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NOVEL CATALYSTS FOR THE PRODUCTION OF CO- AND CO2-FREE 
HYDROGEN AND CARBON NANOTUBES BY NON-OXIDATIVE 

DEHYDROGENATION OF HYDROCARBONS 
 

 
Non-oxidative dehydrogenation of hydrocarbons is an attractive alternative 

route for the production of CO- and CO2-free hydrogen. It will satisfy a major 
requirement for successful utilization of polymer electrolyte membrane (PEM) fuel 
cells (< 10 ppm CO) and sequestering carbon as a potentially valuable by-product, 
carbon nanotubes (CNTs). Due to the deposition of carbon on the surface of catalyst 
particles during the reaction, catalyst performance, life-time, and purification of the 
generated carbon product, are significant issues to solve in order to make the process 
practically feasible. The scope of this thesis includes: the development of novel Fe, 
Ni, and Fe-Ni catalysts supported on a Mg(Al)O support to achieve improved 
catalytic performance with easily-purified CNTs; evaluation of catalysts for 
ethane/methane dehydrogenation at moderate reaction temperatures; and study of 
activation and deactivation mechanisms by a variety of characterization techniques 
including TEM, HRTEM, XRD, Mössbauer spectroscopy, and x-ray absorption fine 
structure (XAFS) spectroscopy. The Mg(Al)O support was prepared by calcination of 
synthetic MgAl-hydrotalcite with a Mg to Al ratio of 5. The catalysts were prepared 
either by conventional incipient wetness method or by a novel nanoparticle 
impregnation method, where the monodisperse catalyst nanoparticles were prepared 
in advance by thermal decomposition of a metal-organic complex in an organic-phase 
solution and then dispersed onto the Mg(Al)O support. Dehydrogenation of undiluted 
methane was conducted in a fix-bed plug-flow reactor. Before reaction, the catalysts 
were activated by reduction in hydrogen. Fe-based catalysts exhibit a higher hydrogen 
yield at temperature above 600ºC compared with monometallic Ni catalyst. FeNi-9 
nm/Mg(Al)O, Fe-10 nm/Mg(Al)O and Fe-5 nm/ Mg(Al)O nanoparticle catalysts show 
much improved performance and longer life-times compared with the corresponding 
FeNi IW/Mg(Al)O and Fe IW/Mg(Al)O catalysts prepared by incipient wetness. 10 
nm is the optimum particle size for methane dehydrogenation. Addition of Ni to Fe 
forming a bimetallic FeNi alloy catalyst enhances the catalytic performance at the     
temperatures below 650ºC. Metallic Fe, Ni, FeNi alloy and Fe-Ni-C alloy, unstable 
iron carbide are all catalytically active components. Catalysts deactivation is due to 
the carbon encapsulation. The carbon products are in the form of stack-cone CNTs 
(SCNTs) and multi-walled CNTs (MWNTs), depending on the reaction temperature 
and catalyst composition. The growth of CNTs follows a tip growth mechanism and 



the purity of cleaned CNTs is more than 99.5%. 
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Chapter 1. Introduction 

U.S. Energy policy is directed by the need for a secure energy supply and the desire 

for sustainable growth. With the development of Asia, especially the two most 

populated countries, China and India, energy consumption is growing very fast and oil 

prices have recently soared to over $140/barrel. Moreover, proven reserves for oil 

known today will be depleted within about 40 years [1]. Thus, alternative energy 

sources are required to reduce the dependency of economies and life-styles on oil. 

Hydrogen is envisioned as the energy of the future [2], as it provides solutions to 

growing concerns about energy supply while minimizing the environmental impact of 

economic and energy supply activities. Hydrogen is an ultra-clean energy carrier, 

because it produces no emissions by the consumer, except for water. Hydrogen can be 

extracted from diverse feedstocks including fossil fuels such as coal, natural gas and 

petroleum, biomass, and water by a variety of processes such as thermochemical 

processes, electrolysis, thermolysis, photoelectrochemical and photobiological 

processes. Nuclear power and renewable energy such as solar, wind, geothermal 

energy can all be used to produce hydrogen by water splitting. 

Globally, hydrogen production is already a large and significant industry. Most of it is 

used primarily as a chemical rather than a fuel in ammonia production (50%), oil 

refining (37%), methanol (8%), and other chemical and metallurgical industries (4%) 

[3].  Currently, only 4% of hydrogen is produced from water by electrolysis while the 

rest is derived from natural gas (48%), oil (30%), coal-derived syngas or synfuels 

(18%) through thermochemical path due to security and cost issues of renewable and 

nuclear energy [4]. In the U.S.A., 95% of the hydrogen is produced by steam 

reforming of natural gas, followed by water gas shift reaction (WGSR) [5]. The steam 

reforming reaction (equation 1-1) is a highly endothermic reaction, which requires 

high reaction temperatures from 700°C to 1100°C. However, WGSR (equation 1-2) is 

exothermic, performing at high temperature (350-400°C) and low temperature (180-

240°C) in series to minimize the amount of water.  
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CH4+ H2O → CO + 3 H2 + 191.7 kJ/mol                                 (1-1) 

CO + H2O → CO2 + H2 -41.1 kJ/mol                                       (1-2) 

There are other processes under extensive investigation for hydrogen production 

through thermochemical means such as methane partial oxidation (equation 1-3) [6, 7], 

autothermal reforming (combination of equation 1-1 and 1-3) [8, 9], dry reforming 

(equation 1-4) [10, 11], steam reforming of ethanol (equation 1-5), methanol, 

biodiesel derived from biomass [12, 13] and sorption enhanced reforming [14-16].  

C H4+ O2 → CO + 3 H2 – 35.7 kJ/mol                                     (1-3) 

C H4+ CO2 → 2CO + 2 H2 +165 kJ/mol                                  (1-4) 

C2H5OH+ H2O → 2CO + 4 H2 +347.4 kJ/mol                         (1-5) 

However, these processes require further bulky WGSR, followed by purification 

(methanation or preferential oxidation (PROX)) and separation process in order to 

obtain high purity hydrogen. Moreover, carbon in hydrocarbons is released in the 

form of CO2, which is regarded as greenhouse gas. CO2 capture and sequestration are 

big issues that need to be solved in order to satisfy the ever more demanding 

requirements of environmental impact, thus adding to the cost of these processes. 

As the fuel of the future, hydrogen will be used in advanced energy generation 

devices such as hydrogen combustion turbines, engines and fuel cells. One of the 

most important applications of hydrogen is to fuel polymer electrolyte membrane 

(PEM) fuel cells. The PEM fuel cell has experienced tremendous attention in the past 

few years. It is expected to provide portable electrical power and be used in vehicles. 

Most major automobile manufacturers are developing fuel-cell concept cars. The 

purity of hydrogen used in PEM fuel cells is very demanding, <10 ppm CO, since CO 

is a poison for the catalysts used in PEM fuel cells. Further, CO2 in the hydrgoen 

stream is also detrimental to the performance of the PEM fuel cell. Therefore, new 

methods for hydrogen production should be developed which can result in high purity 

hydrogen and minimize the formation of COx. One approach is the non-oxdiative 
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dehydrogenation of hydrocarbons to solid carbon and COx-free hydrogen. The general 

reaction can be expressed as following equation: 

  CxHy → xC + 0.5yH2                                                                (1-6) 

A comprehensive review on this subject has been conducted by T. V. Choudhary et al. 

[17, 18]. In this reaction, one of the products is solid carbon, which deposits on the 

surface of the catalyst causing the catalyst to deactivate very quickly. Only under 

certain conditions can carbon deposited on the catalyst surface diffuse through 

catalyst particles and grow whisker carbon in the form of carbon nanotubes (CNTs) or 

carbon nanofibers (CNFs), thereby prolonging the life-time of the catalysts.  

Non-oxidative dehydrogenation of hydrocarbons for COx-free hydrogen on Ni-

supported catalysts has been extensively investigated [19-33]. Takenaka et al. [19] 

studied methane dehydrogenation into hydrogen and carbon over supported Ni 

catalysts. The results showed that Ni supported on SiO2, TiO2 and graphite was 

catalytically active with long life-times, whereas Ni supported over Al2O3, MgO, and 

MgO-SiO2 were catalytically inactive. XRD and XANES characterization revealed 

that metallic Ni was the active phase for methane decomposition reaction, whereas 

unreduced Ni, as either unsupported nickel oxide or after formation of a Ni2+ 

compound by reaction with the support was catalytically inactive. The porosity of the 

catalyst support also played a significant role on catalytic activity and stability. The 

silica with no pore structure was found to enhance the catalytic activity and stability. 

Further investigation showed that Ni catalysts with particle size in the range from 60 

to 100 nm were most effective for methane decomposition. A deactivated Ni/TiO2 

catalyst could be regenerated by gasification of deposited carbon with CO2 at 923 K 

for at least 5 cycles [20, 21]. Guil-López et al. [22] prepared Ni-Mg-Al catalysts from 

hydrotalcite-like compounds for methane decomposition and the regeneration 

experiment was carried out in both CO2 and O2 atmosphere. It turned out that the 

stability of metallic Ni was the key factor for the regenerability, and the presence of 

Mg increased the thermal stability of Ni catalyst particles. Research conducted by 

http://en.wikipedia.org/wiki/Hydrogen�
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Bonura et al. [23] confirmed the “structure sensitive” character of Ni-based catalysts 

for consecutive methane decomposition-CO2/O2 regeneration and revealed that carbon 

encapsulation was responsible for catalyst deactivation. Choudhary et al. [24-26] 

claimed that trace amounts of CO were formed over silica, zeolite, SiO2-Al2O3 

supported Ni catalysts due to the reaction of carbonaceous species with hydroxyl 

group contained on the surface of the support, even though it was called a COx-free 

process. [24-26]  Chen et al. [27] reported that doping suitable amount of Cu into 

Ni/Al2O3 was able to increase catalyst stability for methane decomposition. Hydrogen 

production via the catalytic decomposition of ethane and ethylene was also 

investigated by Chin [28] and Savva [29] over Ni based catalysts. In addition to 

hydrogen and carbon, methane was detected as a gaseous product at temperature 

above 500°C. 

Fe-based catalysts have been extensively studied for the production of filamentous 

carbon at temperatures above 1000°C with the co-feed of hydrocarbon gas or CO plus 

H2. The presence of H2 is believed to suppress the formation of encapsulated carbon, 

thus, elongating iron catalyst life-times. Literature references on Fe-based catalysts 

for hydrogen production via decomposition of undilute methane at moderate 

temperature (600-900°C) are relatively rare due to the fact that Fe-based catalysts are 

more prone to deactivation. But Fe-based catalysts can be used at higher temperatures 

than Ni-based catalysts, which are usually used at temperatures below 600°C. 

Hydrocarbon decomposition is an endothermic reaction and therefore a higher 

reaction temperature is desired for a high conversion. Thus, it is significant to develop 

Fe-based catalysts for this reaction. Konieczny et al. [34] used Fe-based catalysts 

prepared in-situ by reduction of magnetite either in CH4 or H2 for dilute methane 

decomposition (5% in N2). 98% methane conversion was achieved and the reaction 

was able to last for 75 h without deactivation by using 2 g of catalyst at 800°C with an 

inlet gas flow of 5 mL/min. Whisker carbon was produced as a by-product. However, 

the operating conditions are so far removed from desired industrial conditions. 

Takenaka et al. [21] reported methane decomposition to hydrogen and carbon at 



5 
 

800°C over Fe2O3/Al2O3 and Fe2O3/SiO2. No pre-reduction period was used. Fe2O3 

crystallites with particle size less than 30 nm were transformed to α-Fe and Fe3C, 

while particles larger than 30 nm were transformed to austenite after contact with 

methane at 800°C. Carbon yield over Fe2O3/Al2O3 was 105 mol C/mol Fe, 3 times 

more than that over Fe2O3/SiO2. Ermakova et al. [35, 36] investigated α-Fe based 

catalysts to produce hydrogen and filamentous carbon from high-purity methane over 

the temperature range of 650-800°C. It was found that the optimal operating 

temperature was 680°C, where, iron carbide was at the point of transition from a 

stable to metastable state. It was believed that both α-Fe and carbide phases were 

important for oriented growth of carbon. Coarse iron particles were not active in 

methane stream. The addition of hard-to-reduce oxides, such as SiO2, TiO2, ZrO2 and 

Al2O3, to the iron catalyst as texture promoters could either inhibit or promote the 

reaction. The maximum carbon yield of 45 g carbon/g Fe was achieved with the 

addition of 15 wt.% SiO2. Fe, Fe-Co and Fe-Ni catalysts supported on alumina 

prepared by coprecipitation were studied for methane decomposition at moderate 

temperatures (600-650°C). The addition of 5-10 wt.% of a second metal like Co or Ni 

to Fe/Al2O3 catalyst significantly improved the catalytic performance for methane 

decomposition due to the formation of specific alloy particles and the optimum 

particle size distribution. The best catalyst contained 50-60 wt.% Fe, 5-10 wt.% Co 

(or Ni) and the balance Al2O3 with carbon capacity as high as 145 g carbon/g catalyst. 

At 625°C, a Fe-Ni bimetallic catalyst on alumina showed much higher methane 

conversion than a Fe-Co/Al2O3 catalyst, initially 24% versus 16%. Carbon was 

formed as multi-walled CNTs. Catalysts deactivation may be caused by carbon 

encapsulation, or by irreversible phase changes during reaction or by fragmentation of 

catalyst particles [37, 38].  

Metals or metal alloys other than Ni and Fe have also been used for investigations of 

hydrogen production by hydrocarbon catalytic decomposition. Co-based catalysts 

usually operate over the same temperature range as Ni-based catalysts, but with less 

efficiency. Co/MgO, Co/SiO2, Co/Al2O3 were prepared and tested by Avdeeva et al. 
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[39]. Among all the prepared catalysts, 50 wt.% Co on Al2O3 showed the highest 

methane conversion (12%) and 75 wt.% Co on Al2O3 had the longest life-time and 

highest carbon capacity (63 g C/g Co) (7% methane conversion) at 500°C with space 

velocity 45 dm3∙g catalyst-1∙h-1. Methane conversion increased with increasing 

reaction temperature, but life-time and carbon capacity decreased. It was reported that 

copper can enhance the ability for carbon growth and allowed operations at 

temperatures above 600°C when introduced into Ni, forming Ni-Cu bimetallic 

catalysts. But, the presence of Cu promoted the formation of carbon grains rather than 

filamentous carbon [27]. Monometallic Cu/Al2O3 catalysts with different Cu loading 

for methane decomposition over a temperature range of 800-1000°C were also studied 

by Ammendola et al. [40] in a fluidized-bed. The identified active phase was cupper 

aluminum spinel on surface. Copper oxide showed very poor activity. By using a Cu-

based catalyst, CO was detectable in the effluent, even though the catalysts were pre-

reduced. Precious metal Pd-based catalysts on alumina have also been investigated for 

methane decomposition at temperatures above 700°C to achieve COx-free and highly 

concentrated hydrogen. Pd-based bimetallic catalysts containing Ni, Co, Rh or Fe 

(molar ratio, 1:1) showed higher catalytic activity and longer life-times compared 

with any of monometallic catalysts. Pd-Ni/Al2O3 and Pd-Co/Al2O3 were especially 

efficient catalysts. 94 vol.% of hydrogen could be produced by Pd-Co/Al2O3 at 850°C. 

TEM study revealed that formation of Pd-Co alloy particles enhanced the growth of 

CNTs from one facet on Co or Pd metal particles to several facets, thereby improving 

the performance of the alloy catalysts [40].  

Carbon products have also been used as catalysts for methane decomposition to 

produce COx-free hydrogen. One obvious advantage of carbon catalysts is that 

because the carbon by-products deposit directly on the carbon catalysts, no further 

purification process is  required to obain relatively pure carbon product. Dunker et al. 

[41] employed a fluidized-bed for methane decomposition by using three types of 

carbon black at temperatures of 810-980°C. The hydrogen yield decreased rapidly 

during the first 50 min, kept constant for about 1000 min, and then decreased fast 
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again. Under the optimum conditions, the decomposition of methane produced more 

than 40 vol.% hydrogen in the effluent. The carbon by-product remained on the 

reactor bed and had little graphitic character. At the temperature above 930°C, the 

formation of polycyclic aromatic hydrocarbons (PAHs) became significant. Bai et al. 

[42] found that the catalytic reaction of methane decomposition occurred mainly 

inside the micropores of activated carbon. Muradov et al. [43, 44] tested several 

activated carbons, carbon blacks and natural graphites as catalysts for methane and 

propane decomposition at 850°C. It was found that the catalytic activity was 

determined mostly by the surface and structure properties of the carbon catalysts. The 

catalytic activity was in the order amorphous carbon > turbostratic carbon > graphite 

and proportional to the external surface area. Compared with activated carbons, 

carbon blacks had higher methane decomposition rates due to higher external surface 

areas. Catalyst deactivation was due to blocking of the pore mouth by deposited 

carbon from hydrocarbon decomposition. Different types of reactors, including 

tubular, fluid wall, spouted and fluidized-bed, were tested and evaluated for their 

usefulness for hydrocarbon decomposition. It was concluded that the fluidized-bed 

reactor was the most promising reactor for this process. However, carbon deposited 

onto the surface of carbon catalyst was poorly crystalline. It was difficult to find 

applications for the carbon by-products and the efficiency of the carbon catalysts was 

relatively low, only around 20% carbon product on the carbon catalyst. Thus, the 

application of this process is limited. 

Despite the extensive research work conducted, the major barrier for the application 

of non-oxidative dehydrogenation of hydrocarbons remains the short life-time of 

catalysts at temperatures above 600°C in order to obtain higher conversion. Some 

catalysts were reported regenerable for several cycles by exposure to oxidants such as 

CO2, air and steam. However, during the regeneration process, COx was produced in 

significant amounts, comparable to that from the reforming process. Carbon 

sequestration is again a problem that needs to be solved cost efficiently. Therefore, 
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novel catalysts are required that have high activity, long life-times, and, equally 

important, useful carbon by-products. 

Our group at the University of Kentucky has been developing catalysts for COx-free 

hydrogen production from non-oxidative dehydrogenation of hydrocarbons. In prior 

work, alumina supported nanoscale binary Fe-M (M=Pd, Mo, or Ni) catalysts (5 wt.% 

Fe-M, supported on γ-Al2O3) were prepared for the catalytic decomposition of 

undiluted methane to produce H2 and carbon product [45].  The result showed that all 

binary Fe-M catalysts exhibited significantly higher activity than monometallic Fe or 

any of the secondary metals (Pd, Mo and Ni) on their own. At the reaction 

temperature of approximately 700-800ºC and space velocities of 600mLg-1h-1, the 

effluent contained over 80 vol. % of H2, with unreacted methane as balance. The solid 

product, carbon, was in the form of multi-walled CNTs. At temperatures higher than 

900ºC, carbon deposited on the surface of catalyst was in the form of amorphous 

carbon, carbon flakes and carbon fiber, which deactivated the catalysts rather quickly. 

The same catalysts were also applied to the decomposition of ethane, propane and 

cyclohexane [46, 47]. Above 475ºC, hydrogen and methane were the only gas 

products for ethane and propane decomposition. For cyclohexane, the same gas 

products were obtained at temperatures above 500ºC. The texture of CNTs was 

dependent on the reaction temperature. Taking ethane and propane decomposition as 

examples, CNTs were predominantly in the form of multi-walled CNTs with parallel 

walls formed by the concentric graphene sheets at temperatures above 600ºC. Carbon 

nanotubes with capped and truncated stack-cone structure (SCNTs) were produced at 

temperatures ≤ ~500ºC. At 625ºC, decomposition of cyclohexane produced a mixture 

of these two types of CNTs structures. The characterization of these alumina 

supported bimetallic catalysts by X-ray absorption fine structure (XAFS), Mössbauer 

spectroscopy and X-ray diffraction (XRD) showed that all three binary metal catalysts 

had similar structures. The formation of hercynite (FeAl2O4) was believed to enhance 

the activity of the catalysts by binding the catalyst particles to the alumina surface, 

preventing demetallization at high reaction temperatures [48, 49]. However, the CNTs 
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produced were very difficult to clean due to the limited solubility of alumina and the 

strong bonding of the CNTs to the support caused by the formation of hercynite 

during the reaction. Therefore, one of our goals of this thesis research was to develop 

a new catalyst support and catalysts for non-oxidative dehydrogenation of 

hydrocarbons to produce easily purified CNTs and COx-free hydrogen. 

In chapter 3, a synthetic catalyst support, Mg(Al)O, prepared from calcination of a 

Mg-Al-hydrotalcite with a Mg to Al ratio of 5, is used as the catalyst support for 

ethane dehydrogenation. Monometallic Ni and bimetallic FeNi nanoscale catalysts on 

this Mg(Al)O support prepared by incipient wetness method with total metal loadings 

of 5 wt.% were studied and compared. The dehydrogenation of undiluted ethane was 

evaluated over these two catalysts at the temperatures of 500, 650, and 700ºC. The 

morphology of the carbon by-product was seen to depend on both catalyst 

composition and reaction temperature. The produced CNTs were easily purified by a 

one-step dilute nitric acid treatment. The catalysts and CNTs were characterized using 

spectroscopic and XRD methods and the reaction mechanism was revealed.  

In chapter 4, a novel approach, nanoparticle impregnation, is described that was 

employed to develop FeNi nanoparticle catalysts supported on Mg(Al)O for methane 

dehydrogenation. The performance of these FeNi nanoparticle catalysts for methane 

dehydrogenation was significantly improved compared with that of the FeNi catalyst 

prepared by the conventional incipient wetness method. The carbon product was  μm 

scale long multi-walled CNTs with relatively uniform diameter. A comprehensive 

investigation of this novel catalyst is reported. In chapter 5, the preparation of 

monodispersed Fe nanoparticles with particle sizes of 5 nm, 10 nm and 15 nm is 

described.  These catalysts were loaded onto the Mg(Al)O support for investigation of 

catalyst particle size effects on methane dehydrogenation. It turned out that 10 nm 

was the optimum particle size, exhibiting both longer life-times and higher activity. 

The explanation of this size effect is investigated and discussed. A brief summary and 

future work are given in chapter 6. 
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Different characterization techniques were used in this thesis to understand the 

behavior of catalysts and reveal the catalytic mechanism. Transmission electron 

microscopy (TEM), both high resolution TEM (HRTEM) and scanning TEM (STEM), 

was used to image and determine the structure of the monodisperse nanoparticle 

catalysts and the CNTs. Energy dispersive x-ray (EDX) elemental mapping was 

employed to observe Fe and Ni distribution on reduced FeNi/Mg(Al)O catalysts. 

Other common techniques such as x-ray diffraction (XRD), thermal gravimetric 

analysis (TGA), BET surface area, temperature programmed reduction (TPR), and so 

on were also used. In particular, Mössbauer spectroscopy and x-ray absorption for 

fine structure (XAFS) spectroscopy were used in this work to identify catalytic active 

phases, analyze catalyst compositions and crystal structures, and discern catalyst 

structural details at the atomic scale. A brief introduction to Mössbauer spectroscopic 

and X-ray absorption fine structure spectroscopic techniques has been given in 

chapter 2. 
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Chapter 2. A Brief Introduction to Mössbauer and X-ray Absorption Fine 
Structure Spectroscopic Techniques 

2.1 Mössbauer Spectroscopy 

2.1.1. Introduction 

Mössbauer spectroscopy, as a nuclear technique, was first developed in 1958. It 

analyzes the resonant absorption of γ-rays from nuclear transitions between the 

ground state and an excited state and provides information on oxidation states, 

magnetic field, lattice symmetry and lattice vibrations. Mössbauer spectroscopy has 

been applied to characterize solid catalysts since 1971. It is a powerful method in 

catalysis that can be used to identify catalyst phases, determine chemical states, and 

investigate magnetic relaxation phenomena in nanoscale particles, from which 

information concerning about particle size distribution, surface chemisorption, and 

catalyst dispersion can be obtained. Compared with electron microscopy or 

photoelectron spectroscopy, Mössbauer spectroscopy is a relatively inexpensive 

method. It can also be easily applied in-situ to character the catalysts under working 

conditions. However, only a limited number of elements can be studied by Mössbauer 

spectroscopy such as 57Fe, 119Sn, 57Co (in emission mode), 121Sb, 197Au, 99Ru, 193Ir, 
195Pt, 151En and so on. Comprehensive literature reviews about Mössbauer 

spectroscopy in recent years can be found elsewhere [50-55]. In this study, Mössbauer 

spectroscopy has been used to investigate iron-containing catalysts supported on 

Mg(Al)O and to identify the active and inactive phases for the catalytic hydrocarbon 

dehydrogenation reaction.  

