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ABSTRACT OF DISSERTATION 

APPLICATIONS OF ANTIOXIDANT AND ANTI-INFLAMMATORY POLYMERS 
TO INHIBIT INJURY AND DISEASE 

There is an undeniable link between oxidative stress, inflammation, and disease. 
Currently, approaches using antioxidant therapies have been largely unsuccessful due to 
poor delivery and bioavailability. Responding to these limitations, we have developed 
classes of polymer and delivery systems that can overcome the challenges of antioxidant 
and anti-inflammatory therapy. 

In our initial studies, nanoparticles of poly(trolox), a polymeric form of trolox, were 
surface-modified with antibodies. This modification allows for specific targeting to 
endothelial cells, affording controllable and localized protection against oxidative stress. 
We have shown these targeted nanoparticles bind, internalize, and provide protection 
against oxidative stress generation and cytotoxicity from iron oxide nanoparticles. 

In a similar fashion, we have tested the ability of poly(trolox) to prevent rheumatoid 
arthritis in vivo. Poly(trolox) nanoparticles were encapsulated in a PEGylated polymer to 
enhance circulation and biocompatibility. These particles were shown to accumulate in 
inflamed joint tissue, recover natural antioxidant function, suppress protein oxidation, 
and inhibit inflammatory markers. 

Lastly, we developed a class of polyphenolic compounds utilizing a non-free radical 
based reaction chemistry of poly(β-amino esters). The polyphenol apigenin was 
investigated for its anti-inflammatory properties to inhibit inflammation-mediated tumor 
cell metastasis. PEGylated nanoparticles that incorporated apigenin poly(β-amino ester) 
were developed and found to retain their anti-inflammatory efficacy while providing a 
long term release profile. These inhibited the ability of tumor cells to adhere to inflamed 
vascular cells. We also have shown that these polymers can suppress markers of 
inflammation responsible in enhancing tumor cell adhesion. 
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Chapter 1. Introduction 

 
Oxidative stress is a key pathological process in a variety of disease states (e.g., 

ischemia-reperfusion injury [1, 2], hypoxia, and acute lung [3] and renal injury [4]). 

Oxidative stress is characterized by the formation of a wide range of reactive oxygen 

species (ROS), which cause an altered cellular redox state leading to severe DNA, protein, 

and lipid damage; ultimately resulting in dysfunction and death [5, 6]. 

 In addition to the direct lipid and DNA damage caused, oxidative stress can cause cells 

to produce cytokines and chemokines that play a role in propagation of the inflammatory 

response [7] such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor 

alpha (TNF-α) [8, 9]. This inflammatory response can in turn induce pathway activations 

such as the NF-кB [10], ERK [11], and JNK pathway [12], among others. This activation 

initiates a cascade of gene activation to regulate antioxidant and immune defenses [13]. 

Endothelial cells, in response to this pathway activation, begin to secrete and express 

molecules known as Cellular Adhesion Molecules (CAM) on their surfaces to facilitate 

leukocyte adhesion, vasodilatation, and transmigration [14]. Likewise, immune system 

cells will respond in kind to secrete nitric oxide as a host defense mechanism against 

pathogens [15]. Under normal conditions, recruited leukocytes, macrophages, and 

neutrophils will contain and mitigate further damage. However, in some cases the immune 

system cannot regulate its defenses due to factors such as persistent infections [16], 

complications with implanted “biomaterials” [17], or depletion of natural antioxidant 
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reserves [18]. In these scenarios the immune response can begin to damage viable cells 

through uncontrolled cytokine production [19].  

 It is possible to inhibit and reverse these events through supplementation of free radical 

scavengers, which can intercept ROS; thereby attenuate cellular damage [20-22]. Recently, 

certain antioxidants have also been shown to suppress some specific inflammation-

mediated pathways. For example quercetin, a naturally-derived flavanol, can down regulate 

Intercellular Adhesion Molecule-1 via inhibiting the ERK-1 pathway [23, 24]. 

Antioxidants, simply defined, are molecules that can inhibit the oxidation potential of 

other molecules, such as free radicals. They are broken down into two general categories, 

small molecule and enzymatic antioxidants. Heavy interest lies in small molecule 

antioxidants, which unlike antioxidant enzymes can scavenge a large array of free radicals 

rather than one specific substrate [25-27]. Despite this advantage, there are still many 

obstacles to overcome for effective treatment using small molecule antioxidants, most 

notability in the delivery methods [28, 29]. 

In addition to the antioxidant benefits, researchers have discovered how certain classes 

of antioxidants can modulate cellular responses and pathway activation or deactivation [30-

32]. It has been observed that flavonoids such as quercetin and epicatechin not only inhibit 

oxidative stress [33, 34], but can suppress the inflammatory pathways NF-κB and AP-1 

through inhibition of specific kinase pathways by prevention of transcription factor 

phosphorylation [31, 35]. Interestingly, quercetin is the only reported flavanol with the 

ability to suppress both NF-κB activation and the JNK pathway [36, 37]. Flavones on the 

other hand, have been reported to suppress JNK, ERK, and NF-κB pathways, leading to 

down regulation of ICAM-1, VCAM-1, and E-selectin [36], making them great candidates 
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for applications such as cancer metastasis prevention [38, 39]. Apigenin is of special 

importance as it is shown to be one of the most potent flavones tested for suppression of 

these multiple inflammatory pathways [36]. As such, apigenin has been selected as the 

molecule of interest to formulate into an antioxidant polymer for delivery.  

While flavonoids have poor water solubility, short biological half-life, and non-specific 

cellular uptake, these can be overcome utilizing the polymerization strategies described 

above. Lastly, while trolox, vitamin E, and possibly poly(trolox) show similar recovery 

effects as the flavanol quercetin in that they can suppress ICAM-1 expression, they do not 

affect VCAM-1 or E-selectin levels [40], further strengthening the use of apigenin for 

inflammation-mediated applications. 

While the direct mechanism of NF-κB, JNK and ERK pathway suppression is not 

known, it is theorized that flavonoids can inhibit transcription by preventing complete 

phosphorylation of the protein portions required for activation [41, 42]. However, as noted 

by quercetin’s ability to only suppress JNK pathways [35, 43], and apigenin’s ability to 

suppress JNK and ERK [37, 44], it becomes clear that antioxidant activity alone cannot 

explain the anti-inflammatory function. 

Because of the limitations of poly(trolox) ester in the inability to control degradation 

rates outside of molecular weight synthesis [22, 45], and inability of vitamin E to suppress 

certain inflammatory pathways [40], it is desirable to develop a new antioxidant polymer 

system that is based on a biologically active flavone PβAE nanoparticle system, that can 

also be modified through the use of targeting moieties in the future. 

3 
  



In this work, we first evaluate the ability of poly(trolox) to suppress clinically relevant 

injury and diseases, followed by the development of an anti-inflammatory polymer with 

desirable long term release properties. We have modified existing poly(trolox) 

nanoparticles to target specifically to vascular tissue through the use of monoclonal 

antibodies directed towards PECAM-1. We show that these particles can adhere to the 

endothelium, internalize, and suppress toxicity and free radical damage caused by iron 

oxide nanoparticles. Next, we utilized a similar nanoparticle system of poly(trolox) to treat 

the damaging effects of rheumatoid arthritis in vivo. Our results indicate that these particles 

are small enough to accumulate in disrupted vasculature, recover natural antioxidant 

capacity, and inhibit certain inflammatory markers such as TNF-α and IL-6. In the last set 

of work, we have developed an anti-inflammatory system comprised of our unique 

poly(beta-amino ester) chemistry to deliver the compound apigenin over an extended 

period of time. It was observed that particles comprised of apigenin PβAE released active 

apigenin over 72 hours, and were able to inhibit the ability of tumor cells to adhere and 

metastasize in compromised vascular cells. It was found that this was due to the significant 

suppression of inflammation markers provided by the apigenin, further reinforcing the link 

between cancer metastasis and inflammation. 
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Chapter 2. Background 
Based on the book chapter published in:  

David Cochran and T. Dziubla. “Antioxidant Polymers for Tuning Biomaterial 
Biocompatibility: From Drug Delivery to Tissue Engineering”, In G. Cirillo, Antioxidant 
Polymers Synthesis, Properties, and Applications. Salem, MA: Scrivener 

 

2.1 Introduction 

While the original definition of a biocompatible material was one that does not induce 

deleterious effects (e.g., a host immune response[46]), it has become clear that definition 

no longer fits with the advanced biomaterials designs. As our fundamental understanding 

of biological responses to foreign material increased, so did our knowledge that a purely 

inert material was both unfeasible and in some instances, especially in the area of tissue 

regeneration, undesired. A classic example is in the case of titanium oxide. While titanium 

oxide in a bulk phase has traditionally been utilized as an inert coating of implants, it has 

been found that wear particles in the nanometer size range can elicit a strong oxidative 

insult [47, 48]. Because of this, a new definition of biocompatibility has been proposed by 

D.F. Williams that a biomaterial must perform not only its function without undesired 

consequences, but also generate a beneficial tissue or cellular response [49]. Indeed, this 

shift in paradigm has not only challenged the “biocompatibility” of   classical materials, 

but also paved the way into development of new and exciting methods to develop a material 

that can induce a beneficial host response.  

2.2 Oxidative stress 

Reactive oxygen and nitric species (ROS / RNS) are formed and utilized by all 

aerobic organisms [50]. As such, ROS/RNS are not inherently undesired as they 

participate in the key role of cell signaling and activation pathways [51, 52]. This is done 
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by direct oxidation of residues on proteins [53], degradation of inhibitory proteins [54], 

regulating immune system function to attack pathogens [55], or even signaling of 

differentiation or apoptosis [56, 57]. It is when reactive species production overtakes 

natural antioxidant capacity that oxidative stress is said to occur [18]. This unbalance 

leads to uncontrolled degradation which can lead to cellular dysfunction and death [58, 

59]. Additionally, oxidative stress has been implicated in numerous diseases and 

conditions, such as tumor pathogenesis [60], systemic inflammation [61], COPD [62], 

and even aging [11]. 

2.3 Mechanisms of oxidative stress  

Although the term “reactive oxygen species” (ROS) is most commonly used when 

describing oxidative stress, it is important to note that oxygen-based species are not the 

only contribution to stress. Nitric species, such as nitric oxide (NO·) and peroxynitrite 

(ONOO-) play a just as important role in the cascade of signaling and injury [59, 63]. 

 Superoxide (O2·-) is the species most often implicated in the initiation of oxidative 

stress [64, 65]. It can be formed in the presence of the electron-rich environment of the 

mitochondrial membrane in the respiratory chain [66]. In addition it can be produced 

endogenously by multiple enzymes. Xanthine-oxidase, which is typically activated and 

expressed in ischemia-reperfusion injury [67, 68] is one source. Another major source of 

enzyme-derived superoxide generation is the NADPH-oxidase pathway. NADPH-oxidase 

is a membrane-bound complex that facilitates superoxide production as a means to inhibit 

and destroy pathogens [69]. While two molecules of superoxide can dismutate 

spontaneously, endogenous superoxide dismutase (SOD) significantly speeds up this 

reaction. 
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Hydrogen peroxide, while not a free radical in itself, does function as a radical 

intermediate. It is an important compound because of its ability to penetrate and diffuse 

across cellular membranes [70]. Hydrogen peroxide can be reduced to hypochlorous acid 

through myeloperoxidases [71], or into hydroxyl radicals through iron reactions via 

Fenton chemistry [72]. 

The hydroxyl radical (·OH) is perhaps the most damaging radical to biological 

systems [73, 74]. It is produced from multiple sources. Hydrogen peroxide can react with 

metal irons to form hydroxyl radicals, otherwise known as Fenton chemistry [75]. These 

radicals can react with unsaturated fatty acids to form lipid radicals, which in turn form 

lipid hydroperoxides. Lipid hydroperoxide can once again undergo Fenton chemistry, 

leading to a propagating cycle of  lipid oxidation and destruction [76, 77]. In order to 

combat the potential damage hydroxyl radicals can inflict, cellular defense systems 

consist of glutathione, a tripeptide which functions as a cellular antioxidant [78]. 

Table 2-1 outlines the common free radicals, their sources, and the accompanying 

cellular defense systems.  
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Table 2-1.  Reactive Molecules and Their Sources 

 

Reactive Molecule Source Cellular Defense 
Mechanisms 

Referenc
es 

Hydrogen peroxide 
(H2O2) 

Glucose oxidase   

[79] 
NADPH-oxidase Catalase 

Superoxide dismutase Glutathione peroxidase 
P450 reductase Myeloperoxidase 

Xanthine oxidase   
      

Hydroxyl (·OH) Fenton chemistry Glutathione [80] H202 degradation 
      

Nitric Oxide (NO) Nitric oxide synthase Glutathione [81]  
      

Peroxynitrile 
(ONOO·) 

Reaction with nitric 
oxide   [82] 

      

Superoxide (O2·-) 

Electron transport 
chain 

Superoxide Dismutase [83]  Cyclooxygenase 
NADPH-oxidase 
Xanthine Oxidase 
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2.4 Oxidative stress in relation to biocompatibility 

Oxidative stress occurs when a cell’s inherit antioxidant capacity is exceeded by the 

production of reactive species. Oxidative stress has been identified as a key pathological 

process in many disease states[1, 84]. This effect has been attributed to the ability of 

reactive oxygen and reactive nitrogen species (ROS and NOS) to induce oxidation of 

protein backbones [85, 86], amino acid residues[87], and ultimately to fragmentation of 

essential proteins in a cell. Accumulation of this oxidized protein has been associated with 

disease and inflammation [54, 87]. DNA damage associated with fragmented protein base 

pairs, along with lipid peroxidation can also result in symptoms of cell cycle arrest, 

depleted antioxidant defense capability, mutations, etc. [88]. The clinical impacts can 

include carcinogenesis, neurodegeneration, and inflammation/infection. Importantly here, 

oxidative stress has been shown to play a pivotal role in biomaterial biocompatibility. This 

connection is best demonstrated through a discussion of the relationship between oxidative 

stress and inflammation, which will be detailed below. 

2.5 Mechanism of immune response 

The immune system response is classically separated into two distinct pathways, 

inflammatory response and adaptive immunity. The inflammatory response confers an 

immediate and non-specific defense against pathogens, injury, and foreign materials[89]. 

When a foreign body enters the body (or in our case, a biomaterial is implanted) the natural 

immune response begins with blood-material protein adsorption, cellular activation and 

macrophage recruitment, followed finally by fibrous capsule formation [90]. Table 2-2 

illustrates the processes involved in the inflammation pathway. Biomaterial failure can 

occur at any one of these steps. For example, urethane coatings on silicone implants have 
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been observed to degrade over time, inducing localized oxidative stress. The result of this 

elicits fibrous encapsulation, which can lead to further complications requiring removal of 

implants, or permanent scarring[91]. Another non-classical example of biomaterials failure 

are drug loaded nanoparticles, which can be quickly cleared from the body due to blood-

material interactions, known as opsonization. 
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Table 2-2.  Summary of the biomaterial induced inflammatory response

Inflammation 
Stage Characterized By Role of Oxidative Stress Example of Failure of Biomaterials in 

this Stage 

Opsonization 

Foreign material bound by 
complement molecules 
(antibodies, etc.). Bound 
compliments trigger immune 
defense via WBC recruitment and 
macrophage activation  

Free radicals have shown to initiate 
compliment pathways (classical, 
alternative, lectin), leading to 
cellular activation 

Therapeutic nanoparticle systems (PEG, 
PLGA, etc.) have the potential to be 
opsonized and quickly cleared [40] 

Cellular 
Activation 

Recruitment and activation of 
macrophages and other 
monocytes. Tissues increasing 
expression of chemoattractants 
such as MIP-1, MCP-1, and CSF-
1 

Oxidative species play a role in 
inducing the secretion of other 
chemokines, as well as possessing 
the ability to activate circulating 
immune cells such as leukocytes 

Monocyte activation leads to respiratory 
burst. High concentrations of localized 
acidic and oxidative environments have 
been shown to inactivate peptide and 
proteins[41] 

Macrophage 
Recruitment 
and Adhesion 

Adhesion of macrophages to an 
implant or injury surface. 
Chemokine expression recruits 
circulating macrophages. Adhered 
macrophages begin to initiate 
oxidative bursts to destroy foreign 
material 

Generation of superoxide to destroy 
invaders. Surrounding tissue can be 
affected and become inflamed in the 
process 

Continual oxidative burst can propagate 
stress cracks of implants [35] or premature 
oxidation of metal compounds (such as 
electrical leads in pacemakers) [36] 

Fibrous 
Encapsulation 

Macrophage fusion and full 
encapsulation of implant. Chronic 
inflammation and pain 

Oxidative species have been shown 
to trigger macrophage fusion. 
Chronic inflammation due to 
elevated levels of reactive species 
and reduced GSH. 

Implant loosening due to fibrous 
encapsulation [37]. Therapeutic 
inactivation of controlled release devices 
due to diffusional barriers 
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When injected materials, especially free circulating, high surface area particles, are 

introduced into the blood stream opsonin proteins can adhere to their surfaces, mediating 

a phagocytic clearance response [92]. This can directly lead to loss of therapeutic efficacy, 

a failure of the biomaterial intended function. 

A central component of the inflammatory response is the induction of oxidative stress. 

In most scenarios, a material’s biocompatibility is most tested during the inflammatory 

phase of healing, which ultimately dictates the foreign body response and degree of fibrous 

encapsulation. Upon interaction with blood and plasma exudate, a layer of host proteins 

interact with and adhere to the surface of the biomaterial [93]. The chemistry and physical 

conformation of the surface play a crucial role in the type of protein adsorbed [94, 95]. 

Tegoulia et al. reported that protein adsorption was highest in hydrophobic and polar 

surfaces, whereas leukocyte adhesion was highest on phosphorylcholine rich surfaces[94]. 

In addition, depending on the surface, these proteins may desorb rapidly, leading to time-

dependent delays in activation of the immune response, known as the Vroman effect [96]. 

Preliminary data has suggested this effect could be responsible for cases of patterned 

thrombus formation in artificial organs and vasculature applications [97].  

The presence of these accumulated proteins, which include compounds such as 

fibrinogen, vitronectin, fibronectin, and other globulin proteins [98], initiate the process of 

thrombosis. Activated blood platelets and clotting factors stimulate the production of 

chemo attractants, such as platelet-derived growth factor (PDGR), transforming growth 

factor (TGF), and cytokines such as interleukins and leukotrienes [99]. These signaling 

molecules serve to attract many types of phagocytes (monocytes, macrophages, 

neutrophils, etc.) to the site of accumulation. Macrophages, in particular, begin to excrete 
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their own chemo attractants, initiating an immunological recruitment cascade. In addition, 

localized inflammatory neutrophils begin to attack both foreign material and 

microorganisms through secretion of oxidative species[100]. These oxidative species play 

a role in inducing the secretion of other chemokines, as well as possessing the ability to 

activate circulating immune cells [101]. This cyclic process of recruitment, activation, and 

stress leads to a propagation of injury and disease states.     

Oxidative stress also plays a crucial role in the recruitment of other inflammation cells 

through the process of chemotaxis. Leukocytes can respond to H2O2 gradients, NADPHox 

activation, and LPS stimulation [102, 103]. When these cells identify a foreign body or 

unknown pathogen, their response is to initiate an oxidative respiratory burst of superoxide 

and hydrogen peroxide[104]. This burst of ROS and RNS is utilized to destroy the invading 

material. While inflammatory cells can protect themselves through increased uptake of 

glutathione [105], vascular tissue cannot. This leads to a cascading loop of increased 

oxidative stress in tissue, which stimulates chemotaxis recruitment of more inflammatory 

cells. 

Following the initial phase of inflammation, macrophages can internalize the activated 

and apoptotic neutrophils and subsequently clear them from the injury site. In the case of 

implanted materials, these macrophages can adhere to the protein coated implant surface 

and initiate the foreign body response reaction[17]. Adhered macrophages are able to 

further fuse together to form foreign body giant cells. While the exact signaling required 

to initiate this cascade is currently unknown, it has been shown that IL-4 and IL-13 [106-

108] along with mannose play critical roles in expression of the required adhesion 
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molecules to elicit macrophage fusion. These adhered macrophages and foreign body giant 

cells can subsequently interfere with the intended function of the biomaterial in question. 

It becomes obvious that oxidative stress plays an important role throughout all steps in 

the immune response to foreign or implanted material. The following section shall present 

some examples of this oxidative stress driven failure of biomaterials. 

2.6 Examples in practice 

One of the most widely used implant polymers is polyurethane (PU) based. PUs have 

been utilized in applications such as valve replacements, vascular grafts and stent 

coverings, and in coatings of silicone breast implants [109]. While PU based polymers 

typically have ideal mechanical properties and show reasonable blood-material 

compatibility, it was discovered that long-term stability in tissue was a problem when in 

contact with vascular tissue. This launched a long reaching investigation into methods of 

in vivo biodegradation in the late 1980’s [110]. Aliphatic esters were observed to be 

hydrolytically degrading in polyester-urethane systems [111]. In polyether-urethane 

systems, commonly incorporated in breast implants and valve replacements, a phenomenon 

of micro-fissure formation was seen, termed environmental stress cracking. This 

phenomenon occurred whether the implant was subjected to intense mechanical stress or 

not. Further research concluded that ROS produced from adhered macrophages and foreign 

body giant cells began to degrade and corrode the system. This effect was even greater 

when metal compounds were incorporated in the urethane device [111, 112], such as in the 

case of coated implanted pacemaker leads. 

Besides PU cracking, aseptic loosening of orthopedic implants can also be a result of 

oxidative stress. Total hip arthroplasty is especially susceptible to dislodging and failure. 
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It has been theorized that a combination of mechanical wear, increased intraarticular 

pressure due to fibrous encapsulation, and high oxidative stress contributing to localized 

septic tissue, contribute to premature failure of hip implants [113-115]. Supporting this 

theory, groups have looked into the involvement of free radicals in localized fibrous tissue 

around implants. Kinov et al. examined tissues obtained directly from patients with both 

loosened implants and structurally sound implants. From these tissue samples, the group 

looked at GSH/GSSH ratios, malondialdehyde, and collagen formation [113].  

