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ABSTRACT 
 

Molecular Organic Geochemistry of the Oil and Source Rock in Railroad Valley 
Eastern Great Basin, Nevada, United States 

 
by 
 

LaOde Ahdyar 
 

Dr. Andrew Hanson, Examination Committee Chair 
Associate Professor of Geology 

University of Nevada, Las Vegas 
  

A comprehensive geochemical study of oils from Railroad Valley, Nevada and 

two candidate source rock intervals from the nearby Egan Range, was conducted in order 

to establish oil-oil and oil-source rock correlations. Analyses consisted of total organic 

carbon, Rock-Eval pyrolysis, and vitrinite reflectance for source rock samples, as well as 

biomarker, diamondoids, and stable carbon isotope analyses on source rock extracts and 

oil samples. 

Total organic carbon analyses showed high organic content in the Mississippian 

Chainman Shale. However, outcrop samples of the Paleogene Sheep Pass Formation 

Member B are organically lean. Strata in both of these units are immature to mature, and 

tend to be oil-gas prone.  

Biomarker analysis of oil samples revealed that two different oil groups exist. 

Group 1 oils (Trap Spring and Grant Canyon oils) appear to originate from marine shale 

source rocks that were deposited under normal marine salinity and dysoxic conditions, as 

shown by high Pr/Ph ratios, low homohopane index, and high diasterane/steranes ratios. 

In addition, age related biomarker parameters showed this oil group to be derived from a 

source rock that is older than Cretaceous. Group 1 oil correlates with Chainman Shale 
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source rock extracts. Group 2 oils (Eagle Spring, Kate Spring, and Ghost Ranch oils) are 

lacustrine-derived and have low Pr/Ph, high gammacerane, good preservation of 

homohopane, and low diasterane/sterane ratios. High gammacerane and high C24 

tetracyclic suggest that the oil in this group was derived from a source rock deposited 

under hypersaline conditions. The abundance of oleonane and dinosterane provides good 

evidence that oils belonging to this group are derived from source rocks younger than the 

Cretaceous, which points to the Sheep Pass Formation Member B. My comprehensive 

geochemical study of oil also suggests that the oils from Kate Spring and Ghost Ranch 

are different from oils from Eagle Spring but they are still closely related. I hypothesize 

that a difference in source rock facies and source rock depositional conditions in the 

lacustrine system serves as a key control that resulted in those differences.     

Stable carbon isotope data clearly showed two different groups, which supports 

my biomarker data. Group 1 oils have low δ13CSAT and high δ13CAROM, which is 

indicative of a marine source rock. On the other hand, Group 2 oils appear to have high 

δ13CSAT and high δ13CAROM, which suggests a lacustrine-derived oil. Additionally, 

diamondoid analyses showed most of my oil and source rock extracts have low 

abundances of diamondoids, which suggest that intense oil cracking has not yet occurred. 

The results of this research shows that two different intervals (the Chainman 

Shale and the Sheep Pass Formation Member B) serve as effective source rocks in this 

basin. Specifically, oil fields in the western and southern part of the basin (Trap Spring 

and Grant Canyon) were charged by the Chainman Shale source rock, whereas the Sheep 

Pass Formation member B was the main contributor of the reservoired oils in the eastern 

part of the basin (Eagle Spring, Kate Spring, and Ghost Ranch).  This new understanding 
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of effective source rock(s) in this basin will significantly improve the hydrocarbon play 

concept as well as open the new perspective of hydrocarbon exploration within the Basin 

and Range area.  
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CHAPTER 1 

INTRODUCTION 

Railroad Valley (RRV), the most prolific oil-producing basin in Nevada, is 

situated in the center of the Basin and Range province, in Nye County, east-central 

Nevada (Figure 1 and 2). Petroleum exploration in RRV began in 1950, and first met 

success with the discovery of the Eagle Spring field by Shell Oil Company (Bortz and 

Murray, 1979). Since 1954, numerous wells (Figure 3) have been drilled with varying 

degrees of success, and total production to date is approximately 44 million barrels of oil 

(MMBO). The oil in RRV is primarily trapped in Paleogene volcanic units, i.e., the 

Pritchards Station and Garret Ranch Fm (Duey, 1979; French and Freeman, 1979; Dolly, 

1979), Paleogene lacustrine limestone of the Sheep Pass Fm (Bortz and Murray, 1979), 

and Paleozoic carbonate reservoirs, such as the Devonian Simonson and Guilmette 

Formations (Bortz and Murray, 1979; Garside et al., 1988). Traps are a combination of 

structural and stratigraphic traps (Foster, 1979; Dolly, 1979). The reservoir top seals 

include Neogene basin fill overlying an unconformity (Bortz and Murray, 1979; Dolly, 

1978; Walker et al., 1992) and alteration zones within the Paleogene volcanic units. 

