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ABSTRACT OF DISSERTATION 

 

 
SYNTHESIS AND REACTIVITY OF MEMBRANE-SUPPORTED BIMETALLIC 

NANOPARTICLES FOR PCB AND TRICHLOROETHYLENE DECHLORINATION 
 

Nanosized metal particles have become an important class of materials in the field 

of catalysis, optical, electronic, magnetic and biological devices due to the unique 

physical and chemical properties. This research deals with the synthesis of structured 

bimetallic nanoparticles for the dechlorination of toxic organics. Nanoparticle synthesis 

in aqueous phase for dechlorination studies has been reported. However, in the absence 

of polymers or surfactants particles can easily aggregate into large particles with wide 

size distribution. In this study, we report a novel in-situ synthesis method of bimetallic 

nanoparticles embedded in polyacrylic acid (PAA) functionalized microfiltration 

membranes by chemical reduction of metal ions bound to the carboxylic acid groups. 

Membrane-based nanoparticle synthesis offers many advantages: reduction of particle 

loss, prevention of particle agglomeration, application of convective flow, and recapture 

of dissolved metal ions.  

The objective of this research is to synthesize and characterize nanostructured 

bimetallic particles in membranes, understand and quantify the catalytic 

hydrodechlorination mechanism, and develop a membrane reactor model to predict and 

simulate reactions under various conditions. In this study, the PAA functionalization was 

achieved by filling the porous PVDF membranes with acrylic acid and subsequent in-situ 

free radical polymerization. Target metal cations (iron in this case) were then introduced 

into the membranes by ion exchange process. Subsequent reduction resulted in the 

formation of metal nanoparticles (around 30 nm). Bimetallic nanoparticles can be formed 



by post deposition of secondary appropriate metal such as Pd or Ni. The membranes and 

bimetallic nanoparticles were characterized by: SEM, TEM, TGA, and FTIR. A 

specimen-drift-free X-ray energy dispersive spectroscopy (EDS) mapping system was 

used to determine the two-dimensional element distribution inside the membrane matrix 

at the nano scale. This high resolution mapping allows for the correlation and 

understanding the nanoparticle structure, second metal composition in terms of 

nanoparticle reactivity. Chlorinated aliphatics such as trichloroethylene and conjugated 

aromatics such as polychlorinated biphenyls (PCBs) were chosen as the model 

compounds to investigate the catalytic properties of bimetallic nanoparticles and the 

reaction mechanism and kinetics. Effects of second metal coating, particle size and 

structure and temperature were studied on the performance of bimetallic system. In order 

to predict reaction at different conditions, a two-dimensional steady state model was 

developed to correlate and simulate mass transfer and reaction in the membrane pores 

under convective flow mode. The 2-D equations were solved by COMSOL (Femlab). 

The influence of changing parameters such as reactor geometry (i.e. membrane pore size) 

and Pd coating composition were evaluated by the model and compared well with the 

experimental data. 

 

KEYWORDS: Bimetallic nanoparticles, dechlorination, membrane reactor, 
polyacrylic acid, chlorinated organics 
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Chapter 1 Introduction 

 

This chapter highlights the research interest addressed in this dissertation. It starts 

with a brief background review of the chlorinated organic degradation in general 

followed by the focus on the reductive dechlorination by nanosized zero valent metals. 

Then it introduces the traditional membrane separation processes and discusses the 

advantages of combination of membrane and highly reactive nanosized materials for the 

toxic organic dechlorination application. The research objectives are presented at the end 

of this chapter.  

 

1.1 Remediation of Chlorinated Organics 

 

Chlorinated organics, such as trichloroethylene (TCE), carbon tetrachloride (CT), 

chlorophenols, and polychlorinated biphenyls (PCBs) etc. are among the most common 

contaminants in soil and groundwater (Westrick et al., 1984). Most of these chloro-

organics were widely used in industry during the past half century as solvents, pesticides, 

electric fluids and introduced into soil and groundwater by direct and indirect release. 

Due to the hydrophobic nature and resistance to biological degradation, the degradation is 

fairly slow under natural conditions and thus the species accumulate in the environment 

(Vogel et al., 1987). Many of these compounds are highly toxic and potent carcinogens 

even at low concentrations. The conventional degradation methods for the remediation of 

water or soil contaminated with these chlorinated organics are microbial transformations 

(Morris et al., 1992), carbon adsorption (Nakano et al., 2003) followed by incineration 

(Shaub and Tsang 1983), chemical oxidation including ozonation (Nakano et al., 2003), 

UV photolysis, or supercritical water oxidation, and chemical reduction at elevated 

temperature. However, these traditional methods are usually expensive or require high 

temperature and long reaction times. For example, dechlorination of PCBs by zero-valent 

iron requires temperatures of 400 °C (Chuang et al., 1995). Thus, it is important to 

develop effective methods for degradation of chlorinated organics at ambient conditions. 

Oxidative Fenton reaction is an effective way for detoxification of chlorinated organics at 

room temperature (Basu and Wei 1998; Kwan and Voelker 2003; Teel et al., 2001; 
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Pignatello et al., 2006). Free hydroxyl radical-OH• generated by ferrous ion (Fe2+) and 

hydrogen peroxide (H2O2) in the reaction is a very powerful oxidant for the degradation 

of chlorinated organic pollutants at room temperature (Kiwi et al., 2000; Perez et al., 

2002; Zepp et al., 1992). The primary degradation products are non-toxic organic acids 

and free chloride. The main drawback of the traditional Fenton’s reaction is that pH must 

be in the acidic region for rapid and efficient contaminant destruction. Specifically, the 

problems for groundwater treatment at neutral pH include rapid, localized reagent (Fe2+, 

and H2O2) decomposition, localized temperature increase, and iron hydroxide (Fe2+  

Fe3+  Fe(OH)3) precipitation resulting in fouling of injection equipment. 

In contrast to the oxidative pathway, chlorinated organics can also be degraded by 

the reductive pathway at room temperature. The reduction pathway involves replacement 

of chlorine with hydrogen in the presence of free electrons or catalyst to achieve 

dechlorination process. Zero valent metals (Fe0, Zn0, and Sn0) have been extensively 

reported in the literature as effective reductants for dechlorination of many chlorinated 

organics at room temperature (Matheson et al., 1994; Orth and Gillham 1996; Gotpagar 

et al., 1997 and 1998; Boronina et al., 1998; Scherer et al., 1998; Arnold et al., 1998 and 

1999; Tarr 2003). Bulk size zero valent iron (ZVI) particles in permeable reactive barriers 

have been employed at many remediation sites for degradation of chlorinated aliphatics 

in the United States (Powell et al., 2002). In general, the reductive dechlorination with 

ZVI can be described by the following reaction (Zhang et al., 1998): 

CxHyClz + zH+ + zFe0  CxHy+z + zFe2+ + zCl- 

However, bulk size ZVI has only shown limited reactivity. Reductive degradation 

by bulk size ZVI usually requires long reaction time (days to months) and results in 

incomplete dechlorination with dominating chlorinated intermediates. It is know that 

PCB dechlorination by ZVI does not take place at room temperature (Lowry and Johnson 

2004). Many studies have been conducted to enhance the ZVI’s reactivity by coating the 

secondary catalyst metal such as Pd and Ni on the surface of Fe (bimetallic system) 

(Wang and Zhang 1997; Schrick et al., 2002; Kim and Carraway 2003; Lowry and 

Johnson 2004; Xu et al., 2005a; Xu and Bhattacharyya 2005b and 2006). The presence of 

the secondary metal brings novel catalytic properties that are absent in the monometallic 

particles (Mandal et al., 2003). The deposition of second metal can also enhance chemical 
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reactivity by changing the electronic properties of surface. It is believed that the presence 

of the secondary metal alters the reduction pathway from electron transfer (ZVI system) 

to catalytic hydrodechlorination and thus greatly increases the reaction rate. Furthermore, 

the formation of chlorinated intermediates is inhibited in the bimetallic system (Zhang et 

al., 1998). Recently, the creation and development of nanosized materials have brought 

important and promising techniques into the field of chloro-organics degradation. It is 

well know that reductive dechlorination by ZVI or bimetallic system is a heterogeneous 

reaction which only takes place at the particle surface. Therefore, reducing the particle 

size can greatly enhance the reaction rate due to the high surface area. For example, the 

transformation rate for chlorinated ethylenes by nanoparticles was calculated to be two 

orders of magnitude higher than those commercial-grade iron particles (Wang and Zhang 

1997; Lien and Zhang 2001). The extraordinary performance of the nanoscale particles 

was attributed not only to high surface area to volume ratio (ten to hundred times higher 

than those of commercial-grade particles) but to the higher surface reactivity. Henry 

(1998) reported that significant changes of the topology found on the nanoparticle surface 

result in various facets, edges, corners and defects, which could create additional reactive 

sites. Small metal particles having a high binding energy of their core electrons can 

influence the interaction between the surface sites with the reactants and products.  

 

1.2 Membrane Supported Bimetallic Nanoparticles 

 

Membranes are known for separation and have been widely used in different 

industries for over 40 years (Ho and Sirkar, 1992; Bhattacharyya and Butterfield, 2003; 

Meyer et al., 2006). Membrane separation involves separating a mixture of two or more 

components by a semipermeable barrier (the membrane) through which one or more of 

the species transfer faster than another or other species. Since membrane separation 

usually does not require phase change, it is more energy efficient than the conventional 

separation such as distillation and evaporation. Generally, polymeric membrane structure 

consists of two basic types: porous and non-porous membranes. Porous membranes are 

mainly used for microfiltration (MF) and ultrafiltration (UF) application which is based 

on the size exclusion mechanism. Gas separation and pervaporation require non-porous 
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membrane structure which involves the solution-diffusion mechanism, i.e. the separation 

is based on the solubility and diffusivity variance of different molecules. Recently, many 

studies have been focused on modification of membrane pores or surface with functional 

groups such as carboxylic acid, sulfonic acid etc to achieve new applications such as 

heavy metal capture,  bioreaction, catalysis and protein purification. In contrast to the 

traditional membrane separation processes, these new membranes are known as the 

functionalized membrane. The main advancement of the functionalized porous membrane 

is the versatile applications at high mass transfer rate and at low pressure. Different 

functional groups bring different potential applications, while the porous membrane 

structure provides high pore surface area and accessibility under convective flow. This 

work deals with the functionalization of porous membranes with transitional metal 

nanoparticles to provide a promising and novel way to perform catalytic reactions. 

Nanosized metal particles have become an important class of materials due to the 

unique physical and chemical properties other than those from the bulk size metals. 

Substantial studies for metal nanoparticles synthesis have been reported in the field of 

catalysis (Scott et al., 2005), optical (Jain et al., 2006), electronic (Paul et al., 2003), 

magnetic (Yakushiji et al., 2005) and biological devices (Patolsky et al., 2004; Jiang et al., 

2004). In these cases, to avoid the agglomeration and aggregation, nanoparticles were 

usually stabilized by polymers or ligands in solution phase, or immobilized on solid 

supports (Worden et al., 2004; Fukasawa et al., 2005; Liu et al., 2004). Much attention 

has been given to the preparation of metal nanoparticles embedded in polymer films or 

membranes by a stepwise approach of ion-exchange/reduction (Ikeda et al., 2004; He et 

al., 2002 and 2003; Pivin et al., 2006; Damle et al., 2001; Xu et al., 2005a; Xu and 

Bhattacharyya, 2005b and 2007). In this method, ion-exchange ligands created in the thin 

films can bind metal cations from aqueous solution. Post reduction or precipitation 

produces nanoparticles from bound metal cation precursors. The advantage of this 

process is the creation of controllable nanostructure properties during nanoparticle 

synthesis by utilizing these ion exchange ligands. The nanostructure properties include 

the particle size and distribution, particle concentration and interparticle spacing. The 

amount of metal cations loaded is controlled by the amount of ligand sites and ion-

exchange conditions such as the pH and competitive ions (He et al., 2002). The distance 
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between bound cations which determines the final particle size is also controlled by the 

space between ion-exchange ligands (Wang et al., 2002). For example, Wang and co-

workers reported that silver nanoparticles with various size and concentration have been 

produced in the polyelectrolyte multilayer film (Wang et al., 2002). 

Various ligands and chelating groups can be used for the synthesis of metal 

nanoparticle by the ion-exchange/reduction method. Especially, polyelectrolytes (Rivas et 

al., 2003) containing multifunctional chelating agents provide a great number of side 

functional ligands such as amines, carboxylic acids, amides, alcohols, aminoacids, 

pyridines, thioureas, iminos, etc. These side functional groups can have strong interaction 

with metal ions to establish stable polymer-ion complexes. Attachment procedures of 

these chelating polymers and polypeptides on membrane internal pore surfaces have been 

extensively studied for metal ions sorption (Konishi et al., 1996; Bhattacharyya et al., 

1998; Ritchie et al., 1999 and 2001; Hestekin et al., 2001). These functionalized 

membranes incorporating metal ions have the possibility to be the precursors for 

nanoparticle synthesis. MF and UF membranes are no doubt the ideal base for 

functionalization due to the open structure and large pore size which are essential to 

attain high efficient utilization of available sites as well as the easy accessibility to the 

nanoparticles immobilized inside the membrane matrix.  

Polyacrylic acid (PAA), a water soluble chelating polyelectrolyte, has been 

extensively used for metal capture and ion-exchange process because of the carboxylic 

acid group (Rivas et al., 2003). Generally, there are three different ways to functionalize 

MF/UF membrane with PAA: (1) dip or spin coating PAA on the membrane support; (2) 

layer by layer assembly of polycations (polyallylamine hydrochloride (PAH), 

polyethyleneimine (PEI)) and PAA on membrane surface or pores; (3) in-situ 

polymerization of acrylic acid (PAA monomer) inside membrane pores. Literature results 

have also included PAA as the membrane selective layer to prepare pervaporation 

membrane (PV) (Xu and Huang 1988; Choi et al., 1992; Rhim et al., 1993 and 1996; 

Ohya et al., 1994) because of the highly preferential water permeation characteristics of 

PAA. PAA functionalization on MF/UF membrane (polyvinylidene fluoride (PVDF) 

polysulfone (PS), polyacrylonitrile (PAN), etc) is a well-known process for preparing PV, 

nanofiltration (NF) (Gabriel and Gillberg 1992) and reverse osmosis (RO) membrane 
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(Huang et al., 1998). Incorporating the PAA coating layer with metal ions (Al3+) as 

additives was investigated to increase the hydrophilicity of the layer and restrict the 

swelling of the membrane by forming cross-linking structure with metal ions (Choi et al., 

1992; Ohya et al., 1994; Rhim et al., 1996). However, few studies have been conducted 

for the immobilization of nanoparticles in microporous membranes modified with PAA. 

Microporous membranes functionalized with highly reactive metal nanoparticles are 

quite novel. The advantages of immobilization of metal nanoparticle in porous membrane 

in this work include prevention of nanoparticle agglomeration, control of particle, 

structure and assembly, convective flow to eliminate the diffusion resistance, recapture of 

dissolved metal ions.  

 

1.3 Research Objectives 

 

Zero valent iron-based system has exhibited significant success on the 

remediation of chlorinated organics in water by reductive degradation pathway. However, 

the reaction mechanisms and rate models for membrane supported iron-based 

nanoparticles have not been reported in the literature for the remediation of water 

contaminated with chlorinated organics. Immobilization of metal particles in membrane 

phase avoids aggregation and agglomeration and allows for the controllable nanoparticle 

synthesis by using the functional ion-exchange groups. The reductive dechlorination 

mechanism and the role of second dopant metal, and the correlation between reactivity 

and particle structure have not been fully clarified in the literature. Our overall objective 

of this work is not only to develop highly reactive membrane-supported nanosized 

bimetallic materials for reductive dechlorination of selected chlorinated organics but also 

to understand and quantify the role of second dopant metal, particle size (nano vs. bulk 

size) in the reactive properties of bimetallic nanoparticles, and reaction pathway/reaction 

rate changes through high resolution X-ray mapping and reaction product distribution. 

Specific objectives of this research involve: 

• To develop and establish methods of modifying microporous membrane 

pore/surfaces with polyelectrolytes (PAA) as the functional groups for capture of metal 

ions as the nanoparticle precursor. 
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• To study and quantify the extent of chelation between ferrous ions and 

carboxylic acid ion exchange groups. 

• To establish direct in-situ synthesis of bimetallic nanoparticles with controlled 

structure and size in the microporous membrane supports derived from polyelectrolyte 

functionalization and ion exchange.  

• To characterize membrane and bimetallic nanoparticle by scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), scanning transmission 

electron microscopy (STEM), X-ray Mapping techniques. 

• To establish methods of bimetallic nanoparticles characterization in the 

presence of a polymer support using electron microscopy to quantify the role of the 

second metal during bimetallic reduction mechanisms of chlorinated organics 

• To understand the reaction mechanism and to quantify the reaction kinetics 

with product and intermediates analysis for the dechlorination of TCE and selected PCBs 

by membrane-based nanostructured bimetallic particles. 

• To study and correlate the composition of the second dopant metal and the 

nanoparticle structure with catalytic reactivity by high resolution X-ray mapping. 

• To establish a convective flow membrane reactor model incorporating mass 

transfer reaction kinetics and membrane partitioning for prediction and simulation at 

various system and operating conditions. 

• To enhance Fe/Pd nanoparticles reactivity by understanding the oxidation of 

iron using various methods such as X-ray mapping and quantification of hydrogen 

production. 

 

 

 

 

 

 

 

 

Copyright © Jian Xu 2007 
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Chapter 2 Background 

 

This chapter reviews the literature studies on the destruction of toxic chlorinated 

organics. It starts with the chlorinated organics degradation by the oxidative pathway. 

Then it draws attention to the zero valent iron based reductive pathway by highlighting 

the reaction mechanism, current drawbacks, reactivity improvement based on 

nanostructured materials and second dopant metal. Finally, it discusses the background 

and theory of nanoparticle synthesis and membrane separation processes. It highlights the 

advantages of synthesizing bimetallic nanoparticles in membrane phase in terms of 

stabilization of nanoparticles, high reactivity, and minimization of mass transfer 

resistance.  

 

2.1 Chemical Degradation of Chlorinated Organics 

 

Generally, chemical degradation of chlorinated organics in water at room 

temperature can be achieved by two different reaction pathways: oxidation and reduction. 

Oxidative dechlorination processes include UV light, ozone, ozone + hydrogen peroxide, 

Fenton's reaction, etc., whereas the reductive processes include various zero-valent 

metals, such as Fe, Zn, Fe/Pd, Fe/Ni, etc. The main difference between oxidative and 

reductive processes is complete reaction in the former leads to the formation of organic 

acids and CO2, while for the latter results in formation of the non-chlorinated analog of 

the parent compound (e.g., ethylene/ethane from TCE). Oxidative processes are usually 

based on the generation of free radicals as the oxidant (e.g. OH  from Fenton’s reaction). 

Oxidative process by free radical reaction involves three pathways: hydroxylation (by 

substitution), oxidation, and aromatic ring cleavage (if aromatics are involved). The 

mechanism for reductive pathway is electron transfer for single metal system (Fe0 or Zn0) 

or catalytic hydrodechlorination for bimetallic system (Fe/Pd, Fe/Ni).  
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2.1.1 Oxidative Pathway 

 

Chemical oxidation is an important technique for the remediation ground water 

and soil contaminated with toxic organics. Various oxidizing agents such as 

permanganate, ozone, persulfate can be used for this process. For example, the use of 

permanganate has been extensively studied for the treatment trichloroethylene (TCE) and 

perchloroethylene (PCE) (Schnarr et al., 1998). Hydrogen peroxide is another important 

oxidant source. The advantage of using hydrogen peroxide is easy to use, low cost and 

suitable for wide organic contamination. Although hydrogen peroxide is a strong oxidant, 

the rate of direct oxidation for many organic pollutants is very slow. Practically, 

hydrogen peroxide is combined with UV, ozone or ferrous ions in the wastewater 

treatment. These processes are based on the highly reactive hydroxyl radicals (OH ), 

which is the primary oxidizing species and can be utilized to destroy many organic 

contaminants at fast rates. The hydroxyl radical based processes are known as advanced 

oxidation processes (AOPs) (Watts et al., 2005).  

Among AOPs, Fenton’s reaction has been known as an efficient technique for 

degradation of many chlorinated organics (Ahuja et al., 2007; Pera-Titus et al., 2004). 

The Fenton’s system consists of ferrous ions combined with hydrogen peroxide under 

acidic conditions. Fenton (1894), as the inventor, first found the high reactivity in the 

study of oxidation of tartaric acid by hydrogen peroxide. However, the hydroxyl radical 

mechanism of the Fenton’s reaction was not proposed until 1934 by Haber and Weiss. 

This mechanism can be described by the following equations: 

Initiation: 

2222 2
1 OOHOH +→                                                                                        (E2.1) 

•++→+ −++ OHHOFeFeOH 32
22                                                               (E2.2) 

+++++ +•+↔+→+ HHOFeHOOHFeFeOH 2
223

22 )(                              (E2.3) 

•+↔→+ +++− OHFeOHFeFeOH 223 )(                                                     (E2.4) 

Propagation: 

OHHOOHOH 2222 +•→+•                                                                          (E2.5) 
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22222 OOHOHOHHO ++•→+•                                                                  (E2.6) 

222 OHOOHHOHO ++•→+• −−                                                                  (E2.7) 

Termination: 
−++ +→+• HOFeFeOH 32                                                                              (E2.8) 

2
23

2 OHFeFeHO ++→+• +++                                                                      (E2.9) 

222 OOHOHHO +→•+•                                                                              (E2.10) 

222 OOHOHOH +→•+•                                                                             (E2.11) 

Chlorinated Organics (RCl) Degradation 

OHtesIntermediaOHRCl 222 +→+                                                             (E2.12) 

tesIntermediaOHRCl →•+                                                                          (E2.13) 
−++→+ ClCOOHOHtesIntermedia 2222                                                   (E2.14) 

−++→•+ ClCOOHOHtesIntermedia 22                                                    (E2.15) 

The characteristic oxidizing reactivity of hydroxyl radical is due to a deficit of 

one electron in the valence orbit (unpaired electrons). The standard reduction potential 

for OH  is +2.73 V. This make it capable of oxidizing a variety of chlorinated organics, 

which usually have reduction potential of +0.5 V~+1.5 V. The most common 

mechanisms for hydroxyl radical reactions are hydroxylation, oxidation, and ring 

cleavage (Watt et al., 2005). For example, oxidation of benzene by OH  starts with the 

formation of phenol by hydroxylation onto the ring. Subsequent substitution by another 

hydroxyl radical forms a catechol. Subsequently, ring cleavage results in the formation of 

cis-1,2-muconic acid. Further hydroxylation produces various β-keto acids. 

The solution pH has a great effect on the Fenton’s reaction. The classic Fenton’s 

reaction is carried out at pH of 2~4. At pH high than 4, the degradation rate of 

chlorinated organics will decrease with the increase of pH. This is due to the precipitation 

of iron as ferric hydroxide at pH above 5. The regeneration of Fe2+ by the reaction of Fe3+ 

with H2O2 (E 2.3) also requires low pH. Thus, Fenton’s reaction is usually modified to 

extend its application at neutral pH for groundwater remediation. Extensive studies have 

been reported using chelating agent for this purpose. By adding the chelating agent into 

the Fenton’s reaction system, the precipitation of iron hydroxide at neutral pH can be 
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inhibited due to the formation of Fe (II)/Fe (III)-chelate complex. The chelate Fenton’s 

system also allows higher utilization of hydroxyl radicals and longer reactivity by 

controlled release of free ferrous ions. The chelating agents that have been studied for 

modified Fenton’s reaction includes: EDTA, citric acid (Li et al., 2005), polyacrylic acid 

(PAA), gluconic acid (Ahuja et al., 2007) etc.  

 

2.1.2 Reductive Pathway 

 

In contrast to the oxidative pathway, the reductive pathway at room temperature 

utilizes hydrogen to replace chlorine in the presence of electrons or hydrogenation 

catalyst to achieve the dechlorination process. Generally, electronegative metals in the 

bulk phase, such as Zn and Fe, have been used for the reductive dechlorination of 

chlorinated organics (Orth and Gillham, 1996; Gotpagar et al., 1997 and 1998; Boronina 

et al., 1998; Scherer et al., 1998; Arnold et al., 1998 and 1999; Tarr 2003). Although the 

degradation of chlorinated organics is often referred to as zero-valent metal catalysis, it is 

not strictly catalytic but rather an electrochemical corrosion process. Extensive literature 

exists on dechlorination kinetics and reduction rates by Fe0, but the presence of impurities 

in the source of iron (Tamara and Butler, 2004) size differences, and surface area 

variations (Helland et al, 1995), including surface treatment methodologies, have led to 

wide variability in reported results (Burrow et al., 2000). The surface chemistry and 

particle morphology of the metal also affect rates of dechlorination because of increased 

oxide layer and diffusion resistance for electron transfer. 

The reductive dechlorination by single zero valent metal particle (Fe, Zn, Sn, Mg) 

is a redox reaction. The reaction mechanism is generally recognized as direct electron 

transfer. The indirect reduction by H2 (hydrogenation) is more favorable at low hydrogen 

overpotential metals such as Pd or Pt than Fe (high hydrogen overpotential). Since the 

electrons released from metal particles usually have a short life and can only transmigrate 

a short distance, the chlorinated organics must be located at the particle surface for the 

electron transfer. Thus, it is a heterogeneous reaction, which involves adsorption on the 

particle surface, reaction on surface and desorption. The reductive dechlorination reaction 

can be described in the following equations (Matheson and Tratnyek, 1994): 
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−+ +→ eFeFe 220                                                                                           (E2.16) 
−+− +→++ ClRHHeRCl 2                                                                         (E2.17) 

−++ ++→++ ClRHFeHFeRCl 20                                                             (E2.18) 

In this redox reaction, iron is the reducing agent, which is oxidized to form ferrous ions in 

aqueous solution and release two electrons. The standard reduction potential for iron is -

0.440 V (Matheson and Tratnyek, 1994). This makes the ZVI thermodynamically suitable 

for reducing various chlorinated alkyls which have estimated standard reduction potential 

ranges from +0.5 to +1.5 V (Roberts et al., 1996). Without the presence of chlorinated 

organics (RCl), equation E2.18 becomes a well known iron corrosion reaction: 
−+ ++↔+ OHHFeFeOH 22 2

20
2                                                                (E2.19) 

In the presence of chlorinated organics, RCl serves as the oxidizing agent. The 

iron corrosion reaction in water is a complex process. There are other side reactions 

except for the above main corrosion reaction (E2.19). For example, in the case of absence 

of strong oxidant at near neutral pH, the main iron corrosion reaction (E2.19) is coupled 

with two other side reactions: 
−− →++ OHeOHO 442 22                                                                            (E2.20) 

−+ +↔++ OHFeFeOHO 4222 20
22                                                            (E2.21) 

The presence of dissolved oxygen enhances iron corrosion based on equation E2.21. 

