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ABSTRACT OF THESIS 

CHARACTERIZATION OF POLY(METHYL METHACRYLATE)-BASED 
NANOCOMPOSITES ENHANCED WITH CARBON NANOTUBES 

 
The viscoelastic relaxation dynamics of a series of poly(methyl methacrylate) [PMMA] 
based nanocomposites filled with carbon nanotubes have been studied using dynamic 
mechanical analysis and broadband dielectric spectroscopy. The networks were prepared 
using four methods: (i) melt mixing, (ii) solution processing, (iii) in-situ polymerization, 
and (iv) polymer grafting. Nanotube modifications included surface oxidation via acid 
exposure and surface functionalization for polymer grafting.  The effect of variations in 
processing method and nanotube modification on glass transition temperature (Tg) and 
relaxation dynamics was investigated. The relaxation behavior of the nanocomposites 
was sensitive to processing method and nanotube functionalization.  Nanotube loading (to 
5 wt%) led to a progressive increase in rubbery modulus, with the increase more 
pronounced in the solution-processed samples owing to enhanced nanotube dispersion.  
In the case of the oxidized nanotubes, loading led to an increase in modulus, but also a 
systematic decrease in Tg of ~ 15°C with 3 wt% nanotubes.  For in-situ polymerized 
(PMMA/MWNT-ox) nanocomposites, there was no readily discernable trend in Tg.  
Composites prepared via in-situ polymerization in the presence of methyl methacrylate 
functionalized tubes (i.e., polymer grafting) displayed a positive shift in Tg of nearly 
20°C at 1 wt% loading.  Investigation of the dielectric relaxation of the PMMA/MWNT 
composites indicated a percolation threshold between 0.3 and 0.4 wt% MWNT. 
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Chapter 1 
 

Introduction and Objectives 
 

 The recent discovery of carbon nanotubes has led to a great amount of research on 

improving the macroscopic properties of polymers by incorporating the nanotubes into 

the polymer matrix. Carbon nanotubes are stronger and lighter than steel, while also 

having dimensions smaller than current fillers for nanocomposites.[1-2] Carbon 

nanotubes show superior mechanical, thermal and electrical properties, and even at 

relatively low loadings, the inclusion of nanotubes has been shown to enhance the 

macroscopic properties of polymers. However, while carbon nanotube composites have 

shown great promise, the inherent tendency to agglomerate has limited their successful 

application as nanoscale filler. 

 Poly(methyl methacrylate) has a wide variety of uses and is employed in many 

applications where strength and durability are needed such as medicine (bone cement), 

dentistry (dentures), and also as a low cost replacement for glass (Plexiglas®). Since 

poly(methyl methacrylate) offers superior macroscopic properties and is readily 

processable, it is an excellent candidate for the formulation of polymer nanocomposites 

based on the inclusion of nanotubes. 

 Due to the fact that carbon nanotubes are difficult to disperse with conventional 

polymer processing methods, new approaches have been developed to increase dispersion 

and reproducibility.[3-6] Melt mixing, solution processing, in-situ polymerization and 

polymer grafting have all been used as techniques to adequately disperse nanotubes 

within a polymer matrix. Recently, surface modification of the nanotubes has been 

performed in order to aid dispersion. Unfortunately, the resulting nanocomposites have 

all performed well below theoretical predictions. Therefore, current research is aimed not 

only at developing methods to disperse nanotubes adequately, but also to understand the 

nature of the interface between the polymer and the nanotubes, and its influence on bulk 

performance. 

 The goal of this study is to gain fundamental insight as to the influence of carbon 

nanotube surface chemistry on polymer-filler interactions and the corresponding 

enhancement of mechanical, electrical and thermal properties of the composites. 
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Specifically, the objective is to investigate the dynamic relaxation characteristics of a 

series of nanotube-loaded PMMA composites using dynamic mechanical analysis and 

dielectric spectroscopy. Key material variables include processing method, nanotube 

surface chemistry and overall nanotube loading. 

 Relevant background information on polymer nanocomposites and polymer thin 

films, as well as a review of the relaxation characteristics of PMMA, is presented in 

Chapter 2. Experimental methods used in this study are described in Chapter 3. The 

results for various series of PMMA-based polymer nanocomposites are presented in 

Chapter 4: melt mixed PMMA/MWNT, solution processed PMMA/MWNT and 

PMMA/MWNT-ox, and in-situ polymerized PMMA/MWNT-ox and PMMA/MWNT-

MMA. Characterization methods include dynamic mechanical analysis, dielectric 

spectroscopy, thermogravimetric analysis and differential scanning calorimetry. 

Conclusions for the study are presented at the end of Chapter 4.  
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Chapter 2 
 

Introduction and Background 
  

2.1 Introduction 

In order to predict the ultimate properties of nanotube-loaded polymer composites 

it is necessary to understand the nature of the polymer-nanotube interaction, and the 

extent to which the presence of the nanotubes perturbs the properties of the polymer 

matrix.  The addition of nanoscale filler into polymer composites has been shown to 

create impressive enhancements in the electrical, mechanical and thermal properties of 

the resulting matrix.[7]  The focus of this study is to gain an understanding of the 

influence that carbon nanotube surface chemistry has on polymer-filler interactions and 

the corresponding enhancement of the macroscopic properties.  Insight into the relations 

between preparation method, nanotube dispersion and interfacial interactions, and their 

effect on bulk performance, is vital for formulating nanocomposites with the most 

advantageous properties. Poly(methyl methacrylate) [PMMA] was selected as the matrix 

polymer for this study due to its amorphous character (thereby avoiding potential 

complications related to crystallization), and its suitability for a wide range of production 

and processing techniques. 

 This chapter provides a review of polymer nanocomposites with a focus on multi-

wall carbon nanotube [MWNT] filler and its influence on bulk polymer properties. 

Included is an examination of the fundamentals of polymer nanocomposite morphology 

and polymer-nanotube interactions as related to compositional factors, preparation 

methods and nanotube modifications.  

 

2.2 Fundamentals of Polymer Nanocomposites 

2.2.1 Polymer Matrix 

Polymers are comprised of repeating structural segments and are found in a wide 

variety of everyday products. PMMA is a glassy amorphous polymer, with a glass 

transition temperature of ~100oC. Due to its diverse range of applications and potential 

end-use environments, PMMA has been the subject of numerous nanocomposite studies 

focusing on the improvement of strength and durability.[3, 5-6, 8]  
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PMMA belongs to a subset of polymers referred to as amorphous. This group of 

polymers does not crystallize during the cooling process because they have semi-flexible 

or rigid backbone structures. The most important thermal transition in an amorphous 

polymer is the glass-rubber transition (Tg). The Tg is the narrow temperature range over 

which the amorphous polymer changes from the hard glassy state to the soft rubbery 

state. It is usually possible to assign Tg to a specific temperature using mechanical storage 

modulus, tan or the loss modulus. Polymers in the glassy domain, where the temperature 

of the surroundings is less than Tg, tend to be stiff and potentially brittle while polymers 

in the rubbery domain, are softer and more flexible. 

 

2.2.2 Fillers for Polymer Nanocomposites 

 For a substantial number of applications, polymers are improved with additives or 

fillers. Fillers are incorporated into the polymer matrix for many uses including 

enhancement of processing and physical properties, and to add color. The addition of 

these fillers allows a single polymer to be adapted for many diverse purposes based solely 

on the material added to the matrix. For example, PMMA, since it is used in many 

applications that demand high optical quality, requires a filler to increase strength and 

toughness without masking its optical properties. In one such study, MgCl2 was used as 

the filler creating a PMMA composite that would be suitable for use as an optical 

sensor[9].  

With recent advances in nanotechnology, polymer nanocomposites have moved to 

the forefront of polymer research by using nanoscale fillers that produce superior 

physical properties but maintain the processing properties of the polymer[7, 10-11]. 

Nanoscale fillers offer significant advantages when compared to traditional fillers. 

Nanofillers are up to three orders of magnitude smaller than conventional fillers, and thus 

provide vast amounts of interfacial contact area.  The large amount of interfacial volume 

that is created has properties that differ from the bulk polymer and provides the 

opportunity to tailor the overall polymer performance. 

One of the most promising fillers under investigation for inclusion in polymer 

nanocomposites is carbon nanotubes [CNT]. CNT’s are found in two forms:  single-wall 

nanotubes (SWNT), and multi-wall nanotubes (MWNT).   The latter are 10-40 nm 
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diameter, 10-100 m long tubes similar in arrangement to graphite with cylinders axially 

aligned around a hollow core. Figure 2.1 shows the structure of a carbon nanotube.   

MWNT’s have been found to be almost 100 times stronger than steel at only 1/6 of the 

weight, and introduce large amounts of interfacial surface area. Carbon nanotubes also 

show superior mechanical, thermal, and electrical properties thus leading to high 

potential for their ability to improve composite properties.[2] Even at relatively low 

loadings, the inclusion of nanotubes has been shown to greatly enhance the macroscopic 

properties of polymers[6]. Unfortunately, due to the impurities and structural defects 

inherent in MWNT’s, reproducible performance properties can be difficult to obtain and 

samples tend to vary from batch to batch.[1] 

 

2.2.3 Polymer Nanocomposites 

 Polymer nanocomposites are defined as materials whose major component is a 

polymer and the minor component must have a single dimension below 100 nm. Polymer 

nanocomposites have become an active field of study in recent years because there have 

been accounts of large property changes with very small additions of nanofiller (less than 

5 wt%). As with traditional composites, the most important element of the system is the 

interface. The interface is defined as the region in the vicinity of the filler surface where 

polymer properties are altered in comparison with the bulk.[12] The goal of 

understanding the interface between the nanofiller and the polymer is crucial for being 

able to optimize the properties for a particular function.  

 Two fundamental aspects that control the performance of polymer 

nanocomposites are the local interfacial properties and the resulting macroscopic changes 

in the composite. To determine the extent and the nature of the interactions at the 

interface, many techniques have been used including miscibility maps, dynamic 

mechanical analysis [DMA] and broadband dielectric spectroscopy [BDS]. The 

miscibility maps have been shown to provide a prediction of the dispersion the filler will 

have within the polymer, while DMA and BDS have been shown to measure the effect of 

the filler on dynamic mechanical and dielectric relaxation, respectively. Using all of these 

analytical techniques allows for the determination of macroscopic properties based on the 

changes in nanoscale properties at the interface. Dispersion and physical confinement 
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play a key role in determining macroscopic properties. Many techniques have been 

developed in order to distribute fillers evenly and efficiently thus producing composites 

with optimal properties throughout. Each dispersion strategy has the potential to 

influence the characteristics of the polymer matrix in the vicinity of the filler and will 

likely alter the distribution of mechanical, electrical and thermal loads across the 

interface.  

 Recently, MWNT’s have been used as fillers in polymer nanocomposites due to 

their potential to impart large changes in macroscopic properties at low loadings. Models 

have indicated that MWNT’s, even at low loadings, have an average separation distance 

comparable to the radius of gyration for elastic polymers.[13] Carbon nanotubes exhibit 

strong dispersive forces that limit solubility and encourage agglomeration.  Due to the 

significant bundling tendency of carbon nanotubes, early investigators struggled to find 

appropriate processing methods that had the ability to disperse the nanotubes adequately 

throughout the matrix. Inadequate dispersion is the most cited process limitation in 

nanocomposites that contain MWNT’s.[14] Eventually, viable processing methods were 

developed that provided satisfactory nanotube dispersions in the polymer matrix based on 

melt processing, solution blending and in-situ polymerization. Another technique used to 

improve dispersion within the polymer matrix involved chemically modifying the surface 

of the nanotubes, e.g. by polymer grafting. Recently, there have been studies where 

nanotubes are wrapped with a polymer thus disrupting the van der Waals forces that 

cause them to agglomerate and allowing the tubes to easily disperse throughout the 

polymer matrix.[15-16] These advances in polymer/nanotube composite formulation 

have greatly enhanced the quality of samples that can be produced. 

 

2.2.4 Thin Polymer Films as a Model for Polymer Nanocomposites 

It is generally accepted that the geometry and aspect ratio of the filler, as well as 

the interfacial shear stress of the composite, are the significant properties of traditional 

composites.[7] Fillers with high aspect ratios have more surface area with which to 

interact with the polymer and consequently influence the dynamics of the composite. 

Nanotubes, owing to their high aspect ratios, have shown a tremendous reinforcing 

capability.[10]  It is also known that consistent dispersion and alignment of the filler is 
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crucial in establishing the properties of the composite. However, perhaps the most 

important factor in controlling macroscale properties in composites is the interface. Many 

studies have been performed on the interaction between the filler surface and the polymer 

chains. This is increasingly important in nanocomposites because the increased surface 

area of the filler increases the contact area with the polymer exponentially as compared to 

traditional composites.  