2.1.2 The Mössbauer Effect 

The Mössbauer effect is named after Rudolf L. Mössbauer, who discovered it in 1957, 

and refers to recoilless nuclear resonance absorption of γ-ray by atoms bound in a 

solid [52]. It can be simply described as the fraction of the photons emitted by the 

source nucleus that will be absorbed by the nucleus in an absorber of same type with 

recoil energy of the photon emission and absorption significantly smaller than the 

energy of the lattice vibrations [55]. 
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 The intensity of the Mössbauer effect depends on the recoilless factor (f), which is 

defined as: 

𝑓𝑓 = 𝑒𝑒−𝑘𝑘𝑟𝑟2<𝑥𝑥2>                                                                            (2-1) 

It can be rewritten in the Debye model: 

𝑓𝑓 = exp[− 3𝐸𝐸𝑅𝑅
2𝑘𝑘𝜃𝜃𝐷𝐷

(1 + 4 𝑇𝑇2

𝜃𝜃𝐷𝐷
2 )∫ 𝑥𝑥𝑥𝑥𝑥𝑥

𝑒𝑒𝑥𝑥−1
]

𝜃𝜃𝐷𝐷
𝑇𝑇

0                                         (2-2) 

Where f is the recoilless factor, 𝑘𝑘𝑟𝑟  is the wave number of the γ-ray,  < 𝑥𝑥2 > is the 

mean squares of displacement of atoms from their average position due to lattice 

vibrations, 𝐸𝐸𝑅𝑅  is the recoil energy of the nucleus upon emission of γ-ray (𝐸𝐸𝑅𝑅 =

𝐸𝐸𝑟𝑟2/2𝑀𝑀𝑐𝑐2, where 𝐸𝐸𝑟𝑟  is the energy of γ-ray; M is the mass of the nucleus; c is the 

velocity of light), 𝑘𝑘 is Boltzmann’s constant, 𝜃𝜃𝐷𝐷  is the Debye temperature, and 𝑇𝑇 is 

the Kelvin temperature [55]. 

Equations 2-1 and 2-2 give insights on the limitations of the Mössbauer technique in 

terms of the mass of Mössbauer isotopes, the strength of chemical bonds and the 

temperature, since 𝜃𝜃𝐷𝐷 should not be too small (non-rigid lattice), T not too high, M 

not too small (>40) [50, 51]. Another constraint of the Mössbauer effect is the choice 

of γ-ray source, in which the nucleus should have a long lifetime decay to the excited 

state that we want to study and follow by an instantaneously energy transition to 

generate γ-ray [51, 55]. 57Co is most commonly used as a source for 57Fe isotope. The 

half-life of 57Co decaying to 57Fe is 270 days and the energy of the γ-ray generated by 

following fast decay is 14.4 keV, which is used for Fe Mössbauer spectroscopy. 

2.1.3 Mössbauer Spectroscopy 

The nucleus interacts with its surroundings through hyperfine interactions. The energy 

level between the source and absorber differs slightly due to different local 

environments. In order to observe the Mössbauer effect, the energy level between 

source and absorber must be the same. The Mössbauer spectrometer thereby utilizes 

the Doppler effect to compensate for the variation of the incident energy and the 

energy level of the absorber, which can be expressed by the following equation: 
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𝐸𝐸(𝑣𝑣) = 𝐸𝐸𝑜𝑜(1 ± 𝑣𝑣
𝑐𝑐
)                                                                      (2-3) 

Where 𝐸𝐸(𝑣𝑣) is the incident energy, 𝑣𝑣 is the Doppler velocity of source operated by a 

constant acceleration oscillator, 𝐸𝐸𝑜𝑜  is the energy difference between ground state and 

excited state of nucleus, and c is the velocity of light [55]. 

In a typical Mössbauer Absorption Spectrometer (MAS), a solid sample is exposed to 

a beam of γ-ray and a detector measures the intensity of the beam that is transmitted 

through the sample. The schematic illustration of MAS and Doppler Velocity is shown 

in figure 2.1. For convenience, the Mössbauer spectrum records the intensity of the 

transmitted γ-ray as a function of the Doppler velocity 𝑣𝑣 instead of the corresponding 

energy. The Doppler velocity for 57Fe is in the range of ±10 mm/s [50]. 

Generally, a Mössbauer spectrometer measures three types of hyperfine interactions 

between the nucleus and the surrounding electrons [50, 51, 55]. The first and the 

simplest interaction is the electric monopole interaction between the positively 

charged nucleus and the negatively charged s-electrons. It shifts since the size of the 

nucleus in the excited state differs from that in ground state, leading to the variation of 

s-electron density at the probe nucleus. This measured shift is called isomer shift (IS) 

with unit of mm/s, which provides information on the chemical state of the absorber. 

In the case of 57Fe, the IS values are given with respect to the peak position of α-Fe. 

The isomer shift is also temperature dependent due to the second order Doppler Shift. 

The second interaction is the electric quadrupole interaction between the electric 

quadrupole moment of the nucleus and the local electric field gradient. In the case of 
57Fe, when the nucleus is excited to the 14.4 eV level, it changes shape from spherical 

to ellipsoid, thus orientating itself in two ways in an electric field with slightly 

different energies. The Mössbauer spectrum splits into a doublet in consequence of 

the nucleus quadrupole splitting (QS). QS is equal to the velocity (V) difference of the 

two splitting peaks and the IS is measured at the center of the two peaks. 

𝑄𝑄𝑄𝑄 = 𝑉𝑉2 − 𝑉𝑉1                                                                             (2-4) 
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 𝐼𝐼𝐼𝐼 = (𝑉𝑉1 + 𝑉𝑉2)/2                                                                     (2-5) 

The third interaction arises from the interaction between the nuclear magnetic dipole 

moment and the magnetic field H at the nucleus. In the case of 57Fe, the magnetic 

field H consists of five contributions including s-electron spin polarization, unpaired 

3-d orbital electron parallel spin, the dipole interaction related to the local electron 

spin moments on the probe site, the field resulting from the magnetization of the 

sample particle, and the external magnetic field applied to the sample. The magnetic 

hyperfine splitting (H0) gives six peaks called a sextet in an iron Mössbauer spectrum. 

Again, the IS is measured at the center of the six lines. H0 with unit of kGauss is 

proportional to the difference between the position of line 1 and line 6 of the spectrum. 

𝐼𝐼𝐼𝐼 = (𝑉𝑉1 + 𝑉𝑉6)/2                                                                     (2-6) 

𝐻𝐻0 ∝ (𝑉𝑉6 − 𝑉𝑉1)                                                                         (2-7) 

All hyperfine interactions can actually occur simultaneously, thus leading to more 

complicated spectra. For example, the shift of the spectrum occurs depends a lot on 

the relatively strength of the magnetic interaction and the electric quadrupole 

interaction. Mössbauer parameters are also temperature-sensitive, and this 

characteristic is sometimes exploited by using lower temperatures to improve peak 

resolution and induce interesting magnetic phenomena. 

The techniques for processing Mössbauer data are complex and variable. In this study, 

the spectra were analyzed by least-squares fitting using a computer routine that fits 

individual Fe components as single peaks, quadrupole doublets, or magnetic sextets 

based on a lorentzian line profile. 

2.2 X-ray Absorption Fine Structure Spectroscopy 

2.2.1 Introduction 

X-ray Absorption Fine Structure Spectroscopy (XAFS) uses the x-ray photoelectric 

effect and the wave nature of the electron to probe materials at the atomic scale, 

providing information of local atomic coordination and chemical/oxidation state. This 

technique was developed in the 1970s. Practically, it can be applied to any element 
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with atomic number (Z) larger than 2 and requires minimal sample amount. Unlike x-

ray diffraction techniques applied to crystalline samples, XAFS does not require long 

range order, thus working equally well in amorphous materials, liquids, (poly) 

crystalline solids, and gases. XAFS is the modulation of the x-ray absorption 

coefficient at energies near and above an x-ray absorption edge. The spectrum is 

typically divided into two regimes: x-ray absorption near-edge spectroscopy (XANES) 

and extended x-ray absorption fine structure spectroscopy (EXAFS). XANES is 

strongly sensitive to the oxidation state and coordination chemistry, while the EXAFS 

is used to determine the distance, coordination number and species of the neighbors of 

the absorbing atom. XAFS measurements need intense and energy-tunable source of 

x-rays, thereby, are usually conducted at synchrotron laboratory [55-59]. 

2.2.2 Simple Theoretical Description 

X-rays with energies ranging from 120 eV to 200 keV are absorbed by all matter 

through the photo-electric effect. If the bonding energy of a core level electron (E0) is 

less than the energy of an incident x-ray (E), the electron may be removed from its 

quantum level. In this case, the x-ray is absorbed and any energy in excess of the 

electronic binding energy is given to a photoelectron (E-E0) that is ejected from the 

atom, thus leaving the absorbing atom in an excited state with an empty electronic 

level (a core hole). The excited core hole will eventually be filled with higher level 

core electrons, thereby a fluorescent x-ray or Auger electron is emitted from the 

absorbing atom. Once the x-ray energy is large enough to excite a core level to the 

continuum, there is a sharp increase in absorption. This is the so-called absorption 

edge, which occurs at specific energies for each element. When the absorbing atom is 

not isolated, the emitted photo-electron can be scattered from neighboring atoms by 

single path scattering or multiple path scattering, depending on local coordination 

environment of the absorbing atom and return back to the absorbing atom, interfering 

with itself [57].  

As mentioned above, XAFS is the technique to measure the energy dependence of the 
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x-ray absorption coefficient 𝜇𝜇(𝐸𝐸) near and above the absorption edge of a selected 

element. The extended spectrum, EXAFS, measures the energy dependent oscillations 

in 𝜇𝜇(𝐸𝐸) and can be expressed as: 

𝜒𝜒(𝐸𝐸) = 𝜇𝜇 (𝐸𝐸)−𝜇𝜇0(𝐸𝐸)
Δ𝜇𝜇0(𝐸𝐸0)

                                                                      (2-8) 

Where 𝜇𝜇0(𝐸𝐸)  is a smooth background function representing the absorption of an 

isolated atom and Δ𝜇𝜇0 is the edge step in the absorption at the threshold energy 𝐸𝐸0. As 

EXAFS is an interference effect, depending on the wave nature of the photo-electron, 

it is common to express EXAFS in k space by converting x-ray energy to k, photo-

electron wavenumber. Practically, 𝜒𝜒(𝑘𝑘)  is often weighted by k2 or k3 to amplify 

oscillations at higher k. 

EXAFS can be modeled by the EXAFS equation: 

𝜒𝜒(𝑘𝑘) = ∑ 𝑁𝑁𝑗𝑗𝑆𝑆0
2𝑓𝑓𝑗𝑗 (𝑘𝑘)𝑒𝑒−2𝑅𝑅𝑗𝑗 /𝜆𝜆(𝑘𝑘)𝑒𝑒−2𝑘𝑘2𝜎𝜎𝑗𝑗

2

𝑘𝑘𝑅𝑅𝑗𝑗
2 sin�2𝑘𝑘𝑅𝑅𝑗𝑗 + 𝛿𝛿𝑗𝑗 (𝑘𝑘)�𝑗𝑗             (2-9) 

Where 𝑓𝑓(𝑘𝑘)and 𝛿𝛿(𝑘𝑘)  are scattering amplitude and phase-shift, 𝑆𝑆0
2 is the amplitude 

reduction factor related to the relaxation effects in the emitting atom, λ is the inelastic 

mean free-path of the photo-electron, 𝑁𝑁 is the coordination number of the neighboring 

atom, R is the distance to the neighboring atom, 𝜎𝜎2 is the mean-square disorder of 

neighbor distance, j is the lablel of the coordination shells around the electron-

emitting atom, the sum is over shells of similar neighboring atoms. The EXAFS 

equation allows us to determine N, R and 𝜎𝜎2  if the scattering amplitude 𝑓𝑓(𝑘𝑘) and 

phase-shift 𝛿𝛿(𝑘𝑘) are known and also to determine the species of neighboring atom 

due to the fact that 𝑓𝑓(𝑘𝑘)and 𝛿𝛿(𝑘𝑘) are atomic number  sensitive. The 𝑓𝑓(𝑘𝑘)and 𝛿𝛿(𝑘𝑘) 

can be calculated by using computer program FEFF. 

The near edge spectra, XANES, are typically within 100 eV of absorption edge. 

Unlike the EXAFS, to extract physical and chemical interpretation of all spectral 

features is still difficult to do accurately, precisely and reliably as there is still no 

simple equation for XANES. However, XANES can be done at lower concentrations 

and less-than-perfect sample conditions because it has a much stronger signal than 
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EXAFS. It can be applied qualitatively in terms of coordination chemistry, molecular 

orbitals, band-structure and multiple-scattering. For many systems, the XANES 

analysis can be as simple as making linear combination of “known” spectra to get 

compositional fraction of these components [57, 58]. 

2.2.3 Experimental  

The energy dependence of the absorption coefficient𝜇𝜇(𝐸𝐸) can be measured either in 

transmission mode or in fluorescence mode as illustrated in figure 2.2. In the 

transmission mode, the absorption is measured directly by measuring what is 

transmitted through the sample. Where, 

𝐼𝐼 = 𝐼𝐼0𝑒𝑒−𝜇𝜇(𝐸𝐸)𝑡𝑡                                                                               (2-10) 

𝜇𝜇(𝐸𝐸)𝑡𝑡 = −ln(𝐼𝐼/𝐼𝐼0)                                                                    (2-11) 

In fluorescence mode, the fluorescence x-ray is measured with: 

𝜇𝜇(𝐸𝐸) ∝ 𝐼𝐼𝑓𝑓/𝐼𝐼0                                                                              (2-12) 

Where 𝐼𝐼0 is the intensity of incident x-ray beam; I is the intensity of transmitted x-ray 

beam; t is the thickness of the measured material; 𝜇𝜇(𝐸𝐸) is x-ray absorption coefficient 

depending on x-ray energy E, atomic number Z, density and atomic mass of measured 

material. Due to self-absorption, the XAFS in fluorescence is limited to use with the 

dilute samples and very thin samples. [57]. 

2.2.4 Data Analysis 

In both transmission and fluorescence modes, the data processing is essentially the 

same, including data reduction, pre-edge subtraction, E0 determination and 

normalization, post-edge background subtraction, Fourier transforms and reverse 

Fourier transforms [60]. 

In this study, the analysis of XAFS spectra followed the usual steps and was carried 

out by using SIXPack (Sam’s interface for XAS package) software package for 

personal computer, which builds on Matt Newville's IFEFFIT engine [60-63]. First, 

the collected raw intensity data are loaded, converted to 𝜇𝜇(𝐸𝐸)  and averaged in 

SamView Menu option. The energy E0 is calibrated by first order derivative of 𝜇𝜇(𝐸𝐸) 

http://cars9.uchicago.edu/~newville/�
http://cars9.uchicago.edu/ifeffit/�
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function and applying energy shift to data. Secondly, in the background subtraction 

dialog, the saved average data in 𝜇𝜇(𝐸𝐸)  are input and edited by deglitching, if 

necessary. And then, the pre-edge normalization and post-edge normalization are 

applied to get rid of any instrumental background slope and absorption from other 

edges, and the spectra are normalized to absorption step of unity. The normalized 

𝜇𝜇(𝐸𝐸) is then convert to k2 or k3 weighted 𝜒𝜒(𝑘𝑘) in the typical range of 2-15 Å-1. The R 

space can be obtained by Fourier transforms of 𝜒𝜒(𝑘𝑘)  by applying different FT 

window, for example, Kaiser-Bessel window, in the typical range of 0-6 Å.  𝜇𝜇(𝐸𝐸), 

𝜒𝜒(𝑘𝑘) and R functions are saved individually as ASCII files for later data analysis [63].  

The least squares fitting module of SIXPack is used to fit experimental data mainly in 

XANES as linear combination of standard reference compounds in order to extract 

component information of absorbing sample. The primary inputs are the data file to be 

fit and the set of reference spectra to be considered in the fit. Various fitting 

constraints are applied such as energy limits, k weighting, non-negative fitting, 

summary component to one, allow data E to floating and so on. The fitting results are 

evaluated by Chi squared or reduced Chi squared [63]. 

FEFF EXAFS fitting acts as an interface to IFEFFIT, which performs fits of FEFF 

derived scattering amplitude 𝑓𝑓(𝑘𝑘) and phase-shift 𝛿𝛿(𝑘𝑘) to experiment data. The fits 

can be done by simple shell-by-shell models, or extremely complicated and 

constrained structural models by choosing “templates” options in this dialog. The 

FEFF input file “feff.inp” containing crystallgraphic coordination can be generated by 

ATOM or Web ATOM program by Bruce Ravel [64]. After running FEFF 6 built in 

IFEFFIT, “feefnnnn.dat” files are generated and stored individually, representing 

different scattering paths. The fitting is usually operated in R-space because working 

in R-space allows us to selectively ignore higher coordination shells. In order to set up 

a fit, the loading of the main data file 𝜒𝜒(𝑘𝑘), definition of paths and variables have to 

be done properly. The common fitting parameter including: 

 S0
2 ―the amplitude reduction parameter; 

E0 ―the energy shift in the Fermi level between experiment and theory;  
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ΔR ―the difference between the fitted radial distance and the one defined by 

the FEFF file; 

σ2 ―the disorder parameter, commonly used as Debye-Waller factor.  

The fitting may be evaluated by statistic parameters such as chi squared, reduced chi 

squared and R factor and also the physical meaning of the above  fitting parameters. 

The data and fits can be plotted in k space, R-space and q-space (back-transformed k-

space by reverse Fourier transforms) and saved, respectively [63]. 

More details of the fitting can be found in the documentation files for SixPACK 

software. 
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Figure 2.1. Schematic illustration of a Mössbauer Absorption Spectrometer (MAS). 
The energy of the source radiation is modulated by using the Doppler effect in order 
to cover all possible transitions in the nucleus of absorber [55]. 
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Figure 2.2. Schematic illustration of synchrotron x-ray absorption spectroscopy in 
both fluorescence mode and transmission mode [57]. 
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Chapter 3. Catalytic Non-oxidative Dehydrogenation of Ethane over FeNi and Ni 
Catalysts Supported on Mg(Al)O to Produce Hydrogen and Easily Purified 

Carbon Nanotubes 
 
This chapter is based on work published as: W. Shen, Y. Wang, X. Shi, N. Shah, F. 

Huggins, G.P. Huffman “Catalytic non-oxidative dehydrogenation of ethane over Fe-

Ni and Ni catalysts supported on Mg(Al)O to produce pure hydrogen and easily 

purified carbon nanotubes”, Energy & Fuels, 2007, 21(6), 3520-3529. Copyright 2007 

American Chemical Society. 
 

3.1 Introduction 

An energy economy based on hydrogen could alleviate growing concerns about 

energy supply, air pollution, and greenhouse gas emissions. Currently, the most 

widely used method of hydrogen production is steam reforming or partial oxidation of 

fossil fuels, particularly natural gas, followed by the water gas shift reaction (WGS) 

and separation and purification steps.  However, the hydrogen purity requirement for 

use in polymer electrolyte membrane (PEM) fuel cells is demanding (<10 ppm CO), 

since CO is a poison for the catalysts used in PEM fuel cells.  Additionally, the steam 

reforming – WGS process produces significant amounts of CO2, a gas believed to 

contribute to global warming. Therefore, direct, non-oxidative decomposition of 

hydrocarbons into hydrogen and carbon is an attractive alternative method of 

producing hydrogen that is free of CO and CO2.  Moreover, the process is a simple 

one-step reaction: 

CxHy→xC+(y/2)H2                                                                    (3-1) 

Previous work by our research group has shown that binary Fe-M (M = Ni, Mo, or 

Pd) catalysts prepared by incipient wetness or co-precipitation on γ-alumina supports 

have excellent activity for dehydrogenation of methane, ethane, propane and 

cyclohexane [45, 46, 65]. Results from Mössbauer and XAFS spectroscopy suggest 

that the active phase is an austenitic Fe-M-C alloy that is bound to the alumina 

support by hercynite (FeAl2O4) [48, 49]. The carbon produced by the reaction was 
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present as potentially valuable carbon nanotubes (CNTs), which were in the form of 

multi-walled nanotubes (MWNTs) in the most active temperature range. However, the 

CNTs were very difficult to clean because of the limited solubility of alumina and the 

strong binding of the nanotubes to the support caused by the formation of FeAl2O4 

during the reaction.  

To obtain high quality CNTs by the catalytic chemical vapor deposition (CCVD) 

method requires almost complete removal of the catalyst particles and support.  A 

number of different approaches and purification methods have been developed [15, 

66-70]. Conventional catalyst supports, such as alumina, silica, and zeolite, are 

excellent supports for CNTs production by CCVD. However, a multi-step purification 

process is required, which leads to a low CNTs yield and may even damage the 

structure of the CNTs. Recently, several investigations have used basic catalyst 

supports to produce CNTs by CCVD because of the facile dissolution of the support 

in dilute acid. Flahaut et al. [71] used a Mg0.9Co0.1O solid solution prepared by 

combustion synthesis to crack methane in a hydrogen-methane mixture (18 vol. % 

methane) at a temperature of 1000ºC. The solid product was treated with an HCl 

solution and the MgO was completely dissolved. There was still some Co left as Co 

particles embedded within the CNTs. Couteau et al. [72]used CaCO3 as catalyst 

support for Fe and Co monometallic and bimetallic catalysts for acetylene 

decomposition at 720°C. The metallic particles and support could be dissolved in 

dilute acid (30% HNO3 or HCl) in one step. The purified MWNTs were found to be 

an excellent catalyst support for Fischer-Tropsch (FT) synthesis [73].  

Here, a basic catalyst support, Mg(Al)O, was prepared by calcination of a synthetic 

hydrotalcite (HTL) precursor. The product of the calcination has pronounced basic 

character, high surface area, and good stability towards heat and steam and was easily 

dissolved in dilute nitric acid.  Monometallic Ni and bimetallic FeNi (molar ratio of 

Fe/Ni = 65/35) nanoscale catalysts were deposited on this support by the incipient 
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wetness method and used for decomposition of undiluted ethane, providing both a 

high hydrogen yield and an easily purified CNTs by-product. 

3. 2 Experimental Section 

3.2.1 Catalyst Preparation 

Mg(1-x)Alx HTL with a Mg/Al molar ratio of 5 was prepared by coprecipitation at 

constant pH and temperature [74]. A flow of magnesium nitrate and aluminum nitrate 

solution with a total cation concentration of 1 M and a flow of solution with 10 mol. 

% excess of KOH and K2CO3 (molar ratio of CO3
2- to Al3+ equal to 0.5) were pumped 

into a matrix solution using syringe pumps. The pH value of the matrix solution was 

controlled to between 8.5 and 9.5 by tuning the syringe pump flow rates. The reaction 

temperature was controlled at 70°C. The end point pH was adjusted to 9.5 by adding 

excess KOH. After reaction, the precipitate was aged overnight at room temperature, 

then filtered and re-dispersed in hot deionized water for several cycles to completely 

wash off any adsorbed K+ (pH = 7), and finally dried at 100ºC for 24 h. The dried 

precipitate was then calcined in air at 550ºC for 5 h, cooled to room temperature, and 

ground into a fine powder (<100 mesh), which was labeled as Mg(Al)O catalyst 

support. 

The catalysts were prepared by incipient wetness. The catalyst precursors, 

Fe(NO3)3•9H2O and Ni(NO3)2•6H2O, based on the desired Fe/Ni ratio (65/35) and 

total metal loading of 5 wt. %, were dissolved in deionized water, then mixed with the 

dry Mg(Al)O powder, and dried in an oven at 80ºC. This was repeated three or four 

times with a volume of the added solution close to the total pore volume of the 

support powder each time until the catalyst precursor solution was totally absorbed. 

