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ABSTRACT OF DISSERTATION 

 

STRUCTURAL TAILORING OF NANOPOROUS METALS AND 

STUDY OF THEIR MECHANICAL BEHAVIOR 

Student: Lei Wang 

Advisor: Dr. T. John Balk 

 

University of Kentucky, Chemical and Materials Engineering, Lexington, KY 

 

Nanoporous (np) metals and alloys are the subject of increasing research attention 

due to their high surface-area-to-volume ratio. Numerous methods exist to create np metals, 

with dealloying being a common approach. By dissolving one or more elements from 

certain alloy systems, porous structure can be generated. Utilizing this method, multiple np 

metals, including np-Ni, np-Ir, and np-Au were created. By carefully adjusting precursor 

type and dealloying conditions for each system, nanoporous Ni/Ir/Au with different 

morphologies and even controllable ligament/pore size were achieved. 

The mechanical behavior of porous materials is related to their fully dense 

counterparts by scaling equations. Established scaling laws exist and are widely applied 

for low relative density, micro- and macro-scale open-cell porous materials. However, 

these laws are not directly applicable to nanoporous metals, due to higher relative density 

and nanoscale cells. In this study, scaling laws were reviewed in light of the 

thermomechanical behavior of multilayer np-Ir thin films subjected to thermal cycling. 

Thermal cycling allows measurement of biaxial modulus from thermoelastic segments, and 

also causes film thickness to contract, with increases in relative density. A modified scaling 

equation was generated for biaxial modulus of np-Ir, and differed significantly from the 

classic equation.  
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diluted etchant, but experienced longer dealloying time (9 hours for 

this sample, but the samples in (b) and (c) were dealloyed for 6 hours. 

The ligaments were significantly coarsened with longer dealloying 

time. 48 

Figure 4.3. (a) Surface morphology of the dealloyed 100 nm co-deposited 

Ni33Al67 film. Resultant nanoporous material is NiO, not metallic Ni. 

The ligaments were 4±1 nm wide, with an aspect ratio of 2.3. (b) 

Surface morphology of the as-dealloyed 100 nm multilayer Ni28Al72 

film. The ligaments were 5±1 nm, with an aspect ratio of 1.5. 49 

Figure 4.4. (a) Morphology of as-dealloyed 100 nm Ni30Fe70 film. The film was 

dealloyed in 85% H3PO4 for 8 min without sample vibration. The 

average ligament width was 32±4 nm. (b) Nanostructure of as-

dealloyed 100 nm Ni30Fe70 film. This film was dealloyed in 85% 

H3PO4, with sample vibration, for the same time. The resulting 

ligament width was 12±3 nm. 50 

Figure 4.5. (a) Morphology of an as-dealloyed 100 nm Ni33Mg67 film, with a 

ligament size of 7±2 nm. (b) Cross-sectional SEM image of an as-

dealloyed 500 nm Ni33Mg67 film. 51 

Figure 4.6. A series of X-Ray scans in small range of 42o to 46o during 

dealloying of a Ni-Cu film. The plot shows the X-Ray peak 

decreased and also shifted during dealloying. 54 

Figure 4.7. XPS scans of various nickel samples, in the range of the Ni_2p 

energy window, to determine the extent of oxidation in np-Ni. For 

reference, a thick foil of pure Ni was analyzed before (purple line) 

and after (green line) ion milling of its surface, to obtain spectra for 

oxidized and metallic Ni, respectively. Both the as-dealloyed (blue 

line) and thermally cycled/annealed (red line) NiMg films generated 

scans that suggested the Ni had been oxidized. 56 

Figure 4.8. CV scans for a dealloyed 100 nm np-Ni film after thermal cycling. 

The first CV scan was performed at a rate of 10 mV/s, while the 

second to the fourth scans were run at 10 mV/s, 5 mV/s, and 20 mV/s, 

respectively. 57 
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Figure 4.9. Stress evolution during dealloying of 100 nm NiMg film, measured 

using a wafer curvature apparatus. Stress in the precursor alloy film 

is approximately zero, but rapidly enters the tensile state upon 

dealloying. 58 

Figure 4.10. Stress-temperature plot from repeated thermal cycling of an 80 nm 

np-Ni film in forming gas (flows rate of 5 cfh for N2 and 0.17-0.2 

cfh for H2). During the first heating segment, stress decreased 

suddenly at ~110˚C and then increased rapidly into the tensile 

regime, where it stayed for the remainder of two thermal cycles. 61 

Figure 4.11. Stress relaxation curves for 80 nm np-Ni thin films relaxed at 180˚C 

(a) and 200˚C (b) for 8 hours in forming gas. The gray dots are raw 

data points, the light gray curve is smoothed curve based on the raw 

data points, black curve is fitting curve based on the raw data, and 

light blue curve is fitting curve based on smoothed data. 63 

Figure 4.12. Arrhenius fitting of ln(1/τ) vs. I/T for the stress relaxation results in 

Table 4.2. (a) is the fitting curve based raw data, and (b) is the fitting 

curve based on smoothed data. The slope of the linear curve is –Q/R.

 64 

Figure 5.1. (a) Cross-section SEM image of np-Ir fabricated by dealloying an 

Ir-Ni multilayer film that originally consisted of 10 nm Ir-Ni alloy 

layers, each separated by a 1 nm pure Ir layer (5 sets of layers in the 

precursor film). Average spacing of each layer (porous layer + pure 

Ir layer) was 8.7 nm. The Si substrate is located below the film in 

each cross-section micrograph. (b) Cross-section SEM image of np-

Ir created from precursor with 5 nm Ir-Ni alloy layers and 0.5 nm 

pure Ir layers (10 sets of layers in this precursor). Average spacing 

of each layer was 5.2 nm. (c) Plan-view SEM image showing 

nanoporous surface morphology of the film from image (a). (d) 

Plan-view SEM image of surface morphology for the film from 

image (b). 71 

Figure 5.2. SEM micrographs of np-Au dealloyed from precursor multilayer 

with 20 nm Au-Ag alloy layers and 2 nm pure Au layers (3 sets of 

layers in the precursor). (a) Cross-section and (b) plan-view images 

of the same film, showing layered architecture through the film 

thickness and ligaments oriented perpendicular to the layers, 

including short ligaments protruding from the film surface. Average 

spacing between layers of ligaments was 20.9 nm. 73 

Figure 5.3. Cross-section SEM images of np-Au from multilayer with 10 nm 

Au-Ag alloy and 1 nm pure Au layers (10 sets of layers in this 

precursor). Individual samples were dealloyed for (a) 1 min, (b) 3 
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min, (c) 5 min and (d) 8 min. Average spacing between layers of 

ligaments was 10.8 nm, measured from image (b). 74 

Figure 5.4. Plan-view SEM images of np-Au from multilayer Au-Ag, after 

dealloying times of (a) 1 min, (b) 3 min, (c) 5 min and (d) 8 min. 

Ligament width increased gradually with dealloying time, especially 

when the multilayer np structure evolved into randomly oriented 

ligaments. 75 

Figure 6.1. A schematic drawing of the three electrode dealloying setup. A Pt 

wire was used as counter electrode (CE), and a Ag/AgCl electrode 

was used as reference electrode (RE). 83 

Figure 6.2. Procedure of preparing np-Ir thin film TEM samples. 85 

Figure 6.3. A linear sweep of 100 nm IrNi film in 1/10 diluted HNO3. (a) Plot 

current vs. voltage; (b) Log-log plot of current density vs. voltage. 87 

Figure 6.4. (a) Plan view and (b) cross-section SEM micrographs of np-Ir by 

free corrosion of IrMg thin film. (c) cross-section view of the film 

before dealloying. The film underwent huge volume contraction (up 

to half of its original thickness) during dealloying. 89 

Figure 6.5. (a) Surface morphology of np-Ir by free corrosion of a 100 nm IrNi 

film. (b) surface morphology of the same film created by 

electrodealloying. They exhibite similar nanoporous strucutres. The 

ligaments were around 6-7 nm wide. 90 

Figure 6.6. (a). Cross section SEM image of the as-deposited 300 nm Ni-Ir thin 

film; (b). Cross section SEM image the film after dealloying; (c). 

Partial cross section of the same dealloyed film; d. Surface 

morphology of the same film. 91 

Figure 6.7. TEM images of a 35 nm uniform np-Ir film. Image (a) is a standard 

bright field TEM image; (b) is a dark field STEM image, it revealed 

a lot of details which can’t be seen in SEM and bright field TEM. 92 

Figure 6.8. Selective area diffraction pattern of np-Ir thin film (the same film in 

Figure 5.7). Indexing the diffraction rings indicated the film has an 

isotropic fcc structure. 93 

Figure 6.9. Stress vs. temperature curves of the thermal cycles. 300 nm np-Ir 

film went through 5 thermal cycles in a wafer curvature system. The 

film exhibited thermal elastic and plastic behavior at elevated 

temperature, and a transition from elasticity to plasticity happened 

during 100°C-200°C in each cooling segment. Information about the 

thermal elastic slope and transition points can be found in Table 6.3.

 95 
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Figure 6.10. The SEM images of cross-section of the np-Ir after thermal cycles. 

(a), (b), (c), (d) and (e) correspond to the one after cycle 1 (from RT 

to 300°C), cycle 2 (from RT to 350°C), cycle 3 (from RT to 400°C), 

cycle 4 (from RT to 450°C) and cycle 5 (from RT to 500°C), 

respectively. 96 

Figure 6.11. Surface morphology SEM images of the np-Ir after thermal cycles. 

(a), (b), (c), (d) and (e) correspond to the one after cycle 1 (from RT 

to 300°C), cycle 2 (from RT to 350°C), cycle 3 (from RT to 400°C), 

cycle 4 (from RT to 450°C) and cycle 5 (from RT to 500°C), 

respectively. 98 

Figure 6.12. Plot of the relative biaxial moduli and relative densities in log-log 

scale. The red circle data point is from cycle 1, and it’s not included 

in the fitting due to a big deviation from other points. 100 

Figure 6.13. Cubic unit cell model for nanoporous metals. The unit cell is made 

of 24 beams: 12 long beams and 12 short beams. The beam length, 

𝑙, is taken from midpoints of corresponding nodes. And each beam 

has a square cross-section of width t. 102 

Figure 6.14. Plot of relative density versus the ratio of ligament width to length, 

𝑡/𝑙. The solid red circles correspond to points in the low-density 

(less than 0.02) range. The blue diamonds represent the relevant 

range of 𝑡/𝑙 ratio for nanoporous metals, where 0.33 < 𝑡/𝑙 < 0.67 

and aspect ratio ranges from 1.5 to 3. 103 

Figure 6.15. Plot of relative modulus, E*/Es, versus the ratio of ligament width to 

length, 𝑡/𝑙. The red circles and blue diamonds represent the same 

𝑡/𝑙 ranges as in Figure 6.14. 106 

Figure 6.16. Schematic drawing of a revised unit cell with fillets added at nodes 

(modification of the original unit cell from Fig 5.13). (a) Front view 

of the unit cell with added fillets. (b) Enlarged view of beam 5 

(numbering as in Fig. 5.13). (c) Enlarged view of beam 1, excluding 

the node. 109 

Figure 6.17. Plan view SEM image of np-Au fabricated by the author’s group. 

Most ligaments exhibit thickening at the nodes, which are 

represented in the revised structural model by fillets with isosceles 

right triangle cross section. Some of the fillets/nodes analyzed in this 

np-Au structure are indicated by black lines superimposed on the 

micrograph. The average ligament width t and fillet size r are 

measured as 118 nm and 37 nm, respectively. 112 

Figure 7.1. Surface morphologies of bulk IrNi (18 at.%Ir in precursor alloy) 

before (a) and after each dealloying step (b-f). The images were 
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1 Introduction 

1.1 Motivation 

It has been widely accepted that materials science, together with energy 

technology and information technology, is one of the three pillars of the modern 

civilization. Materials have played an essential role in human development, not only in the 

modern times, but throughout human history. Historians divided human prehistory into 

three periods, according to their respective tool-making technologies, namely Stone Age, 

Bronze Age, and Iron Age. Indeed, materials science defines the level of human civilization. 

Materials science is one of the oldest sciences on earth. However, it was not until the second 

industrial revolution that materials science became an independent discipline. Since then it 

has driven the technological revolution further and further. These inventions of new 

materials have transformed the way we experience our world, e.g., semiconductors in the 

electronic devices, high temperature alloys in the air and space crafts, and bio-materials in 

medicine.  

Beginning in the mid-20th century, humans have entered a brand new stage of 

world exploration. The development of space technology allows people explore the vast 

expanses of space, where distance is measured by light-year. Meanwhile, nanotechnology 

enables people work with materials or devices at molecular, atomic, and even sub-atomic 

level. Recently, the rapid development of semiconductor industry has filtered the concept 

of ‘smaller is better’ into everyone’s minds. Nano-science and nano-technology, the 

keywords of 21st century, represent a new direction of materials science.  
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Nano-materials have features with dimensions from sub-nanometer to several 

hundred nanometers [1]. Although ‘nano’ is a popular word in everyday life of 21st century, 

not everyone understands what it really means. For comparison, if you are trying to see a 

1 nm feature in a 1 cm×1 cm sample, the difficulty is no less than trying to find a human 

hair in Tiananmen Square. However, thanks to the advanced technologies, such as scanning 

electron microscope (SEM), transmission electron microscope (TEM) and scanning 

tunneling microscope (STM), people nowadays are able to visualize, and even manipulate, 

atoms under 1 nanometer.  It is hard to predict how nanotechnology could change our life 

over the next decade, but no one will doubt that it’s a key technology for the future.  

1.2 The study of nanoporous metals 

The study of nanoporous metals (np-metals) is one branch of nanotechnology. 

Np-metals are individual metal or alloy frameworks that support a nanoporous structure. 

The size of pores in np-metals is typically less than 100 nm. Due to their high surface-area-

to-volume ratio, np-metals are highly appreciated as functional materials, such as catalysts 

[2, 3], sensors [4, 5] and energy storage materials [6]. One good example is Raney Nickel, 

the commercial catalyst in oil hydrogenation used in industry for more than 80 years [7].  

The use of np-metal can be traced back to 80 years ago, however, the study of np-

metals is relatively new. The earliest study of np-metal is by Pickering and Swan in 1960’s 

[8]. They utilized TEM to characterize nanoporous gold (np-Au). Up to date, many metals 

and alloys have also been produced in np forms, including np-Cu, np-Ag, np-Pt, np-Pd, etc 

[9-12]. However, most of present studies are focused on np-Au, due to the noble chemical 

behavior of Au and ease of fabrication.  
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In order to implement np-metals in an application environment, the understanding 

of their mechanical behavior is important. Np-metals are considered to be brittle intuitively. 

However, recent studies in np-Au suggested it has some extraordinary mechanical 

properties. Researchers found that np-Au is brittle macroscopically, but ductile at the 

nanoscale [13], and the ligaments have a relatively high yield strength [14] than typical 

value of bulk Au. These preliminary works initiated more studies on mechanical behavior 

of np-metal, but many issues remained. First no standard method to measure strength of 

np-metals. Nanoindentation is the most commonly used method, due to the ease in sample 

preparation, but appeared to overestimate strength [15, 16]. Second controversies existed 

when using scaling equations by Gibson and Ashby to calculate ligament strength. Scaling 

equation is a relationship between mechanical properties of np-metals to those of ligament 

materials (bulk dense materials). Many researchers found that Gibson and Ashby’s scaling 

equation may not be applicable to np-metals, because they were designed for very low 

relative density porous materials (<0.1), but np-metals typically have relative density of 

0.2-0.4 [17]. More discussion about scaling equation is in Chapter 2.5.  

To develop further knowledge of np-metal, nanoporous nickel (np-Ni) and 

nanoporous iridium (np-Ir) were studied in this research. Ni and Ir are both fcc metals. 

Mechanical behavior of fcc bulk metals such as Ni, Cu, Pd, and Ir are well documented, 

providing useful information to study their nanoporous counterparts. Because bulk Ni and 

Ir have higher yield strength than Au, their deformation behavior were expected differ. The 

study included fabrication and mechanical testing of np-Ni and np-Ir, as well as detailed 

microstructural characterization using electron microscopy. These results provided an 
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improved understanding in fabrication of nanoporous metals and study of their mechanical 

properties.  

1.3 Outline of this doctoral work 

The following is a brief outline of this thesis. 

Chapter 1 presents the motivation and gives a brief introduction of this research; 

Chapter 2 provides useful information of the theoretical background of the study. 

It includes fundamentals of nanoporous metals and dealloying, applications of np metals, 

and also general background, i.e. elastic and plastic deformation of metals, atomic diffusion 

in metals, relaxation behavior of thin film, scaling law, stress in thin films, relax behavior 

of thin films and at last the size effect of nanoscale mechanical behavior. 

Chapter 3 describes experimental methods at a fundamental level. It includes thin 

film techniques, characterization methods, such as SEM, TEM, XRD, and mechanical test 

methods for nanoporous (np) metals.  

Chapter 4-7 contains the major works of this thesis. It includes the study of thin 

film np-Ni (Chapter 4), the study of a multilayer fabrication approach (Chapter 5), the study 

of thin film np-Ir (Chapter 6), and the study of bulk np-Ir (Chapter 7).  

Chapter 8 is a summary of all the works presented in this thesis. It includes 

conclusions and future work. 
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2 Background 

This chapter introduces various aspects of nanoporous (np) metals, including 

dealloying, applications, scaling law, thin film stress, diffusion, size effect, etc., with the 

purpose of providing the background to better understand the remaining of this thesis. 

2.1 Nanoporous metals 

Even porous materials have existed in earth for ages, e.g. zeolites and sponge, the 

study of them is relatively new. According to the official standard of International Union 

of Pure and Applied Chemistry (IUPAC), porous materials can be classified as micropores 

(<2 nm), mesopores (>2 nm and <50 nm), and macropores (>50 nm) based on pore 

diameter. Nanoporous materials actually fall into all the three catalogs. They typically 

exhibit porosities (volume ratio of pore space to the total volume of the material) greater 

than 0.4, and pore diameters between 1-100 nm [18]. 

Nanoporous metals (np-metals) are nanoporous materials made of metals. They 

are sometimes described to be a two-phase system, i.e., metal ligaments and pores.  For np-

metals prepared by dealloying, they appear to be completely irregular in morphology, as 

shown in Figure 2.1 [19, 20]. Figure 2.1a and b show plan-view SEM and TEM image of 

a thin film nanoporous gold (np-Au), which are typical morphologies for a film thickness 

less than 100 nm. Figure 2.1c is a real 3-D structure of np-Au obtained from electron 

tomography, and it displays the interconnections of gold ligaments and nanopore channels 

[19, 20].  
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Common terminologies used to evaluate a nanoporous structure include relative 

density and aspect ratio. Relative density is the ratio of porous materials density to that of 

fully dense material. It’s equivalent to the volume ratio of ligament volume to the volume 

of the whole material. Aspect ratio is the ratio of ligament length to width. Note that 

ligament length is measured from middle points of two joint nodes. Typical nanoporous 

metals exhibit relative densities in the range 0.2-0.4 [17], and aspect ratio around 1.5-3 [21-

23]. 

 

Figure 2.1. Morphologies of np-Au [19,20]. (a). Plan view scanning electron 

microscopy (SEM)  images of np-Au; (b). Plan view transmission electron microscopy 

(TEM) images of np-Au; (c). Three-dimensional structure of np-Au imaged by electron 

tomography. The bottom part shows the skeletal network of gold ligament. The various 

colors of the skeletal network represent the deviation angles of the ligaments from the 

surface normal as indicated in the color bar. 
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2.2 Dealloying 

Even there are some natural porous materials, such as zeolites, wood and bones, 

np-metals are indeed synthetic. There are several methods available to produce np-metals 

[24, 25], with dealloying becoming a common approach. Dealloying refers to the selective 

dissolution of one or more components from an alloy. The sacrificial components are 

commonly the less noble (LN) elements since they are normally chemically active, and the 

remaining components are accordingly the more noble (MN) elements. However, it’s not 

necessarily true in all the cases, e.g., making np-Ni from NiCu, where Cu is actually more 

noble than Ni [26].  

Not all of the binary or trinary alloy system can yield nanoporous structure upon 

dealloying. Erlebacher summarized some basic shared characteristics if alloy systems can 

become nanoporous during dealloying: (1). the potentials required to dissolve each 

component in its pure form must be separated by a few hundred millivolts. The sacrificial 

elements are less noble (LN), and the remaining element is more noble (MN), as we 

discussed above. (2). the composition is usually rich in less noble components. (3). the 

system must be homogeneous before dealloying, i.e. only one phase for the precursor alloy. 

(4). diffusion of MN atoms at the solid/electrolyte  interface must be sufficiently fast [27].  

Depending on if voltage is applied in the process, dealloying can be classified as 

free corrosion and electrochemical dealloying. Dealloying condition, i.e. concentration of 

etchants, dealloying temperature and time can affect the dealloyed structure in ligament 

size and aspect ratio. 

The earliest use of dealloying can be traced to fabrication of Raney nickel from 

alloys by dealloying Ni-Al or Ni-Si 83 years ago [28]. However, the earliest study in 
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dealloying was by Pickering and Swann in 1960’s when they fabricated np-Au from Au 

alloys [29, 30]. They were also the first to use transmission electron microscopy (TEM) to 

study the structure of dealloyed materials, demonstrating a nanoporous structure in the 

dealloyed sample. In 1979, Forty successfully created freestanding np-Au film by 

dealloying a AuAg alloy in nitric acid [31]. Two key parameters associated with dealloying, 

namely, critical potential and parting limit, were determined and evaluated by Sieradzki 

and Newman, by studying the electrochemical behavior of AuAg alloy in dealloying [32, 

33]. 

Critical potential is the voltage threshold above which dealloying current started 

to increase dramatically. Figure 2.2 shows the current density vs. voltage curve during 

dealloying, and the critical voltage is located at the knee point where the current density 

suddenly increases [32]. However, the critical potential is not clearly defined, as indicated 

in Figure 2.2, the region between the dashed lines indicated ambiguity in defining a critical 

potential. One method involves drawing the tangent line of the upper linear portion of the 

current density vs. potential curve, and the intersection on the voltage axis is defined as the 

critical potential. The other way to determine the critical potential is to find the potential 

corresponding to a constant current/current density. 
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Parting limit is defined as the content of non-sacrificial metal in the precursor 

alloy above which dealloying cannot occur. For dealloying of AuAg to fabricate np-Au, 

the parting limit is around 40 at.% Au [33].  

These preliminary studies attracted more research interests in this field. To date, 

dealloying has been successfully applied in fabrication of np-Pt [34], np-Pd [12, 35], np-

Cu [10], np-Ag [36], np-Ir [37] and np-Ni [38]. In 2001, Erlebacher et al. described an 

atomistic model of dealloying evolution [39], published in a natural paper. According to 

his study, dealloying is a process, in which two mechanisms happen simultaneously, i.e. 

dissolution of sacrificial element atoms and uphill diffusion of noble metal elements. This 

work was widely accepted as a successful model to describe porosity/ligament formation 

during dealloying.  

 
Figure 2.2. A schematic drawing of the current density vs. voltage in dealloying of 

an alloy. The plot is taken from work of Sieradzki et al [32]. Critical potential is the 

voltage threshold above which dealloying current increases dramatically, as indicated 

as the region between two dashes line. 
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2.3 Application of nanoporous metals 

Due to the high surface-to-volume ratio inherent to the nanoscale porous structure, 

Many believed np-metals have great potentials for application as catalysts [3], sensors [4, 

40], actuators [5, 41], and energy storage materials [6, 42]. Raney nickel is a classic 

example of np-metal catalyst. It’s commonly used as the commercial industrial catalyst in 

hydrogenation of vegetable oil. Other examples of np-metals as functional materials are 

presented in the following sections. 

2.3.1 Nanoporous metals as catalysts 

In addition to Raney nickel, nanoporous Pt (np-Pt) or Pt-based alloys were also 

used as catalyst. They worked as electrocatalyst for oxidation of small organic molecules 

and also oxygen reduction [43]. Another example of np-metal catalysts is nanoporous gold 

(np-Au). Despite the inertness of Au, np-Au actually had been demonstrated as a great 

catalyst for CO/CO2 conversion even at low temperature  [44].  

2.3.2 Nanoporous metals as sensors and actuators 

Due to their great catalytic performance in reduction and oxidation of organic 

molecules, np-Pt and np-Au were also studied as sensors for detecting H2O2, and measuring 

PH [45].  

Pd is used as a commercial H2 sensor. Np-Pd has been demonstrated to be more 

promising for detecting H2 due to the nanoporous structure. It had a shorter response time 

than dense Pd film in H2 adsorption and desorption [12].   



11 

 

The application of np-metals as actuators is attribute to the high stress/strain 

sensibility of the porous structures. The examples can be found in np-Au as well [5, 41]. 

2.3.3 Nanoporous metals as energy storage materials 

Energy storage is one of the hottest topics in this century. Nanoporous materials 

have received some research interest in their electrochemical properties, benefited from a 

potential energy density raise due to the high surface-area-to-volume ratio. Researchers 

have reported ultra-high capacitance of np-Pt [46] and np-Au [6].  

2.3.4 Utilizing nanoporous metals 3-D architectures 

In addition to using np-metal directly as functional materials, the application of 

np-metals is also benefited from its three dimensional (3D) structure. The 3-D porous 

structure in np-metals doesn’t only increase the surface area, also offers a conductive 

network with adequate void space. It’s reported that np-Au coated with a thin layer of 

polypyrrole exhibited high energy density, and also improved stability. It’s a promising 

candidate material for super-capacitors [47]. Other example is nanoporous Ni. A slightly 

elevated temperature annealing can form a thin NiO layer on the Ni surface. The Ni-cole-

NiO-shell structure provided the material a high specific capacity [48]. The same idea can 

be adopted to other systems. For the new generation of energy storage materials, 3-D 

architecture will be a new trend [49]. One problem of Si electrode in Li-ion battery, i.e. the 

poor cycling behavior due to the large volume change during lithiation and delithiation, 

may be solved by utilizing the 3-D metal nanoporous structure (conformal coating Si on 

np-metal). Np-metal structure provides space to release the volume change, and also acts 

as a conductive 3-D network (electron collector).  
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2.4 Gibson and Ashby’s scaling law 

In order to implement nanoporous metals in a practical environment, a more 

fundamental understanding of their mechanical behavior is needed. It’s relatively straight 

forward to measure the mechanical properties of np-metals, A*. But problems remained 

when translating the properties of np-metals, A*, to the solid ligament materials, As. Many 

researchers directly took over the relationships for low density open cell foams.  

