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ABSTRACT OF DISSERTATION 

 

 
 
 

 

 
    Modeling the competition between drying and curing processes in polymerizing films 
is of great importance to many existing and developing materials synthesis processes.  
These processes involve multiple length and time scales ranging from molecular to 
macroscopic, and are challenging to fully model in situations where the polymerization is 
non-ideal, such as sol-gel silica thin film formation.  A comprehensive model of sol-gel 
silica film formation should link macroscopic flow and drying (controlled by process 
parameters) to film microstructure (which dictates the properties of the films).   
 
    This dissertation describes a multiscale model in which dynamic Monte Carlo (DMC) 
polymerization simulations are coupled to a continuum model of drying.  Unlike 
statistical methods, DMC simulations track the entire molecular structure distribution to 
allow the calculation not only of molecular weight but also of cycle ranks and topological 
indices related to molecular size and shape.  The entire DMC simulation (containing 106 
monomers) is treated as a particle of sol whose position and composition are tracked in 
the continuum mass transport model of drying.  The validity of the multiscale model is 
verified by the good agreement of the conversion evolution of DMC and continuum 
simulations for ideal polycondensation and first shell substitution effect (FSSE) cases.   
 
    Because our model allows cyclic and cage-like siloxanes to form, it is better able to 
predict the silica gelation conversion than other reported kinetic models.  By studying the 
competition between molecular growth and cyclization, and the competition between 
mass transfer (drying) and reaction (gelation) on the drying process of the sol-gel silica 
film, we observe that cyclization delays gelation, shrinks the molecular size, increases the 
likelihood of skin formation, and leads to a molecular structure gradient inside the film. 
We also find that compared with a model with only 3-membered rings, the molecular 
structure is more complicated and the structure gradients in the films are larger with 4-
membered rings.  We expect that our simulation will allow better prediction of the 
formation of structure gradients in sol-gel derived ceramics and other nonideal 
multifunctional   polycondensation   products,   and   that   this   will  help  in  developing  
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procedures to reduce coating defects. 
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Chapter 1 

Sol-Gel Silica Chemistry for Multiscale Modeling of Drying and Curing 

 

1.1 Motivation 

    Sol-gel silica films are of growing interest as engineered materials for a variety of 

applications[1, 2], e.g. sensor concentrators[3-9], optical materials[10-15], electrical 

insulators[16], drug-delivery carriers[17], and solar energy applications[18].  In sol-gel film 

processing, a continuous liquid phase displaces air at the substrate through a wetting 

process and undergoes a process of drying and polycondensation to form a stable porous 

film[19].  The sol-gel film forming process itself is the link between the structure and 

properties of the liquid precursor sol and the microstructure of the corresponding 

deposited film[20].  Tradeoffs between evaporation, diffusion, reaction and self-assembly 

have been hypothesized or shown to play significant roles in the synthesis of these 

films[19, 20].  Evaporation is extremely important in forming well-defined microstructures 

in the sol-gel process.  However, the process is not fully understood and the effect of 

process parameters is not entirely known.  As a result, coating procedures are often 

developed by trial and error rather than by design.  Modeling is a useful tool to better 

predict the formation of sol-gel silica films and to investigate the effects of process 

parameters.  However, the sol-gel film formation process necessitates simultaneously 

modeling multiple length and time scales ranging from molecular to macroscopic.  

Macroscopic parameters control the formation of the film; diffusion and mass transport 

occur over micron or greater lengths scales, and define the concentration fields within 

which polymerization and self-assembly occur.  These processes are best modeled with 

continuum methods and described by deterministic PDEs.  At the same time, 

polymerization and (if surfactants are added) self-assembly processes occur which 

control the film properties such as film microstructure at the molecular level.  However, 

the continuum assumption breaks down at such a small length scale and a molecular 

modeling technique should be applied[21].  Therefore, a multiscale model should be used 

to link these different length and time scale together.  This multiscale model links 
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molecular-level structure to macroscopic parameters, and can be used to better control the 

film deposition, film uniformity, coating microstructure and final film thickness.  In this 

chapter, the chemistry of sol-gel silica precursors will be reviewed as a prelude to the 

subsequent chapters regarding a multiscale model of sol-gel film formation, and the 

remainder of the dissertation will be outlined. 

1.2 Sol-gel chemistry 

    In order to model sol-gel silica film formation, we first need to understand sol-gel 

chemistry.  During the sol-gel process, a liquid sol is transformed into a liquid-filled solid 

gel phase. Inorganic or metal organic precursors which are dissolved in aqueous or 

organic solvents are subjected to a series of hydrolysis and condensation reactions to 

form the sol[19, 20].  With further polycondensation reactions, the sol may be transformed 

into an extended three-dimensional network structure, which is a gel[20, 22].  We focus our 

research on the reactions that occur in acid-catalyzed silicon alkoxide solution (especially 

using tetraethyoxysilane (TEOS) as example).  This type of solution is commonly used 

when preparing thin films because these conditions favor slow curing and uniform films.  

The functional group-level reactions of silane precursors are as follows: 

Hydrolysis: 

    OHROHSiOHORSi hK −+−≡⎯→←+−≡ 2                                                            (1.1) 

Water-producing condensation; 

    OHSiOSiSiHOOHSi 2+≡−−≡→≡−+−≡                                                          (1.2) 

Alcohol-producing condensation: 

    OHRSiOSiSiHOORSi −+≡−−≡→≡−+−≡                                                     (1.3) 

    Assuming that reactivity depends on the state of hydrolysis and condensation of a site 

(in other words, on the identity of the three ligands that are not explicitly shown in Eq. 

(1.1)-(1.3)) and assuming that all the reactions are irreversible, there are 15 different 

silica species and a total of 165 reactions (10 hydrolysis reactions, 55 water-producing 

condensation and 100 alcohol-producing condensation reactions)[23] when only nearest 

neighbor ligands are considered.  In order to model this complicated system, some 

assumptions and simplifications are needed.  On the basis of previous research on acid-

catalyzed silica sol-gel polymerization, there are three necessary modeling features that 
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can be used to create a simplified but accurate model: hydrolysis pseudoequilibrium, a 

First Shell Substitution Effect (FSSE) for condensation reactions and extensive 

cyclization to form primarily tetrasiloxane rings.  In the following sections, we will give 

more details about these three modeling features and some assumptions. 

1.2.1 Hydrolysis Pseudoequilibrium 

    Experiments have shown that under acid-catalyzed conditions, hydrolysis reactions of 

alkoxysilanes are much quicker than condensation reactions[24], and that the hydrolysis 

reaction can nearly reach equilibrium while condensation has proceeded to a negligible 

extent[25, 26].  Prior to the onset of significant condensation, hydrolysis is considered to be 

in a pseudoequilibrium state[27]. Rankin et al.[28] have quantitatively demonstrated that 

this assumption can be made when hydrolysis rate coefficients are at least an order of 

magnitude greater than condensation rate coefficients.  They also found similarities in the 

hydrolysis pseudoequilibrium behavior of methyl-substituted ethoxysilanes and found 

that all hydrolysis equilibrium coefficients are near 15±6[29].  Therefore, because of the 

difference in time scales for hydrolysis and condensation, “hydrolysis pseudoequilibrium 

is not only appropriate but also demanded if unique rate coefficients are to be 

determined”[28].  When it is at pseudoequilibrium, hydrolysis doesn’t affect the 

development of polymer structure with respect to conversion. Only condensation 

reactions determine the evolution of polymer structure.  This pseudoequilibrium 

condition allows one to characterize hydrolysis using only the average hydrolysis extent 

χ [28]: 

                                [ ]
[ ] [ ]

SiOH
SiOH SiOR

χ =
+

.                                                                     (1.4) 

Because hydrolysis equilibrium coefficients are all similar regardless of substitution, it is 

possible to regard χ  as a constant for all silicon sites[29].  Also, if the amount of water is 

sufficient (for ethoxysilanes one mole of water per mole of silicon), χ  can be regarded as 

constant with respect to time as well[30].  
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1.2.2 First Shell Substitution Effect (FSSE) 

    Assink and Kay[24] presented the functional group kinetics of alkoxysilanes, in which 

only three reactions are considered: 

    OHROHSiOHORSi −+−→+− 2  (Hydrolysis)                                                   (1.5) 

    OHSiOSiOHSiOHSi 2+−−→−+−   (Water-producing condensation)             (1.6) 

    OHRSiOSiOHSiORSi −+−−→−+−  (Alcohol-producing condensation)      (1.7)  

This kinetic scheme assumes that the reactivities of functional groups are independent 

(notice that the other ligands attached to each site are not depicted in Eqs. (1.5)-(1.7)), 

which means the connectivity of the silica site doesn’t change the reactivity of the reacted 

functional group.   In other words, each reaction in Eqs. (1.5)-(1.7) has a single unique 

rate coefficient that does not change with respect to conversion.  This is one of the 

assumptions made in an ‘ideal’ polycondensation model.  Another ideal assumption is 

that there are no cyclization reactions[31].  We refer to the scheme satisfying these ideal 

assumptions as the ideal polycondensation case, which will be discussed in more detail in 

Chapters 2 and 3.  

    While the equal reactivity assumption mentioned above captures the basic reactions 

that can occur during sol-gel ceramic synthesis, many researchers have found that a 

strong, negative first shell substitution effect (FSSE) exists for condensation[30, 32-34].  A 

substitution effect is a departure from ideal polycondensation[35].  It means the reactivity 

of a site is changed by substitution of the ligands attached to that site.  For a FSSE, only 

the four nearest neighbor functional groups affect the reactivity of the silicon site for 

subsequent hydrolysis and condensation steps[23, 35, 36].  According to the experimental 

observations of reactivity of sol-gel silica oligomers and of bulk NMR trends, FSSE 

should be considered as part of a sol-gel silica polymerization model.   

1.2.3 Bimolecular Site-level Condensation 

    Pouxviel and Boilot [32] first proposed that reactions of silanes should be considered to 

be between sites (a silicon atom and its neighboring ligands) and not between molecules.  

With the premise of hydrolysis pseudoequilibrium and FSSE, there are still 155 

condensation reactions left to be considered (if degree of hydrolysis of the reacting sites 

is assumed to affect condensation).  By making the reasonable assumption that water-
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producing condensation reactions dominate over alcohol-producing condensation 

reactions[24, 37], 100 alcohol-producing condensation reactions can be neglected.  After 

this simplifying assumption, 55 water-producing condensation reactions remain in the 

model.  Fortunately, the problem can be further simplified according to the studies that 

have been done by Sanchez[30] and Rankin[27].  Since χ  is almost a constant for all 

silicon sites after hydrolysis pseudoequilibrium is reached, the degree of hydrolysis has 

little observable effect on the condensation rate coefficients[30].  Therefore, the 

condensation rate coefficients can be isolated and defined only by the degrees of 

condensation of the two reacting sites that are involved[30].  Thus, only 5 species and 10 

bimolecular site-level condensation reactions need to be considered in our modeling.  The 

set of bimolecular condensation reactions among silicon sites can be simplified to[38]:  

                        OHQQQQ ji
k

ji
ij

211 ++⎯→⎯+ ++   =ji, 0, 1, 2, 3                                  (1.8)   

where Qi represents a tetrafunctional silicon site with i siloxane bonds.  For these 

reactions, the rate expressions are[38]: 
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                                    (1.9)          

where kij is the rate constant of bimolecular polycondensation (defined as reactivity per 

unit of silanol concentration), and f is the functionality of the monomer (which is equal to 

4 here). The site concentrations without superscripts are given by: 

                                            ][][
1
∑
−

=

≡
if

j

j
ii QQ ,                                                                   (1.10) 

where the subscript i represents the number of siloxane bonds, superscript j represents the 

number of hydroxyl group, and ][ j
iQ  is the concentration of j

iQ .  If we set  

                                             2* χkk ijij ⋅≡ ,                                                                      (1.11) 

the rate expressions are re-expressed as: 
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    The rate coefficients are set according to the experimental trend (negative FSSE), 

letting the values drop by an order of magnitude down the diagonal and decrease by 10% 
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across each row[27, 38, 39].  These numbers are not exactly the experimentally observed 

values, but they capture the trend of a substitution reaction which preferentially occurs by 

inversion at the less sterically crowded site. 

                                   K*
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*
00k                

1.2.4 Cyclization 

    All of the discussion above centered on bimolecular reactions where reacting sites are 

treated as independent.  This type of modeling was typical in the sol-gel field up until the 

mid-90s.  However, if cyclization (intramolecular reaction) is omitted, the maximum 

value of gel conversion that can be predicted with an FSSE kinetic model is about 50% 

for a tetrafunctional monomer, which can only be reached if very weakly branched 

structures are formed[27, 31].  However, researchers have verified that siloxane cyclization 

is a nonrandom, preferred reaction[40-42] that delays the gel conversion of 

tetraalkoxysilanes to about 82%[43-45].  This is not the only evidence for the importance of 

cyclization; 3- and 4-membered rings (meaning that they contain 3 or 4 silicon sites) are 

found by different analytical techniques, most notably and clearly 29Si NMR[27, 40-42, 44, 46-

56].  Researchers have also presented several likely reasons for the importance of 

cyclization in siloxane-based systems.  West and coworkers[40] proposed on the basis of 

computational chemistry that cycle formation reactions are energetically favored over 

chain extension.  Tang et al.[41] suggested that ring formation is favored because of the 

high flexibility of siloxane chains.  Both Sanchez et al.[42] and Ng et al.[52] presented 

kinetic results that favor cyclization during sol-gel silica polymerization.  Ng et al.[52] also 

pointed out that structure stabilization or changes in functional group reactivity (in the 

same molecule) can help to promote cyclization.  Hence, we know that cyclization is very 

important at the molecular scale in the sol-gel coating process so that it should not be 

neglected at all.  Models without cyclization may be able to match a selected set of data 

(such as 29Si NMR site concentrations) but the data will be fit with incorrect parameters 

and the models are likely to give incorrect predictions of other, more global properties 

(such as the point at which a gel forms).  Therefore, cyclization should be taken into 
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account in the sol-gel polymerization process modeling.  The details about 

implementation of cyclization in dynamic Monte Carlo modeling will be given in 

Chapters 4 and 5. 

1.3 Dissertation Outline 

    This dissertation is organized as follows: 

    Chapter 2. Simulation Methods: There are two parts to this chapter corresponding to 

the elements that are brought together in the multiscale approach used here. The first part 

is about the molecular simulation technique – dynamic Monte Carlo (DMC).  The second 

part is about the continuum method – finite difference method (FDM) as it is applied to 

the modeling of drying coating solutions.  In both parts, after a review of other methods, 

a description of the simulation method algorithm will be given, and an example of the 

ideal polycondensation case is given for the DMC method. 

    Chapter 3. Multiscale Modeling of Ideal Polycondensation and FSSE: In this chapter, 

two relatively simple cases are used to show ways to couple molecular and continuum 

processes together.  This type of coupling of modeling strategies is new in that it involves 

a polymerization process that occurs throughout the entire continuum domain rather than 

at a boundary.  The validity of our multiscale model can be verified by the modeling the 

evolution of conversion in each of these two cases.  Although these cases exclude 

cyclization, they can also show competition between drying and gelation, predict 

different drying / gelation phenomena, and predict the occurrence of gradients of 

concentration and gelation in the films.  In extreme cases, gelation gradients can lead to 

the formation of a gel skin near the top surface of the film, which is thought to be a site 

for nucleation of defects in films such as wrinkles and cracks.  

    Chapter 4. Multiscale Modeling of Unlimited 3-membered Ring Cyclization: This 

chapter describes the addition of cyclization reactions to our multiscale model, but only 

cyclization reactions allowing the formation of 3-membered rings.  This multiscale model 

is the first one coupling unlimited cyclization in polycondensation with continuum mass 

transfer process.  It is also the first model that can predict the structure gradient 

throughout drying sol-gel films, as hypothesized in earlier work with closed dynamic 

Monte Carlo simulations. 
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    Chapter 5. Multiscale Modeling of Unlimited 4-membered Ring Cyclization: This 

chapter presents the first dynamic Monte Carlo model that can simulate unlimited 4-

membered ring cyclization.  This is important because 4-membered rings are the 

dominant cyclic structural units in real sol-gel silicates.  Compared with 3-membered ring 

cyclization, the number of potential rings in the 4-membered rings cyclization is greater 

and the molecular structure of the products is more complicated with a dimensionless 

cyclization tendency 5≥κ (a physically reasonable value for sol-gel polymerization).  At 

the same process conditions (Bi, Da and κ), films with 4-membered ring cyclization gel 

more quickly, have more number-average cycle rank per molecule, and display more 

extreme structure gradient than films with only 3-membered rings.  The inclusion of 4-

membered rings in this chapter represents a significant advance in our ability to 

quantitatively model sol-gel polymerization in thin films. 

    Chapter 6. Conclusions: A summary of the whole dissertation is presented along with a 

brief discussion about future opportunities presented by the work that has been done so 

far. 

    Chapters 3, 4 and 5 are under revision as journal manuscripts and will be submitted for 

peer-reviewed publications soon.  
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Chapter 2  

Introduction to Molecular and Continuum Simulation Methods 

 

2.1 Molecular Modeling Technique – Dynamic Monte Carlo (DMC) Method 

2.1.1 Introduction 

The Monte Carlo (MC) method is a stochastic simulation technique[57].  Using random 

numbers and probability, the Monte Carlo method allows one to study problems that are 

difficult or impossible to solve deterministically or are encountered during the evolution 

of a finite population[58].  In Monte Carlo simulations, integration is approximated 

through a random event selection process which is repeated many times to create multiple 

realizations of a sequence of events.  Each time one event is randomly selected, it 

represents a step in one possible configuration and solution to the problem.  Together, 

these configurations give a range of possible solutions, some of which are more probable 

and some less probable.  When repeated for many configurations (10,000 or more), the 

average solution will give an approximate answer to the problem[58, 59].  Accuracy of this 

answer can be improved by simulating more realizations of the sequence of events or, in 

the case of population balance modeling, by using a larger population [58, 60].  For Monte 

Carlo method, the finite size of the population is the primary source of error[58] and it 

restricts the maximum simulated length scale[38, 61].  

In statistical physics, Monte Carlo methods are often used to sample the configurations 

of a system that contribute most to the average properties of that system.  For instance, in 

molecular simulations at equilibrium, a Monte Carlo method favors configurations with a 

high probability of being found according to the Boltzmann distribution, rather than 

calculating average properties by enumerating all possible configurations of the system of 

many particles.  Similarly, in a Markov chain process (a sequence of events described by 

transition probabilities) such as polymerization, Monte Carlo simulations are used to 

sample only the chain structures that are likely to be realized by the kinetic scheme, 
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rather than needing to enumerate and solve kinetic equations for all possible polymer 

structures. 