The resulting material was then dried in an oven overnight at 80ºC, calcined in air at 

550ºC for 5 h, cooled to room temperature, and  stored in a dry place.   

3.2.2 Ethane Dehydrogenation Reaction 

The dehydrogenation reaction was performed in a fixed-bed plug-flow reactor 

described in detail with a schematic diagram elsewhere [65]. Briefly, the reaction 
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chamber was a quartz tube with an inner diameter of 22.5 mm. One gram of catalyst 

powder was loaded at the center of the reactor and activated by reduction in hydrogen.  

The reduction was conducted by heating the furnace slowly at 2ºC/min up to 700ºC 

and maintaining this temperature under a hydrogen flow rate of 50 mL/min for 2 h. 

The decomposition reaction was conducted at 500, 650, and 700°C, with an ethane 

flow rate of 10 mL/min. The inlet gas flow was controlled by a mass flow controller, 

and the effluent was monitored by a bubble flow meter and analyzed by online gas 

chromatography (GC) with a thermal conductivity detector (TCD). The solid product 

was collected after reaction. The various gaseous products were quantified as volume 

percentages of the total gaseous effluent. 

3.2.3 CNTs Purification 

Nitric acid was used to remove the catalyst from the produced CNTs. The collected 

CNTs were purified at room temperature or under reflux in 6M HNO3 solution for 2 

h. The material was filtered and then thoroughly washed using deionized water to 

remove any adsorbed HNO3. The purified CNTs were then dried in an oven at 80ºC 

overnight.  

3.2.4 Catalyst Characterization 

The N2 adsorption-desorption isotherms were measured for the Mg(Al)O support, the 

catalysts in their as-prepared and reduced conditions at liquid nitrogen temperature on 

a Micromeretics TRISTAR 3000 instrument. Prior to the adsorption and desorption 

measurement, the samples were degassed overnight at 150°C with a N2 purge. Powder 

X-ray diffraction was conducted on a Siemens 5000 diffractometer using Ni filtered 

Cu-Ka radiation and a scanning rate of 0.5° 2θ min-1. The Mg(Al)O support grain size 

was calculated from the full width at half maximum (FWHM) of the principal peaks, 

using the Debye-Scherrer equation. The morphologies of the catalysts and the 

produced CNTs were characterized by transmission electron microscopy (TEM) using 

a JEOL 2010F instrument at a voltage of 200 kV. TEM samples were prepared by 

crushing the samples, dispersing them in acetone by ultrasonication for 15 minutes, 

loading a single drop of the suspension onto lacey carbon TEM grids, and drying the 
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grids at room temperature for 10 min. 57Fe Mössbauer spectroscopy was used to 

characterize the atomic structure of the FeNi catalyst on the Mg(Al)O support, while 

the X-ray absorption spectroscopy was used to characterize the Ni/Mg(Al)O catalyst. 

Thermal gravimetric analysis was carried out in a 100 mL/min flow rate of air to 

measure the purity of the produced and purified CNTs. The heating rate was 10ºC/min 

from room temperature to 950ºC. 

3. 3 Results and Discussion  

3.3.1 Properties of Mg(Al)O Support and Catalysts 

Hydrotalcite (HTL) compounds, also known as layered double hydroxides (LDH), are 

natural or synthetic materials with the general formula of [M2+
1-xM3+

x (OH)2]A n-

x/n⋅mH2O, where M2+ and M3+ represent divalent and trivalent cations in the 

octahedral sites within the hydroxyl layers, x is equal to the ratio of M3+/(M2++M3+), 

typically in the range of 0.17-0.33, and An- is the exchangeable interlayer anion, 

balancing the positive charge on the layers. The M2+/M3+(OH)6 octahedra form two-

dimensional sheets that stack together by hydrogen bonding between the hydroxyl 

groups of adjacent sheets. Usually, synthetic hydrotalcites are reported to have a 

hexagonal structure [75]. In this study, M2+ and M3+ represent Mg2+ and Al3+ cations, 

respectively, and x = 0.167.  

Figure 3.1 shows the X-ray powder diffraction patterns of MgAl-HTL as-prepared, 

the Mg(Al)O catalyst support prepared by calcination of MgAl-HTL at 550°C for 5 h, 

and the as-prepared FeNi/Mg(Al)O catalyst. The XRD pattern of MgAl-HTL exhibits 

a typical crystalline layered double hydroxide structure with a hexagonal stacking. 

Kuśtrowski et al. [76] found that the crystallinity of HTL decreased with increasing 

molar ratio of Mg to Al.  In our experiments, we used a Mg to Al molar ratio of 5, 

which is on the borderline of effective formation of HTL. The crystallite size of the 

as-prepared MgAl-HTL was calculated from the FWHM of the (018) and (006) 

reflections using the Debye-Scherrer formula and found to be around 6 nm. Thermal 

decomposition of HTL leads to a solid solution, which is characterized by a high 

surface area and homogeneous dispersion of the metal oxides. The XRD pattern of 
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Mg(Al)O after calcination at 550ºC for 5 h shows only the pattern of cubic MgO with 

high crystallinity due to the fact that aluminum ions also occupy the octahedral sites 

in the MgO lattice. This special structure has been verified by 27Al solid state NMR 

by Schapter et al. [74] The thermal decomposition behavior of MgAl-HTL was 

studied by Rao et al. [77] using a TG-DTA thermogram. They observed three main 

stages: (1) the loss of physisorbed and interlayer water below 260°C; (2) 

dehydroxylation and removal of carbonate ions between 260°C and 500°C; and (3) 

the decomposition of MgCO3 above 500°C. In our experiment, calcination at 550ºC is 

sufficient for dehydroxylation to form Mg(Al)O oxide with a high surface area. The 

XRD pattern of the as-prepared FeNi/Mg(Al)O catalyst exhibits no obvious difference 

from that of the pure Mg(Al)O support, indicating that Fe3+ trivalent ions and Ni2+ 

divalent ions are either dispersed in the support or are present in oxide particles too 

small in size and amount to yield a significant diffraction pattern.   

The surface areas of the Mg(Al)O support, and the Ni/Mg(Al)O and the 

FeNi/Mg(Al)O catalysts, both as-prepared and reduced in hydrogen, are listed in 

Table 3.1. It is seen that the surface areas decrease slightly on adding the catalyst 

precursors, possibly due to interaction between the precursor and the support, and 

undergo a more significant decrease after reduction at 700ºC due to sintering of both 

the support and the catalyst particles. The decrease in surface area during reduction 

for the FeNi/Mg(Al)O catalyst was ~30%. Schaper et al. [74] investigated the effect 

of the calcination temperature on the surface area of similar Mg(Al)O compounds and 

found that increasing it from 500 to 700ºC decreased the surface area by 20%.  

The morphologies of the as-prepared material and the reduced FeNi/Mg(Al)O catalyst 

are shown in Figure 3.2. In the TEM mode (Figure3.2a, c), the contrast of catalyst 

particles and the Mg(Al)O support is relatively weak. However, it clearly shows that 

the Mg(Al)O support is made up of loosely sintered nanocrystals with particle sizes of 

the order of 10-20 nm size, in rough agreement with the value estimated from the 

XRD line broadening using the Debye-Scherrer equation. After the catalyst was 

reduced at 700°C for 2 h in H2, some sintering of the support can be seen (Figure 
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3.2c). In the STEM mode, (Figure 3.2d), metallic FeNi catalyst particles having a 

broad size distribution ranging from small nanoparticles (~10 nm) to relatively large 

particles (20-40 nm) are clearly observed. No distinct Fe or Ni oxide particles are 

observed on the as-prepared catalyst (Figure 3.2b), which indicates that Fe and Ni are 

well and evenly dispersed prior to reduction. The Ni/Mg(Al)O catalyst shows similar 

results. 

Figure 3.3 shows the Ni K-edge X-ray absorption near edge structure (XANES) 

spectrum and the Fourier transform (FT) of the k3-weighted extended X-ray 

absorption fine structure (EXAFS) of the as-prepared Ni/Mg(Al)O catalyst. The 

corresponding spectra of NiO and NiMgO (Ni:Mg=1:1, atomic ratio) solid solution 

are also shown for reference. The XANES spectrum of the as-prepared Ni/Mg(Al)O 

resembles that of NiMgO in the white-line region. Both the spectra of the as-prepared 

Ni/Mg(Al)O and NiMgO solid solution have more intense white lines than that of 

NiO. The peaks at around 8360 eV and 8400 eV, marked by arrows in Figure 3.3, 

shift to lower energy with reduced Ni content and become narrower compared to 

those of pure NiO.  

The radial structure function (RSF) resulting from Fourier transform of the k3-

weighted EXAFS in the range of 3-13 Å-1 of the as-prepared Ni/Mg(Al)O catalyst is 

also shown in Figure 3.3 (bottom). The first peak at ~1.5 Å is due to the 

backscattering by the nearest oxygen shell, and the second peak is due to 

backscattering by Ni next nearest neighbors in the second coordination shell in pure 

NiO or by (Mg, Ni) neighbors in Ni/Mg(Al)O catalyst and the NiMgO solid solution. 

The intensity of the second peak of as-prepared Ni/Mg(Al)O catalyst is much lower 

than that of NiMgO solid solution, which is likely due to the dilution of Ni in the 

Mg(Al)O support. Yoshida et al. [78] conducted an in-depth study of the NiO-MgO 

system by XAFS. It was concluded that a solid solution was formed by impregnation 

of MgO powder with an aqueous solution of Ni(NO3)2 followed by calcination at 

500ºC over the entire range of Ni concentration. Here, the RSF spectra of the as-

prepared Ni/Mg(Al)O catalyst and NiMgO solid solution closely match those of  
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NixMg1-xO compounds with x equal to 0.02 and 0.48, respectively, as observed by 

Yoshida et al. [78] This similarity indicates that all the Ni in the as-prepared 

Ni/Mg(Al)O catalyst is incorporated into octahedral sites in the Mg(Al)O lattice. To 

confirm this conclusion, FEFF EXAFS analysis was performed in R-space over the 

range of 1-3 Å, which includes only the first two coordination shells. The combined 

coordination number for the Ni-M next nearest shell was constrained to equal twice 

that of the Ni-O nearest shell. The RSF and the back Fourier transform spectrum (q-

space) of the first two shells of the as-prepared Ni/Mg(Al)O and the fitting data are 

shown in Figure 3.4 and Table 3.2. Agreement in both R and q space for the as-

prepared Ni catalyst was obtained with a two-shell fit, including Ni-O for the first 

shell and a second shell consisting of separate Ni-Ni and Ni-Mg contributions. The 

latter contribution was derived using ATOMS and FEFF6 procedures for 5% Ni in 

MgO. [79-81] Therefore, it can be concluded that all Ni species are present in 

octahedral sites in the Mg(Al)O lattice, forming a solid solution. The coordination 

number of Ni atoms in the next nearest shell is much less than the number of Mg 

atoms, but is consistent with the anticipated composition for a random solid solution 

of 5% Ni in MgO, which should result in 0.6 Ni and 11.4 Mg next nearest neighbors.  

The Ni K-edge XANES spectrum and the RSF from Fourier transformation of the k3-

weighed EXAFS of Ni/Mg(Al)O after reduction in H2 and after dehydrogenation of 

ethane for 2 h at 500ºC, together with the corresponding spectral data for a Ni foil, are 

shown in Figure 3.5. The RSFs of the reduced Ni/Mg(Al)O and the reacted catalyst 

are similar to those of Ni foil, but the intensities of the first Ni-Ni shell in the RSFs of 

the catalyst samples are much lower, indicating the presence of some oxidized Ni in 

the catalysts. To quantify the degree of reduction, least squares fitting of the XANES 

spectra of reduced and reacted Ni/Mg(Al)O was conducted by using SixPACK 

software. The fitting components include the XANES spectra for Ni foil, NiO, and the 

as-prepared catalyst, representing respectively metallic nickel in the catalyst particles, 

re-oxidized Ni on their surfaces, and unreduced Ni in the Mg(Al)O lattice.  The fitting 

results are shown in Figure 3.6 and Table 3.3, which lists results for alternative fits as 



30 
 

well as for the optimum fit. The catalyst after 2 h of ethane dehydrogenation shows 

somewhat more metallic Ni (~75%) than the as-reduced catalyst (~65%). However, 

the amount of re-oxidized Ni in the reacted catalyst is much less significant, which 

suggests that the formation of CNTs after ethane dehydrogenation reaction may 

protect Ni particles from reoxidation due to exposure to air. There is no evidence of 

the formation of nickel carbide after 2 h of the ethane dehydrogenation reaction [20, 

82].  

Mössbauer spectra were collected at room temperature for the FeNi/Mg(Al)O catalyst 

as-prepared, after reduction at 700ºC for 2 h, and after ethane dehydrogenation at 

650°C for 8 h. The spectra are shown in Figure 3.7. The Mössbauer parameters and 

the contributions of the various iron species identified by least squares analysis of the 

spectra are summarized in Table 3.4.  The spectrum recorded the as-prepared catalyst 

consists of two quadrupole doublets, indicating two distinct ferric iron species. The 

doublet with the smaller quadrupole splitting is attributed to Fe3+ incorporated into the 

Mg(Al)O lattice, forming a Mg-Ni-Al-Fe-O complex with Fe3+ in an asymmetric 

environment [83-86]. The doublet with the larger QS value is attributed to formation 

of Fe3+ clusters on the surface of support [84].  

After reduction, only about 20% of the iron in the FeNi/Mg(Al)O catalyst is present in 

metallic form. The broad magnetic sextet is derived from the formation of a magnetic 

Fe-Ni (bcc) alloy (13%), while the sharp single peak indicates the formation of an 

austenitic Fe-Ni-C (fcc) alloy phase (7%). A significant percentage of the Fe remains 

as ferric oxide, although the component with the larger QS may contain a small 

admixture of Fe2+. 

After the ethane dehydrogenation reaction, the Mössbauer spectrum consists of two 

broad magnetic sextets derived from an Fe-Ni martensitic (bcc) alloy (33%) and a 

sharp single peak from an Fe-Ni-C (fcc) austenitic alloy (19%). The sextet with the 

smallest magnetic hyperfine field (H0 = 193 kG) can be assigned to Fe(Ni) carbide 

(19%). The remaining absorption (29%), which has been fitted as two very broad 
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(width = 1.9 mm/s) quadrupole components, most likely results from 

superparamagnetic (spm) FeNi oxide with a spin relaxation time close to that of the 

Larmor precession time [87]. In view of the small FeNi particle size (10-40 nm), 

much of this oxide may have formed spontaneously on removing the catalyst from the 

reactor and exposing it to air. These broad quadrupole components may also obscure 

an absorption doublet associated with the austenite phase due to Fe atoms in the metal 

that have carbon nearest neighbors. It is likely that the Fe-Ni-C austenite and the Fe-

Ni martensite phases are both active metallic phases for ethane dehydrogenation and 

CNTs formation. Catalyst deactivation may be due to the formation of the carbide 

phase. 

3.3.2 Ethane Dehydrogenation 

Ethane dehydrogenation was conducted over Ni/Mg(Al)O and FeNi/Mg(Al)O 

catalysts at temperatures of 500, 650 and 700ºC with undiluted ethane flowing with a 

space velocity of 600 ml·h-1g-1.  During noncatalytic thermal cracking, ethane does 

not decompose at all at 500ºC, and decomposes to 22.5 vol.% H2, 10 vol.% CH4, 19.5 

vol.% ethene, and 48 vol.% unreacted ethane at 650ºC.  Based on the product 

distribution, a possible reaction pathway for thermal cracking of ethane is proposed as 

follows: ethane first cracks to ethene and H2, then ethene further decomposes to 

methane and carbon. Some of the carbon can react with H2 to produce more methane. 

C2H6 → C2H4 + H2                            (3-2) 

C2H4  → CH4 +  C                              (3-3) 

C + 2H2 → CH4                                                              (3-4) 

The generally accepted reaction pathways for catalytic ethane dehydrogenation to 

hydrogen, methane, and surface deposited carbon (CS) are provided by the following 

equations:  

C2H6 → CH4+CS+H2                                                               (3-5) 

C2H6 → 2CS+3H2                                                                     (3-6) 
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The following reaction is reversible (methane cracking or methanation) depending on 

the reaction temperature and the catalyst used. 

Cs+2H2              CH4                                                                                                  (3-7) 

There is an additional step, the formation of filamentous carbon (Cf), including both 

fibers and nanotubes (CNTs), from surface deposited carbon (CS), determined by the 

carbon diffusion rate through or around the catalyst particles [28, 88, 89].  

 Cs         Cf                                                                                  (3-8) 

Figure 3.8 shows the time-on-stream (TOS) product distribution from ethane 

decomposition over the Ni/Mg(Al)O catalyst at 500 and 650ºC. At 500ºC, 

Ni/Mg(Al)O exhibits good catalytic performance. It maintains catalytic activity for 

over 16 h with almost 100% ethane conversion to ~ 20 vol.% H2 and 80 vol.% of 

methane. Given that three times more methane than H2 is produced at 500ºC, the 

dominant reaction is reaction (3-5), producing equal molar CS, methane, and H2. 

Nearly 1/3 of CS further reacts with H2 to yield more methane, and the remainder 

becomes CNTs.  As discussed later, the CNTs produced in this reaction have a 

stacked-cone nanotube (SCNT) structure. Therefore, the overall reaction of ethane 

dehydrogenation over Ni/Mg(Al)O catalyst at 500ºC can be expressed as: 

3C2H6→4CH4+H2+2Cf                                                                (3-9) 

The chemical reaction rate is in equilibrium with the carbon consumption rate from 

the catalyst surface, including the methanation reaction and CS diffusion to form 

SCNTs, which allows the catalyst to maintain its activity. After 16.7 h, the available 

active metal surface of the Ni catalyst particles becomes enclosed in the SCNTs and 

the catalyst then gradually deactivates.  

On further increasing the temperature to 650ºC, methane cracking becomes dominant 

over the methanation reaction, increasing the H2 yield. Moreover, build-up of carbon 

occurs on the surfaces of catalyst particles since the deposition rate of carbon at the 

surface is greater than the rate of its removal by diffusion through the catalyst particle. 
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Hence the catalyst particles become saturated with carbon resulting in loss of catalytic 

activity and ethane decomposition diminishes to the level of thermal cracking. Ethene 

is increasingly detected as a product as the catalyst loses its activity at 650ºC.   

Figure 3.9 shows the time on stream (TOS) product distribution from ethane 

decomposition over a bimetallic FeNi/Mg(Al)O catalyst at reaction temperatures of 

500 and 650ºC. At 500ºC, the FeNi/Mg(Al)O catalyst shows less activity than that of 

the Ni/Mg(Al)O catalyst. At the beginning of reaction, it converts ethane completely 

to 20 vol.% H2 and 80 vol.% of methane, just as the Ni catalyst does. However, it 

gradually deactivates to a new equilibrium level of 7.5 vol.% of H2, with unreacted 

ethane as the balance of the product gas.  

On increasing the reaction temperature to 650ºC, the FeNi/Mg(Al)O catalyst exhibits 

a dramatic increase in H2 production (over 65 vol.% H2 and 10 vol.% methane) and 

maintains its activity for over 5 h before gradually declining to the thermal cracking 

level. On comparing these data with those of the monometallic Ni/Mg(Al)O catalyst, 

it is evident that the rate of diffusion of carbon through the FeNi alloy catalyst at 

650ºC must be enhanced relative to that for the pure Ni catalyst. 

The driving force for carbon diffusion inside the catalyst particles and the formation 

of filamentous carbon is due to the carbon concentration gradient, arising from the 

difference in carbon solubility at the gas/catalyst particle surface and CNT/catalyst 

particle surface [88, 90]. At steady state, the rates of the ethane decomposition 

reaction, net surface reaction, and carbon diffusion through the catalyst particle are 

equal. At 650ºC, the carbon diffusion rate in bimetallic FeNi/Mg(Al)O is apparently 

much faster than that in monometallic Ni/Mg(Al)O catalyst. Thus, the former can 

maintain steady state operation for a reasonable period of time, but the latter 

deactivates quickly during reaction. Hence, inclusion of the second metal to form a 

metal alloy can significantly change the carbon diffusivity or solubility inside the 

catalyst particles at elevated temperatures, prolonging catalyst life-time [91]. Catalyst 

deactivation after a period of steady state operation may be due to the formation of a 
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new phase, metal carbide, which lowers the solubility of carbon at the gas/catalyst 

particle surface or the diffusion coefficient of carbon atom through the catalyst 

particle. For example, the diffusion coefficient of carbon through Fe3C is 104 times 

lower than that through austenite [38], which significantly lowers the driving force for 

carbon diffusion. Additionally, gas access to the catalyst particles is gradually reduced 

by enclosure within CNTs, as noted earlier.   

Figure 3.10 summarizes the TOS H2 production over the Ni/Mg(Al)O and bimetallic 

FeNi/Mg(Al)O catalysts at 500, 650 and 700ºC. The Ni/Mg(Al)O catalyst has the 

longest lifetime at 500ºC. It maintains catalytic activity for 16.7 h with 100% ethane 

conversion, but the H2 selectivity is only 25%, and the net gain of hydrogen (the total 

hydrogen production subtracts the hydrogen consumption for the reduction of the 

catalyst) during this period of time is 3316 mL/g catalyst. At 650 and 700ºC, the 

monometallic Ni catalyst deactivates quickly. The bimetallic FeNi/Mg(Al)O catalyst 

shows high H2 selectivity and activity at 650ºC, at which temperature H2 generation is 

~65 vol. % and is maintained for over 5 h. The net gain of hydrogen until deactivation 

at 470 min is about 4418 mL/g catalyst. At 700ºC, both the Ni catalyst and the FeNi 

catalyst deactivate very quickly, but the FeNi catalyst exhibits a higher H2 yield.  

3.3.3 TEM Characterization of CNTs 

The morphology of the CNTs produced over Mg(Al)O supported catalysts was 

investigated using high resolution transmission electron microscopy (HRTEM). 

Figure 3.11 shows the CNT structures produced by ethane decomposition over 

FeNi/Mg(Al)O catalyst at reaction temperatures of 525 and 650ºC, respectively. The 

structure of CNTs is very sensitive to reaction temperature. At 525ºC, the CNTs have 

a stacked-cone nanotube structure (SCNT), and at 650ºC, they are predominantly 

concentric parallel-walled MWNTs. Figure 3.12 shows the structure of CNTs 

produced over the Ni/Mg(Al)O catalyst at temperatures of 500 and 650ºC. At 500ºC, 

the CNTs are essentially all SCNTs. However, at 650ºC, onion-like structured carbon 

soot is formed together with filamentous carbon. The formation of the onion-like 
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carbon soot was also observed by Nolan et al. [92] on supported Ni and Co particles 

at 600ºC for the CO disproportionation reaction.  

The formation of MWNTs and SCNTs over bimetallic Fe-M (Ni, Mo, Pd) catalysts 

supported on γ-Al2O3 was discussed previously. [45] The CNT nanostructures grow 

away from the surfaces of the binary catalyst particles because the catalyst particles 

are anchored to the alumina support by the formation of hercynite (FeAl2O4).  

However, the catalyst particles supported on Mg(Al)O exhibit a tip growth 

mechanism of CNT formation. This is illustrated by Figure 3.13, which shows metal 

catalyst particles at the tips of CNTs formed by ethane dehydrogenation over 

Ni/Mg(Al)O and FeNi/Mg(Al)O catalysts at 500ºC.  Such structures have also been 

observed, for example, by Dai et al. [93]  using a patterned catalyst array. It is 

generally agreed that formation of CNTs by CCVD involves three steps, consisting of 

the formation of surface carbon CS, the dissolution and diffusion of the CS through the 

catalyst particle, and the nucleation of carbon filaments. [94] Because of different 

interactions between catalyst metal particles and the support, the catalyst particles 

either move forward to the tips of the nanotubes while the CNTs are generated on the 

rear (tip growth mechanism) or remain attached to the support while the CNTs grow 

away from the anchored particles (base growth mechanism). Tip growth would appear 

to have advantages for our application, which is focused on producing large quantities 

of hydrogen and nanotubes. The metal particles move away from the support and 

form a loosely connected aggregate of CNTs inside the reactor. Moreover, it favors 

the formation of CNTs with open ends, making the CNTs produced easier to clean. 

