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ABSTRACT OF DISSERTATION 

 

 

SYNTHESIS AND CHARACTERIZATION OF POLYMERIC ANTIOXIDANT 
DELIVERY SYSTEMS 

Even though the role of oxidative stress in a variety of disease states is known, 
strategies to alleviate this oxidative stress by antioxidants have not been able to achieve 
clinical success. Particularly, treatment of oxidative stress by small molecule antioxidants 
has not received due attention because of the challenges associated with its delivery. 
Antioxidant polymers, where small molecule antioxidants are incorporated into the 
polymer backbone, are an emerging class of materials that can address some of these 
challenges.  

In this work, biodegradable polymers incorporating phenolic antioxidants in the 
polymer backbone were synthesized. Antioxidant polymers were then characterized for 
their in vitro degradation, antioxidant release and their effect on oxidative stress levels 
(redox state) in the cells. Trolox, a water-soluble analogue of vitamin E, was polymerized 
to synthesize poly(trolox ester) with 100% antioxidant content which undergoes 
biodegradation to release trolox. Nanoparticles of poly(trolox ester) were able to suppress 
oxidative stress injury induced by metal nanoparticles in an in vitro cell injury model.  

In another study, we polymerized polyphenolic antioxidants (e.g. curcumin, 
quercetin) using a modified non-free-radical polymerization poly(β-amino ester) 
chemistry. This synthesis scheme can be extended to all polyphenolic antioxidants and 
allows tuning of polymer degradation rate by choosing appropriate co-monomers from a 
large library of monomers available for β-amino ester chemistry. Poly(antioxidant β-
amino esters) (PABAE) were synthesized and characterized for their degradation, 
cytotoxicity and antioxidant activity. PABAE degradation products suppressed oxidative 
stress levels in the cells confirming antioxidant activity of degradation products. 

KEYWORDS: Antioxidant polymers, oxidative stress, biocompatibility, polyphenols,  
controlled release of antioxidants 
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Chapter 1. Introduction 

Oxidative stress is a pathological condition that has been implicated in variety of 

diseases including non-healing wounds, incompatibility of biomaterials and vascular 

diseases. During oxidative stress, reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) are produced in excess in relationship to the antioxidant defense 

mechanism leading to an imbalanced redox state. Methods proposed to alleviate oxidative 

stress include delivery of antioxidants, either small molecule antioxidants (e.g. vitamin E, 

vitamin C, glutathione, etc.) or antioxidant enzymes (e.g. SOD, catalase, etc.), that can 

eliminate oxidative species and restore normal redox state. Small molecule antioxidants 

are generally non-specific and scavenge a variety of ROS and RNS. Also, they are well 

tolerated, stable for long term storage, resistant to complex and/or aggressive formulation 

processing methods and relatively inexpensive. However, these small molecule 

scavengers typically reduce free radicals and other oxidizing species in stoichiometric 

ratios, being consumed in the process. Hence, large sustained doses are expected to be 

required in order to observe a significant clinical effect. Also, small molecule 

antioxidants can have a concentration dependant anti- or pro-oxidant effect, where 

delivery of small molecule antioxidants in excess (e.g. burst release from 

micro/nanocarriers) can induce an undesired pro-oxidant effect in host tissue. One of the 

major challenges in translating small molecule antioxidant therapy into clinical success is 

its delivery at the injury site at concentrations that can have a therapeutic effect. Carriers 

for small molecule antioxidants should be designed for delivery of significant amounts, 

but at a gradual and controlled rate. Antioxidant polymers, where small molecule 

antioxidants are incorporated in a biodegradable polymer backbone using covalent bonds, 
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allow to achieve both these goals by, 1.) enhancing the total mass of antioxidant in the 

carrier polymer and 2.) allowing chemical cleavage to control the release rate.  Many 

small molecule antioxidants have reactive groups like phenols, which can be easily 

functionalized and incorporated into polymers using polyester, polyanhydride or poly(β-

amino ester) chemistry. This approach provides that added benefit of protecting the labile 

center from premature oxidation. 

In this work, biodegradable polymers incorporating phenolic antioxidants in the 

polymer backbone were synthesized. Antioxidant polymers were then characterized for 

their in vitro degradation, antioxidant release and their effect on oxidative stress levels 

(redox state) in the cells. Trolox, a water-soluble analogue of vitamin E, was polymerized 

to synthesize poly(trolox ester) with 100% antioxidant content which undergoes 

biodegradation to release trolox. Nanoparticles of poly(trolox ester) were able to suppress 

oxidative stress injury induced by metal nanoparticles in an in vitro cell injury model. In 

another study, we polymerized polyphenolic antioxidants (e.g. curcumin, quercetin) using 

β-amino ester chemistry. Poly(β-amino esters) are known to be pH sensitive  and 

hydrolytically degradable. Also, a large library of monomers available for β-amino ester 

chemistry allows for careful tuning of the degradation rates. Poly(antioxidant β-amino 

esters) (PABAEs) were synthesized and characterized for their degradation and 

antioxidant activity. The effect of the degradation of PABAE on cytotoxicity and 

oxidative stress levels in the cells was also studied. Based on the encouraging results 

from these studies, we plan to study application of antioxidant polymers in, i.) targeted 

delivery of antioxidant polymer nanoparticles to injured vascular endothelium (e.g. 

ischemia/reperfusion injury) ii.) coating biomedical implants to suppress implant induced 
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inflammatory response which is marked by elevated oxidative stress in surrounding 

tissue, iii.) wound healing materials (e.g. dermal patches) for sustained delivery of 

antioxidants at wound site.  
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Chapter 2. Background 

Based on the book chapter and a review article published in : 

P.P. Wattamwar and T.D. Dziubla, “Modulation of Wound Healing 
Response Through Oxidation Active Materials”, To appear in : 
“Engineering Biomaterials For Regenerative Medicine: Novel 
Technologies for Clinical Applications”, S. Bhatia (Editor), Springer 
(Submitted) 

E. Hood, E. Simone, P.P. Wattamwar

 My contribution to this article is the review section titled “Polymer 
nanocarriers for delivery of antioxidants”. 

, T.D. Dziubla and V.R. 
Muzykantov, “Nanocarriers for vascular delivery of antioxidants”, Review 
article, Nanomedicine, 2011, 6(7), 1257-1272 

2.1 Introduction 

Oxidative stress is the pathophysiological condition which is characterized by the 

imbalance between an excess production of oxidants, called reactive oxygen species 

(ROS) and reactive nitrogen species (RNS), in relationship to the antioxidant defense 

mechanism’s ability to scavenge these oxidants. When produced in excess, ROS/RNS 

interact with and damage cellular and subcellular membranes, DNA, proteins, etc. and 

thereby impair normal functioning of cells. This process represents a primary and/or a 

secondary mechanism in inflammation and various disease states including 

neurodegenerative diseases, cardiovascular diseases and host tissue inflammatory 

response to biomaterial implants (Table 2-1). Methods that have been proposed to 

alleviate oxidative stress attempt to restore antioxidant defenses by the delivery of 

antioxidants that could eliminate oxidative species. As with many pharmacological 

approaches, a significant hurdle in the translation of antioxidant therapies into viable 

clinical treatment strategies lies in the inefficient and inadequate delivery of these agents 

to their intended site of action (e.g., the vascular endothelium, biomaterial implant site) 
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[1]. Indeed, mixed results from several decades of antioxidant research, including large 

scale clinical trials [2-4], have demonstrated that for antioxidant therapy to work, it must 

1.) scavenge the correct oxidant radicals, 2.) be targeted directly to the cells undergoing 

injury and 3.) remain functional for the duration of pathology [5-7]. While designing an 

antioxidant therapy for treatment, it is also necessary to understand the dynamic role of 

oxidative stress in disease processes and how different antioxidants interact with 

oxidative stress cycle in different settings. For example, treatment of an acute oxidative 

stress injury (e.g. ischemia-reperfusion) would require antioxidants to be delivered over a 

time frame of few hours to days. Whereas treatment of non-healing wound or suppression 

of a chronic biomaterial-induced oxidative stress, antioxidants need to be delivered over a 

time frame of a few weeks to months. Antioxidant polymers, where small molecule 

antioxidants are incorporated in polymer backbone using biodegradable covalent bonds, 

provide a promising platform for developing tunable antioxidant therapies for a variety of 

settings. Particularly, antioxidant polymers could make a significant impact in the areas 

of i.) wound healing, ii.) biocompatibility of materials and iii.) management of vascular 

oxidative stress. In the following sections, mechanism and role of oxidative stress in each 

of these disorders is discussed along with the challenges in delivery of antioxidants for 

treatment and how antioxidant polymers can overcome these limitations. 

2.2 Oxidative Stress 

While not fully elucidated, ROS/RNS play an important role in cell signaling 

directly via oxidation of cysteine residues on proteins [8] or indirectly by stimulating 

inflammatory signals (e.g. up-regulation of cytokines and cell adhesion molecules) [1] 

and mediate cellular responses like differentiation, proliferation, apoptosis and migration  
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 Table 2-1. Role of Oxidative Stress in Various Disease States. 

  SMC: Smooth muscle cell, CBP: Cardiopulmonary bypass. 

 

 

 

 

 

 

Disease or Syndrome ROS Sources References 

Atherosclerosis 

ROS-generating enzymes in vascular 
cells (EC, SMC). 
Activated leukocytes and 
macrophages. Oxidized LDL. 

[9-13] 

Myocardial infarction Cardiomyocytes. Activated 
leukocytes and platelets. [10, 11] 

Hypertension ROS-generating enzymes in vascular 
cells (EC, SMC). [13-15] 

Diabetes and Pancreatitis 
ROS-generating enzymes in vascular 
cells (EC, SMC). Activated 
leukocyte 

[13, 16] 

Acute lung injury, 
ARDS, sepsis, 
inflammation 

Activated leukocytes and 
macrophages. ROS-generating 
enzymes in vascular cells (EC, 
SMC). 

[17-20] 

Ischemia-reperfusion, 
transplantation, cardio-
pulmonary bypass 
(CBP),  Hypoxia 

ROS-generating enzymes in 
endothelial cells.  Activated 
leukocytes 

[10, 21-24] 

Hyperoxia 

High level of environmental oxygen 
and ROS. ROS-generating enzymes 
in endothelial cells. Activated 
macrophages and leukocytes 

[24, 25] 

Aging and other 
neurodegenerative 
diseases 

ROS-generating enzymes in 
endothelial cells. Activated 
macrophages and leukocytes 

[10, 26-28] 

Smoke inhalation, 
asbestoses 

Activated macrophages and 
leukocytes [29, 30] 
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[31-35]. When ROS/RNS production exceeds the cells antioxidant capacity, a 

degenerative pathological state known as oxidative stress occurs. For designing a 

successful antioxidant therapy to intervene the progression of oxidative stress, it is 

necessary to understand the source and location of ROS/RNS in the cell and their 

interactions with different antioxidants. The following sections review the mechanisms of 

ROS/RNS generation and the antioxidant defense mechanisms against oxidative stress.     

2.2.1 Mechanism and Chemistry 

Generation of various ROS/RNS by different reactions is highlighted in Figure 2-

1. Oxidative stress is often initiated by the generation of the superoxide anion (O2
.-) 

during mitochondrial respiration or by enzymes like NADPH-oxidase (NADPHox), 

xanthine oxidase (XO), cyclooxygenases (COX) and P450 reductase. Upon activation, 

NADPHox converts molecular O2 to O2
.-, which can then react with nitric oxide (NO.) to 

form peroxynitrite anion (ONOO-). NO. is a diffusible gaseous signaling molecule 

produced by the enzyme nitric oxide synthase (NOS) and affects vasorelaxation and 

platelet inhibition [36]. Preventing undesired oxidation by superoxide, superoxide 

dismutase (SOD) enzymatically converts O2
.- to H2O2 (hydrogen peroxide). In the 

presence of the chloride anion (Cl-), myeloperoxidase (MPO) converts H2O2 into a very 

potent oxidant, hypochlorous acid (HOCl). H2O2 can also react with reduced transition 

metals like Fe2+ and Cu+ to form hydroxyl radicals (OH.) [37], which can react with 

polyunsaturated fatty acid (LH) to cause lipid peroxidation and form a carbon-centered 

lipid radical (L.). This lipid radical can then react with molecular oxygen to give a lipid 

peroxyl radical (LOO.). Lipid hydroperoxides (LOOH) are formed by reaction of LOO. 

with other lipids (LH). Lipid peroxidation continues when LOOH undergoes a fast 
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reaction with Fe2+ to form lipid alkoxyl radical (LO.) or a slow reaction with Fe3+ to form 

LOO. [38]. These radicals, in turn, oxidize more lipids and propagate the cycle. 

Compared to other molecules, ROS/RNS are relatively unstable, having very 

short half-lives on account of their ability to react with and oxidatively damage cellular 

proteins, DNA and lipids affecting normal functioning of cells/tissue. Even though 

ROS/RNS have a random destructive effect, in many pathological conditions that are 

subject to redox-sensitive pathways, production of ROS/RNS is tightly regulated with a 

specific downstream target [8, 20, 39]. Depending on pathological condition and the 

enzymes involved, ROS/RNS are generated within the cell, in cell lipid membrane or 

extracellularly. Extracellular milieu and outer leaflet of plasma membrane are the first 

target of extracellular ROS/RNS attack, where as intracellular ROS/RNS damage 

cytosolic proteins and the inner leaflet of the plasma membrane [40]. Location of the 

ROS/RNS generation should therefore be considered while designing an antioxidant 

therapy, and Figure 2-2 highlights generation of ROS/RNS at different subcellular 

locations. 

2.2.2 Antioxidants 

Antioxidants are the primary way cells and tissue are able to maintain a balance in 

the redox state (Figure 2-1) and can be classified into two major categories, small 

molecule oxidant scavengers (e.g. tocopherol, glutathione, quercetin, etc.) and 

antioxidant enzymes (e.g. SOD, catalase, etc.). Depending on their octanol/water 

partitioning coefficient, small molecule antioxidants can either localize in cellular 

cytoplasm or cellular and intracellular lipid membranes. For example, Vitamin E (T-OH), 

which can partition itself in lipid bilayer, scavenges LOO. to reduce it to lipid 
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hydroperoxide (LOOH) and in the process forms a Vitamin E radical (T-O.). There are 

some regenerative pathways (e.g., tocopherol/ascorbic acid redox cycling) [41] that exist 

within the cell that can help extend the useful life of a radical scavenger. However, these 

recycling loops depend strongly upon the cell’s own glutathione reducing pathway (e.g. 

Vitamin C/Ascorbic acid (AscH) or glutathione (GSH) react with T-O. to regenerate T-

OH). Water soluble antioxidants like vitamin C and GSH can also react with cytoplasmic 

ROS/RNS.  Small molecule antioxidants are generally non-specific, scavenge a variety of 

ROS and RNS and are consumed in the process. 

Antioxidant enzymes, on the other hand, are not consumed in reaction, allowing a 

single enzyme to react with millions of copies of radicals before becoming inactivated. 

For instance, catalase, which reduces H2O2 to water and oxygen, has a turnover number 

of 40 million hydrogen peroxide molecules degraded per second, allowing for even small 

delivered amounts to have profound cellular effects [42]. The enzyme glutathione 

peroxidase (GPx) can reduce lipid hydroperoxides and free H2O2 to corresponding 

alcohols and water respectively. The redox cycle of GPx requires an electron obtained 

from NADPH via GSH and glutathione reductase to catalyze the reduction of peroxides 

[43, 44]. Peroxiredoxins is another class of enzymes that use either thioredoxin or GSH 

or both as an electron donor to catalyze the reduction of H2O2, other hydroperoxides (e.g. 

LOOH) and ONOO- [45, 46]. While antioxidant enzymes have higher activity, they are 

typically limited to the scope of ROS which they can treat (e.g. SOD only decomposes 

O2.-). 
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Figure 2-1. Oxidants, Antioxidants and Antioxidant Enzymes  

Molecular oxygen is reduced to superoxide anion (O2
.-) by NADPH-

oxidase (NADPHOX), xanthine oxidase (XO) and cyclooxygenases (COX). 
O2

.- is dismutated by superoxide dismutase (SOD) to form hydrogen 
peroxide (H2O2) which then reacts with myeloperoxidase (MPO) and 
transient metals like Fe and Cu to form hypochlorous acid (HOCl) and 
hydroxyl radical (OH.) respectively. Antioxidant enzymes like catalase 
and glutathione peroxidase (GPx) reduces H2O2 into water and oxygen. 
OH. reacts with polyunsaturated fatty acid (LH) to cause lipid peroxidation 
and form carbon-centered lipid radical (L.) which further reacts with 
molecular oxygen to give lipid peroxyl radical (LOO.). Lipid peroxidation 
continues until antioxidants like Vitamin E (T-OH) scavenge lipid 
oxidants. Vitamin E (T-OH), which can partition itself in lipid bilayer, 
scavenges LOO. to reduce it to lipid hydroperoxide (LOOH) and in the 
process forms a Vitamin E radical (T-O.). Vitamin C/Ascorbic acid 
(AscH) or glutathione (GSH) react with T-O. to regenerate T-OH. Lipid 
peroxidation continues further where LOOH undergoes a fast reaction 
with Fe2+ to form lipid alkoxyl radical (LO.). LOOH can also react slowly 
with Fe3+ to form LOO..  
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Figure 2-2. A Simplified View of the Cellular Generation of ROS/RNS. 

Upon activation, membrane bound NADPHox and XO reduce molecular 
oxygen (O2) to generate superoxide anion (O2

.-) at plasma membrane 
which can result in lipid peroxidation. O2

.- is also generated in the 
mitochondria of cells as a result of electron leak from the respiratory chain 
[47]. In endothelial cells, endothelial NOS (eNOS) is primarily localized 
in caveolae (a cholesterol enriched microdomain in plasma membrane) 
and in Golgi apparatus [48]. Subcellular localization of tyrosine-nitrated 
proteins, product of protein oxidation by RNS, is determined by proximity 
to NOS and ROS generating enzymes [49]. In endothelial cells, tyrosine-
nitrated proteins were observed in mitochondria, endoplasmic reticulum, 
cytosol and nucleus, indicating the presence of RNS in these cellular 
compartments. Fat-soluble antioxidants like Vitamin E (T-OH) which 
partition themselves in plasma membrane and membranes of subcellular 
compartments provide protection against lipid peroxidation. Water-soluble 
antioxidants like Vitamin C and GSH scavenge radicals in the cytosolic 
compartment. Different isoforms of antioxidant enzyme SOD (SOD1, 
SOD2, SOD3) are located in cytosol, mitochondria and extracellular 
matrix respectively [50].    
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2.3 Biocompatibility of Implanted Materials 

 Surgical injury to vascular tissue during the implantation of a biomaterial (e.g. 

prostheses, drug delivery devices) brings the biomaterial in contact with blood and 

triggers wound healing process, which is classically broken down into four distinct yet 

overlapping phases - i.) blood protein adsorption on biomaterial surface, ii.) recruitment 

of inflammatory cells (neutrophils and monocytes) at the implant site, iii.) new tissue 

formation and iv.) foreign body reaction and fibrous capsule formation [51]. If any step 

becomes compromised (e.g. excessive inflammation), a chronic inflammatory response 

can be established, negatively impacting the biomaterial implantation. As a result, much 

attention has been given to biomaterial surface chemistry and topography that would 

dictate protein adsorption onto surface, effects of cytokines, signaling molecules, and 

growth factors on the wound response and using these to control biocompatibility of 

materials.  However, a parallel process of oxidative stress which also plays an important 

role in wound healing has been generating growing consideration as a means of tuning 

the wound healing process. It is the inflammation phase of the wound healing response, 

where excess generation of free radicals and other reactive species, which can result in 

loss of redox balance at the implant site resulting in a prolonged inflammation phase. 

This section reviews the role of oxidative stress in the inflammatory phase of wound 

healing and in the new tissue formation process. It also provides a summary of 

approaches that have been and can be used to intervene in the redox cycles as a way of 

additional control over wound healing, providing an additional tool by which to design 

antioxidant polymers as novel biomaterials. 
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2.3.1 Role of Oxidative Stress in Biocompatibility of Implanted Materials 

Wound healing response around an implant is very similar to the classical wound 

healing process that can be broken down into four main phases, a.) formation of blood 

clot and platelet plug, b.) inflammation, c.) new tissue formation and d.) tissue 

remodeling (Figure 2-3). The immediate first step response to a wound is to stop blood 

flow by initiating thrombosis. This fibrin clot serves as a temporary seal to the wound and 

provides a scaffold where other cells can migrate and proliferate. The hemostasis process 

is followed by inflammatory phase where the fibrin clot acts as a pool for variety of 

cytokines (e.g. interleukins, interferons, tumor necrosis factors) and growth factors (e.g. 

platelet-derived growth factor, transforming growth factor, etc.) that are released from 

degranulating activated platelets and the immune cells. Chemoattractants, which include 

growth factors released from the platelets and other cues like by-products of fibrin 

proteolysis or peptides cleaved from bacteria, result in the accumulation of inflammatory 

cells (neutrophils and monocytes) from the circulation. Also, cytokines and ROS 

upregulate expression of cell adhesion molecules (CAMs) (e.g. CD54) which recruit 

neutrophils and monocytes from circulation [40, 52].  

One of the major roles of neutrophils is to combat wound infection by eliminating 

the invading microorganisms (e.g. bacteria) through burst release of oxidative species 

[53]. Monocytes at the inflamed wound site differentiate into macrophages which 

phagocytose apoptotic neutrophils and other cellular/bacterial debris. Macrophages are 

responsible for the long term wound repair process not only by amplifying the 

inflammatory response but also by initiating the growth of new tissue. Macrophages and 
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other inflammatory cells also release cytokines and other growth factors that can activate 

fibroblasts and keratinocytes [54].  

One to two days after wounding, new tissue formation begins and is marked by 

migration and proliferation of various cells like endothelial cells, fibroblasts, 

keratinocytes and inflammatory cells. Keratinocytes (in case of dermal wounds) migrate 

over the injured dermis with concomitant angiogenesis to restore blood flow at the wound 

site. Fibroblasts along with macrophages replace the fibrin matrix with granulation tissue 

(called so due to appearance of several small capillaries) which also serves as a substrate 

for keratinocyte migration and proliferation. Macrophages activate fibroblasts to 

differentiate into myofibroblasts, which contract the wound gradually bringing edges of 

the wound closer together. Fibroblasts and myofibroblasts together also produce collagen 

rich extracellular matrix which forms bulk of the scar. The wound healing process is 

completed by a long phase of tissue remodeling that can last up to a year or more and is 

characterized by attenuation of all the activated processes [55]. Many of the recruited 

cells (endothelial, fibroblasts, macrophages) either undergo apoptosis or exit the wound 

leaving behind an acellular tissue mostly composed of collagen and some extracellular-

matrix proteins. Matrix metalloproteinases (e.g. MMP-1 and MMP-9) that are secreted by 

the cells replace type III collagen in the granulation tissue with type I collagen [56].  

ROS and RNS are involved in redox-sensitive cell signaling pathways that induce 

various responses like chemotaxis, proliferation, differentiation, etc. and  therefore 

oxidative stress (ROS and RNS) play a critical role in orchestration of each of these 

wound healing phases [57]. A better understanding of role and effect (both positive and  
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Figure 2-3. The Temporal Compositional Changes Expected in a “healthy” 
Wound Healing Response. 

 

Different cells are recruited at the wound site during the four phases of 
wound healing. ROS/RNS levels are elevated around day 1 and then 
gradually decrease to their basal level. 
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negative) of oxidative stress in each of the wound healing phases is necessary for optimal 

design of the therapeutic intervention strategy by using antioxidants. 

The following sections include detailed discussion of the role of ROS/RNS in the 

inflammatory phase and new-tissue formation phase of wound healing. Redox state plays 

an important role in the hemostasis process and is reviewed in detail by Gorlach and Sen 

et. al. [57, 58]. 

2.3.1.1 Inflammation 

ROS at the wound site play an important role in the recruitment/chemotaxis and 

the function of neutrophils and other immune cells. Chemotaxis is the migration of cells 

based on the concentration gradient cues. In a recent study with a zebrafish wound model, 

it has been shown that during the initial phase of wound detection, H2O2 gradient at low 

concentration (~ 0.5-50 µM) induces chemotaxis in leukocytes [59, 60]. Experiments 

have also shown that inhibition of NADPHox within the neutrophils affected their 

chemotactic migration, possibly by affecting ROS-based intracellular signaling [61].  

