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ABSTRACT  

Ore and Gangue Mineral Paragenesis of the Cortez Hills Carlin-Type Gold Deposit, 
Nevada: Evidence for Coincident High-Grade Gold Deposition and Collapse 

Brecciation               
 

by 

Lindsey R. Clark 

Dr. Jean S. Cline, Examination Committee Co-chair 
Professor 

University of Nevada, Las Vegas 

Dr. Adam C. Simon, Examination Committee Co-chair 
Associate Professor 

University of Michigan 
 

The Cortez Hills Carlin-type gold deposit (CTGD), located on the Battle 

Mountain-Eureka trend of Northern NV, is hosted in a conical shaped polylithic breccia 

whose central axis strikes parallel to the imbricate Voodoo fault system.  Gold grades at 

the center of the Cortez Hills Breccia Zone (CHBZ) are locally in excess of an ounce per 

ton.  Gold mineralization within the refractory ore at Cortez Hills shares many 

characteristics with other well studied CTGDs.  However, new observations during this 

study have recognized 1) fragmented realgar that are rimmed by gold-bearing iron-sulfide 

minerals in four samples, 2) a Hg- and Tl-rich late-ore stage characterized by rare 

minerals, and 3) textural relationships show that ore-stage mineralizing fluids enhanced 

porosity through decarbonatization, resulting in contemporaneous brecciation and Au 

mineralization.   

The primary objectives of this thesis project were to produce a paragenesis and 

characterize mineralization at the Cortez Hills deposit with an emphasis on the CHBZ in 

order to test the hypothesis that the CHBZ contains typical Carlin-type mineralization and 
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alteration. The data collected indicate that the CHBZ refractory ore exhibits the following 

paragenetic relationships. 1) Diagenetic pyrite was deposited in passive margin carbonate 

sediments. 2) A pre-ore suite of minerals apparently associated with low-grade contact 

metamorphism includes sphalerite, chalcopyrite, and tremolite. 3) Ore stage alteration 

minerals include illite, ore-stage jasperoid, and Au- and trace element-rich iron sulfides. 

4) Hg- and Tl-rich minerals including aktashite (Cu6Hg3As4S12) and christite (TlHgAsS3) 

precipitated during a late-ore stage directly following the precipitation of Au-bearing iron 

sulfides. 5) Late- to post-ore stage minerals include realgar and calcite that are associated 

with cooling and collapse of the hydrothermal system.   

As a secondary goal, data were collected to test the hypothesis that Carlin-type 

mineralization occurred contemporaneously with brecciation throughout the CHBZ; 

understanding this relationship is necessary to understand how the CHBZ formed.  

Transects through host rocks that transition from negligible to high Au concentrations 

show a succession from primarily recrystallized calcite into rocks that contain Au-bearing 

iron sulfides, illite, fine grained calcite, and insoluble residual material precipitated in 

dissolution seams.  As Au concentrations continue to increase within the ore body, host 

rocks that contain dissolution seams transition into heavily brecciated rocks with strongly 

mineralized clasts and a lightly mineralized matrix.  Late-ore stage realgar precipitated in 

open space throughout the breccia, which is evident because it commonly conforms to 

euhedral crystal faces and cements zones of intense fracturing and areas of high porosity.  

This study concludes that the dissolution seams reveal Carlin ore fluid pathways through 

the carbonate host rocks, and extensive fluid-rock interaction along these seams 

ultimately resulted in brecciation.   
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Late-ore-stage realgar precipitation in open space throughout the breccia signifies 

that brecciation terminated with cessation of the ore fluid incursion throughout the 

majority of the CHBZ.  However, an area within the CHBZ contains fragmented realgar 

clasts with Au-bearing iron-sulfide rims, indicating localized mineralization both post- 

and pre-brecciation.  The consistent association between fragmentation and 

mineralization of realgar clasts indicates that the same process that fragmented the realgar 

also allowed the ore fluid to be reintroduced to previously mineralized rocks.  

Reactivation along a fault may have fragmented the realgar and reduced pressure 

sufficiently to allow the Au-bearing fluid to encounter an area that was previously cooler 

and collapsing, thus mineralizing the same area twice.    
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CHAPTER 1 

INTRODUCTION 

The Cortez Hills ore deposit, discovered in 2002, is located on the Battle 

Mountain-Eureka trend in Nevada, U.S.A., amidst multiple world-class Carlin-type gold 

deposits (CTGD) (Fig. 1). Nevada is the type locality for CTGDs, which constitute the 

second largest concentration of Au in the world, with more than 76 million ounces of Au 

produced from the Carlin trend alone by the end of 2010 (Nevada Bureau of Mines and 

Geology, 2010).  The CTGDs in Nevada were estimated to have contained more than 200 

million ounces of gold before mining began (Cline et al., 2005; Sillitoe, 2008).  The 

Cortez property has proven and probable reserves of 14.5 million ounces of Au; it is one 

of the world’s largest and lowest cost gold mines (Barrick, 2011).

Many CTGDs have been studied in great detail because of their large Au 

endowments.  Published studies (Cline, 2001; Cline et al., 2005) suggest that CTGDs 

resulted from channelized flow of auriferous-hydrothermal fluids along preexisting fault 

conduits.  As ore fluids traveled up the conduits, low-permeability siliceous and intrusive 

rocks generally acted as seals while underlying porous and permeable carbonate rocks 

reacted extensively with the ore fluid.  The deposits are replacement ore bodies that 

formed as the ore fluid decarbonatized the silty carbonate host rocks and simultaneously 

deposited gold by fluid-rock reactions and host rock sulfidation. CTGD ore 

characteristically contains Au that is present in solid solution or as submicron sized 

particles in trace metal-rich pyrite or marcasite (Palenik et al., 2004; Reich et al., 2005;

Cline et al., 2005), resulting in Au that is invisible to the unaided eye and conventional 

optical microscopes.  Additionally, the ore deposition processes typically result in very 



 

subtle alteration patterns, which make some mineralized zones difficult to identify (Cline 

et al., 2005).   

The extensive decarbonatization associated with the formation of most CTGDs 

causes an increase in porosity and permeability that can result in host rock brecciation 

due to volume loss and gravitational collapse, exemplified in deposits such as the Meikle

breccia (Evans, 2000; Emsbo et al., 2003).  The Cortez Hills breccia zone (CHBZ) is a 

discordant, upward-flaring conical breccia pipe that spans 2,500 vertical feet; however, 

Barrick Gold Corp. exploration geologists at the Cortez Mine interpret many features of 

the CHBZ as being characteristic of a hydrothermal breccia rather than a collapse breccia 

(Jackson et al., 2010).  Characteristics that support this interpretation include angular 

clasts in a fine-grained clastic infill, interpreted upward movement of individual clasts, 

and the absence of bell shaped breccia geometries (Jackson et al., 2010).  The Cortez 

Hills deposit is unique because of the strong correlation of anomalously high gold (up to 

30.5 oz/t) with an unusual polylithic breccia zone.    

Previous studies (e.g., Groff et al., 1997; Cline and Hofstra, 2000; Cline, 2001: 

Almeida et al., 2010) of CTGDs provided a paragenetic sequence (Fig. 2), which 

constrains temporal relationships among pre-ore, syn-ore, and late-ore-stage 

mineralization.  Ore fluids precipitated spatially associated alteration minerals that 

commonly include quartz, kaolinite and illite, though these minerals are not always

present and are not necessarily well zoned around Au.  As individual ore systems 

collapsed and cooled during influx of meteoric waters, a suite of late-ore minerals 

precipitated that includes orpiment, realgar, stibnite, and calcite (Fig. 2) (Cline, 2001).   



 

The main objectives of this thesis project were to deduce a paragenesis and 

characterize mineralization at the Cortez Hills deposit with an emphasis on the CHBZ in 

order to test the hypothesis that the CHBZ contains typical Carlin-type mineralization and 

alteration.  Research focused on a detailed macro- and micro-scopic characterization of 

the ore, which allowed constraint of paragenetic relationships among pre-ore, syn-ore, 

and late-ore-stage mineralization and provided insight into how the chemistry of the ore 

fluid may have changed through time within the CHBZ.   

A second objective of this thesis research was to test the hypothesis that Carlin-

type mineralization and brecciation occurred contemporaneously throughout the CHBZ, 

which is critical to developing a formation model for the Cortez Hills deposit.  This was 

accomplished by investigating the temporal relationships between mineralization and 

brecciation through examination of crosscutting relationships among ore-stage minerals, 

breccia clasts and matrix.  Additionally, transects within sulfide-bearing rocks that 

transition from high-grade mineralization to low-grade mineralization over short 

distances (e.g., two to sixteen feet) were collected.  Such transects are valuable because 

they minimize variations in primary lithology so that changes in mineralogy and texture 

can be related to the mineralization processes.    



 

CHAPTER 2 

BACKGROUND  

Carlin-type Gold Deposit Genetic Models and Geologic History 

Carlin-type gold deposits across northern Nevada share similar mineralization and 

alteration characteristics; however, there is not a widely accepted genetic model that 

explains all observations and, notably, the source of gold.  Multiple geological models 

have been proposed to explain the formation of CTGDs: 1) deeply sourced magmatic ore 

fluid was generated during the Eocene as the Farallon plate was decoupled from western 

North America, allowing an influx of mantle-derived mafic magmas, causing partial 

melting and exsolution of mantle-derived volatiles (Cline et al., 2005; Muntean et al., 

2011);  2) a metamorphic model that invokes devolatilization of sedimentary rocks during 

prograde metamorphism (Hofstra and Cline, 2000) and the ascent of metamorphic fluids 

during significant Eocene Basin and Range extension (Seedorff, 1991);  3) an epizonal 

intrusion model that states that CTGDs are related to  relatively shallow magma 

intrusions of intermediate to silicic compositions (Sillitoe and Bonham, 1990; Johnston 

and Ressel, 2004), which implies a genetic relationship to porphyry-style mineralization;

and 4) a meteoric model that invokes convection of meteoric fluids to depths >10 km, 

where gold was leached from Neoproterozoic rocks (Ilchik and Barton, 1997).   

  Although there is no consensus on any one of the aforementioned genetic models, 

it is generally accepted that all CTGDs in Nevada formed at similar geologic conditions 

as a result of the same geologic processes.  The western margin of the North American 

continent is interpreted to represent a passive margin from approximately Late 

Precambrian to the Late Devonian (Poole et al., 1992). Prior to the development of the 



 

passive margin, rifting occurred in North America.  The main stage of rifting is believed 

to have started around 600 Ma (Saleeby et al., 1987; Poole et al., 1992).  Rifting resulted 

in the formation of deep, basement penetrating crustal scale faults that are hypothesized 

to have become fluid conduits for Eocene Carlin-type mineralization, providing an 

explanation for the  locations of CTGDs along linear trends (Tosdal et al., 2000; Crafford 

and Grauch, 2002; Cline et al., 2005).  During sedimentation along the passive margin, a 

eugeoclinal sequence developed that was comprised of deep water sedimentary rocks to 

the west, including siliceous chert, shale, quartzite, and mafic volcanic rocks that are 

interbedded with calcareous units.  To the east, more shallow-water sedimentary rocks, 

including continental shelf carbonate rocks, dolomite, and minor shale and siltstone were 

deposited (Stewart, 1980).  

Passive margin sedimentary rocks were deformed by a series of regional 

compression events that began during the Late Devonian and Early Mississippian, 

beginning with the Antler orogeny (385-345 Ma) (Roberts, 1958).  Less reactive 

eugeoclinal siliciclastic sedimentary rocks were thrust eastward over reactive shelf-slope 

miogeoclinal carbonate rocks, forming the Roberts Mountain Thrust (RMT).  

Compression continued along the western margin of North America, with subduction of 

the Farallon plate beneath the North American plate beginning in the late Triassic (~210 

Ma) (Dickinson, 2004).  The Farallon plate is thought to have coupled to the bottom of 

the North American plate during shallow subduction beginning around 65 Ma 

(Humphreys, 1995).   

A transition from contractional deformation to extension began during the mid-

Eocene (45 Ma) as a result of the Farallon plate decoupling from the North American 



 

plate.  This slab rollback allowed hot asthenospheric mantle to impinge on the base of a 

hydrated North American plate, producing high K calc-alkaline magmatism that swept 

through Nevada from north to south (Armstrong and Ward, 1991; Seedorff, 1991; Henry 

and Boden, 1998; Ressel and Henry, 2006).  Geochronological studies suggest that 

CTGDs formed between 36 to 42 Ma, which overlaps in time with the calc-alkaline

volcanism (Ressell and Henry, 2006; Muntean et al., 2011).   

Eocene extension reactivated compressional structures facilitating ore fluid flow. 

Ore fluids ascended and decarbonatized lower plate carbonate rocks below the less 

permeable and siliciclastic upper plate rocks of the RMT.  Ore-stage fluid inclusions have 

been used to reconstruct the depths of gold mineralization to within a few kilometers of 

the paleosurface (Cline et al., 2005).  The fluid inclusion data indicate that the CTGD ore 

fluids were moderate temperature (~180°-240°C), low salinity (~2-3 wt% NaCl equiv), 

CO2 bearing (<4 mol%), and CH4 poor (<0.4 mol %), with sufficient H2S (10-1-10-2 m) to 

transport Au (Cline and Hofstra, 2000).  Fluid-rock reaction caused carbonate dissolution 

and replacement by quartz simultaneously with gold deposition as ore fluids sulfidized 

host rock Fe.   

At approximately 17 Ma, Basin and Range style extension commenced in 

Nevada, which resulted in steeply-dipping, deep-rooted, widely-spaced normal faults and 

tilted fault blocks that are separated by alluvium (Stewart, 1980).  Local zones of major 

extension are characterized by closely spaced normal faults (Colgan et al., 2011).  For 

most CTGDs, the tilted fault blocks aided in exposing the lower plate of the RMT by 

tilting many mineralized regions closer to the surface, although this is not documented at 

Cortez Hills.     



 

Cortez Hills Breccia Zone  

Local Stratigraphy 

The CHBZ mineralization is hosted in the lower plate passive margin Silurian to 

Devonian slope, basin, and platform carbonate rocks of the RMT, which includes the 

Silurian Roberts Mountains (Srm) Formation, the Devonian Wenban (Dw) Formation, 

and the lowermost portion of the Upper Devonian Horse Canyon (Dhc) formation  

(Jackson et al., 2010) (Fig. 3).  Cortez Hills Lower Zone (CHLZ) mineralization is hosted 

in the Ordovician Hansen Creek and Silurian Roberts Mountains formations.  The 

Devonian Wenban and Upper Devonian Horse Canyon formations are stratigraphically 

correlative to the Devonian Popovich and Devonian Rodeo Creek formations of the 

northern Carlin trend (Jackson et al., 2010). The Cortez Hills host rock stratigraphy is 

down dropped adjacent to the Mill Canyon stock by the Cortez Fault (Figs. 4-5).  Eocene 

quartz porphyry dikes (Epd) typically crosscut the Paleozoic formations (Figs. 4-5). 

The Roberts Mountains Formation is approximately 350 meters thick (L.P. 

Anderson, Barrick Cortez GeoServices, pers. comm., 2012) in regions that are not 

heavily faulted and is primarily composed of black thinly laminated silty slope-to-basin 

limestone that contains sparse interbedded turbidites (Harry Cook, Barrick Internal 

Report, 2008; Jackson et al., 2010).   The Roberts Mountains Formation commonly 

contains black phosphate nodules in specific members and can be altered to calc-silicate 

marble owing to contact metamorphism (Jackson et al., 2010) (Fig. 5).  A one to three 

meter thick fossil hash debris flow located in the upper surface of the Roberts Mountains 

Formation represents the stratigraphic boundary between the Robert Mountains 



 

Formation and the overlying Devonian Wenban Formation (Harry Cook, Barrick Internal 

Report, 2008; Jackson et al., 2010).    

The Wenban Formation is approximately 850 m thick (L.P. Anderson, Barrick 

Cortez GeoServices, pers. comm., 2012) and is primarily composed of a thin-bedded to 

thin-laminated dark grey to black micrite and silty micrite that contains black phosphate 

nodules and diagenetic pyrite within some laminae of the basal unit (Jackson et al., 

2010). Soft sediment deformation is common in the basal unit.  Going up-section, the 

Wenban Formation becomes extensively bioturbated and there is an increase in 

brachiopod fragments (Harry Cook, Barrick Internal Report, 2008; Jackson et al., 2010).  

Additionally, the formation becomes more thinly-bedded with an increase in carbonate 

and silt grains (L.P. Anderson, Barrick Cortez GeoServices, pers. comm., 2012).  Below 

the uppermost Wenban Formation, soft sediment slumps are dominant; the uppermost 90 

meters are relatively heterogeneous and include lime mudstones, turbidites, and debris 

flows (Harry Cook, Barrick Internal Report, 2008; Jackson et al., 2010).  Within the 

Cortez Hills window, the Wenban and Roberts Mountains formations are thickened by 

thrust faults and associated compressive folding (Jackson et al., 2010).  The Wenban 

Formation formed along the platform margin or higher on the slope than the Roberts 

Mountains Formation, and contains more bioclastic and carbonate material and 

significantly less clastic material than the Roberts Mountains Formation.    

The Horse Canyon formation as exposed at Cortez Hills is composed of 

interbedded calcareous siltstone and chert-rich members.  The formation is highly 

deformed possibly owing to its locality at the base of the RMT; however, the RMT is not 

visible in the locality of the deposit.  The formation is hypothesized to have an erosional 



 

contact with the Wenban Formation, evident by Wenban clasts incorporated within the 

base of the Horse Canyon Formation (Jackson et al., 2010).  Field relationships exposed 

in the Cortez Hills open pit indicate that much of the deformation in the Horse Canyon 

may be due to local brecciation rather than a regional compressional event (L.P. 

Anderson, Barrick Cortez GeoServices, pers. comm., 2012).

The Jurassic Mill Canyon stock is a quartz monzonite and diorite that is enriched 

in hornblende and biotite and located approximately 0.5 kilometers northeast of the 

deposit (Figs. 4-5) (Jackson et al., 2010). The stock is in contact with Paleozoic rocks and 

it has been proposed by Venendaal (2007) that the thermal aureole of the stock 

metamorphosed the units in the vicinity of the CHBZ, forming marble and calc-silicate 

minerals.  However, Gilluly and Masursky (1965) mapped the stock and report a narrow 

metamorphic aureole.  Alternatively to Venendall (2007), other researchers (Henry and 

Muntean, 2012) interpret a 104 Ma quartz monzonite intrusive with a wide metamorphic 

aureole to be responsible for contact metamorphism of Cortez Hills.  This intrusive was 

discovered in a drill hole approximately 4km west of Cortez Hills and does not outcrop 

(Henry and Muntean, 2012).   

Eocene quartz porphyry dikes and sills are abundant within the area of CHBZ and 

13 sanidine analyses yielded an average 40Ar/39Ar date of 35.69 Ma (±0.06) (Colgan et 

al., 2011).  A second study also concludes an average 40Ar/39Ar date of 35.29 Ma (±0.08), 

yielded from five samples (Artz, 2004).  The dikes and sills are rhyolitic in composition 

and commonly have quartz, sanidine, and biotite phenocrysts (Jackson et al., 2010). 

Some dikes and sills are extensively altered to clay minerals and contain pyrite. 



 

Throughout CHBZ, most dikes crosscut the mineralization; however, in some areas, 

realgar, pyrite, and low Au concentrations occur within the dikes.      

Structure

Owing to compression that commenced in Nevada in the Late Devonian, the 

Cortez district contains abundant low-angle faults, duplex folds, and imbricate fault zones 

that are commonly parallel with bedding (Jackson et al., 2010).  The Roberts Mountains 

Formation experienced extensive deformation due to thin beds that allow the bedding 

planes to slip, whereas the Wenban Formation responded to strain differently, resulting in 

ramping, faulting, and decoupling within its lower members (Jackson et al., 2010).  The 

fold architecture of the Roberts Mountains and Wenban formations is cut by the 

Pondorosa Fault Zone, a very low angle thrust zone that breaks and duplicates the 

Wenban and Roberts Mountains formations.  This fault zone has been described as a 

feeder zone to the base of CHBZ and a control on mineralization in the CHLZ (Fig. 5) 

(Jackson et al., 2010).  Mineralization is present within this zone, but not associated with 

the main breccia body, as brecciation is relatively absent within the CHLZ.   

The CHBZ contains both low- and high- angle structures with apparent reverse, 

normal, and right-lateral displacement (L.P. Anderson, Barrick Cortez GeoServices, pers. 

comm., 2012).  The Voodoo Fault, which has been measured in drill core as striking 

approximately 325° and dipping 34°SW cuts through the center of the CHBZ (Fig. 5).  

There is no significant displacement of the CHBZ by the Voodoo fault, and 

mineralization occurs in the hanging and foot walls.  The F Canyon Fault cuts across the 

western contact of the CHBZ (Fig. 5), and no significant brecciation is associated with 

the fault.  This fault strikes 334° and dips 70°SW.  The Pizarro Fault (Fig. 5) was a 



 

conduit for a large Eocene dike swarm that strikes 200° and dips 66°NW.  All three of 

these faults flatten as they merge into the Ponderosa Fault Zone (Fig. 5).       

Breccia Body 

 The characteristics of the CHBZ were described by Jackson et al. (2010) and are 

briefly summarized here.  The CHBZ has a conical geometry and a generally concentric 

internal organization that consists of a polylithic breccia at the center and a monolithic 

crackle breccia that displays limited dilation along the margin (Fig. 6).  The polylithic 

breccia has been interpreted to contain evidence of upward transport; petrographic studies 

on the polylithic breccia report distinctive Wenban subunits that contain laminated 

bedding, authigenic pyrite, and high carbon content located 50 m above their stratigraphic 

level within the breccia, consistent with upward movement (Jackson et al., 2010).  The 

locations of these clasts were not documented in Jackson et al. (2010) and were not 

observed in the current study.  Other observations interpreted to be consistent with a 

polylithic breccia include the occurrence of bleached clasts adjacent to less altered clasts 

(Fig. 7a).  The central polylithic breccia grades outwards into a monolithic breccia that 

contains rotated clasts, and then grades further outwards into a monolithic crackle 

breccia. The concentration of Au varies throughout the CHBZ, but generally the highest 

grades correlate closely with the central breccia zone and the lowest grades occur in the 

outer crackle breccia (Fig. 8).   

