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ABSTRACT OF DISSERTATION 

 

UNDERSTANDING DEGRADATION AND LITHIUM DIFFUSION IN LITHIUM 

ION BATTERY ELECTRODES 

 

 

Lithium-ion batteries with higher capacity and longer cycle life than that available 

today are required as secondary energy sources for a wide range of emerging applications. 

In particular, the cycling performance of several candidate materials for lithium-ion 

battery electrodes is insufficient because of the fast capacity fading and short cycle life, 

which is mainly a result of mechanical degradation. 

This dissertation mainly focuses on the issue of mechanical degradation in 

advanced lithium-ion battery electrodes. Thin films of tin electrodes were studied where 

we observed whisker growth as a result of electrochemical cycling. These whiskers bring 

safety concerns because they may penetrate through the separator, and cause short-circuit 

of the electrochemical cells. Cracking patterns generated in amorphous silicon thin film 

electrodes because of electrochemical cycling were observed and analyzed. A two-

dimensional spring-block model was proposed to successfully simulate the observed 

cracking patterns. With semi-quantitative study of the cracking pattern features, two 

strategies to void cracking in thin-film electrodes were proposed, namely reducing the 

film thickness and patterning the thin-film electrodes.  

We also investigated electrodes consisting of low melting point elements and 

showed that cracks can be self-healed by the solid-to-liquid phase transformation upon 

cycling. Using gallium as an example, mechanical degradation as a failure mechanism for 

lithium-ion battery electrodes can be eliminated.  

In order to quantitatively understand the effect of surface modification on 

electrodes, we analyzed diffusion equations with boundary conditions of finite interfacial 

reactions, and proposed a modified potentialstatic intermittent titration technique (PITT) 

as an electro-analytical technique to study diffusion and interfacial kinetics. The modified 

PITT has been extended to thin-film geometry and spherical geometry, and thus can be 



 

used to study thin-film and composite electrodes consisting of particles as active 

materials.  

  

KEY WORDS: lithium-ion batteries, mechanical degradation, crack, interfacial kinetics, 

diffusion 
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Chapter 1.  Introduction 

Since the commercialization in early 1990s by Sony, Lithium-ion batteries (LIBs) have 

been widely used in modern society as portable energy sources due to their high 

operation voltage, high energy and power densities, and stable cycling performance. 

Particularly, LIBs are used to replace other secondary batteries, including nickel-metal 

hydride batteries, lead-acid batteries, and alkaline batteries, to power electronic devices, 

medical devices, portable power tools, and more recently, hybrid and pure electric 

vehicles [1-3].  

A typical LIB consists of a positive electrode, a negative electrode, and a porous 

separator immersed in ionically conducting liquid electrolyte. With the rapid increase of 

demands, current commercial LIBs are unable to fulfill the energy and power 

requirements of products, especially hybrid and pure electric vehicles. Thus, advanced 

electrode materials with higher specific capacities (mAh g
-1

) and capacity densities (mAh 

mL
-1

) are required. Commercially used negative electrode material, graphite, has already 

reached its theoretical and engineering limits. There are several elements and alloys 

possible for negative electrodes of LIBs due to their high theoretical capacities, such as 

silicon (Si), tin (Sn), and germanium (Ge). These advanced negative electrode materials 

suffer severe volume expansion and contraction upon lithiation and de-lithiation, which 

leads to cracking and fracture in electrodes, and further leads to loss of electric 

conduction and capacity fading of the electrodes.  

Numerous efforts have been made to avoid mechanical degradation of LIB electrodes 

upon extended cycling. Naonstructuring the electrodes has been shown to effectively 

enhance the cycling performance of LIB electrodes. Low stress generated in 

nanostructured materials during cycling is believed a reason for better cycle life. Alloying 

the active materials with inactive elements or other active elements is another method to 

practically extend the life of the electrodes. The inert elements act as buffer components 

and absorb mechanical deformation. Various types of conducting additives and binders 
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are developed for LIB electrodes, which can practically enhance the conductivity of 

electrodes and connect the powders (or particles) upon small volume change. 

In this dissertation, we focus on understanding the mechanical degradation of advanced 

LIB anodes, electrode/electrolyte interfacial kinetics, and diffusion of lithium in 

electrodes. The purposes of this dissertation include (1) fundamental understanding of the 

mechanical behavior, especially degradation mechanisms, of LIB electrodes, (2) 

developing strategies to avoid degradation and cracking of electrodes, and (3) 

quantitative measuring and understanding lithium diffusion in electrodes and interfacial 

reaction kinetics. 

Chapter 1 gives a brief introduction of the background and the purpose of this dissertation. 

Chapter 2 provides the literature review of the state-of-art LIB negative electrodes, their 

failure mechanisms, and possible solutions. Common electrochemical testing procedures 

for LIB research are also introduced and discussed. Chapter 3 reports an observation of 

whisker formation in Sn electrodes as a result of electrochemical cycling. Chapter 4 

discusses experimental study of cracking pattern formation in thin-film amorphous-Si 

electrodes during cycling. A simulation tool for cracking patterns is introduced which 

captures the essential feature of cracking patterns. We also provide strategies to avoid 

cracking in thin-film LIB electrodes. Chapter 5 shows the concept of using lithium-active 

liquid metal as self-healing LIB electrodes by an example of liquid gallium (Ga). 

Mechanical degradation as a failure mechanism of LIB electrodes can be eliminated by 

solid-to-liquid phase transformation of electrodes. Chapter 6 proposes a modified 

potential intermittent titration technique (PITT) as an electroanalytical technique which 

can be used to determine the interfacial reaction rate and diffusion coefficient 

simultaneously. Chapter 7 extended this modified PITT to composite electrodes where 

active particles are of spherical geometry. Chapter 8 summarizes this dissertation with an 

outline of future research opportunities.   
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Chapter 2  Literature Review 

2.1  Working Mechanisms of Lithium-Ion Batteries 

A battery consists one or more cells that convert chemical energy into electrical energy. 

A battery is usually composed of a positive electrode (cathode) and a negative electrode 

(anode) separated by ionically conducting and electronically insulating electrolyte. The 

electromotive force of a battery,  , is determined by the Gibbs free energy by 

                                                              (2.1) 

where   is the charge number ( =1 for lithium ions) and   is Faraday’s constant. A 

voltage of a cell is determined by the chemical potential difference between the positive 

and negative electrodes. For LIBs, the voltage of a cell is determined by the difference of 

chemical potentials of lithium atoms in positive and negative electrodes. Eq. (2.1) gives 

the theoretical voltage or open circuit voltage (OCV) of a cell.  

The positive electrode materials of LIBs are usually layered-type lithium metal oxides 

(for example, LiCoO2) [4-6], olivine-type lithium metal phosphates or silicates (for 

example, LiFePO4 and LiFeSiO4) [5, 6], spinel-type lithium metal oxides (for example, 

LiMn2O4), or conversion-type alloys. The negative electrode materials of LIBs are 

usually composed of various types of graphite [7-9], Si [10, 11], Sn [10, 12, 13], Ge [14, 

15], TiO2 [16], or their alloys or composites. During operation, the lithium-ion containing 

electrolyte transports lithium ions back and forth.  

Half cells are usually used for fundamental research of LIB electrodes. The term half cell 

refers to a cell consisting of a single electrode (either positive or negative) as the working 

electrode (WE) and pure lithium metal as the counter electrode (CE). In this type of cells, 

CE is also used as reference electrode (RE), whose electrochemical potential does not 

change and is set to be zero. 
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2.2  Lithium Ion Battery Negative Electrodes 

Since the late 1980s [17], graphite materials have been used as negative electrodes for 

LIBs. There are different kinds of graphitic electrode materials, such as natural and 

artificial graphite, mesocarbon microbeads (MCMB), and highly disordered or 

amorphous carbons [8, 18, 19]. The theoretical specific capacity (charge per unit mass) of 

graphite is 372 mAh g
-1

 and the theoretical capacity density (charge per unit volume) is 

840 mAh mL
-1

, calculated from the final product of lithiated graphite, LiC6. The reaction 

of graphite during lithiation and de-lithiation can be summarized as 

                                                             (2.2) 

The layered structure of graphite naturally provides space to store lithium atoms. As a 

result, the volume change of graphite upon cycling is less than 10% [8, 19] and the stress 

is in the order of several hundred MPa [20], one order of magnitude lower than that of 

alloy electrodes [21, 22]. Thus, commercial electrochemical-grade graphite delivers 

stable capacity over several hundred cycles due to low volume change and low stress.   

Alternative materials for negative materials of LIBs include pure elements, alloys, metal 

oxides, and composite materials. There are many elements which have much higher 

specific capacities than graphite. For example, the theoretical specific capacity of Si is 

3579 mAh g
-1

 [23], which is the highest among all the elements for negative electrodes 

except for pure Li metal itself. Figure 2.1 shows selected elements for LIB negative 

electrodes [24]. These elements react with Li and form alloys where the atomic ratio of Li 

to the active element can be as large as 4.4. Besides pure elements, some metal oxides 

react with Li metal, such as TiO2 [16], NiO, and Li4Ti5O12 (LTO) [16, 25, 26], and can 

also be used as negative electrodes.  

The reaction mechanisms, electrochemical behavior, and cycling performance of pure 

element type negative electrodes are similar. Here, we take Si as an example to 

demonstrate the main issues and obstacles for their applications. Si has attracted 

significant attention of researchers mainly because of its highest theoretical capacity. It is 
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reported that during lithiation, Si and Li form alloys including Li12Si7, Li7Si3, Li13Si4, and 

Li17Si5 [23, 27, 28]. It is well accepted that bulk Si hardly delivers useful capacity [11, 29, 

30], mainly because of the large volume expansion of Si during cycling which can be as 

large as 370% [29, 31], as well as the associated large diffusion-induced stress (DIS) [21, 

22]. Dahn et al. [27] and Obrovac et al. [23] have separately reported that crystalline Si 

undergoes amorphization during lithiation, and keeps amorphous during cycling unless 

the electrodes are over lithiated [32]. Sn forms Li17Sn4 upon full lithiation [18, 33], which 

gives a specific capacity of 992 mAh g
-1

. Similar to Si, the cycle life of bulk Sn is short 

(i.e., 10 cycles [12]) because of large volume expansion and high DIS [12, 18]. 

In order to overcome the issue of pulverization and capacity fading of electrodes, 

different methods have been applied in order to utilize the advanced negative materials. 

These strategies can be divided into four categories, including reducing the dimensions of 

active material, alloying the elements with inert or another active components, utilizing 

conducting components and binders for composite electrodes, and surface modification 

of electrode materials.  

Nanostructuring the electrode materials is an effective way to enhance the reversible 

capacity and extend the cycle life of LIBs. Various nanostructured electrodes have been 

reported to deliver improved performance, including thin films [14, 34, 35], nanowires 

[36], nanoporous structures [37, 38], nano-patterned electrodes [39, 40], and other nano-

shaped materials [41, 42]. Most of the nanostructured electrodes showed improved 

reversible capacity upon extended cycling. For example, Graetz et al. showed improved 

cycling performance of Si thin-films over nano-crystals [35]. Cui et al. demonstrated 

extended cycle life and high capacity of Si nanowires directly grew on stainless steel 

current collectors [36]. Cho et al. compared cycling performance of Si nano particles 

ranging from several to tens of nanometers, and demonstrated excellent capacity retention 

using ~5 nm Si nano particles [30]. Xiao et al. studied cycling performance of patterned 

Si, and showed stable capacity over 40 cycles where the average width of the square 

patch is about 7.6 μm [39]. A low average diffusion-induced stress in patterned electrodes 

is believed the reason for improved capacity retention [43]. Similar phenomena were 
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observed on patterned thin-film Sn-Co-C composite electrodes where the pattern size is 

about 7.5 μm [40]. It is believed that the enhanced performance of nanostructured 

materials is mainly due to voids which occupy a large portion of nanostructured 

electrodes, and provide space for volume expansion during lithiation. Cheng et al. 

showed that the stress level and maximum stress in nano-structure materials is lower than 

that in bulk materials because of surface effects [44, 45]. Also, the power performance 

(cycling performance under high rates) of nano-structural electrodes is usually good, 

because the average diffusion distance for lithium is shortened and a large surface area 

provides sites for interfacial reactions. On the other hand, there are serious drawbacks for 

nanostructured LIB electrodes. Most importantly, the large surface area of nanostructured 

materials requires formation of a large amount of solid electrolyte interphase (SEI) upon 

lithiation, which consumes lithium ions from the lithium-salt-based non-aqueous 

electrolyte [46-48]. The formation of SEI is largely irreversible and SEI does not 

decompose readily into lithium ions upon de-lithiation [46, 47]. As a result, the 

performance of a full cell using nano-structured electrodes will be limited because of 

limited amount of lithium ions and electrolyte. A majority of previous academic 

publications are based on results of half-cells, where pure lithium metal is used as the 

counter electrode and the amount of lithium ions can be considered infinite. Besides SEI, 

the packing density, capacity and energy densities of nano-structured electrodes are low 

due to extra space. The cost of nanostructured electrodes is high due to the usually 

complicated fabrication procedures.   

Alloying the active materials with other active or inert materials is another effective way 

to extend the cycle life of LIBs. For example, various alloys of Si, MxSi, are produced 

which show better performance, where M can be Ag [49], Mg [50, 51], Ca [52], carbon 

[53-55], Zn [56], as well as transition metals such as Co, Fe, Mn, Ni, and Co [57-61]. 

Metal oxides also delivers improved cycling performance, such as SiO [62, 63], SnOx 

[64-69], and GeO [42]. It is believed that the inert components remain unchanged during 

cycling, and thus the overall stress of the whole electrode is lowered. Furthermore, inert 

elements can act as “buffer” components which absorb strain energy of the active 
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components. On the other hand, inert components add mass and volume to the electrodes, 

and thus lower the specific capacity and capacity density of the electrodes. Usually the 

first-cycle Columbic efficiency is low due to irreversible reactions of Li and inert 

elements.  

Binders and conducting additives are necessary for commercial LIB electrodes, where the 

active materials are in the form of powders. For current commercial LIBs using graphite 

as the negative electrodes and LiCoO2 as the positive electrodes, polyvinylidene fluoride 

(PVDF) is used as the binder and carbon black is used as the conducting additives. It has 

been reported that sodium carboxymethyl cellulose (NaCMC) or lithium carboxymethyl 

cellulose (LiCMC) can be used as the binder for Si and other high capacity composite 

electrodes with improved capacity retention [70-72]. However, the reason is still a 

mystery because CMC salts are essentially brittle. Other kinds of conducting additives, 

such as carbon nanotubes (CNT) [73, 74], have been shown to improve the performance 

of composite electrodes.  