3.3.4 CNTs Purification 

The carbon product from ethane decomposition was collected after reaction and 

treated in 6M HNO3 to remove the catalyst. The reaction was carried out either at 

room temperature for 2 h or in hot 6M HNO3 solution under reflux for 2 h. Figure 

3.14 shows the XRD patterns of the CNTs as-prepared after 40 h reaction at 500ºC on 

Ni/Mg(Al)O, the CNTs after HNO3 treatment, and carbon black for reference. The as-

prepared CNTs show a large graphite peak at 2θ = 26º (marked with a triangle) and 
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peaks from the Mg(Al)O support (marked with a star). After treatment in 6M HNO3 

solution, the XRD patterns show only the graphitic peaks as indexed, [95] establishing 

that high purity CNTs can be obtained by this mild acid treatment. Figure 3.15 shows 

typical TEM images of purified SCNTs (by cold HNO3 solution) produced by ethane 

dehydrogenation at 500ºC over a Ni/Mg(Al)O catalyst and MWNTs prepared over an 

FeNi/Mg(Al)O catalyst at 650ºC. No catalyst particles are observed and the nanotubes 

exhibit open ends, typical of CNTs formed by the tip growth mechanism, which 

leaves the metal catalyst particles accessible to the acid solution. Thermal gravimetric 

analysis shown in Figure 3.16 establishes that the residue of as-prepared SCNTs is 

17.2 wt.% and that of the as-prepared MWNTs is 36.2 wt.%, while the residues of the 

purified SCNTs and MWNTs are both close to 0. The major weight loss occurs over 

the temperature range from 450 to 650ºC for all samples.  After cooling the samples 

to room temperature, the purities of purified CNTs could be determined more 

accurately by weight loss and were found to be 99.5% for the SCNTs and 99.6% for 

the MWNTs. 

3.4 Summary and Conclusions 

Mg(Al)O supports prepared by calcination of Mg-Al hydrotalcite with a Mg/Al molar 

ratio of 5 consist of Mg-Al-O nanocrystal agglomerates with large surface areas.  Ni 

and FeNi catalysts were dispersed onto the Mg(Al)O support by an incipient wetness 

method followed by calcination at 550ºC for 5 h.  The catalysts were first reduced in 

hydrogen at 700ºC for 2 h, and then reacted with undiluted ethane. Catalytic 

dehydrogenation of ethane was carried out at temperatures ranging from 500 to 650ºC 

over both types of catalyst.  The principal results are summarized below: 

1. At 500ºC, the Ni/Mg(Al)O catalyst was highly active and very stable with 

100% conversion of ethane to 20 vol.% H2 and 80 vol.% methane. It exhibited no loss 

of activity for over 16.7 h at a space velocity of 600 mL·h-1g-1 of undiluted ethane.  

The CNTs were all in the form of SCNT. 
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2. The FeNi/Mg(Al)O exhibited its best catalytic behavior at 650ºC, at which 

temperature it was active for over 5 h, yielding 65 vol.% H2, 10 vol.% CH4, and 25 

vol. % unreacted ethane. 

3. At 500ºC, the CNTs produced over the Ni/Mg(Al)O catalyst were 

predominantly SCNTs. Increasing the temperature to 650ºC led to an onion soot/fiber 

mixture that rapidly deactivated the catalyst. 

4. The CNTs formed over the FeNi/Mg(Al)O catalyst changed with temperature 

from SCNTs (525ºC) to parallel-walled MWNTs (650ºC). 

5. TEM and STEM established that the reduced catalysts consisted of metallic 

nanoparticles 8-40 nm in size dispersed on the Mg(Al)O. XAFS and Mössbauer 

spectroscopy established that the active phases were metallic Ni and FeNi alloys, 

although significant oxide phases were also present. Both austenitic Fe-Ni-C and 

martensitic Fe-Ni alloy phases were observed in the Fe-Ni catalyst after reaction.  

6. The presence of Ni and Fe oxides after reduction and reaction is due to 

incomplete reduction and/or re-oxidation on exposure to air. The oxides were 

identified by Ni XAFS spectroscopy and 57Fe Mössbauer spectroscopy.  

7. The CNTs were formed by a tip growth mechanism over the Mg(Al)O 

supported catalysts and were easily purified by a one-step 6M nitric acid treatment.   
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Table 3.1. Surface areas of the Mg(Al)O support and the Ni/Mg(Al)O and 
FeNi/Mg(Al)O catalysts in as-prepared and reduced states (under 50 mL/min H2 at 
700ºC for 2 h).  

Sample BET area* 
(m2/g) 

External surface area* 
(m2/g) 

Mg(Al)O support 154 167 

Ni/Mg(Al)O as-prepared 114 130 

Ni/Mg(Al)O reduced 101 114 

FeNi/Mg(Al)O as-prepared 122 137 

FeNi/MgAlO reduced 84 94 

*Note: The error is within 1%. 

Table 3.2. Curve fitting results for the as-prepared Ni/Mg(Al)O catalyst. 

Shell R, Å N E0 σ2, Å2 

Ni-O 2.09±0.01 6 -4.3±2.0 0.006±0.001 

Ni-Ni 2.96±0.06 1±1 -25.6±19.3 0.006±0.003 

Ni-Mg 2.96±0.06 11±1 -3.8±3.0 0.022±0.006 

 

 

 

 

 

 

 

 

 



39 
 

 

 

Table 3.3. Results of least squares fitting of Ni XANES spectra of Ni/Mg(Al)O 
catalysts. 

Items Ni foil 
As-prepared 

Mg(Ni)O 
NiO Reduced Chi 

Squared 

Reduced 0.65 0.21 0.13 1.9×10-4 

 0.69 0.31 - 2.6×10-4 

 0.68 - 0.32 3.8×10-4 

 1 - - 15.3×10-4 

After 2 h reaction 0.74 0.20 0.06 3.1×10-4 

 0.75 0.25 - 3.2×10-4 

 0.76 - 0.24 4.8×10-4 

 1.0 - - 11.4×10-4 
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Table 3.4. Mössbauer parameters of FeNi/Mg(Al)O catalyst as-prepared, reduced, 
and after reaction. (Spectra collected at room temperature) 

 
Catalyst 
 

IS 
mm/s 

QS 
mm/s 

H0 
kGauss 

width 
mm/s %Fe ID 

       

Fresh 
0.33 0.66 -- 0.49 71 Fe3+ in oxide 

0.30 1.15 -- 0.49 29 Fe3+ in oxide 

       

After 
reduction at 
700ºC for 2 h 

 

0.38 0.65 -- 0.60 30 Fe3+ in oxide 

0.52 1.07 -- 1.40 50 Fe3+(Fe2+?) in oxide 

0.05 -- 285 1.16 13 Fe-Ni (bcc) alloy 

-0.08 -- -- 0.30 7 Fe-Ni (fcc) alloy 

       

After 
reaction at 
650ºC for 8 h 

0.34 0.58 -- 1.90 29 Fe3+ oxide (spm) 

0.01 -- 303 0.79 23 Fe-Ni (bcc) alloy 

0.00 -- 265 0.62 10 Fe-Ni (bcc) alloy 

0.15 -- 193 0.65 19 Fe(Ni)-C carbide 

-0.07 -- -- 0.34 19 Ni-Fe(C) (fcc) alloy 
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Figure 3.1. X-ray diffraction patterns of (a) HTL as-prepared, indexed according to 
JCPDS Card No. 22-700; (b) Mg(Al)O support after calcination of HTL at 550°C for 
5 h, indexed according to JCPDS Card No. 45-0946; (c) FeNi/Mg(Al)O catalyst as-
prepared. 
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Figure 3.2. Micrographs of FeNi/Mg(Al)O catalyst: (a) TEM image of the as-
prepared catalyst; (b) STEM image of as-prepared catalyst; (c) TEM image of catalyst 
reduced at 700°C for 2 h; (d) STEM image of reduced catalyst. 
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Figure 3.3. Ni K-edge XANES spectra (top) and Fourier transforms of k3-weighted 
Ni K-edge EXAFS (bottom) of the as-prepared Ni/Mg(Al)O catalyst, NiO, and 
NiMgO solid solution. 
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Figure 3.4. EXAFS spectrum for as-prepared Ni/Mg(Al)O: Radial structure function 
(top) and the back FT (q) spectrum for the first two shells (bottom), using the FEFF 
least-squares analysis. 
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Figure 3.5. Ni K-edge XANES spectra (top) and RSF (bottom) of Ni/Mg(Al)O 
catalyst reduced and after 2 h of reaction, with Ni foil as a reference.  
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Figure 3.6. Least squares fitting of x-ray absorption spectra of Ni/Mg(Al)O catalyst: 
(a) reduced at 700 ºC for 4 h; (b) after 2 h reaction at 500°C. The fitting components 
include Ni foil, NiO and the as-prepared Ni/Mg(Al)O catalyst as illustrated in text. 
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Figure 3.7. Mössbauer spectra of the FeNi/Mg(Al)O catalyst: as-prepared; after 
reduction at 700°C for 2 h; after the ethane dehydrogenation reaction at 650ºC for 8 h. 
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Figure 3.8. TOS product distribution of ethane dehydrogenation over Ni/Mg(Al)O 
catalyst at 500°C (top) and 650°C (bottom) temperatures. 
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Figure 3.9. Time-on-stream product distribution for ethane dehydrogenation on 
FeNi/Mg(Al)O catalyst (Fe:Ni=65:35) at 500°C (top) and 650°C (bottom) 
temperatures. 
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Figure 3.10. Time-on-stream hydrogen production by ethane dehydrogenation over 
Ni/Mg(Al)O (top) and FeNi/Mg(Al)O (bottom) catalysts at different temperatures. 
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Figure 3.11. HRTEM images of CNTs deposited on FeNi/Mg(Al)O catalyst by 
ethane dehydrogenation. Reaction temperature: (a) 525ºC; (b) 650ºC. 
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Figure 3.12.  HRTEM images of CNTs deposited on Ni/Mg(Al)O catalyst by ethane 
dehydrogenation. Reaction temperature:  (a) 500ºC; (b) 650ºC. 
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Ni/Mg(Al)O           FeNi/Mg(Al)O 

Figure 3.13. HRTEM images illustrating the tip growth mechanism of CNT 
formation. Catalyst particle size determines the diameter of formed CNTs. Reaction 
temperature: 500ºC. 
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Figure 3.14. XRD patterns of the CNTs as-prepared and purified both at room 
temperature and reflux condition. The XRD pattern of carbon black is shown as a 
reference.  
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Figure 3.15. TEM images of (a), (b) purified SCNTs produced by ethane 
decomposition using the Ni/Mg(Al)O catalyst (500ºC, 40 h) and (c) purified MWNTs 
produced by using the FeNi/Mg(Al)O catalyst (650ºC, 8 h). 
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Figure 3.16. Thermal gravimetric analysis of the SCNTs and MWNTs as-prepared 
and purified in 6M HNO3 for 2 h under reflux condition: (a) as-prepared SCNTs; (b) 
purified SCNTs; (c) as-prepared MWNTs; (d) purified MWNTs. 
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Chapter 4. Novel FeNi Nanoparticle Catalyst for the Production of CO and CO2-
free H2 and Carbon Nanotubes by Non-oxidative Dehydrogenation of Methane 

 
This Chapter is based on work published as: W. Shen, F.E. Huggins, N. Shah, G. 
Jacobs, Y. Wang, X. Shi, G. P. Huffman, “Novel FeNi nanopartice catalyst for the 
production of COx-free H2 and carbon nanotubes by non-oxidative deyhydrogenation 
of methane”, Applied catalysis A: General, 2008, 351, 102-110. Copyright 2008 
Elsevier Ltd.  
 

4.1 Introduction 

Hydrogen is envisioned as an ultra-clean energy carrier of the future. Direct, non-

oxidative dehydrogenation of hydrocarbons into hydrogen and carbon is an attractive 

single-step alternation for the producing pure hydrogen and sequestering carbon in the 

form of a potentially valuable CNTs by-product. In previous work [45, 46, 65], Fe-M 

(M=Pd, Mo, Ni) bimetallic catalysts on γ-Al2O3 supports prepared by traditional 

incipient wetness method could be used for methane catalytic decomposition. The 

catalysts lowered the decomposition temperature of methane by 400-500 ºC and 

achieved ~70-90% conversion of undiluted methane into pure hydrogen and multi-

walled carbon nanotubes at 650-800 ºC with a space velocity of 600 mL·hr-1g-1. 

However, the CNTs were very difficult to clean because of the limited solubility of 

alumina and the strong binding of the CNTs to the support due to the formation of 

FeAl2O4 during the reaction. To circumvent this problem, a basic Mg(Al)O support, 

prepared by calcination of a Mg-Al hydrotalcite-like compound (Mg/Al ratio of 5), 

was developed as an alternative catalyst support to produce easily purified CNTs and 

CO and CO2-free H2 as described in chapter 3. Ethane dehydrogenation was 

conducted over a monometallic Ni/Mg(Al)O and a bimetallic FeNi/Mg(Al)O catalyst 

at three temperatures, 500, 650 and 700ºC. At all temperatures, the carbon was in the 

form of CNTs and could be easily purified by dilute nitric acid; the purity of the 

cleaned CNTs is more than 99.5 % [96]. 

In this research, the catalyst has been further improved by preparing FeNi bimetallic 

nanoparticles of approximately uniform size and depositing them on the Mg(Al)O 
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support. As discussed below, the FeNi nanoparticles were prepared using thermal 

decomposition of a mixed metal-surfactant complex in the presence of surfactants and 

a new nanoparticle impregnation method was used to disperse the FeNi nanoparticles 

onto the Mg(Al)O support. The resulting nanoparticle catalyst (FeNi np/Mg(Al)O) 

exhibited significantly higher activity and better time on stream (TOS) behavior than 

those prepared by the incipient wetness method (FeNi IW/Mg(Al)O).  

Much of the interest in nanoscale materials in catalysis is due to the fact that the 

decrease in the particle size to the nanometer scale generally increases specific surface 

area and thereby increases the number of active sites and improves the performance of 

the catalyst. Nanoparticles can be produced either by so-called “top down methods”, 

i.e. by the mechanical grinding of bulk materials, or via “bottom up methods”, by wet 

chemistry. Nanoparticles or nanocrystals, due to their very high surface energy, are 

usually thermodynamically unstable and tend to agglomerate or aggregate to grow in 

size. In order to form a stable “colloidal metal”, a variety of stabilizers, such as 

ligands, polymers, copolymers, dendrimers and surfactants, are used to control the 

growth of particles and prevent them from agglomeration. Many applications of the 

transition nanometal colloids as homogeneous catalysts have been published and 

reviewed [97-101]. And they could also be applied to prepare supported 

heterogeneous catalysts by the nanoparticle impregnation method. The obvious 

advantage of this novel approach compared with conventional incipient wetness 

method is that both the size and the composition of the catalyst particle can be pre-

adjusted for the specific applications. Researchers in Dr. Bönnemann’s group have 

developed colloidal Rh/charcoal for hydrogenation and selective partial 

hydrogenation[102-105], colloidal Pd-Ru/C for methanol oxidation [106] and fuel cell 

application [107]. These novel catalysts generally showed much better performance 

compared to conventional catalysts and commercialized catalysts.  

With the development of colloidal chemical synthesis over the past decade, uniform-

sized and monodispersed nanoparticles (nanocrystals) can be relatively easily 
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obtained by a variety of synthetic methods [108-113]  and the cost has been greatly 

reduced, thus, opening new opportunities for making well-defined nanoscale catalysts. 

Bae et al.[114] used a reverse micelle technique to first prepare monodispersed Pd 

nanoparticles, and then combined it with a sol-gel process to prepare a Pd/SiO2 

nanocomposite. Niesz et al. [115] incorporated monodisperse Pt nanoparticles into 

ordered channels of the high surface area mesoporous oxides such as SiO2, Al2O3 and 

Ta2O5 to form three-dimensional model catalysts. Massard et al. [116] used 

synthesized core-shell Pd-Ni bimetallic nanoparticles on alumina for selective 

hydrogenation of 1,3-butadiene. Iijima et al. [117] produced size-controlled Co, Co-

Mo, and Fe-Mo nanoparticles by the reverse micelle method and used them as 

“floating catalysts” for the gas-phase pyrolysis synthesis of single-walled carbon 

nanotubes (SWCNTs). Monodispersed iron nanoparticles with average diameters of 3 

nm, 9 nm, and 13 nm were prepared by thermal decomposition of Fe(CO)5 under the 

protection of surfactant in octyl ether solution by Cheung et al. [118]. These iron 

nanoparticles were deposited on the surfaces of oxidized silicon to form substrate-

supported nanoparticle catalysts for the production of CNTs. The same approach was 

also used by Liu et al. [119] for the CVD synthesis of CNTs using monodisperse Fe-

Mo bimetallic nanoparticles.  

Although there are some applications of nanoparticles in catalysis, the use of 

supported nanoparticle catalysts as non-oxidative dehydrogenation catalysts to 

produce H2 and CNTs has not been reported yet. Here, monodispersed and relatively 

uniformly-sized Ni35(Fe65)O nanoparticles were firstly prepared and well dispersed 

onto a synthetic Mg(Al)O support to form a novel catalyst, FeNi np/Mg(Al)O. This 

novel catalyst is evaluated, along with a conventional FeNi IW/Mg(Al)O catalyst 

prepared by incipient wetness, by various microscopic and spectroscopic techniques, 

and catalytic performance. 
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4.2 Experimental  

4.2.1 Catalyst Preparation 

The preparation of the Mg(Al)O support (Mg/Al = 5) and FeNi IW/Mg(Al)O 

incipient wetness catalyst, which had an approximate Fe/Ni ratio of 65/35, was 

described previously in chapter 3. In current work, the monodispersed FeNi oxide 

nanoparticles were prepared by thermal decomposition of Fe-oleate  and Ni-oleate 

complexes in octadecene under reflux, using method developed by Hyeon’s group 

[120-122] and by Sun and co-workers [123]. In a typical synthesis, 6.5 mmol Fe-

oleate complex, 3.5 mmol Ni-oleate complex and 4.4 mmol oleic acid (1/6 equivalent 

normality of Fe-oleate/Ni-oleate) were mixed with 50 g octadecene. The mixture was 

first heated to 200ºC for 1 h and then to close to the boiling point of octadecene 

(thermal meter showed 323°C) for 30 min. The resulting solution was cooled to room 

temperature and 100 mL propanol was added to precipitate the nanoparticles, which 

were separated by centrifugation, and then redispersed in 40 mL hexane. Next, the 

hexane solution was centrifuged again to removal any remaining precipitates. The 

resulting colloidal mixture of nanoparticles in hexane is highly stable, and the 

nanoparticles could be separated by addition of ethanol and followed by 

centrifugation.  After thoroughly washed by using ethanol for at least 3 times by 

adding 10 mL ethanol, the resulting wax-like black precipitate was slowly dried at 

room temperature for 2 days, weighed and redispersed in hexane for future use.  

Fe-oleate and Ni-oleate complex were prepared by iron exchange reaction of 

FeCl3·6H2O and NiCl2·6H2O with sodium oleate. In a typical procedure, such as 

preparation of Fe-oleate, 40 mmol FeCl3·6H2O and 120 mmol sodium oleate was 

added into a mixture of 80 mL ethanol, 60 mL distilled water, 140 mL hexane with 

vigorous stir for 2 h at room temperature. The mixture has a phase separation and the 

metal-oleate complex in hexane on the top layer could be easily separated from 

ethanol and water mixture by using a separation funnel. The resulting metal-oleate in 

hexane solution was further cleaned by using distilled water for 3 times. After slowly 

evaporated the hexane and water, the waxy metal-oleate was ready for use. 
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To prepare the Mg(Al)O supported Fe65Ni35 nanoparticle catalyst (FeNi np/Mg(Al)O), 

the FeNi nanoparticles in hexane were first subject to an ultrasonic homogenization 

(Omni-Ruptor 250-OMNI International Inc.) for 30 min and the appropriate amount 

of Mg(Al)O catalyst support powder (<100 mesh) to achieve 5 wt.% metal loading 

was added to the colloid solution, after which the resulting mixture was ultrasonicated 

for another 30 min. The FeNi nanoparticles became incorporated into the Mg(Al)O 

support and the FeNi np/Mg(Al)O catalyst settled on the bottom of beaker. The clear 

hexane layer was then removed by decanting and slow evaporation at room 

temperature over one or two days. The resulting catalyst was further dried in an oven 

at 100°C overnight. This is the as-prepared FeNi np/Mg(Al)O catalyst, with FeNi 

nanoparticle in the form of an FeNi oxide. 

4.2.2 Methane Dehydrogenation Reaction 

Methane dehydrogenation was performed with both FeNi np/Mg(Al)O and FeNi 

IW/Mg(Al)O catalysts in a fixed-bed plug-flow reactor. The reaction chamber was a 

quartz tube with an inner diameter of 22.5 mm and length of 45 cm. The catalyst was 

placed at the center of the reactor to form a thin layer of catalyst bed on top of a 

quartz wool plug. Both catalysts were pre-reduced in situ in 60 mL/min flowing 

hydrogen; the FeNi IW/Mg(Al)O at 700°C for 2 h, the FeNi nanoparticle catalyst at 

600°C for 1 h, with a ramping rate of 10°C/min. The H2 consumption is about 26.2 

mL/gram FeNi IW/ Mg(Al)O and 28.4 mL/ gram FeNi np/Mg(Al)O, assuming idea 

gas. After reduction, methane dehydrogenation was conducted at 600, 650 and 700°C 

in undiluted methane at a flow rate of 10 mL/min. The inlet gas flow was controlled 

by a mass flow controller and the effluent was monitored by a bubble flow meter and 

analyzed by online gas chromatography (GC) with a thermal conductivity detector 

(TCD). The solid product was collected after reaction. The gas product was quantified 

as volume percentage of the total gaseous effluent. 

4.2.3 Characterization 

X-ray absorption fine structure (XAFS) spectroscopy was conducted at beamline X-

19A of National Synchrotron Light Source (NSLS) at Brookhaven National 
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Laboratory (BNL), Upton, New York. Fe K-edge (7112 eV) and Ni K-edge (8333 eV) 

XAFS spectra were collected at room temperature in fluorescence mode using a Lytle 

detector. XAFS data analysis was carried out following well established procedures 

by means of PC-based XAFS analysis package. XAFS spectra were obtained for the 

as-prepared FeNi nanoparticles and the FeNi np/Mg(Al)O catalyst in 5 conditions: 

“reduced/passivated”, “after reaction at 600ºC for 5 h and 48 h, respectively”, “after 

reaction at 650°C for 5 h”, and “after reaction at 700°C for 5 h”.  

Mössbauer spectroscopy was carried out at room temperature using a 57Co(Rh) 

source. A Halder drive was operated in triangular function mode to scan a ±12 mm/s 

velocity range. The Mössbauer data for FeNi np/Mg(Al)O catalyst in different 

conditions as reduced/passivated and after reaction at 600ºC for 2 h, 5 h and 48 h were 

recorded at room temperature. The Mössbauer spectra were analyzed by least-squares 

fitting using a computer routine that fits individual iron components as single peak, 

quadrupole doublets or magnetic sextets. The reduced samples were passivated at 

room temperature in 1 vol. % O2 and balance N2 with a flow rate of 100 mL/min to 

avoid re-oxidation of FeNi catalyst particle after exposure to air. 

Temperature programmed reduction was conducted on both the as prepared FeNi IW 

catalyst and the FeNi np catalyst in a Zeton-Altamira AMI-200 unit with a thermal 

conductivity detector (TCD). Argon was used as the reference gas, and 10% H2 

(balance Ar) was flowed at 30 mL/min as the temperature was increased from room 

temperature to 1100 °C at a ramp rate of 10°C /min. TPR data for the pre-reduced 

FeNi np/Mg(Al)O catalyst (at 600°C for 1 h with ramping of 10°C /min in 70 vol.% 

H2 and 30 vol.% Ar with a flow rate of 50 mL/min) were also recorded from 600°C to 

1100°C at a ramp rate of 10 K/min. 