Since the interface plays a crucial role in polymer nanocomposites, critical 

information can be obtained from thin polymer films. Polymer nanocomposites 

containing consistently spaced nanoparticles or nanotubes are in many respects analogous 

to thin polymer films in both their thermal and mechanical response behavior. Generally, 

nanoparticles are not distributed uniformly in the matrix and thus making a direct 

quantitative comparison between thin polymer films and nanocomposites is difficult. 

However, recently Bansal et al. have verified that polymer nanocomposites and thin 

polymer films are quantitatively equivalent in terms of their thermomechanical 

responses.[17] 

 There is a substantial amount that can be learned about polymer nanocomposites 

using thin polymer films as a model. In free-standing thin films, Tg decreases as a 

function of decreasing film thickness when specific interactions between the substrate 

and the polymer film are absent. On the other hand, the presence of strong, favorable 

interactions between substrate and polymer film leads to an observed increase in Tg.[18-20]  

Drawing a comparison to polymer nanocomposites, the glass transition, which is 

responsive to changes in the polymer matrix, increases in temperature if favorable 

interactions occur between the polymer and filler, presumably due to a reduction in 

polymer chain mobility in the vicinity of the interface. New studies also suggest that 

there is a correlation between the thickness of thin films and the interfacial spacing 

inherent to the polymer nanocomposite. From thin films, it is known that a surface can 

affect the polymer chains that are more than a radius of gyration away and that chemical 

interaction at the surface is the main parameter affecting Tg.[10] Using this fact to draw an 

analogy between thin films and polymer nanocomposites, Tg can be used as a measure of 

the polymer-filler interaction for polymer nanocomposites. 
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2.3 Preparation Methods for MWNT Nanocomposites 

 Preparation methods for exploiting the extraordinary physical properties of 

MWNT’s in polymer nanocomposites have commonly focused on improving nanotube 

dispersion, because consistent distribution throughout the matrix has been shown to be an 

essential factor for the optimization of composite performance. The dispersion of native 

(i.e., unmodified) nanotubes is particularly challenging, given their intrinsic 

thermodynamic tendency to cluster or agglomerate.[1] Nonetheless, the methods of melt 

mixing, solution blending, in-situ polymerization and grafting have all shown promise for 

adequately dispersing MWNT’s within the polymer matrix. 

 

2.3.1 Melt Mixing 

 Melt mixing is a common method employed to disperse nanotubes easily and 

uniformly throughout the polymer matrix. It uses high temperatures and high shear forces 

produced by counter rotating rotors to facilitate the dispersion. Melt mixing is an ideal 

method to produce MWNT composites because it is compatible with modern industrial 

processes and it is very effective in dispersing the nanotubes. However, melt mixing is a 

violent process due to the high shear forces produced. Nanotubes have been found to 

become broken, while the polymer structure may suffer damage because of the intense 

forces generated in melt mixing.  

 There have been many reports of well-dispersed samples produced by this 

process.[6, 8, 21-22] There have also been many variations of this process in order to 

lower viscosity of the polymer melt and improve compatibility of the MWNT’s. One 

method employed by Haggenmueler et al. used both solvent casting and melt blending in 

a two step process.[21] Another variation of the melt mixing method was developed by 

Jin et al. that introduces nanotubes coated with polymer into the melt to increase 

compatibility.[4]  

 

2.3.2 Solution Blending 

 Solution blending involves dispersion of nanotubes with high powered wand 

sonication in a low viscosity mixture. The low viscosity mixture is comprised of polymer 
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and nanotubes dissolved in a suitable solvent. After the nanotubes are sufficiently 

dispersed in the mixture the solvent is removed via evaporation or coagulation. Several 

studies have been performed to determine the appropriate solvent for various 

polymer/MWNT combinations. Liu et al. determined that the polar component of the 

solubility parameter was the most important parameter for predicting dispersion of 

nanotubes in the chosen solvent.[23] However, the ability of the solvent to dissolve the 

polymer is also an important factor to consider. Since some polymers are insoluble in 

common solvents, this method is only effective with certain polymer/CNT systems. Also, 

the final samples can retain residual solvent which lowers Tg.[4] Another drawback to 

solution blending is that high powered wand sonication has been known to damage the 

polymer chains and has even been found to shorten the nanotubes.[6, 14] However, the 

main reason this method is attractive is the excellent dispersion obtained due to the low 

viscosity of the mixture. 

 Solution blending has become the preferred method for producing 

PMMA/MWNT nanocomposites because it works well with small sample sizes and the 

dispersion is consistent and reproducible.[1] This method has also shown promising 

results in terms of producing PMMA/MWNT composites that have better electrical 

conductivity and thermal stability than pure PMMA.[5, 24-25] Good nanotube 

dispersions are common with this method, especially using the coagulation technique to 

“trap” the nanotubes within the precipitating polymer chains. Du et al. have tested the 

coagulation approach with PMMA and single-wall nanotubes, and subsequent analysis 

has proven the dispersion to be very good.[24]  

 

2.3.3 In-situ Polymerization 

 In-situ polymerization begins by dispersing nanotubes into monomer and then 

polymerizing the dispersion. This method provides many of the benefits of solution 

blending such as good dispersion due to low viscosity and doesn’t require the use of 

solvent to dissolve the polymer. However, in some cases the viscosity of the monomer 

may be too high and it is necessary to use solvent in order to aid dispersion. 

Unfortunately, the addition of solvent can interfere with the polymerization and reduces 

the length of the resulting polymer chains. In-situ polymerization is usually preferred to 
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solution blending because the nanotubes can potentially participate in the polymerization 

process.[26-30] Jia et al. reported that nanotubes can be initiated by AIBN to open their 

-bonds, thus implying that they can participate in the polymerization and therefore form 

covalent bonds between the nanotubes and the PMMA matrix.[26] Composites made via 

this method have shown an increase in mechanical properties at modest levels of 

nanotube loadings, but at higher levels the composites become brittle.[26, 28] A major 

drawback to in-situ polymerization is the number of parameters that must be controlled in 

order to obtain consistent and reproducible composites.  These parameters include 

polymerization temperature and time, initiator concentration, solvent content and the 

amount of agitation provided to disperse the nanotubes. 

  

2.3.4 Polymer Grafting 

Even though native nanotubes can potentially participate in the in-situ 

polymerization process, there is not always sufficient polymer-filler interaction to ensure 

adequate dispersion and corresponding composite enhancement. In order to create more 

interaction during polymerization, the nanotubes can be specifically functionalized to 

participate in the in-situ chain polymerization. Covalent functionalization of the nanotube 

surface followed by in-situ polymerization is referred to as polymer grafting. This 

method is used in order to incorporate the nanotube directly into the polymerization 

process. The functional groups on the nanotube surface are involved during 

polymerization therefore capturing the nanotube in place and guaranteeing covalent 

bonding between the polymer chains and the nanotubes. The resulting composites have 

shown an improvement in thermal and mechanical properties[31]. This method has 

proven to be highly successful in producing composites with increased dispersion and 

enhanced mechanical performance.[31-35] 

 

2.4 Mechanical and Electrical Properties of MWNT Nanocomposites 

Dynamic mechanical analysis and broadband dielectric spectroscopy have been 

used to examine the bulk performance properties and polymer chain relaxation behavior 

of a number of composites based on nanoscale fillers. MWNT nanocomposites exhibit 

improvements in stiffness and conductivity, and display promising performance 
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characteristics for a range of polymer product applications. The influence of MWNT’s on 

the mechanical and electrical response characteristics of polymer nanocomposites as a 

function of loading and sample preparation are discussed below.  

 

2.4.1 Mechanical Properties 

2.4.1.1 Variation of Loading in MWNT Composites  

Jin et al. have investigated the influence of MWNT loading on the mechanical 

behavior of PMMA/MWNT composites.[8] Networks were prepared using a melt 

processing method with MWNT loadings equal to 4, 9, 11, 17 and 26 wt%. The storage 

modulus of the composites was observed to increase as the loading increased. This was 

found to occur due to the stiffening effect of the nanotubes. It was also determined that as 

the temperature increased, the difference in storage modulus at each loading became 

more significant. A slight increase in Tg was observed with increasing nanotube content, 

showing that nanotubes hinder the segmental relaxation of the PMMA chains.  

Andrews et al. also investigated the influence of nanotube loading on the 

mechanical behavior of MWNT/polymer composites.[36] In this study, they used 

polystyrene and polypropylene as the matrix polymers. The study showed that as 

nanotube concentration increased, both stiffness and strength were significantly 

improved. Andrews et al. took the investigation one step further and determined that 

functionalizing the surface of the nanotubes to improve interfacial adhesion could greatly 

increase tensile strength. When interfacial adhesion is weak, the nanotubes pull out of the 

matrix. By increasing the interfacial adhesion, an improvement in strength of the 

composite could be realized. 

Even though it has been proven that nanotubes increase the strength and tensile 

modulus of polymer composites, the results remain well below theoretical predictions. 

Haggenmueller et al. reported that the addition of 5 wt% nanotubes increased the 

modulus of PE fiber.[37] However, theoretical models predict a modulus almost 10 times 

higher than the value reported in the study. It has been postulated that at high loadings, 

the improvement in mechanical properties that is observed could be limited by the high 

processing viscosity of the composites and the void defects that result.[38]  
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2.4.1.2 Variation of Preparation Method for MWNT Composites 

 Solution processed samples have been investigated in many studies. Both Cadek 

et al.[39] and Velasco-Santos et al.[40] obtained significant increases in stiffness and 

modulus for solution-based composites. The results suggest that good stress transfer can 

be attained at amorphous interfaces. Another report indicates that nanotubes produced by 

the chemical vapor deposition method are the optimum nanotubes for reinforcement of 

mechanical properties for solution processed samples due to the small diameter of tubes 

that are acquired via this method.[41] 

 Melt mixed samples have long been the easiest composites to make due to their 

compatibility with current industrial procedures. In many cases, however, only limited 

improvements in composite quality were reported. Meincke et al. for example, produced 

composites that more than doubled the modulus[42]. Unfortunately, the composites also 

displayed a reduction in ductility that caused a significant drop in impact strength of the 

samples. More recently, Zhang et al. were able to produce composites via melt mixing 

that had a three-fold increase in modulus with no reduction in ductility.[43-44] The 

remarkable results were credited to good dispersion, as well as interfacial adhesion that 

were confirmed by microscopy measurements. 

 In-situ polymerized samples can potentially lead to large increases in composite 

performance owing to high levels of local nanotube dispersion that are “locked-in” during 

the polymerization process. One study by Velasco-Santos et al. found that at a low 

loading of just 1 wt% MWNT, the modulus and strength increased by 1.5 times the 

values of the control.[31] Another study by Putz et al. obtained an increase in modulus 

that was close to the theoretical values that have been postulated for PMMA/MWNT 

composites.[29] These studies show the in-situ polymerization method has great promise 

for creation of polymer nanocomposites. 

 Nanotube functionalization can exploit the impressive properties of nanotubes in 

polymer nanocomposites due to the enhancement in interfacial interactions that are 

anticipated. Hwang et al. used a combination of PMMA and nanotubes with PMMA 

chains grafted to their surface to reinforce the composite.[45] The physical interaction 

they observed between the PMMA matrix and the nanotubes with the grafted chains 
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included a ten-fold increase in the modulus at a loading of 20 wt% nanotubes. This is 

significant because a good dispersion was obtained up to 20 wt% nanotubes, which is 

extraordinary. Similarly, they witnessed a progressive increase in modulus up to the final 

loading of 20 wt%, which was also unparalleled. This study focused on the physical 

interactions between PMMA and the nanotubes with grafted chains attached to their 

surface. It has also been postulated that grafting appropriate functional groups onto the 

nanotube surface that participate in the in-situ polymerization reaction could be used to 

establish covalent bonds between the functionalized tubes and the polymer chains, thus 

further enhancing the mechanical properties of the nanocomposite.[1-2, 7]  

  

2.4.2 Electrical Properties 

 The molecular dynamics of MWNT nanocomposites have been investigated using 

broadband dielectric spectroscopy in a limited number of studies[46-48].  In all of these 

studies, a strong effect on the dielectric constant and loss is observed at very low 

loadings, ultimately leading to a percolation phenomenon that can occur at loadings as 

low as 0.3 wt% MWNT. This outcome is characterized by a sharp jump in the dielectric 

properties by many orders of magnitude and reflects the formation of a three dimensional 

conductive network of nanotubes in the polymer matrix.[1, 49-51] The percolation effect 

has also been determined to be dependent on the alignment of the nanotubes, with better 

alignment leading to percolation at lower loadings. Better alignment of the nanotubes 

lowers the percolation threshold of the composites by providing an easier pathway for the 

current to pass through the samples. Since the nanotubes cause dominant percolation 

effects at such low loadings, it is difficult to draw definitive conclusions as to the effect 

of MWNT’s on polymer chain relaxation as detected via dielectric relaxation methods. 
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Figure 2.1: Representative drawing of a single-wall carbon nanotube (SWNT) showing 
the hexagonal lattice structure. In the case of a multi-wall nanotube (MWNT), there 
would be multiple nanotubes centered around a common hollow core. Nanotube figure 
used with the permission of UK-CAER. 
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Chapter 3 
 

Experimental Methods 

 

3.1 Materials 

PMMA used in this work was Plexiglas® V826 resin and was provided by Altuglas 

International. Methyl methacrylate monomer [MMA] was purchased from Sigma-Aldrich 

(Milwaukee, WI). Figure 3.1 shows the structure of the PMMA polymer.  MWNT’s 

were synthesized by the University of Kentucky Center for Applied Energy Research 

(Lexington, KY)[36, 52]. Also, in order to enhance polymer-nanotube interactions, 

encourage entanglements and promote covalent linkage with the polymer matrix, the as-

prepared MWNT’s were modified, as follows: 

 

Modification 1:  Oxidation of the as-received nanotubes began by refluxing with 

concentrated nitric acid overnight at 100oC. The tubes were than washed with 

deionized water until the pH was approximately 6. The resulting nanotubes had 

reactive carboxylic acid groups on their surface [MWNT-ox]. This method had a 

yield of 92.3%. Figure 3.2 shows a representative schematic of the oxidation 

reaction of a MWNT. 

