 (middle) and N2 (bottom) for NOx 
reduction during lean-rich cycling. 
 

Molecular adsorption of NO on Pt, as opposed to dissociative adsorption, will be favored 

(i) at low temperatures, when the rate of NO bond scission is low, (ii) when Pt is partially 

covered by O, such that the paired surface sites required for NO dissociation are scarce, 

and (iii) when the concentration of adsorbed hydrogen is relatively low.  The latter 

consideration stems from reports suggesting that the presence of adsorbed hydrogen 

promotes NO dissociation on metal surfaces [67-69]. Hecker and Bell [67] proposed that 

NO dissociation results from the abstraction of molecularly adsorbed NO by adsorbed H: 

 

Pt-NO + Pt-H ↔ Pt-N + Pt-OH    (4.3) 
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Indeed, calculations show that the activation energy is lower for the assisted 

decomposition of NO (equation 4.3) than for simple dissociation [70]:  

 

Pt-NO + Pt ↔ Pt-N + Pt-O     (4.4) 

In addition, it has been suggested that enhanced electron donation from the metal to the 

NO antibonding orbital when adsorbed hydrogen is present may promote NO bond 

scission [68]. 

 

Temporal analysis of products (TAP) experiments by Harold and co-workers [69] support 

the occurrence of equation (4.3), the adsorbed N reacting with NO to form N2O (equation 

4.2).  From this it follows that N2O formation can only be avoided when NO adsorbed on 

the catalyst is fully dissociated, a conclusion reached by Burch and Watling in their study 

of the C3H6-NO-O2 reaction over Pt catalysts [71]. 

 

In terms of lean-rich switching, it is evident that at low temperatures and at short rich 

times, as H2 removes adsorbed O from Pt, molecularly adsorbed NO will form N2O via 

equations (4.1) and/or (4.2), the latter being preceded by equation (4.3).  At longer rich 

times, when the reaction front has passed, the local concentration of H2 will be higher 

(since it is not being consumed via reduction of the initially oxidized Pt particles or other 

forms of stored oxygen), while the NOx concentration will be lower.  Hence, H and N ad-

atoms will dominate and N2 and NH3 will be the main NOx reduction products formed 

[62].  Higher temperatures should also favor N2 and NH3 production due to more 

extensive NO dissociation.  Finally, it should be noted that other formation routes for 

N2O are conceivable, such as the reaction of NH3 with NOx or the reaction of NH3 with 

stored oxygen.  However, the formation of N2O from these processes is typically 

observed at temperatures in excess of 150 ºC [64].  

 

Turning to the factors influencing NH3 production, as mentioned above, recent studies 

have shown that the product distribution during NOx reduction is a function of the 

relative NOx and reductant concentrations, high H2:NOx ratios favoring the formation of 

NH3 [65].  Since the same amount of reductant was available during rich purging for the 
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fresh and aged catalysts, a higher ratio of reductant to stored NOx for the aged catalysts 

(due to the lowered NSE) should result in increased selectivity to NH3 over N2.  Indeed, 

several recent studies have shown that selectivity to NH3 increases with decreasing 

amount of NOx stored [72,73].  Another important factor that can influence the NOx 

reduction selectivity of the aged catalysts is their OSC.  Previously we have shown that 

selectivity to N2 tends to increase with increasing OSC [41].  However, in this case there 

is no simple correlation between product selectivity and OSC.  Although the catalysts 

with the lowest OSC at 350 ºC showed the highest selectivity to NH3 in the fresh state 

(Pt-50 and 45-50), after aging catalysts Pt-100, 30-50 and 45-50 showed the opposite 

trend.  However, all of the catalysts displayed a remarkable increase in selectivity to NH3 

after aging.  In addition to the effective increase in local H2:NOx ratio mentioned above, 

there are several other possible reasons for this.  First, a decrease in OSC brought on by 

aging should result in an increased reductant concentration in the gas front during rich 

purging (as compared to the fresh catalyst), due to reduced consumption of the reductant 

by reaction with the stored oxygen, thereby favoring the formation of NH3.  Second, NH3 

formed at the front of the catalyst can be converted to N2 via reaction with the oxygen 

stored in the rear of the catalyst.  As catalyst OSC is decreased, so less NH3 tends to be 

converted to N2 at the rear of the catalyst.  From Table 4.4 it is apparent that after aging, 

all of the catalysts showed decreased OSC. In this context, it is instructive to examine the 

outlet CO profile during cycling (Figure 4.9).  As shown, CO slip was observed in all  

cases during rich purging, indicative of complete consumption of the stored oxygen.  As 

for the NH3 measured in the effluent, the amount of CO in the effluent increased after 

aging.  This is consistent with the role of stored oxygen in consuming reducing species 

present in the catalyst, although in the case of CO it is possible that decreased water-gas 

shift activity after aging may have contributed to the higher outlet CO concentration. 
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Figure 4.9.  Comparison of integrated outlet CO concentration before and after 
aging (T = 350 ºC). 
 

In addition to OSC, other factors play a role in determining the selectivity of NOx 

reduction.  The dispersion of precious metal has recently been shown to be important on 

this regard, lower Pt dispersions favoring the production of NH3 [58].  This can be 

rationalized on the basis that as the Pt/Ba interfacial perimeter decreases (with decreasing 

Pt dispersion), the rate of transport of stored NOx to Pt (i.e., reverse spillover) is 

decreased.  If this rate is slower than the H2 feed rate, then H2 will break through with 

substantially more NOx remaining on the catalyst after H2 breakthrough.  Consequently, 

the Pt surface will be predominantly covered by hydrogen, and as the stored NOx 

transports to the Pt particles, NH3 will be preferentially formed.  Indeed, a recent 

modeling study confirms the idea that NH3 generation is favored under conditions when 

NOx transport to the Pt/Ba interface is the rate determining process [74]. 

 

Lengthening of the NOx storage-reduction (NSR) zone can also be expected to contribute 

to the observed increase in selectivity to NH3 after aging.  A recent study employing 

SpaciMS suggests that the longer the NSR zone (i.e., the axial portion of the catalyst 

where NOx is stored and reduced), the shorter the downstream OSC-only zone (i.e., the 

axial portion free of stored NOx) [75].  This leads to decreased oxidation of NH3, slipping 

from the upstream NSR-zone, by oxygen stored in the OSC-only zone [75,76].  This 

effect is particularly noticeable for sulfated catalysts, since as sulfation proceeds there are 

fewer active sites available per unit of catalyst volume, causing the NSR zone to be 
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stretched towards the rear of the catalyst.  Similarly, this effect is expected to be 

significant for the catalysts in this work based on the observed decreases in both initial 

and cycle averaged NSE after aging; these findings are consistent with an effective 

decrease in the concentration of NOx storage sites, which in turn implies that the NSR 

zone in the aged catalysts must be greatly expanded relative to their fresh analogues. 

 

Finally, it should be mentioned that since overall catalyst selectivity to NH3 is governed 

by the relative rates of NH3 generation and consumption, if catalyst aging were to result 

in a decrease in the rate of the NOx-NH3 reaction occurring in the reductant front [77], 

then selectivity to NH3 would also be expected to increase.  However, in separate work 

[78], we have found that the SCR reaction rate for model catalysts similar to the ones 

used in this study is not greatly affected by aging (under the same conditions used in this 

work).  Consequently, we conclude that this is not a major factor in the observed increase 

in catalyst selectivity to NH3 after aging. 

 

4.3.6. Effects of Aging on Specific Catalyst Functions. 

It is generally accepted that the functioning of LNT catalysts involves four sequential 

steps [18]:  (i) NO oxidation to NO2, (ii) NOx storage, (iii) NOx release (i.e., nitrate 

decomposition) and (iv) NOx reduction. As for our previous study [40], in this work it 

was found that simulated road aging resulted in significant deterioration of catalyst 

performance in steps (ii), (iii) and (iv).  Considering step (ii), besides the effect of Pt-Ba 

phase segregation, the other important factor responsible for decrease of the initial and 

cycle-averaged NSE after aging is residual sulfur.  Sulfation of the Ba phase is reflected 

in the initial (“first cycle”) NSE values measured at 450 ºC.  At this temperature ceria 

does not contribute to NOx storage [54], hence the significant deterioration in initial NSE 

at 450 ºC observed after catalyst aging reflects the deterioration of the ability of the Ba 

phase to trap NOx.  In addition, we cannot rule out the effect of the likely decreased Ba 

dispersion caused by aging due to its high mobility. 

 

The effect of Pt sintering is reflected in the performance of the aged catalysts with respect 

to steps (ii), (iii) and (iv).  In the case of step (iv), rich phase NOx slip in the range 250-
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350 ºC increased after aging (as shown in Table 4.6), indicative of an imbalance in the 

rates of NOx release and reduction arising from deterioration of the NOx reduction 

activity.  This observation is consistent with the literature for three-way catalysts, which 

indicates that decreased NOx reduction activity is associated with precious metal sintering 

[79]. 

 

In the case of steps (ii) and (iii) it is difficult to decouple the effects of Pt sintering, since 

under cycling conditions NOx storage efficiency is dependent on the extent to which 

stored NOx is released during rich purging (as discussed in section 4.3.3).  However, it is 

instructive to consider the NSE data measured at 150 ºC (Figure 4.7).  Comparison of the 

high initial NSE with the low cycle-averaged NSE values observed for the different 

catalysts suggests that during cycling a kinetic process, such as reverse spillover of stored 

NOx or the spillover of hydrogen from Pt to the BaO and CeO2 storage components, 

limits the nitrate decomposition rate both for the fresh and aged catalysts.  This, in turn, 

limits the cycled-averaged NSE.  As shown, the initial NSE at 150 ºC does not drop 

significantly after aging, indicating that NOx storage (step (ii)) on the BaO and/or CeO2 

phases is not markedly impacted.  Given that ceria plays a significant role in NOx storage 

at such low temperatures, this relatively small decline in initial NSE can be attributed to 

the retention of a reasonably high Pt dispersion on the ceria phase, as indicated by the 

HRTEM measurements presented above, as well as the fact that the ceria phase is not 

contaminated with residual sulfur (unlike the Ba phase).  A more significant impact of 

aging is observed on the cycle-averaged NSE at 150 ºC, indicating that NOx release (step 

(iii)) is more deteriorated by aging than the NOx storage step.  However, at higher 

temperatures these trends become less clear.  This is because the Ba storage phase plays 

an increasingly greater role in NOx storage as the temperature increases, and the 

deterioration of the initial NSE – due to sulfation of the Ba phase – becomes a more 

significant contributor to the overall decrease in cycled averaged NSE.  However, it is 

clear that after aging the kinetics of nitrate release are at least partially limiting with 

respect to cycle-averaged NSE since the deterioration in cycle-averaged NSE in all cases 

exceeds the drop in initial NSE, i.e., the degradation of cycle-averaged NSE at higher 

temperatures cannot be explained solely by the deterioration in initial NSE. 
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As shown in Table 4.6, the cycled-averaged storage efficiency for all of the catalysts 

dropped significantly after aging at all temperatures.  Comparison of the changes in 

cycle-averaged NOx conversion for the fresh and aged catalysts with the corresponding 

changes in the lean phase (cycled-averaged) NSE and with the changes in rich phase NOx 

release reveals a strong correlation between NOx conversion and NSE.  This shown by 

the correlation plot depicted in Figure 4.10.  As shown, when the values for the different 

catalyst are plotted and grouped by temperature, strong correlations are observed for the 

data collected at 350 and 450 ºC.  In principle, a strong correlation between cycle 

averaged NOx conversion and storage efficiency is to be expected if there is no limitation 

with respect to NOx reduction.  Given that the kinetics of NOx reduction are limiting at 

low temperatures, as evidenced by the considerable rich phase NOx slip observed at 150 

ºC and 250 ºC in Figure 4.6, the weak correlations observed at these lower temperatures 

are not surprising.  This is particularly evident for the 250 ºC data points.  As shown in 

Table 4.6, after aging a large increase in rich phase NOx slip is observed at 250 ºC for all 

of the catalysts, indicative of a deterioration in the NOx reduction function.  At higher 

temperatures, the kinetics of NOx reduction are presumably sufficiently fast that, even 

allowing for the deterioration, NOx reduction is not limiting. 

 

 

Figure 4.10.  Correlation of the change in cycle-averaged NOx conversion after aging 
with the change in cycle-averaged lean phase NSE. 
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Overall, these results show that the deterioration in catalyst performance at 350 and 450 

ºC after aging is largely the result of the deterioration in cycle-averaged NSE.  This in 

turn, can be ascribed to (i) a decrease in NOx storage capacity resulting from sulfation of 

the Ba phase and (ii) sintering of the Pt, resulting in less efficient NOx storage and nitrate 

decomposition.  At the lower temperatures, the deterioration in NOx reduction activity 

represents a significant additional factor. 

 

4.3.7. Interfacial Pt-Support Perimeter. 

As indicated in the Introduction, previous studies [15-21] have demonstrated the 

importance of the proximity of the Pt and Ba phases for efficient LNT functioning.  

Given that Pt is believed to act as a conduit for NOx spillover to and from the Ba phase, it 

follows that close proximity of Pt and Ba are required to achieve efficient NOx storage 

and reduction.  The effect of Pt sintering on the Pt-Ba interface can be illustrated by 

consideration of the interfacial perimeter between Pt and its support (in this case BaO) at 

different levels of Pt dispersion.  Assuming a hemispherical morphology for Pt particles, 

the relationship between the number of atoms in a Pt particle (NPt) and the particle 

diameter (d) is given by: 

 

	      (4.5) 

 

where Na is Avogadro’s number, and Wa is the atomic weight.  Based on face-centered 

cubic (FCC) packing for Pt, the number of surface atoms (N ) as a function of particle 

diameter is given by: 

 

NPts 2π d/2 2ω
      (4.6) 

where ω is the average atom density of Pt particle surface [80].  Dispersion is defined as 

the percentage of surface atoms in the particle, i.e.: 

 

Dispersion 	       (4.7) 
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From eqn. (4.5), it follows that the number of particles per gram of Pt (Σp) is given by: 

 

   Σ /

/
      (4.8) 

 

Assuming that the interfacial perimeter of a Pt particle corresponds directly to its 

circumference, the total interfacial perimeter per gram of Pt (Pt) is obtained as follows: 

 

Pt = * d* Σp       (4.9) 

 

As shown in Table 4.7, for a Pt dispersion of 38%, which is close to the values observed 

prior to aging for the catalysts in this study (see Table 4.4), the total perimeter of the Pt 

particles amounts to 6.22 x 1019 nm/g Pt.  However, for a dispersion of 11%, which is 

close to the values observed after aging, the total perimeter is only 5.6 x 1018 nm/g Pt, 

i.e., a factor of eleven lower.  These simple calculations are illustrative of the critical role 

that Pt particle size plays in determining the extent of Pt-Ba contact and, by implication, 

in governing LNT functioning.  From this it follows that future attempts to predictively 

model the deactivation of LNT catalysts will have to incorporate the extent of Pt sintering 

as a key parameter. 
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Table 4.7.  Total Pt-support interfacial perimeter as a function of Pt particle size, 

assuming hemispherical particle morphology. 

 

 

4.4. Conclusions. 

According to physico-chemical data for the fresh and aged catalysts in this work, aging 

resulted in two main changes which can explain the accompanying degradation in 

catalyst activity for NOx storage and reduction.  First, acording to H2 chemisorption and 

TEM data, sintering of the precious metals in the washcoat occurred, being most evident 

for Pt located on the BaO/Al2O3 washcoat component.  The resulting decrease in contact 

between the Pt and Ba phases contributed to decreased first cycle NSE due to less 

efficient NOx spillover from Pt to Ba during NOx adsorption.  An even larger decrease in 

cycle-averaged NOx storage points to the fact that the ability to regenerate the NOx 

storage sites was also adversely affected, i.e., Pt-Ba phase segregation adversely affected 

the rate of reductant spillover from Pt to Ba and hence NOx release.  In addition, at low 

temperatures (250 ºC) an increase in rich phase NOx slip was observed after aging, 

consistent with a decrease in the rate of the reverse NOx spillover process and/or the 

intrinsic rate of PM-catalyzed NOx reduction. 

 

Second, elemental analysis, TEM and XRD data indicate the accumulation of sulfur in 

the washcoat, present as BaSO4.  At the measured concentrations, approximately 30% of 

the Ba present was typically present in the sulfated form, providing an additional 

Average Pt 
Particle Size 

(nm) Dispersion

Number of 
Atoms in 
Particle

Number of  
Particles/g Pt 

Total 
Interfacial 
Perimeter 
(nm/g Pt) 

1 100 18 1.78E+20 5.6E+20
2 57 139 2.22E+19 1.40E+20
3 38 468 6.60E+18 6.22E+19
4 29 1110 2.78E+18 3.50E+19
5 23 2167 1.42E+18 2.24E+19
8 14 8876 3.48E+17 8.76E+18

10 11 17336 1.78E+17 5.60E+18
20 6 138684 2.22E+16 1.40E+18
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explanation for the loss in initial and cycle-averaged NSE after catalyst aging. 

 

For the four catalysts used in this study, cycle-averaged NOx conversions in the range 

250-350 ºC were similar in the fresh state, while after aging a clear ordering was 

observed: Pt-100 > 30-50 > 45-50 > Pt-50.  Given the importance of the Pt-Ba interface, 

it follows that high Pt loadings are beneficial for catalyst performance since they provide 

one means of ensuring a high degree of Pt-Ba contact.  On this basis, and bearing in mind 

that the Pt dispersions in the aged catalysts were very similar, the inferior performance of 

Pt-50 is explained.  The superior performance of Pt-100 relative to 30-50 and 45-50 is 

ascribed to the higher Pt loading on the BaO and CeO2 NOx storage components in Pt-

100, albeit the total Pt loading is the same in the three catalysts.  The effect of Rh loading 

was after aging found to be marginal within the range studied; although the higher Rh 

loaded catalyst 30-50 showed slightly better low temperature NOx reduction activity than 

Pt-100 (containing half as much Rh), the superior NSE of Pt-100 outweighed this effect.  

Finally, it was found that increasing the BaO loading in washcoat from 30 to 45 g/L 

produced no measurable benefit. 
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Chapter 5. Application of SpaciMS to the Study of Ammonia Formation in Lean 

NOx Trap Catalysts. 

 

Note - This chapter was published as an article in the following journal: 

 

V. Easterling, Y. Ji, M. Crocker, M. Dearth, R.W. McCabe, Application of SpaciMS to 
the Study of Ammonia Formation in lean NOx Trap Catalysts.  Catalysis Today 151 
(2010) 338–346. 
 

The article appears in this dissertation with permission from the publisher. 

 

5.1. Introduction. 

Recent years have witnessed concerted efforts to reduce NOx emissions from mobile 

sources of lean exhaust gas using lean NOx trap (LNT) or selective catalytic reduction 

(SCR) catalysts.  Although both technologies have many positive features, each approach 

has drawbacks which have slowed their application to the automotive marketplace.  For 

LNT catalysts, one of the main disadvantages is the cost associated with the use of 

platinum group metals (PGMs), while for SCR, the cost of the injection system and 

refilling of the NH3 source adds to the consumer’s costs.  However, recent studies have 

shown that by combining LNT and SCR catalysts in series, these drawbacks can be 

lessened [1-5].  In this configuration the SCR catalyst functions in a passive or in situ 

mode, i.e., with the storage and utilization of NH3 generated by the LNT during rich 

purge events.  Given that the presence of the SCR catalyst relaxes the NOx conversion 

requirements of the LNT catalyst, the volume of the LNT in the LNT-SCR system can, in 

principle, be lower than for an LNT-only system, thereby reducing the precious metal 

costs.  Furthermore, the need for a urea injection system is eliminated. 