The results indicated a substantial increase in depleted GSH, lipid oxidation, and 

excessive collagen formation, all indicative of oxidative stress and overproduction of free 

radicals, in samples from patients with loosened implants, as compared to both intact 

implants and controls. FIGURE 1 illustrates a hypothesized model of ROS interaction and 

fibrous formation. 

Besides permanent implants, biodegradable materials can also induce an oxidative 

stress related inflammatory response. Poly lactic co-glycolic acid (PLGA) has been 

investigated for its particle formulation capacity, and was perceived as being 

biocompatible, as its degradation products of lactic and glycolic acid are both naturally 

found in tissue. Yet, it was found that due to slow hydrolysis and high concentration of 

localized acidic degradation products, compared to what naturally occurs in tissue [116], 

PLGA has limited use in clinical applications. Springer et al. had investigated the 

inflammatory response of PLGA nanoparticles administered to the lungs of rats. The group 

observed a marked influx of both macrophages and neutrophils into the lung tissue of 

treated rats [117]. The macrophages had demonstrated the ability to engulf these PLGA 

particles; however a 40 day half-life of these particle dosages was measured. In addition, 
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localized areas of acidic environments were measured, which can potentially interfere with 

drug delivery methods utilizing protein and peptides [118]. Other groups have also 

demonstrated increases in oxidative stress, via lipid peroxidation and GSH/GSSH assays, 

with respect to degradation of the polymer.  
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Figure 2-1. A hypothetical model illustrating the mechanism of ROS and implant 
inflammation 

Either mechanical or chemical insults can result in the generation of ROS release. This is 

either directly from the degradation products, or as a secondary result of the activation of 

neighboring cells.  The release of ROS induces macrophage recruitment and activation. 

These activated macrophages can also release ROS, further stimulating localized oxidative 

stress and inflammation. This ROS release also results in potential degradation, mechanical 

wear and stress cracking of the implant. These responses can all lead to additional oxidative 

stress, further stimulating localized inflammation. Prolonged effects could lead to fibrosis, 

implant morbidity and loosening of the implant. MF=Macrophage, ROS = Reactive 

Oxygen Species.  
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This indicates that classically biocompatible materials, when subjected to biological 

conditions, can elicit a relevant host response through the generation of oxidative stress. 

2.7 Antioxidant polymers in drug delivery 

The relationship between oxidative stress and many diseases, such as Alzheimer’s 

[119] and Parkinson’s disease [120], is well documented. And while it stands to reason that 

antioxidant therapy should provide an effective treatment strategy for these diseases, there 

exist many limitations, which have prevented their wide scale use. Indeed, conflicting 

results from many studies confound the beneficial effects of orally delivered antioxidants 

[121-123]. Direct application or injection of pure antioxidants at the site of interest is also 

plagued by rapid clearance and nonspecific distribution. Antioxidant polymers are a 

promising solution to delivering antioxidants, potentially overcoming these problems.  

Further, antioxidant polymers may also provide supportive benefits to other therapeutic 

strategies. The following outlines both of these approaches. 

2.8 Uses as active pharmaceutical ingredients 

Most obviously, antioxidant polymers can be used as a therapeutic alternative to small 

molecule antioxidants.  For instance, trolox, a water soluble analogue of vitamin E, is 

known to have extensive antioxidant activity. Indeed, trolox is commonly used as a 

reference standard for total antioxidant potential [124]. Yet, trolox has not seen direct 

clinical success due to its poor biodistribution and local accumulation.  Recently, 

Poly(trolox) polymers were synthesized, where were demonstrated to undergo enzymatic 

degradation to release monomers of active trolox. This hydrophobic polymer was 

formulated into nanoparticles, demonstrating the ability to suppress oxidative damage 

caused by metal nanoparticle toxicity in vitro [22]. Similarly, these antioxidant 
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nanoparticles also have mitigated the oxidative damage caused by hydrogen peroxide and 

iron oxide and recovered cellular viability. Perhaps most interestingly about this polymer 

is not its ability to degrade, nor reduced toxicity attributed to its “polymer” characteristics, 

but that it possessed the ability to suppress protein carbonyl formation. Overall protein 

carbonyl and 3-NT levels were suppressed, markers of overall protein damage and damage 

via RNS respectively. This level of protection was not seen in free trolox, suggesting the 

route of delivery plays a very important role in therapeutic benefits [45]. 

Dziubla et. al have also developed a class of poly(beta amino ester) polymers with 

incorporated phenolic antioxidants such as quercetin and curcumin. Selection of the 

monomers in formulation gives extensive control over degradation, and subsequent 

antioxidant release, times via hydrolysis. These polymers have been shown to modulate 

the oxidative state in vitro cell culture models and provide protection against oxidative 

stress insults, similar to poly(trolox). Some of the advantages provided by this polymer 

chemistry are that it does not require free-radical polymerization, thereby allowing loading 

of antioxidant drugs that are susceptible to free-radical damage. In addition, the availability 

of a large library of commercial diacrylates [125, 126] could be used to tune polymer 

properties, and that it could be extended to any class of polyphenolic antioxidants. The 

toxicity profiles observed with the polymers were similar to that of the pure antioxidant, 

indicating toxicity and activity were functions of the loaded therapeutic content, rather than 

constituent compounds in the polymer.  

Puoci et al. developed a one-step reaction by free radical polymerization to form a 

PMMA-ferulic acid copolymer. The polymer showed high scavenging activity, with little 

interference of activity from the PMMA backbone [127]. Application of this material 
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shows promise in hemodialysis, cosmetic stability, and as preservative agents in food. With 

the ability to develop limitless classes of high molecular weight antioxidant polymers that 

exhibit increased stability, decreased toxicity, and tunable delivery rates [45, 128, 129], 

many of the traditional obstacles involved in direct antioxidant drug delivery can 

potentially be overcome.    

2.9 Uses as pharmaceutical excipients 

While developing treatment strategies, it is important to keep in mind that the shelf life 

and stability of drug formulations are essential in the practical applications of therapeutic 

systems. The potential for oxidation and decreased efficacy can be seen in both initial 

formulation, as well as in long term storage. The protection and longevity provided by 

antioxidant polymers presents an excellent opportunity to increase a biomaterials window 

of use, even before introduction into the body. 

With the increased production (and expense) of protein based therapies such as 

monoclonal antibodies, hormones, and interleukins, developing methods to increase the 

shelf life of these compounds has become extremely important. A major pathway of 

degradation has been identified as oxidation of methionine [130-132]. Strategies to 

overcome this stability problem have been the addition of chelating agents, chain 

terminators, or small molecule antioxidants. Common materials utilized are free 

methionine or sodium thiosulfate [133]. Experiments have shown increased stability of 

aqueous and lyophilized formulations up to two weeks in dark ambient storage conditions 

[134] with little loss in activity shown in Figure 2-2.  

Expanding on the idea of utilizing slow degrading antioxidant polymers Davis et al. 

developed a system of carbohydrate-antioxidant (vitamin E) hybrid polymers for prolonged 
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protection from oxidation in applications of both storage and active delivery of 

spermatozoa. Their results reported a significant increase in sperm activity utilizing a 

controllable antioxidant delivery system over time compared to addition of free vitamin E 

during storage. Additionally, they also saw up to a 20 fold increase of sperm delivery in 

vivo compared to control systems. It was theorized that the protective polymer system was 

able to protect spermatozoa during the uptake and intracellular trafficking, whereas free 

vitamin E was quickly leached out and lost during endosome activity [135]. 

Antioxidant polymers also have applications in long term preserving and prevention of 

oxidative stress cracking in implant based biomaterials during formulation and storage, 

which will be discussed in a later section.  
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Figure 2-2. Effect of antioxidants on light-induced oxidation of rhuMAb HER2 
formulation 

Antioxidants were added to the formulation before filling into sample vials. Sample 

containing no antioxidant (black), 6.3 mM sodium thiosulfate (gray), and 3.5 mM 

methionine (striped) were stored wrapped (Dark) and unwrapped (Light) in a light box with 

light intensity of 20 000 lux for 2 weeks. The light box temperature was 27 °C. After light 

exposure, samples were assessed for methionine oxidation of rhuMAb HER2 by HIC. 

Results were also compared with the control samples stored in the dark at 5 °C for 2 week. 

(Figure reproduced from [134]) 
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2.10 Antioxidant polymers in anti-cancer therapies 

In addition to direct lipid and DNA damage caused by oxidative stress, endothelial cells 

can produce cytokines and chemokines that play a role in propagation of the inflammatory 

response [136] such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor 

alpha (TNF-α) [9, 137]. This inflammatory response can, in turn, induce signal activation 

of the NF-кB pathway, initiating a cascade of gene activation to regulate antioxidant and 

immune defenses [138]. Endothelial cells, in response to this pathway activation, begin to 

secrete and express molecules known as Cellular Adhesion Molecules (CAM) on their 

surfaces to facilitate leukocyte adhesion, vasodilatation, and transmigration [14].  

In recent years, researchers have focused on the cellular mechanisms of tumor cell 

extravasation and transmigration to other organs and tissues. It has been hypothesized that 

circulating tumor cells develop cellular adhesion molecule binding ligands specific for E-

selectin[139, 140], ICAM-1 [42], and VCAM-1 [42]. Circulating tumor cells of many 

different origins [141] have been shown to utilize inflammatory response CAMs for 

adhesion and invasion into downstream vascular beds. Similarly, groups have shown that 

oxidative stress generation in cell culture experiments through injury agents such as H2O2 

or TNF-α stimulation can directly stimulate expression of these CAMs, and subsequent 

studies have shown that circulating tumor cells can firmly adhere to endothelial cells grown 

in flow culture systems that have been activated by these injury agents, as compared to 

non-stimulated cells [141]. These results indicate a relationship between oxidative stress 

generation and cancer formation, either by cytokine stimulation (TNF-α, IL-8, etc.), or 

supplemental ROS induction (smoking, UV exposure, ionizing radiation). In addition, it 

has been shown that addition of monoclonal antibodies directed towards E-selectin, ICAM-
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1, and VCAM-1 to block current expression in activated endothelial cells can significantly 

attenuate tumor cell adhesion [141, 142].  

New research however has delved into how certain classes of antioxidants modulate 

cellular responses and pathway activation or deactivation. It has been observed that 

flavonoids such as quercetin, epicatechin, and curcumin not only reduce oxidative stress, 

but can suppress inflammatory pathways such as NF-κB and AP-1 through inhibition of 

specific kinase pathways [35-37]. Interestingly, quercetin is the only reported flavanol with 

the ability to suppress both ICAM-1 expression and NF-κB activation through JNK 

pathway inhibition [35]. Flavones on the other hand, have been reported to suppress JNK 

and ERK pathways, leading to down regulation of ICAM-1, VCAM-1, and E-selectin, 

along with NF-κB [36], making them great candidates for applications such as cancer 

metastasis prevention. While the direct mechanism of NF-κB, JNK and ERK pathway 

suppression is not known, it is theorized that that flavonoids can inhibit transcription by 

preventing complete phosphorylation of the protein portions required for activation. 

Recently, the anti-proliferative effects of curcumin have been of notable interest, owing 

to its selective cytotoxicity to cancer cell lines, it’s antioxidant activity, and low toxicity in 

vivo [143, 144]. Unfortunately, curcumin exhibits poor water solubility and has a 

therapeutic half-life of under 15 minutes at pH 7.4 [145]. To this end, Tang et al. developed 

a system of polycurcumins with a range of molecular weights, degradation times, and 

solubility. One system, labeled PCurc8, was found to be both water soluble and exhibit 

higher stability than pure curcumin. In vitro it was shown to be more cytotoxic by mass 

than pure curcumin, along with arresting division phases of tumor cells FIGURE 3. In vivo, 
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the easily formulated and injectable system showed remarkable antitumor activity in a 

xenograph model [146].  

This shows promises that direct antioxidant therapy as a biomaterial in of itself, which have 

demonstrated suppression of these CAMs, can be utilized as a treatment for prevention of 

tumor formation.  

2.11 Antioxidant polymers in wound healing and tissue engineering 

In the previous sections the direct and indirect ways oxidative stress plays a role in 

relation to biomaterial function have been discussed. Free radicals can directly damage a 

biomaterial, such as in the case of polyurethane coatings and hip implants. Indirect methods 

of failure can occur such as the degradation of newer generation materials, previously 

believed to be biocompatible. The following section reviews potential applications of 

antioxidant polymers to address both these direct and indirect stress mechanisms.   
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Figure 2-3. Cytotoxicity of PCurc 8 to SKOV-3, OVCAR-3 and MCF-7 cancer cell 

lines 

Cells were treated with PCurc 8 for 72 h followed by 24 h incubation in free medium. 

(Figure reproduced from [146]) 
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2.12 Antioxidant polymers incorporated into biomaterials 

Recently, groups have attempted to mitigate the oxidative stress induced from 

biomaterial implantations. Initially, research was focused into developing biomaterial 

platforms that have a neutral host response, such as systems with PEG coatings, or 

degradable platforms utilizing polyketals[147]. Others have modified existing material 

selections to incorporate small molecule antioxidants or even enzymatic antioxidants. 

Strategies to incorporate antioxidants into existing scaffolds or hydrogels have also proven 

effective in creating artificial diffusion barriers, simulating the effects of a degradable 

antioxidant polymer system [148]. Initial work with these methods of antioxidant grafting 

or loading has proven effective in vivo.  

2.13 Direct prevention of implant failure 

Within the past five years, focus has shifted towards prevention of aseptic loosening of 

implanted materials through the use of antioxidants to mediate damage caused by extensive 

wear and particulate formation over time. Initially research focused on elimination of 

oxidized material during creation of the implant[149] using methods such as inert gas 

irradiation. Even though these methods improved material shelf life, a growing amount of 

evidence supported the oxidation stress in vivo hypothesis. Stemming from this 

information, a second generation class of implants was developed utilizing antioxidant 

stabilizing compounds, such as Vitamin E. Vitamin E is typically added in low 

concentrations during consolidation of the ethylene polymer. Clinical data suggests 

blended formulations with concentrations less than 0.1% vitamin E maintain the same 

physical and mechanical properties [150] and can prevention of oxidation up to 24 months 

post implantation [151]. In addition, preliminary in vitro and in vivo data using particulate 
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matter from antioxidant loaded implants indicates a reduction of phagocyte adhesion and 

activity [152]. Promising results stemming from these initial studies provide a framework 

for the incorporation of long lasting antioxidant polymers to provide protection over 

extended periods of biomaterial use. One can also imagine with classes of antioxidant 

materials exhibiting high mechanical loading capabilities, that higher antioxidant content 

can theoretically be incorporated into implants as well. 

Another example of utilizing antioxidant polymers to improve biocompatibility is in 

the area of ophthalmology. Cirillo et al. reported on the ability to graft quercetin, a potent 

flavonoid, into traditional pHEMA hydrogels used in contact lenses through free radical 

grafting reactions discussed earlier. Quercetin was selected owing to its anti-inflammatory 

properties and ability to prevent cataract formation in preliminary in vitro models. Contact 

lenses have the potential to induce ocular damage by interrupting the ability of the 

epithelium to absorb oxygen from the atmosphere [153]. Similarly, UV radiation can 

propagate the formation of free radicals, which can compound the oxidative stress effect 

from restriction of oxygen supply to the eye. The results of this study indicated that the 

Quercetin-HEMA gels exhibited significant antioxidant activity, and an irritancy index of 

zero, meaning high compatibility and no signs of irritant effects in a chicken embryo 

chorioallantoic membrane (CAM) model [154] as opposed to unmodified HEMA lenses, 

which scored an irritancy index of 1 (mild irritant effects, good compatibility). This 

application of grafting antioxidants into externally applied biomaterials can begin to pave 

the way to suppressing the damage associated with ocular irritation. Simultaneously, the 

delivery of quercetin directly to ocular epithelium can help treat existing diseases such as 

cataracts and glaucoma.   
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2.14 Mitigation of toxic side effects 

While antioxidants show promise in the ability to prevent modes of failure in 

biomaterial implants such as joint replacements and contacts, it is also important to delve 

into the ability of these antioxidants to mitigate the eventual damage caused by the 

degradation of newer classes of biomaterials. In the recent years, many newer generations 

of materials have been developed with the premise to degrade over time, allowing the 

body’s own wound healing process to coincide with deterioration and infiltrate through the 

material. Implant systems once thought to be “biocompatible” such as TEGDMA, 

commonly used as inert coatings on dental implants, PEG, considered the gold standard in 

immune system masking, and PLA/PLGA, a naturally derived copolymer from lactic and 

glycolic acid, have all been shown to induce oxidative stress over time (TEGDMA, 

PLA/PLGA)[155, 156], or elicit a host immune response in the form of antibody synthesis 

(PEG) [157].  

With the advent of these discoveries, it became clear that when developing new classes 

of biomaterials the entire lifetime of the implant must be taken into account. This not only 

includes response upon implantation but also during its degradation time. Because of the 

oxidative nature of these end products, grafting, or blending, antioxidant polymers into the 

material is an ideal strategy for mitigating this potential damage.  

One example is that of dental composites containing HEMA and TEGDMA. These two 

polymers are an attractive alternative to typical amalgam and gold in classical fillings. 

Within the past 5 years, implants have shifted to approximately 50% by weight of newer 

HEMA/TEGDMA bonding resins [158]. It has been shown that as the resin deteriorates 

from normal wear and tear, particulate matter can lodge in the lung epithelium, and 
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inducing oxidative stress mediated damage. In cell culture models, particulate matter 

cultured with human pulp and gingival fibroblasts was associated with depleted GSH and 

eventual cell apoptosis [159, 160]. Schweikl et al. investigated the effect of increased 

oxidative stress of both compounds. It was discovered that concentrations of 1 mmol/L in 

V79 fibroblast cells induced substantial genotoxic effects. Cell cycle disruption was 

observed, along with significant micronuclei formation, both indications of genotoxic 

effects. They hypothesized this was due to oxidative stress, and examined the effect of N-

acetyl cysteine (NAC) would have on the same cell model. The results demonstrated that 

concentrations of 10 mmol/L of NAC significantly decreased the micronuclei formation 

resulting from both HEMA and TEGDMA treatments [161]. This work has set a 

fundamental basis into the application of antioxidants in vivo may be a viable strategy to 

reduce toxic side effects, and increasing overall biocompatibility. 

Another example of polymeric materials utilized to suppress toxic side effect is to 

utilize enzymatic antioxidants or mimetic. By covalently conjugating super oxide 

dismutase mimetic (SODm) to the backbone of UHMWPE and PU polymers, a new 

platform for biomaterial structures was created. These SODm grafted polymers showed 

potent acute and chronic anti-inflammatory properties in vivo. Rat implants showed 

inhibition of neutrophil infiltration over 3 days. Extended out to 28 days, there was a 

significant suppression of foreign body giant cells and fibrous encapsulation [162]. Figure 

2-4 illustrates the cell count and capsule thickness as a function of SODm conjugation. 
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Figure 2-4. Effect of SODm grafting on polymer implants 

Graph of FBGCs counts (left) and capsule thickness (right) for control and SODm-treated 

PE implants at 28 days. (Figure reproduced from [162]) 
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2.15 Stimulation of direct wound healing 

In addition to the utilization of antioxidants and antioxidant polymers in biomaterial 

implants, antioxidants as a direct delivery agent have been shown to possess properties to 

enhance the body’s ability to heal itself. This has obvious advantages in enhancing 

recovery time from surgical wounds or injury unrelated to biomaterial insertion.  

Previously groups have shown that incorporation of natural antioxidants, such as 

quercetin and curcumin, into 3D hydrogel scaffolds had successfully improved the wound 

healing response to deliberate dermal injury. The antioxidant loaded scaffolds showed 

reduction in healing time and dramatically reduced scarring formation [163, 164]. 

Similarly, carbodymethylcellulose (CMC) gels with entrapped SOD showed similar effects 

both in vitro and in vivo [165]. 

2.16 Conclusions and perspectives 

In conclusion, it has become apparent that there are nearly limitless strategies for 

developing new and novel antioxidants for clinical applications. Table 2-3 consolidates a 

list of antioxidant polymers and their applications. Additionally, as our knowledge expands 

on the effects of oxidative stress and how they relate to diseases, so to do our options for 

utilizing antioxidants in our current treatment strategies, either as direct therapies or in 

tandem with other biomaterials. By controlling the level and time of delivery through new 

chemistries and systems, modulating the oxidative state of the body can be accomplished, 

allowing for greater flexibility and treatment windows in traditional biomaterials. While 

clinical data and application at this time has been limited due to unknown factors or 

mechanisms of antioxidant function, the consistently positive results obtained from 
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ongoing in vivo trails will begin to pave the way into a new future of medicine and 

applications. 
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Table 2-3: Antioxidant polymers and their applications 

Polymer 
Structure 
/Backbone 

Functional 
Antioxidant 

Administration 
Method Application Mechanism of Action Ref 

Carbohydrate-
antioxidant 

hybrid 
polymer 

α-tocopherol Mixed in 
Seminal Fluid 

Prolong functional viability and 
fertility rates of mammalian 

spermatozoa 

Specific uptake of carbohydrate 
polymer in sperm prevents 

oxidative damage during storage. 
[135]  

Poly(Trolox) Trolox Nanoparticles 

Slow release of trolox through 
degradation has potential in controlling 

cell status in biomedical and tissue 
engineering applications 

Poly(Trolox) suppresses oxidative 
stress levels in cells. In addition, 

polymeric form has shown to 
reduce protein carbonyl levels, a 

feature not seen in free trolox 

[45] 

Poly(Rutin) Rutin Water 
solubilized 

Demonstrated high superoxide 
scavenging ability and inhibition of 

LDL oxidation  

Antioxidant capability more potent 
in polymer form. Increased 

superoxide scavenging along with 
prevention of cellular damage 

[128]  

UHMWPE 
Superoxide 
Dismutase 

Mimic 
Implantable Gel 

Significant suppression of 
inflammatory response along with long 

term inhibition of fibrous 
encapsulation 

SOD reduces superoxide at the 
biomaterial interface, inhibiting 

macrophage activation and 
neutrophil infiltration 

[162] 

HEMA Quercetin Implantable 
Hydrogel 

Contact lenses formed using quercetin-
HEMA exhibit irritancy index of zero 

Active quercetin mitigates 
oxidative stress damage caused by 
oxygen deficiency due to contact 

lens barrier  

[154] 
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Chapter 3. Research Goals 

3.1 Introduction 

 In this body of work, we have developed antioxidant and anti-

inflammatory delivery systems to be used in practical applications, such as the treatment 

of cancer and arthritis. These delivery devices are in the form of nanoparticles that can be 

modified to target cell types of interest, or provide long circulation times due to the 

stealth enhancing properties of PEGylation. We have shown that the antioxidant systems 

can inhibit free radical damage and restore cellular viability in vivo. Additionally we 

have demonstrated that these particles of poly(trolox) can be utilized in vivo to reduce 

cytokine levels associated with oxidative stress, and prevent protein oxidation. This is a 

unique feature not observed in the native form of trolox, conferring an additional level of 

protection for future studies. 