Further oxidation of Fe2+ by O2 results in the formation of ferric hydroxide precipitation. 

This may dramatically inhibit the corrosion reaction and thus deactivate the zero valent 

iron by forming Fe(OH)3 rust on the particle surface due to the extremely low water 

solubility.   

Extensive studies have been conducted to understand dechlorination mechanisms 

and pathways (Matheson and Tratnyek, 1994; Roberts et al., 1996; Arnold and Roberts 

1998, Arnold et al., 1999). However, the precise reaction pathways and intermediates 

formed for chlorinated organics reduction by zero valent metals have not been fully 

clarified. Generally, the reductive dechlorination based on electron transfer can have two 

different pathways (Macalady et al., 1986; Schwarzenbach et al., 1993; Roberts et al., 

1996): hydrogenolysis (replacement of one chlorine by one hydrogen) and reductive β-

elimination (two chlorines are released).  
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Figure 2.1 Proposed reduction pathways for trans-dichloroethylene by zero valent metals 
(adapted from Roberts et al., 1996) 
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A net transfer of two electrons is required for both pathways. Figure 2.1 shows proposed 

the reduction pathway for trans-dichloroethylene (DCE) by Fe0 (Roberts et al., 1996). 

Sequential hydrogenolysis of trans-DCE results in vinyl chloride (VC) as the 

intermediate and ethylene as the final product. While the reductive β-elimination yields 

acetylene which can be further reduced to ethane by hydrogenation. 

Although zero valent metals have been widely used in the past for the remediation 

of water contaminated with various chlorinated organics, there are some problems that 

need to be addressed: (1) slow reaction rate which require long reaction time or high 

concentration of metals; (2) incomplete dechlorination and formation of toxic chlorinated 

intermediates; (3) zero or limited reactivity towards chlorinated aromatics, especially for 

PCBs and (4) loss of reactivity with the time due to the formation of iron hydroxide 

precipitates on the particle surface.  

Thus, extensive studies have been contributed to enhance the reactivity and 

stability of zero valent particles for the degradation of chlorinated organics in water. The 

creation and development of nanosized materials have brought important and promising 

techniques into ZVI based degradation due to the heterogeneous reaction nature. The 

transformation rate for chlorinated ethylenes by nanoparticles was calculated to be two 

orders of magnitude higher than those commercial-grade iron particles (Wang and Zhang, 

1997; Lien and Zhang, 2001). The extraordinary performance of the nanoscale particles 

was attributed to high surface area to volume ratio (ten to hundred times higher than 

those of commercial-grade particles). 

It has been demonstrated that the addition of a second catalytic metal such Ni or 

Pd (bimetallic nanoparticles) can dramatically increase the dechlorination reaction rate 

(Grittini et al. 1995, Zhang et al. 1998, Schrick et al. 2002, Kim and Carraway, 2000, 

Lowry and Johnson 2004, Tee et al., 2005; He et al. 2007). In this case, the chlorinated 

organics are reduced to non-chlorinated hydrocarbons on the second catalytic metal 

surface (Pd or Ni) by substitution of chlorine with hydrogen generated from Fe0 corrosion. 

Compared to the electron transfer in ZVI system, the dechlorination mechanism for 

bimetallic system is catalytic hydrodechlorination. The presence of a second catalytic 

metal results not only in enhanced reaction rates but the elimination of toxic chlorinated 

intermediates formation. The common practice is to compare pollutant degradation in 
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terms of surface area normalized reaction rates (kSA, L m-2 h-1). For example, the kSA for 

2,2’-dichlorobiphenyl (DiCB, PCB 4) by nano Fe/Pd (Pd = 1 wt%) systems is 1.3×10-2 L 

m-2 h-1 (Xu and Bhattacharyya, 2005b) with complete biphenyl formation, which is about 

100,000 fold higher than nano Fe0 systems (kSA = 1.1×10-7 L m-2 h-1) (Lowry and 

Johnson 2004). Without the second Pd coating, the nano Fe0 system results in incomplete 

dechlorination with 2-chlorobiphenyl dominating as the chloro-intermediate. The 

destruction of 2, 2’-dichlrobiphenyl with Fe/Pd is a catalytic hydrodechlorination process 

involving the following reactions (Figure 2.2). Nutt et al. (2006) reported the use of Pd-

Au nanoparticles in the catalytic hydrodechlorination of TCE with supplied H2 gas. The 

effect of Pd coating density on the reactivity was studied and compared in terms of initial 

turnover frequencies. However the role of the secondary dopant metal Pd and the 

relationship between reactivity and dopant coating density for Fe/Pd system have not 

been fully understood. It is speculated (Nutt et al 2005, 2006) that two-dimensional 

ensembles of Pd atoms rather than individual Pd atoms are the active sites.  It should be 

noted bimetallic Fe/Pd systems do not require external H2 gas supply. More specifically, 

the correlation between reactive properties and the nanoparticle structure, the distribution 

of first and second metal, the composition of second metal, and particle size (nano size 

versus bulk size) have not been fully clarified in the literature.  
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Figure 2.2 Proposed catalytic hydrodechlorination pathways for 2,2’-dichlorobiphenyl by 
Fe/Pd nanoparticles. 
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2.2 Nanoparticle Synthesis 

 

Generally, preparation of nanoparticles can be divided into four primary physical 

and chemical methods (Aiken and Finke, 1999): (1) mild chemical reduction of metal 

salts in solution phase; (2) thermal decomposition of metal carbonyls (Tannenbaum, 1998; 

Gonsalves et al., 2000); (3) ligand reduction and displacement from organometallics in 

solvent phase (Gonsalves et al., 2000; Philippot et al., 2003; Corbierre et al., 2004); (4) 

metal vapor deposition (CVD) (Akamatsu and Deki, 1997; Hierso et al., 1998). For all 

these cases, initially zero-valent metal atoms are produced and then aggregate themselves 

to form nanoclusters which may agglomerate and grow to micron scale or larger. This 

agglomeration reduces the specific surface area and the interfacial free energy, which can 

result in the loss of nanoparticle reactivity. Chemical reduction of metal ions in solution 

phase is the most common method for the preparation of metal nanoparticles (Fe2+, Cu2+, 

Ag+, and Pd2+ etc). For example, nanoscale Fe0 particles are prepared by reduction of 

Fe2+ or Fe3+ with sodium borohydride (NaBH4) in the aqueous phase (Glavee et al., 1995). 

This aqueous phase based nano ZVI synthesis method is more environmentally friendly 

than other solvent-based synthesis. It is also important to point out that the reaction 

between Fe2+ and sodium borohydride is a complex process. Various products such as Fe0, 

Fe2B, Fe3B and HBO2 have been reported (Glavee et al., 1995; Shen et al., 1993). It is 

well known that the reaction is controlled by several factors such as pH, molar ratio and 

concentration of reactants, and ways of mixing the reactants. All possible overall 

reactions for producing Fe-B nanoparticles using borohydride in aqueous solution were 

suggested by the following reactions (Shen et al., 1993). 

22
0

24
2 24222 HHBOFeOHBHFe +++=++ +−−+                                    (E2.22) 

22224
2 5.42222 HHHBOBFeOHBHFe +++=++ +−+                              (E2.23) 

22324
2 11732656 HHHBOBFeOHBHFe +++=++ +−+                            (E2.24) 

It is known previously that the standard reduction potential for Fe2+/Fe0 is -0.44v 

(E2.16). According to the literature (Shen et al., 1993), BH4
- gives 8e- at alkaline 

conditions by the following half reactions.  
−+− +++→+ eHHHBOOHBH 4232 2224  E0 = -0.98v                             (E2.25) 
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−−−− +++→+ eHOHBOOHBH 4224 2224  E0 = -1.67v                            (E2.26) 

The strong reducing power of BH4
- make it favorable for making various zero valent 

metal particles such as Co, Cu, Ni, Ag, etc. Both the addition rate and concentration of 

BH4
- solution influence the boron content in the metal particle products. Iron particle 

agglomeration usually can not be avoided in this case without using a stabilizer. 

Typically, agglomeration of nanoparticles is caused by interparticle interactions such as 

Vander Waals forces. Fe0 as a magnetic metal can result in more intense agglomeration 

due to the strong magnetic interactions. 

This atom agglomeration usually can be controlled by using various stabilizers 

such as polymers, ligands, or surfactants. In this case, particle stabilization is achieved by 

surrounding or combining the metal center with sterically bulky materials (Gonsalves et 

al., 2000). For instance, steric stabilization can be obtained by coating the particles with 

polybutadiene (Gonsalves et al., 2000), poly (N-vinyl-2-pyrrolidone) (Teranishi and 

Miyake, 1999; Papp et al., 2004) or polyvinylpyridine (Tsutsumi et al., 1999). Li et al 

(2003) reported the preparation of 10 nm iron nanoparticles using CTAB as the 

protection agent. The nanoparticle agglomeration can also be prevented through 

electrostatic repulsion by using charged stabilizing agents. Adsorption of charged 

molecules on nanoparticles provide electrical double layer and thus enhance the 

Coulombic repulsion between nanoparticles. 

Ligands, ion exchange and chelating groups can also be used to trap metal ions 

which are subsequently reduced to form stable nanosized metal particles. Polyelectrolytes 

containing multifunctional groups such as amines, sulfonic acid and carboxylic acids, etc 

have been extensively studied for metal nanoparticle synthesis. These side functional 

groups can have strong interaction with metal ions to establish stable polymer-ion 

complexes. In this case, metal ions will interact with these stabilizing polyelectrolytes to 

form polymer-metal ion complex which plays a critical role to protect metal particles 

from agglomeration. The interactive force includes electrostatic force, coordinate 

bonding, and hydrogen bonding. 

 

 



 19

2.3 Membrane Immobilized Nanoparticles 

 

Membrane separation is well known as a good alternative process for traditional 

separation such as distillation and evaporation. The advantages of membrane separation 

are the low energy consumption and the compact system. The membrane process usually 

does not involve phase change which requires high amount of energy in the traditional 

separation process. Generally, membrane separation mechanism can be divided into two 

categories: sieving mechanism and solution-diffusion (Figure 2.3). Microporous 

membranes used in the liquid separation such as microfiltration (MF), ultrafiltration (UF) 

and nanofiltration (NF) separate by sieving mechanism determined by the pore diameter 

and particle size. The pores in the porous membrane may vary between 1 nm to 500 nm. 

Gas separation and pervaporation process require a dense (non-porous) selective structure. 

The separation mechanism is known as the solution and diffusion achieved by the 

variation of solubility and diffusivity of different molecules in the polymer matrix.  

The traditional size exclusion based membrane process such as MF, UF and NF 

do not require the pore surface be active in the separation. It is promising to utilize and 

modify membrane pores with functional groups to obtain special separation and reaction 

functions. Many studies have been reported on functionalizing the MF membrane pores 

with -OH, -NH2, -SO3H, -COOH, or -CONH2 groups by using chemical modification 

(Bhattacharyya et al., 1998), polymerization (Ulbricht and Yang 2005; Geismann and 

Ulbricht 2005), and layer by layer assembly (LBL) methods (Hong and Bruening, 2006a; 

Smuleac et al., 2006). The functionalized membrane has been studied for various 

applications such as NF type separation (Hong et al., 2006b), heavy metal removal 

(Bhattacharyya et al., 1998; Ritchie et al., 1999 and 2001; Hestekin et al., 2001), protein 

recovery (Avramescu et al., 2003), bioreaction (Smuleac et al., 2006), and catalysis (Shah 

and Ritchie 2005). The advantages of using functionalized porous membrane are high 

mass transfer capacity, low operating pressure due to the open structure and many 

versatile applications (Figure 2.4).  

Membrane supported nanoparticles is a new type of functionalized membrane. It 

has been reported that silica and zeolite nanoparticles immobilized in the polymer 

membrane matrix can enhance the gas separation and reverse osmosis separation 
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performance. Membrane supported transitional metal nanoparticles can also be used to 

carry out catalytic reactions. Nanosized metal catalysts are usually immobilized and 

dispersed in solid supports such as active carbon, metal oxides (Tada et al., 2004), 

zeolites (Legrand et al., 2004). Tremendous studies have been focused on the synthesis of 

nanocomposites containing metal nanoparticles in polymeric matrix for optics, sensor, 

and catalysis application. The main advantage of synthesizing metal/polymer composites 

is the control of nanoparticle size and distribution. In addition, the polymers may also 

have a great influence on the nanoparticle activity by modifying the access to the sites 

(Kiadambi and Bruening, 2005). However, immobilization of nanoparticles in solid dense 

matrix may cause a diffusion resistance during the catalytic reaction because the reactants 

now need to diffuse to the nanoparticles if the support has a dense structure. To overcome 

this problem, it is advantageous to synthesize and immobilize nanoparticles in an open 

matrix. Microfiltration (MF) membranes are of great interest for this purpose due to the 

open structure and 100 – 500 nm pore size. This is essential for attaining highly efficient 

utilization of available sites as well as the easy accessibility to the nanoparticles 

immobilized inside the membrane matrix. Membranes functionalized with bimetallic 

nanoparticles offers great advantages for the catalytic reaction because diffusion 

limitation can be minimized under convective flow. 
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Figure 2.3 Membrane structure and separation mechanism 
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Figure 2.4 Porous membrane functionalization and application 
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Chapter 3 Experimental Section 

 

3.1 Introduction 

 

This chapter includes descriptions and procedures for all the chemicals, 

membranes, set-ups used in the research. In addition, the preparation of membrane 

functionalization, nanoparticle synthesis and dechlorination reaction set-ups will be 

discussed in detail. The membranes were characterized by scanning electron microscopy 

(SEM), thermogravimetric analyzer (TGA), and Fourier transform infrared (FT-IR). 

Nanoparticles were characterized by SEM, transmission electron microscopy (TEM), X-

ray energy dispersive spectroscopy (EDS), scanning transmission electron microscopy 

(STEM), and high resolution transmission electron microscopy (HRTEM). The analysis 

techniques performed for organic and metal ions quantification are: gas chromatography 

equipped with mass spectrometry (GC/MS), ion chromatography (IC), inductively 

coupled plasma atomic emission spectrophotometry (ICP-AES), atomic adsorption (AA), 

total organic carbon (TOC).  

 

3.2 Materials 

 

Acrylic acid (AA), benzoyl peroxide, 1,1,1-trimethylolpropane triacrylate 

(TMPTA), toluene anhydrous, ferrous chloride tetrahydrate (FeCl2·4H2O), potassium 

tetrachloropalladate (K2PdCl4), sodium borohydride (NaBH4), ethanol anhydrous and 

hexane were obtained from Aldrich. Ferrous chloride, nickel chloride, sulfuric acid (1N), 

ethylene glycol, FeSO4·7H2O, and trichloroethylene were obtained from Fisher Scientific. 

Halogenated ethane standard, naphthalene-d8 (5000 mg L-1 in methyl chloride), 

decachlorobiphenyl (PCB209), 3,3',4,4'-tetrachlorobiphenyl (PCB77), 2,3,2’,5’- 

tetrachlorobiphenyl (PCB44), 3,4,4'-trichlorobiphenyl (PCB37), 3,3',4-trichlorobiphenyl 

(PCB35), 2,2',5-Trichlorobiphenyl (PCB18), 2,2',3-Trichlorobiphenyl (PCB16), 4,4'-

dichlorobiphenyl (PCB15), 3,4'-dichlorobiphenyl (PCB13), 3,4-dichlorobiphenyl 

(PCB12), 3,3'-dichlorobiphenyl (PCB11), 2, 2’-dichlorobiphenyl (PCB4), 4-

chlorobiphenyl (PCB3), 3-chlorobiphenyl (PCB2), 2-chlorobiphenyl (PCB1) and 
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biphenyl were obtained from Ultra Scientific. Palladium acetate ([Pd (C2H3O2)2]3) was 

from Alfa. Polyacrylic acid (MW 50,000) was obtained from Polysciences. Dextran (MW 

144,000; 482,000; 670,000; 1,400,000; 2,000,000) was obtained from Sigma. 

Commercial polyether sulfone MF membrane (PES, 0.22μm pore size, 4.7 cm diameter, 

150~200μm thickness), PVDF MF membrane (0.22 μm pore size, 4.7 cm diameter, 125 

μm thickness and 75% porosity) and hydrophilized PVDF MF membrane (0.1 μm pore 

size, 4.7 cm diameter, 110 μm thickness) were purchased from Millipore. 

 

3.3 Preparation of PAA-Functionalized Membrane 

 

3.3.1 PAA Dip Coating 

 

Two types of MF membranes were used as the support for PAA modification by 

dip-coating: hydrophobic PES membrane and hydrophilized PVDF membrane.  

 

PAA/PES Membrane Preparation 

 

PES microfiltration membrane obtained from Millipore was used as the support 

membrane layer. The PAA coating layer was attached to the surface of PES support 

membrane by a dip-coating process (Choi et al., 1992; Ohya et al., 1994; Huang et al., 

1998). A PES MF membrane was immersed in a dilute aqueous coating solution of PAA. 

After removal from the immersion bath, a thin adherent layer was left on the membrane. 

Aqueous coating solution was prepared by diluting 25 wt% PAA solutions to 12.5 wt% 

solution with 2 wt% ethylene glycol as the crosslinking agent and 7.8 wt% FeCl2·4H2O 

as the precursor of iron nanoparticles. The molar ratios of PAA repeat unit (~COOH) to 

ethylene glycol and the ratio to Fe2+ were both 4:1. The crosslinked PAA/PES composite 

membrane was finally obtained by thermally heating the membrane in the oven under 

vacuum at 110~120°C for 3 hours. The ether bond formed between carboxylic group and 

ethylene glycol generate the crosslinking PAA network structure. Figure 3.1 illustrates 

that two PAA chains are cross-linked due to the esterification reaction between the 
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carboxylic group in PAA and the hydroxyl group in EG. It is important to only do a 

partial (about 50%) cross-linking to leave free carboxylic groups for metal entrapment. 

 

PAA/PVDF Membrane Preparation 

 

A similar procedure was used to prepare PAA/PVDF composite membranes by 

dip-coating. Briefly, hydrophilized PVDF MF membrane (0.1 μm pore size, 4.7 cm 

diameter, 110 μm thickness, Millipore) was also used as another support membrane layer. 

Aqueous coating solution was prepared by diluting 25 wt % PAA (MW 50,000) solutions 

to 12.5 wt % solution with 2.3 wt % ethylene glycol as the crosslinking agent and 10.5 wt 

% FeSO4·7H2O as the precursor of iron nanoparticles. The crosslinked PAA/PVDF 

composite membrane was finally obtained by thermally heating the membrane in the 

oven under vacuum at 110~120°C for 3 hours (Figure 3.1). 
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Figure 3.1 Schematic diagram for preparation of nanoscale Fe/Pd or Fe/Ni particles in the 
PAA/PES or PAA/PVDF membrane and cross-linking reaction between EG and PAA 
(Xu and Bhattacharyya, 2005a). 
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3.3.2 In-situ Polymerization of Acrylic Acid 

 

The PVDF MF membranes functionalized with PAA were prepared by filling the 

membrane pores with the acrylic acid monomer solution, followed by literature reported 

(for polyethylene MF membrane) in-situ free radical polymerization via thermal 

treatment (Gabriel and Gillberg, 1993). The typical procedure is described in Figure 3.2. 

In order to achieve the ability of wetting out the hydrophobic PVDF membrane, toluene 

was chosen as the solvent medium. The monomer solution was prepared by mixing the 

acrylic acid (30 wt %), benzoyl peroxide (0.5 wt %, initiator), TMPTA (1 wt %, cross-

linking agent) in toluene. Benzoyl peroxide as the initiator was first dissolved in toluene. 

The solutions were purged with ultra high purity nitrogen for 2 hours to remove any 

dissolved oxygen that can act as an inhibitor. The PVDF membranes were immersed into 

the monomer solution for 2 min and quickly placed between two teflon plates that were 

subsequently clamped together. The membranes immobilized in the two teflon plates 

were then placed into the oven at 90 ± 2 °C with nitrogen purge. The TMPTA served as 

the crosslinking monomer due to the trifunctional double bonds (Figure 3.3). This high 

branch structure offers high cross-linking density during free radical polymerization 

(Gabriel and Gillberg, 1993). After 4 hours, the membranes were released from teflon 

plates and washed in 200 mL ethanol to remove unreacted monomers. Finally, the 

PAA/PVDF membranes were rinsed with deionized water and kept in deionized water for 

nanoparticle synthesis. 
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Figure 3.2 Schematic diagram of PAA functionalized PVDF MF membranes using in-situ 
polymerization of acrylic acid via thermal treatment (Xu and Bhattacharyya, 2007).  
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Figure 3.3 Thermal induced free radical polymerization reaction of acrylic acid using 
benzoyl peroxide as the initiator. PAA is cross-linked during polymerization by TMPTA 
(Xu and Bhattacharyya, 2007).  
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3.4 Bimetallic Nanoparticle Synthesis in Membrane Phase 

 

3.4.1 Synthesis of Bimetallic Nanoparticles in PAA/PES (Dip-coating) Membranes 

 

Figure 3.1 shows the typical procedure for the synthesis of nanoscale metal 

particles inside the PAA membrane domain. There are two steps involved in the 

procedure: (1) Crosslinked PAA/PES composite membrane preparation; (2) Reduction of 

metal ions inside membrane matrix. Since PAA is a water-soluble polymer, it has to be 

crosslinked to form network structure which is insoluble in water. 

Nanoscale Fe0 particles were prepared by soaking 5 samples (each 4.7 cm dia) of 

PAA/PES composite membranes in the NaBH4 (0.4M) aqueous solution for 10 minutes. 

Fe2+ in the PAA layer was reduced and immobilized inside the polyelectrolyte membrane 

matrix which can inhibit agglomeration of newly formed Fe atoms. Excess NaBH4 was 

used to prevent oxidation of iron particles. The membrane surface was rinsed by large 

amount of deoxygenated DIUF water for three times to remove the residual reactant and 

product. 

Generally, bimetallic nanoparticles can be prepared by two different methods 

(Figure 3.4): post coating and simultaneous reduction. Preparation of bimetallic 

nanoparticle by the post coating method involves sequential formation of first and second 

metal. After forming the single metal (Fe) nanoparticles in the previous section, the 

second metal are formed and deposited on the first metal surface to form bimetallic 

nanoparticles. The formation of second metal can be achieved by reduction of second 

metal ions with first zero valent metal nanoparticles. For example, Pd2+ can be reduced 

by Fe0 and deposited on the Fe0 surface to from Fe/Pd nanoparticles if less than a 

stoichiometric amount of Pd2+ is used (Figure 3.4). Additional reducing agent may be 

required if the reduction potential energies of first and second metal are close. For 

example, NaBH4 is usually required to reduce Ni2+ in the presence of Fe0 to form Fe/Ni 

nanoparticles. Since the first and second metal are formed sequentially, the bimetallic 

nanoparticles synthesized by post coating method have the core shell structure. The first 

metal is in the core region and the second metal is in the shell region. The second method 

to prepare bimetallic nanoparticles is to reduce the two metal ions simultaneously (Figure 
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3.4). Since the two metals are formed at the same time, bimetallic nanoparticles have 

alloy structure. The first and second metal atoms are homogenously dispersed inside the 

whole particle. The two types of bimetallic nanoparticle structure (core-shell vs alloy) 

were characterized by high-resolution X-ray mapping. And the bimetallic nanoparticle 

structure on the catalytic reactivity will be discussed later. 

 

Fe/Ni Nanoparticles 

 

Bimetallic Fe/Ni nanosized particles were produced by two different methods:  

(1) Formation of Fe Nanoparticles by Reduction followed by Ni Deposition: 5 

samples of PAA/PES composite membranes containing Fe nanoparticles were immersed 

in 50mL NiCl2·6H2O (0.1 wt%, pH = 4.8) for 10 minutes (Figure 3.5A). Upon 

deprotonation of COOH in the PAA repeating unit, Ni2+ was picked up by PAA layer and 

immobilized on the top of membrane surface. Subsequent immersion of the membrane 

into the same NaBH4 aqueous solutions (0.4 M) again for 5 minutes results in nickel 

precipitation on the iron surface to form Fe/Ni bimetallic nanoparticles by the electroless 

metal plating process (Delaunois et al., 2001). In order to quantify metal content inside 

the PAA/PES composite membrane, a Varian SpectrAA 220 Fast Sequential atomic 

adsorption spectrometer equipped with a Fisher Scientific data coded hollow cathode 

lamp was used to do soluble metal analysis by immersing one PAA/PES membrane 

containing Fe/Ni particles into 40 mL sulfuric acid (1N) for an hour. It was observed that 

the color of membrane changed from black to white, while the color of sulfuric acid 

solution changed form white to light-brown, suggesting that iron and nickel nanoparticles 

were dissolved in the sulfuric acid. Based on the AA analyses, each 4.7 cm dia PAA/PES 

membrane contained 7.2mg Fe and 1.8mg Ni nanoparticles (Fe: Ni = 4:1). According to 

known sample analysis each time, the maximum error for AA was determined to be 5%. 

 

(2) Simultaneous Reduction of Fe2+ and Ni2+ in Membrane: By adding 

NiCl2·6H2O (2.4wt %) as the precursor of Ni nanoparticles into the PAA coating layer 

solution, Fe/Ni particles can be produced simultaneously (Figure 3.5B) from NaBH4 

reduction with the membrane containing both iron and nickel ions (Fe: Ni=4:1). Based on 
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the AA analyses, each PAA/PES membrane contains 9 mg metal nanoparticles (Fe: Ni = 

4:1). 