Monte Carlo simulations have been purposely used to capture the effects of 

fluctuations in small systems such as micro-fluidic reactors.  As early as 1976, 

Gillespie[62] proposed that the Monte Carlo method can be used for simulation of 

chemical kinetics in finite populations of molecules.  He suggested that the Monte Carlo 

method is able to handle systems in which many chemical species participate in many 

highly coupled and highly nonlinear chemical reactions, and it takes full account of 

fluctuations and correlations near chemical instabilities[62].  Vlachos[63] compared the 

instabilities in homogeneous non-isothermal reactors (CSTR), using deterministic and 

Monte Carlo methods.  He suggested that the Monte Carlo method is uniquely suited to 

examine thermal fluctuations and finite size effects near critical points[63]. 

In the last two decades, many researchers have found that Monte Carlo simulations are 

very good choices to model the sol-gel silica formation process and other network 

polycondensation reactions.  Šomvársky and Dušek[61, 64] described a MC method for 

simulation of structure evolution in branched polymer systems and discussed the system 

size effect on network formation.  They also discussed the disadvantages of other 

methods (e.g. cascade theory, recursive theory and percolation techniques) in the 

simulation of polymer network formation[61].  In contrast to the other statistically derived 

methods, the MC method can capture the complete reaction history for a finite set of 

monomers[61].  In particular, the additional network information such as molecular weight 

distribution and cycle rank distribution can be recorded during the simulation[64], so MC 

simulations can provide more accurate results than other network polymer models such as 

a kinetic-recursive model[31, 39, 61].  The disadvantage of statistical approaches is that they 

derive average structural characteristics by assuming random assembly of some sort of 

building blocks.   Even if a non-random kinetic feature such as a first-shell substitution 

effect (a dependence of condensation rate on prior condensation reactions) is included, 

correlations may be lost because the sites are essentially “cut up” and reassembled when 

properties like average molecular weight are computed, for example by a recursive 

approach.  Hendrickson et al[35] studied substitution effects in four-functional sol-gel 

precursors using a MC technique.  They compared their results with analytical results to 
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confirm the accuracy of the MC method, and verified again that network properties can 

be calculated directly from the investigation of the network connectivity[35], which is one 

advantage of MC method we just mentioned.  Furthermore, the MC method has the 

flexibility to handle larger cycles and cages that are thought to play a significant role in 

the structure of sol-gel silica[43].  Hendrickson[65], Kasehegen[39], Ng[43] and Rankin[27, 38, 

66] et al. have shown how to use the Monte Carlo method to deal with cyclization 

reactions in sol-gel silica polycondensation, although they each treated cyclization 

somewhat differently.  Compared with molecular dynamics simulations[67-69] which are 

computationally intensive and have limitations in the accessible length and time scales, 

dynamic Monte Carlo simulations can simulate much larger systems and much longer 

times, and they are computationally efficient because each MC step is a reaction event[70].  

A possible criticism of the MC approach is that kinetic parameters for the rates of 

bimolecular and cyclization reactions must be input into the simulation.  However, these 

coefficients could hypothetically be derived from first-principles ab initio or molecular 

dynamics calculations based on transition state theory.  

2.1.2 DMC Algorithm 

    Classical random branching theory (RBT) i.e. Flory-Stockmayer theory[71-73] can 

provide an adequate prediction of the average properties of network polycondensation 

systems which satisfy the following ‘ideal’ assumptions[31, 43]: first, all of the functional 

groups have equal and independent reactivities; second, no cyclization reactions are 

allowed in the system.  Here we use this ideal case as the example to illustrate the details 

of the DMC algorithm, and to verify the accuracy of the present implementation of the 

DMC method by comparing our simulation results with analytical results of RBT.  Based 

on sol-gel chemistry discussed in Chapter 1 but not considering cyclization, we need to 

consider 10 condensation reactions among four differently connected silicon sites.  This 

is a first-shell substitution effect (FSSE) model but it becomes ideal by setting all the rate 

constants equal to one another. 

    At the beginning of the simulation or the synthesis process, we have pure TEOS, so all 

the molecules are monomers (designated as Q0 where the subscript indicates the number 

of siloxane bonds attached to a site).  Rij (i from 0 to 3, j from i to 3) is used to denote the 
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reaction rate for one of the 10 condensation reactions between species Qi and Qj.  

Although these rates are actually the product of the concentrations of the participants and 

a rate constant k, in the simulation, we calculate the reaction rates as the products of the 

populations of silicon sites and the rate constants, because we are only concerned with 

the relative reaction rates (for now – the concentration only becomes important when 

calculating the time evolution of the system, which will be discussed when needed in 

future chapters).  In other words, we use are integral populations {Qi} to calculate Rij, and 

not concentrations [Qi][35, 61].  

2.1.2.1 Data Structures 

    In the Monte Carlo simulation, we need to record a variety of information about the 

progress of the polycondensation process, such as the populations of silicon atoms with 

differing connectivities, molecular tags, the sizes of molecules, the molecule membership 

of the silicon atoms, and so on.  The information contained in the data structures is 

updated after each step (reaction) for later interrogation.  The data structures allow 

specific species to be selected randomly from the entire population when species of a 

particular type are needed to take part in a reaction.   

The data structures used in the algorithm are as follows: 

1) Silicon sites arrays: we use two one-dimensional arrays to store the information 

about silicon sites (Q species).  One records the numbers of each type of Q species (Qi), 

while the other is used to index the silicon sites.  Each element of the latter array is a data 

structure, in which the information about molecular tag and membership is stored.  The 

details are provided below. 

    2) Molecular tags [35]: this array is used to identify the molecules.  An integer tag is 

assigned to each molecule.  In the beginning, all of the monomers have different 

molecular tags because they are unconnected to one another.  In the bimolecular reaction, 

the product molecule is tagged with the tag of larger reactant molecule.  All of the 

monomers (sites) on the same molecule have the same integer tag.  

3) Membership: we keep track of molecule membership using four pointers to the four 

neighbors connected to each silicon site, indexed by silicon site number.  The pointers are 

set to NULL for monomers.  When a reaction occurs, a bond is formed between two sites, 
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and for each reactant site, one pointer to its new neighbor (the other reacting site) is 

added. 

    4) Size array [35]: we use this array to record the sizes of molecules in the system.  In 

the beginning, the sizes of monomers are all set to 1.  Using molecular tags as indices, in 

the bimolecular reaction, the length of the larger molecule is updated to be the sum of the 

sizes of the two reactants, while the length of the smaller one is set to zero.  

    5) Size distribution array: a linked list is used to keep track of the molecular weight 

distribution in the simulation.  Each element of the linked list contains the information of 

molecular size, the number of molecules having this size and the pointer to the next 

member in the size distribution array. 

6) Conversion: in the DMC simulation, because conversion is the fraction of functional 

groups that have condensed, it can be calculated as follows [35]: 
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where St is the total number of DMC steps, and N is the total number of monomers.   

    7) Gel point: In DMC simulations, the gel point can be estimated by the divergence of 

the weight-average degree of polymerization (DPw)[38].  DPw can be calculated directly 

from the molecular weight distribution as[38, 64]: 
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where L(i) is the size of the molecules in the population, and N is the total number of sites.  

A better way to find the value of gel conversion is to plot the reduced weight averaged 

degree of polymerization (rDPw) against conversion[38, 74].  rDPw can be calculated by 

removing the largest molecule from the molecular weight distribution in the DMC 

simulation and recalculating DPw
[64]: 
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where Lmax is the size of the largest molecule in the population.  Below the gel point, 

w wrDP DP= ; but rDPw drops sharply at gelation[64].  Therefore the value of conversion at 

gelation can be determined by the position of the peak in rDPw. 



 14

2.1.2.2 Monte Carlo Reaction Selection 

Monte Carlo reaction selection is used to make sure that reactions compete properly 

according to their relative rates.  In Monte Carlo simulation, the rates are normalized into 

a set of probabilities Pij which (for bimolecular reactions only) are given by [35, 39]: 

                                          
∑∑
= ≥

= 3

0

3

i ij
ij

ij
ij

R

R
P .                                                                  (2.4) 

A random number r is used to choose a reaction.  In our program, it is calculated based 

on a pseudo-random number generator – the ANSI C rand() function: 

                                             MAXRANDrandr _/()0.1 ×= .                                        (2.5) 

In order to produce floating point numbers uniformly distributed over the interval (0, 1), 

we recalculate Eq. (2.5) if r is equal to 0 or 1.  After a number is picked, the summation 

of probabilities is started in the sequence P00, P01, P02, etc. until the partial sum exceeds 

the random number.  That is, if ),(),( 2211 jisumrjisum ≤< , we choose the i1j1-th 

reaction.  As a simple example shown in Figure 2.1, if P = {0.3, 0.13, 0.27, 0.3}, and the 

random number is equal to 0.61, then reaction 3 is chosen.  Finally, after the reaction is 

selected, it is executed.  For bimolecular reactions, this means that two sites to react are 

chosen from the populations of all sites with the appropriate connectivities for the chosen 

reaction.   The chosen sites are joined, and arrays are adjusted to reflect the change in 

state of the system.  At the next step, the reaction rates and probabilities are updated and 

a new reaction is selected. The reaction rates and reaction probabilities are respectively 

stored as 4×4 matrices. 

2.1.2.3 Flow Sheet 

A flow sheet of the algorithm is given in Figure 2.2.  At each DMC step, one siloxane 

bond is added to the population of monomers.  This is an advantage of this algorithm in 

comparison with other Monte Carlo algorithms based on randomly selecting reactions 

and deciding whether to accept them based on acceptance probabilities.  Our approach is 

sometimes called the “continuous time Monte Carlo” method because it is based not on 

discretizing time intervals but on discretizing reaction events.  Because no bond additions 

attempts  are  rejected, this approach is very efficient, as we mentioned before.  We begin  
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Figure 2.1 An example of Monte Carlo reaction selection 
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Figure 2.2 Flow sheet of the DMC algorithm 
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with N monomers, initialize the data structures, and then we start the reaction steps.  At 

each reaction step, we can calculate the reaction rates based on the current population of 

reactive species, and then obtain the probabilities according to all of the rates[39].  One 

reaction is selected by a random number and reactive sites are also chosen by two random 

numbers.  Then the reaction is executed and the data structures are updated accordingly. 

The whole process for each reaction step is repeated until a stopping criterion is met 

(which is chosen to be after the gel point – for instance, once DPw reaches a value greater 

than 10% of the total number of monomers, finite size effects become important and so 

the simulation is stopped).  

2.1.3 Random Branching Theory (RBT) 

    Based on the RBT, conversion at gelation can be expressed as[71] 

   1
( 1)g f

α =
−

.                                                                      (2.6) 

where f is the functionality. For the acid-catalyzed TEOS system 4f = , so we could infer 

that gelation is expected to occur when the conversion reaches 1/3 in the ideal case.  In 

addition, DPw can be predicted in the ideal case to be[64, 75]: 
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If we keep track of the number of silicon species with differing connectivity i (Qi), it is 

expected to be a function of the siloxane bond conversionα .  In the ideal case, the 

analytical solutions for the fractions of different Qi species as functions of conversion can 

be derived based on the assumption of equal reactivity, from which it follows that (1-α) 

is the probability that any of the ligands attached to a site has not polymerized.  

Combinatorial considerations lead to the following expressions[75]: 

  4
0( ) (1 )f Q α= − ,                                                           (2.8) 

  3
1( ) 4 (1 )f Q α α= − ,                                                       (2.9) 

 2 2
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2.1.4 Results and Discussion 

In our DMC test simulations discussed here, we use 1.0E+05 monomers.  The 

accuracy of the DMC method can be verified by comparing the simulation results with 

analytical results based on RBT.  Figure 2.3 shows the number fractions of different Qi 

species as a function of conversion.  The DMC results (points) are very consistent with 

the analytical equations above (curves).  Figure 2.4 presents the comparison of weight-

average degree of polymerization for DMC simulations and RBT.  It is clear that the 

tendency of the DPw of DMC is correct until the gel conversion is approached.  We can 

also find that above the gel point the deviation between simulation and analytical solution 

grows rapidly.  This is a finite-size effect[64] and it is normal for MC simulations.  

Because of the finite size of the population of polymers, a deviation is expected to happen 

late in reaction, but usually it does not begin until DPw is at least 1% of the total number 

of monomers, and usually is not severe until it is 10% of the total number of monomers.  

Based on Figures 2.3 and 2.4, DMC method is proven to be accurate to simulate the sol-

gel polycondensation process. 

    As we mentioned above, a plot of reduced weight averaged degree of polymerization 

(rDPw) against conversion can also used to find the value of gel conversion.  Figure 2.5 

shows an example of using the peak in a plot of rDPw against conversion to estimate the 

gel conversion.  For this case, we estimate the gel conversion to be about 0.336, which is 

almost the same as the analytical solution. 

2.2 Continuum Modeling Method – Finite Difference Method (FDM) 

2.2.1 Introduction 

    As discussed in Chapter 1, modeling sol-gel film formation requires a multiscale 

approach that combines the granular, molecular description of polymerization given by 

the DMC method with a continuum model of the drying process.  Researchers have 

shown that the finite difference method (FDM) can correctly model the drying process of 

polymer films.  Blandin et al.[76] presented a film drying model based on FDM, which 

gives results in good agreement with experimental data, thus validating the model.  

Vrentas et al.[77] proposed using FDM to solve a set of equations which describe heat and 

mass  transfer  and  film  shrinkage  in  the  drying  of  polymer  films. Alsoy and Duda[78]  
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Figure 2.3 Comparison of DMC results with RBT analytical results for the ideal case:  
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applied their model, which is based on the model of Vrentas[77] and solved by the finite 

difference approximation, to the well characterized polyvinylacetate (PVAC)-toluene 

system.  Two sets of data available for the drying of polystyrene (PS)-toluene and PVAC-

toluene systems verify the validity of the model[78].  Kuznetsov et al.[79] utilized FDM to 

solve their model which describes the effect of evaporation on the free surface profile and 

solute concentration distribution.  Lou and coworkers[80] demonstrated that a model 

solved by FDM can provide satisfactory long-term predictions of film formation. 

    The purpose of the work described in this dissertation is to develop a relatively simple, 

but sufficiently accurate method to model the moving boundary drying process in the sol-

gel silica films.  As will be discussed in later chapters, this model is to be coupled with 

the DMC model to give a comprehensive, multiscale approach.  Compared with other 

methods that have been used to model the drying process of polymer solutions such as 

integral approach[81] and finite element method[82-85], FDM is easy and intuitive to 

implement, which is advantageous for developing multiscale methodology.  In the 

following section, the FDM algorithm is briefly introduced.  More details about our 

drying model (including the continuum equations) to be solved using FDM will be shown 

in Chapter 3.  

2.2.2 FDM Algorithm 

The FDM is a simple and efficient method for solving ordinary differential equations 

(ODEs) and partial differential equations (PDEs) in domains with simple boundaries.  

The method is based on substituting of derivatives in the differential equations by finite 

difference approximations[86].  These basic approximations are based on the definition of 

the derivative, 
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provided that the limit exists.  We just delete the limit operation in order to obtain a 

finite-difference approximation to )(xfD+ .  The result is known as the first forward 

difference, 
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where 1i ix x h+ = +  and the subscripts here denote different points in the grid defining the 

FDM modeling domain. 

    If h is sufficiently small and 2f C∈  in a neighborhood of ix x= , the accuracy of the 

first forward difference can be obtained using a Taylor series about the point xi 
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Substituting (2.15) into (2.14), we have 
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So the leading error of Eq. (2.16) is 
2

if h
′′
⋅  and the approximation is first order accurate 

with respect to the step size h. 

   There are two other approximations: backward-difference approximation and centered-

difference approximation.  Using the same procedure we can see that backward-

difference approximation is also of first order accuracy, while the centered-difference 

approximation is of second order accuracy with respect to the step size h.  Therefore, the 

centered-difference approximation is more accurate, and it is the approximation that we 

will use in our continuum modeling. 

    Backward-difference approximation:   )()( 1 hOf
h

ffhfD i
ii +′=

−
= −

−                    (2.17) 

    Centered-difference approximation:   )(
2

)( 211
0 hOf

h
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−

= −+                  (2.18) 

    The approximation of higher order derivatives by the finite difference method can also 

be obtained using the similar approach.  For example, the centered-difference 

approximation of a second order derivative can be derived as follows: 
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2.2.2.1 Discretization (grid) 

The FDM requires that the domain is discretized to form a grid.  At each grid point 

each term in the differential equation is replaced by a difference formula which may 

include the values of function at that point and its neighboring grid points.  By 

substituting the difference formula into the equation, a difference equation is obtained.  

The grid is formed by the partition of the domain consisting of M×N points, and the grid 

points are indicated in Figure 2.6.  In our cases, we use a uniform spacing for the 

computational mesh, using j index as time and i index as position.  