In a similar fashion, our anti-inflammatory particles can suppress the expression of 

inflammatory markers on the surface of vascular cells, which circulating tumor cells can 

utilize to attach to the vascular bed. The long term release provided by these polymer 

nanoparticles can prevent tumor cells from adhering for up to 72 hours, coinciding with 

the natural inflammation response cascade. 

3.2 Objectives and Significance 

The overall hypothesis of this work is: 

Antioxidant and anti-inflammatory polymer systems can be utilized to treat a 

variety of clinically relevant injuries through the suppression of oxidative stress 

and inflammation. 
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In order to test this hypothesis, three stages of research were planned. Each stage is 

described in detail below: 

3.2.1 Specific Aim 1: Utilization of targeted antioxidant nanoparticles to inhibit 
iron oxide nanoparticle injury 

 

A. Development of poly(trolox) nanoparticles with a functional antibody coating 

specific towards PECAM-1, a constitutively expressed protein on the surface of 

endothelial cells. 

B. Quantification of particle specificity, internalization potential, and antioxidant 

capacity in an endothelial cell culture model. 

C. Utilize targeted poly(trolox) nanoparticles to inhibit the toxicity associated with 

iron oxide nanoparticles. 

3.2.1.1 Hypothesis #1  

Poly(trolox) nanoparticles can be modified to actively target vascular cells to 

suppress the oxidative injury from iron oxide nanoparticle accumulation. 

3.2.1.2 Significance and Outcome 

Chapter 4 highlights the experiments used to test our hypothesis. Poly(trolox) 

nanoparticles were successfully synthesized using a solvent in solvent nanoprecipitation 

technique. These particles were then coupled with a targeting antibody directed towards 

PECAM-1. These nanoparticles adhered to vascular cells, internalized, and significantly 

reduced background oxidative stress. We then determined the therapeutic efficacy of 

targeted PTx in an iron oxide nanoparticle injury model. It was found that we could not 

only inhibit oxidative stress, but also recover cellular viability. This result demonstrates 
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the ability to not only target nanoparticles to sites of interest, but reveals that antioxidant 

therapy can be a viable treatment option to prevent injury.  

3.2.2 Specific aim 2: Utilize Poly(trolox) nanoparticles to treat the damage 
caused by rheumatoid arthritis in vivo 

 

A. Encapsulate poly(trolox) in a biocompatible polymer that provides stealth 

properties and long circulation times in vivo. 

B. Investigate the ability of poly(trolox) nanoparticles to accumulate in inflamed 

joints and tissue. 

C. Study the effects of antioxidant therapy on the deleterious effects in the joints of 

rheumatoid arthritis 

3.2.2.1 Hypothesis #2 

The antioxidant protection provided by poly(trolox) nanoparticles can inhibit the 

oxidative stress and inflammation stemming from rheumatoid arthritis 

3.2.2.2 Significance and Outcome 

In Chapter 5 we describe how we can utilize our antioxidant nanoparticles into an in 

vivo injury that is clinically relevant. Rheumatoid arthritis is an autoimmune disease that 

causes localized inflammation, oxidative stress, and damage to joints and cartilage. We 

found that our particles can accumulate at the inflamed joints due, in part, to the EPR-like 

effect from the disrupted vasculature. These particles did not appear to reduce the 

symptoms of arthritis by a visual scoring system. However, upon further analysis it was 

found that they did in fact reduce oxidative protein damage, recover antioxidant capacity, 
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and significantly down regulate cytokine levels associated with oxidative stress, such as 

IL-6 and TNF-α.   

 

3.2.3 Specific Aim 3: Develop a novel anti-inflammatory polymer delivery system 
to inhibit the incidence of cancer metastasis 

 

A. Synthesize and characterize an anti-inflammatory poly(beta-amino ester) of 

apigenin 

B. Investigate the activity, loading potential, and release characteristics of apigenin 

PβAE nanoparticles 

C. Evaluate the potential of apigenin PβAE nanoparticles to prevent tumor cell 

adhesion to inflamed vascular beds.  

3.2.3.1 Hypothesis #3 

Apigenin PβAE nanoparticle systems can be utilized to prevent inflammation-

mediated tumor cell adhesion to endothelial cells. 

3.2.3.2 Significance and Outcome 

A linear chain polymer comprised of apigenin was developed as described in Chapter 

6. This polymer was formed into a nanoparticle delivery device similar to other chapters. 

It was found that the PβAE loaded nanoparticles released active therapeutic for up to 72 

hours. The apigenin PβAE was effective in reducing inflammation, as observed through 

inflammatory CAM analysis. As a benefit of these anti-inflammatory properties, the 

potential of circulating tumor cells to adhere to vascular cells was reduced.     
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Chapter 4. Suppression of Iron Oxide Injury 
Based on the research article:  

David Cochran, P. Wattamwar, R. Wydra, J.Z. Hilt, K.W. Anderson, R. Eitel, and T. 
Dziubla. “Suppressing Iron Oxide Nanoparticle Toxicity by Vascular Targeted 
Antioxidant Polymer Nanoparticles”, Biomaterials. 

 

4.1 Introduction 

Owing to their superparamagnetic properties [166], iron oxide nanoparticles have 

seen applications as varied as MRI contrast agents [167], iron supplementation in cases of 

anemia [168], localized hyperthermia generation for increased drug efficacy, or even 

direct thermoablation of tumor tissue [169]. Additionally, researchers have exploited the 

controllable size, shape, and potential surface chemistry of these nanoparticles to develop 

targeted therapy strategies utilizing the iron oxide core. For example, the core can be 

modified with a poly(ethylene glycol)-based hydrogel shell that entraps a wide range of 

therapeutics, or consist of surface-bound targeting ligands such as antibodies or peptides 

[170, 171]. However, despite clinical acceptance, the use of iron oxide particles has also 

come under scrutiny owning to their ability to induce cellular toxicity and nephrotoxicity. 

Due to their size, ultrafine iron oxide nanoparticles, either in a biomedical setting or in an 

environmental contaminant setting (e.g., miners, industrial manufacturing, etc.), are 

readily internalized within cells, including the vascular endothelium [172, 173]. Toxicity 

associated with iron oxide nanoparticles stems, in part, from catalytic generation of free 

radicals through Fenton chemistry [174], leading to oxidative stress. Even iron oxide 

particles stabilized with coatings such as dextran or citric acid have demonstrated 

oxidative stress induction [175].  
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Oxidative stress is a key pathological process in a variety of disease states (ischemia – 

reperfusion injury [1, 2], acute lung [3] and renal injury [4]) and is characterized by the 

formation of a wide range of reactive oxygen species (ROS), which can cause severe 

DNA, protein, and lipid damage leading to cellular dysfunction and death [5, 6]. 

Theoretically, it should be possible to mitigate iron oxide induced cell injury by 

delivering antioxidants directly to the site of injury [25-27]. Yet, in order to realize 

antioxidant therapy for treatment of iron oxide toxicity, it must be possible to deliver 

active antioxidant directly to the site of action for a sufficient time [28, 29]. In the case of 

most biomedical applications of iron oxide nanoparticles (e.g., MRI [176] and 

chemotherapy adjuncts [177]), this site of action is the vascular bed.  

Orally administered antioxidants are mostly inactivated through first pass metabolism 

well before they are able to reach the vascular bed [178]. Indeed, due to the highly labile 

nature of antioxidants, even direct injection fails to accumulate in the vasculature cells at 

sufficient levels to be effective. To overcome the stability limitation, we have previously 

reported on a the development of a degradable antioxidant polymer, poly(trolox) (PTx), 

which demonstrated the ability to suppress oxidative cellular stress [22]. This polymer is 

readily synthesized into nanoparticles that can suppress the formation of oxidized cellular 

products [22]. In this work, we extend this capability by actively targeting poly(trolox) 

nanoparticles to vascular endothelial cells through surface coating of the nanoparticles 

with platelet endothelial cellular adhesion molecule-1 (PECAM-1) antibodies.  

PECAM-1 is a member of the immunoglobulin superfamily that regulates cell-cell 

adhesion and transmigration [179-182]. It is an especially useful target for vascular 

targeting due to its constant expression at cell-cell boarders in the endothelium [180]. 
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PECAM-1 provides an excellent basis for targeting antioxidants to vascular beds, one of 

the primary residence areas for iron oxide nanoparticles. Previous work has demonstrated 

the ability to physically absorb targeting antibodies to therapeutic particles for active 

targeting to specific adhesion molecule groups [183-185]. These targeting antibodies 

have shown to have higher specificity towards sites of interest, especially in tumors and 

organs, as compared to non-targeted therapeutics [186, 187].  

We hypothesize that by combining antioxidant polymer nanoparticles with the active 

endothelial targeting provided by antibodies directed towards PECAM-1, an effective 

therapeutic can be realized that has the capacity to intercept and prevent the free radical 

damage caused by the accumulation of iron oxide nanoparticles in vasculature used in 

many applications.    

 

4.2 Materials and Methods 

4.2.1 Reagents 

All reagents received were used without further purification. Poly(trolox) 1000 and 

2500 were synthesized in lab as previously reported [188]. 

2', 7’-dichlorodihydrofluorescein diacetate (DCF-DA) was purchased from 

Invitrogen. DyLight 488 antibody labeling kit, anti-mouse IgG counterstain, and 4', 6-

diamidino-2-phenylindole (DAPI) nuclear stain, were purchased from Piercenet. 

Nonspecific mouse IgG was purchased from JacksonImmuno. Mouse anti-human anti-

PECAM-1 antibodies were created and purified in house through the use of hybridoma 

cell lines (cell line designation P2B1) purchased from the Developmental Studies 

Hybridoma Bank. Na125I (Sodium Iodide) was purchased from Perkin Elmer. Polystyrene 
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beads were purchased from Polysciences Inc. Gel-clot LAL endotoxin test kits were 

purchased from Lonza. All other materials and solvents were purchased from Sigma-

Aldrich. 

4.2.2 Citric acid coated iron oxide nanoparticle formulation 

A one-pot co-precipitation method was used to prepare the core citric acid coated iron 

oxide nanoparticles as previously reported [189]. Briefly, an aqueous solutions of 

FeCl3·6H2O and FeCl2.4H2O were combined in a 2:1 molar ratio in a sealed three-neck 

flask under vigorous stirring and an inert N2 environment. Once 85 °C was reached, 

NH4OH was injected into the vessel followed by 2 M citric acid. The reaction was carried 

out for 1 hour. The particles were washed with ethanol and retrieved with magnetic 

decanting. Following the wash, the particles were dried and stored under vacuum. 

 

4.2.3 Poly(trolox) nanoparticle formulation and characterization 

A single emulsion technique was used to formulate nanoparticles. Initially, 

poly(trolox) was dissolved in acetone. This solution was then added drop wise into 

methanol vortexing at 2000 RPM. The final concentration of acetone to methanol was 

10% v/v. The nanoparticle solution was then dialyzed against sterile PBS overnight. The 

dialyzed solution was then centrifuged three separate times at 22,000 RPM for 1 hour and 

resuspended in fresh sterile DI water to remove all traces of methanol, as confirmed by 

GC analysis (data not shown). Particle size and zeta potential was measured after 

centrifugation using dynamic light scattering on Malvern Zetasizer Nano. 
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4.2.4 Antibody loading and characterization 

AntiPECAM-1 and mouse IgG were radiolabeled with 125I using the Iodogen Method 

(Pierce Chemical) and purified using Bio-Rad Desalting columns, as previously 

described.[182] Antibody concentrations totaling 10,000 AB/µm2 were incubated with 1 

mg of PTx and Polystyrene nanoparticles (100 nm) overnight at 20ºC. Bovine Serum 

Albumin (Fisher Scientific) in PBS was then added to a final concentration of 1% BSA to 

block remaining surface sites for 1 hour before use. Particles were then washed in 

triplicate by centrifuging at 22,000 RPM for 30 minutes and resuspended in 1% BSA to 

wash away unbound antibody. Antibody was traced in both supernatant and pellets using 

a PerkinElmer 2470 Automatic Gamma Counter. Stability was determined by storing 

nanoparticles at 20ºC for one week, then repeating the centrifugation cycle. 

4.2.5 Antibody and particle binding to HUVEC model 

HUVECs were obtained by Lonza and cultured in EGM-2 media (Lonza) 

supplemented with penicillin and streptomycin. HUVECs, passage 4 to 8, were seeded at 

a density of 25,000 cells/cm2 and cultured overnight in 24 well plates. Antibody coated 

particles were then incubated with cells for 30 minutes. Following incubation, HUVECs 

were rinsed 5 times with PBS. Cells were lysed using a solution of 5% Triton-X 100 and 

0.1 N sodium hydroxide in PBS and lysates were analyzed using a gamma counter. 

Antibody molecules per cell were estimated by the masses recorded and area of the 

microplate well divided by the average area of a cell, assuming complete confluence. 

4.2.6 In Vitro iron oxide nanoparticle toxicity assessment 

HUVECs were seeded at a density of 25,000 cells/cm2 were cultured for 24 hours.  

Iron oxide nanoparticles in media were placed in a sonicating bath for 2 hours to aid in 
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suspension. Iron oxide nanoparticles were then added to the cells. After 24 hours, cells 

were washed 3 times using warm media. Viability was determined by incubation of 

Calcein AM for 30 minutes and fluorescence measured at 495ex/515em. Viability was 

measured by the following equation, where the control refers to untreated cells: 

% 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏
𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 − 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏

 

4.2.7 In Vitro cellular protection against background oxidative stress 

HUVECs seeded at a density of 25,000 cells/cm2 were cultured for 24 hours. DCF-

DA at a concentration of 10 µM was added and one hour later, polymers nanoparticles 

added.  After 30 minutes, the cells are washed 5 times using warm media to remove 

unbound particles. 24 hours later, fluorescence was measured from bottom at an 

excitation wavelength of 485 nm and emission wavelength of 528 nm using a GENios 

Pro fluorescence spectrophotometer. Percent protection from the antioxidant polymer was 

by the following equation, whereas the control refers to untreated cells that underwent the 

same washing steps: 

% 𝑃𝑃𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹 =
𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏
𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 − 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏

 

4.2.8 In Vitro cellular protection against iron oxide induced oxidative stress 

HUVECs were prepared as in the previous section. AntiPECAM-1/PTx-1000 at 0.5, 

and 1 mg/mL, AntiPECAM-1/PS, and IgG/PTx 1000 at 1 mg/mL were incubated for 30 

minutes. Afterwards, the cells are washed 5 times using warm media to remove unbound 

particles. Additionally, PTx 1000 without any targeting coating was incubated for the 

entire duration of the experiment. One hour later, iron oxide nanoparticles were added at 
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a concentration of 30 µg/mL. After 24 hours, ROS levels were recorded as previously 

described. Viability was determined by incubation of Calcein AM for 30 minutes and 

fluorescence measured at 495ex/515em. In order to account for dead cells exhibiting no 

DCF fluorescence, normalized percent protection from injury by the antioxidant polymer 

was obtained by the following equation: 

% 𝑁𝑁𝐹𝐹𝐹𝐹𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁𝐹𝐹𝑁𝑁 𝑃𝑃𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹 =
% 𝑃𝑃𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹
% 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

 

Additionally, to determine endotoxin levels, iron oxide nanoparticles were subjected 

to gel-clot LAL endotoxin analysis according to manufacturer’s instructions. 

4.2.9 Determination of particle internalization 

HUVECs were seeded on glass slides and grown to confluence. Green fluorescent 

polystyrene beads (200 nm) were coated and purified with anti-PECAM-1 and IgG as 

described previously. Antibody coated particles were then added to HUVEC cultures and 

washed 5 times using warm media after 30 minutes at 37ºC. Cells were than fixed in 2% 

paraformaldehyde solution either immediately or after 8 hours. Following fixation, cells 

were labeled with secondary antibody for 30 minutes and washed. Cells were 

permeabilized and stained with DAPI. Glass slides were than imaged utilizing a 

fluorescent microscope and analyzed for internalization and particle counts (Nikon 

Elements 4.2). In short, overlaid images depicting orange (red + green) particles were 

marked as surface bound, whereas green particles were marked as internalized. Similarly, 

particle counts per cell were determined by pixel area of all particles divided by the pixel 

area of a single particle as determined by the Nikon Elements software.  
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4.3 Results 

4.3.1 Poly(trolox) nanoparticle synthesis and characterization 

To promote physioabsorption of antibodies onto PTx nanoparticles, a surfactant-free 

nano-precipitation method was developed. It was found that at the concentrations tested 

(0.5, 1, 10 mg/mL polymer in solvent phase), the nanoparticle size was independent of 

the initial polymer concentration (Figure 4-1). Formulations of nanoparticles with solvent 

concentration of over 10 mg/mL resulted in significant aggregation and inconsistent 

particle sizes. Particles ranged in size from 150 to 160 nm, within the limit for CAM 

mediated internalization [190]. Analysis of the zeta potential for both PTx 1000 and 2500 

revealed charges between -21 to -32 mV (Figure 4-1). This moderate negative charge 

promotes the ability for physioabsorption of antibodies to their surface, providing a basis 

for further targeting modification.   

4.3.2 Antibody coating and stability determination 

The ability to physically absorb targeting antibodies to the surface of PTx 

nanoparticles was evaluated through the use of 125I-IgG tracing. Antibodies were 

radiolabeled as described in the methods section.  To aid in complete coverage, 

antibodies were incubated with the nanoparticles at a solution concentration equivalent to 

10,000 antibodies/µm2 particle surface area, 1.2 times the theoretical monolayer coating 

based on antibody size and particle area. The particles were then centrifuged to separate 

solid particles from free antibody. Based upon radiotracing of antibody bound to PTx 

1000 and 2500 nanoparticles, we observe 57.04 ± 5.7% (PTx 1000) and 56 ± 4.7% (PTx 

2500) surface coverage of antibody, or 826 ± 67 (PTx 1000) and 812 ± 66 (PTx 2500) 

antibodies / particle (Figure 4-1).  
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While physiochemical adsorption is a convenient and easy mechanism of nanoparticle 

surface modification, if the adsorption strength is too low, the antibody coating could 

potentially be replaced by other proteins found in serum and thereby lose targeting 

capacity. To test the stability of the antibody coating, the particles were incubated at 4ºC 

in 1wt% BSA for 7 days of storage. Importantly, it was determined that 94 ± 1.5% (PTx 

1000) to 99 ± 1.3% (PTx 2500) of the antibody remained attached to the nanoparticle 

surface, suggesting stability in storage conditions (Figure 4-1).  This is consistent with 

prior work with antibody coating of polystyrene and poly(lactic glycolic) acid 

nanoparticles [191]. 
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Figure 4-1. Characterization of poly(trolox) nanoparticles 

A single step, surfactant free solvent extraction method was used to prepare poly(trolox) 

nanoparticles. Particle size (A) and zeta potential (B) were measured after centrifugation 

using dynamic light scattering (M ± SD, n=3). Poly(trolox)-1000 and Polystyrene 

nanoparticles were antibody coated using physioabsorption, with extent of adsorption 

determined using 125I Radiolabeled IgG.   Theoretical loading was determined as a ratio 

of the surface area of the particle divided by the surface area of the Fc base fragment of 
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the antibody (C) (approximately 3 nm x 3 nm) (M ± SD, n=3). Stability of antibody 

coating was determined by monitoring the extent of antibody coating remaining on the 

particle after 1 week incubation. Particles were then centrifuged for 30 minutes and pellet 

examined in gamma counter to determine viability of antibody coating. Near 100% of the 

antibody coating is retained after one week (D) (M ± SD, n=3). 
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4.3.3 Iron oxide nanoparticles exhibit toxicity and ROS generation in Human 
Umbilical Vein Endothelial Cells (HUVEC) 

Although iron oxide nanoparticles have been formulated with many types of coatings 

to inhibit either toxic effects or improve stability, they still are able to induce oxidative 

stress within cells. Specifically, citric acid coated nanoparticles were tested due to their 

emerging prevalence in early clinical trial biomedical applications, owing to their 

hydrophilic properties and stability in aqueous media [192, 193]. These nanoparticles can 

be easily produced and coated in a one-step synthesis reaction from the reduction of iron 

salt in citric acid buffer. 

While these particles are generally referred to as chemically unreactive, they directly 

react with viability stains, such as MTT and MTS, which rely upon reduction to measure 

cell activity [194]. To avoid this artifact, cell viability was assessed using Calcein AM 

(live) stain, which relies upon esterase activity as a means of determining intact cells. In 

this work, we observed a concentration dependent toxicity and ROS generation over a 

period of 24 hours. The LD50 of iron oxide was determined to be 35 µg/mL. This 

toxicity was related to the ability of the particles to induce oxidative stress as measured 

by a 2', 7’-dichlorodihydrofluorescein (DCF) fluorescence assay.  At 15 µg/mL, the DCF 

fluorescence was 307 ± 33% over control at 24 hours (Figure 4-2). At increasing 

concentrations of iron oxide nanoparticles, DCF fluorescence decreases due to significant 

cellular death and detachment of cells.  

4.3.4 AntiPECAM-1 and AntiPECAM-1/PTx nanoparticles, but not IgG, bind 
specifically to HUVECs 

In order to evaluate the ability of antiPECAM-1/PTx to adhere to vasculature, a 

HUVEC cell culture model was once again employed. Binding of free antiPECAM-1 
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antibody and antiPECAM-1/PTx were tested against nonspecific mouse IgG. In 

antiPECAM-1/PTx studies, to eliminate the possible artifact of detached antiPECAM-1 

adhering to the cell surface, antiPECAM-1/PTx binding was evaluated using a non-

specific 5wt% 125I-IgG tracer. 