Among many works to explore the relation of mechanical properties of porous 

materials to those of the ligament materials [50-52], Gibson and Ashby’s scaling law has 

be widely accepted and applied in study of np-metals [53]. According to the scaling law, 

mechanical properties, e.g., moduli and strength, of the porous materials A* is related to 

the fully dense ligament materials As by the following equation, 

  
𝑨∗

𝑨𝒔
= 𝑪 ∙ (

𝝆∗

𝝆𝒔
)𝒏                                            Equation 2.1 

where A* and ρ* are mechanical property and density of the porous material respectively, 

and As and ρs are mechanical property and density of the ligament material (corresponding 

dense materials). 
𝜌∗

𝜌𝑠
 is relative density of the porous material. As implied in its format, it’s 

the ratio of the density of the porous material to that of its corresponding fully dense 

material.  n, and C are empirical constants. For open cells foams with low relative density, 

Gibson and Ashby fount that n=2 or 1.5, respectively for relative modulus and relative 

strength. C is highly related to the geometry of the porous structure, and empirical data 

indicated that C=1 or 0.3, respectively for relative modulus and relative strength, over a 

broad range of relative density (0.01 to 1) [53].  
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For example, yield strength of a single crystal np-Au column sample, 𝜎∗ , is 

measured as 100 MPa from a nano-indentation test. According to the scaling equation, the 

calculated yield strength of the Au ligaments, 𝜎𝑠, is 1.5 GPa. Here, 
𝜌∗

𝜌𝑠
 is equivalent to the 

volume percentage of the gold in the porous sample, which is 36%. C and n are 0.3 and 1.5 

respectively. The calculated yield strength (1.5 GPa) is 10-100 times larger than typical 

yield strength of bulk Au, and is close to the theoretical shear strength of Au (4-5 GPa). 

This example is taken from a published paper by Volkert et al [54]. Other researchers also 

found the extremely high yield strength of np-Au in nano-indentation experiments both in 

bulk and film specimens [55-57].  

With more and more researches in this field, questions arose regarding viability 

of the classic Gibson and Ashby’s scaling equation. As mentioned earlier, Gibson and 

Ashby’s scaling equation was derived for low density open cell foams (
𝜌∗

𝜌𝑠
< 0.1). However, 

the relative density of nanoporous metals usually falls into the range of 0.2-0.4 [17]. At 

low relative densities, the deformation of open-cell foams is primary due to cell-wall 

bending. However, as relative density increases, the contribution of cell-wall extension or 

compression becomes more significant [53]. Meanwhile, the classic scaling equation 

applies to porous structure in length scale larger than micrometer. It’s not true for np metals 

neither. The typical ligaments size of nanoporous metals is 1-100 nm, where the dislocation 

nucleation and motion are subject to different constraints. Thus the size effect must be 

considered [55]. More discussion about size effect is in section 2.9. Therefore, Gibson and 

Ashby’s scaling equation must be revised when applying to np-metals. 
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2.5 Stress in thin films 

An as-deposited film is stressed even no external force is applied to it. The internal 

stress of thin film is generated in deposition process. Generally there are two sources for 

the internal stress. One is the lattice misfit. The other is the mismatch in thermal expansion 

coefficient [58]. For epitaxial films, lattice misfit, f, causes the major stress in films. 

However, it is not a concern for the sputtered films on Si wafers, due to an amorphous Si 

oxide/nitride layer on the surface. Instead, thermal effect makes the major contributions. 

In deposition, the film is slightly heated due to heat generated in sputtering. When the film 

is cooled to room temperature after sputtering, a thermal stress is created. For a bilayer 

film/substrate, usually the substrate is more rigid than film, and the film is constrained by 

the substrate, and therefor results in a tensile stress. The stress is given by 

𝝈𝒇(𝑻) =
(𝜶𝒔−𝜶𝒇)∆𝑻𝑬𝒇

𝟏−𝝂𝒇
                                           Equation 2.2 

where αs and αf are thermal expansion coefficients of substrate and film respectively. And 

∆T is the temperature differential. Ef and νf are Young’s modulus and Poisson’s ratio of the 

film.  

2.6 Elastic and plastic deformation in metals 

This section is not directly related to nanoporous (np) metals. But it’s essential to 

understand the mechanical behavior of np metals. 

When a metal sample is subjected to a uniaxial tensile force, it will undergo 

deformation. At the beginning, the small amount of deformation is recoverable, i.e. the 

sample returns to its original shape when the force is removed. This type of deformation is 

called elastic deformation. When the metal sample is deformed further, unrecoverable 
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deformation happens, and this type of deformation is called plastic deformation. During 

plastic deformation the metal atoms undergo permanent displacement.  

2.6.1 Stress and strain in metals 

In the tensile test discussed above, a uniaxial force F, is applied to the metal 

sample. Assume the sample is in a cylinder shape, with length 𝑙0, and diameter 𝑑0, as 

shown in Figure 2.3. The engineering stress σ, is defined as the average force per unit area. 

In this case, 𝜎 =
𝐹

𝜋

4
𝑑0

2. The cylinder sample is elongated in the direction of tensile force, 

and the engineering strain ε, is defined as the ratio of the total deformation to the original 

dimension of the sample. In this case, 휀 =
𝑙−𝑙0

𝑙0
. 𝑙  is the length of the sample after 

deformation.  

 

 
Figure 2.3. A sample of cylinder shape is under tensile force, F. The cylinder has a 

length of 𝑙0 and diameter 𝑑0 before applying the force, and after the tensile force it has 

a length of 𝑙 and diameter of 𝑑. 

 F 

F 

d0 l0 l 

d 
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In this tensile test, besides elongation, the metal sample also undergoes 

contraction in cross section. Poisson’s ratio, ν, is defined as the negative ratio of lateral 

strain to longitudinal strain. In this case, 𝜈 = −
𝜀𝑙𝑎𝑡𝑒𝑟𝑎𝑙

𝜀𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
= −

𝑑−𝑑0
𝑑0

𝑙−𝑙0
𝑙0

. 𝑑 is the diameter of 

the sample after deformation. It’s worth noting that Poisson’s ratio is only for elastic 

deformation. For most of materials, they have positive Poisson’s ratios due to the opposite 

signs of 휀𝑙𝑎𝑡𝑒𝑟𝑎𝑙 and 휀𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙. However it’s not true always, and some materials have 

negative Poisson’s ratios. 

Additional to tension or compression test, a material can also be deformed by 

shear stress (see Figure 2.4). Shear stress, τ, is defined as the shear force per unit area, i.e. 

𝜏 =
𝐹𝑠

𝐴
. And shear strain, γ, is defined as the ratio of shear displacement to distance where 

shear stress acts, i.e. 𝛾 =
∆𝑙

𝑙
. Remember that shear stress is parallel to the face it’s applied 

to, as shown in Figure 2.4, where tensile/compression stress is normal to the face it’s 

applied to, as indicated in Figure 2.3.  

 

 
Figure 2.4. A sample in cubic shape is under shear force, Fs.  The cubic has a length 

of 𝑙, and under shear force Fs, the upper face moved a distance of ∆𝑙. 

 Fs 

A 

  

∆  
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In a tensile test, a tensile force is applied to a sample (usually in cylinder shape), 

and the engineering stress and strain are recorded and plotted out. A typical engineering 

stress and strain curve of a metal sample is shown in Figure 2.5. From this curve, some 

important mechanical properties of the sample are obtained. 

 

The first one is Young’s modulus or elastic modulus. Young’s modulus, E, is 

defined as the slope of the linear part, i.e. 𝐸 =
𝜎

𝜀
. This linear part corresponds to elastic 

deformation in the sample. As discussed above, strain is recoverable in this region. 

The second one is Yield strength. Yield strength corresponds to the transition 

stress from elastic deformation to plastic deformation. It’s the beginning point of plastic 

deformation. However, sometimes transition point is ambiguous to determine the yield 

strength. In these cases, the yield strength is determined by the 0.2% offset stress, where 

0.2% plastic strain takes place, as indicated in Figure 2.5.  

 
Figure 2.5. A classic engineering stress and strain curve of a metal sample. Yield 

strength, ultimate tensile strength (UTS) are indicated on the curve as well. 
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The third one is ultimate tensile strength (UTS). The UTS is the maximum stress 

in engineering stress strain curve, as shown in Figure 2.5. After the yield point, the stress 

increases due to strain hardening until it reaches UTS.  Beyond this point the sample starts 

necking until fracture. Notice that the UTS is an engineering stress. Actually beyond UTS, 

the true stress, i.e. force divided by actual cross section area, is still increasing, because the 

sample cross section area is decreasing dramatically after necking.  

All of the properties above can be used to evaluate strength of a material. The 

ductility can be assessed by the elongation percentage in engineering stress and strain curve. 

Elongation is not the only way and sometimes is not sufficient to evaluate the ductility 

either. It’s also noteworthy that Young’s modulus is the only property all engineering stress 

and strain curves have. For brittle materials, they usually rupture before the stress reaches 

yield strength, and therefore yield strength and UTS are not available in their engineering 

stress and strain curves.  

2.6.2 Dislocation 

To early 20 century, researchers have realized that the plastic deformation of 

metals is primarily caused by atomic slip and twining. No matter which mode the materials 

deform with, the atomic planes slip over each other is the major process. For a perfect 

crystal, the theoretical shear strength for two atomic planes slip over each other is given 

approximately by, 

𝜏𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝐺

2𝜋
                                         Equation 2.3 

where G is the shear modulus of the crystal. However, the calculated theoretical shear 

strength is several orders larger than the shear stress obtained in practical experiments. This 
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puzzle remained unclear until 1930’s when Orowan, Polanyi and Taylor introduced the 

concept of dislocation to explain plastic deformation.  

Dislocation is one type of crystallographic defects, specifically line defect. There 

are two major types of dislocations. One is edge dislocation, and the other is screw 

dislocation. Edge dislocation can be imagined as a half plane of atoms introduced through 

middle of a crystal, as shown in Figure 2.6a [59]. While screw dislocation can be imagined 

as cutting a crystal along a plane and then slipping one half plane across the other by one 

atomic row distance, as shown in Figure 2.6b [59]. There are also mixed dislocations. As 

the name implied, they are mixture of edge and screw dislocations. One important character 

of dislocations is Burger’s vector, �⃗� . Burger’s vector is to describe the magnitude and 

direction of the displacement a dislocation can cause in a crystal. As indicated in Figure 

2.6, the Burger’s vector of an edge dislocation is perpendicular to the dislocation line, and 

for a screw dislocation it’s parallel to the dislocation line. 
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The presence of dislocations explained a lot of phenomena in plastic deformation. 

First, it explained why the practical yield strength is way lower than the theoretical shear 

strength. Due to dislocation, it doesn’t have to break the entire atomic bonds of two planes 

to make them slip over each other. The plane can be moved by breaking one line of bonds 

each time, which causes the dislocation line move one Burger’s vector forward. The energy 

required to move a dislocation line one Burger’s vector is way less than that to break all 

bonds of two planes. Secondly, dislocation in a crystal is essential for strain hardening. For 

example, in tensile test, some dislocations escape from the surface and leaves plastic 

deformation in the crystal. At the meantime, new dislocations generate due to 

multiplication. For polycrystalline metals, the dislocations may pile up in grain boundary. 

It increases the resistance to further dislocation motion, and causes the so called ‘strain 

hardening’ in plastic deformation. 

 
Figure 2.6. A schematic illustration of edge dislocation (a), and screw dislocation 

(b). The Burger’s vectors of two kinds of dislocations are also shown in the drawing. 
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2.7 Diffusion in metals 

Atomic diffusion is a thermally activated process. In perfect single crystal, 

diffusion occurs by lattice diffusion (bulk diffusion). There are two types of lattice 

diffusion, i.e. interstitial diffusion and substitutional diffusion. For interstitial diffusion, 

small atoms diffuse between the lattices of larger atoms, e.g. carbon atoms diffusion in 

steel. For substitutional diffusion, atoms can only move by substitute position with the 

other ones. Self-diffusion is one type of substitutional diffusion.  The minimum energy 

required for lattice diffusion (no matter interstitial or substitutional diffusion) is called 

activation energy. The rate of diffusion, K, can be evaluated by Arrhenius equation: 

𝑘 = 𝐴 ∙ 𝑒𝑥𝑝(−
𝐸

𝑅𝑇
)                                         Equation 2.4 

where E is the activation energy, A is a prefix constant depending on the reaction, and R is 

the gas constant, T is absolute temperature.  

In perfect crystal, the activation energy is very high. Therefore the diffusion rate 

at room temperature is too low to be noticed. However, as dislocation played a big role in 

plastic deformation, crystal defects also affect diffusion in similar way. For example, 

vacancies, one type of point defect, decreases the activation energy for lattice diffusion 

significantly.  

In addition to lattice diffusion, there are grain boundary (GB) diffusion, 

dislocation diffusion, surface diffusions, etc. These four kinds of diffusions are illustrated 

in Figure 2.7.  As you may notice, GB, dislocation, and surface are also defects in crystal. 

GB and surface can be imagined as plane defects. Just as vacancies, they are preferred 

diffusion paths. The activation energy of GB, dislocation and surface diffusions is usually 

lower than that of lattice diffusion. 
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The driving force of diffusion is usually considered as concentration gradient. 

According to it, atoms always diffuse to minimize the concentration differences. However, 

it’s not true always. In ‘up-hill’ diffusion or ‘spinodal decomposition’, the atoms diffuse 

against concentration gradient. Instead, the driving force of diffusion in this case is 

chemical potential gradient. Dealloying is one example of taking advantage of ‘up-hill’ 

diffusion. In dealloying, the less noble elements are dissolved in the solution, and the noble 

metal atoms are driven, opposite of the concentration gradient, to form clusters of noble 

metal ligaments [60].  

2.8 Relaxation behavior of thin films 

Relaxation is a process by which a system returns to equilibrium. Relaxation 

significantly relies on atomic diffusion, and therefore it is also a thermodynamic process. 

As discussed in previous section, all diffusion-dependent reactions have activation energies, 

which will be talked shortly later.  

 
Figure 2.7. A schematic drawing of 4 types of diffusion: 1. lattice diffusion through 

vacancies; 2. grain boundary diffusion; 3. diffusion through dislocation; 4. surface 

diffusion. 
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Usually people use a Maxwell model to describe the relaxation behavior. In the 

model, the material is represented by a viscous damper and an elastic spring in series, i.e., 

the total strain εtotal=εdamper+εspring. The derivation of stain to time gives 휀�̇�𝑜𝑡𝑎𝑙 = 휀�̇�𝑎𝑚𝑝𝑒𝑟 +

휀�̇�𝑝𝑟𝑖𝑛𝑔. According to the definition, a damper’s behavior can be described as 휀�̇�𝑎𝑚𝑝𝑒𝑟 =
𝜎

𝜂
, 

and a spring behaves following 휀�̇�𝑝𝑟𝑖𝑛𝑔 = 𝐸�̇�, where η, E and σ are viscosity of the damper, 

elastic modulus of the spring and total stress applied to the series. Thus the total strain rate 

ε̇total is, 

   
𝒅𝜺𝒕𝒐𝒕𝒂𝒍

𝒅𝒕
=

𝝈

𝜼
+

𝟏

𝑬

𝒅𝝈

𝒅𝒕
                                          Equation 2.5 

Considering the boundary condition and initial condition in the relaxation, i.e. the 

strain is constant in relaxation, i.e. 
𝑑𝜀𝑡𝑜𝑡𝑎𝑙

𝑑𝑡
= 0, and at t=0, σ(t)=σ0 (σ0 is the initial stress in 

the films), an exponential decay equation can be obtained as the solution of the equation 

above: 

𝝈(𝒕) = 𝝈𝟎 𝒆𝒙𝒑 (− 
𝒕

𝝉
)                                          Equation 2.6  

where, τ in the equation is called relaxation time, the reciprocal of it can be interpreted as 

a qualitative measurement of rate, and is related to the relaxation temperature in Kelvins 

by an Arrhenius equation as [61], 

    
𝟏

𝝉
= 𝑪 𝒆𝒙𝒑 (− 

𝑸

𝑹𝑻
)                                           Equation 2.7 

𝒍𝒏 (
𝟏

𝝉
) = −

𝑸

𝑹
∙ 𝑻 + 𝑪𝟏                                        Equation 2.8 

where C is a constant independent of temperature, R is molar gas constant, and Q is the 

activation energy for the process. 
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2.9 Size effect of nanoscale mechanical behavior  

‘Smaller is stronger’.  

Size effect on the mechanical behavior of materials has been a hot topic of studies. 

Due to the extremely small dimensions, nano-scale materials (nano thin film, 

nanocrystalline materials, nanoporous materials) have displayed some extraordinary 

behavior, e.g., the especially high strength in nanocrystalline metals [62]. The enhancement 

of strength in nanocrystalline materials is due to the grain boundary strengthening. 

Reducing in grain size (micro-nano) causes a large volume fraction of atoms are located in 

grain boundaries, which impede the dislocation movement. The relationship of the yield 

strength and the grain size is described by the Hall-Petch equation: 

𝝈𝒚 = 𝝈𝟎 +
𝒌𝒚

√𝒅
                                                   Equation 2.9 

where σy is the yield strength, σ0 is a materials constant, which is related to the starting 

stress for dislocation movement, ky is the strengthening coefficient, and 𝑑 is grain size. The 

equation is named after its inventor E. O. Hall and N. J. Petch (their work were 

independent). 

 The size effect can be applied to not only grain size but also other critical size 

which confines a material, i.e. thickness of thin films, diameter of nano-rods, and ligament 

size of nanoporous materials. For example, Hodge et al. studied the yield strength of np-

Au by nano-indentation and micro-compression, and found that the relationship of 

ligaments yield strength and ligaments size followed a Hall-Petch type relation [63].  

However, controversy arguments exist about the limit of size effect, i.e. can size 

effect be applied to any small size features without an exception. Some researcher found 

so called reverse/inverse Hall-Petch effect. The basic idea is decreasing the feature size 
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beyond 10 nm will weaken a material instead of further increasing its strength. Researchers 

found the inverse Hall-Petch relation in nanocrystalline metals and nanoporous metals as 

well [55, 64, 65]. Many mechanisms have been proposed for this effect, e.g., the lack of 

dislocation source, GB sliding model [64, 66], Coble creep. Some researchers argued it’s 

actually due to the poor quality of the samples, i.e. the increased voids or pores in 

nanocrystalline metals [67]. No matter this inverse Hall-Petch effect is a fact or not, these 

arguments can only be solved with further understanding the mechanism of plastic 

deformation in nanoscale. 
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3 Experimental 

This chapter introduces experimental methods in a more fundamental level since 

detailed information will be further presented in next a few chapters. In general, 

experiments in this study includes thin film fabrication techniques, dealloying, 

characterization, and mechanical behavior test. General information about dealloying has 

been introduced in previous chapter, and therefore won’t be presented here.  

3.1 Thin film technique 

3.1.1 Sputtering deposition of thin films 

As one of the physical vapor deposition (PVD), sputtering deposition is the major 

technique used to prepare thin film samples in this work. Different from other PVD 

methods, specifically evaporation, sputtering is more accurate in controlling film 

stoichiometry, and therefore it was used as the primary tool to prepare alloy thin film 

samples.  

Sputtering is a process generating physical vapor by using ions (mostly Ar+) to 

bombard a solid target surface. The process can arise both plasma and ion beams. Plasma 

is described as weakly ionized gases consisting of a collection of electrons, ions, and 

neutral atomic and molecular species. Note that plasma is neutral overall.  

Sputtering process can be categorized to DC, RF (AC) and magnetron, according 

to the method to generate plasma or ions. Nowadays, magnetron sputtering is the most 

widely used one due to a very straight forward reason, i.e., higher deposition rate. 

Magnetron sputtering is practiced in DC and RF power supplies, but is a significant 

different category.  In the study, a HV (high vacuum) magnetron sputtering system from 
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AJA Inc. was utilized to deposit films. Both DC and RF power supply was provided by the 

system to perform sputtering. Another thing noteworthy is even sputtering is a PVD 

method, it can be operated in the presence of a reactive gas (sometimes called reactive 

sputtering), e.g., O2 to produce oxides, N2 to produce nitrides. 

3.1.2 Wafer curvature 

The stress of the thin film can be measured by wafer curvature system (Toho, 

FLX-2320-S). Just as the name implies, wafer curvature system determines thin film stress 

by measuring curvature of a wafer. The film has to be deposited on a wafer. The curvature 

difference of the wafer before and after deposition is used to calculate the stress in the film 

by Stoney equation [58]: 

𝝈𝒇 =
𝒀𝒔𝒅𝒔

𝟐

𝟔(𝟏−𝝊𝒔)𝒅𝒇
(

𝟏

𝑹𝟐
−

𝟏

𝑹𝟏
)                                       Equation 3.1 

where Ys and νs are Young’s modulus and Poisson’s ratio of the substrate, ds and df are the 

thickness of the substrate and the film, as shown in Figure 3.1. R1 and R2 are the radii of 

the wafer before and after deposition of the film. 
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Stoney equation is widely applied in determining the stress of thin films. In most 

of the cases, the properties of the substrate, i.e. Ys, νs, and ds are known or easy to obtain. 

For a thin film with known thickness, df, the curvature, 1/R1 and 1/R2 can be measured by 

wafer curvature. Therefore, the film stress is obtained according to Equation 3.1. It’s 

noteworthy that the Stoney equation only applies to thin films which have thickness way 

smaller than that of the substrates, i.e., df << ds.  

When measuring film stress, wafer (3 inch wafers were used in the study) 

curvature is obtained with a 15° or 45° interval, and 12 (0°-165°) or 4 (0°-135°) 

measurements have to make to determine a stress mapping over the entire wafer or an 

average film stress. The Toho wafer curvature system allows heating or cooling sample in 

a temperature range from -75°C to 500°C while simultaneously measuring film stress. 

Therefore, wafer curvature was used for thermal cycling or thermal relaxation of thin film 

samples, to evaluate themomechanical behavior of thin films.   

 

Figure 3.1. A schematic drawing of the curvature of wafer with a negative radius 

(corresponding to a compressive stress in film).  
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3.2 Characterization 

3.2.1 Profilometer 

The film thickness is measured by a stylus profilometer (Dektak, Bruker). 

Different from optical measuring of film thickness, profilometer is destructive. It works by 

scanning a needle over a film-substrate step, the film thickness is directly read out as the 

height of the step. The step can be created by masking or etching during or after deposition. 

The system resolution is a few angstroms (~ 5Å), but in practice the measurement of films 

with thickness under 50 nm is not precise, due to substrate roughness or vibration of the 

equipment.  

3.2.2 SEM 

Scanning electron microscopy (SEM) is the most widely employed tool to 

perform characterization for thin films. It utilizes an electron probe scanning over the 

sample to produce various signals, including secondary electrons (SE), backscattering 

electrons (BSE), Auger electrons, X-rays and so on. These signals are collected by different 

detectors to perform structure and analytical measurement. The SEM used in this study 

included a Hitachi S900 FEG (cold cathode filed emission gun) SEM and a Hitachi S3200 

(tungsten hairpin filament).  

SEM is primarily worked in SE mode to resolve surface morphology of specimens. 

The resolution of each SEM differs from 1 nm to a couple nanometers. S900 has the highest 

one, 1 nm, among all the SEMs. Additionally, energy dispersive X-ray spectroscopy (EDS) 

was performed in S3200, which is attached with an Evex detector, to measure the chemical 

composition of thin films.   
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The requirements for traditional SEM samples are conductive and dry. Samples 

have to be mounted on sample holder through a conductive path, such as carbon tape or 

carbon paint. If sample itself is not conductive, a layer, e.g., Au or carbon coating, is coated 

on sample surface to create a conductive surface.  Dryness may not be a necessity for SEM 

samples anymore, due to the emergence of environmental SEM, by which wet samples, 

e.g., biological specimen, can be observed in relative low vacuum.  

3.2.3 XRD 

X-ray diffractometer (XRD) was used in the study to determining the 

crystallographic structure of a sample. It utilizes a beam of X-ray (Cu Kα usually) to 

generate diffraction in specific directions. By measuring the angle of deflected beams, the 

lattice parameter and crystal structure can be obtained by the well-known Bragg’s law: 

2𝑑 sin 𝜃 = 𝑛𝜆     Equation 3.2 

where θ is the incident beam angle, λ is the wavelength of incident beam, n is any integer, 

and d is the spacing between diffraction planes.  

X-ray can penetrate into a few to a couple hundred micrometers depending on 

incident beam and medium. Thin film sample may not be suitable for this technique, due 

to a huge amount of signal from substrate. However, useful spectra can be obtained by 

optimizing scanning parameters, such as scan speed, steps, and beam slot size.  

3.2.4 TEM 

Transmission electron microscopy (TEM) works with electron beam transmitted 

through a thin enough sample. Since it also utilizes electron beam, TEM also generates 

secondary electrons, backscattering electrons, auger electrons, X-rays, but particularly and 
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most importantly transmission electrons. TEM can work in imaging mode, and also 

analytical mode by electron diffraction, EDS, electron energy loss spectrum (EELS).  

The major advantage of TEM over SEM is the higher resolution, which is one 

order higher than SEM. Specially, scanning transmission electron microscopy (STEM), 

working by focusing the electron beam into a very small spot size, down to 1Å, can achieve 

resolution in sub nanometer lever. This feature benefits a lot of techniques, such as annual 

dark field imaging (ADF), EDS, and EELS. Note that EDS (and EELS) in SEM can never 

achieve an analytical resolution of several nanometer, which is due to the pear-shape 

(tapping toward the top) interaction volume. Even the probe size can be down to a few 

nanometer, the interaction volume has diameter up to tens or even hundreds nanometers.   