 

To realize a LNT-SCR system capable of achieving these aims, an understanding is 

required of the interplay between system operating parameters and the underlying 

chemistry of NOx reduction.  Probably the most important aspects to be considered are 

the generation of NH3 over the LNT, and its subsequent reaction with NOx over the SCR 

catalyst.  A potential problem in studying these processes in a LNT-SCR system is the 
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integral nature of the catalysts.  Reactants and products can react, adsorb, and desorb 

multiple times before exiting the system.  This makes the study of LNT-SCR systems 

difficult using traditional laboratory techniques based on analysis of the reactor effluent. 

 

To overcome these problems, spatially resolved capillary inlet mass spectrometry 

(SpaciMS), developed at Oak Ridge National Laboratory, has been applied to monitor the 

composition of simulated exhaust gas as it passes through LNT catalysts [6-14].  The key 

feature of a SpaciMS system is the use of a capillary connected to the sample cell of a 

mass spectrometer.  The capillary allows the internal gas stream to be analyzed at 

different points along the length of the LNT or SCR catalyst under study.  Consequently, 

the gaseous components present can be monitored on both a spatial and temporal scale.  

Partridge et al. employed SpaciMS to study NH3 formation and utilization over a 

Pt/Ba/Al2O3 catalyst during regeneration with H2 [10].  It was found that NH3 was 

formed at the same time as the N2 product inside the catalyst during regeneration, and 

was consumed as aggressively as the H2 reductant along the catalyst.  From this it was 

concluded that the intermediate NH3 regeneration pathway plays an important role in 

LNT catalyst regeneration.  The same research group also utilized this technique to study 

the effect of sulfur on the spatiotemporal distribution of NOx storage and reduction [11].  

Prior to sulfation, NOx storage/reduction was found to be localized in the front portion of 

catalyst, whereas sulfation resulted in a shift of the NOx storage/reduction (NSR) zone 

downstream, thereby decreasing the length of the downstream zone in which only oxygen 

was stored.  These workers also reported an increase in selectivity to NH3 after sulfation, 

and ascribed it to decreased oxidation of NH3 slipping from the NSR zone by the oxygen 

stored downstream [11,12].  A more recent study by this group further demonstrated that 

NH3 slip at the catalyst exit increased with sulfur loading due to its formation closer to 

the catalyst outlet and decreased NH3 conversion by stored oxygen downstream of the 

NSR zone [13].  Moreover, during catalyst regeneration the extent of NOx readsorption 

downstream of the NSR zone was found to diminish after sulfation, resulting in earlier 

and broader NOx peaks at the catalyst outlet.  The SpaciMS technique was also applied in 

another recent LNT study by Luo et al. [14] in which catalyst desulfation was examined.  

For a partially sulfated commercial catalyst, the plug-like sulfur profile was redistributed 
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after desulfation at 600 ᵒC as a result of re-adsorption.  The extent of re-adsorption was 

found to be determined by the catalyst formulation and sulfation degree. 

 

We have previously investigated the effect of regeneration conditions on NH3 formation 

in LNT catalysts [15].  One of the findings from these studies was that NH3 selectivity is 

dependent on the local H2:NOx ratio at the precious metal sites.  Increasing the 

regeneration time or reductant concentration fed to the catalyst increases this ratio and 

thereby increases the amount of NH3 formed, as opposed to N2.  Conversely, increasing 

the amount of NOx stored decreases the selectivity to NH3.  It was also observed that the 

addition of a ceria-based oxygen storage material to a Pt/Rh/BaO/Al2O3 catalyst caused a 

decrease in NH3 selectivity [15-18], which was explained on the basis that consumption 

of reductant by stored oxygen results in decreased H2:NOx ratios during regeneration, 

which favors the formation of N2 over NH3.  In addition, oxygen stored in the rear of the 

catalyst can consume NH3 formed upstream via oxidation to produce N2, NO, or N2O.  

After aging, increased selectivity to NH3 was observed, for both the ceria-containing and 

ceria-free catalyst.  In principle, this increase in selectivity to NH3 can be accounted for 

by any one of a number of factors [15]: 

 

(i) Aging-induced Pt sintering, resulting in Pt-Ba phase segregation.  Consequently, 

the rate of NOx transport to the Pt sites during regeneration is decreased.  As 

Harold and co-workers have pointed out [19], if this rate is slower than the H2 

feed rate, then H2 will break through with substantially more NOx remaining on 

the catalyst.  Consequently, the Pt surface will be predominantly covered by 

hydrogen, and as the stored NOx diffuses to the Pt particles, NH3 will be formed 

with high selectivity.  Modeling studies confirm this idea, i.e., that NH3 formation 

is favored when solid-phase diffusion of NOx to the Pt/Ba interface is the rate 

determining process, which becomes increasingly likely as the Pt dispersion 

decreases [20].  

(ii) For a fixed concentration of reductant, the decreased oxygen storage capacity 

(OSC) of the aged catalysts should result in higher effective H2:NOx ratios in the 

reduction front due to decreased reductant consumption by stored oxygen, thereby 
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favoring NH3 formation.  Furthermore, there is less oxygen available downstream 

of the reductant front to react with formed NH3. 

(iii) After aging, there are fewer NOx storage sites available per unit of catalyst length.  

This should result in higher effective H2:NOx ratios in the reductant front, again 

favoring NH3 formation [15].  

(iv)  The length of the NOx storage-reduction zone increases due to the decrease in 

NOx storage capacity (NSC) as the catalyst ages [11,12,15].  More NH3 slips from 

the LNT without being oxidized because the increased length of the NSR zone 

decreases the length of the downstream OSC-only zone. 

(v) After aging, higher NH3 emissions may result from decreases in the rates of NH3 

consumption via reaction with NOx or O2 stored downstream of the reaction front. 

 

From the foregoing, it is evident that NH3 selectivity after aging is likely to be dependent 

– at least in part – on the residual OSC of the catalyst, as well as the amount of NOx 

stored.  In an effort to distinguish between the factors that can account for increased LNT 

selectivity to NH3 after aging, in this study we adjusted the amount of reductant used to 

regenerate each catalyst (degreened and thermally aged) based on the OSC of the catalyst 

and the NOx storage capacity (NSC).  In this way we attempted to correct for the change 

in catalyst OSC and NSC after aging, thereby eliminating these as factors.  SpaciMS was 

used to monitor the NOx storage and reduction processes for degreened and aged catalysts 

in order to investigate the contribution of other factors to NOx reduction selectivity. 

 

5.2. Experimental. 

5.2.1. Catalyst Preparation. 

Two fully formulated Ba-based LNT catalysts were used in this study, the compositions 

of which are shown in Table 5.1.  For simplicity, the BaO-only formulation is denoted as 

B-225 (where 225 refers to the washcoat loading in g/L), while the catalyst containing 

both BaO and CeO2 is denoted at BC-175 (containing a washcoat loading of 175 g/L). 

Details of the catalyst preparation have been described elsewhere [16,17].  In both cases, 

the washcoat was applied to a 4” x 6” cordierite monolith substrate, possessing a cell 

density of 400 cpsi and a wall thickness of 6.5 mil.  The BaO component (21.5 wt %) was 
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supported on γ-alumina, while bare alumina was also used as a balance to bring the total 

washcoat loadings to the values indicated in Table 5.1. 

 

Table 5.1. Composition of catalysts used in this study. 

Component Catalyst code / nominal loading 

B-225 BC-175 

Pt, g/L 

Rh, g/L 

BaOa, g/L 

CeO2
b, g/L 

γ-Al2O3
c, g/L 

Total washcoat, g/L 

3.05 

0.61 

26 

0 

Balance 

225 

2.38 

0.48 

20 

67 

Balance 

175 

a 21.5 wt% supported on γ-Al2O3. 
b Stabilized with 5 wt% La2O3. 
c Stabilized with 3 wt% La2O3. 

 

5.2.2 Catalyst Aging. 

A 1.75 cm x 2.54 cm (d x l) core was drilled out from the LNT monolith and was 

wrapped with ceramic fiber and positioned in a quartz tube.  Degreening the catalyst 

consisted of exposing the catalyst to neutral conditions (5% CO2, 5% H2O, balance N2) at 

800 °C for 2 h.  Aging the catalyst involved subjecting the catalyst to continuous lean 

conditions (8% O2, 5% CO2, 5% H2O, and balance N2) at 800 °C for 24 h.  In both cases, 

the gas flow was adjusted to give a GHSV of 30,000 h-1. 

 

 

 

 

 

Copyright © Vencon Glenn Easterling 2013 
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5.2.3. Catalyst Characterization. 

5.2.3.1. N2 Physisorption. 

Surface area and pore volume analysis was performed according to the BET method by 

nitrogen adsorption at -196 ºC using a Micromeritics Tri-Star system.  Prior to the 

measurements catalyst samples (washcoat and monolith) were ground to a fine powder 

and outgassed overnight at 160 °C under vacuum.   

 

5.2.3.2. Pulsed H2 Chemisorption. 

The dispersion of precious metal (Pt + Rh) was determined with a Micromeritics 

AutoChem II Analyzer by means of pulsed H2 chemisorption at dry ice temperature (−78 

°C).  This temperature was chosen in an effort to minimize H spillover from the metal to 

the support material [21].  1 g of sample (as a fine powder), including both washcoat and 

substrate, was loaded into the reactor.  After being oxidized at 400 °C in 10% O2/He for 

15 min, followed by reduction at 300 °C in 10% H2/Ar for 15 min, the catalyst was 

heated to 400°C (hold time 10 min) in flowing Ar to remove adsorbed H.  Pulsed H2 

chemisorption was initiated using a four-way valve after the catalyst had been cooled to 

−78 °C. During this measurement, 0.5 mL of 10% H2/Ar was pulsed into the reactor 

every 2 min, the H2 signal at the reactor outlet being monitored with a thermal 

conductivity detector (TCD).  H2 pulsing was terminated after the TCD signal had 

reached a constant value, i.e., the total precious metal (Pt + Rh) sites were saturated with 

H2.  Assuming a 1:1 ratio of atomic hydrogen to surface Pt or Rh, the metal dispersion 

was calculated based on the amount of H adsorbed. 

 

5.2.4. SpaciMS Measurements. 

5.2.4.1. Determination of the Amount of Reductant Required for Catalyst Regeneration. 

Determination of the amount of reductant required for catalyst regeneration was based on 

the catalyst oxygen storage capacity (OSC) and the amount of NOx stored during lean-

rich cycling.  Hydrogen was measured using a V & F Airsense H-sense mass 

spectrometer.  All other species, i.e., NO, NO2, O2, H2O, and NH3, were measured using 

a V & F Airsense 2000 mass spectrometer using the low energy source, Hg, as the ion 

source; this enabled these species to be tracked individually, without interference from 
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other species present.  The mass spectrometer had been modified for SpaciMS 

measurements by incorporating a 0.37 mm outer diameter (0.18 mm i.d.) stainless steel 

capillary connected to the sample chamber.  The sampling rate was 14 sccm and data 

were collected at 3 Hz.  After the SpaciMS was calibrated, the sample was purged by 

heating it to 450 °C under a 4.2% H2 in N2 flow until the NH3 concentration measured by 

the SpaciMS fell to below 4 ppm at a position 1 mm from the rear of the catalyst.  Once 

this level was achieved, the reactor temperature was dropped to the desired temperature 

(200 °C, 250 °C, or 300 °C) and the samples were exposed to 60 s lean/5 s rich cycles.  

The lean phase gas contained 8% O2, 5% CO2, 5% H2O, and balance N2, while the rich 

phase gas contained 4.2% H2, 5% CO2, 5% H2O, and balance N2.  After 5 cycles the flow 

was switched from the outlet of the reactor to the reactor bypass so that the baseline 

hydrogen level could be measured.  The OSC was determined by subtracting the cycle-

averaged outlet H2 concentration from the inlet H2 concentration. 

 

In separate experiments, the NOx storage capacity of the LNT was determined.  The feed 

was switched to neutral conditions (5% CO2, 5% H2O, and balance N2), and once 

equilibrated, the catalyst was subjected to lean conditions for 60 s, using a feed consisting 

of 300 ppm NO, 8% O2, 5% CO2, 5% H2O, and balance N2.  Simultaneously, the outlet 

NOx concentration was monitored by the SpaciMS probe at a position 1 mm from the rear 

catalyst face.  At the end of the lean 60 s period, the SpaciMS probe was moved to a 

position 4 cm in front of the catalyst and the measurement was repeated.  The difference 

between the two integrated NOx concentrations gave the amount of NOx stored.  The 

amount of reductant required for LNT regeneration was then calculated from the sum of 

the measured OSC and 2.5 times the value of the NOx storage measurement.  This factor 

of 2.5 represents the stoichiometry of NOx reduction by H2 to give N2 (assuming that NOx 

is stored as nitrate) as reported in the literature [22,23]: 

 

Ba(NO3)2 + 8 H2 ↔ 2 NH3 + Ba(OH)2 + 4 H2O   (5.1) 

 

3 Ba(NO3)2 + 10 NH3 ↔ 8 N2 + 3 Ba(OH)2 + 12 H2O  (5.2) 
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The sum of reactions (5.1) and (5.2) leads to the overall stoichiometry for the reduction 

of Ba nitrate by H2: 

  

Ba(NO3)2 + 5 H2  ↔  N2 + Ba(OH)2 + 4 H2O   (5.3) 

 

5.2.4.2. NOx Storage and Reduction Measurements. 

With the required reductant amounts having been determined for each catalyst (both 

degreened and aged) at 200, 250, and 300 °C, NOx storage and reduction measurements 

were performed at these temperatures during 60 s lean/5 s rich cycles.  The lean phase 

gas contained 300 ppm NO, 8% O2, 5% CO2, 5% H2O, and balance N2, while the rich 

phase gas contained the calculated amount of H2 for each catalyst, 5% CO2, 5% H2O, and 

balance N2.  Prior to the measurements, each sample was exposed to the cycling 

conditions until the component concentrations in the reactor effluent were constant from 

one cycle to the next.  Once “stationary” cycles had been attained (~ 1 h), data pertaining 

to the concentrations of NO, NO2, O2, H2O and NH3 were collected at different positions 

using SpaciMS.  The first of these positions corresponded to the rear face of the catalyst 

(25.4 mm from the catalyst inlet), with successive sampling at, 16.4 mm, 8.4 mm, 4.4 

mm, and the front face (0 mm from the inlet).  By sampling in this manner (from rear to 

front), the chances of contaminating the capillary with particles from the washcoat of the 

catalyst were lessened.  Note that the “0 mm” position actually corresponds to a position 

of 0.1 mm; this was done in order to ensure that the capillary was correctly aligned with 

the selected channel.  Consequently, when feeding NO in the lean phase, some NO2 

(corresponding to ca. 15% NO conversion) was detected at the 0.1 mm position, arising 

from a combination of catalyzed NO oxidation in the first 0.1 mm of the catalyst and gas 

phase NO oxidation in the feed lines.  For each position, the system was allowed to 

stabilize for two 60 s/5 s cycles before data were taken over five successive cycles.  

These cycles were then averaged to produce the spatio-temporal plots of species 

concentration versus time for each axial location. 
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NOx storage efficiency (NSE) is defined in this study as: 

 

 (5.4) 

 

Rich phase NOx release is defined as:  

 

%100
 xx

x

NOofionconcentratleanOutletNOofionconcentratleanInlet

locationtmeasuremenatreleaseNOphaserichofionConcentrat
     (5.5) 

 

In both eqns. (5.4) and (5.5), all concentrations are cycle-averaged integrated values 

(ppm*s). 

 

5.3. Results and Discussion. 

5.3.1. Catalyst Characterization. 

The results of N2 physisorption and H2 chemisorption measurements performed on the 

degreened and aged catalysts are collected in Table 5.2.  Both catalysts displayed a small 

loss in surface area after aging, which for the B-225 sample was accompanied by a 

decrease in the pore volume.  Sintering of the catalyst is evidenced by an increase in the 

average pore radius, which can be attributed to collapse of the smaller pores during aging.  

Comparing the PGM dispersions derived from H2 chemisorption measurements, it is 

evident that exposure of the catalysts to high temperatures during aging resulted in 

significant PGM sintering.  Indeed, for both catalysts, a decrease in PGM dispersion of 

ca. 75% was seen.  These results are consistent with the degree of Pt sintering observed in 

a previous study in which model LNT catalysts were likewise subjected to continuous 

lean conditions at 800 ºC for periods of up to 16 h [24]. 
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Table 5.2. Physical properties of degreened and aged catalysts. 

Catalyst Total BET Pore volume Average PGM dispersion 
surface area pore radius 

(m2/g)a (cm3/g)a (nm)a (%) 
Degreened Aged Degreened Aged Degreened Aged Degreened Aged 

B-225 41.1 35.4 0.148 0.137 7.19 7.72 21.6 5.4 
BC-175 26.3 25.4 0.105 0.109 7.96 8.56 9.8 2.5 

a Includes cordierite monolith. 

 

5.3.2. Amount of Reductant Required for Complete NOx Reduction during Rich Purging. 

The minimum amount of reductant required to fully regenerate a LNT during lean-rich 

cycling can be determined from the oxygen storage capacity (OSC) and the NOx storage 

capacity (NSC).  In this study, the H2 concentration during lean-rich cycling was adjusted 

so that the degreened and aged catalysts would be exposed to a stoichiometric quantity of 

H2 with respect to complete regeneration.  This adjustment allows for a sounder basis 

when comparing fresh and aged catalysts in terms of the selectivity of NOx reduction, 

given that excess reductant would influence the selectivity towards NH3 production.  The 

results from these OSC and NSC measurements, performed on catalysts B-225 and BC-

175, are shown in Fig. 5.1.  The column chart is arranged such that the data for the non- 

ceria-containing catalyst B-225 are shown on the left half of the figure, while data for the 

ceria-containing catalyst are on the right.  Each of the stacked columns shows the amount 

of H2 required to consume the oxygen stored on the catalyst and to reduce the stored NOx.  

The fact that H2 concentrations required for complete regeneration of BC-175 are greater 

than those for B-225 can be attributed to the presence of La-stabilized CeO2 in BC-175.  

Comparing the OSC and NSC with temperature, it is apparent that for both the B-225 and 

BC-175 catalysts the measured values increase with temperature.  This trend is expected 

for BC-175 since CeO2 has increased OSC at higher temperatures due to the increased 

concentration of oxygen defect sites [25].  In addition, the NSC of Ba-based catalysts 

increases with temperature for the temperature range studied here [16,17].  
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Figure 5.1. Required amount of H2 during 60 s lean – 5 s rich cycling for catalyst 

regeneration.  Solid colors represent values for degreened catalysts and patterned 

colors represent values for aged catalysts.  The blue or top values in the columns 

represent the oxygen storage capacities, and the red or bottom values represent the 

NOx storage capacities. 

