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ABSTRACT OF DISSERTATION 
 
 
 

 

FUNCTIONALIZATION OF FLUORINATED SURFACTANT TEMPLATED SILICA 
 

Surfactant templating provides for the synthesis of ordered mesoporous silica and 
the opportunity to tailor the pore size, pore structure, particle morphology and surface 
functionality of the silica through the selection of synthesis conditions and surfactant 
template. This work extends the synthesis of nanostructured silica using fluorinated 
surfactant templates to the synthesis of organic/inorganic composites.  The effect of 
fluorinated surfactant templates (C6F13C2H4NC5H5Cl, C8F17C2H4NC5H5Cl and 
C10F21C2H4NC5H5Cl), which have highly hydrophobic fluorocarbon tails, on functional 
group incorporation, accessibility, and silica textural properties is examined and 
compared to properties of hydrocarbon surfactant (C16H33N(CH3)3Br, CTAB) templated 
silica. Hydrocarbon (vinyl, n-decyl and 3-aminopropyl) and fluorocarbon (perfluoro-
octyl, perfluorodecyl) functional group incorporation by direct synthesis is demonstrated, 
and its effects on silica properties are interpreted based on the aggregation behavior with 
the surfactant templates. 

Silica materials synthesized with CTAB possess greater pore order than materials 
synthesized with the fluorocarbon surfactants. The incorporation of the short vinyl chain 
substantially reduces silica pore size and pore order. However, pore order increases with 
functionalization for materials synthesized with the fluorinated surfactant having the 
longest hydrophobic chain.  

The incorporation of longer chain functional groups (n-decyl, perfluorodecyl, 
perfluoro-octyl) by direct synthesis results in hexagonal pore structured silica for 
combinations of hydrocarbon/fluorocarbon surfactant and functional groups.  The long 
chain of these silica precursors, which can be incorporated in the surfactant micelle core, 
affect the pore size less than vinyl incorporation.  Synthesis using the longer chain fluoro-
surfactant (C8F17C2H4NC5H5Cl) template in ethanol/water solution results in highest 
incorporation of both n-decyl and the fluorocarbon functional groups, with a 
corresponding loss of material order in the fluorinated material. Matching the 
fluorocarbon surfactant (C6F13C2H4NC5H5Cl) to the perfluoro-octyl precursor did not 
show improved functional group incorporation. Higher incorporation of the perfluoro-
octyl functional group was observed for all surfactant templates, but the perfluoro-decyl 
silica is a better adsorbent for the separation of hydrocarbon and fluorocarbon tagged 
anthraquinones.  



Incorporating a reactive hydrophilic functional group (3-aminopropyl) suggests 
further applications of the resulting nanoporous silica.  Greater amine incorporation is 
achieved in the CTAB templated silica, which has hexagonal pore structure; the order and 
surface area decreases for the fluorinated surfactant templated material.  
 
KEYWORDS: Nanoporous silica, fluorocarbon surfactants, CO2 capture, 
organic/inorganic composites, surfactant templating 
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CHAPTER 1 

 

INTRODUCTION 

 

 Porous materials have been demonstrated for a wide range of applications, such as 

catalysis, separation and sensing, which make use of their high surface area to volume 

ratio. In catalysis, porous materials are applied as catalyst support by incorporating 

inorganic, organic and bio-molecule active sites.1 Organic functionalized porous 

materials are also employed as solid supports for HPLC, SPE and membrane separations. 

Porous materials incorporated with enzymes, antibodies and dyes are used as sensors to 

provide fluorescence, optical and electrochemical responses to external stimulation.2 

Emerging areas of application of porous materials include drug delivery3, energy (e.g. 

hydrogen storage) and environmental remediation (e.g. CO2 capture and storage).4 The 

matrices of porous materials are formed by polymers, carbon, metals, alumino-silicate 

and oxides. In the 1990’s researchers at Mobil Oil Co. synthesized hexagonal, cubic and 

lamellar uniform pore structured silica by sol-gel techniques using alkylammonium 

bromide surfactants as template.5 Subsequent investigations have focused on tailoring the 

silica pore structure through the synthesis conditions and type of template (hydrocarbon 

cationic surfactants (e.g. CTAB)6, anionic surfactant (e.g. sodium dodecylsulfate, SDS)7, 

neutral surfactants8, block co-polymers9 and fluorocarbon surfactants10,11).  

Cationic fluorinated surfactants (a series of perfluoroalkylpyridinium chloride) 

have recently been demonstrated as templates for the synthesis of a range of structured 

nanoporous silica.10, 12-15 Varied particle morphology (irregular, spherical, elongated) and 

  1



pore structure (disordered, hexagonal, mesh phase) have been obtained as a function of 

synthesis conditions, chain length and structure of surfactant template. The ability to 

tailor the pore size and structure of porous materials using fluorinated surfactant 

templates provides unique application opportunities.   

Organic functional groups, metals and bio-molecules have been incorporated into 

surfactant template nanoporous silica for further applications as adsorbents for 

separation16, CO2 capture17, catalyst support18, heavy metal removal19 and sensing20. The 

functionalization of the porous silica is achieved by either post-synthesis grafting of 

already synthesized silica or direct ‘one-pot’ synthesis (i.e. co-condensation of a mixture 

of tetraalkoxysilane and organic functionalized alkoxysilane).21 Direct synthesis results in 

silica materials with high loading and uniform distribution of functional group.22,23 

However, the accessibility of the functional group depends on its location and orientation 

during self-assembly of the template molecules and the precursors.24 Functional groups 

that are incorporated into the aggregated surfactant micelle (core of the micelle) will be 

highly accessible after the surfactant template is extracted. 

1.1 Research Hypothesis 

The hypothesis of this research is that the use of fluorinated surfactants as 

templating agents will lead to improved opportunities to tailor the pores of organic-

functionalized silica materials.  Specifically, the higher hydrophobicity of the fluorinated 

surfactant templates relative to traditional hydrocarbon surfactant templates is expected to 

drive the organic functional groups (both hydrocarbon and fluorocarbon) of silica 

precursors towards the core of the surfactant aggregates during the direct synthesis 

process, altering pore size, order, and potentially the orientation of the organic functional 
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group of the resulting materials. The resulting porous materials are expected to have 

functional groups well aligned along the pore channel, providing accessible and highly 

functionalized porous surfaces.  

1.2 Research Objectives 

The aim of the research is to demonstrate the synthesis, characterization and 

possible applications of organic functionalized nanoporous silica templated using 

fluorinated surfactants (i.e., C6F13C2H4NC5H5Cl (HFOPC), C8F17C2H4NC5H5Cl 

(HFDePC), C10F21C2H4NC5H5Cl (HFDoDePC)). The textural properties (such as pore 

structure and order, pore volume, and specific surface area) and functional group 

accessibility or applicability of the silica materials are compared to functionalized 

materials obtained using a traditional cationic hydrocarbon, C16H33N(CH3)3Br (CTAB),  

as a template. The materials characterization techniques employed in this investigation 

include powder X-ray diffraction (XRD), nitrogen sorption at 77K, transmission electron 

microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and 

thermogravimetric analysis (TGA).  

 Chapter 2 presents a brief background on surfactant templated nanoporous silica, 

fluorinated surfactants, and relevant materials characterization techniques. Chapter 3 

demonstrates the direct synthesis of organic functional silica using fluorinated surfactant 

templates.  Vinyl functionalized silica is characterized as a function of surfactant 

template (fluorocarbon surfactant of different hydrophobic tail length and CTAB) and the 

accessibility of the vinyl functional group is measured by a bromination reaction.  The 

effect of the lipophobicity and hydrophobicity of fluorocarbons on organic 

functionalization by direct synthesis is examined in Chapters 4 and 5 using pairs of 
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fluorocarbon/hydrocarbon templates and silica percursors.   Surfactant/functional group 

(decyl, perfluoro-decyl) combinations and the subsequent effect on degree of functional 

group incorporation and silica meso-structure properties are presented in Chapter 4.  

Chapter 5 compares the properties of perfluoro-octyl and perfluoro-decyl functionalized 

silica and their application as sorbents in separating hydrocarbon and fluorocarbon tagged 

anthraquinones by fluorous-solid phase extraction (F-SPE). In Chapter 6 the effect of 

incorporating a hydrophilic reactive functional group (3-aminopropyl) on nanoporous 

silica properties is described. The characterization of these materials by CO2 sorption 

suggests their potential for CO2 capture.   
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CHAPTER 2 

 

BACKGROUND 

 

A brief outline of silica, types of porous materials; their synthesis procedure and areas 

of application is given. A description of surfactants and their aggregation behavior is 

provided with an introduction to surfactant templating of mesoporous silica. The chapter 

continues with a summary of synthesis processes that have yielded silica with different 

mesostructures and pore sizes. Also presented are procedures used in functionalizing the 

porous silica and the analytical techniques employed in characterizing the porous silica.  

2.1 Silica 

Silica (SiO2) occurs naturally as quartz, tridymite, crystobalite, coesite and opal. 

Quartz is the most abundant silica forming the highest constituent in gravel and beach 

sand. Silica has several different crystalline structures. As sand, silica is used for making 

glass and fused silica, its rock crystal is used in electronic equipment and the colored 

crystals of silica have gem value.25 Silica, however, can be manufactured in the form of 

sols or gels. These silicas can be formed as colloidal silicas, pyrogenic (or fumed) silica 

and silica xerogels, and as precipitated silica.26 Silica has been applied as fillers, 

lubricants, adsorbents and support for solid phase syntheses. Silica can be porous or non-

porous. 

2.2 Porous Materials 

 Porous materials can be classified, on the basis of their pore structure, as open or 

closed. Due to the large surface area to pore volume ratio of porous materials they have 
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application in many fields.  Open pore materials, particularly functionalized materials, are 

useful in adsorption, catalysis and sensing; closed pore materials are used in sonic and 

thermal insulation and for applications that require light weight materials. Porous 

materials are also classified according to their pore sizes.  Materials with pores less than 2 

nm in diameter are micropores; mesopores are between 2 nm and 50 nm; and pores 

greater than 50 nm are macropores.27 Examples of pore shape and morphology include 

cylindrical, spherical and slit shaped. Common solid porous materials can be classified as 

polymeric, carbon, metals, alumino-silicate and oxides.27

 Polymeric porous materials are used as stationary support in chromatography, 

catalysis, for biologically active materials and as membranes. They are used in tissue 

engineering as scaffolds28, for drug delivery29 and in sensing. Some of the techniques 

used to prepare porous polymers include radiation polymerization30, emulsion 

polymerization31, condensation polymerization32 and chain polymerization33.  

Activated carbon, carbon aerogels, carbon nanotubes are examples of carbon based 

porous materials. Porous carbon materials are synthesized from wood34, resins35, aqueous 

gels36, and by crystal templating37. These materials are used as catalyst supports38, 

capacitors39 and for hydrogen storage40,41  

The strength of porous metals makes them ideal for use in aggressive environments 

and at high temperatures and pressures. They have been used in aerospace technology, 

atomic energy, electrochemistry, machinery and in buildings, with applications as noise 

reducers, impact energy absorbers, electromagnetic wave shields and heat exchangers.42 

Examples of metals found in porous powder form are iron, aluminum, brass, bronze, 
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copper, lead, silver and nickel. They are produced by mechanical, chemical or 

electrochemical methods.43

Other porous materials are single inorganic oxides such as silica, alumina, titania, 

ceria and mixed oxides (e.g., titania silica, barium titanate, indium tin-oxide and lithium 

nickel manganate). Porous oxides are synthesized by the sol gel technique, co-

precipitation, and flame hydrolysis. Zeolites can also be considered as a mixed oxide 

since they are composed of alumina (Al2O3) and silica (SiO2). However, they are 

crystalline aluminosilicates with a cage structure. There are 40 naturally occurring forms 

and 150 synthesized types of zeolites.44 Zeolites are generally synthesized by sol gel 

technique in basic medium.45 They are mainly microporous with pores sizes less than 2 

nm. Some of the uses of porous oxides including zeolites are adsorbents, catalysts, 

catalyst supports, moisture control agents and in building materials.  When a structure 

directing agent (e.g. surfactant) is incorporated during synthesis of the oxides, materials 

with ordered pore structure can be obtained at the appropriate synthesis condition. During 

synthesis the inorganic oxide condenses around the self-assembled structure of the 

structure directing agent (template). After removal of the template the pores of the 

inorganic oxide take the shape of the structure directing agent, as described below.  

2.3 Surfactant Templated Mesoporous Silica 

2.3.1 Surfactants 

Surfactants are surface active agents that, at low concentrations, alter (usually 

reduce) the surface or interfacial energies when adsorbed unto a surface or interface.46 

They have an amphipathic structure with a lyophilic (hydrophilic) head group and a 

lyophobic (hydrophobic) tail. Surfactants are classified as anionic (negatively charged 
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head group), non-ionic (no charge on the head group), zwitterionic (both positive and 

negative charges on the head group) and cationic (positively charged head group).47 In 

solution the surfactants tend to aggregate at the surface or into micelles, if the 

concentration of the surfactant is above the critical micelle concentration (CMC), so as to 

minimize unfavorable interactions with the bulk solvent. The formation of micelles is 

governed by molecular interactions (e.g. van der Waals forces, hydrogen bonding and 

electrostatic forces) and hydrophobic interactions.48 The major aggregates formed are 

spherical (normal or inverted) micelles, cylindrical (rodlike) micelles or lamellar (bi-

layer) structures, based on the concentration and shape of surfactant. Vesicles, which are 

spherical structures made up of bi-layer lamellar structures, can also form in solution22. 

The micellar shape can be interpreted by the space occupied by the hydrophobic and 

hydrophilic portions of the surfactant based on the packing parameter, vH/lcao (Table 2.1), 

where vH is the volume occupied by hydrophobic tail, lc is the length of hydrophobic tail 

in the micellar core, and ao is the cross-sectional area of the hydrophilic head group.46,49  

A surfactant packing parameter of 1 (surfactant molecule of cylindrical shape)  is 

associated with a surfactant aggregate (Table 2.1) of zero curvature, in which lamellar 

phases are preferred. If the surfactant parameter is less than 1 (conical shaped surfactant 

molecule), spherical or cylindrical micelle shapes are preferred by the surfactant 

aggregate. For surfactant parameter greater than 1 (surfactant molecule of reversed 

conical shape), the surfactant aggregates prefer negative curvature spherical structures.46 

Factors that affect the effective surfactant parameter include solubilization of 

hydrocarbon chain in the core of the micelles, which increases vH.  ao also varies with 

electrolyte content, temperature, pH and the presence of additives. Additives such as 
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medium chain alcohols, which are solubilized in the head group region of the aggregate, 

increase the value of ao.
45 

 An increase in surfactant concentration above the CMC causes the individual 

micellar structures to pack together into different geometric structures called liquid 

crystal phases. Liquid crystals possess molecules arranged in solid crystal form but have 

the fluid movement of a liquid. Spherical micelles pack into cubic crystal phase however, 

cubic crystal phases are also formed from bi-continous structures (Figure 2.1).46 

Cylindrical micelles pack into hexagonal crystal phase and lamellar structures into 

lamellar crystal phase (Figure 2.1).46 A phase diagram representing the various micellar 

phases and the conditions appropriate for their formation is shown in Figure 2.2. For most 

fluorinated surfactants, the cubic phase region in the phase diagram is replaced by 

intermediate mesh lyotropic mesophases (e.g. random mesh and rhombohedral mesh 

phases).50

Table 2.1 Packing parameter, shape of surfactant (adapted from Finnema49) and structure 
of micelles46 

  

Inverse (reversed) micelles in 
nonpolar media  > 1 

Lamellar in aqueous media  ½ - 1 
Cylindrical in aqueous media 1/3 – ½ 
Spherical in aqueous media  0 -1/3 

Structure of Micelle Shape of Surfactant 
Molecule

Value of vH/lcao

 

Increase in the chain length of the hydrophobic tail group reduces the solubility of 

the surfactant in aqueous solution, giving the surfactants a higher tendency for 
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aggregation and allowing the formation of closer packed aggregates. The melting point of 

the surfactant also increases with an increase in hydrophobic chain length.  Introducing 

branching in the surfactant hydrophobic tail causes a decrease in the solubility of the 

branched tail surfactant, resulting in more loosely packed, thermally unstable 

aggregates.45

A B C 
 

Figure 2.1 Liquid crystal phases A) hexagonal, B) lamellar and C) bicontinuous cubic 

(adapted from Rosen 46) 
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Figure 2.2 Schematic phase diagram of hydrocarbon surfactant – aqueous solution 
mixtures showing location of hexagonal (H1), normal bicontinuous cubic (V1), and 
lamellar (Lα) liquid phases, aqueous nonmicellar solution (W), micellar solution (L1), 
liquid surfactant containing water (L2), and solid surfactant (S) (adapted from Rosen46). 

 

Substitution of fluorine (which is highly electronegative) for the smaller hydrogen 

atom in the surfactant hydrophobic group greatly affects the properties of the surfactant. 

There is increase in the volume of the surfactant chain due to the larger area occupied by 

the –CF2– group (the cross-sectional area of a fluorinated surfactant tail is ∼31.5 Å2 

compared to ∼21.4 Å2 for a hydrocarbon surfactant tail51), which contributes to the 

stiffness of the resulting fluorocarbon chain. The fluorocarbon chains possess less 

conformational freedom and weaker van der Waals interactions than hydrocarbon chains, 

contributing to the differences in the phase behavior of fluorocarbon and hydrocarbon 

surfactants.52,53 Although fluorinated surfactants aggregate in aqueous solution to form 

the same major assembled phases (L1, H1, Lα) as observed in hydrocarbon-water 

solutions, they are more likely to form unusual intermediate phases between the 

hexagonal and lamellar phase rather than the cubic phase formed by hydrocarbon 

surfactants.54 This is because fluorinated surfactants form aggregates with lower 

interfacial curvature when compared to hydrocarbon surfactants due to the stiffer 

backbone of the fluorinated chain.51  

The increased hydrophobicity of fluorinated surfactants cause them to aggregate 

at lower surfactant concentrations, as evidenced by their enhanced ability to lower 

surface tension and their lower critical micelle concentration relative to their hydrocarbon 

counterparts. In comparison to hydrocarbon surfactants, fluorinated surfactants require 

low concentrations of salt to cause phase change (elongation) from spherical to 
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cylindrical micelles.53 When surfactant concentration is increased, fluorinated surfactant 

micelles are elongated much earlier than hydrocarbon surfactants.30 Fluorinated 

surfactants are also lyophobic. In addition to their ease of self-assembly, fluorinated 

surfactants also possess greater thermal stability than their hydrocarbon analogues.46,51 

They are also highly soluble in low surface tension fluids like supercritical carbon 

dioxide and fluorinated solvents. These properties of fluorinated surfactants are due to 

their strong intra-molecular bonds and weak intermolecular interactions.56

Model Hydrocarbon Surfactants:  Alkyltrimethylammonium Bromide Surfactants   

CTAB, a common cationic surfactant, is a member of the series of 

alkyltrimethylammonium bromide (CH3–(CH2)n-1–N(CH3)3Br, CnTAB) surfactants, 

where n could be 6, 8, 10, 12, 14, 16 or 18. These surfactants have been studied in 

aqueous medium and observed to form aggregates (or micelles) with spherical, 

cylindrical, cubic and lamellae structures.57 The critical micelle concentration (CMC) of 

alkyltrimethylammonium bromide surfactants decreases with increases in the alkyl chain 

length due to increased hydrophobicity of the surfactants (Table 2).58 A change in the 

headgroup from a trimethylammonium to a pyridinium also affects the CMC.  For the 

same alkyl chain of n = 16, the trimethylammonium surfactant has a CMC of 0.98 

mmol/kg but the pyridinium surfactant’s CMC is 0.78 mmol/kg at the same system 

temperature (20°C).57 This difference in CMCs indicates a decrease due to the bulky 

pyridinium headgroup. Counterions also affect the CMC of this series of surfactants, as 

summarized in Table 2.2. A counterion that is able to move closer to the headgroup 

region and bind strongly can lead to a decrease in headgroup repulsion. A decrease in 

surfactant CMC occurs due to reduction in headgroup repulsion. For cationic surfactants 
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I- has the highest binding strength followed by Br- and then Cl-.59 As such, the surfactants 

that have a Cl- counter-ion aggregate at a higher concentration than those with Br- 

counter-ion.  

 

Table 2.2 Critical Micelle Concentration (CMC) of Surfactants 

Surfactant Critical Micelle Concentration (CMC),  mM 

Hydrophobic Chain Length n=6 n=8 n=10 n=11 n=12 n=13 n=14 n=15 n=16

CnH2n+1-N-(CH3)3Br     15.1a  3.90a  0.98a

CnH2n+1-N-(CH3)3Cl     21.0d  5.60d  1.25a

CnH2n+1-C5H5NBr    18.6b 11.7a 4.6b 2.7b 1.3b 0.78a

CnH2n+1-C5H5NCl     15.5c  4.0c  0.88a

CnF2n+1C2H4-C5H5NCl 16.2c 2.6c 0.33c       

 
a Mata et al59 (20 °C); b Lah et al60 (25 °C); c Wang et al62 (25 °C); d A. Rodríguez et al61 (25 °C) 
 

Model fluorinated surfactant series:  Perfluoro-alkylpyridinium chloride salts 

 Perfluorinated alkylpyridinium chloride salts (CnF2n+1C2H4-C5H5NCl, also 

cationic surfactants) have a partially fluorinated tail and a pyridinium headgroup. Similar 

to alkyltrimethylammonium bromide and alkylpyridinium bromide, the perfluoro-

alkylpyridinium bromide surfactants have CMC’s that decrease with increase in 

hydrophobic tail length.62 The actual CMC values are much lower than those of the 

hydrocarbon surfactants with same carbon chain length (Table 2.2) and headgroup. The 

CMC of n = 6 perfluoro-alkylpyridinium chloride surfactant is almost the same as that of 

n = 12 alkylpyridinium chloride. Pyridinium compounds have lower CMCs because the 

planar pyridinium headgroups can be packed more easily than trimethylammonium 

  13



headgroups.46 The perfluoro-alkylpyridinium chloride surfactants have been observed to 

form L1, isotropic micellar phase; H1, hexagonal phase; R, centered rectangular phase and 

T, centered trigonal phase (rhombohedral) and random mesh phase.51

Mixed hydrocarbon and fluorocarbon surfactant systems 

 Hydrocarbon and fluorocarbon surfactant mixtures have been extensively 

studied.52,63-67 Based on relative surfactant tail length, concentration, system temperature 

and addition of salts the surfactant mixture can phase separate into two different types of 

micellar phases or form a single micellar phase with de-mixed fluorocarbon-rich and 

hydrocarbon-rich regions. Complete mixing of the surfactants to form single phase 

micelles is also possible.65,66   

 Almgren et al65,67 studied the mixing of perfluorodecylpyridinium chloride 

(HFDePC) and cetyltrimethylammonium chloride (CTAC). Demixed hydrocarbon rich 

and fluorocarbon rich micelles were observed to co-exist in solution. An increase in 

temperature favored mixing of the surfactants.  Above a critical demixing temperature of 

42°C, only mixed micelles formed.  Asakawa et al66 also investigated the micellar 

behavior of mixtures of lithium perfluorononanoate (C8F17COOLi, LiPFN) with lithium 

dodecyl sulfate (C12H25SO4Li, LiDS), lithium perfluoro-1-octanesulfonate (C8F17SO3Li, 

Li-FOS) with lithium dodecyl sulfate (C12H25SO4Li, LiDS) and lithium 

perfluorononanoate (C8F17COOLi, LiPFN) with lithium tetradecyl sulfate (C14H29SO4Li, 

LiTS). They also observed that for concentrations where two segregated hydrocarbon and 

fluorocarbon micellar phases were initially present, an increase in system temperature 

increased surfactant miscibility. This led to the formation of a single type of mixed 
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micelles. However, addition of salt (LiCl) increased micellar size and resulted in phase 

segregation within the micelle (Figure 2.3).66  

 The aggregation behavior of the hydrocarbon functionalized precursor and the 

fluorocarbon surfactant and that of the fluorocarbon functionalized precursor and the 

hydrocarbon surfactant discussed in chapters 4 and 5 is comparable to mixed 

hydrocarbon/fluorocarbon surfactants.   

 

FC-rich micelle 

HC-rich micelle 

Increase in 
temperature 

Addition of 
sufficient salt 

Mixed micelle 

Mixed elongated micelle with  
FC-rich and HC-rich regions 

 

Figure 2.3 Co-existence of two kinds of mixed micelles observed by Asakawa et al66; 
FC-fluorocarbon, HC-hydrocarbon.  
 

Effect of alkane addition to cationic surfactant solutions 

 Hydrophobic molecules are solubilized into the hydrophobic portion of surfactant 

aggregates when added to aqueous surfactant solutions. This causes a shift in the balance 

of intermolecular forces, which affects the micellar shape and aggregation number.68 

Tornblom and Henrikson68 investigated the solubilization of different alkanes (n-hexane, 

  15



n-octane, n-decane, n-dodecane and their cyclic versions) in 0.37 mol/kg 

cetyltrimethylammonium bromide (CTAB) solution. They observed an initial elongation 

of the cylindrical micelles due to mixing of the alkane with the surfactant hydrophobic 

tail until a saturation point. Above the saturation point the alkane dissolve in the core of 

the micelle. At a certain concentration above the saturation point (transition 

concentration) a transition from initial cylindrical (rod) shaped micelle to spherical 

structure with increase in micellar radius was observed. Hoffmann and Ulbricht69 also 

examined the solubilization of n-hexane, n-octane, n-decane, n-dodecane and n-

tetradecane in cationic surfactants [tetradecyltrimethylammonium bromide (TTAB) and 

cetyltrimethylammonium bromide (CTAB)] and demonstrated a transition from rodlike 

micelles to spherical micelles with increase in alkane concentration in the core of the 

micelles. The saturation and transition concentrations of the alkanes observed by 

Tornblom and Henrikson68, similar to the investigation by Hoffmann and Ulbricht69, 

decreased with increasing alkane chain length. The amount of alkane required 

(concentration) for transition from elongated (rod-like) to gluobular (spherical) micelles 

also decreased with increase in temperature.  

 Effect of alcohol addition to cationic surfactant solutions 

Investigations on alcohol (CnOH) addition to cationic surfactants (CnTAB) 

suggest that the chain length of the alcohol dictates its role in surfactant micellation.70,71 

Karukstis et al70 observed that during aggregation the alcohol acts as a co-solvent, co-

aggregate or co-surfactant to the surfactant depending on the relative chain length of the 

alcohol and surfactant. For C16TAB, methanol (C1OH) and ethanol (C2OH) act as 

cosolvents due to their high water solubility and shorter chain. They are not able to 
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penetrate the surfactant micelle but slightly modify the solvent environment around the 

micelle.  This leads to an increase in critical micelle concentration and a decrease in 

surfactant aggregation number.72 However, alcohols from propanol to decanol are able to 

solubilize in the palisade region of the C16TAB and act as co-aggregates. Their presence 

in the palisade region reduces the headgroup surface charge, resulting in closer packing 

of the surfactants. Alcohols of the same chain length or slightly larger than the surfactant 

hydrophobic tail act as a co-surfactant by replacing a surfactant molecule or inserting 

between two surfactant molecules in an aggregate. For example, C8OH and C10OH 

alcohols act as co-surfactants for C12TAB.  When alcohol acts as a co-surfactant, the 

Coloumbic repulsive forces of the micellar molecules decrease, while the hydrophobic 

forces between the surfactant aggregate molecules increase. This leads to much closer 

packing of the surfactants in the micelle.70  

The incorporation of the functional groups discussed in chapters 3, 4, 5 and 6 can 

be related to alcohol aggregation with surfactants.  

2.3.2 Mesoporous Silica Templating Mechanism 

Ordered mesoporous silica was first discovered by researchers in Mobil Oil Co. in 

the 1990’s5 by utilizing the surfactant templating mechanism. The surfactant aggregates 

(micelles) serve as a structure directing agent during the silica synthesis (Figure 2.4).  