After reduction, both membranes were rinsed by large amount of deoxygenated 

DIUF water and then dried at room temperature for further dechlorination experiments. 

As shown in Figure 3.5B, reducing Fe and Ni simultaneously by sodium borohydride 

could cause the formation of iron and nickel particles in separate domain. However, 

reducing Ni2+ with NaBH4 after iron particles are present in the membrane matrix causes 

the deposition of Ni on the surface of iron particles, which forms nickel-coated iron 

particles (Carpenter et al., 2003). In this case, iron should be ideally covered by Ni, which 

will be proven by the particle characterization and dechlorination results. 
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Figure 3.4 Schematic diagram for bimetallic nanoparticle synthesis 
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Figure 3.5 Schematic of diagram for synthesis of nanoscale Fe/Ni particles inside PAA 
membrane domain (A) Reducing Fe particles followed by Ni deposition; (B) 
Simultaneous reduction of Fe and Ni salts. 
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Fe/Pd Nanoparticles 

 

Fe/Pd bimetallic nanoparticles were prepared by soaking 5 samples of PAA/PES 

membranes immobilized with Fe nanoparticles in a 50 mL ethanol solution containing 

0.1 wt% palladium acetate ([Pd(C2H3O2)2]3). Pd2+ was reduced to Pd0 by Fe0 and 

subsequently deposited on the Fe surface (Zhang et al., 1998; Lien and Zhang, 2001). By 

AA analyses and using Pd mass balance the calculation showed that 4 mg of Pd was 

deposited on 36 mg of nanoscale iron particles (Fe: Pd = 9:1) in each 4.7 cm membrane. 

 

3.4.2 Synthesis of Bimetallic Nanoparticles in PAA/PVDF (Dip-coating) 

Membranes.  

 

Fe0 nanoparticles were prepared by soaking 10 samples (each 4.7 cm dia) of 

PAA/PVDF composite membranes containing Fe2+ in 200 ml 0.5 M NaBH4 aqueous 

solution for 10 minutes. Fe2+ in the PAA layer was reduced and immobilized inside the 

polyelectrolyte membrane matrix. Ten samples of PAA/PVDF composite membranes 

containing Fe0 nanoparticles were immersed in 100 mL NiSO4·6H2O (0.07 wt %, pH = 

4.8) for 10 minutes. Upon deprotonation of COOH in the PAA repeating unit, Ni2+ was 

adsorbed by PAA. Subsequent immersion of the membrane into the same NaBH4 

aqueous solutions (0.5 M) again for 5 minutes results in nickel precipitation on the iron 

surface to form Fe/Ni nanoparticles.  

Fe/Ni alloy nanoparticles were synthesized in PAA/PVDF Membrane by adding 

NiSO4·6H2O (2.5 wt %) as the precursor of Ni nanoparticles into the PAA coating layer 

solution, Fe/Ni particles can be produced simultaneously from NaBH4 (0.5 M) reduction 

with the membrane containing both iron and nickel ions. 

Fe/Pd nanoparticles were prepared by soaking 5 samples of PAA/PVDF 

membranes containing Fe nanoparticles in a 50 ml ethanol solution containing 0.015 wt 

% of palladium acetate ([Pd (C2H3O2)2]3). Pd2+ was reduced to Pd0 by Fe0 and 

subsequently deposited on the Fe surface. The Fe and Pd content inside the membrane 

was also determined by soluble metal analysis in AA. 
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3.4.3 Synthesis of Fe/Pd Nanoparticles in Pore Modified PAA/PVDF Membranes 

 

The flowchart for the membrane supported nanoparticle synthesis is described in 

Figure 3.6. Briefly, the ferrous ions were first loaded into membranes by ion exchange, 

and Fe nanoparticles were formed followed by reduction of Fe2+ with NaBH4. Prior to the 

ion exchange, the PAA/PVDF membrane (4.7 cm in dia) was soaked in 100 mL sodium 

hydroxide (0.1 M) overnight (12~14 h) to convert PAA from hydrogen form (–COOH) to 

the sodium form (–COONa). After the excess sodium hydroxide was rinsed from the 

membrane with deionized water, the membrane was shaken in 100 mL deoxygenated 

solution of ferrous chloride (5.5 mM) at pH 4.8~5 with nitrogen purge for 12 h. During 

this process, the ferrous ions were bound with PAA in the membrane by ion exchange 

with Na+. The membrane was then washed with deoxygenated deionized water.  

Subsequent immersion into 200 mL solution of sodium borohydride (0.07 M) yielded Fe 

nanoparticles embedded in the PAA/PVDF membrane. It has been found in the literature 

that boron is present at ~ 4 wt % as FeB in the iron nanoparticles when Fe2+ is reduced by 

NaBH4 (Liu et al., 2005). The boron and iron contents were determined by digesting the 

nanoparticles in 25 wt % nitric acid solution and measuring the dissolved Fe and B 

concentration through inductively coupled plasma atomic emission spectroscopy (ICP-

AES). After rinsing with deoxygenated deionized water and ethanol sequentially, the 

membrane supported iron nanoparticles were soaked into 50 mL solution (90/10 vol.% 

ethanol/water) of K2PdCl4 (0.12 mM) for 30 min. This resulted in the deposition of Pd on 

the Fe surface through the following redox reaction (He and Zhao, 2005): 

Pd2+ + Fe0  Fe2+ + Pd0                                                  (1) 

Due to the high reactivity of Fe nanoparticles, 90 vol.% ethanol were used to minimize 

the Fe corrosion reaction and other side reactions. After rinsing with ethanol three times, 

the prepared Fe/Pd nanoparticles in PAA/PVDF membrane were stored in ethanol 

solution for further dechlorination study. The Pd deposition content was also determined 

by digestion of nanoparticles in 25 wt % nitric acid and followed by ICP-AES analysis. 

Different Pd loading Fe/Pd nanoparticles in PAA/PVDF membrane were prepared using 

various K2PdCl4 (0.012 mM ~ 0.2 mM) solutions to investigate the effect of Pd 

deposition content. 
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Figure 3.6 Schematic diagram of iron nanoparticles synthesized in pore modified 
PAA/PVDF membranes (Xu and Bhattacharyya, 2007) 
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3.5 Solution Phase Synthesis 

 

Solution phase (no membrane) synthesis of Fe/Ni Particles was also prepared for 

comparison purposes. The procedure consisted of dissolving 3.63 g FeCl2·4H2O and 1.0 

g NiCl2·6H2O in 50 mL deoxygenated DIUF water. After adding 3 g NaBH4 into the 

solution, the metal salts were reduced to black particles. Fe/Ni particles were washed by 

deoxygenated DIUF water, and then rinsed by ethanol and acetone to remove residual 

water. The particles were finally dried at room for further dechlorination experiments. 

Commercial Fe particles were used for Ni and Pd coating in order to compare 

results with nanoparticle system. Iron particles (~120 μm, from Fisher Scientific) were 

washed with 1M HCl and then rinsed with deoxygenated deionized water and ethanol 

sequentially. Aqueous solutions of NiSO4 and K2PdCl4 were prepared by deoxygenated 

deionized water (pH = 2) and used respectively to deposit Ni and Pd on the iron particle 

surface. The Fe/Ni and Fe/Pd particles were then rinsed with deoxygenated deionized 

water and ethanol sequentially. The rinsed Fe/Ni and Fe/Pd particles were stored in 

ethanol solution for the dechlorination study. The Pd and Ni coverage was also 

determined by digestion in 25 wt% nitric acid and followed by ICP-AES analysis. 

 

3.6 Characterization of Membranes and Fe/Pd Nanoparticles 

 

Surface and cross sections of membranes containing metal nanoparticles were 

examined using the Hitachi S-900 Scanning Electron Microscope (SEM). A Hitachi S-

3200 SEM equipped with an energy dispersive spectrometer (EDS) was also used to 

obtain information regarding the elements present in the nanoparticles. The EDS was 

operated under high vacuum conditions (20kV voltage) where an electron beam was 

focused on the particles. Membranes were coated with gold and palladium for imaging 

purposes. In the case of cross-sectional images, membranes were freeze-fractured under 

liquid N2 prior to sputter coating with gold and palladium. 

The structure and composition of the nanoscale metal particles were also studied 

at nano scales using bright field transmission electron microscopy (TEM), EDS, and dark 

field scanning transmission electron microscopy (STEM). A JEOL 2010F with a field 
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emission gun (FEG) and accelerating voltage of 200 kV was employed. EDS Line profile 

analysis was performed to study the Fe and Ni compositions in the nano domain. In the 

EDS line profile analysis, the electron beam was scanned along a designated line across 

the sample while x-rays were detected for discrete positions along the line. The analysis 

of the x-ray energy spectrum at each position provided plots of the relative elemental 

concentration versus position along the line. This type of analysis was performed with the 

microscope operating in STEM mode. The computer control and data acquisition system 

used is the Emispec EsVision. One 0.5 nm spot was used to provide a strong x-ray signal. 

Typically 20 to 30 steps were taken along each profile with a range of 14 to 27 nm. The 

step size was chosen to be smaller than any observable feature.  The dwell time chosen 

was ten seconds. This provided high quality and low noise x-ray spectra.  When the Fe 

and Ni profiles were computed, full width half max (FWHM) integration windows were 

chosen about the K alpha peaks to maximize the signal to noise ratio.  

STEM-EDS mapping was utilized to image the elemental distribution inside the 

membrane matrix. The size of the focused electron beam was about 0.5 nm in diameter. 

The X-rays induced by the electron beam from the specimen were detected 

simultaneously with the scanning of the electron beam and form EDS mapping images of 

selected elements. The dwelling time was chosen as 500 ms. The tilt angle was increased 

to 15 degrees which significantly increased our count rate. 

To obtain a thin film for TEM imaging, the membrane sample containing metal 

nanoparticles was prepared by the same procedure in the particle synthesis step except 

that a minute droplet of PAA was dropped and coated directly on a gold TEM grid (200 

Mesh Square) instead of the PES or PVDF support membrane. For bimetallic 

nanoparticle synthesized in pore modified PAA/PVDF membranes, the membrane 

samples for TEM observation were prepared by ultra sectioning into about 50 nm 

thickness slices using a conventional microtome technique with a diamond knife. The cut 

slices were loaded on a copper TEM grid coated with lacey carbon film. 

The thermal stability of the pore modified PAA/PVDF membranes was examined 

using a TGA 2050 thermogravimetric analyzer (TA Instrument, USA). About 15 mg 

sample was used. The scanning temperature range for the TG analysis was between 25 

and 1000 °C with the heating rate of 10 °C/min under nitrogen atmosphere. 
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The Fourier transform infrared (FT-IR) spectra of the pore modified PAA/PVDF 

membranes were obtained on a Nicolet Magna IR 860 Instrument in the range of 4000-

500 cm-1
. 

 

3.7 Dechlorination Reactions 

 

Bimetallic Nanoparticles in PES Membranes Dip-coated with PAA 

 

Batch experiments for dechlorination of trichloroethylene (TCE) with Fe/Ni 

nanoparticles in PAA/PES membranes were conducted in 42 mL serum glass vials. In 

each batch vial, 45 mg metal particles (Fe/Ni) at the mass ratio of 4:1 immobilized on 5 

samples of membranes were loaded into the vial containing 40 mL 10±1 mg/L TCE and 

2-mL headspace. The serum glass vials were sealed with Teflon-lined silicon septa and 

placed on a wrist-action shaker throughout the duration of the experiment. Parallel blank 

experiments without membranes and metal particles, and control experiments with only 

PES support membrane were also performed. For comparison, experiments were also 

conducted with the nanoscale Fe/Ni particles produced directly in the solution, and 

membrane-based nanoscale Fe/Pd particles (40 mg/40 mL, Fe: Pd=9:1). 

 

Bimetallic Nanoparticles in PVDF Membranes Dip-coated with PAA 

 

The reactivity of bimetallic nanoparticles synthesized in PAA/PVDF membranes 

was studied towards dechlorination with 2, 2’-Dichlorobiphenyl (PCB4) and TCE. Batch 

experiments for dechlorination of PCB4 and TCE were both conducted in 24.5 ml serum 

glass vials. For dechlorination of PCB4, 22 mg Fe/Pd nanoparticles (Pd=1 wt %) 

immobilized in 4 samples of PAA/PVDF membranes were loaded into the vial containing 

8.1 mg/L PCB4 in 20 ml of 50/50 vol.% ethanol/water. For TCE dechlorination, 8 mg of 

Fe/Ni nanoparticles immobilized in 2 samples of PAA/PVDF membranes were loaded 

into the vial containing 20 mg l-1 TCE in 20 ml deoxygenated water. All the serum glass 

vials were sealed with Teflon-lined silicon septa and placed on a wrist-action shaker 



 41

throughout the duration of the experiment. Parallel control experiments with only support 

membrane (no metal particles) were also performed. 

 

Fe/Pd Nanoparticles in Pore Modified PAA/PVDF Membranes 

 

The reactivity of Fe/Pd nanoparticles prepared in pore modified PAA/PVDF 

membranes were investigated towards dechlorination of 2, 2’-dichlorobiphenyl. Batch 

experiments for dechlorination of 2, 2’-dichlorobiphenyl (PCB4), 3,3',4,4'-

tetrachlorobiphenyl (PCB77), 2,3,2’,5’- tetrachlorobiphenyl (PCB44). The batch 

dechlorination reaction was conducted in 24.5-mL serum glass vials. In each batch vial, 

one piece of PAA/PVDF membrane (47cm in dia) embedded with 16 mg Fe/Pd 

nanoparticles was loaded into 20 ml solution of PCBs. All the serum glass vials were 

sealed with teflon-lined silicon septa and placed on a wrist-action shaker throughout the 

duration of the experiment. At predetermined time intervals, a 2-mL aqueous solution 

was withdrawn from the selected reaction vial and transferred to a 4-mL vial containing 

2-mL hexane for the extraction of PCBs. After removing all the residual solution, 10 ml 

hexane was added into the reaction vial for membrane phase extraction. The 4-ml and 

reaction vials were both placed on a wrist-action shaker and mixed for 2 hours to achieve 

extraction equilibrium. Duplicated experiments were conducted at each sampling time. 

Some experiments were also conducted in convective flow (0.5-5 bar pressure) 

 

3.8 Analytical Methods 

 
3.8.1 TCE Analysis 

 
TCE analysis was performed using a gas chromatography (GC, Varian-3900) 

equipped with an ion-trap mass spectrometry (MS, Saturn-2100T). A Tekmar-Dohrmann 

3100 purge-and-trap (PT) with the autosampler (Varian Archon) was coupled to the 

GC/MS and used for direct organic analysis of the aqueous phase (50 μg l-1 1,4-

difluorobenzene was used as the internal standard). External haloethanes mixture 

standards containing 200 mg/L TCE, cis-DCE, tans-DCE and 1, 1-DCE in methanol 

(Ultra Scientific) were used to prepare calibration curves (Concentration range: 25-500 
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µg l-1). According to known sample analysis each time, the maximum error was 

determined to be less than 15%.  

 

3.8.2 Ethane and Ethylene Analysis 

 

Hydrocarbon products for TCE dechlorination experiments in the headspace were 

measured by GC (HP 5890)/MS (Series 6150) equipped with a cryo-cooling system using 

liquid CO2 as the coolant. External standards of ethane, ethylene (Scott Specialty Gas, 

1% in N2) were used to prepare calibration curves. According to known sample analysis 

each time, the maximum error for both ethane and ethylene was determined to be less 

than 15%. 

 

3.8.3 PCBs Analysis 

 

The concentration of PCB44, PCB18, PCB16, PCB4, PCB1, and biphenyl were 

measured by gas chromatography (GC: Varian-2800) equipped with mass spectrometry 

(MS: Varian-6100). For each 24.5 ml experimental sample vial, 4 ml of hexane as the 

extractant for PCBs was added to an 8 ml vial containing 4 ml of aqueous solution which 

was removed from the reaction vial. After removing all the residual solution, 10 ml 

hexane was added into the reaction vial for membrane phase extraction. The 8-ml and 

reaction vials were both placed on a wrist-action shaker and mixed for 2 hours to achieve 

extraction equilibrium. From each extraction vial, a 1 ml aliquot of the extraction solvent 

layer was transferred to a 1 ml GC autosampler vial for analysis using GC/MS. Ten 

microliters of naphthalene (5000 mg/L in methyl chloride) was added into the GC sample 

vial as an internal standard. External standards of PCB44, PCB18, PCB16, PCB4, PCB1, 

and biphenyl in hexane (Ultra Scientific) were used to prepare calibration curves. The 

calibration curves were linear over the concentration range of 0.5-20 mg l-1 ((R2 > 0.999, 

regressions were based on the 7-point calibration). According to known sample analysis 

each time, the maximum error was determined to be less than 10%. The detection limit 

for all the PCBs was 0.1 mg L-1. 
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PCB77 and degradation products were analyzed by gas chromatography (GC: 

Agilent-6890) equipped with an inert mass selective detector (MSD: Agilent-5975).  

analysis for PCB77 dechlorination experiments were conducted by transferring 100 µl 

aliquot of the extraction solvent to a 100-µl glass insert with a polymer bottom spring in a 

1-mL GC autosampler vial for. Ten microliters of decachlorobiphenyl (PCB209) (1 mg 

L-1 in hexane) were added into the 100-µl glass inert as the internal standard (IS). 

External standards of 3,3',4,4'-tetrachlorobiphenyl (PCB77), 3,4,4'-trichlorobiphenyl 

(PCB37), 3,3',4-trichlorobiphenyl (PCB35), 4,4'-dichlorobiphenyl (PCB15), 3,4'-

dichlorobiphenyl (PCB13), 3,4-dichlorobiphenyl (PCB12), 3,3'-dichlorobiphenyl 

(PCB11), 4-chlorobiphenyl (PCB3), 3-chlorobiphenyl (PCB2) and biphenyl in hexane 

were used to prepare calibration curves. The calibration curves for all PCBs analyzed 

were linear over the concentration range of 0.1~5 mg L-1 (R2 > 0.999, regressions were 

based on the 7-point calibration). It should be noted that PCB12 and PCB13 were 

unresolved under the chromatographic conditions. PCB12 and PCB13 were analyzed 

together as the total amount. The detection limit for all the PCBs was 0.1 mg L-1. 

According to known sample analysis each time, the maximum error was determined to be 

less than 10%. 

 

3.8.4 Hydrogen Analysis 

 

Analysis of hydrogen gas generated from the corrosion of iron reaction during the 

dechlorination reaction with bimetallic nanoparticles was conducted using a GC (Agilent 

6890N , Carboxen 1004 micropacked column from Supelco Inc.) equipped with a thermal 

conductivity detector (TCD). The GC System interfaced with ChemStations software. 

The temperature program used was: One min holding at 50 °C followed by a ramping 

rate of 5 °C /min to 120 °C and remained at 120 °C for another minute (Tee 2006). Ultra 

high purity argon was used as the carrier gas. External standard hydrogen gas (1 mol% H2 

in N2, analytical accuracy: ±0.02 %) from Scott Specialty was used to prepare the 

calibration curve. The calibration curves were linear over the concentration range of 1.15 

~ 5.73 mini mole (R2 = 0.994, regressions were based on the 5-point calibration). A 

Hamilton air-tight lock syringe was used to withdraw 0.1 ~ 1 ml of headspace volume 
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from the reaction vials and injected directly to the manual injection port. The total mole 

of hydrogen generated was correlated with a five-point calibration curve. Based on the 

known sample analysis each time, the maximum error was less than 15%. 

 

3.8.5 Chloride Analysis 

 

The concentration of chloride ion in the aqueous solution was determined by ion 

chromatograph (Dionex ICS-2500, column: Ionpac AS18, eluent: KOH, current: 100 mA, 

flow: 0.95 mL/min) with a conductivity detector. Based on the known sample analysis 

each time, the maximum error was less than 5%. 

 

3.8.6 Metal Ions Analysis 

 
All the concentrations of metal ions (iron, sodium, palladium, boron) were 

quantified by ICP-AES (Varian: VISTA-PRO). In all cases, the instrument calibration 

was based on commercial standards (Fisher Scientific) containing 1000 mg L-1 of the 

desired metal serially diluted with 5% nitric acid. Yttrium chloride (1 mg L-1) was used as 

the internal standard. Based on the known sample analysis each time, the maximum error 

for all the elements was less than 8%. The batch TCE dechlorination solution used for the 

analysis of iron and nickel ions by AA was first passed through a Millipore regenerated 

cellulose ultrafiltration membrane (Ultracel Amicon YM10, MWCO 10,000). 

 

3.8.7 TOC Analysis 

 

Neutral dextran (MW 144,000; 482,000; 670,000; 1,400,000; 2,000,000) rejection 

was monitored via total organic carbon (TOC) measurements of the feed and permeate 

solutions (experimental error <2%) to determined the effective pore size of pore modified 

PAA/PVDF membranes. 

 
 

 
Copyright © Jian Xu 2007 



 45

Chapter 4 Results and Discussions 

 

4.1 Introduction 

 

This chapter includes results and discussions for reductive dechlorination using 

various bimetallic nanoparticles immobilized in different PAA functionalized membrane 

matrix. The first area discussed is the scientific reasons for using membrane supported 

bimetallic nanoparticles in the degradation of chlorinated organics. Next, the membrane 

functionalization by PAA was characterized using SEM, permeation, thermal analysis, 

dextran rejection, and STEM mapping. The successful PAA functionalization and 

characterization is necessary for the metal capture and subsequent nanoparticle synthesis. 

The binding interaction between PAA and ferrous ions was studied by EDS and STEM 

mapping to understand the role of PAA in stabilizing nanoparticles and controlling the 

particle size. The bimetallic nanoparticles were then characterized by SEM, TEM, STEM, 

and HRTEM. This gives important information of nanoparticle distribution, size and 

structure, which can be further correlated with reaction kinetics. Extensive experimental 

results of TCE and PCB dechlorination were present to understand and quantify reductive 

dechlorination mechanism, the composition of second dopant metal (Pd or Ni), role of 

water, particle size (nano size versus bulk size) and temperature effect in the catalytic 

reactivity. The dechlorination reaction rates are evaluated in terms of surface normalized 

rate (kSA) to compare the reactivity of various bimetallic nanoparticles. Normalizing the 

variation of kSA as a function of dopant metal content was performed to understand the 

reaction mechanism and quantify the role of the dopant metal. Finally, a steady state two-

dimensional reactor model was developed to describe the reaction inside the membrane 

pores. 
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4.2 Bimetallic Nanoparticles in Functionalized Membranes: Reasons and 

Advantages: 

 

As discussed previously in the background, the aqueous phase synthesis results in 

the agglomeration and aggregation of nanoparticles, which can greatly reduce the specific 

area and particle reactivity. The agglomeration is more intense for iron atoms due to the 

strong magnetic interactions. Various stabilizers such as polymers and surfactants have 

been successfully used to prevent nanoparticles (Au, Ag, and Pd) from agglomerations in 

solvent phase. But not all these stabilizers are suitable for environmental applications. 

And some stabilizers may not function properly in the aqueous phase. The iron 

nanoparticle protected by the stabilizer in aqueous phase may tend to aggregate again at 

the dry state.  

Immobilization of nanoparticles in solid supports provides another approach for 

nanoparticle stabilization. Much attention have been given to the preparation of metal 

nanoparticles embedded in thin and dense films or gels by a stepwise approach of ion-

exchange/reduction (Ikeda et al., 2004; He et al., 2002 and 2003; Pivin et al., 2006; 

Damle et al., 2001). In this method, ion-exchange ligands created in the thin films can 

bind metal cations from aqueous solution. Post reduction or precipitation produces 

nanoparticles from bound metal cation precursors. The advantage of this process is the 

controllable nanostructure properties during nanoparticle synthesis by utilizing these ion 

exchange ligands. The nanostructure properties include the particle size and distribution, 

particle concentration and interparticle spacing. However, the accessibility of the 

nanoparticles may be limited due to the dense structure of the solid support. The 

chlorinated organics must diffuse through the dense film before they can be adsorbed on 

the nanoparticle surface. Thus, the use of open structured supports such as MF or UF 

membranes containing functional ion-exchange groups provides an ideal approach for 

ordered and stable nanoparticle formation as well as the highly effective dechlorination 

technique. The diffusion limitation can be avoided by applying convective flow. 

Furthermore, the membrane supports functionalized with ion exchange groups have the 

capability of capturing dissolved metal ions (Fe2+, Fe3+, Ni2+). The recaptured metal ions 

by membranes can be subsequently regenerated using NaBH4. 
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4.3 Membrane Characterization 

 

As discussed in the experimental section, there are two types of methods used in 

this study to functionalize MF membranes (PES, PVDF) with PAA: (1) PAA dip-coating; 

(2) in-situ polymerization of acrylic acid inside membrane pores (pore-filled PAA/PVDF 

membranes). 

 

4.3.1 PES/PVDF Membranes Dip-coated with PAA 

 

Degree of PAA Cross-linking 

 

The degree of PAA cross-linking was determined by the entrapment capacity of 

Ca2+ by free carboxylic group in PAA. Table 4.1 shows the sorption of Ca2+ by uncross-

linked and cross-linked PAA. For uncross-linked PAA, the molar ratio of entrapped Ca2+ 

to the COOH was 0.124. This ratio decreased to 0.049 in the cross-linked PAA due to the 

loss of free carboxylic groups. Theoretically, 50% of carboxylic group in PAA should 

have been cross-linked with ethylene glycol according to the molar ratio of 0.5 (OH: 

COOH). Because of the cross-link of PAA chains, however, some free carboxylic groups 

may be far enough not to capture calcium ions, which explain that less than 50% free 

carboxylic groups of cross-linked PAA can pick up Ca2+ in the Table 4.1. 