Although some aspects of the petroleum system are fairly well constrained, other 

components and processes, such as potential source rock, are loosely constrained.  

Several researchers (Bortz and Murray, 1979; Duey, 1979; French, 1983; Poole 

and Claypool, 1984; Conlan, 1995) have suggested that there may be more than one 

source rock that generated oil in this region. They have speculated on the origin of oils in 

RRV but no consensus occurs amongst them, and no detailed and comprehensive 

molecular organic geochemistry studies have been published on oils in RRV or on the 
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most likely source rock intervals, the Mississippian Chainman Shale and the Paleogene 

Sheep Pass Formation. Consequently, the source of oil in this basin remains 

controversial.  

To address the problem regarding the origin of the oil, I performed 

comprehensive geochemical analyses including total organic carbon, Rock-Eval 

pyrolysis, vitrinite reflectance, thermal alteration index analyses, and detailed modern 

molecular organic geochemistry as well as stable carbon isotope and diamondoids 

analyses on nineteen oil samples from Railroad Valley and on source rock samples from 

two stratigraphic units (the Mississippian Chainman Shale and Paleogene Sheep Pass 

Formation Member B). As a result, I successfully developed oil-oil and oil-source rock 

correlation, which allowed me to determine how many oil families exist in the basin and 

correlate each of them with the presumptive source rocks (the Chainman Shale and Sheep 

Pass Formation Member B). This oil source rock correlation study using organic 

geochemistry analysis is routinely conducted in order to constrain how many oil families 

are present in a particular basin as well as to constrain which source rock generated the 

different oil families.  
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CHAPTER 2 

GEOLOGICAL FRAMEWORK 

Regional Geology 

RRV is located in the Basin and Range province, within the southwestern part of 

the eastern Great Basin physiographic province. This region is geologically complex, 

having experienced major episodes of tectonism and volcanic activity. The tectonic 

events that impacted the study area include the Antler Orogeny, Sonoma Orogeny, Sevier 

thrust faulting, synconvergent mid-crustal and upper-crustal extension within the Sevier 

hinterland, and Basin and Range extension. All of these events produced a great diversity 

of sedimentary facies (Figure 4) and major structural features. 

After the supercontinent Rodinia broke up in the late Neoproterozoic, a passive 

continental margin developed on top of the rift sequences deposited during the late 

Proterozoic - Cambrian in the western United States, which produced a thick and 

widespread carbonate succession (Levy and Christie-Blick, 1991; Dickinson, 2006). The 

region accumulated passive margin sediments until the late Devonian when the Antler 

orogeny caused east-vergent thrusting, which created a progressive eastward-migrating 

foredeep adjacent to the main frontal thrust with a forebulge and back-bulge to the east 

(Poole and Claypool, 1984). The Sonoma orogeny happened in the Permian and Triassic 

and transported the Golconda allochthon eastward and thrust rocks onto the Antler 

highland, west of the Antler orogenic belt (Silberling, 1991). The central Nevada thrust 

belt (CNTB) formed in the earlier part of the development of Cordilleran foreland fold-

thrust belt and is located in the Sevier hinterland. The CNTB is characterized by narrow 

~400 km north-south-trending compressional structures whose maximum total shortening 
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is 10 – 15 kilometers (Taylor et al., 2000). The Sevier thrust system formed during the 

late Jurassic - Eocene and consisted of northeast-trending, east-vergent large-scale thrust 

faults (DeCelles, 2004).  Widespread synconvergent mid-crustal extension occurred 

within the Sevier hinterland during the Late Cretaceous. In addition, contemporaneous 

upper-crustal synconvergent extension occurred in the Sevier Hinterland between ca 81.3 

± 3.7 Ma and 66.1 ± 5.4 Ma (Druschke et al., 2009), which created a series of normal 

fault systems and initiated the deposition of the Sheep Pass Fm. During the Cenozoic, 

large-magnitude extensional tectonism occurred in the Basin and Range province, which 

extended the crust by a factor of 2-4 and resulted in approximately 247 km net extension 

(Wernicke et al., 1988). The aforementioned paleotectonic events have greatly influenced 

petroleum generation, migration, accumulation, and preservation.  