Initially the silica precursor was thought to condense and polymerize around 

already formed surfactant liquid crystals (LC). However, since the concentration of 

surfactant used during synthesis is usually lower than the critical micelle concentration 

(CMC) for liquid crystal (LC) phase formation, recent investigations have suggested that 

the templating mechanism is influenced by numerous factors that drive electrostatic 
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assembly through non-covalent bonding (ionic bonds, van der Waals forces, hydrogen 

bond and dipole-dipole bonds).73-75 The factors include the type of precursor used, type of 

surfactant (cationic, anionic, or non-ionic), relative concentrations of the surfactant to the 

inorganic species (e.g. Si), the pH of the synthesis medium (acidic or basic) and 

temperature.76,77  

 

+
Precursor 
[e.g. Si(O-C2H5)4] 

Surfactant 
in solution  

Self assembly 
Surfactant 
Extraction 

Cylindrical micelle 

Hexagonal phase 

Condensation of silica 
around micelles 

Simultaneous formation  

Figure 2.4 Mechanism of mesoporous silica formation, adapted from Beck et al, 19925. 

 

A number of pathways have been proposed for the templating mechanism: (1) Direct co-

condensation of anionic inorganic species (I-) with a cationic surfactant (S+) to give 

assembled ion pairs (S+I-); (2) Use of an anionic surfactant (S-) to direct the cationic 

inorganic species (I+) to self-assemble through ion pairs (S-I+) Pathways 3 and 4 follow 

the mediation of a counter ion in the assembly of a surfactant and inorganic species of the 

same charge: (3) The mediation of self assembly of positive surfactant and inorganic 
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species by a negative counter ion, X-, where S+X-I+ (where X=Cl- or Br-, for example); 

(4) The mediation of self assembly of negative surfactant and inorganic species by a 

positive counter ion, X+; S-X+I- (where X=Na+ or K+, for example); (5) A neutral (SoIo) 

path is believed to occur between a neutral primary amine surfactant (So) and the silica 

species through hydrogen bonding interaction.76     

2.3.3 Silica Polymerization Steps 

The polymerization of silica from the precursor solution proceeds via two reaction 

steps catalyzed by an acid or base, necessary due to the low hydrolysis rate of the 

precursors. A schematic of the reaction sequence is shown below, where R is an alkyl 

group (e.g. methyl, ethyl…). Silicon alkoxide precursors undergo hydrolysis, in which 

the alkoxide groups (OR) are replaced by hydroxyl groups (OH) (Step 1). The resulting 

silanol groups further undergo condensation, where water or alcohol is released from the 

formation of siloxane bonds (Si-O-Si) (steps 2a and 2b) to form a gel (acid catalyzed) or 

powder particles (base catalyzed).78 Formation of long polymers to produce a gel occurs 

when synthesis occurs in a low water content medium under acid catalysis (which 

increases hydrolysis rate). However, under basic conditions with high water content, 

three dimensional polymer particles form. The particles gel by agglomeration.79

Complete hydrolysis is usually not obtained before condensation starts. Ethanol is 

sometimes added to the synthesis medium to obtain a homogeneous solution; silicon 

alkoxides are not soluble in water but soluble in ethanol.  On the other hand, the presence 

of alcohol can favor the reverse reactions, esterification to the original precursor or 

hydrolyzed precursor.78
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Schematic of reactions taking place during silica formation 
 
 1. Hydrolysis 
 
  ≡ Si(OR) + H2O                          ≡Si(OH) + R-OH                                                                   

2a. Alcohol Condensation  
   ≡Si(OH) + ≡Si(OR)                          ≡Si-O-Si≡ + R-OH                                                                  
 
2b. Water Condensation    
  
   ≡Si(OH) + ≡Si(OH)                          ≡Si-O-Si≡ + H2O                                                                    
 

2.3.4 M41S Family of Materials and Others 

The surfactant templating mechanism was employed by researchers in Mobil to 

synthesize porous silica, labeled as the M41S family of materials (hexagonal phase 

MCM-41; cubic phase MCM-48; and lamellar phase MCM-50). These materials possess 

very high surface areas (~700m2/g) and pore-volumes with tunable pore sizes (between 

2.7 - 6.7 nm from single chain alkylammonium hydrocarbon surfactant of length 10 to 22 

carbons80), and narrow pore size distributions.5 The materials were synthesized using 

cationic surfactants of the alkyl-trimethylammonium bromide series and under basic 

conditions. The three phases (hexagonal, cubic and lamella) were obtained from different 

reagent ratios by hydrothermal synthesis at 100 °C.81

Since the synthesis of the first MCM-41 by the researchers in Mobil, various 

investigators have used different recipes and synthesis conditions to synthesize 2-D 

hexagonal meoporous silica. For example, Kumar et al employed room temperature 

synthesis conditions.82 Other families of mesoporous silica materials, representing a 

broad range of templates, templating mechanisms, and pore structures, have been 
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synthesized, from less ordered HMS and KIT to ordered SBA, MSU-V,and  FSM-16 

(described below).  

Pinnavaia and Tanev83 synthesized hexagonal pore ordered mesoporous silica 

(HMS) utilizing the neutral, SoIo, synthesis route. Primary amines of carbon chain length 

from C8 to C18 were used as the structure directing agents. The materials were found to 

be less ordered when compared to MCM-41. Disordered but hydrothermally more stable 

KIT-1 was synthesized from sodium silicate, HTAC1 (surfactant), and 

ethylenediaminetetraacetic acid tetrasodium salt (EDTANa4) by Ryoo et al.84

Non-ionic surfactants like ethylene oxide and block co-polymer templates, (e.g., 

Pluronic P123 (EO20-PO70-EO20)) have been used as templates for mesoporous silica of 

both hexagonal and cubic structures.85,86 Zhao et al85 used ethylene oxide and 

polyalkylene oxide block-copolymers to synthesize mesoporous silica materials under 

strong acidic conditions. The templating route is suggested to follow hydrogen and 

counter ion mediating assembly (S0H+)(X-I+). These materials, labeled SBA, show a 

range of structures for both nonionic surfactant and block co-polymer templates. Well 

ordered structures (i.e., cubic, hexagonal and lamellar structures) were observed and 

dependent on template and synthesis conditions. The alkyl-ethylene oxide surfactant 

favored the formation of cubic structures and the tri-block-co-polymer favored hexagonal 

pore structures.85 KIT-6, a cubic pore structured mesoporous silica, was synthesized 

using mixtures of triblock copolymer Pluronic P123 and butanol (cosolute) as 

templates.86 Synthesis was performed in acidic condition with tetraethoxysilane or 

sodium silicate as the silica source. 
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MSU-V, characterized by a porous lamellar structure with vesicle-like particle 

morphology, was synthesized using neutral diamine bolaamphiphiles, which act as both a 

structure directing agent and a nanoreactor.87,88 The diamine bolaamphiphile was a 

significant factor in the direction and extent of growth of the silica framework and final 

morphology of the particles. Depending on the alkyl chain length of the diamine group, 

particles with either micropores or mesopores were obtained.  

In most examples of synthesis of mesoporous, silica alkoxysilanes are employed 

as the silica precursor. However, hexagonal ordered pore structured silica was 

synthesized from layered polysilicate kanemite labeled FSM-16.89 The pore structure is 

due to the ion exchange of the interlayered Na+ ions for alkyltrimethylammonium ions. 

 The synthesis of microporous materials (pore diameter < 2 nm) is limited in single 

chain hydrophobic surfactants, in which carbon chain lengths greater than 10 are 

generally required to make silica with stable ordered pores. These templates produce 

silica with pore sizes larger than 2 nm using general synthesis approaches. Some of the 

techniques used to make microporous materials are the use of short double tail dialkyl-

diammonium surfactants and solvent evaporation method,90 whereby reduction in solvent 

concentration cause liquid crystal formation of the surfactant template. 

2.3.5 Fluorinated Surfactant Templating  

Since the discovery of the M41S materials, the structure directing agents used for 

mesoporous silica synthesis have been almost exclusively hydrocarbons with hydrophilic 

head groups. Well-ordered materials with pore sizes in the mesoporous range have been 

obtained using these templates. The potential exists that fluorinated surfactants of shorter, 

single hydrophobic tails (8 carbons or less) can be used to produce materials with pore 
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sizes that can bridge the pore size range between zeolites (pore sizes less than 1.3 nm) 

and those of MCM-41 type materials (greater than 2.7 nm obtained from single chain  

hydrocarbon based templates).91  

 
 
Table 2.3 Comparison of texture properties of nanoporous silica particles obtained by 
perfluoro-alkylpyridinium chloride surfactants templating10,12- 15  
 

Surfactant Synthesis 
medium* 

Particle 
Mor-

phology 

Pore 
Structure 

Pore 
Size, 
nm 

Total 
Surface 
Area, 
m2/g 

C2F5C2H4-NC5H5·Cl Aqueous irregular wormlike 1.60 819 
C4F9C2H4-NC5H5·Cl Aqueous irregular wormlike 2.19 884 
C4F9C2H4-NC5H5·Cl Homogeneous spherical wormlike 2.19 577 
C6F13C2H4-NC5H5·Cl Aqueous irregular 2D-HCP 2.62 981 
C6F13C2H4-NC5H5·Cl Homogeneous spherical wormlike 2.42 875 
(CF3)2C5F9CH2CH2-
NC5H5·Cl 

Aqueous spherical wormlike 2.76 943 

(CF3)2C5F9CH2CH2-
NC5H5·Cl 

Homogeneous spherical wormlike 2.56 897 

C8F17C2H4-NC5H5·Cl Aqueous elongated mesh 
phase 

1.95 851 

C8F17C2H4-NC5H5·Cl Homogeneous spherical radial  
2D-HCP 

2.72 977 

(CF3)2C7F13CH2CH2-
NC5H5·Cl 

Aqueous Round/ 
flat sheet 

disordered 3.34 590 

(CF3)2C7F13CH2CH2-
NC5H5·Cl 

Homogeneous Spherical/ 
irregular 

disordered  321 

C10F21C2H4-NC5H5·Cl Aqueous Crumpled 
sheet 

disordered 2.89 512 

C10F21C2H4-NC5H5·Cl Homogeneous spherical/ 
irregular 

disordered 
lamellar 

3.32 216 

*Homogenous synthesis media refers to ethanol/water synthesis media 

 

Cationic fluorinated surfactant templates (perfluoroalkylpyridinium chloride, 

CnF2n+1C2H4-NC5H5·Cl) for synthesis of porous silica materials have been investigated in 

collaboration between the laboratories of Drs. Rankin, Lehmler, and Knutson.10,12-15 A 
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series of the straight chain surfactant with n = 2, 4, 6, 8 and 10 and some branched 

surfactants (CF3)2CnF2n-1CH2CH2-NC5H5·Cl (where n = 5 and 7) were demonstrated for 

the synthesis of nanoporous silica with a range of morphologies. Table 2.3 gives details 

of the surfactant used, synthesis medium, particle morphology, pore structure and size 

and total surface area of materials obtained.  

The much shorter perfluorinated surfactant, pentafluoro-1,1,2,2-tetrahydro-butyl 

(C2F5C2H4-NC5H5·Cl), was used under basic conditions employing three different 

surfactant to Si ratios.15 An increase in surfactant/Si ratio promoted gelation during the 

synthesis. Low surfactant/Si ratios (0.16 and 0.62) resulted in unusually large pore sizes 

(11.1 nm and 17.8 nm, respectively), with no observable order.  At a higher surfactant/Si 

ratio of 1.39, wormlike pore structure with a silica pore size of 1.6 nm was obtained. 

Generally, an increase in hydrophobic tail length leads to increase in silica pore size. The 

smaller pore size of 1.6 nm for C2F5C2H4-NC5H5·Cl template silica follows the trend 

observed for the straight chain perfluoroalkylpyridinium chloride surfactants (Table 2.3). 

Homogenous ethanol/water solutions were sometimes employed as synthesis media for 

nanoporous silica templated by cationic fluorinated surfactants.  Materials made in 

homogeneous solutions with the perfluoroalkylpyridinium chloride surfactants had 

spherical morphology13, as observed previously for traditional hydrocarbon surfactant 

templated materials synthesized from homogenous solutions.92-96

Stebe and colleagues11 have investigated the phase properties and use of a 

nonionic fluorinated surfactant, F(CF2)8C2H4(OC2H4)9OH, in the preparation of ordered 

porous silica. 2-D hexagonal pore structured silica was synthesized using the nonionic 

fluorinated surfactant at 80 °C. At temperatures lower than 80 °C only wormlike pore 
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structures were observed. An increase in synthesis temperature from 40 °C to 80 °C 

resulted in increased pore sizes of the mesoporous silica. For example, a pore size 

increase from 1.7 nm (40 °C) to 4.6 nm (80 °C) was observed at a 10 wt% surfactant 

concentration.  Surfactant concentration also affected the pore size, which increases with 

increasing surfactant concentration. Fluorinated surfactant templated materials displayed 

better pore organization and possessed larger pores than materials made with 

corresponding hydrocarbon surfactant (C16(EO)10). In a separate investigation by Meng et 

al97, the partially fluorinated surfactant FSO-100 (CF3(CF2)4(EO)10, Dupont) served as a 

template for silica with hexagonal pore structure. Two sets of materials were synthesized, 

one in acidic medium and the other in neutral medium. Increasing the synthesis 

temperature in both synthesis resulted in improved pore ordering and larger pores;   

materials synthesized in acidic medium showed an increase in pore size from 1.6 nm 

(room temperature) to 3.0 nm (100 °C). The materials templated with fluorinated 

surfactants had higher hydrothermal and mechanical stability than MCM-41. 

In addition to surfactant templating approaches using a single surfactant, 

hydrocarbon-fluorocarbon surfactant mixtures have been investigated as templating 

agents. Xiao et al98,99 used a mixture of fluorocarbon surfactant 

(C3F7O(CFCF3CF2O)2CFCF3CONH(CH2)3N+(C2H5)2CH3I-, FC-4) and triblock 

copolymer surfactant (EO20PO70EO20, Pluronic P123) to synthesize 2-D hexagonal pore 

structured mesoporous silica in acidic medium at high temperatures (160 °C – 220 °C). 

The resulting materials had very high hydrothermal stability; the hexagonal pore order 

was maintained with little loss in surface area and pore volume after treatment in boiling 

water for 80 hours. The fluorocarbon and hydrocarbon surfactant mixture is believed to 
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form mixed micelles instead of separate micellar phases. Cubic pore structured materials 

have also been synthesized by Xiao et al99 and Han and Ying100 when a mixture of the 

fluorocarbon surfactant FC-4 and triblock co-polymer F127 (EO106PO70EO106) was used 

as templates in acidic medium. The synthesis conditions used by Han and Ying100 

resulted in very fine particles (particle size between 50 nm to 300 nm).  It was suggested 

that the particle size growth is controlled by the presence of the fluorocarbon surfactant, 

which aggregates around the formed silica particle templated by the hydrocarbon 

copolymer. The proposed assembly mechanism was by the S+X-I+ interaction. 

 

2.3.6 Ordered Organic-Inorganic Mesoporous Silica 

       Tailoring the surface of the mesoporous silica materials has a broad range of 

applications. Functional groups (i.e., metals (e.g. Au, Ce, Fe),18,101-103 organic compounds 

(e.g. vinyl, 3-aminopropyl, phenyl, thiol)104-108 and biomolecules (e.g. cyclodextrin, 

peptides, drugs)109-112 have been incorporated into ordered porous silica for applications 

ranging from heavy metals (Pd, Hg, Cr(IV), Cu) removal113-116 to drug delivery117-121. For 

example, gold incorporated mesoporous silica was used as a catalyst for CO oxidation.18 

Hampsey et al122 also employed palladium functionalized mesoporous silica for the 

hydrodechlorination of 1,2-dichloroethane with complete conversion. Silica materials 

incorporated with an organic functionality (e.g., amines) have been utilized for a range of 

applications, including the removal of metals, such as Cu123 from aqueous solution, and 

as solid adsorbents for CO2 capture.124 Amine functionalized materials have also been 

applied as catalysts for reactions, such as the Knoevenagel reaction.125 Organic 

functionalized mesoporous silica (e.g. C18 modified mesoporous silica) has been applied 
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as chromatographic packing in the separation of aromatic hydrocarbons and proteins.126 

The well ordered pore structure of mesoporous silica materials also provide an effective 

matrix for incorporating drug molecules since the rate of release of the drug can be better 

estimated. Drugs such as atenolol110 and ibuprofen111 have been incorporated into 

mesoporous silica.  Other bio-molecules, such as enzymes (thermolysin and lysozyme)127 

and proteins (RNase A128), have been immobilized on the surface of the nanoporous silica 

and their activity after incorporation analyzed.  

Several methods can be used to create organic-inorganic hybrid materials through 

the incorporation of organic functional group in porous silica material.  These methods 

include post synthesis grafting techniques,129,130 which may consist of (i) adsorbing of the 

organic species into the pores of the porous silica, and (ii) covalent bond attachment of 

the functional group to the silica support. Alternative incorporation methods are the ship-

in-bottle technique (piece-by-piece construction of the organic material within the pores 

of the silica)21, the ‘one-pot’ synthesis technique, which involves the direct co-

condensation of the precursor and functionalized precursor.21,132-134

 The reaction pathway for the direct synthesis of organic functionalized silica is 

identical to the reaction pathway for silica synthesis. An alkoxy group in the silica 

precursor is replaced with the desired functional group (i.e., organic groups such as vinyl 

(vinyltriethoxysilane), aminopropyl (3-aminopropyltriethoxysilane) and mercaptopropyl 

(3-mercaptotriethoxysilane)), where the functional group is linked to the silicon of a 

silane molecule. The functional group can also be attached by being bridged between two 

silane molecules (e.g., ethylene bridged (1,2-bis (triethoxy silyl) ethane)135 and phenylene 

bridged (1,4-bis(triethoxysilyl)benzene).136  In contrast to post-synthesis grafting, the 
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direct synthesis method results in high functional group loading. However, less ordered 

pore structure in the materials is obtained as the functional group loading increases.22,23 A 

decrease in pore size from mesopores to micropores has also been observed23 as the 

loading of functional group increases. The decrease in pore size is due to the aggregation 

behavior of the functional group with the surfactants. As discussed in section 2.3.1 

incorporation of alcohols of all chain lengths lead to a decrease in micellar size (pore 

size). The decrease in pore size is also attributed to the presence of the functional group 

within pore wall after surfactant extraction. 

 In silica synthesis by direct co-condensation, the availability of the functional 

groups is dependent on the interaction between surfactant template and the functional 

group. A functional group that is favorably incorporated in the surfactant micelle during 

assembly and synthesis would be easily accessible in the resulting pores.24 Unfavorable 

interactions would cause the functional group to become part of the silica matrix and 

inaccessible, or may cause the ordered framework to collapse upon removal of 

template.24   

2.4 Material Characterization Techniques 

The following characterization techniques provide information on the effects of the 

synthesis process on the mesostructure and surface and bulk properties of the silica.  

2.4.1 Fourier Transform Infra-red Spectroscopy (FTIR) 

The photon energy of infrared rays (wavelength range of 2500 to 16000 nm) are 

just strong enough to cause vibrational excitation of molecules with covalent bonds. The 

vibrational motions exhibited by molecules are characteristic of their atomic makeup and 

bonding structure. When an infrared radiation is passed through a sample it absorbs some 
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of the radiation, which leads to vibration of the atoms in the sample. The frequencies of 

vibration of the various atoms of the sample are observed as peaks in absorption spectra.  

The energy difference between the vibrational energy states of an atom is equal to the 

absorbed energy (ΔE). This is given by137: 

 
λ

ν hchEEE vibvib ==−=Δ 21                                                                             (2.1) 

where h is Plank’s constant, λ is the wavelength and c speed of light. 

The possible vibrational modes of atoms are stretching (symmetric and 

asymmetric) and bending (scissoring, rocking, wagging, and twisting).  Rotational 

energies of the atoms are accounted for in the IR spectrum. The rotational energy can be 

added to (rotation speeds up) or subtracted from (rotation slows down) the vibrational 

energy. Fourier Transform Infra-red Spectroscopy (FTIR), relative to infra-red 

spectroscopy, shows improved quality of the infrared spectra and reduction in the time 

required to obtain a spectrum.138 FTIR instruments use an interferometer to obtain an 

interferogram (i.e. interference pattern obtained from reflected beams), which is then 

passed through the sample; information at every wavelength is read by the detector 

during rapid scanning of the interferometer. Early IR instruments are dispersive 

instruments, where a grating or prism is used to separate the wavelengths of light in the 

spectral range after it has passed through the sample. Each wavelength is directed 

individually through a slit to the detector (slow process).139 FTIR is used to obtain 

absorption spectra of a compound which show unique reflections of the molecular 

structure of that compound. This information can be used to identify unknown samples, 

to analyze sample for composition and also to quantify sample components. 
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2.4.2 Thermogravimetric Analysis (TGA) 

During thermal analysis, material samples gain or loose weight due to thermal 

events, such as decomposition, oxidation or reactions taking place at particular 

temperatures. Thermogravimetric analysis (TGA) is the thermal analysis of a sample 

whereby the mass of the sample is measured as a function of temperature and time under 

controlled temperature in a chosen environment (e.g. air, nitrogen).140,141 TGA is used to 

obtain characteristic qualitative (composition) as well as quantitative (amount) 

information of a sample from a thermogram (Figure 2.5). Thermograms show stable 

regions and locations of weight changes which are usually specific to various components 

of the sample undergoing thermal events.  The size of the weight change can be used to 

obtain quantitative analysis of the thermal event such as organic content of a sample.142
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Figure 2.5 Thermogram 
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2.4.3 X-Ray Diffraction (XRD) 

X-ray diffraction occurs when x-rays and electrons of atoms interact. When the x-

rays hit the electrons some are scattered (diffracted).  Depending on the arrangement of 

atoms in a sample, interference of two diffracted rays can be constructive (i.e., their path 

difference equals an integral number of the incident wavelength).143,144 For example, 

Figure 2.6 shows a schematic of atomic planes of a crystal sample.  In this schematic 

example, scattering ray 3 travels a distance AB longer than ray 1 before scattering.  After 

scattering ray 3’ travels a distance BC longer than 1’. The total path difference (δ) 

between rays 1 and 3 is AB + BC. If δ = nλ, where λ is the wavelength, then at the exit 

wave front rays 1 and 3 are in phase, which is described by Bragg’s Law :144

2dhklsinθ = nλ                                                                                                                 (2.2) 

where dhkl is the inter-planer spacing and θ the Bragg angle, which is half the angle 

between incident and diffracted beam. 

•          •          • 
 
•          •          • 
 
•          •          • 
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Figure 2.6 Incident rays on three parallel equidistant planes.144 
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Figure 2.7 X-Ray Diffraction Patterns (Adapted from Heiney146) 
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The degree of crystallinity of a single crystal or powder samples can be deduced 

from X-ray diffraction (XRD) patterns (Figure 2.7). The unit cell, structure, texture and 

size of the crystalline phase and chemical analysis of solid sample can also be obtained 

from XRD patterns.  The widths (area) of the peaks in the XRD patterns determine the 

degree of crystallinity (Figure 2.7). The peaks broaden as the sample becomes more 

amorphous.  

Mesoporous silica materials usually give patterns identical to imperfect crystals 

(Figure 2.7) since the silica itself is amorphous but the pore structure is ordered. Each 

peak in the pattern represents a different plane in the crystal. The patterns can be indexed 

based on combination of Bragg’s law and plane-spacing equations to identify the type of 

pore structure. For example, for cubic structures the resultant equation of the combination 

of Bragg’s law and the plane-spacing equation is: 

( ) 2

22

222

2

4
sinsin

aslkh
λθθ

==
++

                                                                                       (2.3) 

For a particular pattern, 2

2

4a
λ  is a constant and s = h2 + k2 + l2 is always a set of integers. 

The set of integers for a simple cubic structure follows the sequence 

1,2,3,4,5,6,8,9,10,11,12,13,15,16,…… and the sequence 3, 8, 11, 16, …… for diamond 

cubic structures. The combination of Bragg’s law and the plane-spacing equation for 

hexagonal structures is given by:  
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λλ  are constants for any pattern. The integer set for h2+hk + k2 is 1, 3, 4, 7, 9….133 
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The different sets of integers are consistent with the different atomic planes present in 

each structure. Based on the integer sets, each diffraction pattern can be indexed as to the 

type of crystal phase or phases present. 

2.4.4 Transmission Electron Microscopy (TEM) 

 Transmission electron microscope (TEM) is used to greatly magnify specimens 

using a beam of electrons. The resolution of 100-keV electron is on the order of an 

atomic size (~ 0.3 nm) as compared to that of a light microscope (~ 300 nm).147 The light 

microscope can only magnify images about 1000 times but images on an electron 

microscope can be highly magnified to see atomic details in the sample. This is because 

the resolving power (minimum distance between two distinct objects) is directly 

proportional to the wavelength of illumination.148 The wavelength of electrons at 60 kV is 

about 5 ×10-3 nm compared to that of visible light (400 – 800 nm).148 Images in TEM are 

magnified by electromagnetic lenses which control the electrons that pass through the 

sample to generate extremely fine structural detail of the sample.147 Based on the 

thickness of the sample, some of the electrons are scattered. However, at the bottom of 

the microscope column electrons that pass through the electron transparent sections of the 

sample are focused on a viewing screen. A range of signals are detected in transmission 

electron microscopes to obtain images, diffraction patterns, chemical information and 

other kinds of spectra.147  

 TEM analysis of nanoporous silica is used to generate fine structural image and 

diffraction pattern of the pores. The structural image can be used to confirm patterns 

observed in X-ray diffraction and the pore size obtained from nitrogen adsorption 

analysis. 
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2.4.5 Nitrogen Adsorption Analysis 

The physical adsorption (physisorption) of gases on porous solid surfaces is 

useful in the characterization of porous solid materials, among other applications.149 A 

gas (e.g. nitrogen) adsorption isotherm, a plot of relative pressure against volume of gas 

adsorbed, is used to estimate the type of pores in the solid material, the size of the pores, 

the total surface area of the solid material and the pore volume. Adsorption isotherms 

have been classified by IUPAC into six different types, as shown in Figure 2.8.  Type I is 

observed for adsorption in microporous solids, type II isotherm is obtained from 

adsorption in non-porous or macroporous materials with unrestricted monolayer-

multilayer adsorption. Adsorption on non-porous or macroporous materials with weak 

adsorbent-adsorbate interaction is given by type III isotherm. Adsorption in mesoporous 

materials gives type IV isotherms.  A type V isotherm results from adsorption on porous 

materials with weak adsorbent-adsorbate interaction.  Finally, type VI isotherm is due to 

stepwise multilayer adsorption on uniform non-porous surface.150

The Brunauer-Emmett-Teller (BET) isotherm151 (Equation 2.5) is the standard 

method for obtaining the total surface area, Stotal, of the sample (Equation 2.6) from the 

adsorption isotherm. A plot of 1/ν[(Po/P)-1)] against P/Po is a straight line with y-axis 

intercept equal to 1/νm, based on Equation 2.5. νm is used to estimate the total surface 

area (Stotal) from Equation 2.6.    
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where ν is the volume of gas adsorbed, P/Po
 is the relative pressure, νm is the amount of 

gas adsorbed for monolayer formation and c is the BET constant. The BET constant is 

expressed by Equation 2.7. 

( )
   ;

M
Ns

S m
total ρ

ν
=                                                                                                          (2.6)   

where N is Avogadro’s number, s is the adsorption cross sectional area, and M is the 

molecular weight of adsorbate, and ρ is the density of adsorbed gas.  The surface area per 

weight of sample (specific surface area) can be determined by normalizing the total 

surface area by a, the weight of solid sample.  
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EEc L1exp                                                                                                           (2.7) 

where E1 is the heat of adsorption of the first layer of gas and EL is the heat of adsorption 

of the subsequent layers, termed the heat of liquefaction. R is the universal gas constant 

and T is the adsorption temperature. 

The pore volume of the porous material is obtained from the data at relative 

pressure (P/Po) close to 1. For mesoporous materials, the pore size is estimated based on 

Kelvin equation (Equation 2.8).  
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where P/Po is the relative pressure, γ is the surface tension, Vm is the molar volume, R is  

the universal gas constant, T is the adsorption temperature, and r is the the pore radius. 

More recently, the Barrett-Joyner-Halenda (BJH) pore size model,152 which is based on 

the Kelvin equation with a correction for multilayer adsorption, is used in obtaining the 

pore size of mesoporous and some macroporous materials.153 Additional methods used in 
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analyzing adsorption data for pore size and surface area properties are the Kruk-Jaroniec-

Sayari (KJS)154 method, Horvath–Kawazoe (HK) method,155 molecular simulations156 

and adsorption potential method.146 Details of the KJS and adsorption potential methods 

are outlined in Appendix A. 
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Figure 2.8 Types of physisorption isotherms (adapted from Sing et al150) 

 

 

 

 

Copyright © Gifty Osei-Prempeh 2007 

  37



CHAPTER 3 

 

FLUORINATED SURFACTANT TEMPLATING OF VINYL-

FUNCTIONALIZED NANOPOROUS SILICA 

 

This chaper is based on work published as: 

Osei-Prempeh, G.; Lehmler, J.H.; Knutson, B.L.; Rankin, S.E.;. Micropor. Mesopor. 