With these advantage, TEM would be employed more widely than SEM. However, 

a major disadvantage of TEM is sample preparation. TEM sample has to be prepared thin 

enough to make it electron transmittable. One may think thin film is therefore ideal for this 

technique, but removing films from their substrates is even more troublesome. One method 

to prepare a thin film sample will be presented later in chapter 6.  

3.2.5 XPS 

X-ray photoelectron spectroscopy (XPS) is a spectroscopic technique to perform 

chemical analysis, by utilizing X-rays as incident beam to generate photoelectrons. Similar 

to X-rays, photoelectrons are also characteristic. XPS spectra provide information of 

element composition, and also chemical state and electronic state. Therefore, XPS is 

usually used as an assistant tool to EDS. Another unique feature of XPS is surface 

sensitivity. It measures photoelectrons escaped from the top several nanometers (1-10 nm) 

of the sample.  



32 

 

3.3 Mechanical test of nanoporous metals 

Mechanical test of nanoporous metals were studied by thermal cycling for films, 

and nanoindentation for bulk samples.  

3.3.1 Thermal cycling 

Thermal cycling was performed in the wafer curvature system, as talked in section 

3.1.2. When a thin film subjected to heating or cooling, thermal expansion or contraction 

is induced in the film, and so is the substrate. Due to the disparity in thermal coefficients, 

film and substrate are subjected to different degree of expansion or contraction. Assuming 

substrate is more thermally rigid (αs<αf), and then film stress would decrease as 

temperature going up (due to a negative ∆𝜎𝑓(𝑇)/∆𝑇 according to Equation 3.3), and vice 

versa. A cooling curve of metal thin film is very similar to a stress-strain curve. As 

temperature decreasing, the film undergoes thermoelasticity and thermoplasticity. The 

thermoelastic slope is related to the film’s biaxial modulus, Mf, by the following equation, 

Equation 3.3 [58]. According to it, the biaxial modulus of the thin film can be determined. 

∆𝜎𝑓(𝑇)

∆𝑇
= (𝛼𝑠 − 𝛼𝑓) ∙ 𝑀𝑓                                 Equation 3.3 

where αs and αf are thermal expansion coefficients for substrate and film respectively. 

∆𝜎𝑓(𝑇)/∆𝑇 is the slope of the thermal elastic curve. 

Another mechanical property can be determined from thermal cycling is yield 

strength, σy. As in classic stress-strain curve, yield point is measured as the transition point 

from thermoelasticity to thermoplasticity. However, if the temperature applied on the film 

is not beyond the thermal elasticity range, transition point won’t display in the thermal 

cycling curve. 
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3.3.2 Nanoindentation 

Nanoindentation is a technique applying indentation hardness measurement to 

small volume. Due to the especially small indenter tip, and small load applied, the indenter 

print size may be a few micrometers or even nanometers. Nanoindentation on thin film 

must be carefully designed, due to influence of the substrate. As a rule of thumb, when the 

depth of the indentation exceeds 10-25% of the film thickness, substrate effects must be 

considered.   

A typical indentation curve is displayed in Figure 3.2, from which the hardness, 

H, can be determined. It is defined as the maximum load, Pmax, divided by the residual 

indentation area, Ar, as in Equation 3.4. Note that Ar is the print area after indenter being 

removed from sample. 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑟
    Equation 3.4 

 

In addition to hardness, the linear part of the unloading curve can be used to 

calculate Young’s modulus, E. Note that the slope, dP/dh, is not Young’s modulus itself, 

 
Figure 3.2. A typical loading and unloading curve in indentation. Reduced younth 

modulus can be calculated by the linear unloading slope, i.e. dP/dh. 
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instead is reduced Young’s modulus, Er, but it is related with Young’s modulus by a 

relationship.  

In this study, a nanoindenter (NanoTest Vantage, Micro Materials) was used to 

measure the hardness of nanoporous films. It utilizes a Berkovich diamond indenter (3-

sided pyramid shape). The load range of the system is from 0.1 mN to 500 mN.  
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4 Thin film np-Ni fabrication and thermomechanical behavior study 

4.1  Introduction 

This project is sponsored by KSEF (Kentucky Science and Engineering 

Foundation). One objective is to fabricate np-Ni as an alternative to Raney nickel (RN). 

RN is a commercial catalyst in oil hydrogenation. It’s made by leaching Al or Si from NiAl 

or NiSi precursor alloy in a hot alkali solution (KOH). Raney nickel exists in fine powder 

form and exhibits ligament diameter as small as 5 nm [68]. In the process there are 

significant amount of hydrogen adsorbed within the pores. Additionally due to its activated 

form, RN is highly pyrophoric and must be protected from air exposure. For example, it’s 

prepared in a water-based slurry to prevent ignition of the hydrogen gas contained in porous 

structure. Another method is removing the hydrogen in RN by mild heating in an 

air/oxygen mixture or a diluted H2O2 solution [69]. This step also produces a thin oxide 

layer in RN, which enhances its hydrogen adsorption ability and improves its catalytic 

ability. However, these series of processing can be cumbersome for industrial production. 

One objective of this project is to fabricate nanoporous nickel (np-Ni) in stable form with 

a relatively easy approach. 

Electrochemical dealloying can prevent the pyrophoric problem by separating the 

cathode and anode reaction, producing H2 at the cathode and dealloying Ni at the anode. 

Therefore H2 gas won’t be trapped in porous structure. Searson’s group [70] has produced 

np-Ni from Ni-Cu by electrochemical dealloying, and the ligaments in the np-Ni are 100-

200 nm, one order larger than that of Raney Ni (5-10 nm). Hakamada and Mabuchi also 

produced np-Ni (and np-NiCu) from NiMn with electrolytic dealloying, and the dealloyed 

materials have ligaments of 10-15 nm [38]. However, applying voltage made these 
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methods costly and troublesome. In this study, thin film np-Ni was produced by free 

corrosion. Multiple precursor alloys, i.e. NiCu, NiAl, NiFe and NiMg were selected to 

fabricate np-Ni.  

In addition to fabrication of thin film np-Ni as an alternative of RN, another goal 

of this project is to study the mechanical behavior of np-Ni. As mentioned in chapter 1, 

most current studies have focused on np-Au, due to the noble chemical behavior of Au and 

ease of fabrication of np-Au. Different from Au, Ni is a non-noble metal, and has a 

relatively high yield strength, which means Ni is ‘tougher’ than Au under stress. 

Meanwhile Nickel is prone to be oxidized. Even the nature oxide layer on Ni surface is 

only 1 nm [71], but considering the nanometer-length-ligaments and the high surface area 

in np-Ni, the mechanical behavior would be strongly affected by the oxide layer on surface 

Ni.  

4.2 Challenges and methodology 

Challenges in this work are generally listed in the following: 

1. Different from typical np-metals, Ni is relatively active compared with Au. 

Sacrificial elements in the precursor system and the dealloying solution must be 

carefully selected. The sacrificial element in precursor alloy must provide 

sufficient potential difference to make it be dissolved but reserve Ni.  

2. The commercial Raney nickel is made by leaching Al from Ni-Al alloy. To be an 

alternative of Raney nickel, the proposed dealloying method has to be simple as 

well. And the new method should be able to avoid the pyrophoric problem in np-

Ni. 
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3. The dealloyed np-Ni should possess a comparable fine structure to Raney nickel 

(less than 10 nm pore size).  

4. Due to its ferromagnetic nature, characterization of Ni in electron microscope may 

be troublesome.  

5. Due to its active nature, heating of Ni would cause oxide layer on sample surface. 

Therefore, heat treatment must be performed in reduced gas atmosphere, such as 

forming gas (mixture of N2 and H2 gas).  

With the accessible equipment and previous experience in studying np-Au, free 

corrosion were utilized to synthesize np-Ni. Compared with other fabrication methods, free 

corrosion is straight forward and inexpensive, which is more favored by industry. Multiple 

precursor alloys were selected, including Ni-Cu, Ni-Al, Ni-Fe and Ni-Mg. These alloy 

systems displayed big diversity in terms of phase. Ni-Cu was selected because they formed 

a miscible solid solution over the entire range of composition in phase diagram. Therefore, 

it provides a one-phase precursor system, which matches the requirement of precursor alloy 

(see more discussions about it in Chapter 2 section 2.2). But one problem with Ni-Cu was 

that Cu is actually more noble than Ni. Therefore Ni is more vulnerable than Cu in most of 

the etchant (acid). A special commercial copper etchant was used in dealloying Ni-Cu with 

the purpose to reserve Ni while etching Cu. In other alloy systems, the sacrificial elements, 

i.e., Al in Ni-Al, Fe in Ni-Fe, and Mg in Ni-Mg, were selected because they are less noble 

than Ni and part away from Ni in electrode potential.  

To address the pyrophoric problem, etchant for each alloy was selected to 

minimize the production of hydrogen gas in dealloying. In dealloying of NiAl, a mixture 
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of NH4OH and H2O2 was used to etch Al. The existence of H2O2 acted as a strong oxider 

to avoid generating H2.  

The np-Ni was characterized by X-ray diffraction (XRD), scanning electron 

microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron 

spectroscopy (XPS). As talked in previous section, due to it ferromagnetic nature, np-Ni 

sample did cause difficulty in taking SEM micrographs. However, by proper preparation 

and optimizing the working condition, high magnification images were taken for both plan-

view surfaces and cross-sections. XPS was used in analyzing surface chemical information 

of np-Ni.  

The mechanical properties of np-Ni thin films were studied by thermal cycling 

and relaxation in wafer curvature system. To prevent Ni being oxidized in heating, the 

experiments were performed in forming gas (4 vol.% H2) atmosphere.  

Detailed information about experiments and results are presented in the following 

sections. 

4.3 Experimental details 

4.3.1 HV magnetron sputtering 

Three-inch diameter (100)-oriented silicon wafers (coated with 50 nm amorphous 

SixNy, CrysTec GmbH, Germany), with thickness of 180 μm or 380 μm, were used as 

substrates for deposition of the precursor alloy films. Magnetron sputtering was performed 

with an AJA ORION high vacuum deposition system (base pressure of 1.3-6.5 × 10-6 Pa, 

or 1.0-5.0 × 10-8 torr), using high-purity Ni (99.99%) and Cu (99.999%) or Al (99.999%) 

or Fe (99.95%) or Mg (99.95%) targets for source materials. Thin films were co-deposited 
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or sequentially deposited (as multilayers) by flowing Ar gas at 2.5 mtorr, with total 

thicknesses of 100-500 nm. 

For the multilayer films, layer thicknesses of 1.5-2 nm and 5.5-6 nm were chosen 

for Ni and Al layers, respectively. These values of thickness were selected, and therefore 

each nickel layer is thick enough to distribute over the entire substrate/film surface. If the 

nickel layer was too thin, it would form islands on the surface, instead of a continuous layer. 

Meanwhile, layer of each sacrificial element (e.g. Al) had to be sufficiently thin to avoid 

delamination.  

To enhance the adhesion of the films on the substrate, a 10 nm Ta layer and a 10 

nm Ni layer were deposited sequentially as interlayers for co-deposited films. Only a 10 

nm Ta was used as interlayer for multilayer films. To rule out contribution of the interlayer 

in film stress measurement, interlayers were deposited on both side of the Si wafer, and 

therefore the stress induced by interlayer was cancelled out. 

 The precursor alloy composition is critical to morphologies of dealloyed films. 

In order to determine the optimal composition, a composition gradient sample was prepared 

by fixing the substrate during deposition, as shown in Figure 4.1. In this configuration, the 

deposited film is Ni-rich on left side and sacrificial elements-rich on right side. The 

compositional gradient sample was then cut into small pieces with each piece having 

different composition, and then was dealloyed in desired solution. 
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4.3.2 Dealloying 

Dealloying was performed by using free corrosion. A commercial copper etchant 

(#49-1, from Transene Co.) was used as the etchant for NiCu with the purpose to dissolve 

Cu but reserve Ni. For NiAl precursor films, a mixture of 1NH4OH(30%) : 1H2O2(30%) 

was chosen. The strong oxidizer H2O2 in the solution was there to avoid generation of 

hydrogen gas, and thus prevents np-Ni from sharing Raney Ni’s problem of pyrophoric. 

For NiFe and NiMg precursor films, phosphoric acid and diluted acetic acid, respectively, 

were used as dealloying etchants. Morphology of the dealloyed films is strongly affected 

by dealloying conditions, e.g. concentration of the solution, dealloying temperature and 

time, agitation of etchant, etc. [72] Various conditions were tested, and the optimal 

dealloying conditions were determined after evaluation of the np-Ni surface morphology 

and purity. 

The as-dealloyed films usually lost the metallic luster with a dark color. They 

were cleaned with ethanol and then ultra-pure water. To protect them from being oxidized 

 
Figure 4.1. A schematic illustration of the deposition of a composition gradient 

precursor sample. Ni and sacrificial element were deposited at the same time. With this 

configuration, the film was Ni-rich on the left, and sacrificial element was rich on the 

right. 
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or contaminated, sometimes the dealloyed films were stored in ethanol until further 

experiments were performed.  

4.3.3 Characterization  

4.3.3.1 XRD 

X-ray diffraction (XRD) patterns were collected by Siemens D500 X-ray 

diffractometer and Bruker-AXS D8 Discover diffractometer. Both diffractometers used Cu 

targets. Measurements were made to determine the preferred orientation (texture) in 

precursor films and also np-Ni films.  

 XRD scan can be used to track dealloying as well. By tracking the sacrificial 

element or the precursor alloy peak at continuous dealloying step, the peak intensity can 

tell if dealloying finished or not. However, this method is reliable only if the same sample 

was used in the whole process. And since the position of sample in the XRD can affect the 

peak intensity as well, it has to be careful in mounting the sample to make sure it’s the 

same area that exposed to X-ray in each scan. 

4.3.3.2 SEM 

In order to observe the nanoporous structure of the dealloyed films, a microscope 

with high resolution was needed. The Hitachi S900 scanning electron microscope (SEM), 

with a maximum resolution of 1.0 nm, was the primary tool used to obtain SEM 

micrographs.  

The SEM samples are prepared by mounting a small piece of sample on a Cu 

holder with carbon or silver paint. Due to the dimension of sample holder, samples with 

limited size, i.e. maximum 7 mm in length, 4 mm in width, and 2 mm in height, can be 
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positioned on the holder. In order to obtain cross-section images of thin films, a special 

hold was made by cutting a groove on the holder along the long edge. When preparing a 

sample for cross-section imaging, the sample was cut into a piece with narrow width, and 

mounted by standing in the groove, perpendicular to the holder, to make cross-section of 

the film faced electron beams when putting the sample in SEM.  

The S900 was operated at 3kV or 6kV to obtain secondary electron images. And 

6kV is recommended for np-metal thin films with ligament less than 10 nm. 

4.3.3.3 EDS 

The Hitachi S3200 SEM was used to perform EDS analysis, for determination of 

thin film composition. S3200 has a tungsten hairpin filament, and can be operated from 

3kV to 30kV. 20kV was used for most of the samples in the measurement.  

The S3200 has an Evex EDS detector with a chemical resolution of approximate 

1 at.%. The reliability of results was improved by taking the average of at least 3 

measurement from different locations of one sample. Note that the working voltage used 

in the measurement allowed the electron beam penetrate into several to tens of micrometer 

depth of the sample. As a result, the interlayers, including Ni and Ta, was also included in 

the measurement. Therefore, the measurement from EDS results had been corrected by 

subtracting Ni content in the interlayer.  

S3200 has a larger sample stage than S900, especially in thickness dimension. Its 

sample holder, i.e. Al stub (15 mm or 30 mm diameter, Ted Pella), is different from that of 

S900 either. Thin films on Si substrate were cut into proper size, and then mounted on the 

sample holders.  
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4.3.3.4 XPS 

A Kratos XSAM-800 x-ray photoelectron spectroscopy (XPS) was used as an 

additional tool for further chemical analysis of dealloyed films. Specifically, since Nickel 

is oxidized once exposure to air, XPS was used to determine the oxide layer. The 

measurement was operated at 14kV, with Al Kα X-rays as incident beam. The sample 

mounting is similar to that of S3200. 

4.3.4 Film thickness measurement 

As talked in previous chapter, precursor film thickness measurement was 

performed in a stylus profilometer. To create a sharp step from films to substrates, a straight 

line was drawn with a Sharpie marker on the substrate before film deposition. After 

deposition finished, the sample was soaked in acetone for a few hours until the sharpie line 

was dissolved, and the film above sharpie paste was peeled off. The thickness of the film 

was measured across the drawing line. An average thickness was determined after 10 or 

more measurements were obtained. To have an accurate measurement, the film should have 

a thickness of at least 50nm, and thicker is better. 

4.3.5 Cyclic Voltammetry 

Electrochemical measurement was performed by cyclic voltammetry (CV) scans 

with a potentiostat (eDAQ). The set-up was a standard three-electrode glass cell in a 1M 

KOH solution, using a Ag/AgCl electrode as reference electrode and a Pt wire as counter 

electrode. In the experiments, CV scans were performed over the potential range of 0-0.6V 

with scan rates of 5 mV/s, 10 mV/s, and 20 mV/s. 
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4.3.6 Stress evolution during dealloying  

Film stress was measured by a wafer curvature (Toho FLX-2320-S) as discussed 

in Chapter 3, Section 3.1.2. The curvature of a bare Si wafer was measured by the system 

before a film was deposited on it. After deposition, the curvature was re-measured. The 

system calculated the curvature of the original bare Si wafer was subtracted to calculate 

the net curvature due to stress in film. Film stress was eventually determined by using the 

Stoney equation [58]. Detailed description of film stress measurement is in Section 2.5. 

It is worth noting that the interlayers introduced additional stresses and can 

therefore influence the overall stress measurement. To account for the stress due to 

interlayers, the same interlayers were deposited on both the front and the back side of the 

Si wafer, before final deposition of the precursor film. Therefore, the stresses caused by 

the interlayers were present on both sides of the substrate and cancelled each other. 

Stress evolution during dealloying was measured by forcing the dealloying 

process stop at regular time intervals. At each time interval, the sample was removed from 

the etching solution, and cleaned with distilled water and ethanol. The stress in the film is 

then measured by wafer curvature. Based on previous experience, it was known that stress 

would change most dramatically at the beginning of dealloying, and thus a short time 

intervals were chosen at the beginning and increased gradually with dealloying going. 

4.3.7 Thermal cycling and relaxation of thin films 

Thermal cycling was also performed in the wafer curvature system (Toho FLX-

2320-S). The dealloyed films were heated and cooled in a forming gas (4 vol.% H2) 

atmosphere in order to avoid oxidation of the np-Ni films. The temperature ranged from 
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40°C to 250°C, with heating and cooling rate of 5°C/min. The stress in the films was 

measured simultaneously and recorded per one minute.  

Stress relaxation was performed in between a heating and cooling cycle. The 

sample was first heated to 250°C, and during the cooling segment, it was interrupted by 

remaining the temperature at certain value for a desired time (8 h - 20 h). The stress was 

recorded at 5°C interval during relaxation in these experiments. 

4.4 Results and discussion 

4.4.1 Optimized dealloying conditions 

The optimal dealloying conditions from multiple precursors are listed in Table 4.1. 

The composition of the dealloyed films was determined by EDS measurements. Additional 

XPS scans were recorded for co-deposited NiAl films because the dealloyed films 

exhibited an abnormal microstructure which was suspected to be nickel oxidation (as 

shown in next section of this chapter).  

The major problem of dealloying NiCu, NiAl and NiFe films was that dealloyed 

film retained a significant amount of the respective sacrificial elements. Indeed, the NiCu 

precursor did not even result in Ni-rich np-Ni. However, NiMg films yield np-Ni with 100% 

Ni after reasonably short dealloying times. Dealloyed multilayer NiAl films also resulted 

in a high Ni content, but Ni and Al elements were not evenly distributed throughout the 

film. To improve the uniformity of multilayer NiAl samples, they were annealed in 200ºC. 

The annealed samples were then dealloyed and examined with X-Ray diffractometer (XRD) 

and EDS. However, the uniformity didn’t get improved.   
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Table 4.1. List of the optimal fabrication and dealloying conditions for synthesizing 

np-Ni from co-deposited NiCu, co-deposited NiAl, multilayer NiAl, co-deposited NiFe and 

co-deposited NiMg thin films. 

Film 

deposition 

mode 

Precursor 

composition 

(at.%) 

Dealloyed film 

composition 

(at.%) 

Etchant 
Dealloying 

condition 

Dealloying 

time 

Co-

deposition 
Ni33Cu67 Ni37Cu63 

Transene Cu Etchant 

42-1 (diluted 1:1 with 

H2O) 

40˚C 6 hours 

Co- 

deposition 
Ni25-35Al65-75 NiO45Al55 

1 NH4OH (30%) : 1 

H2O2 (30%) mixture 

(diluted 1:9 with H2O) 

Room temp 

(RT) 
30 min 

Multilayer Ni23-28Al72-77 

Ni67Al33 (avg.); 

Ni content 

varied from 30 

at% to 100 at% 

1 NH4OH (30%) : 1 

H2O2 (30%) mixture 

(diluted 1:9 with H2O) 

RT 22 min 

Co- 

deposition 
Ni30Fe70 Ni60Fe40 H3PO4 (85%) acid 

RT with 

vibration 
8 min 

Co- 

deposition 
Ni33Mg67 100% Ni 

HAc(100%) acid 

(diluted 1:79 with 

H2O) 

RT 10 min 

 

4.4.2 Surface morphology of dealloyed films 

The SEM micrographs in Figure 4.2 display surface morphologies of as-dealloyed 

NiCu films. Image (a) and (b) represent films dealloyed in non-diluted and diluted etchants 

(1:1), respectively. Based on the ligament and pore size measurements, the film dealloyed 

in diluted Cu etchant exhibited a finer structure, with ligament width and pore size of ~8 

nm, which is ~1 nm smaller (on average) than that dealloyed in non-diluted etchant. 

Although the dilute etchant needed a longer dealloying time, this route was successful in 

refining the nanoporous structure. Beside etchant concentration, the porous size can also 

be adjusted by changing dealloying time, temperature, utilizing agitation of the etchant. 

For example, extended dealloying times could result in significant ligament coarsening. As 
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seen in Figure 4.2c and d, the film in 4.2d was dealloyed in the same etchant, but with 

longer dealloying time. The ligament width in this film is around twice of the ones in 4.2b 

or 4.2c.  

Surface morphology of dealloyed co-deposited and multilayer NiAl precursor 

films were displayed in Figure 4.3. Image (a) was obtained from np-Ni by dealloying a co-

deposited NiAl film. It reveals a honeycomb-like structure, which is similar to that of 

porous alumina by anodizing aluminum membrane (it actually has more ordered pores than 

dealloyed NiAl films). The ligaments had an average width of ~4 nm and an average aspect 

ratio of 2.3, which is the finest structure obtained from any of the precursor films. The 

structure of np-Ni generated by dealloying multilayer NiAl is completely different, as 

shown in Figure 4.3b. This np structure contained shorter and more randomly oriented 

ligaments, and was comparable to the typical structure of np-Au.  It exhibits ligaments of 

~5 nm and an aspect ratio of 1.5.  
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To further characterize the np-Ni created by dealloying of co-deposited NiAl, the 

dealloyed film was examined by XPS. This analysis indicated that the ligaments has been 

oxidized, with a composition of 45 at.% NiO and 55 at.% Al. This may explain why the 

dealloyed co-deposited NiAl films have a similar structure as AAO membrane. Note that 

even the ligament geometry is mainly evaluated by aspect ratios here, the curvature of 

ligaments might better represent nanoporous structure and ligament geometry. 

 

 
Figure 4.2. (a) Surface morphology of dealloyed 100 nm Ni33Cu67 film. The film 

was dealloyed by Cu etchant (Transene 42-1). Both the pore and ligament sizes were 

9±3 nm. (b) A same precursor film was dealloyed using 1:1 diluted Cu etchant. The 

pore and ligament sizes were 8±2 and 8±3 nm, respectively. (c) A same film as the one 

in image (b). (d) A same precursor film was dealloyed also in 1:1 diluted etchant, but 

experienced longer dealloying time (9 hours for this sample, but the samples in (b) and 

(c) were dealloyed for 6 hours. The ligaments were significantly coarsened with longer 

dealloying time. 
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The plan-view SEM images of dealloyed NiFe films are shown in Figure 4.4. 

Figure 4.4a displays surface morphology of np-Ni without agitation of the etchant. The 

nanoporous structure exhibited an average ligament width of 32±4 nm. Figure 4.4b shows 

the surface micrograph obtained by dealloying the same NiFe film in the same etchant for 

the same time, but with agitation during etching. This resulted in much finer nanoporous 

structure with ligament width of 12±3 nm. These indicated agitation during dealloying can 

refine the ligaments by more than a factor of two. Additionally, np-Ni alloy created in the 

agitated etchant had a higher Ni content (60 at.% Ni) than in the non-agitated etchant (36 

at.% Ni). Since dealloying involves competing and simultaneous processes of sacrificial 

element dissolution and remaining element surface diffusion, a flowing etchant could shift 

the balance of these processes and, e.g., increase the rate of Fe removal, thereby increasing 

the relative number of Ni atoms at the dealloyed surface. This could increase the nucleation 

rate of ligaments and decrease their final spacing in the np structure. 