 

Considering the aged catalysts, an obvious trend is that the amount of reductant required 

for catalyst regeneration decreases after aging due to decreases in OSC and NSC.  During 

aging, Pt sintering occurs, leading to a decrease in the Pt-Ba interfacial perimeter [16,20], 

i.e., phase segregation occurs between the Pt and Ba storage sites [26-31].  Consequently, 

for a given length of catalyst, fewer storage sites are present and less reductant is needed.  

Additionally, agglomeration of the Pt during aging reduces the number of sites available 

for oxygen adsorption during lean conditions.  Finally, in the case of BC-175, a 

significant portion of the decrease in OSC can be attributed to the loss of oxygen defect 

sites in the structure of the La-stabilized CeO2 component after aging.  Mamontov et al. 

[25] have shown that OSC correlates with defect site concentration rather than surface 

area, the latter being relatively unchanged after aging based on the negligible change in 
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total catalyst surface area (Table 5.2).  Indeed, in their work Mamontov and co-workers 

found that significant decrease of OSC occurred upon aging a ceria sample at 800 ºC.  In 

addition, some contribution to the loss in OSC may come from the sintering of Pt 

supported on the CeO2 component, given that Pt acts essentially as a conduit for oxygen 

storage and release. 

 

5.3.3. Non-Ceria Containing Catalyst. 

5.3.3.1. NOx Storage. 

Once the amounts of reductant required for catalyst regeneration were determined, the 

catalysts were subjected to NOx storage-reduction experiments.  The non-ceria containing 

sample was subjected to 60/5 s cycles and evaluated at three temperatures:  200 °C, 250 

°C, and 300 °C.  Data pertaining to the measured lean NOx storage efficiencies (NSEs) 

are shown in Fig. 5.2.  For degreened catalyst B-225 the NSE increases along the length 

of the catalyst (at all temperatures), while NSE also increases with temperature in the 

range studied.  Maximum NSE values are reached around the midpoint of the catalyst, 

providing an indication of the length of the NOx storage zone under these experimental 

conditions.  Additional detail is provided in Figs. 5.3a and 5.3b, in which the cycle-

averaged NO and NO2 concentrations are plotted at each measurement point along the 

length of the catalyst.  For the degreened catalyst, a rapid decrease in the NO 

concentration begins at 4.4 mm, the NO concentration reaching zero by the 16.4 mm 

position.  At this juncture, an explanation is required for the slight increase in NO and 

NO2 concentrations observed in moving from the 16.4 to 25.4 mm positions in Fig. 5.3.  

As noted by Partridge and Choi [10], the SpaciMS system is capable of great sensitivity.  

This, combined with possible over-sampling at the rear of the catalyst (due to the high 

sampling rate and sampling position) can lead to the capillary sampling gas slightly 

beyond the rear of the catalyst.  At this location the gas is comprised of the effluent from 

all of the channels in the catalyst.  Bearing in mind that not all of the channels in the 

catalyst will have exactly the same amount of washcoat, the concentration of NOx just 

outside the rear of the catalyst can be different compared to the channel in which the 

capillary is located.  Furthermore, the outer diameter of the capillary used in these 

experiments (0.37 mm) was significant compared to the channel width (1.1 mm).  The 
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resulting restriction of the gas flow in the channel may result in a slightly different 

residence time, and hence gas composition, compared to the surrounding channels. 

 

 

Figure 5.2. Lean NOx storage efficiency as a function of position for degreened (DG) 

and aged (AD) catalyst B-225.  
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Figure 5.3. a) Lean phase NO concentration and b) lean phase NO2 concentration as 

a function of position during NOx storage on degreened (DG) and aged (AD) catalyst 

B-225. 

 

From Fig. 5.3a it is evident that the amount of NO present at each position increases with 

decreasing temperature.  Conversely, the NO2 concentrations increase with increasing 

temperature in the range 200-300 °C.  These results are consistent with an increase in the 
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rate of oxidation of NO to NO2 with increasing temperature.  At 300 °C, the rate of NO2 

formation is fast relative to the linear gas velocity and NO2 is stored in the front of the 

catalyst.  At the lowest temperature, 200 °C, the slower rate of oxidation of NO results in 

the feed gas traveling further along the length of catalyst before NO2 is generated and 

then stored.  Consequently, more of the catalyst is used for NOx storage.  This finding is 

consistent with a previous report that the length of the NSR zone decreases with 

increasing temperature [11].  In addition, at lower temperatures, a portion of the NOx can 

be stored as Ba(NO2)2, although the literature suggests that this pathway is fairly minor.  

For example, under their experimental conditions Forzatti and co-workers [4] found that 

at 200 °C ca. 20% of NOx was stored as Ba(NO2)2 and 80% was stored as Ba(NO3)2.  Fig. 

5.4 provides a schematic of the NOx storage process and depicts the relative NO and NO2 

concentrations measured at 200 ºC along the length of the catalyst. 
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Figure 5.4. Schematic showing NO and NO2 concentrations along the length of the 

catalyst and the mechanism of NOx storage under lean conditions. Note that the 

relative concentrations depicted correspond to actual data collected at 200 ºC for 

catalyst B-225.  

 

Fig. 5.2 also contains the NSE results for the aged B-225 catalyst.  In contrast to the data 

for the degreened catalyst, the NSE does not reach a maximum value within the length of 

the catalyst, indicating that the whole of the catalyst is used for NOx storage.  Indeed, the 

maximum NSE after aging does not exceed 60% at any measurement temperature.  

Hence, the OSC-only zone in the schematic shown in Fig. 5.4 (which corresponds to zone 

2) is effectively eliminated after aging. NSEs at the three temperatures are very similar, 

although because the data point at the 8.4 mm position in Fig. 5.2 is not available, the 

NSE at 200 °C appears to be greater than at 250 or 300 °C.  This is largely a consequence 

of the missing point, given that at all of the other measurement points the values at each 

of the temperatures are very similar. 
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From Fig. 5.3a, it is evident that the NO concentrations measured for the aged sample 

decrease gradually compared to the degreened case, NO being present in significant 

concentrations throughout the entire length of the catalyst.  As shown in Fig. 5.3b, the 

NO2 concentrations increase along the catalyst before reaching a maximum and then 

decreasing.  A comparison between the data collected for the degreened and aged catalyst 

at 200 ºC is shown in Fig. 5.4.  The increase in measured NO and NO2 concentrations for 

the aged sample can be explained on the basis that the concentration of NOx storage sites 

is decreased after aging.  Due to sintering of the Pt particles, the distance between Pt and 

Ba is increased, thereby necessitating that the NO2 formed on Pt has to diffuse a greater 

distance to reach the Ba storage sites as compared to the degreened catalyst.  This results 

in an effective decrease in the number of fast NOx storage sites with the consequence that 

NO2 tends to travel downstream of the NO oxidation sites before eventually being stored.  

At the same time, it is evident that the NO oxidation function of the catalyst is degraded 

after aging.  As noted above, the NO concentration decreases quite slowly along the 

length of the catalyst, whereas, a sharp drop-off in NO concentration is depicted in Fig. 

5.3a for the degreened B-225 catalyst.  This indicates that aging results in both a loss of 

NO oxidation sites and NO2 storage sites relative to the degreened sample. 

 

5.3.3.2. NOx Reduction. 

During NOx reduction experiments, the rich phase of the 60/5 s cycles contained a  

concentration of H2 determined from the OSC/NSC study shown in Fig. 5.1, along with 

5% CO2, 5% H2O, and balance N2.  The resulting cycle-averaged NOx conversions are 

collected in Table 5.3.  In general, cycle-averaged NOx conversion in lean-rich cycling 

experiments show a strong correlation with NOx storage efficiencies [16].  Comparing the 

cycle-averaged conversions in Table 5.3 with the lean NSE values shown in Fig. 5.2, a 

larger discrepancy is seen between the two values at 200 °C, as compared to 300 °C (Fig. 

5.5).  The source of this difference can be attributed to the l NOx “puff” that occurs at the 

beginning of the transition from lean to rich conditions.  Data pertaining to the “puff” are 

depicted graphically in Fig. 5.6.  For the degreened B-225 catalyst, the amount of rich 

NOx release decreases at 250 °C and 300 °C along the entire length of the catalyst, 

indicating that it is re-adsorbed and subsequently reduced.  In contrast, at 200 °C the rich 
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NOx release increases along the length of the catalyst until 8.4 mm from the front of the 

catalyst and then decreases.  This increased amount of NOx measured during the rich 

phase at 200 °C (and indeed emitted from the catalyst) can be explained on the basis that 

(i) NOx storage and release is moved further along the length of the catalyst at low 

temperatures [11,12], and (ii) the rich phase NOx release is greater at low temperatures 

due to the imbalance in the rates of NOx release and NOx reduction [16,17], i.e., a fraction 

of the NOx is rapidly released into the product stream but is not fully consumed by H2.  

 

 

Figure 5.5. Comparison of cycled-averaged NOx conversion (solid bars) and NOx 

storage efficiency (checkered bars) as a function of position for degreened catalysts:  

a) B-225 at 200 ºC, b) B-225 at 300 ºC, c) BC-175 at 200 ºC, and d) BC-175 at 300 ºC. 
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Figure 5.6. Rich phase NOx release as a function of position during regeneration of 

degreened (DG) and aged (AD) catalyst B-225. 

 

Selectivity to NH3 as a function of the sampling position in the catalyst is shown in Table 

5.3 and Fig 5.7.  Note that in this work N2O, the other possible NOx reduction product 

along with N2 and NH3, was not monitored.  For the degreened B-225 catalyst the NH3 

selectivity first increases from the front face of the catalyst, reaches a maximum close to 

the end of the NOx storage zone, and then decreases.  In order to explain these findings, it 

is necessary to consider the reductant front as it moves along the axial length of the 

catalyst.  According to the model proposed by Ribeiro and co-workers [32,33] and others 

[10,23,34,35], during LNT regeneration a H2-rich reaction front propagates along the 

length of the catalyst in which N2 and NH3 are formed from the reduction of the stored 

NOx.  The formed NH3 may then react further with nitrates stored downstream of the 

front, resulting in the formation of N2.  This explains the temporal sequence of product 

formation, N2 breakthrough occurring before NH3.  Breakthrough of the NH3 corresponds 

to the point at which the stored NOx and O2 are sufficiently depleted for the NH3 

consumption to be incomplete. 
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Table 5.3.  Comparison of cycle-averaged NOx conversion and NH3 selectivity 

during lean-rich cycling for degreened and aged catalysts. 

Cycle-averaged  
NOx conversion (%)   NH3 selectivity (%) 

Catalyst 
Temperature 

(°C) 
Position 

(mm) Degreened Aged Degreened Aged 
B-225 200 4.4 43.6 13.6 6.4 2.4 

8.4 73.4 --a 9.8 --a 
16.4 98.7 27.2 4.3 7.5 
25.4 91.6 49.8 2.6 11.1 

300 4.4 69.0 4.7 9.3 0.8 
8.4 94.6 9.3 5.9 3.0 
16.4 99.7 30.0 0.4 11.9 
25.4 98.6 48.6 1.0 21.4 

BC-175 200 4.4 9.8 7.6 6.1 1.0 
8.4 29.6 28.2 29.4 34.2 
16.4 55.4 54.4 56.2 60.4 
25.4 77.0 88.8 45.1 72.2 

300 4.4 22.7 8.1 3.7 1.6 
8.4 53.3 23.3 9.4 6.9 
16.4 86.8 56.0 8.6 15.2 
25.4 98.6 66.5 0.9 14.9 

a Data not available for this position.  
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Figure 5.7. Rich phase NH3 selectivity as a function of position for degreened (DG) 

and aged (AD) catalyst B-225. 

 

During regeneration, a number of zones effectively exist in the catalyst (see Fig. 5.8) [11-

13,34-36].  Upstream of the reductant front (zone 1), hydrogen has already consumed 

oxygen present on the Pt sites and depending on the temperature (vide infra), may or may 

not have reduced all of the stored NOx.  The ratio of H2 to residual NOx (if present) is 

high (given that the reduction front has already moved downstream), and hence NH3 

formation is favored.  In the reductant front (zones 2 and 3), NH3 is both generated and 

consumed.  Downstream of the front (zone 4), NOx and adsorbed oxygen are present.  

The significance of this is that NH3 produced in or behind the front can be consumed in 

the NOx-NH3 SCR or NH3-O2 reactions.  Zone 5 corresponds to the OSC-only zone, i.e., 

the region downstream of the NSR zone. 

 

Given that at moderate to high temperatures NOx reduction displays the characteristics of 

a feed-limited process [33,34,36], significant NOx reduction behind the reduction front is 

not expected in this temperature range, i.e., stored NOx should be fully consumed in the 

reduction front.  However, Clayton et al. [35] have observed that at lower temperatures 

implication being that catalyst regeneration is limited by chemical processes at the Pt/Ba 

interface.  This explains why catalyst selectivity to NH3 increases significantly with 
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decreasing temperature, as illustrated by the data in Table 5.3.  Modeling studies by the 

same group [20] have confirmed that NH3 generation is favored under conditions when 

NOx transport to the Pt/Ba interface is the rate determining process.  A contributing factor 

to the increased NH3 selectivity observed at low temperatures can be the slow kinetics of 

the NOx-NH3 SCR reaction [23].  However, several studies employing catalysts and 

conditions similar to those employed in the present work have shown that the SCR 

reaction typically lights off below 200 ºC [23,35,37,38]; hence, this is not a factor in the 

case of degreened catalyst B-225. 

 

Aging at 800 ºC significantly affects the performance of the B-225 catalyst, as shown by 

the greatly decreased cycle-averaged NOx conversions reported in Table 5.3.  As shown, 

the NOx conversions measured at 200 and 300 ºC reach a maximum at the outlet of the 

catalyst (25.4 mm), reflecting the lengthening of the NSR zone after aging.  This latter 

point is clearly apparent in Fig. 5.6, which shows that the rich phase NOx release 

increases over the length of the catalyst rather than peaking within the first 8.4 mm (as 

seen for the degreened catalyst).  The total amount of NOx release is also greater than for 

the degreened sample.  Higher NOx release at 0.0 mm is explained by an increase in the 

imbalance of NOx release and reduction rates.  Aging results in sintering of the PGM sites 

and consequently the rate of reduction of NOx by adsorbed hydrogen at these sites is 

slower [40].  Furthermore, for a given length of catalyst, there are now fewer sites located 

downstream for the NOx in the gas phase to re-adsorb on the catalyst.  This is due to the 

stretching of the NOx storage zone, i.e., the storage sites downstream have already been 

filled. 

 

As shown in Table 5.3 and Fig. 5.7, the selectivity to NH3 continues to increase to the 

end of the aged catalyst sample.  For the degreened sample maximum NH3 release is seen 

towards the end of the NOx storage zone; given that the NSR zone now encompasses the 

entire length of the sample, it follows that NH3 selectivity reaches a maximum towards 

the rear of the sample.  Indeed, as shown in Fig. 5.8, for the degreened sample both the 

NH3 and NO concentrations reach a maximum within the first 10 mm of the catalyst, 

whereas these concentrations continue to increase along the length of the catalyst for the 
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aged sample.  For the aged catalyst, two additional effects must be considered.  First, 

stretching of the storage-reduction zone results in the elimination of the downstream 

OSC-only zone.  Therefore, the NH3 that is formed is less likely to be consumed by 

adsorbed oxygen downstream of the reduction front.  Second, as discussed in the 

Introduction, segregation of the Pt and Ba phases during aging results in a decrease in the 

rate of NOx transport (reverse spillover) to the Pt sites.  Consequently, the Pt surface will 

be predominantly covered by hydrogen, and as the stored NOx diffuses to the Pt particles, 

NH3 will be preferentially formed. 
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Figure 5.8. Schematic showing NOx and NH3 concentrations along the length of the 

catalyst and the mechanism of NOx reduction under rich conditions (after Pihl et al. 

[38]). Note that the relative concentrations depicted correspond to actual data 

collected at 200 ºC for catalyst B-225.  

 

Analysis of the temporal data provides additional insights.  In Figs. 5.9a and 5.9b, NH3 

concentrations are plotted versus time at each sampling position for the degreened and 

aged catalysts, respectively.  Note that in the plots, the feed gas was switched from lean 

to rich at 31 s.  Examining the data for the degreened catalyst in Fig. 5.8a, the NH3 
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(between the 8.4 mm and 16.4 mm positions).  Furthermore, a delay is present in the 

appearance of NH3 from one sampling position to the next over the length of the catalyst.  

For example, at the 4.4 mm position, a ~ 1 s delay from the onset of rich conditions to the 

appearance of NH3 exists, with additional delays at each of the subsequent measurement 

points.  This finding is consistent with previous reports [10,35] and is evidence that 

significant H2 consumption precedes NH3 formation, i.e., due to the reaction of H2 with 

stored oxygen and NOx to generate N2.  The decrease in NH3 concentration that begins 

between the 8.4 mm and 16.4 mm positions and continues until the rear of catalyst 

demonstrates that some of the NH3 is being consumed before reaching the end of the 

catalyst. 

 

Comparing these results with the data for the aged catalyst, a clear difference is the lack 

of delay between the appearance of NH3 at each measurement point in the aged catalyst.  

Indeed, as shown in Fig. 5.9b, the initiation of NH3 release at the different sampling 

locations occurs almost simultaneously for the aged sample.  These observations clearly 

indicate that the reductant front propagates more rapidly along the length of the aged 

catalyst than the degreened sample.  This increase in the velocity of the front can be 

attributed in part to the lower amounts of NOx and O2 stored in the front of the catalyst.   

Similar reasoning has been used to explain the acceleration in the H2 front typically 

observed along the length of LNT catalysts during regeneration, i.e., since more NOx is 

stored in the front of a given catalyst, more H2 is needed to reduce the stored NOx and so 

the front propagates more slowly in this region than in the rear of the catalyst [36].  

Additionally, if NOx is released more slowly from storage sites (due to Pt-Ba phase 

segregation), such that the kinetics of NOx reduction are controlled by the rate of NOx 

diffusion to the Pt sites, then an acceleration in the velocity of the front edge of the 

reduction zone is to be expected.  Taking these factors together, the increase in selectivity 

to NH3 can be readily understood. 
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Figure 5.9. NH3 concentration vs. time at each sampling location at 200°C for a) 

degreened B-225 and b) aged B-225.  

 

Evidence for the fact that the kinetics of NOx reduction in aged catalyst B-225 are not 

limited by the reductant supply rate is provided by the observation that NOx release (and 

hence reduction) is still on-going when NH3 breakthrough occurs at the catalyst outlet.  