 

materials are synthesized by the ‘one-pot’ 

ethod using three cationic fluorinated surfactants 

6 13 2 4 5 5 8 17 2 4 5 5 10 21 2 4 5 5

Mater. 2005, 85, 16. Copyright 2005 Elsevier.

 

3.1 SUMMARY 

Ordered nanoporous vinyl-functionalized silica 

(direct) synthesis m

(C F C H NC H Cl, C F C H NC H Cl and C F C H NC H Cl) as templates in basic 

medium under ambient conditions. The materials obtained possess lower degrees of 2D 

hexagonal closed packed ordering of the pores when compared to CTAB templated 

materials. Increases in vinyl content lead to reductions in pore size as well as material 

order. In spite of having smaller pores, bromination experiments suggest that the vinyl 

groups are more accessible in the fluoro-surfactant templated materials. Although 

confinement of the vinyl groups to the palisade region of the fluorinated micelle 

templates may contribute to this increase in accessibility, reduced pore order in the 

fluorinated templated materials may also improve the accessibility, as observed here for 

intentionally disordered CTAB-templated materials.  Cationic fluorocarbon surfactants 

not only have the potential to be templating agents, but also present the possibility of re-
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organizing the alignment of organic functional groups in the pores of organic-inorganic 

hybrids obtained by direct synthesis.   

3.2 INTRODUCTION 

The discovery of ordered mesoporous silica prepared by surfactant templating in 

e investigation of different templating agents (cationic, anionic 

and n

hieved by several methods.  Post-synthesis grafting 

techniq

the 1990’s5 has led to th

on-ionic surfactants, and block-copolymers)158,159 and functional group 

incorporation. Tailoring the surface of mesoporous silica materials has a wide range of 

applications including catalysis, separation and sensing.  Functional groups such as 

metals18,160-162, organic compounds163-166, and biomolecules110,167 have been incorporated 

into these ordered porous silicas for applications ranging from heavy metal 

removal113,115,163 to drug delivery117. 

The incorporation of organic functional groups into porous silica to form organic-

inorganic hybrid materials can be ac

ues involve adsorption of the organic precursor species into the pores of the 

porous silica followed by covalent bond attachment of the functional group to the silica 

support. Alternative incorporation methods are the ship-in-bottle technique (piece-by-

piece construction of the organic material within the pores of the silica)21 and the ‘one-

pot’ synthesis technique, which involves the direct co-condensation of the silica precursor 

and a functionalized precursor.21,22,168,169 In contrast to post-synthesis grafting, the direct 

synthesis method results in a high functional group loading.22 However, a less ordered 

pore structure is usually observed in the materials as the functional group loading 

increases.22,23 Vinyl group incorporation into MCM-41 (2D hexagonal ordered 
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mesoporous silica) templated with cetyltrimethylammonium bromide (CTAB) has been 

investigated as a model system for direct synthesis.22,23  

Conventional surfactants for the synthesis of mesoporous silica are hydrocarbon 

based.7

dvantages of fluorinated surfactants 

over th

9,170  The effect of the template structure has been explored, and well-ordered 

materials with pore sizes in the mesoporous range (2.7 nm and greater) have been 

obtained using these templates.79  Only recently, researchers have begun to also 

investigate the use of fluorinated surfactants for the templating of structured nanoporous 

silica.  Blin and colleagues11 have investigated the use of the nonionic fluorinated 

surfactant F(CF ) C H (OC H ) OH in the preparation of silica with an ordered 2D 

hexagonal pore structure. Our group has demonstrated the base-catalyzed precipitation of 

silica particles, using cationic fluorinated surfactants, 1H,1H,2H,2H-

perfluoroalkylpyridinium chlorides, as templates.

2 8 2 4 2 4 9

10,12,13 2D hexagonal cylindrical 

structures with narrow pore size distributions (2.6 nm pores) were obtained using 

1H,1H,2H,2H-perfluorooctylpyridinium chloride (C F C H NC H Cl) as the templating 

agent.

6 13 2 4 5 5

10 A similar surfactant with two more fluorocarbon units in the tail 

(C F C H NC H Cl) was found to form elongated nanoparticles with mesh-phase slit 

pores oriented normal to the long axis of the particles.

8 17 2 4 5 5

12  An increase in surfactant tail 

length produces an increase in pore size analogous to that observed for hydrocarbon 

templates.  In addition, pore structure changes are also observed from wormhole-like to 

hexagonal close packed cylinders to a mesh phase.  

These studies have confirmed some of the a

eir hydrocarbon analogs for the tailoring of mesoporous silica.  The replacement 

of the hydrogen atoms in the surfactant tail by larger, more electronegative fluorine atoms 
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increases the volume of the surfactant chain due to the larger area occupied by the –CF2– 

group.   The increased hydrophobicity of the fluorinated surfactants results in lower 

surface tensions and critical micelle concentrations53, indicative of their ease of self-

assembly.  These properties allow micelle templating of unusually small pores in 

materials.13 The fluorinated surfactants generally form a broader range of nanoscale 

structures than their hydrocarbon analogues.55,172 These mesophases are more stable, 

better organized and rigid.173

This work extends the use of fluorinated surfactant as pore templates to 

organic

3.3 MATERIALS AND METHODS 

silica materials were synthesized using the three partially 

ally modified ceramic materials formed by ‘one-pot’ synthesis.   The successful 

synthesis of vinyl-functionalized ordered porous silica using fluorinated surfactants 

(C6F13C2H4NC5H5Cl (HFOPC), C8F17C2H4NC5H5Cl (HFDePC) and C10F21C2H4NC5H5Cl 

(HFDoDePC)) as templates is reported. The structure and textural properties of the 

materials are analyzed and compared to those of CTAB templated materials. The ability 

of the lipophobic fluorocarbon templates to alter the accessibility of the vinyl functional 

group is examined by means of a simple bromination reaction.  

3.3.1 Surfactant synthesis   

Vinyl-functionalized porous 

fluorinated surfactant templates and, for comparison, CTAB, a hydrocarbon analogue. 

CTAB was obtained from Sigma with 99% purity. The fluorinated surfactants differ in 

the alkyl chain associated with the fluorine and have the general formula 

CnF2n+1C2H4NC5H5Cl (1H,1H,2H,2H-perfluoroalkylpyridinium chloride).  The 
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surfactants are labeled HFOPC, HFDePC and HFDoDePC for n = 6, 8 and 10, 

respectively. The synthesis procedure of the surfactants is given elsewhere.13,173  

3.3.2 Materials synthesis 

  Tetraethoxysilane (TEOS, 99% purity) was obtained from Fluka Chemika and 

vinyltriethoxysilane (VTES, 97% purity) was purchased from Sigma-Aldrich. Non-

functionalized materials are labeled as their surfactant template. The vinyl-modified 

CTAB template samples were labeled v4-CTAB and v6-CTAB, where the number 

following the “v” in the prefix indicates the TEOS:VTES ratio (4:1  and 6:1, 

respectively).  The synthesis procedure is based on the room-temperature synthesis of 

Kumar et al.82   The work of Stein et al.22 suggested a TEOS:VTES ratio of 4:1 as the 

limit for obtaining ordered materials. A less ordered material v4-CTAB-d was 

synthesized with CTAB:TEOS ratio of 0.12, based on investigations by Bore et al174, 

where a CTAB:TEOS ratio approaching a limit of 0.09 (in a non-functionalized material) 

gives disordered materials. The partially fluorinated surfactant templates were used to 

synthesize v4-HFOPC, v6-HFOPC; v4-HFDePC, v6-HFDePC; v4-HFDoDePC, v6-

HFDoDePC, v4 and v6 have the same meaning as previously stated. The HFDePC and 

HFDoDePC templated materials were synthesized in homogeneous ethanol/water 

synthesis medium to obtain ordered pore structures. 200 proof ethanol (Aaper Alcohol 

and Chemical Company) was used as solvent and de-ionized ultra-filtered water 

(DIUFW) was obtained from Fisher Scientific. The molar ratios of the reactants used in 

the synthesis of all the materials are given in Table 3.1. The molar ratio of vinyl to Si in 

the synthesis solution is 0.20 for v4 samples and 0.14 for v6 samples. 
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The samples were synthesized by first adding the surfactant to DIUFW (or 

DIUFW/ethanol homogeneous solution) and stirring the mixture for 5 minutes. NH4OH 

(catalyst, 28-30% solution from Malinckrodt) was then added with continuous stirring.  

After 10 minutes of stirring, TEOS or a mixture of TEOS and VTES, in the desired 

proportions, was slowly added. The mixture was left to age under stirring at room 

temperature for 24 hours (2 hours for synthesis in homogenous medium to match the 

conditions used previously by Tan et al.13). The mixture was vacuum-filtered after the 

aging period and left to air-dry for 24 hours. An ethanol/HCl solution of 150 ml ethanol 

and 5 g aqueous HCl was used for the extraction of the surfactant, which was 

accomplished by stirring the sample in solution for 24 hours. This extraction process was 

repeated once. Concentrated HCl of 37.3% assay (Fisher Scientific) was used for the 

extraction.  

Table 3.1: Molar ratios of reactants used in material synthesis 

Material DIUFW* Ethanol Surfactant NH4OH TEOS* VTES*

CTAB 149 0.15 5.1 1  
v4-CTAB 186 0.21 6.37 1 0.25
v4-CTAB-d 186 0.12 6.37 1 0.25
v6-CTAB 186 0.21 6.37 1 0.17
HFOPC 149 0.058 5.1 1  
v4-HFOPC 186 0.073 6.37 1 0.25
v6-HFOPC 197 0.077 6.73 1 0.17
HFDePC 137 64 0.28 18.6 1  
v4-HFDePC 137 64 0.28 18.6 1 0.25
v6-HFDePC 137 64 0.28 18.6 1 0.17
HFDoDePC 137 64 0.07 18.6 1  
v4-HFDoDePC 137 64 0.07 18.6 1 0.25
v6-HFDoDePC 137 64 0.07 18.6 1 0.17

   *DIUFW: de-ionized ultra filtered water, TEOS: tetraethoxysilane, VTES: vinyl-triethoxysilane, 
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3.3.3 Materials characterization 

Nitrogen adsorption measurements were carried out using a Micromeritics Tristar 

3000 for the materials determined to be mesoporous, and a Micromeritics ASAP 2010 for 

those samples that were microporous. The materials were degassed at 150°C using 

flowing nitrogen gas for 4 hours before performing the adsorption analysis.  

Fourier Transform Infrared (FTIR) analysis was performed to verify surfactant 

removal and vinyl incorporation.  A small amount (approximately 1 wt%) of the sample 

was pressed with KBr matrix and analyzed using a Thermo Nicolet Nexus 470 FT-IR 

analyzer.  

Powder X-ray diffraction patterns were obtained using Siemens 5000 

diffractometer operating with CuKα radiation of wavelength 1.54098 Å and a graphite 

monochromator.  

Sample TEM images of the materials, after surfactant extraction, were observed 

and recorded with a JEOL 2000FX transmission electron microscope. The TEM samples 

were mounted on lacey carbon TEM grids (Ted Pella Inc) from an acetone suspension.  

Accessibility of the vinyl group was analyzed by means of a bromination reaction 

(≡Si−CH=CH2 + Br2 → ≡Si−CHBr−CH2Br). As the reaction proceeds, the UV 

absorbance at 412 nm is reduced due to the consumption of Br2. Following the method of 

Stein’s group22, 5 mg of material was added to 2.5 ml of bromine solution (bromine in 

dichloromethane). The solution in a 3 ml cuvette had an initial UV absorbance of 1 at the 

wavelength of 412nm. The solution with the sample was shaken and allowed to sit for 15 

to 30 minutes after which it was centrifuged for 15 minutes for the particles to settle, and 

the absorbance of the solution measured. This was done for a period of 4.5 hours, taking 
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absorbance readings about every 45 minutes. Duplicate bromination experiments were 

conducted for each sample.  

 

3.4 RESULTS AND DISCUSSION 

3.4.1 FTIR analysis 

 FTIR analysis confirms the presence of vinyl group in the materials after 

extraction of the surfactant.  Complete surfactant extraction was observed by the 

disappearance of the surfactant peaks at 2854 cm-1 and 2924 cm-1 (for CTAB template 

materials, due to C-H vibrations in the CTAB chain177) and  1493 cm-1 (fluoro-surfactant 

template materials), and a reduction in the peak at 1416 cm-1 for all materials (results not 

shown). The peak at 1493 cm-1 is attributed to the presence of pyridinium moiety in the 

fluorinated surfactants.178 The presence of –CH=CH2 in the vinyl functionalized materials 

contributes to the peak observed at 1416 cm-1, due to the symmetric deformation of the 

=CH2 group.176 This peak was also present in non-functionalized materials prior to 

extraction of either surfactant, but it was observed to have a higher absorbance value in 

the vinyl-functionalized materials. This suggests a contribution from –CH– stretching to 

the peak. This peak disappeared from the non-functionalized samples after extraction, so 

its presence after surfactant extraction in the functionalized materials indicates successful 

incorporation of the vinyl group. 

3.4.2 Powder X-ray diffraction analysis 

The pore order of the materials was investigated by performing powder X-ray 

diffraction (Figure 3.1). Most of the non-functionalized materials display x-ray patterns 

suggesting a 2-D hexagonal structure by the presence of at least three reflecting planes 
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that can be indexed to this structure, (100), (110), and (200). The hexagonal structure 

observed in the XRD reflections is consistent with the observation of Stein’s and Ozin’s 

groups for the incorporation of vinyl into CTAB template silica.22,23 The fluorinated 

surfactant templated materials display a (100) reflection that is broader when compared to 

the CTAB templated materials. The samples not showing evidence of significant long-

range ordering (Figure 1D) are the non-functionalized material (HFDoDePC) and 

functionalized material (v6-HFDoDePC) templated by the longest chain fluorinated 

surfactant.  In addition to broad (100) reflections, the XRD patterns of several of the 

vinyl functionalized materials (v4-HFOPC, v6-HFOPC, v6-HFDePC, v4-HFDoDePC) 

exhibit only faint traces of the (110) and the (200) reflections.  The broad (100) reflection 

and missing higher order reflections show that the fluorinated surfactant templated 

samples have lower degrees of order as compared to the CTAB template materials. This 

could be due to smaller ordered domains in these materials. 

The (100) reflection for all the fluorinated surfactant template materials occurred 

at higher 2-θ values with corresponding smaller d100-spacing, indicating pore sizes which 

are smaller than the CTAB template materials. This is attributed to the longer chain 

length of CTAB relative to the fluorinated templates, leading to larger pores.  Non-

functionalized fluorinated surfactant template materials, labeled HFOPC and HFDePC, 

display more order than their corresponding vinyl-functionalized samples, and the order 

decreases with increasing vinyl content (Figures 3.1B and 3.1C). These observations are 

consistent with previous evidence that an increase in vinyl functionalization reduces 

long-range pore order in CTAB template silica.22,23  In contrast, the materials obtained 

from the longest chain fluorinated surfactant (the 12-carbon chain surfactant, 
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HFDoDePC) display evidence of order in the materials synthesized at highest vinyl 

content (v4-HFDoDePC), but not in the non-functionalized material (HFDoDePC) or in 

the presence of a reduced ratio of the vinyl precursor (v6-HFDoDePC).  This unexpected 

observation may be due to a structure transition towards a more-curved aggregate 

(cylindrical structure), creating a more stable pore structure, but we were unable to 

directly test this hypothesis. 

To aid in the interpretation of accessibility studies, a less ordered version of v4-

CTAB was synthesized.  v4-CTAB-d (where d denotes disordered) has similar degree of 

pore order as the fluorinated surfactant template functionalized materials (Figure 3.1).  

 

 
Figure 3.1 Powder X-ray diffraction patterns of A) CTAB template materials, B) HFOPC 
template materials, C) HFDePC template materials and D) HFDoDePC template 
materials. The plots have been offset vertically 
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3.4.3 Transmission Electron Microscopy  

Examples of transmission electron microscopy (TEM) images of the vinyl-

functionalized materials are presented in Figure 3.2, for the systems v4-CTAB, v6-

HFOPC with inverse FFT (fast Fourier transform), v6-HFDePC and v4-HFDoDePC. The 

images are consistent with the XRD results. The TEM image of v4-CTAB (Figure 3.2A) 

shows very well ordered 2-D hexagonal pore structure whilst the images for the 

fluorosurfactant templated materials display partially ordered 2-D hexagonal structure.  

In most of the samples, the pores are randomly oriented in small close-packed domains, 

but in sample v6-HFDePC (Fig. 3.2C) the pores are oriented radially towards the edges of 

spherical particles.  This morphology and pore orientation is consistent with what was 

observed in the non-functionalized materials templated by this fluorinated surfactant in 

aqueous ethanol.13  

3.4.4 Nitrogen Adsorption analysis 

Analysis of the pore size, specific surface area and pore volume of the materials 

was performed by means of nitrogen adsorption analysis. All the CTAB template 

materials display type IV isotherms (mesoporous materials) (Figure 3.3), consistent with 

previous observations for CTAB templated non-functionalized5 and functionalized22,23 

materials. Fluorinated surfactant templated silica labeled HFOPC, HFDePC and v6-

HFDePC, also display type IV isotherms (Figure 3.3). The inflection point on the type IV 

isotherms indicates mesopore filling, which occurred at lower relative pressures in the 

fluorinated surfactant-templated materials suggesting smaller pores.  Functionalized and 

non-functionalized samples prepared with the 12-carbon chain surfactant (HFDoDePC, 

v6-HFDoDePC and v4-HFDoDePC) have type IV isotherms with maximum sorption 
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capacities at about 150 cm3/g STP, which is much lower when compared to all the other 

mesoporous materials synthesized in this study (results not shown). This is consistent 

with the absence of long range order observed by XRD. The isotherms display large 

hysteresis at relative pressures above 0.5 due to adsorption between particles or in 

macropores.   

 

 

Figure 3.2: TEM images of A) v4-CTAB B) v6-HFOPC C) v6-HFDePC and D) v4-
HFDoDePC. 
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Figure 3.3 Nitrogen adsorption isotherms of a) v4-CTAB-d b) v4-CTAB c) v6-CTAB d) 
CTAB e) v4-HFDePC f) v6-HFDePC, g) HFDePC h) v4-HFOPC i) v6-HFOPC, j) 
HFOPC  Open symbols are for adsorption and filled symbols are for desorption 

 

The adsorption data for the mesoporous samples were analyzed by the KJS 

method (BJH method with a modified Kelvin equation)154,179,180   which makes use of the 

high resolution αs-plot method. The resulting pore size distributions of the mesoporous 

materials, based on the modified Kelvin equation180, are shown in Figure 3.4.  A 

summary of the textural properties of all synthesized materials is given in Table 3.2. 

Type I isotherms, characteristic of microporous materials199, were observed for 

the vinyl functionalized material synthesized from the 8-carbon fluorinated surfactant 

(v4-HFOPC and v6-HFOPC) and the functionalized material synthesized at the highest 

vinyl content (v4-HFDePC) from the 10-carbon fluorinated surfactant.  Physical 
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properties reported of the microporous materials, v6-HFOPC, v4-HFOPC and v4-

HFDePC, are based on the methods of Dubinin and Kaganer178 (Table 3.2). The pore size 

of v4-HFDePC may not be well-represented by this analysis.  The d100-spacing obtained 

for v4-HFDePC suggests that (if the wall thicknesses are similar in these materials) the 

pore size should have been close to that of v6-HFOPC, which is between 1.8 – 1.9 nm. 

The small pore size of v4-HFDePC determined from the Dubinin-Kaganer method may 

be the result of an apparent overestimation of the surface area and a concomitant 

underestimation of the pore volume.  
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Figure 3.4 Pore size distributions calculated using the BJH method with a modified 
Kelvin equation. 177  
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Table 3.2: Summary of the textural properties of all the materials 
            

SAMPLE d100 (nm) St(m2/g) vm(cm3/g) dp(nm) ao (nm) 
CTAB 3.84 995 0.76 3.66 4.43
v6-CTAB 3.74 450 0.2 2.58 4.32
v4-CTAB 3.87 997 0.69 3.25 4.47
v4-CTAB-d 3.8 752 0.5 2.91 4.39
HFOPC 2.87 811 0.28 2.6 3.31
v6-HFOPC 2.76 865 0.31 1.86 3.19
v4-HFOPC 2.72 943 0.33 1.66 3.14
HFDePC 3.2 739 0.4 2.78 3.7
v6-HFDePC 2.86 717 0.38 2.44 3.3
v4-HFDePC 2.78 834 0.3 1.45 3.21
HFDoDePC -- 286 0.14 3.22 --
v6-HFDoDePC -- 524 0.19 2.96 --
v4-HFDoDePC 3.46 635 0.27 2.69 4

St is the specific surface area, vm is the mesopore/micropore volume and dp is the pore diameter (size) 
measured using the BJH method with a modified Kelvin equation for mesopores  and the Dubinin-Kaganer 
method for micropore. ao is  hexagonal cell parameter  (2d100 /31/2) 5

 

As summarized in Table 3.2, the incorporation of vinyl in the samples obtained 

using the 8-carbon chain fluorinated surfactant (HFOPC) shifts the pore size from 2.56 

nm (mesopore) for non-functionalized silica to 1.86 nm (micropore) for v6-HFOPC 

(lower vinyl content; TEOS:VTES of 6:1) and 1.66 nm (micropore) for v4-HFOPC 

(higher vinyl content; TEOS:VTES of 4:1). The reduction in pore size with increasing 

vinyl content is consistent with the observation of Jaroniec and Ozin’s group23 who 

showed that increase in vinyl content for CTAB template materials reduces the pores 

from mesopores to micropores. Similarly, the 10-carbon chain fluoro-surfactant 

(HFDePC) template materials exhibit a pore size trend of 2.78 nm, 2.34 nm to 1.45 nm 

for non-functionalized silica, v6-HFDePC and v4-HFDePC respectively. 
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3.4.5 Vinyl Accessibility Analysis 

Bromination reactions were performed on the vinyl functionalized materials to 

investigate the accessibility of vinyl group within the pores of the materials.22 The 

accessibility correlates with the decreased absorbance of the reactant bromine in solution 

with respect to time, as measured for v4- (TEOS:VTES of 4:1) functionalized samples 

(Figure 3.5A) and the v6- (TEOS:VTES of 6:1) functionalized samples (Figure 3.5B). 

The absorbance values are normalized with the weight of material added to the bromine 

solution. A control experiment (not shown) was performed on non-functionalized CTAB 

and HFOPC templated silica, to investigate if other factors such as adsorption of bromine 

atoms on the surface contribute to accessibility measurement. The absorbance of the 

solutions in the control experiments was unchanged over 4 hours. In the functionalized 

materials, absorbance drops significantly over the first 50 minutes of the reaction due to 

the bromination of the most accessible vinyl groups, those outside the pores and near the 

pore openings. After the first 50 minutes there is a gradual decease in absorbance due to 

bromination of the vinyl groups inside the pores. After approximately 150 minutes, the 

absorbance approaches a constant value in the functionalized materials.  

The accessibility of the vinyl groups in the CTAB-templated material (v4-CTAB), 

based on the final values, is lower than that for all the other v4-samples which were 

synthesized with fluorinated surfactants (Figure 3.5A). v4-HFDePC (radial pore 

structure) and v4-HFDoDePC show similar accessibilities, which was greater than the 

accessibility in v4-HFOPC (Figure 3.5A). The results for the v6-samples also suggest that 

there are fewer accessible vinyl groups in v6-CTAB relative to the fluorinated samples 

synthesized at an identical ratio of functionalized precursor (Figure 3.5B). Surprisingly, 
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v6-HFDePC displays the highest accessibility, followed by v6-HFOPC (Figure 3.5B) in 

spite of the lower vinyl content during the synthesis relative to the v4-materials.  

                             Time, min

0 50 100 150 200

A
bs

or
ba

nc
e 

at
 4

12
nm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
v4-MCM-41d
v4-MCM-41
v4-UKA8
v4-UKH10
v4-UKH12

A v4-CTAB-d 
v4-CTAB 
v4-HFOPC 
v4-HFDePC 
v4-HFDoDePC 

Time, min

0 50 100 150 200

A
bs

or
ba

nc
e 

at
 4

12
nm

0.2

0.4

0.6

0.8

1.0
v6-MCM-41
v6-UKA8
v6-UKH10
v6-UKH12

B v6-CTAB 
v6-HFOPC 
v6-HFDePC 
v6-HFDoDePC 

Figure 3.5  Bromination reaction plots of A) samples prepared with 4 TEOS: 1 VTES 
and B) samples prepared with 6 TEOS: 1 VTES. 

 

The high accessibilities observed in the fluorinated surfactant template materials 

may be due to the increased attraction of the vinyl pendant group to the surface of the 

micelles during the synthesis of the fluorinated surfactant template materials. 

Alternatively, the accessibility of the vinyl-functionalized group may be improved by a 

lower degree of long-range order in the fluorinated surfactant-templated materials. 

Accessibility within disordered materials has been observed to be higher than in ordered 

materials.82  In the case of well-ordered materials, accessibility may be reduced by steric 

hindrance of attached groups at the pore openings. This possibility was further 

investigated by synthesizing a less-ordered CTAB-templated material (v4-CTAB-d) with 
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pore order similar to the fluorinated template materials. The accessibility within this 

material is about 100% greater than in the ordered v4-CTAB after 200 minutes of 

bromination (absorbance approaching a constant value; Figure 3.5A). Thus higher 

accessibilities in v4-HFDePC and v6-HFDePC could be due to their decreased ordered 

pore structure when compared to v4-HFOPC, v6-HFOPC and v4-HFDoDePC. 

 

3.5 CONCLUSIONS 

 Partially fluorinated cationic surfactants have been successfully used in preparing 

ordered mesoporous silica functionalized with organic vinyl. This is the first 

demonstration of fluorinated surfactant templating to produce organic functionalized 

silica by direct synthesis. Adsorption data indicates that the pore sizes decrease with an 

increase in vinyl content irrespective of the surfactant chain length. However, the size of 

the pores in all fluorinated surfactant-templated materials was smaller than that of the 

CTAB-templated material, for a given level of functionalization. From the powder x-ray 

diffraction analysis, the order of the pores in the materials obtained from 

C6F13C2H4C5H5NCl and C8F17C2H4C5H5NCl templates decreases as the vinyl content 

increases, while the opposite effect was observed in the C10F21C2H4C5H5NCl template 

materials. In spite of a decrease in pore size of the fluorinated surfactant-templated 

materials (some even being microporous), the vinyl accessibility was shown to be higher 

than in ordered CTAB template materials. The greater accessibility in v4-CTAB-d, 

relative to the more ordered v4-CTAB, shows that the long-range pore order strongly 

affects the accessibility of the functional groups within the pores.  This study begins to 

address the unusual potential to alter the accessibility of the organic functional group on 
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the basis of the high hydrophobicity and lipophobicity of the tail of the fluoro-surfactant 

template.   
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CHAPTER 4 

FLUOROCARBON AND HYDROCARBON FUNCTIONAL GROUP 

INCORPORATION INTO NANOPOROUS SILICA EMPLOYING 

FLUORINATED AND HYDROCARBON SURFACTANTS AS TEMPLATES 

4.1 SUMMARY 

Ordered mesoporous fluorocarbon-functionalized (heptadecafluoro-1,1,2,2-tetrahydro-

decyl) silica and its hydrocarbon functionalized analogue (n-decyl) are synthesized by the 

‘one-pot’ (direct) synthesis method using two cationic fluorinated surfactants, 

C6F13C2H2NC5H5Cl (HFOPC) and C8F17C2H2NC5H5Cl (HFDePC), and a typical 

hydrocarbon surfactant, C16H33N(CH3)3Br (CTAB), as templates. The properties of the 

resulting materials are determined for the following combinations of surfactant/functional 

groups: hydrocarbon/hydrocarbon, hydrocarbon/fluorocarbon, fluorocarbon/hydrocarbon 

and fluorocarbon/fluorocarbon.  Synthesis using the longer chain fluoro-surfactant 

(HFDePC) template results in the highest incorporation of both n-decyl and the 

fluorocarbon functional group, with a corresponding loss of material order in the 

fluorinated material.  The decyl-functionalized materials synthesized using the HFOPC 

template possess very low levels of incorporation of the decyl group (0.18 mmol/g) 

compared to the HFDePC templated materials (1.12 mmol/g). CTAB templated materials 

display greater long-range pore order than the fluorocarbon templated materials. The 

incorporation of the fluorocarbon functional precursor is more efficient (on a percent 

yield basis) than the hydrocarbon functional precursor for silica material synthesized 
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using CTAB.  Similarly, the use of fluorocarbon templates enhances fluorocarbon 

incorporation relative to hydrocarbon incorporation in the mesoporous material.  