 
Figure 4.3. (a) Surface morphology of the dealloyed 100 nm co-deposited Ni33Al67 

film. Resultant nanoporous material is NiO, not metallic Ni. The ligaments were 4±1 

nm wide, with an aspect ratio of 2.3. (b) Surface morphology of the as-dealloyed 100 

nm multilayer Ni28Al72 film. The ligaments were 5±1 nm, with an aspect ratio of 1.5. 
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Figure 4.5a displays SEM images of np-Ni created by dealloying a 100 nm NiMg 

film. The average ligament size was determined to be 7 nm, representing one of the finest 

structures among all the dealloyed films. Cross-section image in Figure 4.5b, was taken 

from np-Ni film of an original thickness of 500 nm. The film experienced a huge volume 

contraction due to dealloying. The dealloyed film had a thickness of only ~160 nm, about 

1/3 of the original thickness. The huge volume contraction resulted in np-Ni films with 

high relative densities. In the case of the 500 nm NiMg film, it has a 33 at% Ni and 67 at% 

Mg in the precursor alloy, corresponding to ~19 vol.% Ni and 81 vol.% Mg. If there was 

no contraction during dealloying, the dealloyed film should have a relative density of 0.19, 

i.e. the volume fraction of Ni in the precursor alloy. However, due to the contraction, the 

relative density became 0.59. It’s very high compared with other nanoporous metals. 

 

 
Figure 4.4. (a) Morphology of as-dealloyed 100 nm Ni30Fe70 film. The film was 

dealloyed in 85% H3PO4 for 8 min without sample vibration. The average ligament 

width was 32±4 nm. (b) Nanostructure of as-dealloyed 100 nm Ni30Fe70 film. This film 

was dealloyed in 85% H3PO4, with sample vibration, for the same time. The resulting 

ligament width was 12±3 nm. 
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Note that all precursor alloy systems yielded nanoporous structure without 

cracking, with the optimal dealloying condition. Even there was a significant amount of 

volume contraction during dealloying, dealloyed NiMg didn’t display cracks either.  

Considering the morphologies of dealloyed np-Ni films as well as the purity of Ni 

content after dealloying, the NiMg precursor system is a promising candidate for 

fabricating np-Ni. The final nanoporous material consistently exhibited high purity (100% 

Ni, with no residual Mg detected by EDS) and fine porosity (ligament size of 7 nm). This 

form of np-Ni was chosen for further study of mechanical behavior during the rest of the 

project. 

4.4.3 XRD scan 

As discussed previously, XRD scan of the thin film deliver important information 

about crystal orientation or texture. The NiCu phase diagram displayed a complete solid 

solution over the entire composition range. Indeed, there was only one peak appearing in 

XRD scan of NiCu precursor film, except the Si peaks. This single peak was indexed to be 

 
Figure 4.5. (a) Morphology of an as-dealloyed 100 nm Ni33Mg67 film, with a 

ligament size of 7±2 nm. (b) Cross-sectional SEM image of an as-dealloyed 500 nm 

Ni33Mg67 film. 
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NiCu (111). The position of the alloy (111) peak laid between Ni (111) and Cu (111) or Fe 

(111). The peak position can be used to calculate the alloy composition. Here an example 

is presented to describe this method. 

For example, a NiCu film has a <111> peak at 43.7°. The incident beam Cu Kα 

has a wavelength, λ, of 1.54 Ȧ. With Bragg law, the corresponding plane spacing at 2θ 

angle of 43.7° is calculated as, 𝑑𝑁𝑖𝐶𝑢 =
𝜆

2𝑠𝑖𝑛𝜃
=

1.54�̇�

2∙sin (
43.7°

2
)
= 2.068 �̇�. 

On the other hand, the (111) plane spacing of pure Ni and pure Cu are, 

𝑑𝐶𝑢 =
𝑎𝐶𝑢

√𝑙2 + 𝑘2 + ℎ2
=

3.6148�̇�

√3
= 2.087 �̇� 

𝑑𝑁𝑖 =
𝑎𝑁𝑖

√𝑙2 + 𝑘2 + ℎ2
=

3.5239�̇�

√3
= 2.0345 �̇� 

where aCu, and aNi are lattice parameters of Cu and Ni respectively, i.e. 3.6148�̇�, and 3.5239 

�̇� [73]; l, k, h are miller index of the planes, i.e. 1, 1, 1.  

Considering the nature of solid solution, the d spacing of NiCu alloy relates to the 

d spacing of pure Ni and Cu by the composition of the alloy. Assume the Ni content of the 

sample is x in at.% (then the Cu content is 1-x), the relationship of dNiCu and dNi, dCu can be 

written by a scaling equation (sometime also called lever rule), as shown in Equation 4.1. 

𝑑𝑁𝑖𝐶𝑢 = 𝑑𝑁𝑖 ∙ 𝑥 + 𝑑𝐶𝑢 ∙ (1 − 𝑥)                                Equation 4.1 

dNiCu and dNi, dCu are calculated as 2.068 Ȧ, 2.0345 Ȧ, and 2.087 Ȧ, respectively. 

With Equation 4.1, the Ni content of the film is calculated as, 

𝑥 =
𝑑𝑁𝑖𝐶𝑢 − 𝑑𝐶𝑢

𝑑𝑁𝑖 − 𝑑𝐶𝑢
=

2.068�̇� − 2.087�̇�

2.0345�̇� − 2.087�̇�
= 0.362 = 36.2% 

This method can be used to verify the measurement from EDS. However, it’s 

worth noting that the calculation by this method is strongly affected by the accuracy of 
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peak position. An error in percentile may cause a couple percentage differences for the 

composition.  

It’s more complex for NiFe, NiAl and NiMg films. Intermetallic compounds or 

intermediate phases displays in their phase diagrams. The optimal composition used for 

each precursor alloy lies in between two phases or right on an intermetallic line (Ni1Mg2 

used in NiMg precursor). The XRD scans of these films were not conclusive. Incidentally, 

NiFe and NiAl scans displayed only one peak at around 44-45° (higher 44° for NiFe, lower 

44° NiAl), which is very close to Ni (111) peak (44.5°). If interpreting this peak as Ni (111), 

there should be another peak indicating one phase which containing the sacrificial elements, 

i.e., Fe and Al. But it’s not the case. Therefore, this interpretation is not convincing. The 

scans in NiMg film didn’t be able to obtain any peak except peaks from Si substrate. It is 

suspected to be an amorphous structure. Note that to evaluate the XRD scans of a thin 

sample, a control scan from the same Si substrate must be obtained to rule out the 

diffraction peaks from those of the substrate.  

No matter what kind of crystallographic structure the precursor alloys have, they 

all yielded nanoporous structures, as shown in previous section. Therefore, it is not 

necessary true that only one phase precursor alloy can yield nanoporous structure. Indeed, 

other groups had also synthesized np metals from various precursor alloys, e.g. producing 

np-Pt from amorphous Pt-Si [11], producing np-Au from intermetallic Au1Al2 [74], and 

fabricating np-Cu [75] and np-Ag [76] by multiple phases intermetallics. 

In addition to using the XRD to determine the precursor alloy composition, it can 

also be used to track dealloying. Figure 4.6 displays a series of XRD scans during 

dealloying a NiCu film. With dealloying going, the intensity of the alloy peaks gradually 
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decreased. In addition to intensity decreasing, the peak position shifted during dealloying 

as well. The (111) peaks of pure Ni and Cu are at 43.32° and 44.50° respectively. The (111) 

peak of NiCu alloy was shifting left toward Ni (111) during dealloying. It makes sense 

since the sample became more and more Ni richer as dealloying going. This method also 

worked for NiFe, NiAl alloys even their XRD scans were not indexed.  

 

One strange thing observed in all the XRD scans is that the dealloyed films 

displayed no peaks or a very broad short peak (as shown in Figure 4.6, the curve at 175 

minutes) if ruling out the peaks from Si substrate. The same phenomenon was noticed for 

np-Pd and np-Ir thin film as well. It’s not clear why np-metals films were invisible in XRD. 

It may be caused by size effect of ligaments. As learned from Cullity and Stock’s book 

[73], decreasing grain size or film thickness can cause peak broadening. It’s likely that the 

fine ligaments (<10 nm) in the dealloyed film broadened the XRD peak so that it’s not 

 
Figure 4.6. A series of X-Ray scans in small range of 42o to 46o during dealloying 

of a Ni-Cu film. The plot shows the X-Ray peak decreased and also shifted during 

dealloying.  
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distinguished in scans.  In a previous study by Sun Ye in the author’s group, he observed 

Au (111) peak in np-Au by dealloying of AuAg films. One distinctive difference of np-Au 

from np-Ni, np-Pd and np-Ir is that np-Au had ligaments between 10 nm-30 nm, larger than 

those of np-Ni, Pd and Ir, which had ligaments less than 10 nm.  

4.4.4 XPS measurement 

XPS was used to evaluate the dealloyed co-deposited NiAl film, and indicated 

oxide ligaments in dealloyed film, as discussed in previous section. XPS was also 

performed on np-Ni generated by dealloying NiMg precursor to determine whether the Ni 

was metallic or oxidized.   

Figure 4.7 displays a series of individual scans (in the vicinity of the Ni 2p peak) 

for various Ni samples. The purple open squire and red open circle curves are scans of np-

Ni films respectively before and after thermal cycling. The peaks matched well with Ni_2P 

peaks upon oxidation according to handbook of x-ray photoelectron spectroscopy [77]. For 

comparison the same scan was performed on a thicker, fully dense Ni foil. This generated 

a scan which matched with oxidized Ni 2p peaks, solid green diamond curve in Figure 4.7. 

It makes sense considering Ni is easily oxidized once upon in air. To remove the oxide 

layer from this dense Ni foil, it was ion milled for 10 minutes, and then measured again. 

This scan, as the blue cross curve in Figure 4.7, was different from all other scans, and 

agreed well with standard scans for pure Ni [77]. All of these results suggested that np-Ni 

was oxidized, both in as-dealloyed and thermally cycled forms. 
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4.4.5 Cyclic Voltammetry (CV) 

Initially, CV scans were planned to assess the electrochemical performance of np-

Ni thin films. Kong et al. demonstrated that porous films consisting of NiO or Ni(OH)2 

performed as good energy storage materials [78]. The same set-up were used in our 

experiment. However, the dealloyed np-Ni films didn’t display high current density as in 

their experiments. The measured CV curves, which are shown in Figure 4.8, agreed well 

with the CV scan of a porous metallic Ni film, which were also obtained by Kong, et al. 

According to their study, nickel oxide or nickel hydroxide would exhibit ways higher peak 

 
Figure 4.7. XPS scans of various nickel samples, in the range of the Ni_2p energy 

window, to determine the extent of oxidation in np-Ni. For reference, a thick foil of 

pure Ni was analyzed before (purple line) and after (green line) ion milling of its 

surface, to obtain spectra for oxidized and metallic Ni, respectively. Both the as-

dealloyed (blue line) and thermally cycled/annealed (red line) NiMg films generated 

scans that suggested the Ni had been oxidized. 
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density at different peak position. The CV test results indicated that the dealloyed np-Ni 

films consisted of metallic Ni, not np-NiO.  

 

The CV scans therefore delivered results that might seem to contradict the XPS 

results. However, considering that XPS analyzes surface regions ≤ 2 nm thick, and the 

thickness of native oxides on Ni is typically less than 1 nm [71]. One explanation of these 

results is that np-Ni was only oxidized at a 1-2 nm surface layer, the oxidized layer resulted 

in the Ni 2P peaks exhibited Nickel oxide character. However, in CV test, the metallic Ni 

core in ligaments overweighed the relatively small amount of Ni oxide on surface, therefore 

it performed the behavior should be observed in metallic Ni. This hypothesis would be 

verified by ion milling of the np-Ni film. However, due to failure of XPS, it was not tested. 

Nonetheless, the analysis of these results suggests that np-Ni ligaments may form a core-

shell structure with pure Ni core covered by a thin layer of native oxide. In the CV tests, 

this Ni oxide layer was not sufficiently thick to dominate the performance, and the material 

still behaved like metallic nickel.  

 
Figure 4.8. CV scans for a dealloyed 100 nm np-Ni film after thermal cycling. The 

first CV scan was performed at a rate of 10 mV/s, while the second to the fourth scans 

were run at 10 mV/s, 5 mV/s, and 20 mV/s, respectively. 



58 

 

4.4.6 Stress evolution during dealloying 

The measurements in the following sections are all based on np-Ni created by 

dealloying NiMg films. 

The stress measured in a thin film NiMg during dealloying was plotted, as shown 

in Figure 4.9. In the plot, the film stress was almost neutral at the beginning, but once upon 

dealloying, it increased quickly and settled at ~120 MPa (tensile). Further dealloying, 

resulted in stress decreased slightly, to ~100 MPa. The tensile stress caused in dealloying 

is in agreement with the previous study on AuAg dealloying. The peak in stress, which 

occurred at very first a couple section, likely corresponds to the point at which most Mg 

has been removed from the sample. Further dealloying (to hundreds of seconds) caused 

slightly decreasing of film stress, which probably is due to ligament coarsening and minor 

microstructural changes. 

 

 
Figure 4.9. Stress evolution during dealloying of 100 nm NiMg film, measured 

using a wafer curvature apparatus. Stress in the precursor alloy film is approximately 

zero, but rapidly enters the tensile state upon dealloying.  
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4.4.7 Thermal cycling behavior 

Thermal cycling experiments were performed on thin film np-Ni samples in the 

wafer curvature system, to determine the thermomechanical behavior of np-Ni. Typically, 

cooling a thin film from high temperature would cause the stress increased linearly. If a 

knee point occurs in cooling, where the linear increasing of the stress is interrupted and 

stress is still increased but not lined up with stress below. As in classic stress-strain curves, 

this knee point is a transition from thermoelasticity to thermoplasticity. Therefore, it gives 

information about the yield point. However, in the temperature range studied (room 

temperature to ~250˚C) here, the stress only displayed some arbitrary properties, which 

can’t belong to either elasticity or plasticity, as shown in Figure 4.10. 

The thermal cycling experiments revealed two interesting types of behavior in the 

np-Ni films, as shown in Figure 4.10. First, during initial heating (red curve), the film stress 

experienced a sudden drop at ~110˚C and then increased rapidly to an even higher stress 

level. This stress drop and rapid recovery was followed by an increase in stress from the 

compressive regime to the tensile regime. This phenomenon was consistently observed 

during most of the thermal cycling experiments for np-Ni in forming gas (a mixture of 

hydrogen and nitrogen, which establishes a reducing environment and hinders oxidation of 

the np-Ni). It is not clear why the films behaved this way during their first heating segments. 

One possible explanation is that the stress drop is due to a change in the passive oxide film 

on the Ni ligament surfaces, perhaps resulting from the adsorption/absorption of hydrogen 

on/into the np-Ni [79]. The rapid increase in stress following this drop is likely the result 

of reduction of the nickel oxide to metallic Ni on the np-Ni ligament surfaces. Typically, 
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oxidation of metal films induces compressive stress, and reduction of an oxide film induces 

tensile stress. 

The second distinctive feature of np-Ni thermal cycling was the opposite stress 

trend in heating and cooling. After entering the tensile regime, stress increased with 

temperature going up (and vice-versa during cooling). As discussed earlier in section 3.3.1, 

stress should decrease while heating to higher temperature (and vice versa in cooling), for 

most of the metallic films. This is due to the higher thermal expansion coefficient of metal 

(Ni in this case) versus silicon (the substrate material). However, in curves shown in Figure 

4.10, stress exhibited no obvious increasing or decreasing trend. Relating this observation 

to the feature discussed in the previous paragraph, a possible explanation is that hydrogen 

absorbed into the np-Ni metallic lattice (and did so readily once the oxide was reduced by 

the forming gas), but with temperature increasing, less hydrogen was contained within the 

Ni lattice and gradually desorbed from the np-Ni. The hydrogen desorption process would 

lead to a volume expansion of the Ni ligaments, which would manifest itself as a shift 

toward tensile stress. It is noted that a similarly thermal slope was measured for np-Pd 

during thermal cycling in forming gas as well. Palladium is extremely effective hydrogen 

absorber, and the nanoporous structure causes np-Pd to absorb and desorb hydrogen much 

more rapidly than dense Pd. Therefore, this phenomenon may be typical for np-metals 

which are good hydrogen absorbers.  
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4.4.8 Thin film stress relaxation experiments 

In addition to thermal cycling in the wafer curvature system, thin films were 

subjected to stress relaxation experiments at constant elevated temperatures in order to 

determine the diffusion mechanism(s) that operate in np-Ni in the vicinity of ~200˚C.  

The relaxation behavior in materials can be described by a Maxwell model. And 

an exponential decay equation can be used to describe it, as shown in Equation 4.2. 

  𝜎(𝑡) = 𝜎0 𝑒𝑥𝑝 (− 
𝑡

𝜏
)                                  Equation 4.2 

The detailed information about how to get this equation above is in chapter 2, 

section 2.8. The parameter τ in the equation is called relaxation time. The reciprocal of τ 

can be interpreted as a qualitative measurement of relaxation rate, and is related to the 

relaxation temperature in Kelvin by an Arrhenius-type rate equation as [61], 

 
Figure 4.10. Stress-temperature plot from repeated thermal cycling of an 80 nm np-

Ni film in forming gas (flows rate of 5 cfh for N2 and 0.17-0.2 cfh for H2). During the 

first heating segment, stress decreased suddenly at ~110˚C and then increased rapidly 

into the tensile regime, where it stayed for the remainder of two thermal cycles. 
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)     Equation 4.3 

 𝑙𝑛 (
1

𝜏
) = −

𝑄

𝑅
∙
1

𝑇
+ 𝐶1   Equation 4.4 

where C is a constant independent of temperature, R is the universal gas constant, and Q is 

the activation energy for the diffusion process. 

From the relaxation curves, i.e. stress vs. time, the relaxation time can be 

determined by fitting the curves with exponential decay curves. Several stress vs. time 

curves were obtained at different relaxation temperatures for the same sample or samples 

prepared the same way by dealloying. And then the reciprocal relaxation time, 1/τ , was 

plotted out in the nature logarithm form versus the reciprocal of relaxation temperature, 

1/T.  Multiple data points were fitted by a linear line, and slope of the line is –Q/R, 

according to Equation 4.4. Therefore, the activation energy, Q, is obtained. As discussed 

in the previous chapter, the mechanism of relaxation is diffusion. The diffusion mechanism 

(surface diffusion, grain boundary diffusion or bulk diffusion) can be determined by 

comparing the obtained activation energy with literature values. 

Figure 4.11 presents the stress relaxation curves for an 80 nm np-Ni thin film at 

relaxation temperatures of 180˚C and 200˚C (hold time was 8 hours in each case). In the 

plots, the raw data are shown as gray points, the smoothed curve is shown as a gray line, 

and the fitted curves as colored lines. The data were fitted with exponential decay curves 

(ExpDec1 in origin software). 
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From the exponential decay fitting, the relaxation time τ was determined, as 

shown in Table 4.2. The relaxation times are an indicator of the validity of the stress 

relaxation. At higher temperatures, stress relaxation due to diffusion should proceed more 

rapidly, and therefore the relaxation time should be shorter. As shown in Table 4.2, τ does 

indeed decrease with increasing temperature and the fitted results are therefore physically 

plausible. Finally, the activation energy is calculated from plots of ln(1/τ) vs. 1/T, as 

 

 
Figure 4.11. Stress relaxation curves for 80 nm np-Ni thin films relaxed at 180˚C (a) 

and 200˚C (b) for 8 hours in forming gas. The gray dots are raw data points, the light 

gray curve is smoothed curve based on the raw data points, black curve is fitting curve 

based on the raw data, and light blue curve is fitting curve based on smoothed data. 
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illustrated in Figure 4.12. The calculation was performed for both smoothed data and raw 

data, as shown in Table 4.2 and Figure 4.12. The smoothed data yielded an activation 

energy of 0.20 eV (19.5 kJ/mol), while the raw data yielded an activation energy of 0.31 

eV (29.4 kJ/mol). 

Table 4.2. Summary of exponential fitting results for relaxation curves presented in 

Figure 4.11. 

T/°C T/K 1/T τ 1/τ ln(1/τ)  

180 453.15 0.002207 117 0.00854701 -4.76217 τ obtained from 

smoothed data 200 473.15 0.002113 94 0.0106383 -4.54329 

180 453.15 0.002207 128 0.0078125 -4.85203 τ obtained from raw 

data 200 473.15 0.002113 92 0.01086957 -4.52179 

 

 

 

 
Figure 4.12. Arrhenius fitting of ln(1/τ) vs. I/T for the stress relaxation results in 

Table 4.2. (a) is the fitting curve based raw data, and (b) is the fitting curve based on 

smoothed data. The slope of the linear curve is –Q/R.  
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The range of experimentally determined activation energy (0.20 to .31 eV) is 

lower than most literature values for the surface self-diffusion of Ni (~0.7 eV) [80-83], and 

also lower than that for H2 absorption into Ni (0.4 eV) [79]. Ultimately, given the limited 

amount of data (only two data points) and the consequent limited validity of this analysis, 

it was not possible to draw a conclusion regarding the active diffusion mechanism in np-

Ni at these temperatures. 

Nonetheless, based on the work in this project, it is proposed that elevated 

temperature stress relaxation of np-Ni may involve multiple mechanisms operating, 

including diffusion of Ni atoms on the surfaces of np-Ni ligaments, H2 adsorption onto and 

diffusion into np-Ni ligaments, and oxidation or reduction of Ni ligament surfaces. These 

mechanisms may operate simultaneously, and if this were the case, would explain the 

difficulties in isolating and measuring the governing diffusion mechanism. One suggestion 

for mitigating some of the difficulties experienced in this study is, for metals such as Ni 

that are susceptible to oxidation or gas absorption, a vacuum environment could be 

established for cleaner thermal cycling and stress relaxation experiments. 

4.5 Conclusions and future work 

The goal of this project was the development of np-Ni as an alternative to Raney 

Nickel. This project was successful in establishing that thin film np-Ni can be produced 

using straightforward chemical processing that avoids the problems of Raney Nickel, 

namely its pyrophoricity and structural instability that limits it to powder form. Thin film 

np-Ni, as studied here, is crack-free and could be produced as a conformal coating for non-

planar devices intended to operate in a catalytic or sensing application. Although we were 

not able to determine some details of the mechanical behavior of np-Ni, we demonstrated 
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that it is has thermal stability over a moderate temperature range, provided the operating 

environment is appropriate. In summary, the following was established during the course 

of this project: 

1) Nanoporous nickel (np-Ni) can be synthesized from a variety of precursor alloys, 

including Ni-Cu, Ni-Al, Ni-Fe and Ni-Mg. The relatively straightforward process 

of dealloying produces a crack-free nanoporous structure with ligaments and 

pores on a length scale of 5-10 nm or larger (tens of nm). 

2) Ni-Mg alloy films (with a composition of approximately NiMg2) are the best 

precursors for producing np-Ni that is highly pure in Ni content, free of cracks, 

and exhibits the smallest ligaments and pores of any material investigated here. 

3) Np-Ni ligaments have a native oxide coating but a metallic Ni core. This is a 

consequence of Ni’s tendency to form a thin, protective native oxide, and does 

not hamper its ability as a catalyst. 

4) Dealloying of Ni-Mg to produce np-Ni results in the extremely rapid removal of 

Mg, with a concomitant increase in film stress to ~100 MPa. The crack-free 

structure of np-Ni allows this tensile stress to be maintained during extended 

dealloying. 

5) Np-Ni performed an anti-thermoelasticity tend over the temperature range of 

room temperature to 250°C, provided a reducing environment is maintained to 

prevent oxidation of the Ni surfaces. Np-Ni appears to absorb hydrogen, which 

affects the film stress. 

Np-Ni reacted with forming gas somehow, which makes the determination of 

activation energy from relaxation of np-Ni in elevated temperature inaccurate. To carry out 
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thermal cycling or thermal relaxation to np-Ni, a vacuum environment is probably 

necessary to avoid chemical or physical reactions. Nonetheless, the thermal cycling or 

relaxation can be applied to nanoporous noble metals, which are not as vulnerable as Ni to 

O2.  

To understand the mechanism of atomic diffusion in np-metals, the effect of 

surface area has to be considered. To assess the effect of surface layer, a quantitative 

measurement of specific surface area of np-metals, for example by BEY, is necessary. 

Besides this, if a precise control of ligament size can be achieved, it would be very helpful 

to explore the effect of ligament size or geometry to specific surface. Another method to 

examine the mechanism of diffusion in np-metals is to utilize in-situ environmental TEM, 

(Dr. Guiton’s group has an in-situ heating TEM holder, which can be heated up to 1000°C) 

to visualize atom movement in heating or relaxation. 

Besides studying thermal mechanical behavior of np-Ni, the application of np-Ni 

should be considered in the future. The fine porous structure in np-Ni is promising to be 

used as a 3D frame in Li-ion battery. By coating Si or other anode material on it, it should 

work as a good anode material since it provides conductive network and also sufficient 

space for Li-ion intercalation and deintercalation.  
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5 Multilayer fabrication of np-Ir and np-Au thin films 

5.1 Introduction 

Due to the high surface-area-to-volume ratios, np materials are candidates for 

applications including catalysis [3], sensing [4, 40], actuation [5], etc. Multiple techniques 

have been developed to produce np materials, e.g., anodizing Al/Si to obtain porous 

alumina/Si [24, 84, 85], and, most commonly, using an inorganic sacrificial mold, assisted 

with a porous template, to produce another porous material [25]. The template-assisted 

method offers precise control of porous geometry, including pore size and ligament 

orientation. Recently, dealloying has become a common approach to fabricate np materials, 

especially np metals [10, 60]. Compared with the template-assisted method, dealloying is 

more straightforward and is effective at creating porous structure.  

However, conventional dealloying does not allow precise control of pore size. 

Researchers have found that precursor alloy composition and dealloying conditions 

(etchant concentration, dealloying temperature, dealloying time, agitation of etchant) can 

significantly affect morphology of the dealloyed structure [27]. Average ligament size can 

be modified by adjusting these conditions, but dealloying typically produces a lognormal 

distribution of feature sizes. Other methods to alter ligament size include thermal 

coarsening [86] or using surfactants during dealloying [87]. However, quantitative control 

and predictable design of ligament geometry cannot typically be achieved by dealloying. 

This chapter presents a multilayer fabrication method and demonstrates its success 

in creating nanoporous structures with controlled ligament size and orientation. This 

multilayer fabrication idea was inspired by Wayne Li, a former member in the author’s 

group, from his study of ultrathin np-AuPd films [88]. Two precursor alloy systems, Ir-Ni 
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and Au-Ag, are considered, and this method should be applicable to fabrication of 

structured np metals in general. Films with various layer thickness were studied and the 

length scale of dealloyed np metals (np-Ir and np-Au) was tuned by the initial layer 

thicknesses, as revealed by both plan-view and cross-section micrographs. 