 

Membrane Permeability 

 

Table 4.2 shows the pure water flux in the PES support membrane and cross-

linked PAA/PES membrane with iron and nickel nanoparticles. After the PES support 

membrane was coated with cross-linked PAA and nanoparticles, the membrane 

permeability (A) was found to decrease significantly from the initial value of 77×10-4cm3 

cm-2 bar-1 s-1 to 3.03×10-4 cm3 cm-2 bar-1 s-1 for cross-linked PAA composite membrane 

and to the final value of 0.27 cm3 cm-2 bar-1 s-1. Obviously, the permeation flux decline 

was attributed to the resistance from PAA coating layer and the nanoparticles 
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immobilized inside the membrane-pore matrix which could significantly decrease 

membrane pore size as well as membrane porosity. 
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Table 4.1 The interaction between free and cross-linked PAA with Ca2+ at pH 5.0 
 

 
Initial Ca2+ 

(mM) 

Repeat unit 

of PAA 

(mM) 

Captured 

Ca2+(mM)

Ca2+/(repeat 

unit) molar 

ratio 

Degree of 

cross-link 

Uncross-

linked PAAa 
0.450 0.94 0.117 0.124 - 

Cross-linked 

PAAb 
0.373 0.50 0.0247 0.0494 60% 

a. 0.0677g PAA (MW 50,000) was added in 50 ml 363 mg/L CaCl2 solution and 

mixed for 60 minutes. The solution was filtered by a Millipore centrifuge membrane 

cell (MWCO 10,000) for the free Ca2+ analysis with AA. b. 0.0362g PAA (MW 

50,000) was cross-linked by 0.0078g EG (OH/COOH molar ratio is 0.5) to form 

PAA/PES composite membrane. The membrane was mixed with 373 mg/L CaCl2 

solution. Free Ca2+ in the solution was measure by Atomic Adsorption (AA). 
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Table 4.2 Pure water Permeability (104) (cm3 cm-2 bar-1 s-1) 
 

 Permeability (104)(cm3 cm-2 bar-1 s-1) 

PES Support Membrane 76.9 

PAA/PES Membrane 3.03 

PAA/PES Membrane with 

Fe/Ni Nanoparticles (2 wt% 

metal loading) 

0.27 
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4.3.2 Pore-Filled PAA/PVDF Membranes 

 

Figure 4.1 compares the SEM surface images of the unmodified PVDF support 

membrane and the PAA functionalized PVDF membrane in the dry state. The PVDF MF 

support membrane (Figure 4.1a) shows a highly porous microstructure. The pores are 

mostly circular in shape but highly non-uniform in size (0.2~2 µm). As expected, the 

modified membrane shows less porosity with small number and size of pores. This 

indicates that PAA has been filled into the pores to create smaller pores. As can be seen 

in Figure 4.1b, the PVDF support is not completely covered and the pores are partially 

blocked after the pore modification with 30 wt % acrylic acid (AA) in toluene. It has 

been reported that high pore coverage can be achieved by increasing the concentration of 

acrylic acid (Gabriel and Gillberg, 1993). In this study, complete pore filling may not be 

desirable due to the high diffusion resistance for the hydrophobic chlorinated organic 

molecules and also for nanoparticle synthesis. Based on the studies by Gabriel and 

Gillberg (1993), AA concentration of 30% is sufficient to obtain a completely wettable 

membrane in the presence of cross-linker. The cross-section images of these membranes 

are shown in the Figure 4.2. By contrast, different regions of cross-sections clearly show 

the structure difference between PAA modified membrane and unmodified substrate 

membrane. As shown in the Figure 4.2c and d, the pores inside the PVDF substrate are 

filled with small grains, suggesting that PAA modification has taken place throughout the 

PVDF substrate. EDS mapping analysis of oxygen atom was also performed in the STEM 

mode to verify that the observed structure change was due to the PAA modification. The 

EDS mapping results will be discussed latter. 

The chemical structure of PVDF membranes functionalized with PAA by in-situ 

polymerization of AA was studied using FT-IR. The FT-IR spectra of the unmodified 

PVDF membranes and the PAA functionalized PVDF membranes are shown in the 

Figure 4.3. The characteristic absorption band appeared at 1730 cm-1 is the ester (-COO-) 

bond (Rhim et al., 2004; Ying et al., 2004) which comes from the carboxylic acid group 

of PAA. The strong intensity of the –C=O-in the ester bond confirms the successful PAA 

modification. The characteristic absorption band for CF2 of PVDF appears at 1120-1280 

cm-1 (Ying et al., 2004).  
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Figure 4.1 SEM images of membrane surface: (a) unmodified PVDF support membrane; 
(b) pore-filled PAA/PVDF membrane (Xu and Bhattacharyya, 2007)
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Figure 4.2 SEM images of membrane cross-sections. Unmodified PVDF support 
membrane: (a) middle of the cross-section; (b) bottom of the cross-section. Pore-filled 
PAA/PVDF membrane: (c) middle of the cross-section; (d) bottom of the cross-section. 
The circles in (c) and (d) represent the location of PAA. 
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 The thermal stability of the pore-filled PAA/PVDF membranes (containing Fe/Pd 

nanoparticle) was investigated by TG analysis. By monitoring the sample weight change 

with temperature, the TG analysis can provide important information of membrane 

thermal stability, PAA decomposing temperature and PAA content. Figure 4.4 shows the 

TG analysis curves for unmodified PVDF membrane, pore-filled PAA/PVDF membrane 

(PAA in –COOH form), and PAA powder. The unmodified PVDF membrane only shows 

one-step weight loss at 455 °C which corresponds to the degradation of CF2 chain (Ying 

et al., 2004). The PAA/PVDF membrane (-COOH form) exhibits a distinct three-step 

degradation process. The first weight loss is at the temperature range of 225~301 °C due 

to the formation of anhydride (Moharram and Khafagi, 2006). The second weight loss is 

observed at the temperature range from 301~441 °C corresponding to further 

decomposition of polyacrylic anhydride (Moharram and Khafagi, 2006). The last weight 

loss occurs over the temperature at 455 °C, which is attributed to the decomposition of 

PVDF side chains. 

 

4.3.3 Membrane Permeability 

 

The pure water flux through the PVDF membrane before and after membrane 

modification is shown in Figure 4.5 and Figure 4.6. By comparing Figure 4.5 and Figure 

4.6, the membrane permeability decreased significantly from initial value of 127 × 10-4 

cm3 cm-2 bar-1 s-1 to 3.03×10-4 cm3 cm-2 bar-1 s-1 for the membrane after PAA 

functionalization and nanoparticles immobilization. The flux drop is expected due to the 

presence of PAA chains inside the pores, which significantly reduces the effective pore 

size and the porosity. Since PAA is a highly hydrophilic polymer, it can greatly absorb 

water and create a highly swelling layer within the pores to decrease the flux. 



 55

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 FT-IR spectra of unmodified PVDF membrane and pore-filled PAA/PVDF 
membrane. 
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Figure 4.4 TG analysis curves of (1) unmodified PVDF membrane, (2) pore-filled 
PAA/PVDF membrane, (3) PAA. The heating rate is 10 °C per minute.  
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Figure 4.5 Pure water flux through unmodified PVDF (pore diameter = 220 nm) 
membrane at different pressure.  
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Figure 4.6 Pure water flux at different pressure through pore-filled PAA/PVDF 
membranes containing Fe/Pd nanoparticles (6 wt% metal loading). 
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4.4 Nanoparticle Characterization 

 

4.4.1 Bimetallic Nanoparticle in PES Membranes Dip-coated with PAA 

 

To reveal the structure difference between the support membrane and the 

composite PAA/PES membrane deposited with nanoscale Fe/Ni particles, the 

morphology of membrane surface and cross-section was observed by SEM. As shown in 

Figure 4.7 A and C, the PES MF support membrane has about 200 nm pore size and high 

porosity. After the support membrane coated with PAA solution and subsequent 

reduction with NaBH4, the membrane surface and pores are all covered with Fe/Ni 

nanoparticles (Figure 4.7 B and D). Figure 4.7 D shows a two-layer structure image of 

Fe/Ni nanoparticles immobilized in the PAA/PES composite membrane. The top layer is 

the Fe/Ni nanoparticles in PAA, while the bottom layer has the similar structure and 

morphology to the PES support membrane (Figure 4.7 C). As it can be seen from the 

figure, there are few nanoparticles located inside the membrane. This indicates no 

obvious penetration of PAA inside the membrane due to the high viscosity and high 

molecule weight of PAA. The PAA layer is mainly deposited on the PES support 

membrane surface. The two layer structure is consistent with the results reported in the 

literature (Choi et al., 1992; Ohya et al., 1994; Huang et al., 1998) on the preparation of 

composite membranes by the dip-coating method for pervaporation, reverse osmosis, and 

gas separation. The two layer asymmetric structure with a thin dense top layer supported 

by a porous sub-layer allows for high separation selectivity as well as the high 

permeation flux. The nanoparticles-PAA layer thickness was estimated from the cross-

section image as about 0.2μm.  
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Figure 4.7 (A) SEM image of PES support membrane surface (30,000×); (B) SEM 
surface image of nanoscale Fe/Ni particles immobilized in PAA/PES composite 
membrane (reducing Fe followed by Ni deposition, 30,000×); (C) SEM cross-section 
image of PES support membrane (60,000×); (D) SEM cross-section image of PAA/PES 
composite membrane containing nanoscale Fe/Ni particles (reducing Fe followed by Ni 
deposition, 60,000×) (Xu and Bhattacharyya, 2005a). 
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A SEM energy-dispersive spectrum (SEM-EDS) analysis of the Fe/Ni particles at 

membrane surface and cross-section is also illustrated in Figure 4.8 A and B. Qualitative 

analysis using EDS is a procedure to determine the presence or absence of one or more 

elements in a sample. For x-ray spectrometry, elements that are present produce 

characteristic x-ray peaks, while elements that are absent obviously do not produce any 

peaks. Furthermore, a quantitative SEM-EDS analysis shows atomic composition of all 

present elements. It is important to point out that when using the EDS for bulk specimens 

in the SEM, accurate chemical analyses can only be obtained from a large area 

(0.5~30μm diameter) due to electron beam spreading on the bulk specimen (Williams 

and Carter, 1996). Therefore, the EDS quantitative results were obtained from an area 

containing several particles not a single particle. Both surface and cross-section analysis 

reveal about 4:1 metal atomic ratio of Fe to Ni. Since Ni was reduced in the second step 

and deposited on Fe particles, most of Ni should be located at the surface of the Fe 

particle. As expected, the ratio of Fe to Ni was lower at the surface than cross-section, 

suggesting higher amount of Ni at the membrane surface. The EDS results also show that 

both Fe and Ni composition are higher at membrane surface than cross-section, which is 

consistent with the two-layer structure (0.2μm Fe/Ni nanoparticle layer compared to 

150μm support membrane layer).  
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Figure 4.8 EDS spectrum of nanoscale Fe/Ni (reducing Fe followed by Ni deposition) 
inside PAA/PES A: membrane surface (Corresponding to Figure 4.7B) and B: cross-
section (Corresponding to Figure 4.7D) (Xu and Bhattacharyya, 2005a). 

Element    Atom%     Wt%
C-K           68.12        43.51
O-K           14.20        12.08
S-K            6.75          11.50
Fe-K          8.13          24.15
Ni-K          2.80          8.75

A

Element    Atom%    Wt%
C-K           68.96       48.46
O-K           18.69       17.49
S-K            4.70         8.82
Fe-K          6.32         20.66
Ni-K          1.33         4.56

B
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A SEM image of nanoparticle on the membrane surface was taken at higher 

magnification (100k) to obtain particle size and size distribution. As shown in Figure 

4.9A, the SEM image consists of well-dispersed Fe/Ni nanoparticles. A statistical 

analysis of the image (Figure 4.9B) yielded an average particle size of 28 nm, with the 

size distribution standard deviation of 7 nm. As a comparison, a SEM image of nanoscale 

Fe/Ni particles synthesized directly in the solution phase without polymer is shown in  

Figure 4.10A. Compared to the individual particles that can be easily 

distinguished in Figure 4.9A, agglomeration of particles is high in  

Figure 4.10A and present in the form of chains of beads. The reason is that newly 

formed metal atoms in the solution easily aggregate and combine with each other without 

the protection of polymer or membrane matrix. Based on a statistical analysis for 150 

particles, the average particle size is 31 nm, with the size distribution standard deviation 

of 9 nm.  

Figure 4.10B is the SEM-EDS spectrum for particles synthesized without 

membrane. The boron peak suggests that some nickel particles were present as Ni2B. 

Boron is a very light element which can be identified by EDS only at relatively high 

concentration. The reason for the absent boron peak in other EDS spectrum is due to the 

relatively low boron concentration in particles immobilized in membrane domain.  
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Figure 4.9 (A) SEM surface image of nanoscale Fe/Ni particles immobilized in PAA/PES 
composite membrane (reducing Fe followed by Ni deposition) (100,000×); (B) 
Histogram from the left SEM image of 150 Fe/Ni nanoparticles. The average particle size 
is 28 nm, with the size distribution standard deviation of 7 nm (Xu and Bhattacharyya, 
2005a). 
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Figure 4.10 (A) SEM image of Fe/Ni particles reduced simultaneously in solution phase 
(30,000×); (B) EDS spectrum of Fe/Ni particles synthesized in the solution phase. 
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Because of the limitation of SEM, transmission electron microscopy (TEM) and 

scanning transmission electron microscopy (STEM) with energy dispersive x-ray 

spectroscopy (STEM-EDS) was also used to obtain the structure and composition 

information of the metal particles at nano scales. Figure 4.11 shows a typical bright field 

TEM image of the nanoscale Fe/Ni particles in the PAA membrane domain. A statistical 

analysis based on 150 particles of the image yielded an average particle size of 5±0.8 nm. 

It should be noted that for this TEM imaging particles in a very thin membrane (total 

thickness about 100 nm) were formed directly in the TEM grid. Because of fast drying in 

this membrane film, particle agglomeration was minimal. The smaller particle size in 

TEM image was observed due to the thinner film formed on the TEM grid and high 

resolution of TEM which is capable of resolving individual particle in nano domain. On 

the contrary, because of the low resolution of SEM, only clusters of individual particles 

or relatively large particles can be identified in SEM image which results in increase of 

particle size. The main purpose of using TEM and STEM here is to obtain elemental 

compositions of nanoparticles at nano scale. In STEM mode, EDS Line profile analysis 

was performed and the results are shown in Figure 4.12A (reducing Fe followed by Ni 

deposition) and Figure 4.12B (simultaneous reduction of Fe and Ni). In Figure 4.12C, the 

compositional line profiles probed with EDS show relatively constant Fe and Ni 

intensities across the particles, suggesting uniform Fe and Ni composition (Fe: Ni=4:1) 

across the particles. However, highly fluctuating Fe and Ni intensities were observed 

across the particles in Figure 4.12D, indicating varying Fe and Ni composition of 

simultaneously reduced Fe/Ni particles. The varying Fe and Ni composition shown 

implies that iron was not uniformly covered by nickel, and some Fe particles and Ni 

particles are present in separate domain. 



 67

 
Figure 4.11 Typical bright field TEM image of nanoscale Fe/Ni particles in the PAA 
membrane domain prepared in a Au coated TEM grid (reducing Fe followed by Ni 
deposition).
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Figure 4.12 Dark field STEM image of Fe/Ni inside PAA membrane (A): reducing Fe 
followed by Ni deposition and (B): simultaneous reduction of Fe and Ni; Compositional 
line profiles probed by STEM EDS (C): along the black line in (A) and (D): along the 
black line in (B) (Xu and Bhattacharyya, 2005a). 
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Furthermore, STEM-EDS mapping was performed to determine the two-

dimensional Fe/Ni element distribution inside PAA membrane. Figure 4.13 presents the 

STEM-EDS mapping images of (A): reducing Fe followed by Ni deposition (B): 

simultaneous reduction of Fe and Ni. As shown in Figure 4.13A, all Fe and Ni were 

dispersed together inside the membrane matrix, indicating Fe was homogeneously 

covered by Ni. On the other hand, some regions which show separation of Fe and Ni 

particles are observed in Figure 4.13B. Based on the proof of STEM-EDS mapping data 

which is consistent with the EDS line profile analysis, it can be concluded that reduction 

of iron followed by nickel produces more evenly dispersed Fe/Ni nanoparticles than those 

in which Fe and Ni are reduced simultaneously. The distribution and composition of Fe 

and Ni in the nano domain can play an important role in the degradation of chlorinated 

organics. 
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Figure 4.13 STEM EDS mapping images of Fe/Ni nanoparticles distribution inside PAA 
membrane (A): Reducing Fe followed by Ni deposition; (B): Simultaneous reduction of 
Fe and Ni (Xu and Bhattacharyya, 2005a). 

  Fe ANi

 Fe Ni B
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4.4.2 Bimetallic Nanoparticle in PVDF Membranes Dip-coated with PAA 

 

There are two main steps in the preparation of membranes containing metal 

nanoparticles: firstly, The PAA-Fe2+ (pH = 2.0) layer is attached to the surface of PVDF 

MF membrane by a dip-coating process. PVDF support membranes (commercial) were 

already hydrophilized using hydroxy propyl acrylate and tetra ethylene glycol deacrylate 

(Steuck 1990). The presence of hydrophilic layer on PVDF membrane pores has a strong 

interaction with PAA, which can enhance the stability of coating layer. Ethylene glycol 

(EG) is added as the crosslinking agent for PAA. Crosslinked PAA layer is obtained after 

heating the membrane at 110 °C for 3 hours and this results in the formation of an ether 

bond between the carboxylic group and ethylene glycol. Partial (about 50%) crosslinking 

was necessary to leave free carboxylic groups for metal cations entrapment. Subsequently, 

Fe2+ is reduced by NaBH4 to form nanoscale Fe0 particles.  

Bimetallic nanoparticles can be prepared by consecutive reduction of the second 

metal ions and subsequent deposition on first metal particles.  This can be achieved either 

by a partial displacement reaction on the first metal surface or using an additional 

reducing agent.  Consecutive reduction of one metal ion over another usually causes the 

formation of core/shell structure nanoparticles (Mandal et al., 2003; Son et al., 2004; Sao-

Joao et al., 2005; Yang et al., 2005; Nutt et al., 2005). For example, when Fe particles are 

immersed into insufficient amount of Pd2+, Fe is partially oxidized to Fe2+ and Pd2+ is 

reduce to Pd0, resulting in the formation of core/shell Fe/Pd nanoparticles. For Fe/Ni 

nanoparticles synthesis, additional NaBH4 usually is required to reduce Ni2+ to Ni0 

because the standard electrode potential (E°) of Fe and Ni are quite close (E° [Fe2+/Fe] = 

-0.44 V, E° [Ni2+/Ni] = -0.26 V, E° [Pd2+/Pd] = +0.99 V). Another convenient way for 

preparation of bimetallic nanoparticles is by simultaneous reduction of two metal ions, 

which usually results in the formation of alloy structure nanoparticles (Mandal et al., 

2003).  

As shown in the SEM images (Figure 4.14a and b), both bimetallic Fe/Ni and 

Fe/Pd particles are roughly spherical with an aggregate size of about 120 nm. 

Examination of the particles at higher resolution indicates that each particle consists of 
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many smaller particles of size 20-30 nm. The SEM-EDS analysis identifies the presence 

of Fe/Ni and Fe/Pd particles as well as the compositions of all present elements.  

The interaction between metal cations and carboxylic groups in PAA is critical in 

the prevention of particle aggregation, which can greatly influence the nanoparticle size. 

The interaction mechanisms consist of ion exchange, chelation and electrostatic binding 

(counterion condensation). In order to investigate the role of PAA in nanoparticle 

synthesis, membrane-based Fe nanoparticles were prepared by varying the ratio of PAA 

to FeSO4 (constant PAA, varying FeSO4). In all these cases, only the free carboxylic 

groups (about 50%) are available to participate in binding Fe cations. Although the PAA 

crosslinking reaction was conducted at low pH but the borohydride reduction step (Fe2+ 

 Fe0) was in alkaline pH condition and thus the COOH groups were ionized for metal 

cation binding. The formation of network structure after crosslinking also affects the 

metal cations binding (Xu and Bhattacharyya, 2005a). As shown in Figure 4.15, Fe 

particle size increases with the decrease of molar ratios of PAA to Fe2+. At low Fe2+ 

concentration, because of ion exchange Fe2+ in the PAA layer are spatially arranged. 

Hence, aggregation of Fe atoms is inhibited due to the low mobility of bound Fe2+. While 

with the decrease of PAA/Fe ratio, both bound (with COO-) and free form (mobile Fe salt) 

will be present inside the PAA matrix. So, the aggregation of Fe atoms is enhanced 

(Figure 4.15). 
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a 2 µm

100nm 100nm 

2 µmb

Figure 4.14 SEM images of bimetallic nanoparticles in PAA/PVDF membrane: (a) Fe/Ni 
(Ni = 25 wt%); (b) Fe/Pd (Pd = 1 wt%). [PAA monomer unit]: [FeSO4] = 4 (Xu and 
Bhattacharyya, 2005b). 
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Figure 4.15 SEM images of Fe nanoparticles in PAA/PVDF membranes synthesized with 
different molar ratio of PAA (monomer unit) to FeSO4: (a) 100; (b) 50; (c) 8; (d) 4.  
NaBH4 concentration = 0.5 M for all cases. The scale bar is 500 nm (Xu and 
Bhattacharyya, 2005b). 
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4.4.3 Interaction between Ferrous Ions and PAA in Pore-Filled PVDF Membranes 

 

In the study of pore-filled PAA/PVDF membranes, we prepared iron 

nanoparticles in three steps: polymerization of acrylic acid in PVDF microfiltration 

membrane pores, subsequent ion exchange of Fe2+, and chemical reduction (by 

borohydride) of ferrous ions bound to the carboxylic acid groups. By using this PAA 

metal ions binding interaction (Fe2+ and COO-) followed by the borohydride reduction 

method, we created iron nanoparticles well dispersed inside membranes because the 

ferrous ions are bound and distributed along the PAA chains. The surrounding polymer 

chains also can prevent ion migration and nanoparticle agglomeration, which plays a 

critical role in stabilizing nanoparticles and controlling the particle size (Wang et al., 

2002). Therefore, it is necessary to understand the binding interaction between ferrous 

ions and PAA. First, the mass balance of Na+ and Fe2+ is calculated based on the ICP 

analysis of the FeCl2 solution before and after loading of Fe2+ on the membrane. 

According to the ICP results, the atom ratio of Na+ released from the PAA/PVDF 

membrane over the ferrous ions bound to the membrane is 1.9 ± 0.1. In theory, binding 

one Fe2+ from solution results in two sodium ions released from the membrane due to the 

charge balance. This indicates that the ferrous ions are well chelated with PAA (no 

physical adsorption). An elemental analysis was performed on the PAA/PVDF membrane 

loaded with Fe2+, and the result is shown in the Figure 4.16. It has been found that 

coordination number for PAA-divalent metal complex is 2 (Tomida et al., 2001). 

Therefore, one ferrous cation is satisfied with two carboxyl anions containing four 

oxygen atoms. As shown in the Figure 4.16, the EDS analysis gives the atom ratio of 3.5 

(oxygen over iron). This value agrees well with the established PAA-metal binding 

stability constant. 

Secondly, the bound ferrous ion proximity in the membrane plays an important 

role in controlling the size of nanoparticle (Wang et al., 2002; Xu and Bhattacharyya, 

2005). It has been reported that the average particle size is larger when metal cation 

concentrations in membrane are higher (Wang et al., 2002; Xu and Bhattacharyya, 2005). 

This is due to the enhanced aggregation of Fe atoms because of the shorter distance 

between Fe2+ at the higher loading density. In order to reveal the distribution of Fe and 
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PAA at nanoscale, EDS elemental maps of the membrane cross-section were acquired 

using STEM. A region of the membrane sample at lower magnification is shown in a 

STEM bright field image (Figure 4.17a). The EDS mapping was performed at the 

selected area on the left STEM image (Figure 4.17a) and reveals the position of elemental 

atoms of iron, fluorine (F) and oxygen (O) in Figure 4.17b, c and d respectively. The map 

is generated by placing white dots on the image when an X-ray count of a particular 

element is received. As shown in the Figure 4.17b and c, the dots for oxygen appear 

strongly in the map and oxygen atoms are mainly found in the regions where little 

fluorine atoms were identified. This indicates the presence of PAA inside the membrane 

because oxygen only comes from carboxylic acid group. And it also confirms the 

assumption that the small grains observed in the SEM cross-sections are PAA. By 

comparing iron, fluorine and oxygen map, the iron and oxygen atoms are combined 

together and located in the same phase separated from the phase where fluorine atoms are 

present. This indicates that PVDF substrate has no affinity to Fe2+ and ferrous cations are 

strongly bound with PAA carboxylic acid groups. 

Next, an EDS map was acquired at higher magnification to obtain a better 

understanding of the interaction between Fe2+ and PAA. As shown in the Figure 4.17e~g, 

all the iron atoms are associated with oxygen atoms and the Fe map matches perfectly 

with oxygen map. The black dots appear in the iron map are believed to be the gaps 

between chelated ferrous ions. It is important to point out that these images and maps 

were obtained under the completely dry state due to the requirement of sample 

preparation and TEM analysis. This can change the morphology of the membrane 

because PAA is an extremely swellable polyelectrolyte.  