Clastic and chemical infill have been documented and described in hand sample 

by Jackson et al. (2010).  The clastic infill ranges in grain size from coarse sand to silt, 

interpreted to be a result of mechanical milling or extensive dissolution (Fig. 7b) (Jackson 

et al., 2010).  Primarily altered and unaltered limestone clasts comprise the clastic infill.  



 

This material usually does not react with dilute hydrochloric acid, which suggests 

decarbonatization (Jackson et al., 2010).  Chemical infill is dominated by calcite and 

realgar; the infill completely fills former voids and forms the matrix of some breccia 

samples (Fig. 7c), or is less abundant in other samples (Fig. 7a).  Realgar in some 

samples is located within clasts of the breccia and truncated at the clast margins (Fig. 7a).  

Jackson et al. (2010) did not observe silica or pyrite within the breccia infill.              

The breccia clast size encountered in drill core ranges from clay-size particles to 

20-meter blocks of limestone (Jackson et al., 2010).  The finest-grained breccia is

immediately adjacent to the largest clasts, which the authors interpreted as a result of 

fluidization around large clasts and pressure shadows that developed as the block moved 

downward.  The authors interpret upward and downward moving clasts within the 

breccia.  Jackson et al. (2010) reported that the clasts are angular to subangular with a 

complete absence of extremely rounded clasts.  However, multiple samples collected for 

this study did contain subrounded clasts (Fig. 7d). 

 The sequence of events postulated by Jackson et al. (2010) to have formed the 

CHBZ is summarized in Figure 9.  The authors concluded that the brecciation was 

associated with Carlin-type hydrothermal fluids and mechanically energetic fluids, 

suggesting an energy release within a Carlin-type hydrothermal system.  They concluded 

that the characteristics of the CHBZ are not consistent with the collapse-breccia model of 

Jebrak (1997), but instead are more analogous to a volcanic-hydrothermal diatreme-style 

breccia (Sillitoe, 1985) that resulted from thermo-hydraulic energy release (Kurszlaukis 

and Lorenz, 2006, personal communication in Jackson et al., 2010). The authors do not 

state the detailed mechanisms that form brecciation, but hypothesize that proximity to the 



 

paleosurface, high water temperatures, and the opportunity to overpressure the fluid by 

tectonic processes, may have resulted in the fluid becoming overpressured within the 

system via thermohydraulic forces.  These combined factors may result in explosive 

brecciation without direct magmatic or phreatomagmatic input into the system (Jackson 

et al., 2010)   

Oxidation 

 The majority of the rocks in the CHBZ are oxidized, containing no sulfide 

minerals. Jackson et al. (2010) have observed the iron-oxide minerals hematite, goethite, 

jarosite, and other unidentified oxide and arsenate minerals.  The cause of oxidation has 

not been constrained; however, the observation that the entire matrix and all of the clasts 

in some rocks are oxidized is interpreted to indicate that oxidation post-dates brecciation 

(Jackson et al., 2010).  Jackson et al. (2010) noted that oxidation contacts are very sharp 

and abrupt against sulfide-bearing rocks and liesegang banding is common.  The authors 

concluded that the oxidizing fluid reacted with pyrite to produce acid, which resulted in 

significant volume loss, which is evident where oxidation has crosscut calcite-infilled 

breccia, removed calcite, and decreased clast sizes.      

Geochemical Patterns  

 All of the geochemistry and interpretation in this section is summarized from 

Venendaal (2007).  The author conducted an investigation of the geochemical zoning 

within the Cortez Hills deposit prior to the discovery of CHLZ.  Carbonate staining on 

individual samples was done in order to map the distribution of Ca, Sr, Mg, and Mn 

along a cross section to identify possible zoning of carbonate mineralogy.  The study 

located zones of calcite and determined that iron-bearing carbonate minerals are spatially 



 

associated with mineralized rocks on the hand sample scale.  Venendaal (2007) did not 

observe large-scale carbonate zoning at Cortez Hills and concluded that carbonate zoning 

possibly existed at an earlier time, but later oxidation altered an early record of 

dolomitization and subsequent decarbonatization. 

 Geochemical analysis by using the ALS CEMEX ME-MS41 package with aqua 

regia digestion allowed Venendaal (2007) to conclude that there are five different 

overlapping geochemical populations within Cortez Hills: lithologically controlled, 

tungsten-related, base metal, Carlin-type, and supergene oxidation.  The rocks along the 

contact between the Roberts Mountains Formation and Wenban Formation are enriched 

in Mo, Ni, Fe, P, U, and V, interpreted by Venendaal (2007) as a typical lithological 

controlled suite of enriched elements in black shale rocks.  The suite of elements W, Bi, 

Cu, Mo, Sn, and Te are typical of tungsten skarn deposits (Venendaal, 2007; Newberry, 

1982).  This tungsten suite of elements is enriched along the deep portions of the Voodoo 

Fault, referred to as High Grade Fault in Venendaal (2007), which was interpreted to 

indicate that the fault was in place when the Mesozoic intrusions that may be responsible 

for the skarn were emplaced.  The base metal suite of elements shows a weak spatial 

correlation and includes Ag, Bi, Cu, Fe, Pb, and Zn, which are typical elements of 

intrusion-related polymetallic mineralization (Venendaal, 2007; Seedorff et al., 2005).  

The author concludes that these elements also correlate with the Voodoo fault.   

Venendaal (2007) reported that for the Carlin suite, Tl and Hg correlate best with 

Au, followed by As, Sb, and Ag.  The author concluded that the suite observed at Cortez 

Hills is similar to Carlin-type systems discussed in Cline et al. (2005).  This element suite 

is enriched along the Voodoo fault and there are also elevated concentrations along the 



 

Roberts Mountains Formation-Wenban Formation contact.  Venendall (2007) reports that

oxidation currently reaches at least 2000 feet below the surface in the area of the Voodoo 

Fault and that the oxidizing fluid followed the same pathways as earlier tungsten, base 

metal, and Carlin mineralizing fluids.  The author concludes that the primary elements 

that display mobilization by the oxidizing fluid are Fe, Mn, Zn, U, and V. 



 

CHAPTER 3 

METHODS 

Sample Collection 

For this study, three hundred and seventy samples were collected from thirteen 

drill holes through the CHBZ (Fig. 10; Appendix C) and forty samples from three drill 

holes through the CHLZ.  Samples were collected from drill holes that are within 200 feet 

of a selected northeast oriented long section through the breccia zone (along A-A’ from 

Fig. 4).  The coordinates for the section are 40.167468663N, 116.611112789W and 

40.169401386N, 116.608316283W.  The section was selected because it crosscuts the 

Voodoo fault and runs parallel with the long axis of the breccia zone.  Core photos and 

Au assays were examined from each drill hole that intersects the section in order to 

identify transects through sulfide-bearing rocks that transition from high-grade 

mineralization to low- or undetectable  Au-grade  (0.0001 oz/t Au detection limit) over as 

short of a distance as possible.  Such transects minimize variations in primary lithology, 

and changes in mineralogy and texture can be more confidently related to the 

mineralization processes.  Sulfide-bearing rocks were studied because they preserve the 

original depositional location of Au within CTGDs.  Alternatively, in oxidized rock, Au 

may have been remobilized.  Within the CHBZ, ideal transects for sampling proved to be 

rare because of pervasive oxidation and abrupt changes in Au concentration at lithologic

contacts.   

Optical Petrography 

 Transmitted and reflected light microscopy were the primary tools used to 

determine the paragenetic sequence within the CHBZ.  A total of 102 polished thin 



 

sections were cut from core samples within the CHBZ and 18 from CHLZ (Appendix C).  

All thin sections were stabilized with blue epoxy.  Thin sections were cut from rocks that 

represent transects through sulfide-bearing ore, from high-grade sulfide-bearing rocks, 

high-grade oxidized rocks, and samples that contain multiple mineral phases and cross-

cutting relationships between minerals.   

Electron Probe Microanalysis 

A JEOL-8900 Electron Probe Microanalyzer (EPMA) at University of Nevada 

Las Vegas (UNLV) Electron Microanalysis and Imaging Laboratory (EMiL) was used to 

quantify the major, minor and trace element chemistry of texturally and spatially diverse 

pyrite grains as well as to identify unknown sulfide minerals.  Probe conditions for 

analysis are provided in Table 2.  The suite of elements quantified in the pyrites and their 

standard conditions are provided in Table 3.  Two analyses were performed iteratively for 

each 1 to 2 micrometer point, one for the major elements and one for trace elements, so 

that the beam current can be modified to optimize for the full range of elements of 

interest. See Muntean et al. (2011) for all EPMA method techniques and standards.  All 

samples selected for EPMA were carbon coated.      

X-Ray Diffraction  

 Fine-grained clays were difficult to identify by using transmitted light microscopy 

owing to the close proximity of opaque sulfides and the blue epoxy.  After extensive thin 

section petrography, X-ray diffraction (XRD) was used to identify the clays present in 

twelve rocks with varying mineral assemblages and Au concentrations.  Additionally, 

XRD was used in an attempt to distinguish between sulfide minerals with similar 

chemical compositions, which were first determined by using EPMA.  Rock samples 



 

were broken up with an iron mortar and pestle and then ground into a fine powder by 

using a shatter box for two to five seconds.  Samples were analyzed by using a

PANalytical X’PERT Pro X-ray Diffraction Spectrometer housed in the UNLV 

XRD/XRF laboratory; XRD settings are reported in Table 4.  The raw XRD patterns 

were interpreted by using X’Pert Highscore Plus and Match!2 software packages.  

Scanning Electron Microscopy 

 A JEOL-5600 Scanning Electron Microscope (SEM) was used to provide semi-

quantitative chemical compositions that aided in the identification of clay and 

carbonaceous materials.  Thin sections with carbonaceous material were analyzed 

without carbon coating while all other thin sections used in the SEM were carbon coated.  

High resolution microscopy was conducted by using the SEM to observe and document 

clay and Au-bearing iron-sulfide textural and spatial relationships.   

Cathodoluminescence 

 An Oxford/Gatan Mini-CL Cathodoluminescence Detector mounted inside the 

electron microprobe column located at UNLV EMIL laboratory and a K.E. 

Developments panchromatic Centaurus CL detector mounted on a JEOL 5800LV 

scanning electron microscope at the United States Geological Survey (USGS), Denver, 

CO, were used in an attempt to observe varying luminescence of quartz and calcite 

generations in four thin sections.  No variation in luminescence, or luminescence itself, in 

calcite and/or quartz crystals was observed by using either CL detector.  

Laser Ablation Inductively-Coupled Plasma Mass Spectrometry 

 Trace element relative counts and concentrations were determined by using laser 

ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the USGS 



 

Denver laboratory.  A Photon Machines Analyte G2 LA system (193 nm, 4 ns Excimer 

laser) was coupled to a PerkinElmer DRC-e Inductively Coupled Plasma Mass 

Spectrometer.  Typical operating conditions for these analyses are listed in Table 5.  Thin 

section mineralogy was first characterized by using optical petrography and trace element 

concentrations were pre-determined by using EPMA as described above.   

Pyrite grains were analyzed by performing 5 micrometer spot analyses and line 

scans.  Spot concentrations and detection limit calculations were conducted by using the 

protocol of Longerich et al. (1996), and 57Fe was used as the internal standard.  Spot data 

were collected to measure elements that were below EPMA method detection limit 

(MDL).  Line scans were used to observe relative changes in trace-element 

concentrations along a single line that traversed from breccia matrix to clasts and/or from 

pyrite rims to pyrite cores.  Methods for mapping pyrites are similar to those reported in 

Koenig et al. (2009).  The reference material (MASS-1) was analyzed 5-10 times at the 

beginning of the analytical session and reanalyzed throughout the session to correct the 

mass spectra for drift that can occur during the analytical session.  The transient signals 

were screened visually for heterogeneities such as micro-inclusions and/or zoning.       

 

 

 

 

 

 

 



 

CHAPTER 4 

PRE-ORE STAGE 

 The pre-ore-stage is defined as the period of time prior to the Carlin ore-fluid 

being introduced to the system.  Pre-ore-stage minerals encompass the primary 

constituents of the host rocks, which includes calcite, carbonaceous material, and detrital 

quartz.  Additionally, there are other pre-ore-stage minerals, such as sulfide minerals, 

hydrothermal quartz, and tremolite that are not typically associated with the deposition of 

limestone.  These other minerals most commonly occur in limestone that is primarily 

composed of recrystallized calcite and low to undetectable Au concentration, located 

along the periphery of the CHBZ ore zones; however, they may also occur in strongly Au 

mineralized samples.  

Limestone Minerals 

 The data described in this section were collected by using optical petrography on 

samples located on the periphery of the deposit that do not contain detectable Au.  

Samples collected from the Devonian Wenban and Silurian Roberts Mountains 

formations are primarily composed of calcite, silt sized quartz, and carbonaceous material 

(Fig. 11), although variation between the formations does exist.  The calcite within the 

Devonian Wenban Formation is usually recrystallized as fine to medium subhedral 

calcite crystals (Fig. 11B), and is more coarse and homogenous than the mottled, or fine-

grained and dirty, calcite within the Silurian Roberts Mountains Formation (Fig. 11D).  

There is more dark opaque carbonaceous material within the Silurian Roberts Mountains 

Formation than the Devonian Wenban Formation (Fig. 11B, D-E).  The formations also 

differ in silt content, with the Silurian Roberts Mountains Formation containing 



 

significantly more and coarser detrital quartz, whereas it is difficult to detect detrital 

quartz within the Devonian Wenban Formation (Fig. 11E). The larger component of 

detrital quartz and carbonaceous material within the Silurian Roberts Mountains 

Formation results in clearly visible laminae that vary in silt and carbon content (Fig. 

11D).   

Pyrite Classification 

Three types of pre-ore-stage pyrites were observed and classified according to 

their petrographic characteristics, chemistry, and associated minerals (Table 6): pre-ore 

pyrite 1 (PO1), pre-ore pyrite 2 (PO2), and pre-ore pyrite 3 (PO3).  PO1 (Fig. 12A-B) is 

coarse anhedral pyrite that is primarily visually differentiated from PO2 and PO3 by its 

irregularly textured interior.  The PO1 pyrites are the prevalent pyrite type in rocks that 

do not contain Au, and are commonly elongated along bedding laminae of the host rocks 

within the CHBZ and CHLZ.  The PO1 pyrites are less commonly observed with Au-

bearing iron-sulfide rims in rocks with high Au concentrations.  The PO2 pyrite grains 

(Fig. 12C) are subhedral to euhedral with bright white reflectivity, and are differentiated 

from other pyrites by their resemblance to cubic, stoichiometric pyrite.  The PO3 pyrites 

are distinguished petrographically from PO1 and PO2 pyrites by the presence of abundant 

pore spaces, which are commonly elongated and parallel to each other (Fig. 12D).  The 

PO3 pyrite grains are spatially associated with chalcopyrite (Fig. 12E-F), sphalerite, 

tremolite, and quartz.  Some PO3 pyrites have Au-bearing iron-sulfide rims of less than 1 

micron.  

The element chemistry of PO1 and PO2 pyrites is plotted in Figure 13.  EPMA 

data were not collected for PO3 pyrites because they were not identified at the time of 



 

analysis.  All EPMA data points plotted in Figure 13 are located within PO1 pyrites that 

are greater than 5 micrometers from Au-bearing iron-sulfide rims in order to avoid 

analytical overlap and are located within the most visually distinctive crystals of each 

pyrite type.  The plots reveal significant variation within the majority of the elements 

plotted for each pyrite type; however, Pb and Co are consistently elevated in both PO1 

and PO2 pyrites.  Nickel is consistently elevated in PO1 pyrites and As is consistently 

elevated within PO2 pyrites.    

Figure 14 better displays elemental patterns for each pyrite type.  The EPMA 

trace element chemistry from PO1 (n = 21) and PO2 (n = 14) pyrite points that are greater 

than 5 micrometers from Au-bearing iron-sulfide rims are plotted (Fig. 14).  The bar and 

whisker diagrams show the median value as the center vertical line, the length of the bar 

displays the range that 50% of the values plot, and the horizontal lines indicate the 

minimum (left) and maximum (right) values for each element. The elements that are 

elevated in PO1 pyrites are Ni, Co, Pb, and Ag. The concentrations of As, Sb, and Sn are 

usually elevated within PO2 pyrites.  

Other Minerals 

In addition to the three pyrite types described above, pre-ore-stage minerals 

includes chalcopyrite, sphalerite, pyrrhotite, tremolite, and quartz.  These minerals are 

commonly spatially associated with PO3 pyrites as well as each other. The minerals 

discussed in this section were observed along and within the planes of laminae as well as 

crosscutting laminae.  PO3 pyrites are commonly within close proximity of chalcopyrite; 

the two minerals have complex boundaries and resemble puzzle pieces (Fig. 12E) or have 

a wispy texture (Fig. 12F) between the two minerals.  PO3 pyrite has fuzzy edges along 



 

its crystal boundary and is the mineral displaying the wispy texture.  Chalcopyrite 

conforms to euhedral calcite rhombohedrons and the original fine grained mottled calcite 

that comprises the majority of the rock (Fig. 15A), and is observed adjacent or 

surrounding millerite (NiS) in two samples.  Figure 15B shows chalcopyrite inclusions 

within sphalerite, known as chalcopyrite disease, which is interpreted to be a result of the 

replacement of sphalerite by chalcopyrite (Barton and Bethke, 1987).  The PO3 pyrite 

and chalcopyrite conform to euhedral tremolite (Fig. 15C) and PO3 pyrite replaced 

tremolite (Fig. 15D-E).  Figure 15F displays unaltered radiating tremolite surrounded by 

recrystallized calcite.  Pyrrhotite, which has been documented at the Getchell CTGD as a

skarn and intrusion-related mineral (Groff et al., 1997), is present within the CHBZ 

rimmed by pre-ore pyrite (Fig. 16A).  PO3 pyrites are also found in contact with quartz, 

commonly displaying a banded zebra-like pattern or texture between quartz and PO3 

(Fig. 16B) and occasionally PO3 pyrite is observed conforming to euhedral quartz 

crystals (Fig. 16C). 



 

CHAPTER 5 

ORE-STAGE  

Ore-stage mineralogy and alteration include three types of Au-bearing iron-

sulfide minerals, illite, and jasperoid, all of which commonly occur together.  The iron-

sulfide minerals are not referred to as pyrite or marcasite because they are not coarse 

enough to reveal strong birefringence.  This section describes the mineralogy and 

chemistry associated with ore-stage iron-sulfide minerals.  Spatial relationships of ore-

stage minerals with porosity and breccia textures are described.  Additionally, sample 

transects from unmineralized to Au-bearing rocks are described in terms of mineralogy, 

rock type, pore space, and texture.   

Ore-stage Iron-sulfide Minerals  

Three distinct iron-sulfide minerals containing Au and trace elements that 

correlate with Au (As, Tl, Hg, Cu) have been characterized throughout the CHBZ (Table 

7).  The three iron-sulfide minerals were first differentiated petrographically by their 

physical properties and crystal morphologies.  The most prevalent Au-bearing iron 

sulfide is OP1, which is widely distributed throughout the CHBZ (Fig. 17; Appendix D).

The other two iron sulfide types are not as common throughout CHBZ (Fig. 17;

Appendix D). The chemistry of OP2 and OP3 were characterized by using EPMA; 

however, unlike OP1, data from OP2 and OP3 were not collected from multiple samples. 

The OP1 is a low relief anhedral iron sulfide that has a Mohs hardness of 

approximately 3, determined by the similar hardness of OP1 and adjacent realgar by a

nail (hardness = 5.5) scratch test.  OP1 is easily recognized because of lower relief and 

reflectivity compared to the pyrite cores they surround (Fig. 18A).  The EPMA data 



 

collected from OP1s generally indicate As >> (Tl+Hg+Cu) > (Au±Bi±Sb) > Ag and Au

has a negative to no correlation with Pb (Figs. 18C-D, 19C-D; Table. 7).  Associated ore-

stage elements increase in concentration from the pyrite core into the OP1 rim (Fig. 18C-

D, 19C-D).  The LA-ICP-MS raw intensity data (Fig. 19B) and EPMA data (Fig. 19D) 

indicate that the largest OP1s observed, which reach 50 micrometers, do not have 

chemically zoned rims.  The concentration of Au appears to be lower in the rim directly 

adjacent to the pyrite cores in the LA-ICP-MS map (Fig. 19B).  This is likely due to 

signal mixing as a 5 micron analysis will analyze both core and rim along the contact.  

Microprobe data verify that where Au is elevated, Tl, Cu, Hg, and As are consistently 

elevated as opposed to chemically zoned.  The OP1 is commonly found disseminated 

throughout jasperoid and/or breccia matrix.  In one sample, OP1 was observed rimming a 

presumably pre-ore sphalerite crystal (Fig. 18B).  

The OP2 differs texturally from OP1, and textural variations between the iron 

sulfide types cannot be attributed to variations in polish because visible OP1s are 

commonly within micrometers of OP2s, indicating that both pyrites have undergone the 

same polishing.  OP2s are similar in reflectivity and relief to the cores that they surround, 

which makes them difficult to detect petrographically (Fig. 20A), as they closely 

resemble pre-ore-stage pyrites.  The OP2s contain As >> (Tl+Hg+Cu) > (Au+Sb) > Ag 

and differ chemically from OP1s in that Au and Sb are consistently associated (Fig. 20B).  

The OP3s display low relief, are anhedral with an irregular “fuzzy” outer edge, 

and do not contain the same bright reflectivity as pre-ore-stage or stoichiometric pyrites 

(Fig. 21A), which makes them appear to be Au-bearing iron-sulfide minerals (Cline and 

Hofstra, 2000). However, EPMA data indicate that OP3 does not always contain Au



 

above detection.  Overall, OP3s contain As >> (Tl+Hg+Cu) > ± Au > Ag ≥ ± Sb (Table 

7; Fig. 21).  Figure 21B shows that Tl, Cu, and Hg points, which overlie one another, 

increase gradually across the rim.  However, the concentrations of Au and As increase 

abruptly within the rim (Fig. 21B) in analyses r1 and r2. The concentration of Sb is above 

detection in some core and some rim analyses, but does not consistently follow Cu, Tl, 

and Hg, indicating that the rim is zoned.     

Illite 

 Throughout the CHBZ, Au-bearing iron-sulfide minerals are commonly 

surrounded by clay minerals and quartz.  Illite, which is difficult to characterize by using 

transmitted light microscopy due to close proximity to opaque iron-sulfide minerals and 

blue epoxy, was confirmed by using SEM-EDS to identify equal Si and Al>O and K 

peaks and a small Mg peak (Fig. 22B).  Other clay minerals were not identified in-situ by 

using SEM-EDS or optical petrography.  Illite is fine grained, on the scale of a few 

micrometers, and often completely surrounds Au-bearing iron-sulfide minerals (Fig. 