Elevated levels of thioredoxin, an important redox protein, in circulation inhibit 

lipopolysaccharide-stimulated (LPS) chemotaxis as well as the recruitment of leukocytes 

induced by murine chemokine KC/GROα, RANTES (regulated upon activation, normal 

T-cell expressed and secreted) and monocyte chemoattractant protein-1 (MCP-1) [62]. 

Immune response to a kill a pathogen is comprised of a respiratory burst by the immune 

cells. Neutrophils, phagocytes as well as other immune cells undergo respiratory burst, a 

rapid and non-mitochondrial conversion of O2 to battery of ROS and RNS by activation 

of membrane-bound NADPHox via chemoattractants or other inflammatory stimuli, to 

eliminate bacteria or other microorganisms that could cause an infection [63-65]. Any 
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defect in the NADPHox system, which is critical for the respiratory burst, results in the 

loss of resistance to infections [66, 67].  

Leukocytes are recruited to the wound site by a variety of chemoattractants, 

including fragmented extracellular matrix protein, tumor necrosis factor (TNF), 

transforming growth factor β (TGFβ), MCP-1, granulocyte colony-stimulating factor (G-

CSF), granulocyte/macrophage CSF (GM-CSF) and macrophage- inflammatory protein 

(MIP). Through ROS like H2O2 and O2.-, oxidative stress increases production of MIP-

1α, MIP-2, MCP-1, CSF-1 and other chemoattractants and is very critical in recruitment 

of immune cells at the wound site [68-73]. Oxidative stress also up-regulates the 

production of cytokines by cells. Expression of inflammatory cytokines expected at the 

wound site (e.g. TNFα, IL-8, IL-1β and IL-6) is stimulated by oxidative stress [74-76]. 

Effect of oxidative stress on expression and release of various inflammatory cytokines is 

summarized in Table 2-2.  

ROS and RNS are important in the functioning of immune cells. Exogenous H2O2 

induces calcium release from the intracellular compartments of neutrophils increasing 

their phagocytic activity [77]. H2O2 also modulates the respiratory burst of monocytes 

and neutrophils, where low concentrations of H2O2 stimulate O2.- production where as 

higher concentrations inhibit O2.- production [78-80]. Monocytes and macrophages 

protect themselves from the respiratory burst by H2O2 triggered increase in the uptake of 

GSH [81]. High mobility group box-1 (HMGB1), an endogenous pro-inflammatory 

cytokine, is passively released by necrotic cells or actively secreted by 

monocytes/macrophages to exogenous and endogenous stimuli such as TNF-α, IL-1, 

endotoxins and interferon-γ (IFN-γ) [82]. HMGB1 also mediates innate and adaptive 
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immune responses by promoting dendritic cell maturation [83]. Oxidative stress induces 

HMGB1 release, both actively and passively, from monocytes and macrophages in a 

mitogen-activated protein kinase (MAPK) and chromosome region maintenance 

(CRM1)-dependent mechanism. At non-toxic concentrations of H2O2 (< 0.125 mM), it 

stimulated interaction of HMGB1 with the nuclear export factor CRM1 where as at 

higher concentrations of 0.25 mM, H2O2 exhibited cell toxicity triggering active and 

passive release of HMGB1 [84]. Hypoxia induced HMGB1 release by hepatocytes during 

ischemia/repurfusion injury, is also regulated via toll-like receptor 4 (TLR4)-dependent 

ROS production and downstream calcium-mediated signaling [85].  

Neutrophils and monocytes are recruited from the circulation due to their 

receptivity to certain molecular signals that are expressed on the endothelial cells as a 

response to the wound. Expression of surface molecular signals on the endothelium alters 

as the wound healing progresses allowing for sequential recruitment of different classes 

of leukocytes at the wound site. Initially, selectin family of cell adhesion molecules 

expressed on the endothelium mediate tethering of leukocytes to the vessel wall, allowing 

for their rolling in the direction of the blood flow. The light adhesion to selectins is 

followed by tighter adhesions and arrest mediated by β2 subfamily of integrins. Attached 

leukocytes then follow directional cues from chemoattractants using integrins for traction 

and then crawl across the endothelium into extravascular space [52, 86]. Once the 

leukocytes leave the circulation and enter the extracellular matrix, they interact with 

matricellular proteins through the β1 subfamily of integrins. Both β1 and β2 integrins 

induce different signaling pathways in monocytes which are important for their  
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Table 2-2. ROS/RNS Play an Important Role in Inflammatory Phase by 
Affecting Expression and Release of Various Cytokines and 
Chemoattractants 

 

Cytokines and 
Chemoattractants Source Effect of ROS/RNS [Ref] 

MIP-1α Rat alveolar 
macrophages 

• H2O2 treatment induced MIP-1α 
mRNA expression  [69] 

MIP-2 
Rat alveolar 

macrophages, Rat 
lung epithelial cells 

• H2O2 increased MIP-2 mRNA 
expression 

• Quartz, TiO2, and crocidolite 
asbestos particles induced 
oxidative stress, resulting in 
increased MIP-2 expression  

[68, 72] 

MCP-1 
Human aortic 

smooth muscle 
cells, monocytes 

• PDGF stimulated O2.- release 
resulting in increased MCP-1 
mRNA expression 

• X/XO stimulated monocyte to 
produce MCP-1  

[70] 

CSF-1 Endothelial cells • TGF-β1 stimulated macrophage 
CSF via H2O2 based signalling  [73] 

TNF-α 
Human dendritic 
cells, Rat alveolar 

epithelial cells 

• H2O2 stimulated production of 
TNF-α  

• LPS induced glutathione depletion 
resulted in release of cytokines  

[74, 76] 

IL-8 

Human dendritic 
cells, Rat alveolar 

epithelial cells, 
Monocytes 

• H2O2 stimulated production of IL-8 
• LPS induced glutathione depletion 

resulted in release of cytokines 
• X/XO stimulated monocyte to 

produce IL-8  
[74-76] 

IL-1β Rat alveolar 
epithelial cells 

• LPS induced glutathione depletion 
resulted in release of cytokines  [76] 

IL-6 Rat alveolar 
epithelial cells 

• LPS induced glutathione depletion 
resulted in release of cytokines  [76] 
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functioning (migration and phagocytocis) and differentiation into the repairing 

macrophages [87].  

H2O2 promotes β2-integrin leukocyte function-associated antigen-1 (LFA-1)-

dependent attachment of neutrophils to cardiac myocytes and in presence of exogenous 

chemoattractants (e.g. c5a), there is a transition from LFA-1 to macrophage 1 antigen 

(Mac-1) dependent adhesion, resulting in prolonged attachment of neutrophils to 

myocytes [88, 89]. Also, neutrophils at early stages utilize the interaction of LFA-1 with 

inter-cellular adhesion molecule 1 (ICAM-1) to trigger H2O2 production without 

requiring chemotactic stimulation whereas the cytokine-induced respiratory burst of 

neutrophils is augmented by Mac-1-dependent adhesion of neutrophils [90-92]. This 

mechanism could result in additional recruitment of neutrophils by neutrophils whose 

ROS production is based on Mac-1-dependent adherence to myocytes. Cellular redox 

state affects expression of LFA-1 in myeloid lineage, where exogenous use of 

antioxidants like N-acetyl-L-cysteine and pyrrolidine dithiocarbamate suppressed 

expression of protein CD11a/LFA-1α [93]. Exposure of leukocytes to H2O2 and 

superoxide upregulated the expression of leukocyte adhesion molecules and promoted 

leukocyte-endothelial adhesion [94]. 

Mediators of inflammation (e.g. TNFα, IL-1 and IFN-γ), including ROS, 

modulate expression of endothelial surface adhesion molecules. Both endogenously and 

exogenously (as a result of attached leukocytes) released ROS from the endothelium 

upregulates expression of intercellular adhesion molecule-1 (ICAM-1, CD54), vascular 

cellular adhesion molecule-1 (VCAM-1) and P-selectin on surface of endothelial cells 

recruiting more leukocytes from the circulation [95-98]. Antioxidants N-acetyl-L-
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cysteine and pyrrolidine dithiocarbamate inhibited H2O2-induced and cytokine-induced 

expression of ICAM-1 respectively [99, 100]. 

Redox state of the cell also plays an important role in regulating chemokines and 

their receptors. Antioxidants pyrrolidine dithiocarbamate (PDTC), N-acetyl-L-cysteine 

(NAC) and 2-mercaptoethanol inhibited mRNA expression of chemokine receptors 

CCR2 (CC chemokine receptor-2), CCR5 and CXCR4 (CXC chemokine receptor-4) in 

human monocytes. Oxidative stress induced either by xanthine/xanthine oxidase, H2O2 or 

buthionine sulfoximine (a glutathione-depleting drug) counteracted the inhibitory effects 

of antioxidants and increased the expression of chemokine receptors [101, 102]. TNFα 

and bacterial lipopolysaccharide-mediated inhibition of CCR5 and CXCR4 mRNA 

expressions was opposed by generation of ROS (xanthine/xanthine oxidase), which 

increased both CCR5 and CXCR4 mRNA expressions and cell migration (3-fold) in 

response to MIP-1β [101]. Homocysteine-induced stimulation of CCR2 mRNA level is 

also mediated through superoxide formation [103]. Oxidative stress up-regulates the 

production of cytokines by cells. ROS stimulated synthesis of IL-8 and TNFα by 

dendritic cells [74]. A flow diagram of the relationship between oxidative stress and 

inflammation is provided in Figure 2-4. As shown, a failure to resolve oxidative stress 

can lead to chronic inflammation and, thereby, aberrant healing. 
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Figure 2-4. Initiation and Propagation of Oxidative Stress after Wounding.  

Failure to suppress excessive generation of ROS/RNS could result in pro-
longed inflammatory phase, finally resulting in a chronic non-healing 
wound. CAM: Cell adhesion molecules 
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2.3.1.2 New-tissue Formation 

2-10 days after the injury, wound closure and new-tissue formation starts which is 

characterized by migration of epithelial cells and, in the case of dermal wounds, 

keratinocytes. Any defect in the migration mechanism of the keratinocytes can result in a 

chronic non-healing wound [104]. Insulin-like growth factor-1 (IGF-1) facilitates cell 

spreading, stimulates membrane protrusion and migration of keratinocytes [105]. IGF-1-

induced signaling events are subject to redox control and ROS-induced oxidative stress 

can upregulate IGF-1 action by increasing expression of IGF-1 and IGF-1 receptor (IGF-

1R) [106-108]. 

Oxidative stress can induce proliferation and migration of smooth muscle cells 

and epithelial cells [109, 110]. Extracellular oxidative stress activates redox-sensitive 

pathways that increase Nox1-based NADPHox expression and vascular smooth muscle 

cell (VSMC) proliferation [111]. Matrix metalloproteinases (MMPs) are a class of 

enzymes that can degrade various components of cell-cell junction, cell-matrix contacts 

and extracellular matrix allowing different cells to migrate across the wound to promote 

re-epithelialization. Exogenous oxidative stress can activate MMP-2 and MMP-9 secreted 

from VSMCs [112]. Cells produce MMP-1 via Nox4 mediated and ROS-dependent 

pathway [113] and sustained exposure to ROS induced activation of pro-MMP-2 and 

increased cell motility [114]. Epidermal growth factor (EGF), transforming growth factor 

α (TGFα) and keratinocyte growth factor (KGF) are required for the proliferation of 

epidermal cells behind the migrating front [115]. ROS are capable of triggering EGF and 

KGF-dependent signaling and can also induce TGFα in fibroblasts [57]. Fibroblast 



24 
 

proliferation results in a collagen-rich scar tissue (granulation tissue) along with the 

formation of new blood vessels for nutrients and oxygen supply.  

The importance of ROS in angiogenesis and tissue vascularization can be inferred 

from the study by Roy et. al. where decomposition of H2O2 by adenoviral gene transfer of 

catalase resulted in impaired wound tissue vascularization [116]. Also, Nox1 induced 

molecular markers of angiogenesis [e.g. vascular endothelial growth factor (VEGF)] were 

eliminated after co-expression of Nox1 and catalase, indicating that H2O2 plays an 

important role in the angiogenic switch [117]. Oxidants not only induce VEGF 

expression but play a central role in VEGF signaling and is discussed in detail by Sen and 

Roy [57]. Several small molecule antioxidants like GSH, vitamin C, vitamin E and 

polyphenols (quercetin, curcumin, resveratrol, etc.) have anti-angiogenic properties, 

which suggest a positive role for oxidants in tissue vascularization [57, 118]. 

As discussed in the above sections, cells use ROS for intracellular as well as 

intercellular cell-cell signaling and there by switch ON/OFF different responses in a 

timely manner to orchestrate wound healing. Two sources of ROS production at the 

wound site are i.) respiratory burst by immune cells and ii.) ROS producing Nox/Duox 

family of enzymes (e.g. NADPHox, NOS, SOD) that are also expressed in other cells like 

endothelial cells, fibroblasts, keratinocytes. ROS levels at the wound site are attenuated 

by small molecule antioxidant scavengers and antioxidant enzymes and the following 

section explains their role in wound healing mechanisms. 
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2.3.2 Role of Antioxidants in Wound Healing 

2.3.2.1 Role of Small Molecule Antioxidants in Wound Healing 

The importance of small molecule antioxidant scavengers in the wound healing 

process is evident from the findings that the levels of antioxidants decrease post-injury 

and their sustained deficiency results in an impaired or chronic wound. Small molecule 

antioxidants like glutathione, vitamin C, vitamin E (tocopherol) and polyphenols (e.g. 

catechins, flavanoids, etc.) regulate the redox state at wound sites by eliminating free 

radicals. Table 2-3 provides a summary of effect of small molecule antioxidants on 

wound healing outcomes and their mechanism of action. Kamencic et. al. showed that 

oxidative stress caused after spinal cord injury resulted in reduced GSH levels. Post-

injury administration of L-2-oxothiazolidine-4-carboxylate (OTC), a compound used to 

increase intracellular cysteine level required for GSH synthesis, elevated previously 

reduced GSH levels allowing tissue preservation in spinal cord [119]. Analysis of the 

antioxidant status of a self-healing cutaneous wound at different times after wounding 

demonstrated that the levels of small molecule antioxidants (GSH, vitamin C & E) in 

injured tissue decreased by 60-70% as compared to normal skin and only GSH levels 

were recovered completely 14 days post-wounding [120]. The same group found that 

glutathione and vitamin E levels in wound tissue of aged rats were lower as compared to 

young rats, which could explain the delayed wound healing observed in the aged rats. In 

streptozotocin-induced diabetic rats, the 7-day wound tissue had lower levels of GSH (in 

contrast to elevated levels of vitamin E) which indicates that reduced levels of GSH could 

be responsible for delayed wound healing [121]. 
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Among diabetic patients with foot ulcers, the wound edge tissue as compared to control 

tissue had lower levels of GSH and cysteine, whereas elevated levels of mixed protein 

disulfides. Lower GSH levels were found in wound tissues of diabetic mice as compared 

to non-diabetic mice [122]. Hydrocortisone-treated immunocompromised rats also 

showed reduced levels of GSH, vitamin C and E in both normal and wounded skin (2 

days post-wounding) as compared to immunocompetent rats. 7 days post-wounding, 

levels of vitamin C and E in wound tissue of immunocompromised were similar to that of 

immunocompetent rats, but GSH level remained depleted even after 2 weeks [123] When 

rats were depleted of GSH using L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of 

rate-limiting enzyme in biosynthesis of GSH (γ-glutamylcysteine synthetase), there was a 

reduction in wound bursting strength as compared to untreated animals [124]. The same 

group also demonstrated that GSH levels are significantly lower in ischemic skin flaps, 

but preconditioning enhances skin flap survival by increasing activity of glutathione 

reductase and maintaining GSH levels [125]. All these results considered together 

indicate that depletion of small molecule antioxidants disturb the redox state of the 

wound and result in an impaired healing response. Restoring the redox balance in the 

wounds by application/delivery of small molecule antioxidants would be a viable strategy 

to improve the healing response. 

Topical application of glutathione monoester (GME), a drug used to increase 

intracellular GSH content, using carboxymethylcellulose (CMC) vehicle in a diabetic 

mice wound model resulted in significantly faster healing [122, 126]. 
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Table 2-3 Role of Small Molecule Antioxidants in Wound Healing 

 

Small Molecule Antioxidants Administration Route Wound Healing Parameters 
Affected Mechanism [Ref] 

Glutathione 
Topical application of 
glutathione monoester, 
administration of OTC 

Faster healing Restoring cellular redox potential by 
suppressing oxidative stress [119, 122] 

Vitamin E Oral Faster wound closure Suppressed lipid peroxidation [127] 

Ascorbic acid (Vitamin C) Oral, Topical 
Increased proliferation of 
fibroblasts and improved 
collagen synthesis 

Allows normal collagen hydroxylation (of 
proline residues) and is required to reduce 
Fe3+ 
 
In human dermal fibroblasts, improved 
cell motility as a result of increased 
expression of uPA, hyaluronan-mediated 
motility receptor and IL-6 expression 

[128-131] 

Curcumin Topical 

Faster wound closure, increased 
migration of  fibroblasts and 
myofibroblasts resulting in 
higher collagen deposition 

Reduced lipid peroxidation 
 
Upregulation of  levels of TGF-β1 and 
uPA 
 
Anti-inflammatory properties - In 
cultured A549 cells, suppressed H2O2 and 
TNF-α induced release of NF-κβ, AP-1, 
IL-8 and increased GSH biosynthesis 

[132-134] 
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Dietary supplementation of diabetic rats with palm vitamin E (70% tocotrienols 

and 30% tocopherols) extract (PVE) and α-tocopherol in an excisional wound model 

showed that PVE was more effective at enhancing wound healing and inducing 

antioxidant enzyme levels in the wounds of diabetic rats as compared to α-tocopherol. 

However, both antioxidants were able to reduce lipid peroxidation in healing wounds, as 

measured by lower MDA levels [127]. The difference in the potencies of PVE and α-

tocopherol could be attributed to the higher percent tocotrienols content of PVE or 

preferential pharmacokinetic distribution of tocotrienols in skin. Orally administered 

tocotrienols have better distribution in skin (15% tocotrienols distributed in the skin as 

compared to 1% tocopherols) and in some conditions tocotrienols have been reported as 

more potent antioxidants against lipid peroxidation than tocopherols [135-137]. Although 

the reasons for impaired wound healing in diabetic mice are not completely understood, 

an altered VEGF mRNA expression as a result of lipid peroxidation is one of the 

characteristics of wound healing defect among diabetic mice. Inhibition of lipid 

peroxidation in diabetic mice by systemic treatment with raxofelast, a hydrophilic 

vitamin E-like inhibitor of lipid peroxidation, normalized VEGF mRNA expression and 

secretion resulting in improved wound healing and angiogenesis [138, 139]. This effect 

of raxofelast was not seen in non-diabetic mice [139].  

Curcumin (diferuloylmethane), a yellow pigment present in the Indian spice 

turmeric, is a polyphenolic antioxidant that also interacts with several cell signaling 

proteins and thereby exert its anti-cancer, anti-inflammatory, anti-angiogenic, etc. effects 

[140-142]. Enhancement of wound healing by curcumin has been demonstrated in several 

studies [132]. Topical application of curcumin in full thickness excision wound model 
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resulted in increased cellular proliferation and collagen synthesis at the wound site and 

making wound heal faster. Curcumin exerted antioxidant effect at the wound site by 

decreasing lipid peroxidation and topical treatment resulted in increased activity of 

antioxidant enzymes SOD, catalase and GPx [143]. Biopsies of curcumin-treated animal 

wounds showed increased migration of fibroblasts, myofibroblasts, macrophages, 

improved neovascularization and higher collagen deposition at wound site. 

Immunohistochemical, in situ hybridization and polymerase chain reaction analysis 

showed an increase in transforming growth factor-β1 (TGF-β1) levels and TGF-β1 

mRNA expression, indicating that curcumin-treatment induced endogenous production of 

TGF-β1 in the wound of both diabetic and non-diabetic mice [144, 145]. TGF-

β1stimulates fibroblast proliferation and enhances fibroblast production of collagen and 

fibronectin, thereby playing an important role in production of extracellular matrix [146]. 

TGF-β1 has also been suggested to induce epidermal keratinocytes to express integrins 

that facilitate the migratory component of re-epithelialization [147]. Madhyastha et. al. 

have observed curcumin-induced and JNK and p38 MAPK mediated upregulation of 

urokinase plasminogen activator (uPA) gene expression, and that uPA upregulation is 

important in promoting fibrinolysis, matrix remodeling and cell migration, two 

mechanisms that are vital for wound healing [133, 148]. Faster wound closure and 

enhanced collagen deposition in curcumin-treated wounds could be a result of curcumin-

induced TGF-β1 production and uPA upregulation. In cultured alveolar epithelial cells 

(A549), curcumin suppressed H2O2-induced and TNF-α-induced NF-κβ, activator 

protein-1 (AP-1) and IL-8 release, exerting its anti-inflammatory properties. In the same 

study, curcumin-treatment of A549 cells resulted in an increased GSH biosynthesis and 
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glutamylcysteine ligase catalytic subunit mRNA expression, suggesting that antioxidant 

properties of curcumin do not depend only on its free radical scavenging ability [134].    

Beneficial effects of vitamin C (ascorbic acid) on wound healing in humans was reported 

by Ringsdorf and Cheraskin [128]. Topical application of vitamin C in a incisional 

wound model resulted in faster wound healing marked by reduced number of 

macrophages, increased proliferation of fibroblasts and new vessels, and thicker and 

more organized collagen fibers in the wounds [129]. Intraperitoneal administration of 

vitamin C prior to γ-radiation resulted in elevated wound contraction in a dose-dependent 

manner and improved healing of the wounds after whole body exposure to γ-radiation 

[149]. Ascorbic acid can regulate the extra cellular matrix synthesis by inducing 

increased collagen synthesis in human dermal fibroblasts. Stimulatory effect of vitamin C 

on collagen production results from its action in allowing normal collagen hydroxylation 

and restoring efficient collagen secretion [130]. Enzymatic mechanism suggested for 

hydroxylation of collagen (proline residues) occurs through a reactive iron-oxygen 

complex (the ferryl ion) and that ascorbic acid is required to reduce Fe3+ formed during 

the reaction [150]. Long term treatment of human dermal fibroblasts with L-ascorbic acid 

2-phosphate (AA2P), a stable vitamin C derivative, resulted an increase in cell motility in 

context of wound healing. Microarray analysis showed that AA2P treatment increased the 

expression of uPA, upregulated the hyaluronan-mediated motility receptor which is 

required for fibroblast migration in the context of wound healing and IL-6, which also 

promotes cell motility and matrix remodeling during wound healing [131]. 

Studies with other small molecule antioxidants like quercetin, allopurinol, 

retinoids (e.g. vitamin A, tretinoin) and uric acid have shown enhanced wound healing 
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and improved collagen content at wound site indicating that scavenging free radicals has 

a beneficial effect on overall wound healing process [151-154]. 

2.3.2.2 Role of Antioxidant Enzymes in Wound Healing 

Table 2-4 provides a summary of effect of antioxidant enzymes on wound healing 

outcomes and their mechanism of action. 

2.3.2.2.1 SOD 

Importance of SOD in wound healing can be inferred from the finding that SOD1 

deficiency resulted in a delayed wound healing response [155]. Steiling et. al. have 

studied spatial and temporal expression of different antioxidant enzymes during 

cutaneous wound repair and found that SOD1 and SOD2 mRNA levels were upregulated 

during early phase of wound repair when the oxidative burst occurs. In situ hybridization 

and immunofluorescence data indicated that Cu/ZnSOD is expressed in basal cells of the 

hyperproliferative epithelium at wound edge and in the granulation tissue. SOD2 was 

expressed in both, basal as well as suprabasal cells of hyperproliferative epidermis [156].  

Contrary to this data, Shukla et. al. had reported reduced activity of SOD after cutaneous 

injury and that SOD activity was not recovered even after 14 days [120]. This 

inconsistency in the mRNA expression and enzyme activity reported in the two studies 

could be a result of loss of enzymatic activity of SOD at wound site due to oxidative 

environment at the wound site [157, 158]. 