Solubility of the precursors (n-decyl triethoxysilane and heptadecafluoro-1,1,2,2-

tetrahydrodecyl triethoxysilane) in the synthesis medium and favorable hydrophobic 

interaction between the surfactant tail and the alkane/fluoro-alkane functional group 

improves the incorporation of the functional group.    

4.2 INTRODUCTION 

 Synthesis of organic functionalized nanoporous silica is an active research area 

because of the broad range of potential applications of these high surface area materials 

in sensing, catalysis and separation. Surfactant templating of sol-gel derived silica results 

in large surface areas, large pore volumes and narrow pore size distributions. Also, the 

pore size and structure can be tailored for specific applications by using surfactants with 

different hydrophobic tails and varying the synthesis conditions.  Since the discovery of 

the M41S family of nanostructured materials,5  various organic functional groups have 

been incorporated into mesoporous silica by means of post-synthesis grafting or direct 

co-condensation.21  

Synthesis of functionalized mesoporous silica by co-condensation results in high 

functional group incorporation.22 Lim and Stein22 and Kruk et al.23 investigated vinyl 

incorporation by co-condensation in the presence of cetyltrimethylammonium bromide 

(CTAB) as a pore template. An increase in vinyl content decreases the pore size (moving 

from mesoporous to microporous materials), pore volume and order of the materials. This 

is consistent with our observations of reduced material order, pore size, surface area and 
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pore volume with increasing vinyl content when partially fluorinated surfactants were 

used as templates in synthesizing vinyl functionalized nanoporous silica.181 Primary 

amines and secondary amines have also been incorporated in mesoporous silica by 

employing cationic surfactants (e.g., CTAB)6, anionic surfactants (e.g., sodium 

dodecylsulfate, SDS)7, nonionic surfactants8 and block co-polymers9 as templates. In 

addition, other functional groups, such as thiol groups (mainly mercaptopropyl 

functionalization)182-185 and, more recently, organic bridging groups186,187 have been 

incorporated into mesoporous silica through co-condensation of their corresponding silica 

precursors.  Bi-functionalized nanoporous silica (e.g., ureidopropyl with 3-[2-(2-

aminoethylamino) ethylamino]-propyl188, sulfonic acid-amino groups182 and carboxyl-

amino groups189) has also been prepared by co-condensation synthesis. Post-synthesis 

attachment to reactive organic sites in these organic/inorganic composites has been used 

to further functionalize mesoporous silica, for example, with biomolecules.190,191

 Numerous investigations have examined hydrocarbon-based templates21,192-194and, 

more recently, fluorocarbon surfactant templates10-15,195,196 for the synthesis of 

mesoporous silica. However, organic functionalization has focused primarily on the 

incorporation of hydrocarbon, not fluorocarbon, functional groups.   The hydrocarbon-

hydrocarbon interaction of traditional surfactant templates and organic functional groups, 

as well as the hydrophobic or hydrophilic nature of the functional group, determine the 

alignment of the group within the pores during direct synthesis of organic functionalized 

mesoporous silica.24,197,198 The interaction of organic functional groups with the 

surfactant can be compared to alcohol interaction with cationic surfactants. For example, 

the role of alcohol in the formation of CnTAB (alkyltrimetylammonium bromide) 
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aggregates changes from co-solvent to co-aggregate to co-surfactant with increasing 

alcohol chain length.199 Matching the chain length and chemical nature of a hydrophobic 

group and the surfactant hydrophobic tail promotes the incorporation of the hydrophobic 

group in surfactant micelles, improving solubilization and stability of the aggregate.200  

In contrast to hydrocarbon functionalization, there are limited examples of 

fluorocarbon incorporation into mesoporous silica.69,201-203 Fluorocarbon 

functionalization of silica results in a surface with increased hydrophobicity and 

lipophobicity.204 The applications of fluorinated surfaces, which are “solvent responsive” 

include their use in chromatographic purification and separation of fluorinated 

compounds205, in fluorous biphasic catalysis206,207 and as hydrophobic surface 

coatings.204,208 Low-surface tension mobile phases such as fluorocarbon solvents and 

supercritical carbon dioxide effectively wet the surfaces of fluorocarbon functionalized 

silica, allowing for their effective use for separation processes. Fluorocarbon incorporated 

porous silica can also be used as low-k dielectric in the manufacture of 

semiconductors.209

  Post-synthesis attachment has been the primary method to prepare fluorocarbon-

functionalized silica.210 When extending direct synthesis approaches to fluorocarbon 

functionalized material, the nature of the surfactant/organic precursor interactions (e.g., 

hydrocarbon surfactant template/fluorinated silica precursor) is expected to influence the 

self assembly process. Mixtures of hydrocarbon and fluorocarbon surfactants may form 

uniformly mixed aggregates or segregated hydrocarbon rich and fluorocarbon rich 

micelles or mixed micelles with de-mixed hydrocarbon and fluorocarbon regions.65,211 

Aggregation behavior of hydrocarbon and fluorocarbon surfactant mixtures is a function 
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of the surfactant chain lengths, hydrophobic chain structure (e.g. aromaticity, branching), 

concentration, and temperature.66,211 

Lebeau et al202 have successfully demonstrated the incorporation of 2-

pentafluorophenyl functionality into hexagonally ordered mesoporous silica by direct 

synthesis using CTAB as a template. The role of perfluoroalkyl chain length in surfactant 

assembly and its effect on the silica mesostructure was investigated in the synthesis of 

fluorinated organosilicate films by solvent evaporation using CTAC as template.204 The 

fluorocarbon functionalized silica films display both hexagonal and cubic mesostructure 

for short chain functional group (CF3(CH2)2- or FH2-) and only hexagonal structure for 

the long chain functional groups (F6H2- and F8H2-). An increase in the hexagonal cell 

parameter and pore wall thickness with increasing perfluoroalkyl chain length is 

attributed to the extension of fluorocarbon groups in the pore channel.201 Porcherie et 

al205 have also examined templating with hydrocarbon and fluorocarbon surfactants in the 

synthesis of fluorocarbon functionalized silica, thus providing the first investigation of 

the effect of fluorocarbon surfactant/fluorocarbon functional group combination on silica 

materials properties. The use of cationic fluorinated surfactant template resulted in 

disordered porous silica with low fluorocarbon incorporation for a long chain fluorinated 

functional group (F6H2-), even at a high TEOS to functional precursor ratio of 19:1. 

Improved fluorocarbon incorporation and material order were observed when a short 

chain fluorocarbon (FH2-) functionalized silica was synthesized, suggesting that 

incorporation of the long chain functional group disrupts the self assembly of the cationic 

fluorinated surfactant micelles. 
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This work examines the effect of combinations of hydrocarbon and fluorocarbon 

templates and functionalized silica precursors on the material textural properties, pore 

structure, long-range order and functional group loading of functionalized silica formed 

by direct synthesis. The incorporation of fluorocarbon functional group (heptadecafluoro-

1,1,2,2-tetrahydro-decyl; perfluoro-decyl) and its hydrocarbon analogue (n-decyl) is 

investigated using CTAB (cetyltrimethylammonium bromide), HFOPC (tridecafluoro-

1,1,2,2-tetrahydro-octylpyridinium chloride) and HFDePC (heptadecafluoro-1,1,2,2-

tetrahydro-decylpyridinium chloride) as templates. In this work we demonstrate the 

incorporation of a longer chain fluorinated group with a much higher ratio of the 

functionalized precursor to tetraethoxysilane than has been examined previously.205 The 

influence of hydrocarbon/fluorocarbon surfactant/template interactions on functional 

group incorporation, mesostructure and physical properties of the silica is examined. .   

4.3 MATERIALS AND METHODS 

Tetraethoxysilane (TEOS; Figure 4.1) with a purity of 99% was obtained from 

Fluka Chemika. n-Decyltriethoxysilane (H10TES, 95% purity; Figure 4.1) and 

heptadecafluoro(1,1,2,2-tetrahydro) decyltriethoxysilane (F8H2TES, 95% purity; Figure 

1) were purchased from Gelest Inc. CTAB (99% purity; Figure 4.2) was obtained from 

Sigma. The fluorinated surfactants (Figure 4.2), C6F13C2H4NC5H5Cl and 

C8F17C2H4NC5H5Cl, labeled HFOPC and HFDePC, respectively, were synthesized as 

previously described.
181  
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Figure 4.1 Structures of precursors: A) tetraethoxysilane (TEOS) B) n-decyl 
triethoxysilane (H10TES) and C) heptadecafluoro-1,1,2,2-tetrahydrodecyl triethoxysilane 
(F8H2TES) 

 

Figure 4.2:   Structures of surfactants: A) tridecafluoro-1,1,2,2-tetrahydro-octyl 
pyridinium chloride (HFOPC) B) heptadecafluoro-1,1,2,2-tetrahydro-decyl pyridinium 
chloride (HFDePC) and C) cetyltrimethylammonium bromide (CTAB) 
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4.3.1 Synthesis of Mesoporous Silica   

Functionalized mesoporous silica was synthesized by utilizing a 4:1 molar ratio of TEOS 

to F8H2TES or H10TES in aqueous solutions for CTAB and HFOPC templated materials.  

HFDePC templated materials were synthesized in 4:1 molar ratio of TEOS to F8H2TES 

or H10TES dissolved in a homogeneous water/ethanol solution, where the addition of 

ethanol was required to obtain ordered structures. Non-functionalized materials were 

synthesized as previously described in chapter 3. 

Materials synthesis began by adding the surfactant to de-ionized ultra-filtered 

water (DIUFW) and stirring the mixture for 5 minutes. Concentrated ammonia (catalyst, 

28 - 30% solution from Malinckrodt) was then added with continuous stirring of the 

mixture for an additional 10 minutes, after which TEOS or a mixture of TEOS and 

F8H2TES (or H10TES), in the desired proportions, was slowly added. The mixture was 

aged with stirring at room temperature for 24 hours. The molar ratios of the reactants 

used in the syntheses were 186 DIUFW: 0.184 CTAB (or 0.082 HFOPC): 3.31 NH3: 1 

TEOS: 0.25 H10TES (or F8H2TES) and 136 DIUFW: 64 ethanol: 0.197 HFDePC: 10.6 

NH3: 1 TEOS: 0.25 H10TES (or F8H2TES).  The synthesis procedure is based on the 

room-temperature synthesis of unmodified silica reported by Kumar et al.81 The mixture 

was vacuum-filtered after the aging period and left to air-dry for 24 hours. An 

ethanol/HCl solution of 150 ml ethanol and 5 g concentrated aqueous HCl was used for 

the extraction of the surfactant. Extraction was accomplished by stirring the dried sample 

in acidic ethanol for 24 hours. This extraction process was repeated once.         

Synthesized materials were labeled H10-CTAB and F8H2-CTAB; H10-HFOPC and 

F8H2-HFOPC; and H10-HFDePC and F8H2-HFDePC. The naming convention for the 
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functionalized silica is the functional group incorporated followed by the template used.  

In tables and figures, non-functionalized materials were labeled simply as their surfactant 

templates (i.e., CTAB, HFOPC, and HFDePC). 

4.3.2 Materials Characterization 

Nitrogen adsorption measurements were performed using a Micromeritics Tristar 

3000 automated gas adsorption instrument. The materials were degassed at 150 oC using 

flowing nitrogen gas for 4 hours before performing the adsorption analysis.  Data from 

nitrogen sorption analysis were analyzed to obtain material total surface area (St), pore 

volume (vp) and pore size distribution (dp) using αs-plot and the modified BJH method 

proposed by Kruk, Jaroniec and Sayari (KJS).154,179,180

 Fourier transform infrared spectroscopy (FTIR) analysis was performed to verify 

surfactant removal and functional group incorporation.   A small amount (approximately 

1 wt %) of the silica sample was pressed into a pellet with KBr matrix and analyzed using 

a Thermo Nicolet Nexus 470 FT-IR analyzer.  

Thermogravimetric analysis (TGA) was carried out using a Universal V2.5H TA 

instrument to quantify organic group incorporation. The materials were analyzed with 

nitrogen purge with a starting temperature of 35 °C and heated at 10 °C/min up to 750 

°C. 

Powder X-ray diffraction (XRD) patterns were obtained using a Siemens 5000 

diffractometer operating with CuKα radiation of wavelength 0.154098 nm and a graphite 

monochromator.  

Transmission electron micrograph (TEM) images of the materials, after surfactant 

extraction, were recorded with a JEOL 2000FX transmission electron microscope. The 
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TEM samples were prepared by grinding the sample and mixing with a small amount of 

acetone. The solution was allowed to settle and lacey carbon TEM grids (Ted Pella Inc) 

were used to scoop some of the clear liquid and then allowed to dry. This was done so 

that the smallest particles could be mounted on the grid for better TEM analysis.  

4.4 RESULTS AND DISCUSSION 

The incorporation of fluorocarbon and hydrocarbon functionality in mesoporous 

silica by direct synthesis is demonstrated for CTAB, HFOPC, and HFDePC templated 

materials. FTIR provides qualitative evidence for organic functionalization, while 

incorporation is quantified using TGA, which is interpreted as a function of the 

fluorocarbon/hydrocarbon template and precursor combinations.  The effect of 

fluorocarbon incorporation on pore size, pore order, and surface area is determined using 

XRD and N2 adsorption analysis.   Changes in the surface hydrophobicity are observed 

with hydrocarbon and fluorocarbon functionalization.  

4.4.1 Functional Group Incorporation 

Fourier transform infrared spectroscopy (FTIR) analysis of the materials 

demonstrates successful removal of surfactant templates and also provides evidence of 

functional group incorporation. Peaks at 2856 cm-1 and 2925 cm-1 in the as-synthesized 

(unextracted, denoted with the suffix A) CTAB-templated materials as well as the n-

decyl functionalized materials (H10-CTAB, H10-HFOPC, H10-HFDePC) correspond to the 

characteristic stretching of C-H in the hydrocarbon functional group and the hydrocarbon 

surfactant template (Figure 4.3). The magnitude of the peak is reduced in H10-CTAB, for 

example, after surfactant extraction. A significant reduction of the peak at 1473 cm-1 (C-

H bending) and disappearance of the 1493 cm-1 peak (N-C stretching; attributed to the 
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presence of CTAB surfactant) is also observed for H10-CTAB. The as-synthesized decyl 

functionalized materials templated with the fluorosurfactants  (H10-HFOPC-A (Figure 

4.3B) and H10-HFDePC-A (Figure 4.3C)) display peaks corresponding to the n-decyl 

functional group (1473 cm-1, 2856 cm-1 and 2925cm-1) as well as additional peaks which 

disappear after surfactant extraction (1502 cm-1, due to the pyridinium head group; and 

1217 cm-1 and 1155 cm-1, due to C-F stretching of surfactant). The low peak intensities at 

2856 cm-1 and 2925 cm-1 following surfactant extraction suggest low n-decyl 

incorporation in H10-HFOPC relative to H10-HFDePC and H10-CTAB.  

The FTIR of the perfluoro-decyl functionalized silica templated with CTAB, as 

synthesized (F8H2-CTAB-A), displays peaks at 2856 cm-1 and 2925 cm-1 (Figure 4.3A) 

that disappear after surfactant extraction, suggesting complete surfactant removal. 

Complete surfactant extraction in the fluorocarbon functionalized materials made with 

fluorosurfactant templates (F8H2-HFOPC and F8H2-HFDePC) is confirmed by the 

disappearance of the peaks at 1502 cm-1 and 1454 cm-1, which are attributed to the 

presence of pyridine and  C-H bending, respectively.213  Peaks at 1217 cm-1 and 1155 cm-

1, characteristic of –CF2– vibrations in the fluorocarbon functional group,213 are present in 

all of the as-synthesized fluoro-functionalized materials (F8H2-CTAB-A, F8H2-HFOPC-A 

and F8H2-HFDePC-A),  A significant reduction of peaks characteristic of –CF2– 

vibrations  is observed for F8H2-CTAB (Figure 4.3A)  and F8H2-HFOPC (Figure 4.3B) 

after surfactant extraction, while F8H2-HFDePC (Figure 4.3C) shows only a slight 

decrease in the intensity of the peaks. The loss of unincorporated fluoro-functional 

groups may contribute to the reduction of these peaks.  
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The prominent peaks observed in all the materials at 1100 cm-1 and the shoulder 

at 1200 cm-1 are typical of silica. The broad band below 3200 cm-1 is due to adsorbed 

water and silanols.216
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Figure 4.3 FTIR plots of as-synthesized and extracted A) CTAB templated, B) HFOPC 
templated, and C) HFDePC templated silica.  The thin boxes outline the surfactant and 
organic bands discussed in the text. 
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 TGA was used to quantify the extent of organic incorporation in the synthesized 

materials.  TGA analyses of all the materials show an initial weight loss at temperatures 

less than 100 oC, due to the loss of water and solvent from the materials (Figure 4.4). 

Further weight loss is observed between 190 oC and 240 oC, which could be due to the 

loss of residual surfactants in the materials200,201 and condensation of available silanols.212 

The largest weight loss is observed between 450 °C and 600 °C for all samples except 

F8H2- HFDePC, which has a significant weight decline starting at about 400 °C. The 

weight loss in the region between 400 °C and 600 °C indicates the decomposition of the 

organic functional group,216 giving the percentage of organic functional group in the 

silica material (Table 4.1).   The theoretical organic content, assuming complete 

hydrolysis and siloxane bond formation during synthesis (i.e 100% yield), is also 

presented in Table 4.1.  The organic content measured by TGA is less than the theoretical 

values, which suggests incomplete hydrolysis of the precursors or the formation of 

unattached, soluble silsesquioxanes which are removed during surfactant extraction. 

Alternatively, possible carbon re-deposition after decomposition of the organic functional 

group during TGA analysis could lower the measured organic content of the 

functionalized silica. 
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Figure 4.4 Sample TGA plots of HFDePC, H10-HFDePC and F8H2-HFDePC. 

 

Table 4.1 Organic content of functionalized materials  

Material Organic Content by TGA, 
mmol/g* 

Theoretical Organic Content, 
mmol/g+  

F8H2-CTAB 0.57 (42%) 

F8H2-HFOPC 0.56 (42%) 

F8H2-HFDePC 1.20 (89%) 

 

1.35 

H10-CTAB 0.67 (29%) 

H10-HFOPC 0.18 (8%) 

H10-HFDePC 1.12 (48%) 

 

2.31 

+Theoretical organic content is based on complete hydrolysis and siloxane bond 
formation (i.e. 100% yield).  *Percentage of organic content relative to theoretical yield is 
in parenthesis.   
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The incorporation of the fluoro-functional group is greatest in F8H2-HFDePC 

relative to F8H2-HFOPC and F8H2-CTAB, as measured from TGA analysis (Table 4.1).  

This higher degree of fluorocarbon incorporation  in F8H2-HFDePC may be due to 

favorable interaction between functional group and the surfactant tail, which have the 

same molecular structure (-C2H2C8F17). Surprisingly, the greatest extent of hydrocarbon 

functionalization is also achieved using this fluoro-surfactant template (H10-HFDePC), 

although the extent of incorporation (48% on a basis of the theoretical yield) is 

significantly less than that of the fluorocarbon functional group (F8H2-HFDePC; 89%).  

This high degree of n-decyl incorporation may be due to matching the number of carbon 

atoms in the precursor/template for H10-HFDePC.  While hydrocarbons are more soluble 

in hydrocarbons than fluorocarbons, matching fluorinated chain length and hydrocarbon 

chain length has been demonstreated to significantly increase the miscibility range.60 

Alternatively, solubilization of both the fluorocarbon and hydrocarbon precursors may be 

enhanced in the micelle aggregates of the ethanol/water media used to template the 

HFDePC materials, leading to a high degree of functional group incorporation.  

In the absence of added ethanol, the extent of fluorocarbon functionalization is 

similar (0.56 mmol/g) for both the CTAB-templated and HFOPC-templated materials 

(F8H2-CTAB and F8H2- HFOPC, respectively).  The incorporation of the hydrocarbon 

precursor is minimal in HFOPC (H -HFOPC, 8% of theoretical maximum).  In addition, 

efficiency of hydrocarbon incorporation in the hydrocarbon templated material (H -

CTAB) is reduced relative to fluorocarbon incorporation (29 and 42 % theoretical yields, 

respectively) at a TEOS to functional precursor ratio of 4:1. Fluorocarbon groups are 

more hydrophobic than hydrocarbons, which may promote the incorporation of the 

T

10

10
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fluorocarbon precursor within the micelles of the hydrocarbon surfactant template in spite 

of its dissimilar chemical nature. 

4.4.2 Hydrophobicity of functionalized silica materials 

 The functionalization of silica, which is hydrophilic due to the presence of surface 

hydroxyl groups, can result in dramatically different surface properties.  The 

hydrophobicity of the functionalized materials due to the incorporation of the 

hydrocarbon and fluorocarbon groups is confirmed by observing wetting properties of the 

functionalized and non-functionalized silica powder. Sample images of a water droplet on 

the surface of powder silica (HFDePC, H10-HFDePC and F8H2-HFDePC) spread on glass 

are presented in Fig. 4.5. The images show the droplets on the functionalized silica 

possess very large contact angles (θ > 90˚), which suggest the materials are highly 

hydrophobic. Hydrocarbon functionalized silica particles are able to disperse on the outer 

surface of the water droplet (Figure 4.5B), but in the presence of the more hydrophobic 

fluorocarbon functionalized silica the water droplet sitting on the silica surface remains 

clear (Figure 4.5C). In contrast, water droplets are immediately absorbed into the non-

functionalized silica material (Fig 4.5A).  The dramatic change in surface properties of 

the silica powders not only indicates functionalization, but also suggests the potential 

application of fluorofunctionalized materials. Fluorocarbon functionalized materials 

usually possess high lipophobicity and hydrophobicity, in addition to high chemical and 

thermal stability.204,208 
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A B C

Figure 4.5 Images of water droplet on A) HFDePC templated silica, B) H10-HFDePC and 
C) F8H2-HFDePC. 

 

4.4.3 Structural Properties of Functionalized Silica 

The pore structure and order of the silica material after surfactant extraction was 

examined by powder X-ray diffraction (Figure 4.6).  For the decyl functionalized silica, 

2-D hexagonal pore structure is observed for the CTAB templated material (H10-CTAB), 

as interpreted from the presence of (100), (110), (200) and (210) reflections in the XRD 

profile. Silica templated with the fluorinated surfactants (H10-HFOPC and H10-HFDePC) 

is characterized by only the first three reflections, which also correspond to a 2-D 

hexagonal pore structure. These reflections are of lower intensity than the hydrocarbon-

templated material, suggesting better long range order in the CTAB templated material.  

TEM images (Figure 4.7) obtained for these materials confirm the 2-D hexagonal pore 

structure inferred from the XRD patterns. However, the image of H10-HFDePC (Figure 

4.7E) shows particles of spherical morphology with radial pores, which is characteristic 

of materials synthesized in homogeneous water/ethanol solution.197

Similar to the trend observed in hydrocarbon functionalized silica, hydrocarbon 

surfactant templating results in fluoro-functionalized materials with greater order than 

fluoro-surfactant templated materials. While both F8H2-CTAB and F8H2-HFOPC display 
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XRD peaks characteristic of hexagonal pore structure, the intensities of the reflections are 

much higher in the CTAB templated material. The single broad peak in the XRD pattern 

for F8H2-HFDePC suggests materials of low order. The peak width could also be due to 

low electron density contrast because of the high incorporation of the fluorocarbon 

functional group in this material (Table 4.1). Increasing the incorporation of functional 

groups in mesoporous silica results in decreased pore order.22,23,219  Spherical particles are 

also observed for the fluorofunctionalized silica synthesized in a homogenous 

water/ethanol solution (F8H2-HFDePC; Fig. 4.7F). Pores are not observable in F8H2-

HFDePC at a higher magnification, possibly due the low contrast in the presence of 

fluorocarbons in the pores.  

 

Figure 4.6 Powder X-ray diffraction plots of A) CTAB templated, B) HFOPC templated, 
and C) HFDePC templated silica materials.  
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Figure 4.7 Representative TEM images of A) H10-CTAB, B) F8H2-CTAB, C) H10-
HFOPC, D) F8H2-HFOPC, E) H10-HFDePC, and F) F8H2-HFDePC. 
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The physical properties (pore size; dp, total surface area; St and pore volume; vp) 

of the silica materials were analyzed by means of nitrogen adsorption.  All the materials 

display type IV adsorption isotherms (Figure 4.8), characteristic of mesoporous 

materials.178 The n-decyl functionalized materials possess higher sorption capacity than 

the corresponding fluoro-functionalized materials owing to the more ordered pore 

structure of the decyl materials. For both the hydrocarbon and fluorocarbon 

functionalized materials, the HFOPC-templated silica materials display a large hysteresis 

in the adsorption isotherm and large adsorption values at relative pressures close to 1. 

This large hysteresis is due to non-uniformity in the pores and the presence of a large 

number of macropores. 

Pore size distributions (Figure 4.8) in the synthesized silica were determined from 

the adsorption isotherms using the KJS method.154,179,180 A unimodal pore size 

distribution was observed in the range of 1.5 nm to 10 nm for mixed surfactant/functional 

group systems (hydrocarbon/fluorocarbon and fluorocarbon/hydrocarbon surfactants and 

precursors). A single pore size is consistent with no de-mixing into hydrocarbon rich and 

fluorocarbon rich micelles during the synthesis of the materials. The similar pore sizes 

(Table 4.2) for H10-HFOPC and F8H2-HFOPC (2.44 nm) suggest that the functional 

group chain length, rather than the type of functional group, controls the micelle size 

captured in the synthesis process. Functionalization results in a slight reduction in pore 

size as compared to non-functionalized HFOPC (2.60 nm).  In contrast to the slight 

reduction of pore size observed with functionalization of HFOPC templated material, we 

previously observed that the direct synthesis of vinyl functionalized silica using HFOPC 

(4:1, TEOS:vinyl triethoxysilane synthesis conditions) resulted in marked reduction of 
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pore size from 2.60 nm (HFOPC) to 1.66 nm (v4-HFOPC).181 The vinyl chain may act as 

a co-aggregate during micellar formation due to its much shorter chain length relative to 

the surfactant templates, whereas the longer F8H2- will act as a co-surfactant.  

 
Table 4.2 Structural properties of fluorocarbon and hydrocarbon functionalized materials 

Material d100 
(nm) 

St
 (m2/g) 

*Sexternal 
(m2/g) 

Vp 
(cm3/g) 

dp 
(nm) 

*ao 
(nm) 

*tpw 
(nm) 

CTAB 4.01 995 106 0.76 3.67 4.63 0.96 
HFOPC 2.87 811 323 0.28 2.60 3.31 0.71 
HFDePC 3.29 739 41 0.40 2.77 3.80 1.03 
F8H2-CTAB 4.5 819 45.7 0.34 2.58 5.20 2.62 
F8H2-HFOPC 3.07 444 192 0.10 2.44 3.54 1.10 
F8H2-HFDePC 3.87 370 9.48 0.12 2.32 4.47 2.15 
H10-CTAB 4.14 947 98.6 0.45 2.76 4.78 2.02 
H10-HFOPC 2.88 618 234 0.13 2.44 3.33 0.89 
H10-HFDePC 3.23 899 24.4 0.32 2.16 3.73 1.57 
* Sexternal is the external specific surface area, ao hexagonal cell parameter (2d100/31/2) and 
tpw is the pore wall thickness (ao – dp). 
 