This is illustrated for the degreened and aged B-225 in Fig. 5.10, which displays the NOx 

concentration measured at the 16.4 mm position as a function of time for regeneration 

events at 200 ºC and at 300 ºC.  The start and end of the regeneration period are 

indicated, as is the moment when NH3 breakthrough occurs at the 25.4 mm position for 
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the different experiments (note that the data have been time aligned, such that the rich 

phase starts at the same time for each experiment).  For degreened B-225 at 200 ºC it is 

evident that some NOx is still being released at the 16.4 mm position when NH3 breaks 

through, indicating that at this temperature NOx reduction is limited by the kinetics of 

NOx release, rather than being feed limited.  This is in agreement with the report of 

Clayton et al. [36] cited earlier.  For aged B-225 tested at 200 ºC, the decrease in the NH3 

breakthrough time relative to the degreened catalyst is apparent (corresponding to a shift 

of ~ 0.9 s), while it is evident that considerable NOx release continues after NH3 

breakthrough.  In contrast, at 300 ºC the degreened catalyst shows essentially no NOx 

release at the 16.4 mm position, consistent with fast NOx release and reduction in the 

front of the catalyst.  However, for the aged catalyst significant NOx release is observed 

at 300 ºC, while the NH3 breakthrough time is decreased by ~1.2 s.  Continued NOx 

release after NH3 breakthrough indicates that NOx reduction, unlike the degreened 

catalyst, is limited by the kinetics of NOx release, i.e., even at 300 ºC NOx reduction is 

not feed limited for the aged catalyst. 
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Figure 5.10. NOx concentration profiles measured at the 16.4 mm position for 

degreened (DG) and aged (AD) B-225 as a function of time for regeneration events 

at 200ºC and at 300ºC.The dashed vertical lines indicate the time at which NH3 

breaks through at the 25.4 mm position.  

 

5.3.4. Ceria-containing Catalyst. 

5.3.4.1. NOx Storage. 

As for the experiments with catalyst B-225, cycling experiments using catalyst BC-175 

employed a H2 concentration tailored to the OSC and NOx storage capacity of the 

catalyst.  Fig. 5.11 reports the measured lean NOx storage efficiencies.  For the degreened 

catalyst, the NSE increased at each point along the length of the catalyst with increasing 

temperature.  Maximum NSE (<100% at 200 and 250 ºC) was not reached until the 25.4 

mm position, indicating that the whole length of the catalyst was used for storage under 

these experimental conditions.  Additional information is provided in Figs. 5.12a and 

5.12b, in which data pertaining to the cycle-averaged NO and NO2 concentrations are 

plotted at each measurement point along the length of the catalyst.  A gradual decrease in 
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NO concentration along the length of the degreened sample occurs at each temperature 

with the minimum being attained at the 25.4 mm position.   

 

Figure 5.11. Lean NOx storage efficiency as a function of position for degreened 

(DG) and aged (AD) catalyst BC-175. 

 

As with B-225, for BC-175 the NO2 concentration increases along the length of the 

catalyst for the first third, before decreasing as the rear face of the catalyst is reached.  

However, it is apparent that NOx storage is less efficient on BC-175 relative to B-225, as 

indicated by the longer NO/NO2 storage zone in the case of BC-175.  This finding 

contrast with our previously reported results for similar catalyst compositions in which it 

was found that the degreened catalysts showed similar NSE at 250 °C under lean-rich 

cycling conditions [17].  However, in the present study the washcoat loading of BC-175 

(175 g/L) was significantly lower than that of B-225 (225 g/L), in contrast to the previous 

study when the samples used had the same loading.  Evidently, NSE under these 

conditions is sensitive to washcoat loading. 
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Figure 5.12. a) Lean phase NO concentration and  b) lean phase NO2 concentration 

as a function of position during NOx storage on degreened (DG) and aged (AD) 

catalyst BC-175. 

 

As shown in Table 5.2, aging of catalyst BC-175 results in the same effects as seen with 

the non-ceria catalyst, i.e., PGM sintering and hence Pt/Ba and Pt/CeO2 phase 

segregation.  However, comparison of Figs. 5.2 and 5.11 indicate that whereas before 

aging the NSE of B-225 at 200 °C and 250 °C was superior to that of BC-175 (at every 

position in the catalyst), after aging the NSE of BC-175 is superior to that of B-225.  This 

observation is consistent with our previous studies [16,17,39] indicating the beneficial 

0

1000

2000

3000

4000

5000

6000

0 10 20 30

Le
an

 p
h

as
e 

N
O

2
, p

p
m

*s
ec

Position, mm

BC-175 DG 200C

BC-175 DG 250C

BC-175 DG 300C

BC-175 AD 200C

BC-175 AD 250C

BC-175 AD 300C

0

5000

10000

15000

20000

0 10 20 30

Le
an

 p
ha

se
 N

O
, p

pm
*s

ec

Position, mm

BC-175 DG 200C

BC-175 DG 250C

BC-175 DG 300C

BC-175 AD 200C

BC-175 AD 250C

BC-175 AD 300C

(a)

(b)



196 
 

effects of ceria addition on catalyst performance after aging.  Evidently, these benefits 

more than compensate for the lower washcoat loading of catalyst BC-175 after aging at 

800 °C. 

 

5.3.4.2. NOx Reduction. 

Cycled-averaged NOx conversion data for the degreened and aged BC-175 samples (see 

Table 5.3) are consistent with the NSR zone extending the whole length of the catalyst, 

the NOx conversion attaining its maximum value at the rear of the catalyst in each case.  

Considering the lean phase NSE, while aging results in a decrease in NOx conversion 

levels (notably at 300 ºC), the deterioration is significantly less than that observed for 

catalyst B-225 (see Figure 5.13).  Again, this serves to illustrate the importance of ceria 

in aiding LNT durability. 

 

 

Figure 5.13. Percent change in NOx storage efficiency (NSE) after aging as a 

function of position for:  B-225 at 300 ºC (solid bars) and BC-175 at 300 ºC 

(checkered bars).  Percent change in NSE is defined as: 100 x (degreened NSE - aged 

NSE)/degreened NSE. 

 

Fig. 5.14 depicts the cycle-averaged rich phase NOx release as a function of measurement 

position.  For the degreened catalyst, the trends in rich phase NOx release are similar to 
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catalyst, indicating that readsorption and reduction of the released NOx occurs.  At 200 ºC 

the NOx release is notably higher due to the imbalance in the rates of NOx release and 

reduction.  However, in contrast to B-225, the NOx release at 200 ºC does not decrease 

significantly in the rear of the BC-175 sample, which can be attributed to the longer NOx 

storage-reduction zone in this catalyst. 

 

 

Figure 5.14. Rich phase NOx release as a function of position during regeneration of 

degreened (DG) and aged (AD) catalyst BC-175. 

 

As for the B-225 catalyst, NH3 formation over BC-175 tracks the NOx storage zone.  

Consequently, as shown in Fig. 5.15, peak NH3 concentrations measured for degreened 

BC-175 tend to occur closer to the rear of the catalyst in comparison with B-225.  As for 

B-225, the selectivity to NH3 exhibited by BC-175 increases after aging.  Furthermore, 

the maxima in NH3 selectivity are located further down the length of the catalyst after 

aging, consistent with stretching of the NSR zone. 
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Figure 5.15. Rich phase NH3 selectivity as a function of position for degreened (DG) 

and aged (AD) catalyst BC-175. 

 

Temporal data for the NH3 release from catalyst BC-175 are shown in Figs. 5.16a and 

5.16b.  Although not as apparent as with the B-225 catalyst, a delay between the 

appearance of NH3 for each sampling point is present for the degreened BC-175 catalyst.  

The fact that the delay is less pronounced than for B-225 can be attributed to the lower 

washcoat loading of BC-175, and hence the lower concentration of storage sites per unit 

catalyst length.  In contrast to B-225, the NH3 concentration continues to increase down 

the length of the catalyst.  Again, this can be attributed to the lower washcoat of the BC-

175 catalyst compared to B-225, which, as discussed earlier, results in utilization of a 

significantly larger portion of the catalyst for NOx storage.  Since NH3 evolution tracks 

the NOx storage-reduction zone, it follows that peak NH3 concentrations for BC-175 are 

attained further along the catalyst than for B-225.  In the case of the aged BC-175 catalyst 

(Fig. 5.16b), the delay in NH3 evolution at the different measurement points is again 

minor, indicative of fast propagation of the reductant front.  As for B-225, there is a 

notable increase in the amount of NH3 released from the aged BC-175 sample after aging.  

Moreover, similar to B-225, regeneration of BC-175 at 300 ºC is limited by the kinetics 

of NOx reduction after aging, rather than the rate of reductant supply, as indicated by the 
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observation that NOx release and reduction is still on-going at the 16.4 mm position when 

NH3 breaks through the catalyst (Figure 5.17). 

 

 

 

Figure 5.16. NH3 concentration vs. time at each sampling location at 200°C for a) 

degreened BC-175 and b) aged BC-175.  
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Figure 5.17. NOx concentration profiles measured at the 16.4 mm position for 

degreened (DG) and aged (AD) BC-175 as a function of time for regeneration events 

at 200 ºC and at 300 ºC. The dashed vertical lines indicate the time at which NH3 

breaks through at the 25.4 mm position.  

 

As stated in the Introduction, there are at least five potential factors which can explain the 

increase in selectivity to NH3 observed for B-225 and BC-175 after aging.  Factor (ii) in 

the list, pertaining to the decreased OSC of the aged catalysts, and factor (iii) concerning 

the decrease of the catalyst NSE after aging, were accounted for in this study by adjusting 

the H2 concentrations used.  In this manner, excessively high H2:NOx ratios in the 

reductant front were avoided; instead, a stoichiometric amount of H2 (based on reaction 

5.1) was used during regeneration.  With these two factors largely excluded, one or all of 

the following explanations must be invoked to account for the increase in NH3 selectivity 

after aging: 
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(a) The imbalance in the rates of NOx release and propagation of the reductant front, 

resulting from the Pt-Ba phase segregation that occurs upon aging.  This imbalance 

results in increased H2:NOx ratios at the Pt sites, thereby favoring NH3 formation over N2. 

 

(b) Stretching of the NSR zone, resulting from a decrease in concentration of NOx storage 

sites per unit length of catalyst.  The stretching of this zone decreases the length of the 

OSC-only zone located in the rear of the catalyst, resulting in diminished NH3 oxidation 

and decreased NH3 consumption by NOx that re-adsorbs downstream of the reduction 

front.  

 

(c) Higher NH3 emissions may result from decreases in the rates of NH3 consumption via 

reaction with NOx or O2 stored downstream of the reaction front (due to PGM sintering). 

 

Of these explanations, (a) and (b) are supported by the data presented in this paper.  

Increased NH3 emissions are clearly associated with stretching of the NSR zone, a 

conclusion which has previously been reported by workers at Oak Ridge National 

Laboratory (ORNL) [10-12].  Indeed, as the data in Table 5.3 show, after aging 

selectivity to NH3 is most clearly increased at positions towards the end of the catalyst 

(e.g., at the 16.4 and 25.4 mm positions).  At the same time, temporal data show that after 

aging the rate of reductant front propagation is increased.  This, combined with the fact 

that Pt-Ba phase segregation results in slower transport of NOx to PGM sites during 

catalyst regeneration [20], means that H2:NOx ratios at the PGM sites will increase after 

aging. 

 

Turning to point (c) above, we have previously presented steady-state, continuous flow 

data for a catalyst containing the same washcoat composition as B-225 (but slightly 

higher washcoat loading) [39].  Results showed that after aging (during which the 

maximum temperature was 770 ± 10 ºC) the rate of the NOx-NH3 SCR reaction was 

measurably decreased.  On the other hand, for the same catalyst the kinetics of the NH3-

O2 reaction were essentially unchanged [40].  Therefore, in the present work we cannot 
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exclude the possibility that a decrease in the rate of the NOx-NH3 SCR reaction after 

aging also contributes to the observed increase in catalyst selectivity to NH3.  

 

5.4. Conclusions. 

SpaciMS was employed in this study to understand the factors influencing the NH3 

selectivity of fully formulated LNT catalysts, particularly after thermal aging.  Physical 

characterization of the aged catalysts revealed that the surface area, pore volume and 

PGM dispersion decreased.  This fact helps to explain the decreases in NOx storage 

efficiency and increases in NH3 selectivity and rich phase NOx release observed during 

lean-rich cycling experiments.  Specifically, the losses in surface area, accompanied by 

segregation of the Pt/Rh sites and BaO storage sites, account for the decreased NOx 

storage efficiency of the aged catalysts.  During NOx storage during the lean phase, NO 

and NO2 were required to travel further to reach storage sites due to the decreased storage 

site concentration.  Consequently, after aging the NOx storage-reduction zone was 

elongated. 

 

Stretching of the NSR zone has significant implications for catalyst regeneration.  The 

first effect is the increase of the NOx “puff” that appears during the onset of the rich front 

as it travels along the length of the catalyst.  Since NOx release from the catalyst tracks 

the NSR zone, for an aged catalyst the NOx concentration peaks closer to the rear of the 

catalyst.  Hence the probability that NOx can re-adsorb downstream of the reduction front 

and subsequently undergo reduction by NH3 is diminished, and consequently the NOx 

emission is higher. 

  

Second, the “stretching” of the NSR zone causes the NH3 selectivity of an aged catalyst 

to increase.  For degreened (but not aged) catalysts, NH3 is generally observed in the 

effluent from the catalyst after the stored NOx and adsorbed oxygen located downstream 

from its point of generation have been consumed; hence, a longer NSR zone for a given 

length of catalyst means that less catalyst (corresponding to the OSC-only zone) is 

available to consume NH3 produced upstream by either the NH3-NOx SCR or NH3-O2 

reaction. 
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Third, the loss of OSC and NOx storage sites leads to an increase in the rate of 

propagation of the reductant front in the aged catalyst compared to the degreened 

catalyst.  Additionally, NOx is released more slowly from storage sites (due to Pt-Ba 

phase segregation), such that for the aged catalysts the kinetics of NOx reduction are 

controlled by the rate of NOx diffusion to the Pt sites (rather than being feed limited).  

Taken together, these factors give rise to increased H2:NOx ratios at the Pt/Rh sites and 

hence selectivity to NH3 increases. 
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Chapter 6. An Investigation into the Validity of a Crystallite-Scale Model to Predict 

the NH3 Regeneration of a Pt/Rh/BaO/Al2O3 Lean NOx Trap Catalyst. 

 

6.1. Introduction. 

Over the past two decades, intensive research has been focused on reducing NOx 

emissions (NO + NO2) from lean burn applications using Lean NOx Trap (LNT) Catalysts 

and Selective Catalytic Reduction (SCR) catalysts.  The LNT operates by oxidizing NOx 

emitted during combustion over precious group metals (PGMs), such as Pt and Rh, and 

then storing the resulting nitrates and nitrites on a storage component such as Ba [1,2].  

Before the storage capacity of the LNT is reached, engine operation is modified to rich 

conditions creating a net-reducing environment in which stored NOx is released and 

migrates back to the PGM component where it reacts with a reductant such as H2 to form 

N-species such as N2, NH3, and N2O.  The SCR catalyst achieves NOx reduction by 

catalyzing the reaction of NH3 with NOx emitted from the engine to form N2 [3]. 

 

While either of these approaches is capable of reducing NOx concentrations in engine 

exhaust, neither system is without shortcomings.  The application of LNTs is limited by 

the cost of the PGMs.  In addition, undesired products are formed during the rich phase, 

including unreacted NOx along with NH3 and N2O.  The SCR catalyst, on the other hand, 

requires an external source for the reductant.  A common example of this application 

involves using urea as the NH3 source [4-6], which requires an external storage tank and 

injection system for the urea to be injected into the exhaust system.  Both of these 

requirements add additional weight and cost to the vehicle system. 

 

In the past decade, to address the shortcomings of the LNT and SCR applications, 

researchers have developed LNT-SCR systems [7-34].  The aim of coupling these 

catalysts is to reduce the amount of LNT required thereby reducing the amount of PGM 

required to meet NOx emission targets.  This coupling also eliminates the need for an 

external source of reductant by tuning the operation of the LNT such that operates as an 

NH3 generator. 
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To fully implement a LNT-SCR system, operation during the lean and rich phases needs 

to be tuned based on the amount of NOx emitted from the engine and also based on the 

product selectivity that results from the LNT.  Specifically, a balance must exist between 

the amount of NOx and NH3 that is emitted from the LNT upstream of the SCR. 

 

To achieve these aims, one must have a thorough understanding of the factors that control 

product selectivity during regeneration of the LNT.  One factor that determines the 

selectivity of the products from regeneration is the ratio of hydrogen, nitrogen, and 

oxygen present on the PGM component [35-40].  The ratio of these species changes as 

the exhaust conditions are switched from lean to rich phase.  If one considers the idea of a 

reductant front propagating along the length of the monolith, the change in the relative 

amount of these components is readily explained [35,36,41-47].  As the front moves 

along the catalyst, the adsorbed oxygen on the catalyst will be consumed by the 

reductants (e.g. H2, CO, HC).  As the stored oxygen is consumed, a low reductant to NOx 

ratio exists at the PGM sites.  This ratio of reductant to NOx increases after the leading 

edge of the front continues to travel down the length of the monolith.  Eventually, a 

situation exists in which a large excess of reductant is present.  The transition from low to 

equal to high ratios coincides with the shift in product selectivity from N2O to N2 to NH3 

during the regeneration of a LNT catalyst.  

 

The proximity of the PGM to the storage component is another factor that determines the 

products formed during regeneration.  The proximity between these components 

establishes the distance that NOx must diffuse from the Ba to Pt sites.  As this distances 

increases, the ratio of H:N species at the Pt crystallites also increases.  The studies by 

Clayton et al. focused on this Pt/Ba proximity [45,46].  Nova et al. [48,49] stated that the 

Pt catalyzed reduction of stored NOx only occurs efficiently when Pt and BaO are 

dispersed on the same support.  Cant et al. [50] discussed the importance of the Pt/Ba 

proximity during storage and reduction of a Pt/BaO/Al2O3 catalyst.  Cant related the 

observed selectivity and relative breakthrough times of H2 and NH3 to the transport of 

NOx from the storage site back to the PGM.  Büchel et al. noted that the best storage and 

reduction performance was observed when Pt was in close proximity to Ba [51].   
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The preceding discussion highlights some of the experimental research that has been 

conducted.  Equally important have been the modeling efforts that have been put forth by 

various research groups.  Tuttlies et al. [52] proposed that a model based on the diffusion 

of NOx into the storage particle is strongly affected by solid volume changes.  Under 

regeneration conditions, the dense nitrate layer formed during storage breaks up into 

BaCO3.  Schmeiβer et al. [53] described the regeneration process as one in which 

reductants diffuse through an increasingly thickening nitrate layer.  Using experimental 

data from steady-state experiments focusing on the Pt-catalyzed NO/H2 reaction system, 

Xu et al. [38] formulated a micro-kinetic model that incorporated an integral short 

monolith reactor model [54] using available parameters from existing literature and the 

remaining parameters from experiments.  Their model was able to predict the NOx 

surface coverage during storage and the selectivities as a function of the H2:NOx ratio 

occurring during regeneration.  Larson et al. [55] devised an elementary surface reaction 

model to describe the regeneration reactions occurring at the PGM sites of a LNT.  

Larson et al. were able to determine the parameters for their model for their extensive 

experimental database [35] and were able to validate some of the proposed kinetic 

mechanisms with data collected using DRIFTS using a commercial LNT catalyst [50].  

Lindholm [57] et al. developed a model that utilized a multi-site mechanism for NOx 

storage.  During the regeneration phase, the mechanism includes H2 reacting with stored 

oxygen on Pt and NH3 acting as intermediate in N2 production from the reduction of 

stored NOx with H2.  Kočí et al. [58] were able to compare the effect of different 

reductants (CO, H2, C3H6) on NH3 selectivity in the presence of CO2 and H2O in a 

heterogeneous, 1-D model.  Kočí described the propagation of the reductant as well as the 

production and consumption of NH3 as fronts travel down the axis of the monolith.   