2.2.2.2 Explicit Scheme 

    The PDEs are transformed to finite difference equations after the finite difference 

approximations replace the derivatives.  These finite difference equations can be solved 

either by explicit or implicit method.  In the explicit scheme, the modeled variable values 

at a new time can be directly calculated from the previous ones.  Therefore in this 

approach, the PDE can be solved directly using the boundary conditions.  In contrast, an 

iterative process is used to calculate modeled variable values at a new time in an implicit 

scheme.  A trial solution is input as a first guess to the equations, and a new solution is 

calculated  and  used  as  new  input in each iteration until the values converge to within a 

specified tolerance[87].  Because of their iterative nature, implicit schemes are usually 

more numerically intensive than explicit methods, although the increased accuracy they 

provide is required for some problems.  It is clear that an explicit scheme is much easier 

to implement and debug than the implicit scheme.  Therefore, we will use explicit FDM 

in our continuum modeling because our one-dimensional drying model is amenable to a 

simplified approach.   
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Figure 2.6 Example of finite difference discretization of a domain into a grid. 
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2.3 Summary 

    This chapter presented a general overview of the simulation methods used in this 

dissertation: the DMC method for molecular simulation and FDM for continuum 

modeling.  DMC simulation is a very good choice to model the sol-gel silica 

polycondensation because it can capture the complete reaction history for a finite set of 

monomers, it has the flexibility to handle new types of reactions associated with the 

formation of large polycyclic species and cages, and it can simulate much larger systems 

and much longer times than competing molecular approaches such as molecular 

dynamics.  The accuracy of DMC as we have implemented it can be verified by the good 

agreement between simulation results and analytical results (based on RBT) for the ideal 

polycondensation case.  The FDM is an easy and intuitive numerical method to model the 

drying process of sol-gel silica films.  Because we use a one dimensional model to 

develop the multiscale approach, FDM should provide adequate numerical accuracy and 

precision for the purposes of this dissertation.  There are many examples to show that 

FDM can correctly model the drying process of polymer films.  More details about our 

continuum modeling using explicit FDM will be shown in Chapter 3, including the 

balance equations, approach to nondimensionalizing the equations, boundary conditions, 

and coupling to the DMC simulation.  
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Chapter 3 

Multiscale Modeling of Ideal Polycondensation and Polycondensation with First 

Shell Substitution Effect (FSSE) in Drying Thin Films 

 

3.1 Introduction 

Modeling silica curing in drying films is important for overcoming challenges in 

controlling the thickness, cracking and homogeneity of the films.  Until now, most 

models of sol-gel polymerization or drying polymer films have provided useful insights 

into the essence of the physical phenomena, but they only focused on selected length and 

time scales.  For example, kinetic models of the gelation behavior of silica 

polymerization have been developed using recursive statistical techniques or Monte Carlo 

simulation[31, 38, 39, 75].  These modeling approaches are necessary to link rates of 

polymerization of individual monomers to molecular weight distributions and gelation of 

branched polymers.  On the other hand, drying has been approached using continuum 

models and solved with an integral approach[81], finite element method[82-84] or finite 

difference method[76-78, 80].  However, during the formation of sol-gel coatings, both 

polymerization and drying occur simultaneously, so the process involves multiple length 

and time scales ranging from molecular to macroscopic.  

Unlike other processes where multiscale models have previously been applied, the sol-

gel polycondensation occurs throughout the thickness of the film where solvent transport 

is occurring.  Therefore, it is not possible to regard the polymerization reaction as 

occurring in a place spatially separate from the place where the coating flow occurs.  At 

the molecular level, polymerization and (if surfactants are added) self-assembly process 

occur which control the film properties such as film microstructure.  At the same time, 

the formation of the film is controlled by macroscopic parameters.  Diffusion and mass 

transport occur over micron or greater length scales, and define the concentration fields 

within which polymerization and self-assembly occur.  Therefore, we are challenged in 

this process to develop a methodology to link different length and time scales together 

throughout the entire simulated domain. 
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    In this chapter we present a multiscale model which captures the evolution of both 

macroscopic and molecular phenomena of this sol-gel silica film formation process.   The 

process of diffusion and mass transport can be adequately modeled by treating the film as 

a continuum.  The macroscopic conservation equations for mass are expressed by a set of 

partial differential equations for species concentration with initial and boundary 

conditions.  Based on finite difference method, the continuous domain is discretized and 

these PDEs are solved numerically.  However, at the molecular length scale, the 

continuum hypothesis is no longer valid and the molecular phenomena cannot be 

described by deterministic PDEs[21].  At such a small length scale, the kinetics of sol-gel 

polymerization is best modeled by dynamic Monte Carlo (DMC) simulation.  This 

approach is necessary because of the nonideal nature of silane polymerization (which 

precludes the use of random branching theory[71-73] and even throws into question the 

validity of statistical techniques such as the kinetic-recursive method[31, 39]).  DMC 

simulations can simulate much longer times and much larger ensembles than molecular 

dynamics simulations[38, 70] can and have the potential flexibility of handling larger cycles 

and cages that are thought to play a significant role in the structure of sol-gel silica[38, 43, 

66].  The inclusion of these cyclization reactions will be the subjects of the next two 

chapters, but here we focus on the coupled DMC / continuum model. 

    We will begin by describing the model integrating the DMC method and continuum 

model, as well as the physical assumptions and the simulation procedure.  We first briefly 

review DMC simulation, since we have discussed sol-gel silica chemistry in Chapter 1 

and presented the DMC algorithm in Chapter 2. Details are given about how to calculate 

the time interval in the DMC model.  In the continuum model, the entire DMC simulation 

(containing ~ 106 monomers) is treated as a particle of sol whose position and 

composition are tracked using diffusion / evaporation finite difference calculations.  

Linking the two models is accomplished by tracking the positions of sol particles during 

drying.  In the third section, two specific cases are considered – ideal polymerization and 

polymerization with a first shell substitution effect (FSSE).  The effects of concentration 

gradients during drying are captured by simulating swarms of particles starting from 

different positions in the film.  By varying process parameters, we observe their effects 

on the competition between drying and gelation, predict different drying / gelation 
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phenomena, and predict the occurrence of gradients of concentration and gelation in the 

films which can lead to the formation of a gel skin near the top surface of the film.  

3.2 DMC Model 

    The DMC model is solved based on the following assumptions: only a first shell 

substitution effect for condensation is considered, hydrolysis is assumed to be at 

pseudoequilibrium, alcohol-producing condensation is neglected and no cyclization is 

allowed.  With this set of assumptions, a finite set of N monomers (N ~ 2.5×106) is 

polymerized in a manner consistent with the kinetics described in Chapter 1 by a DMC 

approach.  The set of bimolecular condensation reactions is as follows: 

        
*

1 1 2
ijk

i j i jQ Q Q Q H O+ ++ ⎯⎯→ + + ,                                                (3.1) 

where Qi represents a tetrafunctional silicon site with i siloxane bonds (where i represents 

the number of linkages to other silicon atoms), and both i and j can vary between 0 and 

3[38].  Assuming that hydrolysis reaches quasi-equilibrium with constant χ , the rate of 

reaction (3.1) can be expressed as: 
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where [Qi] represents the concentration of silicon sites Qi
[39]. 

    In the simulation, each monomer unit is indexed as a separate entity.  At each DMC 

step, one siloxane bond is added and the conversion (α ) is increased by a small constant 

value αΔ , as given by: 

                                    7100.2
2
1

4
2Δ −×==
×

=
NN

α  ,                                                  (3.3) 

where N is the total number of sites.  

    At each step, the probabilities Pij of selecting each type of condensation reaction are 

evaluated by calculating the rates of the reactions, and one reaction is chosen to occur.  

After selecting a reaction, the particular sites joining in the reaction are randomly chosen 

from the subset of sites fitting to the required characteristics – in this case, that the sites 

have the correct connectivities chosen for the reaction.  After the sites are chosen, they 
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are joined with one siloxane bond and all information is updated.  DMC steps are 

repeated until a stopping criterion is met.  

    One thing that needs to be emphasized here is the calculation of the time interval[62, 70] 

during each bond addition, which is given by: 

       1ln
Si ij

Nt
C R r

⎛ ⎞Δ = ⋅ ⎜ ⎟
⎝ ⎠∑

,                                                         (3.4) 

where N is the total number of sites, r is a random number chosen from (0, 1), and Rij is 

the rate described by Eq. (3.2) but based on the populations of silicon sites Qi in the DMC 

model, rather than the concentrations [Qi][35].  In this equation, CSi is the total silicon site 

concentration which comes from the continuum model at the time that the reaction is 

selected.  This concentration serves as one link that allows us to synchronize our DMC 

model and the continuum model in this multiscale process.  We will give more details in 

the following description of the continuum model.  

    One of the important results we need to obtain from the DMC simulation is the gel 

point.  We know that a gel is a sample-spanning polymer network. In theory we can use 

an infinite molecular weight polymer to represent the gel[31].  In the DMC simulation, the 

gel point can be estimated by the point at which DPw diverges, or could be better 

determined using the peak of rDPw
[38, 39].  DPw is the weight-averaged degree of 

polymerization, and rDPw is the reduced weight-averaged degree of polymerization, 

which is calculated by removing the largest molecule (the gel) from the population and 

recalculating DPw.  

    Here, we will simulate two cases with the DMC model – an ideal polymerization case 

and a FSSE case.  In the ideal polymerization case, the functional groups will react 

randomly and independently, which means that all the rate constants are equal to each 

other and no cyclization exists.  In the FSSE case, we consider non-ideal polymerization 

effects, but still exclude cyclization.  The rate coefficients of the FSSE case are set to 

drop by 10% across each row and to decrease by 90% down the diagonal, which 

resembles the experimental substitution effect[38].  In other words, *
00

*
01 9.0 kk = , 

*
00

*
02 81.0 kk = , etc. while *

00
*
11 1.0 kk = , *

00
*
22 01.0 kk = , etc.  In fact, the ideal case represents 

a particular case of a FSSE model in which the set of connectivity-dependent rate 

coefficients are all set equal to one another. 
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3.3 Continuum Drying Model 

3.3.1 Model Assumptions and Description 

The continuum model for the formation of sol-gel thin-film coatings is described by 

macroscopic conservation equations for mass.  It is a simplified one-dimensional model 

corresponding to a rapidly deposited film that begins drying and curing after the coating 

process is complete.  Via evaporation, solvent is removed continuously at the top liquid / 

vapor interface.  In addition to this evaporation, the diffusion of solvent within the film 

and the chemical reactions of dissolved species need to be included in this model.  A 

schematic diagram of the sol-gel film drying process is given in Figure 3.1.   

To facilitate the modeling, the following major assumptions are used here: 

1) The film is extremely thin as compared with the surface area so that concentration 

variation is assumed to occur only in the thickness direction. 

2) The concentrations of species are uniform throughout the film at the beginning of 

the drying process. 

3) The solid substrate supporting the thin film is taken to be impermeable. 

4) At the surface of the coating the vapor is in equilibrium with the coating, and the 

pressure in the gas phase is effectively uniform. 

5) The evaporation rate of the solvent from the surface is proportional to the difference 

in gas-phase mole fraction of solvent between the vapor just above the surface of the film 

and the bulk gas.  

6) The process is isothermal, i.e. heat transfer effects are not considered here.  

7) The diffusion coefficients of solvent and sol are assumed to be constant and equal, 

and the cross-term diffusion coefficients are set to zero.  

8) Hydrolysis is assumed to achieve quasi-equilibrium before the drying process is 

started and hydrolysis extent 1=χ .  

9) Alcohol has already evaporated before the drying process is started and there is 

excess water in the solution. That means we can consider just water as the solvent. 

10) The film thickness changes are assumed to be dominated by solvent evaporation so 

that volume changes due to reactions can be ignored. 
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Figure 3.1 1-D drying sol-gel silica film schematic diagram 

The z direction is defined to be perpendicular to the drying film.  The initial thickness 

of the film is H0, and during the drying process, the instantaneous thickness is H(t).  The 

entire DMC simulation (containing millions of monomers) is treated as a particle of sol 

whose position and composition are tracked using a diffusion / evaporation finite 

difference calculation. 
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3.3.2 Governing Equations 

The governing equations for solvent and solute are as follows: 
2
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where C1 is the concentration of solvent, C2 is the total silicon concentration, C
iQ  is the 

concentration of a tetrafunctional silicon site with i siloxane bonds in the continuum 

model.  C
iQ

R  is the net rate for creation of each type of site through reaction. 
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where Rij is the bimolecular reaction rate between sites Qi and Qj given by Eq. (3.2). 

Initial conditions in this formulation are as follows: 

( ) 0,11 ,0 CzC = ; ( ) 0,22 ,0 CzC = ; ( ) C
i

C
i QzQ 0,,0 =  ( =i 0, 1, 2, 3 and 4).                   (3.9) 

Consistent with the description of the film model described above, the boundary 

conditions are given by: 
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The effect of boundary motion due to solvent evaporation is taken into account using the 

term ( )dH t
dt

[88].  In Eq. (3.12), gk is the mass transfer coefficient of solvent in the vapor 
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phase (in units of )/( 2 scmmol ⋅ ), 1
sy  is the molar fraction of solvent at the surface in the 

gas phase (which is calculated based on Raoult’s law), and 1y∞  is the molar fraction of 

solvent far away in the gas, which is set to zero here.  Eq. (3.13) was derived from the 

relation 1ˆˆ
2211 =+ VCVC , where îV  is the molar volume, and 

0,2

10,1
2

ˆ1ˆ
C

VC
V

−
= .  Eq. (3.14) is 

obtained by realizing that the probability that a Si atom in the solute mixture is associated 

with a C
iQ  site is given by 

2C
QC

i .  Using this relationship, the diffusion term for C
iQ  can 

also be substituted into Eq. (3.7) as follows: 
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Because only solvent is assumed to evaporate, the rate of change of film thickness, also 

known as the surface velocity vs, can be calculated according to the following expression:  

      1 1 1
( ) ˆ ( )s s

g
dH t v V k y y

dt
∞= = − − ,                                            (3.17) 

If we just consider ideal polymerization, the model can be simplified because the 

condensation rate constants are all equal.  Therefore we can use independent functional 

group kinetics[36], in which the hydrolyzed functional group (SiOH) is the only species 

that participates in the reaction.  If we use C3 to denote the concentration of (SiOH), then 

based on the fact that one Si atom is associated with )1(4 α−  (SiOH) functional groups 

where α = the siloxane bond conversion, we write the conservation equation, initial and 

boundary conditions for C3 as follows:  
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Initial conditions:              ( )3 3,0 2,00, 4C z C C= =                                                          (3.19) 

Boundary conditions: 
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At free surface ( )(tHz = ):  
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3.3.3 Dimensionless Variables and Simulation Procedure 

    The following dimensionless variables are defined to solve the transport equations 

numerically: 
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ii = , 1

2
0

D t
H

τ = .                 (3.22) 

Using the dimensionless variable η , the region in which diffusion occurs is always from 

0η =  to 1η = .  In other words, the physical moving domain is mapped onto a fixed 

domain, and we do not need to modify the spatial grid during the simulation.  Meanwhile, 

a pseudoconvective term is produced by this Landau transformation[89] in the diffusion 

equation[88].  For example, the dimensionless form of the equation for the solvent now is  
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We can see that this pseudoconvective term is proportional to the free surface velocity 

dh
dτ

.  

    This set of dimensionless equations is numerically solved using the explicit centered 

finite difference method (FDM).  We discretize the whole domain into a number of thin 

slices; each one with a fixed thickness ηΔ .  For the solution, the time interval ∆t is equal 

to the time interval between reactions estimated from the DMC simulation.  At each finite 

difference step, we use the concentrations, film thickness, surface velocity, and Robin 

boundary condition at the surface from the previous time step to complete the calculation.  

3.3.4 Tracking the Sol Particle  

As we mentioned before, the entire DMC simulation is treated as a particle of sol 

whose position and composition are tracked in the continuum model, which provides an 

important link between the parts of our multiscale model.  We perform the tracking using 

linear interpolation.  Similar to the film thickness calculation, the change of particle 

position can be expressed as follows: 
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From the value of particle position of the previous step on the calculation, we can 

determine the finite difference slice where the particle is located.  Then we are able to 

estimate the approximate value of concentration gradient in that interval (between slice 

(m-1) and slice m) and continue to calculate the composition and position of the particle 

(expressed in dimensionless form):  
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where cpi (i=1, 2 or 3) is the dimensionless concentration of solvent, total silicon sites or 

(SiOH) group at the particle position, cqi is the dimensionless concentration of silicon 

sites with i siloxane bonds at the particle position.  Using the calculated information of 

this tracked particle, we can then determine the conversion and total silicon site 

concentration in the continuum model.  This total silicon site concentration is then 

supplied to the DMC routine to choose the next reaction and calculate the time interval of 

the next DMC step, as discussed earlier.  The equations we use to calculate conversion 

and overall silicon concentration from the integrated concentrations for the two 

polymerization cases are presented below:  

Ideal case:         
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FSSE case:        4321 432 cqcqcqcqa ⋅+⋅+⋅+=  (reacted [SiOH])                             (3.29) 
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Using these expressions, we can compare the conversions and site distributions (for the 

FSSE case) with those obtained from the DMC model to validate the implementation of 

this multiscale model.  Note that the DMC model still contains a significant amount of 

information about the polymer structure distribution that is not available from a 

continuum kinetics approach. 

3.4 Results and Discussion 

    In our modeling, we focus on the effects of two important dimensionless parameters, 

Bi and Da (Eq. (3.33)) to understand how process parameters affect the drying process of 

the sol-gel silica films.  Bi is the Biot number, which is the ratio of external mass transfer 

resistance to the internal diffusion resistance, and can be thought of as a dimensionless 

mass transfer time.  Da is the Damköhler number, which is the ratio of reaction rate to 

diffusion rate, and can be thought of as a dimensionless reaction time.  In the FSSE case, 

we have different rate coefficients, but we use the first reaction rate coefficient *
00k  as the 

reference to define the Damköhler number.  For a negative FSSE (considered here) *
00k  is 

the largest rate coefficient. 
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Da = .                                           (3.33) 

    The ratio of initial concentration used in our work is 1:4: 0,20,1 =CC , and the molar 

volume of the solvent is arbitrarily set to 0.1.   

3.4.1 Solvent Concentration Profile 

    Figures 3.2 and 3.3 display the time-dependent solvent concentration profiles in the 

films which are calculated by the continuum model for the ideal case and FSSE case 

respectively.  The red curve shows the change of the tracked sol particle position for the 

two examples selected for display.  As expected, the film thickness, solvent concentration 

and particle position all drop as the gel film dries.  This suggests that the transport 

equations are being correctly handled.  Simplified cases of the transport with boundary 

conditions amenable to symbolic solutions (for instance, drying without reaction and with 

constant rate of evaporation at the free surface) were also tested to confirm the accuracy 

of our numerical method. 
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Figure 3.2 Solvent concentration profile for the ideal case:  

Bi=1013.25, Da=2, H0=0.1, Hp0=0.9H0 
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Figure 3.3 Solvent concentration profile for the FSSE case: 

Bi=506.625, Da=40, H0=1.0, Hp0=0.8H0 
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3.4.2 Conversion and Site Distribution 

    Since we can calculate the conversion and site distributions (for the FSSE case) as 

functions of time with continuum equations in addition to the DMC model, the validity of 

this multiscale model was tested by comparing the continuum results to the DMC results, 

as presented as examples in Figures 3.4 to 3.6.  In both cases, the results are terminated 

when a gel forms (see below).  The ability to validate the DMC approach is one of the 

strengths of developing the multiscale model for relatively simple polymerization kinetics.  

In both cases, the conversions calculated by both methods agree exactly, as shown in 

Figures 3.4 and 3.5.  In addition, the site distributions calculated by both methods for the 

FSSE case achieve good agreement, as shown in Figure 3.6.  The good agreement found 

between the continuum kinetics and the DMC results prove the validity of our model.  In 

addition, this set of figures shows that, as expected, because the rate coefficients drop in 

the FSSE case, the rate of the condensation reactions decreases significantly compared 

with the ideal case, and because of the structure of the resulting polymers, the gelation 

occurs at a larger conversion and therefore at a much later time. 