Concentration dependent binding profiles of both free antibody and coated particles 

were observed and compared to the non-specific binding observed from IgG controls. 

The antiPECAM-1/PTx nanoparticles exhibit an order of magnitude higher specificity 

and adhesion with 350 particles/cell compared to 40 particles/cell for IgG coated particles 

at an initial incubation concentration of 0.8 mg/mL.  

It is interesting to note that in each concentration of the targeted antioxidant 

nanoparticles, we conclude that 1/10th of incubated particles adhered to the cell 

monolayer following five wash cycles (Figure 4-3).   

4.3.5 Antioxidant function of AntiPECAM-1/PTx nanoparticles in HUVECs 

To verify if antiPECAM-1/PTx nanoparticles are capable of inhibiting cellular 

oxidative stress, a DCF assay was used. For PTx 1000, a dose dependent decrease in ROS 

levels was observed, reaching a maximum of 19% reduction at 0.6 mg/ml.  

 

 

51 
  



 

 

Figure 4-2. Iron oxide toxicity and ROS in HUVECs  

HUVECs were incubated with iron oxide nanoparticles in a range of concentrations for 

24 hours to determine viability and ROS levels. From the viability (A), the LD50 was 

determined to be 35 µg/mL. A close-up view of ROS levels near this concentration are 

shown in (B). ROS levels peak at 300% over background at a sub-lethal concentration of 

15 µg/mL followed by a decline in level as significant cellular death occurs.  
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In the case of PTx 2500, the 0.8 mg/mL concentration had an 18% reduction of 

background oxidation, with no therapeutic benefit at lower concentrations. It is 

hypothesized that this is due to the smaller molecular weight chains degrading faster, 

thereby exhibiting a slight antioxidant effect, compared to the slower degradation of the 

higher molecular weight species that are likely to be overcome by natural redox signaling 

inside of the cell. In each concentration, the IgG/PTx shows no suppression of ROS. ROS 

level is measured as a percent of control, HUVECs that were not exposed to any 

treatment (Figure 4-3).  

This MW behavior and dose dependence correlates well with previously published 

results [45].  Comparing the level of suppression in relation to mass bound (1/10th of 

incubated 1 mg/mL dose as determined in Figure 4-3) corresponds to previously 

published literature for ROS suppression. In the previous publication, 0.1 mg/mL, the 

relative mass bound for 1 mg/mL incubation concentration, of PTx 1000 and PTx 2500 

exhibited 30% and 20% reduction in ROS respectively [45].  

4.3.6 Suppression of iron oxide nanoparticle induced ROS injury through the use 
of AntiPECAM-1/PTx 

To determine if targeted poly(trolox) nanoparticles can prevent iron oxide toxicity, 

1.0 and 0.5 mg/mL of antiPECAM-1/PTx and IgG/PTx nanoparticles were 

prophylactically administered to HUVECs for 1 hour and rinsed 5 times prior to iron 

oxide nanoparticle exposure.  

Iron oxide at a concentration of 35 µg/mL induced a normalized ROS response that 

was 180 ± 11% over untreated cells with a viability of 52 ± 7.2%. As non-targeted 

particles do not significantly bind to HUVECs, IgG/PTx treatments did not provide 

protection against iron oxide nanoparticle injury. For antiPECAM-1/PTx we observe 

53 
  



43.5% suppression in ROS levels at 1 mg/mL and 47.7% at 0.5 mg/mL (Figure 4-4). 

Interestingly, we see a dose dependent increase in viability, with a recovery of 92 ± 

10.1% at 1 mg/mL dosage, and 65 ± 8.0% recovery at 0.5 mg/mL (Figure 4-4). 

4.3.7 Determination of iron oxide nanoparticle injury suppression mechanism 

It is proposed that the mechanism of iron oxide toxicity is due to the generation of 

free radicals due to Fenton reactions. In the presence of hydrogen peroxide, Fe2+ can 

undergo oxidation and Fe3+ can undergo reduction. The byproducts of this are highly 

reactive hydroxyl and peroxyl radicals. We theorize that the antioxidant potential of 

AntiPECAM-1/PTx nanoparticles can intercept these radicals, thereby attenuating 

damage caused by iron oxide nanoparticles.  
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Figure 4-3. Antibody and particle binding to cellular model with suppression of 
background ROS 

Free antibody and poly(trolox) nanoparticles were incubated with HUVEC cells in 

varying doses. Antibody (A) and particles (B) were incubated for 30 minutes, followed 

by 5 washes in warm media. AntiPECAM-1 and antiPECAM-1/PTx possessed an order 

of magnitude higher binding to cells as compared to the non-specific IgG controls.  

Approximately 10% of particles incubated stay adhered after washing (M± SD, n=3). 

Oxidative stress was measured using DCF as a fluorescent probe.  DCF was added to 
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HUVECs for one hour prior to administration of antioxidant nanoparticles. Particles were 

incubated for 30 minutes followed by 5 washings in warm media. Nonspecific IgG coated 

nanoparticles show no suppression of oxidative stress as compared to the control in each 

formulation. PTx 1000 shows a dose dependent decrease in oxidation. PTx 2500 shows 

an effect at 0.8 mg/ml, but no significant protection thereafter. This can be attributed to 

the slow degradation of PTx 2500 due to its higher molecular weight (C) (M± SD, n=3). 
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Figure 4-4. Suppression of iron oxide injury 

HUVECs were incubated with DCF for one hour then removed. Afterwards, antioxidant  

nanoparticles were incubated 1 hour before introduction of iron oxide nanoparticles at a 

concentration of 30 µg/ml. (A) DCF Fluorescence was measured 24 hours after injury. 

(B) After DCF measurement, Calcein AM at 5 µM was incubated for 20 minutes, and 

* *

0
20
40
60
80

100
120
140
160
180
200

+ 1.0 0.5 1.0

Iron Oxide IgG/PTx
(mg/mL)

antiPECAM/PTx (mg/mL)

N
or

m
al

iz
ed

 D
C

F 
flu

or
es

ce
nc

e 
(%

 o
f c

on
tr

ol
)

a

*

0

20

40

60

80

100

120

+ 1.0 0.5 1.0

Iron Oxide IgG/PTx
(mg/mL)

antiPECAM/PTx (mg/mL)

Vi
ab

ili
ty

(%
 o

f c
on

tr
ol

)

b

57 
  



fluorescence subsequently measured. IgG/PTx shows no significant protection from 

ROS, or exhibit an increase in viability. AntiPECAM-1/PTx particles show suppression 

of ROS levels as compared to control, however it does not appear to be dose dependent. 

Viability for AntiPECAM-1/PTx however shows a dose dependent increase in viability, 

indicating mitigation of iron oxide toxicity. (M± SE, n=3, * = p<0.05). 
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However, it was not certain if the observed results in Figure 4-4 were due to the 

antioxidant activity or if it was due to physically blocking/occupying possible 

internalization routes, which would likely reduce the uptake of iron oxide.  To determine 

if this is a concern, the study was repeated using the targeted, but non antioxidant 

antiPECAM-1/Polystyrene (PS) beads. As a comparison group cells were also incubated 

with PTx-1000 nanoparticles that were not rinsed. 

After a 24 hour incubation period of iron oxide, the AntiPECAM-1/PS treatment 

showed no significant reduction in either viability or ROS levels; however 1.0 mg/mL 

PTx 1000 nanoparticles exhibited 87.6 ± 3.4% recovery in viability, and significant 

reduction in ROS levels (Figure 5). This indicates the protection mechanism is a linked to 

the antioxidant potential of the targeted treatment, rather than inhibition of internalization 

routes utilizing an active targeting method. 

4.3.8 AntiPECAM-1 coated fluorescent particles exhibit significant internalization 
following incubation 

To determine if antiPECAM-1 antibody coated particles possess the ability to 

internalize into a cell, an expected prerequisite for function, a fluorescent microscopy 

approach was utilized. HUVECs were incubated with antibody coated green fluorescent 

polystyrene beads for 30 minutes then washed as described before. Targeted particles 

were then both fixed and counterstained with a Texas Red labeled goat anti-mouse IgG 

either immediately or after an 8 hour incubation period to allow for cellular endocytosis 

to occur. 

Membrane bound particles will fluoresce both green (polystyrene) and red (Texas 

Red secondary antibody stain) that, when overlaid, appear yellow. Particles that have 

been internalized will be inaccessible to the secondary stain due to cell membrane 
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fixation. These internalized particles will remain green. AntiPECAM-1 coated particles 

showed an expected increase of internalization over the 8 hour time period, from 20% to 

over 80% internalized, indicating significant internalization and delivery of particles to 

the endothelial cells (Figure 4-6). 
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Figure 4-5. Determination of protection mechanism 

HUVECs were incubated with DCF for one hour then removed. Afterwards, targeted 

polystyrene particles were incubated for 30 minutes then washed 5 times to remove 

unbound particles. Conversely, poly(trolox) particles incubated for the entirety of the 
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experiment. One hour after incubation iron oxide nanoparticles at a concentration of 30 

µg/ml were introduced. DCF Fluorescence was measured 24 hours after injury. Black bar 

represents background ROS levels (A). After DCF measurement, Calcein AM at 5 µM 

was incubated for 20 minutes, and fluorescence subsequently measured (B). Targeted 

polystyrene particles show no therapeutic effect towards iron oxide injury regarding 

viability or ROS measurements. Poly(trolox) incubated for the duration of the experiment 

shows a significant viability recovery and reduction in ROS levels, indicating protection 

is a result of antioxidant capability. (M± SE, n=3, * = p<0.05 from control). 
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4.4 Discussion 

As motivation to this study, we hypothesized that targeted antioxidant nanoparticles 

could suppress cellular injury associated with iron oxide nanoparticle use.  By injecting 

these particles either prior to or in tandem with iron oxide administration, it should be 

possible to block associated vascular damage.  In our prior work, poly(trolox) 

nanoparticles were shown to degrade in the presence of cellular esterases and release 

active antioxidant, which is capable of suppressing cellular oxidation.  We have also 

shown that this polymer has a unique ability to inhibit the formation of cellular oxidation 

products that is not seen in the native free antioxidant [45]. However, these studies 

centered on non-targeted free particles that, due to expected clear mechanisms, would not 

accumulate in the vasculature in vivo.  To accommodate antibody coating onto the 

particle surface, the formulation approach was changed to eliminate surfactant. The 

surface charges of these particles are complimentary to surface absorption of various 

proteins allowing the ability to tailor the targeting antibody to multiple applications.  

Using simple physioadsorption methods, the antioxidant nanoparticles were coated 

with greater than 500 antibodies/carrier, permitting sufficient multimer binding and 

observed affinity in cell culture.  Protein coating on nanoparticles can serve to stabilize 

them from aggregation. To this end, antibody nanoparticles were suspended and stored in 

1wt% BSA. Importantly, it is possible that this BSA could over time replace the antibody 

from the surface of particles during storage.  However, it was found that there was no 

statistically significant decrease in antibody coating over one week storage in refrigerator 

conditions. When added to an endothelial cell culture model, these PECAM-1/PTx 

particles were then shown to significantly adhere to the surface of the cells. The method 
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of adhesion was shown to be antibody-antigen based, as particles coated in nonspecific 

IgG had no inherent capacity to adhere to the cell layer.  

Based upon prior work of poly(trolox), with esterase dependent hydrolysis, it was 

assumed that antioxidant function would require cellular internalization into lysozymes 

[22]. While it has been shown that antiPECAM-1 antibodies are not internalized [195], 

antiPECAM-1 conjugates can indeed be taken up through CAM mediated pathways and 

is typically independent of the substrate particle [190]. It is observed here that the 

polystyrene particles, over the course of 8 hours, are internalized, and trafficked towards 

the nucleus in lysosomes. This compartmentalization can enhance the degradation of the 

antioxidant particles, leading to the release of active therapeutic. Indeed, the targeted 

antioxidant particles exhibit the ability to suppress background ROS generation with no 

detrimental effect on cellular viability. 

The antioxidant properties of this polymer may be highly beneficial in the biomedical 

field, especially with the emerging use of transition metal based nanoparticles that can 

cause free radical formation such as iron, zinc, cerium, and titanium [196] and the 

overarching theme of safety in biocompatibility. The mantra of small size and high 

surface, and subsequently reactive, area of metal nanoparticles has led to a paradigm of 

monitoring oxidative injury as it pertains to cytotoxicity.  

In medical applications of iron oxide nanoparticles, direct IV injections are the 

traditional route of administration. As such, the vasculature epithelium becomes the first 

point of contact for these particles, and thus a crucial area to study toxic and oxidative 

interactions. Similarly for environmental exposure, the pulmonary endothelium becomes 

the settling area for inhaled particles, which can cause significant inflammation and tissue 
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damage. Not only is the endothelium the first point of contact in iron oxide exposure, it 

has also been demonstrated that these cells are highly prone to oxidative damage and 

injury [197]. Therefore, if protective particles are injected prior to iron oxide 

administration, it should be possible to mitigate its observed toxicity. 

To test this iron oxide-based toxicity, we studied the dose dependent ROS generation 

and subsequent toxicity of iron oxide nanoparticles. While we observe a sharp decline in 

the free radical generation with higher concentration of iron oxide, it is hypothesized this 

is due to detachment and membrane disruption of the cell monolayer, causing the 

fluorescent DCF probe to leak out of the cells, only to be removed following washing 

steps involved in the procedure. Due to this phenomenon, subsequent analysis of free 

radical generation is normalized against the viability, in order to observe the ROS level in 

the remaining living population.  It should be noted that this toxicity could also be caused 

by endotoxin load of the formulation, as endotoxin has been shown to cause oxidative 

stress related cellular activation [198]. While we do not have endotoxin calculations for 

the exact particles used in this study, a similarly prepared batch that has been in storage 

for 2 months was assayed. Endotoxin values were found to be below detectable levels, or 

less than 0.015 endotoxin units (EU) per milligram of iron oxide nanoparticles.  At this 

level, endotoxin would be well below needed values to elicit a ROS response, reported to 

occur as low as 150 EUs [199, 200]. Further, the toxicity and ROS generation exhibited 

by iron oxide nanoparticles correlates with results found by other groups [201], and 

provides a sound basis for evaluating the ability of antioxidant polymers to mitigate this 

damage.  
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Figure 4-6. Particle adherence and internalization 

 HUVECs were incubated with antibody coated green fluorescent polystyrene beads for 

30 minutes. Following removal of unbound particles, cells were fixed either immediately 

or after 8 hours of incubation. Cells were then labeled with red secondary for 30 minutes, 

washed, then permeabilized and stained with DAPI nuclear stain.  Imaging was done 

utilizing a fluorescent microscope, and analyzed utilizing Nikon Elements. Particles that 

appear yellow (red + green) are said to be bound to the outside of a cell. Particles that 

appear green are said to be internalized. Particle counts per cell were also obtained 

utilizing Nikon tracking software. 30 minutes after incubation, 20% internalization is 

observed, after 8 hours this increases to over 80%. Particles adhered per cell for 

antiPECAM-1 targeting were an order of magnitude higher than IgG coated (fluorescent 

image not shown), similar to radiolabeling results in Figure 2. (M± SE, n=10). 
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When the antiPECAM-1 PTx particles are added to cells before introduction of the 

iron oxide nanoparticles, a significant recovery in both viability and ROS generation is 

seen. Particles with a nonspecific IgG coating show no statistically significant effect on 

viability. This is to be expected considering the adhesion data, where no accumulation of 

nanoparticles is seen with the IgG coated particles. From this data, we concluded two 

possibilities of protection, either that the adhered nanoparticles are physically blocking 

the internalization pathway of the iron oxide or the antioxidant potential of the 

nanoparticles is indeed protecting the cells (Figure 4-7). In order to elucidate the actual 

protection mechanism, non-targeted PTx nanoparticles and targeted polystyrene particles 

were employed. If the polystyrene particles, being the same size and having no intrinsic 

therapeutic value, prevented cytotoxicity then it could be concluded that the protection 

mechanism is due to the prevention of iron oxide from reaching the cell. However, we 

observed that the polystyrene particles offer no protection, whereas the non-targeted 

antioxidant particles once again recovered cellular viability, strongly indicating the 

therapeutic efficacy of trolox.     
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Figure 4-7. Proposed protection mechanism of antiPECAM-1/PTx nanoparticles 

A cartoon depicting the proposed protection mechanism provided by antiPECAM-1/PTx 

nanoparticles. On the left: Bound antiPECAM-1/PTx nanoparticles (green) adhere to the 

surface of the cell. These nanoparticles are then internalized, where cellular esterase 

degrade the PTx nanoparticle into the active antioxidant trolox. On the right: Iron oxide 

nanoparticles are internalized, where they undergo Fenton reactions. Endogenous 

hydrogen peroxide reacts with Fe2+ and Fe3+ to form hydroxyl and peroxyl radicals, 

which induce oxidative stress. Trolox can intercept these free radicals, mitigating the 

damage caused. 
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4.5 Conclusions 

The antioxidant polymer poly(trolox) was successfully formulated into nanoparticles 

coated with an antibody directed towards PECAM-1. These active targeting nanoparticles 

have shown to adhere to HUVEC cells, internalize, and reduce oxidative stress in both 

static and iron oxide mediated ROS injury type models. This targeted delivery system 

shows great promise as a prophylactic or possibly tandem delivery system to vascular 

beds, the common final destination of therapeutic iron oxide nanoparticles, in order to 

mitigate the growing concern of toxicity. 
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Chapter 5. Inhibition of inflammation-mediated rheumatoid arthritis 
Based on the research article:  

David Cochran, L. Gray, K.W. Anderson, and T. Dziubla. “Encapsulated Apigenin-based 
Polymers for the Prevention of Tumor Cell Adhesion and Metastasis” (In review). 

5.1 Introduction 
 

In the previous chapter, we have demonstrated the link between oxidative stress and 

injury through the use of iron oxide as a vascular injury agent. To further test the ability 

of poly(trolox) to inhibit injury, we have utilized an in vivo injury consisting of 

rheumatoid arthritis (RA). It is an autoimmune disease that primarily affects the joints of 

the hands [202]. In RA, a host of immune cells such as T cells, B cells, and macrophages 

infiltrate the pannus surrounding joints and begin to digest and injure articular cartilage 

and bone [203]. It has been shown that reactive oxygen and nitrogen species are produced 

at the site of synovitis [10]. This buildup can contribute further to the inflammation and 

activation of immune complexes, resulting in increased damage to bone and tissue [15, 

41]. In fact, researchers have reported that oxidative stress in RA leads to reduced 

antioxidant capacity in tissues [42]. In regards to therapy options, other groups have 

reported on the utilization of supplemental antioxidant therapy to inhibit injury with 

mixed results [35, 204], with the prime cause of treatment failure pointed towards 

ineffectual delivery and accumulation [205]. In separate studies, it’s been shown that 

vitamin E can also inhibit inflammation via prostaglandin E2 down regulation [206]. 

Our polymer nanoparticle systems have the ability to overcome the issues of 

premature oxidation and non-selective delivery. Indeed, it has been shown that nano-

emulsions of vitamin E have increased bioavailability and accumulation in other in vivo 

inflammation models [207]. With the unique oxidation suppression provided by 
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poly(trolox) over trolox [45], it’s feasible that a controlled delivery system thereof, 

capable of accumulating in inflamed joints, could potentially be used to inhibit or prevent 

the progression of rheumatoid arthritis in vivo.   

5.2 Materials and Methods 

5.2.1 Polymer synthesis 
 

mPEG-PLA: DL-lactide was initially recrystallized in anhydrous ether to remove 

residual water and impurities. The purified DL-lactide was then stoichiometrically mixed 

with mPEG and 1% stannous 2-ethyl-hexanoate in dichloromethane (DCM) to form a 

polymer of a final molecular weight of 55,000. The resulting solution was heated to 90°C 

under continuous nitrogen purge until all solvent was evaporated. Following this, the 

ring-opening polymerization reaction proceeded for 6 hours at 120°C. The polymer was 

then cooled overnight, dissolved in DCM, precipitated in cold diethyl ether, and freeze-

dried then stored till further use. 

5.2.2 Nanoparticle formulation and characterization 
 

Formulation: mPEG-PLA and poly(trolox) were dissolved in acetone (10 and 5 

mg/mL, respectively, 1 mL total). The mixture was added drop-wise to 20 mL of 

deionized water mixing at 2000 RPM. Solvent was allowed to evaporate by stirring 

overnight, and the solution was filtered through a 1 µm filter and centrifuged at 40,000g 

for 15 minutes. This was followed by resuspension in sterile PBS with 1% BSA added. 

Nanoparticle recovery was determined using a PEG-barium iodide complex assay. 

Briefly, a known mass of nanoparticles were dissolved in 200 µL of 5 M NaOH for 4 

hours at 80°C then neutralized with 5 M HCl. The solution was then mixed with a 
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solution barium iodide, the absorbance was determined at 550 nm. This was then 

compared against PEG standards, and compared to initial PEG content before 

formulation.  

 

Nanoparticle size: Particle size and polydispersity (PDI) were investigated using 

dynamic light scattering (DLS). Nanoparticles were diluted in PBS at 25°C to a 

concentration of 0.1 mg/mL then measured for size. 