 

Short-comings of these modeling efforts include the lack of transparency of the 

parameters that constitute the model and the development of a model for a certain catalyst 

operating under a very specified set of conditions.  In order to advance the understanding 

of these catalysts, models are needed that are capable of predicting the experimental data 

of LNTs under a wide set of conditions.  Bhatia et al. proposed a crystallite-scale model 

to study the effect of Pt dispersion and temperature during the regeneration of a LNT 
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comprising a Pt/BaO catalyst [44].  The data provided by the model was compared with 

the data generated from fixed storage experiments performed by Clayton et al. [46].  

Bhatia was able to achieve a good fit of the data obtained by Clayton et al. for NH3 

generation as the dispersion and temperature during storage and regeneration was varied.   

 

Research concerning product selectivity has been conducted using both experimental and 

computer simulation approaches.  The goal of the present study was to validate the model 

created by Bhatia et al. [44] for a catalyst slightly different than the ones used in their 

study.  Bhatia used Pt/BaO/Al2O3 LNT catalysts in which the dispersion (and hence Pt 

particle size) was varied by employing different Pt loadings.  For this study, the LNT 

catalysts employed are also comprised of Pt/BaO/Al2O3 but differ due to the inclusion of 

Rh.  Pt is the primary choice for oxidation of NO, but Rh is more active for NOx 

reduction [59,60].  Moreover, Kobayashi et al. showed that a combination of Pt/Rh had a 

higher trapping activity than either Pd/Rh or Pd [61].  Additionally, Theis et al. reported 

that a combination of Pt and Rh had the best overall NOx conversion at low temperatures 

(250°C) for fresh and aged catalysts as compared to Pt-only samples [62].  Furthermore, 

comparing the vapor pressure of both the metal and the oxide, the vapor pressure for Pt is 

higher (3x for the metal, 2x for the oxide) than the vapor pressure for Rh [63].  The vapor 

pressure provides an indication of the sintering behavior of the PGM, i.e., the higher the 

vapor pressure, the move severe the sintering is expected to be.  The dispersions of the 

PGM in the catalysts used in this study were varied by sintering the catalyst.  Because the 

PGM will be exposed to a variety of conditions that may result in the loss of PGM 

dispersion, the ability of a model to predict the behavior of an aged catalyst would be 

beneficial in the design of an LNT. 

 

6.2. Experimental. 

This study incorporated two elements:  first, an experimental study of the effect of Pt 

dispersion and temperature on the NH3 selectivity from a LNT regenerated with a fixed 

amount of NOx, and second, a modeling study to predict the data gathered from the 

experimental study.  The experimental study used a Pt/Rh/BaO/Al2O3 fully formulated 

catalyst whose preparation has been described elsewhere [64].  The washcoat was applied 
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by DCL International, Inc. (Toronto, ON) using a proprietary vacuum coating process.  

The washcoat was applied to a 4” x 6” cordierite monolith substrate, which had a cell 

density of 400 cpsi and a wall thickness of 6.5 mil.  The BaO component (21.5 wt %) was 

supported on γ-alumina, while bare alumina was used as a balance to bring the total 

washcoat loading to the value indicated in Table 6.1. 

 

Table 6.1. Composition of catalysts used in this study. 

 

 

6.2.1. Catalyst Aging. 

A 1.75 cm x 2.54 cm (d x l) core was drilled from the LNT monolith and was wrapped 

with ceramic fiber and positioned in a quartz tube.  Degreening the catalyst consisted of 

exposing the catalyst to neutral conditions (5% CO2, 5% H2O, balance N2) at 800°C for 2 

h.  Aging the catalyst involved subjecting the catalyst to continuous lean conditions (8% 

O2, 5% CO2, 5% H2O, and balance N2) at 800°C for 24 h.  In both cases, the gas flow was 

adjusted to give a GHSV of 30,000 h-1. 

 

6.2.2 Pulsed H2 Chemisorption. 

The dispersion of precious metal (Pt + Rh) was determined using a Micromeritics 

AutoChem II Analyzer by means of pulsed H2 chemisorption at dry ice temperature 

(−78°C).  This temperature was chosen in an effort to minimize H spillover from the 

Catalyst code / 
nominal loading

B-225
Pt, g/L 3.05
Rh, g/L 0.61

BaOa, g/L 26

CeO2
b, g/L 0

γ-Al2O3
c, g/L Balance

Total washcoat, g/L 225
a 21.5 wt% supported on γ-Al2O3.
b Stabilized with 5 wt% La2O3.
c Stabilized with 3 wt% La2O3. 

Component
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metal to the support material [65].  1 g of sample (as a fine powder), including both 

washcoat and substrate, was loaded into the reactor.  After being oxidized at 400°C in 

10% O2/He for 15 min, followed by reduction at 300°C in 10% H2/Ar for 15 min, the 

catalyst was heated to 400°C (hold time 10 min) in flowing Ar to remove adsorbed H.  

Pulsed H2 chemisorption was initiated using a four-way valve after the catalyst had been 

cooled to −78°C. During this measurement, 0.5 mL of 10% H2/Ar was pulsed into the 

reactor every 2 min, while the H2 signal at the reactor outlet was being monitored with a 

thermal conductivity detector (TCD). H2 pulsing, i.e., the total precious metal (Pt + Rh) 

sites were saturated with H2, was terminated after the TCD signal had reached a constant 

value.  Assuming a 1:1 ratio of atomic hydrogen to surface Pt or Rh, the metal dispersion 

was calculated based on the amount of H adsorbed. 

 

6.2.3 SpaciMS and H-Sense Mass Spectrometers. 

All of the data in the experimental portion of this study were collected using either an 

Airsense High Speed Multi-component Gas Analyzer or an Airsense H-Sense Hydrogen 

Gas Analyzer.  The Airsense analyzer is a chemical-ionization mass spectrometer that has 

been modified for SpaciMS (spatially-resolved capillary inlet chemical ionization mass 

spectrometry) applications by incorporating a 0.37 mm outer diameter (0.18 mm i.d.) 

stainless steel capillary connected to the sample chamber.  The sampling rate was 14 

sccm and data were collected at 3 Hz.  Data pertaining to the concentrations of NO, NO2, 

O2, H2O, and NH3 at different positions were collected using the spaciMS, and the 

measurement locations are shown in Fig. 6.1.  The first of these positions corresponded to 

the rear face of the catalyst (25.4 mm from the catalyst inlet), with successive sampling at 

16.4 mm, 8.4 mm, 4.4 mm, and the front face (0 mm from the inlet).  By sampling in this 

manner (from rear to front), the chance of contaminating the capillary with particles from 

the washcoat of the catalyst was decreased.  Note that the “0 mm” position actually 

corresponds to a position of 0.1 mm; this was done in order to ensure that the capillary  

was correctly aligned with the selected channel. 
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Figure 6.1. Description of the Measurement Locations Along the Length of the 

Monolith Catalyst. 

 

The other mass spectrometer employed in this study was an Airsense H-Sense Hydrogen 

Gas Analyzer to measure H2 concentration only at the exit of the reactor.  The H-Sense 

uses the principle of Electron Pulse Ionization (EIMS) mass spectrometer principle 

optimized for H2-only analysis. 

 

6.2.4. Determination of the Amount of NOx Stored. 

Since the goal of this experiment was to study NH3 selectivity, a repeatable starting point 

at the end of the lean (NOx storage) phase was required.  To achieve this goal, both the 

degreened and aged catalysts were subjected to continuously lean conditions to determine 

the time required to reach a certain NOx storage level.  The catalysts were subjected to a 

pre-treatment step consisting of fifteen 60 s lean (500 ppm NO, 5% O2, bal. Ar) / 10 s 

Rich (2% H2, 0.5% O2, bal. Ar) cycles at 450 °C followed by exposure to 2% H2 in Ar at 

450 °C.  The duration of the rich conditions at 450 °C lasted until the concentrations of 

NH3 and H2O in the effluent approached 0 ppm as measured outside the rear of the 

catalyst by the SpaciMS.  Upon reaching this temperature, the catalyst was cooled in Ar 

to the experimental temperature (200 or 300 °C).  Once this temperature was reached, the 

catalyst was exposed to continuous lean conditions (500 ppm NO, 5% O2, bal. Ar).  After 

the desired NOx storage level was attained, conditions in the reactor were switched to rich 

(2% H2 bal. Ar) in order to regenerate the storage sites.  This procedure was repeated to 

ensure the accuracy of the storage level. 

 

 

 

Front,
0.0 mm

4.4 mm 8.4 mm 16.4 mm Rear
25.4 mm
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6.2.5. NH3 Selectivity. 

Once the time for a fixed level of NOx storage had been determined, the catalyst was 

subjected to the same pretreatment as described previously and then subjected to 

continuous lean conditions followed by continuous rich conditions, during which the 

products formed by the reduction of stored NOx were monitored using the spaciMS.  

Again, the lean conditions were 500 ppm NO, 5% O2, and bal. Ar, but the rich phase was 

1500 ppm H2 and bal. Ar.  The temperature for the lean and rich phases was either 200 or 

300 °C.  As during the pretreatment step, once the NH3 and H2O concentrations 

decreased to less than 4 ppm, the temperature of the reactor was increased to 450 °C to 

ensure that all of the Ba storage sites were regenerated.  Once the catalyst was 

sufficiently regenerated, it was cooled to the next temperature to be studied.  These 

processes were first performed at the 25.4 mm position (outlet of the catalyst) and 

progressively moved to other measurement positions towards the front of the catalyst as 

described above.  Again, it is worth noting again that while the SpaciMS measurements 

for NO, NO2, O2, H2O, and NH3 were collected at each of the locations previously 

described along the axis of the catalyst, all of the H2 measurements were collected from 

the effluent of the catalyst. 

 

The selectivity (6.1 and 6.2) and yield (6.3 and 6.4) are defined as: 

 

Selectivity: 

	 	 	 		 	 	 	 	

	 	 	
∗ 100%	 (6.1) 

with: 

	 	 	 	 	 	 	 	 	 

	 	 	 	 	 	 	   (6.2) 
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Yield: 

Conversion = 

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
  

* 100%          (6.3) 

 

Yield = Selectivity * Conversion     (6.4) 

 

In eqns. (6.14), (6.15), and (6.16), all concentrations are cycle-averaged integrated values 

(ppm*s). 

 

6.3. Model Development. 

The model employed in this study of NH3 selectivity resulting from the regeneration of a 

LNT catalyst with fixed NOx loading was developed by Bhatia et al. [44] based on 

experimental work by Clayton et al. [46].  The current study is part of a collaboration 

between research groups at the University of Kentucky and the University of Houston.  

The crystallite-scale model was based on the effects that Pt dispersion and temperature 

have on the processes that occur at the Pt/Ba interface in LNT catalysts.  During 

regeneration of LNT, NOx undergoes a reverse spillover from the Ba storage phase back 

to at the Pt particles and then reacts with H2 that is chemisorbed onto the Pt particles.  

Additionally, the NOx can be reduced by the intermediate NH3 produced as NOx is 

reduced by H2.  The perimeter resulting from the interface that exists between the Pt and 

Ba phases is subjected to changes as different Pt dispersions and loadings are used on 

these catalysts.  This interface is also changed during the aging of the catalyst as the Pt 

particles are sintered. 

 

The computer model is comprised of a localized material balance for stored NOx, species 

balances for H2, NH3, and N2, and a balance for the vacant sites on Pt.  Along with these 

balances the following overall catalytic reactions are proposed to occur at the Pt/Ba 

interface: 
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Reduction of NOx by hydrogen to produce the reaction intermediate NH3, k1 (m
4/mol s): 

 

  8 H2 + Ba(NO3)2 ↔ 5 H2O + BaO + 2 NH3    (6.5) 

 

Reduction of NOx by the intermediate NH3 to produce N2, k2 (m
4/mol s): 

 

  10
3 NH3 + Ba(NO3)2 ↔ 5 H2O + BaO + 8 3 N2   (6.6) 

 

Consumption of H2 by chemisorbed oxygen on the Pt crystallites, k3 (m
3/mol s): 

 

  H2 + O-Pt ↔ H2O + Pt      (6.7) 

 

For the development of the governing material balances and other equations used by the 

model the reader is referred to Bhatia et al. [44] or Appendix A.2.  The following is a list 

of the assumptions made in realizing the model: 

 

1. NOx undergoes reverse spillover from the Ba phase to Pt particles where the 

NOx is reduced by H2 and the intermediate NH3. 

2. The Pt particles are hemispherical in shape.  This assumption is used to 

develop the relations for the total number of Pt atoms in a crystallite and 

number of crystallites per monolith channel.  These are used to calculate the 

exposed surface area and total Pt/Ba interfacial perimeter. Figure 6.2 shows 

the radius of Pt crystallite, RC, and the effective storage radius of the NOx 

stored in the Ba phase, Reff, as supported on Al2O3. 
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Figure 6.2. Illustration of down-looking view of Pt on exposed BaO 

supported on Al2O3. 

 

3. Both Pt and Ba are assumed to have a FCC crystal structure.  This gives the 

atomic packing factor, APF, 0.74 for Pt.  For Ba, the assumption used to 

calculate the surface density of BaO (BaO molecules/exposed BaO area over 

which NOx is stored) is from a study by Bowker et al [66]. 

4. All of the stored NOx is assumed to be in the form of nitrates.  While nitrites 

are also expected to be present, this assumption only affects the quantitative 

aspect of the data predicted by the model, not the spatiotemporal trend of N2 

and NH3 concentrations with respect to Pt dispersion and temperature. 

5. Ba is proposed to be present in the form of Ba(OH)2 on account that CO and 

CO2 are not present in the gas phase at any time.  This eliminates the need to 

configure the model to account for NOx storage at different phases of Ba sites. 

6. The diffusion of stored NOx occurs in a radial direction only (1-dimensional).  

Although gradients exist due to contributions from the spillover of NOx to Pt 

and the adsorption/desorption at the Ba sites away from Pt, the 1-D diffusion 

is assumed since a model depicting these gradients does not exist in the 

literature. 

Pt

Ba(NO3)2

Rc

Reff

Al2O3
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7. The process is considered to be isothermal.  This assumption is supported by 

the minimal increase (< 5 °C) observed by Clayton et al. [46] during the 

switch from lean to rich conditions during the anaerobic regeneration of a 

LNT. 

 

The assumptions listed in #5 through #7 above give the following relation for the 

localized material balance of stored NOx: 

 

   	 	 	 ;  RC ≤ r ≤ Reff  (6.8) 

 

where cA is the surface concentration of stored NOx (mol/m2 exposed BaO), DA is the 

diffusivity of stored NOx in the Ba phase (m2/s), r is the radial coordinate (m), and t is 

time during regeneration (s).  The initial and boundary conditions (I.C. and B.C. for (6.9) 

are: 

 

I.C. At t = 0 cA = cAO(r),   RC ≤ r ≤ Reff   (6.9a) 

where cA is the surface concentration of stored NOx (mol/m2 exposed 

BaO), cAO is the surface concentration of stored NOx before the start of 

regeneration (mol/m2 exposed BaO). 

 

B.C.1. At r = RC 	 	
,

	
,
	  (6.9b) 

 

B.C.2. At r = Reff 0       (6.9c) 
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8. BaO is assumed to be present on the Al2O3 surface as a monolayer.  This is 

supported by Clayton et al., Castoldi et al., and Fanson et al. [46,67,68].  

Although FT-IR studies by Dawody et al. [69] showed that all of the Al2O3 

sites might be covered by the BaO monolayer, the contribution of the Al2O3 

sites is not expected to change the predicted trends due to competitive 

adsorption of molecular H2O at the Al2O3 sites. 

 

The additional equations required to predict the trends of H2, NH3, and N2 observed 

during regeneration are provided by a balance of each of these species in the gas and 

solid phases.  The species balance for component j (j = H2, NH3, or N2) in the fluid phase is 

given by: 

 

	 ū 	 , 	 	 ,    (6.10) 

 

where c  is the cup-mixing concentration of species j at the fluid-washcoat interface 

(mol/m3), k , x  is the mass transfer coefficient of species j (m/s), c ,  is the 

concentration of species j at the fluid-washcoat interface (mol/m3), x is the axial 

coordinate (m), and R  effective transverse length scale (m). 

 

H2 balance: 

, 	
	

	 , ,
	

,
  

	 , 	 	 	
	 4 | 	   (6.11) 

 

where ε  is the porosity within the washcoat, δ  is the thickness of the washcoat (m), a 

is the width or hydraulic diameter if the channel (m), NC is the number crystallites per 

channel, R  is the radius of the crystallite (m), L is the length of the monolith (m), and 

θ  is the fractional surface coverage of chemisorbed oxygen on Pt 

 

Copyright © Vencon Glenn Easterling 2013 
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9. The 4k c |  term in equation (6.6) represents the consumption of H2 by 

stored NOx, and k c θ R  represents the consumption of H2 by 

chemisorbed oxygen on the exposed Pt surface.  These two terms are based on 

the assumption that the reaction rate between H2 and stored NOx is 

proportional to the perimeter of the Pt/Ba interface and the reaction between 

H2 and chemisorbed oxygen is proportional to the surface area of the exposed 

Pt atoms, respectively.   

 

NH3 balance: 

, 	
	

	 , ,
	

,
   

	 	 	 |
, 	 	 ,    (6.12) 

 

Finally, a species balance for N2 in the solid phase: 

 

, 	
	

	 , ,
	

,
   

	 	 	 |
,      (6.13 

 

To complete this series of equations, a balance for the vacant sites, θ , on Pt is necessary: 

 

	
,

     (6.14) 

 

The initial and boundary conditions for equations (6.10) through (6.14) are: 

 

 I.C. At t = 0, c ,  = 0, c ,  = 0, ϴV = 0,  0 < x ≤ L (6.15a) 

 

 B.C. At x = 0, c , 	= c       (6.15b) 
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Equations (6.8) through (6.15) have been non-dimensionalized for use in the model and 

are found in Appendix A.2. 

 

6.4. Results and Discussion. 

6.4.1. Determination of the Amount of NOx Stored on the Catalysts. 

One of the main features of the model employed to predict the NH3 selectivity during 

regeneration of the LNT catalyst used in the experimental study was that regeneration 

commenced at the point of NOx storage at the Ba sites.  This point in the lean storage 

phase not only needed to be repeatable but also comparable across different catalysts.  As 

was shown by Easterling et al., the oxygen storage capacity (OSC) and NOx storage 

capacity (NSC) vary from one catalyst to another and these properties influence the 

selectivity of the N-species formed during the rich phase [47]. 

 

After several initial storage and regeneration experiments, a linear relationship became 

apparent between the time of the storage phase and the amount of NOx stored on the 

catalyst.  All of the NOx stored was assumed to be in the form of nitrates for the purpose 

of the storage calculation and in the development of the model.  As the length of the 

storage time and hence the amount of NOx storage increased, the relationship between 

time and storage gradually changed from linear to a curved resembling an exponential as 

shown in Fig. 6.3. 
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Figure 6.3. Transition from a linear to exponential relationship occurring during 

NOx storage on the B-225 DG catalyst.  Feed gas:  500 ppm NO, 5% O2, bal Ar at 

200 °C. 