3.4.3 Three Types of Drying and Gelation Phenomena 

    There are three main types of qualitative drying and gelation phenomena in the drying 

process of a sol-gel film, as originally defined by Cairncross et al[36]:  drying before 

gelation, gelation before drying and literal skinning.  The competition between drying 

and gelation determines the phenomenon type, and this competition is dictated by the 

values of Biot number and Damköhler number.  We define these three types of 

phenomena by comparing the values of gel time with drying time, according to the 

definitions of Cairncross et al[36].  The gel time is the time when the DMC simulation of 

the sol particle reaches the gel point (see below).  The drying time is calculated by 

integrating the solvent content throughout the coating and finding the point at which only 

1% solvent content is left[36].  The definitions of these three types of phenomena are 

presented below: 

  • drying before gelation: tbgeltdry __ < , 

  • gelation before drying: tdrytbgel _%10_ ⋅< , 
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Figure 3.4 Conversion predicted by DMC and continuum model for the ideal case: 

Bi=1013.25, Da=2.0, Hp0=0.9H0 
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Figure 3.5 Conversion predicted by DMC and continuum model for the FSSE case: 

Bi=506.625, Da=40, Hp0=0.8H0 
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Figure 3.6 Site distributions predicted by DMC and continuum model for the FSSE case: 

Bi=506.625, Da=40, Hp0=0.8H0 
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  • literal skinning: 1.0
_

__
≥

−
tdry

tsgeltbgel , 

where dry_t denotes the drying time, gel_tb is the gel time at the base of the coating, and 

gel_ts is the gel time at the coating surface.  The gel time varies throughout the film 

because of concentration gradients due to the solvent evaporation, which are illustrated in 

Figures 3.2 and 3.3.  

    Figure 3.7 displays the DMC-generated values of DPw as a function of time for tracked 

particles starting from different positions in the film for one particular set of conditions 

(Bi and Da).  It is obvious that DPw increases much more quickly at the film surface than 

inside the film, and that means there is a time lag of gelation between the film surface and 

base.  At any point in the film, gelation is defined by the point where DPw appears to 

diverge. 

    The effects of process parameters Bi and Da on the gelation and drying time for the 

ideal and FSSE cases are illustrated with examples in Figures 3.8 and 3.9.  Figure 3.8 

shows the effect of varying Da number with constant Bi which is equal to 1013.25 in 

ideal case.  In this case, the drying time remains constant and gel time drops considerably 

as Da increases.  At this high Bi, drying before gelation, literal skinning and gelation 

before drying appears in turn with increasing reaction rates, which means that the type of 

phenomenon depend only on Da when the value of Bi is high. 

    Figure 3.9 shows another representative result: the gelation and drying times at various 

Bi values for the FSSE case.  With constant Da=4.0, the gelation is always faster than 

drying.  At low Bi (Bi<=10), the difference of the gel time between the coating surface 

and base is so small that we conclude that the coating gels uniformly.   However,  the  gel  

time lag  between surface and base increases with increasing Bi, and literal skinning is 

predicted to occur when Bi is equal to or larger than 300 for the FSSE polycondensation 

case. 

3.4.4 Gelation Regime Map 

    The competition between drying and gelation as a function of the values of Bi and Da 

can be most clearly visualized using gelation regime maps[36].  Figures 3.10 and 3.11 are 

the  results found  by multiscale DMC / finite difference modeling for the ideal and FSSE  
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Figure 3.7 DPw as a function of time for tracked particle starting at different positions in 

the film for the ideal literal skinning case: Bi=1013.25, Da=0.4 
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Figure 3.8 Gelation and drying time as a function of Da for the ideal case: Bi=1013.25.  

The phenomena depend only on Da 
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Figure 3.9 Gelation and drying time as a function of Bi for the FSSE case: Da=4.0.  

When Bi ≥ 300, literal skinning occurs 
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Figure 3.10 Gelation regime map for the ideal polycondensation case. 

Points are the average values of five repeated calculations. 

Dashed lines are the approximate boundaries of each region. 
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Figure 3.11 Gelation regime map for the FSSE polycondensation case. 

Points are the average values of five repeated calculations. 

Dashed lines are the approximate boundaries of each region. 
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cases, respectively.  The lines are the approximate boundaries between regions (as 

defined above) and the points are the conditions related to each phenomenon[36], which 

are the average values of five repeated simulations.  At low Da, the coating dries before it 

gels and at high Da, the gelation reaction rates are much quicker than the drying rate.  

With high Bi, literal skinning occurs between the regions of “drying before gelation” and 

“gelation before drying”.  The maps are similar for the ideal and FSSE cases, except that 

with FSSE, all three regions are shifted towards higher Da.  These results are consistent 

with the findings of Cairncross et al.[36], but they used an approximate kinetic-recursive 

model with reduced accuracy for FSSE modeling and which is not capable of correctly 

modeling the high degree of cyclization found in real sol-gel polymerization (to be 

discussed in Chapter 4 and 5). 

3.4.5 Relationship between Gel Time and Initial Particle Position 

    To gain more insight into the effects of the FSSE on film uniformity, we further 

investigate the relationship between gel time and initial particle position for the three 

types of phenomena, as shown in Figures 3.12 and 3.13.  Representative points from the 

gelation regime maps are shown.   According to the maps, we can observe all three types 

of phenomena by setting Bi to a high value and varying Da.  In order to compare these 

three types phenomena easily, all of the gel time values are normalized by the one at the 

surface.  With fixed Bi, gel times are, of course, longest when “drying before gelation” is 

found and smallest when “gelation before drying” is found.  The gel time gradient is 

much more severe when “gelation before drying” is observed than with “drying before 

gelation”.  This suggests that, when the coating dries completely as a liquid (drying 

before gelation) the gel time lag is small and defects are not likely to appear due to 

formation of a gel layer at the film surface, and when the coating gels before it is dry, the 

difference of gel time is more visible and likely to induce defects.  Regardless of the rate 

of drying, drying before gelation is best achieved by reducing the rate of condensation 

relative to the rate of diffusion of solvent. In sol-gel systems, this is best accomplished by 

working near the minimum condensation rate which occurs at a pH of ~2.  Gel times for 

the FSSE case simulations are longer than those of ideal case, proving again that gelation 

is  delayed  compared with the ideal case, as we mentioned earlier.   Also, the gradients in  
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Figure 3.12 Normalized gel time as a function of initial particle position of the sol for the 

ideal case. Points are the average values of five repeated calculations.   

The gel time is normalized by the value at the surface. Bi=1013.25.  Drying before 

gelation, Da=0.06, gel_ts=0.505689; Literal skinning, Da=0.4, gel_ts=0.076512; 

Gelation before drying, Da=2.0, gel_ts=0.015567 
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Figure 3.13 Normalized gel time as a function of initial particle position of the sol for the 

FSSE case. Points are the average values of five repeated calculations.   

The gel time is normalized by the value at the surface. Bi=506.625.  Drying before 

gelation, Da=0.4, gel_ts=47.9099; Literal skinning, Da=4.0, gel_ts=4.96508;  

Gelation before drying, Da=40.0, gel_ts=0.514136 
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gel time are more severe than those found in the ideal case, suggesting that nonideal 

polymerization may worsen the formation of coating defects in sol-gel systems. 

3.5 Summary 

    The proposed multiscale model for the drying process of sol-gel coatings couples 

molecular to macroscopic phenomena by combining dynamic Monte Carlo simulations 

and the finite difference method.  For the cases studied here, continuum equations can be 

formulated for the overall extent of reaction, and the results agree well with the 

multiscale DMC / FDM model, which demonstrates the validity of the multiscale model.  

In the continuum model, the entire DMC simulation is treated as a particle of sol whose 

position and composition are tracked using a diffusion / evaporation finite difference 

calculation.  Therefore, the total silicon concentration, which is provided by the 

continuum model, serves as one “handshake” with the DMC model.  The second 

“handshake” between the models is the time interval from the DMC simulation, which is 

used as the time interval for the continuum model.  By simulating swarms of particles 

starting from different positions in the film and varying process parameters, we observe 

their effects on the competition between drying and gelation, predict different drying / 

gelation phenomena, and predict the occurrence of gradients of concentration and 

gelation in the films which can lead to the formation of a gel skin near the top surface of 

the film. 

    This multiscale model is our first step to understand the drying process of sol-gel 

coating.  Further efforts are needed to improve the realism of the polymerization model, 

the most important and obvious of which is to add the cyclization in the model and see its 

effects on gelation regime maps and structural gradients.  We expect that the results of 

our simulation will allow better prediction of the formation of structure gradients in sol-

gel derived ceramics and other nonideal multifunctional polycondensation products, and 

that this will help in developing coating procedures to reduce coating defects. 
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Chapter 4  

Multiscale Modeling with Unlimited 3-membered Ring Cyclization 

 

4.1 Introduction 

    The coating process of sol-gel films involves multiple length and time scales ranging 

from molecular to macroscopic.  At the molecular scale, polymerization and (with 

surfactant templates) self-assembly processes occur which control the film properties 

such as film microstructure.  At the same time, macroscopic parameters control the 

formation of the film; diffusion and mass transport occur over micron or greater length 

scale, and define the concentration fields within which polymerization and self-assembly 

occur.  Therefore, a multiscale model should be used to link these different length and 

time scale together. In our previous chapter, we developed a multiscale model to describe 

the competition between polymerization reaction and mass transfer, but we didn’t include 

cyclization in our model.  However, experiments have shown that three- and four-

membered rings exist early in alkoxysilane polymerization processes and give rise to a 

gel conversion as large as 82%[27, 41, 43, 47, 66].  Researchers have also presented several 

probable reasons for the occurrence of cyclization.  West and coworkers[40] presented 

quantum chemical calculations indicating that cycles are energetically favored over 

chains extension.  Tang et al.[41] proposed that ring formation is easy because of the 

flexibility of siloxane chains, and as a unimolecular reaction, cyclization is favored by a 

low concentration of monomer.  Both Sanchez et al.[42] and Ng et al.[52] presented 

evidence that kinetic trends may favor cyclization of silanes.  Ng et al.[52] also proposed 

that stabilization of rings toward solvent attack or changes in functional group reactivity 

favor cyclization.  Hence, cyclization is very important at the molecular scale of sol-gel 

drying process so that it can’t be neglected at all.  Models without cyclization may be 

able to match the kinetics of polymerization but they may not be able to correctly model 

large-scale (gel) structures, may include wrong parameters and may give incorrect 

prediction of the effects of process parameters.  Therefore, a better multiscale model for 

silica should also include cyclization in the polymerization process.  



 55

    Some researchers have already tried to include the cyclization effect in their models of 

sol-gel polymerization, but they often include simplifications that limit their fidelity.  For 

instance, Vainrub et al.[44] didn’t directly simulate cyclization in their kinetic model.  

Instead, they used rate coefficients whose values decreased as a function of time to mimic 

the kinetic effect of cyclization.  Hendrickson et al.[65] also simulated cyclization during 

stepwise polymerization.  They assumed that each monomer was a stationary hard sphere, 

and reactions were only allowed to happen when two randomly chosen monomers were 

within a sphere of radius rh which was centered on one of the reactants.  While they 

admitted that this method had shortcoming that real diffusion of monomers was not 

modeled, this approach did capture the effect of cyclization on delaying gelation to some 

extent.  Kasehagen et al.[39] limited their simulation of cyclization to include only 

cyclization of trimers and linear tetramers.  Rankin et al.[27] also used this kinetics of 

forming single rings as a first step to model the cyclization effect in polymerizing silane 

solutions. Ng et al. [43] treated cyclic or even cagelike intermediates as f-functional 

random branching “monomeric” units (i.e. new precursors).  These cyclic (cagelike) 

intermediates were assumed to form in the early stage of reactions from monomers by 

cyclization, but after they were formed, they could only connect with each other until 

forming a gel.  Highly cyclized cages were shown to give a gelation conversion close to 

the experimental value.  Rankin et al.[38] first presented a model with extensive 

cyclization to form polycyclic structures made up of three-membered rings.  They applied 

the dynamic Monte Carlo (DMC) simulation technique which has advantages over 

statistical approaches due to full accounting of the reaction history, molecular structure 

and weight distributions, membership in cyclic and polycyclic species, and so on.  

Similar to the work of Rankin et al, here we add unlimited cyclization to form only three-

membered rings in our multiscale model of sol-gel silica drying films.  This is our first 

step to investigate how extensive cyclization affects the sol-gel process in a drying film.  

More details will be given below. 
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4.2 DMC Model 

    In this chapter, we will describe our DMC modeling approach and give details about 

new approaches used to track the effects of cyclization, e.g. calculating the Wiener index, 

a topological index related to molecular size. 

4.2.1 Bimolecular Condensation 

    Experiments have shown that under acid-catalyzed conditions, the hydrolysis reaction 

of alkoxysilanes reaches pseudoequilibrium[28].  This often results in a constant average 

extent of hydrolysis χ , which is defined as:  

                                          
][][

][
SiORSiOH

SiOH
+

=χ .                                                           (4.1) 

By assuming that water-producing condensation dominates over alcohol-producing 

condensation[37], and based on the fact that a strong, negative first shell substitution effect 

(FSSE) exists in the condensation reactions[30], the set of bimolecular condensation 

reactions among silicon sites can be written as[38]:  

                        OHQQQQ ji
k
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211 ++⎯→⎯+ ++ ,  =ji, 0, 1, 2, 3                                 (4.2) 

where Qi represents a tetrafunctional silicon site with i siloxane bonds.  With these 

assumptions, the bimolecular rate expressions are given by [38]: 
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Where ijij kχk 2* =  and f = the functionality of the monomer (f = 4 for tetrafunctional 

silane precursors).  The matrix of rate coefficients is set to mimic the experimental trend 

observed for alkoxysilanes under acidic conditions[39]: 
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4.2.2 Three-membered Ring Cyclization 

    After some reaction steps, oligomers of size large enough to form rings will have 

formed.  Cyclization reactions can then occur when two sites chosen to react are in the 

same molecule.  This results in a new ring within an existing molecule. According to the 

approach of Rankin et al.[38], we use bond blocks ij
n B  to calculate the cyclization rates.  

Here the superscript n represents the number of bonds between two sites, and subscripts i 

and j represent the connectivities of the ends (i.e. the number of siloxane bonds attached 

to each end).  For example, a linear trimer has one 11
2B  bond block, while a linear 

tetramer has two 12
2B  blocks and one 11

3B  block.  As the first step in our multiscale 

model with cyclization, we just consider the formation of three-membered rings.  

Therefore we just need to pay attention to two-bond blocks. In this case, the rate of 

cyclization reactions is calculated by analogy with any isolated ring closure reaction as[38]: 

                                 ][))(( 2*
),(3

3
ijjic

cyc
ij BkjfifR −−= , =ji & 1, 2, 3.                          (4.4) 

    In order to have the concentrations of these two-bond blocks, the number of ijB2  of 

each type needs to be updated after each reaction step, by adding the new bond blocks 

created by the reaction and modifying the old ones that have changed.  Figure 4.1 shows 

an example of a new ring formed in an existing molecule.  From this example, we can see 

that after each cyclization reaction, only the first- and second- shell neighbors of the 

reacting sites are involved in changes of ijB2  blocks.  Therefore, updating the list of ijB2  

sites is accomplished with a set of subroutines that enumerate all first and second shell 

neighbors of a pair of reacting sites and test for changes, not considering neighbors 

outside the second shell, thus avoiding over-counting of new blocks. 

    We assume that the substitution effect for cyclization reactions follows the same trend 

as for bimolecular reactions, since it still involves nucleophilic displacement between 

sites of varying connectivity: 
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Figure 4.1 Example of updating information about 2-bond blocks.  

    Circles represent silicon sites, and lines represent siloxane bonds. The shaded circles 

are members of a new ring. When a new bond is formed between site L and R in a 

cyclization reaction, two new 2-bond blocks need to be added, which are 2-L-R and 3-R-

L. In addition, three existing 2-bond blocks need to be modified, 1-2-L, 4-M-L and 4-M-

R, because the connectivity of L and R is changed from 2 to 3. Plus, because of ring 

closure, the L-M-R block needs to be deleted. 
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To characterize the cyclization tendency, the dimensionless parameter κ is used as 

defined by Rankin et al.[38]: 

                                           
0

*
11

*
)1,1(3

][Sik
k

κ c≡  .                                                                        (4.5) 

4.2.3 Wiener Index 

    In our multiscale model, we record a new type of information (relative to prior DMC 

studies) which can be used to characterize molecular size and shape – the Wiener index.  

The Wiener index is a topological index that has been shown to be proportional to zero-

shear viscosity, and thus to relate molecular structure and rheology[90].  It is defined as 

follows[91]:  

                                  ∑∑
≤

==
ji

ij
ji

ij ddW
,2

1 ,                                                                (4.6) 

where ijd  is the topological distance (i.e. number of bonds along the shortest path 

connected by bonds) between sites i and j in the molecule.  Because the Wiener index 

takes into account the distribution of topological distances between sites in a molecule, it 

can be used as a measure of molecular compactness.  It can also be used in quantitative 

structure activity/property relationship (QSAR/QSPR) modeling in chemistry[92, 93], for 

example, by using Wiener index in QSPR to model the boiling temperature, molar heat 

capacity, standard Gibbs energy of formation, vaporization enthalpy, refractive index, 

and density of alkanes[93].  

    If the molecules are linear, the Wiener index can be easily calculated according to the 

following expression[91, 94]: 

                                       )1(
6
1 2 −= mmWlin ,                                                                   (4.7) 

where m is the degree of polymerization. However, calculations of the Wiener index of 

arbitrarily branched and cyclic molecules are much more complicated.  Here we present a 

new algorithm to calculate the Wiener index during dynamic Monte Carlo simulation of 

polycondensation.  In our model, the sites are silicon atoms, and the bonds are not single 

bonds but Si-O-Si bonds.  At first, the Wiener index for all monomers is 0.  After each 

reaction (bimolecular or cyclization reaction), we calculate the Wiener index of the 
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product based on the known indices of the reactant molecule(s) and the distances from 

the reacting sites to all other sites. 

    For bimolecular polycondensation, we assume that the reaction occurs between two 

molecules of sizes m and n, to produce a new molecule of size (m+n).  Because the 

adjacency matrix has not changed in either of the blocks taken from the old molecules, 

the distance matrix also will not have changed in each of those blocks from what it was in 

the old molecule (Figure 4.2).  Therefore, we only need to calculate the distance sub-

matrix for the new nm×  section of the distance matrix.  The Wiener index of the new 

molecule therefore is composed of three parts:   

                                          newBA WWWW ++= ,                                                             (4.8) 

where WA and WB are the Wiener indices of the reactant molecules A and B, and Wnew is 

the index calculated using only the new nm×  submatrix.  