Intravenous administration of SOD in an ischemic skin injury model resulted in a 

reduction in edema and increased the wound breaking strength and collagen synthesis at 

wound site [152]. Delayed healing in streptozotocin-induced type 1 diabetic mice was  
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Table 2-4 Role of Antioxidant Enzymes in Wound Healing 

Antioxidant Enzymes Administration Route Wound Healing Parameters Affected Mechanism [Ref] 

Catalase 

Overexpression of catalase 
by adenoviral gene 
delivery, topical 
application 

Impaired wound angiogenesis, 
closure and slowed tissue 
remodeling 
 
Improved dental pulp tissue healing 
in 

 

Low concentrations of H2O2 mediate 
wound angiogenesis by VEGF 
expression 

[116, 159] 

SOD 
Intravenous SOD and 
SOD mimetic, cutaneous 
gene therapy of MnSOD 

Reduced wound edema, increased 
collagen synthesis and new blood 
vessel formation 

Reduced hyperglycemia-induced ROS [152, 160, 161] 

Peroxiredoxin Transgenic over 
expression of Prdx6 

Enhancement of wound closure in aged 
mice and reduced number of apoptotic 
cells after UVA/UVB irradiation 

Prdx6 deficient endothelial and 
inflammatory cells are more 
susceptible to ROS treatment 
Prdx6 knockout mice showed severe 
hemorrhage in granulation tissue 

 

[162, 163] 
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restored by a single regimen of cutaneous gene therapy of MnSOD, marked by reduced 

superoxide levels and increased cutaneous MnSOD and NOS activity [161]. The same 

group also demonstrated that poor wound healing in diabetic mice is a result of decreased 

MnSOD expression and activity in endothelial progenitor cells (EPCs), which normally 

assist angiogenesis at wound site. By restoring diabetic EPC function after ex vivo 

MnSOD gene transfer prior to their transplantation at the wound site resulted in an 

enhanced and accelerated wound healing. Enhanced wound healing effect was also 

observed by increasing the number of transplanted diabetic EPCs [164]. Also, transgenic 

diabetic mice that overexpress MnSOD or treatment of diabetic mice with SOD mimetic 

corrected post-ischemic defects in neovascularization, oxygen delivery, chemokine 

expression and normalized tissue survival [160]. These results taken together demonstrate 

that scavenging superoxide can correct impaired wound healing process. 

2.3.2.2.2 Catalase and Glutathione Peroxidase 

Catalase and GPx at the wound site keep a check on the levels of H2O2 generated 

by SOD from superoxide anion. Steiling et. al. showed that catalase and GPx were 

coexpressed along with SOD in the wound. Along with Cu/ZnSOD and MnSOD, only 

the levels of selenoenzymes GPx (SeGPx) mRNA were upregulated during early phase of 

wound repair where as catalase and phospholipid hydroperoxide GPx (PhGPx) mRNA 

levels did not alter after injury. Like SOD, catalase and GPx mRNA expressions were 

also prominent in the hyperproliferative endothelium but were found in lower levels in 

the granulation tissue. Similar expression pattern of SOD, catalase and GPx suggests that 

H2O2 produced by SOD is detoxified by catalase and GPx before it could react with 

transition metal ions to generate deleterious hydroxyl radicals [156]. However, Shukla et. 
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al. have shown that catalase activity in the healing wounds decreased during the first 

week post wounding and activity level of catalase was recovered to its original level at 2 

weeks post-wounding [120]. Again as mentioned above, the discrepancy in the mRNA 

expression of catalase and the activity of catalase could be a result of enzyme inactivation 

or translational failure to code protein to due to the oxidative environment at the wound 

site.  

Unexpectedly, catalase overexpression by adenoviral gene delivery impaired 

wound angiogenesis, closure and slowed tissue remodeling [116]. H2O2 by itself or H2O2 

generated by overexpression of SOD1 via gene transfer induces VEGF expression in 

wound related cells [165-167] and low concentration of H2O2 present at the wound was 

important, mediating angiogenesis by up-regulating VEGF expression. However, in a 

separate study by Alacam et. al., topical application of catalase as a pulp-capping agent 

improved long-term (after 90 days) dental pulp tissue healing in a canine injury model 

[159].    

2.3.2.2.3 Peroxiredoxins 

Kümin et. al. studied expression of peroxiredoxins post injury in a full-thickness 

excisional wound model and found enhanced expression of Prdx6 and moderate increase 

in expression of Prdx4 as compared to unaltered expression of Prdx1 and Prdx2 [168]. 

Levels of Prdx6 mRNA were highest at day 1 after injury, remained elevated till day 7 

and levels reduced back to normal skin level 14 days post wounding when the wound was 

completely healed [169]. Using an in situ hybridization technique, it was found that in 

vivo, Prdx6 mRNA was highly expressed by keratinocytes of the hyperproliferative 

epidermis of skin wounds, although other cells in the granulation tissue also expressed 



 

35 
 

Prdx6 mRNA [170]. Since wound healing response was associated with altered Prdx6 

levels as compared to other five peroxiredoxins, Kümin et. al. have studied effect of 

Prdx6 overexpression and underexpression on wound healing [162, 168]. Although Prdx6 

knockout mice develops normally, they were found to be more susceptible to oxidative 

stress injury induced by intraperitoneal injection of paraquat, suggesting that Prdx6 aides 

in the regulation of superoxide mediated oxidative stress. Also, macrophages from these 

Prdx6 knockout mice had lower survival rates against oxidative insult induced by H2O2, 

t-butyl hydroperoxide and paraquat [171]. Even though Prdx6 expression was 

predominant in the hyperproliferative epidermis of skin, cutaneous injury to the Prdx6 

knockout mice resulted in normal wound epithelialization indicating that other 

antioxidant enzymes in these cells can compensate for absence of Prdx6. However, 

severe hemorrhage in the granulation tissue of the knockout mice was observed and the 

extent of hemorrhage correlated with the oxidative damage to the granulation tissue as 

indicated by presence of oxidized proteins and nitrotyrosine positive cells. At the 

ultrastructural level in the wound tissue of Prdx6 knockout mice, endothelial cells 

appeared to be damaged and their rate of apoptosis was also enhanced. Increased 

susceptibility of cultured endothelial cells to oxidative stress after siRNA-mediated 

knock-down of Prdx6 confirmed sensitivity of endothelial cells to loss of Prdx6. Wound 

healing studies in the bone marrow chimeric mice indicate that Prdx6-deficient 

inflammatory and endothelial cells contribute to the hemorrhage observed in the 

granulation tissue. This study also revealed the ROS mediated cross-talk between 

hematopoietic cells and resident cells at the wound [168]. Overexpression of Prdx6 in 

transgenic mice did not affect their skin morphogenesis and homeostatis. Keratinocytes 
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cultured form Prdx6 overexpressing mice showed enhanced resistance to ultraviolet A 

(UVA) and menadione-induced oxidative damage. Upon skin injury to these transgenic 

mice, enhanced wound closure was observed in aged animals, suggesting that 

overexpression of Prdx6 protected the skin from age related accumulative oxidative 

damage which is responsible for poor wound healing in aged animals [162]. 

2.3.3 “Antioxidant Materials” for Wound Healing 

As described, antioxidants clearly play an important role in ROS mediated inter-

cellular and intra-cellular signaling and pro-healing effects of several antioxidants. 

However, sub-optimal delivery of antioxidants to the wound site has complicated their 

use as a regenerative medicine strategy. Antioxidants could be delivered at wound site via 

oral route (or dietary supplementation), intravenously or direct dermal application to the 

wound. Several studies have shown that oral administration of antioxidants has a 

beneficial effect on wound healing [127, 172]. However, unfavorable pharmacological 

distribution of these antioxidants means that large doses are required for the antioxidants 

to reach a therapeutic concentration at the wound site, and the wound healing effect if any 

would be slow. Large doses of antioxidants for prolonged period could also result in 

other side effects. Also, oral delivery of AOE has been at best marginally effective [173]. 

All these drawbacks make oral delivery a less attractive option for wound healing 

applications. Direct application of antioxidants on the wound (e.g. topical application) 

seems to be an easier and effective way of antioxidant delivery to the wound site. 

However, direct application of antioxidants is limited by, i.) rapid clearance, ii.) stability 

and iii.) choice of material used to deliver antioxidants. 
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Loading antioxidants into a synthetic scaffold, a film or a porous 3D network, that 

acts as a diffusion barrier could be used for slow and controlled release of antioxidants 

from the scaffolds. Full thickness dermal wounds in rats that were treated with curcumin 

and quercetin incorporated collagen films showed increased wound reduction and 

enhanced cell proliferation as compared to control and collagen treated animals [151, 

174]. Incorporation of curcumin in electrospun nanofiber mats of cellulose acetate and 

poly(ε-caprolactone) (PCL) resulted in a sustained release of curcumin over ~ 3 days 

[175, 176]. Fibroblasts cultured on curcumin-loaded PCL nanofibers showed resistance to 

H2O2 induced oxidative stress and mouse macrophages cultured on curcumin-loaded PCL 

nanofibers reduced LPS induced IL-6 expression, a marker of inflammation. In a 

streptozotocin-induced diabetic mice wound model, curcumin-loaded PCL nanofibers 

had a pro-wound healing effect as evidenced by increased rate of wound closure [175]. 

Hydrogels, three dimensional network of hydrophilic polymers, can be used for 

immobilizing antioxidant enzymes to prevent inactivation of enzymes otherwise caused 

by direct application. Study by Chiumiento et. al. where they loaded 

carboxymethylcellulose (CMC) hydrogels with SOD and treated the rat wounds with 

CMC-SOD found that CMC-SOD reduced the time necessary for wound healing. Also, 

CMC-SOD had a proliferative effect on primary human fibroblasts [177].  

Effectiveness of scaffold based antioxidant therapy would also depend on the 

biomaterial used for the synthesis of the scaffold, since in some settings biomaterials 

could themselves induce an inflammatory response from the host tissue [178]. This 

inflammatory response is often the result of local accumulation of the polymer 

degradation byproducts or leachouts, inducing cellular oxidative stress [179-182]. One of 
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the approaches to suppress biomaterial induced inflammatory response could be to 

conjugate small molecule antioxidants like ascorbic acid, vitamin E, GSH, gallic acid, 

catechin, etc. to the polymer (‘antioxidant polymers’) [183-186]. Conjugation of low 

molecular weight superoxide dismutase mimetic (SODm) to implanted biomedical 

materials like ultra-high molecular weight polyethylene (UHMWPE), poly(etherurethane 

urea) and tantalum metal suppressed both chronic and inflammatory responses to the 

implants as evident by fewer neutrophils (after 3 days), fewer foreign body giant cells 

(FBGCs) (after 28 days) and inhibition of fibrous capsule formation [187]. Also, 

incorporation of NAC in poly(methyl methacrylate) (PMMA) bone cement reduced 

cytotoxicity of PMMA by scavenging free radicals and increasing GSH levels in 

osteoblasts, resulting in increased bone formation with higher strength [188]. Antioxidant 

polymers could not only be used to improve biocompatibility, but could also serve as a 

means of delivering antioxidants at the wound site. Some of the above mentioned 

examples of antioxidant polymers [184, 186] are limited by low percentage of antioxidant 

content as compared to the bulk material. If designed appropriately by increasing their 

percent antioxidant content and controlling the degradation rate (rate of release of 

antioxidants), antioxidant polymers can be used effectively for antioxidant delivery at the 

wound site. 

2.4 Role of Oxidative Stress in Biocompatibility of Biodegradable Materials 

Over the decades, biocompatibility has evolved from simply meaning an inert 

material [189, 190], which does not induce any deleterious tissue response, to the 

William’s definition, “the ability of a biomaterial to perform its desired function without 

eliciting any undesired effect, but generating a beneficial cellular or tissue response” 
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[191]. This shift in definition has accompanied our ever increasing understanding of the 

biological response to materials, which depends on the physiochemical properties, 

including shape, surface chemistry and, for degradable materials, the rate of degradation 

and degradation products. The summation of these properties can result in responses 

varying from the chronic inflammatory foreign body giant cell response to fibrous 

encapsulation to complete tissue integration [192, 193].  

Recent studies have demonstrated that even materials, which are classically 

considered biocompatible and FDA approved (e.g., poly(lactic acid)), can induce a 

pathological response. For instance, the degradation products of poly(lactic acid) have 

been shown to induce the oxidative stress response [179, 193, 194]. Monomers like 

bisphenol-glycidyl-methacrylate and 2-hydroxy-ethyl methacrylate, which are commonly 

used additives in dental bonding agents and resin composites, induce ROS production in 

human dental pulp cells and pulp fibroblasts leading to pulpal inflammation [195-197]. 

Detection of biomaterial-induced ROS is currently being used to characterize the 

inflammatory host tissue response to the biomaterial, in both in vitro and in vivo models 

[198, 199]. It is believed that control over this oxidative stress is a logical means of 

tuning the biological response to materials, improving their apparent biocompatibility.  

2.5 Vascular Oxidative Stress 

Vascular oxidative stress has been implicated as a key mechanism in the 

pathogenesis of many disease states (Table 2-1) [200] and is characterized by a 

dysfunctional endothelium, which is a key target for antioxidant therapy. Oxidative stress 

in the endothelium can be initiated and/or propagated due to exposure of EC to pro-

oxidants circulating in blood (oxidants released by activated leukocytes and platelets or 
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oxidized low-density lipoproteins) [201], oxidants produced by cellular milieu 

(extracellular matrix, other vascular cells) or oxidants generated by endothelial cells 

themselves [200]. VOS results in endothelial production of oxidants and expression of 

various inflammatory cytokines, which then influence the expression of inflammatory 

signals such as cell adhesion molecules (CAM) like ICAM-1, VCAM-1, etc [12, 14] 

(discussed in detail in Section 2.3.1). These CAMs facilitate endothelial-leukocyte 

interactions which further damages endothelial cells (EC) by releasing more oxidants 

[200, 202]. Oxidative stress and inflammatory response thus operate in vicious cycle to 

damage endothelium and result in a diseased state. 

2.5.1  Challenges in Delivery of Antioxidants to Suppress Oxidative Stress 

Both, small molecule oxidant scavengers (e.g. tocopherol, glutathione, etc.) and 

antioxidant enzymes (e.g. SOD, catalase, etc.), have their own unique set of delivery 

challenges. Small molecule antioxidants are well tolerated, stable for long term storage, 

resistant to complex and/or aggressive formulation processing methods and relatively 

inexpensive. However, these small molecule scavengers typically reduce free radicals and 

other oxidizing species in stoichiometric ratios, being consumed in the process [203, 

204]. Hence, large sustained doses are expected to be required in order to observe a 

significant clinical effect. 

Besides their high potency, antioxidant enzymes are also highly selective, 

allowing for a more targeted approach to antioxidant therapy not possible with small 

molecule antioxidants. However, antioxidant enzymes are relatively fragile and 

expensive, limiting the set of conditions which can be used for their formulation [173]. 
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Further, they are prone to proteolytic and pH dependant inactivation, which can limit 

their therapeutic duration [205, 206]. 

2.5.2 Nanocarriers for Vascular Delivery of Antioxidants 

As mentioned in Section 2.1, the success of antioxidant therapy for treatment of 

vascular oxidative stress depends on sufficient delivery of antioxidants to the 

endothelium and the duration for which the delivered antioxidants stay active. While the 

exact requirements needed depend upon the disease state being considered, nanoscale 

drug carriers are a promising avenue for achieving these goals. The following section 

reviews some of the existing nanocarrier startegies for antioxidant delivery and then 

explains the need for antioxidant polymers as a novel strategy for treatment of vascular 

oxidative stress. 

2.5.2.1 Liposomes 

Liposomes, one of the first and most widely studied carrier for drug delivery 

applications, are membrane vesicles formulated using naturally derived phospholipids or 

synthetic amphiphiles. Amphiphiles when dispersed in aqueous medium, self-assemble in 

a spheroidal membrane type arrangement where the hydrophobic lipid part of the 

molecules associate with each other whereas the hydrophilic heads are exposed to the 

aqueous phase, resulting in entrapment of aqueous phase in the spherical core. Extrusion 

and sonication are the most commonly used methods for the formulation of liposomes in 

the size range of 50 nm to 10 µm or more. Size of liposomes formulated using extrusion 

is determined by the pore size of the polycarbonate filter used for extrusion.  
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Spherical aqueous core and the lipid membrane domain can be used for loading 

hydrophilic and hydrophobic drugs respectively. Drug loading in the liposomes is 

determined by the equilibrium partitioning of the drug inside and outside the liposome. 

Since partitioning decreases with increase in MW of drug, liposomes are more suited for 

encapsulating low molecular weight hydrophilic drugs into the aqueous compartment. 

Some of the water-soluble antioxidants that can be loaded into liposomes include 

glutathione, N-acetyl cysteine (NAC) and ascorbic acid (vitamin C). Intratracheal 

liposomal delivery of NAC provided more pulmonary protection in a 2-chloroethyl ethyl 

sufide (CEES) injury model as compared to free NAC[207]. As opposed to large 

hydrophilic capacity, liposomes have a relative low hydrophobic capacity (~ 10-20% for 

100 nm liposome) for drug loading.  Nonetheless, this can be used for loading 

hydrophobic antioxidants like α-tocopherol (vitamin E) [207-209], resveratrol [210], 

curcumin [211] and flavonoids (e.g. quercetin, catechin) [212]. Liposomes improve the 

bioavailability of such hydrophobic compounds. Loading of large hydrophilic enzymes 

into liposomes is rather difficult. Freeze/thaw, freeze drying, pH gradient and 

electrostatic attraction have been used to improve the loading of antioxidant enzymes into 

liposomes [213-216]. 

Several liposomal formulations of vitamin C, vitamin E and other small molecule 

antioxidants have been successfully used for dermal applications in the cosmetic industry 

[217, 218]. Liposomes have also been commercially used as delivery vehicles for various 

pharmaceutics [219-221]. However, their use for the delivery of antioxidants through 

intravenous route has been limited due to their poor mechanical stability, poor circulation 

half-life and their rapid clearance through reticuloendothelial system  (RES) [218, 222]. 
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2.5.2.2 Solid Lipid Nanoparticles 

Solid lipid nanoparticles (SLN) are another lipid based carrier like liposomes, 

only difference being the lipids used (triglycerides and waxes) that are solid at room and 

physiological temperature. SLN are formulated either using high pressure 

homogenization or emulsification techniques at elevated temperatures with/without 

surfactants [223, 224]. Lipids used for SLN formulation are naturally derived and are 

likely to be well tolerated. The large hydrophobic core of SLN makes them a suitable 

delivery vehicle for carrying high loads of hydrophobic small molecule antioxidants. 

Several lipophilic small molecule antioxidants like vitamin E, baicalin, retinol, quercetin, 

curcuminoids and resveratrol were successfully loaded into SLN [225-230]. However, the 

harsh formulations conditions (e.g. high temperature and high shear) of SLN are not 

suitable for loading antioxidant enzymes which may lose activity during formulation. 

2.5.2.3 Polymer Nanoparticles 

Biodegradable polymeric nanoparticles are a logical choice for delivery of 

antioxidant enzymes.  Through the encapsulation of enzymes within a diffusion limiting 

polymer shell, the enzyme can be protected from premature proteolytic inactivation. 

Further, through tuning of the substrate diffusion properties of the encapsulating material, 

it is possible to impact the selectivity of the loaded enzyme [231].  Finally, as the enzyme 

is functional in the loaded state, the duration of activity can be controlled through the 

degradation rate of the polymer, with release of drug presumably possessing only 

transient activity. 

Poly(lactic acid) (PLA), poly(lactic acid-co-glycolic acid) (PLGA) and poly(ε-

caprolactone) have been formulated into nano and microparticles for controlled release of 
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drugs [232, 233].  Amphiphilic di-block copolymers (e.g. PEG-PLA, PEG-PLGA) can 

provide native “stealth” properties to polymer nanoparticles as well sites for conjugating 

targeting moieties. Nanoparticles of amphiphilic polymers can be synthesized using 

solvent evaporation, polymer micellization or multiple emulsification steps [234-236]. 

However, not all formulation settings can be used to load enzymes.  For instance, single 

step solvent extraction techniques typically result in poor protein loading, as the 

hydrophobic particles exlude the hydrophilic protein. Further, the use of aqueous 

miscible solvents (e.g., acetone, ethanol, methanol), can result in enzyme inactivation. 

Using a unique temperature swing double emulsion methods, polymer nanoparticles were 

formulated to achieve active catalase loading [206, 237]. These carriers were able to 

prolong enzymatic activity in a proteolytic environment, with 25% of the loaded enzyme 

mass remaining stably active after 24hours incubation, compared to free enzyme which 

lost >90% activity within 1 hour.  This method was found to be amendable to a variety of 

enzymes. Interestingly, enzymes whose substrates were slowly diffusing through the 

polymer shell possessed no measurable activity following proteolytic incubation, 

suggesting the ability for the carrier to augment the observed specificity of the loaded 

enzyme [231].   

2.5.2.4 Polymersomes 

Polymersomes (or polymer vesicles), synthetic polymer based analogs of 

phospholipid liposomes, are another class of polymer nanocarriers, which are composed 

of polymer amphiphiles that self-assembled into bilayer like structures (e.g., PEG-PLA, 

PEG-PBD(poly butadiene), PEG-poly(propylene-sulfide)-PEG) [238, 239] (for detailed 

review, refer to [240]). Like liposomes, polymersomes have large internal aqueous 
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domain that can be used for loading hydrophilic drugs. Thicker membrane of 

polymersomes ( ~8 nm as compared to ~3 nm for liposomes) make them a more robust 

carrier that can resist membrane deforming forces which disrupt the liposomal membrane 

[238]. Also, owing to the higher PEGylation density of polymersome surface, 

polymersomes have a two-fold higher circulation life (20-30 hrs in rats) as compared to 

liposomes [241]. Polymersomes have been used to load significant amounts of 

hydrophilic and hydrophobic anticancer drugs into aqueous core and membrane 

respectively [242-244]. Polymersomes can be used for simultaneous loading of both 

water-soluble and water-insoluble small molecule antioxidants for a robust antioxidant 

therapy. However, more rigorous encapsulation conditions (e.g. high temperature, 

pressure) for polymersome formulation can result in loss of enzyme activity which make 

polymersomes a non-ideal candidate for loading antioxidant enzymes [5, 245].   

2.5.2.5 Polymer Nanocapsules 

Encapsulation of a single protein molecule in polymeric shells, called “single-

protein nanocapsules”, is one of the novel approaches applied for protein delivery [246]. 

In this approach, several proteins, including SOD, were covalently functionalized with 

vinyl groups followed by free radical polymerization in the presence of other diacrylate 

monomers which resulted in encapsulation of single protein molecules in a nanometer 

thick (~ 5 nm) polymer shell. Surface properties and degradation rates of polymer shells 

was controlled by choosing appropriate monomers. SOD nanocapsules prevented cell 

death in a in vitro paraquat injury model, suggesting that the polymer shells are 

permeable to the substrate molecules (e.g. O2
.-) and protect the enzyme from proteolytic 

degradation [246].  
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Polymer nanocapsules having large aqueous cores synthesized from 

(allyloxy)12cucurbit[6]uril, a rigid disk-shaped molecule, is another potential approach 

for protein delivery[247]. Even though their applicability for delivery of antioxidants has 

not been studied, work done by Kim et al. on developing a polymer nanocapsule 

incorporating disulfide bridges that can degrade in a reducing environment could be very 

applicable for release of antioxidant enzymes triggered by reduced environment in the 

host cell [248]. 

2.5.4 “Antioxidant Polymers” for Vascular Delivery of Antioxidants 

As discussed above, for small molecule antioxidant therapy to be successful, large 

sustained doses at the injury site are required. However, small molecule antioxidants have 

a concentration dependant anti- or pro-oxidant effect, where delivery of small molecule 

antioxidants in excess (e.g. burst release from nanocarriers) can induce an undesired pro-

oxidant effect in host tissue [249-251]. Hence, nanocarriers for small molecule 

antioxidants should be designed for delivery of significant amounts, but at a gradual and 

controlled rate. 