The 10-carbon chain hydrocarbon and fluorocarbon functional groups (H10 and 

F8H2, respectively) are not expected to fully extend into the hydrophobic core of the 

CTAB (16-carbon hydrophobic tail) aggregate. However, for HFDePC (10-carbon 

hydrophobic tail) the functional groups will be able to replace some of the surfactant 

molecules during aggregation. The bulky fluorocarbon group occupies more volume than 

the hydrocarbon group. This is consistent with the larger pore size of H10-CTAB (2.76 

nm) relative to F8H2-CTAB (2.58 nm). On the other hand, functionalization of HFDePC 

templated silica results in a hydrocarbon functionalized material (H10- HFDePC) with a 

smaller pore size (2.12 nm) than the corresponding fluoro-functionalized material (F8H2-

HFDePC, 2.32 nm). The functional groups in the more ordered H10-HFDePC compared 
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to F8H2-HFDePC might have caused decrease in the effective pore size. The smaller pore 

sizes obtained for the HFDePC templated materials as compared to the HFOPC materials 

may be due to the combined effect of high functional group incorporation in the HFDePC 

templated materials and synthesis in homogeneous water/ethanol medium.222,223 High 

additive (e.g. alcohol) incorporation in micelles leads to reduced micellar size due to 

reduction in headgroup repulsion.199  

 Pore wall thickness is observed to increase after functional group incorporation 

(Table 2).  The increase in pore wall thickness is due to the covalent attachment of the 

functional groups to the silica walls.204 Because of the relative size of the functional 

groups, the fluorocarbon functionalized silica materials have larger pore walls than the 

hydrocarbon functionalized materials. Comparing pore wall thickness across surfactants 

templates, CTAB (hydrocarbon) templated materials possess the largest increase in pore 

wall thickness relative to non-functionalized silica, while the increase in pore wall 

thickness is less in HFOPC templated silica, possibly due to low functional group 

incorporation.  The incorporation of the functional groups in the silica walls generally 

decreases the total surface area and pore volume (Table 4.2). Across all surfactants, the 

largest decrease is observed for the fluorocarbon functionalized silica materials which are 

less ordered than the hydrocarbon functionalized silica.  
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Figure 4.8 Nitrogen adsorption isotherm and pore size distribution of A) CTAB 
templated, B) HFOPC templated, and C) HFDePC templated silica materials. 
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4.5 CONCLUSIONS 

Cationic fluorocarbon surfactants with two chain lengths (tridecafluoro-1,1,2,2-

tetrahydro-octylpyridinium chloride (HFOPC) and heptadecafluoro-1,1,2,2-tetrahydro-

decylpyridinium chloride (HFDePC)) and a hydrocarbon surfactant (CTAB) are 

demonstrated as templates for the synthesis of 2-D hexagonal or disordered pore 

structured, fluorocarbon (perfluoro-decyl) functionalized mesoporous silica by direct 

(‘one-pot’) synthesis. Corresponding hydrocarbon functional group (n-decyl) 

incorporation is also investigated. For all surfactant/n-decyl precursor combinations, n-

decyl functionalized silica with 2-D hexagonal pore structure is obtained. Synthesis in 

homogeneous water/ethanol medium leads to high degree of functional group 

incorporation, and results in disordered pore structure for the fluorocarbon functionalized 

HFDePC templated silica. Higher yield of fluorocarbon functional group incorporation 

than the hydrocarbon group was obtained for all surfactants. The dramatic increase in 

surface hydrophobicity of the silica after functional group incorporation, particularly for 

the fluorocarbon functionalized silica, is consistent with the analysis by FTIR and TGA 

that demonstrated functional group incorporation. Based on the unimodal pore size 

distributions achieved for combinations of fluorinated and hydrocarbon precursors and 

templates, there is no evidence of segregation of hydrocarbon-rich and fluorocarbon-rich 

aggregates during synthesis.  

The length of the functional group relative to the surfactant tail and the type of 

incorporated functional group affect pore size.  Structural order, pore size and surface 

area generally decrease with functionalization. The increase in pore wall thickness for 

functionalized materials, greater for fluorocarbon functionalized materials relative to 
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hydrocarbon functionalized materials, is consistent with the attachment of the functional 

group to the silica pore walls.  The degree of fluorocarbon incorporation and the silica 

surface areas are considerably higher than reported previously for fluorofunctionalized 

silica formed by direct synthesis.205 
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CHAPTER 5 

 

APPLICATION OF FLUORO-FUNCTIONALIZED MESOPOROUS SILICA TO 

FLUOROUS SEPARATIONS 

 This work is submitted to Industrial & Engineering Chemistry Research for publication. 

 

5.1 SUMMARY 

Two types of fluorocarbon-functionalized (F6H2 and F8H2) mesoporous silica were 

synthesized by the ‘one-pot’ (direct) synthesis method using cationic fluorocarbon 

surfactants, C6F13C2H2NC5H5Cl (HFOPC) and C8F17C2H2NC5H5Cl (HFDePC), and a 

traditional hydrocarbon surfactant, C16H33N(CH3)3Br (cetyltrimethylammonium bromide,  

CTAB), as templates.  The effect of the chain length of the fluorocarbon functional 

precursor and the surfactant template on the pore order, materials textural properties, and 

fluorocarbon incorporation was examined.  Fluorocarbon functionalization decreased the 

silica pore order, pore size and surface area.  Matching surfactant type (hydrocarbon 

surfactant or fluorocarbon) with the functional functional group (a fluorocarbon) did not 

improve functional group incorporation; the incorporation of the perfluoro-octyl 

functional group (F6H2-) was greater in the CTAB templated silica (1.13 mmol/g) relative 

to the HFOPC templated silica (0.83 mmol/g). The application of these mesoporous silica 

powders to fluorous solid phase extraction (F-SPE) was investigated. Hydrocarbon and 

fluorocarbon-tagged anthraquinones (HC-dye and FC-dye, respectively) were separated 

by gradient elution using an increasingly fluorophilic solvent system.  Although higher 

incorporation of the perfluoro-octyl functional group (F6H2-) was observed relative to the 
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perfluoro-decyl group (F8H2-) for all surfactant templates, the perfluoro-decyl 

functionalized silica materials provided higher fluorocarbon dye recovery in the 

separation. The yield of FC-dye was 87.8 (±5.8)%  for F8H2-HFDePC packed column 

compared to 76.7 (±1.1)% for F6H2-HFDePC packing materials of the same weight.  Dye 

elution through a packed column of mesoporous silica occurs in a narrower band than for 

fluorocarbon functionalized silica gel, consistent with the high fluorocarbon content, and 

smaller pore and particle size of the mesoporous material.  

 

5.2 INTRODUCTION 

 Combinatorial chemistry and parallel synthesis approaches have resulted in 

procedures to readily synthesize a library of potential pharmaceuticals in the same 

reaction vessel and at the same conditions.222,223 The post-synthesis challenge is 

separating the mixture of compounds into functionally resolved fractions. To promote the 

separation processes, reactants and substrates are sometimes tagged.224-227 Fluorous 

tagged molecules contain at least one highly fluorinated carbon chain, which can be 

permanently or temporarily attached to the organic compound of interest.  This fluorous 

tag provides for the separation by liquid-liquid extraction or solid-liquid extraction. 

Fluorous compounds with varied fluorinated chain lengths can also be separated based on 

fluorous chromatography. The separation of fluorous tagged compounds on fluorocarbon 

functionalized solid surface is based on similar interactions among fluorocarbons.207 The 

high electronegativity of the fluorine atom, when replacing a hydrogen atom in a carbon 

bond, results in strong intramolecular and weak intermolecular forces.  As a result, 

fluorocarbons are lipophobic, and also are more hydrophobic than hydrocarbons.228   
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The limited examples of fluorocarbon functionalized solid materials229 are 

primarily formed through the post synthesis attachment of the fluorocarbon group to 

porous silica particles. The covalent attachment of fluorocarbon functionalized silanes via 

the surface OH groups of silica results in silica-O-Si(R)2(CH2)nRf, where Rf denotes the 

fluorocarbon group. Commercially available fluorous silica include FluoroFlash silica gel 

(Fluorous Technologies, Inc.; Rf = C8F17) and SiliaBond Tridecafluoro silica gel 

(Silicycle; Rf = C6F13). Of the two materials, FluoroFlash silica gel has been suggested to 

provide a more “fluorophilic” surface for solid phase extraction (SPE) and flash 

chromatography; the tridecafluoro silica gel requires higher water content for fluorous 

molecules to be retained.206

 Direct synthesis of fluorocarbon functionalized surfactant-templated mesoporous 

silica is an alternative route to making fluorocarbon functionalized solid material for use 

as packing for solid phase extraction, chromatography and solid phase synthesis.    

Ordered silica material is synthesized through the co-assembly of surfactant micelles with 

hydrolyzed alkoxysilane precursors.  Polymerization of the precursor via sol-gel 

chemistry (the liquid-phase reactions of alkoxysilane precursors to generate silica) and 

subsequent surfactant removal results in pore structures that mimic surfactant  

liquid crystal mesophases.    Nanostructured silica synthesized by surfactant templating is 

characterized by ordered pore structures, narrow pore size distributions and large surface 

areas (>700m2/g) relative to silica gels.81 Direct (‘one-pot’) synthesis describes the co-

condensation of a mixture of tetraalkoxysilane and organic functionalized alkoxysilane 

(including materials formed in the presence of a pore templating agent) resulting in 

functionalized mesoporous silica.    Direct synthesis generates materials with high 
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functional group loading and uniform distribution relative to post synthesis 

attachment.22,23 Few studies have investigated the formation of fluorocarbon 

functionalized silica by direct synthesis,199,201-205 and only one previous investigation 

examines the use of fluorinated templates to enhance the incorporation of fluorinated 

precursors in direct synthesis.205  Porcherie et al205 synthesized fluoro-functionalized 

silica by direct synthesis using a neutral fluorinated surfactant (n-C8F17C2H4NH2), a 

fluorinated cationic surfactant (n-C8F17C2H4N(CH3)3
+I-) analogous to CTAB, as well as 

CTAB, as pore forming agents.  In the case of the cationic fluorinated template, 

disordered porous silica with low fluorocarbon incorporation was obtained for a long 

chain fluorinated functional group (F6H2-), even at a low TEOS to functional precursor 

ratio of 19:1. These results are consistent with the disruption of micelle formation of the 

cationic fluorinated surfactant by the long chain functional group, an explanation 

supported by the improved fluorocarbon incorporation and material order when 

functionalizing the silica using a short chain fluorinated group (CF3(CH2)2-). 

Surfactant templating is influenced by numerous factors that drive co-assembly: 

precursor, surfactant type (cationic, anionic, or non-ionic), surfactant functionality and 

chain length, the pH of the synthesis medium (acidic or basic) and temperature.82,230 The 

effect of an organic functionalized precursor on self assembly is expected to be analogous 

to the solubilization of hydrophobic molecules in the hydrophobic portion of surfactant 

aggregates in aqueous solutions.68,69 Matching the chain length and chemical nature of the 

hydrophobic molecule and the surfactant hydrophobic tails will maximize hydrophobic 

interactions. This results in improved solubilization of hydrophobic molecules in the 

surfactant aggregate and stability of the aggregate.202 For example, the role of alcohol in 
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the formation of CnTAB (alkyltrimetylammonium bromide) aggregates changes from co-

solvent to co-aggregate to co-surfactant with increasing alcohol chain length.70 The 

segregation of mixtures of hydrocarbon and fluorocarbons into fluorocarbon-rich and 

hydrocarbon-rich phases suggests that a fluorocarbon surfactant may be better suited than 

a traditional hydrocarbon surfactant for the incorporation of fluorocarbon functional 

groups by direct synthesis.54 Therefore, we expect that the combination of surfactant 

template-fluorocarbon functional group will affect the degree and uniformity of 

functional group incorporation in mesoporous silica and the performance of these silica 

powders in fluorous separations.    

This chapter describes the synthesis and characterization of fluorocarbon-

functionalized silica and its application as packing material for the fluorous-solid phase 

extraction (F-SPE) of hydrocarbon and fluorocarbon tagged anthraquinones. Two 

relatively long chain fluorocarbon functional groups (tridecafluoro-1,1,2,2-tetrahydro-

octyl (F6H2) and heptadecafluoro-1,1,2,2-tetrahydro-decyl (F8H2)) are incorporated into 

mesoporous silica. Fluoro-functionalization is achieved by direct synthesis at a TEOS to 

functional precursor ratio of 4:1 using a traditional cationic hydrocarbon surfactant, 

CTAB, and two cationic fluorocarbon surfactants, HFOPC (tridecafluoro(1,1,2,2-

tetrahydro)octylpyridinium chloride) and HFDePC (heptadecafluoro(1,1,2,2-

tetrahydro)decylpyridinium chloride), as templates. The materials are analyzed for pore 

structure and order, degree of functional group incorporation and texture properties. The 

separation performance of the fluorocarbon functionalized mesoporous silica is compared 

to a commercial fluorocarbon functionalized silica gel (FluoroFlash). 
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5.3 MATERIALS AND METHODS 

5.3.1 Materials 

 Tetraethoxysilane (TEOS, with purity of 99%), tridecafluoro-1,1,2,2-tetrahydro-

octyltriethoxysilane (F6H2TES, 95% purity), and heptadecafluoro-1,1,2,2-tetrahydro-

decyltriethoxysilane (F8H2TES, 95% purity) were purchased from Gelest Inc. CTAB 

(Figure 4.2) was obtained from Sigma with 99% purity. The fluorinated surfactants 

C6F13C2H4NC5H5Cl and C8F17C2H4NC5H5Cl (Figure 4.2), labeled HFOPC and HFDePC, 

respectively, were synthesized as previously described.178 The perfluorinated dye (1-

fluoro, 4-pentadecafluoro-1,1-dihydro-octylamino-anthraquinone) was synthesized 

following published procedures231 by the reaction of 1,4-difluoro-9,10-anthracendione 

with the appropriate amine in dimethyl sulfoxide at 60°C. The hydrocarbon tagged dye 

[Sudan blue II; (Bis(butylamino)anthraquinone)] was purchased from  Sigma-Aldrich 

(analytical grade). Structures of the dyes are given in Figure 5.1. FluoroFlash silica gel 

(silica bonded phase of Si(CH2CH2C8F17)) 206 was obtained from Fluorous Technologies, 

Inc. De-ionized ultra-filtered water (DIUFW) was purchased from Fisher Scientific.  All 

solvents were of analytical grade.  
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Figure 5.1   Hydrocarbon-tagged anthraquinone (Sudan blue II 
[Bis(butylamino)anthraquinone]) (left); and fluorocarbon-tagged anthraquinone 
dye (1-fluoro, 4-pentadecafluoro-1,1-dihydro-octylamino-anthraquinone) 
(right). 
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5.3.2 Synthesis of Mesoporous Silica 

 Functionalized mesoporous silica was synthesized by utilizing a 4:1 molar ratio of TEOS 

to F6H2TES or F8H2TES in aqueous solutions for CTAB and HFOPC templated 

materials.  Non-functionalized materials were synthesized as previously described in 

chapter 3. HFDePC templated materials were synthesized with a 4:1 molar ratio of TEOS 

to F6H2TES or F8H2TES dissolved in a homogeneous ethanol/water solution, where the 

addition of ethanol was used to promote complete dissolution of the fluorinated surfactant 

(HFDePC). Materials synthesis began by first adding the surfactant to de-ionized ultra-

filtered water (DIUFW) or a mixture of DIUFW/ethanol and stirring for 5 minutes.  

Concentrated aqueous ammonia (catalyst, 28 - 30% solution) was then added with 

continuous stirring of the mixture for 10 minutes, after which TEOS or a mixture of 

TEOS and F6H2TES or F8H2TES, in the desired proportions, was slowly added. The 

mixture was aged with stirring at room temperature for 24 hours. The molar ratios of the 
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reactants used in the syntheses were 186 DIUFW: 0.184 CTAB (or 0.082 HFOPC): 3.31 

NH3: 1 TEOS: 0.25 F6H2TES (or F8H2TES) and 136 DIUFW: 64 Ethanol: 0.197 

HFDePC: 10.6 NH3: 1 TEOS: 0.25 F6H2TES (or F8H2TES).  The mixture was vacuum-

filtered after the aging period and dried at 40 ºC for 24 hours. An ethanol/HCl solution of 

150 mL ethanol and 5 g concentrated aqueous HCl was used for the extraction of the 

surfactant. Extraction was accomplished by stirring the dried sample in acidic ethanol for 

24 hours. This extraction process was repeated once. The synthesis procedure is based on 

the room-temperature synthesis of unmodified silica reported by Kumar et al.81 

Synthesized materials were labeled F6H2-CTAB and F8H2-CTAB; F6H2-HFOPC 

and F8H2-HFOPC; and F6H2-HFDePC and F8H2-HFDePC. The naming convention for 

the functionalized silica is the functional group incorporated followed by the template 

used. The prefixes F6H2 and F8H2 correspond to tridecafluoro-1,1,2,2-tetrahydro-octyl 

and heptadecafluoro-1,1,2,2-tetrahydro-decyl functional groups, respectively.  In tables 

and figures, non-functionalized materials were labeled simply as their surfactant 

templates (i.e., CTAB, HFOPC, and HFDePC). 

5.3.3 Materials Characterization 

Nitrogen adsorption measurements were performed using a Micromeritics Tristar 

3000 automated gas adsorption instrument. The materials were degassed at 150 °C using 

flowing nitrogen gas for 4 hours before performing the adsorption analysis. Data from 

nitrogen sorption analysis were analyzed to obtain material surface area, pore volume and 

pore size distribution using αs-plot and the modified BJH method proposed by Kruk, 

Jaroniec and Sayari (KJS).154,179,180
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Fourier Transform Infrared (FTIR) analysis was performed to verify surfactant 

removal and functional group incorporation.  A small amount of synthesized material 

(approximately 1 weight %) was pressed into a pellet with KBr matrix and analyzed 

using a Thermo Nicolet Nexus 470 FT-IR spectrometer.  

Thermogravimetric analysis (TGA) was carried out using a Universal V2.5H TA 

instrument. The materials were analyzed under nitrogen purge with a starting temperature 

of 35 °C and a ramp rate of 10 °C/min to 800 °C. 

Powder X-ray diffraction (XRD) patterns were obtained using a Siemens 5000 

diffractometer operating with CuKα  radiation of wavelength 0.154098 nm and a graphite 

monochromator.  

Transmission electron micrograph (TEM) images of the materials, after surfactant 

extraction, were recorded with a JEOL 2000FX transmission electron microscope. The 

TEM samples were prepared by moving lacey carbon TEM grids (Ted Pella Inc) through 

a powder sample, thereby allowing the smallest particles to be mounted on the grid.  

Morphology of the particles was determined by scanning electron microscopy 

(SEM). Samples were dispersed in ethanol, sonicated for about 15 minutes and mounted 

on the SEM stage. After evaporating the ethanol, the samples were coated with gold by 

sputtering to provide a conductive coating. The samples were analyzed using a Hitachi 

S3200 scanning electron microscope. 

Particle size analysis was performed by dynamic light scattering at 90° using a 

Brookhaven 90Plus particle analyzer. Agglomerated particles, which were larger than the 

limit (3μm) of the Brookhaven 90Plus instrument, were analyzed by laser diffraction 

using a Horiba Partica LA-950 particle size analyzer. The samples were dispersed in 
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ethanol and sonicated for 15 minutes before analysis. Internal sonication and agitation 

was used during particle analysis with the Partica LA-950. 

5.3.4 Partitioning of anthraquinone dyes onto functionalized mesoporous silica 

Partitioning of the anthraquinone dyes was measured between the silica materials 

and standard F-SPE solvents (80 vol% methanol-20 vol% water solution (the 

fluorophobic solvent system) and 100% methanol (a more fluorophilic solvent)). Initial 

dye solution concentrations in the two solvent systems, provided in Table 5.2, range from 

4.27×10-5 mol/L to 1.10×10-4 mol/L. An advantage of the anthraquinone dyes is the 

ability to quantify their concentration in dilute solutions and sparingly soluble solvent 

systems.  Initial solution concentrations were selected based on the solubility limit of the 

dyes in the specific solvent systems.  For the partition analysis, 0.1 g of functionalized 

silica was added to 2 ml of the dye solution.  The adsorption of the dye on the silica 

materials was monitored by the depletion of the dye from solution.  Dye concentration in 

solution was determined from the measured UV-vis absorbance of the FC-dye (475 nm) 

or the HC-dye (595 nm).  Equilibrium partitioning behavior is reported at 96 hours.  

Partitioning behavior from dilute solutions is reported as a partition coefficient, K, 

calculated in units of g/L as Csolid/Cliquid, where Csolid = mols adsorbed/g solid and Cliquid = 

mols/L in solution.  

5.3.5 Fluorous-solid phase extraction (F-SPE) 

F-SPE cartridges were prepared by packing 0.2 g or 0.4 g of sample in a 1 ml 

syringe. Whatman filter paper, placed on the bottom of the syringe prior to loading the 

material, was used as a frit. The packed columns were conditioned with 1 ml of 80 % 

methanol-20 % water solution.   
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The elution of the dyes through a 0.4 g packed column of F8H2 functionalized 

mesoporous silica or commercial silica gel was measured as a function of the solvent 

volume eluted, an approach which resembles a chromatographic separation. A mixture of 

the FC- and HC-tagged dyes was prepared by adding 5 mg of each dye to 2 mL of N,N-

dimethyl formamide.  20 μL of the dye mixture was loaded onto the conditioned 

columns.  The dyes were separated by gradient elution.  The HC-dye (blue dye) was 

eluted with 80% methanol-20% water, followed by 100% methanol to elute the FC-dye 

(orange dye). Fractions of 0.1 mL were taken as the eluent was pushed through the 

column. Each of these 0.1 mL fractions was combined with 1.9 mL of methanol and the 

concentration of the individual dyes in the eluent was determined by UV-vis 

spectroscopy.  The elution solvent was switched to methanol when the recovery of the 

hydrocarbon-tagged dye with additional 80% methanol-20% water solution was not 

observable by UV-vis.   

The separation performance (yield and purity) of fluoro-functionalized 

mesoporous silica and commercially-available silica gel for solid phase extraction was 

determined using vacuum (20 in Hg (67.7 kPa) to 25 in Hg (84.7 kPa)) to draw the eluent 

through the SPE columns. Standard SPE columns are designed such that samples are 

either pulled by vacuum or pushed through the column;234 however, most recent SPE 

columns are mounted on vacuum manifolds and samples drawn by vacuum. 20 μL of the 

dye mixture was loaded onto 0.2 g of the packed material in the conditioned columns.  

Gradient elution of the dyes employed an 80% methanol-20% water solution followed by 

100% methanol. The elution solvent was switched to methanol when the recovery of 

additional HC-dye in 80% methanol-20% water solution was not observable by UV-vis.   
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Solvent volumes of 1.2 mL to 2 mL were used to elute each dye, depending on the solid 

adsorbent.  Each of the two eluted fractions (hydrocarbon phase and fluorocarbon phase) 

was diluted with methanol to a volume of 2 mL for compositional analysis of the dyes by 

UV-vis spectroscopy. 

 

5.4 RESULTS AND DISCUSSION 

Mesoporous materials were synthesized as a function of surfactant template 

(CTAB, HFOPC, or HFDePC) and fluorinated chain length of the silica precursor (F6H2 

or F8H2) using a “one pot” synthesis approach.   Fourier transform infrared spectroscopy 

(FTIR) provides evidence of functional group incorporation and complete surfactant 

removal in the surfactant templated materials (Figure 5.2). Mesoporous silica displays  

peaks characteristic of silica at 466 cm-1, 802 cm-1, 956 cm-1, 1085 cm-1, shoulders at 

1220 cm-1, 1641 cm-1  (-Si-OH stretch) and a broad band peaking at 3451 cm-1 due to 

attached water and silanols.216,235  The peaks at 2856 cm-1 and 2925 cm-1 in the as-

synthesized (unextracted) CTAB template material are due to the characteristic stretching 

of C-H of the hydrocarbon surfactant template. The disappearance of these peaks (Figure 

5.2A), in addition to the disappearance of peaks at 1473 cm-1 (C-H bending) and 1493 

cm-1 (N-C stretching), confirms the complete removal of CTAB.  
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Fluorocarbon functional group incorporation is indicated by the presence of the 

peaks at 1145 cm-1 and 1211 cm-1, which are due to -CF2- vibrations.213 In addition to 

these peaks due to fluorocarbons, the as-synthesized fluoro-surfactant templated materials 

display peaks at 1493 cm-1 and 1416 cm-1, which correspond to pyridine and –CH2– 

bending, respectively.213 These peaks, attributed to the fluorocarbon surfactant, disappear 

after surfactant extraction. There is also a significant decrease in the characteristic 

fluorocarbon peak in all fluorocarbon-functionalized materials after extraction.  The 

exception is F8H2-HFDePC, which shows only a slight decrease in the intensity of the 
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characteristic fluorocarbon peaks. The reduction in the peaks at 1211 cm-1 and 1145 cm-1 

is due to extraction of surfactants in the fluorocarbon template materials and possibly the 

loss of unincorporated fluorous functional precursor. 

TGA was used to quantify the extent of fluorocarbon incorporation in the 

synthesized materials.  The weight loss in the region between 300 °C and 600 °C 

indicates the decomposition of the organic functional group,218 giving the percentage of 

fluorocarbon functional group in the silica material, as illustrated in Figure 5.3.  The 

incorporation of fluorocarbon groups (in mmol/g solid) is reported in Table 5.1.  The 

temperature range for loss of the fluorocarbon group differs with the fluorocarbon chain 

length.  For example, F6H2-HFDePC loses organic functional groups between 300 to 600 

°C, while the decomposition range for F8H2-HFDePC is 400 to 600 °C (Figure 5.3).  The 

trend of increased thermal stability of the longer chain fluorocarbon functionalized 

materials (F8H2 relative to F6H2) was observed for all surfactant templates.   

Increased incorporation of fluorocarbon groups was observed for perfluoro-octyl 

(F6H2) functionalized materials relative to the perfluorodecyl (F8H2) functionalized 

materials for all three surfactant templates. The highest functional group incorporation 

was observed for F8H2-HFDePC (1.20 mmol/g) and F6H2-HFDePC (1.50 mmol/g) (Table 

5.1). The increased incorporation of the fluoro-functional group in the HFDePC 

templated materials may be due to the improved dispersion of precursors in the 

ethanol/water homogeneous solution and possibly better solubilization of functional 

groups in the surfactant micelle core. Although the HFOPC surfactant has a fluorinated 

tail and its chain length is identical to that of the perfluoro-octyl (F6H2) functional group, 

F6H2-HFOPC had the lowest organic content (0.83 mmol/g) in the F6H2 functionalized 
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set of materials. Thus, matching the fluorinated chain length of the surfactant template 

and the functional group did not appear to improve incorporation of the functional group 

in these systems. 
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Figure 5.3: Sample TGA plot of HFDePC, F8H2-HFDePC and F6H2-HFDePC 

 

A comparison of fluoro-functional group incorporation with CTAB and the 

fluorinated surfactant templates suggests that matching the nature of the functional 

group-surfactant tail is not sufficient to predict degree of fluorinated group incorporation.   

The incorporation of fluorinated groups using a hydrocarbon surfactant template, CTAB, 

was similar to or greater than that of HFOPC templated materials.  The mechanism of the 

fluorinated group incorporation may have been the co-aggregation of the fluorinated 

functional precursors in the CTAB micelle.  Due to the much longer chain length of the 

CTAB surfactant template, the functional precursors can only act as co-aggregates for 
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CTAB,199 which may have resulted in higher functional group incorporation. Similarly, 

higher incorporation of F6H2- was achieved in CTAB templated silica relative to n-

C8F17C2H4N(CH3)3
+I-  templated silica at identical direct synthesis conditions.205

Pore structure, pore order, materials textural properties (e.g., surface area, pore 

size) and particle morphology will directly impact the application of these functionalized 

materials to fluorinated separations.  The pore structure and order of the synthesized 

silica material was examined by powder X-ray diffraction.  All CTAB and HFOPC 

template materials have a 2-D hexagonal pore structure, as interpreted from the presence 

of the (100), (110), (200) reflections in the XRD profiles (sample profiles provided in 

Figure 5.4). TEM images (not shown) confirm the hexagonal pore structure of the CTAB 

and HFOPC template materials.    For functionalized materials synthesized with HFDePC 

only one broad reflection is observed in the XRD profile, which suggests the materials 

have disordered pore structure.  High incorporation of a functional group by direct 

synthesis may result in less order in the templated material.23 Thus, the disordered pore 

structure is consistent with the high functional group incorporation for HFDePC 

templated materials, as observed from FTIR and TGA analysis. TEM images of the pore 

structure obtained for HFDePC templated materials reveals particles with spherical 

morphology but no observable pore structure.  However, low contrast due to high 

fluorocarbon incorporation may mask the pore structure.   
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Figure 5.4  Powder X-ray diffraction plots of A) F6H2 functionalized 
B) F8H2 functionalized silica materials. 