Modification 2:  Introduction of methyl methacrylate functional groups on the 

tube surface began by mixing liquid ammonia and lithium in order to create a 

solvated electron solution. The nanotubes were then added to the solution for 1 

hr in order to add charge to the nanotubes. Next 3-bromo-1-propanol was added 

to the solution to attach hydroxyl-terminated reactive groups on the nanotube 

surface and left to react for 2 days. The nanotubes were then filtered out and 

dried overnight. Finally, the nanotubes were added to a mixture of methacryloyl 

chloride and toluene in order to functionalize the reactive groups and yield 

nanotubes with methyl methacrylate functional groups grafted on the surface. 

The nanotubes were left in the solution for 24 hours and were then filtered and 

dried overnight in the oven [MWNT-MMA].[53] Figure 3.3 shows a 

representative schematic of the reactions a MWNT undergoes in order to add 

methyl methacrylate functionalization. 
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2,2′-azobisisobutyronitrile [AIBN] thermal initiator was obtained from Sigma-Aldrich, as 

was the N,N-dimethylformamide [DMF] solvent.  All commercial materials were used as 

received. 

 

3.2 Sample Preparation 

The nanotube-filled polymer composite samples were prepared in four different 

ways: melt mixed, solution blended, in-situ polymerized and via a nanotube grafting 

technique. Each method has inherent benefits and drawbacks, as detailed below. 

 

Melt Mixing: 

 The melt mixing technique disperses nanotubes into the polymer matrix using 

high temperature and high speed shear forces.[6, 8, 14, 21, 36] The melt mixing method 

is the best in terms of compatibility with industrial operations; however, the high shear 

forces needed to disperse the nanotubes also have the potential to break the tubes into 

shorter pieces.[1, 14] The damage to the tubes caused by the shear forces decreases the 

aspect ratio of the tubes but tends to increase their dispersability. Due to the high 

viscosity of the polymer in the melt state, the dispersion achieved using this technique is 

typically less than that obtained with the solution blending method.[1] 

 Commercial PMMA pellets were added to the Haake Rheomix (Vreden, 

Germany) and allowed to melt at 220oC. MWNT’s were then added to the molten PMMA 

and dispersed using high speed shear mixing with two counter-rotating stainless steel 

sigma-shaped rotors at 20 rpm. PMMA/MWNT nanocomposites produced via this 

method contained 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 3.0 and 5.0 wt% MWNT. A control sample 

of neat (i.e., unfilled) PMMA was also subject to the melt mixing procedure. 

 

Solution Blending: 

 The second method employed to prepare the PMMA/MWNT nanocomposites 

was solution blending.[5, 25] This method is the most widely used method for dispersing 

nanotubes on the laboratory scale because it is effective and it can be used to fabricate 

small amounts of sample.[1] Solution processing begins by dispersing nanotubes in a 

solvent, followed by mixing with the chosen polymer that is dissolved in the same 
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solvent. The nanocomposite is then recovered via precipitation in water. This method is 

highly effective at dispersing nanotubes due to the low viscosity of the dissolved polymer 

solution. Recovering the nanocomposites via coagulation results in the nanotubes 

becoming trapped by the precipitating polymer chains and thus dispersion is maintained. 

However, because this method employs the use of high powered ultrasonication, there is 

also the potential for breaking or shortening the nanotubes, as was the case with the melt 

mixing method.[4, 24] An inherent drawback of the solution blending method is that it is 

unsuited for bulk/industrial processes due to the small amount of sample that can be 

prepared in this manner.  

For the solution blending method, PMMA was dissolved in DMF resulting in a 

final concentration of 20 wt% PMMA. Meanwhile, an appropriate amount of as-received 

MWNT’s was dissolved separately at a concentration of 0.25 wt% MWNT in DMF. The 

MWNT/DMF solution was then bath sonicated for 1 hour using the Fisher Sci. FS110H 

Ultrasonic Cleaner (Pittsburgh, PA) to disperse the nanotubes. Following the bath 

sonication, a suitable amount of the PMMA/DMF (20 wt% PMMA) solution was added 

to the MWNT/DMF solution so that a 3 wt% concentration of PMMA was present in the 

mixture. Adding a small amount of polymer before wand sonication is a good method to 

increase dispersion and reduce agglomeration of the nanotubes. The resulting mixture 

was high power wand sonicated for 5 minutes in increments of 30 seconds “on” and 10 

seconds “off” using a Fisher Sci. Sonic Dismembrator 550 (Pittsburgh, PA). The 

remaining amount of the PMMA/DMF solution was added to the 3 wt% PMMA mixture 

and the combination was high-speed mixed using a Silverson L4RT Laboratory Mixer 

(East Longmeadow, MA). Finally, the PMMA/MWNT/DMF mixture was coagulated via 

drop-wise addition to a blender containing deionized H2O. The product was recovered via 

vacuum filtration and then dried in a hood for two days followed by 24 hrs under vacuum 

at 120oC.  Samples made using the solution method contained 0.1, 0.2, 0.5, 1.0 and 3.0 

wt% MWNT.  Also, a control containing only PMMA was produced via the solution 

blending procedure. A second set of solution-prepared samples was produced using the 

oxidized nanotubes (MWNT-ox) instead of the as-received tubes, in the same 

concentrations.  
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In-situ polymerization: 

A third method employed to disperse the nanotubes in the PMMA matrix was in-

situ polymerization. In-situ polymerization was performed by free-radical thermal 

initiation within a suspension of MWNT’s distributed in liquid methyl methacrylate 

monomer. Figure 3.4 shows the polymerization of PMMA. The result of the 

polymerization is the formation of PMMA and also potentially covalent cross linking 

between the nanotubes and the surrounding polymer.[26-29, 31] An advantage of this 

method of dispersion is the ability to distribute the nanotubes in the pre-polymerization 

blend which has a low viscosity. Another advantage is being able to maintain the 

nanotube distribution as the reaction viscosity increases.  Therefore, continuous 

sonication or physical stirring is not needed. According to Zhu et al., the reaction can also 

produce covalent cross-linking between the matrix and the nanotubes, leading to 

enhanced interfacial interaction.[38] 

For the in-situ polymerization method, MMA monomer and DMF were mixed in 

a 1:1 ratio by weight. An appropriate amount of oxidized nanotubes (MWNT-ox) were 

added to the mixture and bath sonicated for 1 hour using the Fisher Sci.  FS110H 

Ultrasonic Cleaner. The mixture was then high power wand sonicated at 20% power for 5 

minutes total in increments of 30 seconds “on” and 10 seconds “off” using the Fisher Sci. 

Sonic Dismembrator 550. After sonication, the blend was heated to 80oC and 0.20 wt% 

(based on weight of MMA) of the initiator (AIBN) was added in order to start the 

polymerization. After 24 hours of polymerization the sample was removed from heat and 

allowed to air dry overnight. The sample was then placed in a vacuum oven at 80oC for 

24 hours to remove any residuals. Samples made via this method contained 0.2, 0.5, 1.0, 

2.0 and 3.0 wt% MWNT-ox. Also, an unfilled PMMA control was produced using this 

procedure. 

 Polymer grafting requires covalent functionalization of the surface of the 

nanotubes. The covalent functionalization can be achieved by direct addition of reagents 

to the nanotube wall or modification of the carboxylic acid groups that are known to be 

present on the oxidized nanotubes.[3, 34-35] “Grafting to” and “grafting from” are the 

two strategies that have been reported for the covalent attachment of polymer to the 
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nanotube. The “grafting to” approach results in polymers with reactive functional groups 

attached to the functional groups on the nanotube surface by chemical reaction. The 

advantage of this method is that commercial polymers can be used; however, the 

tethering of the polymer chains causes steric hindrance which leads to low grafting 

densities. The “grafting from” strategy involves the creation of initiation sites on the 

nanotube surface followed by polymerization of the polymer outward from the nanotube. 

Composites made via this technique can achieve very high grafting densities. Polymer 

grafting often involves the use of in-situ polymerization once the nanotube surface has 

been functionalized. 

 The “grafting from” technique was employed using an in-situ polymerization 

approach similar to that described above, but with the introduction of MMA-

functionalized nanotubes [MWNT-MMA].  MMA monomer and DMF were mixed in a 

1:1 by weight solution. An appropriate amount of MWNT-MMA’s were added to the 

mixture and bath sonicated for 1 hour using the Fisher Sci. FS110H Ultrasonic Cleaner. 

The mixture was then high power wand sonicated at 20% power for 5 minutes total in 

increments of 30 seconds “on” and 10 seconds “off” with the Fisher Sci. Sonic 

Dismembrator 550.  After sonication, the blend was heated to 80oC and 0.20 wt% (based 

on weight of MMA) of the AIBN initiator was added in order to start the polymerization. 

After 24 hours of polymerization the sample was removed from heat and allowed to air 

dry overnight. The sample was then placed in a vacuum oven at 80oC for 24 hours to 

remove residual solvent. Samples made via this method contained 0.2, 0.5, 1.0, 2.0 and 

3.0 wt% MWNT-MMA. 

 

3.3 Film Production 

Samples films were prepared by compression molding using the Carver 25 ton 

bench top heated press (Wabash, IN).  The as-prepared nanocomposite pellets were 

placed into a square mold of known thickness and then centered between the two heated 

platens of the press.  The samples were pressed using 1500 psi into films of two 

thicknesses; approximately 0.3 mm for broadband dielectric spectroscopy [BDS] and 0.7 

mm for dynamic mechanical analysis [DMA] studies.  
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3.4 Dynamic Mechanical Analysis [DMA] 

3.4.1 DMA Theory 

Dynamic Mechanical Analysis (DMA) is used to determine the mechanical 

response properties of polymers under oscillatory load; it is useful in determining the 

viscoelastic character of polymers, from the glassy to the rubbery state, over a specific 

range of temperature and oscillatory frequency.  A polymer that behaves as a purely 

elastic solid follows Hooke’s law, where the stress [σ] is proportional to the 

corresponding strain [] but is independent of the rate of strain. This behavior occurs at 

low temperatures and high rates of strain: 

 

                                                         E                                                               [3.1] 

where E is the elastic modulus.  

Similarly, polymers that behave as a viscous liquid can be modeled by Newton’s 

law, where the stress is proportional to the rate of strain, but is independent of the strain. 

This occurs at high temperatures and low rates of strain: 

 

                                                       dt

de                                                               [3.2] 

 In conventional DMA characterization, the polymer is subject to finite mechanical 

deformation at discrete frequencies where an oscillating strain is applied in a periodic 

manner and the resulting stress response is measured. DMA is helpful in determining the 

viscoelastic nature of polymers, from the glassy to the rubbery state, over a specific 

temperature range. Typically polymers act in a viscoelastic manner and the response of 

the stress lags the strain by an angle, . The relationship between stress and strain is given 

as: 

                                                       )sin(0 t                                          [3.3] 

                                                       )sin(0   t                                [3.4] 
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where  is the frequency of oscillation. Generally the response of the polymeric material 

is reported using the complex modulus. The complex modulus is simply the (time-

dependent) stress divided by the strain, which can be represented as: 
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where E′ is the storage modulus and E′′ is the loss modulus. The storage modulus is a 

measure of the elastic response and is in-phase with the applied stain, while the loss 

modulus is a measure of the viscous response and is 90° out-of-phase with the applied 

strain (i.e., in-phase with the rate of strain). The storage modulus and loss modulus are 

specified as: 
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tanis called the loss factor and is the ratio of the viscous response to the elastic 

response. The loss factor establishes Tg, as well as the characteristic relaxation time of the 

transition, and is defined as: 

                                                          '
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E
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A number of methods are available for analyzing DMA data, such as time-

temperature superposition and the Kohlrausch-Williams-Watts stretched exponential 

function.[54-56] Since polymers are ideal for a vast array of commercial applications, the 

responses due to not only temperature but also time are needed. One drawback to DMA is 

the relatively small range of frequencies that are accessible in a typical experiment (10-1 

to 102 Hz). In order to address this shortcoming, the time-temperature superposition 

method was developed based on the empirically-observed equivalence of time and 

temperature for rheologically-simple materials.[54] The Kohlrausch-Williams-Watts 

analysis method is a stretched form of the exponential decay function and can be used to 
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characterize the relaxation spectrum of the polymer. This model, when employed in 

conjunction with time-temperature superposition, is useful in establishing relaxation 

breadth on an objective basis.[55] 

Figure 3.5 shows a schematic of a typical dynamic mechanical experiment with 

multiple frequencies. Results are reported via a semi-log plot of storage modulus and tan 

versus temperature. In this figure, the glass-rubber transition corresponds to the observed 

step change in modulus and corresponding peak in tan. Tg increases as the frequency 

increases due to the increased thermal energy required for the chains to respond to the 

mechanical deformation.  