    Noting that any new pathway between a site in submolecule A and a site in 

submolecule B must pass through the new bond between them, the new distance can be 

expressed in terms of its distance to the sites at new bond.  For example, in Figure 4.3,  

                                          1−+= LjiRij ddd                                                                    (4.9) 

When this expression is inserted into the definition of the Wiener index of the new 

submatrix, the calculation becomes simple: 
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In our model, the whole submolecule A is traversed starting from site L to calculate the 

distance from each site in submolecule A to site R.  A similar procedure is done for 

submolecule B.  The advantage of this approach is that the calculation of the Wiener 

index for the new molecule scales linearly with (m+n).  Competing algorithms based on 

brute-force calculation of the distance matrix[95, 96] would scale much more poorly with 

molecule size.  

    The Wiener indices of linear molecules with the same degrees of polymerization as the 

actual simulated molecules are also tracked in our model for comparison purpose, and the 

new piece of the Wiener index due to a bimolecular reaction is given by:  
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Figure 4.2 Schematic diagram of distance matrix of the product of oligomers A and B.    
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Figure 4.3 Schematic diagram of a bimolecular reaction product.  

Circles represent silicon sites, lines represent siloxane bonds,  

and dashed circles represent reactant submolecules A and B. 
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                                   )( ,,),(, linnlinmlinnmlinnew WWWW +−= +                                                     (4.11) 
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    When updating the Wiener index due to a cyclization reaction, we separate the whole 

molecule into three parts:  left part, middle part and right part (Figure 4.4).  The distance 

from each site in the left part (size m) to each site in right part (size n) is decreased by 1 

after cyclization, because of forming a three-membered ring.  At the same time, the 

distance from each site in the middle part to each site in left and right part doesn’t change.  

Therefore the calculation of Wnew is very simple if we know the sizes of the left and right 

parts: 

                                                           mnWnew −= .                                                       (4.12) 

Then Wiener index of the product after cyclization is:  

                                                   mnWWWW new −=+= .                                           (4.13) 

For example, in Figure 4.4, the left part has 4 nodes, the middle part has 2 nodes and the 

right part has 3 nodes.  After the cyclization reaction, the Wiener index decreases by 12.  

In our program, we traverse the left and right part to count the number of nodes (size) of 

each part. 

    The number-average Wiener index (Wn) is calculated as follows: 

                                                    ∑
=

=
molN

i
i

mol
n W

N
W

1

1 ,                                                      (4.14) 

where molN  is the number of molecules, Wi is the Wiener index of molecule i. 

4.2.4 Cycle Rank 

    Cycle rank is the number of bonds (edges) that would need to be cut from a molecule 

to eliminate all cycles and form a spanning tree[64, 97, 98].  For example, the cycle rank is 2 

for the molecule shown in Figure 4.5.  It is an important measure of the number of 

independent cycles in the system[38, 64].  At the beginning of simulation, the cycle rank for 

all monomers is 0.  In our model, number-average and weight-average cycle rank of the 

whole population are tracked. 
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Figure 4.4 Schematic diagram of a cyclization reaction product.  

Circles represent silicon sites, lines represent siloxane bonds,  

and dashed circles identify different parts of the molecule: left, middle and right. 
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Figure 4.5 Example of a molecule with cycle rank 2: showing the bonds that would have 

to be broken to form a molecule without any cycles.  
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where Cri is the cycle rank of molecule i, DPi is the degree of polymerization of molecule 

i, and N is the total number of sites (monomers). 

4.2.5 Ring Involvement 

Ring involvement can be quantified by the average number of independent rings in 

which a randomly chosen site is involved[38].  Ring involvement provides additional 

insight into the local network structure because it ranges from 0 (no rings) to almost 3 

(100% cages for 3-membered rings). 

Ring involvement is 0 at the beginning of simulation.  Since one new independent ring 

is formed after each cyclization reaction, and each ring has three sites, ring involvement 

(I) is increased by 

                                            
N

I 3Δ = .                                                                         (4.16) 

4.2.6 DMC Algorithm 

The dynamic Monte Carlo simulation starts with a finite set of N (which is equal to 106 

in our model) monomers.  The data structures are almost the same compared with our 

description of the ideal case in Chapter 2.  However, we add arrays to store information 

about the distribution of cycle ranks, Wiener indices and the populations of two-bond 

blocks.  In addition, to allow fast selection of sites for cyclization, we maintain six linked 

lists of specific two-bond blocks differentiated by end-site connectivities.  The simulation 

procedures are the same as other DMC simulations of polycondensation[38, 39].  At each 

MC step, a new siloxane bond is formed, and the conversion is increased by a small 

constant value (which is 5×10-7 in our model).   The time increment is given by[70]:  

                                        
( )

∑ +⎟
⎠
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⎝
⎛

=
)(

1ln
Δ

3 cyc
ij

bimol
ij

Si
RRC

N
rt ,                                             (4.17) 

where N is the total number of sites, r is a random number selected from (0, 1), and bimol
ijR  

and cyc
ijR3  are the rates described by Eq. (4.3) and (4.4).  CSi is the total silicon site 
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concentration which comes from the continuum model results (see below).  Based on the 

three-membered cyclization reaction rates, Monte Carlo reaction selection is performed 

in each step to choose the type of reaction to occur.  The probability of choosing each 

reaction is set equal to its rate over the sum of the rates of all possible reactions.  If 

cyclization is chosen, we randomly select one two-bond block from the corresponding 

linked list.  For bimolecular reactions, the reactants are randomly selected from a list 

containing all sites grouped according to connectivity.  Then we update all the data 

structures including the two-bond block information, molecular weight, Wiener index, 

cycle rank, and so on.  The expressions for the increments of all variables after a DMC 

step except for conversion and time are shown in Table 4.1. (The derivations of these 

expressions are shown in the Appendix A.)  

Using DMC simulation, we are able to keep track of lists of specific two-bond blocks 

and then use these to calculate the cyclization rate.  This is a significant advantage of the 

DMC method compared with statistical models.  When nonrandom polymerization 

occurs with extensive cyclization, ijB2  populations cannot be correctly predicted by 

statistical means.  Also with the DMC method, we can obtain gel point information, 

molecular weight distribution, Wiener index, and so on, which are related to film 

microstructure. 

4.3 Continuum Drying Model 

4.3.1 Model Description 

    The continuum model for the formation of a sol-gel silica coating is described by 

macroscopic mass conservation equations.  The coating is described here with a 

simplified one-dimensional model.  Solvent is removed via evaporation continuously at 

the top liquid / vapor interface.  In addition to evaporation, the diffusion process of 

solvent within the film should be taken into account in this model.  The assumptions 

made in the model are the same as in our previous chapter.  The entire DMC simulation 

(containing ~ 106 monomers) is treated as a particle of sol whose position and 

composition are tracked in the continuum model. 
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Table 4.1 Expressions for incremental changes in variables after each DMC step 

Bimolecular reaction between molecule i and j  

( molN  is decreased by 1) 
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( molN  remains same) 
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4.3.2 Governing Equations 

    Since the validity of our multiscale model without cyclization has been verified in 

Chapter 3, we can simplify the continuum model to just consider the solvent and total 

silica, without including equations for each Qi reactant species. 

Therefore, the governing equations are as follows: 
2

1 1
1 2 0C CD

t z
∂ ∂

− =
∂ ∂

                                                                    (4.18) 

2
2 2

2 2 0C CD
t z

∂ ∂
− =

∂ ∂
                                                                   (4.19) 

where C1 is the concentration of solvent, C2 is the total silicon concentration. 

The initial conditions are: 

                           ( ) 0,11 ,0 CzC = ; ( ) 0,22 ,0 CzC = ;                                                 (4.20) 

and the boundary conditions are: 

At the substrate ( 0=z ):   0=
∂
∂

z
CD i

i   ( =i 1, 2);                                                         (4.21) 

At the free surface ( )(tHz = ): 1
1 1 1 1

( ) ( )s
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C dH tD C k y y
z dt

∞∂
− − = −

∂
                              (4.22) 
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                                                         (4.23) 

where gk is the mass transfer coefficient of solvent (in units of )/( 2 scmmol ⋅ ), 1
sy  is the 

molar fraction of solvent at the surface in the gas phase (which is calculated based on 

Raoult’s law), and 1y∞  is the molar fraction of solvent far away in the gas, which is set to 

zero in this paper. As we mentioned in Chapter 3, 
0,2

10,1
2

ˆ1ˆ
C

VC
V

−
= , where îV  is the molar 

volume of component i. Assuming that only solvent evaporates, the rate of change of film 

thickness, or surface velocity, can be calculated according to the following expression:  

1 1 1
( ) ˆ ( )s s

g
dH t v V k y y

dt
∞= = − − ,                                                  (4.24) 
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4.3.3 Dimensionless Variables and Simulation Procedure 

The following dimensionless variables are utilized to solve the governing equations 

numerically: 

)(/ tHzη = , 0/)( HtHh = , 0/ CCc ii = ,  t
H
Dτ 2

1= .                                       (4.25) 

Using the dimensionless variableη , the new region is always from 0=η  to 1=η , that is, 

the physically moving domain is mapped onto a fixed domain, and we do not need to 

modify the spatial grid during the simulation.  The solvent transport equation in 

dimensionless form was given in Chapter 3. 

This set of dimensionless equations is numerically solved using an explicit centered 

finite difference method.  We discretize the whole domain into a number of thin slices, 

each one with a fixed thickness ηΔ .  The time interval tΔ  comes from the DMC 

simulation, as given by Eq. (4.17) for each DMC step.  At the surface, the mole fraction 

of solvent in solution is ss

s

cc
cxm

21

1

+
= , s

ic  is the dimensionless concentration at the 

surface of the solution.  Therefore we can calculate the mole fraction of solvent at the 

surface in the gas phase using Raoult’s law, 
t

s

P
xmPy ⋅

= 1
1 , where P1 is the solvent vapor 

pressure and Pt is the total pressure.  At each finite difference step, we use the 

concentrations, film thickness, surface velocity, and Robin boundary conditions at the 

surface from the previous time step to complete the calculation.  Also, the entire DMC 

simulation is treated as a particle of sol whose position and composition are tracked in the 

continuum model.  We use linear interpolation to perform the tracking of the particle and 

to obtain the total silicon site concentration, which is used as an input for the calculation 

of time intervals in the DMC model, as mentioned above.  The procedure for tracking 

particles is the same as that described in Chapter 3.  

4.3.4 Parameters 

Two important dimensionless parameters, Biot number (Bi) and Damköhler number 

(Da) are used to summarize how process parameters affect the drying process of the sol-

gel film.  We use the monomer condensation rate coefficient *
00k  as the reference to 
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define the Damköhler number because it represens the fastest reaction rate in a sol-gel 

solution. 

                              
1

10
ˆ

D
VHk

Bi g= ,  
1

2
00

*
00

D
HCk

Da =                                                   (4.26) 

The variations of Bi and Da values correspond to using different values of the parameters 

in their definition. 

The values of parameters 1D , 1̂V , gk , and so on are set to arbitrary values in the model, 

because these values are not easy to obtain and they may change during drying and 

gelation; in addition, the dimensionless form of our model makes it insensitive to specific 

values of parameters, and allows us to focus on the competition between the drying and 

gelation process, and how this competition affect the coating structure.  Still, it should be 

possible to relate a good model to real process parameters; in the future it should be 

possible to use structure-property relationships based on the Wiener index to even handle 

changing transport coefficients during coating.  For now, we use constant values in our 

program, which are given by 1:4: 0,20,1 =CC , 0.10,2 =C Lmol / , 1.01̂ =V molcm /3 , and 

21 DD = .  

4.4 Results and Discussion 

4.4.1 Conversion at Gelation 

    One method to estimate the value of gel conversion is based on a plot of weight-

average degree of polymerization (DPw) as a function of conversion.  The divergence of 

the curve indicates gelation.  In Figure 4.6, DMC results are presented for 

polycondensation of tetrafunctional monomers to establish the effect of cyclization.  

Because of the limitation of the Monte Carlo method – namely, the finite size of the 

population – a deviation of DPw from the bulk value is expected to happen when DPw is 

larger than 1% of the total number of monomers, and usually is severe when it is 10% of 

the total number of monomers[64].  Therefore in Figure 4.6, the upper range of DPw is 

1.00E+04 even though N = 1.00E+06.  The ideal polycondensation case means the rate 

coefficients are set equal to one another, and no cyclization is allowed.  This case can be 
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Figure 4.6 Weight-average degree of polymerization as a function of conversion for 

varying κ in DMC simulations of sol-gel polycondensation: Bi=1000, Da=60, Hp0=0.8H0. 

 

 

 

 

 

 

 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

0 0.2 0.4 0.6 0.8 1

Conversion

DP
w

50 

10 
52

0.5

Ideal

0=κ



 73

modeled by random branching theory (RBT), and the analytical gel conversion is 

1
1
−f

[71], where f is the number of polymerizable groups per monomer, which for silicon 

sites is 4=f .  In Figure 4.6, the gel conversion founded by DMC simulation of the ideal 

case is about 0.33, consistent with the prediction of RBT.  The case plotted for 0=κ  is a 

situation in which only the negative the first shell substitution effect (FSSE) described 

above is allowed but which still excludes cyclization reactions.  The estimated gel 

conversion of the FSSE case is about 0.45, which agrees with the results obtained by 

Kasehagen et al[39].  After adding unlimited cyclization in our multiscale model ( 0>κ ), 

the gel conversion increases as the cyclization tendency κ increases, and for large κ the 

gelation conversion can be even larger than 82%, which is the experimental value.  It is 

very clear from Figure 4.6 that cyclization delays the gelation. The results are consistent 

with what Rankin et al[38] observed with their polycondensation model without drying.  

The difference is that here drying is being simulated, and the results discussed are just for 

one particular sol particle as it traverses through the film. 

4.4.2 Wiener Index 

     Wiener index can be used as a measure of molecular compactness.  Figure 4.7 shows 

the scaled Wiener index (Wn / Wn,lin) as a function of conversion for varying κ in DMC 

simulations.   All the curves start from 1 and decrease with increasing conversion.   That 

means the molecules are becoming more compact than linear molecules of comparable 

degree of polymerization would be.  This is due to branching and cyclization (for 0≠κ ).   

Since a negative FSSE results in polymers that are more linear than in the ideal 

polycondensation case, the scaled index is larger for FSSE ( 0=κ ) and small values of κ 

compared with ideal polycondensation.  For a very large value of κ, e.g. 50=κ , three 

regions are shown: first, the scaled index decreases and the value is even smaller than the 

ideal case.  This indicates that cyclization can shrink the molecular size so much that it 

can offset or even override the effects of negative FSSE for molecular growth.  After the 

stage where W decreases (forming precursors), a plateau is reached.  Growth of the 

molecules becomes more important and the molecules maintain the same compactness 

while  growing.   Finally,  gelation  is  reached  and  the  molecules  become  much  more 
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Figure 4.7 Evolution of Wn / Wn,lin as a function of conversion for varying κ in DMC 

simulations of sol-gel polycondensation: Bi=1000, Da=60, Hp0=0.8H0. 
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compact than comparable linear chains would be.  Figure 4.7 also clearly shows that 

gelation is delayed by cyclization.  Because the Wiener index can be used in quantitative 

structure property relationship in chemistry, we may apply it to obtain the parameters we 

need in the future, such as diffusion coefficient, to improve our model.  For now we 

consider the Wiener index results to be an indication that viscosity rise would be delayed 

by cyclization, in addition to a DPw divergence. 

4.4.3 Cycle Rank 

    Figure 4.8 shows the number-average cycle rank as a function of DPw with Bi=1000, 

Da=60, and Hp0=0.8H0.  The curves in the figure start flat, then increase quickly, 

especially for large κ, and finally reach a plateau.  These curves show the competition 

between molecular growth and cyclization (which leads to molecular shrinkage).  The set 

of curves can be divided into three stages.  The first is a growth stage, in which molecular 

growth dominates over cyclization.  Cyclization is very low ( 10>κ ), or even nonexistent 

at this stage for 2≤κ .  For our model, this stage occurs for 5≤wDP .  The second stage is 

a cyclization stage, in which cyclization increases much quicker, and growth is 

comparably low, especially for 5≥κ .  The third stage is a gelation stage, in which, 

growth dominates over cyclization again until the sol-gel transition begins.  

4.4.4 Ring Involvement 

    Calculated values of ring involvement as a function of conversion with varying κ in 

DMC simulations are shown in Figure 4.9.  The numbers in the legend are the values of κ.  

This figure shows that ring involvement increases with increasing conversion for all cases.  

With larger value of κ, the value of ring involvement at the gel point is higher.  At high 

gel conversion cases, for example, when 50=κ , ring involvement is nearly 3 at the gel 

point.  Thus, multiple rings per silicon site are formed before gelation, that is, cage-like 

intermediates are formed before gelation.  

4.4.5 Gelation Regime Map 

    Two important dimensionless parameters Bi and Da are used in our multiscale model 

to show the competition between mass transfer (drying) and reaction (gelation) in the 

drying  process  of  sol-gel  films.  The  results can be summarized clearly with a gelation 
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Figure 4.8 Number-average cycle rank as a function of DPw with varying cyclization 

tendency κ in DMC simulations of sol-gel polycondensation:  

Bi=1000, Da=60, Hp0=0.8H0 

  

 

 

 

 

 

 

 

0

2

4

6

8

10

12

1 10 100 1000 10000

DPw

Cr
an

kn

κ=0.5
κ=2
κ=5
κ=10
κ=50

I 

II III



 77

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

Conversion

R
in

g 
In

vo
lv

em
en

t I

0.5
2
5
10
50
gel point

 
Figure 4.9 Ring involvement as a function of conversion with varying cyclization 

tendency κ in DMC simulations of sol-gel polycondensation:   

Bi=1000, Da=60, Hp0=0.8H0. Circles represent gel points. 
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regime map, as we did for the ideal and FSSE cases in Chapter 3.  Before investigating 

the gelation map of cyclization, we first determine a suitable value of κ to be used. As 

shown in the results so far, a higher gel conversion is correlated with a greater amount of 

cyclization and the formation of ring- and cage- like species prior to gelation.  We are 

interested in exploring situations where the structure gradient across the film is most 

severe, and this can be quantified by the difference in gel conversion between the surface 

of the film and the base.  This difference is used as the standard to determine κ.  Figure 

4.10 shows gel conversion difference between the surface and base with respect to κ for 

Bi=1000 and Da=60.  The average values are based on five repeated calculations and the 

maximum and minimum values are obtained according to the standard deviations.  For 

the range of κ from 1 to 10, the gel conversion difference between the surface and base is 

largest when κ=5.  Thus, κ is set to 5 in our following results. 