 

Nitrogen adsorption analysis provides material total surface area (St) and pore size 

(dp) as a function of the surfactant template / fluoro-functional precursor pair (Table 5.1). 

For all templates, fluorocarbon functionalization decreases the specific surface area 

relative to the non-functionalized materials, consistent with an expected decrease in long-

range pore order.  A decrease in pore size (dp) upon functionalization was also observed. 

This effect is expected, and is attributed to the addition of a bulky functional group in the 

pores and the possible reduction in micellar aggregate size (decrease in headgroup 

repulsion)200 due to functional group incorporation during self-assembly.  The pore size 
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of CTAB and HFOPC templated materials is similar with the incorporation of F8H2 and 

F6H2.  In contrast, the difference in pore size of functionalized materials templated with 

HFDePC (2.03 nm for F6H2; 2.32 nm for F8H2) is significant. The presence of a unimodal 

pore size distribution in CTAB template materials suggests that hydrocarbon and 

fluorocarbon aggregates do not segregate during the templating process. 

 

Table 5.1 Organic content and textural properties of functionalized and non-
functionalized materials   
 

Material Organic Content by 
TGA, mmol/g  

(% Theoretical**) 

St 
m2/g 

dp 
nm 

Dp 
μm 

CTAB - 995 3.67 - 
F6H2-CTAB 1.13 (71%) 568 2.57 1.86 (±0.08) 
F8H2-CTAB 0.57 (40%) 819 2.58 1.45 (±0.07) 
HFOPC - 811 2.60 - 
F6H2-HFOPC 0.83 (52%) 675 2.41 0.77 (±0.10) 
F8H2-HFOPC 0.56 (39%) 444 2.44 1.26 (±0.19) 
HFDePC - 739 2.77 - 
F6H2-HFDePC 1.50 (94%) 803 2.03 2.58 (±0.18) 
F8H2-HFDePC 1.20 (84%) 370 2.32 *22.9(±2.3) 
+FluoroFlash 0.83  525 6.00 40.0-63.0 
*Agglomerated particle size was obtained by laser diffraction. +Data was provided by Fluorous 
Technologies Inc, where organic content was given as 10% carbon loading. **Theoretical organic content is 
based on complete hydrolysis and siloxane bond formation (i.e. 100% yield); 1.60 mmol/g for F6H2 and 
1.43 mmol/g for F8H2. 
 

Aqueous synthesis (CTAB and HFOPC templated materials) results in irregular 

particle morphology (Figure 5.5).  The connectivity of the particles formed by HFOPC 

templating is foam-like and broken (Figure 5.5B). In contrast, spherical particles are 

observed for synthesis in water/ethanol homogeneous medium (HFDePC templated 

materials) (Figure 5.5C).  TEM images confirm the spherical shape of HFDePC 
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templated silica and the irregular shapes of CTAB and HFOPC templated mesoporous 

silica (not shown).  

The spherical particle morphology of F8H2-HFDePC is comparable to other silica 

particles synthesized in ethanol-containing ammonia solutions.91,92 Particle sizes 

determined by dynamic light scattering are consistent with SEM (less than 2 μm) for 

CTAB and HFOPC templated silica (Table 5.1).  The particle size of F8H2-HFDePC is 

between 1 μm – 2 μm from the SEM image. Effective hydrodynamic diameters of 

HFDePC templated silica particles are higher than observed by SEM, approximately by 

an order of magnitude for F8H2-HFDePC, meaning that the particles remain agglomerated 

in ethanol solution after 15 minutes of sonication.  

5.4.1 Silica materials as packing for dyes separation 

The potential to use fluoro-functionalized mesoporous materials for solid phase 

extraction was examined based on the separation of two dyes derived from 

anthraquinone, one containing a fluorinated tail (1-fluoro, 4-pentadecafluoro-1,1-dihydro-

octylamino-anthraquinone (orange dye)) and one containing a hydrocarbon tail 

(Bis(butylamino)anthraquinone (sudan blue II dye)) (Figure 5.1).  Anthraquinones are 

drug components with anti-inflammatory properties and potent anticancer activity,233 and 

represent model fluorous and hydrocarbon tagged systems. This pair of dyes, as well as 

the elution solvent systems, was previously employed to demonstrate F-SPE using 

fluorous-functionalized silica gel.236
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 2 μm

 

Figure 5.5 SEM image of A) F8H2-CTAB B) F8H2-HFOPC and C) F8H2-HFDePC 
 

The separation of the fluorocarbon- and hydrocarbon-tagged dyes on fluoro-

functionalized silica is illustrated in Figure 5.6, which shows the elution of the dyes from 

a column using 80% methanol-20% water (the “fluorophobic” solvent), which elutes the 
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HC-dye (blue) followed by 100% methanol (a more “fluorophilic” solvent), which elutes 

the FC-dye (orange).  A narrower elution band is observed for the functionalized 

mesoporous silica (Figure 5.6C) relative to the commercially available silica particles 

(Figure 5.6B).  The narrow elution band observed for the mesoporous silica materials is 

in agreement with high column efficiencies usually obtained for columns packed with 

less than 5 μm sized monodispersed particles.235 All fluoro-functionalized materials were 

capable of separating the dyes; non-functionalized materials did not provide a separation.  

   

CBA 

 

Figure 5.6 A) Mixture of HC- and FC-tagged anthraqinones loaded on column. Elution 
behavior of HC- and FC-tagged anthraquinone (blue and orange dyes, respectively) on B) 
fluoroflash fluoro-functionalized silica gel and, C) F8H2- HFDePC column. 
 

Elution profiles on 0.4 g packed columns were used to quantify the enhanced 

potential of fluorous-functionalized mesoporous silica for the separation of fluorous-

tagged molecules, as suggested by the narrow elution bands observed in Figure 5.6.  

Elution profiles of the dyes (measured as the dye absorbance relative to the cumulative 

solvent elution volume) are shown in Figure 5.7 for elution with an 80% methanol-20% 

water solution followed by pure methanol. The peak width at half height (wh), calculated 

based on Gaussian distribution, is used to quantify the broadness of the elution band.  
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Narrow elution peaks were observed for the F8H2-HFDePC packed column, while peaks 

observed for F8H2-CTAB materials were slightly wider.  For both dyes, the largest values 

of wh were measured for the functionalized silica gel.  In particular, significant tailing in 

the hydrocarbon dye peak was observed.  The small pore size and particle size of the 

mesoporous silica is expected to contribute to the narrowness of these elution bands. 237 

In addition to particle morphology, the degree of fluoro-functionalization, the 

accessibility of these functional groups to the dyes, and the surface area of the sorbent 

materials are expected to contribute to differences in elution behavior for the 

functionalized silica packing material.  

The relative affinity of the dyes for the fluoro-functionalized mesoporous 

materials and the commercial fluoro-functionalized silica gel can be described by their 

equilibrium partitioning in the elution solvent systems (Table 5.2).  Fluorophilic 

interactions, which are more lipophobic and hydrophobic than hydrocarbon interactions, 

are evident from the partition behavior between the FC-dye and the FC-functionalized 

material.  Both dyes are relatively soluble in 100% methanol, resulting in low partition 

values.    However, the FC-dye has more affinity for the fluoro-functionalized surface 

than the HC-dye. The longer chain functional group (F8H2-) results in increased 

fluorophilic behavior (increased FC-dye partition coefficients) relative to the shorter 

chain fluorous functionalized (F6H2-) mesoporous materials for both hydrocarbon and 

fluorocarbon templated mesoporous materials. 
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Pore size or pore blocking may play a role in the increased FC-dye affinity for F6H2-

CTAB (2.57 nm pore size) relative to F6H2-HFDePC (2.03 nm pore size), which has a 

significantly higher FC-content.  The largest dimension of the FC-dye is estimated to be 

1.6 nm (estimated using Molecular Modeling Pro Plus).  The high partition values 

observed for commercial silica gel may be attributed to its much larger pore size (6 nm); 

its surface area and FC content are comparable to those of the synthesized mesoporous 

materials.  

   

Table 5.2 Partition behavior of HC- and FC- dyes in eluent solvents  

 HC-dye  HC-dye  FC-dye FC-dye 
Solvent 100% MeOH 80% methanol-

20% water 
100% MeOH 80% methanol-

20% water 
Initial Dye 

Concentration 
5.86×10-5mol/L 

 
5.32×10-5mol/L 

 
1.10×10-4mol/L 

 
4.27×10-5mol/L 

 
Material Partition Coefficient, K, (mol/g)/(mol/L) 
F6H2-CTAB 0.65 (±0.03) 1.10 (±0.39) 0.72 (±0.19) 10.5 (±0.2) 
F8H2-CTAB 0.43 (±0.03) 0.75 (±0.09) 1.64 (±0.38) 13.6 (±3.2) 
F6H2-HFOPC 0.44 (±0.05) 0.73 (±0.27) 0.80 (±0.09) 6.00 (±0.31) 
F8H2-HFOPC 0.61 (±0.05) 0.92 (±0.26) 1.80 (±0.59) 10.1 (±3.3) 
F6H2-HFDePC 0.85 (±0.08) 0.74 (±0.03) 0.43 (±0.15) 5.30 (±0.49) 
F8H2-HFDePC 0.42 (±0.07) 0.74 (±0.12) 1.10 (±0.32) 14.9 (±0.6) 
FluoroFlash 1.70 (±0.33) 1.20 (±0.10) 1.70 (±0.10) 17.2 (±2.1) 

 

Sorbent materials used for solid phase extraction typically have particle size 

ranges of 40 – 60 μm, a pore size of 5 – 50 nm and surface area of 50 – 500 m2/g.232 The 

particle size and pore sizes of all the synthesized materials fall below the usual range of 

sorbent properties for SPE.  Vacuum (approximately 20 mm Hg for 75 mm × 5 mm i.d. 

column with 12 to 20 mm packing height, depending on material) was required to elute 

the solvents through the mesoporous silica packing material.  The HFOPC template 

functionalized silica was not an appropriate SPE packing material because of the large 
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pressure drop required to elute solvent through the column. The irregular particle 

structure of materials templated with HFOPC (Figure 5.5B) may have contributed to the 

increased pressure drop.   

The F-SPE separation performance (yield and purity) using mesoporous silica was 

analyzed using 0.2 g of materials packed in syringe cartridges (Table 5.3). The 

performance of the fluoro-functionalized silica templated with CTAB and HFDePC 

templates was comparable to the commercial fluorocarbon functionalized silica gel 

(Table 5.3). FC-dye yields for F8H2-HFDePC, F8H2-CTAB and FluoroFlash silica gel 

were greater than 80%.  All FC-dye eluents had purities greater than 98%. The affinity of 

the functionalized silica materials for fluoro-tagged species may hinder its recovery, 

where methanol may not be sufficiently “fluorophilic” to efficiently remove the FC-

tagged molecule.   In contrast, the HC-dye has minimal affinity for the fluoro-

functionalized silica and is essentially washed off the column, resulting in high yields.   

 
Table 5.3 Anthraquinone dye separation by fluorous-solid phase extraction (F-SPE) 
using a 0.2 g packed column    
 
 Elution of FC-Dye Elution of HC-Dye 
Sample Yield Purity Yield Purity 
F6H2-CTAB 79.2(± 0.4) 99.6(± 0.3) 89.9(± 3.2) 85.0(± 3.3)
F8H2-CTAB 82.4(± 3.0) 98.3(± 0.3) 97.3(± 1.2) 90.6(± 4.3)
F6H2-HFDePC 76.7(± 1.1) 98.9(± 1.1) 93.0(± 0.6) 91.7(± 2.8)
F8H2-HFDePC 87.8(± 5.8) 99.3(± 0.4) 97.0(± 2.8) 97.4(± 1.1)
Fluoroflash Silica Gel 81.4(± 5.4) 98.9(± 0.3) 93.2(± 1.9) 85.7(± 0.8)
 
 
The lower yield of the FC-dye and the associated lower purity of the HC-dye eluent on 

F6H2 functionalized mesoporous silica are consistent with its lower affinity for the FC-

dye.  Separation using the functionalized silica gel resulted in lower purity of the HC-dye 
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eluent relative to the F8H2-HFDePC silica packing material, and comparable to that of 

F8H2-CTAB and F6H2 silica materials.  

 
5.5 CONCLUSIONS 
 
The ability to use fluorinated surfactant templating to synthesize ordered silica with a 

high degree of long chain fluorocarbon incorporation, appropriate for fluorous 

separations, was demonstrated. Fluorocarbon functionalized mesoporous silica materials 

have been synthesized by direct (‘one-pot’) synthesis using a hydrocarbon surfactant 

template, CTAB, and cationic fluorocarbon surfactant templates, HFOPC and HFDePC. 

Matching the fluorinated functional precursor with a fluorinated surfactant did not result 

in improved incorporation.  Also, there was no evidence of the segregation of the 

hydrocarbon surfactant and the fluorinated precursors during the synthesis of fluoro-

functionalized CTAB templated mesoporous silica. Similarly, a match between the FC-

chain length of the precursor and the surfactant (i.e., F6H2-HFOPC material) was not 

necessary to achieve high fluorocarbon incorporation.  The highest degree of 

fluorocarbon incorporation in the mesoporous material was achieved using a homogenous 

ethanol/water solution synthesis, which was required to achieve order in HFDePC 

templated materials.  Synthesis in an ethanol/water medium also resulted in regularly-

shaped spherical particles that were appropriate as packing materials for F-SPE.  The 

partitioning behavior of the FC-dye and HC-dye in the elution solvent systems is 

consistent with the degree of functional group incorporation and the pore size of the 

functionalized silica materials. The separation yield and purity of HC-tagged and FC-

tagged molecules obtained using mesoporous silica is comparable to that of commercially 

available fluoro-functionalized silica gel. However, the narrow separation band observed 
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in mesoporous silica, and the ability to tailor its pore size and functionality suggest that 

fluorocarbon functionalized nanoporous silica materials have great potential for 

application in F-SPE. 
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CHAPTER 6 

 

DIRECT SYNTHESIS AND ACCESSIBILITY OF AMINE-FUNCTIONALIZED 

NANOPOROUS SILICA  

 

6.1 SUMMARY 

3-Aminopropyl (AP) functionalized silica is synthesized by the ‘one-pot’ (direct) 

synthesis method using cationic fluorinated surfactants (C6F13C2H2NC5H5Cl (HFOPC) 

and C8F17C2H2NC5H5Cl (HFDePC)) as templates.  The degree of amine incorporation 

and material properties (pore structure and order, pore size and surface area) synthesized 

using a 10:1 molar ratio of tetraethoxysilane (TEOS) to amine functionalized silica 

precursor (3-aminopropyltriethoxysilane, APTES) are compared to silica synthesized 

with a traditional hydrocarbon surfactant template, C16H33N(CH3)3Br (CTAB).  3-

Aminopropyl silica synthesized with CTAB has 2-D hexagonal pore structure; the order 

and surface area decreases for the fluorinated surfactant templated material. Greater 

amine incorporation is also achieved in the CTAB templated material (1.44 mmol/g) 

relative to the fluorinated surfactant templates, where the lowest amine incorporation is 

measured for the longer chain fluorinated surfactant (0.92 mmol/g).   

CO2 sorption and fluorescein isothiocyanate incorporation are used to probe the 

accessibility and surface properties of the amine functionalized silica.  Due to the 

significant reduction of total surface area with amine functionalization (reduction by as 

much as 635 m2/g for HFOPC templated silica when compared to non-functionalized 

silica), similar levels of CO2 sorption are observed per gram of material for 
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functionalized and non-functionalized material.    However, the interaction of CO2 with 

accessible amines results in higher CO2 sorbed per surface area in amine functionalized 

silica than non-functionalized silica.  For example, amine-functionalized silica templated 

with HFDePC captures 83.2 (± 2.3) μg/m2 of pure CO2 at 30 °C as compared to 32.0 (± 

0.1) μg/m2 for HFDePC templated silica. Although, amine-functionalized silica 

templated with HFDePC has the lowest amine incorporated, the material adsorbs more 

CO2 per surface area than amine-functionalized silica templated with CTAB (despite 

higher amine incorporation). The role of the non-functionalized silica surface in CO2 

sorption is highlighted by extending the direct synthesis technique to “CO2-philic” 

fluorocarbon and fluorocarbon-amine bi-functionalized silica material, which display 

reduced affinity for CO2 adsorption compared to non-functionalized and 3-aminopropyl 

functionalized (AP-) silica. 

 

6.2 INTRODUCTION 

 Synthesis of organic functionalized nanoporous silica is an active research area 

because of the widespread application of these high surface area materials in sensing, 

catalysis and separation. Nanoporous silica is characterized by very large surface areas, 

large pore volumes and narrow pore size distributions. The pore size and structure can be 

tailored for specific applications through the choice of pore template and synthesis 

conditions. Surfactant templated synthesis of porous silica is based on the sol-gel process, 

in which precursors such as alkoxysilanes are hydrolyzed and condensed in the presence 

of a structure directing agent (template).  Based on the synthesis conditions, the porous 
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silica obtained can possess ordered pore structures such as hexagonal, cubic, and lamellar 

or may have disordered pore structure.76

Since the discovery of the M41S family of materials5 various organic functional 

groups have been incorporated into nanoporous silica, by means of post-synthesis 

grafting and direct co-condensation21. Direct synthesis is the co-condensation of a 

mixture of tetraalkoxysilane and organic functionalized alkoxysilane, which yields 

functionalized mesoporous silica. Synthesis of functionalized nanoporous silica by co-

condensation results in high functional group incorporation22 and uniform distribution of 

functional groups in the material.  

Amine functionalized silica have been widely synthesized; the high reactivity of 

amines provide varied applications for these materials. Nanoporous silica functionalized 

with amine groups have been applied in metal removal from environmental waste182,233, 

gas separation237-239, chromatography240 and as catalysts241. Presently, the synthesis of 

amine functionalized mesoporous silica mainly utilizes traditional hydrocarbon cationic 

surfactants (e.g. CTAB)6, anionic surfactant (e.g. sodium dodecylsulfate, SDS)7 or non-

ionic surfactants8 and block co-polymers9 as templates.  Fluorinated surfactant templates 

for amine functionalized materials are yet to be investigated. Fluorinated surfactants 

possess higher hydrophobicity than hydrocarbon surfactants, which results in lower 

surface tensions and critical micelle concentrations.51 These properties allow for the 

formation of small micelles, and a broad range of nanoscale self assembled 

structures53,171 that are more stable, better organized and more rigid172 than their 

hydrocarbon analogues.  
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Cationic fluorinated surfactants (a series of perfluoroalkylpyridinium chloride) 

have recently been demonstrated as templates for the synthesis of nanoporous silica10,12-15 

with varied particle morphology (irregular, spherical, elongated) and pore structures 

(disordered, hexagonal, mesh phase). The morphology and pore structure are a function 

of synthesis conditions, surfactant structure and chain length. The high hydrophobicity of 

fluorocarbon materials may allow better incorporation of hydrophobic functional groups 

during direct synthesis. Our research team has investigated the direct synthesis of 

vinyl181, perfluoro-octyl, n-octyl, perfluoro-decyl and n-decyl functionalized nanoporous 

silica using fluorinated surfactant templates (HFOPC and HFDePC).242 The type of 

functional group (hydrocarbon or fluorocarbon) and functional group chain length affect 

pore size, order and surface area of the functionalized silica. The incorporation of a vinyl 

group, which is short and is therefore incorporated in the palisade region of the surfactant 

micelle,  led to substantial decrease in pore size relative to the non-functionalized silica, 

while maintaining high surface area.181 In contrast, minimal pore size reduction was 

observed when fluorocarbon and hydrocarbon silica precursors were incorporated in 

templated silica in the presence of cationic fluorinated and hydrocarbon surfactants.241  

These longer chain tails (perfluoro-octyl, n-octyl, perfluoro-decyl, n-decyl) alkoxysilane 

precursors most likely acted as a co-surfactant, inserting directly into the micelle during 

self-assembly.69 This study examines the incorporation of a hydrophilic reactive 

functional group (amine) during the templating of silica by fluorinated surfactants.   

This study uses CO2 sorption, as well as the reactivity of a fluorescent probe 

molecule, to determine the accessibility and surface properties of amine functionalized 
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silica. Amine groups react reversibly with CO2, forming carbamate in the absence of 

water (Equation 6.1) and bicarbonate (or carbonate) if water is present (Equation 6.2).242

CO2 + 2RNH2 ↔ RNHCOO- + RNH3
+                                              (Equation 6.1) 

CO2 + H2O + RNH2 ↔ RNH3
+ + HCO3

-                                            (Equation 6.2) 

The reaction of CO2 and amines favors CO2 capture and storage, an approach used in 

industrial plants to clean flue gases and also by the natural gas industry for the removal of 

acidic gases (e.g., CO2 and H2S) from crude natural gas.238 Commercial CO2 capture 

techniques employ liquid alkanolamines (i.e., monoethanolamine (MEA), diethanolamine 

(DEA), methyldiethanolamine (MDEA), and triethanolamine (TEA)) in absorption-

stripping processes.244 The drawback to this process is the high energy cost required 

during solvent regeneration and equipment replacement due to corrosion.245-247 Use of 

solid adsorbents for CO2 capture and storage may provide an efficient, cost effective 

alternative since the adsorbents are regenerated with minimal energy consumption. 

Nanoporous ceramics (e.g. silica) are of particular interest as an adsorbent for CO2 

capture because of their very large surface areas, large pore volumes, narrow pore size 

distributions and numerous adsorption/reactive sites that can be introduced by 

functionalization.248 Amine incorporated porous silicas have been investigated for CO2 

capture from gas streams of varied CO2 compositions, a range of system temperatures, 

and in the presence and absence of moisture.238,249,250 Metal (e.g. Al, Fe and Cu) 

incorporated silica has also been proposed for CO2 capture.252 CO2 separation utilizing 

ceramic membranes (e.g. TiO2 and γ-Al2O3) functionalized with fluoro-silanes253 have 

been investigated. CO2 exhibited a permeability greater than 20×10-14 mmol m-1 sec-1 Pa-1 

compared to 0.28 ×10-14 mmol m-1 sec-1 Pa-1 for N2.253 The high CO2 permeability in the 
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fluoro-silane grafted TiO2 is suggested to be due to solubility-diffusion transfer 

mechanism as a result of the CO2-philic property of fluorocarbons.252 

In this chapter we describe the direct synthesis and accessibility evaluation (by 

fluorescent molecule (FITC) reaction and CO2 capture) of 3-aminopropyl functionalized 

mesoporous silica. The degree of amine incorporation and materials properties are 

investigated as a function of type of surfactant template (hydrocarbon or fluorinated) and 

synthesis conditions (addition of ethanol). We also test the hypothesis that incorporating 

a hydrophobic functional group, a fluorocarbon, in addition to the reactive amine group 

in the silica will minimize non-specific surface interactions, isolating the effect of the 

amine in further application of the functionalized silica.  Thus, the direct synthesis and 

amine accessibility of bi-functionalized (3-aminopropyl and tridecafluoro-1,1,2,2-

tetrahydrooctyl) nanoporous silica is also investigated. 

6.3 MATERIALS AND METHODS 

Tetraethoxysilane (TEOS) with purity of 99%, 3-aminopropyltriethoxysilane 

(APTES, 95% purity) and tridecafluoro-1,1,2,2-tetrahydro-octyltriethoxysilane 

(F6H2TES, 95% purity) were purchased from Gelest Inc. CTAB (Figure 4.2) was 

obtained from Sigma with 99% purity. The cationic fluorinated surfactants templates 

used are C6F13C2H4C5H5NCl (tridecafluoro-1,1,2,2-tetrahydro-octyl pyridinium chloride) 

and C8F17C2H4C5H5NCl (heptadecafluoro-1,1,2,2-tetrahydro-decyl pyridinium chloride), 

labeled HFOPC and HFDePC, respectively (Figure 4.2). The surfactants were 

synthesized as previously described26. De-ionized ultra-filtered water (DIUFW) was 

purchased from Fisher Scientific.  All solvents were analytical grade.  
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In tables and figures, non-functionalized materials were labeled simply as their 

surfactant templates (i.e., CTAB, HFOPC, and HFDePC).  CTAB-templated material is 

commonly referred to as MCM-41 for hexagonal pore structured silica. The 3-

aminopropyl functionalized mesoporous silica was synthesized using a 10:1 molar ratio 

of TEOS to APTES. The 3-aminopropyl functional materials are labeled with the prefix 

AP and the surfactant used: AP-CTAB, AP-HFOPC and AP-HFDePC. HFDePC 

templated materials were synthesized in a homogeneous water/ethanol solution, where 

the addition of ethanol facilitated surfactant dissolution. The bi-functionalized silica 

materials were synthesized by utilizing a 10:2.5:1 molar ratio of TEOS: F6H2TES: 

APTES and labeled as AP-F6H2-CTAB, AP-F6H2-HFOPC and AP-F6H2-HFDePC.  

The materials were prepared by first adding the surfactant to de-ionized ultra-

filtered water and stirring the mixture for 5 minutes. NH4OH (catalyst, 28 - 30% solution 

from Malinckrodt) was then added with continuous stirring of the mixture for another 10 

minutes, after which TEOS (and F6H2TES) was slowly added.  For aminopropyl 

functionalized silica, APTES was added to this mixture after 20 seconds. APTES 

hydrolyzes faster than TEOS and F6H2TES since it is more soluble in aqueous medium, 

thus a short delay time is required before adding APTES to the solution.   The non-

functionalized silica materials are synthesized using the identical procedure without 

addition of functionalized precursor. The mixture was left to age under stirring at room 

temperature for 24 hours. The molar ratio of the reactants used in the synthesis was 186 

DIUFW: 0.184 CTAB (or 0.082 HFOPC): 5.73 NH4OH:1 TEOS and 0.1 APTES or (0.1 

APTES: 0.25 F6H2TES) (for functionalized silica) and 136 DIW: 64 Ethanol: 0.197 

HFDePC: 18.4 NH4OH:1 TEOS and 0.1 APTES or (0.1 APTES: 0.25 F6H2TES) (for 
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functionalized silica). The synthesis procedure is based on the room-temperature 

synthesis of Kumar et al.81 The mixture was vacuum-filtered after the aging period and 

left to dry in a vacuum oven at 40oC for 24 hours. An ethanol/HCl solution of 150 ml 

ethanol and 5 g aqueous HCl was used for the extraction of the surfactant for each batch 

of materials synthesized. Extraction was accomplished by stirring the dried sample in 

acidic ethanol for 24 hours. This extraction process was repeated once.         

 Materials Characterization 

 Nitrogen adsorption measurements were performed using a Micromeritics Tristar 

3000. The materials were degassed at 150oC under flowing nitrogen for 4 hours before 

performing the adsorption analysis.  

Fourier Transform Infrared (FTIR) analysis was performed to verify surfactant 

removal and functional group incorporation.  A small amount (approximately 1 wt%) of 

the silica sample was pressed with KBr matrix and analyzed using a Thermo Nicolet 

Nexus 470 FT-IR.  

Thermal stability analysis of the functionalized silica was performed by 

thermogravimetric analysis (TGA) using a Universal V2.5H TA instrument. The 

materials were analyzed under nitrogen purge with a starting temperature of 35 oC and 10 

oC/min ramp rate to 800 oC. The corresponding carbon, hydrogen and nitrogen elemental 

analysis was performed using LECO CHN-2000 elemental analyzer under flowing 

oxygen. 

Powder X-ray diffraction (XRD) patterns were obtained using a Siemens 5000 

diffractometer operating with CuKα  radiation of wavelength 1.54098 Å and a graphite 

monochromator.  
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Transmission electron micrograph (TEM) images of the materials, after surfactant 

extraction, were observed and recorded with a JEOL 2000FX transmission electron 

microscope. The TEM samples were prepared by moving the lacey carbon TEM grid 

(Ted Pella Inc) through some of the dry powder sample thereby allowing the smallest 

particles to be mounted on the grid.  