 

Drug loading: To determine total drug loading, nanoparticles were formulated as 

described above with a slight exception. After the initial centrifugation, the supernatant 

and nanoparticle mass were freeze-dried overnight, then dissolved in acetone. The 

absorbance was then measured and compared against standards of poly(trolox) in acetone 

at 370 nm. Encapsulation efficiency and drug loading was determined by the mass in the 

supernatant compared to the mass in the nanoparticles: 

𝐸𝐸𝐹𝐹𝐹𝐹𝑉𝑉𝐸𝐸𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒𝑒𝑒𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉 =  
𝑀𝑀𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 𝐸𝐸𝐹𝐹𝑉𝑉𝑉𝑉(𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝑡𝑡) 𝑉𝑉𝐹𝐹 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐸𝐸𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹
𝑇𝑇𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 𝐸𝐸𝐹𝐹𝑉𝑉𝑉𝑉(𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝑡𝑡) 𝑉𝑉𝑁𝑁𝑁𝑁𝐹𝐹𝑁𝑁

∗ 100% 

𝐷𝐷𝐹𝐹𝐹𝐹𝐷𝐷 𝐿𝐿𝐹𝐹𝑉𝑉𝑁𝑁𝑉𝑉𝐹𝐹𝐷𝐷 =  
𝑀𝑀𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 𝐸𝐸𝐹𝐹𝑉𝑉𝑉𝑉(𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝑡𝑡)

𝑇𝑇𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐸𝐸𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉𝐹𝐹 𝑁𝑁𝑉𝑉𝐹𝐹𝐹𝐹
∗ 100%  

 

5.2.3 Induction of arthritis in vivo and treatment regimen 
 

Arthritis was induced in wild-type DBA/1 LacJ mice through the use of a Collagen 

Antibody-Induced Arthritis model (CAIA) according to manufacturers supplied protocols 

(Chondrex, Inc). In brief, mice were given an intraperitoneal injection of 2 mg of 
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collagen antibody. Three days later this is followed by an intraperitoneal injection of 50 

µg lipid polysaccharide (LPS). Animals were treated daily on day 3 on with mPEG-

PLA/PTx nanoparticles (125 µL at a 50 mg/kg concentration) or 1% BSA in PBS as 

control for a total of 5 days via the tail-vein.  

Extent of injury was assessed each day for a period of 7 days following initial 

antibody injection by a visual-based scoring system provided by the manufacturer, along 

with tracking of animal weight. Following the 7th day, the animals were sacrificed and 

tissues collected for further analysis. 

5.2.4 Assessment of nanoparticle accumulation in vivo 
 

On day 7, the animals were injected with a slightly modified treatment. For mPEG-

PLA/PTx treatment, a near IR fluorescent dye Cy 5.5, obtained from Lumiprobe 

(Hallandale Beach, FL), was incorporated into the nanoparticle formulation at a final 

concentration of 2 wt%. Control group animals received an identical concentration of Cy 

5.5 in saline. 

After sacrifice, the whole animal and excised paws were imaged utilizing an IVIS 

Spectrum imaging system (Caliper Life Sciences) at a wavelength of 673/707 ex/em. 

Fluorescent intensity of the animal cavities and paws were recorded and exported for 

analysis in ImageJ. 

5.2.5 Determination of endogenous antioxidant activity in liver. 
 

Following sacrifice, the whole animal liver was collected and homogenized in PBS. A 

Myoglobin based colorized antioxidant equivalence content assay was utilized to 

determine antioxidant activity. A mixture of myoglobin (Sigma) and potassium 
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ferricyanide was added in PBS, and allowed to react in the dark for 5 minutes. The 

oxidized myoglobin was separated from the potassium ferricyanide through the use of a 

Sephadex spin column (Biorad) and diluted in PBS to a concentration of 6 µM. Next, 8 

µL of liver homogenate, 100 µL of the 6 µM myoglobin solution, and 100 µL of 2, 2’-

azino-bis (3-ethylbenzothiazoline-5-sulphonic acid) (ABTS) at 0.8 mg/mL were added to 

a 96 well plate and well mixed. The assay was started when 40 µL of 250 µM hydrogen 

peroxide was added. After 6 minutes, the colorization of the ABTS was measured at 734 

nm, and plotted against a generated calibration curve of trolox. Trolox equivalence was 

then normalized to a known mass of tissue homogenate and compared. 

5.2.6 Protein oxidation of paw tissue 
 

To measure the effect of oxidative stress and injury in paw tissue, a 2, 4-

dinitrophenylhydrazine based protein carbonyl colorimetric assay was used according to 

manufacturer protocols (Cayman Chemical). In brief, whole paws were homogenized in 

MES buffer and solids centrifuged and removed. The protein containing solution was 

then mixed with a solution of 2,4-Dinitrophenylhydrazine (DNPH) and hydrochloric acid. 

After reaction on ice for 15 minutes, the protein was precipitated in a solution of 

trichloroacetic acid and excess DNPH removed. Finally, the protein pellet is resuspended 

in guanidine hydrochloride and absorbance measured at 370 nm using a plate reader. 

Carbonyl content was measured per milligram of total protein content as measured by a 

Bradford assay. 
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5.3 Results 

5.3.1 Nanoparticle formulation and characterization 

To formulate a biocompatible delivery system for poly(trolox), a single-step 

nanoprecipitation method was utilized. Table 6.1 outlines the size, encapsulation 

efficiency, and final drug loading of each formulation. Blank mPEG-PLA nanoparticles 

were determined to be 144.1 ± 13.5 nm with a polydispersity index (PDI) of 0.176 by 

DLS. Nanoparticles with incorporated poly(trolox) were slightly larger at 163.1 ± 11.7 

nm, a PDI of 0.313, with a final drug loading of 24.8 ± 2.08%. 

5.3.2 Assessment of mPEG-PLA/PTx nanoparticles to suppress rheumatoid 

arthritis 

To evaluate if mPEG-PLA/PTx nanoparticles possess the capacity to inhibit oxidative 

stress and inflammation in vivo, mice were subjected to a CAIA arthritis model. After a 

booster shot of LPS on the third day after antibody injection, treatment began with daily 

tail-vein injections of mPEG-PLA/PTx nanoparticles or saline. The animal paws were 

evaluated each day utilizing a scoring system provided by the manufacturer, ranked 

depending on severity of swelling. Figure 5-1 outlines the scoring trend and body weight 

of the animals over time. Animals in the control group demonstrated a sharp rise in 

incident score after 3 days of 4.3 ± 2.1, and continued to climb as expected, hitting a 

plateau of 10.3 ± 1.3 at 6 days. Animals treated with mPEG-PLA/PTx nanoparticles 

experienced a delay in arthritis symptoms, taking 5 days to reach a significant scoring 

level of 3.0 ± 1.5. Symptoms plateaued after 6 days, similar to the control group, at a 

scoring of 6.7 ± 2.0. 

Analysis of body weight over time indicated a decline in weight following LPS booster at 
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day 3, with a weight loss of 5%. Animals from both groups declined in an identical 

fashion, a symptom of illness, to a maximum of 15% weight loss after a period of 7 days.  
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Table 5-1 Properties of mPEG-PLA nanoparticles 

Nanoparticles without any incorporated PTx are 144.1 nm in size with a relatively 

monodispersity. Poly(trolox) loaded particles are slightly larger at 163 nm and less 

monodisperse. Encapsulation efficiency was determined to be 51%, with a total drug 

loading of 24.8% (N=3, M±SD). 

 

Drug 
loaded 
Core  

Size (nm) PDI Encapsulation 
efficiency (%) 

Drug 
loading 

(%) 
 -  144.1 ± 13.5 0.176 N/A N/A 

PTx   163.1 ± 11.7 0.313 51 ± 1.04 24.8 ± 2.08 
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Figure 5-1: Analysis of arthritis score and animal weight over time 

Arthritis score and weight were recorded over a 7 day period. (A) Animals treated with 

PTx nanoparticles showed a lag time between treatment and generation of symptoms 

compared to control group. Both groups plateaued in score after 6 days. Body weight, 

however, declined at identical rates for both groups (B) (N=3, M±SD). 
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5.3.3 mPEG-PLA/PTx nanoparticles accumulate in organs and joints 

In order to test if mPEG-PLA/PTx nanoparticles can accumulate at the site of 

inflammation, an important prerequisite to effectual therapy, a modification to the 

nanoparticle formulation was made for the final day of delivery. A fluorescent dye, 

Cy5.5, was added to the synthesis step to allow for particle imaging in an IVIS Spectrum 

imaging system. Control animals were given an identical mass of dye in saline. 

Mice treated with mPEG-PLA/PTx nanoparticles showed significant accumulation of 

particles in the liver and kidneys with over 40 fold increase compared to free dye (Figure 

5-2a). As expected, the animals in the control group quickly cleared and excreted the free 

dye. Most interestingly, analysis of the excised paws of mPEG-PLA/PTx treated animals 

revealed a 267% increase over controls. This suggests a significant effect of 

accumulation in the inflamed tissue (Figure 5-2b). 

5.3.4 Endogenous antioxidant activity is recovered through the use of mPEG-
PLA/PTx nanoparticles 

A myoglobin based TEAC assay was employed to determine if supplemental 

antioxidant therapy can restore normal antioxidant function, and thus inhibit the oxidative 

stress and inflammation due to rheumatoid arthritis. Liver tissue was selected for analysis 

over paw tissue, due to the large relative differences in mass and overall sensitivity of the 

assay. Figure 5-3 shows the antioxidant levels of the mice. The control group had an 

antioxidant equivalence of 1.93 ± .019 mM trolox per mg of tissue. Animals treated with 

mPEG-PLA/PTx recovered to 2.43 ± 0.03 mM trolox per mg of tissue. For reference, 

baseline levels of antioxidant capacity in non-arthritic mice have been reported to be 

between 2.5-3.5 mM trolox per mg of tissue. 
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Figure 5-2: Fluorescent images of nanoparticle accumulation in vivo 

mPEG-PLA/PTx nanoparticles were formulated with a fluorescent dye to track 

accumulation in vivo. Control groups were given a dose matching of dye. Treated animals 

had a 40 fold increase of accumulation in liver and kidneys (A). In excised paw tissue, a 

267% increase of accumulation over free dye was observed (B). 
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5.3.5 mPEG-PLA/PTx significantly inhibits protein carbonyl content in the paws 

of arthritic mice. 

Utilizing a DNPH based protein carbonyl content assay, we looked at the ability of 

mPEG-PLA/PTx to inhibit protein oxidation, a major sign of oxidative stress. Whole 

paws were excised and washed in DI water to remove excess blood or clots. Protein was 

then extracted and tested. Figure 5-4 outlines the levels of protein carbonyl content. The 

control group contained 5.37 ± 1.07 nmol carbonyl per mg of total protein. This level is 

significantly higher than baseline levels of non-arthritic mice. The group treated with 

mPEG-PLA/PTx was vastly reduced down to 0.25 ± .025 nmol carbonyl content per mg 

of protein. This level is suppression is even lower than reported basal levels of 2.5-3.5 

nmol per mg of protein. 

5.3.6 Antioxidant nanoparticles reduce levels of inflammatory cytokines associated 

with oxidative stress 

Tissue recovered from animal paws were subjected to PCR and RNA analysis to 

determine levels of cytokine expression. Four cytokines were analyzed; IL-6, Cox-2, IL-

8, and TNF-α. There were no differences in IL-6 or Cox-2 expression between controls 

and treated animals. However, levels of IL-8 expression were reduced by 54%, and TNF-

α expression by 81%.  

5.4 Discussion 

In previous chapters, we have discussed the ability of the novel antioxidant polymer 

Poly(trolox) to suppress oxidative stress mediated-injury. In this work we have further 

expanded this polymer platform to elucidate the connection between oxidative stress and 

inflammation in a relevant  
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Figure 5-3: Ability of mPEG-PLA/PTx to recover antioxidant capacity  

Untreated animals have a suppressed antioxidant capacity, due to inflammation and 

oxidative stress stemming from RA. Animals treated with mPEG-PLA/PTx nanoparticles 

experienced a recovery in antioxidant capacity, back up to basal levels. (N=3, M±SD) 

 

Figure 5-4: Suppression of protein carbonyl content of paw tissue 

Arthritic animals had significantly elevated levels of carbonyl content of 5.37 ± 1.07 

nmol carbonyl. In contrast carbonyl content was eliminated in treated animals, a feature 

observed in previous publications with PTx. (N=3, M±SD) 
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disease model of rheumatoid arthritis. By encapsulating PTx into a degradable PEGylated 

polymer, we have developed a biocompatible polymer that offers longer circulation times 

compared to free PTx alone. 

Similar to the delivery system in chapter 5, we have devised a nanoprecipitation 

strategy to encapsulate PTx into an amphiphilic polymer of mPEG-PLA. The resulting 

nanoparticles were 163 nm in size, with a drug loading of 25%. This is similar to the 

results obtained for our apigenin PβAE polymers, which coincidently are similar in 

molecular weight and hydrophobicity.  

In order to test the particles in vivo, the CAIA arthritis model was used. From an 

initial observation of Figure 5-1, it appears clear that animals treated with mPEG-

PLA/PTx nanoparticles had inhibited levels of arthritis. However, it is very important to 

note that treatment did not occur until after scoring on day 3 of the LPS booster. In this 

situation, the control group of animals were scored significantly higher than the treatment 

group, despite the treatment group not receiving any nanoparticle dosages yet. Despite 

this, the increase in scoring between day 4 and 7 appeared identical between both groups. 

Similarly, the decrease in body weight between both groups were also identical, 

indicative of the progression of the disease. From a visual scoring system, it appears that 

our antioxidant nanoparticles offer no protective effects. Several suggestions in further 

studies have been proposed, such as recording of pain thresholds, gait analysis, and 

synovial fluid analysis to further elucidate the effect of treatment. 

For the last day of treatment, the animals were given a formulation that incorporated a 

fluorescent tag. After sacrifice, it was observed that the nanoparticles had significantly 
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accumulated in the liver and kidneys as expected for nanoparticles of this size. Most 

interestingly however, was that these nanoparticles also accumulated in the paw tissue of 

the inflamed joints. It is hypothesized this is due to an EPR-like effect, where disrupted 

vasculature, poor circulation, and retained fluid allow for these nanoparticles to deposit 

and accumulate.  

 After it was determined the antioxidant particles provided no therapeutic effects by 

visual examination, we had addressed the chemical effects. First, the antioxidant capacity 

of liver homogenate was assessed. Liver tissue was selected due to the prevalence of 

nanoparticle accumulation via imaging, the size of the organ, and sensitivity of the 

antioxidant assay. It was found that the control group had a suppressed level of 

antioxidant capacity, which is to be expected. The animals in the treatment group, 

however, had recovered to a healthy basal level of capacity. 

Next the level of protein oxidation, a symptom of oxidative stress and inflammation, 

was evaluated. Tissue from the paw region was removed and protein extracted. The 

levels of carbonyl content were significantly elevated in the control group of arthritic 

animals, at nearly 2x the basal level. Animals treated with mPEG-PLA/PTx had almost 

zero carbonyl content (Less than 0.5 nmol/mg protein, approaching the minimum 

sensitivity limit of the assay). This result is reinforced from a previous publication where 

it was demonstrated PTx had the ability to suppress protein carbonyl content, a feature 

not observed in the monomeric form of trolox [45]. 

To elucidate the connection between inflammation and oxidative stress, a series of 

cytokine markers were examined. Utilizing RNA expression, we observed the levels of 

IL-6, Cox-2, IL-8, and TNF-α. It was found that the levels of IL-6 and Cox-2 were not 
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different between treated and control groups. It has been reported in literature that these 

two cytokines are highly dependent on inflammation signals as opposed to only oxidative 

stress [208-210], which can explain why no difference was observed. IL-8 was reduced, 

and TNF-α expression completely eliminated. In a similar fashion, it has been reported 

that IL-8 is selectively up regulated from oxidative stress injury [211, 212], whereas 

TNF-α is a ubiquitously expressed cytokine in response to a multitude of injuries. 

5.5 Conclusions 

A single-step nanoprecipitation method to encapsulate the antioxidant polymer 

Poly(trolox) was developed. By encapsulating PTx in the polymer mPEG-PLA, we have 

created a stealth biocompatible polymer that is long circulating and can be used to treat 

injury and disease in vivo. These mPEG-PLA/PTx nanoparticles served to reduce 

cytokine markers stemming from oxidative stress and replenish total antioxidant content 

in the organs of mice in an arthritic mouse model. Fluorescent imaging analysis of the 

organs indicates significant accumulation over a 5 day period as compared to control 

mice. Most importantly, imaging analysis suggests higher accumulation of nanoparticles 

in the inflamed joints possibly due in part to enhanced permeation and disruption of 

vasculature in the limbs. 

 These nanoparticles also served to significantly reduce the levels of oxidized protein 

in the limbs, a marker of downstream damage due to inflammation. This preliminary data 

serves as a potential therapeutic delivery system for the treatment of rheumatoid arthritis 

and the accompanying inflammation-mediated damage caused.  

 

    

85 
  



Chapter 6. Interrupting the Metastatic Cascade: Apigenin-based Polymer 
Nanoparticles Inhibit Cancer Cell Adhesion 

Based on the research article:  

David Cochran, L. Gray, K.W. Anderson, and T. Dziubla. “Encapsulated Apigenin-based 
Polymers for the Prevention of Tumor Cell Adhesion and Metastasis” (in review). 

 

6.1 Introduction 
 

Relationships between cancer pathology and inflammation have been observed for 

nearly a full century [213]. Researchers have linked the rates of cancer progression with 

inflammation in order to understand the connection between the two. One study reported 

cancer rates of individuals suffering from bronchitis are as high as 24% [214]. Another 

reported asbestosis cancer rates of 15% [215]. Even individuals undergoing chronic UV 

exposure (eg. Sunburns, tanning, etc.) have cancer rates of up to 11% [216].  

In addition, metastasis has been shown to occur in approximately 20-40% of patients 

diagnosed with breast and testicular cancer, leaving patients with a typical median 

survival time of 18-24 months [217, 218]. A recent study revealed that in 2009 an 

estimated 58,000 women developed metastatic tumors as a direct result of breast cancer 

[219]. The average healthcare cost was placed at $128,556 per patient, for a total cost of 

over $7.4 billion per year [219]. Current treatments for metastatic tumors include 

systemic therapy (i.e. chemotherapy or hormonal therapy) or local therapy (i.e. surgery or 

radiation) [220]; however, there are currently no FDA-approved treatments for the 

prevention of metastasis in metastatic-prone patients. In fact, the latest drug application 

of Xgeva for inhibition of metastasis was rejected by the FDA [221]. 
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Stresses such as the mechanical forces involved during surgery have been shown to 

initiate a cascade of signaling events which includes the production of pro-inflammatory 

cytokines TNF-α [222], interleukins [223], and chemokines [224] that lead to localized 

inflammation and the surface expression of Cellular Adhesion Molecules (CAMs).[225] 

Subsequently, circulating tumor cells such as breast cancer and lymphomas have been 

shown to utilize inflammatory CAMs (e.g. ICAM, VCAM, ELAM) for extravasation, 

which then can lead to metastasis of these cancers [226, 227]. 

While the connection between metastasis and inflammation is well-known, NSAIDs 

are usually avoided postoperatively due to the potential for increased risk of 

hemorrhaging and immunosuppressive effects [228, 229]. Studies from the Baylor 

College of Medicine have reported that nearly 5% of patients experience post-operative 

hemorrhaging, and an overall increase of general surgical complications by 2.4x [230].  

Furthermore, glucocorticoids (GCs) such as dexamethasone are contraindicated in 

patients with osteoporosis, a common side effect of chemotherapy treatment [231]. 

Additionally, systemic administrations of GCs have a relevant immunosuppressant action 

which has been hypothesized to increase the metastatic potential of shed tumor cells 

[232].  

This mechanism of immunosuppression is believed to be due to GC binding to 

specific intracellular GC receptors (GR) in both vascular and immune system cells [233]. 

This complex then binds to multiple transcription factors and DNA motifs such as 

activator protein 1 (AP-1) and inhibits NF-κB activation by induction of the protein Iκβ 

[234]. Additionally, recent studies point to GC-induced modulation of other pathways 

such as Lck and Fyn, along with protein kinase B and C [233]. This wide range of 
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pathway modulation not only affects CAM expression, but also inhibits cytokine, 

prostaglandin, and nitric oxide production [235, 236] which confers a significant 

immunosuppressive reaction [237]. 

Flavones, notably the potent compound apigenin, have been reported to suppress 

JNK, ERK, and AP-1 pathways by inhibiting phosphorylation of kinases [44, 238]  or 

pathway inhibitor proteins such as IκBα and IKK [239, 240], although the mechanism is 

not fully elucidated. This inhibition of phosphorylation effectively arrests pathway 

activation and stimulation, leading to the down regulation of ICAM-1, VCAM-1, and E-

Selectin, along with NF-κB, [36, 37] making them potential candidates as therapeutic 

compounds for the prevention of cancer metastasis. Additionally, in vivo studies indicate 

little to no systemic toxicity, nor compromising of immune system function in large 

dosages as seen in GC and NSAID therapies, [241] potentially indicating safe usage after 

surgery. It is believed this is the result of a more specific pathway of modulation [242], as 

opposed to the “shotgun” levels of suppression from GC’s. Previous research groups 

have published on the ability of apigenin to suppress monocyte adhesion [36] and tumor 

cell adhesion [243] in endothelial cells. As a result, apigenin has been selected as the 

molecule of interest to formulate into a promising drug delivery system.  

The largest obstacle in flavonoid delivery is that in their natural form they exhibit poor 

solubility and limited bioavailability [244]. Widespread studies of oral consumption of 

both flavonoid-rich food and concentrated extract indicate little to no active form survives 

the GI tract [245]. A study in flavonoid absorption involving healthy ileostomy patients 

indicated less than 17% of a 100 mg oral dosage of pure flavonoid compound was 

recovered even before GI tract entry. Furthermore, analysis of blood plasma peaked at 90 
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ng/mL after 4 hour, or less than 0.38% of the initial dose [246]. In order to overcome this 

drawback, we have developed a class of degradable polymer systems based on beta amino 

ester (PβAE) chemistry. This chemistry allows for incorporation of flavonoids into the 

backbone of the polymer, creating a tunable release system while additionally protecting 

the active groups on flavonoids from premature oxidation.[188] As the polymer degrades, 

the active form of apigenin is recovered. Additionally, by developing a nanoparticle 

encapsulation delivery method, based on the biodegradable diblock copolymers 

methyoxypoly(ethylene glycol)-poly(lactide) (mPEG-PLA), both apigenin and apigenin 

PβAE polymers demonstrate slower release and high activity of active apigenin that can 

potentially overcome the limits presented by poor solubility and stability, and potentially 

provide a long-term delivery system. The benefits of incorporating a nanoparticle delivery 

system in tandem with slow releasing polymer include; enhanced solubility and 

bioavailability [247, 248], a delivery platform that can facilitate co-delivery of other 

therapeutics, or modification of the nanoparticle surface to include targeting ligands such 

as peptides or antibodies [249]. 