This makes delivery of small molecule antioxidants challenging as most of the 

carriers can achieve a maximum loading of ~35% for small molecule drugs [252-254]. As 

a result, in order to achieve sufficient antioxidant levels, large carrier masses may be 

needed, which may induce unwanted immunogenicity. Further, the passive loading of 

free small molecule drugs into nanocarriers can often result in limited control of drug 

release profiles [255]. Incorporating small molecule antioxidants covalently in a 

biodegradable polymer backbone permits a mechanism to overcome both of these 

limitations, by 1) enhancing the total mass of drug in the nanocarrier and 2) allowing 
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chemical cleavage to control the release rate.  Many small molecule antioxidants have 

reactive groups like phenols and thiols, which can be easily functionalized and 

incorporated into polymers using polyester, polyanhydride or poly(β-amino ester) 

chemistry [256]. This approach provides that added benefit of protecting the labile center 

from premature oxidation. 

Several approaches have been pursued to covalently conjugate small molecule 

antioxidants to polymers and proteins. For instance, Vitamin E was conjugated to 

poly(acrylic acid) to synthesize a water-soluble carrier for vitamin E that suppressed 

oxidative stress in sperm cells in vitro [183]. Antioxidant polymers with glutathione, 

ascorbic acid, gallic acid and catechin conjugated to PEG, poly(methyl methacrylate) and 

gelatin have also been synthesized and shown to have antioxidant properties in vitro 

[184-186]. However, these antioxidant polymers are limited by their low relative mass of 

antioxidant compared to the bulk material. There is need for antioxidant polymers with 

high “% antioxidant loading” that can be formulated into nanoparticles allowing for 

vascular delivery of these antioxidants. 

2.6 Conclusion – Rationale for Antioxidant Polymers 

Oxidative stress plays a critical role in wound healing, biocompatibility of 

materials and other vascular diseases. Translation of small molecule antioxidant therapy 

for treatment of oxidative stress into clinical success depends on i.) delivery of 

antioxidants in significant amounts, ii.) gradual release of antioxidants (i.e. control over 

rate of release) and iii.) minimizing undesired immunogenicity from carrier/delivery 

agent. Antioxidant polymers, where small molecule antioxidants are incorporated into a 

biodegradable polymer backbone, is an emerging area of research which may have huge 
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impact in the field of biomaterials. As demonstrated, antioxidant polymers have potential 

to address some of the problems related to the treatment of non-healing wounds, 

improving biocompatibility of materials and treatment of vascular oxidative stress 

through controlled delivery of small molecule antioxidants. 

This dissertation describes synthesis, characterization and evaluation of 

antioxidant polymers to suppress oxidative stress. Taking advantage of polymer 

chemistry, phenolic antioxidants were polymerized into polyesters and poly(β-amino 

esters). In vitro degradation characteristics of synthesized antioxidant polymers and their 

ability to suppress oxidative stress injury in the cells were studied. Also, effect of 

antioxidant polymers on the redox state of the cells in absence of injury agent was 

characterized. 
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Chapter 3. Research Goals 

3.1 Introduction 

 In this dissertation, antioxidant polymers are developed which upon degradation 

release active antioxidant scavenger molecules. These polymers are formulated either 

into polymer nanoparticles or hydrogels to study their degradation characteristics, 

cytotoxicity and ability to suppress oxidative stress in in vitro cell culture models. By 

delivering small molecule antioxidants in a controlled manner, it may be possible to treat 

a variety of diseases where oxidative stress plays a critical role in the pathophysiology of 

the disease. The robustness of this proposed small molecule antioxidant therapy will 

depend on the tunability of antioxidant polymers to deliver various antioxidants at 

different rates, which often vary depending on the disease. 

3.2 Objectives and Significance  

 The overall hypothesis of this work is : 

Antioxidant polymers can be synthesized that upon biodegradation release active 

antioxidants which can then scavenge free radicals to protect cells/tissues from 

oxidative stress injury.  

In order to test this hypothesis, research was planned in three distinct stages, 

described in the following sections as specific aims, each to test a specific hypothesis.        

3.2.1 Specific Aim 1: Synthesis and characterization of poly(trolox ester) 

A. Synthesis of poly(trolox ester) and its characterization using Fourier 

Transformed Infrared Spectroscopy (FTIR), 1H and 13C Nuclear Magnetic 
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Resonance (NMR) Spectroscopy and Gel Permeation Chromatography 

(GPC).   

B.   Formulation of poly(trolox ester) nanoparticles with control over their 

size. 

C. Study in vitro degradation of poly(trolox ester) nanoparticles, determine 

antioxidant activity of degradation products and determine their 

cytotoxicity.  

3.2.1.1 Hypothesis #1  

Trolox can be polymerized into a poly(ester) form using carbodiimide based 

condensation reaction and degradation products of poly(trolox ester) will have 

antioxidant potential to scavenge free radicals without exerting any cytotoxic 

effects.  

3.2.1.2 Significance and Outcome 

 Experiments carried out to test this hypothesis are explained in Chapter 4. Using 

Steglich esterification reaction, poly(esters) of trolox with two different molecular 

weights, PTx-1000 and PTx-2500 were synthesized. FTIR and 13C NMR characterization 

confirmed successful esterification reaction to synthesize PTx-1000 and PTx-2500. GPC 

analysis was used to determine molecular weight of synthesized polymers. Single 

emulsion technique was employed to formulate polymer nanoparticles with controlled 

size. Poly(trolox ester) nanoparticle degrade very slowly by hydrolysis. However, they 

are susceptible to enzymatic degradation and degradation products have radical 
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scavenging ability as measured using a in vitro assay. Poly(trolox ester) nanoparticles had 

very little to no cytotoxicity up to a concentration of 1 mg/ml.   

3.2.2 Specific Aim 2: Investigate Effect of Poly(trolox ester) on Oxidative Stress in 

the Cells, Both in the Presence and Absence of Injury Agent  

A.  Study the protective effect of poly(trolox ester) nanoparticles against 

metal nanoparticle induced oxidative stress injury.   

B.   Study the concentration dependant effect of trolox and poly(trolox ester) 

nanoparticles on the redox state of the cells. 

C. Use protein oxidation as a marker of oxidative stress to determine effect of 

poly(trolox ester) nanoparticles on the redox state of the cells.  

3.2.2.1 Hypothesis #2 

Poly(trolox ester) nanoparticles suppress oxidative stress in the cells, both in 

presence and absence of oxidative injury, and can be used to modulate redox state 

of the cell.  

3.2.2.2 Significance and Outcome    

 Chapter 5 describes the experiments carried to test this hypothesis. DCF 

fluorescence was successfully used to monitor oxidative stress levels in the cells. 

Treatment with poly(trolox ester) nanoparticles protected cells from the metal 

nanoparticle induced oxidative stress injury. In the absence of injury, poly(trolox ester) 

nanoparticles suppressed background oxidative stress levels in the cells as measured by 

DCF fluorescence as well as by protein carbonyl measurements. Monitoring oxidative 

stress in the cells using DCF fluorescence revealed concentration dependant prooxidant 
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and antioxidant effect of trolox, whereas measurement of redox state using cellular 

protein oxidation products did not exhibit this effect of trolox. This emphasizes the 

importance of delivery route in modulating redox state of the cell using slow degrading 

poly(trolox ester) nanoparticles.  

3.2.3 Specific Aim 3: Develop a flexible polymer chemistry that could be extended 

to variety of antioxidants and could be tuned for their degradation rate. 

A. Apply non-free-radical polymerization poly(β-amino ester) chemistry to 

synthesize polyphenolic antioxidants based poly(antioxidant β-amino 

esters) (PABAE). 

B. Investigate degradation characteristics of PABAE and determine 

antioxidant activity of PABAE degradation products.  

C.  Investigate cytotoxicity of PABAE degradation products and their effect 

on cellular oxidative stress levels in absence and presence of injury. 

3.2.3.1 Hypothesis #3 

Polyphenolic antioxidants can be incorporated into PABAE hydrogel which 

undergo hydrolytic degradation and their degradation products have antioxidant 

activity capable of suppressing oxidative stress in the cells. 

3.2.3.2 Significance and Outcome 

 The non-free-radical polymerization poly(β-amino ester) chemistry described in 

Chapter 6 was successfully used to incorporate acrylate functionalized quercetin and 

curcumin into a PABAE network. This polymerization scheme can be extended to all 

polyphenolic antioxidants and allows tuning of the rate of polymer degradation by 
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appropriate choice of co-monomers and ratio of these co-monomers. Chapter 7 describes 

cytotoxicity of PABAE degradation products and their effect on oxidative stress levels in 

the cells which were similar to the effects of the corresponding free form antioxidants.  
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Chapter 4. Synthesis and Characterization of Poly(trolox ester) 

Based on the research article published in : 

P.P. Wattamwar

4.1  Introduction 

, Y. Mo, R. Wan, R. Palli, Q. Zhang and T.D. Dziubla, 
“Antioxidant Activity of Degradable Polymer Poly(trolox) to Suppress 
Oxidative Stress Injury in the Cells”, Advanced Functional Materials, 
2010, 20, 147-154. 

 While it is thought that degradable materials can evade long term compatibility 

issues through degradation, recent studies found that the local accumulation of acids 

(which are by-products of biodegradation) and monomer/oligomer leachouts, may trigger 

inflammatory response leading to further oxidative stress [179-181, 193-196]. Attempts 

have been made to attenuate biomaterial induced oxidative stress by synthesizing 

polymers (e.g. polyketals) that would result in neutral degradation products [257]. Studies 

have shown that the conjugation of antioxidant molecules to various polymers can 

suppress oxidative stress [188, 258, 259]. For example, vitamin E along with 

carbohydrate-targeting protein and solubility enhancers were conjugated to 

acrylate/methacrylate backbone to synthesize a water soluble antioxidant polymer. 

Cellular uptake of these polymers resulted in a slow release and accumulation of vitamin 

E over a period of 8 days [258]. Oligomers of glutathione and poly(ethylene glycol), 

where glutathione was linked to poly(ethylene glycol) (600 g/mol) using disulfide 

linkages, self-assembled to form aggregates (~300 nm) which protected cells from H2O2 

based oxidative stress injury [259]. In other examples, ascorbic acid and polyphenols 

were conjugated to gelatin and methacrylic acid to result in non-biodegradable polymers 

that had antioxidant functionality [184, 185]. However, these functional materials are 
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limited in their heterogeneity and low relative mass of antioxidant compared to the bulk 

material. Taking a cue from the pioneering work in anti-inflammatory polymers of 

aspirin [260], in this work, we synthesized a new biodegradable polymer, poly(trolox 

ester), having native antioxidant activity. Trolox, a synthetic and water soluble analogue 

of Vitamin E (Figure 4-1), released as degradation product of the polymer could 

theoretically attenuate the biomaterial oxidative stress by scavenging ROS like 

superoxide anion, hydroxyl radical and RNS like peroxynitrite [261-263].   

As an alternative to pendant conjugation strategies, trolox, a water-soluble analogue 

of vitamin E, was polymerized through a polycondensation reaction mediated by 

Stagelich esterification. As the condensation pairs used result in a zero length conjugation 

bond, the resulting biodegradable poly(trolox ester) possesses 100% antioxidant mass.  

Using a single step solvent extraction method, it is possible to formulate poly(trolox 

ester) into nanoparticles of sizes 100-250nm. We report here that the formulated polymer 

nanoparticles undergo enzymatic degradation resulting in degradation products that have 

ability to scavenge radicals and that these nanoparticles were found to have little to no 

cytotoxicity at concentrations up to 1mg/ml. 
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Figure 4-1. Chemical Structure of Vitamin E (top) and Trolox. 
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4.2  Materials and Methods 

4.2.1 Synthesis of PTx-1000 

 For PTx-1000, a carbodiimide and 4-(dimethylamino)pyridine (DMAP) based 

reaction was used (Figure 2) [264]. Molecular sieves (4 Å pore size) were added to 

dichloromethane (DCM) and stirred overnight under inert atmosphere to capture any 

water present in the solvent. Using line transfers, anhydrous DCM (60 ml per 1 g of 

trolox) was transferred to a reaction vessel loaded with trolox and DMAP (0.5 molar 

equivalent of trolox). Solution of trolox and DMAP in DCM was warmed till it became 

clear. In a separate vessel, N,N′-dicyclohexylcarbodiimide (DCC) was dissolved in 

anhydrous DCM at a stock concentration of 40 mg/ml. This DCC solution was added to 

the trolox/DMAP solution under continuous stirring until DCC was 10% in molar excess 

of trolox. The reaction mixture was stirred in the dark for 24 hrs under a continuous slow 

argon purge. After this reaction, the precipitated dicyclohexyl urea was removed by 

vacuum filtration. The filtrate was dried under vacuum using a roto-evaporator 

(Rotovapor R II, Buchi, Switzerland). The resultant yellowish powder was re-dissolved in 

acetone and subjected to ultrafiltration. Ultrafiltration was performed to remove 

unreacted compounds and catalyst from the polymer product using a solvent-resistant 

stirred cell with a 3 kDa MWCO Ultracel YM/PL ultrafiltration membrane (Millipore, 

USA). Acetone was evaporated from the retentate and the resultant solid polymer mass 

was subjected to vacuum overnight to remove residual solvent. PTx-1000 was stored 

under dark at room temperature. 
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Figure 4-2. Trolox Polymerization Scheme 

Trolox (1, n=1) undergoes an esterification reaction to form poly(trolox 
ester) (1). Carbodiimide (2)  reacts with the terminal carboxylic acid group 
of 1 to form an active intermediate O-acyl urea (3). Catalyst DMAP (5) 
then traps this intermediate and reacts with the phenolic group of 
trolox/poly(trolox ester) (1) to form an ester. This new product (1) has a 
carboxyl group that can repeat this process allowing for the growth of the 
polymer. Urea (6) is a by-product that precipitates out in reaction mixture 
where as N-acyl urea (4) is an undesired side-product formed by 
rearrangement of 3. It is theorized that the formation of 4 results in the 
terminal capping of this reactive end group and prevents further polymer 
chain growth. (This reaction mechanism is adapted from Wiener and 
Gilon [264].) 
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4.2.2 Synthesis of 4-(Dimethylamino)pyridinium 4-toluenesulfonate (DPTS) 

 DPTS was synthesized following the procedure as described in detail by Moore 

and Stupp [265]. Dry p-toluenesulfonic acid (PTSA) was obtained by subjecting a 

solution of PTSA in toluene to azeotropic distillation using a Dean-Stark trap. Separately, 

an equimolar amount of DMAP was dissolved in toluene and then added to the dry 

solution of PTSA in benzene under continuous stirring. The resulting suspension of 

DPTS was stirred for a while and then cooled to room temperature. DPTS suspension in 

toluene was vacuum filtered and was recovered as solid powder. DPTS was further 

purified by dissolving it in boiling DCM at saturation conditions. DCM solution was 

stored overnight at -20ºC. The resultant needle shaped white crystals were recovered by 

vacuum filtration. Using differential scanning calorimetry, melting point of DPTS (MW 

= 294 g mol-1) was found to be 176 0C, which is similar to previously reported melting 

point of 165 0C [265]. 

4.2.3 Synthesis of PTx-2500 

A carbodiimide-DPTS based reaction was employed for PTx-2500 synthesis 

[265]. DCM was dried overnight over calcium hydride. Anhydrous DCM (27 ml per 1 g 

of trolox) was then distilled into a two neck round bottom flask loaded with equimolar 

amounts of trolox and DPTS. Reaction mixture was turbid to begin with since trolox 

concentration was above its saturation concentration. N,N’-diisopropylcarbodiimide 

(DIC) (1.5 molar equivalents of trolox) was weighed and added as a neat reagent using a 

syringe. The reaction mixture was stirred under dark and inert conditions for 24 hrs. Inert 

conditions were maintained by purging argon through reaction vessel. After 24 hrs, DCM 

was evaporated off from reaction mixture using a roto-evaporator and solid mass was 
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dissolved in acetone. The insoluble diisopropyl urea was removed by vacuum filtration 

and the filtrate was subjected to ultrafiltration as described in PTx-1000 synthesis. PTx-

2500 was obtained as yellowish dry powder and was stored in the dark at room 

temperature. 

4.2.4 Characterization of Synthesized Polymers 

 Synthesized polymers were characterized using Fourier Transformed Infrared 

(FTIR) spectroscopy, 13C Nuclear Magnetic Resonance (NMR) spectroscopy and Gel 

Permeation Chromatography (GPC). FTIR measurements were performed on a Digilab 

Stingray system consisting of a FTIR 7000e stepscan spectrometer (Varian Inc.). 13C 

NMR spectra were obtained using a Varian Gemini 200 MHz NMR spectrometer. A 

Shimadzu Prominence LC-20 AB HPLC system installed with a waters 2410 refractive 

index detector was used to calculate molecular weight using GPC. 300 x 7.5 mm PLgel 3 

µm mixed-E column (Polymer Laboratories), 300 x 7.8 mm Waters Styragel HR-1 and 

HR-2 colums were used in series for separation. Polystyrene standards (Polymer 

Laboratories) in the molecular weight range of 20,000 to 500 Da were used (with 

tetrahydrofuran as eluent) to develop a linear range of calibration for molecular weight 

determination. 

4.2.5 Nanoparticle Formulation and Characterization 

 PTx-1000 and PTx-2500 are both insoluble in water, allowing them to be 

processed as nanoparticles. A single emulsion procedure was employed for nanoparticle 

formulation. Polymer was dissolved in acetone at a known concentration. This acetone 

solution was then added to a pluronic F-68 solution in phosphate buffered saline (PBS) 

while vortexing at 1400 rpm. In all the formulations, the final concentration of acetone in 
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the surfactant solution was 10 % v/v. Concentration of surfactant solution and 

concentration of polymer in acetone were varied to control the size of nanoparticles. The 

particle solution was left open under stirring conditions overnight to let the acetone 

evaporate off. Formulated nanoparticles were subjected to ultrafiltration to remove excess 

surfactant from nanoparticle suspension. Ultrafiltration was performed using a 100 kDa 

MWCO Ultracel YM/PL membrane in a stirred cell. Particle size was measured before 

and after the ultrafiltration using dynamic light scattering on a Malvern Zetasizer Nano 

(Westborough, MA). Nanoparticles free of excess surfactant were used for all the further 

studies. 

4.2.6 In Vitro Degradation of Poly(trolox ester) 

Poly(trolox ester) nanoparticles were diluted to a final concentration of 1 mg/ml 

in PBS at pH of 7.4 with and without the enzyme carbonic anhydrase (CA). CA was 

dissolved in PBS at a concentration of 2 mg/ml and the nanoparticle suspension was 

incubated in a shaker bath at 37 0C. 150 µL of aliquots were removed at different time 

points and were immediately analyzed for their antioxidant activity and size.  

4.2.7 In Vitro Assay for Measurement of Antioxidant Activity 

Antioxidant activity of samples from degradation studies was measured using a 

2’,7’-dichlorofluorescein (DCF) based fluorescent assay. An azo initiator 2,2’-azo-bis(2-

aminopropane)-HCl (AAPH) that undergoes thermal degradation was used to mimic the 

peroxyl radical formation in vivo. Procedure described by Aldini et. al. was followed for 

hydrolysis of 2’,7’-dichlorodihydrofluorescein diacetate (DCF-DA) [266]. In brief, 500 

µL of 1 mM DCF-DA stock solution in ethanol was added to 2 ml of 0.01 N NaOH 

solution and stirred for 20 min under darkness. Solution was then neutralized by adding 2 
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ml of 0.01 N HCl solution. Hydrolysis of DCF-DA results in 2’,7’-

dichlorodihydrofluorescein (DCFH) which is then diluted in PBS to a final concentration 

of 10 or 20 µM. The diluted DCFH solution was stored in ice under darkness and was 

used for further measurements within 4 hrs after preparation. To a well in a 96-well 

microplate, 50 µL of sample was added to 200 µL of DCFH solution. Fluorescence 

measurement was started when 20 µL of 270 mM AAPH in PBS was added to the well. 

Peroxyl radicals generated from AAPH and unscavenged by antioxidants oxidize DCFH 

to result in fluorescent compound DCF. Varian Cary Eclipse fluorescence 

spectrophotometer was used for all fluorescence measurements. Assay was performed on 

a 96 well plate using a Varian microplate reader. Excitation and emission wavelengths 

were 502 nm and 525 nm respectively and slit width was 10 nm. Data was acquired using 

Cary Eclipse software from Varian. Assay was always calibrated using known trolox 

concentrations and the antioxidant potential of the sample was determined in terms of 

molar active trolox equivalents. 

4.2.8 Cytotoxicity of Poly(trolox ester) Nanoparticles 

Mouse pulmonary microvascular endothelial cells (MPMVEC) were isolated from 

mouse lungs as described previously [267]. MPMVEC were cultured in Dulbecco’s 

modified eagle medium (DMEM) supplemented with 10% fetal bovine serum, 1% 

nonessential amino acids and penicillin/streptomycin in a 96 well microplate overnight. 

Polymer nanoparticles at a concentration of 10 mg/ml in PBS were diluted in DMEM to 

different concentrations and added to the wells. 24 hrs after adding the nanoparticles, the 

cell viability was determined by CellTiter 96 AQueous Non-Radioactive Cell Proliferation 

Assay by  incubation with 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
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(4-sulfophenyl)-2H-tetrazolium (MTS) / phenazine methosulfate (PMS) mixture  at 37 0C 

for 3 hrs. MTS is reduced by dehydrogenase enzymes in metabolically active cells to a 

blue colored soluble formazan product. The absorbance of the formazan was then 

measured at 490  nm using a microplate reader (Synergy HT, BioTek, Vermont). 

4.3 Results and Discussion 

4.3.1 Synthesis and Characterization of Poly(trolox ester) 

 A carbodiimide based polymerization reaction was used for the synthesis of 

poly(trolox ester) (Figure 4-2). Initial trolox concentration was 16.7 mg/ml. The molar 

ratio of the reactants, DCC:trolox and DMAP:trolox, was 1.1 and 0.5, respectively. GPC 

results revealed the product to be oligomeric (i.e. ≤ 7 mers,   See Figure 4-3). Average 

molecular weight of the oligomers, referred to as PTx-1000, was MN = 830 and MW = 

1156 and possessed a polydispersity index of 1.4. Increasing the DCC:trolox and 

DMAP:trolox ratios to 1.5 and 1 respectively did not increase average molecular weight 

of oligomer (results not shown). As shown in Figure 4-2, esterification of trolox using a 

carbodiimide involves the formation of an active intermediate O-acyl urea. This 

intermediate can undergo molecular rearrangement (ON migration) to form N-acyl 

urea which results in terminal capping of reactive carboxylic group thereby preventing 

further polymer chain growth. [The peak at 171.75 in 13C NMR spectra of PTx-1000 

could be related to the N-acyl urea peak]. 

The rate of N-acyl urea formation depends on the pKa of the trolox carboxyl acid 

group (pKa = 3.89) [268] and solvent pH and can be suppressed by acid catalysis [265]. 

The reaction medium pH was lowered by using PTSA. A DMAP:PTSA ratio of 1:1 was 

maintained using separately synthesized DPTS. Initial trolox concentration was 37 mg/ml 
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in DCM and the ratio of DIC:trolox and DPTS:trolox was 1.5 and 1, respectively. Acid 

catalysis resulted in a polymer, referred as PTx-2500, with an average molecular weight 

of MN = 1294 and MW = 2520 which results in polydispersity index of 1.9. As shown in 

Figure 4-3, PTx-2500 possesses a significant fraction of higher molecular weight chains, 

up to 10,000 MW.  The peaks at wavelengths of 1747 cm-1 (ester carbonyl stretch) in the 

IR spectrum (Figure 4-4) and 172.5 ppm in the 13C NMR spectrum (Figure 4-5) are 

indicative of ester bonds in PTx-1000 and PTx-2500.  
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Figure 4-3. GPC analysis of PTx-1000 and PTx-2500  

Chromatograms of synthesized and purified PTx-1000 and PTx-2500 
obtained from GPC analysis. Presence of several peaks in PTx-1000 
chromatogram indicates that synthesis resulted in oligomers of trolox (MN 

= 830 and MW = 1156).  
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Figure 4-4. FTIR Spectra of Trolox, PTx-1000 and PTx-2500. 

 In the inset, peak at ~ 1747 cm-1 indicates presence of ester bond.  
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Figure 4-5. 13C NMR Analysis of Trolox, PTx-1000 and PTx-2500 

(Top) 13C NMR spectra of trolox, purified PTx-1000 and PTx-2500.  