Recently, surface modifications, particularly surface coating of electrode materials, has 

been shown to improve the performance of LIB electrodes. The coating materials for LIB 

electrodes are versatile, including carbon [75-77], metals (i.e., Ag, Sn) [78-80], and metal 

oxides (i.e., Al2O3, TiO2) [81-83] and other ceramics (i.e., AlF3, LIPON) [84-86]. The 

mechanisms of surface modification during cycling are not well understood. Usually, it is 

believed that surface coating has a strong effect on the surface chemistry, morphology, 

structure, and properties of surface film (SEI for negative electrodes). Further, surface 

modification may suppress metal dissolution by reacting with residual trace-amounts of 

HF in the electrolyte. Surface coatings can also change the interfacial kinetics, improve 

surface conductivity, and act as mechanical protecting layers.  

In general, nano-structuring and alloying are effective methods to enhance the capacity 

retention and cycling performance of LIB electrodes by reducing the stress level during 

lithiation and de-lithiation. However, efforts have to be made to overcome the issue of 

large amount of SEI formation and surface attack from the electrolyte due to the 
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relatively large ratio of surface area to volume. Surface modification is effective in 

suppressing the formation of SEI by changing surface chemistry. Practically, in order to 

produce LIB electrodes with high capacity and power density, good cycling performance, 

and reasonable packing density, multiple strategies mentioned above are needed. For 

example, Simon et al. electrodeposited Sn on current collectors of Cu nano-rods, and 

showed improved capacity at more than 500 cycles [41]. It was demonstrated that 

composite electrode consisting of nano sized Sn and C had stable reversible capacity of 

500 mAh g
-1

 up to 200 cycles [87, 88]. More recently, Cui et al. reported that double wall 

Si nanotube delivers capacity of more than 1000 mAh g
-1

 after 6000 cycles of 

charge/discharge [89]. 

2.3  Electrochemical Techniques for LIB Research 

Electrochemical and electroanalytical techniques can provide useful information about 

thermodynamics and kinetics of electrochemical systems, including equilibrium potential 

of reactions and types of reactions occurring in electrodes, reaction kinetics, 

thermodynamics information, and lithium diffusion in electrodes and electrolytes. 

Typically, electrochemical techniques require static or dynamic control of voltage or 

current while monitoring the change of both voltage and current. In this section, major 

electrochemical techniques used in this dissertation, including cyclic voltammetry and 

galvanostatic cycling, are introduced and discussed. 

2.3.1  Cyclic Voltammetry 

Cyclic voltammetry (CV) is one of the most commonly used electrochemical techniques 

to investigate the chemical reaction types, Nernstian (reversible) or non-Nernstian 

(irreversible) behavior of redox couples, formation potentials, and reaction mechanisms. 

CV is convenient and efficient in obtaining qualitative information, though it is usually 

not a good technique for quantitative studies.  

In a CV test, the potential of the system is swept linearly towards a peak position, and 

then returned to the initial value linearly. The procedure can be repeated multiple times. 
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During the potential sweep, current is monitored by a potentiostat. An illustration of a CV 

controlling profile is shown in Fig. 2.2 (a).  

The result of CV experiments is usually plotted as current vs. applied potential. An 

example of Sn vs. Li is shown in Fig. 2.2 (b). The information of this CV test include (a) 

irreversible reactions (the sharp region near 2.0 V, which is a result of reaction between 

lithium and residual oxygen, moisture, and other impurities in electrolyte), (b) reversible 

phase transformations (the peaks in Fig. 2.2 (b), which represents phase transformations 

of Li-Sn alloys with different compositions), and (c) potential of oxidation and reduction 

reactions (peak potentials). 

2.3.2  Galvanostatic Cycling 

Galvanostatic cycling is a very important electrochemical technique for LIB research, 

which provides charging and discharging profiles for LIBs under practical applications. 

In a galvanostatic cycling test, a cell is charged and discharged galvanostaticlly (constant 

current) between upper and lower voltage limits.  

The upper and lower voltage limits are determined by the Gibbs free energy of the 

electrode materials and their products during lithiation. For alloy-type negative electrodes, 

the lower limits are practically 10 to 50 mV, and the upper limits are practically 1 to 2 V, 

depends on the type of alloys. The lower limits are chosen to be higher than 0 V vs. 

Li/Li
+
 because at low potentials lithium tends to deposit on electrode surface, which 

eventually causes the growth of lithium dendrites, causing safety issues.  

The applied current is directly related to the power output of the electrode. Usually “C-

rate” is used to define the cycling rate of LIBs, where  C is defined as     hours per 

charge or discharge. Practically C/10 or C/5 is considered slow cycling, though it is non-

equilibrium.  
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There are three ways of plotting the results of galvanostatic cycling, namely potential-

capacity profile, differential potential-capacity profile, and cycling performance. Plenty 

of examples are given in later chapters of this dissertation.  

From galvanostatic cycling, we can obtain information about phase transformations in 

electrodes under different kinetics, rate performance, structure of the intermetallics 

during lithiation (crystalline or amorphous), potential range for practical use, and cycle 

life of LIBs.  
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Figure 2.1  Gravimetric and volumetric capacities for selected alloying reactions.  

Adapted from Reference [24]. Copyright © The Royal Society of Chemistry 2007. 
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(a) 

 

(b) 

Figure 2.2  (a) Controlling profile of a CV test. (b) An example of CV of Sn vs. Li.   
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Chapter 3  Whisker Formation on A Thin Film Tin Lithium-Ion Battery Anode 
1
 

3.1  Summary 

Tin (Sn) is a candidate material for negative electrodes of lithium-ion batteries (LIBs) 

because of its high theoretical energy capacity. In this chapter, we show an observation of 

Sn-whisker growth on Sn-thin films after lithiation and de-lithiation. The compressive 

stress generated by electrochemical lithiation of the Sn-thin films is likely the driving 

force for the growth of the Sn whiskers. Attention should therefore be paid to the issue of 

Sn whisker growth for Sn-based electrodes since Sn whiskers may penetrate through the 

separator, and short-circuit the electrochemical cell.  

3.2  Introduction 

LIBs are widely used as power supplies for various electronic devices due to their high 

energy and power densities. The growing demands for electronic devices, portable tools, 

and hybrid and all-electric vehicles require batteries with higher capacity and longer 

durability. Commercial graphite anodes used in LIBs have good cycling behavior with a 

capacity of 372 mAh g
-1

 [8]. Sn is one of the prominent materials for the negative 

electrodes of LIBs because of its high gravitational and volumetric capacities (992 mAh 

g
-1

 and 7262 mAh cm
-3

, respectively [24]). However, the volume change from pure Sn to 

its fully lithiated phase (Li4.4Sn) is approximately 260% [31]. This large volume change 

results in fracture and pulverization of the active material and poor cycling ability, which 

hinders its application as an electrode material. The large stress and strain created by 

volume expansion and contraction are the cause of cracks and fracture of the active 

materials [90-92].  

                                                 

1
  Reproduced from Journal of Power Sources, 196 (3): 1474-1477 (2011). Copyright © 

Elsevier B.V. 2010. 
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The electrochemical performance of Sn based alloys, such as Sn-Cu [93-95], Sn-Ni [87, 

95], Sn-Zn [96], and Sn-Co [97, 98], has been studied. Capacity retention is improved 

due to the formation of active/inactive structure in these Sn alloys. The cycling 

performance of materials can also be enhanced by using nano-scale structures [18, 99, 

100]. 

Furthermore, safety is a key issue for LIBs. But, there are few reports on the safety 

studies of Sn-based electrodes. In this work, we report the first observation of Sn-whisker 

formation after lithiation and delithiation. The Sn whiskers may be a safety concern for 

Sn-based LIBs. 

3.3  Experimental Section 

3.3.1  Thin Film Preparation  

Sn thin films were deposited on 0.5 mm thick stainless steel discs by radio frequency (RF) 

magnetron sputtering using an Advanced Energy system. A pure Sn target (99.998%, 

Kurt J. Lesker) of 25.4 mm diameter was used in the sputtering. Pre-sputtering was 

carried out in ultra-high-purity argon (Ar, 99.999%, Scott-Gross) at 50 W for 5 mins to 

remove any oxides and contaminations on the Sn target surface. Sn sputtering was 

performed in Ar with a working pressure of 3 Pa and a power of 30 W. The substrate was 

kept at room temperature of about 23°C during sputtering. The film thickness was 

recorded by a quartz crystal microbalance thickness monitor (Inficon) during sputtering, 

and was examined by a Dektak 3030 profillometer (Veeco) after sputtering. Immediately 

after sputtering, samples were annealed at 200°C under Ar atmosphere for 2 hours to 

remove internal stresses generated during the sputtering. 

3.3.2  Electrochemical Measurements 

The electrochemical performance of the as-prepared Sn thin films was evaluated using 

2025-type coin cells (Hohsen). The stainless steel substrate served as the current collector 

to obtain a uniform current distribution. Pure lithium foils (99.9%, Sigma Aldrich) were 
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cut into proper size and used as the counter electrode. Poly-propylene woven separators 

(Celgard 3501) were used in the coin cells. 1 M LiPF6 in ethylene carbonate / dimethyl 

carbonate (EC/DMC, 1:1 by vol.) was used as the electrolyte (Novolyte). Electrochemical 

performance was conducted using a VMP3 multi-channel potentiostat/galvanostat (Bio-

Logic). Galvanostatic cycling of the cells was carried out at a rate of C/10 between 1.2 V 

and 0.02 V.  

3.3.3  Characterization 

After cell disassembly, the Sn thin films were cleaned using DMC (99%, Alfa Aesar), 

and then examined by scanning electron microscope (SEM, Hitachi S-4300 at 3 kV) and 

field emission transmission electron microscope (FETEM, JEOL 2010F at 200 kV).  

3.4  Results and Discussion 

Before performing the first galvanostatic cycle, the Sn electrode was rapidly lithiated to 

1.2 V relative to pure Li to avoid the anomalous irreversible capacity during initial 

lithiation of Sn [101]. The initial galvanostatic cycle within the 0.02 V – 1.2 V potential 

window is shown in Fig. 3.1. The Sn thin film electrode had a reversible capacity of 725 

mAh g
-1

 during the first cycle. The irreversible capacity of 155 mAh g
-1

 at the first cycle 

was mainly due to the formation of solid electrolyte interphase (SEI) on the electrode, 

which consumed Li ions from the electrolyte [47]. After removing the effect of SEI on 

the initial lithiation capacity, the calculated Li to Sn atomic ratio is 3.2:1. This ratio 

suggests a combination of Li-Sn phases which do not have a long-range ordered structure 

[13]. The theoretical capacity of Sn (992 mAh g
-1

) is calculated based on the formation of 

the ultimate phase of lithiation, Li4.4Sn. However, it is difficult for Sn to be fully lithiated 

to the state of 4.4 Li atoms per Sn atom at room temperature, due to the limited 

diffusivity of Li atoms in Sn and LixSny phases, and due to the non-equilibrium 

electrochemical condition. Our results of Sn cycling show that even at a relatively slow 

rate of C/70, Li3.8Sn formed after full lithiation. This observation is consistent with a 

previous study [13]. 
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To compare the structural change of Sn-thin films due to the electrochemical cycling, the 

morphology of 500 nm Sn films before and after electrochemical lithiation, and after 

delithiation is shown in Fig. 3.2. During sputtering, Sn thin films were not uniform due to 

the high mobility of Sn atoms. Though the surface of the as-prepared Sn thin film was not 

uniform, there was no whisker growth observed after the sputtering. Furthermore, no 

whisker formation was observed after leaving the Sn thin films in ambient environment 

for 30 days. This indicates that the internal stress was negligible in the Sn-thin films after 

annealing. However, after lithiation, the formation of long Sn whiskers and large Sn 

hillocks was observed, as shown in Fig. 3.2 (b). The average number of Sn whiskers per 

unit area was calculated to be 1306 ± 280 in 1 mm
2
. The length of the Sn whiskers ranges 

from several µm to 30 µm, with a diameter of 150 to 300 nm. In addition, cracks formed 

on Sn thin films after the first lithiation/delithiation cycle, as shown in Fig. 3.2 (c). 

Fig. 3.3 (a) and (b) show the FETEM image of a randomly selected whisker after one 

cycle of lithiation/de-lithiation. The sharp edges and corners of the whisker in Fig. 3.3 (a) 

and the periodic atomic structure in Fig 3.3 (b) indicate that the whisker is a single crystal, 

whose crystal structure was confirmed by selected area electron diffraction (SAED, inset 

of Fig. 3.3 (a)) to be body-centered tetragonal (β-Sn) with the [01-2] direction along the 

axis of the whisker. There is an amorphous layer covering the crystalline whisker, which 

may be the remaining SEI layer [102] after sample cleaning by DMC or an oxide layer 

[103, 104] formed during the TEM sample preparation. While the majority of the layer is 

amorphous, a small portion shows aligned structure, suggesting crystallization of SEI as 

indicated by the circle in Fig. 3.3 (b). 

Sn-whisker formation and growth have been extensively studied, and Sn whiskers have 

been observed on electrodeposited and sputtered Sn thin films [105-107]. Sn whiskers 

usually form due to stresses which are generated during solid-state reaction of Sn and the 

Cu substrate to form intermetallic compounds, such as Cu6Sn5 [107-109]. Generally, 

whisker growth is a result of the compressive stress along the thickness direction of the 

film by a “squeeze out” mechanism [107, 110]. A related phenomena is the stress-

induced growth of nanowires caused by hundreds of MPa of compressive stress incurred 
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during film deposition [111]. Recently, the effect of aging time on Sn-whisker growth 

from thin films and their anode behaviors in LIBs have been studied [112].  

In the present experiment, intermetallics do not form between the Sn thin film and the 

stainless steel substrate. The formation of Sn whiskers is likely caused by the lithiation-

induced stress. During lithiation, Li and Sn form LixSn phases, which create large 

compressive stress in the Sn film because of volume expansion and constrain of the 

substrate. Our results of stress measurement using a home-built laser-curvature device 

show that the compressive stress in Sn thin films is about 700 MPa during lithiation. This 

compressive stress, which is higher than what is usually required for Sn whisker growth, 

leads to the “squeeze out” of Sn atoms form Sn whiskers during lithiation.  

Pure Li metal has several advantages over other anode materials for LIBs, including large 

specific capacity, and high energy density. However, a detrimental phenomenon that 

impedes the application of pure Li metal as anodes of LIBs is the morphological change 

of Li metal and the formation of Li dendrites [1, 113, 114] during electrochemical cycling. 