    In the gelation regime map, three types of qualitatively different phenomena were 

defined by Cairncross et al.[36] for development of a drying regime map: drying before 

gelation, gelation before drying and literal skinning.  Comparing Figure 4.11 with the 

gelation regime map of ideal and FSSE cases (see Chapter 3), the cyclization case has the 

same pattern of regions for three types of phenomena: at low Da, the film dries before it 

gels; at high Da, gelation happens before drying; and with high Bi, literal skinning occurs 

between the “drying before gelation” region and the “gelation before drying” region.  

However, the literal skinning region is expanded extensively when cyclization is included 

in the DMC model.  That means cyclization increases the occurrence of literal skinning.  

    Figure 4.12 shows an example of a structure gradient caused by literal skinning with 

cyclization.  The figure presents number-average cycle rank calculated for conditions 

within the “literal skinning” region as a function of time for different initial particle 

positions.  First, according to the gel points shown in the figure, we find that the film gels 

much faster at the surface than inside the film in this case.  That means there is a time lag 

of gelation between the surface and base.  This resembles the time lag seen with ideal and 

FSSE model, but in those cases, the structure across the film was uniform (the gel 

conversion was the same everywhere).  In the present set of calculations with cyclization, 

Figure 4.12 shows that number-average cycle rank at the gel point inside the film is much 

larger  than  that  at  the  surface.  Similarly, Figure 4.13 also presents ring involvement at 
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Figure 4.10 Gel conversion difference between the film surface and base with respect to κ 

in DMC simulations of sol-gel polycondensation:  Bi=1000, Da=60. 
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Figure 4.11 Gelation regime map with unlimited cyclization (3-membered ring) with κ=5 

in drying sol-gel silica films.  

Points are the average values of five repeated calculations.  

Dashed lines are the approximate boundaries of each region. 
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Figure 4.12 Number-average cycle rank as a function of time with different initial 

particle positions for cyclization literal skinning case: Bi=1000, Da=60, κ=5.  
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Figure 4.13 Ring involvement at the gel point as a function of initial particle positions 

for cyclization literal skinning case: Bi=1000, Da=60, κ=5.  
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the gel point is smaller at the surface than inside the film.  The extent of cyclization at 

gelation is significantly different – about 50% more cycles per site are found at the base 

than at the surface of the film.  Therefore, there is a molecular structure gradient across 

the film. 

4.4.6 Structure Gradient Map 

    The above sections showed that larger κ values cause both an increase in gelation 

conversion and in the ring involvement.  As noted earlier, a quantitative measure of the 

structural gradient in a film can be represented as the gel conversion difference between 

the film surface and base ( gelαΔ ).  By definition, the κ value is inversely proportional to 

the silica concentration.  We also know that gel conversion increases as κ increases, so 

gel conversion is inversely related to the silica concentration as well.  Due to solvent 

evaporation, the silica concentration at the surface increases more rapidly than inside the 

film, so the gel conversion is observed to be smaller at the surface than inside the film.  

Without cyclization, because the gel conversion is not dependent on the silica 

concentration, the gel conversions are the same throughout the whole film and the 

structure is uniform.  Thus, the gelation conversion difference can be used to estimate just 

how much the tradeoff between reaction and transport results in a structure gradient 

across the film.  Figure 4.14 presents a structure gradient map with 5=κ .  The regions of 

Bi and Da with high values of gelαΔ  coincide with literal skinning region in the gelation 

regime map.  And the largest gelαΔ  value observed so far is about 0.1. 

    Figure 4.15 shows a graphical representation of some of the results of an example with 

1.0Δ ≥gelα .  It is a contour plot of number-average cycle rank as functions of position 

and time with Bi=800, Da=80 and κ=5.  Because of the finite size limitation of Monte 

Carlo method, we stop our DMC simulation when the value of DPw is larger than 10% of 

the total number of the monomers.  This leads to the rough boundary on the right hand 

side of Figure 4.15, and represents times well after gelation has occurred, so the cycle 

rank at that point would presumably be “locked in” to the gel that has formed at that point.    

The calculated position of the film surface is also shown in the figure. 
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Figure 4.14 Structure gradient map for cyclization case with κ=5. 

Points are the average values of five repeated calculations.  Dashed lines are the 

approximate contours representing fixed values of Δαgel of each region. 
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Figure 4.15 Example of contour plot of number-average cycle rank as functions of 

position and time calculated with Bi=800, Da=80, and κ=5.  The film surface is labeled, 

and the contours end at times where DPw = 10% of the total number of monomers 

(leading to the rough boundary on some contours). 
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  4.4.7 The Effect of Solvent Vapor Pressure 

    We also examine the effects of solvent vapor pressure in our model by using two 

different assumptions about solvent.  One is the same as was used in previous 

calculations – assuming that there is excess water in the solution and that all alcohol has 

evaporated before the drying process starts, so water is the solvent.  The second approach 

is to assume that alcohol is the solvent and that whatever water was added to the sol was 

completely consumed for hydrolysis (this may be true for methoxysilanes, for instance).    

The results of assuming water as solvent have been shown above.  In the following, 

results of assuming alcohol as solvent are compared with those assuming water as solvent.  

The differences between these two cases come from the different value of solvent vapor 

pressure.  Here, we use PE to denote the vapor pressure of ethanol and PW to denote the 

vapor pressure of water. 

    Figure 4.16 shows the gelation regime map calculated using ethanol as solvent and 

with κ=5.  Compared with figure 4.11, all three regions are moved to higher values of Da 

when Bi is smaller than 100.  However, with high Bi (Bi>100), the conditions related to 

each phenomenon are almost the same, while the literal skinning region is a little 

expanded for smaller Bi.  Figure 4.17 shows structural gradient map using ethanol as 

solvent with κ=5. Compared with figure 4.14, the region of Bi and Da with largest value 

of gelαΔ  (>0.1) is almost the same (Bi>500), while other regions are shifted to smaller 

values of Bi and Da. 

    Since solvent vapor pressure is a parameter related to the drying process, its value can 

affect the results only when drying process is the rate-limiting process, that is, when Bi is 

small.  This explains why the differences of the results are shown only in the range with 

small Bi.  With the solvent vapor pressure increasing (the ethanol vapor pressure is larger 

than water vapor pressure), the structural gradient is increased for the same values of Bi 

and Da.   Since our other results (Figure 4.6 to Figure 4.9) are based on large value of Bi 

(Bi=1000), there are no major differences in these results due to the change in solvent 

vapor pressure.  Therefore, we don’t show the corresponding results of Figure 4.6 to 

Figure 4.9 with ethanol vapor pressure. 
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Figure 4.16 Gelation regime map with unlimited cyclization (3-membered ring) for κ=5 

with PE.  Points are the average values of five repeated calculations.   

Dashed lines are the approximate boundaries of each region. 
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Figure 4.17 Structure gradient map for cyclization case for κ=5 with PE. 

Points are the average values of five repeated calculations.  

Dashed lines are the approximate contours of fixed Δαgel.. 
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4.5 Summary 

    A multiscale model for the drying process of sol-gel films with unlimited cyclization 

has been presented.  Two main linkages between components of our multiscale model 

were used: first, in the continuum model, the entire DMC simulation is treated as a 

particle of sol whose position and composition are tracked using a diffusion / evaporation 

finite difference calculation.  Thus, the total silicon concentration, which is provided by 

the continuum model, serves as one input parameter in the DMC model.  Second, the 

time interval used in the continuum model comes from the DMC simulation.  

    With assumptions of hydrolysis pseudoequilibrium and negative first shell substitution 

effect for bimolecular and cyclization reactions, our model can predict that the gel 

conversion increases with increasing cyclization tendency κ , and the gel conversion can 

be equal to or larger than the experimental value (82%).  In this paper, the Wiener index 

has been introduced as a measure of molecular compactness.  An efficient way is 

described to update the Wiener index.  The results clearly show that cyclization shrinks 

the molecular size. 

    Competition between molecular growth and cyclization can be represented by curves 

of number-average cycle rank as a function of weight-average degree of polymerization.  

Three stages are obtained based on the results: i) A growth stage in which molecular 

growth dominates over cyclization;  ii) A cyclization stage where cyclization increases 

much quicker than the first stage, and growth is slow, especially for 5≥κ ; and iii) A 

gelation stage where growth dominates over cyclization again until the sol-gel transition 

begins.  

    The gelation regime map shows the effects of the competition between mass transfer 

(drying) and reaction (gelation) on the drying process of the sol-gel film.  Compared with 

similar maps for the ideal and FSSE cases, the DMC model with unlimited 3-membered 

rings has the same tendency to generate three types of phenomena: drying before gelation, 

literal skinning and gelation before drying.  The difference is that the literal skinning 

region is expanded with cyclization. In other words, cyclization increases the likelihood 

of literal skinning. 

    The relationship between ring involvement and conversion with different κ and initial 

particle positions was investigated.  The simulations showed that cage-like intermediates 
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form before gelation at high gel conversion cases (with large κ ).  With drying the 

maximum value of ring involvement inside the film is much larger in some cases than 

that at the surface, suggesting that cyclization can lead to a molecular structure gradient 

inside the film. 

    Although by now our model just considers forming 3-membered rings, it is the first 

model to couple unlimited cyclization in a DMC model of polycondensation with 

continuum mass transfer processes.  It is the first model that can predict structure 

gradients across drying sol-gel films due to cyclization.  The simulations that predict high 

values of gel conversion gradient between surface and base coincide with the literal 

skinning region in the gelation regime map. 

    This multiscale model is our first step to understand the drying process of sol-gel 

coating with unlimited 3-membered rings cyclization.  However, experiments have 

shown that 4-membered rings are the dominant structural unit[47, 49, 56].  Therefore a model 

with unlimited 4-membered rings should give better quantitative predictions.  We present 

the results of this modeling in Chapter 5.  And, because Wiener index can be used in 

quantitative structure property relationship in chemistry, we can apply it to obtain the 

parameters we need in the future, such as diffusion coefficient, to further improve our 

model. 
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  Chapter 5  

Multiscale Modeling with Unlimited 4-membered Ring Cyclization  

 

5.1 Introduction 

    Sol-gel silica films and related polycondensation networks are of growing interest in 

industrial practice and as sources of novel materials[1].  In particular, there has been an 

explosive growth in the design of mesoporous and macroporous silica-based thin films in 

the last decade, which is based on the slow formation of a silica gel near ambient 

conditions in the presence of a structure-directing agent[1, 99, 100].  The coating process of 

forming sol-gel silica films couples polymerization and drying, i.e., it involves multiple 

length and time scales ranging from molecular to macroscopic.  Therefore, a multiscale 

model is necessary to link different length and time scales together throughout the entire 

simulated domain. 

    At the molecular scale of the sol-gel silica polymerization process, cyclization occurs 

as a nonrandom, preferential reaction[40-42] and delays gelation to a siloxane bond 

conversion of about 82%[43-45] (this value can be compared to a value of 33% expected 

for random, ideal polycondensation).  Large concentrations of 3- and 4-membered rings 

containing species have also been found during sol-gel silica polymerization by different 

analytical techniques[27, 40-42, 44, 46-56].  Therefore, cyclization should be taken into account 

in the polymerization process modeling.  Rankin et al.[38] were the first group to present a 

polymerization model with extensive cyclization to model the formation of polycyclic 

structures containing 3-membered rings.  They used the concept of bond blocks 

(contiguous paths of discrete numbers of bonds that occur in the population of oligomers) 

to calculate cyclization reaction rates and applied the dynamic Monte Carlo (DMC) 

technique to the simulation of the polymerization process.  In our previous chapter, we 

added unlimited 3-membered ring cyclization into our multiscale DMC / continuum 

model as our first step to investigate the effects of cyclization on the sol-gel silica film 

coating process.  However, experiments show that 4-membered rings dominate over and 

are more stable structural units than 3-membered rings in real silicates[47-49, 53, 56].  A 
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polymerization model allowing the formation of 4-membered rings should give better 

qualitative and quantitative predictions than those allowing only intermolecular reactions 

(even with substitution effects) or only 3-membered rings.  Based on our previous work 

with a model allowing unlimited formation of 3-membered rings, we will describe a new 

multiscale model with unlimited 4-membered ring formation.  While it seems to be a 

simple extension of the 3-membered ring polymerization model, accounting for all 

possible types of 3-bond blocks and their evolution during polymerization introduced 

challenges that needed to be addressed.  Most importantly, the new approach brings the 

prediction of cyclization into a physically reasonable concentration range for the first 

time.   

    In this chapter, we first briefly review DMC simulation of sol-gel silica kinetics[27, 31, 36, 

38, 39] with a particular focus on our new algorithm for 4-membered rings cyclization.  

Then, the continuum model to which the DMC method is coupled is formulated based on 

macroscopic conservation equations for mass, and expressed by a set of partial 

differential equations for species concentrations with initial and boundary conditions.  

The entire DMC simulation is treated as a particle of sol whose position and composition 

are tracked in the continuum model.  Linking the two models is accomplished by 

synchronizing time steps and concentrations between the continuum and DMC models 

while tracking the positions of sol particles during drying.  After introducing the model, 

we present the results of simulations of small swarms of sol particles starting from 

different positions in the film.  The effect of dimensionless cyclization tendency on the 

gel point, cycle rank and ring involvement are calculated and discussed.  The multiscale 

modeling approach allows us to observe the competition between growth and cyclization, 

and between drying and gelation.  We will compare the quantitative predictions of the 

new 4-membered ring calculations with those based only on 3-membered rings. 

5.2 DMC Model 

5.2.1 Bimolecular Condensation 

    With the simplification that hydrolysis is assumed to be at pseudoequilibrium, that 

only a first shell substitution effect for condensation needs to be considered and that 
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alcohol-producing condensation can be neglected, the bimolecular rate expressions are 

given (as in Chapters 3-4) by [38]: 
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5.2.2 Four-membered Ring Cyclization 

    A cyclization reaction occurs when the two sites chosen to react are in the same 

molecule. This intramolecular reaction causes a new ring to form.  Usually in DMC 

simulations, if the sites chosen to react by a bimolecular reaction are members of the 

same molecule, they are not allowed to react.  This prevents unrealistic random 

intramolecular reactions from occurring at a rate that does not take into account the 

bonding restrictions that favor certain sizes of rings.  Similar to the previous chapter 

regarding 3-membered rings, we use bond blocks ij
n B  to explicitly calculate cyclization 

rates based on quasi-unimolecular reactions of these structural units.  Here the superscript 

n represents the number of siloxane (Si-O-Si) bonds linking one site to another, and the 

subscripts i and j represent the connectivities of the sites at the ends of the block (i.e. the 

numbers of siloxane bonds attached to each end).  Since 4-membered rings are prevalent 

and more stable than 3-membered rings in real silicates, we model cyclization reactions 

to form only 4-membered rings.  Therefore, we just need to pay attention to three-bond 

blocks. Based on this approach, the rates of cyclization reactions are calculated as[38]: 
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where *
),(4 jick  is the rate coefficient for a bond block terminated with Qi and Qj sites and 

[3Bij] is the concentration of 3-bond blocks.  Assuming that the same substitution effect 

applies to ring closure even in the presence of the geometric restriction from the bond 

block, the following rate coefficients are used:  
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We use the same dimensionless parameter κ as defined by Rankin et al.[38] to represent 

the cyclization tendency of the system 
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5.2.3 DMC Algorithm 

The simulation procedures are the same as our previous model with 3-membered ring 

cyclization.  The dynamic Monte Carlo simulation starts from a finite set of N (which is 

equal to 106 in our model) monomers.  At each MC step, a new siloxane bond is formed, 

and the conversion is increased by a small constant value (which is 5×10-7 here).  The 

time interval is given by the expression originally derived by Gillespie[62, 70]:  
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where N is the total number of sites, r is a random number selected from the interval (0, 

1), and bimol
ijR  and cyc

ijR4  are the rates given by Eq. (5.1) and (5.2).  In this expression, CSi 

is the total silicon site concentration which comes from the continuum model results at 

the moment that the reaction is selected.  This concentration serves as one link between 

the DMC model and the continuum model in this multiscale modeling strategy.  The 

largest differences between the models with 3-membered and 4-membered rings are the 

algorithms for updating the Wiener index after a cyclization reaction and maintaining the 

lists of bond blocks (changing from two-bond blocks to three-bond blocks): 

    As described previously for modeling sol-gel polymerization with 3-membered rings 

(Chapter 4), the Wiener index is a topological index that can be directly related to 

molecular compactness and rheology of suspensions.  Updating the Wiener index of a 

molecule after a bimolecular reaction was described in that chapter and we use the same 

procedure here.  For updating the Wiener index of a molecule due to a 4-membered ring 

cyclization reaction, we separate the whole molecule into three parts: left part, middle 

part and right part (Figure 5.1).  Because the new ring has four members (rather than 

three), the distance from each site in left part (of size m) to each site in right part (of size 

n) is decreased by 2 after cyclization.  At the same time, the distance from each site in the 

middle part of the molecule to each site in the left and right parts remains unchanged.   
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Figure 5.1 Schematic diagram of the product of a cyclization reaction producing a 4-

membered ring.  Circles represent silicon sites, lines represent siloxane bonds,  

and dashed circles represent different parts of the molecule used for calculations:  

left, middle and right. 
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Therefore, if we know the sizes of the left and right parts, the calculation of the new part 

of the Wiener index, Wnew, is very simple: 

                                                   nmWnew ××−= 2 .                                                        (5.5) 

Therefore, Wiener index of the molecule after cyclization is:  

                                                   mnWWWW new 2−=+= .                                           (5.6) 

For example, in Figure 5.1, the left part has 3 nodes, the middle part has 4 nodes and the 

right part has 2 nodes. After the cyclization reaction, the Wiener index decreases 12.  For 

a general molecular topology in our DMC program, we traverse both the left and right 

parts of a molecule to calculate the number of nodes (the size) of each part. 