22A).  The XRD data also confirm the presence of illite in Au-bearing samples (Fig. 

22C).  Additionally, XRD data indicate the presence of kaolinite, dickite, and 

montmorillonite in samples from the CHBZ that contain Au and dickite is also present in 

samples with undetectable Au (below 0.0001 oz/t) based on 10 foot assays (Appendix F).  

XRD data also suggest the presence of kaolinite, dickite, and illite in CHLZ (Appendix 

F). Although these clay minerals were not identified by using SEM-EDS, XRD data 

indicate they are common within the rocks of the CHBZ and CHLZ.     



 

Quartz and Jasperoid 

 Quartz within the CHBZ was identified by its high relief relative to the 

surrounding minerals (Fig. 23A-B), common euhedral crystal faces in reflected light (Fig. 

23B) and first order grey to white birefringence in transmitted light (Fig. 23C).  Figure 

23C shows an example of a replacement texture that is interpreted to represent quartz 

replacing calcite, forming jasperoid (Spurr, 1898); quartz is dominant along the periphery 

of the calcite clast and is replacing the calcite from the edges inward.  Where quartz is 

documented replacing pre-ore-stage calcite, the calcite commonly appears dark (blue 

rectangles in Fig. 23C) due to concentrated carbonaceous material, increase in blue 

epoxy, and addition of clay and quartz as the calcite begins to dissolve.  Within jasperoid, 

solid calcite inclusions are observed and identified by their lower relief than the 

surrounding quartz and their high birefringence in transmitted light (Fig. 23D).  Figure 

23E shows high calcite birefringence (bottom), low grey to white quartz birefringence 

(top), and grey quartz with high birefringence calcite solid inclusions (center left), 

consistent with jasperoid formation.  

Quartz is commonly observed in rocks that contain elevated Au concentrations 

surrounding Au-bearing iron-sulfide minerals (Fig. 23A) and as non-interlocking crystals 

with low relief illite and Au-bearing iron-sulfide minerals between quartz crystals (Fig. 

23B).  Although quartz is dominant in ore grade rock, small remnant zones of original 

fine-grained mottled calcite from limestone deposition is commonly present as well.  The 

0.221 oz/t sample shown in Figure 23C displays the extent to which Paleozoic calcite can 

remain in a mineralized sample.    



 

Porosity Associations  

High-grade Au samples commonly exhibit a large amount of pore space, now 

filled with blue epoxy.  Ore-stage minerals that include jasperoid, illite, and fine-grained 

Au-bearing iron-sulfide minerals are commonly associated with blue epoxy.  Blue epoxy 

is visible where illite is present (Fig. 24A) because of the fine-grained thin nature of the 

mineral (Fig. 24A-B).  Where non-interlocking jasperoid crystals are present, blue epoxy 

fills the open spaces of the rock, as shown within the white ovals in Figure 23C and 

throughout the thin section scan in Figure 23F.  Illite, jasperoid and Au-bearing iron-

sulfide minerals are commonly observed as pseudomorphs of pre-ore-stage radiating 

tremolite crystals (Fig. 24A-D), with blue epoxy pervasive through the pseudomorph 

(Fig. 24A).  

Elongated seams of blue epoxy are commonly observed within photomicrographs 

of mineralized rocks (Fig. 25C, 26D, 27D).  Directly adjacent and parallel to blue epoxy 

seams, are areas of brownish black dark material in transmitted light (Figs. 25C, 26D, 

27D) which may appear jet black in reflected light (Fig. 27C).  Within a seam, SEM-EDS 

analyses identified opaque residual carbonaceous material, along with illite, jasperoid, 

fine-grained, mottled calcite, and fine-grained (<1 μm) Au-bearing iron-sulfide minerals.  

Figure 25 shows a seam in transmitted light (C), with the dark material radiating from the 

region of blue epoxy, and reflected light (D), which shows the fine grained Au-bearing 

iron-sulfide minerals within the seam material.     

Sample Transects 

Figure 26 displays a sample transect shown in hand samples, thin sections, and 

photomicrographs that transitions from primarily recrystallized calcite (A) into rocks that 



 

contain Au-bearing iron-sulfide minerals, jasperoid, fine-grained calcite, illite and 

carbonaceous material along seams (D) over 16 feet.  Sample A is a limestone that 

contains 0.001 oz/t Au and is primarily composed of recrystallized calcite.  These rocks 

commonly contain pre-ore-stage minerals, including, but not limited to, calcite, detrital 

quartz, tremolite, pyrite, and carbonaceous materials.  Thin zones of dark material, 

primarily consisting of clay and residual pre-ore carbon, appear in sample B, located at a 

distance of approximately 2.5 feet from sample A, as Au concentration increases to 0.025 

oz/t. The majority of the rock is still recrystallized calcite. Blue epoxy in the thin section 

is located adjacent to the darker areas, and in the photomicrograph jasperoid is present 

within these areas. As Au concentration increases to 0.312 oz/t in sample C, porosity 

increases significantly.  Some areas are opaque due to the presence of Au-bearing iron-

sulfide minerals (Fig. 26C circled).  The rock is still primarily recrystallized calcite, 

although realgar, jasperoid, and illite are also present. Continuing along the transect to 

sample D, located 4.5 feet away from sample C, the hand sample decreases in induration; 

the amount of calcite decreases while the dark material that contains illite, carbonaceous 

residual material, fine-grained Au-bearing iron-sulfide minerals and non-interlocking 

jasperoid increases within the sample.  In the thin section, low relief dark material is 

present in some, but not all, of the matrix that surrounds the clasts.  The photomicrograph 

reveals an elongated region of the dark material parallel to a seam of high porosity.   

Samples with higher Au concentrations (0.541 and 2.02 oz/t) than shown in 

Figure 26 are displayed in Figure 27 in order to characterize mineral textures and 

associations with increasing Au grade. As the concentration of Au increases in the 

limestones, elongated regions of dark material and porosity become more pervasive 



 

throughout the sample (Fig. 27B-D).  The sample contains less recrystallized calcite and 

significantly more jasperoid, illite, fine-grained iron-sulfide minerals, and carbonaceous 

material than the samples in Figure 26.  In high grade (2.02 oz/t) heavily brecciated 

samples (Fig. 27E-H), the dark opaque material is irregularly distributed throughout the 

breccia matrix (Fig. 27G-H) instead of concentrated in elongated seams.  Recrystallized 

calcite is now a minor component of the sample. The primary components of the high-

grade ore are jasperoid, illite, carbonaceous material, and iron-sulfide minerals.           

Breccia Associations 

Gold-bearing iron-sulfide minerals are concentrated within the matrix of 

monolithic and polylithic brecciated rocks along clast boundaries (Fig. 28A); however, it 

is also common to observe strongly mineralized clasts surrounded by a less mineralized 

matrix (Fig. 28B-D).  For example, the clasts in Figure 28A are not mineralized; instead, 

the bright reflective Au-bearing iron-sulfide minerals are distributed along the clast 

boundary.  In contrast, Figure 28B shows a clast that is opaque owing to pervasive Au-

bearing iron-sulfide mineralization and is more strongly mineralized than the surrounding 

matrix. Similarly, Figure 28C shows a cubic clast that is strongly mineralized by bright 

reflective Au-bearing iron-sulfide minerals and a less mineralized matrix.  Figure 28D

shows the extent of mineralization of the same clast under transmitted light.  Above the 

clast, at the boundary between it and the next clast (within the drawn oval), there is a 

concentration of opaque carbonaceous material, illite, and fine-grained Au-bearing iron-

sulfide minerals.  The Au mineralization is concentrated within the clast as well as at the 

clast boundary with the unmineralized clast (Fig. 28C-D).  Because these samples were 



 

collected from drill core within heavily brecciated rocks, they may be mega-clasts within 

the breccia that contain smaller clasts and matrix.       

Two samples contain clasts that are strongly Au mineralized with a halo of 

disseminated Au-bearing iron-sulfide minerals within the matrix surrounding the clasts, 

shown as the opaque material in Figure 29A.  These strongly mineralized clasts are black 

in hand sample (Fig. 29D, circled) and thin section (Fig. 29E, circled), making some 

breccia samples appear to be polylithic.  It is not possible to determine the composition of 

the original clasts due to the extent of mineralization (Fig. 29B).  An LA-ICP-MS 

transect through the clast and surrounding mineralized halo and matrix indicates 

significant Au within the clast as well as in the matrix (Fig. 29C).  The Au-bearing iron-

sulfide minerals are concentrated within the clast; however, the matrix has sporadic Au-

bearing iron-sulfide mineralization.  The trace element chemistry in the clast and matrix 

is similar (Fig. 29C).     



 

CHAPTER 6 

LATE-ORE STAGE 

Late-ore-stage is defined as the stage when ore-stage minerals (Au-bearing iron-

sulfide minerals, illite, and jasperoid) are no longer being deposited throughout the 

majority of the system.  Instead, minerals begin to precipitate that are modeled as 

precipitating as the system cools and collapses, such as realgar and calcite (Hofstra et al., 

1991). The late-ore-stage minerals within the CHBZ, which include five types of iron-

sulfide minerals, calcite, aktashite, christite, cinnabar, and realgar, are most abundant in 

heavily brecciated samples. Calcite and realgar, however, are pervasive throughout the 

entire deposit and commonly occur in both un-brecciated and brecciated samples.  

Textural characteristics of realgar discussed in this section are specific to the CHBZ.  No 

late-ore-stage minerals were observed in samples from the CHLZ.  

Late-ore-stage Iron-sulfide Minerals 

Five iron-sulfide minerals are grouped separately from the ore-stage iron-sulfide 

minerals based on consistent elevated concentrations of Pb and Sb that are distinctly 

different from ore-stage iron-sulfide minerals, as determined by using EPMA.  

Additionally, inconsistent associations of Au with Tl, Hg, Cu, and As (Table 7) 

commonly exist. The group is classified as chemically evolved-ore-stage iron-sulfide 

minerals (EOP).  The evolved-ore-stage marks the transition between the main-ore-stage 

and the late-ore-stage, and is included with the late-ore-stage system because the majority 

of the EOPs do not contain detectable Au, indicating that the system was no longer 

depositing Au within certain areas.   



 

The EOP1 is a low relief, anhedral iron sulfide that is texturally similar to OP1s, 

but they rim fragmented realgar as well as pyrite (Fig. 30A-B). The EOP1s differ 

chemically from OP1s in that they contain As >> (Pb+Cu) ≥ (Sb+Hg±Tl) ≥ (Au±Bi) > ± 

Ag (Table 7; Fig. 30). The EOP2s are diagnostically anhedral with irregular fuzzy crystal 

boundaries and are dull tannish white in reflected light (Fig. 31A-B).  Breccia zone 

EOP2s contain As >> (Pb+Cu) > (Sb+Hg) > (Tl+Au) > Ag (Table 7; Fig. 31A, C).  The 

CHBZ EOP1s and EOP2s are the only evolved-ore-stage iron-sulfide minerals that 

commonly contain Au; however, they also contain elevated and strongly associated Pb 

and Sb.  The CHLZ EOP2s (Fig. 31B) are texturally similar to EOP2s from CHBZ (Fig. 

31A); however, the CHLZ EOP2s contain As >> Ni > (Au+Cu+Hg+Pb+Tl) > Ag > ± Sb 

(Table 7; Fig. 31D).  The CHLZ EOP2s appear to contain high Au and Ni relative to all

CHBZ ore-stage iron-sulfide minerals; however, microprobe major element totals are 

consistently low within CHLZ CHUE 215 246.5’, ranging from 44-96 wt%, due to 

varying degree of oxidation as is common in CHLZ.   

The EOP3s have a brownish-white color under reflected light (Fig. 32A) and are 

surrounded by feldspars and clays within one mineralized dike sample.  These iron-

sulfide minerals contain elevated As >> (Tl+Hg+Sb±Pb) >> (±Cu±Ni±Ag±Ti) with no 

detectable Au or Bi (Fig. 32C).  The LA-ICP-MS line scan (Fig. 32B) does not reveal 

concentration, but does suggest that As, Tl, Hg, Sb, and Pb are relatively elevated within 

the EOP3.  The element Cu, which is present in all other ore- and evolved-ore-stage iron-

sulfide minerals, is below LA-ICP-MS detection and is significantly lower in 

concentration (Fig. 32) than in other ore and evolved-ore-stage iron-sulfide minerals.   



 

The EOP4s are characteristically tan in reflected light with bright white flecks and 

they rim a bright reflective core (Fig. 33A).  These iron-sulfide minerals contain As >>

Cu > (Tl+Hg+Ni) > (Pb±Sb±Au) ≥ ± Ag. Gold in EOP4s that are surrounded by 

aktashite (Cu6Hg3As4S12) is consistently below EPMA detection limit (Fig. 33A and C, 

points r5, r6), whereas EOP4s that are surrounded by realgar and quartz contain 

detectable Au (Fig. 33A, C, points c1, r3).  The EOP5s have a yellowish-white color in 

reflected light, relatively dull reflectivity, and are a circular shape with a hole at the 

center (Fig. 33B).  EOP5s contain As >> (Pb+Cu) > (Tl+Hg+Bi) > Sb > Ag ± Ti with Au

below detection limit (Fig. 33D).   

Aktashite and Christite

Aktashite is an uncommon sulfosalt (Cu6Hg3As4S12) that has a postulated 

hydrothermal origin and has been documented at the Getchell CTGD in Nevada (Mineral 

Data Publishing, 2001).  The mineral was identified by EPMA analysis with the 

calculated formula Cu5.982Hg2.966As2.155Zn0.271S12 (Table 8).  In hand sample, aktashite is 

steely bluish grey, anhedral (Fig. 34A), and has a reported Mohs hardness of ~3.5 

(Mineral Data Publishing, 2001).   

Christite (TlHgAsS3) and routhierite (Tl(Cu,Ag)(Hg, Zn)2(As,Sb)2S6) are 

sulfosalts with similar compositions; however, they differ in crystallography and 

routhierite allows Cu and other elements in its structure whereas christite does not.  

Christite has been reported as a hydrothermal mineral deposited during the late-ore-stage 

deposition of the original Carlin gold deposit, Nevada (Radtke et al., 1977).  Routhierite 

is found in hydrothermal deposits in France and has not been reported within CTGDs 

(Mineral Data Publishing, 2001); however, it has been reported in the presence of 



 

aktashite in the Hemlo deposit (Pan and Fleet, 1995; Muir, 2002).  Table 8 compares the 

chemistry of aktashite, christite and routhierite from other deposits to the minerals 

sampled in this study.  The CHBZ EPMA data match more closely with christite than 

routhierite, with the calculated formula Tl0.666Hg0.706Cu0.168As0.563S3. Although the 

CHBZ mineral contains Cu, Cu and/or Ag concentrations are too low and there is too 

much Tl to satisfy the routhierite mineral formula.    

X-ray diffraction analysis for sample CHUD 038 457’ matches more closely with 

christite than routhierite (Fig. 35A).  However, it is not possible to determine the mineral 

diffraction pattern with high confidence because minerals and clays were not separated 

for the analysis.  There is extensive peak overlap between the unknown mineral (christite 

or routhierite) and realgar, and realgar is much more pervasive in samples that contain the 

unknown mineral.  Data suggest that the unknown mineral is more likely christite than 

routhierite, and will be referred to as christite in the remaining portion of this thesis.   

Microscopically, aktashite is most commonly observed as euhedral triangular 

prisms (Fig. 34B) or irregular masses in contact with sphalerite (Fig. 34C-D) and/or 

chalcopyrite (Fig. 34A, E-F).  Aktashite completely surrounds and fills fractures in 

sphalerite (Fig. 34C-D).  Figure 34E displays aktashite along the outer edge of 

chalcopyrite and along the contact between two EOP5s and chalcopyrite.  Other EOP5s

in this image (indicated by the circle) have open space at the contact between the EOP5 

and chalcopyrite, which is also at the center of the EOP5s.  Each sample that contains 

aktashite also contains chalcopyrite and/or sphalerite in close proximity; however, 

chalcopyrite and sphalerite commonly occur without aktashite (Fig. 36; Appendix D).

Aktashite is also observed conforming to calcite rhombohedrons (Fig. 37A) and EOP4s



 

in multiple thin sections (Fig. 37A-B).  Microprobe points 1, 2, 3, 4, 5 (Fig. 37B) within 

EOP4 surrounded by aktashite do not contain detectable Au; however, texturally similar 

points 7, 8, 9 within EOP4 surrounded by realgar (Fig. 37B), do contain Au.  The realgar 

conforms to the euhedral aktashite edge (Fig. 37B).  The EOP4s are very abundant within 

the aktashite and commonly do not exist within the minerals immediately adjacent to 

aktashite (Fig. 34D, 37C). EOP4s are concentrated at the contact between sphalerite and 

aktashite; however, they occur within the aktashite (Fig. 34D).  

Christite is not common, and was only observed in one sample.  In reflected light, 

christite resembles aktashite in that it is bluish white (Fig. 37C-F), but it can be 

distinguished by its deep crimson purplish red color in transmitted light. SEM images 

reveal a different shade of grey between aktashite and christite, with christite being 

brighter due to higher Hg content (Fig. 37D).  Christite has a reported hardness similar to 

that of realgar (~2), and it has a similar relief (Fig. 37D-E).  Within CHBZ, christite is 

always anhedral and is commonly crossed by fractures filled with realgar (Fig. 37E) or 

completely surrounded by realgar (Fig. 37F).  Christite occurs with aktashite and realgar

in the same sample.  Figure 37F shows christite surrounding EOP5, a pyrite that is 

commonly spatially related to aktashite. 

Realgar 

 Realgar was observed in samples from the CHBZ conforming to euhedral crystals 

of quartz (Fig. 37D), ore-stage iron-sulfide minerals (Fig. 37B), aktashite (Fig. 37B,D), 

calcite (Fig. 38A, B), and cinnabar (Fig. 38B-C).  Figure 38D reveals solid realgar 

inclusions within calcite, which is not as common as realgar conforming to calcite 



 

rhombohedrons.  Figure 39A shows a common veinlet form of realgar located adjacent to 

calcite veins and filling the fractures within the limestone.   

Although realgar primarily conforms to other minerals and fills in the open spaces 

of the breccia, fragmented realgar is obvious in some hand samples (Fig. 39B).  

Fragmented realgar from four thin sections, all of which are located in close proximity to 

each other within the hanging wall of a dike (Fig. 36), have EOP1 Au-bearing iron-

sulfide rims (Fig. 39C).  Two of these samples also contain the heavily Au mineralized 

clasts and disseminated Au mineralized halos shown in Figure 29.  A LA-ICP-MS 

transect through one of the fragmented and EOP1 rimmed realgar clasts (Fig. 40) reveals 

a Au, Tl, Cu, Sb, and Bi association within the iron-sulfide rim.  



 

CHAPTER 7 

IRON-SULFIDE GEOCHEMISTRY 

Iron-sulfide Spearman Rank Correlation Matrix 

A Spearman rank correlation matrix (SYSTAT 13) was conducted for a matrix of 

18 elements by using the EPMA data collected on all iron-sulfide minerals within CHBZ.  

Correlation coefficients (r) are listed in Table 9, with values > 0.4 and < -0.4 in bold in

order to show strong positive and negative correlations.  Gold shows a > 0.4 positive 

correlation with As (0.679), Tl (0.456), Cu (0.484), and a < -0.4 negative correlation with 

S (-0.645) and Fe (-0.529).   

Ore to Evolved Ore-stage Geochemical Suites  

Detailed examination of EPMA analyses of ore- and evolved ore-stage iron-

sulfide minerals within eight samples from the CHBZ and one from CHLZ reveal the 

presence of two distinct geochemical suites within the CHBZ, referred to as the main-ore-

stage and evolved-ore-stage suites.  Table 10 indicates whether the sample represents the 

main-ore-stage or evolved-ore-stage geochemical suite, and lists each sample name, 

elevation, elevated trace elements, element correlation coefficients, and the iron-sulfide-

type from which the EPMA data were collected.  All of the EPMA data used to compile 

Table 10 were collected from Au-bearing iron-sulfide minerals.   

Figure 41 is a matrices plot in which Au, Hg, Tl, Cu, Sb, and Pb are plotted 

against each other and color coded by sample.  The data plotted are referred to in Table 

10, and the least-squares lines are determined by using all data points in each plot.  There 

are two categories of plots that the data produce: 1) data from each sample plot in clusters 

along the least-squares lines, as shown on the Tl:Hg plot; 2) data from each sample have 



 

a range of values that generally do not plot in a cluster or trend parallel to the least-

squares line, as shown in the Sb and Pb plots.  Samples DC 124 1273’ (lavender) and DC 

114 1236.5’ (purple) chemistries plot very differently.  Although the two samples are 

close spatially (Fig. 42), they exhibit different mineral textures.  For example, DC 114 

1236.5’ (purple) contains fragmented realgar with Au-bearing EOP1 rims while DC 124 

1273’ (lavender) contains realgar that fills in the open space within the breccia.  Au-

bearing iron-sulfide minerals within DC 124 1273’ (lavender) contain high Hg and Tl 

regardless of Au concentration, while DC 114 1236.5’ (purple) iron-sulfide minerals 

contain the lowest Hg and Tl concentrations of all analyzed samples (Fig. 41).  

Additionally, DC 114 1236.5’ (purple) plots parallel to the Pb and Sb regression line 

while DC 124 1273’ (lavender) plots horizontal, displaying a zero correlation between Pb 

and Sb (Fig. 41). Sample DC 124 1264’ is not included in Figure 41 because Sb, Pb, Hg, 

and Tl are anomalously high in this sample and skew all plots containing these elements.     

 Three samples contain iron-sulfide minerals in which Pb and Sb correlate 

positively, and, thus, are referred to as the evolved ore-stage geochemical suite: DC 114 

1236.5’ (purple), CHUE 215 246.5’ (olive green) and DC 124 1264’ (yellow) (Fig. 43).  