High resolution transmission electron microscopy (HRTEM), scanning transmission 

electron microscopy (STEM), and energy dispersive x-ray spectroscopy (EDS) 

elemental mapping were conducted using a JEOL 2010F TEM at an accelerating 

voltage of 200 kV. To prepare the monodispersed FeNi nanoparticle TEM sample, 
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one drop of a dilute FeNi np hexane solution after ultrasonication for 30 min was 

dropped onto the surface of a carbon coated Cu grid. Hexane was slowly evaporated 

from the Cu grid by a glass cover. The procedures for preparation of catalysts sample 

and CNTs sample for microscopy studies are described in detail in chapter 2 and 

reference [96]. 

4.3 Results and Discussion 

4.3.1 Characterization of the Synthesized FeNi oxide Nanoparticles 

Figure 4.1 (a) and (b) present the TEM, HRTEM images of the synthesized FeNi 

oxide nanoparticles. The nanoparticles are monodispersed and have a very narrow 

size distribution. The HRTEM image clearly shows that the nanoparticles are single 

crystal with well-ordered crystal structure. Fe/Ni composition (iron content mol. % of 

90, 80, 65, 50, 20, 0) was varied by mixture of Fe-oleate and Ni-oleate with different 

molar ratio in octadecene. The monodispersed single crystal with uniform size could 

be synthesized up to the Ni content of 35 mol. %. Further increasing the Ni content to 

50 mol. % resulted very sticky precipitate, which could not be redispersed in hexane. 

The effort was also devoted to synthesize monometallic Ni nanoparticles by this 

approach. Different solvent was used such as hexadecane (Boiling point (BP) 289°C), 

octyl ether (BP 302°C) and octadecene (BP 323°C). None of them could generated 

good Ni particles with relatively uniform size distribution. It may be due to the fact 

that single surfactant oleic acid alone could not provide strong enough binding to 

prevent the agglomeration of Ni nanoparticles during the growth step [124, 125]. Ni 

nanoparticles have a much active surface than Fe nanopartices. However, less content 

of Ni incorporated into Fe lattice could be stabilized in this system. Adding more 

oleic acid up to equivalent normality of Fe-oleate/Ni-oleate and the combination of 

oleic acid (equivalent normality) and oleylamine (equivalent normality) have no effect 

on tuning both particle size and particle shape of FeNi oxide nanopartices (See figure 

4.1(c) and (d)). Figure 4.2 presents the particle size distribution (PSD) which was 

obtained based on several hundreds of particles. The PSD is tightly clustered around a 

mean particle size of 9 nm.  
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Figure 4.3 shows the XRD pattern of the synthesized FeNi nanoparticle as well as the 

XRD patterns of standard fcc-structured NiO, FeO and the calculated Ni35(Fe)65O by 

using a PC-based software of Atoms. The calculation was based on the assumption 

that the Ni and Fe with molar ratio of 35:65 were randomly distributed into the 

octahedral sites of face-centered cubic metal oxide (MO). It is seen that the 

synthesized FeNi nanoparticle contains a single phase with fcc structure and the 

pattern matches well the calculated Ni35(Fe)65O, not only the position of reflection 

peaks, but also the ratio of the peak height. The average particle size calculated from 

principle reflection peaks (face 200, 220) by using Debye-Sherrer equation is close to 

9 nm, consistent with the TEM observation. The k3-weighted EXAFS and the Fourier 

transformation of the k3-weighted EXAFS (radial structure function (RSF)) of the 

synthesized FeNi nanoparticles in both Fe K-edge and Ni-K-edge are shown in figure 

4.4. The results of nickel oxide are also included as reference. Except for the 

discrepancy of the intensity, Fe k-edge and Ni k-edge spectra of k3-weighted EXAFS 

and RSF of the synthesized FeNi nanoparticles are very similar, indicating a similar 

coordination environment like in the fcc-structured NiO. Room-temperature 

Mössbauer spectrum in figure 4.5 of the synthesized FeNi oxide nanoparticle exhibits 

that irons are in the ferrous and ferric state. The fitting parameters are listed in table 

4.1. From the above characterizations, it is concluded that the synthesized FeNi 

nanoparticles have fcc structure with ordered vacancies. It is a non-stoichiometric 

FeNi oxide with formula: 

(𝐹𝐹𝐹𝐹0.14
2+ 𝑁𝑁𝑁𝑁0.28

2+ )(𝐹𝐹𝐹𝐹0.40
3+ 𝑉𝑉0.18)𝑂𝑂 

Where, V is the vacancy. 

4.3.2 Microscopic Studies of FeNi Bimetallic Catalysts 

Figure 4.6 shows the STEM images of the as-prepared FeNi nanoparticle catalyst. The 

FeNi nanoparticles were evenly distributed onto the surface of the Mg(Al)O support 

by nanoparticle impregnation method. However, there are no obvious particles 
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observed in the as-prepared FeNi incipient catalyst as seen in chapter 3. Most of Fe 

and Ni are cooperated into the Mg(Al)O support lattice.  

Figure 4.7 emphasizes the differences between the reduced FeNi IW/Mg(Al)O 

catalyst and the reduced FeNi np/Mg(Al)O nanoparticle catalyst observed in STEM 

and TEM studies. The FeNi IW/Mg(Al)O was reduced at 700°C for 2 h and the FeNi 

np/Mg(Al)O catalyst was reduced at 600°C for 1 hr, both in undiluted hydrogen at a 

flow rate of 60 mL/min; the temperature ramping rate was 10 K/min. The TEM 

results for the FeNi IW/Mg(Al)O were reported in chapter 3. The Mg(Al)O support of 

the FeNi IW/Mg(Al)O catalyst reduced at 700ºC for 2 h has experienced significantly 

more sintering than the support for the FeNi np/Mg(Al)O catalyst reduced at 600ºC 

for 1 h.  This is confirmed by the BET surface areas of the reduced IW catalyst (84 

m2/g), the as-prepared Mg(Al)O support (154 m2/g), and the reduced nanoparticle 

catalyst (146 m2/g). The STEM image of the reduced FeNi IW/Mg(Al)O in Figure 

4.7a shows considerably larger metallic nanoparticles than those in the reduced FeNi 

np/Mg(Al)O catalyst in figure 4.7b. The FeNi catalyst nanoparticles, which are 

prepared in advance with uniform size, are more evenly dispersed on the Mg(Al)O 

support and show less agglomeration or sintering after thermal treatment in the H2 

atmosphere. In contrast, the FeNi IW/Mg(Al)O catalyst exhibits a broad size 

distribution, from very tiny particles less than 8 nm in size to large particles about 50 

nm. The TEM image in figure 4.7c shows the FeNi nanoparticles dispersed on 

Mg(Al)O nanocrystals of about 9 nm size, but it is difficult to distinguish the catalyst 

particles from the support particles. The high magnification HRTEM image of figure 

4.7d shows the lattice fringe arising from the catalyst support and/or the FeNi 

nanoparticles. 

Figure 4.8 shows STEM image and corresponding EDS x-ray elemental mapping of 

Fe and Ni over the reduced FeNi IW/Mg(Al)O and FeNi np/Mg(Al)O catalysts. It is 

seen that the FeNi alloy composition with the FeNi IW/Mg(Al)O catalyst derived 

from its normal 65/35 Fe/Ni ratio, ranging from Fe rich to Ni rich, indicated in figure 
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4.8a.This results are consistent with 57Fe Mössbauer results reported in chapter 3. In 

contrast, Fe and Ni location coincide with the reduced FeNi np/Mg(Al)O catalyst as 

shown in figure 4.8b, confirming the formation of an FeNi alloy. The Fe/Ni EDS peak 

height ratio in any selected area is always close to 65/35, indicating that FeNi 

nanoparticle maintain their original composition after reduction.  

4.3.3 Temperature Programmed Reduction 

Figure 4.9 shows the TPR profiles for the as-prepared FeNi IW/Mg(Al)O, the FeNi 

np/Mg(Al)O, and the pre-reduced FeNi np/Mg(Al)O catalysts. The TPR profile for 

the FeNi IW/Mg(Al)O catalyst (curve “c” in figure 4.9) has two broad peaks, one 

ranging from 360°C to 580°C and the second from 750°C to 1100°C, indicating two 

distinct metal-support interactions in the IW catalyst. The broad, low-temperature 

peak with less hydrogen consumption may be caused by the reduction of the FeNi 

oxide on the surface of the catalyst. The broad reduction peak at higher temperatures 

indicates a stronger metal-support interaction, consistent with Fe and/or Ni that are 

well dispersed in the Mg(Al)O lattice, as documented in chapter 3. The experimental 

reduction conditions (700°C for 2 h) are not sufficient to reduce all the iron as only 

20% of the Fe is in metallic form with the rest bound to the Mg(Al)O support by 

means of oxygen anions.  

The TPR profile for the as-prepared FeNi np/Mg(Al)O catalyst (curve “a” in figure 

4.9) is clearly different from that of the IW catalyst. This profile combines the 

reduction of the FeNi nanoparticles and the release of the protective surfactant shell 

around nanoparticles at elevated temperatures. The formation of an organic shell 

surrounding synthetic nanoparticles has been previously recognized and accepted 

widely. This shell provides chemical stability to reactive transition metals and acts as 

a tunable spacer to prevent magnetic coupling between adjacent particles. Thermal 

decomposition of surfactant coatings on Co and Ni nanocrystals was studied by Pérez-

Dieste et al. Two processes were involved: partial desorption of the surfactant at about 

200°C (the boiling point of oleic acid is 194-195ºC) and dehydrogenation at higher 

temperatures around 400°C. From the TPR profile of the FeNi nanoparticle catalyst, it 
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seems that FeNi nanoparticles start to reduce at 300°C and complete at the 

temperature of around 750°C, even though they may be protected by the organic 

coating. The onset of the drop at around 400°C coincides with the temperature of 

dehydrogenation of the surfactant coating. No signal change was observed below 

300°C in our TPR condition, which may be due to the fact that partially desorbed 

surfactant shell was captured by a liquid N2 trap before the TCD detector. There is no 

extra reduction peak shown up for the pre-reduced FeNi np/Mg(Al)O catalyst (curve 

“b” in figure 4.9), indicating that the catalyst was fully reduced under the 

experimental reduction conditions.  

In order to better understand the reduction process, the same reduction (600ºC for 1 h 

at a ramp rate of 10ºC/min) was conducted with the FeNi nanoparticles deposited on a 

carbon coated Cu grid. The TEM images of these reduced FeNi nanoparticles are 

shown in figure 4.10. The hexane dispersed FeNi nanoparticle deposition on carbon 

surface generates a thin organic film, where the FeNi nanoparticles self-assemble in 

the film to form a monolayer. Figure 4.10a shows the clear boundary of the film, 

where FeNi nanoparticles are self-assembled inside the boundary. Figure 4.10b shows 

the nanoparticles are stabilized and separated by the surfactant film, even after H2 

treatment at 600°C. Careful examination reveals the formation of a shell on the 

monodispersed nanopartices in figure 4.10c, which may due to the re-oxidization of 

reduced FeNi nanopartices after exposure to air. 

4.3.4 Methane Dehydrogenation 

Methane is the most abundant gaseous alkane, containing 25% by weight of 

hydrogen, the highest H/C ratio of hydrocarbons.  Methane dehydrogenation (4-1) is a 

mildly endothermic reaction and favored at high temperature above ~600ºC to achieve 

a reasonable conversion. 

CH4→C+2H2+74.5kJ/mol                                                        (4-1) 
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The equilibrium conversion of methane was calculated by Ogihara et al. [40] based on 

the assumption that all carbons formed are graphite. At 700, 650 and 600ºC the 

equilibrium conversion of methane is ~75%, ~65% and ~60%, respectively. And the 

methane conversion could be calculated based on the amount of H2 generated as 

equation 4.2: 

𝐶𝐶𝐶𝐶𝐻𝐻4 = 𝐻𝐻2𝑣𝑣𝑣𝑣𝑣𝑣 .%
200−𝐻𝐻2𝑣𝑣𝑣𝑣𝑣𝑣 .%

× 100%                                                      (4-2) 

Where 
4CHC is methane conversion and H2 vol.% is the hydrogen volume percentage 

in the gas effluent. 

Methane dehydrogenation was conducted in a fixed-bed plug flow reactor with a 

methane flow rate of 10 mL/min. Before reaction, both the FeNi IW/Mg(Al)O and 

FeNi np/Mg(Al)O catalysts were activated by programmed reduction in hydrogen. 

The methane dehydrogenation performance of these two pre-reduced catalysts is 

compared in figure 4.11. Figure 4.11a shows the time-on-stream (TOS) H2 production 

over the novel FeNi np/Mg(Al)O catalysts at three temperatures, 600, 650 and 700ºC, 

with total catalyst loading of 0.2 gram. At 600ºC, the catalyst maintained its catalytic 

activity for at least 5 h, yielding over 50 vol.% of H2 in effluent gas. Upon increasing 

the temperature to 650ºC, the H2 volume percentage in effluent increases to 66%. The 

catalyst maintained its activity over 2 h, then gradually deactivates. Further increasing 

the temperature to 700ºC, methane conversion is not improved and the catalyst 

deactivates rapidly. It should be noted that non-catalytic methane decomposition 

begins at approximately 900ºC does not reach a level of 50% untill the temperature 

approaches 1100ºC. Figure 4.11b exhibits the catalytic behavior of FeNi IW/Mg(Al)O 

catalysts at 600, 650 and 700ºC with total catalyst loading of 1 gram, 5 times that of 

the novel catalysts. The FeNi IW/Mg(Al)O catalyst exhibits hydrogen yield of about 

30 vol.% at 600ºC and is fairly stable. At 650ºC, the hydrogen concentration in 

effluent starts at 50 vol.% and decreases steadily over a period of 6 h to 25 vol.%. At 

700ºC, the activity and the stability of the FeNi IW/Mg(Al)O catalyst are similar to 
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those of FeNi np/Mg(Al)O catalyst, decreasing rapidly from about 60 vol.% of 

hydrogen to a low level. The TOS methane conversion trends for the two catalysts at 

600ºC and 650ºC is shown in Figure 4.12.  It is clearly seen that FeNi np/Mg(Al)O 

catalyst shows much higher methane conversion at both reaction temperature than that 

of FeNi IW/Mg(Al)O catalyst despite of the much less catalyst loading. The net H2 

production within 5 h reaction over FeNi np/Mg(Al)O and FeNi IW/Mg(Al)O based 

on 0.2 gram of catalyst loading at the reaction temperatures of 600, 650 and 700ºC is 

2289 mL, 1694 mL, 348 mL and 226 mL, 332 mL, 162 mL, respectively. 

Methane dehydrogenation reaction to produce COx-free H2 and filamentous carbon 

has been well documented over supported Ni catalyst. However, Ni catalysts for this 

reaction can not bear the higher temperature above 600ºC [19, 20, 23, 126]. At a low 

reaction temperature, the methane conversion can not be expected to be high, even 

though the Ni-based catalyst has a relatively longer life time compared with the 

monometallic Fe catalysts, which could be used at high temperatures above 1000ºC. 

But the main difficulty posed by the Fe-based catalysts is the short life-time. Addition 

of Ni to Fe can improve the performance of the catalyst at a higher temperature. Here, 

both bimetallic FeNi catalysts can keep certain activity for a reasonable time, 

especially for the nanoparticle catalyst, it can keep high methane conversion for 2 h in 

a steady-state operation at 650ºC. However, the FeNi catalyst with Fe to Ni of 65 to 

35 seems not to behave well above 700ºC as both incipient catalyst and nanoparticle 

catalyst deactivate very quickly. Therefore, the FeNi bimetallic catalyst over the 

Mg(Al)O support are suitable for methane dehydrogenation at moderate temperatures. 

The improved stability of the FeNi np/Mg(Al)O catalyst is better illustrated by figure 

4.13, which shows the TOS hydrogen production for 0.5 g loading of the FeNi 

np/Mg(Al)O catalyst at 600ºC.  At this 2.5 times higher catalyst loading, hydrogen 

production is fairly steady for the first 12 h, declining very slowly from about 58 to 50 

vol.% (0.67 % / (hr•g catalyst)) and somewhat more rapidly (1.7 % / (hr•g-catalyst)) 

in the next 36 h. 
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4.3.5 TEM Studies of the Reacted FeNi np/Mg(Al)O Catalyst 

The carbon products were collected after reaction and studied by TEM. Figure 4.14 

shows the morphologies of the CNTs generated at 600ºC from methane 

dehydrogenation over FeNi np/Mg(Al)O catalyst. The carbon products are in the form 

of bamboo-like multiwalled carbon nanotube (B-MWNT), with mm-scale length, 

tangling together, forming a very sinuous material with BET surface area of 

approximate 400 m2/g. The generated CNTs have a relatively uniform outer diameter 

of ~15 nm and an inner diameter of 6-8 nm, this latter dimension is just slightly 

smaller than the mean size determined for the catalyst nanoparticles. The interplanar 

distance of the concentric graphite sheets of the MWNTs is 0.34-0.35nm. Numerous 

nanoparticles are observed inside the CNTs, often at the tips of CNTs with the 

coverage of two or three layers of graphite sheets, indicating a tip growth mechanism. 

The carbon yield is 285 mol carbon/mol FeNi at 600ºC and 216 mol carbon/mol FeNi 

at 650ºC. However, the carbon yield at 700ºC is very low, only 32 mol carbon/mol 

FeNi. At 650ºC and 700ºC, the structure of CNTs is also in the form of B-MWNT 

with same outer diameter. However, the CNTs generated at 700ºC are very short 

compared with those at lower temperatures. It is widely accepted that the diameters of 

carbon filament (CNTs or carbon nanofibers (CNFs)) are strongly dependent on the 

size of catalyst particles [118, 127]. The approximately monosized FeNi nanoparticles 

of the novel FeNi np/Mg(Al)O catalyst lead to a relatively narrow size distribution of 

the generated CNTs, while the carbon product from methane dehydrogenation over 

FeNi IW/Mg(Al)O catalyst  exhibits a broad size distribution because of the broader 

distribution of catalyst particle size. The carbon yield at 600ºC over the FeNi 

IW/Mg(Al)O catalyst is 106 mol C/mol FeNi, which is much lower than that of FeNi 

np/Mg(Al)O catalyst at the same reaction conditions. 

Figure 4.15 shows the morphologies of the FeNi nanoparticles after reaction for 5 h at 

600 and 700ºC, respectively. No sintering or agglomeration of the FeNi nanoparticles 

is observed at either reaction temperatures. Each nanoparticle serves as an active site 

for growing CNTs. Deactivation likely occurs because the active FeNi nanoparticles 
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become increasingly encapsulated by graphitic carbon. Some FeNi nanoparticles are 

extruded along the inner walls of the CNTs (Figure 4.15b) and may function as active 

sites for the formation of longer MWNT. The deformation observed for some of the 

nanoparticles within the nanotubes may be caused by diffusion of carbon in the FeNi 

nanocrystals [35, 128].  

The nucleation and formation of graphite requires catalytic active sites. Since the 

nanoparticle catalyst contains individual reduced FeNi nanoparticles as catalytic 

active sites, stabilized by surfactant film after reduction at 600ºC, it facilitates the 

nucleation of carbon, whereas, promotes the methane dehydrogenation reaction. On 

the other hand, the FeNi IW/Mg(Al)O catalyst can be only partially reduced and the 

reduced IW catalyst may generate larger FeNi particles size, some in the range of 20-

40 nm. Moreover, the catalyst experienced significant sintering during the pre-

reduction and the methane dehydrogenation reaction because only the metal-support 

interaction without the protection of surfactant can not stabilize the FeNi particles at 

high operating temperatures. Compared with the FeNi IW/Mg(Al)O catalyst, the FeNi 

np/Mg(Al)O catalyst has much more catalytic active sites with the same FeNi loading, 

thus contributing to the longer lifetimes and higher methane conversion. 

4.3.6 Mössbauer, XAFS spectroscopic Characterization  

Figure 4.16 shows the Mössbauer spectra collected at room temperature for FeNi 

np/Mg(Al)O catalyst in the as reduced/passivated state and after reaction at 600ºC for 

2 h, 5 h and 48 h. The spectra change significantly with TOS of methane 

dehydrogenation reaction. The reduced/passivated sample shows a doublet with an 

isomer shift (IS) of 0.32 mm/s and a quadrupole splitting (QS) of 0.84 mm/s, a 

magnetic sextet with an IS of 0.01 mm/s and a hyperfine splitting H0 of 275 kG, and 

an ill-defined absorption with an IS of 0.24 mm/s and QS of 3.91 mm/s. The first 

doublet can be assigned to superparamagnetic nanoparticle ferric oxide formed on the 

surfaces of the reduced catalyst particles after they were exposed to air. Even though, 

it is possible that the complete reduction to the metallic state may not have been 

achieved in the reduction step, all of the iron should have been reduced at least to the 
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ferrous state. Consequently, the observed ferric iron must present re-oxidized iron. 

The magnetic component can be attributed to the fcc structured Fe65Ni35 

nanoparticles, which likely form an invar-like alloy with coexisting ferromagnetic and 

superparamagnetic regions [129-132]. These latter regions would give rise to the third 

absorption feature; however, the superparamagnetic ferric oxide particle may also 

contribute to this feature as well. The spectra became more complicated after the FeNi 

alloy particles are reacted with methane and carbon is introduced into the Fe-Ni alloy 

lattice. The ferric oxide still constitutes about 25 – 30% of the iron. However, the 

magnetic component increases in intensity and is better ordered magnetically (smaller 

superparamagnetic component) presumably due to the incorporation of significant 

amounts of interstitial carbon in the fcc Fe-Ni-C alloy resulting in concomitant 

recrystallization and some crystal growth. The deactivated catalyst shows a very 

different spectrum from the catalytically active samples. It exhibits a sharp singlet and 

a doublet with an IS of 0.19 mm/s, which we assign to paramagnetic Fe-Ni-C 

austenite and a broad sextet due to remnant Fe-Ni-C invar alloy. The doublet due to 

superparamagnetic ferric oxide is now absent presumably because the Fe-Ni-C 

nanoparticles have become encased in the nanotubes, which prevents oxidation at the 

particle surfaces after the reaction. As suggested above, carbon encapsulation may 

prevent methane access to the nanoparticle catalysts, resulting in deactivation.  

The conclusions regarding the catalyst structure reached from the Mössbauer data are 

supported by results from Fe and Ni K-edge x-ray absorption fine structure (XAFS) 

spectroscopy. Figure 4.17 shows the Fe and Ni K edge x-ray absorption near edge 

structure (XANES) spectra for the FeNi np/Mg(Al)O catalyst as reduced/passivated 

and reacted conditions labeled as: (a) Fe stainless steel (SS) foil or Ni foil as 

references, (b) the reduced sample, (c), (d) are the reacted catalysts at 600ºC after 5 h, 

but still active and 48 h, completely deactivated. The references Fe SS foil and Ni foil 

have typical fcc structure. Fe SS foil has a pre-edge peak at 7117 eV, two small peak 

at 7130 eV and 7137eV, and a broad peak at 7160eV. Ni foil has three remarkable 

peaks at 8350 eV, 8358 eV and 8383 eV, respectively, and a pre-edge peak at 8336 
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eV, reassembling that of fcc structured Fe SS foil. The deactivated catalyst (d) both in 

Fe K-edge and Ni K-edge XANES spectra reassemble that of fcc structured metal foil. 

The XANES spectra seem identical for all the deactivated catalyst samples after 

reaction at 600ºC, 650ºC and 700ºC. In the Fe K edge XANES spectrum, the reduced 

catalyst (b) and used catalyst (c) show only a broad peak at 7134 eV instead of two 

split peaks at 7130 eV and 7137 eV of Fe SS foil and the totally deactivated catalyst 

(d). But the third broad peaks at 7162 eV are present in all the samples despite of the 

lower intensity of (b) and (c) compared with the deactivated samples. The same result 

is also observed in the Ni K edge XANES spectrum. The reduced sample has a white 

line at 8353 eV, a shoulder at 8358 eV and a broad low intense peak at 8383 eV. The 

used sample (c) still has these features, but the white line has already split into two 

obvious peaks. The differences between the reduced/passivated catalyst (b), the used 

but still active catalyst (c) and the totally deactivated catalyst (d) indicate some 

degrees of oxidation existed in the catalytically active catalyst samples, in agreement 

with the results from Mössbauer spectroscopy. In both the Fe K-edge and Ni K-edge 

XANES spectra, the intensity of two low energy peaks is much lower than that of 

metal foil, which may be due to the small catalyst particle size [133]. And, the third 

broad peak in all catalyst samples slight shifts to the higher energy level of 7162 eV in 

Fe XANES spectra and lower energy level of 8352 eV in Ni XANES spectra, which 

may be caused by the formation of FeNi fcc structured alloy.  