The accessibility of the aminopropyl groups was determined qualitatively through 

the attachment of fluorescein isothiocyanate (FITC) to the aminopropyl group (Scheme 

6.1), resulting in a fluorescent material.  The silica sample (0.2 g) was added to a 10 ml 

solution of FITC in an ethanol/NH4OH mixture (6.89 × 10-3 mmol/L concentration of 

FITC) of pH 9. The mixture was stirred overnight, vacuum filtered and washed with more 

ethanol for 24 hours to remove unreacted FITC. The samples were mounted on glass 

slide and viewed with a Leica TCS NT SP Laser Scanning Confocal Microscope to 

confirm FITC incorporation by observing the fluorescence of FITC using an excitation 

wavelength range of 400 – 500 nm. An HP 8453 UV-vis spectrometer was used to 

quantify the rate of incorporation of FITC into the functionalized silica by observing the 

depletion of FITC in ethanol/NH4OH solution. 10 mg of silica sample was added to 1 ml 

FITC/ethanol/NH4OH solution, resulting in an initial absorbance of approximately 1 at a 

wavelength of 502 nm. The time dependent depletion of FTIC from solution was 

observed over a 6 hour period. The solution was centrifuged for 15 to 20 min before each 

UV absorbance reading. 

CO2 sorption analysis was performed using a Hi-Res TGA 2950 

thermogravimetric analyzer (TA Instruments).  Silica samples of about 7 – 14 mg were 

placed in a platinum pan and loaded onto the TGA instrument. Initially, the temperature 
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was ramped to 110 °C in the presence of N2 gas flowing at 120 ml/s to remove adsorbed 

moisture.  The system was maintained at these conditions for 5 minutes and then ramped 

to the desired temperature (30 °C or 50 °C).  The gas was then switched to CO2 (99% 

purity) and the system temperature was maintained until CO2 adsorption was constant 

(approximately 20 minutes).  

 

O OOH

N
C

S

COOH +   ≡Si-(CH2)3-NH2 →

O OOH

NH

COOH

C S

HN CH2 CH2 CH2 Si

Scheme 6.1: Reaction of fluorescein isothiocyanate (FITC) with 3-aminopropyl functionalized 
silica 

FITC 

3-aminopropyl  
functionalized silica 

 

 

FTIR analyses of the CO2 adsorbed silica samples were performed following CO2 

adsorption to confirm the reaction of CO2 with the amine group. Approximately 15 

minutes after the samples were taken out of the TGA, a small amount (approximately 1 

wt%) was pressed with KBr matrix and analyzed using a Thermo Nicolet Nexus 470 FT-

IR. 

 

6.4 RESULTS AND DISCUSSION 

The incorporation of 3-aminopropyl functionality in mesoporous silica by direct 

synthesis is demonstrated for CTAB, HFOPC, and HFDePC templated materials. 
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Materials textural properties (i.e., pore order, pore size, pore volume and surface area) are 

compared for functionalized and non-functionalized materials using XRD and N2 

adsorption analysis.  FTIR analysis provides a qualitative description of amine group 

incorporation, while CHN elemental analysis of the materials is used to quantify the 

degree of 3-aminopropyl incorporation. The accessibility of the incorporated amines is 

examined through the reaction of a fluorescent probe with the amine functional group.  

CO2 sorption serves as both a probe of the accessibility of the amine groups and the 

surface properties of the materials, as well as an example of the potential application of 

these amine-functionalized materials to CO2 capture.  The materials properties of 

fluorocarbon (F6H2) functionalized silica are described elsewhere,242 but the probing of 

their surface properties by CO2 sorption is presented here with results for amine-

functionalized and bi-functionalized (amine-fluorocarbon) mesoporous silica. 

6.4.1 Chemical Analysis of Functional Group Incorporation 

Fourier Transform Infrared Spectroscopy (FTIR) analysis, performed on the 

functionalized and non-functionalized materials, demonstrates successful removal of 

surfactant templates and also provides evidence of functional group incorporation (Figure 

6.1).  The unextracted CTAB templated material (AP-CTAB-A; suffix A denotes 

unextracted material) displays peaks at ∼2850 cm-1 (symmetric stretching of –CH2–) and 

∼2920 cm-1 (anti-symmetric stretching of –CH2–), due to the presence of CTAB 

surfactant and the incorporated 3-aminopropyl group (Figure 6.1A). These peaks 

completely disappear in the FTIR profile of non-functionalized silica (CTAB) and are 

greatly reduced in that of AP-CTAB. In the fluorocarbon surfactant templated amine 

functionalized silica materials small peaks are evident at ∼2850 cm-1 and ∼2920 cm-1 
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before and after extraction (Figure 6.1B). The peak due to symmetric stretching of –CF2– 

observed at ∼1145cm-1 in unextracted silica (AP-HFOPC-A) is attributed to the presence 

of fluoro-surfactant template, and disappears after surfactant extraction (Figure 6.1B).  

 

 
Figure 6.1: FTIR plots of A) CTAB templated AP- silica materials; B) HFOPC 
templated AP-silica materials; C) HFDePC templated AP-F6H2-silica and D) AP-

3600 2400 1200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
B

AP-HFOPC

AP-HFOPC-A

HFOPC

A
bs

or
ba

nc
e

Wavenumber, cm-1
3600 2400 1200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 A

AP-CTAB

AP-CTAB-A

CTAB

A
bs

or
ba

nc
e

Wavenumber, cm-1

3000 2500 2000 1500

 

 

16
27

28
50

19
86

18
74

15
20

29
27

28
12

14
88

14
07

D

AP-HFDePC

N
or

m
al

iz
ed

 A
bs

or
ba

nc
e

Wavenumber, cm-1

1800 1200 600
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

AP-Rf
6
h

2
-HFDePC

AP-Rf6h2-HFDePC-A

HFDePC

C

 

A
bs

or
ba

nc
e

Wavenumber, cm-1

AP-F6H2 

AP-F6H2 

  120



HFDePC.  The suffix –A denotes unextracted samples (samples containing the surfactant 
template).   

 

In the bi-functionalized silica the peaks at 1145 cm-1 and 1211 cm-1 (all due to –

CF2– vibrations; Figure 6.1C) are still present after surfactant extraction and are assigned 

to the incorporated fluorocarbon functional group. A magnified image of the FTIR 

reflections observed for AP-HFDePC in the range of 1250 cm-1 to 3050 cm-1 is provided 

in Figure 6.1D. This figure highlights the peaks due to the presence of 3-aminopropyl 

group:  the H–C–H scissoring vibration (1407 cm-1, ∼1488 cm-1), the N-H or H-C-H bend 

(1520 cm-1), and the H–C–H asymmetric and symmetric stretch (triple peaks observed at 

∼2812 cm-1 2850 cm-1  and ∼2927 cm-1). These peaks were also observed for AP-CTAB 

and AP-HFOPC. Characteristic silica peaks are observed in both the functionalized and 

non-functionalized materials (Figure 6.1). These peaks appear at 460 cm-1, 1100 cm-1 and 

as a shoulder at 1200 cm-1 (Si-O-Si vibrations)), at 950 cm-1 (Si-OH stretch), and as 

peaks due to adsorbed water (1650 cm-1) and O-H stretching (due to silanols (≡Si-OH) 

and adsorbed water) at 3400 cm-1. 214,253   

The thermal stability of the 3-aminopropyl functionalized silica was determined 

by TGA.  When increasing the temperature from 35 oC to 800 oC at 10 oC/min, all the 

materials show an initial weight loss at temperatures less than 150 oC (shown in Figure 

6.2 for AP-HFDePC and AP-F6H2-HFDePC).  This is due to the loss of water and solvent 

in the materials. Further weight loss is observed between 150 oC and 300 oC and is 

attributed to the condensation of available silanols.213 Loss of material in the temperature 

range of 300 oC to 800 oC corresponds to the degradation of the 3-aminopropyl group in 
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AP- materials or the combined decomposition of 3-aminopropyl and perfluoro-octyl 

groups in the bi-functionalized silica materials.213   

Elemental analyses of the samples suggest traces of nitrogen (N) present in the 

non-functionalized silica (Table 6.1). This contribution is most likely from residual 

surfactant, and is estimated to be 5 – 10% of the nitrogen observed in the amine-

functionalized samples. Analyses of the 3-aminopropyl functionalized silica show that 

AP-CTAB has the highest incorporation of elemental N (i.e., 3-aminopropyl group; 

corresponding to a maximum incorporation of 1.44 mmol/g). Surprisingly, lower amine 

content is observed in AP-HFDePC (0.92 mmol/g), which was synthesized in 

homogeneous water/ethanol solution. Previous investigation have shown that 

fluorocarbon and hydrocarbon functionalized silica synthesized using HFDePC template 

in homogeneous water/ethanol solution has a higher functional group incorporation than 

CTAB and HFOPC templates.181,242 The amount of amine incorporation in AP-HFDePC 

(0.92 mmol/g) is similar to that of AP-HFOPC (1.04 mmol/g). In the amine 

functionalized silica, the measured amine contents are similar to (CTAB template) or 

lower than (fluorocarbon surfactant template) the theoretical aminopropyl content based 

on the ratio of TEOS:APTES used in the direct synthesis of the materials (1.39 mmol/g). 

This theoretical organic content is based on complete hydrolysis and siloxane bond 

formation (i.e., 100% yield). 

The theoretical amine content in the bi-functionalized silica (0.58 mmol/g) is 

lower than the measured values for AP-F6H2-CTAB (0.63 mmol/g) and AP-F6H2-HFOPC 

(0.68 mmol/g). This is possibly due to residual surfactants. Bi-functionalized material 

synthesized in ethanol/water (AP-F6H2-HFDePC) has the lowest amine incorporation of 
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the bi-functional materials similar to the trend observed in the amine functionalized 

silica. 

 

Figure 6.2: TGA plot of A) HFDePC B) AP-HFDePC and C) AP-F6H2-HFDePC 
 
 
Table 6.1 Elemental nitrogen analysis of the non-functionalized and amine-
functionalized material  

*Standard deviations in parenthesis are based on duplicated analyses 

 

Sample Theoretical Nitrogen 
Content, mmol/g 

Nitrogen content from  
Elemental Analysis 

mmol/g* 
CTAB 0.11 (±0.01) 
HFOPC 0.11 (±0.01) 
HFDePC 

 
 

0.05 (±0.01) 
AP-CTAB  1.44 (±0.01) 
AP-HFOPC  1.39 1.04 (±0.02) 
AP-HFDePC  0.92 (±0.01) 
AP-F6H2-CTAB 0.63 (±0.01) 
AP- F6H2-HFOPC  0.68 (±0.02) 
AP- F6H2-HFDePC 
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6.4.2 Pore Structure, Size, and Order of Synthesized Materials.   

Powder X-ray diffraction was performed to investigate the pore structure and 

order of the materials following surfactant extraction. 2-D hexagonal pore structure was 

observed for all the non-functionalized materials (CTAB, HFOPC and HFDePC), as 

interpreted from the presence of (100), (110) and (200) reflections (Figure 6.3). CTAB-

templated materials maintain their well ordered 2-D structures during the incorporation of 

amines by direct synthesis, as indicated by the presence of the characteristic (100), (110) 

and (200) reflections (Figure 6.3A). Transmission electron microscopy (TEM) images of 

AP-CTAB confirm a 2-D hexagonal pore structure (observed as uniform channels in 

Figure 6.4A). In contrast, XRD of the 3-aminopropyl silica synthesized using the 

fluorinated templates (AP-HFOPC and AP-HFDePC) resulted in one broad (100) 

reflection.  Corresponding TEM images (Figures 6.4B and 6.4C) show cylindrical pores 

with no apparent order. The pores in the TEM image appear interconnected and 

wormhole-like.  

The XRD patterns and TEM images suggest differences in material properties due 

to synthesis in a water/ethanol solution.  The XRD pattern of AP-HFDePC has a more 

intense (100) reflection than that of AP-HFOPC, hence AP-HFDePC could possess 

regions of worm-like pore structure and 2-D hexagonal ordered pore structure. The TEM 

image of AP-HFDePC (Figure 6.4C) displays particles of spherical morphology, which is 

characteristic of materials synthesized in homogeneous water/ethanol solution. The high 

solubility of the precursor in water/ethanol synthesis medium  promotes good dispersion 

and controlled precipitation of small oligomers, which contributes to the formation of 

particles with spherical morphology.91,220
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Figure 6.3 Powder X-ray diffraction plots of non-functionalized, amine-functionalized, 
and bi-functionalized (amine and fluorocarbon) silica materials templated with A) CTAB; 
B) HFOPC; and C) HFDePC. 
 

The degree of order in the silica mesostructure is dependent on the effect of 

incorporated organic group on surfactant assembly and relative condensation of silica 

around micelles.254 The self assembly of the 3-aminopropyltriethoxysilane ((C2H5O)3Si-

C3H6-NH2)  with the cationic surfactants does not favor incorporation into the surfactant 

micelles255 as with hydrophobic functionalized silanes. However, the presence of the -

NH2 group (uncharged in basic medium)256 in the functionalized precursor can allow the 

3-aminopropyl chain to be randomly oriented, even becoming part of the silica matrix254 

which might lead to a reduction in long-range order.  
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Figure 6.4: Sample TEM images of A) AP-CTAB B) AP-HFOPC C) AP-HFDePC D) 
AP-F6H2-CTAB E) AP-F6H2-HFOPC and F) AP-F6H2-HFDePC. 

 

The effect of the self-assembly of 3-aminopropyl precursor with the surfactants is 

more pronounced in the presence of the fluorinated surfactants (silica materials with less 

long range order than CTAB template materials) which led to disordered pores. Use of 

TEOS to APTES ratios of 6:1 and 4:1 resulted in completely disordered silica materials 
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for the fluorocarbon surfactant templates, with no observable XRD reflections. Yokoi et 

al6 also observed a decrease in the order of 3-aminopropyl functionalized silica with 

increase in APTES to TEOS ratio using CTAB as template and synthesis in a basic 

medium. They observed ordered pore structure for materials synthesized with a TEOS to 

APTES ratio of 1:10 and disordered materials at a ratio of 1:5; no silica precipitation 

occurred for ratios of 7:10 and higher. 

The d100 spacings of AP-CTAB and AP-HFOPC increase by about 0.33 nm and 

0.38 nm, respectively, (Table 2) compared to that of the corresponding non-

functionalized silica.  An increase in (100) inter-planar spacing was also observed 

previously for CTAB templated 3-aminopropyl functionalized silica.6 This is proposed to 

be due to the minimal hydrophobic interaction between the uncharged hydrophilic –

C3H6–NH2 group and the hydrophobic core of the surfactant aggregate, which does not 

allow molecules of the organic group to be deeply drawn into the surfactant aggregate 

core.12 However, the d100 spacing of the functionalized silica synthesized in an 

ethanol/water solution, AP-HFDePC, decreases slightly.   

Incorporating a hydrophobic group in addition to the reactive aminopropyl group 

should minimize interactions between the silanols on the silica surface and potential 

adsorbate, reactive, or probe molecules.  The pore order of functionalized silica improves 

with the incorporation of F6H2, in addition to the AP functional group, in silica materials 

templated with CTAB and HFOPC. The intensities of the (110) and (200) reflections of 

AP-F6H2-CTAB and the (100) reflection of AP-F6H2-HFOPC increase relative to the 

non-fluorinated functional material (Figure 6.3). However, a decrease in intensity of the 

(100) reflection (decrease in order) is observed for AP-F6H2-HFDePC compared to AP-
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HFDePC.  TEM images confirm the 2-D hexagonal pore structure (seen as channels) for 

AP-F6H2-CTAB and AP-F6H2-HFOPC and the disordered pore structure for AP-F6H2-

HFDePC (Figure 6.4D – 6.4F), consistent with the XRD patterns.  

As described above, the incorporation of amine groups increases the (100) inter-

planar spacing for both AP-CTAB and AP-HFOPC.   There is no difference in the d100 

spacing of AP-F6H2-CTAB compared to non-functionalized silica (CTAB), but a slightly 

larger d100 spacing is observed for the fluorocarbon surfactant templated bi-functionalized 

materials (0.12 nm for AP-F6H2-HFOPC and 0.17 nm for AP-F6H2-HFDePC) compared 

to the corresponding non-functionalized silica (Table 6.2). F6H2 incorporation resulted in 

a small decrease in d100 spacing for the CTAB template and a slight increase (HFDePC) 

or no change (HFOPC) in that of the fluorocarbon surfactant template silica (Table 6.2). 

The observed trend in the (100) inter-planar spacing of the bi-functionalized silica can be 

rationalized by the combination of the individual effect of the amine and fluorocarbon 

functional groups on the inter-planar spacing of the AP- and F6H2 functionalized silica.  

Type IV nitrogen adsorption isotherms (typical for mesoporous materials)178 are 

observed for all silica materials (Figure 6.5).  The incorporation of the functional groups 

significantly reduces the sorption capacity of all templated materials. The inflection 

points in the isotherms move to lower relative pressures after functionalization, 

corresponding to smaller pore sizes. Analysis of the isotherms using the KJS method, 

which is based on the modified Kelvin equation,154,179,180 reveals a corresponding 

reduction in pore size (dp), pore volume (Vp) and total surface area (St) (Table 2 and 

Figure 6.5). However, the pore wall thickness (tpw; difference between hexagonal cell 

parameter (ao = 2d100 /31/2) and the pore size (dp)), increases for all functionalized silica 
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materials (Table 2). This is consistent with the increase in d100 spacing observed from 

XRD analysis.  
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Figure 6.5 Nitrogen adsorption isotherm and pore size distribution of A) CTAB 
templated materials B) HFOPC templated materials and C) HFDePC template materials. 
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Table 6.2 Materials textural properties of non-functionalized, amine-functionalized, and 
bi-functionalized (amine-fluorocarbon) silica as a function of surfactant template 
 

Material 
d100 
nm 

Stotal 
m2/g 

Sexternal 
m2/g 

Vp 
cm3/g 

dp 
nm 

ao 
nm 

tpw 
nm 

CTAB 4.01 995 106 0.76 3.67 4.63 0.96 
HFOPC 2.87 811 323 0.28 2.60 3.31 0.71 
HFDePC 3.29 739 41.0 0.40 2.77 3.80 1.03 
AP-CTAB 4.34 352 52.0 0.27 3.04 5.01 1.97 
AP-HFOPC 3.15 176 111 0.03 2.39 3.64 1.25 
AP-HFDePC 3.20 203 26.0 0.12 2.50 3.70 1.20 
AP-F6H2-CTAB 4.01 520 15.0 0.25 2.56 4.63 2.07 
AP- F6H2-HFOPC 2.99 369 117 0.10 2.39 3.45 0.88 
AP- F6H2-HFDePC 3.46 285 15.0 0.06 2.41 3.99 1.58 
F6H2-CTAB 3.94 568 12.6 0.21 2.57 4.55 1.98 
F6H2-HFOPC 2.87 675 242 0.20 2.41 3.31 0.90 
F6H2-HFDePC 3.37 803 21.5 0.23 2.03 3.89 1.86 

 
 

The decrease in pore size is greater for AP-CTAB relative to the fluorinated 

templated material, and the pore walls are thicker.  Amine incorporation results in an 

increase in pore wall thickness of 1.01 nm for AP-CTAB relative to non-functionalized 

silica. This suggests more condensed silica at the aggregated CTAB micelle interface 

during synthesis, and it is confirmed by the higher degree of amine incorporation from 

elemental analysis. The pore wall thickness follows the same trend (AP-CTAB > AP-

HFOPC > AP-HFDePC) as the degree of incorporation from elemental analysis.    

6.4.3 Accessibility of Amine Functional Group  

Fluorescien isothiocyanate incorporation in the functionalized silica, as 

demonstrated in fluorescence images (Fig. 6.6) obtained by confocal microscopy, 

confirms the accessibility of the 3-aminopropyl group.  The exposure of fluorescein 

isothiocyanate to non-functionalized silica did not result in fluorescence (not shown). The 
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accessibility of amine groups can be quantified from the rate and extent of depletion of 

FITC from solution (Fig. 6.7) during incorporation in the amine functionalized silica. The 

initial rate and extent of FITC incorporation after more than 5 hours is similar for AP-

CTAB and AP-HFDePC.  FITC incorporation in AP-HFOPC displays the lowest initial 

rate (Fig. 6.7) and the lowest extent of FITC incorporation which is consistent with 

Figure 6.6B which show some dark (non-fluorescing) silica particles. The smaller pore 

size in AP-HFOPC (2.39 nm) compared to AP-CTAB (3.04 nm) could limit the 

accessibility of the amines by FITC (maximum global dimension; 1.55 nm). For AP-

HFDePC (pore size of 2.50 nm), the possible radial orientation13,178 of the pores due to 

synthesis in homogeneous medium could contribute to the high accessibility rate (similar 

to AP-CTAB) even though AP-HFDePC has low amine incorporation and a relatively 

smaller pore size.  

Accessibility of the amine group in the bi-functionalized silica materials is 

reduced relative to the 3-aminopropyl functionalized materials. This is not unexpected 

because the FITC depletion rate in Figure 6.7 is normalized by the weight of the material 

(10 mg) and the fluorocarbon group contributes significantly to the weight of the bi-

functionalized silica. Similar initial rates are seen in the bi-functionalized silica across 

templates, but at steady state a slightly lower extent of FITC incorporation is observed for 

AP-F6H2-HFDePC compared to AP-F6H2-CTAB and AP-F6H2- HFOPC. The lower 

amine content and the higher incorporation of fluorocarbons could account for the low 

FITC incorporation in AP-F6H2-HFDePC.   
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Figure 6.6 Confocal microscopy images of A) AP-CTAB B) AP-HFOPC C) AP-
HFDePC 
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Figure 6.7: Solution phase concentration of FITC during incorporation into amine 
functionalized silica. Absorbance values are normalized by weight of samples (10 mg). 
Initial concentration of FTIC in solution is 6.89 × 10-3 mmol/L. 
 

6.4.4 Characterization of Synthesized Silica by CO2 Capture 

CO2 capture is a potentially sensitive means to probe the extent of amine 

functionalization of microporous and mesoporous silica while minimizing the steric 

effects associated with probe molecules such as FITC.  In addition, CO2 adsorption is 

sensitive to the density of amine functionalization and the surface properties (available –

OH groups and adsorbed water).  Previous investigations of CO2 capture with amine-
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grafted silica have reported CO2 adsorption capacities in the range of 13.3 mg/g248  to 

90.2 mg/g.240   These results suggest the promise of nanoporous silica as commercial CO2 

capture sorbents; it has been proposed that an economically ideal sorbent should have 

CO2 capacity greater than 2000 μmol/g (88 mg/g).249  

The CO2 adsorption capacities of functionalized silica depend on the surface area, 

the extent amine incorporation and the accessibility of the amine group, and the type of 

amine group, all factors which indicate the importance of the CO2-amine 

interaction.238,248-250  Non-functionalized silica has been explored for CO2 capture, with 

reported adsorption capacities in the range from 2.2 mg/g (at 60ºC)257 to 14 mg/g.238 3-

aminopropyl grafted on high surface area MCM-48 has shown significant pure CO2 

capture capacity of about 90.2 mg/g at STP.239 Kim et al248  attached monomeric (3-

aminopropyl, pyrolidinepropyl) and polymeric (polymerized aminopropyl, 

polyethyleneimine) amines to already synthesized MCM-48 and investigated their CO2 

adsorption capacity (0.8 mmol/g ≅ 35.2 mg/g for 3-aminopropyl functionalized MCM-

48). The effect of pore size on CO2 adsorption capacity was investigated by Harlick and 

Sayari.258 Pore expanded MCM-41 (pore size 10 nm) grafted with 3-[2-(2-

aminoethylamino)ethylamino]propyl trimethoxysilane (TRI) was observed to have 

almost two times the CO2 adsorption capacity (from 5% CO2-95% N2 gas stream) of 

MCM-41 (pore size 3.7 nm). Humid CO2 streams have the potential to increase the 

adsorption capacity for CO2 because a carbonate or bicarbonate (requiring 1 amine 

group) is formed instead of a carbamate (requiring 2 amine groups and formed in dry 

CO2). However, moisture in the CO2 gas stream has been shown to have minimal effect 

on the amount of CO2 adsorbed.  Hiyoshi et al259 observed a 10 % increase in humid CO2 
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adsorption capacity on triamine grafted MCM-41, whereas less than a 10% increase was 

seen by Harlick and Sayari.258  

Amine-functionalized silica prepared by direct synthesis presents opportunities to 

tailor the degree of incorporation and uniformity in loading of the amine group for CO2 

capture. On the basis of a theoretical 3-aminopropyl content of 1.39 mmol/gsorbent for the 

material synthesized at a TEOS:APTES ratio of 10:1,  dry CO2 sorption capacity of at 

least 30.6 mg/gsorbent is possible with the carbamate formation reaction (involving 2 

amines in close proximity and 1 CO2 molecule).  This capacity does not include the 

additional adsorption of CO2 due to physisorption sites present at silica surfaces. Dry CO2 

sorption analysis performed with TGA shows a rapid increase in sample weight of the 

non-functionalized and all the functionalized silica (within the first 2 minutes) as a result 

of CO2 uptake by the porous silica.  The volume of the tubing from the gas cylinders to 

the TGA instrument contributes to the delay. A steady state in the uptake of dry CO2 is 

reached within 15 minutes.  Table 6.3 compares the steady state values (after 20 minutes) 

of sorbed CO2 on non-functionalized and amine functionalized porous silica templates 

using the three surfactants (CTAB, HFOPC, HFDePC).  The importance of surface area 

in the adsorbent materials and the significant capacity of non-functionalized silica for 

CO2 is demonstrated by the higher CO2 sorption capacity per gram of the non-

functionalized silica than the amine functionalized silica.  For instance, HFDePC 

templated non-functionalized silica adsorbed 22.9 mg/g of pure CO2 at steady state as 

compared to 16.6 mg/g captured by AP-HFDePC. The high surface area of CTAB 

templated silica resulted in higher amounts of CO2 captured per gram material (23.5 mg/g 

for CTAB and 22.7 mg/g for AP-CTAB). The amount of CO2 adsorbed on the amine 

  134



functionalized silica is lower than the calculated theoretical contribution due to CO2-

amine interactions alone. 

For amine functionalized silica, a high surface density of amine coupled with high 

surface area of silica contributes to high CO2 uptakes, as seen in ethylenediamine 

modified SBA-15 mesoporous silica248 (86.6 mg/g pure CO2 at 22°C) and 3-aminopropyl 

grafted MCM-48 238 (90.2 mg/g pure CO2 at STP). The reduced CO2 adsorption of the 

synthesized silica as compared to the highest literature values (90.2 mg/g pure CO2) 238 

for amine-functionalized silica may be the result of uniform distribution of functional 

groups in the silica materials made by direct synthesis in combination with potentially 

low surface amine concentration. When the amount of CO2 sorbed is normalized by 

surface area of the synthesized silica, an expected increase in CO2 sorption due to amine 

functionalization is observed (for HFDePC templated silica, 32.0 (± 0.1) μg/m2; for AP-

HFDePC, 83.2 (± 2.3) μg/m2). HFDePC templated materials, synthesized in homogenous 

ethanol/water solutions, have higher CO2 adsorption capacity per m2 for both non-

functionalized and amine functionalized silica than the CTAB templated and HFOPC 

templated materials. This is true in spite of the reduced amine incorporation in AP-

HFDePC relative to the other amine-functionalized materials. Silica materials synthesized 

in homogeneous water/ethanol solution usually possess radial pores,13,181 which might 

have contributed to easy accessibility of adsorption sites and the amine in HFOPC 

templated materials. Using the smaller CO2 molecule to probe the accessibility of the 

functional group results in higher CO2 sorption capacity in AP-HFOPC comparable to 

AP-CTAB, reversing the trend observed in FITC incorporation. 
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CO2 adsorption capacity decreases with an increase in temperature from 30 °C to 

50 °C (Table 6.3) for all materials (both amine functionalized and non-functionalized).  

This trend is expected and the diminished role of physisorption sites at higher 

temperatures has been suggested to dominate this effect.260 A higher reduction in CO2 

sorption capacity due to increase in temperature is observed in the fluorocarbon 

surfactant templated silica. The greatest decrease is seen in the amine functionalized 

silica compared to the non-functionalized silica. The reduction of CO2 sorption capacity 

of AP-HFDePC and AP-HFOPC, 20.6(± 2.3) μg/m2 and 20.4(± 1.1) μg/m2, respectively, 

is more significant than the reduction of CO2 sorption capacity for AP-CTAB (13.2(± 

1.1) μg/m2). This trend suggests that AP-HFOPC and AP-HFDePC have more 

physisorption sites than AP-CTAB, consistent with their lower amine incorporation. 