(Bottom) Peak at 174.77 ppm in trolox spectrum is characteristic of 
carbonyl bond in a carboxylic acid. Peaks at 172.75 ppm is related to 
carbonyl bond in trolox ester. [Peak at 172 ppm in PTx-1000 spectra can 
be related to the N-acyl urea  present in PTx-1000]. 
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4.3.2 Poly(trolox ester) Nanoparticle Formulation and Characterization 

In order to study feasibility of antioxidant polymers for targeted vascular delivery 

of antioxidants, which is the long-term goal of the project, polymer nanoparticles were 

formulated using a single step emulsion technique. Pluronic F-68 was used as a surfactant 

to prevent nanoparticle aggregation. Size of poly(trolox ester) nanoparticles was 

controlled by varying the concentration of polymer in acetone during the single emulsion 

technique. To obtain PTx-1000 nanoparticles, a 1 wt% pluronic F-68 solution in 

phosphate buffered saline (PBS) was used. As PTx-1000 concentration in acetone was 

increased from 5 mg/ml to 25 mg/ml, size of the resultant nanoparticles changed from 

120 nm to 220 nm (Figure 4-6). However, when a 1 wt% pluronic F-68 solution was 

used for PTx-2500 nanoparticle formulation, it resulted in formation of many micron 

sized particles. This can be attributed to the increased viscosity of PTx-2500 solution in 

the organic solvent owing to its higher molecular weight. In order to minimize the 

formation of micron sized particles, surfactant concentration was increased from 1 wt% 

to 4 wt%. Before size measurement, PTx-2500 nanoparticle solutions were subjected to 

filtration using a 1 µm syringe filter to remove small fractions of micron sized particles. 

As PTx-2500 concentration in acetone was increased from 2.5 mg/ml to 7.5 mg/ml, size 

of the resultant nanoparticles changed from 170 nm to 230 nm (Figure 4-6). 

Immunotargeted intracellular delivery of nanocarriers to endothelium is size-dependant, 

and has been shown to be optimum for nanocarriers in range of 100-300 nm. Taking this 

into consideration, since a common size range of 180 – 220 nm for PTx-1000 and PTx-

2500 nanoparticles was achieved, PTx-2500 nanoparticles at concentrations lower than 

2.5 mg/ml were not formulated. 
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Figure 4-6. Tuning Particle Size by Changing the Concentration of Polymer in 
Organic Solvent. 

  
PTx-1000 (diamonds) and PTx-2500 (squares) nanoparticles were 
formulated using a single emulsion technique. Polymers were dissolved at 
different concentrations in acetone. Acetone solution was then added drop-
wise to pluronic F-68 solution in PBS. Surfactant solution concentration 
used for PTx-1000 and PTx-2500 nanoparticle formulation was 1 wt% and 
4 wt% respectively. In all the formulations, final acetone concentration in 
PBS was limited to 10%. Resulting particles were diluted 10 times and 
particle size was measured by dynamic light scattering (DLS) using a 
Malvern Zetasizer Nano. (M + SD, n=3). * represents that the data point is 
significantly different from previous data point in series with whereas # 
represents that the data point is not significantly different from previous 
data point in the series with p<0.05. 
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4.3.3 In Vitro Degradation of PTx-1000 and PTx-2500 Nanoparticles 

Antioxidant activity of poly(trolox ester) was verified by an in vitro degradation 

study. PTx-1000 (160 nm) and PTx-2500 (195 nm) nanoparticles at a concentration of 1 

mg/ml were incubated in PBS (pH 7.4) at 37 0C with and without the enzyme carbonic 

anhydrase (CA). In absence of CA, except for a small initial spike, no increase in the 

antioxidant activity of the nanoparticle suspension could be detected. However, results 

from in vitro oxidative stress studies suggested that PTx-1000 and PTx-2500 might be 

susceptible to enzymatic degradation. The enzyme, CA, was studied because it is known 

to have esterase activity to hydrolyze phenyl esters [269], and is localized in the cytosol 

as well as in/on the plasma membrane of a cell [270, 271].  As such, it is a likely 

candidate for in vitro degradation of nanoparticles. Indeed, in the presence of the enzyme 

CA, the antioxidant activity of the nanoparticle suspension increased from 0 µM to 70 µM 

over a period of 100 hrs (Figure 4-7).    

As we have observed that incubation of pure trolox in PBS loses its antioxidant 

activity with time, it is possible that some of the antioxidants released as the degradation 

products of poly(trolox ester) can undergo natural oxidation during the incubation period 

meaning that the measured antioxidant activity is an underestimation of actual 

antioxidant activity of nanoparticle suspension. Incubation of PTx-1000 and PTx-2500 

nanoparticles at 37 0C resulted in a significant increase in their size over the time. 

However, in the presence of CA, increase in the size was slightly higher as compared to 

the size increase during non-enzymatic incubation (Figure 4-7). As degradation of 

poly(trolox ester) nanoparticles proceeds, its hydrophilicity will increase resulting in the 

swelling of particles. Release of antioxidants and swelling of nanoparticles confirms that 
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PTx-1000 and PTx-2500 are more susceptible to enzymatic degradation as compared to 

hydrolytic degradation. 

4.3.4 Cytotoxicity of Poly(trolox ester) Nanoparticles  

Biocompatibility of the degradable polymer typically depends on the toxicity of 

its degradation and leachable products which are either oligomers or monomers. To study 

the biocompatibility of the poly(trolox ester) polymers, mouse pulmonary microvascular 

endothelial cells (MPMVEC) were exposed to PTx-1000 (195 nm) and PTx-2500 (215 

nm) nanoparticles at concentrations ranging from 3.9 µg/ml to 1000 µg/ml and cell 

viability was measured by CellTiter 96 AQueous using a Non-Radioactive Cell 

Proliferation Assay (MTS assay, Promega, Madison, WI) (Figure 4-8). Exposure of 

endothelial cells to PTx-1000 nanoparticles at concentrations up to 500 µg/ml did not 

result in any significant cytotoxic effects. When the concentration was increased to 1000 

µg/ml, the cell viability dropped marginally to 87.9 + 3.5 % as compared to the control. 

PTx-2500 nanoparticles did not have any significant cytotoxic effects in the 

concentration range studied. 
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Figure 4-7. Enzymatic Degradation of Poly(trolox ester) Nanoparticles  

Poly(trolox ester) nanoparticles were suspended in PBS at 37 0C at 
concentration of 1 mg/ml with(squares) and without(triangles) the enzyme 
CA. Aliquots were removed at different time points and were immediately 
used to measure antioxidant activity. Size of nanoparticles in all the 
suspensions was also measured at different time points. One-way ANOVA 
was performed on all the trends. All the trends were significant with 
p<0.05. 
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Figure 4-8. Cytotoxicity of Poly(trolox ester) Nanoparticles  

MPMVEC cultured in a 96 well plate were exposed to PTx-1000 (black) 
and PTx-2500 (grey) nanoparticles for 24 hrs. After 24 hrs, cell viability 
was measured using MTS assay. (M + SD, n=3). Cells without exposure 
were used as control. * represents significant difference from the control 
with p<0.05. 
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4.4 Conclusion 

In conclusion, trolox was polymerized successfully using carbodiimide based 

esterification reaction to result in two polymers of different molecular weights. 

Nanoparticles of PTx-1000 and PTx-2500 were formulated using single emulsion method 

with a control over their size. Formulation of poly(trolox ester) into nanoparticles will 

allow its characterization for drug delivery applications. In vitro degradation studies 

suggests that poly(trolox ester) is more susceptible to enzymatic degradation as compared 

to hydrolytic degradation. Also, degradation products of poly(trolox ester) have radical 

scavenging ability as determined by an in vitro assay. Poly(trolox ester) nanoparticles had 

very little to no cytotoxicity up to concentration of 1 mg/ml and will be characterized for 

their antioxidant activity in in vitro cell culture models.  
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Chapter 5. Effect of Poly(trolox ester) on Oxidative Stress in Cells 

Based on the research articles published in : 

P.P. Wattamwar, Y. Mo, R. Wan, R. Palli, Q. Zhang and T.D. Dziubla, 
“Antioxidant Activity of Degradable Polymer Poly(trolox) to Suppress 
Oxidative Stress Injury in the Cells”, Advanced Functional Materials, 
2010, 20, 147-154. 

P.P. Wattamwar

 

, S.S. Hardas, D. Allan Butterfield, K.W. Anderson and 
T.D. Dziubla, “Tuning of the Pro-oxidant and Antioxidant Activity of 
Trolox Through the Controlled Release from Biodegradable Poly(trolox 
ester) Polymers”, Journal of Biomedical Materials Research Part A, 2011, 
99A, 184-191. 

5.1 Introduction 

It is well known that, depending upon the setting, the degradation of 

biodegradable materials can result in a localized inflammatory response [272], which is 

often the result of accumulated degradable byproducts, inducing cellular oxidative stress 

[181, 182, 273, 274]. This observation has led to several groups developing antioxidant 

coupled biomaterials as a way of inhibiting localized biomaterial related inflammation 

[184, 186, 187, 256, 258, 275]. While this work has demonstrated an ability to suppress 

inflammation, little is known about the chemical targets in which these materials augment 

oxidative stress. For instance, the chronic inflammatory foreign body giant cell response 

is characterized by macrophages releasing a plethora of digestive enzymes and oxidative 

species like superoxide radical (O2
.-). The enzyme superoxide dismutase (SOD) converts 

O2
.- in to hydrogen peroxide (H2O2). H2O2 can then react with transient, redox active 

reduced metal ions (Fe2+, Cu+, etc.) to form hydroxyl radicals (OH.). O2
.- can also react 

with nitric oxide (NO) to form peroxynitrite (ONOO-). These reactive oxygen species 
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(ROS) and reactive nitrogen species (RNS), respectively, can further react with and 

oxidatively damage cellular proteins and lipids thereby producing oxidative stress 

markers such as protein carbonyl, 3-nitrotyrosine (3NT) and 4-hydroxy-2-trans-nonenal 

(HNE) [276, 277]. The latter can covalently bind to Cys, His, and Lys residues on 

proteins via Michael addition, changing the structure and function of protein [278]. 

However, small molecule antioxidants can terminate different reactive species, e.g., water 

soluble antioxidants like gallic acid, vitamin C, trolox etc. eliminate radicals generated in 

the cytosolic cellular compartment, while hydrophobic antioxidants like vitamin E 

(tocopherol), β-carotene, etc. reduce lipid peroxidation. As such, antioxidants can 

modulate the redox state of the cell by controlling the levels of ROS and RNS [200]. 

Modulation of this redox state can induce various cell responses like cell proliferation, 

differentiation, inflammation, apoptosis, etc. [32-35]. Despite this control, of the tools 

available for designing biomaterials to modulate cellular/tissue behavior (e.g. growth 

factor release, cytokine/drug release, structural cues), redox status remains an 

underdeveloped yet exciting mechanism for controlling cellular response to biomaterials. 

As such, a knowledge of which chemical targets are affected can provide insight into 

which settings an oxidation sensitive biomaterial is most useful.  

As described in the previous chapter, we had synthesized poly(trolox ester), a 

biodegradable polymer of trolox that upon degradation results in release of active 

antioxidant trolox [256]. Trolox [ (+)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-

carboxylic acid ], a synthetic and water-soluble analogue of α-tocopherol (Vitamin E), 

has been shown to have antioxidant protective effect against oxidative stress injury [35, 

279-281]. In this work, we report that poly(trolox ester) provides protection against 
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cellular oxidative stress in an in vitro model where cobalt nanoparticles were used to 

induce cellular oxidative stress. However, the free antioxidant, trolox, is known to 

possess a concentration dependent antioxidant and pro-oxidant effect [282-284]. In the 

current study, it was found that the toxicity of trolox resulting from its pro-oxidant effect 

can be reduced by the slow release of trolox through biodegradation of poly(trolox ester). 

Further, it was found that the method of delivery altered what chemical target was 

protected from oxidation. Specifically, there was a dose-dependent suppression of protein 

oxidation (as monitored by protein carbonyl formation) for poly(trolox ester) 

nanoparticles and not free soluble trolox. This work details the importance of oxidized 

product analysis and highlights the advantages that the mechanism of delivery can have 

upon the therapeutic response. This result emphasizes the unique potential for antioxidant 

polymers like poly(trolox ester) in a variety of biomedical applications, including wound 

healing, improving implant response and tissue engineering applications. 

5.2 Antioxidant Mechanism of Trolox – Reactions of Trolox with Free Radicals 

While proposing to use trolox as a scavenger of biological oxidants, it is 

necessary to know their kinetics of scavenging which would determine their scavenging 

efficiency. Even though scavenging kinetics are much slower compared to enzymatic 

degradation of oxidants, they are fast enough to provide protection of biologically 

sensitive molecules. This section describes mechanism and kinetics of scavenging of 

biological oxidants by trolox. Except for phytyl chain in Vitamin E, trolox and Vit E are 

similar and hence their reactions with the free radicals are similar. 
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When small antioxidant molecules react with ROS, there is a transfer of the 

radical with the formation of less-reactive antioxidant-derived radical as shown below in 

reaction (1).  

AH + R
.
  A

.
 + RH (1) 

The antioxidant-derived radical is less reactive and has a life time longer than that of the 

oxidant initially scavenged. The reduction potentials of oxidants and antioxidants indicate 

stability of their radicals, where a higher reduction indicates a less stable radical and vice 

versa (Table 5-1) [285]. Trolox has a reduction potential lower than several biological 

free radicals and can be used as a potential antioxidant against these radicals. 

Reactions of trolox with ROS and RNS are summarized in Figure 5-1. Trolox is 

susceptible to OH. attack at various sites. Either, abstraction of phenolic hydrogen as 

shown in reaction (2) or addition to the phenolic ring to form an OH. adduct, as shown in 

reaction (3) and (5). OH. adduct then yields phenoxyl radical (TxO.) by elimination of 

water molecule (reaction (4) and (6)), which is a acid/base-catalyzed process. Reaction 

(7) represents overall formation of TxO. with a rate constant k7 determined as 6.9 x 109 

dm3/ mol/s [262]. 

 Pulse radiolysis studies of the reaction of trolox with O2
.- indicate that trolox does 

not react with superoxide anion [261, 262]. However, electron spin resonance studies 

have shown that trolox can be oxidized by O2
.- (reaction (8)), although in these studies, 

involvement of H2O2, protonated form of O2.-, is a possibility. The reaction rate of k8 = 

1.7 x 104 dm3/ mol/s has been reported [262]. Also, it has been reported that superoxide 

anion can react with the trolox phenoxyl radical by the reaction (9). The  
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Table 5-1 One-electron Reduction Potentials of Some Oxidants and 
Antioxidants. 

 

  All listed potentials were obtained at pH 7[285]. 

Species Redox Couple E0 (mV) 
Hydroxyl radical, OH. H+ / H2O 2310 
Aliphatic alkoxyl radical, LO.  H+ / LOH 1600 
Peroxynitrite, ONOO- ONOOH / NO. 1400 
Alkyl peroxyl radical, LOO. H+ / LOOH 1000 
Polyunsaturated fatty acid radical, L.  H+ / LH 600 
α-tocopheroxyl radical, T-O. H+ / T-OH 500 
Trolox radical, T-O. H+ / T-OH 480 
H2O2 H+ / H2O,OH. 320 
Ascorbate radical, Asc. H+ / Ascorbate monoanion 282 
O2

.- O2 / O2
.- -330 
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Figure 5-1. Reactions of Trolox with ROS and RNS. 

(Reactions 2-7) Reactions of trolox with hydroxyl radical. (2) 
Hydrogen abstraction from phenolic group to form phenoxyl radical. (3) & 
(5) Addition of OH. to phenolic ring to form a OH. adduct. (4) & (6) OH. 
adduct further forms phenoxyl radical by elimination of water molecule. 
(7) Represents the overall formation of phenoxyl radical under a range of 
pH.  Reactions (3) and (4) represent reactions at neutral pH, whereas 
reactions (5) and (6) represent reactions at basic pH. TxOH : Trolox, TxO. 
: Trolox phenoxyl radical, TxOH(OH). : OH. adduct with Tx 
 
(Reactions 8 and 9) Reactions of trolox with O2

.- 

 

(Reactions 10-12) Reactions of trolox with RNS. TxOH/TxO-: Trolox in 
protonated and deprotonated form, ONOOH/ONOO-: peroxynitrite in 
protonated and deprotonated form, NO2: Nitrite radical, TxO.: Trolox 
phenoxyl radical  
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reaction rate k9 for reaction (9) has been reported as (4.5 + 0.5) x 108 M-1.s-1 [261]. 

Reaction (9) can be seen as a reaction for scavenging O2.- as well as for regeneration of 

TxOH. 

 Reactions of trolox with reactive nitrogen species (RNS) like ONOO- and NO2 are 

shown at the bottom of Figure 5-1. Trolox can undergo both one electron and two 

electron oxidation reactions depending on the concentration of peroxynitrite present. All 

the reaction rates depend on pH of solution due to prototropic equilibria of both trolox 

and peroxynitrite. In the range of pH 5.9 – 11, k10 and k12 have been reported as 8.3 – 3.4 

x 104 and 6.4 – 1.6 x 103 M-1.s-1 respectively. At neutral pH, rate constant k11 has been 

reported to be < 105 M-1.s-1 [263].  

Pro-oxidant effects of Vitamin E, Vitamin C and trolox have been reported 

previously [283, 286, 287], where antioxidant radicals react with low density lipoproteins 

(LDL), resulting in further generation of lipid radicals. It was observed that trolox 

behaves like a prooxidant only when radicals were generated using metal ions like Cu2+ 

or Cr(VI). Many of these transient metal ions are present in vivo. Trolox always acts like 

an antioxidant when peroxyl radicals were generated. It can be argued that, in presence of 

metal ions, trolox acts to reduce metal ions leading to excess generation of trolox 

phenoxyl radical. In absence of metal ions and oxygen, trolox phenoxyl radical undergoes 

a disproportionation reaction and a associated intramolecular cyclization (Figure 5-2) at 

a significant rate [288]. Vitamin E acted as a prooxidant only under high concentrations 

and exerted a better antioxidant effect at low concentrations [289]. In absence of oxygen, 

Vitamin E phenoxyl radical undergoes dimerization reaction [290]. Therefore,  
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Figure 5-2. Decay Reactions of Trolox Phenoxyl Radical [288].  

TxO- disproportionates by a second-order, pH dependent process to give 
trolox and a unstable ketodiene intermediate. In a second reaction, 
ketodiene intermediate undergoes a slow pH dependent hydrolysis to form 
trolox quinone. The disproportionation reaction rate constant ranges from 
109 – 104 M-1.s-1 and decreases with increase in pH and maximum decrease 
occurs between pH 2- 9. The reaction rate constant of intermediate 
decomposition ranges between 0.9 – 0.02 M-1.s-1 in a pH range of 2 – 10 
and it increases with pH [288]. 
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antioxidant or prooxidant capacity of both trolox and Vitamin E depends on their 

concentrations and physiological conditions. 

5.3 Materials and Methods 

5.3.1 Materials 

All reagents were used as received without any further purification. (+)-6-

Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), 3-(4,5-Dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and Pluronic F-68 were 

purchased from Sigma-Aldrich (St. Louis, MO). 2’,7’-dichlorodihydrofluorescein 

diacetate (DCF-DA) and Live/Dead® cell viability assay were purchased from Invitrogen 

(Carlsbad, CA). All solvents were either obtained from Sigma-Aldrich or Fisher 

Scientific. Anti-nitrotyrosine antibody, Anti-dinitrophenylhydrazine (DNPH) protein 

antibody and HNE anti-body were purchased from Intergen (Purchase, NY) and 

Millipore (Billerica, MA). 

5.3.2 Poly(trolox ester) Nanoparticle Formulation 

PTx-1000 and PTx-2500 nanoparticles were formulated as previously described 

[256]. Briefly, polymer solution in acetone (10 mg/mL PTx-1000 and 2 mg/mL PTx-

2500) was added to a pluronic F-68 solution in PBS while stirring. The resulting 

nanoparticle solution was left open overnight under stirring conditions to allow 

evaporation of the acetone. To remove excess surfactant, the nanoparticle suspension was 

centrifuged at 22000 rpm for 2 hrs. Supernatant was discarded and the pellet was 

resuspended in 40 mL phosphate buffered saline (PBS). Centrifugation was repeated two 

more times and cell media was used for final resuspension of the pellet. Nanoparticle size 



 

84 
 

was measured using dynamic light scattering on a Malvern Zetasizer Nano 

(Westborough, MA). Nanoparticles free of excess surfactant and of size 180-200 nm 

were used for all the studies. 

5.3.3 In Vitro Cell Protection Against Oxidative Stress 

Human leukemic monocyte lymphoma cells (U937) were obtained from 

American Type Culture Collection (ATCC) (Rockville, MD) and cultured in RPMI 1640 

medium (Mediatech Inc., Manassas, VA) supplemented with 10% fetal bovine serum and 

penicillin/streptomycin. 96 well microplate was seeded with U937 cells at a seeding 

density of 70000 cells/well and cultured overnight.  DCF-DA at a concentration of 5 µM 

was added and one hour later, polymer nanoparticles were added. Another hour later, 

oxidative stress was induced in the cells by adding cobalt nanoparticles (Nano-Co). 12 

hrs later, fluorescence was measured from top at an excitation wavelength of 485 nm and 

emission wavelength of 528 nm using multi-detection microplate reader. Percent 

protection from injury by the antioxidant polymer was calculated by the following 

equation. 

controlinjured

sampleinjured

ceFluorescenceFluorescen
ceFluorescenceFluorescen

protection
−
−

=%  

5.3.4 Cell Line 

Human umbilical vein endothelial cells (HUVECs) were purchased from Lonza. 

Cells were cultured in EGM-2 medium with 2% fetal bovine serum at 37 0C in a 

humidified atmosphere of 5% CO2 (v/v). All the studies with HUVECs have been 

conducted with cells from passage 3 to 5 and at 90% confluency.  
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5.3.5 Measuring Oxidative Stress in Cells Using DCF Fluorescence 

HUVECs were seeded onto a 96-well plate at a density of 25000 cells/cm2 and 

incubated at 37 0C in a humidified atmosphere of 95% air and 5% CO2. After 24 h, 

medium in each well was replaced by 100 µL of treatment solution [trolox solution or 

poly(trolox ester) nanoparticle suspension in media] and 100 µL of 10 µM DCF-DA 

solution in media. Fluorescence was then measured at various time points using a bottom-

reading GENios Pro fluorescence spectrophotometer (Tecan, Switzerland) at excitation 

and emission wavelengths of 485 nm and 535 nm, respectively. Well plates were 

incubated at 37 0C throughout the study and briefly taken out of the incubator for 

fluorescence measurements at each time point. 

5.3.6 Cytotoxicity of Trolox, Poly(trolox ester) Nanoparticles and Nanoparticle 

Leachouts 

Cytotoxicity of trolox was determined using a standard MTT assay according to 

manufacturer’s protocol. Active reductase enzymes in the cell convert MTT into a 

colored formazan product which is then measured using UV spectrophotometry. 

HUVECs were seeded onto a 96-well plate at a density of 25000 cells/cm2. After 24 h, 

media in the wells was removed and replaced by trolox solution in cell media. Freshly 

prepared 250 mM trolox stock solution in DMSO was diluted in cell media to prepare 

trolox solutions. Another 24 h later, trolox solution was removed and cells were washed 

twice with 200 µL PBS. 200 µL of 0.5 mg/mL MTT solution in PBS was then added to 

each well and the 96-well plate was incubated at 37 0C. After 5 h, MTT solution was 

gently removed from the wells and 100 µL of DMSO was added to dissolve the formazan 
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product. The absorbance intensity was recorded at 570 nm for formazan and at 690 nm 

for background using a Cary-50 Bio UV-Visible spectrophotometer equipped with a Cary 

50 MPR microplate reader (Varian, Santa Clara, CA). 

Toxicity of poly(trolox ester) nanoparticles to  mouse pulmonary microvascular 

endothelial cells (MPMVEC) as measured by MTS assay (modification of MTT assay) 

has been reported previously [256]. Hence, in this study, cytotoxicity of PTx-1000 and 

PTx-2500 nanoparticles was determined using Live/Dead Viability Assay (Molecular 

Probes) according to manufacturer’s protocol. HUVECs were seeded onto a 24-well plate 

at a cell density of 25000 cells/cm2. After 24 h, cell media was replaced with 0.5 mL of 

nanoparticle suspensions in cell media. After another 24 h, nanoparticle solution was 

removed from each well and cells were washed twice with 2 mL of PBS. Cells were then 

stained with two-color fluorescence Live/Dead assay. They were then imaged via 

fluorescence microscopy where the live cells fluoresced green and the dead cells 

fluoresced red. The live and dead cells were counted using NIS-Elements software 

(Nikon Instruments, Melville, NY). The cell viability was then calculated as the number 

of live cells over the total number of live and dead cells. 