  

3.4.2 Experimental Design 

 Prior to measurement, all samples were dried in a vacuum oven to remove 

moisture and residual solvent. The samples were cut into rectangular bars approximately 

17.5 mm long, 12 mm wide and 0.7 mm thick. DMA was performed using a TA 

Instruments Q800 DMA (New Castle, DE) configured in single cantilever bending 

geometry. Figure 3.6 shows a typical experimental configuration in single cantilever 

geometry.[57] In this geometry the sample is clamped at both ends, with one end 

perturbed in a sinusoidal manner based on the chosen frequency. Storage modulus [E′] 

and tan were measured in temperature ramp mode (2oC/min) from 35oC to 180oC at a 

frequency of 1 Hz. The experiments were all performed under nitrogen atmosphere.  

 

3.5 Broadband Dielectric Spectroscopy [BDS] 

3.5.1 BDS Theory 

 Broadband dielectric spectroscopy (BDS) is a technique that is employed to 

elucidate the localized, non-cooperative relaxations at sub-glass transition temperatures, 

and the more cooperative transitions near Tg of the composites.  This method measures 

the dielectric response of the material when an alternating electric field is applied over a 

range of temperatures at specified frequencies. Commercial BDS instruments can reach 

frequencies as low as 10-3 and as high as 107 Hz. When the electric field is applied the 

composite becomes polarized, thus reorienting the atomic and molecular charges.  

Electronic polarization, orientation polarization and interfacial polarization are the 
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mechanisms by which the polarization is induced.  Electronic polarization is an 

instantaneous displacement of electrons from their equilibrium position while orientation 

polarization is the realignment of the molecular dipoles of the polymer chain as a result 

of the alternating electric field.  The final mechanism, interfacial polarization, is the 

movement and subsequent build-up of charge at the interface between phases.[58] 

The focus of the BDS studies presented here will be on the orientation 

polarization mechanism because it provides insights as to polymer chain motions and the 

effect of the nanotube dispersion on polymer chain dynamics.   Polymer chain motions 

encompass the large scale cooperative motions associated with the glass transition and 

also the non-cooperative relaxations of the sub-glass region such as vibration or rotation 

of a small portion of the polymer chain.[59-64] 

 

3.5.2 Development of Phenomenological Equations 

The parameters reported by the BDS instrument are dielectric constant (′) and 

dielectric loss (′′).  The dielectric constant corresponds to the in-phase portion of the 

polarization response, while the dielectric loss reflects the out-of-phase portion.  Similar 

to DMA, tanδ, known as the dissipation factor in BDS, is the ratio of the dielectric loss to 

the dielectric constant. Phenomenological theories are used to relate the dielectric 

response from the instrument to the underlying dielectric properties.  

Consider a capacitor in a parallel plate arrangement. The parallel plates have an 

electric charge applied across them and are separated by a fixed distance. Now consider 

that there is a polymeric material between the parallel plates that acts as a medium for the 

electric field, E. Figure 3.7 depicts these scenarios. Polarization of the dielectric medium 

occurs when it is placed between the plates and the resulting capacitance is described by:  

                                                      Ed

A
C


                                                              [3.10] 

where  is the charge density, A is the area of the plates, and d is the distance between 

the plates. To simplify the capacitance relationship, the electric field can be represented 

as: 
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                                                      d

V
E                                                                 [3.11] 

where V is the potential difference across the plates. Also the charge density on the plates 

can be represented as: 

                                                      A

Q
                                                               [3.12] 

with Q representing the amount of charge on each of the plates. Combining the three 

previous relations yields the following definition for the capacitance across the plates: 

                                                      V

Q
C                                                                [3.13] 

As a result of having a dielectric material between the plates, the amount of stored energy 

in the capacitor increases which causes a subsequent loss in the strength of the electric 

field. However, if the dielectric medium is removed and instead a vacuum occupies the 

volume between the two plates, the capacitance across the plates would be reduced to C0 

based on the increase in the potential difference that would be required in order to 

maintain the charge at a constant level. Using this observation, the static dielectric 

constant can then be described by: 

                                                      
0C

C
s 

                                                          [3.14] 

where C is the capacitance with a dielectric material and C0 is the capacitance for 

vacuum. It is also possible to quantify the dielectric displacement, D, in terms of the 

static dielectric constant, or by using the polarization of the material, P. 
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For BDS studies, a periodic electric field is applied to the material. The 

application of this time-dependent alternating field results in the dielectric displacement 

lagging the applied electric field. The periodic electric field is defined as: 

                                         )cos( tEE O                                            [3.17] 

Using the above definition, the analogous dielectric displacement can then be represented 

as: 

               tDtDtDD O  sincos)cos( 21          [3.18] 

where  is the frequency of the electric field, t is the time and  is the phase lag angle. 

The dielectric displacement represented above has two components: an in-phase portion 

and an out-of-phase portion. The in-phase component, D1, is the real part while the out-

of-phase component, D2, is the imaginary part. Simplifying the periodic electric field and 

dielectric displacement equations results in two terms: dielectric constant (′) and 

dielectric loss (′′). Using the dielectric constant and dielectric loss it is then possible to 

define the dissipation factor, tan. The dielectric constant and loss, along with the 

dissipation factor are defined below: 

                                                        
OE

D1'
                                                         [3.19] 

                                                        
OE

D2'' 
                                                         [3.20] 

                                                      '

''
tan


                                                       [3.21] 

 

 PMMA and their nanocomposites display two distinct dielectric relaxation 

processes with increasing temperature.  The lower temperature process, which is also 

known as the sub-glass transition, is designated as .  Similarly, the higher temperature 

process, corresponding to the glass-rubber transition, is labeled as .  The  transition is 

attributed to the methacrylate pendant groups undergoing local movements such as 
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rotation and vibration, while the  transition is due to full cooperative motions of the 

polymer chain.  Figure 3.8 shows a sample of the data for neat PMMA. 

 

3.5.3 Experimental Design 

 In order to perform BDS studies, concentric silver electrodes with a radius of 33 

mm were deposited on the sample films via thermal evaporation of silver pellets (Alfa-

Aesar, Ward Hill, MA) using a VEECO 7700 Evaporator (Plainview, NY). The silver 

electrodes were needed to provide good electrical contact during the experimental 

measurements[65]. Once the films were coated, BDS sweeps were conducted using the 

Novocontrol Concept 40 Broadband Dielectric Spectrometer (Hundsangen, Germany). 

Samples were approximately 0.3 mm thick and inserted between two gold platens in a 

parallel plate arrangement[66]. Figure 3.9 shows a sample configuration for a BDS 

experiment using the Novocontrol instrument. Dielectric constant and loss (′; ′′) were 

measured using a temperature ramp from -100oC to 200oC at 2oC/min, with data recorded 

at 38 discrete frequencies between 1 Hz and 1 MHz. The WINFIT software package suite 

supplied with the BDS instrument was used to analyze the data.  

 

3.6 Differential Scanning Calorimetry [DSC] 

3.6.1 DSC Theory 

 Differential Scanning Calorimetry (DSC) is a widely-used method in polymer 

research that is employed to measure the heat effects of phase transitions of a sample 

material. Typically, DSC is used to identify phase transitions such as glass transition, 

melting, crystallization and decomposition. Commercial DSC instruments are comprised 

of two isolated cells. One cell (i.e., the reference cell) contains a reference sample or 

empty pan that is chosen so that the cell shows no transitions across the temperature 

range of the experiment. The other cell contains the experimental sample. The two cells 

are heated simultaneously so that both samples are maintained at the same temperature 

throughout the experiment. This can only be accomplished by providing more or less 

power to the sample of interest at certain times during the experiment. The differential 

heat flow delivered to the two samples to maintain the same temperature during the run is 

recorded in a DSC experiment. Temperature is usually ramped at a constant rate, so that 
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the important transitions can be distinguished such as the glass transition or crystalline 

melting of the material being studied. Figure 3.10 shows a typical DSC curve and 

illustrates the form of the glass transition, crystallization and melting events. 

 

3.6.2 Experimental Design 

 Circular samples approximately 3/8” in diameter were produced from thin films 

using a hammer and circular punch. Mass of the samples was kept at approximately 10 

mg.  The samples were sealed inside an aluminum pan using a crimping press while the 

reference cell contained an empty crimped aluminum pan. The atmosphere in both cells 

was kept inert using nitrogen. Experiments were performed using a TA Instruments Q100 

DSC (New Castle, DE). Measurements were taken over a temperature range from 35-

400oC with a constant heating rate of 10oC per minute. Some samples required a double 

heating cycle in order to remove residuals. For those samples, measurements were first 

taken from 35-200oC heating at 10oC/min. Then they were cooled back down to 35oC at a 

rate of 5oC/min. Finally, the samples were reheated to 200oC at a rate of 10oC/min.  

 

3.7 Thermogravimetric Analysis [TGA] 

3.7.1 TGA Theory 

Thermogravimetric Analysis (TGA) is often used in polymer composite studies to 

determine the composition of a sample, as well as its degradation characteristics.  The 

results of a TGA study are based on the change in mass of the sample as a function of 

temperature. In a standard experiment, a sample is placed in a pan of known weight and 

then both are heated at a constant rate within an insulated furnace. The measurement of 

the mass is very sensitive, with typical precision as low as 1 part per million. It is also 

possible to change the atmosphere during a TGA experiment. This is a beneficial 

technique because some compounds will not degrade in an inert atmosphere; however 

with the addition of oxygen at a specific temperature, the percentage of inert compounds 

within the sample can be more accurately calculated. TGA is readily used to determine 

moisture content, amount of residual solvent, degradation temperature, decomposition 

temperature and percentage of inorganic filler within the sample. 
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3.7.2 Experimental Design 

 Circular samples approximately 1/4” in diameter were punched out of thin films 

using a hammer and punch die. Mass of the samples was kept at approximately 30 mg so 

as to fit within the pan. The samples were placed in a platinum pan of known weight and 

loaded into the insulated furnace. The atmosphere was kept inert using nitrogen so that 

the nanotubes would not decompose. TGA was performed using a TA Instruments Q500 

Thermogravimetric Analyzer (New Castle, DE). Measurements were taken over a 

temperature range from 35-800oC with a constant heating rate of 20oC per minute.   
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Figure 3.1: Repeating structure of PMMA 
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Figure 3.2: Schematic of modification 1: MWNT-ox. Schematic of carbon nanotubes 
used with permission of UK-CAER. 
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Figure 3.3: Schematic of modification 2: MWNT-MMA. Schematic of carbon nanotubes 
used with permission of UK-CAER. 
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Figure 3.4: Representative schematic of in-situ polymerization reaction for PMMA. 
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Figure 3.5: Typical DMA response of a characteristic polymeric material. Top plot: 
Storage Modulus [E] versus temperature at discrete frequencies. Bottom plot: Tan 
versus temperature at discrete frequencies. 
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Figure 3.6: Typical DMA configuration; single-cantilever bending geometry. 
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Figure 3.7: a.) Parallel plate capacitor in the absence of a polymeric medium. b.) Parallel 
plate capacitor with a polymeric medium creating polarization within the material 
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Figure 3.8: Representative broadband dielectric spectroscopy data showing the glass-
rubber () and sub-glass () transitions; dielectric loss versus temperature at frequencies 
ranging from 1 Hz to 1 MHz. 
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Figure 3.9: Novocontrol Concept 40 BDS experimental configuration 
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Figure 3.10: Typical DSC plot showing phase transitions for a semi-crystalline polymer. 
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Chapter 4 
 

Viscoelastic Behavior of Poly(methyl methacrylate) Composites Enhanced with 

Multi-Wall Nanotubes 

 

4.1 Introduction 

The study of poly(methyl methacrylate) [PMMA] nanocomposites is of interest 

due to the numerous ways they can be employed in many different fields. PMMA has 

been included in applications such as bone cement in the medical field[6], dentures in the 

dental field[67], and as a low cost replacement for glass (Plexiglas®)[68-69].  Due to the 

diverse range of applications and the demanding environments that must be endured, 

PMMA has been the subject of numerous studies focusing on the improvement of 

strength and durability[3, 5-6, 8].   These studies have focused on adding a filler to the 

polymer matrix but have so far yielded limited success.   However, the discovery of the 

extraordinary thermal, mechanical and electrical properties of carbon nanotubes (CNT’s) 

in the early 1990’s has brought renewed expectations for the enhancement of polymer 

properties. Even at relatively low loadings, the inclusion of nanotubes has been shown to 

greatly enhance the macroscopic properties of polymers. 