The Li dendrites can penetrate through the separator, short-circuit the electrochemical 

cell, and thus causes serious safety problems. Safety is more prominent in the application 

of large number of cells, such as hybrid and all-electric vehicles, than individual cells, 

since the probability of failure of a battery pack consisting of many individual battery 

cells in series is proportional to the number of cells. Problems with any individual cell 

could damage the whole power supply.  

The shear moduli of pure Sn and pure Li at room temperature are 19.0 GPa [115] and 4.2 

GPa [116], respectively. It is expected that the strength of single crystal Sn whiskers is 

much greater than single crystal and polycrystalline Li dendrites, because the theoretical 

strength of a single crystal is approximately 1/10 of its shear modulus. Similar to the 

lithium dendrites, Sn whiskers may also penetrate through the porous polymer separator 

and cause a short-circuit of the LIB. Actually, the initial interest in study on Sn whiskers 

was raised by the fact that Sn whiskers formed from solders could short-circuit electronic 

circuits and destroy electronic devices. The observed formation of Sn whiskers during 
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lithiation of Sn-thin film electrodes suggests the need for more detailed studies of 

whisker formation in alloy electrodes consisting of low melting point elements, such as 

Sn, as well as the effects of whiskers on the safely of LIBs.   

3.5  Conclusions  

In this chapter, we report the first observation of Sn whisker growth after lithiation of Sn 

thin film electrodes. The formed whiskers are pure Sn single crystal. The high 

compressive stress during lithiation is likely the driving force for the whisker growth. 

Since these whiskers may short-circuit the cells, more detailed studies of lithiation-

induced whisker growth and their safety implications are needed for Sn-based electrodes 

in LIB applications. 
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Figure 3.1  First cycle galvanostatic discharge/charge curve of Sn at C/10 rate.  

 

 

 

 

 

 



 

20 

 

 

(a) 

 

(b) 
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(c) 

Figure 3.2  (a) An SEM image of Sn after annealing at 200C for 2 hrs. (b) Surface 

morphology of Sn at the stage of full lithiation. The sample stage is tilted at 80. (c) 

Surface morphology of Sn after one cycle of Li insertion/extraction. The sample stage is 

tilted at 60. 
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(a) 

 

(b) 

Figure 3.3  (a) A TEM image of a randomly selected Sn whisker after one cycle of 

lithiation/delithiation. The inset SAED indicates single crystal whisker with [01-2] 

direction along the axis of the whisker. (b) Enlargement of the whisker in (a). Red circle 

indicates aligned structure of the amorphous shell. 
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Chapter 4  Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes 
2
 

4.1  Summary 

Cracking of electrodes caused by large volume change and the associated lithium 

diffusion-induced stress during electrochemical cycling is one of the main reasons for the 

short cycle life of lithium-ion batteries using high capacity anode materials, such as Si 

and Sn. In this chapter, we study the fracture behavior and cracking patterns in 

amorphous Si thin film electrodes as a result of electrochemical cycling. A modified 

spring-block model is shown to capture the essential features of cracking patterns of 

electrode materials, including self-similarity. It is shown that cracks are straight in thick 

films, but show more wiggles in thin films. As the thickness of film decreases, the 

average size of islands separated by cracks decreases. A critical thickness bellow which 

material would not crack is found for amorphous Si films. The experimental and 

simulation results of this work provide guidelines for designing crack free thin-film 

lithium ion battery electrodes during cycling by patterning the electrode and reducing the 

film thickness.   

4.2  Introduction 

The rapid development of portable electronics, hand tools, and electric vehicles demands 

ever higher capacity and more durable rechargeable batteries, in particular, lithium-ion 

batteries (LIBs). New battery electrode materials with higher capacity than the 

commercially available graphite and LiCoO2 are being explored extensively. The most 

promising materials for the anodes of LIBs are Si, Sn, Ge, and their alloys. However, 

these materials usually show a much shorter cycle life compared to commercial graphite 

electrodes. The main cause for the poor cycling behavior is fracture of electrodes, which 

                                                 

2
  Reproduced from Journal of The Electrochemical Society, 158 (6): A689-A694 (2011). 

Copyright © The Electrochemical Society 2011.  
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is the result of large volume change and the associated large diffusion-induced stress 

(DIS) [90, 117].  

Cracking during electrochemical lithiation and de-lithiation has been observed in 

electrode materials such as Si [118], Sn [18, 119], Si-Sn alloys [31], Ni-Sn alloys [119, 

120], and Ge [14]. Cracking patterns have also been observed and studied in other fields 

of inquiries, including deposition of amorphous Si film [121], drying of clays [122] and 

polymer paints [122], glasses [123], and aging of woods [124]. The ubiquitous and 

intriguing cracking patterns have generated broad interest in understanding the 

mechanisms of crack evolution and pattern formation in a number of fields. Several 

models have been proposed to simulate the cracking behaviors caused by drying and 

other physical and chemical shrinkage processes [122, 124-126]. Sadhukhan et al. 

proposed a one-dimensional spring chain model to mimic the cracking behavior in drying 

of polymer on different substrates [127]. Nag et al. developed this model to simulate two-

dimensional cracking patterns in polymer with additives [122]. Leung et al. developed a 

simple two-dimensional spring-block model which captured the essential features of 

cornstarch drying successfully [125]. Valette et al. developed a three-dimensional model 

to dynamically simulate the cracking on surface of a desiccating crusted soil [126]. In 

addition, finite element analysis has been applied to simulate fractures by shrinkage in 

various objects by several groups [128, 129]. 

In this chapter, we study crack pattern formation in amorphous Si (a-Si) thin film 

electrodes as a result of electrochemical lithiation and delithiation cycles. We also present 

a modified spring-block model to simulate crack pattern formation in thin film LIB 

electrodes. This work provides guidelines for designing LIB electrodes that do not crack 

during cycling. 
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4.3  Experimental Section 

4.3.1  Preparation of Thin Films 

Amorphous Si thin films were fabricated by sputtering Si onto 0.5 mm thick 430-type 

stainless steel (SS) disks in a commercial magnetron sputtering system (Advanced 

Energy). Prior to the sputtering deposition, the SS disks were ground and polished using 

50 nm Al2O3 colloidal to remove surface scratches which could affect crack formation. A 

25.4 mm diameter target of pure Si (99.995%, Kurt J. Lesker) was used for the sputtering 

deposition. Pre-sputtering was carried out at 100 W for 20 mins to remove oxides on the 

Si target surface. Si thin films were deposited using a RF power supply operating at 100 

W. During deposition, the chamber pressure was kept at 1 Pa of Ar. Film thicknesses 

ranged from 100 to 1000 nm, as measured by a quartz crystal microbalance (Maxtek) 

during deposition and by a Dektak profilometer (Veeco 3030) after deposition.   

4.3.2  Electrochemical Measurements   

After deposition, Si films were assembled in CR2025 coin-type half cells (Hohsen) for 

electrochemical examination. Pure Li metal (99.9%, Sigma Aldrich) foils were used as 

the counter electrodes. The electrolyte used was 1 M LiPF6 in ethylene carbonate / 

dimethyl carbonate (EC/DMC, 50/50 by volume, Novolyte). A computer-controlled 

multi-channel potentiostat (VMP3, Bio-Logic) was used to conduct the electrochemistry 

measurements. The coin cells were galvanostatically cycled at a rate of C/10 at room 

temperature (21°C). The high and low potential cut-offs for cycling the Si thin film 

electrodes were 2.0 V and 0.002 V relative to pure Li, respectively. Discharging refers to 

lithium going into Si (i.e., lithiation of Si), and charging refers to Li coming out of Si (i.e., 

de-lithiation of Si). 

4.3.3  Materials Characterization 

After cycling, scanning electron microscopy (SEM) imaging was performed using a 

Hitachi S-4300 with an acceleration voltage of 3 kV. 
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4.4  Modeling 

A computer program was implemented to simulate the cracking phenomena in thin film 

electrodes. The program is based on the model proposed by Leung et al. [125] and was 

modified to apply a constant strain,  , as the film contracts to simulate a constant rate of 

delithiation, which approximates the condition for galvanostatic charging [117]. This 

model consists of a two-dimensional array of hexagons with each side of the hexagon 

connected to its partner by a number of elastic springs, as illustrated in Fig. 4.1.  The 

purpose of this 2-D spring-block model is to keep the essential physics of cracking 

behavior, while avoiding going to the details of materials behavior, which usually 

complicates models largely.  

Initially, the hexagons are separated by a distance of one unit, with the strain   being 

expressed as the length change required for a spring to have a neutral length which would 

have no compressive or tensile force. The magnitude of the constant strain   in the model 

can be selected along with three other parameters, volume reduction   , the number of 

springs per side  , and the ratio of cracking to slipping force        . The parameter   

specifies whether a spring will be broken on a side of the hexagon or if the hexagon will 

slip to a new position using a threshold rule [125]. This ratio is related to the fracture 

strength of the active material and adhesion strength between the active layer and the 

substrate. The model is constructed using dimensionless units so it can be scaled. 

Once the initial conditions are set up, the evolution of the system is determined by the 

following four major steps. (1) The hexagons are displaced randomly by a small distance 

and a strain   is applied. (2) The force matrix is computed for all the hexagons, and for all 

sides of each hexagon. While   is fixed, the thresholds    and    are lowered until either 

is exceeded. (3) If    is exceeded by the forces on a bundle of springs, one spring with the 

largest net force is broken. (4) If    is exceeded by the net force on a hexagon, the 

hexagon is moved to an equilibrium position (slipping) where the net force on this 

hexagon is zero. After this step, the force matrix is recomputed for the system and steps 
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(2), (3), and (4) are repeated. The entire process takes multiple iterations to reach the final 

state when the generated cracking pattern does not change further. 

The above model is valid if    , as in the case for mud drying [125]. A LIB anode 

undergoes a large volume change during cycling [130], so that the Leung et al. model 

was modified to keep the overall strain on the system small albeit constant; in other 

words, the strain       , and does not decrease as the system shrinks. In the condition 

of constant current controlled cycling [117], there is a constant flux of Li passing through 

the electrode/electrolyte interface. The constant current charging case is equivalent to 

surface reaction controlled delithiation with very small electrochemical Biot Number (i.e., 

   ) [90, 131]. After a period, stress and strain in the electrode reach steady-state 

values which are independent of time [117]. Although strain is not the same everywhere 

in the electrode, the average strain is constant. To maintain this constant strain, a fifth 

simulation step is added: (5) After each iteration over steps (1)-(4) an image of the 

system is scanned to determine the total amount of shrinkage. From this an average 

hexagon size is computed and a new neutral spring length is determined to maintain the 

constant strain level. The new image is captured, and steps (2)-(5) are repeated until the 

total volume change reaches the pre-set value   .  

The number of springs per side   has the same effect as film thickness  , i.e., a large 

number of springs represents a thick film [125]. It is also found that   and   have the 

same effect on crack patterns. In other words, a fixed value of    gives the same 

cracking pattern. In this work   was fixed to be 0.5 for all simulations, which gave the 

number of springs per side   of 2, 3, 5, 7, and 10 corresponding to the 200, 300, 500, 700, 

and 1000 nm thin films in experiments, respectively. Different values of constant strain   

were found to best represent the data for differing thicknesses, with the highest 0.18 

being used for the thinnest 200 nm film and the lowest of 0.08 being used for the thickest 

film. This corresponds to strain being highest at the top of the film where delithiation 

occurs. By using the area of the cracks in the film plane and comparing it with the 
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existing volume shrinkage data, the amount of volume reduction    in the model was 

adjusted to present the in-plane shrinkage observed in experiments.  

4.5  Results and Discussion 

Fig. 4.2 (a) shows the typical cycling performance of a 500 nm thick a-Si film. It has 

been reported that phase transformation and crystallization occur during lithiation of a-Si 

[27]. The final product of lithiation of a-Si is crystalline Li15Si4. After full delithiation, 

material returns to the amorphous state with some residual Li15Si4 [23, 27]. However, 

there is no well-defined single-phase region (vertical line) or two-phase region 

(horizontal line) in the observed potential vs. charge profile, indicating that the reaction 

does not fully follow the Si-Li equilibrium phase diagram under the condition used in this 

experiment. The initial lithiation capacity of the 500 nm a-Si film is 3158 mAh g
-1

. The 

initial reversible capacity is 2680 mAh g
-1

, suggesting that the material is lithiated to a 

state of Li2.8Si which corresponds to 74% of theoretical capacity of Si (3600 mAh g
-1

). It 

is generally believed that the initial irreversible capacity is attributed to (1) the formation 

of a solid electrolyte interphase (SEI) on the surface of active material [47], (2) side 

reactions with impurities, and (3) partial loss of electronic contact due to expansion and 

contraction of the electrode material. The second cycle reversible capacity of the a-Si 

film decreases drastically to 1937 mAh g
-1

 (54% of theoretical capacity). The reversible 

capacity fades slowly with further cycling. After 30 cycles, the 500 nm thick a-Si film 

shows a reversible capacity of 1256 mAh g
-1

, corresponding to 35% of its theoretical 

capacity. Amorphous Si films with thicknesses of 200 nm and 100 nm show large 

irreversible capacity during the first cycle, and high reversible capacity retention with 

cycles (Fig. 4.2 (b)).  

Similar observations of severe reversible capacity dropping during several initial cycles 

of Si electrodes have been reported by other researchers [35, 132-134]. It is believed that 

this loss of reversible capacity (de-lithiation capacity) at initial cycles is not due to the 

formation of SEI because the formation of SEI is largely irreversible and does not 

contribute to the reversible capacity [47].  
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To understand the mechanisms responsible for severe reversible capacity reduction, cells 

are disassembled after electrochemical cycling and electrodes are examined by SEM. Fig. 

4.3 (a) shows the morphology of the as-deposited 500 nm a-Si thin film and the cracking 

patterns generated in a-Si films of selected thicknesses after lithiation/delithiation cycles. 

Before cycling, there is no crack in the a-Si films. After cycling, a-Si thin films break up 

into individual pieces separated by interconnected cracks. Though not connected with 

each other, most of the pieces are connected to the substrate, and remain active during 

lithiation and delithiation cycles. Since the SS substrate is about one thousand times 

thicker than the a-Si thin film, the curvature change of the substrate during 

electrochemical cycling is small. During delithiation, the removal of lithium from the 

LixSi phases causes a large tensile stress, which can be as large as several GPa and 

exceeds the tensile strength of a-Si [21]. Thus, interconnected, through-thickness cracks 

form in the a-Si thin films after electrochemical cycling.  