    To maintain the necessary information about three-bond blocks, we use six linked lists 

to record all three-bond blocks capable of forming rings, sorted by the connectivities of 

their ends.  In order to have the concentrations of these three-bond blocks, information 

about ijB3  needs to be updated after each reaction step by adding newly created bond 

blocks created and modifying old ones changed by the reaction.  Figure 5.2 shows an 

example. When a new bond is formed between site L and R in a cyclization reaction, six 

new 3-bond blocks need to be added, which are L-R-M2-6, R-L-1-2, R-L-M1-4, 1-L-R-5, 

1-L-R-M2 and M1-L-R-5. Also, three old 3-bond blocks need to be modified, L-1-2-3, L-

M1-M2-6 and R-M2-M1-4, because the connectivities of L and R are both changed from 2 

to 3.  Besides that, the 3-bond block L-M1-M2-R that forms a cycle needs to be deleted. 

    Once the 4-membered cyclization reaction rates are calculated based on the 

concentration of all 3-bond blocks, Monte Carlo reaction selection can be performed at 

each step to choose one reaction to occur.  As in all DMC methods, the probability of 

selecting a particular reaction type is proportional to its rate.  If cyclization is chosen, we 

randomly select one three-bond block with the appropriate end connectivities from the 

corresponding linked list.  Then we update all the data structures including the three-bond 

block information, molecular weight, Wiener index, cycle rank, and so on.  We also track 

the number-average Wiener index (Wn), number-average (CRn) and weight-average (CRw) 

cycle rank of the whole population.  Please refer to Chapter 4 for more information about 

updating the data structures. 
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Figure 5.2 Schematic showing how information about 3-bond blocks  

is updated due to an intramoleculer reaction. 

Circles represent silicon sites, and lines represent siloxane bonds. 

The shaded circles are members of a new ring. 
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Using the DMC approach, we are able to explicitly track all information about three-

bond blocks formed and consumed in the course of polymerization, and then to use this 

information to calculate the cyclization rates.  This is the advantage of the DMC method 

compared with statistical models, which assume that bond block populations can be 

derived from the populations of constituent sites.  Even the hybrid Monte Carlo / 

spanning-tree model of Sarmoria and Miller used the Monte Carlo method just to sample 

the populations of bond blocks about a given site based on randomly joining sites 

according to the polymerization conversion[101].  This approach is likely to introduce 

systematic errors for highly non-random polymerization such as the polymerization we 

are modeling here.  Another advantage of the DMC approach is that we can obtain 

structural parameters including the gel point, molecular weight distribution, Wiener index, 

etc., which are related to film microstructure and are not available from a continuum 

kinetic model. 

5.3 Continuum Drying Model 

5.3.1 Model description 

The 1D continuum transport model for the formation of sol-gel thin-film coatings is 

exactly the same as the one described in our previous multiscale modeling work (Chapter 

4).  It is developed from macroscopic conservation equations for mass.  It is a simplified 

one-dimensional model corresponding to a rapidly deposited film that begins drying and 

curing after the coating process is complete.  Via evaporation, solvent departs the film 

continuously at the top liquid / vapor interface.  In addition to this evaporation, the 

diffusion of solvent within the film needs to be included in the model.  Please refer to 

Chapter 4 for the assumptions and discussion of the modeling equations.  Here, we 

assume that alcohol (ethanol) is the sole solvent.   

5.3.2 Governing equations 

    Assuming only diffusion inside of the film, the governing equations are simply written 

as follows: 
2

1 1
1 2 0C CD

t z
∂ ∂

− =
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                                                                      (5.7) 
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where C1 is the concentration of solvent, C2 is the total silicon concentration, and D is the 

diffusion coefficient for each species. 

Initial conditions in this formulation are as follows: 

                           ( ) 0,11 ,0 CzC = ; ( ) 0,22 ,0 CzC = ;                                                  (5.9) 

Consistent with the description of the film model described above, the boundary 

conditions are given by: 

At the substrate ( 0=z ):   0=
∂
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z
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i   ( =i 1, 2);                                                         (5.10) 
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In Eq. (5.11), gk is the mass transfer coefficient of solvent in the vapor phase, 1
sy  is the 

molar fraction of solvent just above the film surface in the gas phase (which is calculated 

based on Raoult’s law), and 1y∞  is the molar fraction of solvent in the gas phase far away 

from the film, which is set to zero here.  The rate of change of film thickness, as known 

as the surface velocity vs, can be calculated according to the following expression:  

                                      1 1 1
( ) ˆ ( )s s

g
dH t v V k y y

dt
∞= = − − ,                                                  (5.13) 

In Eq. (5.12), 
0,2

10,1
2

ˆ1ˆ
C

VC
V

−
= , where îV  is the molar volume of species i.   

5.3.3 Dimensionless Variables and Simulation Procedure 

The following dimensionless variables are defined to solve the transport equations 

numerically: 

  )(/ tHzη = , 0/)( HtHh = , 0/ CCc ii = ,  t
H
Dτ 2

1= .                                      (5.14) 

Using the dimensionless variableη , the region in which diffusion occurs is always from 

0=η  to 1=η .  In other words, the physical moving domain is mapped onto a fixed 
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domain, and we do not need to modify the spatial grid during the simulation.  The 

parameters are the same as those in Chapter 4. 

This set of dimensionless equations is numerically solved using explicit centered finite 

difference method.  We discretize the whole domain into a number of thin slices; each 

one has a fixed thickness ηΔ .  For the solution, the time interval ∆t is equal to the time 

interval between reactions estimated from the DMC simulation.  At each finite difference 

step, we use the concentrations, film thickness, the surface velocity, and Robin boundary 

conditions at the surface from the previous time step to complete the calculation.  The 

entire DMC simulation is treated as a particle of sol whose position and composition are 

tracked in the continuum model.  We use linear interpolation to perform the tracking (see 

Chapter 3) and obtain total silicon site concentration, which is supplied to the DMC 

routine to choose the next reaction and calculate the time interval of the next DMC step, 

as discussed earlier.  

5.4 Results and discussion 

    As in our previous chapter about forming 3-membered rings, we will present the 

results of the multiscale model with 4-membered rings in terms of conversion, number-

average Wiener index, cycle rank, ring involvement, gelation regime map and structure 

gradient map.  Some of these results will be compared with the results of a model 

allowing only 3-membered rings.  

5.4.1 Conversion at Gelation 

    Figure 5.3 shows the weight-average degree of polymerization (DPw) calculated by the 

model with 4-membered rings as a function of conversion for a specific set of drying 

conditions, for varying values of κ.  The divergence of the curve indicates the onset of 

gelation.  Similar with the results of the model with unlimited 3-membered rings, the gel 

conversion increases as cyclization tendency κ increases.  It is very obvious that 

cyclization delays gelation, and that for some values of κ, the gel conversion can be as 

large as or larger than the experimental value for tetraalkoxysilanes (82%).  

    The gel conversions as a function of dimensionless cyclization tendency κ for models 

with 3- or 4-membered rings are compared in Figure 5.4.  There are no major differences 

of  gel conversions between simulations with the two types of rings.  The curves can still 
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Figure 5.3 Weight-average degree of polymerization from DMC model with unlimited 4-

membered rings as a function of conversion for varying κ:  

Bi=1000, Da=60, and Hp0=0.8H0. 
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Figure 5.4 Gel conversion as a function of cyclization tendency κ with Bi=1000, Da=60, 

and Hp0=0.8H0. All points are the average values from five repeated calculations. 
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be divided into several parts: when 5.0≤κ  or 50≥κ , gel conversions are almost 

constant with respect to κ for both cases.  When 5.31 ≤≤ κ , gel conversions with 3-

membered rings are a little larger than with 4-membered rings.  When 205 ≤≤ κ , on the 

other hand, gel conversions of 4-membered rings cyclization are a little larger than those 

of 3-membered rings cyclization.  This transition from the range of κ giving almost no 

cyclization ( 5.0≤κ ) to the range of κ giving cage-like precursor formation before 

gelation ( 50≥κ ) is sharper in the model with 4-membered rings.  However, the 

assumptions behind the model with 4-membered rings are more realistic.  Experiments 

have shown that 3-membered ring formation is reversible, at least in the case of methyl-

modified precursors[27], which has not been accounted for in our model (but which would 

presumably cause lower conversions at gelation with 3-membered rings).  Also, the 

experimental value of κ is about twice as large for 4-membered rings (see below), which 

would favor the high conversions at gelation observed experimentally.  

    As we mentioned before, at each MC step, a new siloxane bond is formed, and the 

conversion is increased by a small constant value (which is 5×10-7 in our model).  So in 

fact, the gel conversion is determined by the total number of MC steps required to reach 

the gel point. We can divide the total MC steps into two parts:  

                                           cbt SSS += ,                                                                       (5.15) 

where St is the total number of MC steps at the gel point, Sb is the number of bimolecular 

reactions  steps  and  Sc  is  the  number  of  cyclization  reactions. 

    At each bimolecular reaction step, the total number of molecules decreases by one, 

while at each cyclization reaction step, the total number of molecules remains the same.  

We keep track of the numbers of reaction steps for 50=κ and show the results in Table 

5.1.  This table shows that more bimolecular reactions occur in the 4-membered ring case 

than with 3-membered rings.  This suggests that at gelation, the total number of 

molecules in the 4-membered ring system is smaller than in the 3-membered ring system.  

The net result (as we will discuss below) is a higher number-average cycle rank with 4-

membered rings, although the absolute number of rings per site in the simulation is less. 
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Table 5.1 Counts of total, bimolecular and cyclization reaction steps in DMC simulations 

with 3- or 4-membered rings.  Here, Bi=1000, Da=60, Hp0=0.8H0. 
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5.4.2 Wiener Index 

    Molecular compactness can be measured by the Wiener index.  Figure 5.5 shows the 

scaled Wiener index (Wn / Wn,lin) as a function of conversion for varying κ in DMC 

simulations.  All the curves start from 1 and decrease with increasing conversion.  That 

means the molecules are becoming more compact than linear molecules of comparable 

degree of polymerization would be.  This is due to branching and cyclization (for 0≠κ ). 

Since a negative FSSE results in polymers that are more linear than in the ideal 

polycondensation case, the scaled index is larger at a given conversion for FSSE ( 0=κ ) 

and cyclization (for 0≠κ ) compared with ideal polycondensation.  Figure 5.5 also 

clearly shows that cyclization delays the gelation.   

    Compared with results of 3-membered ring case (Figure 5.5’), the only difference 

exists in the region where 2.0<α with 50=κ .  In this region, the value of scaled index 

with 50=κ  is identical to or larger than that of ideal case for 4-membered ring 

cyclization, while the opposite is observed for the 3-membered ring case – the value of 

scaled index with 50=κ  is smaller than that of ideal case.  This is because 3-bond 

blocks are formed later than 2-bond blocks, so 4-membered ring cyclization reactions 

start later and occur less in the beginning of the polycondensation process than for 3-

membered rings.  For 15.0<α , it is also possible that the compaction effect of 4-

membered ring cyclization can offset the effects of negative FSSE for molecular growth.  

Therefore, the curve of 50=κ  behaves like the ideal case for 15.0<α .  

5.4.3 Cycle Rank 

   The cycle rank of an oligomer represents the number of independent cycles that must 

be closed in order to form that structure[38].  Figure 5.6 shows the number-average cycle 

rank for simulations with 4-membered rings and various κ values as a function of DPw.  

Compared with Figure 5.6’, the curves have same tendencies as for simulations with 3-

membered rings and also show the competition between molecular growth and 

cyclization.  Models with both types of cyclization can be divided into three stages: 

growth stage (I), cyclization stage (II) and gelation stage (III).  When κ is smaller than 2, 

the values of number-average cycle rank of models with both ring sizes are almost 

identical.  However, with increasing κ (especially when 5≥κ ), the number-average cycle 
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Figure 5.5 Evolution of Wn / Wn,lin as a function of conversion for varying κ in DMC 

simulations with 4-membered rings: Bi=1000, Da=60, Hp0=0.8H0. 
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Figure 5.5’ Evolution of Wn / Wn,lin as a function of conversion for varying κ in DMC 

simulations with 3-membered rings: Bi=1000, Da=60, Hp0=0.8H0. 
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Figure 5.6 Number-average cycle rank as a function of DPw with varying cyclization 

tendency κ for a DMC model with 4-membered rings: Bi=1000, Da=60, Hp0=0.8H0. 
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Figure 5.6’ Number-average cycle rank as a function of DPw with varying cyclization 

tendency κ for a DMC model with 3-membered rings: Bi=1000, Da=60, Hp0=0.8H0. 
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ranks with 4-membered rings are larger than those found with 3-membered rings.  For 

example, when 50=κ , the number-average cycle rank of 4-membered rings is about 

18.6  at  10000=wDP  (just  after  gel  point),  while  the  corresponding  value  with  3-

membered rings is just about 10.8.  This means that, on average, each molecule in the 

model with 4-membered ring cyclization has at least 7 more independent cycles at the gel 

point than each molecule in the model with 3-membered ring cyclization.  Naturally, this 

indicates that the molecular structure is more complicated in the case of 4-membered ring 

cyclization.  This is because the variety and number of 3-bond blocks arrangements is 

much greater than for 2-bond blocks. The reason for this result will be discussed below. 

     At each bimolecular reaction step, the total number of molecules decreases by one and 

the total number of cycles does not change.  Therefore, the increment of number-average 

cycle rank due to a bimolecular reaction step is:  

                   
mol
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n
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2
1  ,              (5.16) 

where Crn is the number-average cycle rank and Nmol is the total number of molecules.  

At each cyclization reaction step, the total number of molecules remains the same and the 

total number of cycle rank is increased by one for the reactant molecule.  Therefore, the 

incremental change in the number-average cycle rank due to a cyclization reaction is:  

                                               
mol

n N
Cr 1Δ = ,                                                                 (5.17) 

Comparing Eq. (5.16) and Eq. (5.17), it is easy to see that when Crn is larger than 1, 

nCrΔ  is larger for bimolecular reactions based on the same value of Nmol.  Also, for both 

reactions, nCrΔ  is larger with smaller Nmol.  When 50=κ , Table 5.1 shows that more 

bimolecular reactions occur in 4-membered ring cyclization, so Nmol in the 4-membered 

ring cyclization is smaller than that in the 3-membered ring case after some steps.  

Therefore, the Crn values with 4-membered rings are much larger than those with 3-

membered rings.  
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5.4.4 Ring Involvement 

    Another measure of the average level of cyclization in the population of oligomers is 

ring involvement[38].  It is defined as the average number of independent rings in which a 

silicon site is involved.  Ring involvement is 0 in the beginning of simulation.  Since one 

new independent ring is formed after each cyclization reaction, and each ring has four 

sites, ring involvement (I) is increased by  

                                                   
N

I 4Δ =  .                                                                 (5.18) 

Figure 5.7 shows the ring involvement of 4-membered rings as a function of conversion 

with varying κ.  The numbers in the legend are the values of κ.  Comparing Figure 5.7 

with Figure 5.7’, the curves have same tendencies for simulations with 3-membered and 

4-membered rings: ring involvement increases as conversion increases for all cases.  

With larger value of κ, the value of ring involvement at the gel point is higher.  In cases 

corresponding to high gel conversion, for example, when 50=κ , ring involvement 

approaches 4 before the gel point.  Thus, multiple rings per silica site (representing the 

formation of cage-like intermediates) are formed before gelation.  For 5≥κ , the ring 

involvement of 4-membered rings cyclization is larger as that of 3-membered rings 

cyclization.  Therefore, a silica site is involved in more independent rings with 4-

membered ring cyclization than in the 3-membered case.  This is consistent with the 

earlier observation that the molecular structure is more complicated in the 4-membered 

rings cyclization. 

5.4.5 Gelation Regime Map 

    Two important dimensionless parameters Bi and Da are used in our multiscale model 

to summarize the competition between mass transfer (drying) and reaction (gelation) in 

the drying process of the sol-gel silica film.  In all of the discussion above, arbitrary 

values of Bi and Da were used for all calculations, and the focus was on the effects of 

cyclization parameter.  However, these results can be placed into context using gelation 

regime maps, as we did in our previous chapters.  In the gelation regime map, there are 

three types of qualitative phenomena represented:  drying before gelation, gelation before  
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Figure 5.7 Ring involvement as a function of conversion with varying cyclization 

tendency κ for DMC simulations with 4-membered rings:  Bi=1000, Da=60, Hp0=0.8H0. 

Circles represent gel points. 
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Figure 5.7’ Ring involvement as a function of conversion with varying cyclization 

tendency κ for DMC simulations with 3-membered rings:  Bi=1000, Da=60, Hp0=0.8H0. 

Circles represent gel points. 
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drying and literal skinning[36].  These are defined based on time to dry values and gelation 

times at the top and bottom of the film, and thus give a global picture of the state of the 

film predicted by the multiscale DMC / continuum model.  Figure 5.8 shows the gelation 

regime map for simulations with unlimited 4-membered ring cyclization and with a fixed 

value of 5=κ .  For 4-membered rings, this is very much an experimentally relevant 

value.  For the cases where Ng and McCormick were able to estimate k4c(1,1) and k11 of 

acid-catalyzed tetraethyl orthosilicate sol-gel solutions, the average ratio of the two has a 

value of about 5.5 mol/L[52].  Therefore, if an as-deposited sol has a concentration close to 

[Si]0 = 1 mol/L, this gives a value for a realistic sol-gel silica solution of κ ~ 5.  Also in 

terms of the modeling, this value is interesting to study because it represents the 

conditions with greatest sensitivity of gel conversion difference between film surface and 

base (and therefore gel structure) to concentration.  Comparing Figure 5.8 with the 

gelation regime map of a multiscale model with 3-membered rings (Figure 5.8’), they are 

very similar and almost overlap, but the literal skinning region is subtly expanded in the 

4-membered ring case.  

    As discussed above, one of the advantages of our multiscale model is that it allows us 

to probe the microstructural implications of macroscopic transport processes.  One of the 

unique insights it offers is into structural gradients that can form as a result of 

concentration gradients present during literal skinning.  An example of the effect of 4-

membered ring cyclization on literal skinning is shown in Figure 5.9.  It shows number-

average cycle rank as a function of time for different initial particle positions.  The first 

thing that we can notice from this figure is that according to the gel points (circles) on the 

graph, the film gels much faster at the surface than inside the film.  That means there is a 

time lag for gelation between the film surface and base.  Such time lags are characteristic 

of literal skinning and are seen in all gelling / drying systems under the right conditions.  

However, a new feature is also revealed – the gel points on the curves indicate what 

extent of number-average cycle rank can be reached before gelation for different initial 

sol particle positions.  Figure 5.9 clearly shows that the number-average cycle rank at the 

gel point inside the film is twice as large as it is at the film surface.  Therefore, there is a 

molecular structure gradient inside the film.  We compare this finding with the 

corresponding  figure  for  a  model  with 3-membered rings in Figure 5.9’.  It is clear that 
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Figure 5.8 Gelation regime map with unlimited 4-membered ring cyclization  

calculated with κ=5.  Points are the average values from five repeated calculations.  