To study the cytotoxicity of nanoparticle leachouts, HUVECs were seeded onto a 

24-well plate at a cell density of 25000 cells/cm2. After 24 h, media was taken out of each 

well. Cell media (250 µL) was added to the well and a porous insert (NuncTM cell culture 

insert with 0.02 µm pore size AnaporeTM membrane) was placed in each well. Another 

250 µL of media or nanoparticle suspension was added to the insert. Cell viability was 

measured after 24 h using Live/Dead assay as described above. 
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5.3.7 Measurement of Protein Carbonyls, 3-nitrotyrosine (3NT) and Protein 

Bound 4-hydroxy-2-trans-nonenal (HNE) as Markers of Oxidative Stress  

HUVECs were seeded on to a 6-well plate at a cell density of 25000 cells/cm2. 24 

h later, cell media from the well was replaced by 2 mL of treatment solution in media. 

Twenty-four h after the treatment, solution above the cells was removed and cells were 

washed twice with chilled PBS. Cells were then scraped and centrifuged. Cell pellet was 

then lysed using a cell lysis buffer, the latter prepared by mixing RIPA buffer (pH = 8.0) 

and protease inhibitor cocktail (Amresco, Solon, OH) using manufacturer’s protocol. 

Levels of protein carbonyl, 3NT and HNE were measured by slot blot technique 

[291, 292]. Briefly, for protein carbonyl levels, each sample was derivatized by 

incubating with 5µL of 12% SDS and 10mM solution of 2,4-dinitrophenylhydrazine 

(DNPH) in 2N HCl for 20 min at room temp followed by a 7.5 µL addition of a 

neutralization solution (2M Tris in 30% glycerol).  The sample was then used for slot blot 

analysis. Whereas, for 3NT and protein bound HNE levels, samples were denatured in 

5µL of 12% SDS solution and Laemmli sample buffer. Specific antibodies were used 

against protein carbonyl, 3NT or HNE protein modifications and colorimetric technique 

was used for detection as described previously [291, 292]. 

Statistical analysis 

Treatment comparisons were made using analysis of variance (ANOVA) followed 

by post hoc Student’s t-test. Contrasts were considered significantly different at P < 0.05. 

Data are reported as mean + standard errors. 
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5.4 Results 

5.4.1 Nano-Co Induced Oxidative Stress Injury and Protection from Poly(trolox 

ester) Nanoparticles 

To measure the effect of Nano-CO treatment on oxidative stress levels in U937 

cells, DCF fluorescence was measured as percent of control (0 µg/ml Nano-Co) (Figure 

5-3). DCF fluorescence increased with increase in Nano-Co concentration and for Nano-

Co concentrations of 2.5 and 5 µg/ml, DCF fluorescence was maximum at 12 h, after 

which DCF fluorescence started decreasing.  

To study the protective effect of poly(trolox ester) nanoparticles, human U937 

monocytes were exposed to PTx-1000 (180 nm) and PTx-2500 nanoparticles (215 nm) 1 

hr prior to inducing oxidative stress by exposure to Nano-Co particles. PTx-1000 and 

PTx-2500 nanoparticles at concentrations of 160 and 320 µg/ml, where they have no 

severe cytotoxic effect, were studied. Oxidative stress was measured by measuring DCF 

fluorescence after treatment with Nano-Co  (Figure 5-4). Without the addition of Nano-

Co to the cells, incubation of PTx-1000 and PTx-2500 nanoparticles with the cells for 12 

hrs reduced the background oxidative stress in the cells by 40% and 25% respectively. 

Pre-incubation of cells with poly(trolox ester) nanoparticles prior to adding Nano-Co, 

suppressed the oxidative stress in the cells by 40-50% in case of PTx-1000 nanoparticles 

and 25-40% in case of PTx-2500 nanoparticles. 
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Figure 5-3. Oxidative Stress Injury Model.  

U937 cells were treated with Nano-Co at concentrations of 2.5 and 5 µg 
ml-1. DCF fluorescence, a marker of oxidative stress in the cells, was 
measured at different times. For both the concentrations of Nano-Co, cells 
experience maximum oxidative stress after 12 hrs of Nano-Co addition. 
(M + SD, n=3). * represents significant difference from 6h and 24h data 
points with p<0.05. 
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Figure 5-4. Cell Protection Against Oxidative Stress by Poly(trolox ester) 
Nanoparticles. 

  
One hour after adding DCF to the U937 cells, PTx-1000 nanoparticles (top left) 
and PTx-2500 nanoparticles (top right) were added to the cells at concentrations 
of 160 and 320 µg ml-1 and PLA nanoparticles (bottom left) were added to the 
cells at concentrations of 500 and 1000 µg ml-1. Another hour later Nano-Co was 
added at concentrations of 2.5 and 5 µg ml-1. 12 hrs after the addition of Nano-
Co, DCF fluorescence was measured. % Protection of cells from the oxidative 
stress injury using PTx-1000 and PTx-2500 nanoparticles at different 
concentrations  (bottom right).  (M + SD, n=3). * represents significant 
difference from respective control values with p<0.05. 
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5.4.2 Effect of Trolox and Poly(trolox ester) Nanoparticles on Background 

Oxidative Stress in the Cells 

Effect of trolox on the oxidative stress levels in the cells was measured using DCF 

fluorescence (used as a marker of oxidative stress) in HUVECs (Fig. 1). Fluorescence 

intensities as percent of control at 27 h time are compared in Figure 5-5. Trolox at lower 

concentrations suppresses oxidative stress in the cells as indicated by reduced 

fluorescence as compared to the control. At concentrations of trolox from 50 to 125 

µg/mL, the DCF fluorescence in the cells is lower than control, but higher as compared to 

fluorescence at 25 µg/mL. DCF fluorescence increases with increasing trolox 

concentration in the range of 50 to 1000 µg/mL, where the fluorescence at 1000 µg/mL is 

almost eight times that of the control (0 ug/ml trolox). 

In a similar study, PTx-1000 and PTx-2500 nanoparticles followed by DCF-DA 

solution were added to HUVECs and fluorescence was measured after 27 h (Figure 5-6). 

In the case of PTx-1000 nanoparticles, DCF fluorescence at 27 h decreases with 

increasing nanoparticle concentration up to 1000 µg/mL. At concentrations of 2000 and 

4000 µg/mL of PTx-1000 nanoparticles, an increase in the fluorescence is observed 

compared to the fluorescence at 1000 µg/ml. DCF fluorescence is increasingly 

suppressed with an increase in PTx-2500 nanoparticle concentration. 
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Figure 5-5. Effect of Trolox on Oxidative Stress Level in HUVECs. 

Trolox solution in HUVEC media was added at different concentrations to 
HUVECs cultured in a 96-well plate. Fluorescence was measured after 27 
h using a bottom reading fluorescence spectrophotometer set at 485/535 
nm excitation and emission. (n=5, M+SE) 
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Figure 5-6. Effect of Poly(trolox ester) Nanoparticles on Oxidative Stress in 
HUVECs.  

 

PTx-1000 (grey) and PTx-2500 (black) nanoparticles suspended in EGM-
2 media at different concentrations were added to HUVECs cultured in 
96-well plate and fluorescence measured after 27 h is compared with 
control. ANOVA analysis of data indicates that the trends are significant 
for both PTx-1000 and PTx-2500 nanoparticles. (n=5, M+SE) 
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5.4.3 Cytotoxicity of Trolox, Poly(trolox ester) Nanoparticles and Their Leachouts  

HUVECs were treated with trolox solutions of different concentrations for 24 h 

and the cell viability was measured using MTT assay (Figure 5-7). Trolox at 

concentrations up to 500 µg/mL does not have any significant toxicity as compared to the 

control. However, cell viability at 1000 µg/mL significantly decreased to just above 70%. 

To study the cytotoxicity of poly(trolox ester) nanoparticles,  PTx-1000 and PTx-

2500 nanoparticles were added to HUVECs at different concentrations and cell viability 

was measured after 24 h using Live/Dead assay (Figure 5-8). In the concentration range 

studied here, cell viability did not change significantly as compared to control.    

In order to study the cytotoxicity of poly(trolox ester) nanoparticle leachouts, 

poly(trolox ester) nanoparticles suspended at concentration of 1 mg/mL were physically 

separated from HUVECs using a porous membrane support with pore size of 20 nm. 

Viability of the HUVECs exposed to poly(trolox ester) leachouts did not change 

significantly as compared to control (Figure 5-9). 
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Figure 5-7. Cytotoxicity of Trolox.  

HUVECs were treated with trolox at different concentrations for 24 h. Cell 
viability was measured using MTT assay. Trolox has significant (*) 
cytotoxicity only at 1000 µg/mL concentration (p < 0.05). (n=5, M+SE) 
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Figure 5-8. Cytotoxicity of Poly(trolox ester) Nanoparticles.  

HUVECs were treated with PTx-1000 nanoparticles (grey) and PTx-2500 
nanoparticles (black) for 24 h. Cell viability was measured using the 
Live/Dead assay. One-way ANOVA was performed and the trends were 
insignificant with p < 0.05. PTx-1000 and PTx-2500 nanoparticles do not 
have any significant toxicity to HUVECs. (n=3, M+SE) 
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(A) 

 

(B) 

Figure 5-9. Cytotoxicity of Poly(trolox ester) Leachouts. 

(A) Schematic showing nanoparticles separated from cells by porous 
membrane 

(B) HUVECs were treated with PTx-1000 and PTx-2500 nanoparticle 
leachouts for 24 h. Poly(trolox ester) nanoparticles at concentration of 
1 mg/mL were suspended in EGM-2 media on a porous insert above 
confluent HUVECs cultured in 24-well plates. Cell viability was 
measured using the Live/Dead assay. (n=3, M+SE) 
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5.4.4 Oxidized Cellular Proteins (protein carbonyl, 3-NT and HNE levels) as 

Markers of Oxidative Stress  

HUVECs were exposed to free trolox, PTx-1000 and PTx-2500 nanoparticles for 

24 h. After three washes with phosphate buffered saline solution, cells were lysed and 

cellular protein was collected as described in methods section. Protein samples were then 

analyzed for protein carbonyl (Figure 5-10A), 3-NT (Figure 5-10B) and protein-bound 

HNE (Figure 5-10C) levels. Treatment of HUVECs with trolox did not show any 

significant difference from control in any of the three markers.  Protein carbonyl content 

decreased as compared to control for cells treated with PTx-1000 and PTx-2500 

nanoparticles at concentrations of 1 mg/ml. At lower concentrations (0.1 mg/ml) of PTx-

1000 and PTx-2500 nanoparticles, there was no significant change in protein carbonyl 

content. Nanoparticle treatments did not show any significant difference from control for 

3-NT and protein-bound HNE levels, though a non-significant trend in 3-NT levels 

suggests that there were two measures of oxidative stress which were observed to be 

lower for the PTx-1000 nanoparticles. 
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Figure 5-10. Monitoring Oxidative Stress Levels in HUVECs.  

Cells were treated with free trolox, PTx-1000 and PTx-2500 at two 
different concentrations for 24 h. Cells were then lysed and collected 
protein was analyzed for a.) protein carbonyl content, b.) 3-NT levels and 
c.) protein-bound HNE levels using immunochemical methods. One-way 
ANOVA was performed on all the data sets. The trend is significant only 
for the protein carbonyl levels, but not for 3-NT and HNE levels. (n=3, 
M+SE) 
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5.5 Discussion 

 In vitro degradation studies of poly(trolox ester) nanoparticles had found that 

degradation products of PTx-1000 and PTx-2500 nanoparticles had radical scavenging 

activity. In order to confirm this result, PTx-1000 and PTx-2500 nanoparticles were 

tested in an in vitro oxidative stress-based cell injury model. It is known that exposure of 

cells to metal and metal oxide nanoparticles could induce a range of biological responses 

including cytotoxicity and inflammation, often mediated by oxidative stress mechanisms 

[293-295]. In this study, oxidative stress injury was induced in the monocytes with 

exposure to cobalt nanoparticles (Nano-Co). It has been shown previously that addition 

of Nano-Co leads to ROS generation in U937 cells [294]. A time-dependent and dose-

dependent effect of only Nano-Co was studied to find the time and concentration at 

which maximum ROS generation was observed. DCF fluorescence which is indicative of 

oxidative stress injury in the cells, is maximum at 12 hrs after exposure to Nano-Co and 

increases with increase in Nano-Co concentration (Figure 5-3). Therefore to study the 

extent of protection provided by poly(trolox ester) nanoparticles, oxidative stress in cells 

was monitored 12 hrs after induction of injury. 

 Poly(trolox ester) nanoparticles suppressed the Nano-Co induced oxidative stress 

in the cells by 40-50% in case of PTx-1000 nanoparticles and 25-40% in case of PTx-

2500 nanoparticles (Figure 5-4). It is hypothesized that lower degree of protection by 

PTx-2500 nanoparticles can be a result of slower release of trolox from PTx-2500 

nanoparticles. Also, protection provided by poly(trolox ester) nanoparticles was 

independent of the dose of nanoparticles. This could be explained by the inability of 

trolox monomer to completely suppress the oxidative damage caused by Nano-Co injury. 
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Dose-dependent effect of trolox monomer in the presence of Nano-Co injury shows that 

trolox at a concentration of 50 µg/ml  suppressed DCF fluorescence by 45% (Figure 5-

11). In a control set of experiments, poly(lactic acid) (PLA) nanoparticles with an 

average size of 280 nm were added to the cells prior to adding Nano-Co particles and 

PLA nanoparticles were unable to suppress oxidative stress in the cells (Figure 5-4). 

PLA nanoparticles were formulated using similar single-step emulsion technique as used 

for poly(trolox ester) nanoparticle formulation. 

It was observed that, without the addition of Nano-Co to the cells, incubation of 

trolox, PTx-1000 and PTx-2500 nanoparticles with the cells for 12 hrs reduced the 

background oxidative stress in the cells by 50%, 40% and 25% respectively (Figure 5-4 

and Figure 5-11). While further studying this effect of trolox and poly(trolox ester) 

nanoparticles on background oxidative stress in the HUVECs, it was found that trolox has 

a concentration dependant antioxidant and pro-oxidant effect (Figure 5-5).      

This concentration dependent biphasic behavior of antioxidants in both in vitro 

and in vivo settings has been illustrated in the literature [249, 250, 280, 282-284, 296-

298]. In a healthy cell/tissue, there is a balance between the rate at which ROS and RNS 

are generated and the rates at which antioxidant defense mechanisms terminate the 

reactive species. Any change in the antioxidant reservoir concentration or rate of 

generation of free radicals can change the redox state of the cell/tissue. A change in redox 

state can induce different cellular responses ranging from cellular apoptosis to cell 

differentiation [34, 299, 300]. This two-way antioxidant and pro-oxidant effect can be 

used in tissue engineering applications to control the oxidative stress level in the cells and  
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Figure 5-11. Cell Protection Against Oxidative Stress by Trolox Monomer.   

One hour after adding DCF to the U937 cells, trolox was added to the cells 
at concentrations of 6 – 50 µg/ml. Another hour later Nano-Co was added 
at concentrations of 2.5 and 5 µg ml-1. 12 hrs after the addition of Nano-
Co, DCF fluorescence was measured. (M + SD, n=3). 
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thereby modulate cell response. Polymers composed of antioxidants linked through 

hydrolysable bonds provide a means of controlling release of these antioxidants and 

thereby affect the redox state of the cell. 

Phenolic antioxidants (A-OH) like trolox can react with and terminate free radical 

species (R.) resulting in a stable phenoxyl radical (A-O.). In a normal cell/tissue, various 

small molecule antioxidants exert antioxidant effects synergistically where other 

antioxidants with reduction potential lower than A-O. can regenerate A-OH. The 

mechanisms by which antioxidants can act as pro-oxidants vary depending on that 

particular antioxidant and its environment. Some of the mechanisms that could result in 

pro-oxidant effects are depletion of glutathione [249, 297], the presence of reduced 

transition metal (Fe, Cu) ions [250, 296, 301], blocking several biomolecular targets like 

kinases and other proteins,  etc. Even though the biphasic effect of trolox represented by 

the U-shaped bar graph in Figure 5-5 has been reported in the literature [284, 302-304], 

the exact mechanism for its pro-oxidant activity is not known. Trolox (T-OH) can react 

with a free radical (R.) to from trolox phenoxyl radical (T-O.) and R-H. The resulting T-

O.  is more stable as compared to R. and can trap another free radical to give a trolox 

quinone  [261, 263, 305]. If trolox is present in excess as compared to the rate of 

generation of free radicals, the system will have equivalent amount of trolox converted 

into trolox phenoxyl radical which can in turn oxidize species that have lower redox 

potential.  

DCF fluorescence is a widely used model to study oxidative stress injury. DCF-

DA (2’,7’-dichlorodihydrofluorescin diacetate), a non-fluorescent ester form of the dye, 

is taken up by the cells and cleaved to non-fluorescent DCFH (2’,7’-
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dichlorodihydrofluorescin) by active esterases in the cell. DCFH can then react with free 

radicals to result in fluorescent DCF (2’,7’-dichlorofluorescin) a marker of oxidative 

stress in the cells. DCF fluorescence data in Figure 5-5 suggest that the critical trolox 

concentration for HUVECs at which trolox starts showing pro-oxidant effects is 

approximately between 25 to 50 µg/mL. 

Even though the DCF fluorescence model is simple and widely used, it is an 

indirect and general marker of overall oxidative stress in the cell and does not provide 

information regarding which specific oxidative species are responsible for oxidation of 

DCFH [306-309], nor what cellular components are at risk of damage. Indeed, DCFH can 

not only be oxidized by variety of oxidative species like ONOO-, OH., lipid peroxides, 

thiol radicals, etc., but could also be oxidized by antioxidant radicals (T-O.). DCF 

fluorescence data should therefore be interpreted with caution. As compared to the DCF 

fluorescence, markers of oxidative stress like protein carbonyl, 3NT and protein-bound 

HNE are direct evidence of damage occurred to proteins, enzymes and lipids at cellular 

levels and are quantitative. Also, 3-NT and protein-bound HNE are markers specific for 

protein damage by RNS and lipid peroxidation, respectively. Generalized protein 

oxidation can be detected through monitoring the extent of protein carbonyl content 

contained within the cell, with an increase indicating an elevation in protein oxidation. 

Proteins obtained after treatment of HUVECs with free trolox, PTx-1000 and PTx-2500 

nanoparticles were analyzed for their protein carbonyl, 3-NT and protein-bound HNE 

content. Both PTx-1000 and PTx-2500 nanoparticles at 1 mg/mL showed a significant 

difference in protein carbonyl content, suggesting a unique anti-oxidant protective effect. 

Neither antioxidant nor pro-oxidant effect of free trolox was observed using any of the 
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three markers, suggesting that the DCF fluorescence increase observed may be a “false 

positive”, further emphasizing the importance of secondary validation when monitoring 

cellular oxidative stress.  

The advantage of having antioxidant polymers like poly(trolox ester) is that they 

can be used to deliver antioxidants in gradual and controlled manner as compared to 

initial pulse dose of antioxidants. Our previous work on poly(trolox ester) suggests the 

polymer undergoes enzymatic degradation to release active antioxidants [256]. As shown 

in Figure 5-6, treatment of HUVECs with PTx-1000 and PTx-2500 nanoparticles 

resulted in suppression of DCF fluorescence in a concentration dependent manner. To 

rule out the possibility of this suppression of fluorescence as result of cell death, 

cytotoxicity of trolox monomer, PTx-1000 and PTx-2500 nanoparticles was determined. 

As shown in Figure 5-7, trolox has significant cytotoxicity at concentration of 1000 

µg/ml. While toxicity of trolox at higher concentrations was thought to be a result of its 

pro-oxidant effect as observed by DCF fluorescence studies, the lack of oxidative 

products (Figure 5-10) suggest an alternate mechanism for this cell death.  

PTx-1000 and PTx-2500 have very little to no cytotoxicity to HUVECs as 

indicated by the cell viability data in Figure 5-8. This study conforms with our previous 

findings regarding poly(trolox ester) nanoparticles having very little to no cytotoxicity to 

mouse pulmonary microvascular endothelial cells (MPMVEC), where cell viability was 

measured using the MTS assay [256]. However, cytotoxicity could also result from 

degradation products or the leachouts from poly(trolox ester) nanoparticles. To determine 

cytotoxicity of leachouts, poly(trolox ester) nanoparticles were suspended in a porous 

support above a confluent layer of HUVECs. The porous support (Nunc cell culture 
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inserts, 0.02 µm Anapore membrane) had a pore size of ~ 20 nm which would prevent 

nanoparticles of 180-200 nm from interacting with cells. However, water soluble 

leachouts from nanoparticles can diffuse through the membrane and interact with the 

cells. Poly(trolox ester) nanoparticle leachouts do not have any significant cytotoxicity as 

shown in Figure 5-9. Insignificant cytotoxicity of poly(trolox ester) nanoparticles and 

leachouts suggests that the suppression of DCF fluorescence by PTx-1000 and PTx-2500 

treatment is a result of the antioxidant effect. The antioxidant effect of poly(trolox ester) 

was also verified by the protein carbonyl data, where PTx-1000 and PTx-2500 

nanoparticles at higher concentrations suppressed protein carbonyl content in HUVECs. 

PTx-1000 nanoparticles suppress DCF fluorescence more as compared to PTx-2500 

nanoparticles. This conceivably can result from a difference in the degradation rate of the 

polymers and hence trolox being released at difference rates. PTx-1000 is more 

hydrophilic as compared to PTx-2500 and would degrade faster due to its lower 

molecular weight. A similar trend was observed where PTx-1000 nanoparticles provided 

more protection from oxidative stress injury in a in vitro model as compared to PTx-2500 

nanoparticles (Figure 5-4). Increased DCF fluorescence at higher PTx-1000 nanoparticle 

concentrations of 2000 and 4000 µg/mL indicates the pro-oxidant effect of PTx-1000. 

Biphasic DCF monitored antioxidant and pro-oxidant behavior of trolox could be 

recreated using PTx-1000 nanoparticles, where PTx-1000 acts as a pro-oxidant at very 

high concentrations. 

5.6 Conclusions 

Poly(trolox ester) has very little to no cytotoxicity and suppresses almost 50% of 

oxidative stress in the cells induced by nanometals. Also, poly(trolox ester) nanoparticles 
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affect the redox state of the cells as confirmed by DCF fluorescence  and protein carbonyl 

measurements in HUVECs. The polymer form of trolox possessed a unique ability to 

suppress protein oxidation not seen with the free trolox samples, emphasizing the 

importance of delivery route in modulating the potential therapeutic effect of antioxidant 

drugs. While DCF demonstrated a biphasic antioxidant/pro-oxidant effect of trolox, 

monitored cellular oxidative stress products did not exhibit this effect.  Because of the 

slow release of trolox through its biodegradation, poly(trolox ester) is an effective means 

of modulating cellular redox states. This capability has far reaching implications in the 

use of antioxidant polymers as a means of controlling cell status for a variety of 

biomedical, pharmaceutical and tissue engineering applications. 
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Chapter 6. A Single-step Polymerization Method for Poly(β-amino ester) 
Biodegradable Hydrogels and Their Characterization 

Chapter partly based on the research articles published in : 

D. Biswal, P.P. Wattamwar

My contribution in this research article was to synthesize hydrogels,characterize 
swelling response of synthesized hydrogels in organic solvents and to determine 
mechanical properties of the gels. 

, T.D. Dziubla and J.Z. Hilt, “Poly(β-amino 
ester) Hydrogel Synthesis by Single Step Polymerization Method”, 
Polymer, 2011, 52, 5985-5992. 

P.P. Wattamwar

 

, D. Biswal, A. Lyvers, D. Cochran, J.Z. Hilt and T.D. Dziubla, 
“Synthesis and Characterization of Poly(antioxidant β-amino esters) for 
Controlled Release of Polyphenolic Antioxidants”, Acta Biomaterialia (to be 
Submitted) 

6.1 Introduction 

 As described in the previous chapters, poly(trolox ester) is capable of degrading 

and releasing trolox, resulting in the suppression of cellular oxidative stress. While this 

work is promising and serves as a antioxidant polymer proof-of-concept, poly(trolox 

ester) has its own set of limitations, which reduces enthusiasm for their use. Degradation 

of poly(trolox ester) by hydrolysis is very slow and it requires enzymatic degradation to 

see functional effects, allowing little to no control over the rate of polymer degradation. 