Figure 43 displays the least-squares lines and the correlation coefficient (R2) for each 

sample.  Data from DC 114 1236.5’ (purple) exhibit a positive correlation coefficient for 

Au:Pb (R2=0.68), Au:Sb (R2=0.64), and Pb:Sb (R2=0.79)  (Fig. 43).  The majority of the 

iron-sulfide minerals selected for EPMA analysis for this sample are EOP1s and EOP2s, 

and include the EOP1s that rim fragmented realgar clasts (Table 10).  Lower zone sample 

CHUE 215 246.5’ (olive green) has the strongest positive correlation coefficient for 

Pb:Sb  (R2=0.99) (Table 10; Fig. 43); data were collected from OP3 and EOP2.  DC 124 



 

1264’ (yellow) has a strong positive correlation coefficient between Pb:Sb (R2=0.62); 

however, no Au was detected in the EOP3s. All other samples contain iron-sulfide 

minerals with Pb:Sb and Au:Pb R2 values between 0 and 0.34 (Table 10), and are thus 

included in the main ore-stage geochemical suite.  CHUD 038 464’ (dark blue) is an 

exception.  EPMA data for this sample were collected from evolved ore-stage iron-

sulfide minerals; therefore, the sample is grouped within the evolved ore-stage 

geochemical suite (Table 10).   

Scatter plots of Au versus As, Hg, Tl, Cu, Bi, Ag, Ti, Co, and Ni for each sample 

and the least-squares lines between them are shown in Figure 44.  Gold correlates 

positively with As, Hg, Tl, and Cu; however, individual thin section trace-element 

patterns vary with respect to the least-squares line.  Sample DC 124 1273’ (lavender) 

plots above the Au least-squares line for Hg and Tl whereas sample DC 114 1236.5’ 

(purple) plots below the Au least-squares line for Hg and Tl. Sample CHUE 019 485.5’ 

(light blue) has elevated Bi and Ag and CHUD 038 453’ (pink) has elevated Cu, Co, and 

Ni.  Sample CHUD 038 464’ (dark blue) contains some elevated values of As, Hg, Tl, 

Cu, Bi, and Ag, but Au concentrations do not exceed 1220 ppm; the ratio of these trace 

elements to Au is relatively high.   



 

CHAPTER 8 

POST-ORE STAGE 

Post-ore-stage mineralogy in the CHBZ primarily consists of calcite and 

supergene minerals. The Au-bearing iron-oxides in the CHBZ and CHLZ are 

characterized and their chemistry is described for each zone.  Differences in chemistry 

between Au-bearing iron-sulfide minerals and Au-bearing iron-oxide minerals are 

described in order to properly characterize ore.   

Cortez Hills Breccia Zone 

 Post-ore-stage mineralogy and alteration primarily consist of calcite veining and 

oxidation of the early sulfide-bearing rocks into the iron-oxide minerals jarosite, 

hematite, and goethite (Jackson et al., 2010).  Calcite veins cut across rocks regardless of 

Au concentration.  The veins are observed crosscutting pre-ore-stage minerals such as 

tremolite, as well as incorporating fragmented late-ore-stage mineral clasts, such as 

realgar, within the vein (Fig. 39D).  Oxidation is pervasive throughout much of the 

CHBZ; different portions of the deposit are partially oxidized, fully oxidized, and/or not 

oxidized at all, determined by the presence of sulfide minerals in the sample.  Though not 

the primary focus of this study, some oxidized samples were examined and observations 

and data are described below.   

 Breccia zone sample CHUD 043 376.5’ is a breccia that is composed of light-

colored visibly oxidized clasts and dark-colored clasts (Fig. 45A).  Fine-grained calcite 

and jasperoid are the primary constituents of the sample. Photomicrographs from the 

dark-colored clasts show visible red cores with bright reddish white reflective rims (Fig. 

45C) and disseminated red material adjacent to fractures (Fig 46) that resembles former 



 

ore-stage iron-sulfide textures. Microprobe data from the cores and rims, such as those in 

Figure 45C, indicate the absence of sulfur and the presence of Fe, Hg, Cu, Sb, and Ni ± 

Au (Table 11).  However, EPMA total weight percent data are low; therefore, the data are 

suspect. A LA-ICP-MS transect collected from the disseminated material verifies the 

presence of Au as well as elevated As, Tl, Sb, Pb, and Bi; however, S does not rise at any 

location along the transect line and Cu is not detected (Fig. 46).   

Some samples within CHBZ are heavily oxidized and have a greenish brown tint, 

indicating arsenate (Fig. 45B).  The highly oxidized rocks of the CHBZ do not contain 

textures that resemble ore-stage iron-sulfide minerals present in the refractory rock, but 

instead contain a Au alloy.  EPMA data indicate that the Au alloy contains a high percent 

of Hg (3.6 wt %) as well as elevated Tl and Cu (Table 11).                   

Cortez Hills Lower Zone  

Throughout the CHLZ, the rock is primarily dark grey silty carbonate with a 

common red iron-oxide staining that appears primarily on fractures. Jasperoid, fine-

grained calcite, clays, Au-bearing iron-sulfide minerals, and Au-bearing iron-oxide 

minerals are present in mineralized samples.  Photomicrographs reveal reddish-yellow 

iron-oxide minerals throughout some samples (Fig. 47B), not just along fractures. The 

iron-oxide minerals maintain the rim-core texture (Fig. 47B) and are also disseminated 

throughout the samples (Fig. 48A), resembling former ore-stage iron-sulfide textures.  

The iron-oxide rim and disseminated material commonly host Au within the CHLZ (Fig. 

47-48). The LA-ICP-MS transects through both types of iron-oxide reveal that Au, As, 

Fe, Sb, Pb, and Bi are elevated, but S, Cu, Tl and Hg are not.  



 

CHAPTER 9 

INTERPRETATION AND DISCUSSION 

Mineral Paragenesis 

 The interpreted CHBZ mineral paragenesis includes the earliest minerals that

precipitated during the Paleozoic (Fig. 49), followed by pre-ore-stage minerals that 

formed during contact metamorphism related to emplacement of Mesozoic intrusions.  

During the Eocene, the pre-ore-stage minerals reacted with the Carlin ore-fluids, 

enhancing fluid-rock interaction, which resulted in the deposition of ore-stage iron-

sulfide minerals, jasperoid, and illite.  After the majority of the Au-bearing iron-sulfide 

minerals were deposited, evolved ore-stage iron-sulfide minerals with low to 

undetectable Au and elevated Pb and Sb began to precipitate contemporaneously with the 

first late-ore-stage minerals. The evolved-ore-stage encompasses all of the minerals that 

precipitated contemporaneously with the evolved-ore-stage iron-sulfide minerals.  Some 

of these minerals, such as realgar, continued to form after precipitation of evolved-ore-

stage iron-sulfide minerals, and also represent the main phase of the late-ore-stage 

system.  The CTGD ore-stage, evolved-ore-stage, and late-ore-stage minerals were 

variably overprinted by later, low temperature oxidation.   

Pre-ore-stage event 

 The earliest minerals include calcite, quartz, and diagenetic pyrite, and are 

interpreted to have been deposited in the Paleozoic.  Fine-grained mottled calcite, later 

recrystallized, is the primary mineral comprising the carbonate host rocks that were 

deposited in the Silurian and Devonian.  The host rocks also contain detrital quartz (Fig. 

11E) (Harry Cook, Barrick Internal Report, 2008).  PO1 pyrite trace element chemistry, 



 

which includes Ni, Pb, Co, and Ag, is consistent with diagenetic pyrite chemistries of 

other CTGDs (Large et al., 2009), suggesting that PO1 pyrites likely formed during 

diagenesis of the host carbonate rocks in the Paleozoic (Fig. 49).  PO1 pyrites are 

observed rimmed by Au-bearing iron-sulfide minerals, which also indicate that they 

precipitated during the pre-ore stage.   

Euhedral and subhedral PO2 pyrites that are commonly elevated in As, Sn, and 

Sb, do not contain the typical diagenetic suite of trace metals (Ni, Co, Pb, Ag) nor do 

they resemble the texture of the anhedral PO1 pyrites, suggesting they did not form at the 

same time or from the same processes as the PO1 pyrites.  PO2 pyrites typically have the 

largest and most prominent Au-bearing iron-sulfide rims, indicating that they are pre-ore-

stage pyrites and were reactive or more available for reaction with the Carlin ore fluid 

than the other pre-ore-stage pyrites.  The relative timing of the PO2 pyrites to the other 

pre-ore-stage pyrites and the origin of the PO2 pyrites is undetermined.     

Tremolite, chalcopyrite, sphalerite, and PO3 pyrite did not form as a result of the 

CTGD fluid as they are commonly observed in rocks with undetectable to negligible Au, 

As, Tl, Hg, and Cu.  In two samples that do contain detectable Au, PO3 pyrite and 

sphalerite have Au-bearing iron-sulfide rims, indicating that they are pre-ore stage.  The 

mineral suite has been interpreted to be intrusion-related in other CTGDs (Cline, 2001), 

and is also the interpretation of this study.  The current thesis study does not recognize 

intrusion-related minerals preferentially associated with the Voodoo Fault as Venendaal 

(2007) describes.  Henry and Muntean (2012) interpret a 104Ma quartz monzonite 

intrusive located approximately 4 km southwest of Cortez Hills to be the cause of contact 

metamorphism of the Paleozoic host rocks.   



 

Relative timing relationships for some of the intrusion-related pre-ore-stage 

minerals in the CHBZ have been determined in this study (Fig. 49). Tremolite is 

interpreted to have formed early, prior to PO3 pyrite, sphalerite, and chalcopyrite; 

chalcopyrite was the latest of these minerals to form.  PO3 pyrite and chalcopyrite 

relationships, such as the puzzle piece texture (Fig. 12E), may indicate dissolution of the 

wispy PO3 pyrite and chalcopyrite replacement.  The chalcopyrite disease displayed in 

Figure 15B indicates chalcopyrite replacement of sphalerite as well (Barton and Bethke, 

1987).

The relative timing relationship of euhedral quartz to other minerals is elusive. 

Islands of PO3 pyrite surrounded by quartz are consistent with PO3 pyrite precipitation 

before quartz (Fig. 16B), though PO3 pyrite that overgrew euhedral quartz is present as 

well (Fig. 16C). There are no crosscutting relationships between quartz with chalcopyrite 

and sphalerite.  Quartz may be part of the early Carlin fluid and/or the last of the 

intrusion-related mineralogical sequence, and possibly also formed at both times.  

Ore-stage event 

Microprobe data have shown that CHBZ ore-stage iron-sulfide minerals (OP) 

consistently contain Au, Tl, Hg, Cu, and As.   The elements Sb, Bi, and Ag do not 

consistently correlate with Au, but are commonly detected in the CHBZ ore-stage iron-

sulfide minerals.  Of these elements, Bi is not commonly elevated in other CTGD Au-

bearing iron-sulfide minerals.  

Petrography has shown that ore-stage iron-sulfide minerals are commonly 

completely surrounded by illite and jasperoidal quartz, strongly suggesting they are 

coeval with ore deposition.  Textures indicate that the ore fluid precipitated Au-bearing 



 

iron-sulfide minerals, jasperoid, and illite as decarbonatization removed carbonate 

minerals. Decarbonatization, silicification, and sulfidation are spatially coincident and 

have been determined to be contemporaneous at other CTGDs (Cline et al., 2005).   

Late-ore-stage event  

The minerals aktashite and christite are composed of ore-stage elements, except 

Au, which is interpreted to indicate that these minerals precipitated from the late-ore-

stage fluid while it still contained sufficient Tl, Cu, Hg, As, and S.  This chemistry, along 

with textures, signifies a very close temporal relationship between aktashite, christite, and 

evolved ore-stage iron-sulfide minerals.  The textural and spatial relationships between 

aktashite and chalcopyrite signify replacement of chalcopyrite by aktashite (Fig. 34E-F).  

Chalcopyrite provided Cu and Fe required to form aktashite while the Carlin ore fluid 

provided Hg, As, and S.  Textures indicate that EOP5s replaced chalcopyrite from the 

center outwards (Fig. 34C, E).  Although aktashite replaced chalcopyrite, it also 

precipitated in open space, as evidenced by local euhedral tetragonal crystal faces.  

Realgar precipitated after aktashite, christite, and euhedral calcite, as it conforms to and 

crosscuts euhedral crystal faces of the latter three minerals, but does not replace them.  

Realgar conforms to Au-bearing iron-sulfide minerals (Fig. 37B) and calcite 

rhombohedrons (Fig. 38A) throughout the majority of the CHBZ, consistent with the 

interpretation of realgar as a late-ore-stage mineral in other well studied CTGDs (Cline et 

al., 2005), and as a mineral that precipitated during ore system cooling and collapse 

(Hofstra et al., 1991).  

The relative timing relationship between late-ore-stage realgar and euhedral 

calcite is opposite of most other well studied CTGDs (Figs. 2, 49) and may indicate 



 

differences in the late-ore-stage fluid chemical evolution compared to how it was 

modeled by Hofstra et al. (1991).  Additionally, the presence of abundant original 

Paleozoic calcite within high grade rocks (Fig. 23C) indicates that the ore fluid that 

mineralized the CHBZ may not have been as acidic or the same temperature as other 

Carlin ore fluids.  These differences may have played a role in the timing relationship 

between the realgar and crystalline calcite precipitation. An additional possibility for the 

remaining Paleozoic calcite is that the carbonate host rocks lacked permeability and the 

ore fluid did not access all of the calcite.   

Evolved ore-stage event  

The evolved ore-stage event was the transitional phase between the ore stage and 

the late-ore stage and is manifested by the presence of anomalous iron-sulfide minerals 

and their textural relationships with late-ore-stage minerals.  The presence of Au-bearing 

iron-sulfide rims (EOP1) on fragmented realgar clasts played a key role in distinguishing 

the transitional phase.  Realgar at other CTGDs is recognized as characterizing the late-

ore stage; however, at Cortez Hills there is evidence of realgar that both post- and pre-

dates Au deposition.  As realgar precipitates during ore-system cooling and collapse, the

EOP1s that rim realgar also must have precipitated during or following system collapse.  

These relationships reveal a period of time within the CHBZ, referred to as the evolved-

ore-stage event, during which realgar, aktashite, christite, and Au-bearing iron-sulfide 

minerals were precipitating contemporaneously, probably in different portions of the 

deposit. 

 These observations provide insight into the collapse of Carlin-type ore systems.  

The EOPs are consistently spatially associated with late-ore-stage realgar and/or aktashite 



 

and some contain Au, though concentrations are low. The EOP1s are surrounded by illite 

and jasperoid (Fig. 30A-B), indicating that main-ore-stage alteration was still forming at 

the beginning of the evolved-ore stage (Fig. 49). Some minerals are part of both the 

evolved and late-ore stages; however, Au-bearing iron-sulfide minerals, illite, and/or 

jasperoid ceased to form during the late-ore-stage owing to changes in temperature and 

chemistry as the system finally collapsed (Fig. 49).  

Post-ore-stage event  

Post-ore-stage minerals primarily consist of calcite veining and oxidation 

minerals including goethite, hematite, jarosite, and arsenate (Jackson et al., 2010).  The 

coarsely crystalline calcite veins precipitated after the ore fluid had completely 

dissipated, which is evident by the presence of calcite veins with realgar clasts within 

them and because the veins crosscut mineralization and brecciation.  Highly oxidized 

rocks contain visible gold alloys, indicating that the remobilized Au became concentrated 

after it was released by the oxidation of pyrite.  In partially oxidized rocks, Au remains 

where it was deposited in former iron-sulfide minerals, a common relationship in the 

CHLZ.  Although the Au remains within the location of the former Au-bearing iron-

sulfide mineral, other pathfinder elements including Tl, Hg, Cu, and As appear much 

more mobile because they no longer correlate with Au within the secondary Au-bearing 

iron-oxide minerals.  Other elements, however, such as Sb, Bi, and Pb, better correlate 

with Au within CHBZ partially oxidized samples, and should be examined as pathfinder 

elements within partially oxidized rocks.   



 

Geochemical Suites 

Two distinct geochemical suites of iron-sulfide minerals are interpreted based on 

differences in Pb and Sb concentrations and associated Au, and are referred to as the 

evolved- and main-ore-stage geochemical suites.  The main-ore-stage fluid represents the 

Carlin fluid at the time the majority of the Au-bearing iron-sulfide minerals precipitated. 

The evolved ore-stage suite is interpreted to represent the chemistry of the Carlin fluid at

the time the last Carlin related iron-sulfide minerals precipitated. At this time, the Cortez 

Hills system was beginning to collapse and precipitate typical CTGD late-ore-stage 

minerals on the system periphery while Au-bearing iron-sulfide minerals were 

precipitating in other regions of the deposit.   

The evolved ore-stage fluid chemistry is represented by the EOPs previously 

described.  The evolved-ore-stage fluid contained elevated and positively correlated Sb 

and Pb relative to the main-ore-stage fluid (Tables 7, 10). Emsbo et al. (2003) reports a 

similar increase in Sb in the ore fluid through time at the Meikle deposit, indicated by 

increased Sb in late-ore-stage pyrite and the deposition of late-ore-stage stibnite.  The 

authors interpreted the late-ore-stage increase in Sb to be a result of decreasing solubility 

as the system cooled.  Muntean et al. (2011) document an increase in Sb from the inner 

(early) rim to the middle of the rim in a zoned Au-bearing iron-sulfide mineral from the 

Getchell deposit.   The current study also recognizes an increase in the concentration of 

Sb through time owing to changes in solubility that occurred with cooling.  

There are two possibilities for the elevated and positively correlated Pb in the 

CHBZ evolved-ore-stage iron-sulfide minerals. 1) Similar to Sb, Pb may have become 

insoluble as the system cooled, thus, precipitating in higher concentrations with time.  



 

Unlike Sb, an increase in the concentration of Pb through time within Au-bearing iron 

sulfide minerals has not been documented in other well studied CTGDs.  2) Lead was 

added to the ore-stage fluid by fluid-rock interaction with Neoproterozoic and Cambrian 

clastic rocks as documented by Tosdal et al. (2003) in ore-stage pyrites at the Getchell 

and Turquoise Ridge deposits.   

The presence of Hg- and Tl-rich minerals aktashite and christite suggest elevated 

Hg and Tl in the ore fluid during the evolved-ore stage.  Additionally, Hg and Tl remain 

present in all of the evolved-ore-stage iron-sulfide minerals.  However, there is variation 

in the correlation of Hg and Tl with Au and/or Sb and Pb in the evolved ore-stage iron 

sulfide minerals.  The precipitation of aktashite and christite may control the 

concentration of Hg and Tl in the evolved-ore-stage fluid at a given location and time.   

This study reveals the first definitive documentation of precipitation of a typical 

late-ore-stage mineral, realgar, after precipitation of Au-bearing iron-sulfide minerals, 

thus, making the timing relationships between ore-stage and late-ore-stage minerals more 

complex than previously documented.  The evolved ore-stage fluid indicates the spatial 

and temporal complexity of the chemical evolution of the fluid. 

Breccia Formation 

Transects through host rocks that transition from negligible to high Au 

concentrations were examined (Figs. 26-27) in order to determine the relationship 

between brecciation and mineralization.  Carbonate rocks transition from primarily 

recrystallized calcite into rocks that contain Au-bearing iron-sulfide minerals, jasperoid, 

fine-grained calcite, illite and carbonaceous material along seams.  The seams only occur 

in mineralized rocks, which signify that they are a result of the alteration caused by the 



 

ore fluid that formed the Cortez Hills CTGD.  The seams are associated with high 

porosity and Au mineralization, and are interpreted to be a result of dissolution and 

residual enrichment of insoluble carbonate rock and Au-bearing iron sulfide minerals.   

Paragenetic and textural observations demonstrate that these dissolution seams 

represent ore fluid pathways through carbonate host rocks, and intense fluid-rock 

interaction along these seams ultimately removed significant rock mass and resulted in 

brecciation.  Figure 50 illustrates processes that caused the formation of the dissolution 

seams and ultimately brecciation.  The ore fluid likely took advantage of the porosity 

along the pre-ore Voodoo fault (Fig. 50A) (Venendaal, 2007) and pervasively altered and 

mineralized the areas adjacent to the fault by removing silicate and carbonate minerals 

and adding ore-stage alteration and Au-bearing iron-sulfide minerals (Fig. 50B).  

Dissolution of large volumes of carbonate rock along and adjacent to the Voodoo fault 

created open space by removing abundant rock mass (Fig. 50B), which concentrated 

insoluble materials and ore-stage minerals within the seams (Fig. 50C). The dissolution 

created the space that caused collapse breccia formation (Fig. 50C).  In areas containing 

heterolithic brecciation and the most intense dissolution, the dissolution seams are all that 

remain of a much larger volume of rock, and the seams contain insoluble materials from 

an originally much greater volume of rock.  With increasing grade the seams become less 

linear and more patchy.  Such areas comprise the most heavily brecciated and 

mineralized core of the CHBZ that grades outward into a low-grade mineralized crackle 

breccia on the periphery of the breccia zone.   

Late-ore-stage realgar precipitated in open space throughout the breccia, 

commonly conforming to euhedral crystal faces of calcite and aktashite and chemically 



 

cementing zones of intense fracturing and high porosity.  This signifies that brecciation 

terminated before most of the realgar precipitated within the CHBZ, thus, allowing 

realgar to cement the breccia.  The region of the CHBZ that contains fragmented realgar 

clasts indicates that localized brecciation continued after some realgar precipitation. The 

rimming of the fragmented realgar with Au-bearing iron-sulfide minerals indicates that 

Au was still being transported by the fluid after localized brecciation.  These textures are 

consistent with local contemporaneous brecciation and mineralization.          

The consistent association between fragmented realgar and the presence of Au-

bearing rims on realgar clasts indicates that the same process that fragmented the realgar 

also allowed the ore fluid to be reintroduced to previously mineralized rocks (Fig. 51).  

The four samples that contain the EOP1s are located in the footwall of, and directly 

adjacent to, a dike, and many of the dikes within CHBZ fill faults (Jackson et al., 2010).  

Hypotheses for the formation of EOP1s that rim realgar include: 1) reactivation of a fault 

fragmented the realgar, reduced local pressure, and allowed Au-bearing evolved ore-stage 

fluid to encounter the evolved-ore-stage realgar (Fig. 51), or 2) a second, later Carlin-type 

ore fluid interacted with previously-formed late-ore-stage rocks. As there is no other 

evidence for a later pulse of ore fluid, the first hypothesis better explains why the EOP1s 

rim fragmented realgar at a single locality.     