The generated crack patterns vary with thickness of a-Si thin films. For the 1000 nm thick 

a-Si thin film (Fig. 4.3 (b)), a branch of primary cracks propagates until reaching another 

branch, and all of these cracks are long and straight with a few sharp changes in direction. 

These cracks show a characteristic of crack “growth”, rather than crack nucleation. The 

islands separated by straight and long cracks show simple shapes. The number of crack 

initiation sites or the density of cracks (total length per unit area) in the final state is 

relatively small. With decreasing film thickness, cracks show more branches and wiggles, 

as shown in Fig. 4.3 (c) and 4.3 (d). Although most cracks are interconnected with each 

other, there are many places where cracks are unable to propagate. With more crack 

initiation sites, the density of cracks is higher. The islands separated by cracks have more 

complicated shapes.  

Fig. 4.4 shows representative simulation results of crack patterns generated by shrinkage 

using the modified spring-block model. Although this modified model is relatively simple, 

it shows a good agreement with experiments, as seen by comparing Fig. 4.4 with Fig. 4.3. 

When   =10 (representing the 1000 nm film, Fig. 4.4 (a)), cracks are straight with a few 

sharp changes in direction, and blocks separated by cracks have simple shapes. With 
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decreasing   (lowering film thickness), cracks show many wiggles and islands separated 

by cracks show complicated shapes. Furthermore, there are multiple sites in Fig. 4.4 (b) 

and 4.3 (c) where cracks stop growing at their tips. This spring-block model can be 

applied to simulate cracking in thin film LIB electrodes of other materials, such as Sn and 

its alloys, by choosing adequate values for the model parameters. The model parameters 

can be calibrated by experiments or theoretical calculation of the mechanical properties 

of electrodes. 

A scaling behavior is observed between the average cracked area   and the film thickness 

 , as shown in Fig. 4.5. This scaling behavior suggests a power-law relation:     , in 

which   was found to be 2.16, close to a recent prediction [125]. This relationship 

predicts the average area separated by cracks under a specific condition, including 

mechanical properties of active materials, rigidity of substrate, interface friction, and the 

film thickness. Because the exponent is a function of film thickness, the cracking pattern 

is not the same for all thin films. In fact, it shows that as the thickness decreases, the 

density of cracks increases until a critical thickness below which no crack is found. 

Therefore, it is reasonable to conclude that the active thin film materials would not crack 

during lithiation/delithiation if the characteristic size of active material is smaller than the 

predicted average cracked area  . To understand this phenomenon from a point of view 

of force equilibrium, a methodology similar to that proposed by Xiao et al. [39] is used. 

To simplify the problem, a square pattern electrode with length of     and height of   is 

shown in Fig. 4.6. Upon delithiation, the active material undergoes a tensile stress of   
  . 

However, the active layer cannot yield or fracture freely because of the constrain from 

the substrate and the friction at the active material/substrate interface    
   . Force 

equilibrium yields 
   
      

 
   

   , where the interfacial force    
    is the minimum of the 

shear flow stress of the substrate   
   and the interfacial friction strength   

   . For 

stainless steel   
   is about 186 MPa. Since the friction strength between metal and 

silicate composite   
    is about 40 MPa [135], the interfacial force is taken to be 40 MPa 
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as an approximation. The yield strength of lithiated Si is on the order of 1 GPa [21]. The 

one-dimensional (1-D) critical size for crack initiation can be calculated by 

     
  
  

   
                                                           (4.1) 

The calculated 1-D cracking size     is 10, 25, and 50 µm for 200, 500, and 1000 nm thin 

films, respectively. Although the relationship between the calculated 1-D critical size for 

cracking and film thickness does not match perfectly with experiments because of lack of 

accurate data on yield stress of lithiated Si and the friction between LixSi alloy and SS 

substrate, the linear relationship between 1-D critical cracking size and film thickness 

gives a relation of      with   =2, close to our prediction 2.16. It has been known that 

the adhesion strength between active materials and the substrate plays an important role 

in cycling performance and that cracking could affect the bounding strength [118]. Local 

buckling and delamination as a result of weak bonding between the active material film 

and the substrate could also affect the crack patterns [92]. However, since few peeling-off 

events were observed in this work, we assume that the a-Si layer has good adhesion with 

the SS substrate during cycling. 

From the discussions above, once an interconnected crack pattern is formed, stress in the 

thin film during cycling is not large enough to generate more cracks. We have observed 

experimentally that after stabilization of cracking patterns during the initial cycle, crack 

pattern does not change much with further cycling. However, surface roughness increases 

with cycling. Comparing Fig. 4.7 with Fig. 4.3 (c), we found that primary cracks do not 

change much with more cycling because the tensile stress is not large enough to generate 

new cracks. This observation suggests that pre-generated cracking in electrodes with 

proper dimensions could prevent further cracking in materials. It has been reported that 

properly patterned Sn alloy thin film [40] and Si thin film [39] would not crack further 

with electrochemical cycling. This method, pre-generating cracks in active materials or 

patterning the electrodes, can be applied to design more durable LIB electrodes which do 

not crack with cycling.  
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Furthermore, it is likely that a critical thickness    for crack generation exists based on 

Griffith’s fracture criterion of materials [136]. In this theory, crack initiates if the force to 

drive the crack was greater than the cracking resistant force. Cracking would occur if the 

stored strain energy was larger than the surface energy required for the new surface after 

cracking [136]. According to Griffith’s energy criterion, there is a critical thickness    

bellow which crack would not form. This critical thickness    can be calculated as [136] 

    √ 
   

        
                                            (4.2) 

where   and   are Young’s modulus and Poisson’s ratio, respectively.   is the stress in 

thin film, and    the cracking resistance force.    is directly related to fracture toughness 

of materials     by    
   

  
, where      for plane stress condition. Although 

mechanical properties for amorphous Si and its lithiated phases are largely unknown, we 

can estimate the order of magnitude of the critical thickness    for cracking in amorphous 

Si. Taking    =1 MPa m
1/2

 and  =0.2 for a-Si [137], and  =2 GPa [21], the calculated 

critical thickness is on the order of several hundred nm. The actual critical thickness 

should be smaller because the fracture toughness of LixSi is smaller than that of a-Si due 

to softening effect of lithiation [137]. Fig. 4.8 shows that interconnected cracks do not 

form in the 100 nm thick Si thin films up to 10 cycles of lithiation/de-lithiation. The 

critical thickness for crack initiation    in a-Si thin film is, therefore, between 100 and 

200 nm. 

In addition to the scaling behavior between cracking area and film thickness shown in Fig. 

4.5, the shape of crack patterns varies with film thickness  . Fig. 4.9 shows the area-

perimeter scaling and the fractal dimension of the crack patterns with different film 

thickness. In this work, the fractal dimension    is defined as the power of area to 

perimeter. For all the films, the cracked areas or islands show a power-law scaling 

behavior (Fig. 4.9 (a), 4.9 (b), and 4.9 (c)). For films with thickness between 1000 nm 

and 500 nm, a fractal dimension    close to 2 represents simple shape or Euclidean shape, 

which is a result of crack growth. When the film thickness decrease to 300 and 200 nm, 
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   decreases to 1.74 and 1.57, respectively, representing complicated shapes with 

concave edges. The complicated shape is formed because many cracks stop propagating 

before reaching other crack branches. 

4.6  Conclusions 

We investigated crack patterns generated during electrochemical cycling of amorphous Si 

thin film electrodes with thickness ranging from 200 to 1000 nm. A modified spring-

block model was used to simulate the crack patterns. Cracks generated in thick films are 

straight with a few sharp direction changes and the area separated by cracks is large. For 

thin films cracks show more wiggles and the average cracked area is small. After primary 

cracks form, crack patterns do not change further with electrochemical cycling, while the 

surface became rougher. The experimental and simulation results suggest two directions 

of designing electrodes which do not crack. One method is patterned electrodes in which 

the pattern size is smaller than the average cracked size for that specific film thickness. 

The other method is to reduce the film thickness to less than the critical thickness of 

cracking    (   is between 100 and 200 nm for amorphous Si on stainless steel substrate).  
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Figure 4.1  An illustration of the 2-D spring-block model. The model consists an array of 

hexagons, with each side of the hexagon connected to its partner by a number of elastic 

springs. Here 2 springs at each side are shown. 
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(a) 

 

(b) 

Figure 4.2  (a) First cycle potential profile for a 500 nm amorphous Si thin film. (b) 

Cycling performance of 500, 200, and 100 nm thick a-Si thin films. Solid symbols 

represent discharging and open symbols represent charging. 
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(a) 

 

(b) 
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(c) 

 

 (d) 

Figure 4.3  (a) An SEM image of a 500 nm a-Si film before electrochemical tests and 

cracking patterns formed on a-Si thin films of different thicknesses: (b) 1000 nm thick, 

after 5 cycles. (c) 500 nm thick, after 5 cycles. (d) 200 nm thick, after 10 cycles. 
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(a)                                              (b)                                           (c) 

Figure 4.4  Simulated crack patterns representing selected conditions. The crack to slip 

ratio   was fixed to be 0.5, and the number of springs per side   varies. (a)  =10, 

representing 1000 nm thick film. (b)  =5, representing 500 nm thick film. (c)  =2, 

representing 200 nm thick film.   

 

 

Figure 4.5  A scaling relationship between the average cracked area   and the film 

thickness  . The slop is found to be 2.16. 
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Figure 4.6  Schematic of a fractured piece of a-Si during de-lithiation. There is a tensile 

stress   
   in the thin film during de-lithiation, and a friction    

    at the interface of active 

material and substrate. Formation of the pattern could be a result of natural cracking due 

to cycling, or could be artificially produced to avoid further cracking of electrodes. 

 

 

Figure 4.7  An SEM image showing surface morphology of 500 nm thick Si films after 

10 electrochemical cycles. 
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Figure 4.8  An SEM image showing surface morphology of 100 nm thick Si films after 

10 electrochemical cycles. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4.9  Area-perimeter scaling for islands divided by cracks. The power law fitting 

gives fractal dimensions   , which is defined as the power of area to perimeter. (a) Film 

thickness is 1000 nm, after 5 cycles.   =2.01. (b) Film thickness is 500 nm, after 5 cycles. 

  =1.96. (c) Film thickness is 200 nm, after 10 cycles.   =1.57. (d)    as a function of 

film thickness. 
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Chapter 5  Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion 

Batteries 
3
 

5.1  Summary 

Improving the capacity and durability of electrode materials is one of the critical 

challenges lithium-ion battery technology is facing presently. Several promising anode 

materials, such as Si, Ge, and Sn, have theoretical capacities several times larger than that 

of the commercially used graphite negative electrode. However, their applications are 

limited because of the short cycle life due to fracture caused by diffusion-induced stresses 

(DISs) and the large volume change during electrochemical cycling. In this chapter, we 

present a strategy to achieve high capacity and improved durability of electrode materials 

using low-melting point metallic alloys. With gallium as an example, we show that at a 

temperature above the melting point of Ga, a reversible solid-liquid transition occurs 

upon lithiation (lithium insertion) and de-lithiation (lithium extraction) of Ga. As a result, 

cracks formed in the lithiated solid state can be “healed” once the electrode returns to 

liquid Ga after delithiation. This work indicates that cracking as a failure mode can be 

remedied using liquid metal electrodes. 

5.2  Introduction 

Lithium-ion batteries (LIBs) with high energy capacity and long cycle life are employed 

to power numerous consumer electronics devices, portable tools, implantable medical 

devices, and, more recently, hybrid electric vehicles (HEVs) and pure battery electric 

vehicles (BEVs) [2, 3]. Many elements react with Li to form binary alloys LixM (where 

M is, for example, Si [36], Ge [14], or Sn [18]). Their theoretical (Columbic) capacities 

are 3 to 12 times higher than that of graphite electrodes, as they host 2 to 4.4 Li atoms per 

                                                 

3
  Reproduced from Journal of The Electrochemical Society, 158 (8): A845-A849 (2011). 
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M atom, in contrast to a single Li atom per 6 C atoms. These LixM alloys also show a 

discharge potential close to that of the Li/Li
+ 

reaction [3]. These materials have, therefore, 

been considered as potential negative electrodes for LIBs. However, low cycle life due to 

mechanical degradation [90, 117] and current inefficiencies associated with undesired 

electrochemical reaction during cycling limits the application of these high capacity 

electrode materials in LIBs. 

Previous studies of the past 15 years that are focused on improving electrode durability 

can be divided into three categories: (1) alloying the Li-active materials with inactive 

elements, (2) building nano-structural electrodes, and (3) adding conducting and/or non-

conducting buffer components. Alloying Li-active with inactive materials improves 

battery cycle life significantly, such as alloying Sn with Cu [138] , Co [139], or Ni [140]. 

However, the total gravimetric and volumetric energy densities are lowered because the 

inactive elements contribute to extra weight and volume. Nano-structural electrodes, such 

as thin-film Si [35], Si nano particles [30], Si nanowires [36] and TiO2 nanowires [141], 

as well as porous transition metal oxides [142, 143], show improvements in cycle life 

compared to their bulk-material counterparts. However, nanostructuring reduces 

volumetric capacity of electrodes because of low packing density of nanowires, 

nanoparticles, and porous materials. Furthermore, nanostructured electrodes may suffer 

from increased irreversible capacity degradation due to excessive solid electrolyte 

interface (SEI) formation[47], and other deleterious reactions with the electrolyte 

(leading to reduced current efficiency relative to the desired lithiation reaction), because 

of their large surface area to volume ratio. Last, conducting additives and chemical 

binders, such as carbon black and polyvinylidene fluoride (PVDF), have been shown to 

improve the cycle life at the cost of extra mass and volume occupied by the additives.  

In this chapter, we demonstrate a strategy of achieving high capacity and durability using 

low-melting point, lithium active, liquid metals (LMs) as LIB negative electrodes. This 

idea is based on the premise that fracture and decrepitation in LMs during cycling can be 

self-healed by liquid-solid-liquid transition. We examine the reversibility of lithiation of 

the LM pure Ga at 40°C, as a negative electrode for a LIB. Ga hosts 2 Li atoms per Ga 
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atom upon full lithiation, delivers a theoretical gravimetric capacity of 769 mAh g
-1

 by 

forming Li2Ga alloy [144], and shows a discharge potential close to the Li/Li
+ 

reaction. It 

has been shown that LiGa alloys [145], CuGa alloys [146], and Ga confined in carbon 

matrix [147] deliver capacities of about 200 to 400 mAh g
-1

 upon extended cycling. 