Dashed lines are the approximate boundaries of each region. 
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Figure 5.8’ Gelation regime map with unlimited 3-membered ring cyclization  

calculated with κ=5.  Points are the average values from five repeated calculations.   

Dashed lines are the approximate boundaries of each region. 
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Figure 5.9 Number-average cycle rank as a function of time with different initial particle 

positions for 4-membered ring cyclization: Bi=1000, Da=60, κ=5.   

The circles represent gel points. 
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Figure 5.9’ Number-average cycle rank as a function of time with different initial particle 

positions for 3-membered ring cyclization: Bi=1000, Da=60, κ=5.   

The circles represent gel points. 
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the values of number-average cycle rank at gel point in Figure 5.9 are larger than the 

values in Figure 5.9’, and the gel times in Figure 5.9 are smaller than the gel times in 

Figure 5.9’.  The gradient in number-average cycle rank is also smaller for the model 

with 3-membered rings; the interior of the film has only approximately 60% more rings 

per molecule in Figure 5.9’.  Figure 5.10 and 5.10’ also show that the gradient of ring 

involvement is larger for the 4-membered ring case.  Thus, at the same conditions (Bi, Da 

and κ), compared with a model having 3-membered ring cyclization, the DMC/continuum 

model with 4-membered ring cyclization shows faster gelation, a large number-average 

cycle rank, and a larger gradient of structure across the film with literal skinning. 

5.4.6 Structure Gradient Map 

    As discussed above, direct measures of cyclization such as ring involvement and cycle 

rank increase as the cyclization tendency increases.  Also, the conversion at gelation 

increases in a way that is correlated with cyclization.  Therefore, a measure of the 

structure gradient in a film is the difference in gel conversion between the surface and 

base.  Figure 5.11 presents a structure gradient map for the multiscale model with 4-

membered ring cyclization and 5=κ , which is a contour plot of gel conversion 

difference vs. Bi and Da.  The regions of Bi and Da with high values of gelαΔ  coincide 

with the literal skinning region of the gelation regime map.  Comparing Figure 5.11 with 

Figure 5.11’ (the structure gradient map for 3-membered ring cyclization), all the regions 

in Figure 5.11 move to much smaller values of Bi and Da, especially for the large gelαΔ  

value of 0.1.  Therefore, structure gradients occur more easily in the model with 4-

membered rings than in the model with 3-membered rings.  This suggests that in the real 

films, where 4-membered rings are the predominant species, drying under conditions of 

high Bi and Da is likely to lead to structure gradients where the top of the film has a 

“skin” that gels quickly and has fewer cycles, while the interior of the film (near the base) 

is made up of cage-like precursors.  The polymer network with fewer cycles is likely to 

be more elastic and tough, while a network made up weakly linked, rigid cages would be 

expected to be more brittle.  This would be expected to exacerbate the problems 

encountered with defect formation due to skinning in sol-gel films.  The best way to 

avoid  this  problem  is most  likely  to  push  the  conditions  towards  the  “drying before 
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Figure 5.10 Ring involvement at the gel point as a function of initial particle positions 

for 4-membered ring cyclization literal skinning case: Bi=1000, Da=60, κ=5.  
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Figure 5.10’ Ring involvement at the gel point as a function of initial particle positions 

for 3-membered ring cyclization literal skinning case: Bi=1000, Da=60, κ=5.  
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Figure 5.11 Structure gradient map for the 4-membered ring cyclization case with κ=5.  

Points are the average values of five repeated calculations.   

Dashed lines are the approximate contours of constant gelαΔ . 
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Figure 5.11’ Structure gradient map for the 3-membered ring cyclization case with κ=5. 

Points are the average values of five repeated calculations.  

Dashed lines are the approximate contours of constant gelαΔ . 
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gelation” regime, so that a uniform gel film without residual solvent forms. 

5.5 Summary 

    The results of a multiscale model for the drying and curing process of sol-gel silica 

films with unlimited 4-membered ring cyclization are presented.  Two main links 

between the parts of the multiscale model are as follows: first, in the continuum model, 

the entire DMC simulation is treated as a particle of sol whose position and composition 

are tracked using a diffusion / evaporation finite difference calculation.  The importance 

of this particle tracking is that the continuum model provides the total silicon 

concentration for the DMC model, and this thus serves as a spatially distributed 

“handshake” between the DMC and continuum calculations.  The second “handshake” 

between the models is the time interval for each bond addition in the DMC simulation, 

which is used as the time interval for the finite difference calculation. 

    By comparing with our previous model of drying sol-gel films with unlimited 3-

membered ring cyclization, this new model allowed us to comment on a more physically 

relevant type of cyclization.  As in the previous model, the model with 4-membered rings 

showed that the gel conversion increases as dimensionless cyclization tendency κ  

increases, and for reasonable values of κ, gel conversion meeting or exceeding the 

experimental value (82%) was observed.  Calculations of the topological Wiener index 

clearly showed that cyclization shrinks the molecular size, including in extreme cases the 

formation of cage-like precursors that remain compact until the gel point. 

    Competition between molecular growth and cyclization can be understood using plots 

of number-average cycle rank as a function of weight-average degree of polymerization.  

This allows us to make a fair comparison of different cases independent of the changes in 

gel time and conversion induced by cyclization.  Three stages were identified based on 

the plots: a growth stage where cycle rank remains low, a cyclization stage where cycle 

rank increases rapidly and a gelation stage where cycle rank reaches a plateau and growth 

takes off.  For 5≥κ , on average, each molecule in the new model with 4-membered 

rings has more independent cycles than each molecule in the former model with 3-

membered rings, indicating that the molecular structure is more complicated in the 4-

membered ring case. 
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    The gelation regime map shows the competition between mass transfer (drying) and 

reaction (gelation) in the coating process of the sol-gel silica films.  The gelation regime 

maps of models with 4-membered rings and with 3-membered rings were found to be 

very similar and almost overlapped; the only difference is that the literal skinning region 

of is a very slightly expanded with 4-membered rings.  

    The relationships between measures of cyclization (ring involvement and number-

averaged cycle rank) and conversion, time and initial particle position were investigated.  

The simulations showed that cage-like intermediates form before gelation when the gel 

conversion is high (with large κ).  The number-average cycle rank and the ring 

involvement at gel conversion inside the film are much larger than those at the surface in 

many experimentally relevant conditions, so that there is a molecular structure gradient 

inside the film.  The gradients in number-average cycle rank and ring involvement are 

smaller for the model with 3-membered rings, which also points out that the molecular 

structure is more complicated in the model with 4-membered ring cyclization.  At the 

same conditions (Bi, Da and κ), compared with the 3-membered ring case, 4-membered 

ring cyclization causes gels to form more quickly and produces gels with more rings per 

molecule. 

    The simulations predict that high values of gel conversion difference between the 

surface and base of a film coincide with the literal skinning region of the gelation regime 

map.  They also show that the structure gradients in the films with 4-membered rings are 

larger than those found in films with 3-membered rings.  The formation of gel structure 

gradients would be expected to exacerbate defect formation due to literal skinning. 

    While its development has been complex, this multiscale model represents a first step 

to understanding the complete coating process of sol-gel silica.  The inclusion of 

unlimited 4-membered ring cyclization will give more accurate and relevant predictions 

than our previous models.  Still, this model still can be improved in several aspects.  For 

example, transport properties were assumed to be constant during polymerization.  The 

multiscale model provides the opportunity for more “handshaking” between the model 

components to improve this situation.  One way of doing this it to utilize the Wiener 

index with diffusivity correlations to provide a more physically relevant self-consistent 

continuum / DMC result in the future.  In addition, some limitations may need to be 
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added for the cyclization reactions, because realistic molecular structures need to be 

constrained by the actual bond angles and energies of the oligomers.  Although 4-

membered rings are the dominant units, there are still some 3-membered rings found in 

the experiments.  Therefore, a more comprehensive model would combine 3- and 4-

membered ring cyclization and would include reversibility of cyclization.  This, 

obviously, is a substantial challenge even with available computational resources, but 

these are challenges that can be overcome in future developments. 
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Chapter 6 

Conclusions 

 
    Comprehensive modeling of the coating process of sol-gel silica films requires the 

consideration of multiple length and time scales ranging from molecular to macroscopic.   

The formation of the film is controlled by macroscopic parameters; diffusion and mass 

transport occur over micron or greater lengths scales, and define the concentration fields 

within which polymerization and (if surfactants are added) self-assembly occur.  At the 

same time, polymerization and self-assembly processes occur which control the film 

properties such as film microstructure at the molecular level.  Therefore, a multiscale 

model should be used to link these different length and time scale together.   

    The multiscale model described in this dissertation for the drying process of sol-gel 

coatings couples molecular to macroscopic phenomena by combining dynamic Monte 

Carlo (DMC) simulations with the finite difference method (FDM).  DMC simulation is a 

very good choice to model the sol-gel silica polycondensation because it can capture the 

complete reaction history for a finite set of monomers, it has the flexibility to handle new 

types of reactions associated with the formation of large polycyclic species and cages, 

and it can simulate much larger systems and much longer times than competing 

molecular approaches such as molecular dynamics.  The accuracy of DMC as we have 

implemented it can be verified by the good agreement between simulation results and 

analytical results (based on RBT) for the ideal polycondensation case.  The FDM is an 

easy and intuitive numerical method to model the drying process of sol-gel silica films.  

Because we use a one dimensional model to develop the multiscale approach, FDM 

should provide adequate numerical accuracy and precision for the purposes of this 

dissertation.  In our multiscale model, the entire DMC simulation (containing at least 106 

monomers) is treated as a particle of sol whose position and composition are tracked 

using a diffusion / evaporation finite difference calculation.  Therefore, the total silicon 

concentration, which is provided by the continuum model, serves as one “handshake” 

with the DMC model.  The second “handshake” between the models is the time interval 

from the DMC simulation, which is used as the time interval for the continuum model.   
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    The validity of the multiscale model is verified by the good agreement of the 

conversion evolution of DMC and continuum simulations for ideal polycondensation and 

FSSE cases.  With assumptions of hydrolysis pseudoequilibrium and negative FSSE for 

bimolecular and cyclization reactions, our multiscale model can predict that the gel 

conversion increases with increasing dimensionless cyclization tendency κ , and the gel 

conversion can be equal to or larger than the experimental value (82%).  Calculations of 

the topological Wiener index clearly showed that cyclization shrinks the molecular size, 

including in extreme cases the formation of cage-like precursors that remain compact 

until the gel point. 

    Curves of number-average cycle rank as a function of weight-average degree of 

polymerization represent the competition between molecular growth and cyclization.  

This allows us to make a fair comparison of different cases independent of the changes in 

gel time and conversion induced by cyclization.  Three stages are obtained based on the 

results: i) A growth stage in which molecular growth dominates over cyclization.  ii) A 

cyclization stage where cyclization increases much quicker than the first stage, and 

growth is slow, especially for 5≥κ .  iii) A gelation stage where growth dominates over 

cyclization again until the sol-gel transition begins.  For 5≥κ , on average, each 

molecule in the model with 4-membered rings has more independent cycles than each 

molecule in the model with 3-membered rings, indicating that the molecular structure is 

more complicated in the 4-membered ring case. 

    The gelation regime map shows the effects of the competition between mass transfer 

(drying) and reaction (gelation) on the drying process of the sol-gel silica film.  

Compared with similar maps for the ideal polycondensation and FSSE cases, the 

cyclization case has the same tendency to generate three types of phenomena: drying 

before gelation, literal skinning and gelation before drying.  The difference is that the 

literal skinning region is expanded with cyclization. That means that cyclization increases 

the likelihood of literal skinning. 

    The relationships of ring involvement and conversion, number-average cycle rank and 

time with different κ values, ring involvement and initial particle position were 

investigated.  The simulations showed that cage-like intermediates form before gelation 

at high gel conversion cases (with large κ ).  With drying the maximum value of ring 
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involvement inside the film is much larger in some cases than that at the surface, 

suggesting that cyclization can lead to a molecular structure gradient inside the film.   

    The simulations predict that high values of gel conversion difference between the 

surface and base of a film coincide with the literal skinning region of the gelation regime 

map.  They also show that the structure gradients in the films with 4-membered rings are 

larger than those found in films with 3-membered rings.  The formation of gel structure 

gradients would be expected to exacerbate defect formation due to literal skinning. 

    The dissertation presents the first multiscale model of polymerization and drying in 

sol-gel films, and our model confirms the hypothesis that cyclization can lead to structure 

gradients.  While our multiscale model is improved from just considering FSSE to 

including unlimited 3-membered ring cyclization, further to including unlimited 4-

membered ring cyclization, it represents a first step to understanding the complete 

coating process of sol-gel silica.  Still, this model can be improved in several aspects.  

For example, some limitations may need to be added for the cyclization reactions, 

because realistic molecular structures need to be constrained by the bond angles and 

energies.  Although 4-membered rings are the dominant units, there are still some 3-

membered rings found in the experiments.  Therefore, a more comprehensive model 

would combine 3- and 4-membered ring cyclization and would include reversibility of 

cyclization.  In addition, transport properties were assumed to be constant during 

polymerization.  The multiscale model provides the opportunity for more “handshaking” 

between the model components to improve this situation.  For example, the Wiener index 

can be utilized with diffusivity correlations to provide a more physically relevant self-

consistent continuum / DMC result in the future.  This, obviously, is a substantial 

challenge even with available computational resources, but these are challenges that can 

be overcome in future developments.  The dissertation focuses on processing-structure 

relationships in the films.  Using structure-property relationships to understand more 

about how the structure gradient influences the properties of the film is a logical 

extension of our work.  Another important direction of future work is to expand our 1D 

model into two dimensions, using finite element method substituting finite difference 

method to establish a similar connection between the DMC simulations in 2D and the 

continuum calculations, as we have described in this dissertation for 1D calculations.  We 
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expect that our simulation will allow better prediction of the formation of structure 

gradients in sol-gel derived ceramics and other nonideal multifunctional 

polycondensation products, and that this will help in developing coating procedures to 

reduce coating defects in the future. 
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Appendix A 

Calculation of Number- and Weight-average Parameters 

 

A.1 Definition 

A.1.1 Degree of Polymerization 

• Number-average degree of polymerization: 
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   DPi: size of molecule i;  N: number of monomers;    Nmol: number of molecules 

A.1.2 Cycle Rank 

• Number-average cycle rank: 
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• Weight-average cycle rank: 
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    Cri: cycle rank of molecule i 

A.1.3 Wiener Index 

• Number-average Wiener index: 
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   Wi: Wiener index of molecule i 

• Wiener index for linear molecules: )1(
6
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   m: molecular size 

A.2 Bimolecular Condensation Reactions 

    After each bimolecular reaction, the number of molecules is decreased by 1, i.e. 

1Δ −=chainsN . Assuming the bimolecular reaction occurs between molecule i (size m) and 

j (size n): 

A.2.1 Degree of Polymerization 

• Number-average degree of polymerization: 
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• Weight-average degree of polymerization: 
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A.2.2 Cycle Rank 

• Number-average cycle rank: 
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• Weight-average cycle rank: 
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A.2.3 Wiener Index 

• Linear Wiener index increment: 
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• Wiener index increment: 
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• Number-average Wiener index: 
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A.3 Cyclization Reactions 

    After each cyclization reaction, Nmol, DPn, and DPw are not changed, one cycle rank is 

added for the reactant molecule i.  

A.3.1 Cycle Rank 

• Number-average Cycle rank: 
N

DPCr n
n =Δ ,                                                               (A.15) 
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• Weight-average Cycle rank: N
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A.3.2 Wiener Index 

• Number-average Wiener index: 
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Appendix B 

Nomenclature 

 

Bi: Biot number 
nBij: n-bond block with ends connectivity i, j 
2Bij: 2-bond block with ends connectivity i, j 
3Bij: 3-bond block with ends connectivity i, j 
C: concentration 
CSi: concentration of total silicon at the particle position 
c: dimensionless concentration  

s
ic : dimensionless concentration at the surface of the solution 

cpi: dimensionless concentration at particle position 
cqi: dimensionless concentration of Qi species at particle position 
Cri: the cycle rank of molecule i 
Crn: the number-average cycle rank  
Crw: the weight-average cycle rank  
D: diffusion coefficient 
Da: Damköhler number 
dij: topological distance between sites i and j in the molecule 

DPw: the weight-average degree of polymerization 
f: the number of functionality 
h: dimensionless thickness of the film at time t 
H(t): the thickness of the film at time t 
H0: the initial thickness of the film 
hp: dimensionless particle position 
I: ring involvement 
kij: bimolecular rate constant polycondensation 
k3c(i,j): rate coefficient of 3-membered ring cyclization 
k4c(i,j): rate coefficient of 4-membered ring cyclization  

gk : mass transfer coefficient of solvent  
L: the size of the molecules 
m: molecular size 
MWi: molecular weight of molecule i  
n: molecular size 
N: the total numbers of sites/monomers considered in MC method 
Nmol: the total numbers of molecules in MC method 
Pij: the probabilities of reaction rates 
P1: the solvent vapor pressure 
Pt:  the total pressure 
PE: vapor pressure of ethanol  
PW: vapor pressure of water 
Qi: a tetrafunctional silicon site with i siloxane bonds 
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{Qi}: the population of Qi species  
[Qi]: the concentration of Qi species 

C
iQ : the concentration of Qi species in the continuum model 

qi: dimensionless concentration of Qi species in the continuum model 
r: the random number from (0, 1) 

bimol
ijR : bimolecular reaction  

cyc
ijR2 : 3-membered ring cyclization reaction  
cyc
ijR3 : 4-membered ring cyclization reaction  

Sb: the steps of bimolecular reactions  
Sc: the steps of cyclization reactions 
St: the total number of DMC steps  
t: time 

tΔ : time interval calculated by MC method 
vs: the free surface velocity 
V̂ : molar volume  
W: Wiener index 
Wi: Wiener index of molecule i 
Wn: number-average Wiener index 
Wn,lin: number-average Wiener index of linear molecule 
xm: the molar fraction of solvent in solution 

sy1 : the molar fraction of solvent at the surface in the gas phase 
∞
1y : the molar fraction of solvent far away in the gas phase 

z: distance from the bottom 
α : conversion 
η : dimensionless distance from the bottom 
τ : dimensionless time 
χ : hydrolysis extent 
κ : cyclization tendency 
 
Subscripts: 
With C: 
1: solvent 
2: total silicon  
3: (SiOH) functional group  
 
With QC/q: 
i: number of siloxane bonds 
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