 

We hypothesize and report on that a novel delivery system containing a polymeric form 

of apigenin can overcome the problems of poor solubility and stability while still retaining 

the potential to prevent tumor cell metastasis.  
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6.2 Materials and Methods 

6.2.1 Polymer synthesis 

mPEG-PLA: DL-lactide was initially recrystallized in anhydrous ether to remove 

residual water and impurities. The purified DL-lactide was then stoichiometrically mixed 

with mPEG and 1% stannous 2-ethyl-hexanoate in dichloromethane (DCM) to form a 

polymer of a final molecular weight of 55,000. The resulting solution was heated to 90°C 

under continuous nitrogen purge until all solvent was evaporated. Following this, the 

ring-opening polymerization reaction proceeded for 6 hours at 120°C. The polymer was 

then cooled overnight, dissolved in DCM, precipitated in cold diethyl ether, and freeze-

dried then stored till further use. 

 

Apigenin multiacrylate: One gram of apigenin was dissolved in 100 mL of dimethyl 

sulfoxide (DMSO). To this solution, triethylamine was added at a molar ratio of 3:1 and 

mixed at 500 RPM. Next acryloyl chloride was added drop-wise with the solution placed 

in an ice bath at a molar ratio of 3.5:1. The reaction mixture was left stirring at room 

temperature for 12 hours. Precipitated triethylamine hydrochloride salt was removed by 

vacuum filtration in a separation flask. Distilled water at 20-fold excess was added to the 

reaction solution to precipitate the apigenin multiacrylate and it was subsequently 

refiltered. The powered apigenin was once again dissolved in DMSO and precipitated 

using 0.1 M K2CO3 to remove any potential unreacted acryloyl chloride. After the final 

wash step, the power was freeze-dried and stored at -20°C. Conversion of phenolic –OH 

groups was determined utilizing 1H-NMR, HPLC, and FT-IR.  

 

90 
  



Apigenin poly (β-amino ester) (PβAE): Two forms of apigenin PβAE were 

formulated: a highly cross-linked film and a dispersible oligomeric form. To formulate 

the PβAE film, a single-step addition polymerization of 50:50 wt% poly(ethylene glycol 

400 diacrylate) (PEG400DA) and apigenin multiacrylate with the primary diamine 

4,7,10-Trioxatridecane-1,13-diamine (TTD) was completed as previously published[188]. 

To formulate the oligomeric form, PEG400DA was first mixed with the secondary 

diamine N, N’-Dimethyl-1, 3-propanediamine (NNDA) at a total molar acrylate to amine 

ratio of 0.9:1 and allowed to react for 4 hours at 60°C. Following incubation, apigenin 

multiacrylate in DCM (100% by weight of apigenin multiacrylate) was added to make a 

final ratio of 80:20 wt% apigenin multiacrylate: PEG400DA and reacted for a further 12 

hours at 60°C. Polymerization was monitored through FT-IR, and molecular weight via 

GPC. 

6.2.2 Degradation of apigenin PβAE films 

To determine the activity of the pure PβAE polymer, films were placed in PBS (pH 

7.4) at 37°C for 48 hours. The resulting solution was then freeze-dried, weighed, and then 

dissolved in DMSO at known concentrations and stored at -20°C until further use in cell 

culture assays. 

 

6.2.3 Nanoparticle formulation and characterization 

Formulation: mPEG-PLA and apigenin/apigenin PβAE polymers were dissolved in 

acetone with 5% DMSO (10 and 5 mg/mL, respectively, 1 mL total). The mixture was 

added drop-wise to 20 mL of deionized water with mixing at 1000 RPM. Solvent was 

allowed to evaporate and the solution was filtered through a 1 µm filter and centrifuged at 
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40,000g for 15 minutes followed by resuspension in an appropriate buffer; either PBS or 

complete cell culture media. Nanoparticle recovery was determined using a PEG-barium 

iodide complex assay. Briefly, a known mass of nanoparticles were dissolved in 200 µL 

of 5 M NaOH for 4 hours at 80°C then neutralized with 5 M HCl. The solution was then 

mixed with barium iodide, the absorbance was determined at 550 nm, and this was then 

compared against PEG standards. 

 

Nanoparticle size: Particle size and polydispersity (PDI) was investigated using 

dynamic light scattering (DLS). After initial centrifugation, the nanoparticles were 

resuspended in PBS at 25°C at a concentration of 0.1 mg/mL then measured for size. 

 

Drug loading: To determine apigenin drug loading, nanoparticles were formulated 

above with a slight exception. After the initial centrifugation, the supernatant and 

nanoparticle mass were freeze-dried overnight, then dispersed in DMSO. The absorbance 

was then measured and compared against standards of pure apigenin at 270 nm. 

Encapsulation efficiency and drug loading was determined by the mass of drug in the 

nanoparticles compared to the total mass added: 

𝐸𝐸𝐹𝐹𝐹𝐹𝑉𝑉𝐸𝐸𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒𝑒𝑒𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉 =  
𝑀𝑀𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 𝑁𝑁𝐹𝐹𝐹𝐹𝐷𝐷 𝑉𝑉𝐹𝐹 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐸𝐸𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹
𝑇𝑇𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 𝑁𝑁𝐹𝐹𝐹𝐹𝐷𝐷 𝑉𝑉𝑁𝑁𝑁𝑁𝐹𝐹𝑁𝑁

∗ 100% 

𝐷𝐷𝐹𝐹𝐹𝐹𝐷𝐷 𝐿𝐿𝐹𝐹𝑉𝑉𝑁𝑁𝑉𝑉𝐹𝐹𝐷𝐷 =  
𝑀𝑀𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 𝑁𝑁𝐹𝐹𝐹𝐹𝐷𝐷 𝑉𝑉𝐹𝐹 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐸𝐸𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹

𝑇𝑇𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉 𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹𝐸𝐸𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉𝐹𝐹 𝑁𝑁𝑉𝑉𝐹𝐹𝐹𝐹
∗ 100%  
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6.2.4 In vitro drug release 

To determine the rate of release of apigenin and apigenin PβAE from the mPEG-PLA 

nanoparticles, the following approach was utilized. The nanoparticles were suspended in 

1 mL of PBS (pH 7.4) at 37°C at a concentration of 0.1 mg/mL and placed in a shaking 

water bath. At pre-determined time intervals, the nanoparticles were centrifuged at 

40,000g for 15 minutes, and the supernatant absorbance was measured at 270 nm. The 

buffer solution was then replaced with fresh buffer to maintain sink conditions. 

 

6.2.5 Cell culture 

All cell lines were cultured at 37°C with 5% CO2 and 95% humidity. Single donor 

human umbilical vein endothelial cells (HUVECs) were obtained from Lonza (St. 

Hopkinton, MA) and cultured in EGM-2 media (Lonza) supplemented with penicillin and 

streptomycin. HUVECs (passage 4 to 8) were seeded at a density of 50,000 cells/cm2 and 

cultured overnight in 12 or 24 well plates. Human breast adenocarcinoma cells, MDA-

MB-231, were obtained from ATCC (Manassas, VA) and cultured with Leibovitz’s L-15 

medium (ATCC) supplemented with 10% fetal bovine serum (FBS), penicillin, and 

streptomycin. MDA-MB-231’s were seeded at a concentration of 25,000 cells/cm2 for all 

adhesion studies. CellTracker Orange and Calcein AM were from Invitrogen Life 

Technologies (Grand Island, NY). TNF-α was obtained from Promega (Madison WI). 

Mouse anti-human VCAM-1 and DyLight 594 goat anti-mouse IgG antibody were 

obtained from Millipore (Billerica, MA). 
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6.2.6 Cell viability 

HUVECs were seeded as described above and grown to confluence. The cells were 

treated with either free apigenin, degraded apigenin PβAE (both in a final concentration 

of 1% DMSO, along with appropriate controls), or directly with nanoparticles for 24 

hours. Following this incubation period, the monolayers were washed once with media 

then viability was determined through the use of Calcein AM according to manufacturer 

protocols in a spectrophotometric plate reader. All treatment groups were compared to 

non-treated control cells. 

6.2.7 Determination of tumor cell adhesion in cell culture 

HUVECs were initially seeded in well plates as described above and grown to 

confluence. Cells were treated with the desired drug platform (free apigenin or apigenin 

PβAE with 1% DMSO) at various concentrations for 20 hours. After incubation, TNF-α 

at 10 ng/mL was added to induce inflammation for 4 hours. Following all treatments, 

HUVECs were stained using Calcein AM according to manufacturer protocols. In 

parallel, MDA-MB-231’s were trypsinized and stained with CellTracker Orange 

according to the manufacturer’s protocol. After staining, the MDA-MB-231’s were 

centrifuged and washed to remove excess dye, then diluted to working concentrations of 

25,000 cells/mL in HUVEC media. The media from the HUVECs was subsequently 

removed and replaced with MDA-MB-231-laden media and allowed to sit for 30 minutes 

to allow for adhesion to the cellular monolayer. After removing the media, HUVEC 

monolayers were then washed 3 times with fresh media to remove unbound tumor cells 

and the fluorescence of the bound MDA-MB-231 and HUVEC cells was measured 

(Calcein AM Ex/Em: 490 nm/ 520 nm, CellTracker Orange Ex/Em: 541 nm / 565 nm) 
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utilizing the fluorescent plate reader. Sample images were also obtained utilizing a 

fluorescent microscope. Tumor cell adhesion was determined against non-inflamed 

controls as a function of tumor cell fluorescence (TCf) by HUVEC fluorescence (Hf): 

 

𝑇𝑇𝐹𝐹𝑁𝑁𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉 𝑉𝑉𝑁𝑁ℎ𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 
𝐻𝐻𝑒𝑒 − 𝐻𝐻𝑒𝑒𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

∗ 100 

 

6.2.8 Time-dependent apigenin PβAE release in cell culture  

Apigenin PβAE nanoparticles were suspended into HUVEC media at a concentration 

of 1 mg/mL. This solution was then incubated in a sealed sterile container in an incubator 

at 37°C for 24, 48, or 72 hours. The nanoparticles were centrifuged and the apigenin-

containing media was utilized for the previously described tumor cell adhesion assay. 

Non-loaded nanoparticles and pure media were also subjected to these time course 

incubations as controls. 

6.2.9 Quantification of inflammation suppression 

HUVECs were seeded in well plates and grown to confluence. The cells were treated 

with free apigenin or nanoparticle formulations (unloaded, apigenin loaded, apigenin 

PβAE loaded) for 20 hours. Following this, the cells were washed once with media and 

TNF-α at a concentration of 10 ng/mL was added for 4 hours. Cells were fixed using cold 

2% paraformaldehyde in DPBS for 10 minutes. The primary antiICAM-1 antibody was 

then added and allowed to sit for 45 minutes. After thorough washing with DPBS, the 

secondary fluorescent antibody was added for 45 minutes and washed once more. CAM 

expression was measured via fluorescence in a spectrophotometer. 
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6.3 Results 

6.3.1 Characterization of apigenin multiacrylate 

Figure 6-1 outlines the reaction sequence of apigenin to apigenin multiacrylate. NMR 

analysis reveals the disappearance of phenolic –OH peaks at 4.2 ppm (Figure 1) in the 

acrylated form of apigenin, indicating successful conversion. The FT-IR spectra of both 

apigenin and apigenin multiacrylate reveal the formation of a characteristic ester peak at 

1740 cm-1, resulting from –C=O bonds (Figure 2). Analysis of multiacrylate injection in 

HPLC indicated over 80% conversion to the acrylate form (data not shown). 

6.3.2 Apigenin PβAE polymerization and characterization 

Using a single step Michael addition polymerization scheme resulted in a dispersible 

oligimeric form of apigenin (Figure 6-2). FT-IR analysis indicates the disappearance of 

the acrylate C=C bond at 1620 and 1670 cm-1, with preservation of the ester peak at 1740 

cm-1 (Figure 6-5). GPC confirms an average molecular weight of 2110 with 

approximately 5.4 mers per polymer unit.  
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Figure 6-1: Reaction schematic of apigenin to apigenin multiacrylate 

Apigenin reacts with acryoyl chloride in the presence of triethylamine to form apigenin 

multiacrylate. 
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Figure 6-2: Reaction schematic for creation of apigenin PβAE 

Apigenin reacts with NNDA to form a low molecular weight branched chain polymer. 
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Figure 6-3: 1H-NMR analysis of apigenin and apigenin multiacrylate  

Structure of apigenin and apigenin multiacrylate. Apigenin was reacted with acryloyl 

chloride and purified. NMR scan reveal the disappearance of the phenolic –OH groups at 

4.3 ppm, signifying successful conversion to acrylate groups. 
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Figure 6-4: FT-IR analysis of apigenin and apigenin multiacrylate 

Presence of the peak (dotted line) at ~1740 cm-1
 of apigenin multiacrylate is a 

characteristic signal of ester groups, signifying successful conversion of apigenin to 

apigenin multiacrylate 

 

Figure 6-5: FT-IR analysis of apigenin multiacrylate and the polymer apigenin 

PβAE 

The C=C peak at 1670 and 1620 cm-1, characteristic of acrylate groups, disappear 

indicating reaction with the diamine NNDA. The ester peak at 1720 cm-1 remains in the 

final PβAE polymer, indicative of successful polymerization. 
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6.3.3 Characterization of nanoparticle formulations and release profiles 

To formulate a delivery system for the highly hydrophobic apigenin and apigenin 

PβAE, a single-step nanoprecipitation method was utilized. Table 5.1 outlines the size, 

encapsulation efficiency, and final drug loading of each formulation. Blank mPEG-PLA 

nanoparticles were the smallest at 144.1 ± 13.5 nm. Pure apigenin-loaded particles were 

211.8 ± 20.8 nm with a final drug loading of 25 ± 1.8%. Apigenin PβAE-loaded particles 

were larger at 256.0 ± 9.3 nm, with a slightly reduced loading at 19.2 ± 2.0%.  

Outlined in Figure 6-6 are the release profiles of apigenin and apigenin PβAE from 

the mPEG-PLA nanoparticles. Apigenin-loaded nanoparticles exhibit a large and 

significant burst release within 4 hours of 54 ± 0.3%, a common occurrence for 

polymeric nanoparticles [250]. The apigenin-PβAE loaded nanoparticles however 

showed a marked suppression of this release, with only 35 ± 0.9% release within the first 

4 hours. 

 Pure apigenin-loaded nanoparticles nearly release their full payload (over 80%) after 

24 hours, whereas apigenin PβAE-loaded nanoparticles have released only 41% of their 

payload, and continue to steadily release for up to 120 hours.  

6.3.4 Evaluation of apigenin and apigenin PβAE toxicity and tumor suppression 

capability 

To evaluate whether apigenin or the degradation products of apigenin PβAE could 

protect inflamed endothelium from tumor cell adhesion, a well plate-based tumor 

adhesion model was developed. First, to find acceptable working concentrations of 

apigenin, the toxicity of apigenin was determined (Figure 6-6a). Extrapolating from the 
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viability data, a 4 Parameter Logistic (4PL) regression model was fitted. From the model, 

the 50% inhibitory concentration (IC50) was 88 µM, in range of toxicity defined in 

literature [251]. The onset of toxicity began at 50 µM. The degradation products of a 

50:50 PEG:apigenin PβAE had an onset of toxicity at an equivalent apigenin 

concentration of 27 µM, with an IC50 of 60 µM (Figure 6-6). The results indicate that the 

medication and degradation products associated with the apigenin PβAE do not result in 

potentially toxic byproducts. 

 Following this, HUVECs were incubated with 5, 10, and 20 µM of apigenin and the 

equivalent apigenin concentration of 10 and 20 µM from the PβAE degradation products, 

followed by treatment with TNF-α for 4 hours. It was observed that cells treated with 

TNF-α had over 82% more adhered tumor cells compared to cells without TNF-α 

treatment. This finding has been previously published by our group [252]. With each 

concentration of pure apigenin treatment, the tumor cell adhesion percentage reduced to 

background levels, with no statistical (P > 0.05) concentration dependence observed 

(Figure 6-7a). The degradation products of apigenin PβAE did exhibit a concentration-

dependent suppression effect, with 10 µM at 129 ± 7.0 % and 20 µM at 106 ± 5.1 % 

adhesion over uninflamed controls (Figure 6-7b).   

Additionally, cells treated with apigenin, but without TNF-α, showed no statistical 

effect (P > 0.05) on tumor cell adhesion possibly indicative of the anti-inflammatory 

mediated function of adhesion suppression. Due to this result, all further treatment 

experiments were done in the presence of TNF-α.  
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Table 6-1: Nanoparticle characterization summary. 

Pure apigenin-loaded particles show higher entrapment efficiency (EE), lower size, and 

drug loading (DL) efficiencies as compared to apigenin PβAE, possibly due to size 

differences between the monomer and polymer forms (N=3, M±SD). 

Drug-loaded  Size PDI EE DL 
Core   (nm)   (%) (%) 

Unloaded   144.1 ± 13.5 0.176 N/A N/A 
Apigenin  211.8 ± 20.8 0.412 49.0 ± 3.7 25.0 ± 1.8 

Apigenin PβAE   256.0 ± 9.3 0.299 38.4 ± 4.1 19.2 ± 2.0 
 

 

 

Figure 6-6: Nanoparticle in-vitro release profile 

Apigenin-loaded nanoparticles have a high burst effect, followed by near complete 

release after 24 hours. Apigenin PβAE-loaded nanoparticles by contrast exhibit a smaller 

burst release followed by a linear release profile up to 120 hours (N=3, M±SD). 
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Figure 6-7: Apigenin and apigenin PβAE degradation product toxicity 

(A) After 24 hours, the IC50 of apigenin is 88 µM, similar to previously published 

literature. (B) The degradation products of apigenin PβAE demonstrate an IC50 of 60 µM 

(N=3, M±SE). 
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6.3.5 Apigenin and apigenin PβAE nanoparticles retain tumor cell adhesion 
suppression capacity 

Drug-loaded nanoparticles ranging from 0.3 mg/mL to 5 mg/mL were suspended in 

HUVEC media and directly added to HUVECs without the addition of solubilization 

agents. A 4PL regression model was fitted to the toxicity plots. Apigenin and apigenin 

PβAE-loaded nanoparticles were determined to have IC50 values of 4.4 and 3.08 mg/mL, 

respectively. Blank nanoparticles showed no toxicity over 5 mg/mL (Figure 6-9a).By 

transforming the data to examine apigenin content only, the IC50 for apigenin is 855 µM 

compared to 395 µM for apigenin PβAE (Figure 6-9b). Apigenin-loaded nanoparticles 

retain their anti-inflammatory effect and suppress tumor cell adhesion, as observed in its 

free form. At a nanoparticle concentration of 0.25 mg/mL a maximum suppression is 

seen at 118 ± 9.4% adhesion over unstimulated controls (Figure 6-10). At 0.5 and 1 

mg/mL an unexpected increase of adhesion is observed. Correlating the dosage to the 

toxicity plot, we observe the onset of toxicity coinciding at 0.5 mg/mL. Apigenin PβAE 

nanoparticles show a similar trend with a maximum suppression at 0.5 mg/mL (117 ± 

14.1%). The higher dosage required is due to the combination of lower loading (19.2% 

versus 25%) along with the polymer composition (80% apigenin multiacrylate:20% PEG)  

Blank nanoparticles show no statistical effect (P > 0.05) on tumor cell adhesion, again 

confirming the therapeutic activity to come from the apigenin payload. 
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Figure 6-8: Apigenin and Apigenin PβAE tumor cell suppression activity: (A) Pure 

apigenin suppressed tumor cell adhesion to non-stimulated control levels. Apigenin also 

does not elicit further suppression response in HUVECs not treated with TNF-α. (B) 

Apigenin PβAE products still retain suppression activity after degradation. (C) 

Fluorescent micrographs of tumor cell adhesion. (Top) Calcein AM stained unstimulated 

HUVECs with cell tracker orange MDA-MB-231 tumor cells. (Middle) TNF-α treated 

cells show a marked increase in tumor cell adhesion. (Bottom) Apigenin treated cells 

reduce adhesion levels to background. (*p < 0.05, N=3, M±SE). 
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Figure 6-9: Apigenin and apigenin PβAE nanoparticle toxicity profile 

(A) Blank nanoparticles show no toxicity up to 5 mg/mL whereas apigenin and apigenin 

PβAE nanoparticles have IC50 values of 4.4 mg/mL and 3.08 mg/mL respectively. (B) 

Both apigenin and apigenin PβAE-loaded nanoparticles have an order of magnitude 

higher toxicity than their free form counterparts (855 µM and 395 µM respectively) 

(N=3, M±SE). 
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6.3.6 Extended release of apigenin PβAE nanoparticles provides potential long 
term tumor cell adhesion suppression 

Apigenin PβAE-loaded nanoparticles demonstrated continual release over a 120 hour 

period. To test the hypothesis that these nanoparticles would release the active compound 

over this time frame they were incubated in media at 37°C for up to 72 hours. The 

supernatant, containing released apigenin was then utilized directly. The apigenin PβAE-

loaded particles continued to show increasing levels of activity over time. At 72 hours, 

tumor cell adhesion decreased from 181 ± 6% to 123 ± 12% (Figure 6-11a). 

Extrapolating from the release curves, at 72 hours, approximately 67% of the drug 

payload was released, correlating with suppression levels of direct nanoparticle treatment 

at 0.5 mg/mL. In order to rule out the possibility of suppression due to other factors, 

blank nanoparticles and media were incubated for the same time frame and tested, with 

no statistical difference in suppression (Figure 6-11b). 