The Fourier transforms (FT) of k3-weighted extended X-ray absorption fine structure 

(EXAFS) spectra (k in the range of 3 to 15 Å-1) of reduced and reacted FeNi 

np/Mg(Al)O catalysts are shown in figure 4.18 and compared with those obtained 

from a stainless steel foil and a Ni foil. The FT of the catalyst samples are similar, 

exhibiting four well-defined shells of at 2.2 Å, 3.3 Å, 4.0 Å and 4.7 Å, and thereby 

confirm the fcc structure of the metallic alloy phase. However, the peaks derived from 

the more distant neighbor shells (above 3.3 Å) are significantly weaker relative to the 

nearest neighbor peak than the corresponding peaks observed in the FT of the Fe SS 

or Ni foil. This is especially true for the catalytically active samples (b) and (c). Such 
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effects may result from the mixture of Fe and Ni next-nearest neighbors in the alloy 

phase, or from small-particle size phenomena, or from a combination of both factors. 

In order to understand the local structure of the FeNi catalyst particle, a least squares 

fitting of the first neighbor shell of reduced and used catalyst samples was conducted 

by using FEFF EXAFS method available in the SixPack software package [79, 80]. 

The fitting was performed over the range 1-3Å in R space and 3-13Å-1 in k space, 

using a Kaiser-Bessel FT window. Since γ-Fe and Ni have similar local structures, 

lattice parameters (Fe: 3.59Å and Ni: 3.52Å) and atomic numbers, XAFS can not 

differentiate the Ni-Ni bond from the Ni-Fe bond in the first shell fitting. Here, we 

used the Ni FEFF parameter and γ-Fe FEFF parameter generated by ATOM and FEFF 

6 in IFEFFIT software package to fit for the Fe and Ni FTs of EXAFS spectra, 

respectively and get fitting parameters of the Ni-M and Fe-M bond in the first shell as 

was done elsewhere [134, 135]. For the active catalyst (b) and (c), the single 

scattering FEFF parameter of NiO and Fe2O3 were also added to extract the 

coordination number (CN) of Ni-O and Fe-O. Before starting the fitting procedure, 

the scattering amplitude factor, So2, was estimated from the first shell fitting of Ni foil 

collected at the same experimental conditions by fixing the CN to 12. This value of 

So2 (CN×So2=0.85) was used in analysis to determine the first metal shell of the 

catalyst samples. The RSF of the reduced and used nanoparticle catalyst samples and 

the first shell fitting in both Fe K-edge and Ni K-edge are shown in figure 4.19. The 

fitting parameters for the first shells in the Fe-Ni-C invar and austenitic alloy and the 

oxide surface coating are presented in Table 4.2.  

The first shell radial distance, R, of Ni-M (M=Fe or Ni) and Fe-M is 2.53Å and 

2.50Å, respectively. These results are consistent with those reported in a published 

study of Fe-Ni alloy films of similar composition [37]. The Debye-Waller factor (σ2) 

values are in the range of 6-7×10-4 (Å2), close to values reported in the literature [136, 

137]. The deactivated catalyst sample (d) shows the same CN of Ni-M and Fe-M 

bond in the first shell, indicating the random distribution of Ni and Fe in the catalyst 
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particles[134], in agreement with the elemental distribution maps of the reduced FeNi 

np/Mg(Al)O catalyst shown in figure 4.8. The first shell M-M CN determined from 

both the Ni and Fe EXAFS fitting is ~9.5, which is significantly smaller than that, 12, 

of the bulk material. This difference in CN could be due to either small-particle 

effects or self-absorption phenomena or a combination of both factors.  

 In addition to the M-M shells, the spectra for sample (b) and sample (c) also exhibit 

small M-O peaks, presumably due to surface oxide formed by exposure of the FeNi 

nanoparticles to air after the reduction and dehydrogenation experiments. The FEFF-

derived Ni-O distance is ~2.05Å, close to that of NiO at 2.08Å, and the distance for 

Fe-O is ~1.93 Å, similar to a typical Fe-O distance in Fe2O3 of 1.94Å.  The formation 

of iron oxide instead of nickel ferrite by high-temperature oxidation of Fe-Ni alloy 

film (Fe 64%, Ni 36%) was confirmed by Tomellini et al. [138] by using in-situ XAS.  

Here, the separate formation of Fe2O3 and NiO after exposure the reduced FeNi 

nanoparticles are consistent with that report.  In sample (b), the CN of Fe-M is smaller 

than that of Ni-M, meanwhile, the CN of Fe-O is larger than Ni-O, indicating that Fe 

is easier to be re-oxidized than Ni after exposure to air. Furthermore, the NiO or 

Fe2O3 are formed only on the surface of Fe-Ni alloy particles because both have a 

very small coordination number, ~3 versus standard 6. This is consistent with the 

previous TEM observation of core-shell structured nanoparticles formed after 

reduced/passivated on C coated Cu grid. There is no significant metal-oxide observed 

in the deactivated samples, d, indicating that FeNi particles are likely encapsulated by 

carbon generated during methane dehydrogenation, preventing exposure of O2 to the 

surface of FeNi particles. This is consistent with the conclusion based on TEM and 

Mössbauer results that the deactivation of the FeNi nanoparticle catalyst during 

methane dehydrogenation is due mainly to carbon encapsulation.  

There is much discussion on the role of metal carbide in the growth of CNTs. On the 

one hand, metal carbides, such as Fe3C, have 104 times lower diffusion coefficient of 

carbon than austenite [139], slowing the diffusion of carbon through catalyst particle, 
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thereby, halting the reaction. On the other hand, the formation of carbide, especially 

meta-stable carbides, is able to enrich carbon on the surface of catalyst particle, which 

in turn, increases the driving force for the carbon diffusion, promoting the reaction 

[89]. Apparently, the catalyst deactivation is due to the loss of catalytic surface by 

encapsulation of carbon. What the reason might be for the cessation of carbon 

precipitation to form CNTs, instead, accumulates on the catalyst surface is still 

debateable. It may be caused by the formation of some forms of stable carbide due to 

the oversaturated carbon in solution [38]. The observation of austenitic Fe-Ni-C alloy 

in the deactivated catalysts may be explained by slowly cooling the oversaturated 

carbon in Fe-Ni solid solution to room temperature [38] . However, Baker et al. [140, 

141] presented another deactivation mechanism in their study of the Fe-Ni (Ni-rich) 

alloy powder for carbon product by using ethylene-H2 or CO-H2. At the reduction 

condition, Ni preferentially segregated onto the surface of FeNi alloy at elevated 

temperature above 700ºC. Because Ni catalyst can only bear a relatively low 

temperature, the catalyst lost its catalytic activity very quickly. However, when 

lowered the reaction temperature, the excess Ni on the surface migrated back into 

bulk. Therefore, the deactivated catalyst could recover its catalytic activity. Since the 

segregation of Fe-Ni alloy is a dynamic and equilibrium process, depending on the 

temperature and reaction time, we can not observe this segregation by ex-situ EXAFS 

data at room temperature. But, this definitely could become another possible reason 

for the deactivation, especially when the catalytic performance at higher temperature 

700ºC was considered over this novel catalyst, which shows a very quick 

deactivation. In the future, an in-situ EXAFS experiment is necessary to be designed 

in order to get more information of the deactivation mechanism. 

4. 4. Summary and Conclusions 

An FeNi nanoparticle catalyst supported on Mg(Al)O has been prepared by a novel 

nanoparticle impregnation method. Thermal decomposition of a metal-surfactant 

complex was initially used to prepare approximately monosized FeNi oxide 

nanoparticles with a mean size of 9 nm. These nanoparticles were then dispersed onto 
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a high surface area Mg(Al)O support and reduced in hydrogen at 600ºC for 1 h. The 

resulting FeNi np/Mg(Al)O catalyst exhibited significantly better activity and stability 

than a similar catalyst with the same metal loading (5 wt.%) prepared by a 

conventional incipient wetness method (FeNi IW/Mg(Al)O) for catalytic 

dehydrogenation of methane at moderate temperatures of 600-650ºC. TEM studies 

showed that the monodisperse FeNi nanoparticles were well dispersed on the surface 

of the Mg(Al)O support with the particles maintaining a size close to 9 nm. Energy-

dispersive X-ray spectra and X-ray mapping indicated a uniform concentrations of Fe 

and Ni in the particles, with an Fe:Ni ratio of approximately 65:35.  

Analysis of XAFS spectra and Mössbauer spectra established that the reduced 

nanoparticles are fcc structured FeNi alloys with a random distribution of Ni and Fe. 

During reaction with methane at 600-650ºC, the nanoparticles are converted to an fcc 

Fe-Ni-C alloy of the invar type that is active for dehydrogenation and formation of 

CNTs. TEM studies indicated that each nanoparticle functioned as an active site for 

methane dehydrogenation and CNTs growth in a tip growth mode. The resulting 

CNTs generated were in the form of bamboo-structured multi-walled nanotubes (B-

MWNT) with a narrow size distribution, reflecting the tight size distribution of the 

FeNi nanoparticles. Deactivation of the catalyst likely results from encapsulation of 

the nanoparticle catalysts in the MWNTs that prevents access of the methane to 

catalyst particle surfaces. The associated transformation of the active invar Fe-Ni-C 

phase to an austenitic phase observed by the Mössbauer spectra collected at room 

temperature may also be contributing to deactivation. 
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Table 4.1. Mössbauer Parameters of the as-prepared FeNi nanoparticle and the FeNi 
np/Mg(Al)O catalysts in their reduced/passivated and used states. 

Items I. S. 
mm/s 

Q. S. 
mm/s 

Width 
mm/s 

H0 
KGauss %Fe ID 

As-prepared FeNi 

nanoparticle 

0.34 0.63 0.53  73.5 Fe3+ oxide  

0.9 1.08 0.73  24 Fe2+ oxide  

0.84 1.99 0.27  2 Fe2+ oxide  

       

FeNi np/Mg(Al)O 

Reduced/passivated 

-0.57  0.41  2 ?? 

0.32 0.84 0.82  31 Fe3+ oxide  

0.24 3.91 3.58  45 
Fe3+ oxide 

(SPM) 

0.01  0.97 275 22 Fe-Ni alloy 

       

2 h reaction at 

600ºC 

0.24 0.89 0.92  27 Fe3+ oxide  

0.05 1.51 0.23  2 Fe-Ni 

0,07 4.64 1.91  22 Fe-Ni 

0.01 0 1.16 277 49 Fe-Ni 

       

5 h reaction at 

600ºC 
0.3 0.79 0.77  30 Fe3+ oxide 

 0.43 2.39 0.77  7 Fe3+ oxide 

 0.05 0 0.73 292 31 Fe-Ni 

 0.09  1.13 261 32 Fe-Ni 

       

48 h reaction at 

600ºC 

-0.08  0.31  18 
Fe-Ni 

(austenite) 

0.19 0.82 0.97  37 Fe-Ni-C 

0 1.03 0.76 288 45 Fe-Ni 
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Table 4.2. Structural parameters of the FeNi np/Mg(Al)O catalyst with different 
conditions obtained by FEFF6 fitting of Fe K edge and Ni Kedge FT of EXAFS 
spectra. 

 
Item Bond type N R (Å) σ2(Å2) 

Ni K edge 

600ºC     

(b) t=0 h Ni-M 7.7±0.3 2.53±0.00 0.0071±0.0002 
 Ni-O 2.6±0.7 2.05±0.05 0.004±0.002 
     

(c) t=5 h Ni-M 9.0±0.5 2.53±0.00 0.0068±0.0004 
 Ni-O 2.9±0.7 2.04±0.03 0.008±0.002 
     

(d) t=48 h  Ni-M 9.5±0.4 2.53±0.00 0.0064±0.0003 
     
     

Fe K edge 
600ºC     

(b) t=0 h Fe-M 5.9±0.6 2.51±0.01 0.0070±0.0007 
 Fe-O 3.5±1.2 1.93±0.03 0.0070±0.0004 
     

(c) t=5 h Fe-M 7.8±0.5 2.50±0.00 0.0070±0.0004 
 Fe-O 3.3±0.4 1.93±0.01 0.0020±0.0003 
     

(d) t=48 Fe_M 9.6±0.5 2.50±0.00 0.0065±0.0004 
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(a)                                                     (b) 

  
(c)                                                           (d) 

Figure 4.1. TEM (a) and HRTEM (b) images of approximately mono-sized FeNi 
bimetallic nanoparticles prepared by using 1/6 equivalent normality of oleic acid; (c) 
equivalent normality of oleic acid; (d) combination of equivalent normality of oleic 
acid and equivalent normality of oleylamine. 
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Figure 4.2. Particle size distribution (PSD) of synthesized FeNi bimetallic 
nanoparticles 
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Figure 4.3. X-ray diffraction pattern of the synthesized FeNi nanoparticle, NiO, FeO 
and Ni(Fe)O as references. 
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Figure 4.4. K3-weighted EXAFS and radium structure function (RSF) of synthesized 
bimetallic FeNi nanoparticles both at Fe K-edge and Ni K-edge 
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Figure 4.5. Room-temperature Mössbauer spectrum of the synthesized FeNi 
nanoparticle 
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Figure 4.6. STEM image of the as-prepared FeNi nanoparticle catalyst 
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 (a)                                        (b) 

  
 (c)                                        (d) 

 Figure 4.7. Microscopic images of (a) STEM image of FeNi IW/Mg(Al)O reduced at 
700 C for 2 h; (b) STEM image of FeNi np/Mg(Al)O reduced at 600 C for 1 h; (c) 
TEM image of reduced FeNi np/Mg(Al)O; (d) HRTEM image of FeNi np/Mg(Al)O. 
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(a) 

     
(b) 

Figure 4.8. EDS Element map of: (a) FeNi IW/Mg(Al)O and (b) FeNi np/Mg(Al)O 
catalyst. 
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Figure 4.9. Temperature programmed reduction over: (a) FeNi np/MgAlO as-
prepared (b) Pre-reduced FeNi np/MgAlO ; (c) FeNi IW/MgAlO as-prepared. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 200 400 600 800 1000 1200

Temperature (oC)

Si
gn

al
 (A

.U
.)

a

b

c



89 
 

 
 
 
 
 
 
 
 
 
 
 

          
(a)                                    (b)                                       (c) 

Figure 4.10. TEM images of FeNi nanoparticles on carbon coated Cu grid, sample 
treated in H2 flow at 600°C for 1 h. 
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Figure 4.11. Time-on-stream (TOS) H2 production over: (a) FeNi np/Mg(Al)O (0.2 g 
loading); (b) FeNi IW /Mg(Al)O (1.0 g loading). The balance of the product stream is 
unreacted methane. 
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Figure 4.12. TOS methane conversion over FeNi np/Mg(Al)O (0.2 g loading) and 
FeNi IW/Mg(Al)O (1.0 g loading) catalysts at 600ºC and 650ºC. The dashed line 
shows the equilibrium conversion. 
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Figure 4.13.  TOS hydrogen production from methane dehydrogenation at 600ºC 
using an FeNi np/Mg(Al)O catalyst with catalyst loading of 0.5 g.  
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(a)                                     (b) 

Figure 4.14. The morphologies of CNTs produced over FeNi np/Mg(Al)O at 600ºC: 
(a) HRTEM image; (b) STEM image 
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(a)                                     (b) 

Figure 4.15. The morphologies of FeNi nps after 5 h reaction at: (a) 600ºC and (b) 
700ºC. 
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(a)                                                                  (b) 

   
(c)                                                                  (d) 

Figure 4.16. Mössbauer spectra of FeNi np/Mg(Al)O catalyst at different conditions: 
(a) reduced /passivated; (b) (c) (d) after reaction at 600ºC for 2 h, 5 h and 48 h 
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Figure 4.17. Fe K edge (Left) and Ni K edge (Right) XANES spectra of FeNi 
np/Mg(Al)O catalyst at different conditions: (a) Fe foil or Ni foil as reference; (b) 
reduced/passivated catalyst; (c) after reaction at 600ºC for 5 h; (d) deactivated 
catalysts after reaction at 600ºC for 48 h. 
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Figure 4.18. Fourier transform EXAFS spectra of Fe K edge (Left) and Ni K edge 
(Right) of FeNi np/Mg(Al)O catalysts at different conditions: : (a) Fe foil or Ni foil as 
reference; (b) reduced/passivated catalyst; (c) after reaction at 600ºC for 5 h; (d) 
deactivated catalysts after reaction at 600ºC for 48 h. 
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FeNi np/Mg(Al)O Fe K edge 

  
                         (a)                                          (b)                                         (c) 
 

FeNi np/Mg(Al)O Ni K edge 

 
                         (a)                                          (b)                                         (c) 
Figure 4.19. Radial structure function and the first shell fitting of the FeNi 
np/Mg(Al)O catalyst in the reduced/passivated state (a), and used at 600ºC for 5 h (b) 
and 48 h (c). Top: Fe K edge and bottom: Ni K edge. The fitting Parameters are listed 
in Table 3.2. 

 
 
 
 
 

Copyright @ Wenqin Shen 2009 

0

4

8

12

16

20

0 1 2 3 4 5 6

R (Å)

FT
 M

ag
ni

fic
at

io
n

data
fitting

0

4

8

12

16

20

24

0 1 2 3 4 5 6

R (Å)

FT
 M

ag
ni

fic
at

io
n

data
fitting

0
4
8

12
16
20
24
28
32
36

0 1 2 3 4 5 6

R (Å)

FT
 M

ag
ni

fic
at

io
n

data
fitting

0

4

8

12

16

20

0 1 2 3 4 5 6

R (Å)

FT
 M

ag
ni

fic
at

io
n

data
fitting

0

4

8

12

16

20

24

28

0 1 2 3 4 5 6

R (Å)

FT
 M

ag
ni

fic
at

io
n

data
fitting

0

4

8

12

16

20

24

28

32

0 1 2 3 4 5 6

R (Å)

FT
 M

ag
ni

fic
at

io
n

data
fitting



99 
 

Chapter 5. Non-oxidative Methane Dehydrogenation over Novel Supported 
Fe/Mg(Al)O Nanoparticle Catalysts: Particle Size Effect 

 

5.1 Introduction 

The interest in nanoscale materials derives from the unusual properties they exhibit 

because of their small size, resulting in many novel applications in optical, electronic, 

magnetic materials, and nano-biotechnology. In heterogeneous catalysis, the decrease 

in the catalyst particle size to the nanometer scale normally increases the ratio of 

surface area to volume, thereby increasing the number of available catalytically active 

sites on the surface and improving catalyst performance. Moreover, in addition to the 

reduction in particle size, the electronic band structure may be significantly altered, as 

well as the interaction with the support, which may also lead to different catalytic 

activity [142]. The dependence of catalytic activity on particle size been reported for 

gold catalysts, which are inert in bulk form, but, once the size is reduced to between 3 

and 5 nm, show good activity for CO oxidation. However, when the particle size is 

reduced to less than 2 nm, the gold nanoparticles lose their ability to absorb CO at 

their surfaces [143, 144]. Similarly, monodisperse Pt nanoparticles with a narrow size 

distribution were prepared and loaded onto Vulcan XC-72 carbon support by 

nanoparticle impregnation method for use as fuel cell electrocatalysts [145]. Results 

for this catalyst system indicated that 3.5 nm and 4 nm Pt particles had a much higher 

intrinsic activity for methanol oxidation but a lower tolerance for CO poison 

compared with 6.0 nm, 9.5 nm, and 11.5 nm size particles. Furthermore, Pt particles 

larger than 10 nm and smaller than 3 nm lost their efficiency for methanol oxidation 

[146]. Catalyst particle size effects on the performance of Fischer-Tropsch synthesis 

were also investigated by using Co catalysts in the range of 2.6 to 27 nm supported on 

carbon nanofibers (CNF) prepared by precipitation, incipient wetness and ion-

adsorption methods with different metal loading. The result showed that the optimum 

particle size was between 6 and 8 nm [147]. Ermakova et al. [148] used a Ni/SiO2 

catalyst with 90 wt.% Ni loading for methane decomposition to grow filamentous 

carbon. However, a catalyst with an initial particle size of 30 to 60 nm had the longest 
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life time. Yu et al. [149] prepared Fe catalysts on silica by different approaches to 

obtain varying Fe particle size distributions for carbon nanotubes (CNTs) growth 

from CO disproportionation. A particle size in the range of 13 to 15 nm resulted in the 

maximum CNTs growth rate. Baker et al. [150] reported the preparation of carbon 

nanofibers and nanotubes from a C2H4-CO-He gas mixture at 600ºC using an Fe 

catalyst supported on carbon. The results showed that CNFs were obtained from Fe 

particles larger than 20 nm, while the CNTs were formed from the smaller Fe 

particles less than 20 nm. Takenaka et al. [21] found that Fe2O3 crystallites on 

alumina smaller than 30 nm in fresh catalysts were transformed to α-Fe and cementite 

while those with larger size particles were transformed into austenite after exposure to 

methane at 800ºC for filamentous carbon production. 

As the size of nanoparticle catalysts may play an important role in their catalytic 

behavior, it is meaningful to design catalysts with the optimum size to achieve the 

best performance. Precise control of catalyst particle size is the art of nanotechnology. 

With the development of organometallic based strategies for nanoparticle synthesis, 

monodisperse transition-metal nanoparticles with narrow size distribution can be 

easily prepared, thus opening new avenues to develop catalysts with tunable size and 

providing insights into catalysis at the nanometer scale. Recently, our research group 

developed catalysts for non-oxidative dehydrogenation of hydrocarbons to produce 

COx-free hydrogen and easily purified carbon nanotubes (CNTs) as potential valuable 

by product [65, 96]. A novel FeNi nanoparticle catalyst was prepared by a 

nanoparticle impregnation method. Monodisperse FeNi nanoparticles with a 9 nm 

mean particle size were homogeneously distributed onto a basic Mg(Al)O support by 

ultrasonication in hexane. The as-prepared FeNi nanoparticle catalyst could be easily 

reduced at 600°C in hydrogen and showed a much higher activity and longer life-time 

for methane dehydrogenation at 600-650°C than a similar catalyst prepared by 

incipient wetness. There was little or no sintering or agglomeration of the FeNi 

nanoparticle after reduction or during methane dehydrogenation [151]. Based on this 

research, monodisperse iron oxide nanoparticles with average particle sizes of 5, 10, 
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15 nm were synthesized and loaded onto the Mg(Al)O support. The catalytic 

performance for methane non-oxidative dehydrogenation was evaluated with these Fe 

nanoparticle catalysts, along with a related Fe/Mg(Al)O catalyst prepared by incipient 

wetness method, to discern the optimum particle size for methane non-oxidative 

dehydrogenation. Fe catalysts on various catalyst supports have been extensively 

studied for CNTs production. However, the optimum particle size and the role that Fe 

played were quite contradictory from each research due to the variability of the 

catalysts prepared by different methods. Furthermore, there was little or no emphasis 

on optimization of H2 production in these previous studies with Fe-based catalysts. 

Hence, this study designed to gain insight into the role of catalyst particle size in non-

oxidative methane dehydrogenation to produce both COx-free hydrogen and CNTs. 

5.2 Experimental  

5.2.1 Preparation of Monodisperse Iron Oxide Nanoparticles by Seeded Growth  

 Monodisperse iron-oxide nanoparticles with different mean particle sizes of 5, 10, 15 

nm were prepared by thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) 

in the presence of 1,2 hexadecanediol, oleic acid and oleylamine, followed by a 

seeded growth [123].  

To synthesize the 5 nm iron oxide nanoparticles, 4 mmol (1.42 g) Fe(acac)3, 20 mmol 

(5.74 g) 1,2-hexadecanediol, 12 mmol (3.76 g) oleic acid, 12 mmol (4.58 g) 

oleylamine, and 40 mL phenyl ether were mixed and magnetically stirred under a 

flow of Ar. The mixture was heated to 200ºC for 30 minutes and then heated to the 

reflux temperature of 267 ºC for another 30 minutes. The resulting mixture was 

cooled to room temperature. 80 mL ethanol was added to precipitate the 

nanoparticles, which were then separated by centrifuge. The resulting precipitate was 

redispersed in 40 mL hexane in the presence of 0.1 mL oleic acid and 0.1 mL 

oleylamine. The mixture was ultrasonicated for 10 minutes, then, centrifuged to 

discard any residue that could not disperse in hexane. The nanoparticles in hexane 

could be separated by adding 40 mL ethanol and centrifugation. Excess ethanol was 
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added to wash the nanoparticles three times. Then, the product was dispersed in 

hexane for future use.  