Using ICP analysis results and mass balance, 95 % yield of Fe nanoparticle was 

achieved after reduction of bound Fe2+ with NaBH4. This indicates insignificant leaching 

of nanoparticle from the membrane phase during the reduction process. According to the 

ICP analysis, about 4 wt% boron was found in the Fe nanoparticles. Obviously Fe2+  

Fe0 conversion will lead to Na+ binding with COO- sites. Na analysis by SEM-EDS 

confirmed this case. It has been reported that the reduction of Fe2+ with borohydride in 

aqueous solution involves three independent reactions. The boron content in the Fe-B 
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nanoparticles is determined by the pH, the addition rate and the concentration of NaBH4 

solution. 
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Figure 4.16 SEM-EDS spectra of PAA pore-filled PVDF membranes loaded with ferrous 
ions (Xu and Bhattacharyya, 2007).  
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Figure 4.17 STEM-EDS Mapping of PAA/PVDF membranes chelated with Fe2+. (a): 
Low magnification STEM image of membrane cross-section; (b): Fe map from (a); (c): F 
map from (a); (d): O map from (a); (e) High magnification STEM image of membrane 
cross-section; (f): Fe map from (e); (g): O map from (e) (Xu and Bhattacharyya, 2007). 
 

ff
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4.4.4 Fe/Pd Nanoparticle in Pore-Filled PAA/PVDF Membranes 

 

TEM analysis at low magnification was performed to verify the nanoparticle 

formation and distribution inside PAA/PVDF membranes. As shown in the Figure 4.18, 

Fe/Pd nanoparticles in spherical shape are homogeneously dispersed in the PAA phase 

over the membrane cross-section. While the regions containing no nanoparticles are 

believed to be the PVDF substrate phase. A statistical analysis of the image yielded an 

average particle size of 30 nm in diameter, with the size distribution standard deviation of 

5.7 nm. Based on the mean diameter of 30 nm, the external surface area for nanoparticles 

was calculated to be ~ 25 m2 g-1. The EDS analysis was also conducted during the TEM 

observation using a 2-nm electron beam spot to determine the elements present in the 

nanoparticles. The composition of nanoparticles identified in the TEM image was also 

quantified by EDS (Figure 4.18c). The Pd content was found to be 1.9 wt%, which is 

consistent with the previous ICP analysis results. Boron as a light element at low content 

was not detected by EDS due to the low energy sensitivity (Williams and Carter, 1996). 

Next, the nanostructures and element distribution of the Fe/Pd nanoparticles were 

observed by HRTEM and STEM-EDS mapping. Figure 4.19 shows a STEM bright field 

image and the elemental mapping images of the corresponding area for Fe and Pd. The 

probe size used was 1 nm in diameter. The mapping images clearly demonstrate a 

core/shell structure for the Fe/Pd nanoparticle with Fe in the core region and Pd in the 

shell region. This is as expected because Pd was post reduced by Fe0 and deposited on the 

iron surface.  



 81

 
Figure 4.18 (a): TEM image of PAA/PVDF membrane cross-section containing Fe/Pd 
nanoparticles; (b): Histogram from the left TEM image of 100 Fe/Pd nanoparticles; (c): 
EDS spectrum acquired from the nanoparticles in the TEM image (Xu and Bhattacharyya, 
2007). 
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Figure 4.19 Characterization of Fe/Pd nanoparticles. (a) STEM image of Fe/Pd (Pd = 2.3 
wt%) nanoparticles; (b) EDS mapping image of Fe; (c): EDS mapping image of Pd; (d): 
High Resolution TEM image of Fe/Pd nanoparticles (Xu and Bhattacharyya, 2007). 
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4.5 Dechlorination of TCE and PCBs by Bimetallic Nanoparticles 

 

4.5.1 TCE Dechlorination by Bimetallic Nanoparticles in PAA/PES Membranes 

(Dip-coating) 

 

Various nanoparticles systems were evaluated for dechlorination rates using 10 

mg L-1 TCE feed solution. Figure 4.20 shows experimental data for the degradation of 

TCE with various nanoscale Fe/Ni particles and Fe/Pd nanoparticles: (1) solution phase 

synthesis (no membrane) Fe/Ni particles (2) simultaneous reduction of Fe and Ni in the 

PAA/PES membrane phase; (3) reducing Fe followed by Ni deposition in the PAA/PES 

membrane phase, (4) nano Fe/Pd particles in the PAA/PES membrane phase, and (5) bulk 

Ni2B particles (30 mesh) purchased from Sigma-Aldrich. In all the batch experiments, 

initial TCE concentration was 10 mg L-1, and metal loading to solution ratio was 45 

mg/40 mL for all Fe/Ni (4:1), 40 mg/40 mL for Fe/Pd (9:1), and 45 mg/40 mL for 

commercial Ni2B respectively. TCE concentrations in the figure are expressed as the ratio 

of TCE at time t / TCE in feed (C/C0). The amounts of TCE in blank control samples 

(without membrane and metal particles) and membrane control (without metal particles) 

samples remained relatively constant within a period of 2 hour, suggesting insignificant 

TCE transformation by PAA/PES membrane. 
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Figure 4.20 Reactions of TCE with ( ) blank control (no membrane and particles); ( ) 
PAA/PES membrane (no particles); ( ) Ni2B (45mg)obtained from Sigma-Aldrich; ( ) 
Fe/Pd in PAA/PES (total metal = 40 mg, Fe/Pd ratio = 9) membrane; (Δ) Fe/Ni (total 
metal = 45 mg, Fe/Ni ratio = 4) in PAA/PES membrane (reducing Fe followed by Ni 
deposition); ( ) Fe/Ni in (total metal = 45 mg, Fe/Ni ratio = 4) PAA/PES membrane 
(simultaneously reduction of Fe and Ni); ( ) Fe/Ni (total metal = 45 mg, Fe/Ni ratio = 4) 
(reduced simultaneously in solution phase).Initial TCE = 10 mg/L (Xu and Bhattacharyya, 
2005a). 
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As shown in Figure 4.20, nanoscale Fe/Pd system which has a higher initial iron 

corrosion rate and hydrogenation efficiency than Fe/Ni system exhibited highest 

dechlorination rate. TCE was completely degraded in less than 0.25 hours. Fe/Ni 

(reducing Fe followed by Ni deposition) gave 98% TCE dechlorination within 1 hour. 

Production of ethane was identified in the headspace in both Fe/Pd and Fe/Ni system, and 

a relative ethane analysis obtained by GC peak area is shown in Figure 4.21. TCE 

degradation resulted in ethane formation. No other intermediate chlorinated products 

were seen in both aqueous and headspace phase. Another product, chloride ion, was also 

analyzed in aqueous phase for the independent check of dechlorination reaction. 

Assuming that for each degraded TCE molecular three chloride ions are released, 

8.1mg/L chloride ions will be produced at the end of 10mg/L TCE dechlorination 

reaction. But only 3.0 mg/L Cl- (37% Cl- recovery) was formed at the end of reaction. 

Lower Cl- concentrations observed can be explained by the sorption of chloride ions on 

membranes and nanoparticles (Schrick et al., 2002). In the dechlorination study of TCE 

with nanoscale Fe0 (single metal system) (Choe et al., 2001), only a small amount of 

intermediates were identified and ethane was observed as the main product. However, 

chlorinated intermediates such as cis-1,2-dichloroethylene, 1,1-dichloroethylene, and 

vinyl chloride were found as main products in the dechlorination with bulk iron particles. 

Further degradation to form ethane is a really slow process. Thus, compared to the bulk 

system, the fast and complete destruction of TCE in nano system is probably due to the 

high surface energy of nanosized particles which could change the mechanism of 

dechlorination with bulk particles.  
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Figure 4.21 Ethane production in 0.5mL headspace from ( ) dechlorination of 10mg/L 
TCE by nano Fe/Ni (reducing Fe followed by Ni deposition) in PAA/PES membrane; (×) 
30mL pure TCE dechlorination by nano Fe/Pd in PAA/PES membrane in the presence of 
5 µL  water. The amount of ethane was expressed as the peak area ratio to the 1 hour 
dechlorination by Fe/Ni (Xu and Bhattacharyya, 2005a). 
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In bimetallic nano system (Fe/Ni, Fe/Pd), the dechlorination rate is further 

promoted by the catalytic hydrogenation as well as enhanced iron corrosion because of 

secondary electropositive metal (Ni or Pd). Both Ni and Pd are well known catalysts for 

hydrogenation reaction (Ciebien et al., 1999; Brown and Brown, 1963; Brown 1970). The 

presence of a second electropositive metal could accelerate the dissolution of iron and 

provide a less fouling surface for reductive reaction (Gotpagar et al., 1999). The standard 

oxidation reduction potentials of these metals relative to a hydrogen electrode are +0.987 

(Pd), -0.250 (Ni), -0.440(Fe).  

Nanoscale Fe/Ni particles immobilized in the membrane matrix showed a higher 

reaction rate than those prepared in solution phase. Within 1 hour, more than 90% TCE 

was degraded by Fe/Ni in PAA/PES membrane, while only 50% TCE was dechlorinated 

by Fe/Ni prepared without membrane under the same metal loading. The corrosion of Fe0 

during the dechlorination reaction implies the release of ferrous ions and increase of pH 

in solution which can form iron hydroxide film on particles. Therefore, the unreactive 

hydroxide coating could decrease the reaction rate due to the loss of reactive sites 

(Matheson and Tratnyek, 1994). In the presence of PAA membrane, however, the 

formation of iron metal hydroxide film can be prevented because ferrous ions were 

recaptured by carboxylic group of PAA. This is one of the important advantages of using 

polyelectrolyte membranes containing nanoparticles. For Ni2B system, no obvious TCE 

degradation was observed within two hours, indicating that Ni2B as a poor electron donor 

at room temperature and is unable to dechlorinate TCE without active hydrogen provided 

by iron corrosion.  

 

Dechlorination of Pure TCE and Role of Water 

 

In order to investigate the role of H2O in the TCE dechlorination with the 

bimetallic metal system, pure TCE dechlorination in the absence of water with bimetallic 

particles in membrane platform was performed. Fe/Pd (40 mg) particles immobilized in 

PAA/PES membranes were added into 30 mL pure TCE. Although the PES support 

membrane was partially dissolved in TCE, the metal particles were still immobilized 

inside the cross-linked PAA matrix. No ethane and other intermediate chlorinated 
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compounds were detected in the gas phase after 1 hour, indicating no dechlorination 

reaction took place in pure TCE without water which is the donor of active hydrogen and 

corrosion of Fe. Subsequently, 5µL DIUF water (water concentration in TCE = 9mM) 

was deliberately added into the 30 mL pure TCE solution, and ethane was identified in 

the gas phase after 1 hour. The peak area of ethane production was roughly the same as 

that in dechlorination of 10mg/L TCE in aqueous solution (Figure 4.21), suggesting the 

dechlorination reaction requires the presence of some water to facilitate the corrosion of 

the primary metal (Fe) to generate active hydrogen for the catalytic dechlorination. It is 

well known that both Pd and Ni could promote dechlorination of TCE. In the bimetallic 

system, iron serves primarily as electron donor which provides hydrogen by the reduction 

of water (corrosion of iron), while the second metal Ni or Pd acts as a catalyst [2,6] which 

has the ability to adsorb hydrogen into its lattice and maintain high surface concentration 

of hydrogen. In the presence of the second catalytic metal Pd or Ni, TCE was adsorbed 

and preferentially dehalogenated on the bimetallic Fe/Pd (or Ni) surface by active 

hydrogen, which can greatly increase the transformation rate of TCE. 

 

Dechlorination Reaction Rates 

 

In order to get better comparison of the reaction rates at different conditions, it is 

necessary to normalize the reactivity per unit metal surface area as originally proposed by 

Tratnyek. The dechlorination rate in a batch system can be described by the pseudo-first-

order model (Lien and Zhang, 2001; Zhang et al., 1998). 

Cak
dt
dC

msSA ρ−=
                                                                                             (E4.1) 

Where C is concentration of total organic compound (mg/L); kSA is surface-area-

normalized reaction rate coefficient (L h-1 m-2); as is specific surface area of metal 

particles (m2 g-1); ρm is mass concentration of metal (g L-1); and t is time (h). For each 

specific batch experiments, as, and ρm can all be considered as constants. Assuming all 

particles are spherical and discrete, the available particle surface area per unit weight can 

be calculated based on the particle diameter which was obtained from the statistical 

analysis of the SEM image (Fe/Pd and Fe/Ni particles in membrane domain). The particle 



 89

distribution analysis showed similar size. This is to be expected for the case when Pd or 

Ni was post deposited after forming the Fe particles. Best linear fit values of the kSA were 

obtained in Figure 4.22 by using the experimental dechlorination results of Figure 4.20. 

Logarithmic values of TCE concentrations are plotted versus time and kSA value of at 

various reaction conditions were given in the Table 4.3. 

As discussed before, the reaction rate of Fe/Pd was the highest (kSA = 0.948 L h-1 

m-2), suggesting Pd has higher catalytic reactivity than Ni in the bimetallic system. For 

TCE dechlorination by Fe/Ni particles, the kSA value varied with the method used to 

prepare them. The kSA value of Fe/Ni prepared inside membrane domain was higher than 

that synthesized in solution phase.  
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Figure 4.22 Best linear fit of kSA for dechlorination results with ( ) nanoscale Fe/Pd in 
PAA/PES membrane; (Δ) Nano Fe/Ni in PAA/PES membrane (reducing Fe followed by 
Ni deposition); ( ) Nano Fe/Ni in PAA/PES membrane (simultaneous reduction of Fe 
and Ni); ( ) Nano Fe/Ni reduced simultaneously in solution phase (Xu and 
Bhattacharyya, 2005a). 
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Table 4.3 Values of Surface-Area-Normalized Rate Coefficients kSA (L h-1 m-2) (Xu and 
Bhattacharyya, 2005a) 
 

Reaction system Synthesis method kSA (L h-1 m-2) R2 

Fe/Pd 
Pd deposition on Fe in membrane 

domain 
0.948±0.05 0.969 

Fe/Ni 
Reducing Fe followed by Ni 

deposition in membrane domain 
0.1395±0.006 0.983 

Fe/Ni 
Simultaneous reduction of Fe and 

Ni in membrane domain 
0.0813±0.002 0.989 

Fe/Ni 
Simultaneous reduction Fe and Ni 

in solution phase 
0.0378±0.003 0.962 
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Beside the deactivation by iron hydroxide film formed on metal surface in the 

absence of PAA membrane, the difference in reaction rate is probably due to the small 

and discrete particles formed in the membrane phase. Nanoparticles prepared in the 

solution phase without stabilizing polymer forms innumerable chains of beads because of 

the excessive agglomeration of metal atoms. The dechlorination rate of TCE is a strong 

function of the total surface area of metal particles. Since the surface area is calculated 

under the assumption that all particles are discrete, excessive aggregation of nanoclusters 

in solution phase will cause less surface area or loss of the available reactive sites which 

results in the decrease of kSA.  

On the other hand, the membrane matrix can also play an important role in the 

overall rate of destruction of TCE. The reaction rate discussed here is the overall (or 

observed) reaction rate which includes the intrinsic reaction rate and adsorption rate of 

TCE to reactive sites (nanoparticles). It is well know PES is a highly hydrophobic 

polymer and thus one would expect a strong interaction with hydrophobic compound 

such as TCE, i.e. a higher partitioning rate for TCE. Based on the TCE analysis of the 

PES/PAA membrane control, 90% TCE was adsorbed by the membrane matrix after 2 

hours. Figure 4.23 shows the schematic diagram for degradation of TCE by nanosized 

bimetallic particles immobilized in the PAA/PES membrane. TCE adsorption on reactive 

sites can be achieved by transfer in aqueous phase or diffusion in membrane matrix. TCE 

diffusion rate inside membrane matrix is higher than the rate in aqueous phase because of 

the hydrophobic property of the PES. This could enhance the overall dechlorination rate 

due to the lower transfer resistance of TCE in membrane domain. 
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Figure 4.23 Schematic diagram for degradation of TCE by nano bimetallic particles 
immobilized in the PAA/PES membrane. 
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However, even for Fe/Ni synthesized in the same membrane domain, the reaction 

rate was different from the method to prepare bimetallic Fe/Ni particles. As shown in the 

Table 4.3, reducing Fe followed by Ni deposition gives a higher kSA value than the 

system where iron and nickel are reduced simultaneously inside membrane. It is believed 

that in a bimetallic Fe/Ni complex system, Fe needs to be in close contact and covered by 

Ni in order for catalysis to be effective. Physically mixed Fe/Ni particles or Ni particles 

covered by Fe provided no better dehalogenation of TCE than Fe alone (Schrick et al., 

2002). When Fe and Ni were reduced simultaneously, some of Fe particles may be 

isolated from Ni which has been proven in the STEM EDS line profile (Figure 4.12) and 

STEM EDS mapping images (Figure 4.13). Thus, reducing Fe particles followed by Ni 

deposition provides a better way to produce ideal Fe/Ni bimetallic particles in which 

significant numbers of iron particles are covered by Ni. 

According to the definition of the surface-area-normalized reaction rate 

coefficient, kSA should be ideally the same in different metal systems if the reaction rate 

is only dependent on the surface area. This is true only when surface reactive sites are 

independent of particle size and/or dopant (such as Ni, Pd) materials are absent. However, 

the variations of kSA in Figure 4.22 suggest that overall TCE dechlorination rate in 

bimetallic system is also affected by other factors such as the catalytic reactivity of the 

secondary metal, elemental distribution of primary and secondary metal or concentration 

of reactive sites, adsorption rate of TCE to reactive sites. The reaction model developed 

by Johnson (Johnson et al., 1996) provides a better way to explain and quantify the effect 

of variation in reactivity of different metal system 

Cak
dt
dC

msρΓ−= 2
                                                                                            (E4.2) 

Where k2 is the second order rate constant (including intrinsic rate and mass 

transfer rate) and Γ is the surface concentration of reactive sites (catalytic sites in 

bimetallic system). In this model, kSA is expressed as the product of k2 and Γ, which is 

more reasonable when dechlorination reaction preferentially occurs at the reactive 

catalytic surface sites (Fe/Ni, Fe/Pd). For dechlorination with Fe/Ni system inside 

membrane domain, reducing Fe followed by Ni deposition gives faster reaction rate 

because of higher Γ (reactive sites) where Fe and Ni are in close contact. This elemental 



 95

distribution of Fe and Ni in nano domain has been proven by STEM EDS line profile 

(Figure 4.12) and EDS mapping image (Figure 4.13). Further more, the ratio of Γ in two 

different Fe/Ni systems inside membrane matrix can be calculated based on the kSA value 

because k2, as, and ρm are the same in both cases. According to the value in Table 4.3, the 

reactive sites of Fe/Ni (Ni deposition on Fe) are 1.7 times higher than that of Fe/Ni 

(simultaneous reduction of Fe and Ni). The faster rate obtained by Fe/Pd than Fe/Ni is 

due to the larger k2 which is dependent on the higher catalytic reactivity of Pd. The 

slower rate by Fe/Ni synthesized in solution phase is probably due to the slower 

adsorption rate which decrease k2, and the formation of hydroxide precipitates on the 

metal surface, which would reduce Γ. Further studies are required for the quantification 

of Γ in dechlorination with bimetallic systems. 

 

4.5.2 TCE Dechlorination by Bimetallic Nanoparticles in PAA/PVDF Membranes 

(Dip-coating) 

 

The reactive properties of the bimetallic Fe/Ni nanoparticles in PVDF membranes 

dip-coated with PAA were examined by reduction of TCE in water at room temperature. 

TCE contamination of groundwater is widely reported in the literature. Figure 4.24 shows 

the batch reaction (at pH 6) of TCE with Fe/Ni (Ni = 25 wt%) nanoparticles in 

PAA/PVDF membranes. The TCE transformation rate can be described by a simple 

pseudo-first-order model (E4.1). Complete dechlorination of TCE was achieved within 2 

hours. Ethane and Cl- were formed as the only products in the headspace and aqueous 

phase respectively. No chlorinated intermediates were detected and 92% carbon balance 

and 93% Cl balance were obtained in the whole system, indicating a direct  reaction 

pathway from TCE to ethane for bimetallic Fe/Ni (Ni = 25 wt%) nanoparticles.  

The complete conversion of TCE to ethane with bimetallic nanoparticles is totally 

different from the sequential reductive dechlorination with monometallic Fe system.  For 

the Fe system TCE is transformed to dichloroethylene (DCE) to vinyl chloride (VC) and 

finally to ethylene and ethane (Orth and Gillham, 1996). The presence of the secondary 

metal on nanosized Fe changes the reaction pathway dramatically (Schrick et al., 2002; 

Zhang et al., 1998). In the monometallic Fe system, the dechlorination mechanism is 
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preferably explained by dissociative electron transfer resulting in the formation of less 

chlorinated radicals as intermediates (Matheson and Tratnyek, 1994). While in the 

bimetallic system, Fe is considered as the reductant for water to generate hydrogen and 

TCE is dechlorinated by catalytic hydrodechlorination (Liu et al., 2005) in the presence 

of Ni, resulting in the direct reduction to ethane. Another advantage of coating the 

secondary metal is to prevent the conversion of the Fe0 to an oxide form (FexOy) which 

can deactivate the nanoparticle surface (Matheson and Tratnyek, 1994).  

It has been reported in earlier studies that dechlorination reaction can be described 

by a pseudo-first-order kinetic model. The TCE degradation rate by Fe based bimetallic 

nanoparticles is considered as first order in terms of both TCE concentration and the 

concentration of metals available in the solution. Therefore, E4.1 was used in many 

literatures (Johnson et al., 1996) to describe this pseudo-first-order reaction model.  

Cak
dt
dC

msSA ρ−=
                                                                                             (E4.1) 

Regression of the kinetic data can be used to determine the surface area 

normalized reaction rate constant kSA. Since kSA is the characterized first-order reaction 

rate, it should be independent of variance of reaction conditions such as initial TCE 

concentration, metal mass and the volume of reaction system. In order to confirm the 

independence of kSA and pseudo-first-order reaction assumption, TCE dechlorination by 

Fe/Ni nanoparticles (Ni = 25 wt%) in PAA/PVDF membranes were conducted at various 

conditions such as different TCE concentration, metal loading, and the volume of the 

reaction system.  Figure 4.25 shows the Logarithmic values of TCE degradation versus 

time and the best linear fit regression at various reaction conditions. As shown in the 

figure, the Logarithmic TCE concentration data divided by corresponding metal surface 

area at different reaction conditions generally overlap and appear equivalent expected 

value. This indicates that the independence kSA for the TCE dechlorination at different 

conditions. kSA is a unique value for the same type of metal particles regardless of the 

reaction conditions. Therefore, kSA can be used to compare the reactivities of different 

types of metal particles. 
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Figure 4.24 Batch reaction of TCE dechlorination and products formation (ethane and 
chloride) with Fe/Ni (Ni = 25 wt%, post coat Ni) nanoparticles in PVDF membranes dip-
coated with PAA. ρm = 0.2 g l-1 (Xu and Bhattacharyya, 2005b). 
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 Figure 4.25 Independence of surface-area-normalized dechlorination rate (kSA) on 
reaction volume, initial organic and concentration. Best linear fit of kSA for 
dechlorination results with Fe/Ni (Ni=25 wt%, post coating Ni) nanoparticles in PVDF 
membranes dip-coated with PAA at different reaction conditions. 
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Effect of Ni coating composition on the reactivity 

 

Shrick et al. (2002) reported that physical mixture of nano Fe and nano Ni 

particles also decrease the catalysis efficiency, indicating that only close contact of Fe 

and Ni can be considered a catalytic reactive site (Schrick et al., 2002; Zhang et al., 1998). 

Thus the Ni coating amount or the Ni layer thickness of the core/shell nanoparticles is 

extremely critical to obtain maximum reactive sites. Insufficient or excessive coating of 

Ni may cause the formation of Fe-rich surface or Ni-rich surface, which lowers the 

catalytic efficiency. 

TCE dechlorination experiments with bimetallic nanoparticles were also 

conducted to understand the effect of Fe and Ni distribution on reactive properties. It has 

been recognized that Fe atoms and Ni atoms located at the particle surface need to be in 

close contact in order to become a catalytic cell. The EDS mapping results (not shown 

here) of Fe/Ni nanoparticles with 2 wt% Ni content showed large amount of surface sites 

containing isolated Fe atoms where no catalytic hydrodechlorination occurs, which 

reduce catalytic sites dramatically. This has been proven by the lower TCE degradation 

rate (kSA = 0.04 l h-1 m-2, Figure 4.26). The formation of ethylene found in the products 

(Figure 4.27) also confirms the presence of isolated Fe atoms where TCE can only be 

reduced by dissociative electron transfer. The EDS mapping results showed a dominating 

Ni distribution at the surface of Fe/Ni nanoparticles with 80 wt% Ni. The high amount of 

Ni coating can inhibit the formation of hydrogen from the Fe0 corrosion reaction and thus 

lower the efficiency of catalytic hydrodechlorination which requires the presence of 

hydrogen. This has been also confirmed by the lower TCE degradation rate (kSA = 0.032 l 

h-1 m-2) in Figure 4.26.  
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Figure 4.26 TCE dechlorination rate constant variation of Fe/Ni nanoparticles with 
different Ni composition in PVDF membrane dip-coated with PAA (Xu and 
Bhattacharyya, 2005b).  
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Figure 4.27 Ethylene and ethane formation from TCE dechlorination with various Fe/Ni 
nanoparticles in PVDF membranes dip-coated with PAA and bulk Fe (commercial, about 
150 μm) particles post-coated with Ni (Xu and Bhattacharyya, 2005b). 
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It is important to point out that Fe/Ni nanoparticles containing 2 wt% Ni and 80 

wt% Ni show similar TCE degradation rates, but the dechlorination products are different. 

Only ethane was obtained for the TCE dechlorination by Fe/Ni nanoparticles with 80 

wt% Ni, indicating a direct reduction pathway. However, Fe/Ni nanoparticles with 2 wt% 

Ni exhibit a combination of catalytic hydrodechlorination by Fe/Ni and dissociative 

electron transfer by Fe0 due to the formation of ethylene and ethane.  

EDS mapping results of Fe/Ni nanoparticles with 25 wt% Ni showed the optimum 

metal distributions. The high TCE transformation rate (kSA = 0.44 l h-1 m-2) observed in 

the Figure 4.26 verifies the presence of high amount catalytic reactive sites. The absence 

of ethylene in the products also implies negligible formation of isolated Fe atoms at the 

nanoparticle surface.  