6.3.7 Evaluation of inflammatory intracellular adhesion molecule (ICAM-1) 

expression 

Cells treated with TNF-α at a 10 ng/mL concentration for 4 hours had an elevated 

level of ICAM-1 expression, 202 ± 25% above untreated cells. Treatment with pure 

apigenin at 10 µM reduced ICAM-1 levels to 65 ± 8.5%. The nanoparticle therapies of 

apigenin and apigenin PβAE reduced expression levels to 80 ± 9.3% and 97 ± 16% of 

unstimulated controls. The unloaded nanoparticles demonstrated no therapeutic efficacy 

(Figure 6-12). 
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Figure 6-10: Apigenin and apigenin PβAE nanoparticle tumor cell suppression 

activity 

Both forms of nanoparticles demonstrate similar suppression activity whereas blank 

nanoparticles have no effect. Apigenin PβAE nanoparticles show a shifted suppression 

ability due to lower overall loading. After the onset of toxicity higher levels of tumor cell 

adhesion are recorded. Dotted line indicates level of tumor cell adhesion in TNF-α 

activated controls (*p < 0.05, N=3, M±SE).  
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Figure 6-11: Long-term release of apigenin PβAE and tumor suppression activity  

(A) Apigenin PβAE nanoparticles have a time-dependent activity due to their long-term 

release profile. (B) Blank particles and pure media show no statistically significant 

suppression ability. Dotted line indicates level of tumor cell adhesion in TNF-α 

stimulated controls (*p < 0.05, N=3, M±SE).  
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6.4 Discussion 

As mentioned previously, the anti-inflammatory [253] and antioxidant [254] activity 

of naturally-derived flavones provides a promising in vitro treatment avenue and these 

materials are applicable in many types of injuries [255] and disease states [256]. Despite 

this, using flavones as a therapeutic regime has been plagued by issues translating to in 

vivo work due to, in part, by poor solubility, stability, and pharmacokinetics. To address 

the issue of stability we have developed a non-free radical-based polymerization scheme 

for antioxidants and anti-inflammatories such as quercetin, curcumin, and apigenin. In 

their polymeric form these compounds are protected from premature oxidation, and 

through careful selection of commonly used reagents in the reaction process, can achieve 

desirable delivery rates following degradation. The new apigenin-based PβAE polymer 

outlined in this work has been shown to retain activity after complete degradation. 

The degradation products of apigenin PβAE do not, however, retain the full activity. 

The possible explanation for this could be that the degradation products do not fully 

regain their anti-inflammatory properties, either due to incomplete degradation of the 

PβAE chains or apigenin  
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Figure 6-12: Inflammatory CAM expression in HUVECs 

Both pure apigenin and nanoparticle formulations significantly reduce ICAM-1 

expression in TNF-α treated HUVECs. Blank nanoparticles provide no therapeutic 

benefit. Dotted line indicates level of tumor cell adhesion in TNF-α activated controls (*p 

< 0.05, N=5, M±SE).  
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multiacrylate to apigenin. This phenomenon has been observed in a previous publication 

utilizing antioxidant PβAE polymers [188]. Most interestingly is that our experiments 

demonstrate that apigenin has no tumor cell adhesion suppression effect in uninflamed 

endothelial cells, lending credence to the link between inflammation, tumor metastasis, 

and the ability of flavones to suppress cell adhesion. 

To formulate a delivery system for the highly hydrophobic apigenin and apigenin 

PβAE, a single-step nanoprecipitation method was utilized. By encapsulating apigenin 

and the apigenin PβAE into a nanoparticle formulation, we can confer advantageous drug 

delivery properties, such as increased solubility, controllable release, and improved 

pharmacokinetics through the masking of PEG moieties. The developed nanoparticles 

range in size between 200-250 nm, which is within the generally accepted size to 

encourage cellular uptake and internalization [257], with drug loading rates of up to 25%. 

 Initial cell culture results indicate an order of magnitude decrease in the toxicity 

between free apigenin and encapsulated apigenin in particle form (80 µM versus 855 µM, 

respectively). This marks an order of magnitude lower threshold of toxicity, due to the 

longer term drug release and protection inside a normally inert nanoparticle, compared to 

a large bolus application in the free drug form. Also, the unloaded nanoparticles 

demonstrated no toxicity up to 5 mg/mL, indicative that the toxicity of these 

nanoparticles stems solely from the loaded drug. 

Our toxicity model suggests the apigenin PβAE nanoparticles exhibit slightly higher 

toxicity (400 µM), possibly due in part to impurities from unreacted amines during 

polymer formulation. However, both formulations retain their adhesion suppression 

potential. Interestingly, at the highest concentrations of both formulations, the tumor cell 
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adhesion increases. We believe that at this dosage, the toxic effects begin to overcome the 

anti-inflammatory benefits provided by apigenin. This toxicity at high concentrations has 

been observed with our previous antioxidant work [45].  While apigenin PβAE 

nanoparticles required a higher incubation concentration to achieve the same effect as 

apigenin, it is important to note that the active drug loading content is 41% lower. 

Comparing the release kinetics of apigenin and apigenin PβAE nanoparticles, we 

observe the most notable trend. Pure apigenin-loaded particles released the majority of 

their payload within 18-24 hours, with a significant burst release effect within the first 

hour, a common characteristic with PLA/PLGA based systems [258]. In the scenario of 

the apigenin PβAE-loaded nanoparticles, a less pronounced burst release is seen, 

followed by a sequential linear release for up to 120 hours, a stark contrast from the free 

form of apigenin. It is theorized that the diffusion out of the particles is hindered due to 

the higher molecular weight of the PβAE. However, it is unclear at this time whether the 

enhanced release is due to the possibility of PβAE release then subsequent degradation to 

active apigenin in solution or if the PβAE is degrading within the nanoparticle, followed 

by diffusing outwards. 

To evaluate the potency of this longer term release mechanism, the nanoparticles 

were incubated in media at normal cell culture conditions over a 72 hour period of time. 

The particles were then separated from the therapeutic-containing media and cells were 

dosed with this media. Our results show time-dependent release results with a decrease in 

tumor cell adhesion. After 72 hours, cell adhesion is reduced to nearly background levels 

(123 ± 12%). Correlating the previous release data with the time-dependent suppression 

potential, there is a strong correlation with the whole nanoparticle incubation results. This 
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points to a potentially viable drug delivery platform that could provide a long circulating 

and releasing therapeutic to inhibit inflammation-mediated cancer metastasis. 

Lastly, in order to derive a link between inflammation and tumor cell adhesion, we 

examined the expression levels of the inflammatory marker ICAM-1. As expected, we 

observe a pronounced increase in expression levels of HUVECs treated with TNF-α. 

Cells treated with pure apigenin do demonstrate the highest level of CAM and tumor cell 

adhesion suppression, however a viable treatment utilizing the compound alone would 

prove difficult at best, for reasons explained previously. The apigenin and apigenin PβAE 

loaded nanoparticles also significantly reduce ICAM-1 expression, down to lower than 

constitutive expression in fact, while also retaining the ability to inhibit tumor cell 

adhesion with a higher toxicity threshold, and a demonstration of enhanced release 

properties with the apigenin PβAE nanoparticles. Figure 6-13 links the correlation to 

ICAM-1 expression and tumor cell adhesion suppression. We see that for each 

therapeutic treatment, a near linear relationship is formed, while leaning slightly on the 

side of higher ICAM-1 suppression. These results suggest a link between the two 

properties, and further strengthens the discussion of links between metastasis and 

inflammation.  

6.5 Conclusions 

This work has demonstrated that a novel flavone-based polymeric nanoparticle 

system can be used to provide the extended release of active anti-inflammatory 

compounds. These nanoparticles have been shown to inhibit tumor cell adhesion to 

inflamed endothelial cells through the delivery of viable apigenin. Future work in the 

development of targeted nanoparticles through the use of targeting peptides or antibodies 
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can potentially enhance the ability to suppress inflammation exclusively at sites of 

interest, such as localized chemotherapy or surgical sites.  
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Figure 6-13: Tumor cell adhesion verses ICAM-1 expression 

Analysis of therapeutic treatment options demonstrates a near linear link between ICAM-

1 expression levels and the ability for tumor cells to firmly adhere to the HUVEC 

monolayer surface. (N = 3 for x: 5 for y, M±SE)  
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Chapter 7. Conclusions 
 

In this work, we have developed antioxidant polymers and delivery systems to create 

practical therapeutics to treat a variety of injuries and diseases. Initially, we have utilized 

nanoparticles of our novel antioxidant polymer, poly(trolox), and modified their surfaces 

with monoclonal antibodies. This surface-modification allows for the nanoparticles to be 

directed to sites of interest. To use this therapeutic in a practical application, we 

investigated the toxicity associated with iron oxide nanoparticles. These particles are 

currently being used as MRI contrast agents, drug delivery devices, and chemotherapy 

adjuvants. Although these nanoparticles have been regarded as non-toxic, a growing body 

of evidence has pointed towards toxicity stemming from free radical generation and 

oxidative stress. 

We first created antibodies directed towards platelet endothelial cellular adhesion 

molecules, a constitutive protein expressed primarily in vascular endothelial cells. These 

PTx adhered and internalized specifically to HUVECs and it was found to suppress the 

damaging effects of iron oxide nanoparticles. Not only did PTx reduce levels of free 

radicals, but it also fully recovered cell viability. 

In order to understand the link between oxidative stress and injury further, we 

employed PTx again in an in vivo model. By utilizing an inflammation-mediated arthritis 

injury in mice, we could further elucidate the connection between inflammation, 

oxidative stress, and disease. It was found that PTx did not have any apparent effect on 

the arthritic injuries in mice. However, we did observe a significant recovery of 

antioxidant capacity and suppression of protein carbonyl content, a marker for oxidative 

stress and injury. In addition, PTx also suppressed cytokine expression known to be 
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associated with oxidative stress. Further study will be required to tease out the connection 

to injury and discrepancy between physical and chemical cues.   

With the link between metastasis potential and inflammation well-established, we 

hypothesized that our polymers could be used to inhibit the progression of cancer. In our 

final study, we utilized our unique poly(beta-amino ester) chemistry to develop a long 

term delivery system of anti-inflammatory polymers.  

Linear chain polymers of apigenin were encapsulated in mPEG-PLA to form a 

biocompatible polymer capable of delivering active apigenin over a 72 hour period. 

These PβAE particles were less toxic and deliverable at higher dose compared to the 

extremely hydrophobic native apigenin. It was found that these apigenin PβAE 

nanoparticles were able to inhibit the ability of highly metastatic tumor cells to adhere to 

healthy vascular cells. The long term release component also allows for continual 

therapeutic dosing for the entire course of the natural inflammation cascade.   

By demonstrating that antioxidant polymer therapy can be utilized to treat relevant 

injuries and diseases, we come one step closer to realizing far reaching clinical 

applications.    
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APPENDIX 
Based on the research article:  

Mo Dan, David Cochran, Robert Wydra, Robert Yokel, Thomas Dziubla. “Binding, 
transcytosis, and biodistribution of anti-PECAM-1 iron oxide nanoparticles for brain-
targeted delivery” PLOS ONE. 

 

Introduction 

Multifunctional superparamagnetic iron oxide nanoparticles (IONPs) have various 

applications, such as diagnosis and therapy of the central nervous system (CNS) [259, 

260]. For example, IONPs have drawn increasing attention as T2 magnetic resonance 

imaging (MRI) contrast agents to evaluate blood-brain barrier dysfunction related to 

tumors and other pathologies such as stroke and carotid atherosclerosis in clinical and 

preclinical studies [261, 262]. Multifunctional IONPs also provide the possibility to 

deliver therapeutic agents to the brain and concurrently monitor their tissue distribution 

using MRI [263, 264]. One of the challenges for CNS applications of IONPs is the ability 

to cross the highly restricted blood-brain barrier (BBB).  Previous research has suggested 

evidence of IONP flux across the BBB by analyzing whole brain concentration. 

However, there have been no reports distinguishing between IONPs in the brain vessels 

and BBB cells [265], or therapeutic efficacy of co-delivered compounds in animal 

models of brain tumors [266]. To advance the potential applications of multifunctional 

IONPs in the CNS, there is an urgent need to understand how they associate with, and 

transcytose across, the BBB in vitro and in vivo. 

Brain capillary endothelial cells cooperate with pericytes, astrocytes, and neurons to 

generate and maintain the unique barrier properties of the BBB. The BBB plays a crucial 
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role in safeguarding the brain from endogenous and exogenous compounds, which 

includes most therapeutics [267]. A recent study evaluated the uptake and flux of IONPs 

using human brain-derived endothelial cells. IONP flux without targeting moieties on the 

surface was very limited under normal conditions [268]. A promising strategy to enhance 

IONP flux across the BBB is to use a BBB targeting moiety. Platelet-endothelial cell 

adhesion molecule (PECAM-1) (CD31) is a member of the immunoglobulin superfamily 

that is constitutively expressed on endothelial cell membranes and is involved in 

transcytosis of activated leukocytes across the BBB in neuroinflammation [269-271]. 

Furthermore, significant upregulation of PECAM-1 in neuroinflammation provides a 

potential to target the CNS for the treatment of neurological conditions such as stroke and 

brain tumor [271]. Pure PECAM-1 antibody has been shown to target the endothelial 

lumen, but does not internalize into endothelial cells [195]. However, anti-PECAM-1 

coated nanocarriers can enter the endothelial cells through a unique vesicular 

internalization pathway,  [190]. Anti-PECAM-1 antibodies conjugated to diverse 

therapeutic cargoes and nanocarriers provided robust intracellular drug delivery into 

endothelial cells [183]. However, how anti-PECAM-1 nanocarriers associate with and 

traffic across the BBB, one of the most important endothelial cell barriers, still needs to 

be defined.  

We hypothesized that PECAM-1 antibody will increase IONP BBB association, 

trafficking across the BBB, and change its distribution profile in vitro and in vivo. In this 

study, we characterized anti-PECAM-1 IONPs for size, adhesion to immortalized human 

brain capillary endothelial (hCMEC/D3) cells, and stability in blood.  We investigated the 

association, and flux across the BBB over 6 hours, of anti-PECAM-1 IONPs using 
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hCMEC/D3 cells. Furthermore, anti-PECAM-1 IONP brain accumulation and 

biodistribution in peripheral organs were studied in Sprague Dawley rats. The capillary 

depletion method was used to test anti-PECAM-1 IONP in vivo distribution between the 

BBB endothelial cells and brain parenchyma. The results of this study demonstrate the 

potential of anti-PECAM-1 IONPs to target and transcytose across the BBB and enter 

into the brain parenchyma, providing valuable insight into the feasibility of anti-PECAM-

1 IONP as a brain targeting MRI contrast agent and/or drug delivery system for CNS.  

Materials and Methods 

Ethics Statement 

This study used 21 male Sprague-Dawley rats, weighing 300 ± 25 g (mean ± SD), 

that were housed individually prior to study in the University of Kentucky Division of 

Laboratory Animal Resources Facility. Animal work was approved by the University of 

Kentucky Institutional Animal Care and Use Committee (Protocol 2008-0272).  The 

research was conducted in accordance with the Guiding Principles in the Use of Animals 

in Toxicology. 

Reagents 

Mouse anti-human anti-PECAM-1 was created and purified in house through the use 

of a hybridoma cell line (P2B1) purchased from the Developmental Studies Hybridoma 

Bank (Iowa City, IA). For in vivo studies, a mouse anti-rat anti-PECAM-1 (Clone TLD-

3A12) was purchased from Millipore (Billerica, MA). Nonspecific mouse IgG was from 

Jackson Immuno (West Grove, PA). Na125I was purchased from Perkin Elmer (Boston, 

MA). All other reagents were from Sigma-Aldrich (St. Louis, MO). 
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Iron oxide nanoparticle synthesis 

IONPs were synthesized using a previously reported method [166]. Briefly, ferric 

chloride hexahydrate (Fe3+) and ferrous chloride tetrahydrate (Fe2+) were dissolved in 

deionized water (Fe3+ :Fe2+ = 2:1), followed by adding ammonium hydroxide dropwise 

under an N2 atmosphere at 85 ºC. After 1 h, the solution was placed on a magnet to 

collect black brown particles, which were washed repeatedly using pure ethanol [189, 

272]. IONPs were dried overnight in a vacuum drying oven. Properties, such as size and 

zeta potential of the IONPs, were determined in our laboratories. All of the methods have 

been previously reported [273]. 

Protein iodination for antibody tracing  

IgG and the anti-PECAM-1 antibody were labeled with Na125I using the Iodogen 

method. In brief, 100 µg of antibody was mixed with 15 µCi of Na125I for 5 minutes in 

glass tubes coated with Iodogen reagent. Following the reaction, the now-labeled protein 

was purified using Bio-Rad Labs packed spin columns (Hercules, CA). The extent of 

iodination was determined by protein precipitation followed by analysis of radioactivity 

in the pellet and supernatant [274]. 

Preparation and characterization of antibody-modified iron oxide surfaces 

Iron oxide nanoparticles were suspended in PBS and sonicated with a probe sonicator 

at a power output of 10 W for 1 minute, then transferred to a sonication bath for 30 

minutes prior to surface coating. To couple anti-PECAM-1 or IgG antibody to iron oxide 

nanoparticles, a physioabsorption technique was employed. Either anti-PECAM-1 or IgG 

antibodies were incubated with the nanoparticles at a solution concentration equivalent to 
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10,000 antibodies/µm2 particle surface area, 1.2 times the theoretical monolayer coating 

based on antibody size and particle surface area. Radiolabeled anti-PECAM-1 or IgG in 

PBS was added to the suspended nanoparticles and incubated for 1 hour at 25°C. 

Particles were washed 3 times by centrifugation for 30 minutes at 22,000g and suspended 

in 1% BSA-PBS. The antibody was traced in both supernatant and pellets using a 

PerkinElmer 2470 Automatic Gamma Counter to determine the extent of surface 

coverage. 

Antibody-modified iron oxide nanoparticle stability in blood 

To determine coating stability in vivo, particles were incubated in heparin-treated 

whole rat blood at 37°C for 24 h at equivalent concentrations utilized in vivo (blood to 

nanoparticles, 0.015 mg/ml). At pre-determined time points, aliquots of whole blood were 

centrifuged and separated from the nanoparticles and analyzed on the gamma counter.  

Cell lines and culture conditions 

Immortalized human brain capillary endothelial cells (hCMEC/D3) were obtained 

under license from INSERM, France. The cells were maintained in endothelial growth 

medium-2 supplemented with 2.5% fetal bovine serum, 1% penicillin and streptomycin, 

0.1% fibroblast growth factor, 0.01% hydrocortisone and 0.025% vascular endothelial 

growth factor, insulin-like growth factor and endothelial growth factor, under 37°C and 

5% CO2. Cells were passaged into collagenated culture flasks every 3-4 days when they 

reached approximately 85%-95% confluence [275-277]. 

PECAM-1 antibody binding affinity to the human brain endothelial cell line 

hCMEC/D3 
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hCMEC/D3 cells were seeded on 36 well plates at a density of 50,000 cells/cm2. They 

were incubated with serial dilutions from 0.78 to 100 nM of 125I anti-PECAM-1 or 125I 

IgG antibodies for 2 h (n = 3). Donor chamber supernatant was collected and the cells 

were washed 3 times with PBS at 4 °C. The hCMEC/D3 monolayer was lysed with 1% 

Triton X-100 in 1.0 N NaOH. The cell lysate and supernatant (including the washing 

solution) radioactivity were measured using a Wallac 1470 Wizard™ gamma counter. 

Bmax and Kd were calculated using GraphPad Prism (GraphPad Sofware, San Diego, CA, 

USA). 

Anti-PECAM-1 IONP binding and flux using the human brain endothelial cell line 

hCMEC/D3 in vitro BBB model 

hCMEC/D3 cells were seeded on type I collagen pre-coated 6 well Transwell filters 

(polycarbonate 12 mm, pore size 3.0 µm) at a density of 50,000 cells/cm2. Flux assays 

were performed 7-10 days after seeding [275, 276]. The tightness of the hCMEC/D3 

monolayer was measured as transepithelial electrical resistance (TEER) using a 

RMA321-Millicell-ERS voltohmmeter (Millipore Corp, Billerica, MA). To monitor flux 

through the paracellular pathway, lucifer yellow (LY, 100 µM) was added to the medium 

on the donor side of the cells. Samples of the medium from the donor chamber were 

collected at time zero and from the receiving chamber hourly for 6 h for LY 

concentration analysis. Fluorescence was determined in SpectraMax M5 Multi-Mode 

Microplate Reader (Molecular devices, Sunnyvale, CA) at λex\λem = 450/530 nm and 

compared with a standard of LY in endothelial growth medium-2. 

Anti-PECAM-1 and IgG IONPs were introduced into the donor chamber at  0.05 

mg/mL, as used in our previous cytotoxicity study on IONPs [273]. Samples (100 µL) 
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were collected from  the donor chamber at time 0 and the receiving chamber hourly for 6 

h for iron concentration analysis by inductively coupled plasma mass spectrometry (ICP-

MS) (Agilent 7500cx, Santa Clara, CA, USA). The donor chamber was removed and the 

cells washed 3 times using PBS at 4 °C. The hCMEC/D3 monolayer was lysed with 1% 

Triton X-100 in 1.0 N NaOH. Iron concentration in the cell lysate and supernatant 

(including washing solution) were measured using ICP-MS. Flux rates of LY and 

nanoparticles were calculated by linear regression for the first 6 h. Two-way ANOVA 

followed by Bonferroni multiple comparisons was used to test for significant flux 

differences among the treatment groups and times using GraphPad Prism (GraphPad 

Software, San Diego, CA).  Statistical significance was accepted at p < 0.05.  

Brain targeting and biodistribution by anti-PECAM-1 IONPs 

Antibody-coated iron oxide nanoparticles were prepared similarly as before with one 

exception. Both anti-PECAM-1 and IgG coated particles were incubated with 5% 125I 

labeled IgG at a concentration of 10 mg/kg. This was done to prevent any detached 

labeled antibody from accumulating in the vasculature, thus providing a false positive for 

adhesion. Carotid artery injection was employed to delivery 10 mg/kg 125I anti-PECAM-1 

IONPs (n = 3) and 125I IgG IONPs (n = 3). Briefly, the rat was anesthetized under 

ketamine/xylazine anesthesia (75 and 5 mg/kg), and its left carotid artery exposed. 