To synthesize the 10 nm iron oxide nanoparticles, the reaction was started with 4 

mmol Fe(acac)3 (1.42 g), 20 mmol 1,2-hexadecanediol (5.74 g), 4 mmol oleic acid 

(1.26 g), 4 mmol oleylamine (1.52 g) and 40 mL phenyl ether, slowly heated to 200 

ºC and kept at that temperature for 2 h and then heated to the reflux temperature of 

267 ºC for 1h under the protection of Ar. The resulting nanoparticles were separated, 

cleaned according to the procedure above, and dispersed in 10 mL hexane. Using 

these nanoparticles in hexane as seeds, additional 4 mmol Fe(acac)3 (1.42 g), 20 mmol 

1,2-hexadecanediol (5.74 g), 4 mmol oleic acid (1.26 g), 4 mmol oleylamine (1.52 g) 

and 40 mL phenyl ether were added to form a mixture. The mixture was heated to 100 

ºC to evaporate all hexane, then heated to 200 ºC and held for 1 h, before being heated 

to reflux for 1 h. After cooling down to room temperature, separated and purified, 8 

mmol of nanoparticles were obtained with relatively larger size. 2 mmol of the above 

generated nanoparticles were used as seeds to grow 4 mmol of bigger particles. By 

repeating the procedure once more, 8 mmol of nanoparticles with an average particle 

size of 10 nm were synthesized. 

To synthesize the 15 nm iron oxide nanoparticles, the same seeded growth mechanism 

was used, but a higher boiling point and a longer chain solvent, octyl ether (303ºC) 

was used instead of phenyl ether. In a typical synthesis, 2 mmol Fe(acac)3 (0.71 g), 10 

mmol 1,2 hexadecanediol, 6 mmol oleic acid, 6 mmol oleylamine and 20 mL octyl 

ether were mixed, heated to 200 ºC for 2 h, next, heated to reflux temperature (303 

ºC) for 1 h. The resulting nanoparticles in hexane were used as seeds, together with 

another 2 mmol Fe(acac)3, 10 mmol 1,2-hexadecanediol, 2 mmol oleic acid, 2 mmol 

oleyamine, and 20 mL octyl ether to grow yet bigger nanoparticles. The produced 

nanoparticles were separated and purified by regular procedures and dispersed in 10 

mL hexane. 2 mL ethanol was added to size-sort the nanoparticles. The superanant 

with small particles was discarded, and the precipitate was redispersed in hexane as 

synthetic Fe-15 nm nanoparticles.  



103 
 

5.2.2 Preparation of Catalysts 

Details of the preparation of the Mg(Al)O support (Mg/Al=5) have been described in 

chapter 3. The Fe nanoparticle catalysts were prepared by a nanoparticle impregnation 

method. The details were reported in chapter 4 and elsewhere [151], and involved the 

incorporation of Fe nanoparticles dispersed in hexane onto the Mg(Al)O support 

under ultrasonication. The resulting catalysts were first dried slowly at room 

temperature and then further dried in an oven at 100ºC overnight. This is the so-called 

as-prepared Fe nanoparticle catalyst. The procedure to prepare a similar Fe catalyst on 

a Mg(Al)O supported by incipient wetness method was also described previously 

[96]. Briefly, Fe(NO)3·9H2O was dissolved in de-ionized water based on the total Fe 

loading of 5 wt.% and dropped into the Mg(Al)O powder. The mixture was then 

thouroughly mixed, dried at 100ºC, calcined at 500ºC for 5 h to yield the as-prepared 

Fe IW/Mg(Al)O catalyst. 

5.2.3 Methane Dehydrogenation Reaction 

Dehydrogenation of methane was conducted in a fixed-bed plug-flow reactor. The 

reactor chamber was a quartz tube with an inner diameter of 22.5 mm. In a typical 

reaction, 0.2 gram of catalyst was loaded at the center of the reactor to form a thin 

layer of catalyst bed supported by quartz wool. Before contact with catalyst, the inlet 

gas was distributed by a quartz wool plug and preheated. The Fe nanoparticle 

catalysts were activated in a flow of H2 at 50 mL/min at 600ºC for 2 h with a ramping 

rate of 10 K/min, whereas the Fe IW catalyst was activated in the H2 atmosphere at a 

higher temperature of 700ºC for 4 h due to the much stronger metal support 

interaction. After reduction, the reactor was cooled to 350ºC, the H2 flow was shut 

down, and 10 mL/min methane was introduced to the reactor to flush all residual H2 

from the reactor. Next, the reaction zone in the quartz tube was heated to the reaction 

temperature within 3 minutes. The methane dehydrogenation reaction was conducted 

at 600, 650 and 700ºC. The inlet gas flow was controlled by a mass flow controller 

and the effluent was monitored by a bubble flow meter and analyzed by an online gas 

chromatograph (GC) with a built-in thermal conductivity detector (TCD). The gas 
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products were quantified as a volume percentage of the total gas effluent. The solid 

carbon product was collected after reaction. Methane conversion was calculated based 

on the H2 volume percentage in the effluent as shown in chapter 4. 

5.2.4 Characterization 

The size distributions of the as-prepared Fe nanoparticles were determined by 

transmission electron microscopy (TEM) using a JEOL 2010F instrument operating at 

200 kV. The size distributions were based on analysis of 400 to 500 individual 

nanoparticles. To prepare the Fe nanoparticle samples for the TEM, a drop of very 

dilute hexane-dispersed nanoparticle sample was deposited onto a carbon coated Cu 

grid and the hexane was slowly evaporated at room temperature under a glass cover. 

The distributions of the Fe nanoparticles in the as-prepared catalysts were studied by 

scanning transmission electron microscopy (STEM). The samples were prepared by 

slightly crushing the catalysts, dispersing them in acetone by ultrasonication, then 

loading a drop of the suspension onto a lacey carbon coated Cu grid, and drying at 

room temperature. The used catalysts with CNTs were also characterized by TEM. 

The samples were prepared by the same procedure as the as-prepared Fe catalyst 

samples. The iron content of each catalyst was analyzed by Inductively Coupled 

Argon Plasma Spectrometry (ICP) by Kentucky Geological Survey Laboratory 

Services. To prepare samples for the ICP test, the catalysts were dissolved in 50 mL 

6M HNO3. X-ray diffraction was conducted on the synthesized nanoparticles using a 

Siemens 5000 diffractometer, Ni-filtered Cu Kα radiation, and a scanning rate of 

0.05º 2θ/min . Mössbauer spectroscopy was carried out at room temperature to 

characterize the Fe nanoparticle catalysts in their as-prepared and after-reaction states 

using Halder GmbH drive and control system with a 57Co (Rh) source of 14.4 keV γ--

rays. The spectra were analyzed by least-squares fitting using a computer routine that 

fits individual Fe components as single peaks, quadrupole doublets, or magnetic 

sextets based on Lorentzian line profile. All isomer shifts are given relative to metallic 

α-Fe at room temperature (293 K). 
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5.3 Results and Discussion 

5.3.1 Characterization of Synthetic Nanoparticles and Nanoparticle catalysts 

Figure 5.1 shows the TEM micrographs of synthesized iron oxide nanoparticles with 

average particle sizes of 5, 10, and 15 nm and the corresponding particle size 

distributions. The nanoparticles are monodispersed in all three cases due to the 

protection of surfactants (oleic acid and oleylamine). As shown in figure 5.1 (a) and 

(b), thermal decomposition of Fe(acac)3 in the presence of surfactant in phenyl ether, 

followed by seeded growth, can be successfully used to prepare monodisperse iron 

oxide nanoparticles with a relatively narrow size distribution. However, by using a 

long chain solvent with a higher boiling point such as octyl ether, the synthesized 

nanoparticle seeds showed a less regular shape with average particle size about 10 nm. 

After the seeded growth, the particles had a broad size distribution within two regions: 

very small particles < 2-3 nm and larger particles > 10 nm. The smaller particles 

could be easily separated by a size-sorting procedure, in which ethanol was dropped 

into the hexane dispersed nanoparticle suspension to precipitate the larger particles. 

After this size-sorting, the particle size distribution (PSD) of the synthetic 15 nm 

nanoparticles is shown in figure 5.1 (c); it ranges from 10 nm, has a very sharp 

maximum at about 15 nm and extends to a few nanoparticles larger than 20 nm. Even 

though there exists minor size overlap in certain regions of synthetic nanoparticles, 

the mean sizes of the particles are very different for the three materials. These 

synthetic nanoparticles were then loaded onto the Mg(Al)O support to complete the 

preparation of Fe nanoparticle catalysts for methane dehydrogenation. 

The iron loading in the catalysts as determined by ICP analysis is listed in table 5.1. 

The Fe-5 nm/Mg(Al)O and Fe-10 nm/Mg(Al)O catalysts have the same Fe loading of 

about 3.2 wt.%, while the Fe-15 nm/Mg(Al)O catalyst contains 4.2 wt.% Fe and the 

Fe IW/Mg(Al)O catalyst has the highest loading of 5 wt.%. 

Figure 5.2 shows the X-ray diffraction patterns of synthesized iron-oxide 

nanoparticles with average particle sizes of 10 and 15 nm, respectively. The synthetic 



106 
 

nanoparticles are single phase with a cubic structure. Maghemite and magnetite have 

very similar XRD patterns and therefore it is difficult to distinguish them by XRD. 

However, the synthesized nanoparticles appear to be maghemite (γ- Fe2O3) because 

of the yellowish-brown color observed in diluted hexane solution instead of the black 

color of magnetite (Fe3O4). Sun et al. [123] reported the formation of magnetite 

nanoparticles by high temperature solution phase reaction of Fe(acac)3 with 1,2 

hexadcanediol in the presence of oleic acid and oleylamine. These magnetite 

nanoparticles were then further oxidized to maghemite under O2 at 250ºC for 2 h. The 

maghemite nanoparticles were obtained here without needing the extra oxidation 

procedure.  

Mössbauer spectroscopy provides a clearer indication that maghemite instead of 

magnetite has been formed. Room temperature Mössbauer spectra of the as-prepared 

Fe catalysts are shown in Figure 5.3 and the derived fitting parameters are given in 

table 5.2. The spectrum of the as-prepared Fe IW/Mg(Al)O is best represented by 

three ferric iron doublets with approximately the same isomer shift (IS), 0.32±0.02 

mm/s, and individual quadrupole splittings (QS) of 0.53, 0.93 and 1.45 mm/s. This 

composite absorption arises from ferric ions in a non-magnetic oxide phase. There is 

no asymmetry in the spectrum to suggest that any Fe2+ might be present. The first two 

doublets are the major component (about 92% Fe), attributed to Fe3+ dispersed in 

Mg(Al)O solid solution formed by calcination of a Mg-Al-(Fe) hydrotalcite like 

compound (HTLs) [83]. The doublet with higher QS of 1.45 mm/s indicates a highly 

asymmetric environment and is attributed to cluster-type Fe3+ oxide formed on the 

surface of Mg(Al)O support [83, 84].  

The room-temperature Mössbauer spectra of the nanoparticle iron catalysts are much 

more complex and appear to derive from both non-magnetic and superparamagnetic 

ferric oxides. A relatively sharp doublet, with an IS of 0.32 mm/s and a QS of 0.65 

mm/s, was fitted for the Fe-5 nm/Mg(Al)O catalyst that closely corresponds to the 

overall non-magnetic absorption observed for the Fe IW catalyst. However, it only 
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contributes about 16% of the total absorption; the remainder of the absorption is 

attributed to superparamagnetic iron oxides. For the Fe-10 nm/Mg(Al)O and Fe-15 

nm/Mg(Al)O catalysts, the non-magnetic component is more or less absent and the 

spectra derive entirely from superparamagnetic effects in the iron oxides.  For the Fe-

15 nm/Mg(Al)O catalyst, the superparamagnetism is beginning to give way to 

magnetic ordering as evidenced by the broad magnetic peaks occurring at about -8 

and +8 mm/s in the spectrum. Like the IW catalyst, there is no significant absorption 

that can be attributed to the presence of Fe2+ in any of these nanoparticle catalysts. 

This lack of any Fe2+ is consistent with the iron oxide being maghemite. 

A more detailed examination of the magnetism of these materials is currently in 

progress using both Mössbauer spectroscopy and SQUID magnetometry as a function 

of temperature. Preliminary results from low-temperature Mössbauer spectroscopy for 

the Fe-5 nm/Mg(Al)O catalyst indicate a relatively sharp magnetic transition over the 

temperature range 15 - 50 K, and a second much more diffuse superparamagnetic 

transition that extends over a much wider temperature range up to room temperature. 

We attribute the sharp transition at low-temperature to magnetic ordering effects 

between adjacent particles, whereas the broad transition is tentatively attributed to 

more distant interparticle array effects. The temperature of the magnetic transition at 

about ~30 K is consistent with the 5 nm average particle size. 

Figure 5.4 shows the Mössbauer spectrum of the Fe-5 nm/Mg(Al)O catalyst collected 

at 16.5 K and the derived parameters are listed in table 5.2. The spectrum has been fit 

using two broad sextets with similar IS values of 0.40 and 0.45 mm/s and magnetic 

hyperfine splittings, H0, of 489 and 440 kG and a single peak with an IS of 0.21 mm/s 

corresponding to SPM Fe3+. Whereas magnetite has an inverse spinel structure with 

formula (Fe3+)A[Fe2+Fe3+]BO2-
4, in which the tetrahedral A sites are occupied by Fe3+ 

and  the octahedral B sites are occupied 50:50 by both Fe2+ and Fe3+, maghemite has a 

defect inverse spinel structure and the formula can be written as 

(Fe3+)A[Fe3+
5/3V1/3]BO2-

4, where V refers to the cation vacancy. For maghemite, both 
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site A and B are occupied entirely by Fe3+, which is consistent with the oxidation state 

of iron indicated by Mössbauer spectroscopy. The low temperature Mössbauer 

spectrum shown here confirms that the synthetic Fe nanoparticles consist only of 

maghemite.  

Figure 5.5 presents the STEM images of the as-prepared nanoparticle catalysts. It can 

be seen that the synthesized iron oxide nanoparticles are evenly dispersed on the 

Mg(Al)O support by the nanoparticle impregnation method. The details about the 

synthesis of Mg(Al)O support and its properties have been described elsewhere [96]. 

Each nanoparticle lies on the surface of Mg(Al)O support, without significant 

agglomeration. There were no obvious differences in all three Fe nanoparticle 

catalysts except for the different particle size. In the as-prepared IW catalyst, no iron 

particles could be observed before high temperature reduction in H2, consistent with 

the conclusion from the Mössbauer spectroscopic characterization that most of the 

iron has been dispersed due to reaction with Mg(Al)O support during calcinations at 

500 ºC. 

The Mössbauer and TEM results show that the as-prepared supported Fe np catalysts 

are significantly different to the Fe IW catalyst. Whereas the Fe IW catalyst appears 

to have reacted extensively with the support, presumably forming Mg(Al,Fe3+)2O4, 

the Fe np catalysts have resisted significant reaction with the support and remained 

predominantly as superparamagnetic maghemite. This difference is likely due in large 

part to the lack of calcination of the Fe np particles after being deposited on the 

support. 

5.3.2 Methane Dehydrogenation 

Figure 5.6 shows the time-on-stream (TOS) H2 production distribution for methane 

dehydrogenation using undiluted CH4 over the Fe-5 nm/Mg(Al)O, Fe-10 nm/ 

Mg(Al)O, Fe-15 nm/Mg(Al)O and Fe IW/Mg(Al)O catalysts at 600, 650 and 700ºC. 

The methane flow rate was kept at 10 mL/min and the catalyst was tested with a space 

velocity of 3000 mL·h-1·g-1 catalyst. At 600ºC, the Fe-5 nm/Mg(Al)O and Fe-10 
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nm/Mg(Al)O catalysts were able to maintain a relatively higher methane conversion 

with only a slight deactivation during the reaction. The H2 volume percentage in the 

effluent increased to its highest level of 40 vol. % over the Fe-10 nm/Mg(Al)O 

catalyst within 15 minutes, and then decreased slightly to 35 vol.% after 5 h. The Fe-5 

nm/Mg(Al)O catalyst showed a parallel trend. H2 in the outlet slightly increased at the 

beginning of reaction to a maximum of 32 vol. %, then decreased slowly to 27 vol.% 

after 5 h. The deactivation rate of both catalysts was about 1 vol.% H2/h. The Fe-15 

nm/Mg(Al)O catalyst had a much faster deactivation rate. Initially, the H2 content 

increased from 15 vol. % to 30 vol. % within 15 minutes then deactivated quickly to 

less than 1 vol. % in 4 h and was completely deactivated after 5 h. In contrast to the 

Fe nanoparticle catalysts, the Fe IW/Mg(Al)O catalyst showed a very short induction 

period at the beginning of the reaction. The catalyst then deactivated very fast over 

the first hour of reaction, as the vol.% H2 reduced from 33 to 20 vol.% H2 in the 

product gas, at which point the deactivation rate reduced to about the same rate as the 

Fe-5 nm and Fe-10 nm catalysts. The activity of methane dehydrogenation over the Fe 

IW catalyst is lower than that over the Fe-5 nm and Fe-10 nm catalysts. In all 

experiments, the Fe-10 nm/Mg(Al)O catalyst showed the highest activity. 

Upon increasing the reaction temperature to 650ºC, differences between the Fe-10 nm 

catalyst and Fe-5 nm catalysts become apparent. Again, the Fe-10 nm catalyst showed 

the highest methane dehydrogenation activity of the four catalysts. The H2 content in 

the outlet reached its highest value, about 59 vol. %, after about 10 minutes of 

reaction, and then decreased in two stages. For the first 4 h, the catalyst deactivated at 

an average rate of 4 vol. % H2/h, from 59 vol. % to 43 vol. % H2. After this point, the 

catalysts deactivated much faster and the H2 content in the product gas dropped from 

43 vol. % to 32 vol. % within 1 h. The Fe-5 nm catalyst also showed similar two-stage 

deactivation behavior. However, it deactivated much faster than the Fe-10 nm catalyst 

during both stages. After the first one and a half h, the H2 content decreased from its 

highest value of 53 vol. % to 39 vol. %, at an average deactivation rate of 9.3 vol. %/h, 

compared with 4 vol. %/h with the Fe-10 nm catalyst. Then, the catalyst deactivated 
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even more quickly and the H2 content was reduced to only 2 vol. % after 5 h reaction. 

Both the Fe-15 nm catalyst and the Fe IW catalyst deactivated quickly immediately 

after the short induction period and completely lost their catalytic activity after about 

3 and 5 h, respectively. The Fe IW catalyst had a relatively higher methane 

conversion initially, about 45 vol. % of H2 in the outlet gas, compared with the Fe-15 

nm catalyst with 34 vol. % of H2 produced. 

Upon further increasing the temperature to 700ºC, all the catalysts deactivated rapidly 

during reaction. However, the Fe-10 nm did show the highest initial methane 

conversion of 71 vol.% of the product as H2 and the longest life-time. The 

performance of the Fe IW catalyst was in between that of the Fe-5 nm and Fe-15 nm 

catalysts. All the Fe-based catalysts exhibited a very short life-time at 700ºC, 

indicating that the synthesized catalysts on Mg(Al)O should only be used at 

temperatures well below 700ºC. 

Figure 5.7 shows the relationship of the initial highest methane conversion over the 

synthesized nanoparticle catalyst versus the reaction temperature. The result for a 

FeNi-9 nm/Mg(Al)O catalyst is also included for comparison. Details about the 

methane dehydrogenation performances of this FeNi-9 nm/Mg(Al)O catalyst were 

reported in a previous study [151]. Methane conversion increased almost linearly with 

the increase of reaction temperature for all three Fe nanoparticle catalysts. However, 

the increases in rate for the Fe-5 nm and Fe-10 nm catalysts were much higher than 

for the Fe-15 nm catalyst, indicating that the catalyst may exhibit different reaction 

mechanisms despite experiencing the same operating conditions. This inference was 

supported by subsequent TEM analysis (see below). Methane conversion of the Fe-10 

nm catalyst was about 5 % higher than that of the Fe-5 nm catalyst at all three 

temperatures, indicating a higher reaction rate over the Fe-10 nm catalyst. The FeNi-

9nm catalyst had a higher methane conversion at 600 and 650ºC than all other Fe-

based catalysts. But upon increasing the reaction temperature to 700ºC, methane 

conversion did not change much. Therefore, inclusion of a second metal forming a 
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bimetallic FeNi alloy catalyst is only effective for increasing the catalytic activity of 

methane dehydrogenation at temperatures below 700ºC. At higher reaction 

temperatures, Ni may segregate onto the surface of the FeNi catalyst particles, which 

completely alters the reaction mechanism of methane dehydrogenation [140, 141]. 

The diffusion of carbon through the catalyst particle is considered the rate-

determining step for catalytic growth of CNTs and the driving force for carbon 

diffusion is the carbon concentration gradient arising from the difference in carbon 

solubility at the gas/catalyst particle surface and CNT/catalyst particle surface. The 

diameter of the CNT is determined by the size of the catalytic particles. Numerical 

calculation showed that smaller diameter CNTs had higher carbon concentrations at 

the CNT/catalyst particle surface [149], thus leading to a smaller driving force. On the 

other hand, at the same catalyst loading, smaller catalyst particles possess a larger 

surface area and a shorter diffusion length, thus having higher carbon diffusion rates. 

The compromise between these competing processes causes the catalyst particle size 

plays a significant role in determining the reaction rate for carbon growth. In this 

work, 10 nm was found to be the optimum particle size for catalytic methane 

dehydrogenation at 600-700ºC by Fe nanoparticles on a Mg(Al)O support (Fe 

np/Mg(Al)O). Fe catalysts on the Mg(Al)O support with a smaller particle size of 5 

nm or a larger particle size of 15 nm lead to slower carbon diffusion rates, 

respectively, and less catalytic activity. It was seen by the previous STEM observation 

that the catalyst particles prepared by a conventional incipient wetness method and 

followed a high temperature reduction in H2 usually had a wide size distribution [151]. 

Based on the finding of current study, Fe particles over the Fe IW/Mg(Al)O catalyst 

with sizes larger than 15 nm showed less activity, while particles with sizes less than 

10 nm were more active. Hence, the overall activity over the Fe IW/Mg(Al)O catalyst 

is therefore a combination of those of both small and large particles, that is between 

that of the Fe-5 nm/Mg(Al)O and Fe-15 nm/Mg(Al)O catalysts. 
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5.3.3 TEM Characterization of Fe Nanoparticle Catalysts after Reaction 

The reacted Fe nanoparticle catalysts and the carbonaceous product were collected 

after methane dehydrogenation. Figures 5.8, 5.9 and 5.10 present the TEM and 

HRTEM images of the reacted Fe-5 nm, Fe-10 nm and Fe-15 nm catalysts after 5 h 

reaction at 600ºC and the morphologies of the related carbon product. For the Fe-5 

nm/Mg(Al)O and Fe-10 nm/Mg(Al)O catalysts, the carbon products were in the form 

of multi-walled CNTs (MWNTs). However, the Fe-5 nm catalyst generated much 

thinner walled CNTs (only 2 or 3 graphite layers) compared with the Fe-10 nm 

catalyst, which produced regular MWNTs with up to 10 graphite layers. The resulting 

CNTs were several to 100 micrometer scale in length, tangling or weaving together to 

form a fluffy material with BET surface areas in excess of 360 m2/g. There was no 

significant agglomeration or sintering of Fe nanoparticles observed after reaction. 