5.2 Experimental 

Fabrication of multilayer np films also includes deposition and dealloying, as the 

methods used in fabricating np-Ni thin films. Most of the experimental details were 

reduplicate of those in previous chapter. Only information different from them are 

presented here. 

Note that, even multilayer deposition was studied in fabrication of np-Ni from Ni-

Al precursor films, different from it, the multilayer IrNi/AuAg films are composed of pure 

Ir/Au layers and Ir-Ni/Au-Ag alloy layers. Multilayer films were deposited in the ORION 

sputtering system as well, by programming the gun shutters to open and close in a timed 

sequence. Four multilayer sequences were investigated here: (1) 5 layers of 10 nm Ir-Ni 

alloy, each separated by a 1 nm pure Ir layer; (2) 10 layers of 5 nm Ir-Ni alloy, separated 

by 0.5 nm pure Ir layers; (3) 3 layers of 20 nm Au-Ag alloy, separated by 2 nm pure Au 

layers; and (4) 10 layers of 10 nm Au-Ag alloy, separated by 1 nm pure Au layers. 

Ir-Ni precursor alloy films were dealloyed using a two-step process. First, these 

films underwent free corrosion in diluted nitric acid (1 part stock 68% HNO3 : 1 part 

distilled H2O), with the solution maintained at 50˚C. Second, electrochemical dealloying 

was performed in diluted nitric acid (1 HNO3 : 9 H2O), with constant DC voltage of 1.35 

V. Third, voltage was increased to 1.4 V for the final stage of dealloying. For the precursor 

film with 10 nm Ir-Ni alloy layers, the times for each step were 1 hour, 7 hours and 21 
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hours. Times for the film with 5 nm Ir-Ni alloy layers were 17 hours, 4.25 hours and 7.25 

hours. The second dealloying step was stopped when current flow from the sample settled 

to a plateau value near zero.  

Multilayer Au-Ag films were also dealloyed in nitric acid. However, dealloying 

was performed completely by free corrosion, using concentrated nitric acid. The precursor 

film with 20 nm Au-Ag layers was dealloyed for 10 min. The film with 10 nm Au-Ag 

layers was used to investigate microstructural evolution during dealloying, by stopping the 

dealloying process at intermediate times, before dealloying was complete. Individual film 

samples were removed from the etchant at various times (1 min, 3 min, 5 min, 8 min) and 

rinsed to prevent further dealloying. 

Characterization for dealloyed films were performed in the same SEM and EDS 

system (S900 and S3200, Hitachi) to investigate surface and internal morphology, and 

composition. 

5.3 Results and discussion 

5.3.1 Multilayer np-Ir films by dealloying of IrNi multilayer films  

The SEM images of dealloyed IrNi films are shown in Figure 5.1. The layered 

structure exhibited in both 10 nm-layer and 5 nm-layer films, as shown in Figure 5.1a and 

5.1b respectively (all the cross-section images were recorded with the Si substrate below 

the film). The layered structure went through the entire film thickness. Differences in layer 

thickness are apparent in the two types of films. Due to the sequence of deposition (pure 

dense Ir layer was deposited under Ir-Ni alloy for each layer), 4 dense pure Ir layers were 

identified in the 5-layer film, and 9 dense pure Ir layers were observed in 10-layer film. In 
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addition to cross-section images, plan-view micrographs are also presented in Figure 5.1c 

and 5.1d. The surface morphology differed significantly for films with 5 nm IrNi layers 

and 10 nm IrNi layers. Film with thicker alloy layers exhibited larger ligament size, with 

an average ligament width of 7 nm. Due to the extremely small ligament in 5 nm-thick-

layer film, the ligament width is not determined, but a rough estimation is about 3-5 nm. 

The EDS measurement indicated that the dealloyed films have Ir contents of 90.3 at.% and 

79 at.%, respectively for 10 nm-layer and 5 nm-layer films. 

 

 
Figure 5.1. (a) Cross-section SEM image of np-Ir fabricated by dealloying an Ir-Ni 

multilayer film that originally consisted of 10 nm Ir-Ni alloy layers, each separated by 

a 1 nm pure Ir layer (5 sets of layers in the precursor film). Average spacing of each 

layer (porous layer + pure Ir layer) was 8.7 nm. The Si substrate is located below the 

film in each cross-section micrograph. (b) Cross-section SEM image of np-Ir created 

from precursor with 5 nm Ir-Ni alloy layers and 0.5 nm pure Ir layers (10 sets of layers 

in this precursor). Average spacing of each layer was 5.2 nm. (c) Plan-view SEM image 

showing nanoporous surface morphology of the film from image (a). (d) Plan-view 

SEM image of surface morphology for the film from image (b). 
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5.3.2 Multilayer np-Au films by dealloying of AuAg multilayer precursor film with 

20 nm alloy layer 

The SEM images in Figure 5.2 illustrate the dealloyed AuAg film with 20 nm-

thick-AuAg-layer. Each individual layer clearly displayed in cross-section image, as in 

Figure 5.2a.  The pure dense Au layers looks thicker than the expected thickness in 

deposition. It’s probably due to the Au atom diffusion and agglomeration during dealloying. 

Between the dense Au layers, small short Au ligaments spanned over the layers, and 

oriented vertically to the pure Au layer. Surface morphology of the film is shown in Figure 

5.2b. It revealed a different morphology than typical nanoporous metals. The top ligaments 

appeared to be shorter, more similar to nanoparticle. Comparing with the cross-section 

image in Figure 5.2a, the topmost ligaments stood perpendicular to the supporting layer, 

and therefore, the ligaments displayed on plan-view image are viewed along their length. 

Average ligament width was measured to be 23.3 nm and 24.5 nm, respectively from plan-

view image and cross-section image. The EDS measurement indicated the dealloyed film 

has 100 at% pure Au.  
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5.3.3 Multilayer np-Au films by dealloying of AuAg multilayer precursor film with 

10 nm alloy layer 

The dealloying evolution in multilayer AuAg film was studied on a film with 10 

nm thick Au-Au layer. Cross-section images of the film with dealloying times of 1 min, 3 

min, 5 min and 8 min, are presented in Figure 5.3. Dealloying started from top film, as 

shown in Figure 5.3a. Only a few nanoporous layers were observed at the first minute. 

Dealloying went down quickly, and almost attacked the entire film thickness after 3 

minutes, and about 8 layers were observed in Figure 5.3b.  The layered structure went 

through the whole thickness after 5 min, as seen in Figure 5.3c, but some places (the right 

side of Figure 5.3c) started to appear randomly oriented ligaments. Further dealloying 

 
 

Figure 5.2. SEM micrographs of np-Au dealloyed from precursor multilayer with 

20 nm Au-Ag alloy layers and 2 nm pure Au layers (3 sets of layers in the precursor). 

(a) Cross-section and (b) plan-view images of the same film, showing layered 

architecture through the film thickness and ligaments oriented perpendicular to the 

layers, including short ligaments protruding from the film surface. Average spacing 

between layers of ligaments was 20.9 nm. 
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resulted in disappearing of the layered structure, and the ligaments went to a random 

orientation, seen in Figure 5.3d, as those in typical non-layered np structure by dealloying 

of co-deposition film. Note that the dealloying front was not perfectly straight, due to 

initiation of dealloying at certain locations, and dealloyed structure was therefore not the 

same in every part of the film (e.g., Figures 5.3a and 5.3c). Similar to other multilayer 

structures with different layer spacing, bridging ligaments were oriented perpendicular to 

the bounding layers.  

  

The corresponding plan-view SEM image of the film were also obtained, as 

shown Figure 5.4. The surface morphology experienced noticeable change as the 

dealloying going. The ligament size increased progressively, from 10.2 nm to 17.9 nm, as 

listed in Table 5.1. The most distinguishable ligament coarsening happened when the 

structure started to lose the layered structure. The composition in each dealloying step was 

also measured, and listed in Table 5.1. The Au content was 86.6 at.% after dealloying of 8 

min, indicating the dealloying didn’t complete yet. 

 
 

Figure 5.3. Cross-section SEM images of np-Au from multilayer with 10 nm Au-Ag 

alloy and 1 nm pure Au layers (10 sets of layers in this precursor). Individual samples 

were dealloyed for (a) 1 min, (b) 3 min, (c) 5 min and (d) 8 min. Average spacing 

between layers of ligaments was 10.8 nm, measured from image (b). 
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Table 5.1. Summary of composition and ligament size in np-Au (created from 

multilayer with 10 nm Au-Ag alloy layers) at different dealloying times. 

 

 

 

 

5.3.4 Comparing dealloying of multilayer IrNi and AuAg films 

Ease of dealloying and stability of multilayer np structure differ for each system. 

Dealloying involves competing processes of sacrificial element dissolution and surface 

diffusion of remaining elements to form ligaments. Compared with multilayer Ir/Ir-Ni 

films, dealloying multilayer Au/Au-Ag films was more readily and more quickly. However, 

due to the higher surface diffusivity of Au atoms [89], the layered np structure in the Au-

Ag system is less stable and dealloying time must be carefully selected. As shown in Figure 

5.3, dealloying for 3 min was insufficient, while the layered structure began to break down 

after 5 min dealloying. In contrast, surface diffusivity of Ir is three orders of magnitude 

lower than that of Au [89, 90], allowing the layered np structure to persist for hours in the 

Dealloying 

time (min) 
0 1 3 5 8 

Composition 

(at.% Au) 
46.8 57.6 69.6 80.5 86.6 

Ligament size 

(nm) 
n/a 10.2 13.5 14.5 17.9 

 
Figure 5.4. Plan-view SEM images of np-Au from multilayer Au-Ag, after 

dealloying times of (a) 1 min, (b) 3 min, (c) 5 min and (d) 8 min. Ligament width 

increased gradually with dealloying time, especially when the multilayer np structure 

evolved into randomly oriented ligaments. 
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dealloying etchant. Moreover, np-Ir films retain this layered structure during thermal 

cycling to 500˚C [23]. Given the higher surface diffusivity of Au versus Ir, and based on 

the loss of multilayer structure during extended dealloying of np-Au (Figures 5.3c-d), 

thermal cycling of np-Au would likely erase the layered structure and produce a coarser 

nanoporous structure with randomly oriented ligaments. 

5.3.5 Discussion of the multilayer fabrication approach 

Dealloying of multilayer precursors creates multilayer np films with periodic cell 

size and ordered ligament layers through the film thickness. For Ir/Ir-Ni multilayers, 10 nm 

alloy layers resulted in average spacing of 8.7 nm between layers of ligaments (for 5 nm 

alloy layers, the corresponding spacing was 5.2 nm). For Au/Au-Ag multilayers, 10 nm 

alloy layers resulted in spacing of 10.8 nm (for 20 nm alloy layers, corresponding spacing 

was 20.9 nm). 

In addition to periodic spacing of ligament layers (which are porous and consist of 

in-plane, randomly oriented ligaments), the ligaments that bridge these layers are oriented 

perpendicular to the bounding layers. This is in contrast to the randomly oriented ligaments 

observed in typical nanoporous metals and alloys, but is similar to results from a study of 

ultrathin np-AuPd films [88]. An underlying pure metal layer tends to orient adjacent 

ligaments perpendicular to this layer, as seen in Figures 2a and 3b. Taken together, these 

results indicate that bounding a nanoporous layer with two dense and/or oriented ligament 

layers causes ligaments to form a perpendicular bridge between these two layers. 

It is hypothesized that pure, dense Ir or Au layers “seed” a layer of ligaments in the 

dealloyed np structure. This facilitates a degree of design control over geometry and 

periodicity of the dealloyed film. This approach works if the pure, dense layer is 
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sufficiently thin that it does not prevent the dealloying front from progressing to the 

underlying alloy layer. Control over final np geometry likely exists within a finite window, 

i.e., length scale of ligament width and spacing between ligament layers can only be 

modified within a certain range near the “natural” ligament/pore size that results from 

dealloying of homogeneous alloy films. For np-Au, the range is predicted to be 5 to 50 nm, 

and for np-Ir, the range should cover a smaller length scale region of 3 to 30 nm. This 

statement is based on the observations and measurements in the current study, as well as 

ligament and pore sizes measured in the authors’ other work on thermally cycled np-Au 

and np-Ir. 

This approach using multilayer precursor alloys should be generally applicable to 

the fabrication of other structured np metals as well. Metals with higher surface diffusivity, 

such as Au and Ag, should form np structures with larger ligament width and spacing, 

compared to metals with lower surface diffusivity such as Ir and Ni. The surface diffusivity 

thus represents a control parameter in the design of np length scale. However, the latitude 

for controlling ligament size and spacing appears to be a factor of 10, with the average 

magnitude (natural ligament size of the np metal) determined by surface diffusivity, etchant 

and thermal treatment. With proper design of the precursor film, a predictable length scale 

with multilayer architecture can be achieved. 

5.4 Conclusions and future work 

In conclusion, structured np-Ir and np-Au were successfully fabricated by 

dealloying Ir/Ir-Ni and Au/Au-Ag multilayer precursor films. By adjusting the alloy layer 

thickness, np-Ir and np-Au with a range of controlled ligament sizes were achieved. 
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Multilayer precursors led to nanoporous films with a layered architecture, including 

periodic spacing and preferred ligament orientation. 

With proper selection of precursor alloy and dealloying, np-metals other than np-

Au and np-Ir should also be generated in multilayer architecture with this multilayer 

fabrication method. With the experiences in making nonlayered np-Pd, np-Ni, np-Si in the 

author’s group, these system can be investigated. And further work should focus on 

exploiting their applications. Possible applications of these np metals includes hydrogen 

sensor (np-Pd), catalyst (np-Ni), optical applications (porous Si) [85].  
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6 Fabrication and mechanical behavior study of thin film np-Ir 

6.1 Introduction 

This project is funded by NSF CAREER grant, and the full title is understanding 

nanoscale deformation by characterizing the mechanical behavior of nanoporous noble 

metals. As part of CAREER project, np-Ir was studied as one of np noble metals (np-Au, 

np-Pd, and np-Ir). Fabrication and mechanical behavior of np-Au had been studied a lot. Ir 

is the second densest element in the earth, and the most corrosion-resistant metal, which 

makes np-Ir should be relative easily fabricated by dealloying. However, unlike other fcc 

metals such as gold, Ir is reported to be very ‘brittle’ in bulk form. The study on np-Ir 

would extend our knowledge about np-metals, and nanoscale mechanical behavior.  

One objective of this study is to synthesize np-Ir in thin film form, and study 

mechanical behavior of thin film np-Ir. Another objective is to study the classic scaling 

laws from Gibson and Ashby and make necessary modification. As discussed in Chapter 

2.4, some issues appear when applying Gibson and Ashby’s scaling laws to explain 

mechanical properties of np metals, due to mediate relative density range and nanoscale 

ligament size in np metals. The study is to answer the question: to what degree the scaling 

laws accurately describe the behavior of np metals. And with both experimental and 

modeling, modified scaling equations are proposed to reflect the scaling behavior of np 

metals and alloys. 

6.2 Challenges and methodology 

The following is potential challenges in this study: 
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1. One of the challenges is to fabricate np-Ir without volume contraction. In the 

previous study of Thomas Kong in the author’s group, he was able to make np-Ir 

with high purity and fine ligaments. But the only problem is that the film 

contracted a lot in dealloying (the dealloyed film has only half of the original 

thickness). This technique has to be improved to avoid the huge volume change.  

2. Iridium is brittle compared with other fcc metals. It may cause trouble in 

dealloying and handling, such as cracking and pulverization. However, previous 

experience in dealloying AuAg suggested that carefully selection and proper 

dealloying condition can prevent these problems. 

3. Due to the very fine ligament size (< 3 nm), imaging individual ligament of np-Ir 

is not an easy job under SEM. As shown in later section of this chapter, the author 

has to go to TEM (STEM) to visualize the details of the porous structure. While 

preparing TEM samples are more time consuming than preparing SEM samples. 

Fabrication of np-Ir had been studied by a previous student in the author’s group 

[91]. Therefore, np-Ir was created following his study. Ir-Ni alloy was selected as the major 

precursor because Ir-Ni form a solid solution in phase diagram. And Ir is highly corrosion 

resisted, so it’s easy to select etchant for dealloying. Diluted nitric acid was used as etchant. 

To give more control in the dealloying, electrochemical dealloying (by applying constant 

voltage) was also performed on the film.  

Additionally, IrMg precursor alloy films were also studied to fabricate np-Ir. Due 

to the successful fabrication of np-Ni from NiMg precursor, IrMg was believed to be able 

to yield np-Ir as well. Therefore, IrMg thin films were dealloyed to testify the efficiency of 

this Mg precursor method.  
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In addition to the regular fabrication of np-Ir by dealloying of co-deposited IrNi 

precursor films, multilayer films with Ir sublayers and Ir-Ni alloy sublayers were also 

prepared. Multilayer IrNi films had the advantage of being able to control ligament size at 

ease, therefore providing np-Ir with predictable structure and ligament geometry. 

The thermomechanical behavior of a 300 nm multilayer np-Ir film was studied by 

thermal cycling. Due to thickness contraction during successive thermal cycles, the np-Ir 

film had a different relative density during each cooling cycle, allowing modulus and 

strength to be measured as a function of density. The biaxial moduli measured from 

separate thermal cycles were used to determine the scaling behavior of elastic modulus 

with relative density.  

Characterization of np-Ir films were performed with similar methods as for np-Ni 

films. SEM, EDS, TEM were the major tools used in this study as well.  

6.3 Experimental 

Most of the experimental methods were introduced in the previous chapter of np-

Ni, e.g. characterization methods. Information which had been presented in previous 

chapter will not be presented in the following sections. 

6.3.1 HV magnetron sputtering 

Same as Ni alloy films, three-inch diameter (100)-oriented silicon wafers, with 

thickness of 180 μm or 380 μm, were used as substrates for deposition of the precursor 

alloy films. Ir (99.9%) and Ni (99.99%) or Mg (99.95%) were sputtered in the AJA ORION 

high vacuum deposition system by flowing Ar gas at 2.5 mtorr. Still, 10 nm Ta was 
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deposited as an interlayer before the alloy film. Thin films were co-deposited or 

sequentially deposited (as multilayers) with total thicknesses of 100-500 nm. 

Multilayers IrNi films were deposited the same way as those multilayer film in 

Chapter 5. The Ir layers were deposited for 0.5 nm, thin enough to avoid impeding 

dealloying from going through the film. The Ni and Ir targets were controlled by 

programing the gun shutters to open and close in a timed sequence in deposition. The 

deposited film had 55 layers, each layer contained a 0.5 nm pure Ir layer and a 5 nm IrNi 

layer. 

6.3.2 Dealloying 

Dealloying IrMg precursor alloy was straight forward, and was carried out in 

highly diluted acetic acid (1HAc : 99H2O) by free corrosion for 5 min.  

IrNi precursor alloyed was dealloyed by both free corrosion and applying voltage. 

The free corrosion was performed in ½ diluted HNO3. The HNO3 solution was slightly 

heated to 50°C.  A dealloying time of 20h was necessary for 100 nm IrNi film.  Electro-

dealloying was used to save dealloying time. The solution was further diluted to 1 HNO3: 

9 H2O. To figure out the critical potential for dealloying IrNi film, a linear potential/voltage 

sweep (-0.6V-1.6V) was generated from potentiostat (eDAQ), and applied to the sample. 

By identifying the knee point in the current vs. voltage curve, the critical potential was then 

determined (the detailed description of this method is in Chapter 2.2.  As a result, a constant 

voltage of 1.2V was applied to the sample. The set-up is shown in Figure 6.1.  

Note that working electrode, i.e. samples, should be placed in the solution 

carefully to prevent side effects, such as corrosion from clamps. For films deposited on a 

Si wafer, a narrow and long piece of sample was inserted partially in the solution, and 
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therefore no other reactions happened on working electrode side. The dealloying time with 

applying voltage is not generally fixed, instead is determined by the time at which the 

current in dealloying reached a plateau value near zero.  

 

6.3.3 Characterization 

Most of the characterization methods, i.e. SEM, EDS, XRD were operated the 

same way as those for np-Ni. However, transmission electron microscopy (TEM) was 

worked in both traditional and scanning transmission electron microscopy (STEM) modes 

to investigate the morphology and crystallography of np-Ir films. 

6.3.3.1 TEM 

Due to the extremely fine ligaments in np-Ir films, TEM (Jeol 2010f), specifically 

STEM, carried out by a high-angle annular dark field (HAADF) detector (Fischione), was 

 
Figure 6.1. A schematic drawing of the three electrode dealloying setup. A Pt wire 

was used as counter electrode (CE), and a Ag/AgCl electrode was used as reference 

electrode (RE). 



84 

 

used as an assistant tool of SEM to characterize morphology. STEM was operated at 1 nm 

analytical probe size, and 25 cm camera length.  

Before starting to prepare np metals TEM samples, very thin precursor films were 

deposited on Si substrate. Note that the Si substrate, used to prepare TEM samples, should 

have Si nitride and Si oxide finishing at least on one side. This Si nitride layer acted as a 

stopper in Si etching. And film thickness should be carefully selected to make sure the 

electron beam can go through the film. For np-Ir samples, a 50 nm precursor IrNi film was 

deposited on Si substrate.  

Procedure to fabricate np-Ir TEM samples includes ultra-sonic cutting, grinding, 

dimpling, Si etching and finally dealloying. This procedure can be generally applied to 

other np metal thin film sample as well. Compared with sample preparation in other 

characterization methods, e.g. XRD and SEM, it’s time consuming to make a TEM sample. 

Detailed steps to prepare a TEM sample are presented in the following. 

First, undealloyed IrNi film (deposited on Si substrate) was first cut into discs of 

3mm diameter by ultrasonic cutting (ultrasonic disc cutter, Gatan, model 601). Second, the 

small disc sample was mounted upside down, film side down, on a glass cylinder with 

crystal bond, and then grinded down to 80 µm (the starting thickness of the sample is about 

190 µm, and 380 µm Si substrate would require more works in this step). Third, further 

grinding and polishing (also called ‘dimpling’) was performed on the sample with a dimple 

grinder (Gatan, model 656). After dimpling, a bowl-shape concave surface formed on the 

backside of the Si substrate, and the center of sample was about 10 µm, which can be 

identified by the color reflected from the center (10 µm Si exhibited an orange color). 

Finally, the remaining Si in the center was removed by etching in a mixture solution of 
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2HNO3: 1HF: 1HAc. In this step, only the center part, which was dimpled in the previous 

step, underwent etching. The rest of the sample was protected by masking with micro-

shield (SPI). The sample was then removed from the glass cylinder by dissolving the crystal 

bond in acetone. The sample was dealloyed before observing in TEM. A lot of cautions 

have to be used in each step. Following the steps above, a free standing np-Ir film (above 

50 nm SiN) should be in the middle of sample, and TEM will be performed in this area. 

The procedure to prepare a TEM sample is illustrated in Figure 6.2.  

 

Further imaging or analysis were conducted in TEM (Joel 2010f). Images were 

taken in both bright field mode and STEM high angle dark field mode. Additionally, 

diffraction patterns were obtained to characterize the crystal orientation of np-Ir. 

6.3.4 Thermal cycling of np-Ir thin films 

Same as the np-Ni films, thermal cycling was conducted to a 300 nm multilayer 

np-Ir film in the wafer curvature system (Toho FLX-2320-S). Np-Ir film underwent 5 

 
Figure 6.2. Procedure of preparing np-Ir thin film TEM samples.  

Deposition of 
precursor alloy 

films 

Grinding of Si 
substrate from back 

side to 80-90 µm

Dimpling of Si 
substrate from 

backside to ~10 µm

Etching of Si from 
back side

Dealloying of alloy 
films
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cycles from room temperature to an elevated temperature. Different from thermal cycles 

of np-Ni thin films, a heating rate of 1°C/min and a cooling rate of -5°C/min were used for 

each cycle. The heating was kept at such a low rate so that it provided enough time for np-

Ir underwent structure changes, e.g., ligament coarsening and thickness contraction. In 

thermal cycles, N2 gas, instead of forming gas for np-Ni films, was flowed into the wafer 

curvature system to protect the film from being oxidized. The stress of the np-Ir film was 

measured and recorded every 5 minutes, and thus a stress vs. temperature curve was 

generated after each cycle. Witness samples were placed beside the wafer and sequentially 

removed after each cycle in order to determine film structure by SEM after each cycling 

segment.  

6.4 Results and discussion   

6.4.1 Linear sweep 

Figure 6.3a is the current vs. voltage curve directly obtained from the linear sweep 

of a 100 nm IrNi in 1:9 diluted nitric acid. And Figure 6.3b is the absolute current density 

vs. voltage (i-E) curve in log-log scale.  

Different from i-E curve in Figure 2.2, curve in Figure 6.3b exhibited some 

characters which were not seen in typical linear sweep of np-metals. This i-E curve 

displayed two branches, i.e. cathodic branch on the left, and anodic branch on the right, 

separated by free corrosion voltage (around -0.25V). Typical linear sweep, as in Figure 2.2, 

only includes segment in anodic branch. One feature in the anodic branch is the sample got 

passivated at about -0.1V. The passivation region and transpassive region are labelled as 
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in Figure 6.3b. The critical voltage was therefore determined from transpassive region, for 

a current at 10 mA, the corresponding voltage is around 1.2V.  

 

 

 
Figure 6.3. A linear sweep of 100 nm IrNi film in 1/10 diluted HNO3. (a) Plot 

current vs. voltage; (b) Log-log plot of current density vs. voltage. 
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6.4.2 Optimal dealloying condition 

Dealloying IrMg was quick and straight forward, i.e. it can be finished in highly 

diluted (1/100) HAc for a few minutes. However, it’s not the primary method to prepare 

np-Ir films due to a huge volume contraction in dealloying IrMg, as that in dealloying 

NiMg. Instead, IrNi was used as the main precursor.  