 

Additionally, it became apparent that the regeneration of the LNT with NOx storage up to 

this change from a linear to an exponential relationship was easily repeatable with 

regards to the time required to reach a subsequent specified level of NOx storage.  After 

this transition point, the repeatability of using the same storage time across multiple 

experimental runs decreased.  It was postulated that the change in the slope of these 

curves was due to NOx storage switching from easily accessible sites to bulk storage sites.  

The existence of multiple storage sites has been presented in the literature by several 

groups [46,49,70-75].  The consensus concerning the bulk storage sites is that these sites 

require longer and deeper purges to be regenerated.  As observed in storage and 

regeneration trials, the level of regeneration would vary from one experiment to another, 

which would in turn affect the time required to reach a level of NOx storage.  Based on 

the existence of this transition point, the amount of NOx storage for each sample was 

chosen to be the time required to reach the limit where the storage capacity of the easily 

accessible or surface sites was reached.  This selection of the fixed storage amount was 

also in line with the assumption utilized in the model that the BaO sites exist as a 

monolayer on the Al2O3 surface [66]. 
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The amounts of NOx storage selected for the degreened and aged Pt/Rh/Ba/Al2O3 

catalysts are provided in Table 6.2.  The difference in storage capacity between these two 

catalysts is reflected in the greater amount of NOx stored in the degreened catalyst as 

compared to the aged one.  This result is expected since the NSC of a catalyst is reduced 

after aging due to phase separation between the Pt crystallites and Ba storage phase.  As 

discussed previously and reported in the literature, a close proximity of Pt and Ba is 

required for efficient NOx storage in the form of the spillover mechanism 

[35,39,46,47,51,71,73,76-94].  As a LNT undergoes aging, sintering of the Pt particles 

occurs, resulting in the growth of the crystallites and decrease in dispersion.  Larger 

crystallites and lower dispersion results in an increase in phase segregation and decrease 

in proximity of the Pt and Ba, the storage capacity is reduced.  This effect can be 

illustrated using the concept of different zones existing along the length of the catalyst as 

reported in the literature [35,46,47,95-99].  As these researchers proposed, upon aging, 

the NOx storage zone in the catalyst extends further along the length of the catalyst due to 

fewer Pt sites existing per length of catalyst.  In other words, a greater length of catalyst 

is now required to store an equal amount of NOx in an aged LNT as compared to a 

degreened one.   

 

Table 6.2. Amount of NOx for each of catalysts. 

 

 

Another trend visible in Table 6.2 is the effect of temperature on storage time.  For the 

two temperatures chosen, 200 and 300 °C, it took less time to reach the fixed level of 

storage at the lower temperature.  At first this result seemed unexpected based on the 

reasoning that the time needed to reach a fixed amount at the higher temperature should 

be less than the time needed at the lower temperature due to the kinetics of NOx oxidation 

being faster at higher temperatures.  While the kinetics at 300 °C were faster as evidenced 

Catalyst Condition Temperature, °C Amount of NOx  stored, mol NOx / g washcoat Storage Time, s

B-225 DG 200 3.36 x 10-4 229

DG 300 3.36 x 10-4
255

AD 200 2.47 x 10-4 130

AD 300 2.47 x 10-4
150
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by the increased amount of NO2 detected (data not shown), it is not meaningful to 

compare storage times because the storage capacities are different. 

 

6.4.2 Experimental Results: NH3, N2O, H2. 

6.4.2.1 B-225 DG. 

As mentioned in the Introduction, the ratio of H:N:O species at the Pt sites affects the 

products formed during regeneration of the LNT catalyst.  As a reminder, low H2:NOx 

ratios favor N2O formation, and high H2:NOx ratios favor NH3 formation [35-40].  An 

idea of the value of this ratio at any time during regeneration is provided by comparing 

the time required for the products (e.g., NH3 and N2O) and the reductants (e.g., H2) to 

emerge from the catalyst outlet.  Looking at Fig. 6.4, these trends are presented.  The 

time originates at the transition from lean to rich conditions.  In Fig. 6.4a, N2O is present 

almost immediately in the reactor effluent.  This almost instantaneous formation of N2O 

is explained by examining the conditions that must be present on the catalyst surface for 

N2O production.  According to Lietti [100], N2O is produced either by: 

 

2 NO (absorbed) ↔ N2O (g) + O (adsorbed)    (6.10) 

 

NHx (adsorbed) + NO (adsorbed) ↔ N2O (g) + x H (adsorbed) (6.11) 
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Figure 6.4.  Relationship between the break-through times of H2, NH3, and N2O for: 

a) B-225 DG at 200 °C, b) B-225 DG at 300 °C, c) B-225 AD at 200 °C, and d) B-225 

AD at 300 °C. 

 

Considering that Xu et al. [38] stated that low H2:NOx ratios favor N2O production, and 

there exists for the B-225 catalyst at 200 °C over a 60 s delay after N2O release and 

before NH3 release is present, the first reaction is more likely to occur at the lean to rich 

transition.  As Choi et al. recently reported [97], the criteria for NOx release from the Ba 

sites back to the Pt crystallites and from the Ba sites located far from Pt is a net deficit of 

oxygen present in the monolith at a particular point.   

 

As reported by many groups [35,36,38,40-46], a reductant front is present at the 

beginning of the rich phase at the front of the catalyst monolith.  H2 consumes any 

residual oxygen present in the gas stream as well as any oxygen chemisorbed on the 

catalyst surface.  By consuming the oxygen present, the environment becomes oxygen 

deficient and NOx release begins.  N2O is favored at the leading edge of the front since 
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any H2 present reacts with either stored oxygen or NOx.  N2O production continues until 

enough H2 is present in the reductant front to increase the H2:NOx ratio to levels that 

favor NH3 (2.5) [38,40].  Because the hydrogen is consumed at the leading edge of the 

front, N-species such as N2O and unreacted NO and NO2 are capable of traveling 

downstream in the monolith.  The N2O passes through unreacted while NO and NO2 can 

be readsorbed at sites located further along the axis of the monolith. 

 

Eventually, as the regeneration phase continues, the chemisorbed oxygen at the Pt sites is 

consumed and the amount of hydrogen present at the Pt/Ba interface increases.  The 

actual amount of hydrogen present at this time is dependent on the rate of diffusion of 

NOx from Ba to the Pt sites.  At 200 °C, the kinetics of the following reaction is slow 

enough that the rate of diffusion is controlling: 

 

Ba(NO3)2  + 8 H2 ↔ 2 NH3 + BaO + 5 H2O   (6.12) 

 

The delay between H2 and NH3 in the effluent as shown in Fig 6.4a supports the necessity 

of a high ratio of H2:NOx for NH3 production [35-40].  Before NH3 reaches the effluent, 

NOx stored downstream in the catalyst must be consumed or NH3 will react with NOx as 

follows: 

 

Ba(NO3)2 + 10 3 NH3 ↔ 8 3 N2 + BaO + 5 H2O   (6.13) 

 

The yield and the selectivity of NH3 increases along the length of the catalyst as shown in 

Fig. 6.5, because as one moves downstream, less NOx is available to react with NH3 

[35,36,41,57,101-103].   
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Figure 6.5. Comparison of yield and selectivity for B-225 DG and AD catalysts.  a) 

NH3 Yield, %, b) N2O Yield, %, c) NH3 Selectivity, %, d) N2O Selectivity. 

 

Using the assumption that NOx is stored as a monolayer and considering the results of the 

NOx storage during the lean phase in Fig 6.3, it is evident that the entire length of LNT is 

involved in NOx storage.  This situation is different than the experiments reported by 

Easterling et al. [47] where for the degreened B-225 catalyst, only the front portion of the 

catalyst was used for NOx storage.  As reported for that experiment, the maximum in NH3 

selectivity occurred after the NOx storage zone.  This spatial relationship is present again 

in these experiments except the NOx storage zone encompasses the entire length of the 

catalyst. 

 

When the temperature of the experiment is increased to 300 °C, the controlling regime 

during regeneration changes from diffusion to H2 feed limited.  By noticing the greater 

time lag before H2 appears in the effluent at 300 °C in Figure 6.4a compared to 200 °C in 

Figure 6.4b, this transition between control regimes becomes apparent.  N2O again 
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appears shortly after the switch to rich conditions, but at 300 °C the length of time for 

which N2O is present in the effluent is much shorter than at 200 °C.  The production of 

N2O continues until H2 begins to be present at 200 °C, while at 300 °C, N2O production 

ends well before H2 is observed.  The conditions that are favorable to N2O exist for a 

shorter time in this case (H2:NOx < 1) [38,40].  Additionally, as reported in the literature 

[36,39,41,42,46] lower temperatures (T < 200 °C) are more favorable for N2O 

production.  As the amount of H2 present at the Pt/Ba interface increases, N2 is produced 

until the ratio is great enough to favor NH3.  The production of N2 has been reported by 

[39,41] to be favored at a ratio of H2:NOx equal to ~1.   

 

6.4.2.2. B-225 AD. 

Although a direct comparison between the degreened and aged catalysts cannot be made 

since the amount of NOx stored was not the same, the following remarks are applicable.  

Aging of the catalyst results in less Pt crystallites per length of catalyst (lower dispersion) 

with a larger particle diameter.  In terms of the rate at which the reduction front 

propagates, after the catalyst has been aged, the H2 front propagates along the length of 

the catalyst faster than the rate observed with the degreened catalyst.  This increased rate 

of travel is shown in Fig. 6.4c where H2 breakthrough is observed ~15 s quicker for the 

aged catalyst than for the degreened catalyst shown in Fig. 6.4a.  Because there are fewer 

Pt crystallites, less chemisorbed oxygen and less stored NOx is present per length of the 

catalyst to consume the H2 in the reduction front as it travels along the catalyst. 

 

The other effect of sintering is apparent in the yield and selectivity of NH3 and N2O in 

Fig 6.5.  Although twice as much NOx was stored on the degreened catalyst as compared 

to the aged catalyst (Table 6.2), the NH3 yield and selectivity are much greater for the 

aged catalyst than for the degreened catalyst.  Additionally, the time between H2 and NH3 

breakthrough is decreased for the aged catalysts.  With fewer sites per length of catalyst, 

the stored NOx at the Ba sites must travel farther to reach the Pt sites during regeneration.  

Although the intrinsic rate of diffusion is the same, the increased distance results in an 

increase in diffusion time.  By the time the NOx reaches the Pt sites, the ratio of H2:NOx 

is expected to be higher and at a value that favors NH3 formation.  Also contributing to 



232 
 

NH3 selectivity is the possibility of reduced rates of NOx-NH3 SCR and NH3-O2 reactions 

after aging [39].  If these rates of reaction are significantly reduced, the probability of 

NH3 consumption downstream in the catalyst by these reactions increases, and therefore 

leads to increased NH3 concentrations in the effluent from the monolith. 

 

6.4.3 Modeling Results. 

The main focus of this work was to determine the ability of a model developed by Bhatia 

et al. [44] to predict the NH3 selectivity of LNT catalysts that included Rh.  Another 

variation between this study and the study by Bhatia et al. is the amount of fixed NOx 

stored on each catalyst and the residence time in the catalyst.  As reported by Easterling 

et al. [47], the NOx storage capacity and oxygen storage capacity varies between 

degreened and aged catalysts.  Whereas Bhatia et al. and Clayton et al. [44,46] varied Pt 

dispersion by adjusting the Pt loading of the catalysts, the dispersions in this experiment 

were varied by exposing the catalysts to aging conditions which which sintering of the Pt 

occurred.  The residence time in the catalyst was adjusted by using a GHSV of 30,000 h-1 

instead of 60,000 h-1.  This adjustment in GHSV is instructive in modeling the 

regeneration events since the residence time will vary in real world applications as the 

engine operates under various loads. 

 

6.4.3.1 Model vs. Experimental Results: B-225 DG. 

Simulations using the dispersion model were performed to predict the NH3 production 

during regeneration of the two catalysts after a fixed level of NOx was stored.   Table 6.3 

lists the parameters used to fit the data.  The only variation in parameters from the values 

used by Bhatia et al. [44] was the surface diffusivity of NOx, DA, traveling from Ba to the 

Pt sites.  Since the model is based on PGM dispersion, the parameters that have the most 

impact on the model data are DA and the measured value of the PGM dispersion.  While 

Bhatia used values of 5x10-19 m2/s and 5x10-18 m2/s for DA at 160 °C and 230 °C, 

respectively, a value of 9x10-18 m2/s was used for 200 °C.  As mentioned in the 

experimental section, values for DA are not available in the literature.   
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Table 6.3 a. Values of Nc, Rc, and Reff for various Pt dispersions. 

Catalyst Pt Dispersion (%) Nc Rc (m) Reff (m) 

B-225 Degreened 15.6 2.95 x 1014 2.22 x 10-9 1.77 x 10-8 

B-225  Aged 3.34 2.95 x 1014
  1.03 x 10-8 1.32x 10-7

 

B-225  Aged* 15.5 1.02 x 1014
  2.23 x 10-9 2.24 x 10-8

 

* Using the physical properties of Rh instead of Pt (see section 6.4.3.2. for explanation) 

 

Table 6.3 b. Parameter values to estimate Nc and Reff. 

Pt Rh 

APF 0.74 APF 0.74 
DPt (m) 2.78 x 10-10 DRh (m) 2.70 x 10-10 

MPtT (mol/channel) 7.42 x 10-7 MRhT (mol/channel) 2.81 x 10-7 
nch 125 nch 125 
Nav 6.022 x 1023 Nav 6.022 x 1023 

SBaO (BaO molecules/m2 
exposed BaO) 1.89 x 1018 

SBaO (BaO molecules/m2 
exposed BaO) 1.89 x 1018 

 

Table 6.3 c. Variation of MNOx(mol) with monolith length, assuming uniform, axial 

NOx storage. 

Catalyst 25.4 mm 16.4 mm 8.4 mm 4.4 mm 0.0 mm 

B-225 Degreened 2.26 x 10-4 1.46 x 10-4 7.46 x 10-5 3.91 x 10-5 8.89 x 10-6

B-225 Aged 2.26 x 10-4 8.07 x 10-5 4.13 x 10-5 2.17 x 10-5 4.92 x 10-6

 

The comparisons of the experimental and model predicted data for the B-225 DG catalyst 

at 200 °C are shown in Fig 6.6a and b.  The quality of the fit of the model was judged by 

comparing the spatiotemporal data as well as the relative amounts of NH3 measured at 

each of the positions along the length of the catalyst.  With these parameters (Table 6.3), 

the fit of the data with respect to time from the beginning of regeneration was reasonable.  

The model captures the delay before the onset of NH3 at each of the positions.  At the 

front of the catalyst, a value of 0.1 mm was used in the calculations for the parameters to 

ensure that the capillary was in a channel.  Both sets of data show an increase in NH3 

concentrations from the front position to the remaining locations.  As previously reported 
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[47], the decrease in NH3 concentration at the rear position (25.4 mm) was most likely 

due to a slight over-sampling present in the experimental setup. 

 

Considering the maximum values of the NH3 concentrations attained, the model over-

predicted the values.  As stated previously, the model assumes that NH3 does not 

readsorb downstream on the catalyst surface.  In order to provide a better fit of the data, 

the values for the reaction rates were systematically varied.  The result of this effort was 

that the peak values for NH3 were decreased while changing the shape of the curve from 

a sharp peak to more rounded curve when the reaction rate constant of NH3 generation 

from the reduction of NOx with H2 was changed from 1x10-3 m4/mol*s to 1x10-5 

m4/mol*s as shown in Fig. 6.7b.  Lastly, it is apparent that a tailing effect is present in the 

NH3 measurements.  This tailing is due to the polarity displayed by NH3 in the capillary.  

Although steps were taken to minimize this effect by using resistance heating to keep the 

temperature of the capillary high from inside the catalyst to the sample cell of the mass 

spectrometer, there is always a slight hold up of NH3 in this type of measurement. 

 

 

 

Figure 6.6. Comparison between the a) experimental data and b) model predicted 

data for the B-225 DG catalyst at 200 °C. 
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Figure 6.7. Comparison between the a) experimental data and b) model predicted 

data for the B-225 DG catalyst at 200 °C with k1 = 1 x 10-5 m4/mol*s instead of 1 x 

10-3 m4/mol*s. 

 

When the model was used to generate the NH3 data at 300 °C, a different regime 

controlled the NH3 selectivity.  Whereas the process was diffusion controlled at 200 °C, 

the process is H2 feed-limited at 300 °C.  A value of 9x10-17 m2/s was used for DA at 300 

°C since the model increases the diffusivity by an order of magnitude for every 100 °C 

temperature increase.  This value of DA is almost the same as the value used by Bhatia at 

300 °C, 5x10-17 m2/s [44].  The experimental and model data are shown in Fig. 6.8a and 

b. 

 

While the peak concentrations in the model data are close to experimental values, the 

delay before the onset of NH3 release into the gas stream is overestimated in the data 

provided by the model.  The experimental data at 300 °C displays a sharper peak shape 

than the 200 °C data, and this characteristic is captured in the model data at 300 °C.  The 

differences between a situation where NOx diffusion is controlling and one limited by the 

rate H2 is fed to process become more visible at the measurement locations further along 

the length of the catalyst.  At all of the locations in the experimental data, NH3 release 

begins less than 100 s after conditions are changed to rich.  However, for the model the 

NH3 release for the 16.4 mm and 25.4 mm positions does not begin until after 100 s.   
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Figure 6.8. Comparison between the a) experimental data and b) model predicted 

data for the B-225 DG catalyst at 300 °C. 

 

For consistency, the data were also generated using a value for k1 of 1x10-5 m4/mol*s, the 

results being presented in Fig. 6.9a and b.  This parameter adjustment did not provide an 

improvement in the predicted model data.  The result of this change was a decrease in the 

peak NH3 concentration.  Although the reaction rate constants do not compensate for 

temperature in the model, based on the fits displayed in Fig. 6.7 and 6.8, a case can be 

made that k1 does vary with the temperature from 200 °C to 300 °C.  This change in rate 

constant could also be accounting for a process which was not accounted for by the 

model, i.e.,NH3 readsorption. 

 

 

Figure 6.9. Comparison between the a) experimental data and b) model predicted 

data for the B-225 DG catalyst at 300 °C with k1 = 1 x 10-5 instead of 1 x 10-3. 
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6.4.3.2. Model vs. Experimental Results: B-225 AD. 

As discussed for the experimental data, the most prevalent change that occurs with a 

catalyst that has undergone aging is the reduction in the time or delay before NH3 release 

is measured at the positions along the length of the catalyst.  Using the parameters listed 

in Table 6.4, a comparison was made between the experimental and model data for aged 

B-225 catalyst at 200 °C (see Fig. 6.10a and b).  The average radius of the Pt crystallites 

and the average radius of stored NOx around the crystallite both increased as expected 

after aging.  The reduced lag before NH3 release occurs in the aged catalyst compared to 

the degreened catalyst is captured by the model.  Additionally, the shape of the NH3 

curves (sharp peaks) is also captured in the model data.  However, a problem exists 

concerning the parameters used to predict this set of data.  As mentioned earlier, the 

dispersion and the diffusivity values are the parameters that have the greatest effect on 

the data predicted by the model.  Using a DA value of 9x10-18 m2/s as with the degreened 

data generates data that do not agree with the experimental data.  The flaw in the model 

data set is that all of the onset of NH3 releases occur at the instant conditions are switched 

from lean to rich in the catalyst.  Although this delay is reduced after the catalyst is aged, 

nevertheless, a delay still exists in the experimental data for this case.   