Fluorocarbons are considered to be CO2-philic261-263, and their incorporation in 

ceramic (e.g. TiO2 and γ-Al2O3) membranes have been previously investigated with a 

goal of enhancing CO2 separation from mixed gas stream.252 In this investigation, 

incorporation of fluorocarbon functional group in the porous silica has a marked, but 

unexpected, effect on surface adsorption of CO2. Although the surface area of both F6H2-

HFDePC and bi-functionalized AP-F6H2-HFDePC silica are larger than that of AP-

HFDePC, the CO2 adsorption capacities of the F6H2 incorporated silicas is significantly 

lower per gram (Table 6.3). F6H2-HFDePC has a higher CO2 sorption per gram of sample 

than AP- F6H2-HFDePC, which corresponds to the increased surface area of the fluoro-

functional material. When the CO2 capacity is normalized by surface area, AP-F6H2-

HFDePC displays the expected higher capacity [15.9 (± 2.4) μg/m2], due to the presence 

of amine group, than F6H2-HFDePC [9.20 (± 0.3) μg/m2]. However, compared to non-
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functionalized silica (32.0 (± 0.1) μg/m2), both fluorocarbon incorporated samples had 

lower CO2 sorption capacities per surface area. 

FTIR analysis of the silica samples was performed after CO2 adsorption analysis 

with the TGA, to confirm the reaction of the aminopropyl functional group with CO2. 

Figure 6.8 provides an FTIR profile (taken 15 minutes after CO2 adsorption) of AP-

HFDePC before and after CO2 capture and HFDePC after CO2 capture. Exposure to CO2 

results in the appearance of an intense peak at wavenumber 1411 cm-1 for AP-HFDePC. 

The peak is attributed to asymmetric C–O stretch of the ammonium carbamate in dry CO2 

adsorption.53,263 These peak is not observed in non-functionalized silica after CO2 

adsorption (Figure 6.8). 

 
Table 6.3 CO2 capacity of synthesized silica as measured in dry CO2 as a function of 
temperature 
 
 Amount CO2 sorbed 

 30°C 50°C 
 mg/gadsorbent μg/m2 mg/gadsorbent μg/m2

CTAB 23.6 (± 0.3) 23.7 (± 0.3) 15.5 (± 1.3) 15.6 (± 1.3) 
AP-CTAB 21.5 (± 0.4) 67.1 (± 1.1) 20.0 (± 2.0) 53.9 (± 5.6) 
HFOPC 20.8(± 0.4) 25.7(± 0.5) 12.9 (± 0.2) 15.9 (± 0.3) 
AP-HFOPC 12.0 (± 0.2) 68.2 (± 1.1) 8.4 (± 0.1) 47.8 (± 0.5) 
HFDePC 23.6 (± 0.1) 32.0 (± 0.1) 14.6 (± 2.4) 19.8 (± 3.3) 
AP-HFDePC 16.9 (± 0.5) 83.2 (± 2.3) 12.7 (± 0.3) 62.6 (± 1.5) 
AP-F6H2-HFDePC 4.50 (± 0.7) 15.9 (± 2.4) − − 
F6H2-HFDePC 7.39 (± 0.2) 9.20 (± 0.3) − − 

 

  137



0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

1300170021002500
Wavenumber, cm-1

A
bs

or
ba

nc

AP-HFDePC

AP-HFDePC (pure CO2)

HFDePC (pure CO2)

e

 

Figure 6.8 FTIR of AP-HFDePC before and 15 minutes after CO2 adsorption. The dotted 
lines indicate the wavenumbers for the asymmetric C-O stretch. 
 

6.5 CONCLUSIONS 

3-Aminopropyl mesoporous silica with 2-D hexagonal (CTAB template) or 

disordered (fluorocarbon surfactant templates, HFOPC and HFDePC) pore structure have 

been synthesized by direct (‘one-pot’) synthesis. Functionalized silica materials with 

thicker pore walls are obtained due to the presence of the amine functionalized precursor 

during self-assembly. The degree of amine incorporation matches the thickness of the 

pore wall of the functionalized silica; AP-CTAB, which has the highest amine 

incorporation, also has a larger increase in pore wall thickness. The incorporation of a 

fluorocarbon functional group in addition to the amine group in bi-functionalized silica 

results in improved pore order, with the exception of AP-F6H2-HFDePC, which has 

reduced order due to high fluorocarbon incorporation. The 3-aminopropyl group is 

readily accessible in all amine functionalized silica using FITC as a probe molecule. CO2 
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sorption increases (on a surface area basis) in amine functionalized silica due to the 

reaction of CO2 with surface amine group. Synthesis in a homogeneous ethanol/water 

solution (using the HFDePC template) results in the highest CO2 per surface area, 

possibly due to easy accessibility of available physisorption and amine reactive sites. 

Fluorocarbon functionalization reduces CO2 sorption capacity for both 

fluorofunctionalized (F6H2) silica and bi-functionalized (AP-F6H2) silica, most likely due 

to a reduction in CO2 physisorption sites. 

An on-going investigation in our group has demonstrated the potential to expand 

the pores of the amine functionalized silica using pressurized CO2.  The potential to re-

orient the 3-aminopropyl functional group in the pores based on CO2-amine interaction is 

being investigated. Preliminary results show a substantial increase in surface area in 

addition to higher accessibility of the amine group in the CO2 processed amine 

functionalized silica. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1 CONCLUSIONS 

 Since the discovery of surfactant templated synthesis of mesoporous silica 

materials researchers have studied the effects of templates (anionic, cationic and non-

ionic; hydrocarbon and fluorocarbon surfactants and block co-polymers), synthesis 

medium (neutral, acidic and basic), synthesis conditions (e.g. temperature) and 

incorporation of functional groups on the mesopore structures. Ordered mesoporous silica 

obtained from surfactant templating possess very high surface area and the pores can be 

tailored to obtain different pore structures (e.g. hexagonal, cubic or lamellar) and sizes for 

specific applications. The properties of fluorinated surfactants, namely their ability to self 

assemble at lower concentrations than their hydrocarbon counterparts and their ability to 

form more stable and rigid micelles with low curvature, prompted their investigation as 

templates for nanoporous silica.  This work builds on the successful demonstration of 

fluorinated surfactant templating and demonstrates the synthesis and application of 

organic/inorganic nanoporous material silica using this class of surfactant templates.   

The effect of the incorporation of hydrocarbon, fluorocarbon, and amine (hydrophilic) 

functional precursors on degree of functional group incorporation and silica textural 

properties is examined as a function of the nature of the surfactant tail (hydrocarbon and 

fluorocarbon), its chain length, and synthesis conditions.     
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 The initial investigation demonstrates the incorporation of vinyl (a small 

hydrocarbon group) in porous silica using cationic fluorocarbon surfactants templates 

C6F13C2H4NC5H5Cl (HFOPC), C8F17C2H4NC5H5Cl (HFDePC), C10F21C2H4NC5H5Cl 

(HFDoDePC)) and CTAB, a hydrocarbon surfactant, for comparison. 2-D hexagonal pore 

structured and disordered materials are synthesized. The trend of loss of silica pore order 

with increase in vinyl content for the CTAB materials is also observed for the 

fluorocarbon surfactant template materials, except for materials made with HFDoDePC, 

which show an increase in order with increasing vinyl content. However, the 

fluorocarbon surfactant templated materials has less long range pore order when 

compared to the CTAB materials. The lower material order contributes to the high 

accessibility of the vinyl group by bromine (Br2) molecules.  

The successful use of fluorocarbon surfactants as templates to synthesize organic 

functionalized mesoporous silica was extended to the incorporation of long chain 

fluorocarbon functional group (perfluoro-decyl) and corresponding hydrocarbon group 

(n-decyl).  The effect of the interactions between the surfactant/functional group 

combinations on the pore structure, degree of incorporation and material texture 

properties was investigated for the fluorocarbon surfactants (HFOPC and HFDePC) and 

CTAB. Although the pore size decreases with functional group incorporation, the long 

chain functional groups did not have as much of an effect on the pore size of the 

functionalized silica as the vinyl group. 2-D hexagonal pore structured materials were 

obtained with observed decrease in pore order of the silica materials upon 

functionalization. Fluorocarbon functionalized materials were less ordered than the decyl 

functionalized materials. Solubility of precursors in the synthesis medium was observed 
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to be a factor in the degree of functionalization. Materials synthesized in homogeneous 

water/ethanol solution, in which the precursors are more soluble, had high functional 

group incorporation leading to disordered pore structure. The incorporation of the bulky 

fluorocarbon group resulted in thicker silica pore walls than the hydrocarbon group. 

Silica functionalization conferred high surface hydrophobicity to the silica, particularly 

for the fluorocarbon functionalized silica.   

 The synthesis and application of fluorofunctionalized silica to fluorous 

separations was examined.  The incorporation of long chain functional group was 

extended to perfluoro-octyl to investigate the effect of matching the surfactant 

hydrophobic chain length to that of the functional group. Trends in long range pore order 

(i.e. 2-D hexagonal pore structure with higher order in CTAB templated silica) for the 

perfluoro-octyl silica were similar those found with perfluorodecyl functionalized silica.  

However, the perfluoro-octyl functionalized materials had higher incorporation of the 

functional group than the perfluorodecyl silica. As in our previous investigation of 

combinations of fluorocarbon/hydrocarbon functionalized precursors and surfactants, 

matching the fluorinated functional precursor with a fluorinated surfactant with the exact 

same carbon chain did not result in improved incorporation.   The perfluorodecyl silica 

materials had thicker pore walls with corresponding higher thermal stability than the 

perfluoro-octyl silica. These fluorocarbon functionalized materials show a great potential 

for use as adsorbents for separation. Performance of the fluorocarbon functionalized 

materials as packing for separation of hydrocarbon and fluorocarbon anthraquinone dyes 

was comparable to commercially available fluorinated silica gel. However, the dyes were 

observed to move with a narrower elution band through the synthesized fluorocarbon 
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functionalized silica compared to elution through the commercial fluorinated silica gel. 

This observation is attributed to the smaller particle and pore sizes of the synthesized 

silica, which led to higher retention times. 

Functionalization of porous materials with reactive amine groups have numerous 

applications, from peptide synthesis to carbon dioxide sequestration. 3-Aminopropyl and 

bi-functionalized (3-aminopropyl/perfluoro-octyl) mesoporous silica materials were 

synthesized using the templates HFOPC, HFDePC and CTAB. CTAB templating resulted 

in 2-D hexagonal pore structure for both amine and bi-functionalized silica but disordered 

pore structures were obtained for the fluorocarbon templated silica. The exception is 

HFOPC templated bi-functionalized silica, which has a 2-D hexagonal pore structure. 

CTAB and HFOPC templated bi-functionalized materials possess better pore ordering 

than the amine functionalized silica synthesized with the same templates. Generally, 

incorporation of functional group promoted thicker silica pore walls; the presence of the 

amine group resulted in much thicker silica walls. The degree of amine incorporation 

matches the thickness of the pore wall of the functionalized silica. Functionalized silica 

with higher incorporation of amine has the largest pore wall thickness. The amine group 

is found to be accessible in both sets of materials (amine functionalized and bi-

functionlized), as determined by the reactivity of the amine with the fluorescent probe 

molecule, fluorescein isothiocyanate (FITC). CO2 capture acts as a probe of the amine 

accessibility and the surface properties of the material.  CTAB templated materials had 

higher CO2 capacity per gram of adsorbent than the fluorocarbon templated silica. 

Fluorocarbon functionalization reduces CO2 sorption capacity for both 

fluorofunctionalized silica and bi-functionalized silica. 
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The use of perfluoroalkylpyridium chloride surfactants as templates resulted in 

synthesized silica materials with similar but lower long range 2-D hexagonal pore order 

than the CTAB template silica. On functionalization the loss of pore order, decrease in 

pore size, pore volume and surface area observed in CTAB templated silica materials 

were similarly observed in the fluorocarbon surfactant templated materials. However, the 

hypothesis of obtaining increased incorporation of both hydrocarbon and fluorocarbon 

functional groups in fluorocarbon template silica materials, due to high hydrophobicity of 

the fluorocarbon surfactant, was not proven when comparing syntheses in a similar 

medium (i.e. aqueous). In addition, simply matching the type of functional group 

(fluorocarbon) to the fluorocarbon surfactant hydrophobic tail did not result in improved 

functional group incorporation.  

 

7.2 FUTURE WORK 

 The investigations on organic functionalization of fluorocarbon surfactant 

templated mesoporous silica have provided information on the effects of incorporationg 

different hydrophobic chains, and hydrophilic reactive hydrocarbon functional groups on 

silica pore structure and order. However, information on the nature of molecular 

assembly during synthesis will help in designing experiments to obtain materials of 

required pore structure for specific applications and also give information on the location 

of the functional group. Molecular modeling of these systems will be a valuable tool for 

understanding molecular assembly inside of pores. 

The size and structure of the silica particles can be tailored by following the 

Stöber process and vary the amount of ethanol in synthesis medium91 and several other 
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techniques that have been outlined in literature such as using mixtures of hydrocarbon 

and fluorocarbon based templates100 and varying the ratio of TEOS to functionalized 

precursor255. Future research in synthesizing fluorocarbon functionalized silica with 

tailored particle morphology should focus on improving the use of these materials as 

packings in separation processes. 

Comparing fluorocarbon surfactant templates with similar hydrophobic chain 

length and headgroup as the hydrocarbon surfactant templates will help in better 

understanding of the effects of the fluorocarbon chain on functional group incorporation. 

However, the initial idea of making functionalized materials with pores that are big 

enough for biomolecule attachment is still an important challenge for a number of 

applications. Pore expansion by compressed CO2 on non-functionalized silica materials 

has been successful (ref) and can be extended to functionalized materials. Longer chain 

templates such as fluoropolymers and longer chain perfluoroalkyl pyridinium chlorides 

can also be used to obtain large pore silica particles.  

The bi-functionalized silica materials possess reactive amine groups and 

fluorocarbons that will allow for specific biomolecule interactions when biomolecules are 

incorporated. CO2 and amine groups are known to interact to form carbamates or 

carbonates.243 CO2 processing of amine functionalized silica has the potential to re-orient 

the amine groups in the pores to make them more easily accessible. In addition 

fluorocarbons are CO2-phillic with the ability to solubilize CO2. CO2 processing of the bi-

functionalized silica might provide interesting insights into the effects of CO2 processing 

on amine group accessibility and surface properties of the bi-functionalized silica. 
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 In the area of sensing applications, thin films provide the most effective geometry 

for sample analysis.265 Organic functionalization should be extended to thin films by 

investigating the effect of the organic groups on the silica film mesostructure. Futher 

application of these films in pH sensing, glucose sensing and bacteria identification by 

incorporating active sites for attachment of these analytes will be valuable. 

 Finally, the advantages of the solubility of gases such as CO2 in fluorocarbons can 

be utilized for CO2 capture. Unextracted fluorocarbon surfactant templated silica particles 

and thin films can be investigated as adsorbents for CO2 capture. The potential exists for 

these silica materials, with and without amine group, to solubilize substantial amount of 

CO2.  
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APPENDIX A 

KJS and Adsorption Potential Methods 

Details of the KJS method are given below; the adsorption data for mesoporous 

samples in this document were analyzed by this method. The KJS method154,179,180 makes 

use of the high resolution αs-plot. The αs-plot method is based on the comparison 

between the adsorption isotherm of a porous material and that of a reference material (in 

our case, the well characterized Lichrospher Si-1000 (10nm pore sized silica)).179 The αs-

plot is the plot of (volume of N2 adsorbed) verses αs = vref(P/Po)/vref(P/Po = 0.4), where 

vref(P/Po) is the volume adsorbed in the reference material as a function of relative 

pressure154 (Figure A1). The linear portions in the lower αs region (before the onset of 

nitrogen condensation) and higher αs region (after nitrogen condensation in primary 

mesopores) are used to estimate the pore volume, the total surface area and the external 

surface area of the material.  

The specific surface area and micropore volume are calculated from the linear 

equation obtained from the lower αs region of the plot in Figure A1. The linear equation 

is equivalent v = η + vmi, where vmi is the volume of micropores present and η is used to 

calculate the specific (total) surface area St from Equation 1.  

                                             
ref

refBET
t v

S
S

,4.0

,η
=                                                                      (1) 

SBET, ref is the BET surface area of the reference material and v0.4, ref is the volume 

adsorbed by the reference material at P/Po of 0.4. The linear portion in the upper αs region 

of the plot in Figure A1 is equivalent to v = η2+vp, where vp is the total volume per gram 
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of all pores in the material. The mesopore volume is given by vp – vmi. The external 

surface area of the material is calculated from equation 2 using the coefficient η2
266;  

                                    
ref

refBET
ex v

S
S

,4.0

,2η
=                                                                      (2)                 

      

 

                                       Figure A1 High resolution αs-plot   

In analyzing the data in the αs-plot, αs data upto about 0.3 were ignored because of 

anomaly in that data which is due to the limit of the transducer pressure range in the 

adsorption instrument.  

The microporous materials, v6-HFOPC, v4-HFOPC and v4-HFDePC, were 

analyzed using Dubinin’s and Kaganer’s method178, and the adsorption potential method6. 

Dubinin’s and Kaganer’s theories and the adsorption potential method are based on the 

adsorption potential theory, which assumes that the surface of a solid is made up of a 

series of equipotential surfaces with the same adsorption potential.5 The adsorption 

potential is given by: 
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P
P

RTA olnpotential) adsorption( =                                                              (3) 

where Po/P is the inverse of the relative pressure P/Po.        

Dubinin’s method is used to find the micropore volume and Kaganer’s method used to 

calculate the specific surface area. This is achieved by plotting log(volume of gas 

adsorbed) against [log(Po/P)]2, resulting in a straight line with an intercept of log (vmi). 

Kaganer’s method states that the intercept of the plot of log(volume of gas adsorbed) 

against [log(Po/P)]2,  equals log(vSt).  The quantity (vSt) is then used to determine the 

specific surface area of the material:  

                                           
M

NAv
S mSt

t =                                                                        (4) 

where N is the Avogadro’s number, M is the molecular weight of the adsorbate and Am is 

the area occupied per molecule of adsorbate (for nitrogen Am = 1.62 x 10-19 m2).266 This 

analysis method implies that the point for complete pore filling is the same point for 

mono-layer formation.  

An alternative approach in determining the pore size, specific surface area and 

pore volume of microporous materials, the adsorption potential method by Kruk, Jaroneic 

and Gadkaree266, states that there are two different points for monolayer formation and 

complete micropore filling. In this method a plot of the adsorption potential against the 

differential, dv/dA, gives two minimum points. An example of such a plot is shown in 

Figure A2. The first minimum point occurs at a lower adsorption potential (higher 

relative pressure) and represents the point where complete pore filling is achieved. The 

pore volume is calculated from this minimum point.  The second minimum point, 
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occurring at a higher adsorption potential, corresponds to monolayer formation and is 

used in obtaining the specific surface area from equation 4.  

 

 

Figure A2 Adsorption potential plot for v6-HFOPC 
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APPENDIX B  

FTIR of Representative Surfactants and Silica Precursors Used in This Investigation. 

FTIR analysis of the surfactants and silica precursors provide information on the location 

of signature peaks of the surfactants and precursors. This information is used in 

identifying the peaks in the synthesized silica. HFOPC is the fluorocarbon surfactant 

tridecafluoro-1,1,2,2-tetrahydrooctylpyridinium chloride (C6F13C2H2NC5H5Cl), CPB 

(cetylpyridinium bromide; C16H33NC5H5Br) is a hydrocarbon analogue of the fluorinated 

surfactants and CTAB (C16H33N(CH3)3Br)  is cetyltrimethylammonium bromide.  
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Figure B1 FTIR of representative surfactants  
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Figure B2 Transmission FTIR of precursors 
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APPENDIX C 

FTIR of CTAB and HFOPC Templated Vinyl Functionalized Silicas  

The vinyl functionalized materials were synthesized following the procedure 

outline in chapter 3. Bromination reaction was performed by adding 0.2 mg of the vinyl 

functionalized samples to 5 ml solution of bromine in dichloromethane. The solution was 

allowed to stir for 24 hours, the samples were filtered and washed with 20 ml of 

dichloromethane for 24 hours. The sample was filtered washed with ethanol and allowed 

to air dry for 24 hours before FTIR analysis was performed. FTIR analysis followed the 

procedure outlined in chapters 4, 5 and 6. The prefix Br- is used to refer to brominated 

samples. v4 denotes vinyl functionalized silica with 4:1 ratio of tetraethoxysilane (TEOS) 

to vinyltriethoxysilane (VTES). The naming follows that used in chapter 3.    

 FTIR analysis after bromination shows a reduction in the peak due to vinyl 

incorporation (at 1416 cm-1). FTIR profile of the CTAB template materials, after 24 

hours bromination, show greater reduction in the vinyl peak than that for HFOPC 

template silica.  
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Figure C1 FTIR of A) CTAB templated and B) HFOPC templated vinyl functionalized 
silica. 
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APPENDIX D 

 Perfluoro-decyl (F8H2) Functionalized Mesoporous Silica Synthesized in 

Homogeneous (water/ethanol) Solution using CTAB and HFOPC Templates 

These studies are performed to understand the role of homogeneous water/ethanol 

synthesis medium on fluorocarbon functional group incorporation. In chapters 4 and 5 

functionalized silica synthesized with HFDePC template which required a homogeneous 

medium to obtain ordered pore structure had substantial functional group incorporation 

and synthesis in homogeneous medium was suggested to be a contributing factor. The 

letter H after the sample names is used to denote synthesis in homogeneous medium. The 

naming convention, synthesis and analysis procedure follows those used in chapter 4.    

 

Table D1 Molar ratios of reagents 

Sample CTAB-H  F8H2-CTAB-H  HFOPC-H F8H2-HFOPC-H 
DIUF-Water 136 136 136 136 
Surfactant 0.28 0.28 0.15 0.15 
NH4OH 10.6 10.6 10.6 10.6 
Ethanol 64 64 64 64 
TEOS 1 1 1 1 
F8H2TES - 0.25 - 0.25 
 

FTIR analysis of the fluorocarbon functionalized silica synthesized in homogeneous 

water/ethanol medium display more intense peaks at 1217 cm-1 and 1155 cm-1 

(characteristic of –CF2– vibrations) compared to functionalized silica in aqueous 

medium. The higher intensity in the peaks suggest higher incorporation of fluorocarbon 

functional group in the silica synthesized in homogeneous medium. TGA analysis 

confirmed the high organic content in the materials synthesized in homogeneous water 

ethanol solution compared to materials synthesized in aqueous medium (Table D2). This 
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observation confirms the suggestion that synthesis in homogeneous water/ethanol 

medium contributed to the high incorporation of functional groups in HFDePC templated 

silica. 
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Figure D1 FTIR of A) CTAB template and B) HFOPC template materials. Where H 
means materials were synthesized in homogeneous water/ethanol solution. 
 

Table D2 Organic content from TGA analysis 

Material Organic Content by TGA, 
mmol/g* 

Theoretical Organic Content, mmol/g+ 

F8H2-CTAB-H 1.42 (105 %) 

F8H2-HFOPC-H 1.28 (95 %) 

F8H2-HFDePC 1.20 (89 %) 

 

1.35 

 

XRD patterns for CTAB template non-functionalized and fluorocarbon 

functionalized silica display the (100), (110) and (200) reflections suggesting highly 

ordered 2-D pore structure. However, XRD patterns for both the non-functionalized and 
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fluorocarbon functionalized HFOPC template materials possess only one broad peak 

attributed to disordered pore structure. 
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Figure D2 XRD patterns of A) CTAB template and B) HFOPC template silica materials 
synthesized in homogeneous water/ethanol solution. 
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APPENDIX E 
 

Synthesis of organic functionalized silica using cetyltrimethyl pyridinium bromide 
(CPB) template  
 

Cetylpyridinium bromide is an analogue of the perfluoroalkylpyridinium 

surfactants. CPB was used as template to find out if the difference in headgroup is 

contributing to the higher long range order in CTAB template materials compared to the 

fluorocarbon surfactant template materials. The synthesis and analysis conditions are 

similar to those in Chapters 5 and 6. The surfactant template is used to represent the 

synthesized silica. The prefixes to CPB stand for the incorporated functional groups.  

 
Table E1 Molar ratios of reagents  
 
Sample CPB F6H2-CPB AP- CPB AP-F6H2-CPB 
DIUF-Water 186 186 186 186 
Surfactant 0.17 0.17 0.17 0.17 
NH4OH 5.73 5.73 5.73 5.73 
TEOS 1 1 1 1 
H10TES - - - - 
F8H2TES - - - - 
H8TES - - - - 
F6H2TES - 0.25 - 0.25 
APTES - - 0.1 0.10 
 

XRD patterns (Fig. E1) show 2-D hexagonal pore structure similar to those 

obtained for CTAB templated silica however, comparison of the intensities of the (100), 

(110) and (200) reflections with those of similar CTAB template materials (e.g. Fig. E2) 

suggests CPB template materials possess a lower degree of pore ordering. 
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Figure E1 XRD patterns of CPB template silica materials. 
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Figure E2 Comparison of XRD patterns for F6H2-CTAB and F6H2-CPB 
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APPENDIX F 
 
CO2 Capture from Humid and Low Concentration CO2 Streams 
 

Moisture affects the amount of CO2 adsorbed by mesoporous silica. To 

investigate the effect of moisture on CO2 adsorption, a nitrogen gas stream was passed 

through cold water at 4°C before it was fed into the instrument. After the pre-adsorption 

of moisture from the moist nitrogen stream had reached steady state (after 1 hour) the gas 

was switched to moist CO2 stream. The CO2 gas stream was also passed through water at 

4°C. 26.6 μg/m2 of humid CO2 was adsorbed on AP-HFDePC (69% decrease relative to 

the amount of dry CO2 adsorbed) and 6 μg/m2 on HFDePC (81% decrease) (Table F1). 

The decrease in CO2 adsorption is possibly due to substantial decrease in adsorption and 

reaction sites following the initial moisture adsorption (before switching to humid CO2). 

The adsorbent AP-HFDePC shows a high capacity for moisture during the pre-CO2 

adsorption step (49 mg/g).  The high amount of pre-CO2 adsorbed moisture is observed 

for both functionalized and non-functionalized silica materials.  

The capacity of the mesoporous silica for moisture is temperature dependent. The 

steady state value of moisture adsorption is reached more quickly at 50 °C (5 to 10 

minutes; not shown) relative to 30 °C (45 to 60 minutes), depending on silica material. 

Analysis performed at 50 °C displayed a lower moisture capacity (25.6 mg/g in AP-

HFDePC) for the silica materials and a concomitant increase in CO2 adsorbed when 

compared to amount of CO2 adsorbed at 30° C. AP-HFDePC adsorbed 40.6 μg/m2 humid 

CO2 at 50°C compared to 26.6 μg/m2 at 30°C. At 50°C CO2 sorption capacity is 

decreased by about 22 – 37 % for humid CO2 intake when compared to dry CO2 

adsorption.  

  161



Table F1: Amount of CO2 adsorbed from humid pure CO2 stream  

 

Amount of humid 
100% CO2 sorbed, 

mg/g 

Amount of humid 
100% CO2 sorbed, 

μg/m2

Temperature 50°C 
 

50°C 
SAMPLE   
CTAB 13.0 13.1 
AP-CTAB 16.3 46.3 
HFOPC 10.0 12.3 
AP-HFOPC 6.10 34.6 
HFDePC 12.3 16.7 
AP-HFDePC 8.20 40.6 

 

CO2 adsorption from a low concentration gas stream source (5% CO2-95% N2) 

was investigated using HFDePC and AP-HFDePC at 30°C. After a switch from dry N2 to 

the  dry CO2-N2 gas mixture, there was rapid gas adsorption after about a minute and a 

half followed by gradual adsorption until steady state is achieved after 40 minutes. The 

lower gas adsorbed per gram of aminopropyl functionalized silica in comparison to non-

functionalized silica observed for pure CO2 adsorption was also observed for the gas 

mixture. After normalizing by surface area, steady state gas adsorption capacity of 40 

μg/m2 was obtained for AP-HFDePC, as compared to 85.5 μg/m2 capacity for pure CO2 

adsorption. The results show a decrease in CO2 sorption by about 50% when a low 

concentration CO2 (5% CO2-95% N2) gas was used instead of pure CO2. CO2 sorption 

from dry 5% CO2-95% N2 mix for HFDePC was 13.0 μg/m2. Substantial decrease in 

humid CO2 sorption from humid 5% CO2-95% N2 gas mix (gas mix passed through water 

at 4°C) was obtained after pre-adsorption of moisture. Humid low concentration CO2 

adsorption for AP-HFDePC was 9.04 μg/m2 and 0.22 μg/m2 for HFDePC. 
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