A wide range of depositional environments (non-marine to marine) in the eastern 

Great Basin resulted in deposition of various types of sediments. Several units are 

purported source rocks and several are reservoirs where hydrocarbons have accumulated, 

as shown in Figure 4. Specifically, suggested potential source rocks include the western 

assemblage (rocks of the Roberts Mountain Allochthon, such as the Woodruff Fm and 

Slaven Chert), Pilot Shale, Joana Limestone, Chainman Shale, Ely Limestone, Newark 

Canyon Fm, Sheep Pass Fm Member B, and Elko Fm (Poole and Claypool, 1984; 

Sandberg and Poole, 1975; Gilmore, 1990; Mullarkey et al., 1991; Palmer, 1984; Anna et 

al., 2007).  

The western assemblage, which is a part of the Roberts Mountain allochthon, is a 

group of Cambrian to Devonian base-of-slope to deep basin strata that consist of chert, 

shale, siltstone, limestone, and sandstone. These are the Preble, Vinini, Comus, Valmy, 
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Woodruff, and Slaven formations (Poole and Claypool, 1984). The quantity of organic 

carbon in these source rocks is excellent (based on the classification of Peters and Cassa, 

1994) with mean TOC 4.35 ± 5.13 wt %. Their kerogen type can be classified as a type 

III kerogen (gas prone) (Anna et al., 2007). In terms of maturity, these source rocks range 

from immature to overmature. Despite encouraging data, no oils are known to have been 

generated from these source rocks (Anna et al., 2007).  

The Pilot Shale unconformably overlies the thick sequence of the Cambrian-

Devonian western assemblage. The Pilot Shale was deposited in the Antler foreland basin 

during the latest Devonian – Kinderhookian time and is dominated by shale, mudstone, 

siltstone, and thin-bedded limestone (Sandberg and Poole, 1975). This formation is 

considered a poor to good source rock with TOC values of 0.2 – 1.7 wt % (Sandberg and 

Poole, 1975). The quality is poorly constrained, and the maturity is overmature with 

mean vitrinite reflectance (Ro) values of 1.37 % (Anna et al., 2007).  

The Joanna Limestone is dominated by carbonate with minor siliciclastic material 

and was deposited on top of the Pilot Shale during the early Mississippian (Gutschick et 

al., 1980). This unit is a good source rock with a mean TOC value of 1.21 wt % (standard 

deviation 1.30 wt %) but it is thermally overmature with an Ro value of 2.8 % and a 

thermal alteration index (TAI) value of 3.35 (Gilmore, 1990).  

The Lower Cretaceous Newark Canyon Formation, which was deposited 

unconformably on top of Permian rocks and is a freshwater lacustrine deposit consisting 

of limestone, shale, siltstone, sandstone and conglomerate (Nolan et al., 1956). Based on 

reported values of TOC ranging from 2.5 to 8 wt % (Anna et al., 2007) this interval has 

the potential to be a very good to excellent source rock. This interval has type II/III 
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kerogen (mixed oil and gas prone) and is thermally mature with a Tmax value of 440o C 

(Mullarkey et al., 1991). However, this interval is thin in the subsurface due to 

attenuation faulting and subsequent erosion during the Neogene (Nolan et al., 1956).  

The Elko Formation consists of Late Eocene to early Oligocene lacustrine strata 

and is dominated by black shale, thin-bedded limestone, chert, tuffaceous material, and 

conglomerate (Smith and Ketner, 1976).  This interval has TOC values ranging from 1.58 

– 3.4 wt % and kerogen type I and II, but it is still immature (Palmer, 1984).  

Previous research (Claypool et al., 1979; French, 1983; Poole and Claypool, 

1984; Conlan, 1995) has shown that two other source rock intervals, the Mississippian 

Chainman Shale and Paleogene Sheep Pass Fm Member B, appear to be very good - 

excellent source rocks in this region and were thus the main focus of this study.  