Dealloying IrNi precursor films took longer time. The optimal dealloying 

condition is listed in Table. 6.1. 20 hours was necessary to free corrode a co-deposited film. 

Whereas applying voltage can save quite amount of time, as seen in Table 6.1. The purity 

of the electrochemically dealloyed sample was higher than that by free corrosion.  

Table 6.1. The optimal dealloying conditions for co-deposited thin film IrMg and IrNi 

precursors. 

Precursor film 

condition 

100 nm co-dep 

IrMg film 

100 nm co-dep 

IrNi film 

100 nm co-dep IrNi 

film 

Etchant 1 HAc : 99 H2O 1 HNO3 : 1 H2O 1 HNO3 : 9 H2O 

Voltage applied Non Non 1.2V 

Dealloying time 5 min 20h 

Finished when the 

dealloying current 

from the sample 

settles to a plateau 

value near zero 

(typically 0.5-1h) 

Heating  Non 50°C Non 

Agitation Non Non Non 

 

Multilayer IrNi film was dealloyed involving both free corrosion and electro-

dealloying. First, the film underwent free corrosion in 1:1 diluted nitric acid for 17.5 hours, 
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with slightly heating at 50°C. Second, the film was electrochemically dealloyed in 1:9 

diluted nitric acid by applying a constant DC voltage of 1.2 V to the sample for 5.5 hours. 

6.4.3 Morphology of dealloyed films 

Figure 6.4a displays the surface morphologies of np-Ir by free corrosion of IrMg 

precursor films. The ligaments are as small as 6 nm. However, one big problem in 

dealloying of IrMg is the huge volume contraction. An 86 nm thick precursor film had a 

thickness of only 47 nm after dealloying (as shown in Figure 6.4b Figure 6.4c), based on 

average measurement from more than 3 cross-section images. 

 

Figure 6.5 shows the plain view SEM images of np-Ir made by free corrosion and 

electro-dealloying of a co-deposited IrNi film. From the surface morphologies, no 

significant differences in the porous structure were observed, and both of them have fine 

structures with ligaments less than 10 nm (around 6-7 nm).  

 
Figure 6.4. (a) Plan view and (b) cross-section SEM micrographs of np-Ir by free corrosion of IrMg 

thin film. (c) cross-section view of the film before dealloying. The film underwent huge volume 

contraction (up to half of its original thickness) during dealloying.  
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Figure 6.6 shows SEM plan-view and cross-section images of a multilayer film. 

The dealloyed film exhibited a layered nanoporous structure. Each porous layer was 

separated by a horizontal pure Ir layers. Most layers can be clearly distinguished, as shown 

in Figure 6.6b and 6.6c. One distinct feature of np-Ir is the perpendicular orientation of 

ligaments spanning over the pure Ir layers, as shown in Figure 6.6c. The ligaments width 

was very difficult to measure from plan-view image, as in Figure 6.6d. Indeed, the bottom 

layers were more easily identified than the top layers, as in Figure 6.6b. This difference in 

structure may be caused by a different extent of dealloying in the near-surface region versus 

that in the region near the film/substrate interface. Therefore, the ligament width was 

measured in cross-section image, which was determined as 3-4 nm.  

 
Figure 6.5. (a) Surface morphology of np-Ir by free corrosion of a 100 nm IrNi film. 

(b) surface morphology of the same film created by electrodealloying. They exhibite 

similar nanoporous strucutres. The ligaments were around 6-7 nm wide. 
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As discussed in previous section, TEM images were also obtained. Figure 6.7 

shows TEM bright field image and STEM dark field image of a non-layered 35 nm np-Ir. 

Unsurprisingly, TEM images revealed a lot features which were not seen in SEM images. 

As shown in Figure 6.7b, the STEM dark field image indicated dealloyed film exhibited 

ligament width of less than 3 nm, which were measured to be 2.6 nm. Recalling surface 

morphology in SEM images, as in Figure 6.5, it exhibited porosity with ligaments of 6-7 

nm. It’s possible that the ligaments displayed in SEM images were actually made of even 

smaller sub-ligaments of 2-3 nm.  

 

 
Figure 6.6. (a). Cross section SEM image of the as-deposited 300 nm Ni-Ir thin film; 

(b). Cross section SEM image the film after dealloying; (c). Partial cross section of the 

same dealloyed film; d. Surface morphology of the same film. 
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6.4.4 Crystallography of dealloyed films 

XRD scans were obtained for the dealloyed film to determine its crystal 

information. Similar to the NiCu precursor film, as discussed in previous chapter, the IrNi 

precursor film also displayed one <111> alloy peak, indicating that the precursor film was 

<111> oriented. After dealloying the alloy peak was gone, but none peak was showing up, 

same as that for np-Ni.  

Due to the limited information from XRD scans, the dealloyed film was 

characterized in TEM by diffraction pattern as well, as shown in Figure 6.8. It’s from the 

same np-Ir film in Figure 6.7. The diffraction pattern indicated that np-Ir film had a crystal 

structure with no preferred orientation. And the rings can be indexed, as shown in Figure 

6.8b.  

 
Figure 6.7. TEM images of a 35 nm uniform np-Ir film. Image (a) is a standard 

bright field TEM image; (b) is a dark field STEM image, it revealed a lot of details 

which can’t be seen in SEM and bright field TEM. 
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The method to index the diffraction pattern is presented in the following. First, 5 

rings were detected in the image, as labelled 1-5 in Figure 6.8. And then the diameters of 

the rings were measured in Digital Micrograph (image software, Gatan, Inc.), i.e. 9.55, 

11.35, 15.76, 18.66, and 23.98 nm-1. In TEM,  

𝑅𝑑 = 𝜆𝐿                                              Equation 6.1 

where R is the Radius of the diffraction spot/ring, d is the corresponding atomic spacing, λ 

is the electron wave length, and L is camera length. λ∙L is a camera constant. Recall that d 

is related with lattice parameter, a, by the equation below: 

𝑑 =
𝑎

√ℎ2+𝑘2+𝑙2
                                        Equation 6.2 

h, k, l are miller indices (atomic plane indices). Thus, a relationship between R, d and ℎ2 +

𝑘2 + 𝑙2 can be written as, 

(
𝑹𝒊

𝑹𝟏
)
𝟐

= (
𝒅𝟏

𝒅𝒊
)
𝟐

=
𝒉𝒊

𝟐+𝒌𝒊
𝟐+𝒍𝒊

𝟐

𝒉𝟏
𝟐+𝒌𝟏

𝟐+𝒍𝟏
𝟐                               Equation 6.3 

 
Figure 6.8. Selective area diffraction pattern of np-Ir thin film (the same film in 

Figure 5.7). Indexing the diffraction rings indicated the film has an isotropic fcc 

structure. 
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The subscript, i, is to distinguish different planes/diffraction rings. With this 

relationship, one can come up with the indices of the rings, as shown in Table 6.2. 

Considering the structure factor, the indexed planes implied a fcc crystal structure with no 

texture even there are some planes missing, e.g. <222>, <400>. 

Table 6.2. Indices of electron diffraction pattern in Figure 6.8. The indexed planes 

implied a fcc crystal structure with no preferred crystal orientation. 

i Di Ri 

𝑹𝒊

𝑹𝟏
 (

𝑹𝒊

𝑹𝟏
)
𝟐

 
𝒉𝒊

𝟐 + 𝒌𝒊
𝟐 + 𝒍𝒊

𝟐

𝒉𝟏
𝟐 + 𝒌𝟏

𝟐 + 𝒍𝟏
𝟐 𝒉𝒊

𝟐 + 𝒌𝒊
𝟐 + 𝒍𝒊

𝟐 <hkl> 

1 9.55 4.78 1 1 1 =
3

3
 3 <111> 

2 11.35 5.68 1.19 1.41 1.41 ≅
4

3
 4 <200> 

3 15.76 7.88 1.65 2.72 2.72 ≅
8

3
 8 <220> 

4 18.66 9.33 1.95 3.82 3.82 ≅
11

3
 11 <311> 

5 23.98 11.99 2.51 6.31 6.31 ≅
19

3
 19 <331> 

6.4.5 Thermal cycling of np-Ir films 

The thermal cycling curves of a 300 nm np-Ir multilayer film are displayed in 

Figure 6.9. Only the cooling curves are presented here. Dealloyed film experienced 

structure evolution during heating, complicating the correlation of stress-temperature 

heating segments. The cooling curves represented typical thermoplastic and elastic 

behavior. As the film cooled from the maximum temperature in a given cycle, it exhibited 

thermoelasticity, and stress increased linearly until plastic deformation begins, in the 

temperature range 170-220°C. The yield strength were taken at the transition points in each 

cooling cycle, as listed in Table 6.3, and they fall into a range of 337 MPa-395 MPa. The 

stress was affected by both the relative density and also the ligaments size effect. These 
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two mechanisms worked on stress in opposite ways. Increased relative density led to an 

increasing in film stress. While the ligaments coarsening resulted in a decreasing in film 

stress. As result presented shortly later, during thermal cycling, the relative density of the 

film was indeed increased. However, the ligaments coarsening was not evident in the SEM 

images. These made the discussion of yield strength become complicated. Additionally, 

the absolute value of stress in the np-Ir thin film is sensitive to slight shifts in wafer position, 

which potentially changed at the beginning of thermal cycle, due to sample replacement in 

the wafer curvature system. In this study, only the thermal elastic slopes were used to 

investigate the thermoelastic behavior of np-Ir because the errors in absolute stress do not 

affect the measurement of elastic slope. 

 

The film thickness after each cycle can be measured from witness samples, using 

the cross-section images, as shown in Figure 6.10. The film underwent contraction during 

 
Figure 6.9. Stress vs. temperature curves of the thermal cycles. 300 nm np-Ir film 

went through 5 thermal cycles in a wafer curvature system. The film exhibited thermal 

elastic and plastic behavior at elevated temperature, and a transition from elasticity to 

plasticity happened during 100°C-200°C in each cooling segment. Information about 

the thermal elastic slope and transition points can be found in Table 6.3. 
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thermal cycling. A summary of the thickness of the film, before and after dealloying and 

after each cycle, is listed in Table 6.3. The ligaments did not display obvious coarsening 

according to the plan view images in Figure 6.11, but it is not conclusive since the 

ligaments are too small to be observed in the SEM images. However, some cracks were 

formed in the last two cycles. Because the crack size was not significantly large, it is 

believed the ligaments were still connected into a 3D network. 

 

The contraction of the film indicated relative density of the np-Ir increased 

during/after each thermal cycle. For a np-Ir film fabricated by dealloying, its relative 

density is equal to the volume percentage of Ir in the precursor film. This statement is true 

with the assumptions that the dealloyed film kept the original thickness of the precursor 

film (IrNi film), and the sacrificial element, Ni, was removed completely. The thickness 

remained during dealloying. However, thermal cycling caused considerable thickness 

contraction. The purity of dealloyed films was not 100% either. The EDS measurement 

indicated that the dealloyed film still had 25 at.% Ni. In this study the precursor film 

composition is 22 at.% Ir, or 26.7 vol.% Ir. Considering the residue Ni and thickness 

 
 

Figure 6.10. The SEM images of cross-section of the np-Ir after thermal cycles. (a), (b), (c), (d) and (e) 

correspond to the one after cycle 1 (from RT to 300°C), cycle 2 (from RT to 350°C), cycle 3 (from RT 

to 400°C), cycle 4 (from RT to 450°C) and cycle 5 (from RT to 500°C), respectively. 
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contraction in the film, the relative densities were calculated to 0.351 for as-dealloyed np-

Ir film, gradually increased to 0.492 after 5 thermal cycles, as shown in Table 6.3.  

Table 6.3. Summary of thermomechanical behavior exhibited by np-Ir during repeated 

thermal cycling. The biaxial elastic modulus Ms of fully dense, thin film Ir was calculated 

from the bulk isotropic elastic constants for Ir: Es = 528 GPa, and νs = 0.26. Relative biaxial 

modulus was calculated as the ratio of M*/Ms. 

Sample 

processing 

history 

Temp 

range 

(°C) 

Yield 

strength 

(MPa) 

Thermo-

elastic 

slope 

(MPa/K) 

Mf or 

M* 

(MPa) 

Relative 

biaxial 

modulus 

M*/Ms 

Thickness 

(nm) 

Relative 

density 

ρ*/ρs 

as-

deposited 
- - - - - 310 - 

as-

dealloyed 
- - - - - 303 0.351 

Cycle 1 
265-

170 
351 -0.394 119 0.167 263.5 0.403 

Cycle 2 
325-

180 
389 -0.539 163 0.228 253 0.420 

Cycle 3 
375-

175 
395 -0.557 169 0.236 245 0.434 

Cycle 4 
425-

180 
336 -0.628 190 0.266 233.5 0.455 

Cycle 5 
475-

220 
337 -0.687 208 0.291 216 0.492 
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The thermoelastic slopes were measured from each cooling segment, as listed in 

Table 6.3.  The thermoelastic slope is related to the film’s biaxial modulus by the following 

equation, Equation 6.4 [58], which is same as Equation 3.3, 

∆𝜎𝑓(𝑇)

∆𝑇
= (𝛼𝑠 − 𝛼𝑓) ∙ 𝑀𝑓                                 Equation 6.4 

Where αs and αf are thermal expansion coefficients for substrate, Si, and film, Ir, 

respectively, with αs =3.5e-6 K-1 [92] and αf =6.8e-6 /K-1 [93, 94]. ∆𝜎𝑓(𝑇)/∆𝑇 is the slope 

of the thermal elastic curve. The calculated biaxial moduli of the np-Ir film, Mf (or M* in 

Equation 6.7), during each cooling cycle are also listed in Table 6.3.  

 

 
Figure 6.11. Surface morphology SEM images of the np-Ir after thermal cycles. (a), (b), 

(c), (d) and (e) correspond to the one after cycle 1 (from RT to 300°C), cycle 2 (from RT 

to 350°C), cycle 3 (from RT to 400°C), cycle 4 (from RT to 450°C) and cycle 5 (from RT 

to 500°C), respectively. 
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6.4.6 Experimentally determined scaling behavior of elastic modulus 

As discussed in Chapter 2.4, according to Gibson and Ashby’s scaling law, the 

ratio of Young’s moduli of porous material to that of the ligaments material is related to its 

relative density by a power-law equation, as shown in Equation 6.5 [53]. 

 
𝑬∗

𝑬𝒔
= 𝑪𝟏(

𝝆∗

𝝆𝒔
)𝒏                                        Equation 6.5 

where E* and Es are Young’s moduli of the porous material, and its corresponding cell wall 

material, respectively, and E*/Es is also called relative Young’s modulus. ρ*/ρs is the 

relative density of the porous material. C1 and n are empirical constants. For low relative 

density (ρ*/ρs<0.1), open cell foams, n=2, and C1 is highly related to the geometry of 

porosity. The empirical data show that C1=1 [53]. 

For an isotropic material, the biaxial modulus is related to its Young’s modulus 

by the reciprocal of (1 − 𝜈), ν is Poisson’s ratio, as show in Equation 6.6. 

𝑴 =
𝑬

𝟏−𝝊
                                                    Equation 6.6 

Apply Equation 6.6 to Equation 6.5, a similar relationship can be written for 

relative biaxial modulus, as shown in in Equation 6.7. 

𝑀∗

𝑀𝑠
= 𝐶2(

𝜌∗

𝜌𝑠
)𝑛                                              Equation 6.7 

where M* and Ms are biaxial moduli of the porous material, i.e. np-Ir film (same as Mf in 

Equation 6.4), and its corresponding ligaments materials, i.e. dense Ir. Ms is taken as 714 

GPa, which is for isotropic Ir. The TEM diffraction pattern indicated that the dealloyed Ir 

films did not have preferred orientation, as shown in Figure 6.8. A natural logarithm form 

of Equation 6.7 is written as, 

𝑙𝑛
𝑀∗

𝑀𝑠
= 𝑛 ∙ 𝑙𝑛 (

𝜌∗

𝜌𝑠
) + 𝑙𝑛𝐶2                                    Equation 6.8 
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The relationship of the coefficients, C2 and C1, can also be by obtained by 

applying Equation 6.6 to Equation 6.5, and it gives, 

 𝐶2 = 𝐶1
1−𝜐𝑠

1−𝜐∗                                                     Equation 6.9 

where ν* and νs are Poisson’s ratios of porous materials and the ligaments materials, 

respectively. For Ir, νs=0.26 [95]. Gibson and Ashby determined C1=1 based on empirical 

data. Therefore, the Poisson’s ratio of np-Ir, ν*, can be calculated after obtaining C2.  

The thermal cycling of np-Ir film generated film of multiple relative densities. 

The corresponding biaxial modulus at each particular relative density was also available 

from the cooling curves. Thus the exponent, n, and coefficient, C2, in Equation 6.7 can be 

determined by linear fitting relative biaxial moduli and relative densities in a nature log 

scale. As a result, the fitting line is shown in Figure 6.12. It’s seen that n=1.60, and C2=0.92.  

 

 
Figure 6.12. Plot of the relative biaxial moduli and relative densities in log-log scale. 

The red circle data point is from cycle 1, and it’s not included in the fitting due to a big 

deviation from other points.    
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6.4.7 Derivation of scaling equation for nanoporous metals  

Gibson and Ashby determined the exponent of the power equation to be 2, 

according to their cubic unit cell model [53]. Their model was built for low relative density 

(ρ*/ρs<0.1) cellular materials. It is not the case for most of the nanoporous metal fabricated 

from dealloying. The relative density of the np-Ir in the experiments is in the range of 0.3-

0.5, and most of the nanoporous gold have relative density of 0.2-0.4 [17], which are much 

larger than 0.1. To further understand the meaning of the exponent in the scaling equation, 

the Gibson and Ashby’s cubic model is reviewed. 

The original model used in Gibson and Ashby’s calculation, consisted of beams 

of length 𝑙 and square cross-section of side 𝑡 was applied to simulate nanoporous metal as 

well. The model was slightly modified, containing 24 beams as in Figure 6.13, instead of 

12 beams in the original one. For convenience, the beam length, 𝑙 , is taken from the 

midpoints of the nodes, where two beams adjoined. It is the same way measuring the 

ligament length of np-metals.  
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The relative density, ρ*/ρs can be calculated by ratio of beam volume to unit cell 

volume. The volume of all the beams is a sum of each one. First, the short beams extended 

from the middle of cubic edges are considered. There are 12 of those beams, and each of 

them has a length of (𝑙 − 𝑡)/2. Thus their volume is 12 ∗ 𝑡2 ∗ (𝑙 − 𝑡)/2 = 6(𝑙 − 𝑡)𝑡2 . 

Then considering the beams that form the cubic region that in the center of the unit cell. 

For these beams, three of them share one node at the vertices. We calculate their volume 

by two parts. First, 8 nodes at the corners, and each of them has a volume of 𝑡3. Second, 

the remaining part contains 12 beams with length of (𝑙 − 𝑡), and each has a volume of 

(𝑙 − 𝑡)𝑡2 . By adding all the beams and nodes, the volume of beams is 𝑉𝑏𝑒𝑎𝑚𝑠 =

6(𝑙 − 𝑡)𝑡2 + 12(𝑙 − 𝑡)𝑡2 + 8𝑡3 = 18𝑙𝑡2 − 10𝑡3. 

Volume of the unit cell is straightforward to calculate, i.e. a cubic with edge of 2𝑙 

long. Therefore, 𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 = 8𝑙3. As a result, the relative density of a unit cell is written as, 

 
Figure 6.13. Cubic unit cell model for nanoporous metals. The unit cell is made of 24 

beams: 12 long beams and 12 short beams. The beam length, 𝑙, is taken from midpoints 

of corresponding nodes. And each beam has a square cross-section of width t.   
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𝝆∗

𝝆𝒔
=

𝑉𝑏𝑒𝑎𝑚𝑠

𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
=

𝟏𝟖𝒍𝒕𝟐−𝟏𝟎𝒕𝟑

𝟖𝒍𝟑
                                             Equation 6.10 

When 𝑡 ≪ 𝑙, i.e. low relative density, indicated as the red sold circles in Figure 

6.14, the relative density is proportional to 𝑡2/𝑙2 according to Equation 6.10, as determined 

by Gibson and Ashby. However, this square relationship is no long applicable to higher 

relative density porous materials. The relative density 𝜌∗/𝜌𝑠 is plotted out versus 𝑡/𝑙, as 

shown in Figure 6.14.  

 

Note that 𝑡/𝑙  is actually reciprocal of ligament aspect ratio, i.e. the ratio of 

ligaments length to width. Based on the previous study of np metals, np-metals usually 

have aspect ratios of 1.5-3, corresponding to 𝑡/𝑙 in the range of 0.33-0.67, i.e. the region 

of blue open diamond in Figure 6.14. In this range, the curve didn’t display the same power 

of ‘2’ trend as those in the beginning. ρ*/ρs can be fitted into a power-law equation to 𝑡/𝑙 

as well, but the exponent is 1.60, as shown in Equation 6.11. 

𝝆∗

𝝆𝒔
= 𝑪𝟑(

𝒕

𝒍
)𝟏.𝟔𝟎                                                Equation 6.11 

 
Figure 6.14. Plot of relative density versus the ratio of ligament width to length, 𝑡/𝑙. 
The solid red circles correspond to points in the low-density (less than 0.02) range. The 

blue diamonds represent the relevant range of 𝑡/𝑙 ratio for nanoporous metals, where 

0.33 < 𝑡/𝑙 < 0.67 and aspect ratio ranges from 1.5 to 3. 
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Relative modulus was also reviewed with the unit cell shown in Figure 6.13. In 

Gibson and Ashby’s original cubic model, they neglected the beam extension or 

compression and only considered beam bending induced foam deformation. It has been 

widely accepted that the linear elastic deformation is primarily caused by cell-wall bending 

for low density open-cell foams. However, as relative density increases (ρ*/ρs>0.1), the 

contribution of extension or compression becomes more significant. Here Deformation in 

a tensile test was considered.  Beam bending and extension as well were calculated for the 

unit cell shown in Figure 6.13. The unit cell is subjected to four tensile forces, F, in vertical 

direction, and beams 1-4 are therefore bent convexly. Besides that, beams 5-8 and 9-12 are 

accordingly be stretched. In the following, we will discussion the deformation of them in 

vertical direction individually.  

Beam 5-8, having length of (𝑙 − 𝑡)/2, experience uniaxial tensile stress of F/t2, 

and the strain on each of them is, 

𝜺𝟓,𝟔,𝟕,𝟖 =
𝑭

𝑬𝒔𝒕
𝟐                                                Equation 6.12 

where Es is the young’s modulus of the beam material (ligament material).  

Beam 9-12, having length of (𝑙 + 𝑡), experience a tensile stress of F/2t2. There 

are also some bending caused by the tensile force, but the bending deflection is negligible. 

The tensile strain on each of them is, 

𝜺𝟗,𝟏𝟎,𝟏𝟏,𝟏𝟐 =
𝑭

𝟐𝑬𝒔𝒕
𝟐                                           Equation 6.13 

Beam 1-4, having length of (𝑙 − 𝑡), experience bending induced by a midpoint 

load. Since we neglected the bending of beam 9-12, beam 1-4 are considered as fixed ended. 

The bending deflection due to a midpoint load F is, 
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𝜹𝟏,𝟐,𝟑,𝟒 =
𝑭(𝒍−𝒕)𝟑

𝟏𝟗𝟐𝑬𝒔𝑰
                                                Equation 6.14 

where 𝐼  is the moment of inertia. For a square cross section beam, 𝐼 = 1/12 ∗ 𝑡4 . 

Therefore, 

𝜹𝟏,𝟐,𝟑,𝟒 =
𝑭(𝒍−𝒕)𝟑

𝟏𝟔𝑬𝒔𝒕
𝟒                                                Equation 6.15 

The other beams in the unit cell contribute little to overall deformation. And the 

deformation of the unit cell is calculated by adding all the deformation in vertical direction, 

i.e. bending of beam 1- 4 and tension of beam 5-12, as written in Equation 6.16, 

∆= 𝟐𝜺𝟓,𝟔,𝟕,𝟖 ∙
(𝒍−𝒕)

𝟐
+ 𝜺𝟗,𝟏𝟎,𝟏𝟏,𝟏𝟐 ∙ (𝒍 + 𝒕) + 𝟐𝜹𝟏,𝟐,𝟑,𝟒                    Equation 6.16 

Substitute Equations 6.13, 6.14, 6.15 into Equation 6.16, the deformation of the 

unit cell is, 

∆=
𝑭

𝑬𝒔
[
(𝒍−𝒕)𝟑

𝟖𝒕𝟒
+

𝟑𝒍−𝒕

𝟐𝒕𝟐
]                                             Equation 6.17 

The unit cell is under a stress σ* of 2𝐹/(2𝑙)2, and the corresponding strain ε* is 

∆/2𝑙 . Therefore the Young’s modulus of the unit cell can be calculated, as shown in 

Equation 6.18. 

𝑬∗ =
𝝈∗

𝜺∗ =
𝑭

𝒍∙∆
                                                   Equation 6.18 

Substitute Equation 6.17 into the equation above, and it yields the relative 

Young’s modulus, E*/Es, as written in Equation 6.19. 

𝑬∗

𝑬𝒔
=

𝟖𝒕𝟒

𝒍(𝒍𝟑−𝟑𝒍𝟐𝒕+𝟏𝟓𝒍𝒕𝟐−𝟓𝒕𝟑)
                                          Equation 6.19 

As what we did for the relative density, 𝐸∗/𝐸𝑠 is also plotted out to 𝑡/𝑙, as shown 

in Figure 6.15.  