 Challenges for producing MWNT-polymer composites arise from the fact that 

MWNT’s are hard to disperse in the polymer as they tend to agglomerate owing to strong 

dispersive forces that limit solubility.   Several methods have been explored in order to 

produce a uniform dispersion of MWNT’s within the polymer matrix. Melt blending[6, 8, 

14, 21, 36], solution processing[5, 24], in-situ polymerization[26-29, 31] and polymer 

grafting[3, 34-35] have been the preferred methods to produce nanotube-filled 

nanocomposites.  

Solution processing is the most common bench-scale method for producing 

nanocomposites because of effective dispersion, low agglomeration, and the small 

amount of sample needed. Melt blending is also an attractive technique because it works 

well with most industrial practices, produces bulk polymer nanocomposites, and can be 

used with polymers that are insoluble.   This latter method relies on high temperature and 

high shear force to disperse the nanotubes within the polymer.   Unfortunately, melt 
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blending does not disperse the nanotubes as efficiently as solution processing, but it is a 

much simpler process.   However, both processes have their limitations.   The high shear 

forces in the melt blending process can cause damage to the nanotubes and the polymer 

network.   Also, during solution processing there is a possibility of excessive bath or 

wand sonication and this has the potential to break the nanotubes and degrade the 

polymer matrix. 

In-situ polymerization and polymer grafting are two closely related methods. In-

situ polymerization involves dispersing MWNT’s in monomer and then polymerizing the 

mixture, thus capturing the nanotubes within the polymer matrix. Polymer grafting 

involves functionalizing the MWNT’s so that the nanotubes participate in the 

polymerization. This method allows for the polymer to be covalently attached to the 

MWNT’s. Both of these methods provide good dispersion due to the low viscosity of the 

starting mixture; however, they are also susceptible to the same problems as solution 

processing in that excessive wand sonication can damage the nanotubes and the 

functionalization on the nanotubes, and they involve the use of solvent which can affect 

both the polymerization and nanotube/polymer interaction.  

In order to predict the ultimate properties of nanotube-polymer composites, it is 

necessary to understand the nature of the CNT-polymer interaction, and the extent to 

which the presence of the nanotubes perturbs the properties of the polymer matrix.  This 

study is focused on investigating the influence of carbon nanotube surface chemistry on 

polymer-filler interactions and the corresponding enhancement of mechanical, electrical 

and thermal properties.  Model composites were prepared using several methods that 

incorporate chemically-modified nanotubes in order to enhance the overall quality of the 

interface by dispersive forces, entanglements and covalent bonding within the matrix.  

The goal is to provide insight as to the relations between preparation method, nanotube 

dispersion and interfacial interactions, and their effect on bulk performance.   

 

4.2 Materials and Methods 

 Poly(methyl methacrylate) [PMMA; MW = 132 kg/mol][70] resin was purchased 

from Altuglas International. The monomer used in this study, methyl methacrylate 

[MMA; nominal MW = 100.12 g/mol] was obtained from Sigma Aldrich (Milwaukee, 
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WI). 2,2′-azobisisobutyronitrile [AIBN] thermal initiator and N,N-dimethylformamide 

[DMF] solvent were also obtained from Sigma Aldrich. MWNT’s were synthesized by 

the University of Kentucky Center for Applied Energy Research (Lexington, KY)[36, 

52]. In order to enhance polymer-nanotube interactions, encourage entanglements and 

promote covalent linkage with the polymer matrix, the as-prepared MWNT’s were 

modified using two different methods. In the first method, the nanotubes were oxidized 

by refluxing the tubes in a bath of concentrated nitric acid overnight. After washing with 

deionized water, the surface of the nanotubes contained reactive carboxylic acid 

groups[71]. In the second method, methyl methacrylate functional groups were grafted to 

the surface of the nanotubes. Details on the surface functionalization of the tubes is 

provided below.  

Polymer samples with MWNT’s as filler were prepared in four different ways: 

melt mixed, solution blended, in-situ polymerized and via a nanotube grafting technique. 

Melt mixed samples were prepared by adding commercial PMMA pellets to the Haake 

Rheomix (Vreden, Germany) and melting the polymer at 220oC. MWNT’s were added to 

the molten PMMA and dispersed using high speed shear mixing with two counter-

rotating stainless steel sigma-shaped rotors at 20 rpm. The matrix was then allowed to 

cool resulting in a solid that was recovered for film production. 

 The second method employed to prepare the PMMA/MWNT nanocomposites 

was solution blending. For the solution blending method, PMMA was dissolved in DMF 

resulting in a final concentration of 20 wt% PMMA. Meanwhile, an appropriate amount 

of as-received MWNT’s was dissolved separately at a concentration of 0.25 wt% MWNT 

in DMF. The MWNT/DMF solution was bath sonicated for 1 hour using the Fisher Sci. 

FS110H Ultrasonic Cleaner (Pittsburgh, PA) to disperse the nanotubes. Following the 

bath sonication, a suitable amount of the PMMA/DMF (20 wt% PMMA) solution was 

added to the MWNT/DMF solution so that a 3 wt% concentration of PMMA was present 

in the mixture. The resulting mixture was high power wand sonicated for 5 minutes in 

increments of 30 seconds “on” and 10 seconds “off” using a Fisher Sci. Sonic 

Dismembrator 550 (Pittsburgh, PA). The remaining amount of the PMMA/DMF solution 

was added to the 3 wt% PMMA mixture and the combination was high-speed mixed 

using a Silverson L4RT Laboratory Mixer (East Longmeadow, MA). Finally, the 
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PMMA/MWNT/DMF mixture was coagulated via drop-wise addition to a blender 

containing deionized water. The product was recovered using vacuum filtration and then 

dried in a hood for two days followed by 24 hrs under vacuum at 120oC. Using this 

method, a fine powder was recovered for film production. 

The third method employed to disperse the nanotubes in the PMMA matrix was 

in-situ polymerization. For the in-situ polymerization method, MMA monomer and DMF 

were mixed in a 1:1 ratio by weight. An appropriate amount of oxidized nanotubes 

(MWNT-ox) were added to the mixture and bath sonicated for 1 hour using the Fisher 

Sci.  FS110H Ultrasonic Cleaner. The mixture was then high power wand sonicated at 

20% power for 5 minutes total in increments of 30 seconds “on” and 10 seconds “off” 

using the Fisher Sci. Sonic Dismembrator 550. After sonication, the blend was heated to 

80oC and 0.20 wt% (based on weight of MMA) of the initiator (AIBN) was added in 

order to start the polymerization. After 24 hours of polymerization the sample was 

removed from heat and allowed to air dry overnight. The sample was placed in a vacuum 

oven at 80oC for 24 hours to remove any residuals. A solid mass was recovered via this 

method for film production.  

The last method employed was the polymer grafting technique. The “grafting 

from” technique was employed using an in-situ polymerization approach similar to that 

described above, but with the introduction of MMA-functionalized nanotubes [MWNT-

MMA]. Introduction of methyl methacrylate functional groups on the tube surface was 

initiated by filling a 100L stirred reactor flask approximately half full with liquid 

ammonia and then adding 25g of lithium in order to create a solvated electron solution. 

Then, 10g of the nanotubes were added to the solution for the purpose of adding charge 

to the tubes. Next, 100g of 3-bromo-1-propanol was added to the solution to attach 

reactive groups to the nanotube surface and was left to react for 2 days with continuous 

stirring. The nanotubes were then filtered out and dried. Finally, the nanotubes were 

added to a mixture of 1L of methacryloyl chloride and 1L toluene in order to 

functionalize the reactive groups and yield nanotubes with methyl methacrylate 

functional groups grafted on the surface. The nanotubes were left in solution for 24 hours 

and were then filtered and dried overnight in vacuo.[53] Figure 4.1 shows a schematic of 

the functional group that was attached to the surface of the nanotubes via this procedure.  
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The nanocomposites were prepared using in-situ polymerization according the 

method described above, but with functionalized nanotubes instead of oxidized tubes. 

Appropriate amounts of MWNT-MMA filler were added to the mixture of monomer and 

DMF. The blend was polymerized with AIBN and then allowed to air dry at the 

conclusion of the polymerization. Finally, the samples were placed in a vacuum oven to 

remove residual solvent and the recovered material was a solid mass. 

Recovered samples from each of the methods were melt-pressed into uniform 

films for testing. Films were prepared by compression molding using the Carver 25-ton 

bench top heated press (Wabash, IN).  The recovered nanocomposite pellets were placed 

into a square mold of known thickness and then centered between the two heated platens 

of the press.  The samples were pressed using 1500 psi into films of two thicknesses;  

approximately 0.3 mm for broadband dielectric spectroscopy [BDS] and 0.7 mm for 

dynamic mechanical analysis [DMA], thermogravimetric analysis [TGA] and differential 

scanning calorimetry [DSC] studies.  

 Dynamic mechanical analysis was conducted using a TA Instruments Q800 DMA 

(New Castle, DE). The samples were cut into rectangular bars approximately 17.5 mm 

long, 12 mm wide and 0.7 mm thick. All measurements were performed in single 

cantilever geometry. Storage modulus [E′] and tan were measured in temperature ramp 

mode (2oC/min) from 35oC to 180oC at a frequency of 1 Hz. The experiments were all 

performed under nitrogen atmosphere.  

 Thermogravimetric analysis was performed using a TA Instruments Q500 

Thermogravimetric Analyzer (New Castle, DE). Circular samples approximately 1/4” in 

diameter were punched out of thin films using a hammer and punch die. Mass of the 

samples was kept at approximately 30 mg. The samples were placed in a platinum pan of 

known weight and loaded into the insulated furnace. Measurements were taken over a 

temperature range from 35-800oC with a constant heating rate of 20oC per minute. The 

atmosphere was kept inert using nitrogen for the duration of the experimental run. 

 Differential scanning calorimetry was performed using a TA Instruments Q100 

DSC (New Castle, DE). Circular samples approximately 3/8” in diameter were produced 

from thin films using a hammer and circular punch. Mass of the samples was kept at 

approximately 10 mg.  The samples were sealed inside an aluminum pan using a 
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crimping press while the reference cell contained an empty crimped aluminum pan. The 

atmosphere in both cells was kept inert using nitrogen. Measurements were taken over a 

temperature range from 35-400oC with a constant heating rate of 10oC per minute. Some 

samples required a double heating cycle in order to remove residuals. For those samples, 

measurements were first taken from 35-200oC heating at 10oC/min. Then, they were 

cooled back down to 35oC at a rate of 5oC/min. Finally they were reheated back to 200oC 

at a rate of 10oC/min. 

Broadband dielectric spectroscopy sweeps were conducted using the Novocontrol 

Concept 40 Broadband Dielectric Spectrometer (Hundsangen, Germany). Concentric 

silver electrodes with a radius of 33 mm were deposited on the sample films via thermal 

evaporation of silver pellets (Alfa-Aesar, Ward Hill, MA) using a VEECO 7700 

Evaporator (Plainview, NY). Once the films were coated, the samples (approximately 0.3 

mm thick) were inserted between two gold platens in a parallel plate arrangement.[66] 

Dielectric constant and loss (′; ′′) were measured using a temperature ramp from -100oC 

to 200oC at 2oC/min, with data recorded at 38 discrete frequencies between 1 Hz and 1 

MHz.  

 

4.3 Results and Discussion 

4.3.1 Melt Processed Samples 

Melt processing has been a popular method for the dispersion of nanotubes in 

recent years. High temperatures are used to melt the polymer and then shear forces from 

counter-rotating rotors are used to disperse the nanofiller. The melt processing method is 

often preferred owing to its suitability for bulk processing and compatibility with current 

industrial production operations. Unfortunately, the high viscosity of the polymer melt 

can limit dispersion of the filler. In addition, the high shear forces needed to distribute the 

tubes can decrease their aspect ratio while simultaneously damaging the polymer chains. 