We also investigated the impact of particle size (nano versus bulk) on the reactive 

properties by comparing the TCE dechlorination with nano Fe/Ni and bulk Fe/Ni (no 

membrane) at the same amount Ni content (0.2 wt%). The TCE transformation rate of 

nano Fe/Ni (~ 30 nm) was found to be about 13 times higher than that of bulk Fe/Ni, 

which is expected due to the higher surface area of nanoparticles. The dechlorination 

products (Figure 4.27) were also analyzed to understand the reaction pathway in these 

two different systems. In the bulk Fe/Ni system, cis-DCE (not shown in the Figure 4.27) 

and ethylene were the main products at low TCE conversion rate, and more ethylene was 

converted to ethane with the increase of TCE degradation. This indicates that TCE is 

mainly dechlorinated in the sequential reduction pathway (electron transfer), and the 

presence of Ni enhances the hydrogenation of ethylene to ethane. While in the nano 

Fe/Ni system, no formation of chlorinated intermediates was observed and ethylene was 

only formed at low TCE conversion rate. Ethane appeared as the main product even at 

low TCE conversion rate and become the dominating compound at high TCE conversion 

(> 50%). Hence, in the nano Fe/Ni system, TCE is mainly degraded by direct reduction 

pathway according to the products information. 
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TCE dechlorination with various bimetallic nanoparticles 

 

In order to further understand the catalytic dechlorination mechanism and 

bimetallic nanoparticle reactivity, TCE dechlorination experiments were conducted with 

bimetallic nanoparticles with different type of dopant metal and different structure. 

Figure 4.28 shows the normalized rate constant (kSA) of TCE dechlorination using 

PAA/PVDF membrane based Fe/Cu nanoparticles, alloy Fe/Ni nanoparticles 

(simultaneous reduction of Fe and Ni), and core-shell Fe/Ni nanoparticles (post coating 

Ni). The second metal composition was kept the same (25 wt%) for all the three reaction 

systems. As expected, the core-shell Fe/Ni nanoparticles exhibit higher TCE degradation 

rate than the alloy Fe/Ni nanoparticles. kSA for core-shell nano Fe/Ni is about four times 

higher than that of alloy nano Fe/Ni. It has been demonstrated that the most Ni atoms are 

located at the out side of iron surface for the core-shell structure. The alloy structure has a 

homogenous distribution of iron and nickel atoms inside particle, which results in lesser 

amount of Ni atoms on the surface. Since the Ni is the active sites for the catalytic 

hydrodechlorination reaction and the reaction only takes place at the particle surface, the 

lower kSA for alloy Fe/Ni nanoparticles is due to the less active sites (Ni atoms) on the 

surface.  

Compared to the Fe/Ni nanoparticles, Fe/Cu nanoparticles show a much slower 

reaction rate. kSA for core-shell Fe/Cu nanoparticles is about 30 times lower than core-

shell Fe/Ni nanoparticle at the same dopant composition. In order to understand the 

reactivity difference between Cu and Ni, the product formation was measured for TCE 

degradation with Fe/Cu and Fe/Ni nanoparticles. As shown in the Figure 4.29, the 

dominating product for Fe/Cu system is ethylene, suggesting the main reduction pathway 

is by electron transfer. In contrast, ethane is the only product formed in the Fe/Ni system 

due to the catalytic hydrogenation mechanism. This observation is consistent with the 

result reported in the literature (Cwiertny et al., 2007) for the cis-dichloroethylene (cis-

DCE) dechlorination by Fe/Ni and Fe/Cu particles. Ni and Pd are proven the most active 

dopant for the reductive dechlorination reaction due to the high hydrogenation activity.   

  



 104

 

Figure 4.28 Best linear fit of kSA for dechlorination results with ( ) Fe/Ni (Ni=25 wt%, 
post coating Ni) nanoparticles in PAA/PVDF membranes; ( ) Fe/Ni (Ni=25 wt%, 
simultaneous reduction of Fe and Ni) nanoparticles in PAA/PVDF membranes; (Δ) 
Fe/Cu (Cu=25 wt%, posting coating Cu) in PAA/PVDF membranes. 
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Figure 4.29 Ethylene and ethane formation from TCE dechlorination with Fe/Ni (Ni = 25 
wt%, post coating Ni) nanoparticles and Fe/Cu nanoparticles (Cu = 25 wt%, post coating 
Cu) in PVDF membranes dip-coated with PAA. 
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Effect of pH 

   

The reductive dechlorination with zero valent metals is initialized by the 

corrosion reaction of Fe0 which produces the electrons and hydrogen gas. Since the iron 

corrosion reaction is highly dependent of the solution pH, pH has a great effect on the 

reductive degradation of TCE. The solution pH also affects the status of ferrous ions 

formed from corrosion reaction. At higher pH values, ferrous ions form ferrous hydroxide 

or ferric hydroxide if O2 is present which can be deposited on the Fe0 surface and 

deactivate the nanoparticles. Low pH promotes the corrosion reaction and H2 generation, 

and allows Fe0 surface to remain active for the reaction by preventing the formation of 

iron hydroxide. But the fast corrosion reaction at low pH may consume Fe0 and Ni0 

nanoparticles so quickly that the reaction stops in short time.  

Figure 4.30 shows the effect of the solution pH on the dechlorination of TCE by 

Fe/Ni nanoparticles in PVDF membranes dip-coated with PAA. Since the dechlorination 

and iron corrosion reaction increase solution pH by consuming H+, sodium acetate 

(NaAC, 0.5 M) was used to as the buffer to maintain the pH. As it can be seen from the 

figure, the TCE dechlorination at initial pH of 5.85 without buffer shows the highest the 

reaction rate. Since no buffer was used, the final pH increased to 10.05. In the presence of 

0.5 M NaAC, the reaction rate at initial pH of 6.65 is about two times higher than that at 

initial pH of 8.50. This result is consistent with the general trend of decreasing reaction 

rate with increasing pH observed for the other TCE reduction studies reported in the 

literature (Liu and Lowry, 2006). The lower rate could be explained by low 

hydrogenation efficiency because less hydrogen was produced at higher pH. The lower 

rate at higher initial pH is also due to the formation of iron hydroxide which can be 

deposited on the nanoparticle surface and deactivate the nanoparticles. For the TCE 

dechlorination without using buffer, the reaction rate remained highest even at pH 10.05 

which is the highest in all the cases. The high reaction rate at high pH is due to the ion-

exchange function of PAA. Previously, PAA was attached to membrane to capture Fe2+ 

for iron nanoparticle synthesis. In the dechlorination reaction, PAA can also act as the 

ion-exchanging polymer to recapture the ferrous or ferric ions generated in solution to 

avoid the precipitation of iron hydroxide. This can prevent the deactivation of 
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nanoparticle surface and extend the reactivity. However, in the presence of 0.5 M NaAC, 

PAA loses the ion-exchange capability due to the high concentration of Na+. PAA is 

preferentially bound with Na+. In order to prove the recapture of Fe2+/Fe3+, dissolved iron 

concentration after the dechlorination reaction was analyzed by ICP and the results are 

shown in the Table 4.4. It can be seen that 1.47 mg Fe in solution was observed at the 

initial pH of 5.81 in the presence of 0.5 M NaAC. In contrast, only trace amount of Fe 

(0.032 mg) was detected at the same pH 5.85 without NaAC, indicating the recapture of 

dissolved Fe by PAA. 

TCE dechlorination at the initial pH of 4.25 shows a high initial rate but the 

reaction rate decreased rapidly. The reaction stops only after 15 mins. The short reaction 

time is mainly due to the fast consumption of Fe0 and Ni0 at low pH, although low pH 

promotes the hydrogen production and prevents the formation of iron hydroxide. As 

shown in the Table 4.4, more than 50% Fe0 was dissolved within 1 hour, while less than 

5% Fe was consumed within 1 hour at pH above 7. This confirms the short life time of 

Fe/Ni nanoparticles at low pH. Therefore, it is advantageous to perform the 

dechlorination reaction at near neutral pH to obtain and remain high reactivity of 

bimetallic nanoparticles. 
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Figure 4.30 TCE dechlorination with PAA/PVDF (dip-coating) membrane supported 
Fe/Ni (Ni = 25 wt%, post coating Ni) nanoparticles at different pH in 0.5M sodium 
acetate buffer. 
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Table 4.4 Dissolved iron concentration in the TCE dechlorination by Fe/Ni (Ni =25 wt%) 
nanoparticles in PAA/PVDF (dip-coating) membranes at different pH. Metal loading = 8 
mg/20 ml 
 
Initial pH Fe concentration in solution after 1h (mg) 

4.25 (0.5M NaAC)  4.3 

5.81 (0.5M NaAC) 1.47 

6.65 (0.5M NaAC) 0.21 

8.50 (0.5M NaAC) 0.10 

5.85 (No Buffer, final pH=10.05) 0.032 
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Stability and Longevity of Fe/Ni Nanoparticle Reactivity 

 

In the reductive dechlorination of TCE or PCBs with iron-based bimetallic 

particles, iron is also a reactant which is consumed with the reaction. Side reactions such 

as the oxidation of iron by dissolved O2 and iron water corrosion also result in the 

additional loss of Fe. Hence, the durability and longevity of the membrane-based 

bimetallic nanoparticles are essential for the environmental remediation applications. 

According to the stoichiometric equation (C2HCl3 + 4Fe0 + 5H+  C2H6 + 4Fe2+ + 3Cl-), 

complete dechlorination of one mole TCE requires four moles of iron. But, the actual 

amount of iron needed depends on the fraction of Fe0 in the particle which is available for 

reaction (Fe0 in the inner core may not be available), the selectivity of the reaction for 

TCE dechlorination, and efficiency of hydrogen (from Fe0 corrosion reaction) utilization 

(Liu et al., 2005) 

In order to examine the long-term performance of Fe/Ni nanoparticles, a 

multicycle dechlorination experiment was conducted in a 20 ml batch solution containing 

80mg Fe/Ni nanoparticles (Ni = 25 wt%) in PAA/PVDF membranes with repeated TCE 

spiking. TCE concentration in the bath solution was raised from approximate zero to 10.6 

mg l-1 after each spike of concentrated TCE solution (40 µl 5000 mg l-1 TCE in ethanol). 

As shown in the Figure 4.31, complete degradation of TCE spiked in each cycle was 

achieved within 15 minutes. After first 12 cycles, PAA/PVDF membranes containing 

Fe/Ni nanoparticles were stored in batch solution for 48 hours with no TCE spiking. 

Further four cycles of TCE dechlorination (repeated TCE spiking) were conducted with 

the same Fe/Ni nanoparticles after 48 hours storation. There is no obvious decline of TCE 

reduction rate after a period of 16 cycles, and complete conversion to ethane in headspace 

with no formation of other chlorinated intermediates was also achieved for the last cycle. 

This indicates insignificant loss of reactivity of membrane-based Fe/Ni nanoparticles for 

a long period of reaction time. AA analysis of the solution was also performed after 16 

cycles of reaction. The final metal ion concentrations in the solution were found to be 0.5 

mg l-1 for iron and less than 0.1 mg l-1 for nickel. Over the 16 cycles of reaction, a total of 

0.024 mmol TCE was completely transformed to ethane, which requires at least 0.098 

mmol dissolution of Fe0 based the stoichiometric equation. This could result in the 
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formation of 275 mg l-1 Fe ions in solution even at the absence of other side reactions of 

iron. Therefore, the lower concentration detected in the solution confirms the recapture of 

Fe ions by PAA in membranes. The insignificant loss of reactivity of membrane-based 

Fe/Ni nanoparticles in Figure 4.31 is probably due to the recapture of Fe ions by the 

membrane which can prevent the nanoparticle surface fouling. 
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Figure 4.31 The stability and longevity of Fe/Ni nanoparticles in PVDF membranes dip-
coated with PAA. TCE degradation with core/shell Fe/Ni (Ni =25 wt%) nanoparticles (in 
PAA/PVDF membrane) in a repeated spiking experiment. Concentrated TCE solution 
was spiked into a 20 ml batch solution containing 80 mg Fe/Ni nanoparticles. TCE 
concentration was raised from 0 to 10.6 mg l-1 after each spike. After first 12 cycles, 
PAA/PVDF membranes containing Fe/Ni nanoparticles were stored in batch solution for 
48 hours with no TCE spiking. Further four cycles of TCE dechlorination (repeated TCE 
spiking) were conducted with nano Fe/Ni particles after 48 hours storation (Xu and 
Bhattacharyya, 2005b). 
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4.5.3 Dechlorination of 2, 2’-Dichlorobiphenyl (PCB 4) by Bimetallic 

Nanoparticles in PAA/PVDF Membranes (Dip-coating) 

 

The Fe/Pd core/shell nanoparticles in PVDF membranes dip-coated with PAA 

were characterized using TEM and STEM mapping. The reactivity of Fe/Pd nanoparticles 

were tested through the degradation with environmentally important, toxic PCBs. Figure 

4.32 shows the dark field STEM image of Fe/Pd NPs inside PAA membrane. To obtain a 

thin film for STEM imaging, the membrane sample containing metal nanoparticles was 

prepared by the same procedure in the particle synthesis step except that a minute droplet 

of PAA was coated directly on the gold TEM grid (lacey carbon film) instead of the 

PVDF support membrane. The main purpose of using STEM here is to understand the 

nanostructure of Fe/Pd nanoparticles by analyzing elemental distribution in the nano 

domain.  

In order to identify the formation of core/shell structure, EDS mapping was 

performed in STEM mode with Fe/Pd nanoparticles with 1 wt% Pd. (Figure 4.32). The 

mapping images clearly demonstrate that bimetallic Fe/Pd nanoparticles having a Fe-rich 

core and a Pd-rich shell. Even for the bimetallic nanoparticles containing only 1 wt% Pd, 

the core/shell structure is clearly illustrated in the Figure 4.32B. It is important to point 

out that the STEM-EDS mapping presents us a 2-D image of 3-D sample in transmission 

(Williams and Carter, 1996).  



 114

100 nm A 

50 nm

Fe

Pd

50 nm

B 

Figure 4.32 Characterization of Fe/Pd nanoparticles. (A) STEM image of Fe/Pd in PAA 
membrane; (B) EDS mapping image of Fe/Pd (Pd = 1 wt%) in PAA membrane (Xu and 
Bhattacharyya, 2005b).  
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The reactive properties of Fe/Pd nanoparticles were then tested toward 

dechlorination of 2, 2’-dichlorobiphenyl (DiCB, PCB 4) as a model compound at room 

temperature (~ 25oC). Figure 4.33 shows the batch reaction (at pH 6) results of 8.1 mg l-1 

PCB 4 in 50/50 vol.% ethanol/water solution with Fe/Pd nanoparticles (Pd = 1 wt%) in 

PVDF membranes dip-coated with PAA. Complete PCB 4 degradation by Fe/Pd 

nanoparticles was achieved within 1 hour. Biphenyl was formed as the main 

dechlorination product. 2-chlorobiphenyl (PCB 1) as the chlorinated intermediate was 

only identified in the low concentration level. The predominance of final product 

biphenyl indicates the dechlorination rate of the intermediate was much faster than that of 

the parent compound. Although the Fe/Pd for the dechlorination of PCB 4 is often 

referred as metal catalysis, it is not strictly catalytic because Fe is a reactant to generate 

hydrogen by corrosion reaction. Pd serves as catalyst, and the chlorine atom in PCB 4 is 

replaced by hydrogen on the Pd surface. 
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Figure 4.33 Batch reaction of 2, 2’-chlorobiphenyl (PCB 4) dechlorination with Fe/Pd 
(Pd = 1 wt%) in PVDF membrane dip-coated with PAA at room temperature. Metal 
loading (ρm) = 1.1 g l-1 (Xu and Bhattacharyya, 2005b).  
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4.5.4 Dechlorination of 2, 2’-Dichlorobiphenyl (DiCB, PCB 4) by Bimetallic 

Nanoparticles in Pore-filled PAA/PVDF Membranes 

 

To investigate the catalytic properties of Fe/Pd nanoparticles synthesized in pore-

filled PAA/PVDF membranes, we studied the reductive hydrodechlorination of PCB 4 

using the bimetallic nanoparticles. PCBs are among the most important chlorinated 

aromatic compounds that cause a stringent environmental problem due to their 

hydrophobic nature and excellent chemical stability. The dechlorination mechanism and 

kinetic rates were investigated using pore-filled membrane supported Fe/Pd nanoparticles. 

In order to understand and quantify the role of second dopant metal, we studied the 

dechlorination rates as a function of Pd content on Fe as well as the reaction temperature. 

 

Kinetics rates and mechanism 

 

Figure 4.34 shows the concentration profiles for the batch reaction of PCB 4 with 

Fe/Pd (Pd = 2.3 wt%) nanoparticles in pore-filled PAA/PVDF membranes at 25 °C. The 

membrane supported Fe/Pd nanoparticles exhibit extremely fast DiCB degradation rate. 

More than 90% dechlorination of PCB 4 only with 0.8 g L-1 metal loading was achieved 

within 2 hours. Biphenyl was formed as the dominating product. 2-chlorobiphenyl (PCB 

1) as the chlorinated intermediate was only identified in the trace level. This indicates a 

direct reductive pathway due to the higher degradation rate for the chlorinated 

intermediate. The carbon mass balance based on the sum of PCB 4, PCB 1 and biphenyl 

was about 91%~95% of the initial amount of PCB 4. The 5%~ 9% mass losses is due to 

the extraction equilibrium. It has been established that the PCBs dechlorination with 

Fe/Pd nanoparticles can be described by equation E4.1 

CakCk
dt
dC

SmSAobs ρ==−                                                                                (E4.1) 

Based the 30 nm average diameter of Fe/Pd nanoparticles identified by TEM, aS 

is calculated to be 25 m2 g-1. ρm is the loading of nanoparticles (g L-1). kobs is the observed 

rate constant (h-1). Based on the best linear fit to the experimental data (R2 = 0.996), the 

kobs and kSA determined to be 1.36 h-1 and 0.068 L h-1 m-2. Complete conversion to 
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biphenyl was achieved and only trace amount of the intermediate (PCB 1) was detected, 

which indicates the direct formation of biphenyl pathway for the Fe/Pd nanoparticle 

system. 

Batch experiments of PCB 4 dechlorination with PAA/PVDF supported Fe/Pd 

nanoparticles were also performed at no mixing conditions to study the effect of external 

mass transfer on the reaction. As shown in the Figure 4.35, PCB 4 dechlorination rate is 

much lower than the rate at normal mixing conditions due to the great effect of external 

mass transfer. After 2 hours, less than 50% conversion of PCB 4 was achieved compared 

to the complete conversion of PCB 4 at normal mixing condition. The kSA is determined 

to be 0.014 L h-1 m-2, which is about 5 times lower than that at the mixing condition. This 

indicates the overall dechlorination by Fe/Pd nanoparticles maybe mass transfer limited 

or mass transfer can not be neglected at least. It should be noted that even at normal 

mixing conditions, the internal mass transfer resistance inside membrane pore may still 

exist because of the cross-linked PAA layer. Quantification of mass transfer resistance 

effect on the PCB dechlorination under convective flow mode will be discussed in the 

next Chapter.  

In order to understand the role of particle size in terms of reactivity and reaction 

pathway shift, we studied dechlorination of PCB 4 with bulk Fe particles (~120 μm) 

coated with Pd (Pd = 1.5 wt%). At very high metal loading of 87.5 g L-1, only about 10% 

dechlorination of PCB 4 was achieved and 2-chlorobiphenyl and biphenyl both appeared 

at the same concentration level within 8 h (not shown). The slow observed reaction rate is 

not just due to the lower surface area of the bulk size particles (2 m2 g-1 based on BET 

analysis). However, the surface normalized rate constant kSA of bulk Fe/Pd particles 

calculated based on the degradation of PCB 4 is only 0.00011 L h-1 m-2 which is over 600 

times lower than that of membrane supported nanosized Fe/Pd particle. The great 

difference in kSA indicates the higher reactivity of nanosized Fe/Pd particles. The 

enhanced reactivity is believed due to the various facets, edges, corners and defects 

which provide additional sites with high catalytic properties (Henry, 1998). The bulk 

Fe/Pd system showed a sequential reaction pathway with significant formation of 

chlorinated intermediates in contrast to direct biphenyl formation pathway for nano Fe/Pd 

system. 
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Figure 4.34 Batch reaction of 2, 2’-chlorobiphenyl (PCB 4) with Fe/Pd (Pd = 2.3 wt %) 
in pore-filled PAA/PVDF membrane at room temperature. Metal loading: 0.8 g L-1. 
Initial organic concentration: 16 mg L-1 (Xu and Bhattacharyya, 2007). 
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Figure 4.35 Batch reaction of 2, 2’-chlorobiphenyl (DiCB, PCB 4) with Fe/Pd (Pd = 2.3 
wt %) in pore-filled PAA/PVDF membrane at room temperature without mixing. Metal 
loading: 0.8 g L-1. Initial organic concentration: 16 mg L-1.  
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 Reaction mechanism and the role of water 

 

In order to understand the dechlorination mechanism and the role of H2O in the 

PCB 4 dechlorination with the bimetallic metal system, PCB 4 dechlorination in batch 

mode was performed in the absence of water with membrane immobilized Fe/Pd 

nanoparticles. One piece of PAA/PVDF membrane containing 16 mg Fe/Pd nanoparticles 

was added into 20 mL solution of PCB 4 (20 mg L-1 in pure ethanol). No degradation of 

PCB 4 and formation of PCB 1 and biphenyl were detected after 2 hours, indicating no 

dechlorination reaction took place in the absence of water which is the donor of hydrogen 

from Fe corrosion reaction. Subsequently, 10 µL DIUF water (water concentration = 27 

mM) was deliberately added into the 20 mL PCB 4 solution. PCB 1 and biphenyl was 

identified after 2 hours (Table 4.5). This indicates the hydrodechlorination reaction 

requires the presence of some water to facilitate the corrosion of the primary metal (Fe) 

to provide hydrogen and electrons which can be utilized to replace chlorine at the Pd 

(dopant metal) surface. In the bimetallic system, iron serves primarily as electron donor 

which provides hydrogen by the reduction of water (corrosion of iron), while the second 

metal Pd acts as a catalyst (Xu and Bhattacharyya, 2005a; 2005b). The hydrogen gas 

generated from iron corrosion is adsorbed on the palladium lattice and dissociated into 

atomic H which is one of the strongest reductant. It is well known that chlorinated 

organics are strongly adsorbed on the palladium surface by forming Pd-Cl bonds 

(Bodnariuk et al., 1989; Park et al., 1997). In the Fe/Pd bimetallic system, catalytic 

hydrodechlorination of dichlorophenol has been reported over the palladium surface by 

atomic H atoms and electrons provided by Fe-Pd galvanic cells (Wei et al., 2006). 
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Table 4.5 PCB 4 dechlorination after 2 hrs in pure ethanol and 27 mM water (Xu and 
Bhattacharyya, 2007) 
 

 
PCB 4 

(mM) 

PCB 1 

(mM) 

Biphenyl 

(mM) 

Total carbon balance 

(mM) 

Pure ethanol 0.089 * * 0.089 

27 mM water in ethanol 0.08 0.0015 0.0033 0.085 

• Initial PCB 4 concentration: 0.089mM (20 mg L-1).  

• *: No reaction occurred. 

• Metal loading: 16mg/20mL, Fe/Pd (Pd = 2.3 wt %) nanoparticles in PAA/PVDF 

membrane.
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Catalytic activity as a function of Pd coating content 

 

In order to understand the role of Pd as the second dopant, the batch 

dechlorination rates of PCB 4 were measured as a function of Pd coating content (Figure 

4.36). The kSA is 0.017 L h-1 m-2, 0.068 L h-1 m-2 and 0.166 L h-1 m-2 for Fe/Pd 

nanoparticles with 0.6, 2.3 and 5.6 wt% Pd respectively. Once again, in all these three 

different Fe/Pd nano systems, direct formation of biphenyl was achieved while PCB 1 

was detected only in the trace level. It should be noted that Fe0 nanoparticles without Pd 

showed insignificant dechlorination (less than 0.2 mg L-1 PCB 1 was formed after 5 days 

and no biphenyl was detected) at the same batch reaction conditions. In the bimetallic 

system, the role of Fe is to generate hydrogen by corrosion reaction, while Pd serves as 

the catalyst and the chlorine atom in PCB 4 is mainly replaced by hydrogen on the Pd 

surface (Xu and Bhattacharyya, 2005b; Lowry and Johnson, 2004). Therefore the Pd 

atoms are considered as the surface reactive sites for the dechlorination of DiCB. The 

variation of the kSA as a function of Pd content is due to the difference of reactive sites. 

By normalizing the kSA in terms of Pd content (reactive sites), we found the same reaction 

rate of Fe/Pd nanoparticles. The following reaction model developed by Johnson et al. 

(1996) provided a better way to understand and quantify the effect of variation in 

reactivity of different metal system (E4.2). 

CakCak
dt
dC

msSmSA ρρ Γ==− 2
                                                                       (E4.2) 

Where k2 is the second order rate constant at a particular type of site (L h-1 mol-1) 

and Γ is the surface concentration of reactive sites (mol m-2). In this model, kSA is 

expressed as the product of k2 and Γ, which is more reasonable when dechlorination 

reaction preferentially occurs at the reactive catalytic surface sites (bimetallic system). 
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Figure 4.36 Best linear fit of kSA for dechlorination of PCB 4 with various Fe/Pd 
nanoparticles in pore-filled PAA/PVDF membranes. Metal loading: 16mg/20mL (Xu and 
Bhattacharyya, 2007). 
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Based on the 30 nm average diameter of nanoparticles, we calculated the Pd 

coverage and surface Pd atoms for different Fe/Pd nanoparticles by using a Pd atom 

cross-sectional area of 0.0787 nm2 (Nutt et al., 2005). Our calculations indicate that 

Fe/Pd nanoparticles with 0.6, 2.3, and 5.6 wt % Pd have 0.1, 0.4, and 0.97 layers of Pd 

atoms, respectively. Since maximum Pd coverage is less than one layer, all the Pd atoms 

are considered as surface reactive sites. Γ for the three different nanoparticles with 0.6, 

2.3, and 5.6 wt % Pd is 2.20×10-6 mol m-2, 8.43×10-6 mol m-2 and 2.05×10-5 mol m-2, 

respectively. It should be noted that total surface area was used in all kSA calculations. By 

applying the Γ into the equation 3, the k2 was determined to be 7,727 L h-1 mol-1, 8,066 L 

h-1 mol-1 and 8,098 L h-1 mol-1 respectively. The enhanced reaction rate (kSA) is only due 

to the increase of surface Pd atoms.  