Each Fe nanoparticle may therefore serve as an active site. However, the Fe 

nanoparticles were mobile during the reaction. Many individual particles were found 

inside the CNTs or at the tips of CNTs, duplicating the earlier observation that 

methane dehydrogenation over FeNi np/Mg(Al)O catalyst follows a tip growth 

mechanism [151]. Additionally, as shown in the HRTEM images, the deformation and 

elongation of Fe nanoparticles were observed in the used Fe-5 nm and Fe-10 nm 

catalysts, in which the nanoparticles appeared to fill the inner cavities of the CNT, 

behaving like a ‘liquid’ metal. This phenomenon was especially noteworthy for the 

Fe-10 nm catalyst. There were no carbon fibers or tubes present in the used Fe-15 

nm/Mg(Al)O catalyst sample. Carbon capsules (also called onion-structured carbon 

product) were observed instead. Some of them were empty, while others contained 

individual Fe nanoparticles. The carbon yield was very low using the Fe-15 nm 

catalyst and there was no obvious change of the Fe particles in either size or shape 

after reaction.  

Fe-based catalysts have been mostly studied in the production of filamentous carbon 

from methane decomposition at very high temperatures and it was believed that the 

catalytically active phases for the growth of filamentous carbon were formed by 
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transformation of carbon saturated iron species (γ-Fe) into a liquid state at 

temperatures above 1000ºC. Usually, H2 was used as a co-feed in this system in order 

to suppress the rapid deactivation of catalysts by encapsulation of carbon [21, 152]. 

There are only a few literature references about methane decomposition at 

temperatures as low as 600-800ºC over Fe-based catalyst and the results differ greatly 

between the studies. Tibbets et al. [152] reported that the active phase for the 

formation of filamentous carbon was α-Fe supersaturated with carbon at temperatures 

below 912ºC. Ermakova et al. [35] further demonstrated that the threshold of 

formation of filamentous carbon on Fe2O3 or Fe/SiO2 was around 680ºC, at which 

temperature iron carbide is in a metastable state and could be easily transformed into 

the catalytic active phase, α-Fe and graphite carbon. However, Takenaka et al. [21] 

showed in their research that the active phases could also be γ-Fe, depending on the 

iron catalyst particle size (borderline is 30 nm) at 800ºC. In this study, Fe 

nanoparticles supported on Mg(Al)O exhibit high activity for methane decomposition 

at 600ºC, which is consistent with our previous report that the threshold of formation 

of filamentous carbon on Fe/Al2O3 (5 wt.% Fe) could be as low as 500ºC, reaching a 

maximum conversion at 700ºC in the temperature range of 400-800ºC [65]. The 

reason for “fluidity” of an Fe catalyst at such temperatures far below the melting point 

of bulk Fe is most likely due to the diffusion of carbon through Fe particle, which can 

lead to the transition of iron from solid metal to a quasi-liquid state. Krivoruchko et al. 

[128] observed the transition of α-Fe metal to the quasi-liquid state at a temperature of 

~640ºC by in-situ X-ray diffraction study, but there was no report on the iron particle 

size. Reduction of the Fe particle size to less than 10 nm may decrease the fluidity 

temperature to as low as 600ºC, as observed in this study. Meanwhile, there may be 

an optimum particle size for the transformation from iron metal to quasi-liquid state at 

the same reaction conditions. It was seen in this study that the Fe-10 nm particles 

were more prone to transform to quasi-liquid state than the Fe-5 nm particles. 

However, when the particle size increased to 15 nm, the fluidity of iron particles was 

not observed at 600ºC. This result coincides with the order of activity for methane 

dehydrogenation over these nanoparticle catalysts.  
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5.3.4 Mössbauer Spectroscopic Characterization of Fe-10 nm/Mg(Al)O after 
Reaction 

The Fe-10 nm/Mg(Al)O catalyst after reaction at 600, 650 and 700ºC was studied by 

Mössbauer spectroscopy. The Mössbauer spectra collected at room temperature are 

shown in figure 5.11 and the fitting parameters are listed in table 5.3. The spectrum of 

the Fe-10 nm catalyst used at 600ºC for 5 h shows a quadrupole doublet with IS of 

0.33 mm/s and QS of 0.74 mm/s, two sextets with IS of 0.01 mm/s, H0 of 327 kG and 

IS of 0.2 mm/s, H0 of 199 kG, attributed to Fe3+ oxide, Fe metal and Fe carbide, 

respectively. The used Fe-10 nm catalyst at 650ºC for 5 h displayed a similar trend, a 

doublet with IS of 0.31 mm/s and QS of 0.74 mm/s, a magnetic sextet with IS of -0.01 

mm/s and H0 of 326 mm/s and another sextet with IS of 0.25 mm/s and H0 of 198 kG, 

which again correspond to Fe3+ oxide, Fe metal and Fe carbide. The spectrum of the 

completely deactivated Fe-10 nm catalyst after reaction at 700ºC for 5 h was fitted 

similarly, but with a single peak with IS of -0.12 mm/s, attributed to austenite. The 

contribution of each component in the reacted catalysts is listed in table 4.3. The non-

magnetic Fe3+ oxide may be formed by re-oxidation after exposure of the catalyst to 

air. The content of this absorption feature decreases from about 71% for the Fe-10 nm 

catalyst at 600ºC, to 58% at 650ºC, to 25% at 700ºC, while the iron carbide increases 

in the same order from 5.5%, to 14%, to 36.5%. Interestingly enough, the iron metal 

contents in all three catalysts are almost identical at around 30%. Different from the 

still active catalyst, the totally deactivated catalyst also contained 8.5% austenite. 

Austenite was also detected as an extra phase in the totally deactivated FeNi 

bimetallic catalysts in our previous work [96, 151].  

Based on the Mössbauer results, we propose the following reaction mechanism for 

methane dehydrogenation over Fe nanoparticle and similar catalysts. The catalytic 

active phases are iron metal and a metastable solution of carbon in Fe. Once the iron 

particles become saturated with carbon, the concentration gradient between the 

gas/CNT and CNT/metal particle surfaces diminishes. Therefore, carbon no longer 

diffuses through the particle. Instead, carbon builds up on the surface of catalyst 
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particle, blocking the entrance of methane to the catalyst particle surface, and thereby 

deactivating the catalyst. The metastable Fe-C solution transforms to Fe metal and Fe 

carbide upon cooling to room temperature [38]. Austenite was identified as a specific 

phase in the deactivated catalyst, along with iron carbide, formed from the carbon-

saturated iron solution. 

5.4 Conclusions 

Monodisperse maghemite nanoparticles have been synthesized with average particle 

sizes of 5 nm, 10 nm and 15 nm by thermal decomposition of Fe(acac)3 in the 

presence of surfactants. These nanoparticles could be easily loaded onto a Mg(Al)O 

support by a nanoparticle impregnation method.  They were then used for methane 

dehydrogenation to produce H2 and CNTs. The catalytic performance was 

significantly better for the Fe-5 nm/Mg(Al)O and Fe-10 nm/Mg(Al)O catalysts 

compared to that for an Fe catalyst prepared by a conventional incipient wetness 

method. The Fe-15nm/Mg(Al)O catalyst showed less activity than the Fe IW catalyst. 

The optimum particle size for methane dehydrogenation at 600-650ºC was found to 

be 10 nm; the corresponding catalyst had both the highest methane conversion and 

longest life-times. The generated carbon product was in the form of multi-walled 

CNTs over the Fe-5 nm and Fe-10 nm catalyst, while it was in the form of carbon 

capsules over the Fe-15 nm catalyst. Mössbauer spectra for the used Fe-10 nm 

catalyst revealed that Fe metal and the metastable Fe-C solution were the catalytic 

active phase. Catalysts deactivation was due to supersaturation of iron with carbon. 
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Table 5.1. Fe loading of the as-prepared catalysts by ICP analysis 

Fe-5 nm Fe-10 nm Fe-15 nm Fe-IW 
3.2 wt % 3.2 wt % 4.2 wt % 5.0 wt % 

 

Table 5.2. Mössbauer parameters of as-prepared Fe catalysts on Mg(Al)O support 

Note: SPM refers to superparamagnetism, in which the ferromagnetic clusters are so 
small that they can randomly change direction under thermal fluctuations. Thus, the 
material is not magnetized except in an externally applied magnetic field, behaving 
like paramagnetism [153]. 

 
 

Catalyst 
As-prepared 

I. S. 
mm/s 

Q. S. 
mm/s 

Width 
Mm/s 

H0 
KGauss %Fe ID 

Fe IW 
0.33 0.53 0.46  55 Fe3+ oxide 
0.31 0.93 0.46  37 Fe3+ oxide 
0.3 1.45 0.46  8 Fe3+ oxide  

       

Fe-5 nm 

0.31 0.69 0.52  16 Fe3+ oxide 
(Paramagnetic) 

0.32  2.06  64 Fe3+ oxide 
(SPM) 

0.45  2.6 210 20 Fe3+ oxide 
(SPM) 

       

Fe-10 nm 

0.28 0.74 0.57  5 Fe3+ oxide 
(Paramagnetic) 

0.33  2.4  60 Fe3+ oxide 
(SPM) 

0.31  5.5 217 35 Fe3+ oxide 
(SPM) 

      

Fe-15 nm 

0.33 0.70 1.07  13 Fe3+ oxide 
(Paramagnetic) 

0.39  6.6  75 Fe3+ oxide 
(SPM) 

0.43 0 1.5 420 12 Fe3+ oxide 
(magnetic) 

       

Fe-5 nm 
(16.5K) 

0.27  1.09  6 Fe3+ oxide 
(SPM) 

0.45  1.16 489 54 Fe3+ in site A 
0.40  1.16 440 40 Fe3+ in site B 
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Table 5.3. Mössbauer Parameters of the Fe-10 nm/Mg(Al)O catalyst after 5 h reaction 
at 600, 650 and 700ºC (spectra collected at room temperature) 

Fe-10 
nm/Mg(Al)O 

I. S. 
mm/s 

Q. S. 
mm/s 

Width 
mm/s 

H0 
KGauss %Fe ID 

600ºC 5h 
0.33 0.74 0.73  71 Fe3+ oxide 
0.01 0 0.33 327 28 Fe metal 
0.2 0 0.33 199 5.5 Fe carbide 

       

650ºC 5h 
0.31 0.74 0.74  58 Fe3+ oxide  
-0.01 0 0.44 326 28 Fe metal 
0.25 0.04 0.44 198 14 Fe carbide 

       
700ºC 5h -0.12  0.31  8.5 Austenite 

 0.33 0.69 0.75  25 Fe3+ oxide 
 -0.01 0 0.33 326 30 Fe metal 
 0.19 0.02 0.49 198 36.5 Fe carbide 
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(a) 

 
 (b) 

   
 (c) 

Figure 5.1. TEM micrographs of 5 nm (a), 10 nm (b) and 15 nm (c) iron oxide 
nanoparticles as deposited on TEM grids. 
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Figure 5.2. X-ray diffraction patterns of synthetic iron oxide nanoparticles with 
average particle sizes of 10 and 15 nm, indicating the formation of a cubic iron oxide. 
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Figure 5.3. Room-temperature Mössbauer spectra of the as-prepared Fe catalysts: (a) 
Fe IW/Mg(Al)O; (b) Fe-5 nm/Mg(Al)O; (c) Fe-10 nm/Mg(Al)O and (d) Fe-15 
nm/Mg(Al)O  
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Figure 5.4. Mössbauer spectrum of the as-prepared Fe-5 nm/Mg(Al)O catalyst 
collected at 16.5 K. 
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Scale bar: 20 nm                      Scale bar: 10 nm 

(a) 

    
Scale bar: 50 nm                             Scale bar: 20 nm 

(b) 
 

     
Scale bar: 100 nm                         Scale bar: 50 nm 

(c) 
Figure 5.5. STEM images of as-prepared Fe nanoparticle catalysts: (a) Fe-5 
nm/Mg(Al)O; (b) Fe-10 nm/Mg(Al)O; (c) Fe-15 nm/Mg(Al)O. Iron oxide 
nanopartices are well dispersed onto the Mg(Al)O support in all three catalysts. 
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Figure 5.6. TOS H2 production distribution at 600, 650 and 700ºC over Mg(Al)O 
supported Fe nanoparticle catalysts (0.2 g loading) with different particle sizes of 
5nm, 10 nm and 15 nm and the Fe IW/Mg(Al)O catalyst 
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Figure 5.7. Methane conversion as a function of reaction temperature. Catalysts: Fe-
10 nm/Mg(Al)O, Fe-5 nm/Mg(Al)O, Fe-15 nm/Mg(Al)O and FeNi-9nm/Mg(Al)O 
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Figure 5.8. The morphologies of CNTs and Fe-5 nm nanoparticles after methane 
dehydrogenation reaction over Fe-5 nm/Mg(Al)O catalyst at 600ºC for 5 h  
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Figure 5.9. The morphologies of CNTs and Fe-10 nm nanoparticles after methane 
dehydrogenation reaction over Fe-10 nm/Mg(Al)O catalyst at 600ºC for 5 h. 
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Figure 5.10. The morphologies of carbon product and Fe-15nm nanoparticles after 
methane dehydrogenation over Fe-15 nm/Mg(Al)O catalyst at 600ºC for 5 h. 
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Figure 5.11. Mössbauer spectra of the Fe-10 nm/Mg(Al)O catalyst after reaction at 
600ºC (a), 650ºC (b) and 700ºC (c) for 5 h. Spectra collected at room temperature. 
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

Catalytic non-oxidative dehydrogenation of hydrocarbons is a simple one-step process 

to produce COx-free hydrogen for the energy supply of PEM fuel cells, where the 

purity of hydrogen is very demanding (CO<10 ppmv). The current work is designed 

to develop novel catalysts with excellent TOS performance and high activity for 

hydrocarbons dehydrogenation. Meanwhile, the generated carbon by-product should 

be potentially valuable in the form of carbon nanotubes (CNTs) or carbon nanofibers 

(CNFs) with high quality and easily purified. 

It is well known that Fe, Co and Ni are good catalysts for the production of CNTs and 

CNFs from carbon-containing compounds such as hydrocarbons or CO. These 

catalysts could be potentially used in the production of hydrogen and carbon from 

hydrocarbon dehydrogenation. Ni has been the most investigated catalyst for this 

purpose. But it could only be used at temperatures below 600°C, thus limiting the 

conversion of hydrocarbons by dehydrogenation, which favors a high reaction 

temperature. Similar to Ni-based catalysts, Co-based catalysts could be used over the 

same temperature range of 400-600°C, but less efficiently. Fe-based catalyst were 

able to be used at high temperatures above 800°C for the production of CNTs with co-

feed of hydrogen. There are few reports on the hydrogen production by using Fe-

based catalysts due to the short life-times. In this study, monometallic Ni and Fe 

catalysts and bimetallic FeNi catalysts with a Fe:Ni ratio of 65:35 supported on a 

basic Mg(Al)O support were developed and investigated for the non-oxidative 

dehydrogenation of ethane and methane. 

In chapter 3, a monometallic Ni IW/Mg(Al)O catalyst and a bimetallic FeNi 

IW/Mg(Al)O catalyst prepared by incipient wetness with total metal loading of 5 wt.% 

were used for ethane dehydrogenation in order to produce H2 and easily purified 

CNTs. Consistent with literature reports, the Ni IW/Mg(Al)O catalyst only showed 

good catalytic activity at 500ºC with 100% conversion of ethane to 20 vol.% H2 and 
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80 vol.% methane. It had a long life-time and exhibited no loss of activity for over 

16.7 h at a space velocity of 600 mL∙h-1∙g-1 of undiluted ethane. Upon increasing the 

reaction temperature to 650ºC, the Ni IW/Mg(Al)O catalyst deactivated immediately. 

However, the FeNi IW/Mg(Al)O catalyst exhibited its best catalytic behavior at 650ºC 

and was active for more than 5 h, yielding 65 vol.% H2, 10 vol.% CH4, and 25 vol.% 

unreacted ethane. At 500ºC, it showed a high selectivity of H2 to CH4, but much less 

activity than that of the monometallic Ni catalyst. At 700ºC, both catalysts deactivated 

very quickly, but the FeNi catalyst showed a higher H2 yield. 

As summarized in chapters 4 and 5, a monometallic Fe-10 nm/Mg(Al)O and a 

bimetallic FeNi-9 nm/Mg(Al)O catalyst, both prepared by the nanoparticle 

impregnation method, were also investigated for methane dehydrogenation at 600, 

650 and 700ºC in undiluted methane flow with a space velocity of 3000 mL∙ h-1∙g-1,. 

At 600ºC, the FeNi 9nm/Mg(Al)O catalyst maintains its catalytic activity for at least 5 

h, yielding over 50 vol.% of H2 in the effluent gas, while the activity of the Fe-10 

nm/Mg(Al)O catalyst slightly declined during the 5 h reaction from the H2 yield of 40 

vol.% to 35 vol.% in the effluent gas. Upon increasing the temperature to 650ºC, the 

H2 yield increased to 66 vol.% in the effluent over the FeNi 9 nm/Mg(Al)O catalyst, 

which maintained its activity for over 2 h and then gradually deactivated to 10 vol.% 

H2 within 5 h. The Fe-10 nm/Mg(Al)O catalyst showed a higher methane 

dehydrogenation activity after about 10 min of reaction, yielding about 59 vol.% of 

H2 in effluent gas. Then, the catalyst deactivated in two stages: the catalyst 

deactivated at an average rate of 4 vol. % H2/h, from 59 vol. % to 43 vol. % H2 in the 

first 4 h; after this point, the catalysts deactivated much faster and the H2 content in 

the effluent gas dropped from 43 vol. %  to 32 vol. % within 1 h. Both catalysts 

deactivated very quickly at 700ºC. 

Overall, the bimetallic FeNi catalyst on Mg(Al)O support either prepared by incipient 

wetness method or by nanoparticle impregnation method showed improved 

performance for methane or ethane dehydrogenation compared with the monometallic 
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Ni-based and Fe-based catalysts on Mg(Al)O. Addition of Ni to Fe, forming an FeNi 

alloy, is able to either increase the catalytic activity or prolong the catalyst life-times 

at a higher reaction temperature above 600ºC. This is presumably due to the increased 

diffusion rate of carbon through the FeNi binary catalyst particles as discussed in 

chapter 3. At 700ºC, all FeNi binary catalysts deactivated very quickly, most likely 

due to the segregation of Ni to the FeNi catalyst particle surfaces. 

A novel nanoparticle impregnation method was developed to prepare nanoparticle 

catalysts, in which the synthesized nanoparticles exhibited both a highly uniform 

composition and particle size distribution These monodispersed nonoparticles were 

then dispersed onto the Mg(Al)O support by ultrasonication. The resulting novel 

FeNi-9 nm/Mg(Al)O, Fe-10 nm/Mg(Al)O and Fe-5 nm/Mg(Al)O catalysts exhibited 

significantly better activity and stability for catalytic dehydrogenation of methane at 

moderate temperature of 600-650ºC than the similar FeNi IW/Mg(Al)O, and Fe 

IW/Mg(Al)O catalysts. Furthermore, comparison of the catalytic behavior of the Fe-5 

nm/Mg(Al)O, Fe-10 nm/Mg(Al)O and Fe-15 nm/Mg(Al)O catalysts for methane 

dehydrogenation revealed that 10 nm was the optimal size for methane 

dehydrogenation reaction.  

Also in this study, a basic Mg(Al)O compound with a Mg to Al ratio of 5 was 

synthesized by calcination of a MgAl-hydrotalcite prepared by co-precipitation; it was 

used as an alternative catalyst support. This synthesized catalyst support has high 

surface area, good stability towards heat and steam, and importantly, compared with 

alumina, it easily dissolved in dilute nitric acid. Therefore, the carbon by-product 

could be easily purified by a one-step dilute nitric acid treatment with the purity 

reaching as high as 99.6%. Moreover, the surface of this Mg(Al)O support interacted 

strongly with the surfactant shell (containing mainly oleic acid or oleylamine) of the 

synthesized nanoparticles, since it can absorb hexane dispersed catalyst nanoparticles 

easily by slightly stirring. Thus, it could be efficiently applied to prepare novel 

nanoparticle catalyst by nanoparticle impregnation method. 
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The morphologies of the carbon by-product are determined by the catalyst 

composition and the reaction temperature. Above 600ºC, over FeNi binary catalysts, 

Fe IW/Mg(Al)O, Fe-5 nm/Mg(Al)O and Fe-10 nm/Mg(Al)O catalysts, the carbon is 

in the form of multi-walled CNTs. The Fe-15 nm/Mg(Al)O catalyst could only 

generate carbon capsule at 600ºC, while the Ni IW/Mg(Al)O catalyst produced an 

onion soot/fiber mixed carbon product at 650ºC. It is noteworthy that the CNT 

structure produced over the Ni IW/Mg(Al)O catalyst was SCNTs. It is believed that 

the edges of the CNTs or CNFs are the most active and easily modified sites. 

Therefore, the SCNTs prepared here with purity of 99.5%, the surfaces of which are 

almost entirely graphitic edge sites, should have significant advantages compared to 

the other types of CNTs or CNFs as catalyst supports. 

The following reaction mechanism was proposed for hydrocarbon dehydrogenation 

over the catalysts prepared in this work. The alkane is first adsorbed onto the surface 

of the catalyst particle, where it dissociates to surface carbon (Cs), releasing hydrogen 

and/or other gaseous products. The Cs dissolves into the catalyst particles and diffuses 

through the particle. At a high enough concentration of Cs, nucleation occurs at the 

particle surfaces to form filamentous carbon product. The driving force for carbon 

diffusion inside the catalyst particle is the concentration gradient arising from the 

difference in carbon solubility at the gas/catalyst surface and the CNT/catalyst particle 

surface. The generation of SCNTs and MWNTs over Fe, Ni or FeNi bimetallic 

catalysts on Mg(Al)O catalysts follows a tip-growth mechanism. Nanoscale Fe, Ni, 

Fe-Ni alloy and associated unsaturated metal-carbon solution particles are all catalytic 

active phases for alkane dehydrogenation. The “fluidity” property is observed on the 

catalytic active Fe and FeNi catalyst particles, since the metal particles filling the 

cavity inside the CNTs, behave like a liquid. The deactivation of catalysts is 

predominantly due to the carbon encapsulation of catalyst particles. However, the 

reason for the formation of carbon capsule is complicated, presumably due to the 

supersaturation of carbon in metal catalyst particles. 
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6.2 Suggestions for Future Work 

Despite the above achievements, there are still a lot of interesting topics left for future 

research. First, as already noted, the deactivation mechanism of the catalyst for 

hydrocarbon dehydrogenation is still uncertain due to the limitation of the ex-situ 

characterization. Therefore, it is meaningful to use in-situ characterization techniques 

to study the reactions on these catalysts. Efforts have been devoted to using in-situ 

XAFS spectroscopy, which can provide detailed information about the phase changes 

at each step, such as those occurring during pre-reduction, reaction and deactivation. 

The initial experiments were only conducted to investigate the reduction behavior of 

Fe IW/Mg(Al)O and Fe-10 nm/Mg(Al)O catalysts by methane due to the limitations 

on the usage of flammable hydrogen gas in place at the National Synchrotron Light 

Source, Brookhaven National Laboratory. The details and the primary results were 

describes in reference [154]. Therefore, in-situ experiments close to actual reaction 

conditions need to be designed and conducted to reveal the reaction mechanisms. 

Second, a single bimetallic FeNi nanoparticle catalyst, with a Fe to Ni molar ratio of 

65:35, was investigated for hydrocarbon dehydrogenation. It exhibited much 

improved performance, compared to monometallic Ni and Fe nanoparticle catalysts, 

and the similar FeNi catalyst prepared by incipient wetness method. It would be very 

interesting to change the Fe to Ni ratio to achieve the optimal composition of Fe to Ni 

for hydrocarbon dehydrogenation. However, it is very challenging to prepare FeNi 

bimetallic nanoparticles with nickel content larger than 35% by using the method used 

herein, and different methods will need to be discovered. 

Third, it would be of value to investigate the effect of addition of Co to the Fe catalyst 

on hydrocarbon dehydrogenation.. 

Last, but not least, potential applications of the purified carbon by-products such as 

SCNTs as catalyst supports are very attractive topics for future research. Ni, Ni-Cu, 

Pd, Ni-Pd, Fe-Co nanoparticles could be easily dispersed onto SCNTs. But the 

catalytic activities of these materials, potentially of importance in areas such as 
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hydrogenation, electrolyte catalysts for fuel cell and Fischer-Tropsch synthesis, are 

still under investigation. 
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