As the field of antioxidant polymers emerges, important questions like the choice of 

antioxidant and the rate at which antioxidants should be released from the polymer still 

need to be addressed. The answers to these questions will likely depend on the settings in 

which the antioxidant polymers are intended to be used. For example, acute oxidative 

stress injury like ischemia-repurfusion requires form of antioxidant polymer suitable for 

vascular delivery (nanoparticles) that releases antioxidants gradually over a short period 
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of time (few hours to days). Whereas chronic disorders like non-healing wounds or 

biomaterial-induced local inflammation require antioxidant polymers in form of 

scaffolds/films/coatings that release antioxidants locally over a period of few weeks to 

months. In order to address these questions, there is a strong need for a flexible polymer 

chemistry platform that can allow for studying the biological response to a biomaterial 

based upon the type of antioxidant, the release rate and method of exposure (e.g., coating, 

nanoparticle, implant). 

 Poly(β-amino esters) (PBAE), synthesized by a conjugate addition reaction of 

primary/secondary amines with diacrylates, are a class of biodegradable polymers and 

hydrogels that have hydrolytically cleavable ester groups and a strong pH-dependent 

degradation rate that has been used for triggered drug/protein release [310-319]. Several 

research groups have studied vast libraries of acrylate and amine monomers to tune 

mechanical and degradation properties of PBAE [320, 321]. Much of this work focused 

on PBAE hydrogels involving a two-step synthesis method: i.) synthesis of a PBAE 

macromer/oligomer with acrylate end groups, followed by ii.) free radical polymerization 

of PBAE macromers/oligomers to form a crosslinked PBAE hydrogel. PBAE hydrogels 

provide a platform whereby appropriate choice of acrylate monomer, amine monomer 

and the ratio of two monomers, hydrogel properties can be tuned and their effect on tissue 

engineering and biomaterial applications can be studied [315, 322]. However, the second 

step of free radical polymerization, which requires use of free radical initiators and 

accelerators, can cause cellular toxicity during in situ polymerization [323]. Further, due 

to the highly reactive nature of free radicals, free radical polymerization can often be 

inhibited in the presence of cosolutes (e.g. drugs, porogens, etc.) resulting in poor gel 
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formation [324, 325]. Moreover, we have observed in our lab that free radical 

polymerization in the presence of antioxidants (e.g. green tea extracts, vitamin E, etc.) 

does not result in crosslinked hydrogels, due to the free radical inhibiting effects of these 

antioxidants.      

In this chapter, a modified non-free-radical polymerization poly(β-amino ester) 

chemistry [326] is presented as a platform to synthesize antioxidant polymers with 

tunable properties. Reaction kinetics of PBAE synthesis along with effect of different 

monomers and the ratio of acrylates to amines on the degradation of PBAE have been 

studied in detail by Biswal et. al. [326]. In the same study, Dipti Biswal had carried out 

the experiments to study swelling of PBAE in different organic solvents and found that 

PBAE hydrogels undergo degradation in primary alcohols. My contribution to this 

research article was to apply the polymer-solvent interaction parameters to understand 

swelling behavior of PBAE hydrogels in different organic solvents. Also, to understand 

the ethanol-based degradation mechanism, I characterized the PBAE degradation 

products using FTIR and taking advantage of this particular characteristic, PBAE was 

conjugated with ascorbic acid post-synthesis.  

6.2 Materials and Methods 

6.2.1 Materials 

Poly(ethylene glycol) 400 diacrylate (PEG400DA) and diethylene glycol 

diacrylate (DEGDA) were purchased from Polysciences, Inc. Three primary diamines, 

4,7,10-Trioxa-1,13-tridecane diamine (TTD), 2,2’ (ethylenedioxy) bis ethylamine 

(EDBE), and Hexamethyldiamine (HMD) were obtained from Sigma Aldrich. Quercetin, 

curcumin, acryloyl chloride, triethylamine and 2,2’-azo-bis(2-aminopropane)-HCl 
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(AAPH) were all purchased from Sigma-Aldrich. 2’,7’-dichlorodihydrofluorescein 

diacetate (DCF-DA) was purchased from Invitrogen. All organic solvents were obtained 

from Sigma-Aldrich and Fisher Scientific and used as received.  

6.2.2 Synthesis of PBAE 

PBAE hydrogels were synthesized by reacting a diacrylate and a primary diamine 

at 50oC by a one step Michael addition reaction. In a typical experiment, the desired 

amount of diacrylate (PEG400DA and DEGDA) was mixed with THF solvent (50wt% 

with respect to total monomer). The primary diamine (TTD, EDBE and HMD) was added 

to this solution at a set molar ratio to the total diacrylate content.  Next, the solution was 

transferred to a glass plate assembly, and the synthesis was carried out overnight in an 

oven at 50oC. After reaction, the gels were washed in THF and dried. Different grades of 

PBAE hydrogels prepared by varying the molar ratio of total acrylate to amine reactive 

groups (RTAA) from 0.25 to 1.65 are reported in Table 6-1 [1 mole of diacrylate 

corresponds to 2 moles of acrylate reactive groups; 1 mole of primary diamine 

corresponds to total 4 moles of primary/secondary amine reactive groups].  

6.2.3 Swelling Response of PBAE 

The swelling properties of the resultant hydrogels were evaluated using dimethyl 

sulfoxide (DMSO), tetrahydrofuran (THF), dichloromethane (DCM) and ethyl acetate 

(EtOAc) at room temperature. The initial mass of the hydrogel discs were recorded (Wo), 

and then, the discs were placed in the corresponding solvents at room temperature. The 

discs were removed from the solvents at a given time, and their masses were recorded in 

swollen state (Ws). The same solvents were used throughout the swelling studies. The  
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Table 6-1. List of PBAE Hydrogels Synthesized at Varying RTAA. 

Diacrylate Diamine RTAA 
PEG400DA TTD 0.6 
PEG400DA EDBE 0.6 
PEG400DA HMD 0.6 
PEG400DA TTD 1.2 
PEG400DA TTD 1.65 

DEGDA HMD 0.6 
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swelling state of the gel was then characterized by mass swelling ratio as explained before [327]. 

6.2.4 Calculations for Polymer-Solvent Interaction Parameter 

Polymer-solvent interaction parameter was calculated as described by Brandrup 

and is a sum of enthalpic (χH) and entropic (χS) components (Equation 1) [328]. χH is 

related to the Hildebrand solubility parameter (δ) and χS was considered to be constant at 

0.34 (Equation 2). In Equation 2, Vs is molar volume of the solvent and δS and δP are 

solubility parameter values for solvent and polymer respectively. 

 

                  

   

Solubility parameters and the molar volumes of the solvents were obtained from 

Brandrup and are tabulated in Table 6-2, while values for polymers were calculated using 

the group contribution method as described by Brandrup et. al., where solubility 

parameter is the square root of cohesive energy density (Equation 3) [328, 329]. Values 

for cohesive energy and molar volume of different groups for polymers  were obtained 

and are tabulated in Table 6-3 [329]. 
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Table 6-2. Solubility Parameter Values of the Solvents. 

Solvents Solubility Parameter (δ)   

[(Cal/cm3)1/2] 

Molar Volume (Vm)  

(cm3/mol) 
DMSO 12.0 71.3 
DCM 9.7 63.9 
THF 9.1 79.9 

EtOAc 9.1 98.5 
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Table 6-3. Group Contributions of Ecoh and Vm [329] 

Group 
Ecohi (J/mol) 

Vmi (cm3/mol) 
Hayes 

Hoftyzer and 
Van Krevelen Fedors 

-CH2- 4150 4190 4940 16.1 
-O- 6830 6290 3350 3.8 

-COO- 14160 3410 18000 18 
-NH- - - 8370 4.5 
-N<  -  - 4190 -9 
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6.2.5 FTIR Characterization of PBAE Degradation in Ethanol 

PBAE hydrogels (PEG400DA-TTD, RTAA=0.6) were degraded completely in 

water and ethanol. Viscous liquid degradation products were isolated by removing 

solvents through vacuum drying. FTIR measurements of dry degradation products were 

obtained using a Digilab Stingray system consisting of a FTIR 7000e stepscan 

spectrometer (Varian Inc.).   

6.2.6 Conjugation of PBAE Hydrogels with Ascorbic Acid 

Prior to conjugation with ascorbic acid, PBAE hydrogels (~ 80 mg) (PEG400DA-

TTD, RTAA=1.2) were swollen overnight in DMSO. Swollen PBAE hydrogels were 

then transferred to 3 ml of 26.6 mg/ml ascorbic acid solution in DMSO and incubated at 

37 0C for 48 hrs. Final ratio of ascorbic acid added for conjugation was 100 wt% with 

respect to PBAE hydrogel. To remove the unconjugated ascorbic acid, hydrogels were 

incubated in 10 ml of blank DMSO for 12 hrs and this procedure was repeated two more 

times. Hydrogels were then washed with THF to remove DMSO. Hydrogels were then 

subjected to vacuum to remove residual solvents and to result ascorbic acid-conjugated 

PBAE (AA-PBAE). 

6.2.7 Release of ascorbic acid from PBAE hydrogels 

AA-PBAE were incubated in 10 ml of PBS at 37 0C. 1 ml of supernatant was 

removed at every time point. To prevent ascorbic acid oxidation in water, samples were 

frozen as soon as they were collected. Samples were analyzed using a Shimadzu 

Prominence LC-20 AB HPLC system installed with a dual-wavelength UV detector. 95:5 

acetonitrile:H2O (with 1% TFA) was used as a eluent with a 4.6 X 150 mm Luna C18 
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column (Phenomenex, Torrance, CA). Ascorbic acid was monitored at a wavelength of 

256 nm. 

6.3 Results and Discussions  

6.3.1 PBAE Hydrogel Synthesis 

 As each primary amine is capable of reacting with two acrylate groups, a diamine 

has tetra-functionality, potentially permitting the synthesis of a crosslinked polymer 

network (Figure 6-1). Since PBAE undergo hydrolytic degradation, to synthesize 

hydrogels with varying network properties (hydrophilicity, rate of degradation and 

mechanical properties), two different diacrylates (with different length of PEG units) and 

three primary diamines (with varying hydrophilicity) were selected to study effect of 

monomers on PBAE properties.. In order to study effect of RTAA on hydrogel synthesis, 

the RTAA was varied from excess amine regime to excess acrylate regime, in range of 

0.25 to 1.65. 

 FTIR characterization of PBAE hydrogels and the effect of different monomers 

and RTAA on the degradation rate and mechanical properties of PBAE are discussed in 

detail by Biswal et. al. [326].  

6.3.2 Swelling Response 

 The swelling properties of the PBAE hydrogels with RTAA of 0.6 were analyzed. 

The hydrogels were swollen in DMSO, THF, DCM and EtOAc, in order to study the 

polymer-solvent interaction. The degree of swelling in different solvents for PEG400DA 

and DEGDA systems are presented in Figure 6-2. It has been observed that for all the 

systems in THF, DCM and EtOAc maximum swelling is achieved in approximately 2 hrs. 
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Figure 6-1. Reaction Schematic of PBAE Hydrogel Synthesis Using PEG400DA 
and HMD. 
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Figure 6-2. Swelling Response of Different Hydrogel Systems. 

Swelling response of PBAE hydrogels in (A) DMSO, (B) THF, (C) DCM, 
and (D) EtOAc; (E) image of PEG400DA-TTD (RTAA of 0.6) swollen 
gels in different solvents, (1) dry gel, (2) in DMSO, (3) in THF, (4) in 
DCM, and (5) in EtOAc. 
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However, in the case of DMSO as solvent, maximum swelling was observed in 

approximately 6 hrs. For all the systems, a greater degree of swelling was observed in 

DCM in comparison to the other solvents. 

This dependence of the extent of swelling on the polymer/solvent system could be 

explained by polymer-solvent interaction parameter, which is an indicator of polymer 

miscibility in the solvent.  Similar values of polymer and solvent solubility parameters 

result in χ < 0.5, which is the Flory-Huggins theory criterion for polymer miscibility in 

the solvent over the entire concentration range. The solubility parameter (δP) depends on 

polymer molecular structure, and the predicted δP values for some of the possible 

polymeric molecular structures are tabulated in Table 6-4. These polymer solubility 

parameter values were used to determine the polymer-solvent interaction parameter (χ) 

using equation 2. Depending on the RTAA used, PBAE networks can have some 

unreacted (residual) secondary amines (Figure 6-3A) or completely reacted tertiary 

amines (Figure 6-3B). Swelling studies were carried out for PBAE gels with RTAA=0.6, 

FTIR analysis of which indicates presence of unreacted (residual) secondary amines in 

the PBAE gel [326].  
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Table 6-4. Solubility Parameters for Different PBAE Polymer Networks. 
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Fi
gu

re
 6

-4
a 

PEG400DA-TTD 11 1 30 2 0 0 219790 549.3 9.78 

PEG400DA-EDBE 10 1 26 2 0 0 196680 481.1 9.88 

PEG400DA-HMD 8 1 26 2 0 0 189980 473.5 9.79 

DEGDA-TTD 4 1 16 2 0 0 127180 297.3 10.11 

DEGDA-EDBE 3 1 12 2 0 0 104070 229.1 10.42 

DEGDA-HMD 1 1 12 2 0 0 97370 221.5 10.25 

Fi
gu

re
 6

-4
b 

PEG400DA-TTD 39 8 90 0 2 0 727630 1734.2 10.01 

PEG400DA-EDBE 38 8 86 0 2 0 704520 1666 10.05 

PEG400DA-HMD 36 8 86 0 2 0 697820 1658.4 10.03 

DEGDA-TTD 11 8 34 0 2 0 357190 726.2 10.84 

DEGDA-EDBE 10 8 30 0 2 0 334080 658 11.02 

DEGDA-HMD 8 8 30 0 2 0 327380 650.4 10.97 

Fi
gu

re
 6

-4
c 

PEG400DA-TTD 19 4 52 0 2 2 410330 1041.4 9.70 

PEG400DA-EDBE 18 4 48 0 2 2 387220 973.2 9.75 

PEG400DA-HMD 16 4 48 0 2 2 380520 965.6 9.70 

DEGDA-TTD 5 4 24 0 2 2 225110 537.4 10.01 

DEGDA-EDBE 4 4 20 0 2 2 202000 469.2 10.14 

DEGDA-HMD 2 4 20 0 2 2 195300 461.6 10.06 
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Figure 6-3. Hypothetical Structures for Different Possible PBAE Network.  

PBAE network (A) with unreacted secondary diamines, (B) where all the 
amines are reacted and (C) where secondary amines are capped with an 
hypothetical ethyl group. 
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Ideally, equilibrium swelling is inversely proportional to the χ value, where 

swelling is higher at lower χ. As observed in (Figure 6-4A and 6-4B), the degree of 

swelling for PBAE gels occurred in the order DCM>THF>EtOAc, which can be 

explained by lower χ values for PBAE-DCM system as compared to PBAE-THF<PBAE-

EtOAc. Also, hydrogels synthesized from PEG400DA swell to a greater extent than the 

corresponding hydrogels made from DEGDA, which can again be explained by lower χ 

values for PEG400DA based PBAE systems. Swelling, as described by the Flory-Rehner 

equation, is also a function of Mc (molecular weight between the crosslinks). The higher 

Mc in case of PEG400DA could also explain increased swelling as compared to DEGDA 

based PBAE systems. According to the χ values calculated by Ozdemir et al., PEG has a 

lower solubility in DMSO as compared to THF [330]. The lower solubility of PEG in 

DMSO should have resulted in the least swelling of PEG-based PBAE in DMSO. 

However, it was observed that the swelling of PBAE gels in DMSO is comparable to the 

swelling observed in THF and EtOAc. Predictions of polymer-solvent interaction 

parameter could deviate in case of polar solvents or polar polymer networks [329]. The 

highly polar nature of DMSO and its interaction with PEG in the PBAE network could be 

the reason for the failure to predict χ accurately in case of PBAE-DMSO system. 

In order to test the hypothesis that in case of the solvents studied here (DCM, 

THF, EtOAc and DMSO), PBAE-solvent interaction is mainly determined by PEG 

density in the PBAE network and not by the presence of secondary/tertiary amines in the 

network, χ values for a hypothetical polymer network (Figure 6-3C) were calculated 

where secondary amines in the Figure 6-3A were ethyl-capped. As shown in Figure 6-

4A and 6-4C, χ values for PBAE-solvent systems did not change significantly after  
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Figure 6-4. Correlation Between Equilibrium Swelling and χ for Corresponding 
Networks shown in Figure 6-3 (A-C).  
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ethyl-capping secondary amines in the PBAE network. However, by increasing the PEG 

density in the PBAE network as shown in Figure 6-4B, χ values changed significantly 

for PEG400DA systems which indicates that χ depends mainly on PEG density in the 

network. 

6.3.3 FTIR Characterization of PBAE Degradation in Ethanol 

 While studying the swelling of PBAE in different solvents, it was observed that 

PBAE degraded in ethanol. To explore the degradation of PBAE in alcohols, effect of 

different alcohols (methanol, ethanol, 1-octanol, t-butanol), monomers and RTAA on the 

rate of PBAE degradation in alcohol were studied in detail [331]. In order to understand 

the mechanism of PBAE degradation in alcohol, degradation products of PBAE 

(PEG400DA-TTD, RTAA=1.2) in ethanol were characterized using FTIR (Figure 6-5). 

It has been reported previously that PBAE hydrogels degraded via hydrolysis of ester 

groups in the crosslinks to lower molecular weight degradation products and kinetic 

chains of poly(β-amino acids) and diols [321, 332]. The presence of a broad acid peak at 

1584 cm-1 in the water degradation products of PBAE with decrease of intensity of ester-

C=O peak at 1730 cm-1 clearly indicates the formation of low molecular weight acids. 

The transesterification reaction of PBAE with alcohols was also confirmed by the 

formation of new ester peaks at around 1732cm-1 from the ethanol degradation products 

of PBAE indicates that the degradation occurs via transesterification reaction of ethanol 

with β-amino ester bonds in PBAE network. The new ester products which were formed 

during the reaction of ethanol with the PBAE hydrogels, undergo further hydrolysis to 

form the corresponding acids. The decrease in the intensity of the ester peak at 1732cm-1  
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Figure 6-5. FTIR Characterization of PBAE Degradation in Ethanol (EtOH).  
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and formation of a new peak at around 1584cm-1 clearly indicates the hydrolysis of the 

new ester to the corresponding acid. 

6.3.4 Conjugation of PBAE with Ascorbic Acid and Controlled Release of 

Ascorbic Acid from AA-PBAE 

Ascorbic acid (Vitamin C) is a naturally occurring antioxidant and has primary 

and secondary alcohol groups in the molecular structure (Figure 6-6). Taking advantage 

of alcohol induced transesterification reaction in PBAE network, ascorbic acid was 

conjugated to the PBAE network. Extent of ascorbic acid conjugation in AA-PBAE could 

not be analyzed using FT-IR because of the overlapping of characteristic peak of 

aromatic -C=C- in ascorbic acid.  

However, release of ascorbic acid as a function of AA-PBAE degradation was 

studied. As shown in Figure 6-7, ascorbic acid was released gradually over a period of 3 

hrs.  At the end of AA-PBAE degradation, 3 mg of ascorbic acid was released as 

analyzed by HPLC. This corresponds to ~3.5 wt% of ascorbic acid loading in AA-PBAE. 

It was also observed that AA-PBAE degrades slower (~150 min) than corresponding 

PBAE (PEG400DA-TTD, RTAA=1.2) which degrades completely within 45 mins. The 

reason for slower degradation rate of AA-PBAE needs to be investigated further.  

Successful conjugation to ascorbic acid to PBAE provides PBAE as a means of 

controlled release for drugs with primary alcohol functional groups. 
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Figure 6-6. Molecular Structure of Ascorbic Acid 
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Figure 6-7. Ascorbic Acid Release from AA-PBAE 

AA-PBAE were incubated in PBS at 37 0C and ascorbic acid released in 
the supernatant was analyzed using HPLC. 
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6.4 Conclusions 

 A simple one-step method was developed to synthesize biodegradable PBAE with 

tunable properties. Theoretical analysis of PBAE swelling proved that swelling is 

dependent on the PEG density in the PBAE network. Ability of alcohols to degrade 

PBAE gels was successfully used to conjugate ascorbic acid to PBAE gels which upon 

degradation in water resulted in controlled release of ascorbic acid.  
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Chapter 7. Synthesis and Characterization of Poly(antioxidant β-amino esters) 
for Controlled Release of Polyphenolic Antioxidants 

Based on the research article to be submitted to: 

P.P. Wattamwar

7.1 Introduction 

, D. Biswal, A. Lyvers, D. Cochran, J.Z. Hilt and T.D. 
Dziubla, “Synthesis and Characterization of Poly(antioxidant β-amino 
esters) for Controlled Release of Polyphenolic Antioxidants”, Acta 
Biomaterialia (to be Submitted) 

 The non-free-radical polymerization poly(β-amino ester) chemistry described in 

the previous chapter provides a platform to develop and study antioxidant polymers with 

tunable properties. One of the important advantages of this chemistry is that it can be 

extended to all polyphenolic antioxidants thereby broadening the scope and properties of 

antioxidant polymers. In this work, we have synthesized poly(antioxidant β-amino ester) 

(PABAE) biodegradable hydrogels of two polyphenolic antioxidants, quercetin and 

curcumin. Acrylate functionalized antioxidants, quercetin multiacrylate (QMA) and 

curcumin multiacrylate (CMA) were synthesized and reacted with commercially 

available diacrylate and primary diamine monomer to result in a cross-linked network of 

PABAE. Degradation rate of PABAE was dependant on content of the hydrophobic 

antioxidant monomer and can be controlled by appropriate choice of commercially 

available monomers. PABAE degradation products possessed antioxidant activity and 

suppressed background oxidative stress levels in the cells, both in absence and presence 

of injury agent.   
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7.2 Materials and methods 

7.2.1 Materials 

Quercetin, curcumin, acryloyl chloride, 4,7,10-Trioxa-1,13-tridecanediamine 

(TTD), methylthiazolyldiphenyl-tetrazolium bromide (MTT), triethylamine, 2,2’-azo-

bis(2-aminopropane)-HCl (AAPH) and hydrogen peroxide (H2O2) were all purchased 

from Sigma-Aldrich. Poly(ethylene glycol) diacrylate (PEG400DA) was purchased from 

Polysciences, Inc. 2’,7’-dichlorodihydrofluorescein diacetate (DCF-DA) was purchased 

from Invitrogen. All organic solvents were obtained from Sigma-Aldrich and Fisher 

Scientific and used as received.  

7.2.2 Synthesis of Antioxidant Multiacrylates 

Antioxidant multiacrylates were synthesized by reacting phenolic antioxidants 

with acryoyl chloride in tetrahydrofuran (THF) and triethylamine at room temperature for 

12 hrs as previously described by Boudreaux et. al. [333] Antioxidants (quercetin or 

curcumin) were dissolved in THF at a concentration of 100 mg/ml. Triethylamine (Et3N) 

was added to the solution at an Et3N:antioxidant ratio of 4:1 and 2:1 for quercetin and 

curcumin, respectively. Acryloyl chloride was slowly added to the reaction mixture while 

being stirred on an ice bath. Initial molar ratio of acryoyl chloride:antioxidant was 4.5:1 

and 2.5:1 for quercetin and curcumin, respectively. The reaction was then allowed to 

proceed at room temperature under dark conditions for 12 hrs. After this reaction, 

precipitated triethylamine hydrochloride salt was removed by vacuum filtration. Filtrate 

was subject to vacuum distillation using liquid N2 trap to remove THF. To remove 

unreacted acryoyl chloride from the product, the resultant powder was re-dissolved in 

dichloromethane (DCM) (30 ml) and subsequently extracted with 0.1 M K2CO3 (3 X 
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120 ml) and DI water (3 X 120 ml), and then dried over MgSO4. Solution was filtered 

using vacuum filtration and solvent was removed under vacuum using a roto-evaporator 

(Rotovapor R II, Buchi, Switzerland). Synthesized antioxidant multiacrylates were 

characterized using FT-IR and 1H-NMR spectroscopy. The resulting powder was stored 

at -20 0C until further use.        