High resolution STEM-EDS mapping images were also acquired in Figure 4.37 to 

compare the Pd atoms distribution for different Pd coating nanoparticles. The STEM-

EDS mapping technique presents us a 2-D image of 3-D sample in transmission 

(Williams and Carter, 1996). All the Fe/Pd nanoparticles show a core/shell structure with 

Fe rich in the core region and Pd rich in the shell region. More Pd atoms were deposited 

on the iron surface and the Pd shell layer became denser with the increase Pd content. In 

spite of the limited spatial resolution in the EDS mapping, the distribution of Pd atoms is 

still in qualitative agreement with the result based on the calculation. This result implies 

that a uniform Pd coating with controllable thickness can be obtained by post reduction of 

Pd2+ with Fe nanoparticles immobilized in membrane phase.  
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Figure 4.37 STEM-EDS Mapping Fe/Pd nanoparticles. (a): 0.6 wt% Pd; (b): 2.3 wt% Pd; 
(c): 5.6 wt% Pd (Xu and Bhattacharyya, 2007). 
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In our previous results where commercial PAA was dip-coated on the PVDF 

surface, we reported kSA of 0.10 L h-1 m-2 for Fe/Pd (Pd = 1 wt%) nanoparticles 

synthesized on the membrane surface. It is about 9 times higher than the kSA reported in 

this paper. The higher kSA is due to the lower mass transfer resistance since Fe/Pd 

nanoparticles were located at the membrane surface. While in this study, PAA was 

prepared inside the PVDF membrane pores. Fe2+ was bound to PAA and reduced to 

nanoparticles inside the membrane pores. Since the reaction occurs only at the 

nanoparticle surface, the organics must diffuse through the membrane pores which can 

control the reaction rate. However, the diffusion control can be avoided by operating at 

high convective flow mode. Compared with the previous study (dip-coating), this new 

synthesis method (pore-filled) provides a more stable membrane matrix because PAA is 

cross-linked and immobilized inside the porous network structure instead of physically 

sitting on top of the membrane surface. Higher PAA and metal loading is achieved since 

the membrane pore surfaces are fully utilized.  

 

Effect of Temperature 

 

In an effort to achieve a deeper insight into the mechanism of Pd catalyzed 

dechlorination, the dependence of batch reaction rate on temperature was investigated to 

obtain the activation energy (Ea, kJ mol-1). The Ea is the measure of minimum energy 

required to complete the reaction. In general, the role of the catalyst is to reduce the Ea by 

changing the reaction pathway and thus enhance the reaction rate. It has been found that 

complete dechlorination of PCBs in aqueous solution by monometallic bulk size Fe0 (no 

catalyst) requires high temperature (400 °C) (Chuang et al., 1995). But Ea was not 

measured in the literature for this type of process. The reduction of PCBs by Ni-Mo 

catalyst with supplied H2 in non-aqueous phase was observed at relatively mild 

conditions (82~91% conversion at 250 °C) (Gryglewicz et al., 2006). Earlier research 

reported the Ea of 124 kJ mol-1 (Gryglewicz et al., 2006) for 2, 3-dichlorobiphenyl by 

non-catalytic process and 93 kJ mol-1 (Murena et al., 2000) for 3-chlorobiphenyl by the 

Ni-Mo catalyst with supplied H2 in non-aqueous phase. The dependence of rate constant 

on the temperature was modeled in Figure 4.38 by the Arrhenius equation. Based on the 



 128

best linear fitting, the Ea for DiCB degradation by membrane supported Fe/Pd 

nanoparticles was determined to be 24.5 kJ mol-1. It is about five times lower than the 

non-catalytic process (Gryglewicz et al., 2006) and nearly four times lower than the Ni-

Mo catalyzed dechlorination (Murena et al., 2000) in non-aqueous phase with supplied 

H2 gas. This indicates the high catalytic property of Pd which is effective in the 

hydrodechlorination of PCBs from water at room temperature. It is reported in the 

literature (Su and Plus, 1999) that diffusion-controlled reactions in solution have low 

activation energies (Ea < 21 kJ mol-1), whereas Ea values for reaction on surfaces are 

usually in the order of 84 kJ mol-1. These Ea values indicate the diffusion control for 

membrane-supported Fe/Pd system. 
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Figure 4.38 Best linear fit of Ea for dechlorination of PCB 4 with membrane supported 
Fe/Pd (Pd = 2.3 wt %) nanoparticles at various temperature (Xu and Bhattacharyya, 
2007). 
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Stability of Fe/Pd reactivity 

 

One of the important issues for the PCBs dechlorination by membrane supported 

Fe/Pd nanoparticles is the decrease in the reactivity due to the consumption of iron as a 

reactant, oxidation of iron surface, formation of iron (II, III) hydroxide on the particle 

surface and possibility of leaching of Pd or Fe0 from the membrane. An eight-cycle 

dechlorination experiment was conducted in a 20 ml batch solution containing 64 mg 

membrane supported Fe/Pd nanoparticles (Pd = 2.3 wt%) with repeated spiking of 

concentrated DiCB solution. After each cycle, the DiCB concentration was raised to ~ 16 

mg L-1 after adding concentrated DiCB solution. More than 90% dechlorination was 

achieved after first 4 cycles, while only about 50% dechlorination was obtained after 8 

cycles, indicating the decline of catalytic activity. There are only two possibilities for the 

decline of reactivity: deactivation of Fe or deactivation of Pd. Hydrogen production from 

the reaction was measured to understand the possibility of iron deactivation. As shown in 

the Figure 4.39, the hydrogen gas still can be produced by iron even after 26 hours, 

indicating that the decline of dechlorination rate is not due to the iron deactivation.  

It is well known that Pd and chloride have a strong interaction, which may cause 

the Pd deactivation. In order to prove this hypothesis, dechlorination experiment was 

conducted in 40 mg L-1 Cl- solution using fresh membrane supported Fe/Pd nanoparticles. 

No obvious decline of nanoparticle reactivity was observed. This indicates that Pd is not 

deactivated by Cl- ions formed from the PCB dechlorination. In order to further 

investigate the decrease in the catalytic activity, STEM-EDS mapping analysis on the 

nanoparticles (no membrane) was used to examine the distribution of Fe and Pd after the 

8 cycles. In comparison with fresh Fe/Pd nanoparticles in which Pd were deposited on the 

Fe surface, it was found that Pd was completely covered by thick layers of iron and 

oxygen after the reaction (Figure 4.40), suggesting the deposition of iron hydroxide 

which deactivated Pd surface. The final metal ion concentrations in the solution were 

found to be 0.4 mg l-1 for iron and Pd leaching was not detected, indicating Fe/Pd 

nanoparticles remains stable inside the PAA/PVDF membrane matrix.  
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Figure 4.39 Plots of hydrogen gas (micro mol) produced during DiCB dechlorination 
reaction at pH 6 with PAA/PVDF membrane supported Fe/Pd nanoparticles, measured by 
static headspace analysis using GC-TCD (0.1 ~ 1 mL of headspace sampled, 16 mg Fe/Pd 
loading in 20 mL vials, initial DiCB concentration: 16 mg L-1 in 50/50 vol.% 
ethanol/water). 
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Figure 4.40 STEM-EDS Mapping Fe/Pd nanoparticles. (A): Fresh Fe/Pd nanoparticle (B): 
Fe/Pd nanoparticle after 4 cycles of dechlorination of 2,2’-dichlorobiphenyl. O = oxygen 
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4.5.5 Dechlorination of 3, 3’, 4, 4’-Tetrachlorobiphenyl (PCB 77) by Bimetallic 

Nanoparticles in Pore-filled PAA/PVDF Membranes 

 

Toxicity studies of PCB77 (3, 3', 4, 4'-tetrachlorobiphenyl, non-ortho-chlorinated 

PCB) have received extensive attention in recent years due to the specific structure-

activity relationship. It has been reported that the major part of PCB toxicity is due to the 

chlorine atoms in non-ortho position.  These compounds having chlorinated substitutents 

in both para positions and any/all meta positions are known as coplanar PCBs which are 

highly toxic. PCB77 is among the most commonly found coplanars in the environment. 

Thus, it is important to study and quantify the degradation kinetics and mechanism of 

PCB77 using bimetallic nanoparticles (Fe/Pd).  

Figure 4.41 shows the dechlorination of 15.6 mg/L PCB 77 in 65/35 vol.% 

ethanol/water solution with Fe/Pd (Pd: 2.3 wt%) immobilized inside pore-filled 

PAA/PVDF membranes. High concentration of ethanol in the solution matrix was used 

because of the lower solubility of PCB 77 in water. As shown in the figure, the 

membrane supported Fe/Pd nanoparticles exhibit extremely fast dechlorination rate. 

Complete degradation of PCB 77 by Fe/Pd in PAA/PVDF membrane was achieved 

within 2 hours. Biphenyl was formed as the main dechlorination product. PCB77 was 

completely transformed to biphenyl after 2 hours. The degradation of PCB77 by Fe/Pd 

nanoparticles occurred in a sequential reduction pathway (Figure 4.42), which is 

indicated by the detected less chlorine intermediates. All the PCB intermediates were 

only identified in the low concentration level within 1 hour. It has been proven in the 

literature (Lowry et al. 2004) that non-ortho-chlorinated PCB congeners dechlorinate 

faster than the ortho-chlorinated isomers due to the effect of higher steric hindrance for 

ortho-position. The reactivity of the chlorine substitutents decreases in the order para ≈ 

meta > ortho (Noma et al. 2003). Due to the increasing torsion angles with the increase of 

ortho substitution, non-ortho substituted congeners could adsorb in a closed planar 

position with nanoparticles, which is beneficial for the reductive dechlorination. The 

more positive reduction potentials measured in the literature (Huang and Rusling, 1995) 

also support the increased reactivity of non-ortho substituted congeners. 
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Figure 4.42 Reductive dechlorination pathway of 3,3’,4,4’-tetrachlorobiphenyl (PCB 77) 
by Fe/Pd nanoparticles. 
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Best linear fit to the experimental data (R2 = 0.97), the kobs and kSA (PCB77) 

determined to be 2.82 h-1 and 0.141 L h-1 m-2. Since PCB 77 does not have any chlorine 

in the ortho position, the kSA is more than two times higher than that for the degradation 

of PCB 4 which contains only ortho position chlorines. This result is consistent with the 

observation reported in the literature (Lowry et al. 2004) that higher-chlorinated and 

nonortho-substituted congeners dechlorinate faster than lower-chlorinated and ortho-

substituted congeners. The degradation for PCB 77 in this study showed all eight 

intermediates which can occur in theory by reductive pathway. All the intermediates 

appeared in the close concentration level. This can be explained by the little difference of 

reactivity between para and meta chlorines substitutents. The carbon mass balance based 

on the sum of remaining PCB 77, intermediates and biphenyl was about ~95% of the 

initial amount of PCB 77. The ~ 5% mass losses are due to the extraction equilibrium.  

In order to obtain a better understanding and quantification of PCB 77 

dechlorination, Figure 4.43 plots the selectivity for biphenyl and the intermediates as a 

function of PCB 77 conversion. All the eight different intermediates were added together 

as the total intermediates. The conversion and selectivity were calculated based on the 

following equations: 
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Where, X is the conversion; S is the selectivity and C is the concentration (mM). It can be 

seen that although each single intermediate was observed in low level compared to the 

biphenyl formation, the selectivity of the total intermediates is almost equal to the 

biphenyl selectivity. The selectivity of the total intermediates remained unchanged when 

the PCB 77 conversion was increased from 20% to 70%, while the biphenyl selectivity 

increased from 30% to 50%. After 70% conversion, the intermediate selectivity decreases 

rapidly. This indicates that the degradation of PCB 77 does not result in the 

correspondingly equal amount formation of biphenyl. Before 70% PCB 77 degradation, 
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the main dechlorination reactions are the conversion of PCB 77, tri- and di- 

chlorobiphenyls to monochlorobiophenyl and the formation of biphenyl. After 70% 

conversion, the main reactions are the conversion of mono-chlorobiphenyl to biphenyl.  

During dechlorination with Fe/Pd nanoparticles, the iron is oxidized and Fe (II, III) 

species may be released from the membrane.  The PAA functionalized membranes have 

the capability of capturing these dissolved Fe (II, III) ions.  The aqueous phase analysis 

after the dechlorination showed (Figure 4.44) negligible amount of Fe in the solution 0.03 

mg (0.18 wt % of initial Fe).  In order to measure Fe ions in membrane phase, ion 

exchange with Ba2+ (0.05 M) was performed to transfer captured Fe ions from membrane 

phase to aqueous phase.  The aqueous phase analysis after Ba2+ ion exchange shows 1.2 

mg Fe (2% of the initial Fe) captured by membrane.  The recaptured Fe ions by 

membrane can be subsequently regenerated using NaBH4. 
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Figure 4.43 Selectivity for biphenyl and the intermediates as a function of PCB 77 
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Figure 4.44 Dissolution of Fe nanoparticles in PAA/PVDF membranes. Fe loading: 16 
mg/20 ml, Volume of the solution: 20 ml. 
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Chapter 5 Membrane Reactor Model 

 

This chapter mainly consists of the studies of reductive dechlorination of PCB by 

Fe/Pd nanoparticles in pore-filled PAA/PVDF membrane under convective flow mode. A 

two-dimensional mathematical model for the mass transfer and reaction inside membrane 

pores is presented. The parameters used in the model simulation such as pore size and 

PCB diffusivity were obtained from dextran rejection and diffusion experimental data. 

The 2-D model considers convection, diffusion, and reaction kinetics on the membrane 

reactor module. The influence of membrane pore size, reaction rate varied by changing 

Pd composition, and PCB diffusivity was evaluated and then compared with the 

experimental data. 

 

5.1 Formulation of Membrane Reactor Model 

 

The catalytic hydrodechlorination by membrane supported bimetallic (Fe/Pd and 

Fe/Ni) nanoparticles in the batch mode has been extensively reported in the previous 

chapter. The reaction mechanism can be described by the reduction of chlorinated 

organics to non-toxic (or less toxic) hydrocarbons in the presence of the second catalytic 

metal (Pd or Ni) by substitution of chlorine with hydrogen generated from Fe0 corrosion. 

This chapter presents the modeling and experimental studies of dechlorination with the 

same membrane supported bimetallic nanoparticles under convective mode. In this study, 

2, 2’-dichlorobiphenyl (DiCB, PCB 4) was used as the model compound. We have 

investigated and quantified reaction pathway and kinetics for the DiCB dechlorination in 

the batch mode. We have also correlated the normalized reaction rate (kSA) with the Pd 

coating composition in terms of reactive sites.  

The dechlorination reaction of PCBs inside the pore-filled PAA/PVDF membrane 

containing Fe/Pd nanoparticles under convective flow mode was described by a two-

dimensional reactor model. Figure 5.1 presents a schematic diagram showing the mass-

transfer and reaction phenomenon of PCBs inside the PAA/PVDF membrane pores. The 

PCBs solution are transferred through the membrane by applied pressure, diffused and 
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reacted with Fe/Pd nanoparticles immobilized inside PAA layer. The following 

assumptions are adopted for the model development. 

• The system is operated isothermally and at steady state.  

• The membrane pores are assumed to be cylindrical and uniform size. 

• Constant density, viscosity and diffusivity are considered for the dilute PCBs 

solution. 

• Fully developed laminar flow is assumed for the liquid inside the membrane 

pores, and there is no flow in the radial direction. 

• The model assumes homogeneous distribution of Fe/Pd nanoparticles in the 

PAA layer. 

• The reaction only occurs in the PAA layer (no reaction in the pore region). 

• The reaction at the membrane surface is negligible.  

• PCBs are transferred through membrane pores by convection and diffusion, and 

transferred into PAA layer only by radial diffusion. 

Based on the above the assumptions, the mathematical equations for the mass 

transfer and reaction inside the membrane pore and PAA region can be described as 

follows (Figure 5.1). 
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with the boundary conditions 

z = 0, C = C0                                                                                                                (E5.1a) 

r = 0, 0=
∂
∂

r
C                                                                                                               (E5.1b) 

The model equation (E5.1) includes the expression for the convective flux and diffusion 

in axial and radial direction. Since the nanoparticles are assumed to be in the PAA region, 

there is no reaction term in the E5.1. C is the concentration of PCB (mM), and C0 is the 

initial PCB concentration (mM). Ds is the diffusion coefficient of the bulk PCB in the 

membrane pores (m2 s-1). Ds is calculated from the Wilke and Chang equation (Wilke 

and Chang 1995): 
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MB is the molecular weight of solvent (g mol-1); T is the temperature (K); μ is the 

viscosity of solvent (kg m-1 s-1); νA is the molar volume of PCB (m3 kmol-1, νA for DiCB 

is 0.161 m3 kmol-1).φ is the association factor for solvent (2.26 for water as the solvent 

and 1.5 for ethanol as solvent). Based on the calculation, Ds for DiCB is 8.50  × 10-10 m2 

s-1 in water and 6.53 × 10-10 m2 s-1 in ethanol. Since the solvent matrix contains 50% vol 

ethanol and 50% vol water, average Ds of 7.5 × 10-10 m2 s-1 was used in the model 

calculation. 

Uz is the velocity along the z-axis (m s-1). The fully developed laminar flow profile along 
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Where U0 is the mean velocity (m s-1), r and z are the radial and axial coordinates (m). r1 

is the mean pore radius after the PAA modification (m). r1 is calculated from the 

observed membrane rejection of various dextran by using the Ferry-Faxen equation 

(Ferry 1936; Lindau et al., 1998): 
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R is the rejection of dextran. rs is the hydraulic radius of the dextran molecule (m), which 

can be determined from the following correlation with the molecular weight of dextran: 

rs = 0.27 × 1010 M0.498 (Hagel 1988; Lindau et al., 1998)                                           (E5.1f) 

M is the molecular weight of dextran. 
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r = r2, 0=
∂
∂

r
C                                                                                                              (E5.2b) 

The model equation (E5.2) describes the dechlorination reaction and axial and radial 

diffusion in the PAA region. C1 is the concentration of PCB (mM) in the pore region at 

the pore/PAA layer interface, and C2 is the concentration of PCB (mM) in the PAA layer 

at the pore/PAA layer interface. kin is the surface area normalized reaction rate at 

convective flow mode (L m-2 s-1). It has been discussed in the previous chapter that kin 

can be expressed as the product of k2 and Γ (kin = k2⋅ Γ). k2 is the second order rate 

constant at the Pd (reactive) site (L s-1 mol-1) and Γ is the surface concentration of 

reactive  (Pd) sites (mol m-2). ρ is the density of Fe/Pd (g L-1). as is the surface area per 

unit mass of Fe/Pd (m2 g-1). H is the PCB partitioning coefficient. Dm is the PCB 

diffusion coefficient through the PAA layer (m2 s-1). r2 is the initial PVDF membrane 

pore size (110 × 10-6 m). H and Dm are determined from the PCB diffusion experiments, 

which will be discussed later. km is the mass transfer coefficient (m s-1) determined from 

Sherwood number (Sh) correlations for membrane filtration system at laminar flow 

condition (Tu et al., 2001 and 2005). Wiley et al. (1985) and van den Berg et al. (1989) 

used the following correlation for membrane filtration systems operating under fully 

developed laminar flow condition (Re <2,000). 
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d is the membrane pore diameter after PAA modification (m). Re is the Reynolds number 

(Re = ρU0d/μ); Sc is the Schmidt number (Sc = μ/ρDs); L is the membrane thickness (125 

× 10-6 m). Peclet (Pe) number is another dimensionless number relating the rate of 

convection of a flow to its rate of diffusion. Pe is defined by the ratio of characteristic 

diffusion time over residence time. There are two Pe number in the system: Per (radial) 

and Pez (axial).  
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Per is a measure of radial diffusion resistance and Pez is a measure of axial diffusion 

resistance at certain conditions (flow rates).  
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Figure 5.1 Schematic diagram showing the mass transfer and reaction taking place inside 
the membrane pores. 
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The modeling protocol developed in this work is summarized in Figure 5.2. In 

this model, the convective flow membrane reactor can be characterized by the following 

membrane parameters: membrane pore size and porosity (r and ε, determined from 

dextran rejection), membrane thickness (L, 125 × 10-6 m), system parameters: PCB 

solution density and viscosity, PCB diffusivity in bulk solution (Ds, calculated from 

Wilke and Chang equation E5.1c), PCB diffusivity and partitioning coefficient (Dm and 

H, determined form diffusion experiments), reaction parameters: nanoparticle surface 

area, Pd composition (Γ, reactive sites), metal loading, intrinsic reaction rate constant, 

and operating parameters: volumetric flux and initial PCB concentration (C). Since the 

reaction rate constant from batch reaction is the observed rate which includes the effect of 

diffusion, the observed batch rate constant is not suitable for the convective flow model 

calculation. The intrinsic rate constant could be obtained from batch reaction with Fe/Pd 

nanoparticles without membrane. However, it is quite difficult to prepare the same Fe/Pd 

nanoparticles in solution without the support of membrane. Therefore, the intrinsic rate 

constant (kin) has been determined by fitting the model with the experimental data. kin is 

the only parameter that was taken as fitting parameters for model validation and 

simulation. All other parameters were determined by independent calculations or 

experiments. 

The two steady-state partial differential equations (E5.1 and E5.2) were integrated 

together to obtain the PCB concentration profiles along the z-axis of the membrane. 

Direct formation of biphenyl for the degradation of 2,2’-dichlorobiphenyl is assumed 

since the chlorinated intermediate (2-chlorobiphenyl) was detected in trace level. The 

concentration profile for biphenyl was calculated from the mass balance (neglecting the 

formation of 2-chlorobiphenyl). FemlabTM (COMSOL, version 3.0a) was used to solve 

the two sets of partial differential equations (E5.1 and E5.2). Multiphysics axial 

symmetry modules of convection–diffusion were applied to the two-phase regions. The 

membrane pore and PAA region were partitioned into about 57,000 finite element cells to 

ensure accurate calculation of concentration profile along the membrane pore axis.  This 

model provides useful and convenient method to study and simulate the effect of 

designing and operating parameters such as membrane properties, catalyst properties and 

loading, flow rate on the performance of the reactor. 
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Figure 5.2 Protocol and phase diagram for modeling studies of reductive dechlorination 
under convective flow. 
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Organic diffusion tests 
through membranes 
 
•Diffusivity of PCB in 
membrane phase (Dm) 
•PCB partitioning 
coefficient (H)  

Correlation equations 
for parameter 
estimation 
 
•Reynolds number (Re 
= ρU0d/μ) 
•Schmidt number (Sc)  
• Mass transfer 
coefficient (km)  
•Diffusivity of bulk 
PCB solution (Ds)  

Modeling calculation for data 
fitting & simulation process 
 
•Intrinsic normalized reaction 
rate (kin)  
•PCB concentration profile (C)

Prediction & simulation process 
 
•Effect of reaction rate constant 
•Effect of membrane pore radius 
•Effect of PCB diffusivity in 
membrane
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5.2 Determination of Diffusion (Dm) and Partitioning (H) Coefficient of 2, 2’-

Dichlorobipheny (DiCB, PCB 4) through PAA/PVDF Membrane 

 

After the formulation of membrane reactor, the next important stage is to obtain 

the model parameters. Although some model parameters such as mass transfer coefficient 

and PCB diffusivity in solution can be determined by calculation. The diffusivity and 

partitioning coefficient of DiCB through PAA/PVDF membrane were investigated by the 

diffusion experiments.  

The diffusion study experimental set-up is shown in the Figure 5.3. The 

PAA/PVDF membrane was immersed into the DIFU water and purged with O2 for 12 

hours to deactivate the iron nanoparticles. Then the membrane was mounted in the 

middle of a stainless steel diffusion cell to separate the two compartments (feed side and 

permeation side). Each compartment in the diffusion cell has the volume of 500 mL. The 

membrane area separating the two compartments has the area of 3.5 cm2. Each 

compartment was stirred vigorously during the experiment. Solution of 0.6 mM DiCB 

was added into the feed side compartment, and the same amount of solution without 

DiCB was placed in the permeation side compartment. The DiCB concentration in the 

permeation side was measured versus time by GC-MS. To obtain the sample for GC 

analysis, two mL solution was drawn from each compartment and extracted with 2-mL 

hexane for 2 hours respectively. Since the change of DiCB concentration in the feed 

compartment is negligible, the DiCB concentration in feed side (C10) is assumed to be 

constant. The DiCB concentration in the permeation compartment (C1) is always much 

less than that in the feed side (C10). The data can be analyzed by the following equation 

developed by Yang et al. (2002) to determine the diffusion and partitioning coefficient of 

DiCB in membrane. 
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Where A is the membrane area (m2); L is the membrane thickness (m); V is the volume 

of the permeation side (m3); and t is time (s); H is the DiCB partitioning coefficient 

through the membrane; Dm is the DiCB diffusivity through the membrane (m2 s-1) 
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Figure 5.3 Experimental apparatus of diffusion study. Two well-stirred volumes are 
separated by PAA/PVDF membrane containing deactivated Fe nanoparticles. DiCB 
diffuses from left to right across the membrane. 
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The experimental results for DiCB diffusion through the PAA/PVDF membrane 

containing deactivated Fe nanoparticles are shown in the Figure 5.4. As shown in the 

figure, the DiCB concentration in the permeation cell (C1) increase linearly with time. By 

fitting the data with equation E5.3, the partitioning coefficient (H) was determined to be 

1.16. This is very close to one since the PAA is swollen with water. The diffusion 

coefficient (Dm) was found to be 6.5 × 10-11 m2 s-1. This value is less than that in water 

(7.5 × 10-10 calculated from equation E5.1c). The lower number is expected since the 

polymer chain should restrain the diffusion of DiCB.  

 

5.3 Determination of Pore Size of PAA/PVDF Membrane Containing Fe/Pd 

Nanoparticles 

 

The next important parameter for the model calculation is the membrane pore size. 