 

 

Figure 6.10. Comparison between the a) experimental data and b) model predicted 

data for the B-225 AD catalyst at 200 °C with DA = 9 x10-18 m2/s. 
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To obtain a better fit of the data, DA was increased to 9x10-16 m2/s, and this comparison is 

shown in Fig. 6.11a and b.  While an improved fit is obtained from changing the value for 

DA, an increase in the diffusivity is counter intuitive for aged catalysts since the sintering 

should result in phase segregation between Pt and Ba speices.   

 

 

Figure 6.11. Comparison between the a) experimental data and b) model predicted 

data for the B-225 AD catalyst at 200 °C with with DA = 9 x10-16 m2/s. 

 

As a way to provide a better fit, the parameters used in the model for the aged catalyst 
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after aging, Rh/Pt particles are primarily responsible for the NOx reduction activity of the 

catalyst.  For this set of generated data, the dispersion of PGM was adjusted so that the 

radii of the crystallites using properties of Rh were equal to the values using Pt.   

 

With the value of DA again at 9x10-18 m2/s, Fig. 6.12a and b shows the comparison 

between experimental and model data for B-225 AD at 200 °C.  The changes in the 

parameters involved in the model are displayed in Table 6.4a and b.  The result of using 

Rh to predict the properties of the PGM crystallites is an improved fit of the data with 

regards to both the delay before the onset, peak concentration, and shape of the release 
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NH3 release at the 0.0 mm, 4.4 mm, and 8.4 mm positions.  As discussed, this is an 

expected result of a decrease in PGM dispersion due to sintering.  Fewer crystallites per 

unit length of catalyst lead to an increase in the rate of propagation of the H2 front in the 

catalyst.  This increase also decreases the time required for H2:NOx ratios to reach levels 

that favor NH3 selectivity.  However, the model fails to capture the decrease in maxima 

of NH3 observed at the 16.4 mm and 25.4 mm positions.  Although the decrease at 25.4 

mm may be attributed to the method of sampling the gas species within the channel of the 

monolith using SpaciMS, the decrease observed at 16.4 mm leads one to conclude either 

that the NH3 is readsorbed on the catalyst surface or consumed by NOx downstream in the 

catalyst. 

 

 

 

 

Figure 6.12. Comparison between the a) experimental data and b) model predicted 

data for the B-225 AD catalyst at 200 °C. 
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process becoming H2 feed limited at the higher temperature.   
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Figure 6.13. Comparison between the a) experimental data and b) model predicted 

data for the B-225 AD catalyst at 300 °C. 

 

An intriguing feature of the comparison between the degreened and aged data concerns 

the maximum concentration of NH3 measured at any of the points along the catalyst.  

Whereas the model did predict lower NH3 levels at 200 °C than at 300 °C ( Fig 6.12 and 

Fig 6.13) as seen for the experimental aged data, this was not the case for the degreened 

data (Fig 6.6 and 6.7).  The model predicted a higher, maximum concentration of NH3 for 

the 200 °C data as compared to the data at 300 °C, whereas the experimental data 

possessed the opposite trend.  In fact, the slight increase selectivity as suggested by the 

peak NH3 concentrations in the experimental data for the higher temperature is in 

agreement with the findings as reported by Bhatia et al. and Clayton et al. [44,46].  If the 

degreened catalyst is compared to the results Bhatia and Clayton reported for their 8% 

dispersion catalyst, the experimental data presented here is agreement with their results 

that NH3 release increases with increasing temperature to 300 °C, while the model data 

presented here is contrary to their results.  Similarly, if the aged data presented here is 

compared to Bhatia and Clayton’s data for the 3% dispersion catalyst, the trends in the 

experimental and model predicted data agree with their trends for the low dispersion 

catalyst that net NH3 increases with increasing temperature.  The slight increase in the 

experimental data for the higher temperature is contrary to the expected trends based on 

LNT catalysts usually displaying increased selectivity to NH3 at temperatures below 250 

°C. 
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6.5. Conclusions. 

The crystallite-scale model developed by Bhatia [44] has been employed to predict the 

selectivity of NH3 in experiments in which degreened and aged Pt/Rh/Ba/Al2O3 LNT 

catalysts underwent regeneration after a fixed amount of NOx was stored.  Experiments 

included two catalysts at two different temperatures, whose PGM dispersions were varied 

by subjecting one of the catalysts to aging under lean conditions at elevated temperatures.   

The results from the experiments were consistent with the species observed during 

regeneration being a function of the PGM dispersion and the ratio of H2:NOx at the Pt/Ba 

interface.  As reported in the literature [35,38,41-47], a reductant front travels down the 

length of the catalyst during regeneration in which the ratio of reductant to stored NOx 

varies based on time and position.  N2O is favored at low ratios of H2:NOx (at the leading 

edge of the front) and NH3 is favored at higher ratios of H2:NOx (behind the reduction 

front). 

 

The modeling results indicated the use of a diffusion-based model with temperature 

dependent diffusivities is capable of capturing the spatiotemporal trends associated with 

NH3 release from the LNT at low temperatures and high dispersions.  The model 

accurately predicted the individual delay at each position before the onset of NH3 release.  

The model was also able to predict these trends for the aged data after the parameters 

were adjusted using the values for the physical properties of Rh instead of Pt.  This 

change was justified not only by the results, but also by the fact that Rh is a superior 

reduction catalyst and more resilient to sintering that Pt; hence, Rh is expected to be the 

main catalytic species active in the reduction of NOx in the aged catalyst, particularly at 

lower temperatures (e.g. 200 °C). 

 

Further refinement of the model is required to account for the over prediction of the 

amounts of NH3 measured at each location for two catalysts.  The increased amounts of 

NH3 predicted by the model are most likely due to a combination of the lack of 

accounting for NH3 readsorbtion on the catalyst after it is released, and the assumption of 

a uniform storage of NOx along the length of the catalyst.  An improved storage model 

that could capture the gradients in the amount of NOx stored from the front to the rear of 
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the monolith would be valuable to predict the phenomena observed during regeneration.  

Lastly, if a SpaciMS study were performed in which the amounts of reductant present at 

each measurement location were measured, it would be beneficial in providing insight 

into the conditions influencing NH3 selectivity. 
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Chapter 7. Significant Findings and Recommendations for Future Work. 

The purpose of this dissertation was to determine the effects of ceria addition on the 

aging and sulfation characteristics of LNT catalysts for stand-alone and LNT-SCR 

applications.  The methodology for achieving this goal was as follows: 

 

 Investigation of the effects of ceria addition on LNT desulfation behavior using 

powder catalysts and fully formulated monolithic LNT catalysts. 

 Elucidation of the effect of washcoat composition on LNT aging characteristics, 

employing fully formulated monolithic LNT catalysts containing varying amounts 

of Pt, Rh, and BaO after subjection to accelerated aging on a bench reactor. 

 Employment of SpaciMS to understand the factors influencing the selectivity of 

NOx reduction in two fully formulated LNT catalysts, both degreened and 

thermally aged. 

 Application of a model to predict experimental SpaciMS data pertaining to NH3 

selectivity during regeneration of degreened and aged LNT catalysts possessing 

fixed NOx storage amounts that approximated complete surface storage. 

 

The impetus for this research was provided by the demands of consumers and auto 

makers alike for improved fuel economy from lean burn engines, while attaining reduced 

exhaust emissions, particularly NOx (NO + NO2). 

 

7.1. Significant Findings. 

7.1.1. Effect of Ceria on the Desulfation Characteristics of Model Lean NOx Trap 

Catalysts.  

 Ceria can function as a sulfur sink in LNT catalysts, thereby helping to protect the 

main Ba NOx storage phase from sulfation. 

 Pt and Ba proximity:  when Pt and Ba are physically separated, the desulfation 

temperature of the surface BaSO4 is shifted by 20-40 °C towards higher 

temperature, i.e., towards the position characteristic of bulk BaSO4 

 Addition of La-stabilized CeO2 or CeO2-ZrO2: 
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o Greater resistance to deactivation during sulfation (as reflected by the NOx 

storage efficiency) 

o Required lower temperatures to restore the NOx storage efficiency to its 

pre-sulfation value.   

 Precious metal loadings can significantly impact desulfation efficiency, both high 

Rh and Pt loadings being beneficial for catalyst desulfation. 

 

7.1.2. Effect of Aging on the NOx Storage and Regeneration Characteristics of Fully 

Formulated Lean NOx Trap Catalysts. 

 Acording to H2 chemisorption and TEM data, Pt sintering occurred and resulted 

in decreased contact between the Pt and Ba phases, this contributed to decreased 

first cycle NSE due to less efficient NOx spillover from Pt to Ba during NOx 

adsorption. 

 TEM and XRD data indicate the accumulation of sulfur in the washcoat, present 

as BaSO4 (30% of the Ba present) providing an additional explanation for the loss 

in initial and cycle-averaged NSE after catalyst aging. 

 Given the importance of the Pt-Ba interface, it follows that high Pt loadings are 

beneficial for catalyst performance since they provide one means of ensuring a 

high degree of Pt-Ba contact.   

 
7.1.3. Application of SpaciMS to the Study of Ammonia Formation in Lean NOx Trap 

Catalysts. 

 Losses in surface area, accompanied by segregation of the Pt/Rh sites and BaO 

storage sites, account for the decreased NOx storage efficiency of the aged 

catalysts.   

 During lean phase NOx storage on aged catalysts, NO and NO2 were required to 

travel further to reach storage sites due to the decreased storage site concentration.  

Consequently, after aging the NOx storage-reduction zone was elongated. 

o Stretching of the NSR zone results in an increase of the NOx “puff” that 

appears during the onset of the rich front as it travels along the length of 

the catalyst 
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o Since NOx release from the catalyst tracks the NSR zone, for an aged 

catalyst the NOx concentration peaks closer to the rear of the catalyst; 

hence, the probability that NOx can re-adsorb downstream of the reduction 

front and subsequently undergo reduction by NH3 is diminished, and 

consequently the NOx emission is higher. 

o Stretching of the NSR zone causes the NH3 selectivity of an aged catalyst 

to increase. 

 Loss of OSC and NOx storage sites leads to an increase in the rate of propagation 

of the reductant front in the aged catalyst compared to the degreened catalyst.   

 NOx is released more slowly from storage sites (due to Pt-Ba phase segregation), 

such that for the aged catalysts the kinetics of NOx reduction are controlled by the 

rate of NOx diffusion to the Pt sites (rather than being feed limited).   

 

7.1.4. An Investigation into the Validity of a Crystallite-Scale Model to Predict the NH3 

Regeneration of a Pt/Rh/BaO/Al2O3 Lean NOx Trap Catalyst. 

 Results from the experiments were consistent with the species observed during 

regeneration being a function of the PGM dispersion and the ratio of H2:NOx at 

the Pt/Ba interface. 

 N2O is favored at low ratios of H2:NOx (at the leading edge of the front) and NH3 

is favored at higher ratios of H2:NOx (behind the reduction front). 

 Modeling results indicated the use of a diffusion-based model with temperature 

dependent diffusivities is capable of capturing the spatiotemporal trends 

associated with NH3 release from the LNT at low temperatures and high 

dispersions.  

 The model accurately predicted the individual delay at each position before the 

onset of NH3 release.   

 The model was also able to predict these trends for the aged data after the 

parameters were adjusted using the values for the physical properties of Rh 

instead of Pt.   
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7.2 Suggestions for Future Research. 

Although the work presented in this study of LNT catalysts as a capable technology for 

reducing NOx and NH3 emissions (while delivering increased fuel economy resulting 

from the use of lean-burn engines compared to stoichiometric engines), several 

challenges will influence the penetration of LNT technology into the marketplace.  As 

engines become more efficient, the resulting exhaust temperatures become cooler.  In 

typical lean burn applications, exhaust temperatures are generally in the temperature 

range of 150 to 400 °C.  The next generation of engines currently under development for 

real world use possesses exhaust temperatures as low as 100 °C.  Exhaust temperatures 

lower than 200 °C are problematic since the activity of the PGMs are significantly 

reduced in regards to NOx oxidation during storage and NOx reduction to NH3 and N2 

during catalyst regeneration.  Catalyst materials besides traditional Pt, Rh, and Pd must 

be developed to meet this demand. 

 

It has become apparent from the data gathered using the SpaciMS that a need exists for 

the capability to measure reductants in addition to the products generated from NOx 

reduction.  For the successful implementation of an LNT-SCR system, NH3 production 

must be tuned to the amount of NOx that slips form the LNT to the SCR catalyst.  Since 

NH3 selectivity is a function of the relative amounts of H2:NOx present at the PGM sites, 

the H2 concentration would be an effective measurement tool in determining the H2:NOx 

ratios present at different locations in the catalyst rather than just measuring the N-

species present (i.e., N2, NH3, and N2O).  Additionally, the capability to measure H2 is 

advantageous because H2 is produced from hydrocarbons and CO during regeneration 

due to steam reforming and the water gas-shift reaction.  An ideal SpaciMS apparatus 

would have the ability to measure NOx storage and regeneration with both low (NO, NO2, 

O2, CO, CO2, H2O) and medium (N2O, N2, O2) energy sources while simultaneously 

measuring H2 concentrations.  A system with three capillary probes attached to two 

chemical ionization mass spectrometers and one electron pulse ionization mass 

spectrometer would be able to accomplish this aim. 
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In regards to modeling the storage and reduction processes, the following improvements 

would provide a better predictive capability in LNT-SCR design.  One of the assumptions 

used in predicting the NH3 selectivity during regeneration from a LNT with a fixed 

amount of NOx stored was an assumed value for the diffusivity of NOx stored on the 

surface of the catalyst.  While this value was adjusted with temperature, the discussion in 

Chapter 6 demonstrated that unaccounted processes such as NH3 readsorption most likely 

occur during regeneration.  Additional complications arise during aging when sintering of 

the PGM component occurs, resulting in changes in the diffusion of NOx. 

 

Another assumption was that NOx was stored uniformly along the axis of the monolith 

catalyst.  While a uniform distribution of stored NOx would provide a beneficial, desried 

proximity to PGMs essential for efficient NOx storage and reduction, this situation does 

not exist on the surface of the LNT catalyst, especially after aging.  As mentioned in the 

preceding discussion, the distribution of the various catalyst components determines the 

surface area of Pt/Ba proximity which in turns governs NOx storage gradients, the rate of 

the propagation of the reductant front during regeneration, and ultimately the selectivity 

of the various N-species produced during regeneration of the LNT catalyst.  A model 

capable of predicting the chromatographic-like nature of NOx storage existing on the 

surface would attain a better fit of the experimental data. 
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Appendix A.1. Nomenclature. 

1/1 cycles: One min lean periods to one min rich periods. 

5/3 cycles: Five min lean periods to three min rich periods. 

a: Width/hydraulic diameter of the channel (m) 

APF: Atomic packing factor 

AD: Aged catalyst. 

B-225: Catalyst sample where 225 refers to the washcoat loading in g/L. 

BET: Surface measurement technique named after the last names of Stephen Brunauer, 

Paul Hugh Emmett, and Edward Teller. 

: Surface concentration of stored NOx (mol/m2 exposed BaO). 

: Surface concentration of stored NOx before start of regeneration (mol/m2 exposed 

BaO). 
∗: Dimensionless concentration of stored NOx. 

: Inlet concentration of species j in the fluid phase (mol/m3). 

∗
: Dimensionless inlet concentration of species j in the fluid phase. 

: Cup-mixing concentration of species j in the fluid phase (mol/m3). 

∗ : Dimensionless cup-mixing concentration of species j in fluid phase. 

: Concentration of species j at the fluid–washcoat interface (mol/m3). 

∗ : Dimensionless concentration of species j at fluid–washcoat interface. 

: Surface concentration of Pt (moles exposed Pt/m2 exposed Pt). 

CAFE: Corporate Average Fuel Economy. 

CDC: Centers for Disease Control. 

CI-MS: Chemical ionization mass spectrometer. 

d: Diameter of monolith sample (cm). 

d: Pt dispersion (%) 

DA: Diffusivity of stored NOx in the Ba phase (m2/s). 

Djm: Diffusivity of species j in the fluid phase (m2/s). 

DPt: Diameter of a Pt atom (m). 

DOC: Diesel oxidation catalysts. 

DG: Degreened catalyst 
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DPF: Diesel particulate filter. 

DRIFTS: Diffuse reflectance infrared Fourier transform spectroscopy. 

EELS: Electron energy loss spectroscopy. 

EIMS: Electron pulse ionization mass spectrometer. 

EM: Electron microscopy. 

ER: Eley-Rideal. 

FTP: Federal testing procedure. 

GHSV: Gas hourly space velocity (h-1). 

GVWR: Gross vehicle weight rating. 

H*: Hydrogen species associated with Pt. 

HC: Hydrocarbons. 

HC-SCR: Selective catalytic reduction of NOx with hydrocarbon reductants. 

HRTEM-EELS: High-resolution transmission electron microscopy-electron energy loss 

spectroscopy. 

IP: Perimeter of Pt/Ba interface per channel (m). 

k1: Rate constant for NOx regeneration by H2 (m
4/mol s). 

k2: Rate constant for NOx regeneration by NH3 (m
4/mol s). 

k3: Rate constant for consumption of H2 by chemisorbed oxygen (m3/mol s). 

kc,j: Mass transfer coefficient of species j (m/s). 

l: Length of monolith sample (m). 

L Length of the monolith (m) 

LH: Langmuir-Hinshelwood. 

LNT: Lean NOx trap. 

LNT-SCR: Lean NOx trap coupled with a selective catalytic reduction catalyst. 

LDDs: Light duty diesels. 

mwc: Mass of washcoat (g). 

: Total moles of NOx stored on the catalyst. 

: Total moles of Pt in the washcoat per channel. 

nch: Total number of channels in the catalyst. 

Nav: Avogadro number. 

Nc: Number of crystallites per channel. 
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NPt: Number of atoms in a Pt particle. 

N : Number of surface atoms. 

NT: Number of Pt atoms in the Pt crystallite. 

NSC: NOx storage capacity. 

NSE: NOx storage efficiency. 

NOx: Oxides of nitrogen. 

NSR: NOx storage and reduction. 

O*: Oxygen species associated with Pt sites. 

O*’: Poorly active oxygen species. 

ORNL: Oak Ridge National Laboratory. 

OSC: Oxygen storage capacity. 

PBA: Pt/BaO/Al2O3 catalyst. 

PBAC: Catalyst containing Pt/BaO/Al2O3 and Pt/CeO2 powders in a 76:24 weight ratio. 

PM: Particulate matter. 

PGM: Platinum group metals (Ru, Rh, Pd, Os, Ir, Pt). 

r: Radial coordinate (m). 

∗: Dimensionless radial coordinate. 

Rc: Radius of the crystallite (m). 

Reff: Radius over which NOx is stored on exposed BaO (m). 