5.3  Experimental Section 

5.3.1  Cell Assembly  

Commercial pure gallium (Ga) metal (99.99%, Alfa Aesar) was applied onto 0.025 mm 

thick 304-type stainless steel (SS) foils (Alfa Aesar) without any binder or conducting 

additive. The thickness of Ga film on SS substrate was controlled to be about 1 µm, and 

the mass of Ga was precisely measured by a microbalance (XS205, Mettler Toledo). 

Samples were assembled into CR 2025-type coin cells (Hohsen) in an argon-filled glove-

box (MBraun) with oxygen and moisture contents less than 0.1 ppm. Li metal foils 

(99.9%, Sigma Aldrich) were used as the counter electrode (CE). One piece of Celgard 

3501 separator soaked  in the electrolyte solution consisting of 1M LiPF6 dissolved in a 

mixture of ethyl carbonate and dimethyl carbonate (EC/DMC, volumetric ratio 1:1)  

(Novolyte) was used in making the  coin cells. 

5.3.2  Electrochemical Measurements 

Cycling performance of coin cells was evaluated using a potentiostat (VersaSTAT 3, 

PAR). The cells were galvanostaticlly cycled between 2.0 V and 0.005 V at various rates. 

During cycling, coin cells were kept in an environmental chamber (Test Equity) with 

precise temperature controlled at 40, 20, and 10°C, according to the experimental needs. 

The temperature fluctuation is less than ±0.1°C. In this work charging refers to lithiation 

and discharging refers to delithiation. Electrochemical Impedance Spectrometry (EIS) 

was conducted using a potentiostat (2273, PAR) at 40°C and 10°C, respectively. Before 

each EIS measurement, coin cells were cycled 5 times for stabilization, and then held at 

0.890 V until the current was less than 10 nA. The amplitude of the ac signal applied to 

the electrodes was 8 mV and the frequency was varied from 10
5
 to 5×10

-3
 Hz.  
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5.3.3  Materials Characterization 

Before characterization, the cycled cells were disassembled and the WE was washed by 

DMC (99%, Alfa Aesar). Ex-situ x-ray diffraction (XRD) was carried out using a D8 

Discover (Bruker AXS) system with Cu Kα radiation (wavelength 1.54 nm). Samples 

were maintained at 40°C during XRD tests. Scanning electron microscopy (SEM) 

imaging was performed using a Hitachi S-4300 with an acceleration voltage of 3 kV. A 

high sensitivity energy dispersive x-ray spectrometer (EDS, PGT) was used to conduct 

chemical analysis. 

5.4  Results and Discussion 

The melting point of pure Ga is 29.8°C. Electrochemical cycling tests in this work were 

held at 40°C to ensure the liquid state of pure Ga. Different from the Ga-Li equilibrium 

phase diagram [148] and observations of Li in Ga at 415°C [144], three intermetallic 

phases, Li2Ga7, LiGa, and Li2Ga, form during the electrochemical reaction of Ga with Li 

at 40°C. The potential-capacity profile in Fig. 5.1 clearly shows four narrow single-phase 

regions, as well as two-phase regions (plateaus). The theoretical Coulombic capacity in 

going from Ga to Li2Ga corresponds to 769 mAh per gram of Ga.  The electrode used to 

generate the data of Fig. 5.1 yielded 700 mAh/g, about 91% of the theoretical value, 

which indicates that the vast majority of the Ga within the electrode was utilized for 

reaction with Li. The hysteresis in the potential profile of Fig. 5.1 is not well understood 

at this time; we suspect that although 50 hours were employed for each of the low-

current-density charge and discharge experiments, irreversible phenomena still intrude on 

the results.  

The morphology changes of Ga at various stages of cycling were examined by ex-situ 

SEM, as shown in Fig. 5.2. Before cycling, the applied Ga forms a uniform thin layer on 

the stainless steel substrate (Fig. 5.2 (a)). After full lithiation, the alloy becomes solid and 

surface roughness increases (Fig. 5.2 (b)). Through-thickness interconnected cracks form 

in the alloy primarily during delithiation (Fig. 5.2 (c)). After cycling, most cracks 
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disappear because the alloy returns to pure Ga, which is a LM at 40°C (Fig. 2d). Thus, 

cracks are self-healed by the solid-to-liquid transformation of the Ga electrode.  

Based on and electrochemical results and ex-situ XRD results, and consistent with the 

previous work of Saint et al. [145], the electrochemical reaction of liquid Ga with Li at 

40°C can be summarized to good approximation as  

Lithiation:             
  
→       

  
→    

  
→                            (5.1) 

Delithiation:        
   
→     

   
→       

   
→                            (5.2) 

To further understand the effect of a liquid electrode on the electrochemical performance, 

the discharging voltage-capacity profiles of (a) liquid Ga (40°C) and (b) solid Ga (21°C) 

at a C/2 rate are compared in Fig. 5.3. For Ga at 40°C, the GaLix compounds are solid at 

this temperature. After the cell reaches the final plateau near 0.9 V, the electrode is a 

mixture of solid Li2Ga7 and liquid Ga. Because Li diffusion in liquid Ga is much faster 

than in a solid, Li diffusion in solid Li2Ga7 is rate limiting at this stage. After reaching the 

liquid Ga single phase (starting at about 0.95 V), most of the electrode is liquid and Li 

diffusion is especially fast. Thus, the cell potential increases to the upper potential limit 

quickly. For the case of solid Ga at 21°C, after reaching the final potential plateau, the 

electrode is a mixture of solid Li2Ga7 and solid Ga, where Li diffusion is relatively slow. 

Because of the slow diffusion, the boundary between Ga single phase region and Li2Ga7-

Ga two-phase region is not clearly defined. Hence, the potential rises much more slowly 

for the case of solid Ga. 

The discharging potential-capacity profiles of Ga LM in the second cycle with various 

rates are compared in Fig. 5.4 (a). Before each discharging, the cells were charged at 

C/20 rate to ensure full lithiation of Ga. It is seen that as the discharging rate increases, 

the potential of each two-phase region increases slightly, which is an indication of 

polarization due to limited diffusivity of Li in lithiated Ga phases. The total capacity 

decreases with increasing discharging rate. Ga reaches a capacity of 626 mAh g
-1

 at C/5 
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discharging rate, which is a standard rate to evaluate the performance of electrode 

materials. Even at a fast rate of 2C, Ga still delivers a considerable discharge capacity of 

560 mAh g
-1

. The formation of LiGa delivers a capacity of 385 mAh g
-1

 and that of Li2Ga 

delivers a capacity of 769 mAh g
-1

, which is the theoretical maximum capacity of Ga. 

The capacity versus cycle number for liquid Ga at 40°C is shown in Fig. 5.4 (b).  

Efficiency was calculated from the ratio of delithiation to lithiation in each cycle. The 

charging rate was C/20 and the discharging rate was C/5. A gradual decrease of capacity 

with cycling is apparent. Commercial lithium salt based electrolytes show fast Li 

diffusivity and moderate application temperature range compare to other types of 

electrolytes, such as ionic liquids and solid electrolytes. However, there is a drawback of 

SEI forming on top of electrodes when the WE is charged (lithiated) to below 0.7 V vs. 

the Li/Li
+ 

reaction. The SEI consumes electrolyte, lithium, and electrode material. This 

SEI layer cannot be dissolved during the reversal electrochemistry process and 

contributes to irreversible capacity loss. For most negative materials, SEI formation 

completes in the first few cycles and facilitates Li transportation during subsequent 

cycling. In this work, because the Ga electrode is in liquid state at the beginning of 

charging and returns to liquid at the end of discharging at each cycle, the SEI may come 

off the electrode surface and is no longer stable. Thus, fresh SEI forms during every cycle 

and brings irreversible capacity loss. This is likely the continuous capacity drop with 

cycling, as indicated in Fig. 5b. To commercially apply liquid metal with low discharging 

potential, formation of SEI has to be avoided using other methods, such as using 

electrolytes that do not form SEI.  

Fig. 5.5 shows the EIS measurements of Ga/Li coin cells. The measurements were 

conducted at 0.890 V, which is Ga single phase region (Fig. 5.1). Both plots are 

composed of a depressed semi-circle at high frequency range, a short straight line with 

approximately 45° at medium frequency range, and a steeper ling at high frequency 

range. The depressed semi-circle is attributed to SEI film and charge-transfer process, the 

45° straight line is attributed to the Warburg diffusion process, which is lithium diffusion 

in active materials, and the steeper line is the onset of finite length diffusion. The 
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Warburg diffusion happens at a frequency range of 125-3 Hz for 40°C, and 10-0.3 Hz for 

10°C, which indicates that the charge-transfer process at high temperature is much faster. 

The diffusion coefficient can be calculated for the Warburg diffusion stage using [149] 
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where    (cm
3
 mol

-1
) is the molar volume of liquid or solid Ga,   is Faraday constant,   

is the area of WE,   is the linear dependence of Z’ or Z’’ on       (  is the angular 

frequency),       is the composition dependence of potential, respectively. The value of 

      is approximately calculated from potential profile of slow cycling (C/50 rate). 

The diffusion coefficient of Li in liquid Ga is 1.4×10
-9

 cm
2 

s
-1 

for 40°C and is 3.7×10
-11

 

cm
2 

s
-1

 for solid Ga at 10°C. The two orders of magnitude difference in the diffusion 

coefficients consistent with the discussion of the voltage-capacity profiles in Fig. 5.3. 

5.5  Conclusions 

In this chapter, we demonstrate the concept of using low-melting point metal/alloys as 

lithium-ion battery electrodes. A conceptual picture consistent with all of the 

experimental observations is given in Fig. 5.6 for self-healing liquid metal electrodes. 

The liquid metal electrode undergoes crystallization upon lithiation and transforms to a 

solid electrode. During delithiation the solid phases are transformed to the liquid state. 

Cracking forms in the electrode mostly during delithiation and can be self-healed by the 

solid-to-liquid transformation. Since many low melting point alloys exist and can 

potentially store large quantities of Li, the liquid metal approach demonstrated by liquid 

Ga may be generalized to many systems of technological significance.  
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Figure 5.1  Galvanostatic voltage-capacity profile of Ga at 40°C. The cycling rate was 

C/50. The letters a, b, c, and d correspond to different states for the SEM images of Fig. 

5.2.  
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(a) 

 

(b) 



 

52 

 

 

(c) 

 

(d) 

Figure 5.2  Morphology changes of Ga with cycling. Figures are taken from different 

states of cycling depicted in Fig. 5.1: (a) Ga before cycling, (b) after full lithiation, (c) 

cracks formation in Ga-Li alloy during delithiation, and (d) cracks are self-healed by the 

solid-liquid transformation. 
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Figure 5.3  Discharging voltage-capacity profiles of liquid Ga (40°C) and solid Ga (20°C) 

at C/2 rate. 
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(a) 

 

(b) 

Figure 5.4  Electrochemical data for the liquid Ga electrode. (a) Rate dependence of 

discharging voltage-capacity profiles of Ga at 40°C. The cell was charged to 0.005 V at 

C/20 rate before each discharging. (b) Capacity versus cycle number for liquid Ga at 

40°C. The charging rate was C/20, and the discharging rate was C/5. 
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Figure 5.5  Nyquist plot of EIS of liquid (40°C) and solid (10°C) Ga at 0.890 V vs. Li/Li
+
. 

Inset shows the magnified impedance spectra at high frequency. 
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Figure 5.6  Schematic of morphology changes in liquid electrode during cycling. (a) 

Liquid metal electrode on a solid substrate before electrochemical cycling. (b) Liquid 

solidifies and expands during lithiation. (c) Cracking occurs in solid mainly during 

delithiation. (d) Electrode returns to the liquid state during delithiation. Cracks are self-

healed by the solid-to-liquid phase transformation. 
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Chapter 6  Potentiostatic Intermittent Titration Technique (PITT) for Electrodes 

Governed by Diffusion and Interfacial Reaction 
4
 

6.1  Summary 

The Potentiostatic Intermittent Titration Technique (PITT) is one of the widely used 

methods for determining the diffusion coefficient in electrochemical materials, such as 

lithium diffusion in lithium-ion battery electrodes. The conventional PITT analysis 

neglects interfacial resistance and assumes the system is diffusion controlled. For real 

electrode systems, however, surface reaction, as well as diffusion, may be rate limiting. 

In this chapter, we analyze PITT measurements for material systems with finite surface 

reaction rates. For small amplitude potential steps, we derive analytic solutions for the 

measured transient current associated with PITT, taking into account the effects of finite 

surface reaction rates. Using the analytic solutions, the diffusion coefficient, surface 

reaction rate, and the exchange current density can be determined simultaneously. An 

example of lithium diffusion in amorphous silicon thin-film electrodes is used to 

demonstrate the enhanced PITT approach. 

6.2  Introduction 

The potentiostatic intermittent titration technique (PITT) is a powerful technique to study 

the thermodynamic and transport properties of materials encountered in electrochemical 

processes. Because voltage and current can be controlled and measured precisely, PITT 

has become a commonly used electro-analytical method. Specifically, PITT has been 

used to measure the diffusion coefficient,  , of solutes in host materials, as well as to 

obtain quasi-equilibrium voltage-capacity profiles of battery electrodes after it was first 

developed by Wen et al. to study LiAl alloys [149, 150]. Recently, PITT has been widely 

                                                 

4
  Reproduced from The Journal of Physical Chemistry C, 116 (1): 1472-1478 (2012). 

Copyright © American Chemical Society 2012. 



 

58 

 

applied to characterize lithium diffusion in various lithium-ion battery (LIB) electrode 

materials, especially graphite negative electrodes [151, 152] and transition metal oxide 

positive electrodes [153-159].  

    The original PITT theory was developed based on a thin-film geometry with diffusion 

across the thin electrode dimension [150]. Diffusion of only one species was allowed and 

nucleation of new phases was not considered. Furthermore, the surface reaction rate was 

assumed to be infinitely fast; i.e., surface reaction resistance was not considered. In 

practice, it has been challenging to apply PITT to electrochemical systems because many 

systems do not satisfy all of the assumptions. Thus, several researchers have modified 

PITT to be applicable to various electrochemical systems. For instance, Markevich et al. 

analyzed the PITT theory in a phase-transformation region which involves slow 

nucleation, and pointed out that   determined by PITT is less accurate than that by the 

galvanostatic intermittent titration technique (GITT) [160]. Levi et al. studied the PITT of 

lithium-graphite in the two-phase regions using a two parallel diffusion paths model [161] 

and a moving boundary model [162]. In addition to phase transformation, it has been 

realized that the resistance to surface reaction may affect the overall electrochemical 

behavior. For example, Montella considered possible limitations by insertion reaction 

kinetics, and developed analytic solutions for PITT [163]. Levi et al. developed 

approximate analytic solutions for PITT by considering Ohmic drop using a generalized 

dimensionless kinetic parameter (            ) [164], and applied this technique to 

lithium diffusion in polymer electrode using a two-step refinement method [165]. 