 

CHAPTER 10 

CONCLUSIONS 

 The primary focus of this study was to determine if the Cortez Hills Breccia Zone 

(CHBZ) contains mineral assemblages, alteration, and paragenetic relationships that 

resemble other well studied CTGDs.   The data collected indicate that the CHBZ 

refractory ore exhibits the following mineral paragenesis (Fig. 49). 1) Diagenetic pyrite 

was deposited in passive margin carbonate rocks. 2) A pre-ore suite of minerals 

associated with low-grade contact metamorphism includes pyrite, sphalerite, 

chalcopyrite, and tremolite. 3) Ore-stage ore and alteration minerals include illite, 

jasperoid, and Au- and trace element-rich iron-sulfide minerals. 4) Hg- and Tl-rich 

minerals including aktashite (Cu6Hg3As4S12) and christite (TlHgAsS3) precipitated during 

a late-ore-stage directly following the precipitation of the vast majority of the Au-bearing 

iron-sulfide minerals. 5) Late- to post-ore-stage minerals include realgar and calcite and 

are associated with cooling and collapse of the hydrothermal system.  The mineral 

paragenesis completed as a result of this study closely resembles the paragenesis 

completed for the CTGDs along the Getchell trend and the Goldstrike deposit (Groff et 

al., 1997; Cline and Hofstra, 2000; Almeida et al., 2010); however the current study 

recognizes an evolved ore-stage mineral assemblage that is transitional between the ore-

stage and late-ore-stage mineral events.   

The evolved ore-stage refers to the period of time when the system began to cool 

and collapse; it is the transition between the main-ore stage and the late-ore stage.  The 

evolved ore-stage iron-sulfide minerals contain elevated Sb and Pb and typically 

inconsistent associations of Au with Tl, Hg, Cu, and As.  During the evolved ore-stage 



 

event, realgar, aktashite, christite and Au-bearing iron-sulfide minerals precipitated

simultaneously at different localities within the deposit, resulting in local formation of 

realgar with Au-bearing iron-sulfide rims.   

The secondary goal of this study was to determine if Au deposition occurred 

contemporaneously with brecciation.  Transects through host rocks that transition from 

negligible to high Au concentrations exhibit increasing alteration from primarily 

recrystallized calcite into rocks that contain Au-bearing iron-sulfide minerals, illite, 

jasperoid, fine-grained calcite and insoluble carbonaceous material concentrated in 

dissolution seams.  Paragenetic and textural observations suggest that the dissolution 

seams represent ore fluid pathways through the carbonate host rocks, and intense fluid-

rock interaction along these seams ultimately resulted in significant decrease in rock mass 

and resulting brecciation.  Although silicification occurred with Au mineralization, 

porosity increased because of the non-interlocking texture of the jasperoid, which 

contributed to the formation of soft, non-cohesive rock and aided in collapse brecciation.  

The process by which this occurred began with contemporaneous sulfidation, 

decarbonatization, and silicification of the host rock by the Carlin ore fluid.  This resulted

in the precipitation of Au-bearing iron-sulfide minerals and the alteration of host rocks to 

form illite, and jasperoid, along with intense dissolution of carbonate and silicate 

minerals by the ore fluid (Fig. 50).  

Future Work

 The oxidation of the minerals aktashite and christite should be studied, as these 

minerals are unique to the CHBZ.  The Cortez Hills deposit contains native mercury in 

specific localities, and the source of the native mercury is undetermined.  The oxidation 



 

of these minerals may release the Hg from the prior sulfide bond, allowing it to 

concentrate as native Hg, conceptually similar to the concentration of Au alloy in 

strongly oxidized rocks.  

 The Cortez Hills Lower Zone partially oxidized ore should be studied in detail to 

determine which elements best correlate with Au within Au-bearing iron-oxide minerals.  

These data should be compared to whole rock geochemistry. This thesis study suggests 

that partially oxidized rocks may have Au path finder elements that are different from 

sulfide-bearing and fully oxidized rocks.  Soil sampling is a common exploration 

technique for CTGDs, and, because soil samples are commonly oxidized, it may enhance 

exploration techniques to fully understanding the element correlations in a partially 

oxidized CTGD.

 Lastly, the dike that is adjacent to the fragmented and rimmed realgar clasts 

should be studied and dated.  This dike may constrain the age of Carlin-type 

mineralization as it crosscuts mineralized rocks through the majority of the CHBZ, but is 

also mineralized on its periphery in other portions of the deposit.  The crosscutting 

relationships of the dike may provide insight into the age of brecciation, the main- and 

evolved-ore-stage events.       



APPENDIX A

TABLES



Table 1. List of acronyms 
CTGD Carlin-type gold deposit
CHBZ Cortez Hills Breccia Zone
CHLZ Cortez Hills Lower Zone 
RMT Roberts Mountains Thrust 
UNLV University of Nevada, Las Vegas
EPMA Electron Probe Microanalyzer
XRD X-ray diffraction
SEM Scanning electron microscope
CL Cathodoluminescence
LA-ICP-MS Laser ablation inductively-coupled plasma mass spectrometry
MDL Method detection limit
PO Pre-ore 
OP Ore-stage iron-sulfide
EOP Evolved-ore-stage iron-sulfide



Table 2. Probe conditions 
20 kV, 10 nA, 1-2 μm

MAJORS
1
TAP

2
PETH

3
LIF

4
TAP

As
Si

Ca
S

Fe As

Run Time (min) 2 2 1 1
 

20 kV, 100 nA, 1-2 μm

TRACE
1
TAP

2
PETH

3
LIF

4
TAP

Zn
Se
Si

Hg
Ag
Te
Sb
Mo
Sn
W
Pb

Ti
Co
Ni
Cu
Au
Tl
Bi

Zn
Se

Run Time (min) 3 9 21 2
Table modified from Muntean et al. (2011).  
Instrument: JEOL-8900 Electron Probe Microanalyzer. 
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Table 4. X-Ray Diffraction settings 
Configuration Sample Spinner
Scan axis Gonio
Scan mode Continuous
Start angle 5
End angle 75.998
Step size 0.0041778
Time per step 17.780
Scan speed 0.029842
Number of steps 16994
Sample disk diameter 27 mm
Total time 40:53

Instrument information: PANalytical X’PERT Pro 
X-ray Diffraction Spectrometer 



Table 5.  LA-ICP-MS conditions 
Laser System ICP-MS
Wavelength 193 nm rF Power 1400 W
Spot Size 5 μm Carrier Gas (He) 1.0 l/min
Pulse Frequency 3 Hz (spots)

5 Hz (lines/maps)
Makeup Gas (Ar) 0.6 l/min

Scan Speed 1 μm/sec
Energy Density ~5 J/cm2

Instrument information: Photon Machines Analyte G2 LA system (193
nm, 4 ns Excimer laser) coupled to a PerkinElmer DRC-e Inductively 
Coupled Plasma Mass Spectrometer. 



Table 6. Pre ore-stage pyrite classification by description, chemistry and associated minerals 

Abbreviations: n.a. = not analyzed, PO = pre ore, Int. = interpreted 

Pyrite 
type

Appearance in 
reflected light 
microscopy

Elevated
Chemistry 
(probe data) Spatially Associated Minerals

Int. Process of 
Formation 

PO1 Anhedral, textured 
pyrite with a yellowish 
tint. 

Ni, Pb, Co ± Ag 
in interior ± Au, 
Hg, Cu, Tl, Sb, 
Ni, Co in rim

Fine grained mottled calcite, 
medium to coarse grained 
recrystallized calcite. Rarely 
has a Au, Hg, Cu, Tl, Sb, Ni, 
Co enriched iron-sulfide rim
with similar relief as the PO1 
pyrite.  

Diagenetic

PO2 Bright white, 
subhedral, high relief, 
with good-excellent 
polish

As, Sb, Sn ±
Au, Tl, Hg, Cu, 
As rich rim

Fine grained mottled calcite, 
quartz, and illite. Commonly 
has a low relief yellowish 
white Au, As, Tl, Cu, Hg 
enriched iron-sulfide rim.

Undetermined

PO3 Irregular anhedral 
pyrite masses.  
Contains linearly
aligned pore 
spaces, hundreds of 
microns in size

n.a. Chalcopyrite, tremolite, 
quartz, sphalerite, calcite

Metamorphic 



Table 7. Ore- and evolved-ore-stage iron-sulfide minerals differentiated by petrographic characteristics and 
chemistry 

Name
Appearance in reflected 
light

Chemistry Other 
characteristics

Spatially 
associated 
minerals

OP1 Bright yellowish white, 
low relief, anhedral,
disseminated and/or 
rimming pyrite cores

As >> (Tl+Hg+Cu) >
(Au±Sb) > ± Ag, Bi, 
Ti.  
No Au:Pb correlation

Hardness of 2-3.
>1 to 50 μm

realgar,
sphalerite, 
mottled calcite, 
illite, quartz

OP2 Bright white, typical 
pyrite relief and 
reflectivity, anhedral

As >> (Tl+Hg+Cu) >
(Au+Sb) > Ag ±
Bi, W,  
No Au:Pb correlation

Irregular masses mottled calcite, 
illite, quartz

OP3 Light brownish yellow, 
uneven relief, anhedral, 
poor polish, clusters 
without pyrite cores 

As >> (Tl+Hg+Cu) >
± Au > Ag ≥ ± Sb, 
± Bi, W
No Au:Pb correlation 
Elevated Bi

2 to 30 μm mottled calcite, 
illite, quartz

EOP1 Bright yellowish white, 
low relief, anhedral, 
disseminated and/or 
rimming pyrite or realgar 
cores

As >> (Pb+Cu) ≥
(Sb+Hg±Tl) ≥ (Au±Bi)
> ± Ag

Texturally similar 
to OP1

commonly rim 
realgar

EOP2 Dull tannish white to 
pinkish white, low relief, 
anhedral fuzzy rims

As >> (Pb+Cu) >
(Sb+Hg) > (Tl+Au) >
Ag + elevated Ni and 
Au within CHLZ

None iron-oxide,
mottled calcite, 
illite, quartz

EOP3 Brownish-white rimming 
a brighter whitish tan 
pyrite core, subhedral 

As >> (Tl+Hg+Sb±Pb)
>> (±Cu±Ni±Ag±Ti)

No Au

Located within a 
dike

feldspar, illite

EOP4 Tan with bright white 
flecks, irregular ratty 
texture

As >> Cu >
(Tl+Hg+Ni) >
(Pb±Sb±Au) ≥ ± Ag

Rarely contains Au aktashite, realgar,
illite, quartz 

EOP5 Dull yellowish-white 
circular doughnut shape 
with dark browns holes 
at the center,  relatively 
low reflectivity

As >> (Pb+Cu) >
(Tl+Hg+Bi) > Sb > Ag
± Ti
No Ni or Au

Rarely observed 
with aktashite or 
chalcopyrite core,
but commonly 
surrounded by these 
minerals.

aktashite, 
chalcopyrite, 
quartz

Abbreviations: OP = ore-stage iron-sulfide, EOP = evolved ore-stage iron-sulfide. 



Table 8. EPMA weight percent data for aktashite, routhierite and christite element compositions 
within CHBZ and mineral type localities 

Element
Aktashite 
(CHBZ) 

Aktashite
(Russia) 

Christite 
(CHBZ) 

Routhierite 
(France) 

Christite (Carlin 
mine, NV) 

As 10.21 18.20 9.76 13.2 13.1
S 24.33 23.80 22.27 19.6 16.6
Zn 1.12 0.20 2.0
Hg 37.62 32.54 32.80 34.7 35.1
Cu 24.04 23.38 2.47 3.9
Sb 0.27 2.55 0.36 2.6
Tl 31.50 20.4 35.2
total 97.59 100.47 99.36 96.40 100.00

Aktashite and christite data from Mineral Data Publishing (2001). 
Only the elements that comprise the mineral chemical formulas are listed, see Appendix E for other 
elements.   
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Table 10. Elevated trace element chemistry and elevation within the deposit by thin section  

Thin section 
Elevation 
(feet)

Elevated trace 
elements 
(EPMA) 

Element 
correlations
(Pb,Sb,Au)

# pts. 
(EPMA) 

Pyrite 
types 
(EPMA) 

Minerals 
present in 
sample

Main ore-stage
DC 124 
1273’

4790’ Sb, Hg, Tl, Au, 
Cu, As
High Tl/Au and 
Hg/Au ratios

Au:Sb R2=0.52
Au:Pb R2=0.01
Pb:Sb R2=0.01

23 OP1,
OP2

realgar, 
sphalerite

CHUE 019 
485.5'

4314’ Pb, Bi, Ag, Hg, 
Tl, Au, Cu, As,
±Ti, Ni, Co

Au:Sb R2=0.04
Au:Pb R2=0.00
Pb:Sb R2=0.00

26 OP1,
OP3

realgar

CHUD 038 
453’

4339’ Ni, Co, Hg, Tl, 
Au, Cu, As, ±Ag

Au:Sb R2=0.00
Au:Pb R2=0.00
Pb:Sb R2=0.01

7 OP1,
EOP4

aktashite, 
titanium 
oxide 
pyrrhotite  

CHUD 038 
457’

4338’ Hg, Tl, Au, Cu, 
As, ±Ni, Co

Au:Sb R2=0.20
Au:Pb R2=0.30
Pb:Sb R2=0.21

5 OP1,
EOP4

aktashite, 
realgar

Evolved ore-stage 
CHUD 038 
464’

4333’ Sb, Pb, Bi, Hg, 
Tl, Au, Cu, As,
±Ag
High element/Au 
ratios 

Au:Sb R2=0.08
Au:Pb R2=0.11
Pb:Sb R2=0.00

11 EOP4,
EOP5

aktashite,
christite, 
sphalerite

DC 114 
1236.5’

4830’ Sb, Pb, Bi, Hg, 
Tl, Au, Cu, As,
low Tl/Au and 
Hg/Au ratios, 

Au:Sb R2=0.64
Au:Pb R2=0.68
Pb:Sb R2=0.79

21 EOP1,
EOP2

realgar and 
pyrite with 
Au-bearing 
iron-sulfide 
rims

DC 124 
1264’

4800 Anomalously 
high Sb, Pb, Hg, 
Tl, As, Au below 
detection.  

Pb:Sb R2=0.62 6 EOP3 feldspar

CHUE 215 
246.5’
(CHLZ)

4081’ Sb, Pb, Ni, Co, 
Ag, Hg, Tl, Au, 
Cu, As

Au:Sb R2=0.54
Au:Pb R2=0.65
Pb:Sb R2=0.99

3 OP3,
EOP2

none

Oxidized
CHUD 043 
376.5’

4483’ Sb, [Hg ± Au] Au:Sb R2=0.49
Au:Pb R2=0.34
Pb:Sb R2=0.03

3 Oxidized 
iron-
sulfides

All data in this table were acquired from EPMA analyses of Au-bearing iron-sulfide minerals, with the 
exception of sample DC-124-1264’, which contains EOP3 data that do not contain Au (see EOP3 
description in text). 
All samples contain illite, quartz, and calcite.  
Samples are listed in the order of greatest to least confidence of being interpreted as main-ore stage.  
Abbreviations: pts. = points plotted in Figures 41-44. 
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APPENDIX B

FIGURES



Cortez Hills

Figure 1. Regional setting of the Getchell, Carlin, and Battle Mountain-Eureka trends in Nevada, 
western United States.  Location of the Cortez district (red star). Modified from Lubben (2004). 



Paleozoic
M

esozoic
Eocene

Figure 2. Mineral paragenesis of the Getchell deposit modified from Cline (2001).  Paleozoic 
minerals are associated with deposition of the host rocks, Mesozoic minerals are associated with the 
92 Ma Osgood stock, and Eocene minerals are associated with Carlin-type mineralization. The red 
box indicates the ore-stage alteration mineralogy.    
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Unit Descriptions:

Quaternary Alluvium - Sedimentary fill (~50 ft thick).

Tertiary Pediment Deposit (informal) - 
 Siltstone & limestone clast-rich colluvium containing 
 tuffaceous material (~950 ft. thick).

Devonian Horse Canyon Formation - 
 Siltstones, mudstones, claystones & cherts (300 ft. thick).

Devonian Wenban Formation - 
 Fine-grained silty & muddy limestones containing fossils 
 and debris flows (~2100 ft. thick). 

Silurian Roberts Mountains Formation - 
 Thin-bedded, silty limestones containing burrowing, fossils 
 and black lenses (~1100 ft. thick). 

Ordovician Hansen Creek Formation - 
 Dolomite & limestone marble (~500 ft. thick).

Ordovician Eureka Quartzite - 
 Tan to white quartzite with some cross-bedding (~400 ft. thick).

Cambrian Hamburg Formation - 
 Dolomite with some burrowing (~2000 ft thick).

50
0 

ft

Quat.

Figure 3. Stratigraphic column of the Cortez window modified from Harry Cook, Barrick Internal 
Report (2008), Jackson et al. (2010), and L.P. Anderson, Barrick Cortez GeoServices, pers. comm. 
(2012).
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Figure 4. Geologic map of the Cortez Hills area indicating the surface projection of the Cortez Hills 
Breccia Zone (purple), Cortez Hills Lower Zone (green), and the Pediment Deposit (yellow).  A-A’ 
(black line) marks the location of the cross section in Figure 5. Blue lines indicate fault, with a blue 
circle on the down-dropped stratigraphy. Modified from Jackson et al. (2010).
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Plan View

Figure 6. Plan view map of breccia architecture modeled from drill hole petrography from the 4595 
level drill fan.  Orange lines represent drill hole locations.  The polylithic breccia core grades into a 
rotated breccia, which then grades into a crackle breccia and various limestone units. Modified from 
Jackson et al. (2010).  
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Figure 7. Photographs of polylithic breccia that contains a) bleached clasts, visually unaltered clasts, 
and realgar veinlets (orange) truncated at clast margins, b) recrystallized and bleached clasts and 
clastic infilled matrix, c) decarbonatized and bleached clasts with a dominantly calcite and realgar 
chemical infill matrix (a-c Modified from Jackson et al. (2010)), and d) sub rounded clasts that 
consist primarily of recrystallized calcite.   

bleached clast

decarbonatized clast

1 cm

1 cm



0.5 oz/t grade shell
0.2 oz/t grade shell
0.1 oz/t grade shell
Drillholes, 4620 level
Drillholes, 4595 level
Drillholes, 4525 level

Grid = 100 ft

4595

4525

4620

Figure 8. Plan view map displaying modeled grade shells from the 4595 level.  Black lines indicate 
projected drill hole locations of three drill fans, and the blue lines indicate the 4595 level drill fan. 
This plan view map coincides with Figure 6. Modified from Jackson et al. (2010).
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Figure 9. The sequence of events reported in Jackson et al. (2010) that resulted in the Cortez Hills 
Breccia Zone. Stage 1) the upward flux of Carlin-type fluid caused replacement mineralization and 
pre-breccia realgar and calcite veining. Stage 2) the upward flux of Carlin-type fluid cause the 
“transported”, conical shaped, polylithic breccia, and thus, the dominant architecture of the breccia 
body.  Stage 3) oxidizing fluids reacted with the pyrite to produce acid, which increased porosity 
and open space. Stage 4) late-stage calcite veins infilled the porosity within the breccia. Vertical 
spacing indicates time lapse between events. Modified from Jackson et al. (2010).    



Figure 10. Magnified view of Figure 5 simplified cross section that displays the names and 
locations of each drill hole from which samples were collected for this study.  See Figure 5 for 
legend. 
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Figure 11. Hand sample (A) and crossed-polarized transmitted light photomicrograph (B) of a 
Devonian Wenban limestone sample.  Hand sample (C) and crossed-polarized transmitted light 
photomicrograph (D, E) of a Silurian Roberts Mountains limestone sample; (E) is a magnified view 
of the black square in (D).  Abbreviations: py = pyrite.   
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Figure 12. Photomicrographs of pre-ore-stage minerals under reflected light.  (A-C) PO1 pyrites 
(A, B) and PO2 pyrites (C) with EPMA point locations indicated by small black dots. D) 
Elongated PO3 pyrite with pore spaces parallel to each other. PO3 and chalcopyrite exhibit an 
interlocking puzzle-piece texture (E) and wispy texture (F).  Abbreviations: cc = calcite; sph = 
sphalerite; cpy = chalcopyrite; qtz -= quartz.   
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points from different PO pyrite crystals within 3 different samples.  All data plotted are collected 
from PO pyrites.     
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Figure 15. Photomicrographs of pre-ore-stage minerals. A) Chalcopyrite conforming to calcite 
rhombohedrons and millerite. B) Sphalerite with chalcopyrite inclusions under reflected light. C) 
PO3 pyrite and chalcopyrite crystals conforming to a tremolite crystal under reflected light. D, E) 
Radiating tremolite crystals with elongated PO3 pyrites incorporated within the tremolite structure, 
all surrounded by recrystallized calcite under crossed-polarized transmitted light (D) and reflected 
light (E).  F) Elongated tremolite crystal surrounded by recrystallized calcite within a carbonate that 
does not contain detectable Au under crossed-polarized transmitted light. Abbreviations: cc = 
calcite; sph = sphalerite; cpy = chalcopyrite; akt = aktashite; trem = tremolite; mil = millerite.   
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Figure 16. Photomicrographs of pyrrhotite (pink) surrounded by a pre-ore-stage pyrite (A), 
pre-ore-stage quartz and PO3 pyrite displaying a zebra-like texture (B), and PO3 pyrite conform-
ing to euhedral quartz (C) under reflected light.  Abbreviations: pyo = pyrrhotite; qtz = quartz. 