Following ligation of the external carotid, occipital and common carotid arteries, PE60 

tubing containing heparin (100 U/ml, in 0.9% NaCl) was inserted into the common 

carotid. The 10 mg/ml 125I anti-PECAM-1 IONPs and 125I IgG IONPs were injected at 1 

ml per min at a dose of 10 mg/kg. All the rats were sacrificed 10 min after infusion. The 

brain was harvested and cleaned of meninges and surface vessels. Blood and organs such 
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as the liver, spleen and lung were collected for biodistribution analysis using the gamma 

counter .The results were compared between 125I anti-PECAM-1 and 125I IgG IONPs 

using t-test or one-way ANOVA. The localization ratio (LR) was calculated as the 

percent of the injected dose per gram of tissue divided by percent of the injected dose per 

gram of blood. The specificity index was calculated as the LR of the targeted formulation 

(anti-PECAM-1 IONPs) divided by the non-targeted counterpart (IgG IONPs). The 

specificity index indicates specific targeting to organs, normalized by organ weights and 

the faction contained in blood [278]. One-way ANOVA followed by Tukey’s test was 

used to test for significant differences of IgG IONP and anti-PECAM-1 IONP 

biodistribution among different organs. All results are reported as mean ± SD. Statistical 

significance was accepted at p < 0.05.  

BBB integrity assessment 

Five minutes before termination, the rat was given 6 mg Na fluorescein (334 Da)  i.a. 

in 1 ml saline over 40s as a BBB permeability marker. Postmortem brain cortex was 

obtained to quantify fluorescein content. Fluorescence was determined in a SpectraMax 

M5 Multi-Mode Microplate Reader (Molecular devices, Sunnyvale, CA) at λex\λem = 

493/514 nm. The results among control, IgG IONP, and anti-PECAM-1 IONP groups 

were compared using one-way ANOVA (GraphPad Software, San Diego, CA). 

Anti-PECAM-1 IONP distribution between the BBB endothelial cells and brain 

parenchyma using the capillary depletion assay 

The capillary depletion method was used to separate brain parenchyma from capillary 

tissue [279, 280]. After a 10 mg/kg anti-PECAM-1 IONP injection in 1 ml over 1 min, a 
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20 s washout was conducted using PBS at a flow rate of 20 ml/min immediately before 

decapitation [281]. The forebrain from the left hemisphere was isolated from 125I anti-

PECAM-1 IONP and 125I IgG IONP treated rats (n = 3) and the lateral ventricle choroid 

plexus in the perfused hemisphere removed. The tissue was homogenized in 3.5 ml of 

buffer containing 141 mM NaCl, 4 mM KCl, 2.8 mM CaCl2, 1 mM NaH2PO4, 1 mM 

MgSO4, 10 mM glucose and 10 mM HEPES at pH 7.4. Dextran (70,000 g/mol) was then 

added to 18% (w/v) and the sample further briefly homogenized. After centrifugation at 

5400 x g for 15 min at 4 ºC, the supernatant (brain rich fraction) and pellet (capillary rich 

fraction) were carefully separated for measurement of 125I by gamma counter. The 

percentage of the forebrain 125I in the capillary rich fraction is as follows: 

�
𝑀𝑀𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 125𝐼𝐼 𝑉𝑉𝐹𝐹 𝐹𝐹𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉 𝐹𝐹𝑉𝑉𝐹𝐹ℎ 𝑒𝑒𝐹𝐹𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹

𝑀𝑀𝑉𝑉𝐹𝐹𝐹𝐹 𝐹𝐹𝑒𝑒 125𝐼𝐼 𝑉𝑉𝐹𝐹 𝐹𝐹𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉 𝐹𝐹𝑉𝑉𝐹𝐹ℎ 𝑒𝑒𝐹𝐹𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉 𝑁𝑁𝐹𝐹𝐸𝐸𝑉𝑉𝐹𝐹𝑉𝑉𝐹𝐹𝑁𝑁 𝑒𝑒𝐹𝐹𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹
� ∗ 100 

 

The apparent permeability coefficient  

The apparent permeability coefficient (Papp, cm/s) of LY, IgG IONPs and anti-

PECAM-1 IONPs was calculated using GraphPad Prism. The first 6 h flux data were 

used with R2 cutoff > 0.8. The Papp in (cm/s) was calculated using the equation: Papp = 

(ΔQ/Δt)/(area*CD) [282]. ΔQ/Δt is the linear appearance rate obtained from the profile of 

the transported amount of the substrate against time (mg/s). CD is the initial donor 

concentration of LY or nanoparticles (mg/mL). Area is the surface area of the cell 

monolayer (4.67 cm2 for a 6-well plate).  

Results 
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Anti-PECAM-1/IgG coating efficiency 

After removal of unbound antibody, the surface coverage was determined to be 63.6 

± 8.4% (Figure 1A). Based on the primary nanoparticle size of 80 nm (Figure 1B), this 

corresponds to 19.1 µg antibody/mg of nanoparticle or 105 antibody 

molecules/nanoparticle. DLS measurements showed the size increased from 80 nm to 130 

nm after addition of anti-PECAM-1 (Figure 1B), indicating uniform coating with slight 

aggregation, as the antibody size is ~15 nm in length. The zeta potential of the 

nanoparticles decreased from -10 to -8 mV (Figure 1C). 

Stability of antibody-coated iron oxide nanoparticles in whole blood 

Because anti-PECAM-1 IONPs and IgG IONPs were prepared by surface antibody 

adsorption, their stability in blood is very important for in vivo study. The 125I labeled 

IgG antibody exhibited minimal detachment from nanoparticles for up to 4 h at 37°C. At 

4 h, only 6.4 ± 1.2% of labeled antibody was detected in the heparin-treated blood after 

centrifugation. Between 4 and 24 h this increased to 46.2 ± 9.5%, likely due to the 

antibody on the nanoparticle surface being replaced with higher affinity serum proteins 

(Figure 2). The insignificant coating loss over 4 h suggests these nanoparticle 

modifications will stay stable throughout the circulation life and time frame of in vivo 

experiments.  

PECAM-1 binding affinity to the human endothelial cell hCMEC/D3 

hCMEC/D3 is a human BBB cell line developed in 2005. Previous research showed 

that it expressed PECAM-1 [277]. However, the binding affinity between hCMEC/D3 

and PECAM-1 antibody was not known. Figure 3 shows that anti-PECAM-1, but not 
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non-specific control IgG, adhered specifically to the BBB cell model. The predicted 

antibody saturation (Bmax) was determined to be 16.94x105 molecules/cell, with a binding 

constant (Kd) of 32 nM, which is relatively low compared with a designed PECAM-1 

antibody (a paired monoclonal antibody) for vascular targeting, with reported affinities 

between 0.5-5 nM [283]. However, previous research showed that relatively low affinity 

antibodies boost brain uptake by transcytosis targeting [284].  In the next experiment, 

anti-PECAM-1 IONP flux across the human endothelial cell hCMEC/D3 was tested. 

CNA-IONP flux and cell association using a hCMEC/D3 in vitro BBB model 

The TEER of the hCMEC/D3 in vitro BBB model (Figure 4) was tested every other 

day after the cells were seeded. After 7-10 days, the resistances were > 90 Ω/cm2, similar 

to previously reported [275]. The permeability coefficient of LY, the indication of 

paracellular flux, was 2.9 ± 0.2 x 10-6 cm/s.  

Anti-PECAM-1 IONP flux was significantly higher than anti-IgG IONPs and LY 

from 3 h to 6 h. The permeability coefficient after 6 hours of anti-PECAM-1 IONPs was 

6.7 ± 0.2 x 10-6 cm/s, versus 4.8 ± 0.2 x 10-6 cm/s for IgG IONPs, and 2.9 ± 0.2 x 10-6 

cm/s for LY (Figure 5A). After 6 h, 30% of anti-PECAM-1 IONPs was in the receiving 

chamber and ~ 45 % of anti-PECAM-1 IONPs was associated with the hCMEC/D3 cells, 

significantly higher than IgG IONPs (Figure 5B). PECAM-1 antibody significantly 

enhanced the flux of IONPs across the hCMEC/D3 monolayer in vitro.  In the next 

experiment, anti-PECAM-1 IONP brain targeting, accumulation, and biodistribution were 

studied using Sprague Dawley rats.  
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Anti-PECAM-1 IONP association and biodistribution in brain and peripheral 

organs 

Using 125I tracing, we tested anti-PECAM-1 IONP targeting ability to brain and 

peripheral organs. As shown in figure 6A, the % dose per mL of blood in anti-PECAM-1 

IONP treated rats was significantly lower than IgG IONP treatment, suggesting increased 

removal from blood and enhanced tissue accumulation. Ten min after infusion, 0.11 ± 

0.01 % of the anti-PECAM-1 IONPs dose was associated with each gram of brain, which 

was significantly higher than anti-IgG IONPs (Figure 6B). The specificity index (the ratio 

between targeted and non targeted control) was calculated to test the anti-PECAM-1 

IONPs brain targeting ability. Anti-PECAM-1 IONPs specificity in the brain was 5-fold 

higher than with IgG IONPs (Figure 6C). PECAM-1 targeting did not change anti-

PECAM-1 IONP distribution in liver and spleen compared with IgG. However, anti-

PECAM-1 IONP accumulation was significantly increased in the lungs (Figure 7).  

Effect of Anti-PECAM-1 IONPs on blood-brain barrier integrity  

Since anti-PECAM-1 IONP brain association was significantly increased, it was 

important to determine whether that changed the BBB permeability. Ten min after anti-

PECAM-1 IONP injection the concentration of the BBB permeability marker, 

Fluorescein in the brain, did not change significantly compared with the control and IgG 

IONP groups (Figure 8).  

Anti-PECAM-1 IONP distribution between brain capillary cells and brain 

parenchyma  
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For brain delivery systems, determination of whether or not they can enter the brain 

parenchyma is crucial. Our permeability results showed that anti-PECAM-1 IONPs did 

not alter BBB permeability. Understanding the anti-PECAM-1 IONP distribution 

between the brain capillary cells and parenchyma would provide evidence for 

transcellular flux. The capillary depletion results showed that 10 min after infusion, 82 ± 

12% of anti-PECAM-1 IONPs were still associated with the capillary fraction and 17 ± 

12% of them entered the brain (Figure 9). The capillary depletion assay was also carried 

out with brain from IgG IONPs treated rats. However, because of the low brain 

association of IgG IONPs, all radioactivity level readings were indistinguishable from 

background radioactivity.   

Discussion 

The use of vasculature-targeting antibodies, especially against PECAM-1, has been 

utilized before for lung targeting, injury treatment, [182] and as tumor contrast agents 

[285]. Anti-PECAM-1 nanocarriers can internalize into the cell through cellular adhesion 

molecule (CAM)-mediated endocytosis [190], which provides the potential to target the 

BBB and increase nanocarrier flux across the BBB. Previous research showed that IONPs 

coupled with affinity moieities targeted to receptors, such as transferin, can facilitate 

IONP flux across the BBB [286]. However, little is known whether anti-PECAM-1 

surface-modified IONPs enhance brain flux across the BBB and change the distribution 

of IONPs between the BBB and brain parenchyma. In this study, we explored anti-

PECAM-1 IONP targeting, transcytosis across the BBB, and biodistribution in the brain 

and peripheral organs. 
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We demonstrated that iron oxide nanoparticles can be sufficiently coupled with both 

IgG and anti-PECAM-1 using a non covalant physioabsorption strategy. It was 

determined that over 60% of the nanoparticle surface was coated with antibody (105 

antibody molecules per single nanoparticle). Previous research has demonsatrated that 

clustering of the CAM through antibody binding can result in efficient internalization of 

anti-PECAM-1 nanoparticles, depending upon epitope of binding [190].  Using a non 

covalant targeting strategy, it was expected that upon contact with serum proteins they 

would inactivate the targeting coating, lowering the treatment efficacy. Contrary to this, it 

was seen that the coating on these nanoparticles stays intact for up to 4 h, vastly longer 

than the circulation half life of up to 2 h for uncoated particles [287].  The IgG IONPs 

and anti-PECAM-1 we developed have desirable properties to investigate BBB targeting 

and flux in vitro and in vivo.  

In our in vitro flux study, LY showed higher flux at 1 h compared with anti-PECAM-

1 IONPs and IgG IONPs. At 2 h, the flux of LY, anti-PECAM-1 IONPs and IgG IONPs 

were similar. After 2 h, anti-PECAM-1 IONPs flux was significantly higher than LY and 

IgG IONPs. These results provided evidence that the paracellular pathway was not the 

major pathway for anti-PECAM-1 IONPs flux. Anti-PECAM-1 IONPs use a different 

mechanism of flux across the BBB compared with IgG IONPs. There are multiple 

pathways for internalization involving vesicles < 300 nm in diameter. Clathrin- and 

caveolea-mediated endocytosis are the two major pathways for nanoparticle 

internalization [288-291]. IgG IONPs are likely to be taken up through these pathways. 

Limited transcytosis was observed in our study, which was consistent with a previous 

study in which the flux of three different surface-charged IONPs was studied across a 
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human BBB model in vitro. Very limited flux was observed over 25 h [268]. On the other 

hand, clustered PECAM-1 can be internalized by a novel endocytic pathway, CAM 

endocytosis [190], which was distinct from clathrin and caveolin-mediated endocyosis 

[292, 293].  Our in vitro flux study showed that PECAM-1 antibody surface modification 

significantly improved BBB targeting and flux across the BBB. Previous research 

showed that intercellular adhesion molecule 1(ICAM-1)-targeted nanocarriers, which 

also use the CAM-endocytosis pathway, provide considerable promise to enhance 

delivery of larger multivalent carriers to the CNS [278]. Another study also showed that 

anti-PECAM-1 nanocarriers  demostrated significantly higher brain association [294]. 

However, they analyzed whole brain tissue including the BBB, brain parenchyma and the 

blood in the brain vessels. The present study provides a better understanding of the 

assocation and flux of anti-PECAM-1 nanoparticles across the BBB in vitro and in vivo.  

In our in vivo study, anti-PECAM-1 IONPs did not change BBB permeability, further 

suggesting that anti-PECAM-1 IONPs crossed the BBB through a transcellular pathway 

rather than a  paracellular pathway. We are not aware of any reports on how anti-

PECAM-1 IONPs influence BBB permeability. However, previous research showed that 

anti-PECAM nanocarriers did not change endothelial monolayer integrity compared with 

a IgG nanocarrier [294]. The lack of anti-PECAM IONP increased BBB permeability 

decreases its potential adverse effects related to the BBB.   

The level of anti-PECAM-1 IONPs in the blood was significantly lower than IgG 

IONPs, suggesting enhanced tissue accumulation. The results were consistent with anti-

PECAM-1 IONP brain association results. Compared with IgG IONPs, anti-PECAM-1 

IONP significantly increased IONP brain association 10 min after infusion. There was 
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0.11± 0.01 % of the dose associated with a gram of brain tissue 10 min after infusion. For 

comparison, the brain uptake of morphine, a neuroactive lipid soluble small molecule, is 

0.0081± 0.001% of the dose /g rat brain [295].  The uptake of anti-PECAM-1 IONPs was 

higher than morphine, a regularly administered neuroactive small molecule with the 

capability of crossing the BBB. This demonstrates the potential application of PECAM-1 

antibody for brain delivery. The transferrin receptor is the most studied targeting receptor 

for brain uptake [296].  Most previous studies of transferrin-surface-modified 

nanoparticles focused on the improvement of diagnosis and therapeutic effects rather than 

brain uptake [286, 297]. The brain delivery of the transferrin ligand was less than 0.3% of 

the dose using a healthy animal model [298].  A recent study compared ICAM-1 antibody 

and transferrin-surface-modified nanocarriers for brain targeting. It was found that they 

are both effective, but transferrin showed more advantages on smaller conjugates and 

ICAM-1 worked better for larger multivalent carriers [24]. In our study anti-PECAM-1 

IONPs showed a similar specificity index as previously reported anti-ICAM-1 

nanocarriers [278]. We expected PECAM-1 antibody would show similar brain targeting 

as ICAM-1, however, more research needs to be done to compare PECAM-1, ICAM-1 

and transferrin for brain targeting. Furthermore, the actual extent of transferrin 

transcytosis is still unknown. Some studies showed that only a miniscule amount of 

transferrin was trancytosed across the brain capillary endothelial cells and accumulated in 

the brain [299, 300]. Our in vitro results provide evidence that anti-PECAM-1 IONPs can 

transcytose across a human BBB monolayer in vitro model.  

We investigated the distribution between the BBB and brain parenchyma using the 

capillary depletion method to better characterize anti-PECAM-1 IONP transcytosis in 
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vivo. Our results showed that 10 min after injection, 17 ± 12% of anti-PECAM-1 IONPs 

crossed the BBB and associated with brain parenchyma. However, the majority of anti-

PECAM-1 IONPs was still associated with the BBB cells. CAM-mediated endocytosis is 

a relatively slow process. One study investigated anti-PECAM nanocarrier internalization 

into human endothelial cells over time. After 15 minutes, 20% of anti-PECAM 

nanocarrier was internalized. However, there is little known about anti-PECAM-1 

transcytosis [294]. Our in vitro flux study showed that 4.5% of anti-PECAM-1 IONPs 

flux cross the BBB monolayer over 1 h.  Our studies demonstrated the potential of anti-

PECAM-1 IONPs to cross the BBB in vitro and in vivo. However, a longer time point 

study is required to better understand how effectively anti-PECAM-1 enhances flux 

across the BBB.  

The biodistribution results of anti-PECAM-1 IONPs demostrated that PECAM-1 

antibody did not increase anti-PECAM-1 IONP accumulation in the liver and spleen 10 

min after injection. More study at longer time point is needed to fully understand the 

depostion of anti-PECAM-1 IONP in the liver and spleen. However, PECAM-1 antibody 

significantly increased the IONP accumulation in the lung. This result was consistent 

with previous reports that an anti-PECAM-1 nanocarrier is a good candidate for 

pulmonary targeting [301, 302]. This is due to the massive surface area provided by lung 

capillary beds. For brain targeted delivery, high accumulation in the lung has potential to 

cause side effects there. However, we can take advantage of this properties for certain 

diseases. For example, about 15-20% of patients with non-small cell lung cancer 

(NSCLC) develop brain metastasis [303]. Anti-PECAM-1 nanocarriers can target lung 

and brain simultaneously and be taken up through the CAM-mediated endocytosis 
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pathway [294]. Furthermore, recent clinical research showed that PECAM-1 could be a 

potential prognostic factor and a novel therapeutic target for the effective treatment of 

NSCLC [304]. Therefore, anti-PECAM-1 IONPs have potential to be used to target lung 

and NSCLC, while treating potential brain metastasis. More research needs to be 

conducted to test anti-PECAM-1 IONPs in a brain metastasis model and investigate how 

they associate with the blood tumor barrier and tumor cells.  

Conclusions 

This work demostrated that anti-PECAM-1-modified IONPs enhance flux across the 

BBB in vitro and in vivo, which holds promise to deliver IONPs or other therapeutic 

agents to the CNS without compromising BBB permeability.  This effect was a result of 

both the capacity of anti-PECAM-1 IONPs to target the BBB and the ability to 

transcytose across into the brain. Meanwhile, anti-PECAM-1 IONPs demonstrated 

increased lung accumulation, which provides the potential to simultaneously target lung 

and lung cancer derived-brain metastasis. Future studies investigating anti-PECAM-1 

IONPs using a lung cancer brain metastasis model in vivo should provide evidence on 

how anti-PECAM-1 IONPs associate with the blood tumor barrier and metastatic brain 

tumor. Anti-PECAM-1 IONPs have great potential to be employed in the diagnosis and 

therapy of CNS diseases such as NSCLC-originating brain metastasis.  
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Figure 1. Surface modification of IONPs by anti-PECAM-1 antibody. Iron oxide 

nanoparticles were incubated  with excess 125I labeled antibody and purified by 

centifugation. The bound antibody was tested after each  centifugation (A). Size of 

IONPs before and after anti-PECAM-1 antibody surface modification (B). Zeta potential 

of IONPs before and after anti-PECAM-1 antibody (C). (N = 3, mean ± SD)   
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Figure 2. Antibody coating stability in whole blood. 125I labeled nanoparticles show 

minimal detachment of coating for up to 4 hours, suggesting coating stability and 

targeting capability in vivo. (N = 3, mean ± SD) 
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Figure 3: PECAM-1 antibody binding affinity on immortalized human brain endothelial 

cells (hCMEC/D3). IgG exhibited undetectable levels of binding, whereas anti-PECAM-

1 affinity is 32 nM, with a Bmax of 17 x 105 molecules/cell. (N = 3, mean ± SD) 
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Figure 4. Anti-PECAM-1 IONP flux across hCMEC/D3 cells and cell association results.  

Anti-PECAM-1 IONP (0.05 mg/ml), IgG IONP (0.05 mg/ml) and LY (100 µM) flux 

across hCMEC/D3 cells for 6 h (A). Anti-PECAM-1 IONP and IgG IONP distribution in 

the donor and receiving chambers and hCMEC/D3 cells at 6 h (B).  (N = 3, mean ± SD) 

* Significantly different compared to IgG IONPs 
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Figure 5: Brain association and blood % of dose of anti-PECAM-1- and IgG IONPs.  The 

brain (A) and blood (B) levels of 125I labeled anti-PECAM-1-IONPs after intra-arterial 

infusion in rats, expressed as the percentage of injected dose (% Injected Dose (ID), 10 

mg/kg). Specific tissue accumulation of anti-PECAM-1 IONPs compared with IgG 

IONPs in brain, calculated as the specific index (SI). SI values above 1 represent specific 

targeting in an organ over IgG IONPs (C). * Significantly different. (N = 3, mean ± SD)  
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Figure 6:  Biodistribution of IgG IONPs and anti-PECAM-1 IONPs in rats. The liver, 

spleen and lung levels of 125I labeled anti-PECAM-1 IONPs measured 10 min after intra-

arterial infusion in rats, expressed as the percentage of injected dose (%ID, 10 mg/kg). * 

Significantly different. (N = 3, mean ± SD) 
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Figure 7: BBB permeability measured by fluorescein concentration 10 min after 

completion of intra-arterial infusion in rats. Rats received saline, 10 mg/kg IgG IONPs, or 

10 mg/kg anti-PECAM-1 IONPs and were terminated 10 min after infusion. (N = 3, 

mean ± SD) 
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Figure 8: Capillary depletion results. The level of anti-PECAM-1 IONPs and IgG IONPs 

concentrations in the capillary-rich fraction and brain-rich fraction. (N = 3, mean ± SD). 

BDL : Below detectable limits. 
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