106 

 

 

The curve is evaluated by fitting with power equations as well. Note that in the 

entire range 0< 𝑡/𝑙 <1, 𝐸∗/𝐸𝑠 varied also from 0 to 1. For 𝑡/𝑙=0, it represents a unit cell 

made of vacuum, and apparently E* is 0; and for 𝑡/𝑙=1, it represents a unit cell filled with 

ligament materials, and 𝐸∗ is identical to 𝐸𝑠 in this case. In the entire relative density range, 

the power equation fitting is, 

𝑬∗

𝑬𝒔
= (

𝒕

𝒍
)𝟐.𝟒                                               Equation 6.20 

This fitting has a coefficient of determination, R2, of 0.996. It indicates the data is 

fitted well. However, for the range for nanoporous metals, i.e. 0.33<𝑡/𝑙<0.67, it comes up 

with slightly different coefficients, 

𝑬∗

𝑬𝒔
= 𝟏. 𝟎𝟏(

𝒕

𝒍
)𝟐.𝟒𝟑                                        Equation 6.21 

Apply Equation 6.11 to Equation 6.21, one can get a relationship of relative 

Young’s modulus to relative density in 0.33<𝑡/𝑙<0.67,  

𝑬∗

𝑬𝒔
= 𝑪𝟒(

𝝆∗

𝝆𝒔
)𝟏.𝟓𝟐                                         Equation 6.22 

 
Figure 6.15. Plot of relative modulus, E*/Es, versus the ratio of ligament width to 

length, 𝑡/𝑙 . The red circles and blue diamonds represent the same 𝑡/𝑙  ranges as in 

Figure 6.14. 
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As described in the previous chapter, the relationship of relative biaxial modulus 

to relative density has the same exponent as that of Young’s modulus. Thus the power 

equation above is applicable for relative biaxial modulus except the prefix coefficient is 

different.  

The discussion above is for 𝑡/𝑙 in the range of 0.33-0.67, corresponding to aspect 

ratios of 1.5-3. However, in study of np metals, it is not always easy to get the aspect ratio. 

Fujita and Chen took the 3-D morphology of np-gold in a high-angle TEM, and measured 

the aspect ratio as 2-3 [21]. For most of researchers, measuring from 2-D SEM or TEM 

micrographs was the only available access. The drawback of measuring from 2-D 

morphology is that it underestimates the ligaments length because the projection in 2D is 

usually shorter than the actually length. For example, in the previous study on np-gold we 

measured np-gold ligaments based on plan-view 2-D SEM micrographs, and got an aspect 

ratio of about 1.3 [96]. And for the np-Ir in this study, the ligaments measurement of dark 

field STEM images implied that the aspect ratio is about 1.9.  On the other hand, sometimes 

the relative density is easier to measure than aspect ratio for np metals. For np metals 

fabricated by dealloying, the relative density is the volume fraction of the metal in the 

precursor alloy, e.g. the volume percentage of Ir in IrNi precursor alloy, and Au in AuAg 

precursor alloy. The above statement is true only if the sacrificial element is removed 

completely and also the volume of the sample stays the same during dealloying. The actual 

dealloying usually involved some volume contraction and the sacrificial elements may 

remain a little. However, with some correction the relative density can still be derived from 

the volume fraction relatively easily. Due to this, the scaling behavior of elastic modulus 

is also reported in term of relative density. The relative density of np-Au usually drops in 
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the range of 0.3-0.35. For np-Ir in this study, the as-dealloyed the film has a relative density 

close to 0.35, but due to volume contraction in thermal cycling the relative density 

increased gradually to 0.5. The scaling equations for relative density in the ranges of 0.28-

035, 0.35-0.40, 0.40-0.45 and 0.45-0.50, are listed in Table 6.4.  

Table 6.4. Calculated relationships between relative modulus, relative density and 

ligament aspect ratio for various ranges of relative density. 

𝝆∗

𝝆𝒔
 

𝝆∗

𝝆𝒔
 vs 

𝒕

𝒍
 

𝑬∗

𝑬𝒔
 vs 

𝒕

𝒍
 

𝑬∗

𝑬𝒔
 vs 

𝝆∗

𝝆𝒔
 

0.28-0.35 
𝜌∗

𝜌𝑠
= 1.32 (

𝑡

𝑙
)
1.69

 
𝐸∗

𝐸𝑠
= 1.11 (

𝑡

𝑙
)
2.54

 
𝐸∗

𝐸𝑠
= 0.84 (

𝜌∗

𝜌𝑠
)
1.50

 

0.35-0.40 
𝜌∗

𝜌𝑠
= 1.26 (

𝑡

𝑙
)
1.64

 
𝐸∗

𝐸𝑠
= 1.04 (

𝑡

𝑙
)
2.45

 
𝐸∗

𝐸𝑠
= 0.82 (

𝜌∗

𝜌𝑠
)
1.49

 

0.40-0.45 
𝜌∗

𝜌𝑠
= 1.23 (

𝑡

𝑙
)
1.60

 
𝐸∗

𝐸𝑠
= 1.01 (

𝑡

𝑙
)
2.41

 
𝐸∗

𝐸𝑠
= 0.82 (

𝜌∗

𝜌𝑠
)
1.51

 

0.45-0.50 
𝜌∗

𝜌𝑠
= 1.20 (

𝑡

𝑙
)
1.55

 
𝐸∗

𝐸𝑠
= 1.00 (

𝑡

𝑙
)
2.38

 
𝐸∗

𝐸𝑠
= 0.83 (

𝜌∗

𝜌𝑠
)
1.54

 

 

Using the same method, the scaling equation in the relative density range 0.42-

0.49, corresponding to np-Ir film in previous thermal cycling experiment, can also be 

determined: 

𝑬∗

𝑬𝒔
= 𝟎. 𝟖𝟑(

𝝆∗

𝝆𝒔
)𝟏.𝟓𝟐    Equation 6.23 

6.4.8 Modification of the modeling determined scaling equation by using a revised 

unit cell 

One problem with the model presented here is the real ligaments commonly have 

non-uniform cross-section. As seen in Figure 6.4 and 6.5, the nodes where two or more 
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ligaments meet are thicker than middle of the ligaments. To address this problem, the unit 

cell is modified by add fillets at nodes. 

The revised unit cell, based on Figure 6.13, was created by adding fillets at nodes 

of the np structure, as shown in Figure 6.16. Each fillet is represented by a prism with an 

isosceles right triangle cross section (fillet/prism length equal to ligament width). For this 

unit cell with fillets at nodes, the bending deflection and ligament extension in the axial 

direction must be recalculated. 

 

The bending deflection 𝛿 is written as, 

𝜹 = 𝟐∫
𝑴(𝒙)𝒎(𝒙)

𝑬𝒔𝑰(𝒙)
𝒅𝒙

𝒍−𝒕

𝟐
𝟎

   Equation 6.24 

 

Figure 6.16. Schematic drawing of a revised unit cell with fillets added at nodes 

(modification of the original unit cell from Fig 5.13). (a) Front view of the unit cell with 

added fillets. (b) Enlarged view of beam 5 (numbering as in Fig. 5.13). (c) Enlarged 

view of beam 1, excluding the node. 
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where M(x) is the bending moment at position x due to the applied load. For beams 

1-4 (beam labeling as in Fig. 5.13) with force F applied at the ligament midpoint, M(x) can 

be written as, 

𝑴(𝒙) =
𝑭(𝟒𝒙−𝒍+𝒕)

𝟖
    Equation 6.25 

Furthermore, m(x) is the bending moment at position x due to the applied unit 

load.  

𝒎(𝒙) =
𝟒𝒙−𝒍+𝒕

𝟖
    Equation 6.26 

I(x) is the moment of inertia for each beam (1-4). Due to variation in the beam’s 

cross-sectional area along the x-direction, as shown in Figure 6.16c, the integral must be 

solved by separation into two parts: 

𝜹𝟏,𝟐,𝟑,𝟒 = 𝟐∫
𝑴(𝒙)𝒎(𝒙)

𝑬𝒔𝑰(𝒙)
𝒅𝒙

𝒓

𝟎
+ 𝟐∫

𝑴(𝒙)𝒎(𝒙)

𝑬𝒔𝑰(𝒙)
𝒅𝒙

𝒍−𝒕

𝟐
𝒓

  Equation 6.27 

For 0 ≤  𝑥 ≤ 𝑟, 𝐼(𝑥) = 𝑡 ∙ (𝑡 + 𝑟 − 𝑥)3/12, and for 𝑟 ≤ 𝑥 ≤ (𝑙 − 𝑡)/2, 𝐼(𝑥) =

𝑡4/12. Combining Equations 6.25 and 6.26 with Equation 6.27 above, the result of this 

integration is, 

𝜹𝟏,𝟐,𝟑,𝟒 =
𝟑𝑭

𝟖𝑬𝒔∙𝒕
[𝟏𝟔 ∙ 𝒍𝒏

𝒕+𝒓

𝒕
−

𝟑𝟐𝒓+𝟒𝟎𝒕−𝟖𝒍

𝒕
+

(𝒍−𝟓𝒕−𝟒𝒓)𝟐

𝟐𝒕𝟐
+

𝟒𝟎𝒕+𝟑𝟐𝒓−𝟖𝒍

𝒓+𝒕
−

(𝒍−𝟓𝒕−𝟒𝒓)𝟐

𝟐(𝒓+𝒕)𝟐
+

(𝒍−𝒕)𝟑−(𝟒𝒓−𝒍+𝒕)𝟑

𝟏𝟐𝒕𝟒
]  Equation 6.28 

The elongation due to tensile load F on beams 5-8 must be recalculated as well, and 

is also considered in two parts, as shown in Figure 6.16b. First, for the ligament portion 

with varying cross section, the extension ∆𝑙1 is calculated by integration: 

∆𝒍𝟏 = ∫
𝑭

𝑬𝒔𝑨(𝒙)
𝒅𝒙

𝒓

𝟎
    Equation 6.29 
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where A(x) is the cross-sectional area of the beam. For 0 ≤  𝑥 ≤ 𝑟, 𝐴(𝑥) = 𝑡(𝑡 + 2𝑥). The 

result of this integration is, 

∆𝒍𝟏 =
𝑭

𝟐𝑬𝒔𝒕
𝒍𝒏 (

𝒕+𝟐𝒓

𝒕
)    Equation 6.30 

Second, the extension of the remainder of the beam, ∆𝑙2, is, 

∆𝒍𝟐 = 𝜺𝟓,𝟔,𝟕,𝟖 ∙ (
𝒍−𝒕

𝟐
− 𝒓) =

𝑭(𝒍−𝒕−𝟐𝒓)

𝟐𝑬𝒔𝒕
𝟐   Equation 6.31 

Therefore, the total extension of each beam (5-8), ∆𝑙, is, 

∆𝒍𝟓,𝟔,𝟕,𝟖 = ∆𝒍𝟏 + ∆𝒍𝟐 =
𝑭

𝟐𝑬𝒔𝒕
(𝒍𝒏 (

𝒕+𝟐𝒓

𝒕
) +

𝒍−𝒕−𝟐𝒓

𝒕
)  Equation 6.32 

For beams 9-12, the extension remains the same as for the original model depicted 

in Figure 6.13, and is written as, 

∆𝒍𝟗,𝟏𝟎,𝟏𝟏,𝟏𝟐 = 𝜺𝟗,𝟏𝟎,𝟏𝟏,𝟏𝟐 ∙ (𝒍 + 𝒕) =
𝑭(𝒍+𝒕)

𝟐𝑬𝒔𝒕
𝟐   Equation 6.33 

As a result, the total deformation ∆ of the unit cell consists of the midpoint 

deflection of beams 1-4, the tensile elongation of beams 5-8, and the tensile elongation of 

beams 9-12, 

∆= 𝟐𝜹𝟏,𝟐,𝟑,𝟒 + 𝟐∆𝒍𝟓,𝟔,𝟕,𝟖 + ∆𝒍𝟗,𝟏𝟎,𝟏𝟏,𝟏𝟐  Equation 6.34 

Combining Equations 6.28, 6.32, and 6.33 with Equation 6.34 above, deformation 

∆ can be written as, 

∆=
𝑭

𝑬𝒔∙𝒕
[𝟏𝟐 𝒍𝒏

𝒕+𝒓

𝒕
+ 𝒍𝒏 (

𝒕+𝟐𝒓

𝒕
) +

𝟓𝟎𝒍−𝟓𝟐𝒓−𝟔𝟏𝒕

𝟐𝒕
+

𝟑(𝒍−𝟓𝒕−𝟒𝒓)𝟐

𝟖𝒕𝟐
+

𝟑𝟎𝒕+𝟐𝟒𝒓−𝟔𝒍

𝒓+𝒕
−

𝟑(𝒍−𝟓𝒕−𝟒𝒓)𝟐

𝟖(𝒓+𝒕)𝟐
+

(𝒍−𝒕)𝟑−(𝟒𝒓−𝒍+𝒕)𝟑

𝟏𝟔𝒕𝟑
]   Equation 6.35 

The relative Young’s modulus, E*/Es, is obtained by substituting Equation 6.35 into 

Equation 6.18, 
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𝑬∗

𝑬𝒔
=

𝟏

𝒍

𝒕
∙[𝟏𝟐 𝒍𝒏

𝒕+𝒓

𝒕
+𝒍𝒏 (

𝒕+𝟐𝒓

𝒕
)+

𝟓𝟎𝒍−𝟓𝟐𝒓−𝟔𝟏𝒕

𝟐𝒕
+

𝟑(𝒍−𝟓𝒕−𝟒𝒓)𝟐

𝟖𝒕𝟐
+

𝟑𝟎𝒕+𝟐𝟒𝒓−𝟔𝒍

𝒓+𝒕
−

𝟑(𝒍−𝟓𝒕−𝟒𝒓)𝟐

𝟖(𝒓+𝒕)𝟐
+

(𝒍−𝒕)𝟑−(𝟒𝒓−𝒍+𝒕)𝟑

𝟏𝟔𝒕𝟑
]
   

Equation 6.36 

To analyze and simplify Equation 6.36 above, r, t and 𝑙 were evaluated to determine 

if a general fixed relationship exists between them. Due to the difficulty in determining 

ligament size of np-Ir from SEM or TEM images, fillet size and ligament width were 

measured for a typical np-Au structure, shown in Figure 6.17. It is assumed here that np-Ir 

ligaments have the same curvature as np-Au ligaments, which exhibit an average fillet-

size-to-ligament-width ratio of r = t/3. Substituting this value into Equation 6.36 yields a 

simplified expression for relative modulus: 

𝑬∗

𝑬𝒔
=

𝒕𝟒

𝟎.𝟏𝟐𝟓𝒍𝟒−𝟎.𝟒𝟔𝒍𝟑𝒕+𝟐.𝟏𝟑𝒍𝟐𝒕𝟐−𝟎.𝟗𝟖𝒍𝒕𝟑
   Equation 6.37 

 

In addition, relative density ρ*/ρs was recalculated after adding fillets at the nodes. 

Adding the volume of all fillets to Vbeam in Equation 6.10, the revised relative density was 

 
Figure 6.17. Plan view SEM image of np-Au fabricated by the author’s group. Most 

ligaments exhibit thickening at the nodes, which are represented in the revised structural 

model by fillets with isosceles right triangle cross section. Some of the fillets/nodes 

analyzed in this np-Au structure are indicated by black lines superimposed on the 

micrograph. The average ligament width t and fillet size r are measured as 118 nm and 

37 nm, respectively. 
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obtained. Each fillet has a volume of 𝑟2𝑡/2, and there are 48 fillets. Relative density thus 

becomes, 

𝝆∗

𝝆𝒔
=

𝑽𝒃𝒆𝒂𝒎𝒔

𝑽𝒖𝒏𝒊𝒕 𝒄𝒆𝒍𝒍
=

𝟏𝟖𝒍𝒕𝟐−𝟏𝟎𝒕𝟑+𝟐𝟒𝒓𝟐𝒕

𝟖𝒍𝟑
   Equation 6.38 

Similar to the evaluation of Equations 6.10 and 6.19 in previous section, the 

relationships between ρ*/ρs, 𝐸∗/𝐸𝑠 and 𝑡/𝑙 represented by Equations 6.37 and 6.38 were 

plotted as well. Over the relative density range relevant for np metals, 0.42 < ρ*/ρs < 0.49, 

the following relationships were obtained: 

𝝆∗

𝝆𝒔
= 𝟏. 𝟓𝟎 (

𝒕

𝒍
)
𝟏.𝟕𝟒

    Equation 6.39 

𝑬∗

𝑬𝒔
= 𝟏. 𝟏𝟑 (

𝒕

𝒍
)
𝟐.𝟒𝟔

    Equation 6.40 

Combining these two equations yields the revised scaling equation:  

𝑬∗

𝑬𝒔
= 𝟎. 𝟕𝟓 (

𝝆∗

𝝆𝒔
)
𝟏.𝟒𝟐

    Equation 6.41 

The same set of calculations was also performed for different fillet sizes, resulting 

in the scaling equations summarized in Table 6.5. A smaller fillet size slightly changes the 

scaling exponent (this ranges from 1.45-1.49). Moreover, the scaling equation trends 

toward that for the original model (Equation 6.23) as fillet size decreases. This makes sense 

because, as fillet size r approaches zero, the filleted structure returns to the original unit 

cell model. 

It is noted that the revised model, with fillets at nodes, loses physical meaning as 

𝑡/𝑙 approaches unity. Equations 6.37 and 6.38 suggest values of relative density ρ*/ρs and 

relative modulus 𝐸∗/𝐸𝑠 larger than 1 for 𝑡/𝑙=1. This is, of course, physically impossible. 

When fillets are added at nodes, the relationship 𝑙 − 𝑡 > 2𝑟 must be met, to ensure that 

filleted ligament regions fit between nodes, as seen in Figure 6.16. To satisfy this constraint, 



114 

 

𝑡/𝑙 < 0.6 must hold for ligaments with r = t/3 (and 𝑡/𝑙 < 0.75 for r = t/6). Therefore, 

Equation 6.37 and 6.38 cannot be used to describe the scaling relationship between relative 

density and relative modulus for 𝑡/𝑙 ratios beyond this range. 

Table 6.5. New scaling equations calculated for the revised unit cell with fillets at 

nodes. Different ratios of fillet size to ligament width were considered, for the same relative 

density range of 0.42-0.49. 

𝒓

𝒕
 

𝝆∗

𝝆𝒔
 vs 

𝒕

𝒍
 

𝑬∗

𝑬𝒔
 vs 

𝒕

𝒍
 

𝑬∗

𝑬𝒔
 vs 

𝝆∗

𝝆𝒔
 

1/3 
𝜌∗

𝜌𝑠
= 1.50 (

𝑡

𝑙
)
1.74

 
𝐸∗

𝐸𝑠
= 1.13 (

𝑡

𝑙
)
2.47

 
𝐸∗

𝐸𝑠
= 0.75 (

𝜌∗

𝜌𝑠
)
1.42

 

1/4 
𝜌∗

𝜌𝑠
= 1.38 (

𝑡

𝑙
)
1.64

 
𝐸∗

𝐸𝑠
= 1.08 (

𝑡

𝑙
)
2.45

 
𝐸∗

𝐸𝑠
= 0.78 (

𝜌∗

𝜌𝑠
)
1.45

 

1/5 
𝜌∗

𝜌𝑠
= 1.31 (

𝑡

𝑙
)
1.64

 
𝐸∗

𝐸𝑠
= 1.05 (

𝑡

𝑙
)
2.42

 
𝐸∗

𝐸𝑠
= 0.80 (

𝜌∗

𝜌𝑠
)
1.48

 

1/6 
𝜌∗

𝜌𝑠
= 1.28 (

𝑡

𝑙
)
1.62

 
𝐸∗

𝐸𝑠
= 1.00 (

𝑡

𝑙
)
2.41

 
𝐸∗

𝐸𝑠
= 0.81 (

𝜌∗

𝜌𝑠
)
1.49

 

 

6.4.9 Discussion of the modeling determined scaling equations 

Now recall the scaling equation determined from thermal cycles. The exponent 

derived from the model, 1.52 (or 1.42 from the revised model), agreed well with the one 

obtained in thermal cycling experimental measurement, 1.60. Since the two methods are 

completely independent, these results confirmed the reliability of both measurement. 

Roberts and Garboczi also studied the scaling behavior by finite element method [97]. They 

simulated the elastic behavior of random open-cell porous metals using a node-bond model, 

and found that the scaling exponent ranged between 1.29-1.81. All of these indicated an 

exponent less than 2. Therefore, Gibson-Ashby framework must be reconsidered in order 

to properly describe the scaling behavior of nanoporous metals. 
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The structural model considered here could be further improved, but would 

require a significant modeling effort. One potential shortcoming of the unit cell in Figure 

6.13 is the representation of ligaments as beams with square and non-varying cross section. 

Actual nanoporous structures have ligaments with circular cross section, and diameter can 

vary along the length of the ligament (in addition to thickening at nodes). It is, however, 

not clear that such modeling efforts would result in more accurate scaling equations. On 

the other hand, relatively simple models similar to that considered in this paper have been 

used by others to evaluate the scaling behavior of nanoporous materials. Feng et al. [98] 

employed the same model that is considered here and evaluated surface effects on elastic 

modulus of nanoporous materials. Antoniou et al. [99] used a rectangular unit cell, with 

cubic fillets added at nodes, to estimate the actual nanoporous structure of metal foams. 

However, their model did not predict a functional dependence of relative elastic modulus 

on relative density, nor did their composite plot of experimental data for nanoporous metals. 

This could be due to fitting their model over a wide range of relative densities, since scaling 

behavior itself appears to change when relative density is very low, very high, or 

intermediate (e.g. the range considered here for np metals).  

The model described in the previous section 6.4.7, based on a unit cell without 

fillets (as shown in Figure 6.13), has two advantages over the traditional Gibson and Ashby 

model in regard to np metals. First, beam deformation due to tension/compression is 

considered in this model. Based on microstructural observations of np-Au samples that 

ruptured in bending or tension [100, 101], ligaments at the fracture surface experienced 

significant elongation and necking due to local tensile stress. This suggests that 

tensile/compressive deformation provides some contribution to overall deformation and 
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therefore should not be neglected. Second, the model used here allows evaluation of scaling 

behavior over the entire 𝑡/𝑙 range (0-1) without predicting physically impossible scenarios 

such as relative density greater than unity at high 𝑡/𝑙 ratio, a situation predicted by the 

models that include fillets at nodes. Equation 6.10 and Equation 6.19 can describe the 

relationships between ρ*/ρs, 𝐸∗/𝐸𝑠 and 𝑡/𝑙  for porous materials of either low relative 

density or high relative density. Moreover, at the extreme ends of the 𝑡/𝑙 range (0 and 1), 

Equations 6.10 and 6.19 each predict relative density and relative modulus of 0 and 1, 

representing empty space and fully dense material, respectively, which are physically 

realistic scenarios.  

6.5 Conclusions and future work 

The following conclusions were made for this project: 

1) Np-Ir thin films were fabricated by free corrosion of Ir-Mg and electrochemical 

dealloying of Ir-Ni precursors. Both precursor alloys yielded nanoporous structure 

with fine ligament as small as 5 nm and high purity. 

2) In addition to the non-layered np-Ir, multilayer np-Ir was also fabricated by 

dealloying multilayer IrNi precursors. Dealloying multilayer IrNi film used a two-

step procedure, including free corrosion and electrochemical dealloying.  

3) The thermomechanical behavior of np-Ir was investigated by thermal cycling of 

multilayer np-Ir films. Biaxial elastic moduli for np-Ir with different values of 

relative density were obtained from sequential individual thermal cycles, and these 

were used to determine the elastic scaling behavior of np-Ir. An updated scaling 

equation, with an exponent of 1.60, was determined for this nanoporous system. 
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This result differed significantly from the standard Gibson-Ashby model for 

materials with macroscale porosity. 

4) A power-law equation describing scaling behavior of elastic behavior was derived 

for relative density range of nanoporous metals (0.28-0.50), by revisiting Gibson 

and Ashby’s unit cell model. An exponent of 1.52 was determined by modeling, 

which agreed very well with the experimental results.  

In regard to further work, more efforts can be made in improving the model 

established here. As discussed in section 6.4.9, the ligaments in a real np metallic structure 

don’t have square cross-section, and neither the cross-section is uniform. And also the 

nodes where ligaments meet are usually thicker than middle of the ligament. Even the 

author addressed this problem by adding fillets at nodes, real ligaments still exhibit more 

complicated geometry than that. In order to narrow the differences between modelling to 

real geometry, significant amount of computational work is required. 

On the other hand, even though this present model predicted the scaling behavior 

of elastic modulus determined from thermal cycling of np-Ir thin films, it should be applied 

to other np metal systems as well, such as thermal cycling of np-Au or np-Pd.  

Scaling behavior of strength should also be determined by using this current 

model. However, one distinct thing is that when evaluating elastic modulus both bending 

and uniaxial extension/compression were considered, since both them contribute to the 

total deformation of the unit cell (in Figure 6.13). But for strength, such as yield strength 

and fracture stress, the mechanism which plays the critical role is the only factor needs to 

be considered. For example, when a tensile force applied to the unit cell in Figure 5.13, the 

cell will deform. Some of the ligaments experience uniaxial tensile, while others undergo 
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bending deformation. The stress on each ligament is different in both type and magnitude. 

Once one ligament break, the whole unit cell will fail. The stress resulting in this failure 

can be caused by bending or tension. And therefore it has to be determined which mode 

causes the failure before trying to establish the scaling equation for strength. 

 

  



119 

 

7 Bulk np-Ir fabrication and study of mechanical behavior of bulk np-Ir 

7.1 Introduction 

Unlike other fcc metals, Ir is reported to be very ‘brittle’ in bulk form. Bulk Ir 

undergoes brittle cleavage after some plastic deformation in tensile test. Researchers have 

an argument on the origin of this brittleness. Some researchers contributed it to an extrinsic 

reason, mainly impurities in the grain boundary [102]. While others believed it is an 

intrinsic property of Ir [103-105].  

Additionally, some brittle materials, like Si, have been discovered some ductile 

behavior in nanoscale mechanical test. One example is compression test of Si pillars. 

Fredrik Ostlund et al. found a brittle-to-ductile transition in the compression test when they 

decreased the Si pillar diameter from 1 µm to 300 nm [106]. The maximum engineering 

strain can reach 22% in the test, which is surprisingly high, especially considering the very 

brittle nature of Si. Another example is the work in the author’s group. In the study of np-

Si, it exhibited a sponge-like behavior in in-situ nanoindentation test. The thickness of the 

np-Si thin film was almost fully recovered after the indenter removed from the film 

[Jessie’s paper, unpublished]. The maximum deformation in thickness was up to 33%. 