The mean pore size was determined by measuring the retention of various molecule 

weight of dextran using the Ferry-Faxen equation (E5.1e). The dextran rejection result is 

shown in the Figure 5.5. The pH of the dextran solution (800 mg L-1) was kept at ~7 to 

keep the PAA chain in extended form. As expected, with the increase of dextran 

molecular weight, we observe the increase of rejection. The rejection is 95% for the 

dextran with the molecular weight of 2,000,000. The mean pore size is determined to be 

64 nm by using the Ferry-Faxen equation (E5.1e). Therefore, the thickness of the PAA 

layer is calculated to be 46 nm. Initially, the unmodified PVDF membrane has the 

porosity of 75%. The porosity after modification is determined based on the assumption 

that the membrane pores are all cylindrical and uniform and PAA is homogeneously 

coated on the pore surface. The calculated membrane porosity after PAA modification is 

25.4%. The calculated total PAA layer volume per membrane is 0.0825 cm3. The weight 

of total PAA is calculated to be 0.086 g. The dry PAA weight measured by mass 

difference before and after in-situ polymerization is 0.067 g. The variation is due to the 

uniform PAA thickness assumption for calculation and the wet and dry state difference. 

The residence time (τ) then can be obtained from dividing the membrane pore volume by 

the flow rate. And the mean velocity U0 can be determined based on the membrane 

thickness and the residence time.  
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Figure 5.4 Experimental values of DiCB diffusion through PAA/PVDF membrane 
containing deactivated Fe nanoparticles. Membrane thickness: 125 × 10-6 m. Membrane 
area: 3.5 cm2. 
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Figure 5.5 The rejection of different molecular weight dextran by pore-filled PAA/PVDF 
membrane containing Fe/Pd nanoparticles. 
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5.4  Modeling Results and Membrane Performance under Convective Flow Mode 

 

Figure 5.6 shows the degradation of DiCB as a function of residence time (τ) for 

the PAA/PVDF membrane reactor containing Fe/Pd nanoparticles under convective flow 

mode. The membrane had 0.15 g Fe-Pd/cm3 (Pd = 2.3 wt %) of loading evenly in the 

PAA layer. The membrane area is 13.2 cm-2 and 125 μm thickness. The plots in the 

Figure 5.6 correlated the model equation with the experimental data to obtain the intrinsic 

reaction rate. The intrinsic surface area normalized reaction rate (kin) was adjusted to 

minimize the sum of squares between the model and experimental values. Based on the 

model fitting (R2 = 0.97), kin is determined to be 0.11 L m-2 h-2, which is about 1.6 times 

higher than that in batch mode (0.068 L m-2 h-1). This value seems reasonable because the 

rate we obtained in batch mode is the observed reaction rate which contains both the 

reaction and mass transfer (diffusion) term. However, the mass transfer and reaction are 

separate in the convective flow membrane reactor model, which results in the intrinsic 

reaction rate. Table 5.1 summarizes the model parameters used for the calculation of 

PAA/PVDF membrane reactor. As shown in the figure, the concentration of DiCB at the 

membrane outlet decrease with the increase of the residence time. This is as expected, 

longer residence means longer reaction time and higher DiCB conversion.  

Figure 5.7 plots the experimental data and model prediction for the dechlorination 

products formation (biphenyl and intermediate) at different residence time. Biphenyl was 

the dominating product and 2-chlorobiphenyl was only detected in trace level. Since only 

trace amount of 2-chlorobiphenyl was observed, direct formation of biphenyl by 

replacing two chlorines simultaneously is assumed for the model calculation. The 

equations and boundary conditions used were given in below: 
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with the boundary conditions 

z = 0, CB = 0                                                                                                                (E5.4a) 

r = 0, 0=
∂
∂

r
CB                                                                                                             (E5.4b) 
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 PAA layer containing Fe/Pd nanoparticles  
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with the boundary conditions: 
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s HCCk
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∂                                                                                (E5.5a) 
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∂
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r
CB                                                                                                            (E5.5b) 

The model equations and boundary conditions for biphenyl are similar to those for DiCB 

calculation. CB is the biphenyl concentration (mM). The diffusivity for biphenyl is 

assumed to be same as that for DiCB for simplification. kin is determined to be 0.11 L m-2 

h-2 based on the DiCB data fitting. As shown in the figure, the biphenyl model prediction 

matches the experimental data very well. This also verifies the previous model and data 

fitting. Due to the partitioning of PCBs in the membrane, the carbon balance in the 

permeate solution is about 85% ~ 90%.  

The concentration profile inside the membrane reactor calculated at two different 

residence time is shown in Figure 5.8 and Figure 5.9. About 80% degradation of DiCB 

was achieved at the residence of 15 seconds. As shown in the figure, there is no 

significant concentration difference in the radial direction. This is due to the large ratio of 

membrane thickness (125 μm) over pore radius (64 nm). It is important to point out that 

Per is determined to be 10-6 ~ 10-7, while Pez is in the range of 1 to 25. This also confirms 

that radial variation can be neglected when Pez >> Per. So the equations actually can be 

simplified to one dimension. In order to make the model general for different applications, 

we keep the model in 2-D form for the simulation. In order to show the radial variation 

effect, the membrane thickness was deliberately decreased to 125 nm to give the similar 

Per and Pez. When the thickness is changed to 125 nm (all other parameters are kept the 

same), the Per is determined to be 2 × 10-4 ~ 6 × 10-3, while Pez is in the range of 1 × 10-3 

~ 2.5 × 10-2. Since the membrane is extremely thin, the DiCB conversion is very low at 

the low residence. But the radial effect can be clearly seen in the figure. 
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Table 5.1 Parameters used for modeling PAA/PVDF membrane reactor containing Fe/Pd 
nanoparticles 
 

Parameter Units Value 

Membrane thickness, (reactor length, z) (m) 1.25 × 10-4 

Membrane Pore size, (radius, r) (m) 6.4 × 10-8 

PAA layer width (m) 4.6 × 10-8 

Fe/Pd density, ρ (g cm-3) 0.15 

Fe/Pd nanoparticle size (nm) 30 

Fe/Pd nanoparticle surface area, Sa (m2 g-1) 25 

Residence time, τ (s) 0~25 

DiCB partitioning coefficient, H - 1.16 

DiCB diffusion coefficient in membrane, Dm (m2 s-1) 6.5 × 10-11 

DiCB diffusion coefficient in bulk solution, Ds (m2 s-1) 7.5 × 10-10 
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Figure 5.6 Plot of the molar concentration of DiCB in the PAA/PVDF membrane reactor 
outlet at difference residence time. Fe/Pd (Pd = 2.3 wt %) loading in the PAA layer: 0.15 
g cm-3. 
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Figure 5.7 Degradation of DiCB by membrane supported Fe/Pd nanoparticles under 
convective flow mode. Plot of the molar concentration of DiCB, 2-chlorobiphenyl and 
biphenyl in the PAA/PVDF membrane reactor outlet at difference residence time. Fe/Pd 
(Pd = 2.3 wt %) loading in the PAA layer: 0.15 g cm-3. 
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Figure 5.8 Concentration profile for DiCB degradation in the PAA/PVDF membrane 
reactor at residence time of 2.7 seconds. (Per = 2 × 10-6, Pez =7.7) 
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Figure 5.9 Concentration profile for DiCB and biphenyl in the PAA/PVDF membrane 
reactor at residence time of 12.1 seconds (Per = 4.4 × 10-7, Pez = 1.7). 
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Figure 5.10 Plot of DiCB concentration variance in the radial direction. The membrane 
thickness was deliberately decreased 125 nm (Per = 4.4 × 10-4, Pez = 1.7 × 10-3). The flow 
rate is the as that in the Figure 5.9.  
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In the previous chapter, the mean Fe/Pd nanoparticle size was determined to be 30 

nm with the standard deviation of 6.7 nm. The deviation of particles size can lead to the 

variance in the particle surface area calculation, which eventually can result in the 

deviation of observed reaction rate. The deviation of the observed reaction rate is 

calculated to be 20% based on the 6.7 nm nanoparticle size deviation. Therefore, it is 

important to understand the effect of the deviation of the observed reaction rate on the 

model simulation. 

Figure 5.11 shows the effect of observed reaction rate variation due to the 

nanoparticle size deviation. As shown in the figure, there is no significant variation 

caused by this deviation in the modeling results. The errors between the model and 

experimental results are also well matched within the modeling deviation. 

  Previously we assumed that there is no convective flow in the PAA layer for the 

model development and PCBs can enter into PAA layer only by diffusion. This 

assumption is reasonable since flow is preferentially through the pores at low operating 

pressure. However the actual flow may not be zero although it is much lower than the 

pore region because PAA is a highly hydrophilic and the PAA layer is not completely 

dense. In order to study the influence of the flow through the PAA layer, we performed 

the model calculation based on flow through the PAA layer. In this case, it becomes a 

homogeneous model where PAA and membrane pore are not in the separate domain. 

PAA containing Fe/Pd nanoparticles and membrane pore channel can be considered as 

one homogeneous domain. One equation including convection, diffusion and reaction can 

be used to describe this homogeneous model. The simulation result for the homogeneous 

model is shown in the Figure 5.12. The homogeneous model consider 100% convective 

flow pass through the PAA. The overall residence time is defined by membrane pore 

volume/volumetric flux. In the zero flow through PAA domain, the residence time is for 

flow through pores, but the actual reaction time is the diffusion time in PAA layer which 

is much longer than overall residence time. However in the convective flow through PAA 

mode (homogeneous model), the residence time is the actual reaction time. So as it can 

be seen in the figure, at high flow rate, the DiCB degradation in convective flow mode is 

less than zero flow through PAA mode. This is because reaction is the rate-controlling 

step at high flow rate (short reaction time results in less conversion). The insignificant 
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diffusion resistance can be confirmed by the high peclet number (Pez = 3 ~ 25) at high 

flow rate.  But at low flow rate, diffusion becomes the rate-controlling step (low peclet 

number (Pez < 2 also indicates the high diffusion resistance) and convective flow through 

PAA shows high DiCB conversion rate than zero flow through PAA due to the less 

diffusion resistance.  
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Figure 5.11 Influence of nanoparticle size standard deviation on the model prediction. 
Variation of molar concentration of DiCB in the PAA/PVDF membrane reactor outlet 
due to the deviation of nanoparticle size. Nanoparticle loading in the PAA layer: 0.15 g 
cm-3. 
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Figure 5.12 Modeling comparison for zero flow and convective flow through the PAA 
domain. 
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Influence of Pd composition 

 

After solving the 2-D mass transfer and reaction equation for the membrane 

reactor, we start to use the model to simulate and predict the reaction under different 

conditions and parameter. First we can get a faster reaction by changing the reaction rate. 

Increasing the nanoparticles loading is the obvious way to obtain higher reaction rate. In 

the Chapter 4, we studied the effect of three different Pd coating compositions (0.6 wt%, 

2.3 wt%, 5.6 wt%) on the reactivity of Fe/Pd nanoparticles in batch reactions. We found 

that the surface normalized reaction rate (kSA) was enhanced with the increase of Pd 

coating. And kSA can be expressed by k2  Γ.  k2 is the same for the three different Pd 

coating system, and increased reaction rate is only due to the increase of Γ (Pd sites). 

Thus, we can change the reaction rate by changing the Pd coating composition (Γ). By 

comparing the Γ and kin (Pd = 2.3 wt%), we can easily determine the kin at the Pd coating 

of 0.6 wt% and 5.6 wt% to be 0.268 L m-2 h-1 and 0.0275 L m-2 h-1, respectively. Figure 

5.13 shows the modeling and experimental results of DiCB degradation at different Pd 

coating compositions under convective flow mode. The figure shows a significant 

increase of DiCB degradation at the higher Pd coating as well as a significant decrease of 

reaction at the lower Pd coating. About 90% conversion of DiCB was achieved at the 

residence time 15 seconds for the Pd coating composition of 5.6 wt%. Again, biphenyl 

was the dominating product, and 2-chlorobiphenyl was only detected in trace level. It can 

be seen that there is good agreement between the model prediction and experimental data. 

It is important to point out that the new reaction rate constants at higher Pd loading and 

lower Pd loading were obtained by the previous correlation between k2 and Γ not by 

model fitting. The new rate constants were used to predict the reaction and compare with 

the experimental data.   
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Figure 5.13 Modeling and experimental results of the effect of Pd coating composition on 
the dechlorination under convective flow. Plot of the molar concentration of DiCB in the 
PAA/PVDF membrane reactor outlet with different Pd coating at difference residence 
time. Nanoparticle loading in the PAA layer is the same for different Pd coating system: 
0.15 g cm-3. Note: the symbols represent the experimental data, while the lines represent 
model prediction. 
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Influence of membrane pore size 

 

The membrane pore size is another important parameter in the design of the 

membrane reactor. In theory, the membrane pore size can be varied by either using 

different pore size support membranes (keeping the same amount of PAA 

functionalization) or changing the thickness of PAA layer. In this study, different sizes of 

PVDF support membranes were used to vary the pore size. Figure 5.14 shows the 

simulation results of DiCB degradation at different residence time for different 

membrane pore sizes. The experimental data for the 179 nm membrane pore were also 

plotted in the figure for comparison with the model prediction. As shown in the figure, 

there is a good agreement between the model prediction and experimental data, 

considering the simplification of uniform membrane pore distribution and experimental 

error. It can be seen that higher DiCB conversion was achieved in narrower membrane 

pores while the wider membrane pore would result in the lower DiCB conversion. This is 

due to the larger metal loading per unit pore volume in the narrower membrane pore size 

even though the metal loading per membrane is kept the same. The narrower pore 

channel also shortens the DiCB diffusion length and thus benefits the reaction.  

 

Effect of PCB diffusivity through membrane 

 

The diffusion coefficient (Dm) of PCB in membrane is determined by the property 

of the polymer and the degree of cross-linking. Dm is one of the system parameters that 

affect the PCB dechlorination results. Since PAA has been used as the functional polymer 

to immobilized bimetallic nanoparticles, Dm is a function of the density of PAA cross-

linking. It is known that Dm usually decreases significantly as the cross-linking density 

increases (Reinhart and Peppas, 1983). The main purpose of this paper is to synthesize 

bimetallic nanoparticles in PAA functionalized membrane and study the catalytic 

dechlorination reactivity. Although PAA cross-linking density was not varied by 

experiment, we still can use the model to simulate the dechlorination reaction at different 

diffusion coefficient. Figure 5.15 shows modeling prediction of the effect of the Dm on 

the DiCB dechlorination under convective flow. Since PCBs must diffuse through PAA 
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layer before they can be adsorbed and then dechlorinated on the Fe/Pd nanoparticle 

surface, lower PCB diffusivity results in the higher diffusion resistance and thus 

decreases the reaction efficiency. As expected, the decrease of diffusivity led to a 

negative effect on the overall membrane reactor performance. As shown in the Figure, 

when Dm > 6.5 × 10-12 m2 s-1, the effect of Dm is significant while when Dm < 6.5 × 10-12 

m2 s-1, the effect is much less sensitive to the variation of Dm.  
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Figure 5.14 Modeling and experimental results of the effect of membrane pore size  on 
the dechlorination under convective flow. Plot of the molar concentration of DiCB in the 
PAA/PVDF membrane reactor outlet with different membrane pore size at difference 
residence time. Fe/Pd (Pd = 2.3 wt%) nanoparticle loading in the PAA layer is the same : 
0.15 g cm-3. Note: the symbols represent the experimental data, while the lines represent 
model prediction. 
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Figure 5.15 Effect of DiCB diffusivty through the membrane on the dechlorination  under 
convective flow from the model simulation. Plot of the molar concentration of DiCB in 
the PVDF/PAA membrane reactor outlet with different DiCB diffusivity in membrane at 
difference residence time. Fe/Pd nanoparticle (Pd = 2.3 wt%) loading in the PAA layer is 
the same : 0.15 g cm-3. 
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Chapter 6 Conclusion 

 

The primary work in this dissertation has been focused on the experimental and 

modeling studies of reductive degradation of chlorinated organics using prepared 

membrane-based bimetallic nanoparticles. The overall conclusions involve the 

contributions and accomplishments in the following areas: nanoparticle synthesis & 

characterization, dechlorination kinetics & mechanism, and mathematical modeling 

simulation. This work has demonstrated successful in-situ synthesis of highly reactive 

bimetallic nanoparticles with controllable size, distribution and structure in the 

functionalized membrane matrix. The membrane immobilized nanostructured bimetallic 

materials (Fe/Ni and Fe/Pd) exhibited fast and complete reduction capability towards 

both chlorinated aliphatics and conjugated aromatics. The normalized reaction rate for 

TCE degradation by membrane supported Fe/Ni nanoparticles is about 5 times higher 

than the rate for Fe/Ni synthesized in solution, 200 times higher than the rate for 

nanoscale iron particles, and 400 times higher than the rate for bulk iron particles. With 

complete conversion to biphenyl, the normalized reaction rate for PCB dechlorination 

with membrane supported Fe/Pd nanoparticles in this study is 10,000 fold higher than 

that reported in the literature. A mathematical model including convection, diffusion and 

reaction was developed to describe and predict the organic dechlorination at different 

conditions inside membrane pores. The experimental data showed a good agreement with 

the model simulation results. Our work has led to significant improvement of current 

chlorinated organics degradation and advancement of high reactive nanostructured 

materials development. 

 

Fundamental Science and Engineering Advancements: 

 

• High loading of ion-exchange groups inside membrane pores can be achieved by 

in-situ polymerization of acrylic acid to capture metal ions as nanoparticle 

precursors. 

• Well dispersed nanoscale particles can be synthesized in microporous membranes 

by ion-exchange and in-situ reduction processes. 
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• High resolution STEM-EDS mapping can be used to localize the PAA 

functionalization, characterize bimetallic nanoparticle structure and correlate it 

with reactivity 

• Deposition of second metal (Ni or Pd) on iron can greatly enhance the reaction 

rate by changing the dechlorination pathway from electron transfer to catalytic 

hydrodechlorination.  

• The normalized batch reaction rate for membrane supported bimetallic system is a 

function of reactive sites and hydrogen production 

• Metal leaching from reaction can be minimized by recapture with ion-exchange 

groups in the membrane. 

The specific conclusions and significances drawn from this work are summarized 

below. 

 

6.1 Membrane Functionalization and Nanoparticle Synthesis 

 

The hypothesis for membrane supported nanoparticles synthesis in this work is 

based on the chelation metal ions with ion-exchange groups in membrane followed by 

reduction of chelated metal ions. The membrane modification with ion-exchange groups 

for metal ions capture was achieved by two different methods: PAA dip-coating followed 

by thermal cross-linking with ethylene glycol; in-situ polymerization of acrylic acid 

inside membrane pores. Both methods have showed successful immobilization of PAA in 

MF membrane. PAA was mainly located on the membrane surface by dip-coating 

method, while in-situ polymerization resulted in homogenous distribution of PAA inside 

membrane pores. The membrane morphology and structure difference after PAA 

modification were characterized by SEM and TEM. The chelation interaction of metal 

ions and carboxylic acid was quantified by ICP analysis and EDS analysis. Especially, 

STEM-EDS mapping technique was successfully used to localize PAA functional domain 

from the PVDF substrate and illustrate the binding interaction between metal ions and 

PAA.  

Bimetallic nanoparticles were synthesized in-situ by reduction of metal ions 

chelated with PAA in membrane. The PAA functionalized membrane provides a good 
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platform to immobilize and control the nanoparticles. SEM, TEM, HRTEM, EDS 

mapping were performed to characterize the size, structure and distribution of membrane 

supported bimetallic nanoparticles. The nanoparticles showed uniform size (~30 nm) and 

distribution in PAA domain without agglomeration due to the protection from polymer 

chains and chelation interaction. It has been proven the size and the nanoparticles can be 

manipulated within the membrane matrix. This is achieved by the control of the spacing 

distance between chelated metal ions by altering the metal loading. We have 

demonstrated that the bimetallic Fe/Ni nanoparticles can have an alloy or core/shell 

structure depending on the simultaneous reduction or sequential reduction of two metal 

ions. The alloy or core/shell structure were confirmed and illustrated by STEM-Mapping. 

High resolution EDS mapping also allows for understanding and correlating the 

nanoparticle structure and dopant metal composition with dechlorination reactivity.  

 

6.2 Reductive Dechlorination by Membrane Supported Bimetallic Nanoparticles 

 

In order to obtain high accurate analysis for reaction kinetics studies, we have 

established protocols to analyze various organics (TCE, PCB and complete intermediates 

and final product analysis), metal ions and chloride ions using EPA suggested methods. 

The synthesized Fe/Ni and Fe/Pd bimetallic nanoparticles in PAA functionalized MF 

membranes showed high reactivity towards the degradation of various chlorinated 

organics. Typically, complete degradation of TCE can be achieved within 1 hour by 

membrane based Fe/Ni nanoparticles. Complete conversion of ethane was observed in 

headspace, but no other chlorinated intermediate byproducts were found in both aqueous 

and headspace phase. The normalized reaction rate is about 5 times higher than the rate 

for Fe/Ni synthesized in solution, 200 times higher than the rate for nanoscale iron 

particles, and 400 times higher than the rate for bulk iron particles. The significant 

enhancement of the reaction rate is due to the reaction pathway shift from electron 

transfer (single Fe system) to catalytic hydrodechlorination. The role of water is to 

generate electrons and hydrogen gas from iron corrosion reaction. The hydrogen gas can 

be enriched on the Ni or Pd surface and decomposed into highly reactive atomic H to 

replace chlorine. 
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Fast and complete degradation of PCBs were also obtained using membrane 

supported Fe/Pd nanoparticles. Compared to the slower rate and incomplete 

dechlorination reported in the literature, our membrane based Fe/Pd system resulted in 

about 10,000-fold enhancement on the normalized reaction rate and complete conversion 

to biphenyl. The reaction rate is a function of the second metal composition because of 

the effect on the concentration of available active sites and the hydrogen production. Our 

correlation between the Pd composition and reaction rate indicates that the enhancement 

of the reaction rate is only due to the increase of Pd sites when Pd coating is less than one 

monolayer. The bimetallic nanoparticle structure also had a great effect on the reactivity. 

At the same amount of Ni coating, core/shell structure system led to 3-fold increase in the 

TCE degradation rate over the alloy structure Fe/Ni system. This enhancement is also due 

to the higher available active sites in the core/shell Fe/Ni system. The high resolution 

mapping benefits the understanding and quantification of the reactivity with structure and 

composition. 

  

6.3 Mathematical Modeling of PCB Dechlorination by Membrane Based Fe/Pd 

Nanoparticles under Convective Flow 

 

In order to predict results at different conditions, we have developed and applied a 

2-D mathematical model for the PCB degradation by membrane supported Fe/Pd 

nanoparticles under convective flow mode. This model incorporates convection, diffusion 

and reaction kinetics to describe mass transfer and reaction in the membrane reactor 

module. In this model, the membrane reactor was characterized by the following four 

types of parameters: (1) membrane parameters: membrane pore size and porosity and 

membrane thickness; (2) system parameters: PCB solution density and viscosity, PCB 

diffusivity, PCB diffusivity and partitioning coefficient; (3) reaction parameters: 

nanoparticle surface area, Pd composition (Γ, reactive sites), metal loading, intrinsic 

reaction rate constant; (4) operating parameters: volumetric flux and initial PCB 

concentration. The intrinsic rate constant (kin) has been determined by fitting the model 

with the experimental data. kin is the only parameter that was taken as fitting parameters 
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for model validation and simulation. All other parameters were determined by 

independent calculations or experiments. 

We have demonstrated the effects of varying membrane pore size, reaction rate 

constant and diffusivity by both the proposed model calculation and performed 

experiments. A good fitting of the experimental data has been obtained with the modeling 

simulation results. This model is a useful tool for the prediction and evaluation of PCB 

degradation at various conditions. For the variables investigated, the PCB degradation 

under convective flow benefited form narrow pore size, high intrinsic reaction rate.  
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Nomenclature 

 
as = specific surface area (m2 g-1) 

A = membrane area (m2) 

C = organic (TCE or PCB) concentration (mM) 

C1 = organic (TCE or PCB) concentration in membrane pore region (mM) 

C2 = organic (TCE or PCB) concentration in PAA domain (mM) 

CB = Biphenyl concentration (mM) 

Ds = diffusion coefficient of the bulk PCB solution (m2 s-1) 

Dm = diffusion coefficient of PCB in membrane phase (m2 s-1) 

d = membrane pore diameter (m) 

H = PCB partitioning coefficient  

km = mass transfer coefficient (m s-1) 

kSA = normalized reaction rate (L m-2 h-1) 

kin = intrinsic normalized reaction rate (L m-2 h-1) 

k2 = second order rate constant at a particular type of site (L h-1 mol-1) 

MB is the molecular weight of solvent (g mol-1) 

L = membrane thickness (m) 

r = radial coordinate (m) 

r1 = mean membrane pore radius after the PAA modification (m) 

r2 = unmodified PVDF membrane mean pore radius (m) 

rs = hydraulic radius of the dextran molecule (m) 

Per = peclet number in the radial direction, (r1
2/Ds)/(L/U0) 

Per = peclet number in the axial direction, (L2/Ds)/(L/U0) 
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R = the rejection of dextran 

Re = Reynolds number (Re = ρU0d/μ) 

Sc = Schmidt number (Sc = μ/ρDs) 

T = temperature (K) 

t = time (h) 

Uz = the velocity along the z-axis (m s-1) 

V = volume of the feed and permeation side for diffusion experiment (m3) 

U0 = the mean velocity along the z-axis  (m s-1) 

z = axial coordinates (m) 

 

Greek letters 

ε = membrane porosity 

φ = association factor for solvent 

μ = viscosity of PCB solution (kg m-1 s-1) 

ρ = density of PCB solution (kg m-3) 

ρm = mass concentration of metal (g L-1) 

τ = residence time (s) 

νA = molar volume of PCB (m3 kmol-1) 

Γ = surface concentration of reactive sites (mol m-2) 

Chemical / polymer symbols 

AA: Acrylic acid  

PAA: Polyacrylic acid 
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DiCB: 2, 2’-dichlorobiphenyl 

PCB: Polychlorinated biphenyl 

PES: Polyether sulfone 

PVDF: Polyvinylidene fluoride 

TCE: Trichloroethylene 

TMPTA: 1,1,1-trimethylolpropane triacrylate 
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