Churikov et al. considered phase transformation and surface resistance for lithium 

diffusion in multiple spheres, and calculated   of lithium in LiFePO4 by numerical fitting 

of parameters to experimental data [166]. More recently, Delacourt et al. applied PITT to 

determine the lithium diffusion coefficient in LiFeSO4F by using an analytic solution of 

diffusion in spheres with surface reaction resistance [159]. 

In this chapter, we consider the influence of resistance to surface reaction in analyzing 

the diffusion of species within a host material during PITT for small potential-step 

excitations, and we provide analytic solutions to the concentration distribution and 
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resulting current response. Using this simple analytic model of PITT, one can determine 

the diffusion coefficient and surface reaction rate (yielding the exchange current density) 

simultaneously. Using lithium diffusion in thin film amorphous silicon as an example, we 

show that the diffusion coefficient can be underestimated without considering the finite 

surface reaction rate. This enhanced PITT model is expected to be applicable to many 

systems wherein diffusion and surface reaction resistance are both important phenomena. 

6.3  Thermodynamics and Electrochemistry 

We consider the electrochemical reaction at the electrolyte-electrode interface   

  eLi  


host

0Li                                                   (6.1) 

representing the lithiation and delithiation of alloy-type LIB electrodes. Using the Butler-

Volmer relation, we express the current density   at the electrode surface driven by the 

surface overpotential    [167, 168] 

    [ 
        

    
     

  ]                                                      

where    is the exchange current density,   is the symmetry factor,   is the Faraday’s 

constant,   is the gas constant, and   is the temperature. The surface overpotential is 

given by       , were   is the applied surface potential of the electrode and   is the 

equilibrium potential. Our primary objective is to measure the Li diffusion coefficient 

and ensure accuracy by correcting for the intrusion of interfacial resistance on the 

measurement. Thus, we consider a treatment wherein the potential is stepped from its 

initial equilibrium value to reach an effective steady state (to be denoted by subscript  ) 

at the new potential value. Since the overpotential in a PITT experiment of the type we 

consider is small, Eq. (6.2) can be linearized about small    giving rise to what is 

commonly referred to as linear kinetics [167]: 
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For sufficiently long times, the current and overpotential tends to zero and  →     . 

For the PITT analysis, we consider small potential steps over which the lithium 

concentration within the host material does not deviate substantially from its initial value. 

Although    and   are both concentration dependent, they can be approximated, using 

Taylor expansion about the final (equilibrated, steady state) concentration   , as 

     |  
   
  

|
 

              
  

   |  
  

  
|
 

              
  

Discarding terms of order       
  and higher, represented by        

 , we obtain 

the following expression of the current-potential-concentration reaction: 

  [  |  
   
  

|
 

      ]
 

  
[  ( |  

  

  
|
 

      )]                  

Again, discarding terms of        
  and higher, and noting      per the discussion 

above, we obtain 

   
 

  
   |  

  

  
|
 

                                                

A similar perturbation analysis can be employed to show that for small potential 

excitations, Fick’s law prevails for the Li flux relation. The intercalate flux at the 

electrode surface is thus given by  

  
 

 
   

  

  
                                                   

where   is the chemical diffusion coefficient associated with the concentration   . Using 

Eq. (6.4) and (6.5), we can write the interfacial boundary condition as  
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where    
   | 

  

  
|
 

   
 is the electrochemical Biot number, a dimensionless parameter that 

is the ratio of diffusion resistance to that of the surface reaction [90, 131], similar to the 

dimensionless parameters Λ [163, 164, 169],   [170, 171], and    [172] from literature. 

For a PITT experiment such as what we investigate,   is a fixed value. A large   

represents a fast surface reaction compared to diffusion and vice versa. Eq. (6.6) is 

mathematically equivalent to the “radiation boundary condition” in heat transfer 

problems [173] and surface evaporation to a well stirred environment [174].  

6.4  Analytic Solutions 

To describe the diffusion of the guest within the host material consistent with the 

previous discussion, we recognize that for small overpotential excitations and deviations 

in  , the diffusion equation can be linearized [175] . Thus, we employ Fick’s Second 

Law 

  

  
  

   

   
                                                                

to describe the solid-state lithium diffusion through the thickness of a slab during the 

PITT analysis.  

Initially, lithium is in equilibrium within the electrode: 

                                                           

The electrode is connected to the current collector at one end (   ) and lithium cannot 

transport through the electrode and current collector interface. Thus, we have a boundary 

condition 
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Using the analogy between heat conduction [173] and diffusion [174], the analytic 

solutions of concentration profile can be acquired. The solution may comprise error 

functions or trigonometric series, for short or long times, respectively.  

The analytic solution of Eq. (6.7), with initial condition (6.8a) and boundary condition 

(6.6) and (6.8b), is [173] 

         

     
     ∑

   [  (  
 
 
)]

   
            

 

   

   (   
 
  

  
)                   

where    ( =1, 2, 3,…) are the positive roots of        . This solution converges 

quickly for long times, i.e., 
  

  
  .  The solution can also be expressed in terms of error 

functions that converge rapidly for short time (
  

  
  ) [173]:  
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  √

  

  
      

    

 √  

    ( 
    

 
   

  

  
)      

    

 √  
  √

  

  
                                          

Dimensionless concentration profiles in the electrode for various   values at short times 

  

  
   are plotted in Fig. 6.1. When the electrochemical Biot number is large, i.e.  =100 

in Fig. 6.1 (a), the surface reaction is fast compared to the diffusion process. The 

concentration just inside the surface reaches    quickly. The concentration profile is 

similar to the case of infinitely fast surface reaction, as in the original PITT theory 

developed by Wen et al [149, 150].  

When the surface reaction rate is comparable with diffusion, i.e.  =5 in Fig. 6.1 (b), the 

concentration near the surface increases slowly to   . The characteristics of the 

concentration profile are between that which is obtained for constant concentration and 

constant flux boundary conditions. When the surface reaction is rate-limiting, i.e.  =0.05 

in Fig. 6.1 (c), the concentration inside the electrode increase slowly (note the small 
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range of concentration in Fig. 6.1 (c)). In this case, the problem statement tends to that of 

constant flux [90, 117, 149, 163]. This can be further demonstrated by examining 

concentration profiles at longer time.   

The electric current is related to the concentration gradient of solute at the electrode-

electrolyte interface, as described by Fick’s First Law. Neglecting higher-order terms, the 

short time (
  

  
  ) transient current under potentiostatic operation corresponds to    

     
  

  
    (  

  

  
)     ( √

  

  
)                                  

where we have employed the relation              ) [149]. Here   is the total 

charge transferred during the applied potential step ∫    
 

 
,   is the surface area of the 

electrode, and   is the charge number of the electro-active species ( =1 for Li
+
). 

Comparing Eq. (6.11) with the traditional expression for the electric current under PITT 

operation (Eq. (15) in Reference [149]), we note that the electrochemical Biot number, as 

well as the diffusion coefficient, enters in the equation for the electric current. 

Furthermore, when the surface reaction is infinitely fast compared to diffusion, or when 

  approaches infinity, we have  

   
 → 

        
 → 

  

  
    (  

  

  
)     ( √

  

  
)  

 

 
√

 

  
                    

This is the same as the current response to constant surface concentration condition (Eq. 

(15) in Reference [149]).  

Using Eq. (6.11), we plot the dimensionless transient current response vs.  
  

  
      with 

for various   in Fig. 6.2. When   is infinitely large, the transient current for short time is 

a straight line with the slope equal to √
 

 
, consistent with the constant surface 
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concentration condition. As   decreases, the range of the linear region and the slope of 

the current vs.  
  

  
      both decrease. Since the diffusion coefficient   is determined by 

the slope of the linear region in the original PITT theory, the diffusion coefficient   may 

be underestimated using the linear fitting method when   is finite or interfacial resistance 

is large, which is consistent with previous publications [163, 176].  

The concentration profile in the electrode with different   at long times 
  

  
   is plotted 

in Fig. 6.3. When the surface reaction rate is facile relative to the diffusive process 

( =100 in Fig. 6.3 (a)), the concentration just inside the surface reaches the maximum 

concentration quickly, and the concentration profile is close to constant concentration 

condition. The concentration in the electrode increases quickly and the dimensionless 

concentration reaches 0.9 when 
  

  
 is greater than 1.1. Similar trends in concentration 

profiles can be found in Fig. 4 of Ref. [163], which illustrated the concentration evolution 

under diffusion controlled processes [163]. When surface reaction is comparable to the 

diffusion, i.e.  =5 in Fig. 6.3 (b), the concentration in the electrode increases slowly. The 

concentration just below the surface is smaller than unity at 
  

  
=2, and the entire 

dimensionless concentration does not reach 0.9 until 
  

  
 is greater than 1.4. When surface 

reaction is the rate-limiting process ( =0.05 in Fig. 6.3 (c) and 6.3 (d)), the concentration 

inside the electrode increases slowly. This is similar to the concentration profiles for 

galvanostatic (constant flux) operations [90, 117, 149, 163]. Under this condition, 

concentration in the electrode increases quasi-uniformly to reach the maximum value 

(Fig. 6.3 (d)).  

Substituting Eq. (6.9) into equation (6.5) and neglecting the higher-order terms, we find 

that the transient current at large time (
  

  
  ) can be expressed as   

     
   

  
  

   
       

   (   
 
  

  
)                                     

Rearrangement of Eq. (6.13) yields 
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  [    ]    (
   

  
)    [

  

   
       

   (   
 
  

  
)]                         

Fig. 6.4 shows the plot of   [    ]    (
   

  
) vs. 

  

  
 for various   values. The slope of 

the line is  
  

 
 when   is infinite. With decreasing  , the slope of the linear fit of the 

curve decreases. The intercept of the line is 0 only when   is infinity. With decreasing  , 

the intercept of the line is negative. Thus,   can be underestimated by using the slope or 

intercept of   [    ] vs.   plot without considering the effect of surface reaction rate (cf. 

equation (16) in Reference [149]), in agreement with previous publications [163, 176]. 

 As  →  ,   →
    

 
 , and we have  

   
 → 

        
 → 
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Eq. (6.15) is the same as current response to constant concentration condition at long time 

(Eq. (16) in Reference [149]).  

According to Eq. (6.14),   and   can be determined simultaneously from the linear plot 

of     vs.   by solving three equations:  

   
 
 

  
       

  [
     

   
         

]                                     

                                                                     

6.5  Experimental 

6.5.1  Sample Preparation 

Amorphous Si thin films were deposited on Cu foil by means of E-beam evaporation. 

The Si working electrode (WE) was assembled into CR2032 coin cell with pure lithium 
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metal (Alfa Aesar) as the counter electrode (CE). One piece of Celgard 3501 separator 

soaked with electrolyte (1 M LiPF6 salt in 1:1 ratio of ethylene carbonate:dimethyl 

carbonate) was used in the coin cell. 

6.5.2  Electrochemical Characterization  

Electrochemical tests were conducted using a Bio-Logic potentiostat (VMP3) at room 

temperature. Before the PITT experiment, the coin cell was galvanostatically cycled four 

times between 1.0 and 0.3 V in order to form a substantially stable SEI layer and remove 

the influence of side reactions that are prevalent during the first couple cycles. The lower 

voltage limit of 0.3 V was chosen to ensure shallow cycling and prevent cracking in the 

Si thin films [177], which may affect diffusion behavior. Within each half cycle, the 

capacity was measured to be less than 20% of the theoretical capacity of Si. The PITT 

experiment was carried out during discharging from 0.395 V to 0.390 V. Voltage was 

applied on the cell until the current fell below the equivalent of 1 mA g
-1

 (about C/3600). 

The 1000 and 100 nm thick Si films were used for short time and long time evaluation of 

PITT, respectively. 

6.6  Results and Discussion 

The diffusion coefficients   calculated by different methods are compared in Table 6.1. 

For testing the short time non-linear fitting method, PITT data were obtained during   < 

400 s (Fig. 6.6) using a 1,000 nm thick Si film. For testing the long time linear fitting 

method, PITT data were collected during    > 600 s (Fig. 6.7) using a 100 nm thick Si 

film. The data points displayed are much fewer than the actual experimental data points 

so that the data and the fit can be discerned. For short times,   is calculated by a least-

square nonlinear fitting method (Curve Fitting Toolbox in Matlab) according to Eq. (6.11) 

and linear fitting according to Eq. (15) in Reference [149]. For long times,   is calculated 

by solving Eq. (6.16) with parameters obtained from Fig. 6.7. As shown in Table 6.1 the 

diffusion coefficient of lithium in amorphous silicon at 0.390 V varies from 1.0×10
-13

 to 

1.4×10
-13

 cm
2 

s
-1

. The electrochemical Biot number   is calculated to range from 45 to 50, 
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which shows that both surface reaction and diffusion contribute to the system behavior. 

The lithium diffusion coefficient in amorphous Si using the traditional PITT theory are 

calculated to range from be 0.7×10
-13

 to 1.1×10
-13

 cm
2 

s
-1

, close to values reported 

previously [178-180]. The lithium diffusion coefficient calculated by either Eq. (6.10) or 

Eq. (6.16) is larger than that calculated by the traditional short and long time linear fitting 

methods. The results suggests that the diffusion coefficient may be underestimated using 

the traditional methods when surface reaction rate is not infinitely fast or   is finite. 

Because the electrochemical Biot number is relatively large here, the system is biased to 

diffusion control, and the diffusion coefficients obtained considering the surface reaction 

rate are close to those using traditional methods. The diffusion coefficient calculated 

using traditional methods may be much smaller if the surface reaction is slow or if, more 

generally,   is smaller, such as can be the case for graphite electrodes [90].  

Furthermore, the exchange current density   |  can be calculated from the definition of 

the electrochemical Biot number in Eq. (6.6). Note that the dependence of equilibrium 

potential on concentration, 
  

  
|
 
 , can be obtained separately by slow (quasi-equilibrium) 

cycling. In this work, we applied C/300 cycling of Si vs. Li to obtain the equilibrium 

potential profile. The exchange current density of silicon electrodes during lithiation at 

0.390 V is calculated to range from 0.07 to 0.13 mA cm
-2

. It is interesting to note that this 

is nearly the same value as was obtained in the GITT experiment reported in Fig. 5 of 

Reference [181] for a lithiated carbon electrode (approximately 0.1 mA cm
-2 

for 

fractional occupancies of lithium ranging from 0.3 to 0.75) [181]. 