Even this number is not an actual strain because the ligaments subjected to different amount 

of deformation, and also different types of deformation (most of the ligament were bent 

rather than compressed under indenter), but the result is as impressive as the previous 

example of compression test on Si pillars.  

On the other hand, it was reported that ligaments in np-Au exhibited extraordinary 

high yield strength [14, 15, 55]. Size effect was founded in np-Au when the ligament size 

decreasing from ~100 nm to ~10 nm. Will the ligaments in np-Ir, which have a typical size 
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of less than 5nm, also display high yield strength, and how was size effect working for np-

Ir? Will the ligaments in np-Ir perform plastic or brittle deformation during tension and 

compression tests? These question will be answered in this study. And it is believed that 

this study will help further understanding the deformation mechanism of Ir in nanometer 

scale. 

This research work was supported by NSF CAREER grant as well. 

7.2 Challenges and methodology 

Some potential challenges existed in this study, including: 

1. Preparation of bulk np-Ir is difficult. First, due to the brittle nature of Ir, bulk np-Ir 

may subject to cracking and even pulverization. Second, dealloying polycrystal 

bulk IrNi is even more challenging due to the vulnerable grain boundary to cracks. 

Moreover, as discussed in chapter 6.4.1, electrodealloying of IrNi had to be 

performed at a potential up to 1.2-1.3 V due to passivation of Ni under this voltage. 

This voltage is so high to etch most kinds of metals (e.g., stainless steel). The 

container or carrier of bulk sample has to be carefully selected to avoid being etched 

in dealloying.  

2. Dealloying thin film IrNi was already time-consuming as indicated in Table 6.1. 

Dealloying bulk IrNi was expected to take days even weeks. 

Both IrNi and IrMg thin films yielded np-Ir with nice nanoporous structure. 

However, IrNi was selected as the precursor alloy to prepare bulk np-Ir due to very limited 

volume contraction in dealloying of IrNi thin films.  
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IrNi precursor alloy was prepared by arc melting mixed pure Ir and pure Ni pellets. 

With previous experience in dealloying bulk gold silver (Au-Ag) samples, a two-step 

dealloying procedure was planned used here to dealloy bulk IrNi as well.  

Mechanical behavior of bulk np-Ir was studied by nanoindentation and micro 

compression test (didn’t be able to carry out) due to the ease access to nanoindentation 

system and micro specimen test system. Nanoindentation has been widely used to study 

mechanical behavior of np-Au, which can easily measure yield strength of the sample. 

However, previous study in author’s group found that yield strength measured from 

indentation differed from that directly measured from tensile test by an order of its 

magnitude [16]. Mechanical properties of bulk np-Ir would be evaluated by both 

indentation and compression test for comparison. 

7.3 Experimental 

7.3.1 Vacuum arc melting 

Bulk Ir-Ni sample was created by vacuum arc melting from Professor David 

Johnson in Purdue University. Pure Ir (99.9%) lumps and Ni (99.98%) wires were cut and 

weighed to prepare alloy of various composition, i.e. 13.5, 15, 18, 20 at% Ir. The samples 

were melt with flowing in mixture of Ar and H2 (5%), and each sample was flipped 5 times 

to improve homogeneity. The base pressure was at 65 mtorr, and the chamber was purged 

3 times before final melting.  
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7.3.2 Sample preparation before dealloying 

The arc melted sample had to be cut into proper shape before performing future 

experiments. Depending on the requirements of mechanical tests, different sample 

geometry and dimension would be used. Samples for nanoindentation were nothing special, 

but had to be flat. Otherwise, undesirable non-equilateral indenter prints would be 

produced after indentation. The samples were first cut by a diamond saw (Isomet, Buehler) 

into a disc shape with thickness of ~1 mm. To make sample flat, the sample were then 

grind and polished on both side by using disc grinder (Gatan). In addition to make the 

sample flat, it is important to make the two surfaces parallel as well. It was achieved by 

mounting the sample with little crystal bond, and before crystal bond becoming rigid, the 

sample with holder was pressed upside town on a flat surface.  

7.3.3 Dealloying 

Dealloying of bulk IrNi sample were conducted in nitric acid as well. Both free 

corrosion and electrochemical dealloying were exploited to establish the best way to create 

bulk np-Ir. Generally, dealloying bulk IrNi started at a very slow rate to avoid formation 

of cracks on the grain boundary. A diluted nitric acid solution (1 acid : 3 H2O) was used in 

the first step with no heating or agitation. The weight was recorded every 24 hours to 

monitor progress of dealloying. After one or two days, a slightly stronger acid solution (1 

acid: 2 H2O) replaced the solution in step one. And so on, 1:1 diluted was used in the next 

step. After these, electrochemical dealloying was conducted on the sample by applying a 

constant potential of 1.2 V. The setup was similar to that in Figure 6.1, and sample was 

placed in a stainless steel mesh, and immersed in a 1:4 diluted nitric acid electrolyte. The 
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dealloying in this step was monitored by current reading in an ampere meter. However, 

stainless steel was etched as well when subjected to 1.2 V potential. Indeed, as dealloying 

going, sample surface became more and more Ir rich, which became an undesirable 

protection layer. Instead, etching of stainless steel became relatively easier. Therefore, a 

galvanization couple formed on the working electrode, and Ir alloy was protected by the 

stainless steel from being further dealloyed. Other containers to hold the bulk sample were 

also tried out, such as Au coated kapton, Ir coated kapton, and even a Au mesh. However, 

none of these worked out, and they all acted as the sacrificial component when coupled 

with bulk IrNi sample.  

Due to the unsuccessful dealloying by applying potential, bulk IrNi were 

dealloyed merely by free corrosion. The following procedure is for an 18 at.% IrNi 

precursor sample. The beginning step (step 1) was still in 1:3 diluted nitric acid, with no 

heating or agitation. After one day, the solution was slightly heated to 35°C and dealloying 

was held for two days. And then heating was increased to 50°C, and this step (step 3) was 

kept for 50 hours. The stronger solution (1:1 diluted nitric acid) was used in step 4, and 

dealloying were performed for 232.5 hours with heating at 50°C. The next step (step 5) 

was conducted in even stronger acid (2:1 diluted nitric acid) for 337 hours with heating at 

50°C. 

7.3.4 Nanoindentation 

Nanoindentation was performed to dealloyed bulk sample in a Micro Materials 

Nanoindenter. Measurements were run in load control mode, and maximum loads of 1 mN, 

3 mN, 5 mN, 8 mN, 12 mN and 15 mN were used. To improve the reliability of 
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measurement, test in each load was repeated for 25 times. A loading and unloading rate of 

0.025mN/s was used all the cycles. 

7.3.5 Characterization 

Morphology of dealloyed bulk IrNi sample was characterized by both optical 

microscope (BX41, Olympus) and SEM (S900 and S3200, Hitachi). Optical microscope 

was convenient and quick to check cracks after and during each step of dealloying. 

Additionally, electron microscope was used to measure the indenter print size after 

nanoindentation.  

7.4 Results and discussion 

7.4.1 Dealloying of bulk IrNi 

Small IrNi pieces of each composition were dealloyed according to the procedure 

in Table 7.1. As discussed in section 7.3.3, electrochemical dealloying was not exploited. 

Dealloying of 13.5 at.% precursor alloy was not accomplished due to pulverization on 

sample surface. It was suspected having too much sacrificial element (Ni), in precursor 

alloy. Dealloying of sample with 15 at% and higher Ir content can be finished with heating 

and agitation, but for a fairly long time. And a lot of cracks were formed in the dealloyed 

samples. Dealloying 18 at. % Ir sample was not finished either, but it was on purpose to 

avoid further cracking.  
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Table 7.1. List of the fabrication and dealloying conditions for synthesizing np-Ir from 

bulk Ir-Ni samples of 13.5-20 at.% Ir. 

Precursor 

alloy1 

13.5  at.% Ir 15 at.% Ir 20 at.% Ir 18 at.% Ir 

Original 

weight 

0.0430 g 0.0262 g 0.0409 g 0.0239 g 

Original 

composition2 

15.9 at.% Ir 

38.2 wt.% Ir 

16.7 at% Ir 

39.6 wt.% Ir 

24.5 at% Ir 

51.5 wt.% Ir 

21.3 at.% Ir 

47.0 wt.% Ir 

Dealloying 

procedure 

 1. 1:1, 50°C, 

agitation, 61.5 h. 

2. Conc., 50°C, 

agitation, 71 h.  

1. 1:1, 50°C, no 

stirring, 42.5 h. 

2. 3:1, 50°C, no 

stirring, 7 h. 

3. 3:1, 50°C, 

agitation, 55 h. 

4. Conc., 50°C, 

agitation, 154 h. 

5. Conc., 70°C, 

agitation, 78 h. 

1. 1:3, RT, no 

stirring, 22 h. 

2. 1:1, RT, no 

stirring, 119 h. 

3. 1:1, 50°C, no 

stirring, 5.5 h. 

4. 1:1, 50°C, 

agitation, 47.5 h. 

5.  2:1, 50°C, 

agitation, 93 h. 

6. Conc., 30°C, 

no stirring, 5 h. 

7. Conc., 50°C, 

no stirring, 24 h. 

8. Conc., 50°C, 

stirring, 233 h. 

9. Conc., 70°C, 

stirring, 96.5 h. 

1. 1:3, RT, no 

stirring, 27.5 h. 

2. 1:3, 35°C, no 

stirring, 45 h. 

3. 1:3, 50°C, no 

stirring, 50 h. 

4. 1:1, 50°C, no 

stirring, 236.5 

h. 

5. 2:1, 50°C, no 

stirring,  337 h.  

Final weight 0.0297 g 0.0114 g 0.0243 g 0.0162 g 

Final 

composition3 

27.4 at.% Ir 

55.2 wt.% Ir 

76.0 at.% Ir 

91.2 wt.% Ir 

68.1 at.% Ir 

87.5 wt.% Ir 

40.2 at.% Ir 

68.8 wt.% Ir 

1 Composition in this row was calculated based on mass of each element prepared for arc 

melting. 

2 Composition in this row was measured from EDS. 

3 Composition in this row was calculated based on final weight in row 6 and original 

composition in row 3 (assuming that only Ni was removed in dealloying). 
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7.4.2 Morphology of dealloyed film 

Dealloyed samples suffered serious cracking, as shown in optimal micrographs in 

Figure 7.1. Figure 7.1a shows plan-view image of the undealloyed bulk sample (18 at.% 

Ir) in Table 7.1. Figure 7.1b-f corresponds to plan-view images after each dealloying step 

for this sample. Cracks formed in dealloying step 4 (Figure 7.1e), in diluted 1:1 nitric acid 

and heating at 50°C. It was suspected that agitation of the etchant would initialize or speed 

up cracking. However, it had been tested out not being the main reason causing cracking 

sine in dealloying of this sample no agitation of etchant was applied. Most of the cracks 

started from grain boundaries, as in Figure 7.1e. With further dealloying, some 

transgranular cracks were also formed in grains, as in Figure 7.1 d. Therefore, to avoid 

cracking, single crystal may have to be used as precursors.  
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Dealloyed bulk IrNi were also observed in SEM, as displayed in Figure 7.2. 

Images (a) and (b) are np-Ir created by dealloying of 13.5 at.% Ir and 18 at.% Ir respectively. 

Even both samples still had considerable Ni, as indicated in Table 7.1, surface of the 

 

 

 
Figure 7.1. Surface morphologies of bulk IrNi (18 at.%Ir in precursor alloy) before (a) 

and after each dealloying step (b-f). The images were taken under optical microscopy. 

Cracks were formed after step 4, in diluted 1:1 nitric acid and heating at 50°C. 
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samples was already purely nanoporous structure. And EDS measurement on these sample 

also proved that the surface layer (several micrometer) had Ir content up to 80 at.%. 

Dealloyed sample exhibited different ligament size. Nanoporous structure in Figure 7.2a 

exhibited ligaments as small as ~2-3 nm, whereas ligaments in Figure 7.2b are ~5-7 nm. 

This is likely due to the extended dealloying in the sample of 18 at.% Ir. Nanoporous Ir on 

the top surface layer was formed at the very beginning of dealloying stage, but it was still 

kept in the etchant, which caused ligament coarsening, as discussed in previous chapter 

4.4.2. Sample in image (b) underwent 3 times longer dealloying time than that in image (a). 

 

7.4.3 Nanoindentation of bulk np-Ir 

Even hardness can be obtained directly from the nanoindentation system, indenter 

prints were still observed in SEM in order to get more accurate results. Figure 7.3 shows 5 

indenter prints on the 18 at.% Ir sample in Table 7.1. Due to the shape of a Berkovich tip, 

the indenter print displayed a triangle geometry. If the sample surface was horizontally flat, 

 
Figure 7.2. Surface morphology of bulk np-Ir, by dealloying 13.5 at.% Ir and 18 

at.% Ir, respectively in (a) and (b). 
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the triangle impression should be an equilateral one. If not, it indicated uneven stress on 

the sample surface, and the depth measurement on the loading and unloading curve was 

therefore inaccurate. The prints, which were close to equilateral as in Figure 7.3, were 

selected to perform further calculation. Some prints were equilateral, but were close to 

cracks or right on cracks, and were not selected to calculate hardness either. Area of the 

prints were measured in Image J, and then hardness was calculated for each load. The 

results are listed in Table 7.2.  

Table 7.2. Summary of measured indenter print size and hardness at each load. 

Load 

(mN) 

Average indenter print area 

 (µm2) 

Hardness 

(MPa) 

1 mN 1.48  674 

3 mN 2.34 1282 

5 mN 5.78 865 

8 mN 6.78 1180 

12 mN 7.10 1690 

15 mN 7.17 2092 

 

The calculated hardness is in the range of 674 – 2092 MPa. The hardness roughly 

tended to increase with higher load, which is opposite of the indenter size effect, i.e. the 

increase of indentation hardness with the decrease of the indentation depth. Instead, the 

increase of hardness is very likely caused by the effects of undealloyed IrNi sublayer. 

Indeed, the dealloying of this sample was not accomplished, as indicated in Table 7.1. 

Therefore, the discussion of hardness was developed based on the measurement at the 

lowest load 1 mN. 
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Figure 7.3. Indentation prints on np-Ir dealloyed from 18 at.% Ir precursor (dealloying 

condition is in fifth column of Table 7.1. Images (a-f) correspond to ones of maximum load 

of 1 mN, 3 mN, 5 mN, 8 mN, 12 mN, and 15 mN, respectively. 
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7.4.4 Using scaling equation to evaluate the measured hardness 

Hardness of a material, H, is related to its yield strength, σy, by a relation as shown 

in Equation 7 [107],   

𝜎𝑦 =
𝐻

3
(𝐵)𝑛    Equation 7.1 

Where n is strain hardening coefficient, B is a materials constant, for aluminum and steel 

sample, B = 0.1.  

However, for cellular materials, many believed hardness is equal to the yield 

strength, because Poisson’s ratio of cellular materials, ν*, is believed as ‘0’. This 

relationship had been accepted widely in studying mechanical properties of np metals [15, 

55, 108]. However, recent studies by Balk et al. [101] suggested Poisson’s ratio of np 

metals is actually nonnegligible. They found ν* of np-Au is around 0.2. According to Shaw 

and Sata’s study [109], hardness is related to yield stress of materials by Poisson’s ratio. 

And for ν*=0.2, 𝐻 = 2.65𝜎. The author’s own study on np-Ir film also found a Poisson’s 

ratio close to 0.3 [23]. It corresponds a relation of 𝐻 ≅ 3𝜎. Applying the hardness of np-Ir 

to this equation (H*=674MPa according to Table 7.2 for maximum load of 1 mN). 

Therefore, yield strength of np-Ir σ*= 225 MPa.  

As the scaling equation for elastic modulus (Equation 6.5), the yield strength of 

porous materials, σ*, is also related to that of their corresponding dense materials (or 

ligament materials), σs, by a power equation, 

𝜎∗

𝜎𝑠
= 𝐶 (

𝜌∗

𝜌𝑠
)
𝑛

    Equation 7.2 

where, ρ*/ρs is relative density of the material, and C and n are empirical constants. 

Different from the parameters in Equation 6.5, Gibson and Ashby predicted C=0.3, and 



132 

 

n=1.5 for yield strength. Relative density of np-Ir was calculated based on the precursor 

alloy composition (21.3 at.% Ir, 25.9 vol.% Ir). Assuming surface layer (down to several 

µm) was fully dealloyed and no volume contraction in dealloying, relative density of np-Ir 

is 0.26. Applying these known parameters into Equation 7.2, and then yield strength of 

dense Ir, σs, is calculated as 5.6 GPa.  

One problem associated with the calculation above is that Gibson and Ashby’s 

prediction of C=0.3 and n=1.5 was based on low relative density materials. As discussed 

in Chapter 6, relative density of np metals is usually in the range of 0.2-0.4, which is not 

considerable as low relative density.  

Scaling relationship for yield strength had also been studied by Briot et al. based 

on the mechanical test on np-Au [16]. In their study, they also considered size effect to the 

stress. The coefficient and exponent are different from those predicted by Gibson and 

Ashby either, as shown in Equation 7.3. 

𝜎∗ = 𝐶[𝜎0 + (𝑘 ∙ 𝐿𝑚)] (
𝜌∗

𝜌𝑠
)
𝑛

   Equation 7.3 

where σ0 is the average yield strength of single crystal material, i.e. Au in their study. k and 

m are the size effect parameters, and are equal to 0.075 and -0.55 for np-Au. L is the 

ligament width with unit of meter. The part in the square bracket is actually yield strength 

of ligament materials, σs, and it is expressed in the format of Hall-Petch type equation due 

to ligament size effect. The parameters C and n were determined as 0.65 and 2.35 

respectively. With this updated scaling equation, σs, or 𝜎0 + (𝑘 ∙ 𝐿𝑚), is calculated to be 

8.6 GPa.  

Take out the Hall-Petch equation separately, it gives, 

𝜎𝑦 = 𝜎0 + 𝑘 ∙ 𝐿𝑚    Equation 7.4 
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σy is the same as σs, and σ0 for Ir is taken as 50 MPa [110], m is taken the same as 

that for np-Au, -0.55. The coefficient, k, for np-Ir with ligament size ~6 nm, is determined 

as 0.17 if taking 5.6 GPa for σs, or 0.26 if taking 8.6 GPa for σs. 

Theoretical yield strength of Ir is ~33 GPa (𝜎𝑡ℎ =
𝐺

2𝜋
, G is shear modulus, GIr = 210 

GPa [111]). The calculated np-Ir ligament yield strength (5.6 GPa or 8.6 GPa) is very high, 

but still one order lower than theoretical yield strength. When comparing this yield strength 

with those of np-Au, the ratio of σy/G (same as σs/G) was considered. As shown in the 

Figure 7.4, results from nanoindentation [15, 55] and pillar micro-compression tests [14] 

of np-Au are included, indicated as open and black solid circles. σy/G was plotted vs. L/a, 

where L is ligament width, and a is lattice parameter. Nanoindentation of np-Au data were 

corrected by multiplying 0.38, because the original data were obtained by equaling 

hardness and yield strength, with the assumption that Poisson’s ratio of np metal is ‘0’. 

However, as discussed earlier, Poisson’s ratio of np-Au is not 0, and the yield strength of 

np-metal (np-Au) was about 1/3 of the hardness value measured by nanoindentation [16]. 

The red solid circles are the corrected data from those of open circles. 
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A linear extrapolation of the data from np-Au displayed in the plot as well. One 

point was not included in the fitting because it’s far away deviated from other points. The 

fitted linear line had a slope of -0.41, which is close to -0.5. The trend of the linear fitting 

clearly displayed size effect to the ligament strength. But the data of nanoindentation of 

np-Ir was below this linear line. It implied the yield strength determined in this study is not 

as significantly high as those reported in mechanical tests of np-Au. 

7.5 Conclusions and future work 

The following conclusions can be made for this project, 

1) Bulk np-Ir sample was fabricated by dealloying IrNi precursor. Due to intense 

dealloying in grain boundaries, dealloyed sample suffered from serious cracking.  

2) Dealloying of bulk IrNi sample was finished by free corrosion with extended 

dealloying time (weeks or months). Electrochemical dealloying of bulk IrNi 

 
Figure 7.4. Log-log plot of σy/G vs. L/a. Data were from nanoindentation of np-Au, 

micro-compression test of np-Au, and nanoindentation of np-Ir. The referenced works 

are cited in the square bracket. 
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sample was not employed due to the difficulty to find a container which can 

survive in 1.2V polarized electrolyte.  

3) Strength of np-Ir was investigated by nanoindentation hardness test. The 

calculated yield strength is 5.6 GPa or 8.6 GPa. Considering size effect due to the 

extremely small ligaments, this value is reasonable. 

Future work should be in improving dealloying to get crack-free bulk np-Ir. As 

discussed in previous section, single crystal IrNi may have to be used to solve this problem. 

Additionally, electrochemical dealloying could be feasible if the container to keep the IrNi 

sample is made of Ir, e.g., using Ir plate or Ir wire to hold the sample. Generally, more 

efforts should focus on avoiding cracking and also reducing dealloying time. 

On the other hand, with crack-free bulk np-Ir samples, more mechanical tests can 

be carried out. With the micro-test machine available, tensile test and compression test can 

be used to directly measure yield strength, and then compare with that measured by 

nanoindentation. 

Moreover, bulk np-Ir with different relative density can be achieved by dealloying 

precursor alloy with different compositions. By measuring yield strength (probably also 

ligament size), scaling equation for yield strength can be evaluated the same way as that 

for elastic modulus in Chapter 6. 
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8 Conclusions and future work 

This doctoral work included the study of two nanoporous metal systems namely 

np-Ni and np-Ir. Significant findings were made on improving the fabrication of 

nanoporous metals by utilizing dealloying process. Mechanical behavior of np metals was 

further explored by thermal cycling experiments. The mechanical properties of np metals 

were compared with those of their dense counterparts to investigate the scaling behavior 

of np metals. In summary, the following was established during the course of these projects: 

1) Thin film nanoporous nickel (np-Ni) with fine ligaments and high purity was 

synthesized from a Ni-Mg precursor. The relatively straightforward process of 

dealloying produced a crack-free nanoporous structure with ligaments and pores 

in the order of 7 nm. 

2) It was discovered that Np-Ni ligaments have a native oxide coating but a metallic 

Ni core. This is a consequence of Ni’s tendency to form a thin, protective native 

oxide, and does not hamper its ability as a catalyst. Instead, np-Ni in thin film 

would allow it to be applied as a (conformal) coating for specific surface, as 

opposed to the powder or slurry forms to which Raney Ni is restricted.  

3) Thin film nanoporous iridium (np-Ir) with fine ligaments and high purity was 

fabricated from both Ir-Mg and Ir-Ni precursors. Dealloying Ir-Mg was found to 

be more effective because Mg etches very easily. However, dealloying Ir-Ni 

resulted in np-Ir with very limited thickness contraction. 

4) A novel method to make layered np-metals by dealloying multilayer precursor 

was developed. This method was utilized to successfully fabricate np-Au and np-

Ir, with controllable ligament, cell sizes, and even orientation. The unique feature 
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of multilayer fabrication would benefit applications which require nanoscale 

structure with high surface area as well as controlled length scale. 

5) The thermomechanical behavior of np-Ir was investigated by thermal cycling of 

multilayer np-Ir films. Biaxial elastic moduli for np-Ir with different values of 

relative density were obtained from sequential thermal cycles, and were then used 

to determine the elastic scaling behavior of np-Ir. An updated scaling equation, 

with an exponent of 1.60, was determined for this nanoporous system.  

6) A scaling equation describing the elastic behavior of porous materials with 

moderate relative density was determined by re-evaluating the classical Gibson 

and Ashby’s unit cell model. The deformation of the structural beams (ligaments) 

were treated by considering both bending and compression/tension deformation. 

Relevant values of relative density were considered for nanoporous metals (0.28-

0.50). The deduced scaling equation included an exponent of 1.52, which agreed 

very well with the experimental results. 

 

One of key findings of the present work is a multilayer fabrication method to 

produce nanoporous metals with controllable ligament size and orientation. This key 

finding suggests that thin film np metals other than np-Ir should be fabricated in a similar 

manner. This ability to design nanoporous structures with predictable sizes and orientations 

could be used to improve properties which are highly sensitive to structure/size. For 

example, porous Si is an important optical materials, and if making it in multilayer structure, 

it can be used for wave-guide. The most commonly used fabrication method is to anodize 

Si wafer, by which layer spacing and pore size can be controlled by adjusting current 
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density. This multilayer fabrication method provides an alternative approach to fabricate 

layered porous materials. Compared with anodizing Si, it’s more predictable and costless, 

and can achieve nanoscale pore size and layer spacing (typical layer spacing in anodized 

layered porous Si is in micrometer length).  

Another key finding of this work is an updated scaling equation for elastic 

modulus. This scaling equation agreed well with the experimental scaling equation 

determined by thermal cycling of np-Ir thin film. Thermal cycling could be applied to other 

np metals, to determine biaxial moduli for np metal thin films with different relative 

densities. These measurements could further verify or improve the scaling equation 

established in this study.  

Additionally, with newly available instruments, i.e. nanoindentation (in Dr. 

Cheng’s group) and micro-test system (in Dr. Balk’s group), multiple mechanical tests can 

be performed to determine mechanical properties of bulk np metals, including both yield 

strength and elastic modulus. Sample preparation for nanoindentation is simple, but the 

yield strength or elastic modulus cannot be directly measured by it. Therefore, micro-test 

(micro tensile or compressive test) is recommended. By measuring yield strength of bulk 

np metals e.g., np-Ir, in tensile or compressive tests with a variety of relative densities, an 

experimentally determined scaling equation for yield strength can be obtained. Further 

steps can be taken to derive scaling equations for yield strength, by utilizing the unit cell 

model (in Figure 6.13 or modified unit cell in Figure 6.16).  
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