250 feet

Figure 17. Magnified view of the NE simplified cross section shown in Figure 5. Section displays 
the location of the ore-stage and evolved ore-stage iron-sulfide minerals in the CHBZ described in 
Table 7.  Some samples contain multiple types of iron-sulfide minerals, indicated by the clusters of 
symbols.  Dark blue lines indicate sampled drill hole locations.  
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Figure 18. A-C) Photomicrographs of OP1 rimming a sphalerite crystal (B) as well as typical OP1 
occurrences rimming pyrite cores (A,C) under reflected light. EPMA locations are indicated by 
small black solid circles and LA-ICP-MS analysis locations are indicated by large open circles. 
EPMA data from image C are plotted in ppm on the spider diagram (D). Cu plots behind Hg for 
most points; Bi is undetectable at points c2, c3, r1, r2, and r3.  All points that begin with “r” (rim) 
are OP1 points. Abbreviations: rlg = realgar; sph = sphalerite.   
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Figure 20. A) Photomicrograph of OP2 under reflected light with black dots indicating EPMA 
locations. B) EPMA data are plotted on the spider diagram in ppm.   
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Figure 21.  A) Photomicrograph of OP3 under reflected light with dots indicating EPMA locations 
on two crystals. B, C) EPMA data are plotted on the spider diagram in ppm. Cu, Tl, and Hg points 
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Position [°2Theta]
10 20 30

Counts

0

1000

2000

3000

 DC_124_1261

 Peak List

 Accepted Patterns

quartz [01-089-8936], s70
dolomite [00-036-0426], s59
realgar [00-041-1494], s72
illite [00-024-0495]

co
un

ts
BB

10 μm

A

C

illite

illite

qtz

OP1

B

Figure 22. A) Secondary electron image of illite and OP1. B) SEM-EDS detected elements from 
point B shown in (A). C) XRD pattern for sample DC 124 1261’, indicating the sample contains 
illite, dolomite, realgar, and quartz.
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Figure 23. A, B) Photomicrographs of quartz and Au-bearing iron-sulfide minerals under reflected 
light.  Photomicrograph of the alteration of calcite into jasperoid under crossed-polarized transmit-
ted light (C, E) and plane-polarized transmitted light (D). C) White circles indicate zones of high 
porosity (blue epoxy); blue rectangles indicate dark mottled calcite as it is dissolved and replaced.  
F) Scan of a thin section that displays porosity as blue epoxy
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Figure 24.  A) Photomicrograph of ore-stage mineralogy (illite, jasperoid, Au-bearing iron-sulfide 
minerals) replacing tremolite under plane-polarized transmitted light.  B) A magnified image of the 
area within the rectangle shown in A under reflected light. C, D) Au-bearing iron-sulfide minerals 
pseudomorphing tremolite under reflected light (C) and crossed-polarized transmitted light (D).
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Figure 25. Hand sample (A) and section (B) that transmitted crossed-polarized (C) and reflected 
(B) light photomicrographs were taken from.  C, D) The same area displaying a zone of high 
porosity (blue epoxy) with a seam of carbonaceous material (C) and Au-bearing iron-sulfide 
minerals (D) radiating from the center.  Abbreviations: jsp = jasperoid. 
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Figure 26. Hand samples (left), thin sections (center) and photomicrographs under crossed-
polarized transmitted light (right) for four different rocks that are located along a ~16 foot transect 
within drill hole DC 124.  The samples increase in Au concentration and porosity from rock A to D.  
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Figure 27. Hand samples (A, E), thin sections (B, F), photomicrographs under reflected light (C, G) 
and crossed-polarized transmitted light (D, H) for two samples separated by 7.5 feet. C and D 
display the same area; G and H display the same area. The samples increase in Au concentration 
and degree of brecciation from sample DC 215 1415.5’ to DC 214 1423’.  Dark material is 
composed of carbon, fine-grained Au-bearing iron-sulfide and clay minerals, and jasperoid.   
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Figure 28. Photomicrographs displaying Au-bearing iron-sulfide minerals within the matrix (A) and 
clasts (B-D) in heavily brecciated rocks under reflected light (A, C) and crossed-polarized transmit-
ted light (B, D).  C, D) The black oval indicates an area that is opaque owing to fine grained 
Au-bearing iron-sulfides, illite, jasperoid, and carbonaceous material.  The material is concentrated 
adjacent to an unaltered limestone clast.       



35
0 

μm

C

Q
tz

/js
p

D
C 

12
4 

12
81

’ g

1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

F
e
5
7

C
u
6
3

A
s7

5

A
g

1
0
7

P
b

2
0
8

H
g
2
0
2

S
b

1
2
1

B
i2

0
9

T
l2

0
5

A
u

1
9
7

B
B 35

0 
μm

Au
-b

ea
rin

g
cl

as
t

Q
tz

/js
p

A

C

D E

4 
cm

2 
cm

fr
ag

m
en

te
d 

re
al

ga
r

A
u-

be
ar

in
g 

 
cl

as
t a

nd
 h

al
o

Au
-b

ea
rin

g
iro

n-
su

lfi
de

s

Au-bearing halo

Au-bearing halo

matrix

m
at

rix
ha

lo

ha
lo

tim
e 

(s
)

 counts per second 

Fi
gu

re
 2

9.
 P

ho
to

m
ic

ro
gr

ap
h 

of
 a

 p
yr

ite
 w

ith
 a

 A
u-

be
ar

in
g 

iro
n-

su
lfi

de
 e

nr
ic

he
d 

ha
lo

 su
rr

ou
nd

in
g 

it 
un

de
r c

ro
ss

-p
ol

ar
iz

ed
 tr

an
sm

itt
ed

 li
gh

t (
A

) a
nd

 re
fle

ct
ed

 
lig

ht
 (B

) w
ith

 w
hi

te
 li

ne
s i

nd
ic

at
in

g 
th

e 
pa

th
 o

f a
bl

at
io

n 
fo

r L
A

-I
C

P-
M

S 
an

al
ys

is
. C

) L
A

-I
C

P-
M

S 
da

ta
 c

ol
le

ct
ed

 a
lo

ng
 th

e 
lin

e 
is

 sh
ow

 in
 B

.  
H

an
d 

sa
m

pl
e 

(D
) 

an
d 

th
in

 se
ct

io
n 

(E
) w

ith
 th

e 
he

av
ily

 m
in

er
al

iz
ed

 c
la

st
s c

irc
le

d.
  



105 μm

45 μm45 μm

rlg1

rlg2
r5

r6

r2 r4r3
DC 114 1236.5’g A

rlg r5 r6

10 μm

B

EOP1

0.1

1

10

100

1000

10000

100000

1000000

pp
m

DC 114 1236.5
As

Cu

Tl

Hg

Pb

Bi

Ag

Ti

Ni

Sb

Au

C

rlg

rlg
EOP1

EOP1

illite

jsp

Figure 30. A) Photomicrograph of EOP1 under reflected light with dots indicating EPMA 
locations. B) SEM image of rectangular area in (A). C) EPMA data are plotted on the spider 
diagram in ppm; all data plotted are collected from EOP1s.  Only the point locations that begin 
with DC 114 1235.5g are shown in A, B.  All other point locations are shown in Appendix H.
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dots indicating EPMA locations.  EPMA data are plotted on the spider diagram in ppm for CHBZ 
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Figure 36. Magnified view of NE simplified cross section from Figure 5 that displays the locations 
of the minerals chalcopyrite, aktashite, sphalerite, christite, cinnabar, EOP1, and EOP3.  Dark blue 
lines indicate sampled drill hole locations.  
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Figure 37. (A-C, E-F) Photomicrographs of late-ore-stage minerals under reflected light. A) 
Aktashite conforming to calcite rhombohedrons and EOP4. B) Aktashite surrounding EOP4; 
realgar conforming to aktashite crystal edge and also surrounding Au-bearing EOP4. C) Aktashite 
in contact with christite and surrounding abundant EOP4s. D) Secondary electron image of EOP4, 
aktashite, christite, and realgar. E) Christite crosscut by realgar. F) Christite surrounding EOP5 and 
realgar surrounding christite. Abbreviations: akt = aktashite; chr = christite; qtz = quartz; cc = 
calcite; rlg = realgar.    
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Figure 38. Photomicrographs of realgar and associated late-ore-stage minerals under reflected light 
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calcite rhombohedrons. B) Calcite conforming to euhedral cinnabar and realgar in the bottom right 
of the image. C) Realgar conforming to cinnabar; cinnabar and realgar conforming to calcite 
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Figure 42. Magnified view of NE simplified cross section in Figure 5 that displays the location of 
eight thin sections within the CHBZ that were analyzed by using EPMA.  Dark blue lines indicate 
sampled drill hole locations.
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Figure 43. Scatter plot of Pb vs. Sb for all EPMA data collected on ore- and evolved-ore-stage 
iron-sulfide minerals.  Each color represents a sample.  Best fit correlation lines are plotted for each 
sample. 
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Figure 45. Whole rock samples of partially oxidized (A) and fully oxidized (B) samples from the 
CHBZ.  Photomicrographs of Au-bearing iron-oxide minerals (C) and a Au alloy (D).  
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Figure 46. Photomicrograph of disseminated Au-bearing iron-oxide under reflected light. The two 
parallel solid white lines indicate the transect of the LA-ICP-MS path and the area that was ablated; 
these data are displayed in the plot below as counts per second on the y axis and time (s) on the x 
axis.  The dashed white lines indicate where the photomicrograph correlates with the LA-ICP-MS 
data. 
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Figure 48. Photomicrograph of disseminated Au-bearing iron oxide material from CHLZ under 
reflected light. The two parallel black lines indicate the transect of the LA-ICP-MS path and the 
area that was ablated; these data are displayed in the plot below as counts on the y axis.  The dashed 
white lines indicate how the photomicrograph correlates with the LA-ICP-MS data. Abbreviations: 
qtz = quartz 
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Figure 51. Cartoon displaying an interpretation of the formation of Au-bearing iron-sulfide rims on 
fragmented realgar. The boxes show the minerals that precipitated through time as the system cooled.  
The minerals displayed do not replace each other.  This figure assumes that the hottest portion of the 
deposit is to the right, indicated by red on the color scale.  A) When the Carlin ore system is at its 
peak temperature, Au-bearing iron-sulfide minerals precipitated.  B) As the system began to cool and 
collapse, aktashite and christite were deposited in the cooler portions of the deposit while evolved 
ore-stage iron-sulfides precipitated closer to the heat source.  C) As cooling continued, realgar began 
to precipitate on the periphery.  D) At some point in time pressure was released, possibly owing to 
reactivation along a fault, which fragmented realgar and allowed the evolved ore-stage fluid to again 
access a region containing evolved-ore-stage and late-ore-stage minerals.
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APPENDIX C

SAMPLES COLLECTED

All samples collected for this study are listed here and include three hundred and 

seventy samples from thirteen drill holes through the CHBZ and forty samples from three 

drill holes through the CHLZ.  For each sample, this appendix lists the drill hole footage 

and Au assay (oz/t).  Additionally, an X indicates if a thin section was made from the 

sample and which analytical techniques, if any, were performed on the sample.       



Appendix C. Samples Collected

Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

CHUD-019 266 5.24 x x
CHBZ 288 8.44 x

324 7.11 x
CHUD-038 430 0.386
CHBZ 435.5 1.605 x

439 0.378 x
444 1.045
447 0.742
453 1.915 x x x
457 4.16 x x x x
464 3.07 x x
470 5.83 x
474 2.37 x
478 2.65
482 2.65
490 1.22
495 0.223

504.5 0.208
513 0.343
532 0.0724

CHUD-039 400.5 0.0836 x
CHBZ 410 0.192 x x

421 0.324 x
433 1.11 x
442 0.973
451 1.39 x
457 1.88 x
463 1.54 x
468 1.405 x x
473 0.457 x
479 0.307 x
498 0.629 x
501 0.048 x

CHUD-043 313.5 0.0267
CHBZ 331 0.275

337 0.579
339 4.35
343 5.28
350 3.14



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

CHUD-043 353 6.32
cont. 374 5.86

376.5 5.25 x x x
382 7.12 x

383.5 7.12
388 0.661
393 3.05

401.5 3.32
404 3.32
417 3.46
432 0.985
443 0.513

CHUD-044 217.5 0.0003 x
CHBZ 220 0.125 x

222 0.125 x
223 0.125

226.5 0.331
231 0.451 x
234 0.451 x
237 0.0093 x

241.5 0.0013
247.5 0.0003
251 0.0471

255.5 0.379
263 0.204

265.5 0.006
270 0.106
275 0.0014
303 0.0003 x x

306.5 0.519
307.5 0.519 x

308-309 0.519
322 0.029

324.5 2.63
333 2.3
352 4.42

358.5 4.63
360 1.765
365 5.94
377 5.83 x



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

CHUD-044 383 2.71
cont. 385 4.24

391 5.45
393 5.45 x

396.5 2.7
410 0.151
419 3.38

419.5 3.38
425 4.15
431 4.34
435 3.49

444.1 0.815
448 0.815
453 0.131

458.5 0.983
461 3.33

469.1 2.3
476 3.73
501 5.02
505 4.43

508.5 4.43
511 5.26

518.9 0.344
525 0.839
542 2.15
546 0.929
551 0.51

554.1 0.301
564.5 0.0587
572 0.0543
578 0.265
583 0.112
586 0.169
590 0.0037
592 0.0037

CHUD-046 168 0.0163
CHBZ 185 0.0989

202.5 0.729
207-210 0.103
210-212 0.103



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

CHUD-046 214.5 7.49
cont. 218 5.75

226 5.18 x
227-232 3.99

232.5 7.19
234-236 7.19

236.5 7.19
237-240 30.5 x x x
240-242 30.5

244 6.66
245.5 6.66

247-249 5.17
249-252 5.17
252-254 12.35

254.5 12.35
255.5 12.35
257.5 0.983

262.5-265 0.194 x
270 2.56
276 6.24

280.5 7.32 x
283 4.83 x x
285 4.83 x
288 5.47

289-292 5.47
CHUE-019 438.5 3.48 x
CHBZ 469.5 3.69 x

485.5 1.67 x x x x
494.5 1.785 x x

CHUE-119 285 0.0001
CHLZ 293 0.0009

298 0.0009
304 0.147
308 0.147

310.5 0.147
313 0.386 x
316 0.386

317.2 0.804
317-322 0.804

324.5-326.5 1.67 x x



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

CHUE-119 327-328 1.75
cont. 329-331 1.75
CHUE-126 308-309 1.045 x
CHLZ 309.5-311 1.045 x

311-313 0.506 x
313.5 0.506 x

314.5-315 0.506
315-316 0.016

317 0.016 x
318 0.016
319 0.016 x

322.5 0.016 x
324 0.0004
326 0.0004 x
328 0.0004
331 0.0004 x

CHUE-215 241.5 0.83
CHLZ 243.5 0.83

245 1.195 x x
246.5 1.195 x x x x x
247 1.195

248.5 1.195 x
250 0.377
252 0.377 x

254-257 0.056 x
258 0.056

259.5 0.0008 x
262.5 0.0008 x x x
273 0.0003

DC-114 1187 0.007
CHBZ 1192 0.333

1220 0.252
1226 0.337

1236.5 0.845 x x x x x
1252 0.656
1261 0.884 x
1270 0.884

1276.5 0.362
1277.5 0.362 x
1294 0.052 x



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

DC-114 1314.5 0.284
cont. 1358 1.635

1378 1.604
1406 0.257 x

DC-124 1002 0.001
CHBZ 1013 0.001

1029 0.001
1037 0.001 x x

1039.9 0.001 x
1042.5 0.025 x
1043 0.025
1046 0.025
1049 0.025

1050.5 0.312
1051.5 0.312 x
1056 0.312 x

1060.5 0.082 x
1066 0.083 x

1088.5 0.329
1104 0.258
1112 0.238
1143 0.122
1156 0.221 x

1162.5 0.131
1186 0.329
1194 0.192
1196 0.192
1222 0.001
1252 0.464
1257 0.464 x
1261 2.166 x x
1264 2.166 x x x x
1267 2.166
1268 2.166
1273 3.094 x x x

1276.5 3.094 x
1281 1.205 x x

1282.5-1284 1.205
1289.5 1.205
1291 0.809



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

DC-124 1293 0.809
cont. 1303 1.802

1305.5 1.802 x
1311 1.034
1315 1.034

1325.5 1.241
1347 2.876

1351.5 2.191
1356 2.191

1370-1373 3.236
1388-1390 0.283

1397 0.091 x
1402.5 0.378 x
1408.5 0.378 x
1423 3.747 x

1431.5 4.63
1465 0.336
1474 0.198
1522 0.293

1649.5 0.479 x
1653 0.199
1658 0.199
1667 0.202 x

DC-132 1489 0.142
CHBZ 1502 1.194

1507 1.194
1518 2.236
1535 0.899
1538 0.8
1548 3.568

1564.5 0.958
1587 2.262

1597.5 2.57
1606 1.584
1614 4.066 x
1620 4.066
1625 3.006
1641 0.102

DC-213 1258 0.0107 x
CHBZ 1260.5 0.0565



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

DC-213 1263 0.0565 x x
cont. 1267 0.2512

1270 0.2512 x
1274 0.2512
1278 0.2512 x
1281 0.735 x x x
1283 0.735
1286 0.229 x

1319.5 2.58 x
1370.5 0.512
1373 0.512
1374 0.512
1376 0.147
1384 0.002
1386 0.0014

1389.5 0.0014
DC-215 1212.5 0.0001 x
CHBZ 1221 0.008 x

1226 0.223 x
1264 0.0262
1266 0.0261

1270.5 0.0261
1276.5 0.0982
1281 0.0982

1283.5 0.205 x
1285.5 0.205
1290 0.289

1293.5 0.289 x
1296 0.322 x
1316 0.433 x x
1318 0.433 x

1320.1 0.0811 x
1322 0.0811 x
1328 0.366
1338 0.643

1350.5 0.49
1360 0.27
1369 0.0028
1409 1.12

1415.5 0.541 x



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

DC-215 1423 2.02 x
cont. 1425 2.02

1434 5.76
1444 4.6
1457 4.57
1462 5.6
1468 1.375
1474 4.73
1483 6.56
1493 4.56 x
1497 4.6 x x x
1508 5.77

1510-1515 10.2
1515.5 5.44
1531.5 6.1
1541 2.98
1544 0.998
1557 3.3
1564 4.12
1569 2.02 x x x
1578 0.562
1586 0.377

1591.5 0.23
1596.5 0.119
1601 0.0064
1647 0.007
1653 0.0884

1658.5 0.381
1667 0.065 x
1669 0.065 x

1672.5 0.0919 x
1674 0.0919
1675 0.0919
1677 1.805 x

1678.5 1.805 x x
1680 0.645

ODC-048 1548 0.235
CHBZ 1550 4.16

1554 0.369
1556.5 0.221



Hole ID
& Zone

Footage Au 
(oz/t)

Thin 
Section

EPMA LA-ICP-
MS

XRD SEM
CL

SEM

ODC-048 1567.5 3.35
cont. 1572.5 6.37

1578 5.46
1584 3.07
1593 5.25
1603 4.36
1608 4.6
1615 2.42
1617 2.42
1625 1.385
1639 2.15

1654.5 4.53 x
1658 5.26 x

1659.5 5.26
1683 0.0874



APPENDIX D

DOCUMENTED MINERAL LOCATIONS FOR 46 SAMPLES

Detailed optical petrography notes were taken on forty-six samples. This 

appendix lists the Au assay (oz/t) and the minerals of interest observed in each sample.  

These minerals include ore-stage iron-sulfide (OP), evolved-ore-stage iron-sulfide (EOP), 

pre-ore-stage pyrite (PO), chalcopyrite (cpy), sphalerite (sph), pyrrhotite (pyo), titanium-

oxide (TiO), aktashite (akt), christite (chr), cinnabar (cin). The sample ID name consists 

of the drill hole followed by the footage that the sample was collected at within the drill 

hole.          
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APPENDIX E

EPMA DATA

A JEOL-8900 Electron Probe Microanalyzer (EPMA) at University of Nevada 

Las Vegas (UNLV) Electron Microanalysis and Imaging Laboratory (EMiL) was used to 

collect EPMA data from twelve samples.  The elements Ca, Si, S, Fe, and As were

calibrated and measured as major elemental components, whereas Au, Hg, Ag, Pb, Tl, 

Sb, Cu, Bi, Zn, Ni, W, Co, Sn, Te, Se, Ti, and Mo were calibrated and measured as trace 

elements.  Two analyses were performed iteratively for each point, one for the major

elements and one for trace elements, so that the beam current can be modified to optimize 

for the full range of elements of interest (see Methods).  This appendix lists the measured 

weight percent of each element at each EPMA location.  The EPMA point name consists 

of the drill hole (ie. DC124), footage (ie. 1273), photomicrograph shown in Appendix H 

(ie. h), and spot within photomicrograph (ie. c1).        
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APPENDIX F

XRD DATA

 Twelve samples were ground into a fine powder and analyzed by a PANalytical 

X’PERT Pro X-ray Diffraction Spectrometer housed in the UNLV XRD/XRF laboratory; 

XRD settings are reported in Table 3.  Appendix F1 shows the peak list raw data 

collected for each sample.  Appendix F2 displays the interpreted XRD patterns by using 

X’Pert Highscore Plus and Match!2 software packages.    



Appendix F1. X-Ray Diffraction

CHUD 038 457’ 
Pos.