The surface reaction rate can be affected by the charge-transfer processes at the surface of 

the LIB electrodes. For negative electrodes of LIBs, it can also be affected by the 

presence of the solid electrolyte interphase (SEI). Properties of the SEI, including the 

chemical composition, thickness, stability, and mechanical properties, vary with electrode 

materials and the electrochemical environment. Surface modification, such as atomic 

layer deposition (ALD) coating and surface fuctionalization, may change the surface 

reaction rate. In general we expect the surface reaction resistance to affect the 
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electrochemical behavior of electrodes, as well as the transient current response to 

potential steps.  

6.7  Conclusions 

We analyze the diffusion equation suitable for PITT when surface reaction resistance is 

important and derived analytic solutions for the concentration and transient current 

response. This treatment allows one to capture the additional influence of reaction 

resistance, relative to the conventional PITT analysis, in a single dimensionless group: 

the electrochemical Boit number  , representing the ratio of diffusion resistance to that 

of the surface reaction. We show that the diffusion coefficient   can be underestimated 

using the traditional linear (  vs.       for short time) and exponential fitting (    vs.   for 

long time) methods without considering the influence of a finite surface reaction rate. 

Using this new method, we show that one can determine the diffusion coefficient and 

surface reaction rate simultaneously from a PITT measurement, as well as the exchange 

current density. We implement the modified PITT to examine lithium diffusion in 

amorphous silicon thin-film electrodes. The modified PITT is applicable to lithium-ion 

battery electrodes, as well as other electrochemical systems wherein the measurement of 

diffusion and kinetic parameters characterizing surface reaction resistance (e.g., the 

exchange current density) are of interest. 

6.8  Appendix 

6.8.1  List of Symbols  

  electrochemical Biot number 

  molar concentration 

  diffusion coefficient of the solute 



 

69 

 

e  electron 

  Faraday’s constant 

  current  

  current density 

   exchange current density 

Li  lithium ion 

  thickness of electrode 

  total charge transferred during a potential step 

  surface area of electrodes 

  time  

  equilibrium potential 

  surface potential 

x  thickness position 
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  charge number of the electro-active species 

  symmetry factor 

   Surface overpotential 

   n
th

 positive roots of         

  dimensionless time 

6.8.2  Derivation of The Electrochemical Biot Number Using Equivalent Circuit 

The electrochemical Biot number   can also be derived from a point of view of 

equivalent circuit, which was used to estimate the interfacial kinetics occurring on ion-

insertion electrodes [163, 164]. Neglecting the limitations of mass transport in the 

electrolyte, the resistance of an lithium-ion battery typically consists of three parts: the 

charge transfer resistance    , the resistance due to Ohmic drop   , and the diffusion 

resistance   .  

The interfacial charge-transfer resistance can be expressed as [163, 169] 

     
 

  
  
  

                                                                    

where   is Faraday’s constant,   is the lithium ion insertion reaction rate,   is the surface 

area of the electrode, and   is the surface equilibrium potential. 
  

  
 is particle derivative 

of insertion reaction rate   with respect to surface equilibrium potential  .  

The diffusion resistance can be expressed as [163, 169] 
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|
 

                                                               

where   is the thickness of the electrode,   is the diffusion coefficient, and   is the 

concentration in the electrode. The insertion reaction rate   is related to the Bulter-

Volmer equation (Eq. 6.2) by 

       [ 
           

    
        

  ]                                     

where   is the current density,    is the exchange current density,   is the symmetry factor, 

  is the gas constant, and   is the temperature. The surface overpotential is given by 

   , were   is the applied surface potential of the electrode. Assuming that the 

overpotential is small, we can expand Es. (6.19) and obtain  

    |  
   

  
                                                               

Thus, 

    
  | 

    
                                                              

Using Eq. (6.18) and (6.21), the electrochemical Biot number  , which is defined in Eq. 

(6.6) in the main text, can be written as 

   

   | 
  
  

|
 

   
 

  

   
                                                     

where we have used 
  

  
|
 
   

  

  
|
 
. The electrochemical Biot number is, therefore, the 

same as the dimensionless parameter   
  

      
 used by Montella [163] and 

Vorotyntsev et al [164], if the resistance due to Ohmic drop    is 0. As a result, if    is 0, 
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the expressions of transient current Eqs. (6.11) and (6.13) are equivalent to Eqs. (39) and 

(43) in Reference [163].  
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Fig. 6.1  Concentration profiles under PITT operation at short times, i.e. 
  

  
  , for 

different electrochemical Biot numbers. (a)  =100. (b)  =5. (c)  =0.05. 
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Fig. 6.2  Dimensionless transient current vs. time at short times with various 

electrochemical Biot numbers.   
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 6.3  Concentration profiles under PITT operation at long times, i.e. 
  

  
  , for 

different electrochemical Biot numbers. (a)  =100. (b)   =5. (c)   =0.05. 
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Fig. 6.4  Dimensionless transient current vs. time at long times with various 

electrochemical Biot numbers.   
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Fig. 6.5  Plot of transient current vs.       at short time.    

 

Fig. 6.6  Exponential dependence of current on time at long time.  
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Table 6.1  Diffusion coefficient of Li in silicon calculated by different methods.  

Method   (cm
2 

s
-1

)   

Short time (Eq. 6.10) 1.4×10
-13

 49.4 

Short time linear fitting (Eq. 15 in Ref. [149]) 1.1×10
-13

  

Long time (Eq. 6.17) 1.0×10
-13

 45.7 

Long time (Eq. 16 in Ref. [149], slope) 7.7×10
-14

  

Long time (Eq. 16 in Ref. [149], intercept) 7.7×10
-14
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Chapter 7  Potentiostatic Intermittent Titration Technique (PITT) for Electrodes 

Governed by Diffusion and Interfacial Reaction 

 

7.1  Summary 

The potentiostatic intermittent titration technique (PITT) is an electroanalytical method 

that has been widely used to study diffusion of solutes (such as lithium) in electrode 

materials. Here, we extend the conventional PITT method to account for finite interfacial 

reaction kinetics and derive analytic equations for electric current under PITT operations. 

Using the modified PITT, the lithium diffusion coefficient in host materials and the 

interfacial reaction kinetics can be determined simultaneously. We demonstrate this 

modified PITT by an example of lithium diffusion in graphite (mesocarbon microbeads, 

MCMB) and show the improvements of the modified PITT theory over the conventional 

PITT for investigating the kinetics of electrodes comprising spherical particles. 

7.2  Introduction 

The potentiostatic intermittent titration technique (PITT), originally proposed by Huggins 

et al. for studying Li diffusion in Li-Al alloy [149, 150], has been widely used in 

studying diffusion and thermodynamics of lithium-ion batteries (LIBs), especially for 

measuring the lithium diffusion coefficients in LIB electrodes. [157, 159, 161, 162, 166, 

182-185] In developing the original theory, several assumptions were made for the 

electrochemical system, including:   

    (1) Diffusion of only one species occurs in the system and the diffusion coefficient is a 

constant within the applied potential range.    

    (2) Diffusion occurs across the thinnest dimension of a dense electrode with a slab 

geometry.  

    (3) There is no interfacial reaction resistance at the electrode-electrolyte interface. 
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    (4) There is no phase transformation related kinetics.  

For solid-state electrochemical systems such as LIBs, experiments have to be designed 

carefully to meet all the assumptions above. For example, dense thin-film electrodes need 

to be used, allowing Li diffusion along the thickness direction (assumption 2 above). The 

applied voltage range should be small, insuring diffusion in a single phase region with a 

constant diffusion coefficient (assumptions 1 and 4 above).  

In order to apply PITT to a large range of experimental conditions, researchers have 

applied modifications to the original PITT theory. For example, Levi et al. modified 

PITT to study the lithium-graphite system in two-phase regions using a parallel path 

diffusion model [161] and a moving boundary model. [162] Churikov et al. proposed an 

approach to describe the transport process during PITT operation considering surface 

reaction and phase transformation, and studied Li diffusion in LiFePO4 by simulating 

experimental data. [166] Montella discussed PITT with slow interfacial kinetics and 

Ohmic drop on electrodes using an equivalent circuit approach. He introduced a 

dimensionless parameter  , which is the ratio of diffusion resistance to the resistance of 

charge transfer and Ohmic drop, [163] and discussed the effects of   on errors in 

determining the diffusion coefficient. [176] Deiss discussed the voltage dependence of 

the PITT measured diffusion coefficients and proposed that this dependence may be a 

result of neglecting the interfacial kinetics. [186]  Levi et al. developed approximate 

analytic solutions for PITT by considering Ohmic drop using an equivalent circuit 

approach and introduced a dimensionless kinetic parameter (            ). [164] They 

applied their technique to lithium diffusion in polymer electrodes with a two-step 

refinement method. [165] Recently, we proposed a modified PITT for electrodes 

governed by diffusion and interfacial reaction kinetics, and applied this method to study 

Li diffusion in amorphous Si thin film electrodes. [187] 

Since most of the practically used electrodes are made of powders, the original PITT 

theory for slab geometry may not be applicable to lithium diffusion along the radial 

direction of the particles. Deiss noticed this problem and suggested that the diffusion 



 

83 

 

coefficients obtained for composite electrodes using the original PITT theory may be 

incorrect. [186] More recently, Delacourt et al. applied PITT to determine the lithium 

diffusion coefficient in LiFeSO4F particles by using an analytic solution of diffusion in 

spheres. [159] 

In this chapter, we develop a PITT model for lithium diffusion in spherical particles with 

finite electrode-electrolyte interfacial reaction rates. With the analytic solutions for 

transient current, the diffusion coefficient and interfacial reaction kinetics can be 

simultaneously measured. With graphite (mesocarbon microbeads, MCMB) as an 

example, we show that this modified PITT can be used to study the lithium diffusion in 

LIB electrode materials consisting of spherical particles. 

7.3  Theory 

7.3.1  Governing Equations and Analytic Solutions  

We consider a diffusion process in an electrode consisting of homogeneous spherical 

particles of radius  . Lithium diffusion in the lithium salt based liquid electrolyte is often 

much faster compared to the diffusion in electrode materials [188], and we assume that 

the diffusion process is identical in each single particle under electrochemical operation. 

Assuming that the diffusion coefficient   is a constant during the diffusion process and 

there is no phase transformation kinetics involved, assumptions that are valid for small 

potential changes in single phase regions, the diffusion equation for a sphere is given by 

[174] 

  

  
  (

   

   
 

 

 

  

  
)                                                  

where   is concentration, and   is the radial position (     ). The initial and 

boundary conditions corresponding to PITT operation, i.e., potentiostatic variation within 

a small range, are 
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Here,    represents the initial concentration in the particle, and    is the steady-state 

concentration after PITT operation (concentration just outside the particle). The boundary 

condition (Eq. 2c) is discussed in detail in Ref [187]. The electrochemical Biot number, 

       |       |        , is a dimensionless parameter that represents the ratio of 

interfacial reaction rate to the diffusion rate. [90, 131, 187] Here    is the exchange 

current density,   is the equilibrium potential,    is the gas constant,   is the temperature, 

and the subscript   reflects values associated with the end of the potential step 

experiment. The range of the electrochemical Biot number is      . A large   value 

represents systems governed by diffusion, and small   represents systems where 

interfacial kinetics is slow. This boundary condition is mathematically equivalent to the 

surface evaporation [174] and radiation boundary condition in heat transfer problems. 

[173] 

The solution for the diffusion equation (Eq. (7.1)) subject to the initial and boundary 

conditions (Eq. (7.2))  is [173, 174] 

    

     
   

  

   
∑

           

   
               

 

   

   (   
 
  

  
)                    

where    is the     positive root of                 . The concentration function 

can also be obtained using Laplace and inverse Laplace transforms and can be expressed 

in terms of error functions, which converge fast at short times (       ):  
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The dimensionless concentration profiles at short times (       ) with various   

values are calculated according to Eq. (7.4) and plotted in Fig. 7.1. When the system is 

diffusion controlled, such as  =50 in Fig. 7.1 (a), the concentration just inside the surface 

increases quickly to the final concentration   , showing the characteristics of a system 

governed by a constant surface concentration boundary condition. [117] When the system 

is controlled by both diffusion and interfacial kinetics, the concentration profile exhibits 

features between constant concentration and constant flux boundary conditions, as shown 

in Fig. 7.1 (b). When the system is controlled by interfacial kinetics, such as  =0.005 in 

Fig. 7.1 (c), the concentration just inside the electrode increases slowly with time (notice 

the small range of the concentration in Fig. 7.1 (c)). 

The dimensionless concentration profiles at long times (       ) with various   

values are plotted in Fig. 7.2. We used the first 50 terms of the infinite series in Eq. (7.3) 

to calculate the concentration profiles. When interfacial reaction is facile comparing to 

diffusion, such as  =50 in Fig. 7.2 (a), the concentration just inside the particle is close to 

1 at        . The overall concentration increases quickly, and reaches 0.9996 at 

         . For system controlled by both diffusion and interfacial kinetics, such as 

 =5 in Fig. 7.2 (b), the concentration profiles show characteristics between a constant 

flux and a constant concentration boundary condition. When the interfacial reaction is 

slow compare to diffusion, such as  =0.05 in Fig. 7.2 (c), the concentration in the 
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particle increases almost uniformly, showing the characteristics of constant surface flux 

boundary condition. Diffusion profiles for the slab geometry have similar trends and can 

be found in the literature. [90, 117, 163, 187] 

7.3.1  Transient Current for PITT 

The local current for each particle    is related to the concentration gradient at the particle 

surface by Fick’s First Law  

        
  

  
                                                 

where   is the charge number of the ions,   is Faraday’s constant, and   is the surface 

area of the electrode. For the electrode considered in this analysis, the current distribution 

throughout the electrode is assumed uniform. Thus, the current for the electrode is related 

to the local current of each particle by 

   
     

     
                                                             

where       is the volume of the electrode (including active materials and pores),       is 

the average volume of a single particle, and   is the volume fraction of active materials 

(AM) in the electrode. Assuming the particles are perfect spheres with identical size, the 

total current under PITT operation can be obtained by substituting the expression of 

concentration (Eq. (7.2) or (7.3)) and Eq. (7.5) into Eq. (7.6) and using the relationship 

                    .    

7.3.1.1  Current at Short times (       ) 

The current under PITT at short times is 
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Here   is the total charge transferred during the potential step for the whole electrode.  