Thermogravimetric analysis was employed in order to examine the composition 

of each sample. Figure 4.2 shows thermogravimetric results for the melt mixed set of 

samples ranging from the control up to 5 wt% MWNT. The unmodified nanotubes were 

used for these samples. Data were recorded from 35 to 800oC.  A major decomposition 

event occurs around 400oC for all samples in the plot. This event is due to polymer chain 
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pyrolysis at high temperature. There is also a slight shift to higher temperatures of the 

decomposition event with increasing loading. After the decomposition event at 400oC the 

entire organic content should be removed from the sample and only nanotubes and small 

amounts of residuals (e.g. catalyst) should remain. Figure 4.2 also includes an expanded 

view of the TGA results (400 to 800oC). Using the control experiment as a baseline, it is 

a simple calculation to determine the nanotube concentration of each sample: nanotube 

concentration was defined as any remaining material in a given experiment at 800oC 

minus the baseline at 800oC. Table 4.1 shows the nominal (preparation) loading values 

and the measured values that were calculated using TGA results. The nominal values and 

the actual values are very close; for convenience, the preparation values will be used 

when referring to these samples. 

Figure 4.3 shows dynamic mechanical results for the melt mixed PMMA/MWNT 

samples. Data were recorded at 1 Hz from 35 to 180oC. A strong step change in the 

storage modulus (E’) is evident beginning around 120oC for all samples. This step change 

is an indication of the glass-rubber relaxation process which also appears as a peak in the 

tancurve. The glass-rubber transition peak temperature does not change significantly for 

any of the nanocomposite samples regardless of loading. Even though the glassy modulus 

remains nearly constant with nanotube loading, the rubbery modulus shows a progressive 

increase at higher loadings as the nanotubes stiffen the polymer matrix, consistent with 

the results of Schwarzl et al.[72] Thus, the step change from the glassy modulus to the 

rubbery modulus for the 3 wt% and 5 wt% loadings is much less than for the other 

samples. This effect can also be observed in the tan curves where the peak intensities for 

the 3 wt% and 5 wt% samples are much lower than the other samples. For example, the 

tan peak magnitude of the 5 wt% MWNT sample is reduced by one-half as compared to 

the unfilled control. While the tan peak intensity decreases at higher loadings, the glass 

transition temperature remains nearly constant at ~ 128oC. This suggests that the 

nanotubes and polymer are not interacting in any discernable manner and that the 

stiffening of the composite is due solely to the reinforcing effect of the nanotubes. If 

either favorable or unfavorable interactions were occurring a significant change in Tg 

would be anticipated. 
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Broadband dielectric spectroscopy (BDS) was used to examine the sub-glass and 

the glass-rubber transitions of the nanotube-enhanced PMMA composites.  PMMA and 

their nanocomposites display two distinct dielectric relaxation processes with increasing 

temperature.  The lower temperature process, which is also known as the sub-glass 

transition, is designated as .  Similarly, the higher temperature process, corresponding to 

the glass-rubber transition, is labeled as . The  transition is attributed to the 

methacrylate pendant groups undergoing local movements such as rotation and vibration, 

while the  transition is due to full cooperative motions of the polymer chain.   

Figure 4.4 shows the dielectric relaxations of the melt-mixed samples at 30 Hz.  

The melt mixed data reveal an increase in the intensity of both the  and  transitions 

with increasing nanotube loading, but no apparent shift in relaxation temperature in the 

nanocomposites. The 30 Hz frequency was chosen because it shows the two distinct 

transitions ( and ) before they merge at higher testing frequencies. Low loadings were 

used in BDS measurement because at higher loadings, percolation of the highly-

conductive nanotubes was encountered, leading to a short-circuit pathway that precludes 

traditional dielectric measurement at loadings above ~ 0.3 wt%. In a related study, 

Logakis et al. used polyamide filled with MWNT’s and observed that only the sample 

with the lowest loading could be analyzed using BDS due to the percolation threshold. 

Any sample tested that was over the percolation threshold resulted in dielectric 

relaxations masked by conduction.[73] 

 

4.3.2 Solution Processed Samples 

4.3.2.1 PMMA/MWNT Composites 

 The second method employed to prepare the PMMA/MWNT nanocomposites 

was solution blending. This method is most commonly used on the laboratory scale, with 

small batches and good quality nanotube dispersion. Solution processing begins by 

dispersing nanotubes in a solvent, followed by mixing with PMMA that is also dissolved 

in the same solvent. The nanocomposite is then recovered via precipitation in water. This 

method is highly effective at dispersing nanotubes due to the low viscosity of the polymer 

solution; also, as the polymer chains precipitate out of the solution, the nanotubes become 

physically trapped and are held in place within the matrix. However, because this method 
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employs high powered ultrasonication, there is the potential for breaking or shortening 

the nanotubes, as was the case with the melt mixing method. An inherent drawback of the 

solution blending method is that it is unsuitable for bulk/industrial processes due to the 

small amount of sample that can be prepared in one batch.  

Thermogravimetric analysis results for the solution processed PMMA/MWNT 

series are reported in Table 4.2. These samples were also prepared using the unmodified 

nanotubes. The table shows the nominal preparation values and the measured values that 

were determined using TGA; here again, the preparation values and the measured values 

are very close. Note that at higher loadings, the measured values are slightly lower than 

the preparation values, and also lower than the equivalent melt processed samples. This 

may be due to the fact that when the nanocomposite samples were precipitated out of 

solution using anti-solvent, some nanotubes may have been lost (i.e., not trapped in the 

coagulated sample), resulting in a lower overall loading. In melt processing, there is no 

point in the preparation for the nanotubes to escape, and therefore the measured loading 

values for melt processing were slightly higher than for the solution processed series. 

Figure 4.5 shows dynamic mechanical results for the solution processed 

PMMA/MWNT series.  The data show that an increase in MWNT filler results in a 

systematic reduction in the peak intensity of tan and a modest overall positive shift in 

Tg. However, Tg shifts back downward slightly at the highest loading (3 wt%). The data 

also show systematic increases in the glassy and rubbery moduli with increasing loading, 

as expected.  Similar to the melt mixed samples, the substantial decrease in tanδ intensity 

and the shift of both the glassy and rubbery moduli upward in the solution-based samples 

is a result of the nanotubes stiffening the polymer matrix. Yet, unlike the melt blended 

samples, the nanotubes in the solution-prepared samples show a significant effect on tanδ 

and the rubbery modulus at MWNT loadings as low as 0.2 wt%. This fact, coupled with 

the modest increase in Tg with increased loading suggests that some level of favorable 

interactions may be present between the polymer and the nanotubes.[10, 43] From direct 

visual observation during sample preparation it was discerned that the solution processing 

method was more effective at dispersing the nanotubes than melt mixing. The data 

supported this finding, in that reinforcement was apparent at much lower loadings in the 

solution processed samples. 
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Figure 4.6 shows the dielectric relaxations of the solution processed 

PMMA/MWNT samples at 30 Hz. The data reveal similar results as compared to the melt 

mixed samples. The  transition occurs at ~ 45oC while the  transition occurs at 117oC. 

However, the progressive increase in intensity with increasing loading that was seen in 

the melt mixed samples is not evident in the solution based samples. Also, the solution 

based samples appear to have a lower percolation threshold, as dielectric sweeps 

performed on the 0.3 wt% MWNT solution processed sample showed high levels of 

conduction. Solution prepared samples generally display better dispersion of the 

MWNT’s due to the low viscosity of the solution during processing. Better dispersion is 

consistent with a lower percolation threshold, as the sample approaches a uniform, 

“theoretical” dispersion of nanotubes.  Owing to the practical experimental constraint 

imposed by percolation, only the melt mixed samples and the solution processed samples 

described above were tested using BDS, as only a very limited range of sample loadings 

could be explored. 

 

4.3.2.2 PMMA/MWNT-ox Composites 

Thermogravimetric analysis results for the solution processed PMMA/MWNT-ox 

series are provided in Table 4.3. For these samples, the oxidized nanotubes were used. 

The table shows the preparation values and the measured values that were calculated 

using TGA results. Actual nanotube concentration was defined as any remaining material 

in a particular experimental run at 800oC minus the baseline at 800oC. Once again, the 

reported values and the actual values are very close to being identical; as such, samples 

will be identified according to their nominal loadings.  

 Figure 4.7 shows dynamic mechanical results for the solution processed 

PMMA/MWNT-ox series. The data show that an increase in MWNT-ox filler results in a 

systematic decrease in tan peak intensity and a substantial downward shift in Tg. The 

data also show an upward trend in both the glassy and rubbery moduli with increasing 

loadings, as expected.  Also, as loading increases the recovery in the rubbery domain 

becomes less pronounced until at 3 wt% only a simple rubbery plateau is observed. Once 

again the increase in the glassy and rubbery moduli, and the substantial decrease of tan 

intensity, can be attributed to the stiffening effect of the nanotubes on the polymer 
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composite. Unique to this set of samples is the considerable downward shift of Tg 

displayed by the composites as loading increases. Previous observations from other 

nanocomposite systems suggest that unfavorable interactions or poor wetting between the 

polymer and the nanotubes may be responsible for the downward shift in Tg that is 

encountered.[74-75]  

 Figures 4.8a, 4.8b and 4.8c show comparisons of the dynamic mechanical 

modulus results for the PMMA/MWNT and PMMA/MWNT-ox samples for 0.5(a), 

1.0(b) and 3.0 wt%(c), respectively. In these figures, it is possible to observe a significant 

reduction in Tg for the samples containing MWNT-ox nanotubes as compared to the 

untreated tubes. This can be explained by the fact that the procedure to oxidize the 

nanotubes also shortens the nanotubes thus allowing them to disperse easier and more 

uniformly. Previous studies have indicated that nanotubes which have been oxidized 

provide better dispersion within the polymer matrix but also decrease Tg, possibly due to 

poor wetting.[14, 36, 74-75] 

Figures 4.9a, 4.9b and 4.9c show the tan dynamic mechanical results for the 0.5, 

1.0 and 3.0 wt% PMMA/MWNT and PMMW/MWNT-ox solution processed composites, 

respectively. From these Figures it is possible to see the trend (i.e., lower Tg for MWNT-

ox samples) across each set. Table 4.4 contains the Tg of each sample, where the Tg value 

reported is taken as the peak in tan at 1 Hz. Visual observations during sample 

preparation showed that the composites with oxidized nanotubes had better solution 

dispersion characteristics, most likely due to shortened tube length (i.e., tubes shortened 

during nitric acid treatment). It is also possible that the carboxylic acid groups present on 

the oxidized tubes had a stronger affinity for DMF, thus allowing the tubes to disperse 

better. However, it appears that the oxidized tube surface, which is hydrophilic, is less 

compatible with PMMA. So, even though better tube dispersion is captured during the 

quenching process, the PMMA/MWNT-ox interaction is apparently less favorable and 

leads to a downward shift in Tg with increasing loading. 
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4.3.3 In-situ Polymerized Samples 

4.3.3.1 Control Composites 

Another method employed to disperse the nanotubes in the PMMA matrix was in-

situ polymerization. In-situ polymerization was performed by free-radical thermal 

initiation within a suspension of MWNT’s distributed in liquid methyl methacrylate 

monomer. An advantage of this method of preparation is the ability to distribute the 

nanotubes in the pre-polymerization blend which has a low viscosity. Recently it has 

been shown that the nanotubes, if functionalized appropriately, can participate in the 

polymerization reaction creating cross-links between the tubes and the polymer.[29-31] 

The disadvantage of using in-situ polymerization to produce nanocomposites is that free 

radicals present on the nanotubes can interfere with the polymerization reaction, 

decreasing the quality of the polymer matrix. In-situ polymerization also has an inherent 

disadvantage compared to the other methods in that the reaction itself contains many 

variables that must be precisely controlled in order to produce consistent composites (i.e. 

time, temperature, initiator concentration, agitation, etc.). 

 Up to this point, all synthesized samples have used commercial PMMA as the 

base polymer. However, to explore the interactions between functionalized nanotubes and 

the polymer more thoroughly, in-situ polymerization was performed. Dynamic 

Mechanical Analysis results for the unfilled PMMA control samples produced via each of 

the production methods (i.e., melt mixing, solution processing, in-situ polymerization) 

and commercial melt-pressed PMMA are shown in Figure 4.10. The control samples 

prepared via melt mixing and solution processing show good agreement with the 

commercial PMMA results and confirm that there are no significant changes in the 

commercial PMMA polymer when exposed to either Haake melt mixing or solution 

processing.  The in-situ polymerized sample displays a comparable glassy modulus as 

compared to the commercial resin, and a somewhat greater rubbery modulus above the 

glass-rubber transition.  However, the glass transition temperature for the in-situ 

polymerized sample is considerably lower (115°C vs. 130°C at 1Hz), and the transition is 

much broader as compared to the result for the commercial polymer.  The lower Tg is 

most likely a reflection of a lower average degree of polymerization, with the breadth of 
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the relaxation suggesting higher polydispersity in the case of the in-situ polymerized 

specimen. 