[ 2Th.]
Height 
[cts]

FWHM
[ 2Th.]

d-spacing
[Å] 

Rel. Int. 
[%]

5.1208 227.71 0.2519 17.25766 11.35
8.9085 1052.95 0.0708 9.92664 52.5
10.9475 70.24 0.0945 8.08197 3.5
11.9125 108.77 0.063 7.42936 5.42
13.1093 93.25 0.126 6.75365 4.65
14.7571 426.67 0.0394 6.00304 21.28
15.5445 680.46 0.0192 5.69598 33.93
16.142 238.54 0.063 5.49101 11.89
16.4668 1371.57 0.0354 5.38341 68.39
17.7927 383.66 0.126 4.98512 19.13
19.2477 129.53 0.063 4.61143 6.46
19.8676 491.04 0.0708 4.46893 24.49
20.4816 157.79 0.126 4.33632 7.87
20.9259 988.72 0.0472 4.24525 49.3
21.8872 228.93 0.1102 4.06093 11.42
23.0044 58.64 0.0945 3.86617 2.92
23.4669 58.26 0.0945 3.79102 2.9
23.9009 90.85 0.0945 3.72316 4.53
24.4735 314.5 0.0945 3.63732 15.68
24.7056 245.24 0.0472 3.60367 12.23
25.3592 216.4 0.063 3.51226 10.79
25.938 290.34 0.0472 3.43518 14.48
26.6984 2005.47 0.0384 3.33628 100
26.7659 1355.97 0.0384 3.33629 67.61
27.0188 390.04 0.048 3.29744 19.45
28.1058 672.8 0.0384 3.17233 33.55
28.1907 901.18 0.0384 3.16297 44.94
28.3336 1538.46 0.0576 3.14734 76.71
28.4091 780.23 0.0288 3.14695 38.91
29.1401 502.43 0.0576 3.06205 25.05
29.3046 503.76 0.0576 3.04523 25.12
29.4757 392.15 0.0672 3.02795 19.55
29.9483 305.55 0.048 2.98123 15.24
30.2554 255.98 0.048 2.95167 12.76
30.6132 725.38 0.0576 2.91798 36.17
30.6991 385.65 0.0576 2.91724 19.23
31.2865 203.03 0.0288 2.8567 10.12
31.9642 746.39 0.0336 2.79766 37.22



32.0443 369.81 0.0384 2.79778 18.44
32.3026 347.59 0.0384 2.76912 17.33
32.9053 680.17 0.0768 2.71976 33.92
33.1287 598.89 0.0384 2.70193 29.86
33.3703 582.72 0.0336 2.68292 29.06
33.4477 349.43 0.0384 2.68354 17.42
34.1864 185.09 0.048 2.62071 9.23
34.5998 378.22 0.0576 2.59034 18.86
35.1252 324.23 0.2688 2.55279 16.17
35.7008 149.99 0.0576 2.51294 7.48
36.1312 167.08 0.0768 2.48399 8.33
36.3536 205.36 0.0384 2.4693 10.24
36.5996 308.14 0.0576 2.45327 15.37
36.8818 177.23 0.1536 2.43514 8.84
37.5973 122.32 0.2304 2.39042 6.1
38.2415 83.5 0.2304 2.35163 4.16
39.5079 97 0.0576 2.27912 4.84
39.907 130.54 0.0576 2.25724 6.51
40.0475 169.43 0.0768 2.24964 8.45
40.3247 173.12 0.0576 2.23481 8.63
41.195 167.61 0.1152 2.18959 8.36
41.7098 72.59 0.1536 2.16375 3.62
42.4861 376.7 0.0576 2.12599 18.78
44.3513 55.9 0.0576 2.04081 2.79
45.3886 223.38 0.3456 1.99656 11.14
45.8327 140.79 0.0576 1.97824 7.02
46.8991 222.63 0.0576 1.93571 11.1
47.0831 1023.05 0.048 1.92857 51.01
47.1888 584.15 0.048 1.92928 29.13
48.3323 45.66 0.2304 1.8816 2.28
49.1497 122.12 0.0576 1.85221 6.09
49.6059 242.28 0.0576 1.83624 12.08
49.7612 99.87 0.0768 1.83542 4.98
50.1584 178.15 0.0768 1.8173 8.88
50.77 134.68 0.0768 1.79683 6.72
50.9135 92.55 0.0576 1.79656 4.61
51.2138 116.19 0.0576 1.7823 5.79
51.5959 118.56 0.1152 1.76999 5.91
52.3013 71.46 0.1152 1.74777 3.56
53.2346 109.22 0.0576 1.71931 5.45
53.7779 78.72 0.2304 1.70321 3.93
54.1147 129.12 0.0768 1.6934 6.44
54.6984 162.36 0.096 1.6767 8.1



54.9031 187.47 0.096 1.67094 9.35
55.8173 437.07 0.0384 1.64572 21.79
55.9672 258.56 0.0672 1.64166 12.89
57.3336 44.19 0.3072 1.60574 2.2
58.5787 65.3 0.3072 1.57454 3.26
59.988 172.45 0.096 1.54088 8.6
61.2508 100.66 0.0576 1.5121 5.02
61.9492 191.61 0.1536 1.49672 9.55
63.2998 99.8 0.1152 1.468 4.98
64.1157 108.86 0.1536 1.45127 5.43
65.3575 72.86 0.1536 1.42667 3.63
67.7772 83.24 0.1152 1.3815 4.15
68.3432 129.43 0.096 1.37144 6.45
68.7079 190.84 0.0576 1.36504 9.52
70.2559 58.84 0.384 1.33871 2.93
72.1149 22.39 0.4608 1.30871 1.12
73.4905 35.4 0.9216 1.28757 1.77
75.88 118.66 0.0768 1.25285 5.92

CHUD 044 303’ 
Pos.

[ 2Th.]
Height 
[cts]

FWHM
[ 2Th.]

d-spacing
[ ]

Rel. Int. 
[%]

6.2771 153.91 0.0472 14.0809 0.84
8.8733 7431.29 0.0433 9.96603 40.49
9.9342 44.76 0.0945 8.90397 0.24
10.6513 473.94 0.0315 8.30608 2.58
17.657 300.36 0.0394 5.02313 1.64
18.786 84.71 0.0472 4.72372 0.46
19.3993 40.96 0.126 4.57575 0.22
21.2475 51.46 0.0945 4.18172 0.28
23.2021 801.79 0.0472 3.83368 4.37
24.3629 63.29 0.126 3.65359 0.34
26.2737 220.64 0.063 3.39205 1.2
26.5346 2061.33 0.048 3.3565 11.23
26.6069 981.62 0.0288 3.35587 5.35
27.3607 101.19 0.0576 3.25701 0.55
28.3807 153.05 0.0768 3.14222 0.83
28.7178 966.41 0.0336 3.1061 5.27
28.7925 460.29 0.0384 3.10592 2.51
29.547 18353.96 0.048 3.0208 100
29.6255 9796.77 0.0384 3.02046 53.38
30.6227 163.45 0.1536 2.91709 0.89



30.9857 222.11 0.1152 2.88374 1.21
31.5852 309.84 0.0672 2.83036 1.69
32.0237 71.42 0.0768 2.7926 0.39
33.0314 89.81 0.0768 2.70967 0.49
33.2357 88.8 0.0576 2.69347 0.48
34.3486 186.43 0.048 2.60871 1.02
35.5639 203.61 0.0672 2.5223 1.11
36.1154 1104.38 0.0432 2.48504 6.02
36.2146 591.96 0.048 2.48462 3.23
37.0071 112.37 0.0768 2.42718 0.61
38.6175 42.83 0.0576 2.32959 0.23
39.5596 1722.04 0.0528 2.27625 9.38
39.6636 900.64 0.0576 2.27617 4.91
41.563 102.7 0.0768 2.17105 0.56
43.3114 1679.24 0.0528 2.08737 9.15
43.4251 855.94 0.048 2.08734 4.66
44.8725 373.7 0.0672 2.01831 2.04
44.9786 220.69 0.0768 2.0188 1.2
45.4281 64.96 0.2304 1.99491 0.35
47.2635 436.34 0.0864 1.92163 2.38
47.6685 1886.36 0.048 1.90625 10.28
47.7934 1049.7 0.0672 1.90155 5.72
48.2151 157.79 0.048 1.8859 0.86
48.3498 118.68 0.0576 1.88096 0.65
48.6691 1759.66 0.0384 1.86937 9.59
48.7937 1018.68 0.0768 1.86488 5.55
50.4753 39.48 0.3072 1.80663 0.22
54.6764 104.17 0.0768 1.67733 0.57
55.8149 29.98 0.1152 1.64578 0.16
56.7151 239.86 0.0672 1.62178 1.31
56.875 133 0.0768 1.62161 0.72
57.5551 647.44 0.0672 1.60009 3.53
57.6991 331.73 0.0768 1.6004 1.81
58.2223 107.89 0.0576 1.58333 0.59
59.96 68.31 0.1536 1.54153 0.37
60.3815 103.57 0.1152 1.53177 0.56
60.826 382.25 0.0672 1.52164 2.08
60.988 228.63 0.0768 1.52176 1.25
61.1651 307.28 0.0864 1.51401 1.67
61.3188 194.78 0.0768 1.51434 1.06
61.529 207.93 0.096 1.50593 1.13
63.2023 123.59 0.0672 1.47003 0.67
64.4986 45.09 0.1152 1.44358 0.25



64.8079 386.76 0.0864 1.43743 2.11
64.9804 226.15 0.1152 1.43403 1.23
65.7618 263.91 0.096 1.41887 1.44
65.9553 154.91 0.096 1.4187 0.84
68.5711 58.65 0.1536 1.36743 0.32
69.3456 99.46 0.1152 1.35404 0.54
70.3991 144 0.096 1.33634 0.78
70.6267 68.09 0.096 1.3359 0.37
71.3366 15.04 0.3072 1.32106 0.08
71.9592 15.64 0.384 1.31115 0.09
73.0756 154.18 0.1344 1.29385 0.84
73.2739 95.33 0.0768 1.29405 0.52
73.8238 30.05 0.1152 1.28258 0.16
75.1624 23.48 0.1536 1.26302 0.13

CHUD 046 238’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å]

Rel. Int. 
[%]

5.1694 185.32 0.5038 17.09548 1.47
10.0281 940.44 0.1574 8.82075 7.47
15.7339 421.04 0.1102 5.6325 3.34
16.0892 217.03 0.0945 5.5089 1.72
17.9049 64.63 0.3149 4.95415 0.51
19.3721 259.34 0.1102 4.58212 2.06
20.9284 3955.03 0.0384 4.24125 31.4
20.9863 1589.23 0.0288 4.24018 12.62
23.3733 78.4 0.3072 3.80283 0.62
24.2639 46.38 0.4608 3.66524 0.37
25.2135 167.64 0.1152 3.5293 1.33
26.7067 12594.26 0.0528 3.33526 100
26.7772 5603.99 0.0384 3.33491 44.5
27.1287 402.06 0.192 3.28433 3.19
27.742 410.14 0.192 3.21311 3.26
29.6694 180.09 0.1152 3.00862 1.43
30.2779 376.35 0.1536 2.94952 2.99
31.0206 231.74 0.192 2.88058 1.84
31.7035 332.16 0.2304 2.82007 2.64
32.4037 803.29 0.2496 2.76071 6.38
34.1548 243.35 0.192 2.62307 1.93
35.533 149.12 0.2304 2.52443 1.18
36.0942 98.17 0.2304 2.48645 0.78
36.5905 1137.45 0.0576 2.45386 9.03



36.699 506.53 0.048 2.45293 4.02
38.2582 19.06 0.6912 2.35064 0.15
39.5178 744.65 0.048 2.27856 5.91
39.6251 390.63 0.0672 2.27829 3.1
40.3241 509.83 0.048 2.23484 4.05
40.4438 359.04 0.0576 2.22851 2.85
42.4885 791.73 0.0864 2.12588 6.29
42.6116 406.98 0.0576 2.12529 3.23
45.8269 398.42 0.0672 1.97847 3.16
45.9573 219.1 0.0576 1.97806 1.74
47.533 32.77 0.2304 1.91136 0.26
48.3176 46.32 0.384 1.88214 0.37
50.1833 1254.08 0.0864 1.81645 9.96
50.32 656.21 0.0768 1.81634 5.21
51.681 93.23 0.3072 1.76728 0.74
53.6245 28.24 0.4608 1.70772 0.22
54.9115 391.02 0.0672 1.6707 3.1
55.0539 229.28 0.0768 1.67086 1.82
55.3693 162.91 0.0576 1.65797 1.29
56.4572 133.37 0.3072 1.62857 1.06
58.9113 40.94 0.6144 1.56645 0.33
59.9815 931.27 0.0384 1.54103 7.39
60.1534 466.92 0.096 1.53704 3.71
62.1067 21.73 0.9216 1.4933 0.17
64.058 138.02 0.0768 1.45244 1.1
65.829 53.87 0.2304 1.41759 0.43
67.7772 477.39 0.048 1.3815 3.79
67.9514 290.42 0.0576 1.38181 2.31
68.1696 609.47 0.048 1.37451 4.84
68.3621 590.69 0.096 1.3711 4.69
73.4812 135.25 0.096 1.28771 1.07
75.6854 214.39 0.1152 1.25559 1.7

CHUD 046 283’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

5.9142 620.08 0.2519 14.94393 18.5
9.9692 51.13 0.1889 8.87273 1.53
12.4226 379.52 0.1574 7.12544 11.32
14.51 316.41 0.1889 6.1047 9.44
15.1531 284.21 0.126 5.84704 8.48
16.9082 205.3 0.1574 5.24385 6.12



17.2641 94.75 0.126 5.13654 2.83
17.854 52.25 0.1574 4.96815 1.56
19.9201 447.97 0.1889 4.45728 13.36
20.4404 306.05 0.1889 4.34498 9.13
20.9114 506.69 0.1889 4.24816 15.11
23.1709 365.51 0.126 3.83876 10.9
25.2327 726.71 0.126 3.52958 21.68
26.712 1705.97 0.126 3.33737 50.89
28.4765 194.04 0.1889 3.13447 5.79
29.5212 3352.28 0.1574 3.02588 100
30.4833 344.01 0.126 2.93254 10.26
30.7281 461.3 0.1574 2.90973 13.76
31.5638 83.82 0.126 2.83458 2.5
32.313 62.87 0.126 2.77054 1.88
33.4908 40.73 0.1574 2.67576 1.21
35.0949 281.38 0.3149 2.55705 8.39
36.1004 453.99 0.1889 2.4881 13.54
36.5981 157.89 0.126 2.4554 4.71
38.4786 163.95 0.3779 2.33962 4.89
39.5119 577.73 0.1889 2.28078 17.23
40.3519 92.18 0.2519 2.23522 2.75
41.1397 54.9 0.2519 2.19422 1.64
42.1623 72.33 0.2204 2.14334 2.16
42.5013 83.3 0.1889 2.12703 2.48
43.2617 375.16 0.2204 2.09138 11.19
44.4007 24.43 0.3779 2.04034 0.73
45.816 62.9 0.2519 1.98056 1.88
46.4136 76.17 0.2204 1.95644 2.27
47.194 160.34 0.126 1.92589 4.78
47.607 487.19 0.1574 1.91015 14.53
48.5999 372.05 0.2204 1.87342 11.1
50.2254 108 0.1889 1.81653 3.22
51.6995 246.12 0.1889 1.76815 7.34
54.8943 128.91 0.126 1.67257 3.85
55.4337 87.12 0.4408 1.65756 2.6
56.7183 94.84 0.3149 1.62304 2.83
57.5103 161.36 0.126 1.60255 4.81
58.2525 18.73 0.1889 1.58389 0.56
59.9782 133.98 0.126 1.54238 4
60.8247 108.69 0.2519 1.52293 3.24
62.3595 163.36 0.1574 1.48909 4.87
63.2711 42.6 0.2519 1.46981 1.27
64.056 42.43 0.2519 1.45368 1.27



64.8366 84.69 0.3779 1.43806 2.53
65.8421 42.31 0.3779 1.41851 1.26
67.749 43.61 0.1889 1.38315 1.3
68.2575 58.07 0.2519 1.37409 1.73
69.3023 19.39 0.1889 1.3559 0.58
70.3491 54.27 0.1574 1.33827 1.62
73.217 74.46 0.2688 1.2917 2.22

 

CHUE 215 245’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

8.9197 482.44 0.0472 9.91429 3.64
11.705 62.57 0.0945 7.5606 0.47
12.4695 157.4 0.0945 7.09873 1.19
17.8011 228.27 0.1574 4.98279 1.72
19.866 571.66 0.1102 4.46929 4.32
20.4761 207.69 0.126 4.33749 1.57
20.9308 4283.47 0.0624 4.24076 32.34
20.9895 2006.74 0.0336 4.23954 15.15
21.7406 71.9 0.2304 4.0846 0.54
24.1271 238.83 0.1344 3.68571 1.8
24.4773 230.7 0.2304 3.63375 1.74
25.0003 119.22 0.1536 3.55891 0.9
25.3814 115.12 0.096 3.50634 0.87
25.8844 113.8 0.2304 3.43933 0.86
26.7105 13246.08 0.072 3.3348 100
26.7897 5580.61 0.0384 3.33339 42.13
29.2138 251.58 0.192 3.05449 1.9
31.0265 2122.62 0.1056 2.88004 16.02
31.9664 98.75 0.0768 2.79747 0.75
32.3128 54.29 0.1536 2.76827 0.41
33.2287 169.56 0.1152 2.69403 1.28
33.5955 147.82 0.1152 2.66545 1.12
35.1217 346.98 0.192 2.55304 2.62
36.6016 1132.12 0.0672 2.45314 8.55
36.695 608.73 0.0576 2.45318 4.6
37.4287 221.43 0.096 2.40081 1.67
38.6234 46.56 0.2304 2.32925 0.35
39.526 712.3 0.0336 2.27811 5.38
39.6355 335.89 0.0576 2.27207 2.54
40.3471 454.47 0.048 2.23363 3.43
40.4531 212.32 0.0576 2.23355 1.6



41.1923 528.37 0.0672 2.18972 3.99
42.5146 769.56 0.0528 2.12463 5.81
42.6266 379.66 0.048 2.12457 2.87
43.8608 62.34 0.2688 2.06249 0.47
44.9949 274.95 0.1152 2.01311 2.08
45.858 388.25 0.0864 1.9772 2.93
45.9678 217.01 0.0576 1.97764 1.64
47.5465 24.34 0.3072 1.91085 0.18
49.3196 48.07 0.3072 1.84622 0.36
50.194 1232.53 0.1056 1.81609 9.3
50.3421 584.99 0.0768 1.8156 4.42
50.5844 251.83 0.2304 1.80299 1.9
51.1514 280.75 0.1536 1.78433 2.12
54.897 390.2 0.048 1.67111 2.95
55.0719 242.17 0.0768 1.66621 1.83
55.3791 199.74 0.0768 1.65769 1.51
56.3835 66.53 0.5376 1.63052 0.5
58.96 62.63 0.1152 1.56527 0.47
60.001 944.9 0.1056 1.54058 7.13
60.1588 487.34 0.096 1.54073 3.68
61.9441 157 0.2304 1.49683 1.19
63.4739 79.17 0.1536 1.46439 0.6
64.0732 138.49 0.1152 1.45213 1.05
65.2253 43.73 0.3072 1.42924 0.33
66.0254 29.81 0.4608 1.41385 0.23
67.4462 94.1 0.1536 1.38748 0.71
67.7783 476.99 0.1152 1.38148 3.6
67.9576 287.88 0.0768 1.3817 2.17
68.1802 597.72 0.0672 1.37432 4.51
68.3474 616.38 0.096 1.37136 4.65
70.502 54.89 0.3072 1.33464 0.41
72.9006 50.18 0.3072 1.29653 0.38
73.4964 164.01 0.1152 1.28748 1.24
73.7198 96.65 0.1152 1.28732 0.73
74.8054 25.13 0.4608 1.26816 0.19
75.692 218.74 0.1152 1.2555 1.65

 

CHUE 215 262.5’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing
[Å] 

Rel. Int. 
[%]

5.096 450.14 0.1889 17.34143 7.87
6.2929 706.41 0.0551 14.0456 12.36



8.7916 701.6 0.0708 10.05839 12.27
9.5154 164.18 0.0787 9.29492 2.87
9.8381 79.53 0.0945 8.99074 1.39
10.5796 447.65 0.0708 8.36215 7.83
12.5198 666.98 0.063 7.07033 11.67
17.5321 71.85 0.1574 5.05863 1.26
18.7926 449.12 0.063 4.72209 7.86
19.7602 70.07 0.2519 4.49297 1.23
20.9087 266.68 0.126 4.24871 4.66
21.1764 70.84 0.0945 4.1956 1.24
22.0726 34.03 0.126 4.02723 0.6
23.1692 468.15 0.0315 3.83905 8.19
24.0815 100.44 0.1574 3.69564 1.76
25.1308 396.82 0.0551 3.54366 6.94
26.4343 391.69 0.0551 3.3718 6.85
26.6809 1380.02 0.0551 3.34119 24.14
27.2866 153.44 0.0787 3.2684 2.68
28.3223 70.92 0.126 3.15119 1.24
28.6396 490.51 0.0472 3.11699 8.58
29.5627 5717.59 0.0528 3.01923 100
29.6332 2917.79 0.048 3.01969 51.03
30.4993 217.09 0.1152 2.92861 3.8
30.9857 1818.04 0.2112 2.88374 31.8
31.5465 173.27 0.1344 2.83374 3.03
31.9647 88.38 0.0576 2.79762 1.55
33.1583 218.93 0.0768 2.69959 3.83
33.5778 65.93 0.192 2.66681 1.15
34.306 161.81 0.096 2.61185 2.83
34.6372 60.11 0.192 2.58763 1.05
35.4115 162.62 0.0768 2.53281 2.84
36.1154 598.54 0.0768 2.48504 10.47
36.6114 85.21 0.1344 2.45251 1.49
36.9695 116.94 0.1536 2.42957 2.05
37.3966 181.02 0.1152 2.40279 3.17
38.5354 78.59 0.0576 2.33437 1.37
39.5388 960.46 0.0672 2.2774 16.8
40.3335 39.18 0.2688 2.23434 0.69
41.1799 415.55 0.2112 2.19036 7.27
42.5246 48.39 0.2304 2.12415 0.85
43.3319 655.18 0.0768 2.08643 11.46
43.4588 358.25 0.0576 2.0858 6.27
43.8503 50.94 0.192 2.06296 0.89
45.0003 269.67 0.1536 2.01287 4.72



47.2883 211.19 0.1152 1.92068 3.69
47.7365 641.88 0.1536 1.90369 11.23
48.7274 704.26 0.0768 1.86727 12.32
49.3614 60.59 0.2304 1.84476 1.06
50.1756 166.87 0.1536 1.81671 2.92
50.519 207.8 0.2688 1.80517 3.63
51.111 247.67 0.1536 1.78564 4.33
54.6731 53.76 0.384 1.67742 0.94
55.7599 48.94 0.1152 1.64727 0.86
56.209 22.13 0.2688 1.63517 0.39
56.8189 104.17 0.1344 1.61906 1.82
57.6256 263.57 0.1344 1.5983 4.61
58.403 45.19 0.3072 1.57886 0.79
58.9655 49.5 0.3072 1.56513 0.87
60.0028 160.14 0.3456 1.54053 2.8
60.3632 108.82 0.1152 1.53219 1.9
60.9086 180.72 0.1152 1.51977 3.16
61.336 84.85 0.6144 1.5102 1.48
61.6659 91.86 0.1152 1.50665 1.61
63.3344 102.02 0.192 1.46728 1.78
64.8656 226.95 0.096 1.43629 3.97
65.9273 93.71 0.192 1.41571 1.64
67.4172 79.93 0.192 1.388 1.4
68.2246 57.25 0.3072 1.37353 1
69.5477 28.29 0.2688 1.3506 0.49
70.5741 66.5 0.4608 1.33345 1.16
73.1685 88.73 0.1536 1.29244 1.55
74.8999 13.85 0.5376 1.2668 0.24

 

DC 124 1037’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

6.2922 67 0.1889 14.04719 0.48
8.8447 432.56 0.126 9.99816 3.09
9.899 28.72 0.1574 8.93551 0.21
10.6061 451.33 0.1889 8.34131 3.23
12.5555 139.06 0.1889 7.0503 0.99
17.6044 33.22 0.1889 5.03802 0.24
18.8064 89.86 0.126 4.71865 0.64
19.8165 39.17 0.126 4.48034 0.28
21.2358 59.28 0.1889 4.184 0.42
22.1027 16.15 0.1889 4.02181 0.12