: Effective transverse length scale (m) 

SBaW: Total surface area of active BaO per unit mass of washcoat (m2/g washcoat) 

SBaO: Surface density of BaO (BaO molecules/m2 exposed BaO surface) 

SE: Exposed Pt surface area per channel (m2) 

SCR: Selective catalytic reduction. 

SFTP: Supplementary federal testing procedures. 

SpaciMS: Spatially resolved capillary inlet mass spectrometry. 

STEM: Scanning transmission electron microscopy. 

t: Time during the regeneration (s). 

TAP: Temporal analysis of products reactor. 

TCD: Thermal conductivity detector. 

TEM: Transmission electron microscopy. 
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TPR: Temperature programmed reduction. 

TWC: Three-way catalytic converter. 

ū: Average fluid velocity in the fluid phase (m/s). 

Wa:  Atomic weight. 

WGS: Water gas shift reaction. 

x: Axial coordinate (m). 

XRD: X-ray diffraction. 

XPS: X-ray photoelectron spectroscopy. 

z: dimensionless axial coordinate. 

 

: Thickness of the washcoat on a monolith catalyst (m). 

εwc: Porosity within the washcoat. 

: Fractional surface coverage of vacant sites on Pt. 

: Fractional surface coverage of chemisorbed oxygen on Pt. 

: Dimensionless radial distance. 

Pt: Total interfacial perimeter per gram of Pt. 

σ: particle density (g/nm3) 

: Dimensionless time. 

ω: Average atom density of Pt particle surface. 

Σp : Number of particles per gram of Pt. 
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Appendix A.2. Development of the Material Balances Used the Dispersion Model. 

 

This is the model developed by Bhatia et al [1].  The model has been modified for this 

study. 

 

A.2.1. Parameter Development. 

Assumption #1:  stored NOx species (represented by ‘A’ here) undergoes reverse-

spillover via diffusion in the Ba phase towards the Pt/Ba interface, where it is reduced by 

H2 as well as the reaction network intermediate, NH3. 

 

Figures A.2.1 shows the Pt crystallite and the NOx stored around it.  Figure A.1. is a bird-

eye’s view.  RC is the radius of the crystallite, and Reff is the radius of NOx stored around 

the crystallite. 

 

 

Figure A.2.1. Illustration of down-looking view of Pt on exposed BaO 

supported on Al2O3. 

 

 

 

 

Pt

Ba(NO3)2

Rc

Reff

Al2O3
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Assumption #2:  the Pt crystallites have a hemispherical shape. 

 

Let NT be the total number of Pt atoms in the Pt crystallite.   

 

N 	 	 	 	 ∗

	 	 	
	 	 	 (A.2.1) 

 

where APF is the atomic packing factor.  For Pt with a FCC structure, APF is equal to 0.74.  

DPT is the diameter of the Pt atom. 

 

Using equation (A.1), the number of crystallites in a monolith channel, NC, is calculated 

from:  

 

   N 	        (A.2.2) 

 

where M  is the total number of moles of Pt in the washcoat per channel, and NAV is 

Avogadro’s number.  Substituting (A.2.1) into (A.2.2): 

  N 	
	 	

	
	 	

	     (A.2.3) 

 

The total exposed surface area, SE, is equal to: 

 	 1 2 	 	 	 	 	 	 1 2 	4 	 	 	2 	 	  (A.2.4) 

 

The total Pt/Ba interfacial perimeter for a single channel, IP: 

 

  	 	 ∗ 	 	2 	     (A.5) 
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Substituting (A.2.3) into (A.2.4) and (A.2.5): 

 

  	
	

	 	
       (A.2.6) 

 

  	
	

	 	 	        (A.2.7) 

 

The overall catalytic reactions occurring at the Pt/Ba interface are: 

 

Assumption #3:  NOx is stored in the form of nitrates 

 

  8 H2 + Ba(NO3)2 ↔ 5 H2O + BaO + 2 NH3    (A.2.8) 

 

  10
3 NH3 + Ba(NO3)2 ↔ 5 H2O + BaO + 8 3 N2   (A.2.9) 

 

In addition, some of the H2 is consumed by chemisorbed oxygen on the Pt crystallites: 

 

  H2 + O-Pt ↔ H2O + Pt               (A.2.10) 

 

Assumption #4:  One-dimensional diffusion of NOx within the Ba phase (RC ≤ r ≤ Reff).  

A localized material balance for stored NOx gives: 

 

input – output + generation = accumulation 

P NA│r - P NA│r+Δr + 0 =                (A.2.11) 

 

where P is the perimeter and equal to P = 2πr, NA is the flux of NOx, and nA is the moles 

of NOx present.  Utilizing nA = CAPΔr where CA is the concentration of NOx. The above 

equation reduces to 	  .  Substituting 	  where DA is the diffusivity of 

NOx into (A.2.11): 
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  P NA│r - P NA│r+Δr  = 
∆

 

  		  

  2π 		2πr  

  	   RC ≤ r ≤ Reff              (A.2.12) 

 

The following conditions apply to (A.2.12): 

 

I.C.  at t = 0, CA = CAO(r) for RC ≤ r ≤ Reff              (A.2.13) 

 

B.C. 1.  Assumption #5, diffusional limitations in the washcoat (transverse to 

axial flow) are negligible, and the diffusive flux of stored NOx at the Pt/Ba 

interface is equal to consumption of NOx by NH3 and H2: 

 

	 	 	
,

	
,

            (A.2.14) 

 

where k1 is rate constant for NOx regeneration by H2 (m4/mol s), and k2 is rate constant 

for NOx regeneration by NH3 (m4/mol s).  The rate expression is derived from the fact 

that the consumption at the interface is dependent on the amount of NOx at the surface 

and the amount of H2 or NH3 present. 

 

B.C.2.  at r = Reff,  = 0                (A.2.15) 

 

Assumption #6, NOx is stored uniformly in the washcoat as a monolayer of BaO and all 

Al2O3 sites are covered. 
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Reff is an estimate of the BaO that is utilized for NOx storage.  Reff is determined from 

equating the total moles of NOx stored on the catalyst ( ) to 2x the number of moles 

of exposed area around the Pt crystallite π ∗ 	 .   

 

	
	 	

               (A.2.16) 

 

 

Substituting the expression for Nc (A.2.3) into (A.2.16), the value for Reff is: 

 

  	 1 	
	

              (A.2.17) 

 

where SBaO surface density of BaO (BaO molecules/m2 exposed BaO surface).  The total 

surface area of active BaO per unit mass of washcoat, SBaW, is: 

 

  	
	

                (A.2.18) 

 

where mwc is the mass of the washcoat loading (g). 

 

Using (A.2.16) and (A.2.18), we can relate the active BaO surface area to mol of NOx 

stored: 

 

ratio of   	 	→ 	 	              (A.2.19) 
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A.2.2. Species Balance. 

For a transient diffusion-reaction model of a porous catalyst with reaction, an overall 

mole balance gives: 

 

  │ │ ∆ ∆               (A.2.20) 

  

where  │  is the molar rate in, mol/s 

 │ ∆  is the molar rate out, mol/s 

R is the molar rate of disappearance of component j. mol/m3 catalyst 

 is the cross sectional area of the fluid phase, m2 

 x is the axial coordinate 

 nj is the mol of j 

 

Using nj = cj ∆ , dividing by ∆ , and taking the limit as ∆x→0: 

 

                (A.2.21) 

 

where  is the porosity of the washcoat.  If we assumed that the amount of material 

transported by diffusion in the axial direction is negligible compared with bulk flow 

Knudsen diffusion): 

 

ū                (A.2.22) 

 

so (A.2.21) becomes 

 

ū                (A.2.23) 
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A.2.2.1. Gas Phase Species Balance (Diffusion from the Bulk to the Interface). 

Assumpiton #7:  Assuming the entire resistance for mass transfer in the gas phase resides 

in a stagnant film of a certain thickness, a balance for the diffusion of component j from 

the bulk phase to the fluid waschcoat interface gives: 

 

ū | 	 ū | ∆ 	 ∆ , 	 , 	0            (A.2.24) 

 

where  = cross-sectional area of the fluid phase, m2 

  = cup-mixing concentration in the fluid phase, mol/m3 

 ,  = circumferentially averaged concentration at the fluid-washcoat interface, 

mol/m3  

  = the wetted fluid-washcoat interfacial perimeter, m 

 = position dependent mas transfer coefficient from the bulk of the fluid to 

the fluid-washcoat interface, m/s 

 ū = average fluid velocity, m/s 

Dividing by ∆  and taking the limit as ∆x →0: 

 

ū 	 ,               (A.2.25) 

 

and is the effective transverse diffusion length for the fluid phase, m ( ) 
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A.2.2.2. Washcoat Species Balance. 

Assumptions #8 and #9:  Assuming a hypocthetical film in the washcoat describes the 

intra-phase or internal mass transfer resistance and no diffusional limitations exist in the 

bulk washcoat (the concentration of j drops from , to constant value of , , we get 

the following: 

 

∆ 	 , , ,              (A.2.26) 

 

= position dependent internal mas transfer coefficient between the interior 

of the washcoat and fluid-washcoat interface, m/s 

 , is the volume-averaged concentration in washcoat weighed with respect to 

activity, mol/m3 

 = cross-sectional area of the washcoat, m2 

is the effective transverse diffusion length for the washcoat, m ( ) 

R, reaction rates evaluated at , .  

 

Dividing (A.2.26) by ∆  and taking the limit ∆x→0: 

 

	 , , ,              (A.2.27) 

 

A.2.2.3. Interface between the Fluid Phase and Washcoat. 

At the interface between the fluid phase and the catalyst washcoat, no accumulation of 

mass can occur.  This means that the external mass flux from the bulk gas phase to the 

interface must be the same as the interface to the bulk. 

 

	 , 	 , ,             (A.2.28) 
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Using the idea of the overall, position dependent mass transfer coefficient, , is equal 

to the total individual resistances: 

 

  
,

               (A.2.29) 

 

Using (A.2.29) in (A.2.25) and (A.2.28), the , term can be eliminated.  So (A.2.28) 

into (A.2.25): 

  ū , 	 ,               (A.2.30) 

 

and (A.2.29) into (A.2.28): 

 

, 	 	 , ,               (A.2.31) 

 

or 

 

,
, 	 	 ,               (A.2.32) 

 

A.2.2.4. The Species Balance for Component j in the Fluid Phase. 

The final expression for the species balance for component j in the fluid phase is obtained 

by substituting (A.2.31) and (A.2.32) into (A.2.23): 

 

	 ū 	 , 	 ,              (A.2.33) 

where the fluid velocity (m/s) and the transverse diffusion length scale (m) are 

represented by ū and , respectively.  The position-dependent mass-transfer coefficients 

for each species j, represented by , , are used to account for the transverse gradients. 

The position dependence obtained from Ramanathan et al. [2] is used here for a square 

channel of uniform washcoat thickness (Figure A.2), its development is described in 

Section A.3.5. 
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Figure A.2.2.  Square channel of uniform washcoat thickness. 

 

	
	 	

	 	 	 	
             (A.2.34) 

and 

 

	
	 	 	

	 	 	
	             (A.2.35) 

 

where  

 

	= effective transverse length scale (m) in the fluid phase, m 

	= effective transverse length scale (m) in the washcoat, m 

a = width/hydraulic diameter of the channel, m 

	thickness of the washcoat (m) 

 

The reaction rate term, , , is comprised of the reactions that occur at the fluid-

washcoat interface and the catalyst surface. 

 

δc

a

δc
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At the interface (1): 

  

, 	 	 ∗ 	
	 	 	

             (A.2.36) 

 

At the surface (2): 

 

, 	 	 ∗ 	
	 	 	

             (A.2.37) 

 

where  and  are defined in (A.2.4) and (A.2.5). 

 

A.2.3. Washcoat Species Balance. 

A.2.3.1. Hydrogen Surface Balance. 

For a square channel of uniform cross-section, the species balance for H2 is given by: 

 

	
, , ,        (A.2.38) 

 

The reaction rate of H2 reacting with stored NOx at the Pt/Ba interface (A.8), r=Rc, is 

given by: 

 

8 H2 + Ba(NO3)2 ↔ 5 H2O + BaO + 2 NH3    (A.2.8) 

 

4 | ∗               (A.2.39) 

 

For H2 reacting with chemisorb oxygen on the surface of the Pt crystallite (A.2.10): 

 

H2 + O-Pt ↔ H2O + Pt               (A.2.10) 

 

∗              (A.2.40) 
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The total reaction rate expression for the consumption of H2: 

 

∗ 4 |            (A.2.41) 

 

The diffusion of H2 is expressed as: 

 

, 	 ,            (A.2.42) 

 

Substituting (A.40) and (A.41) into (A.37): 

 

,
,

, 4 |
           (A.2.43) 

 

Assumption #10:  (A.2.43) assumes the reaction rate between H2 and the stored NOx is 

proportional to the perimeter of the Pt/Ba interface, whereas the reaction between H2 and 

chemisorbed O2 is proportional to the surface area of exposed Pt atoms.  Hence, the term 

“4 | ” represents the consumption of H2 by NOx, whereas the term 

“ ” represents the consumption of H2 by chemisorbed oxygen on the 

exposed Pt surface. 

 

A.2.3.2. NH3 Surface Balance. 

The diffusion of NH3 on the surface is similar to that of H2: 

 

  ,                (A.2.44) 
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As for the reaction rate expression, NH3 only reacts at the Pt/Ba interface and not on the 

Pt surface.  NH3 is produced in (A.2.8) and consumed in (A.2.9): 

 

8 H2 + Ba(NO3)2 ↔ 5 H2O + BaO + 2 NH3    (A.2.8) 

 

  10
3 NH3 + Ba(NO3)2 ↔ 5 H2O + BaO + 8 3 N2   (A.2.9) 

 

 

The rate expression for (A.2.8): 

 

| ∗               (A.2.45) 

 

The rate expression for (A.2.9) 

 

5
3 | ∗              (A.2.46) 

 

Using the expression for  (A.2.34), the total rate of reaction for NH3 is: 

 

	 ∗
| 5

3       (A.2.47) 

 

Substituting (A.2.36), (A.2.37), (A.2.44), and (A.2.47) into (A.2.33): 

 

,
,

| 5
3

            (A.2.48) 

 

Assumption #11:  NH3 does not react with chemisorbed oxygen on Pt.  The term 

“ ” is the generation of NH3, whereas “ 5
3 ” is the consumption of 

NH3 by stored NOx. 
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A.2.3.3. N2 Surface Balance. 

The diffusion of N2 on the surface is similar to that of H2 and NH3: 

 

,                (A.2.49) 

 

The reaction rate expression for the generation of N2 at the interface is (A.2.9): 

 

10
3 NH3 + Ba(NO3)2 ↔ 5 H2O + BaO + 8 3 N2   (A.2.9) 

 

4
3 | ∗              (A.2.50) 

 

Using the expression for  (A.2.34): 

 

∗
|

              (A.2.51) 

 

Substituting (A.2.49) and (A.2.51) into (A.2.25): 

 

,
,

|
 (A.2.52) 

 

A.2.3.4. Vacant Site Balance. 

Lastly, a vacant site balance is required using (A.2.10): 

 

H2 + O-Pt ↔ H2O + Pt               (A.2.10) 

 

Here, generation is equal to accumulation: 

 

                  (A.2.53) 
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The initial and boundary conditions for (A.2.43), (A.2.48), (A.2.52), and (A.2.53): 

 

I.C. @ t = 0,  ,  = 0,  = 0,  = 0 for 0 < x ≤ L           (A.2.54) 

 

B.C. @ x = 0,  ,  =                  (A.2.55) 

 

where  is the inlet concentration of species j in the fluid phase, mol/m3.    

 

A.2.4. Dimensionless Expression for Use in the Model. 

The above expressions are non-dimensionalized for their use in the model using the 

following expressions: 

 

Dimensionless axial coordinate                (A.2.56) 

Dimensionless radial coordinate    ∗            (A.2.57) 

Dimensionless time                 (A.2.58) 

Dimensionless radial distance                (A.2.59) 

Using	 , ∗ becomes      ∗        (A.2.60) 

Dimensionless cup-mixing concentration of species j in the fluid phase 

        ∗            (A.2.61) 

Dimensionless cup-mixing concentration of species j in the fluid-washcoat interface 

        ∗            (A.2.62) 

Dimensionless concentration of stored NOx   ∗            (A.2.63) 
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With this expressions, the following expressions can be non-dimensionalized: 

 

A localized material balance for stored NOx: 

 

	                 (A.2.12) 

 
∗

	 ∗

∗

∗                (A.2.64) 

 

I.C.  at  = 0, ∗ = 1,  0 ≤ ∗ ≤ 1             (A.2.65) 

 

B.C.1. at ∗ = 0, 

 

∗

∗
∗ ∗              (A.2.66) 

 

B.C.2. at ∗ = 1, 
∗

∗  = 0                (A.2.67) 

 

Washcoat Species Balance (A.2.25) becomes: 

∗
ū

∗
, ∗ ∗             (A.2.68) 

 

The H2 surface balance (A.2.43) becomes: 

 

∗
∗ ∗

∗

4 ∗| ∗
   (A.2.69) 

The NH3 surface balance (A.2.48) becomes: 

 

∗
∗ ∗

∗ | ∗ ∗ 5
3

∗
       (A.2.70) 

 



282 
 

The N2 surface balance (A.2.52) becomes: 

 

∗
∗ ∗

∗ | ∗ ∗

  

                   (A.2.71) 

 

Finally, the vacant site balance (A.2.53) becomes: 

 

∗                (A.2.72) 

 

The initial and boundary conditions for the species balances become: 

 

I.C. at  = 0, ∗  = 0, ∗  = 0,  = 0 for 0 < z ≤ 1  (A.2.73) 

 

B.C. at z = 0, ∗  = 
∗
                (A.2.74) 

 

where 
∗
is the dimensionless inlet concentration of species j 

 

A.2.5. Determination of the Overall Mass Transfer Coefficient. 

From Ramanathan et al. [2], position dependent mass transfer coefficient for species j at 

axial postion x, kc,j(x), is calculated for the case of fully developed laminar flow with the 

velocity field developing along with the concentration boundary layer using the following 

expression: 

  ,                 (A.2.75) 
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If  

  
ū .

               (A.2.76) 

then: 

  ,
. 	 ū

              (A.2.77) 

 

else: 

  ,                 (A.2.78) 

 

where: 

 Ω  = Sherwood Number, defined by (A.2.75) 

 ,  = position dependent mass transfer coefficient for species j at axial  

                postion x (m/s) 

 Ω = effective transverse length scale in the fluid phase (m), in this case:  one-half  

         the channel hydraulic radius (m) (A.2.34) 

  = diffusion coefficient in the fluid phase (m2/s) 

 z(i) = dimensionless coordinate along the length of the channel 

Ω 	= effective transverse length scale in the washcoat (m) (A.2.35) 

 ū = average fluid velocity (m/s) 

  = Schmidt Number =  

 	kinematic viscosity (m2/s) =  

  = dynamic viscosity (kg/m*s) 

  = density (kg/m3) 

 ∞ = asymptotic Sherwood(Nusselt) numbers for the channel (with constant  

           flux boundary condition).  Here ∞ = 3.608 [2] 
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