 

4.3.3.2 Optimization of In-situ Polymerization Parameters 

 Due to the number of variables that need to be controlled during the in-situ 

polymerization, an optimization process was undertaken. The main variables that were 

optimized for in-situ polymerization to produce PMMA were (i) polymerization time and 

temperature, (ii) initiator concentration, (iii) solvent content and (iv) amount of agitation 

during polymerization. The first factors to be optimized were polymerization time and 

temperature. These two factors had to be optimized in concert because polymerization 

rate is a strong function of temperature. Increasing the temperature of a reaction will 

reduce the amount of time needed for the monomer to completely polymerize.[27, 29] 

Also, increasing the temperature can increase auto-acceleration effects. Depending upon 

the synthesis conditions, PMMA polymerization can take anywhere from hours to weeks. 

In order to save time, a duration of 24 hours was chosen for the total polymerization 

time.[28] With a polymerization time established, it was possible to determine the 

optimum temperature for the reaction. Optimization of polymerization temperature began 

with a review of published articles that used MMA as the monomer and AIBN as the 

initiator. On this basis, it was determined that a temperature between 65 and 100oC was 

desirable and a set of experiments was designed to clarify which temperature was 

optimal.[27-30, 40] After performing the polymerization at 5oC intervals within the 

established range it was determined that 80oC produced the best quality PMMA in the 24 

hour period.  

 The next step in the optimization process was to determine the ideal amount of 

initiator for the reaction. The amount of AIBN was difficult to determine at the outset due 

to the wide range of values reported in previous studies. An increase in the amount of 

initiator can cause the polymer chains to be shorter, while a smaller amount of initiator 

would increase chain length but might not fully polymerize the samples within the 24 

hour polymerization time.  A set of samples varying in AIBN concentration from 0.10 to 

0.35 wt% (based on MMA) were produced and the properties were assessed in order to 

ascertain the proper amount for polymerization of MMA. It was determined that a 
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concentration of 0.25 wt% AIBN relative to the MMA amount was needed for optimum 

results. 

 The presence of solvent in an in-situ polymerization reaction can lead to polymer 

chain termination and a reduction in potential auto-acceleration.  For the nanocomposite 

samples prepared in this work, it was necessary to balance the need for solvent, in order 

to disperse the nanotubes, while at the same time maintaining the most favorable 

polymerization conditions. It was determined that solvent present in a 1:1 ratio with 

monomer provided the benefit of satisfactorily dispersing the nanotubes while still 

producing viable polymer.  

 Lastly, it was observed that two factors could greatly affect the quality of the 

synthesized polymer. The first was mechanical agitation due to stirring and sonication. 

Mechanical stirring was used in order to keep the nanotubes dispersed until the 

polymerization locked them into place. Sonication was also sometimes used instead of 

mechanical stirring to keep the nanotubes dispersed. However, the more agitation that 

was present (i.e. faster mechanical stirring), the worse the polymerization. This was also 

the case for the sonication. Polymer produced without sonication was of much higher 

quality than that produced when sonication was employed (based on visual and 

mechanical evaluation). Therefore, it was decided that the there would be no mechanical 

stirring or sonication so as to maximize the polymerization. The other factor that was 

found to affect polymerization was the amount of nanotubes present. The more nanotubes 

present in the pre-polymerization mixture, the worse the polymer produced. It was 

observed that samples with greater than ~ 5 wt% MWNT present in the mixture would 

not polymerize at all. This suggests that the nanotubes were interfering with the 

polymerization, either due to the increased viscosity of the pre-polymerization mixture or 

potential free radical quenching at the tube surface. 

 

4.3.3.3 PMMA/MWNT-ox Composites 

 Thermogravimetric analysis was utilized in order to investigate the composition 

of the samples. Figure 4.11 illustrates the TGA results for the in-situ polymerized 

PMMA/MWNT-ox set of composites ranging from the control up to 3 wt% MWNT-ox. 

The results of the TGA are interesting due to the dual decomposition events that are 
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visible. The first decomposition event begins around 300oC and accounts for about 20% 

of the total weight loss while the second event occurs around 400oC, and is consistent 

with the decomposition observed for the commercial PMMA. This behavior is probably a 

product of the wide range of molecular weight populations produced via the 

polymerization reaction. The dual weight loss character of the in-situ polymerized 

samples may reflect the decomposition of distinct molecular weight populations; the 

shorter polymer chains degrade at lower temperatures while the longer chains degrade 

across the same range as the commercial resin.  

Figure 4.11 includes an expanded portion of the TGA results from 400 to 800oC. 

Actual nanotube concentration was defined as any remaining material in a given 

experiment at 800oC minus the baseline at 800oC. Table 4.5 shows the target preparation 

values and the actual values that were determined based on the TGA tests. Overall, the 

measured values are modestly higher than the preparation values, potentially due to the 

loss of small amounts of unpolymerized monomer during sample preparation.  For the 

sake of convenience, these samples will be referenced using their nominal loading (i.e. 

target) values throughout the rest of this section. 

 Dynamic mechanical results for the PMMA/MWNT-ox set of samples produced 

via in-situ polymerization are presented in Figure 4.12. The modulus results show the 

increase in stiffness with increasing loading in the rubbery domain, similar to the melt-

mixed and solution-prepared composites. However, the loss results show no clear trend in 

Tg or tanpeakintensity. The loss results (i.e. no to little change in Tg) seem to indicate 

that the nanotubes are not dispersing as consistently as was the case in the melt processed 

or solution processed samples. Due to the lack of mechanical stirring or sonication during 

the polymerization it is possible that the reaction is not occurring fast enough to “lock” 

the chains in place and the nanotubes are having time to clump back together. Nanotubes 

have often been discussed as having a potentially negative influence on polymerization 

reactions; e.g., increasing the viscosity of the pre-polymerization mixture, reducing 

mobility of the growing chains, as well as possible quenching reactions on the tube 

surface. 

 In order to verify that there is no clear trend in Tg for this set of composites, 

differential scanning calorimetry was performed and the results are presented in Figure 
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4.13. The Tg for a typical DSC experiment is defined as the midpoint of the transition on 

the heat flow curve. The samples containing nanotubes have approximately the same Tg 

as the control (within a few degrees), and there is no identifiable trend. This figure 

confirms the conclusion drawn from the dynamic mechanical results that there is no trend 

in Tg with increasing loading.  

 

4.3.3.4 PMMA/MWNT-MMA Composites 

Polymer grafting requires covalent functionalization of the surface of the 

nanotubes. The covalent functionalization can be achieved by direct addition of reagents 

to the nanotube wall or modification of the carboxylic acid groups already present on the 

oxidized nanotube surface. “Grafting to” and “grafting from” are the two strategies that 

have been reported for the covalent attachment of polymer to the nanotube. The “grafting 

from” strategy is the more popular of the two and is the one employed in this study. It 

involves the creation of initiation sites on the nanotube surface followed by 

polymerization of the polymer outward from the nanotube. Composites made via this 

technique can achieve very high grafting densities. Polymer grafting often involves the 

use of in-situ polymerization once the nanotube surface has been functionalized. Since 

polymer grafting also incorporates the use of in-situ polymerization in the production of 

composites, the same advantages and disadvantages of the polymerization method also 

apply to polymer grafting. The added benefit that polymer grafting should have over in-

situ polymerization is that polymerization occurs from the functional group present on the 

surface thereby covalently linking the nanotube within the polymer matrix and thus 

maximizing the interfacial contact. 

 Since the results (above) suggested that the oxidized nanotubes were hindering 

the polymerization reaction, chemically functionalized nanotubes were incorporated into 

the polymerization study. The nanotubes were functionalized with a reactive methyl 

methacrylate group that would be likely to participate in the polymerization reaction (i.e. 

polymerization would occur from the functional group grafted to the nanotube surface).  

Thermogravimetric analysis results for the PMMA/MWNT-MMA samples are 

illustrated in Figure 4.14. Much like the results obtained for the PMMW/MWNT-ox 

samples produced via in-situ polymerization, there is a dual decomposition evident in the 



 
 

60 
 

PMMA/MWNT-MMA composites. Since this feature is visible in all in-situ polymerized 

samples, even the control, it appears to be inherent to the in-situ polymerization. 

However, it is worth noting that the lower temperature decomposition effect becomes less 

intense with increased loading. This appears to indicate that the addition of the MWNT-

MMA nanotubes could be helping to promote polymerization. Figure 4.14 also shows an 

expanded portion of the results in the post-decomposition range above 600oC. In this high 

temperature range the samples described above (i.e., nanocomposites based on 

commercial PMMA, etc) were stable at a constant weight up to 800oC. In Figure 4.14, 

however, the measured weight continues to fall for all the samples loaded with nanotubes 

(expanded view). In addition, the composition of each individual sample in this 

temperature range is 3 to 5 times higher than was expected based on the initial target 

nanotube loading. This would appear to suggest that for some reason, residual polymer is 

persisting to much higher temperatures in these samples.  

In order to determine if this result was an artifact of the TGA testing method (e.g., 

heating rate) a TGA experiment was performed by slowly heating the 1 wt% MWNT-

MMA sample at 0.5oC/min up to 350oC in air. Then, at 350oC, the atmosphere was 

changed to nitrogen and the sample was ramped at 20oC/min up to 800oC. The purpose of 

the slow heating in air was to allow ample time for any low molecular weight 

components to volatilize or decompose. The results from this TGA run are presented in 

Figure 4.15. The data give the impression that low molecular weight components are 

being provided ample time to exit the sample and are no longer present across the high 

temperature region. Thus, the composition in the high temperature region is much closer 

to the nominal preparation value of 1 wt% as compared to the original TGA experiment. 

This figure also shows that the low temperature portion of the curve no longer shows a 

dual decomposition character. Furthermore, the onset of weight loss occurs at lower 

temperature, although this is most likely due to the much lower heating rate. 

Dynamic mechanical analysis was performed on the PMMA/MWNT-MMA 

composites and the results are displayed in Figure 4.16. All of the samples containing 

MWNT-MMA exhibit a modest increase in both the glassy modulus and the rubbery 

modulus, corresponding to a small increase in stiffness. The tan results reveal a 

significant increase in Tg with increased loading as well as a modest increase in tan 
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intensity at loadings of 0.5 wt% and 1.0 wt%. The increase in Tg with increasing loading 

is a sign that the functionalized nanotubes are interacting with the polymer in a favorable 

manner according to conventional composite theory.[10] Interestingly, the 0.2 wt% 

sample shows a dual Tg response. This is probably due to a wide range of molecular 

weights present in the composite. The dual Tg is not present in the 0.5 wt% and 1.0 wt% 

samples and it is apparent that the tan peaks get increasingly narrower with increased 

loading. 

In order to verify the Tg results obtained from the DMA experiments, differential 

scanning calorimetry was performed on the PMMA/MWNT-MMA set of samples. Since 

the samples had shown evidence of dual Tg behavior, the DSC experiments were run 

under a heat/cool/heat cycle in order to probe the nature of the two populations. Figure 

4.17 shows the results of the DSC experiments. The top curve for each sample 

corresponds to the second heating cycle while the bottom curve for each sample 

corresponds to the first heating cycle. As expected the first heating cycle of all the 

samples corresponded well with the Tg data obtained from the DMA experiments. The Tg 

of the control is much lower than the filled composites and the 0.2 wt% sample shows a 

dual Tg behavior. However, across the second sweep the 0.2 wt% sample only shows one 

Tg. The new Tg evident on the second heating of the 0.2 wt% sample is almost exactly 

between the two Tg’s of the first heating cycle. This seems to suggest that there was 

incomplete polymerization of the 0.2 wt% MWNT-MMA sample and that the 

temperatures reached by the first heating cycle were high enough to allow the polymer 

chains to finish polymerizing. The curves for the 0.5 wt% and 1.0 wt% samples show no 

evidence of incomplete polymerization and the response for the second heating sweep for 

both samples is identical to that observed in their respective first sweep. 

 In the absence of nanotube surface functionalization, the in-situ polymerization 

route did not appear to produce significant improvements in overall nanocomposite 

performance, with numerous potential complications owing to polymerization variables 

and potential tube agglomeration. On the other hand, the PMMA/MWNT-MMA samples 

show promise in improving some properties of the polymer. There is an increase in both 

the rubbery and glassy modulus, and a moderate increase in Tg with increasing loading. 

In this case, it appears the functional groups present on the tubes (MMA) are the driving 
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force for the increase in Tg. Two factors are responsible for this shift in Tg: an increase in 

polymer-nanotube surface compatibility owing to the presence of the MMA units and a 

restriction of chain mobility due to covalent bonding of the tubes to the polymer matrix. 

To fully elucidate these contributions, additional research is required to confirm the 

formation of covalent bonds at the tube surface, and to establish the most effective 

functional form for the enhancement of bulk composite properties. 