When the interfacial resistance is negligible or interfacial reaction is infinitely fast, i.e., 

 →  , the current becomes  

   
 → 

      
   

  
(

 

√   
  )                                           

For the special case    , see Appendix B. The transient current for short times is 

plotted in Fig. 7.3 using Eqs. (7.7) and (7.8). When the interfacial kinetics are facile, the 

dimensionless current plot at short times is a straight line vs. √      with a slope of 

  √ . Note that the intercept of this line and the  -axis is not 0, and the slope is also 

different from the response current for slab electrodes. [149, 187] With increasing 

interfacial reaction resistance, the linearity of this curve decreases. Thus, diffusion 

coefficients are underestimated using the linear fitting method without considering the 

effect of interfacial kinetics. The position and shape of this curve are determined by two 

unknown parameters,   and  , and the diffusion coefficient   and dimensionless 

parameter   can be obtained by fitting the experimental PITT data using non-linear 

fitting methods.  
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7.3.1.2  Current at Long times (       ) 

Similar to Eq. (7.7), the current for PITT at long times is calculated according to Eqs. 

(7.3), (7.5), and (7.6) as 
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)                                  

Rearranging Eq. (7.9), we obtain 
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)    [

   

   
       

   (   
 
  

  
)]                       

For infinitely fast interfacial kinetics, i.e.,  →  , the current is 

   
 → 

        
 → 
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Appendix B treats the special case    . The current at long times is plotted in Fig. 7.4 

using Eqs. (7.10) and (7.11). It is seen that with slowing interfacial kinetics, the slope of 

the line decreases and the intercept with the y-axis is changing. As a result, the diffusion 

coefficient can be underestimated if interfacial kinetics resistance is not incorporated.  

For long times (       ), the diffusion coefficient   and dimensionless parameter   

can be determined by solving the following equations simultaneously:  
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7.4  Experimental 

7.4.1  Cell Fabrication 

We applied the modified PITT to analyze lithium insertion into graphite (conventional 

MCMB), an important electrode material that is employed in high energy and high power 

applications. The electrode consists of 92 wt.% of MCMB and 8 wt.% of binder and 

conducting additives. The thickness of the electrode is 65 μm and the average diameter of 

MCMB particles is 18 μm. A piece of sample with diameter of 10 mm was used as the 

working electrode and was assembled into a 3-electrode cell (HS-3E, Hohsen). The 

counter electrode and reference electrode are pure lithium metal. The electrolyte used 

was a solution of 1 M LiPF6 dissolved in 1:1 volume ratio of ethylene carbonate (EC) / 

dimethyl carbonate (DMC, Novolyte).  

7.4.2  Electrochemical Characterization  

A potentiostat (VMP3, Bio-Logic) was used to conduct the electrochemical 

measurements. The equilibrium voltage-capacity profile was obtained by the 

potentiostatic Coulombic titration technique. The voltage of the cell was stepped between 

1.0 V and 0.005 V using 5 mV steps. At each step the potential was held until the current 

reached 0.09 μA g
-1

, corresponding to a C/4000 rate. PITT experiments were carried out 

during charging of the half cell (delithiation of graphite) from 0.100 V to 0.105 V with a 

cutoff current of 0.09 μA g
-1

 (C/4000). 

7.5  Results and Discussion 

The quasi-equilibrium voltage-capacity profile of Li-graphite obtained by potentiostatic 

Coulombic titration is shown in Fig. 7.5, where we observe the typical electrochemical 

behavior of graphitic carbon, including the clearly defined single phase and two phase 

regions. [7] The PITT experiment was carried out in the LiC12 single phase region. The 

transient current under PITT operation is plotted in Fig. 7.6 and Fig. 7.7. For short times, 

  and   values were obtained by a least-square nonlinear fitting method (Curve Fitting 
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Toolbox in Matlab) according to Eq. (7.7). For long times,   and   values were obtained 

by solving Eq. (7.12) with parameters obtained experimentally in Fig. 7.7. The Li 

diffusion coefficients in LiC12 and the interfacial kinetics parameter   are summarized in 

Table 1. The diffusion coefficients of Li in LiC12 are in the range of the values reported 

previously. [160, 171, 189, 190] We note that it has been shown that when the chemical 

potential of Li is used as the driving force for diffusion, a substantially constant diffusion 

results Li fractions ranging from 0 to 1 in (LiC6). [191] 

From the definition of   in Eq. (7.2c), the exchange current density can be calculated. 

Here we obtained        |  from the quasi-equilibrium potential profile. The exchange 

current density of LiC12 is calculated to be 0.75 to 0.78 mA cm
-2

, several times larger 

than the exchange current densities of graphitic carbon fibers [181] and amorphous Si 

electrodes reported previously. [187] The modified PITT thus allows simultaneous 

determination of diffusion coefficient and the exchange current density for Li in LiC12. 

Although the Li diffusion coefficient in graphite MCMB determined by the modified and 

the original PITT is similar because of the fast interfacial kinetics, it should be noted that 

it is improper to use the original PITT theory (cf. Eqs. 15 and 16 in Ref. [149]) to 

calculate the diffusion coefficient in powder electrodes, in which       (  is the thickness 

of the electrode) is taken as the time constant for diffusion instead of       (  is the 

radius of a single particle). The error may become large if the electrode thickness is much 

larger than the particle size. Eqs (7.8) and (7.11) can be used to calculate the diffusion 

coefficient in electrodes consisting of spherical particles if the interfacial kinetics is 

negligible.    

The diffusion coefficient can also be affected by interfacial reaction kinetics. The 

electrochemical Biot number for MCMB electrodes obtained in this work ranges from 

53.4 to 62.8, representing relatively fast interfacial kinetics, and is consistent with a 

previous prediction. [90] The error in PITT determined diffusion coefficients without 

considering the interfacial kinetics will become significant if the interfacial kinetics is 

slow compared to diffusion, such as for particles with smaller diameters. [90]    
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7.6  Conclusions 

We examined PITT for spherical particles with finite interfacial reaction kinetics. Using 

the analytical solutions for the electric current, we show that one can obtain the diffusion 

coefficient and interfacial kinetics simultaneously. As an example application of this 

work, we investigate lithium diffusion in graphite (mesocarbon microbeads, MCMB), 

and we show that the diffusion coefficient, interfacial kinetics, and exchange current 

density can be determined simultaneously according to Eqs (7.7) and (7.12) for short 

times (       ) and long times (       ), respectively. If the interfacial reactions 

are facile, the diffusion coefficients can be determined by Eq. (7.8) and (7.11). This 

modified PITT is expected to be generally applicable for obtaining interfacial charge 

transfer reaction rates and diffusion coefficients for electrodes comprising substantially 

spherical particles.  

7.7  Appendix  

7.7.1  List of Symbols 

  surface area of an electrode 

  electrochemical Biot number 

  molar concentration 

   initial concentration 

   equilibrated concentration after PITT  

  diffusion coefficient of the solute 
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  Faraday’s constant 

  current for the electrode 

   local current at the surface of each particle 

   exchange current density  

  total charge transferred for the electrode during a potential step 

   total charge transferred for a single particle during a potential step 

  radial position 

  radii of particles 

   gas constant 

  time  

  temperature  

  equilibrium potential 

      volume of the electrode 
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   volume of a particle 

  charge number of the electro-active species 

  symmetry factor 

  volume fraction of active materials in the electrode 

   n
th

 positive roots of                  

  dimensionless time 

 

7.7.2  Analytic Solutions of Concentration and Current when  =1 

At short times (       ), the analytic solution for concentration with  =1 is  
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The current for short times becomes 
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At long times (       ), the solution for concentration with     is [90] 
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(a) 

 

(b) 
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(c) 

Fig. 7.1  Concentration profiles in an individual particle under PITT operation at short 

times (       ) for different electrochemical Biot numbers. (a)  =50. (b)  =5. (c) 

 =0.05. 
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(a) 

 

(b) 
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(c) 

Fig. 7.2  Concentration profiles in an individual particle under PITT operation at long 

times (       ) for different electrochemical Biot numbers. (a)  =50. (b)  =5. (c) 

 =0.05. 

 

 

 

       



 

99 

 

 

Fig. 7.3  Dimensionless transient current vs. time at short times (       ) with 

various electrochemical Biot numbers. 

 

Fig. 7.4  Dimensionless transient current vs. time at long times (       ) with various 

electrochemical Biot numbers. 
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Fig. 7.5  Quasi-equilibrium potential-composition profile of Li-graphite (MCMB) 

obtained by potentiostatic Coulombic titration. 
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Fig. 7.6  Plot of transient current vs.       at short times. 

 

Fig. 7.7  Exponential dependence of current on time at long times. 
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Table 7.1   Diffusion coefficient and interfacial kinetics of Li in MCMB (LiC12) obtained 

from modified PITT. 

 

Method   (cm
2 

s
-1

)      (mA cm
-2

) 

Short times (       ), Eq. (7.7) 1.6×10
-10

 62.8 0.75 

Long times (       ), Eq. (7.12)  1.8×10
-10

 53.4 0.78 
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Chapter 8  Conclusions and Future Work 

8.1  Conclusions 

Current commercial lithium-ion batteries (LIBs) do not meet the requirement of energy 

storage for several fast growing products, especially hybrid and pure electric vehicles. 

LIB electrodes with higher capacity, energy density, and cycle life are required. High 

capacity negative LIB electrodes usually undergo large volume expansion and 

contraction upon cycling. The associated large diffusion-induced stresses cause cracking 

of the electrode materials, which further leads to loss of conduction and capacity fading. 

In this dissertation, I focus on understanding the mechanical behavior of high-capacity 

LIB negative electrodes and searching for strategies to avoid mechanical degradation. 

Additionally, an electro-analytical technique (modified PITT) was proposed to measure 

interfacial reaction kinetics and diffusion coefficients, which are essential for 

understanding the effects of surface modification on LIB electrodes. 

Tin (Sn) is a candidate material for negative electrodes of lithium-ion batteries (LIBs) 

because of its high theoretical energy capacity. In Chapter 3, we study the behavior of Sn 

thin-film electrodes, and show Sn-whisker growth on Sn thin-film electrodes after 

lithiation and de-lithiation. The compressive stress generated by electrochemical 

lithiation of the Sn-thin films, which is about 700 MPa, is likely the driving force for the 

growth of the Sn whiskers. Similar to the phenomena of Li dendrite formation, Sn 

whiskers may penetrate through the separator, and short-circuit the electrochemical cell. 

As a result, attention should be paid to the issue of whisker growth in Sn-based electrodes 

and other electrodes containing low melting point elements. 

In Chapter 4, we study the fracture behavior and cracking patterns in amorphous silicon 

(Si) thin film electrodes with thickness ranging from 100 to 1000 nm as a result of 

electrochemical cycling. A modified spring-block model is shown to capture the essential 

features of cracking patterns of electrode materials, including self-similarity. Cracks 

generated in thick films are straight with a few sharp direction changes and the area 
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separated by cracks is large. For thin films cracks show more wiggles and the average 

area divided by cracks is small. After primary cracks form, crack patterns do not change 

further with electrochemical cycling, while the surface becomes rougher. As the 

thickness of film decreases, the average size of islands separated by cracks decreases. A 

critical thickness bellow which material would not crack is found for amorphous Si films. 

The experimental and simulation results suggest two directions of designing electrodes 

which do not crack: (1) patterning the electrodes in which the pattern size is smaller than 

the average cracked size for that specific film thickness, and (2) reducing the film 

thickness to less than the critical thickness of cracking, which is between 100 and 200 nm 

for amorphous Si on stainless steel substrate.  

In Chapter 5, we propose a new strategy to achieve high capacity and long durability of 

LIB electrodes. We demonstrate the concept of using low-melting point metal/alloys as 

self-healing LIB electrodes. The liquid metal gallium (Ga) electrode undergoes 

crystallization upon lithiation and transforms to a solid electrode. During delithiation the 

solid phases are transformed to the liquid state. Cracks formed in the electrode mostly 

during delithiation can be self-healed by the solid-to-liquid transformation. This work 

indicates that cracking as a failure mode can be remedied using liquid metal electrodes. 

Since many low melting point alloys exist and can potentially store large quantities of Li, 

the liquid metal approach demonstrated by liquid Ga may be generalized to many 

systems of technological significance.  

The Potentiostatic Intermittent Titration Technique (PITT) is one of the widely used 

methods for determining the diffusion coefficient in electrochemical materials, such as 

lithium diffusion in lithium-ion battery electrodes. The conventional PITT analysis 

neglects interfacial resistance and assumes the system is diffusion controlled. For actual 

electrode systems, however, surface reaction, as well as diffusion, may be rate limiting. 

In Chapters 6 and 7, we derive modified PITT as an electro-analytical technique to 

quantify the interfacial reaction kinetics as well as diffusion coefficients. For small 

amplitude potential steps, we obtain analytic solutions for the measured transient current 

associated with PITT, taking into account the effects of finite surface reaction rates. By 
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fitting experimental data with the analytic solutions, the diffusion coefficient, surface 

reaction rate, and the exchange current density can be determined simultaneously. An 

example of lithium diffusion in amorphous silicon thin-film electrodes is used to 

demonstrate the modified PITT approach for slab geometry (Chapter 6), and an example 

of lithium diffusion in graphite (mesocarbon microbeads, MCMB) is used to demonstrate 

the modified PITT for spherical geometry (Chapter 7). The modified PITT is applicable 

to LIB electrodes, as well as other electrochemical systems wherein the measurement of 

diffusion and kinetic parameters (e.g., the exchange current density) are of interest. 

8.2  Future Work 

During the period of the author’s Ph.D. study, making better lithium-ion batteries 

becomes a hot topic and draws attentions from researchers with a variety of backgrounds. 

Each week there are about 50 to 200 new journal publications on the topic of lithium-ion 

batteries. Though highly intensively researched, there is still no perfect method to 

overcome some of the issues related to mechanical degradation of LIB electrodes. Thus, 

there is plenty of room to improve lithium ion batteries in aspects of capacity, power, 

cycling performance, power performance, safety, and cost.  

In particular, future researchers are encouraged to (1) study cracking patterns or networks 

in powder-shaped electrode materials, and extend the spring-block simulation model to 3-

D to predict cracking behavior in particles. (2) It is also interesting to investigate the 

cracking behavior of low melting point electrode materials (such as Sn and Ga), and 

analyze the differences from high melting point electrode materials (such as Si). (3) The 

electroanalytical technique, modified PITT, can be used to quantify the effect of surface 

modifications and coatings, and thus to help design ideal surface modification strategies 

and to optimize the performance of LIB electrodes. 
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