7.2.3 Synthesis of Poly(antioxidant β-amino esters) Hydrogels (PABAE) 

PABAE hydrogels were synthesized by a single step addition of acrylates 

(PEG400DA and antioxidant multiacrylates) and a primary diamine, TTD, as previously 

described [326]. Figure 1 shows a schematic of the crosslinked network in PABAE 

hydrogels.  Briefly, calculated amounts of PEG400DA and primary diamine TTD were 

mixed in a 2 ml eppendorf tube. This mixture was incubated at 50 0C for 5 min. 

Calculated amount of antioxidant multiacrylate dissolved in DCM solvent (50 wt% 

solvent with respect to total monomer) was transferred to the PEG400DA/TTD reaction 

mixture, mixed thoroughly and then incubated in an oven at 50 0C for 24 hrs. PABAE 

with different antioxidant contents were synthesized and their compositions are listed in 

Tables 7-1 and 7-2. Synthesized hydrogels were then cut into 1 mm thick discs for 

degradation studies. All discs were washed in THF for 15 min to remove unreacted 

monomers and dried under vacuum. Different grades of PABAE hydrogels were prepared 

by varying the molar ratio of antioxidant multiacrylate:PEG400DA between 0 – 20 % 

while maintaining the ratio of total acrylates to total amines (RTAA) at 1.2.  
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Figure 7-1. A simplified schematic representing synthesis of antioxidant 
multiacrylates and cross-linked polymer network in PABAE 
hydrogels. 
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Table 7-1. Composition of the Synthesized Quercetin PABAE Hydrogels.  

Sample Name 
wt% mol% 

PEG400DA QMA TTD PEG400DA QMA TTD 
0 84.70 0.00 15.30 70.60 0.00 29.40 

5% QMA 79.78 4.28 15.93 66.09 3.48 30.43 
10% QMA 74.95 8.49 16.55 61.71 6.86 31.43 
20% QMA 65.53 16.71 17.76 53.33 13.33 33.33 
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Table 7-2. Composition of the Synthesized Curcumin PABAE Hydrogels. 

Sample Name 
wt% mol% 

PEG400DA CMA TTD PEG400DA CMA TTD 
0 84.70 0.00 15.30 70.60 0.00 29.40 

5% CMA 80.67 3.98 15.34 67.06 3.53 29.41 
10% CMA 76.63 7.98 15.39 63.53 7.06 29.41 
20% CMA 68.48 16.05 15.47 56.47 14.12 29.41 
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7.2.4 Degradation of PABAE Hydrogels 

Degradation studies of PABAE hydrogels were carried out in PBS at 370C (pH 

7.4). At given time points, each set of gels were removed from the PBS, flash frozen in 

liquid nitrogen and freeze dried in order to remove residual water. The fraction of mass 

remaining was calculated from the ratio of the recorded final dry mass (Wd) and initial 

(Wo) values. 

7.2.5 In Vitro Assay for Measuring Antioxidant Activity of PABAE Degradation 

Products 

Antioxidant activity of the PABAE degradation products was measured using a 

DCF fluorescence-based assay as described previously [256]. AAPH undergoes thermal 

degradation and was used to mimic the peroxyl radical formation in vivo. Hydrolysis of 

DCF-DA results in non-fluorescent DCF which was then diluted in PBS to a 

concentration of 10 µM. To a well in 96-well plate, 100 µL of sample (solution of 

PABAE degradation products in PBS) and 100 µL of 10 µM DCF solution was added. 

Fluorescence measurement was started when 20 µL of AAPH solution was added to the 

well-plate and DCF fluorescence kinetics was monitored for 4 hrs using a Varian Cary 

Eclipse fluorescence spectrophotometer (excitation at 502 nm, emission at 525 nm). 

Assay was calibrated using known concentrations of both quercetin and curcumin, and 

the antioxidant potential of the quercetin/curcumin PABAE degradation products was 

reported as molar active quercetin/curcumin equivalents. 
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7.2.6 Cell Line 

Human umbilical vein endothelial cells (HUVECs) were purchased from Lonza 

and cultured in EGM-2 media with 2% fetal bovine serum at 37 0C in humidified 

atmosphere of 5% CO2. HUVECs in passage 3 to 5 were used for all the studies.  

7.2.7 Measuring Oxidative Stress in the Cells After Exposure to PABAE 

Degradation Products 

PABAE hydrogels were incubated in sterile DI water at 37 0C for 48 hrs to allow 

for complete degradation. PABAE degradation products were then freeze dried and 

dissolved in DMSO at a concentration of 100 mg/ml. These concentrated DMSO 

solutions were then used to prepare fresh dilute solutions of PABAE degradation 

products in cell media. Cells were treated with these PABAE solutions for their 

cytotoxicity and their effect on cellular oxidative stress levels. To prepare quercetin and 

curcumin solutions, antioxidants were dissolved in DMSO at a concentration of 10 mg/ml 

and diluted in cell media. 

2’,7’-dichlorodihydrofluorescein (DCF) fluorescence was used as marker of 

oxidative stress in the cells as described previously [334]. HUVECs were seeded onto a 

96-well plate at a density of 35,000 cells/cm2 and incubated at 37 0C. After 24 hrs, cell 

media was replaced with 100 µL of treatment solution (PABAE degradation products) 

and 100 µL of 10 µM DCF-DA solution. Fluorescence was measured after another 24 hrs 

using a bottom-reading GENios Pro fluorescence spectrophotometer (Tecan, 

Switzerland) at excitation and emission wavelengths of 485 nm and 535 nm respectively. 
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7.2.8 Cytotoxicity of PABAE Degradation Products  

The MTT assay was used to measure cell viability after treating cells with 

PABAE degradation products. HUVECs were seeded onto a 96-well plate at a cell 

density of 35,000 cells/cm2 and 24 hrs later, cell media was replaced with treatment 

solutions. 24 hrs post treatment, treatment solution was removed, cells washed twice in 

PBS and 200 µL of 0.5 mg/ml MTT solution in cell media was then added to each well. 

96-well plate was then incubated at 37 0C for 12 hrs and cell media was gently removed 

from the wells. 100 µL of DMSO was added to each well to dissolve the formazan 

product. The absorbance intensity was recorded at 570 nm for formazan and at 690 for 

background using a Cary-50 Bio UV-Visible spectrophotometer equipped with a Cary 50 

MPR microplate reader (Varian, Santa Clara, CA).  

7.2.9 In Vitro Cell Protection Against Oxidative Stress Injury Induced by H2O2 

HUVECs seeded at a cell density of 35,000 cells/cm2 in a 96-well plate were 

treated with 100 µL of antioxidant or PABAE solution for 2 hrs prior to adding 100 µL of 

1 mM H2O2 solution (in cell media). Cells were exposed to antioxidants at different 

concentrations and a final H2O2 concentration of 500 µM. 24 hrs later, cell viability was 

measured using MTT assay as described above. 

7.3 Results  

7.3.1 Synthesis and Characterization of Antioxidant Multiacrylates 

Synthesis of antioxidant multiacrylates was verified using FT-IR and 1H-NMR 

(Figure 7-2 and Figure 7-3).  The peaks at 1740 and 1620 cm-1 in the FT-IR spectra of 

QMA and CMA (Figure 7-2) are characteristics of the resulting ester –C=O and –C=C- 
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bonds in the product. Conversion of antioxidant phenolic groups into ester was further 

confirmed using 1H-NMR spectroscopy, where the peaks corresponding to the phenolic –

OH in antioxidants (at 9.0 – 10.7 ppm for quercetin, at 9.6 ppm for curcumin) had 

reduced peak intensities in the NMR spectra of antioxidant multiacrylates. Also, peaks 

corresponding to –CH=CH2 (in the range of 6.75 to 6 ppm) were present in the spectra of 

antioxidant multiacrylates. Average number of acrylate groups per molecule of 

antioxidant was quantified using 1H-NMR spectroscopy. Analysis of 1H-NMR spectra 

revealed presence of 4.28 and 2.66 acrylate groups per molecule of quercetin and 

curcumin respectively.       

7.3.2 Synthesis of PABAE Hydrogels 

For all the PABAE hydrogel synthesis reactions, acrylates were used in slight 

excess as compared to amines with the RTAA maintained at 1.2. It was observed that rate 

of the reaction increased with increase in antioxidant content in the reaction mixture. The 

system with 20% QMA and CMA polymerized faster than the corresponding 10% and 

5% systems. In previous work, rate of polymerization for 0% PABAE was analyzed 

using FT-IR [326]. However, in case of antioxidant PABAE, rate of polymerization could 

not be analyzed using FT-IR because of the overlapping of characteristic peak of 

aromatic –C=C- in QMA and CMA with aliphatic C=C- peak. 
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Figure 7-2. FTIR Characterization of Antioxidant Multiacrylates.  

Quercetin and curcumin were functionalized with acrylate groups by 
reacting with acryoyl chloride. Presence of peak at ~ 1740 cm-1 in the 
spectra of QMA (top) and CMA (bottom), which is characteristic of ester 
carbonyl group, indicates successful acrylate functionalization of quercetin 
and curcumin. 
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Figure 7-3. 1H-NMR Characterization of Antioxidant Monomers. 

Reaction of antioxidant phenolic groups of with acryoyl chloride is 
confirmed by the absence of characteristic phenol peaks (9 – 11 ppm) in 
the QMA and CMA products. Analysis of QMA and CMA spectra reveal 
presence of 4.28 and 2.66 acrylate groups per molecule of quercetin and 
curcumin, respectively. 
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7.3.3 Degradation of PABAE Hydrogels 

Degradation of all PABAE hydrogels was studied in PBS (pH = 7.4) at 37 0C. 

Figure 7-4 shows degradation profiles for quercetin and curcumin PABAE hydrogels 

respectively. In both quercetin and curcumin PABAE systems, pH change associated 

with degradation was minimal where the pH of the suspension of the degradation 

products changed from 7.4 to 8 after complete degradation. Hydrogels that did not have 

antioxidants (0) degraded quickly, within 150 mins, as compared to the quercetin and 

curcumin PABAE hydrogels that degraded completely within 5-6 hrs. Except for 20% 

CMA hydrogels, there was not a significant dose dependent effect of polyphenolic 

content on the hydrogel degradation rate. 

7.3.4 In Vitro Measurement of Antioxidant Activity of PABAE Degradation 

Products 

Antioxidant activity of PABAE degradation products was further verified using 

another in vitro assay where the DCF fluorescence was again used as a marker of 

oxidation by free radicals. Total antioxidant activity of quercetin PABAE hydrogels was 

directly proportional to the initial QMA content in the hydrogel with ~60% recovery as 

compared to the theoretical activity (Figure 7-5). In case of curcumin PABAE hydrogels, 

recovery of antioxidant activity was lower as compared to quercetin PABAE. 

Degradation of 5% CMA resulted in 40% recovery of antioxidant activity where as 

degradation of 10% CMA and 20% CMA resulted in 20% recovery of antioxidant 

activity. 
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Figure 7-4. Degradation Profiles of Quercetin (left) and Curcumin (right) 
PABAE. 

 

Quercetin (left) and curcumin (right) PABAE hydrogels degraded slower 
(within 250-350 mins) as compared to the fast degrading 0% PABAE 
hydrogel (in ~ 150 mins). 
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Figure 7-5. In Vitro Measurement of Antioxidant Activity of PABAE Degradation 
Products Using a DCF-based Fluorescent Assay. 
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7.3.5 Cytotoxicity of Degradation Products of PABAE Hydrogels 

HUVECs were treated with degradation products of PABAE at different 

concentrations for 24 hrs and the cell viability was measured using a standard MTT assay 

(Figure 7-6A and 7-6B). Degradation products of 0% PABAE hydrogel had very little 

cytotoxicity up to a concentration of 1000 µg/ml. Like quercetin, degradation products of 

quercetin PABAE hydrogels did not have significant cytotoxicity except for high 

concentrations of 20% QMA where the cell viability dropped to 35% at a concentration 

of 1000 µg/ml. Curcumin PABAE hydrogels, like pure curcumin, were acutely toxic in 

proportion to their curcumin content. 

7.3.6 Effect of PABAE Degradation Products on Oxidative Stress Levels in the 

Cells 

HUVECs were treated with degradation products of PABAE hydrogels in the 

presence of DCF for 24 hrs and DCF fluorescence was then measured. In Figure 7-7A 

and 7-7B, DCF fluorescence in the cells is plotted compared to the untreated cells (% of 

Control). Both antioxidants querectin and curcumin have excitation and emission spectra 

similar to that of DCF and in order to avoid background fluorescence from antioxidants, 

the maximum concentration of PABAE degradation products that HUVECs were treated 

with was limited to 100 µg/ml. Degradation products of 0% PABAE did not affect DCF 

146luorescence levels in HUVECs and did not exert antioxidant effect on the cells. 

However, quercetin and curcumin PABAE degradation products showed concentration 

dependant suppression in DCF fluorescence. At concentration of 100 µg/ml, querectin 

and curcumin PABAE hydrogels suppressed DCF fluorescence to a minimum of 35% 

and 55%, respectively.  
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Figure 7-6. Cytotoxicity of PABAE Degradation Products. 

(A and B) HUVECs were treated with PABAE degradation products for 
24 hrs and post treatment, cell viability was measured using MTT assay. 
0% PABAE hydrogels had did not have significant cytotoxicity. 
  
(C and D) Data in A and B was re-plotted with respect to theoretical 
antioxidant content of PABAE degradation products and it shows that 
cytotoxicity of PABAE degradation products is a function of its 
antioxidant content. Curcumin PABAE degradation products had 
cytotoxicity similar to that of free curcumin. 
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Figure 7-7. Effect of PABAE Degradation Products on Background Oxidative 
Stress in HUVECs. 

 

(A and B) Treatment of HUVECs with quercetin and curcumin PABAE 
degradation products suppressed background oxidative stress levels in the 
cells in a concentration dependant manner.  

(C and D) Data in A and B is re-plotted with respect to theoretical 
antioxidant content of PABAE degradation products. 
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7.3.7 H2O2 Induced Oxidative Stress Injury and Protection from PABAE 

Degradation Products  

In this prophylactic study, HUVECs were treated with antioxidants or PABAE 

degradation products prior to adding H2O2 to induce the oxidative stress in cells. Cell 

viability, measured using MTT assay 24 hrs post treatment, was used as a measure of 

extent of injury to cells. As shown in Figure 7-8, treatment of HUVECs with H2O2 only 

resulted in a drop in cell viability to 70%. Pre-treatment of cells with quercetin and 10% 

QMA degradation product did not result in a drop in viability. However, pre-treatment 

with curcumin resulted in further decrease in cell viability to 57%. 10% CMA treatment 

provided modest protection with cell viability of 80%. 

7.4 Discussion 

In the present work, a modified poly(β-amino ester) chemistry [326] was used to 

successfully synthesize hydrolytically degradable cross-linked polymers for controlled 

release of polyphenolic antioxidants quercetin and curcumin. Some of the advantages of 

this poly(β-amino ester) chemistry are i.) it does not require free-radical polymerization, 

thereby allowing loading of antioxidant drugs that are susceptible to free-radical damage, 

ii.) the large libraries of commercial diacrylates [320, 321]  could be used to tune 

polymer properties (e.g. degradation rate, mechanical strength, etc.) and iii.) it could be 

extended to other polyphenolic antioxidants. 

Synthesized QMA and CMA were characterized using FT-IR and 1H-NMR 

spectroscopy. Acrylate functionalization of phenol groups in the antioxidants was 

verified by both FT-IR and 1H-NMR. QMA and CMA were synthesized with initial ratio 

of acryloyl chloride to quercetin at 4.5 and acryoyl chloride to curcumin ratio at 2.5.  
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Figure 7-8. Cell Protection Against Oxidative Stress Injury by PABAE 
Degradation Products 

 
 HUVECs were treated with antioxidants or PABAE degradation products 

2 hrs prior to inducing oxidative stress injury by addition of H2O2. Cell 
viability was measured after 24 hrs using MTT assay. (M + SE). Groups 
were compared using Paired Student t-test. * indicates significant 
difference from control and # indicates significant difference from H2O2 
only treatment, with p<0.05. 
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Synthesis of QMA resulted in 4.28 acrylate groups per molecule of quercetin, lower than 

the targeted number of 4.5 acrylate groups per molecule of quercetin. However, analysis 

of 1H-NMR spectra of CMA revealed 2.66 acrylate groups per molecule of curcumin, 

which was higher than 2.5, the initial ratio of acryloyl chloride to curcumin during the 

synthesis of CMA. This could indicate presence of free acrylic acid impurity (byproduct 

of reaction of acryoyl chloride and water) remaining in the CMA product. Nonetheless, 

this slightly impure CMA was used for synthesis of PABAE hydrogels. Presence of 

unreacted phenol groups in the monomers (QMA and CMA) would have hindered 

hydrogel synthesis using the conventional free radical polymerization technique as a 

result of the radical scavenging ability of phenol groups. The Michael type addition 

chemistry used in this work to synthesize a crosslinked network overcomes this inability 

of free radical polymerization to incorporate phenolic compounds in polymer backbone. 

We have previously reported synthesis and degradation characteristics of poly(β-

amino ester) hydrogels that utilizes a Michael type addition reaction between 

multifunctional acrylates and tetrafunctional primarydiamines [326]. In this work, in 

addition to the commercial monomers PEG400DA and TTD, synthesized antioxidants 

multiacrylates were also used for PABAE hydrogel synthesis. As shown in Figure 4, 0% 

PABAE hydrogels degrade completely within 150 min. However, inclusion of as low as 

5% of relatively hydrophobic antioxidant multiacrylates slowed the degradation rate of 

PABAE hydrogels where they completely degraded in 250-350 mins. One of the several 

advantages of this poly(β-amino ester) chemistry is that it can be easily tuned to 

synthesize slower degrading PABAE hydrogels by controlling the ratio of hydrophilic 
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monomers (PEG400DA and TTD) to relatively hydrophobic monomers (e.g. 1,3-

butanediol diacrylate  and hexamethylene diamine). 

Quercetin is known to be a safe flavonol with relatively high IC50 values of 113 

µM for human normal liver cells L-02 [335]. However, in contrast to the previously 

reported 18.4 µg/ml (61 µM) IC50 value of quercetin for HUVECs, we did not observe 

any significant quercetin toxicity to HUVECs up to a concentration of 100 µg/ml [336]. 

IC50 concentrations of curcumin PABAE hydrogels decreased with increase in CMA 

content where 5% CMA, 10% CMA and 20% CMA had IC50 concentrations of 62.1, 10.2 

and 8.7 µg/ml. IC50 value of pure curcumin for HUVECs was found to be 6.8 µg/ml, 

which is similar to the previously reported value of 10.8 µg/ml [337]. When the data in 

Figure 6A and 6B is normalized with respect to antioxidant content in the PABAE 

hydrogels as shown in Figure 6C and 6D, the toxicity profiles of PABAE hydrogels are 

similar to that of pure antioxidants meaning that the toxicity of PABAE hydrogels is the 

result of their antioxidant content. This is particularly evident in case of curcumin 

PABAE hydrogels (Figure 6D) where all curcumin PABAE degradation products have an 

acute toxicity concentration of ~40 µg/ml curcumin equivalents.  

Despite limitations with its specificity for the exact oxidative species [306-309, 

334], DCF fluorescence is a commonly used marker to study oxidative stress in the cells 

and was applied to study effect of PABAE degradation products on oxidative stress levels 

in HUVECs. The model is based on the principle that DCF-DA (2’,7’-

dichlorodihydrofluorescein diacetate), a non-fluorescent ester form of the dye, is taken up 

by the cells and active esterases in the cells cleave it to a non-fluorescent product DCFH 

(2’,7’-dichlorodihydrofluorescein). Free radicals in the cells can then react with DCFH to 



 

153 
 

result in a fluorescent product DCF (2’,7’-dichlorofluorescein). When the data in Figure 

7A and 7B is normalized with respect to the antioxidant content of PABAE hydrogels as 

plotted in Figure 7C and 7D, it is evident that suppression of DCF fluorescence by 

PABAE degradation products is a result of antioxidant content in PABAE.  

H2O2 at submillimolar concentrations induce apoptosis in endothelial cells via 

redox dependant pathways [338]. It has been shown that several polyphenolic flavanoids 

including quercetin have antiapoptotic effect against H2O2 injury [339]. Treatment of 

HUVECs with 500 µM H2O2 for 24 hrs resulted in 30% cell death as measured by MTT 

assay. Previous studies have shown that treatment with 200 µM H2O2 can cause upto 

70% cell death. Reduced cell death at higher H2O2 concentration observed in this study 

could be a result of 2% serum based cell media used to prepare H2O2 solutions, where 

catalase or other enzymes present in the serum can detoxify some of the H2O2. 

Nonetheless, treatment of HUVECs with 500 µM caused significant toxicity as compared 

to controls. Pre-treatment of HUVECs with 5 µg/ml quercetin and 50 µg/ml of 10% 

QMA degradation product (5 µg/ml theoretical quercetin equivalents) protected cells 

from H2O2 injury, which confirms with results from other studies [339]. As shown in 

Figure 7-6D, treatment of HUVECs with 5 µg/ml curcumin alone results in 40% cell 

death. Pre-treatment of HUVECs with curcumin, ads to the H2O2 injury. Protection 

provided by 10% CDA degradation products was very modest and improved cell viability 

by less than 10%. 

7.5 Conclusions 

The single-step polymerization method for synthesis of poly(β-amino ester) 

hydrogels [326] was successfully applied for incorporating polyphenolic antioxidants in 
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to the PABAE network by acrylate functionalization of polyphenols. Cytotoxicity of 

PABAE degradation products was a function of both, the type of antioxidant used and % 

antioxidant content in PABAE, where quercetin PABAE had very little to no cytotoxicity 

and curcumin PABAE had cytotoxicity similar to that of pure curcumin. Also, 

degradation products of PABAE hydrogels possessed antioxidant activity. Treatment of 

HUVECs with PABAE degradation products suppressed background oxidative stress in 

the cells. PABAE developed in this work can be used for various drug delivery and tissue 

engineering applications where controlled delivery of polyphenolic antioxidants is 

desired. 
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Chapter 8. Conclusions 

 
 In this work, three different antioxidant polymers were developed for controlled 

release of antioxidants to suppress oxidative stress. Initial studies involved synthesis and 

characterization of poly(trolox ester), which was formulated in to nanoparticles to 

determine its application as polymeric antioxidant carrier. In vitro degradation studies 

revealed that poly(trolox ester) is not hydrolytically degradable but undergoes enzymatic 

degradation to release degradation products that have antioxidant radical scavenging 

ability. Poly(trolox ester) nanoparticles do not have significant cytotoxicity and provided 

protection in an in vitro cell injury model where oxidative stress injury was induced by 

treating cells with metal nanoparticles. It was also observed that in absence of injury, 

poly(trolox ester) nanoparticles suppressed background oxidative stress in the cells. In 

order to explore this effect of poly(trolox ester), a detailed study was carried out to 

understand concentration dependant antioxidant and pro-oxidant effect of trolox and 

poly(trolox ester) nanoparticles. Poly(trolox ester) nanoparticles possessed a unique 

ability to suppress protein oxidation, a feature not seen in the free trolox form, 

emphasizing the advantage of delivery formulation upon regulating cellular responses. 

This study showed that poly(trolox ester) can be used to modulate cellular redox state, 

proving the concept of antioxidant polymers. 

 While the work on poly(trolox ester) is promising, it is limited by enzymatic 

degradation of polymer, not allowing significant control over its rate of degradation. 

Therefore, a hydrolytically degradable PABAE were synthesized. PABAE synthesis 

scheme is more robust and can be extended to all polyphenolic antioxidants while 

allowing control to tune the rate of polymer degradation. To demonstrate the flexibility of 
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PABAE synthesis scheme, quercetin and curcumin PABAE were synthesized and 

characterized. PABAE degradation products possessed antioxidant activity which was 

further confirmed by their ability to suppress oxidative stress in cells, both in absence and 

presence of injury agent. 

 Overall, this works shows the potential of antioxidant polymers to modulate 

cellular redox state by controlled release of antioxidants. This can have far reaching 

implications in field of biomaterials and in variety of biomedical, pharmaceutical and 

tissue engineering applications.  
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