 
4.4 Conclusions 

 The formulation of PMMA enhanced with carbon nanotubes could produce great 

improvement in strength and ductility in fields where the polymer must endure harsh 

conditions. One key factor limiting the application of MWNT-filled PMMA is the 

development of processes to disperse the nanotubes in the composite without diminishing 

other important properties. Consequently, recent research has focused on production 

methods that are able to adequately distribute the nanotubes within the polymer matrix. 

This thesis has focused on the characterization of a series of MWNT filled PMMA 

composites made via three different methods: melt mixing (PMMA/MWNT), solution 

processing (PMMA/MWNT, PMMA/MWNT-ox) and in-situ polymerization 

(PMMA/MWNT-ox, PMMA/MWNT-MMA). Samples were characterized using 

dynamic mechanical analysis, broadband dielectric spectroscopy, thermogravimetric 

analysis and differential scanning calorimetry. The goal was to gain a fundamental 

understanding of the polymer-filler interactions in these materials and their ultimate 

effect on macro-scale properties of the composite. The specific conclusions of this work 

are presented below.  

 

Melt Mixed (PMMA/MWNT) 

 The relaxation dynamics of PMMA/MWNT composites have been examined 

using dynamic mechanical analysis. The inclusion of increasing amounts of nanotubes 

into the PMMA network increased both the glassy and rubbery modulus, but caused no 

change in the glass transition temperature. The results indicate that the melt mixing 

process is a viable method to disperse nanotubes within the polymer matrix, but there 

appears to be little interaction occurring at the polymer/filler interface. 
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The molecular dynamics of PMMA/MWNT composites were investigated using 

broadband dielectric spectroscopy. Two motional processes,  and , were detected with 

increasing temperature. The dielectric intensity of the PMMA/MWNT samples made via 

melt mixing increased for both motional processes with increasing loading. Also, it was 

determined that nanotube filled PMMA composites show a percolation threshold 

occurring between 0.3 and 0.4 wt% MWNT owing to the conductive character of the 

nanotubes.  

 

Solution Processed (PMMA/MWNT, PMMA/MWNT-ox) 

 Dynamic mechanical analysis has also been used to investigate the relaxation 

dynamics of PMMA/MWNT and PMMA/MWNT-ox composites made via solution 

processing. Both sets of samples showed an increase in the stiffness across the glassy and 

rubbery domains, and a subsequent decrease in tan intensity with increased loading; the 

stiffening contribution of the nanotubes was evident at lower loadings as compared to the 

melt processed samples. The glass transition temperature of the PMMA/MWNT samples 

remained relatively unchanged throughout the series while the PMMA/MWNT-ox 

samples showed a substantial decrease in glass transition temperature. The oxidized 

nanotubes are generally shorter than the untreated nanotubes due to damage incurred 

during the acid exposure process. The difference in the response of the two sets of 

samples reflects the improved dispersion that is possible with the MWNT-ox filler and 

also the potential for increased interaction between the MWNT-ox tubes and PMMA 

owing to enhanced interfacial surface area. This leads to an overall decrease in Tg 

because the carboxylic acid groups present on the oxidized tubes are less compatible with 

PMMA.  

The dielectric intensity of the PMMA/MWNT composites made via solution 

processing was unchanged with increasing loading; however it should be noted that the 

change in filler loading across the sample set was very small so a large effect was not 

anticipated. Once more, it was determined that nanotube filled PMMA composites show 

a percolation threshold occurring around 0.3 wt% MWNT. The percolation threshold of 

the solution processed samples was slightly lower than their melt mixed counterparts due 

to the better dispersion obtained with solution processed samples. 



 
 

64 
 

 

In-situ Polymerization (PMMA/MWNT-ox, PMMA/MWNT-MMA) 

 The viscoelastic characteristics of PMMA/MWNT-ox and PMMA/MWNT-MMA 

composites (in-situ polymerization) were investigated using dynamic mechanical 

analysis. Both sets of samples displayed increased stiffness in the rubbery domain with 

increasing loading. While the PMMA/MWNT-ox set showed no clear trend in the glass 

transition temperature or tan intensity, the PMMA/MWNT-MMA series showed a 

modest increase in the glass transition temperature. The results for the PMMA/MWNT-

ox series indicate that competing mechanisms are occurring. Increasing the amount of 

nanotubes increased the stiffness of the polymer matrix. However, increasing the loading 

appeared to reduce the extent of polymerization. The results obtained for the 

PMMA/MWNT-MMA set are very promising. The increase in glass transition 

temperature indicates that the polymer and filler are interacting in a positive fashion. The 

results also indicate that polymerization could be occurring from the functional groups 

grafted onto the nanotubes. While these results are encouraging for the introduction of 

functionalized nanotubes via in-situ polymerization, more work is needed in order to 

verify the results determined in this study.  

 

Numerous series of PMMA based nanocomposites containing a range of nanotube 

concentrations have been investigated and correlations between production method, 

nanotube modification and viscoelastic response have been established. The insight 

gained from the polymer-nanotube interface characteristics determined in this work could 

likely be used in order to devise a production method for PMMA with enhanced 

properties for demanding applications.  
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Table 4.1: TGA results for melt mixed PMMA/MWNT composites; preparation and 
measured loading values are indicated.  Measured values were determined from TGA 
results using the unfilled control as a baseline.   
 
 
Name  Preparation Value (wt%)  Measured Value (wt%) 

0.2 wt% MWNT  0.20  0.26 

0.5 wt% MWNT  0.50  0.57 

1.0 wt% MWNT  1.00  1.05 

3.0 wt% MWNT  3.00  3.05 

5.0 wt% MWNT  5.00  5.02 
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Table 4.2: TGA results for solution processed PMMA/MWNT composites; 
preparation and measured loading values are indicated.  Measured values were 
determined from TGA results using the unfilled control as a baseline. 
 
 
Name  Preparation Value (wt%)  Measured Value (wt%) 

0.2 wt% MWNT  0.20  0.19 

0.5 wt% MWNT  0.50  0.58 

1.0 wt% MWNT  1.00  0.94 

3.0 wt% MWNT  3.00  2.91 
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Table 4.3: TGA results for solution processed PMMA/MWNT-ox composites; 
preparation and measured loading values are indicated.  Measured values were 
determined from TGA results using the unfilled control as a baseline. 
 
 
Name  Preparation Value (wt%)    Measured Value (wt%) 

0.2 wt% MWNT  0.20  0.15 

0.5 wt% MWNT  0.50  0.64 

1.0 wt% MWNT  1.00  1.10 

3.0 wt% MWNT  3.00  2.94 
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Table 4.4: DMA results for solution processed PMMA/MWNT and PMMA/MWNT-
ox composites. Reported Tg values are taken from the peak of the tan curves for each 
sample at 1 Hz. 
 
 

Sample  Tg of MWNT (oC)  Tg of MWNT‐ox (oC) 

0.5 wt%  129  126 

1.0 wt%  130  121 

3.0 wt%  125  111 
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Table 4.5: TGA results for in-situ polymerized PMMA/MWNT-ox composites; 
preparation and measured loading values are indicated.  Measured values were 
determined from TGA results using the unfilled control as a baseline. 
 
 

Name  Preparation Value (wt%)   Measured Value (wt%) 

0.2 wt% MWNT‐ox  0.20  0.56 

0.5 wt% MWNT‐ox  0.50  0.78 

1.0 wt% MWNT‐ox  1.00  1.08 

2.0 wt% MWNT‐ox  2.00  2.42 

3.0 wt% MWNT‐ox  3.00  3.61 
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Figure 4.1: Schematic of methyl methacrylate functional group attached to surface of 
MWNT-MMA. 
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Figure 4.2: Thermogravimetric results for melt mixed samples: Percent weight (%) 
versus temperature. Heating rate of 20oC/min. 
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Figure 4.3: Dynamic mechanical results for melt mixed PMMA/MWNT composites: 
storage modulus (E’) and loss factor (tan) versus temperature. Heating rate of 2oC/min 
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Figure 4.4: Dielectric Loss versus temperature for melt mixed PMMA/MWNT 
composites at 30 Hz. 
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Figure 4.5: Dynamic mechanical results for solution processed PMMA/MWNT 
composites: storage modulus (E’) and loss factor (tan) versus temperature. Heating rate 
of 2oC/min. 
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Figure 4.6: Dielectric loss versus temperature for solution processed PMMA/MWNT 
composites at 30 Hz. 
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Figure 4.7: Dynamic mechanical results for solution processed PMMA/MWNT-ox 
composites: storage modulus (E’) and loss factor (tan) versus temperature. Heating rate 
of 2oC/min. 
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Figure 4.8: Dynamic mechanical results for solution processed samples containing 
0.5(a), 1.0(b) and 3.0(c) wt% MWNT and MWNT-ox: storage modulus (E’) versus 
temperature. Heating rate of 2oC/min. 
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Figure 4.9: Dynamic mechanical results for solution processed samples containing 
0.5(a), 1.0(b) and 3.0(c) wt% MWNT and MWNT-ox: loss factor (tanδ) versus 
temperature. Heating rate of 2oC/min. 
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Figure 4.10: Dynamic mechanical results for unfilled PMMA control samples produced 
via  melt mixing, solution processing, in-situ polymerization, as well as melt-pressed 
commercial PMMA: storage modulus (E’) and loss factor (tan) versus temperature. 
Heating rate of 2oC/min. 
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Figure 4.11: Thermogravimetric results for in-situ polymerized samples containing 
PMMA/MWNT-ox: Percent weight (%) versus temperature. Heating rate of 20oC/min. 

Temperature(oC)

0 200 400 600 800

W
ei

gh
t 

P
e

rc
e

n
t

0

20

40

60

80

100

Control
0.2 wt% MWNT-ox
0.5 wt% MWNT-ox
1.0 wt% MWNT-ox
2.0 wt% MWNT-ox
3.0 wt% MWNT-ox

Temperature (oC)

400 500 600 700 800

W
ei

gh
t 

P
e

rc
e

n
t

0

1

2

3

4

5



 
 

83 
 

 
Figure 4.12: Dynamic mechanical results for PMMA/MWNT-ox composites produced 
via in-situ polymerization: storage modulus (E’) and loss factor (tan) versus 
temperature. Heating rate of 2oC/min. 
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Figure 4.13: Differential scanning calorimetry results for PMMA/MWNT-ox composites 
produced via in-situ polymerization. Heat flow versus temperature. Heating rate of 
10oC/min. 
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Figure 4.14: Thermogravimetric results for PMMA/MWNT-MMA composites produced 
via in-situ polymerization: Percent weight (%) versus temperature. Heating rate of 
20oC/min. 
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Figure 4.15: Thermogravimetric results for the 1 wt% MWNT-MMA sample produced 
via in-situ polymerization. Percent weight (%) versus temperature. Heating rate of 
0.5oC/min up to 350oC then 20oC/min to 800oC. 
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Figure 4.16: Dynamic mechanical results for PMMA/MWNT-MMA composites 
produced via  in-situ polymerization: storage modulus (E’) and loss factor (tan) versus 
temperature. Heating rate of 2oC/min 
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Figure 4.17: Differential scanning calorimetry results for PMMA/MWNT-MMA 
composites produced via in-situ polymerization. The top response for each sample 
corresponds to the second heating cycle while the bottom response for each sample 
corresponds to the first heating cycle. Heating rate of 10oC/min.  
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Table of Nomenclature 

 
Dynamic Mechanical Analysis 

 Phase lag angle [Radians] 

E Young’s modulus [Pa] 

E* Complex modulus [Pa] 

E Storage modulus, in-phase [Pa] 

E Loss Modulus, out-of-phase [Pa] 

 Elastic strain  

0 Amplitude of strain 

 Shear viscosity [Pa-s] 

σ Elastic stress [N/m2] 

σ0 Amplitude of stress [N/m2] 

Tg Glass transition temperature [oC] 

t time [s] 

 Frequency of oscillation [rad/s] 

 

 

 

 

Broadband Dielectric Spectroscopy 

A Area of capacitor plates [m2] 

 Glass-rubber relaxation 

 Sub-glass relaxation  

C Capacitance [Farads] 

C0 Capacitance of vacuum [Farads] 

D Dielectric displacement [V/m] 

D0 Amplitude of the dielectric displacement [V/m] 

D1 In-phase component of the dielectric displacement [V/m] 

D2 Out-of-phase component of the dielectric displacement [V/m] 

d Distance between capacitor plates [m] 
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E Electric field strength [V/m] 

E0 Amplitude of the complex electric field [V/m] 

s Static dielectric constant 

' Dielectric constant 

’’ Dielectric loss 

P Polarizability of a material [V/m] 

Q Charge on each of the capacitor plates [Coulomb] 

σ Charge density [Coulumbs/m2] 

V Potential difference across capacitor plates [Volts] 

 Frequency of electric field [rad/s] 
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