23.1834 745.58 0.1889 3.83673 5.33
24.3275 3.75 0.2519 3.65882 0.03
25.1874 88.35 0.126 3.53583 0.63
26.5075 142.47 0.1574 3.36266 1.02
27.3504 70.26 0.1889 3.26091 0.5
28.7117 854.49 0.126 3.10932 6.11
29.5474 13992.82 0.126 3.02326 100
31.0565 222.19 0.1574 2.87971 1.59
31.5777 283.4 0.1574 2.83336 2.03
32.0265 72.72 0.1889 2.79467 0.52
33.2284 95.78 0.126 2.69628 0.68
35.4917 58.64 0.126 2.52936 0.42
36.109 1101.85 0.1574 2.48752 7.87
37.5361 18.35 0.2204 2.39617 0.13
37.8467 22.56 0.1574 2.37721 0.16
38.9091 24.35 0.126 2.31472 0.17
39.5396 1535.12 0.1574 2.27925 10.97
41.2296 41.36 0.126 2.18964 0.3
41.9143 28.43 0.1889 2.15544 0.2
43.2826 1249.68 0.126 2.09042 8.93
45.0698 42.76 0.3149 2.0116 0.31
45.4266 38.69 0.1574 1.99662 0.28
46.3434 15.64 0.3779 1.95924 0.11
47.2405 408.78 0.1574 1.9241 2.92
47.6335 1624.7 0.126 1.90914 11.61
48.63 1636.52 0.126 1.87233 11.7
50.4605 43.77 0.2519 1.80862 0.31
51.1602 28.46 0.2204 1.78552 0.2
54.6802 8.91 0.2519 1.67861 0.06
55.8589 26.51 0.1889 1.64595 0.19
56.7416 198.34 0.1889 1.62243 1.42
57.5681 472.53 0.2519 1.60108 3.38
58.2579 96.92 0.126 1.58376 0.69
60.8199 346.78 0.126 1.52304 2.48
61.5749 144.71 0.1889 1.50616 1.03
63.177 128.44 0.126 1.47177 0.92
64.7825 351.9 0.126 1.43913 2.51
65.7202 215.62 0.1574 1.42085 1.54
67.6068 9.3 0.3779 1.38572 0.07
69.3146 77.38 0.126 1.35569 0.55
70.3454 85.64 0.1574 1.33833 0.61
72.2314 15.99 0.1889 1.30796 0.11
73.0146 148.08 0.126 1.29586 1.06



73.8133 38.39 0.1536 1.28273 0.27
 

DC 124 1261’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

8.9056 307.26 0.126 9.92989 2.45
11.867 28.09 0.1889 7.45777 0.22
13.0795 34.01 0.1889 6.76901 0.27
14.731 183.56 0.1889 6.01363 1.46
15.5321 253.16 0.126 5.70523 2.02
16.4553 607.24 0.126 5.38716 4.84
17.8023 144.57 0.1889 4.98245 1.15
19.2586 49.38 0.1889 4.60886 0.39
19.8568 430.69 0.126 4.47133 3.43
20.9114 3383.82 0.1889 4.24817 26.98
21.9044 118.98 0.126 4.05778 0.95
23.1558 53.5 0.1574 3.84124 0.43
24.4621 158.24 0.1574 3.63899 1.26
25.3828 91.61 0.1889 3.50905 0.73
25.8877 72.83 0.1889 3.44174 0.58
26.7119 12541.81 0.126 3.33739 100
28.1468 316.96 0.126 3.17043 2.53
28.3273 323.28 0.126 3.15064 2.58
29.527 542.47 0.1574 3.0253 4.33
29.9703 155.45 0.126 2.98155 1.24
30.617 313.82 0.126 2.92003 2.5
30.9981 476.66 0.2204 2.88501 3.8
32.2407 46.61 0.1889 2.77659 0.37
32.8868 408.52 0.126 2.72351 3.26
33.3568 133.28 0.126 2.68619 1.06
34.6139 143.68 0.126 2.59146 1.15
35.1101 275.1 0.126 2.55597 2.19
36.1161 113.5 0.126 2.48705 0.91
36.5942 1157.8 0.126 2.45565 9.23
37.5833 98.62 0.1574 2.39327 0.79
38.1958 46.41 0.126 2.35628 0.37
39.5118 743.18 0.1889 2.28079 5.93
40.3304 493.15 0.126 2.23636 3.93
41.1935 214.21 0.1574 2.19148 1.71
41.7249 48.88 0.126 2.16479 0.39
42.4829 797.55 0.1574 2.1279 6.36
43.3326 50.99 0.1889 2.08813 0.41



44.9649 92.77 0.126 2.01605 0.74
45.8232 463.14 0.126 1.98026 3.69
47.1855 72.9 0.2519 1.92622 0.58
47.6346 65.34 0.1889 1.9091 0.52
48.6103 83.48 0.1574 1.87304 0.67
49.1598 84.28 0.126 1.85339 0.67
50.2208 935.09 0.1889 1.81669 7.46
51.2006 77.99 0.1889 1.7842 0.62
51.9062 19.84 0.2519 1.7616 0.16
53.0139 18.33 0.1889 1.72737 0.15
53.7552 44.66 0.1889 1.70529 0.36
54.0961 58.12 0.1889 1.69535 0.46
54.9471 359.07 0.2519 1.67108 2.86
55.4133 154.47 0.126 1.65812 1.23
55.8967 124.12 0.1889 1.64493 0.99
56.3071 133.04 0.1889 1.63391 1.06
57.6639 48.48 0.1889 1.59865 0.39
58.5987 42.29 0.3149 1.57536 0.34
60.0215 704.47 0.1889 1.54137 5.62
62.0133 126.49 0.4408 1.49656 1.01
64.1161 114.13 0.1889 1.45246 0.91
65.8173 48.04 0.1889 1.41899 0.38
67.7551 494.86 0.126 1.38304 3.95
68.2654 502.11 0.3149 1.37395 4
70.405 35.81 0.3779 1.33735 0.29
73.4952 149.54 0.2304 1.2875 1.19

 

DC 213 1263’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

5.8017 331.06 0.3779 15.23361 2.82
8.7756 516.56 0.0472 10.07671 4.4
12.4361 63.34 0.1889 7.11771 0.54
17.6248 53.13 0.0945 5.03222 0.45
19.8602 55.17 0.1889 4.47059 0.47
20.9426 55.28 0.126 4.24191 0.47
23.1461 964.12 0.0354 3.84282 8.21
25.0439 31.7 0.2519 3.55576 0.27
26.4337 217.49 0.0551 3.37188 1.85
26.7096 208.36 0.1102 3.33767 1.78
27.6371 19.15 0.1889 3.22773 0.16
29.4997 11738.69 0.0576 3.02553 100



29.5894 5431.01 0.0336 3.02406 46.27
30.9544 352.99 0.1536 2.88658 3.01
31.5512 243.74 0.0576 2.83333 2.08
34.3341 33.94 0.2304 2.60978 0.29
36.0713 1231.69 0.0768 2.48798 10.49
36.1574 743.7 0.0672 2.48841 6.34
37.4057 25.82 0.2304 2.40223 0.22
39.5135 1703.24 0.0768 2.27881 14.51
39.6219 912.17 0.0576 2.27847 7.77
41.1836 74.25 0.1152 2.19017 0.63
43.2669 1475.7 0.0288 2.08941 12.57
43.3843 807.28 0.0672 2.08403 6.88
44.7594 54.44 0.1152 2.02315 0.46
47.2357 452.82 0.0672 1.9227 3.86
47.3504 336.06 0.0576 1.92307 2.86
47.6186 1509.02 0.0384 1.90813 12.86
47.7535 874.83 0.0768 1.90305 7.45
48.6174 1581.76 0.096 1.87123 13.47
48.7681 830.58 0.0672 1.87044 7.08
50.4307 41.61 0.4608 1.80812 0.35
51.1699 46.96 0.3072 1.78373 0.4
54.707 26.37 0.3072 1.67646 0.22
56.681 250.83 0.0576 1.62267 2.14
56.8469 136.8 0.0576 1.62235 1.17
57.5338 630.24 0.0768 1.60063 5.37
57.6842 334.16 0.0768 1.60078 2.85
58.2117 82.61 0.0576 1.5836 0.7
59.9537 33.46 0.384 1.54168 0.29
60.7951 415.37 0.0672 1.52234 3.54
60.9677 250.46 0.0576 1.52221 2.13
61.1281 211.98 0.0768 1.51484 1.81
61.4977 165.03 0.096 1.50662 1.41
63.1752 125.63 0.1152 1.47059 1.07
64.7784 393.24 0.0384 1.43802 3.35
64.997 190.57 0.1152 1.43371 1.62
65.7333 223.26 0.0864 1.41942 1.9
65.9554 125.63 0.1152 1.41518 1.07
67.4439 11.46 0.4608 1.38752 0.1
68.4207 15.48 0.4608 1.37007 0.13
69.3264 71.19 0.1152 1.35437 0.61
70.3658 118.19 0.096 1.33689 1.01
73.054 148.34 0.1344 1.29418 1.26
73.2598 86.93 0.1152 1.29426 0.74



73.8034 41.2 0.1536 1.28288 0.35

DC 213 1281’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

8.8634 250.22 0.2204 9.97706 1.31
17.7653 70.45 0.1889 4.99274 0.37
19.8124 303.41 0.1102 4.48127 1.59
20.894 4645.62 0.0672 4.24814 24.33
20.9607 1949.12 0.0288 4.24529 10.21
24.0653 158.76 0.1152 3.69503 0.83
25.3512 65.26 0.1152 3.51044 0.34
25.9073 75.62 0.2304 3.43634 0.4
26.6763 19097.4 0.0768 3.33899 100
26.7503 8617.29 0.048 3.3382 45.12
29.1234 53.12 0.384 3.06377 0.28
30.9259 1059.5 0.1728 2.88918 5.55
33.2 73.61 0.3072 2.69629 0.39
35.1173 269.75 0.2688 2.55335 1.41
36.5606 1368.34 0.0864 2.45579 7.17
36.655 788.34 0.0672 2.45577 4.13
37.3454 165.38 0.1536 2.40597 0.87
39.4789 1011.53 0.0864 2.28072 5.3
39.5942 544.78 0.0384 2.28 2.85
40.3125 583.43 0.0768 2.23546 3.06
41.1601 269.54 0.1344 2.19136 1.41
42.4688 883.35 0.0768 2.12682 4.63
42.5877 473.32 0.0672 2.12642 2.48
43.8099 24.77 0.4608 2.06477 0.13
44.9541 159.27 0.2688 2.01484 0.83
45.8016 530.03 0.096 1.97951 2.78
45.935 272.48 0.0576 1.97897 1.43
50.1475 1834.33 0.096 1.81767 9.61
50.2886 979.88 0.0576 1.8174 5.13
51.1029 143.8 0.2304 1.7859 0.75
54.8661 466.38 0.096 1.67198 2.44
55.0399 268.38 0.0768 1.67125 1.41
55.3412 230.09 0.0768 1.65874 1.2
57.264 29.12 0.2304 1.60753 0.15
58.8821 26.57 0.4608 1.56715 0.14
59.9563 1178.9 0.0576 1.54162 6.17
60.1281 595.48 0.096 1.53762 3.12



61.9921 107.82 0.2304 1.49579 0.56
63.4287 47.37 0.3072 1.46532 0.25
64.0244 197.42 0.0768 1.45312 1.03
65.7589 51.35 0.2304 1.41893 0.27
67.7328 658.87 0.0864 1.3823 3.45
67.9216 396.66 0.0768 1.38235 2.08
68.1268 873.3 0.096 1.37526 4.57
68.3266 820.98 0.1056 1.37173 4.3
70.4573 24.08 0.6144 1.33538 0.13
73.4806 208.1 0.1344 1.28772 1.09
73.6884 121.27 0.1152 1.28779 0.63
75.6293 270.7 0.1344 1.25638 1.42

 

DC 215 1316’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

7.9324 93.74 0.5038 11.14593 0.58
8.9348 261.34 0.0945 9.89757 1.63
11.9214 38.62 0.1889 7.42381 0.24
14.7749 255.75 0.0236 5.99584 1.59
15.5579 260.43 0.063 5.6958 1.62
16.1625 131.95 0.063 5.48408 0.82
16.4947 722.02 0.0354 5.37438 4.5
17.8655 155.1 0.2519 4.96497 0.97
19.2677 49.93 0.0945 4.60671 0.31
19.8785 443.8 0.126 4.46651 2.77
20.9495 5465.61 0.0672 4.23702 34.05
20.9998 2484.69 0.0288 4.23749 15.48
21.9337 97.99 0.096 4.04906 0.61
24.1035 159.7 0.1152 3.68926 1
24.7306 115.62 0.1152 3.59711 0.72
25.3876 177.25 0.1152 3.50549 1.1
25.8877 146.46 0.192 3.4389 0.91
26.7209 16049.36 0.0624 3.33353 100
26.7947 7118 0.024 3.33278 44.35
28.1376 334.15 0.0576 3.16882 2.08
29.329 274.84 0.0576 3.04276 1.71
29.509 283.08 0.0576 3.0246 1.76
29.9704 120.99 0.2304 2.97908 0.75
30.2911 227.3 0.0384 2.94827 1.42
30.6268 322.54 0.0384 2.91671 2.01
31.0124 714.04 0.1728 2.88132 4.45



32.2746 40.83 0.2304 2.77146 0.25
32.9022 234.95 0.0672 2.72001 1.46
33.2994 228.46 0.0576 2.68847 1.42
34.6308 126.46 0.1536 2.5881 0.79
35.132 279.78 0.2688 2.55231 1.74
36.6049 1331.13 0.0864 2.45293 8.29
36.7079 699.9 0.0576 2.45236 4.36
37.4099 110.4 0.3072 2.40197 0.69
39.53 949.95 0.0624 2.27789 5.92
39.6433 460.74 0.0384 2.27729 2.87
39.9205 57.18 0.0576 2.2565 0.36
40.3414 548.72 0.0864 2.23393 3.42
40.4751 282.68 0.0672 2.23239 1.76
41.2098 228.42 0.0768 2.18883 1.42
42.5098 1115.94 0.0864 2.12486 6.95
42.6254 574.22 0.048 2.12463 3.58
43.2535 137.62 0.048 2.09003 0.86
44.9929 123.31 0.1536 2.01319 0.77
45.8542 539.19 0.0768 1.97736 3.36
45.9761 274.3 0.0768 1.9773 1.71
47.5906 56.02 0.192 1.90918 0.35
48.1273 11.46 0.2304 1.88914 0.07
48.5915 57.3 0.0576 1.87217 0.36
49.2075 40.8 0.2304 1.85017 0.25
50.1934 1554.52 0.1056 1.81611 9.69
50.34 761.58 0.0768 1.81567 4.75
51.158 96.57 0.3072 1.78411 0.6
51.9476 55.71 0.192 1.75883 0.35
53.1187 18.29 0.384 1.72278 0.11
54.2174 64.43 0.2304 1.69044 0.4
54.9171 502.29 0.0864 1.67054 3.13
55.0736 296.85 0.0768 1.6703 1.85
55.3824 211.46 0.096 1.6576 1.32
56.5315 46.04 0.6144 1.62661 0.29
57.3047 33.87 0.2304 1.60648 0.21
58.7505 22.15 0.4608 1.57035 0.14
60.0089 1085.91 0.096 1.54039 6.77
60.1471 600.74 0.0576 1.541 3.74
62.0954 141.22 0.2304 1.49355 0.88
63.6146 38.22 0.4608 1.46149 0.24
64.0671 143.69 0.1152 1.45225 0.9
64.7538 61.92 0.0768 1.4385 0.39
65.7991 52.71 0.1152 1.41816 0.33



67.7678 551.49 0.1152 1.38167 3.44
67.9872 332.18 0.0768 1.38117 2.07
68.201 696.46 0.1152 1.37395 4.34
68.3496 734.53 0.1152 1.37132 4.58
70.3677 32.3 0.4608 1.33686 0.2
73.5268 175.22 0.1152 1.28702 1.09
73.7408 83.53 0.1152 1.28701 0.52
75.6639 289.95 0.1344 1.25589 1.81

 

DC 215 1569’ 
Pos. 

[ 2Th.]
Height 
[cts]

FWHM 
[ 2Th.]

d-spacing 
[Å] 

Rel. Int. 
[%]

8.962 261.13 0.1574 9.86754 2.53
10.0306 243.34 0.0787 8.81862 2.35
13.9182 156.82 0.063 6.36294 1.52
15.7163 87.18 0.126 5.63877 0.84
17.2841 114.7 0.0945 5.13066 1.11
17.5307 324.56 0.063 5.05904 3.14
19.2871 210.87 0.0787 4.60211 2.04
19.9299 281.62 0.1102 4.4551 2.72
20.9669 4566.64 0.0384 4.23354 44.16
21.0309 1951.55 0.0336 4.23128 18.87
22.1488 46.06 0.1152 4.01023 0.45
22.5963 76.18 0.1536 3.93182 0.74
24.1399 202.97 0.096 3.68378 1.96
24.9647 245.18 0.1152 3.5639 2.37
25.0596 267.69 0.1152 3.55063 2.59
25.4178 69.85 0.1152 3.50139 0.68
25.9764 110.26 0.1152 3.42736 1.07
26.7523 10341.75 0.0624 3.32969 100
26.817 5459.83 0.0336 3.33005 52.79
27.8972 1062.87 0.0672 3.19558 10.28
29.113 684.02 0.1536 3.06483 6.61
30.1917 101.38 0.192 2.95774 0.98
31.0227 2327.94 0.0864 2.88039 22.51
31.0708 2490.78 0.0576 2.88318 24.08
31.8695 408.46 0.0576 2.80575 3.95
32.3425 569.74 0.1536 2.76579 5.51
32.7734 262.79 0.1152 2.73041 2.54
33.6565 177.8 0.1152 2.66075 1.72
34.5272 105.72 0.1152 2.59563 1.02
34.8126 214.9 0.0768 2.57499 2.08



35.413 202.36 0.2688 2.5327 1.96
36.6356 1103.17 0.096 2.45094 10.67
36.7413 588.83 0.048 2.4502 5.69
37.4675 203.66 0.1728 2.39841 1.97
38.6772 56.16 0.192 2.32613 0.54
39.5634 502.2 0.0576 2.27605 4.86
39.6697 257.6 0.0576 2.27583 2.49
40.3725 403.63 0.0576 2.23228 3.9
40.4943 230.38 0.0576 2.23137 2.23
41.2262 627.06 0.1152 2.18801 6.06
41.7273 168.3 0.1344 2.16288 1.63
42.5404 830.1 0.0768 2.1234 8.03
42.6511 454.53 0.0576 2.12341 4.4
43.8865 121.96 0.0768 2.06134 1.18
44.4563 43.57 0.2304 2.03623 0.42
45.0294 334.45 0.1152 2.01164 3.23
45.8665 354.24 0.096 1.97686 3.43
48.1079 159.09 0.096 1.88986 1.54
48.7443 87.95 0.192 1.86666 0.85
49.3628 80.97 0.1536 1.84471 0.78
50.2265 1029.74 0.0864 1.81499 9.96
50.3481 615.19 0.0576 1.81539 5.95
50.6282 338.73 0.2304 1.80153 3.28
51.1739 367.75 0.1536 1.78359 3.56
53.2532 115.44 0.1536 1.71875 1.12
54.1499 114.37 0.192 1.69239 1.11
54.9519 313.2 0.0768 1.66957 3.03
55.1037 193.84 0.0768 1.66947 1.87
55.3941 134.7 0.0576 1.65728 1.3
56.3364 46.88 0.6144 1.63178 0.45
57.4608 80.47 0.0768 1.60249 0.78
58.445 54.79 0.2304 1.57783 0.53
58.9817 76.12 0.1152 1.56474 0.74
60.0352 866.19 0.0576 1.53978 8.38
60.1961 463.93 0.096 1.53605 4.49
62.0658 100.04 0.4608 1.49419 0.97
63.5159 101.34 0.1536 1.46352 0.98
64.1092 110.73 0.1344 1.4514 1.07
65.1931 71.14 0.384 1.42987 0.69
65.8375 54.43 0.2304 1.41743 0.53
66.4664 47.68 0.2304 1.40553 0.46
67.4618 134.92 0.1536 1.38719 1.3
67.8026 424.78 0.1152 1.38105 4.11



67.9854 257.09 0.0576 1.3812 2.49
68.2017 488.34 0.096 1.37394 4.72
68.3984 533.78 0.0672 1.37046 5.16
70.5414 72.22 0.3072 1.33399 0.7
73.0766 39.55 0.3072 1.29384 0.38
73.5213 117.26 0.0768 1.28711 1.13
74.7502 30.19 0.2304 1.26896 0.29
75.6796 172.59 0.1536 1.25567 1.67
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APPENDIX G

LA-ICP-MS DATA

Trace element relative counts and concentrations were determined by using laser 

ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the USGS 

Denver laboratory.  A Photon Machines Analyte G2 LA system (193 nm, 4 ns Excimer 

laser) was coupled to a PerkinElmer DRC-e Inductively Coupled Plasma Mass 

Spectrometer.  Typical operating conditions for these analyses are listed in Table 5.   

Pyrite grains were analyzed by performing 5 micrometer spot analyses and line 

scans.  Appendix G1 contains the plotted data for specific elements of interest collected 

from line scans and mapping of pyrite crystals.  Please contact the author or committee 

chair to obtain the raw line scan data for all elements. Appendix G2 lists spot 

concentrations calculations conducted by using the protocol of Longerich et al. (1996), 

and 57Fe was used as the internal standard.  Spot data were collected to measure elements 

that were below EPMA method detection limit (MDL).  
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APPENDIX H

LA-ICP-MS AND EPMA POINT LOCATIONS

 This appendix is composed of photomicrographs that display the crystals that

EPMA and LA-ICP-MS data were collected from.  In the top left corner of each 

photomicrograph, the drill hole (ie. CHUD 038), footage (ie. 453’), and area within the 

sample (ie. b2) are typed.  The location of each analytical spot is shown as a small solid 

black or white circle for EPMA data and a larger black circle with a white filling for each 

LA-ICP-MS spot.  The name of each analytical spot is labeled adjacent to the circle.  The 

solid long white and black lines indicate the locations of LA-ICP-MS line scans.  The 

hollow large rectangles indicate the locations of LA-ICP-MS pyrite maps.  All data 

collected from points, scans, and maps are reported in Appendix E (EPMA) and G (LA-

ICP-MS).   
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