 The Mississippian Chainman Shale was deposited during the Antler orogeny and 

is widely considered to be a very good to excellent source rock in the eastern Great Basin 

because of its thickness, widespread distribution, its organic-rich content, and maturity 

(Poole and Claypool, 1984; French, 1995). The Chainman Shale was deposited after the 

Pilot Shale and Joanna Limestone in the Antler foreland basin and before the 

Pennsylvanian Ely Limestone. The approximately 1,000 m thick Chainman Shale 

consists of black to dark-gray organic-rich shale, deep flysch deposits, and mudstone-

siltstone farther to the west (Poole and Claypool, 1984). Initially, the Chainman Shale 

was deposited in a deep marine setting, but as the foredeep gradually filled, the 

depositional environment changed to a shallow marine environment as indicated by 

cross-bedded sandstone in the upper part of the Chainman. This facies change influenced 

the quality and type of organic matter. French (1995) revealed that the lower member of 
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the Chainman Shale has more generative potential than the upper member, based on 

geochemical logs at the Illipah-1 well. The Chainman Shale contains a mixture of 

sapropelic and terrestrial kerogen, and TOC ranges from 0.1 to 10 wt % (Poole and 

Claypool, 1984), is thermally mature and can be categorized as a type II (oil-prone) 

source rock (Poole and Claypool, 1984). 

 The Sheep Pass Fm is also known as a fair to excellent source rock, which is 

generally assumed to serve as a main source rock in RRV (French, 1983; Poole and 

Claypool, 1984). The Sheep Pass Fm was deposited from the Late Cretaceous to Eocene 

(81.3 ± 3.7 Ma and 66.1 ± 5.4 Ma) in extensional basins within the Sevier hinterland 

(Druschke et al., 2009). The Sheep Pass Fm contains facies deposited in various 

depositional environments (alluvial fan, lacustrine, fluvial) (Winfrey, 1960), 

consequently the lithologies vary (sandstone, limestone, shale, conglomerate) and the 

facies change both laterally and vertically (Newman, 1979; Druschke et al., 2009). The 

Sheep Pass Fm consists of six members and has a maximum thickness in excess of 1000 

m and a minimum thickness of 121 m (Winfrey, 1960). A basal conglomerate was 

deposited initially and is named Sheep Pass Member A. Stratigraphically above Member 

A is Member B, which contains freshwater lacustrine mud-supported carbonate. Member 

C is dominated by thin alluvial conglomerates, fluvial sandstone and claystone, and 

lacustrine carbonate. Member D is mainly a product of a saline lacustrine depositional 

environment; this member consists of a thin sequence of dolomitic, chert, and mud-

supported carbonate. Members E and F are dominated by mud-supported carbonate and 

calcareous claystone. Among the different members within the Sheep Pass Fm, only 

Member B contains freshwater lacustrine deposits of mud-supported carbonate (Winfrey, 
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1960) and is known as a fair to excellent source rock. Total organic carbon of Sheep Pass 

Fm Member B ranges from 0.6 to 7.4 wt % (Poole and Claypool, 1984). Thermal 

maturity data are inconsistent; in some places it is in the early mature stage, but in other 

places it is overmature (Poole et al., 1983). The Sheep Pass Fm is widely accepted as 

having type III kerogen, although Claypool and others (1979) suggested it contains a 

mixture of oil-prone algal and sapropelic type II kerogen.  

 

Previous Work 

Oil-source rock correlation studies in RRV have been conducted by several 

researchers (Picard, 1960; Bortz and Murray, 1979; Claypool et al., 1979; Duey, 1979; 

French, 1983; Poole and Claypool, 1984; and Conlan, 1995). Previous geochemical 

analyses of oils from the five oil fields in RRV, including the Eagle Spring, Trap Spring, 

Bacon Flat, Grant Canyon, and Currant fields suggested that oils were generated from the 

Chainman Shale, the Sheep Pass Formation Member B, or a mixture of those two source 

rocks (Picard, 1960; Bortz and Murray, 1979; Claypool et al., 1979; Duey, 1979; French, 

1983; Poole and Claypool, 1984; and Conlan, 1995). Surprisingly, researchers have 

reached different conclusions regarding oil-source rock correlations in RRV. Most 

notably, Picard (1960) suggested that oil in the Eagle Spring field was derived from the 

Sheep Pass Fm Member B while others suggest it was generated by a mixture of 

Paleogene Sheep Pass Fm Member B and the Mississippian Chainman Shale (Bortz and 

Murray, 1979; Duey, 1979; French, 1983). 
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CHAPTER 3 

METHODS 

Fieldwork 

 Fieldwork consisted of collecting rock samples and oil samples. A total of 15 rock 

samples were collected from several outcrops in the Egan Range, east of Railroad Valley 

(see Figure 2). These consist of samples from the Sheep Pass Member B (n = 11) and the 

Chainman Shale (n = 4) (Figure 6 and 7). I sampled from different stratigraphic intervals 

because I knew that the quality of rocks might be different from one location to another. 

For example, I collected samples both from the lower and upper members of the 

Chainman shale, because they had different characteristics (French, 1995). Additionally, 

the effect of weathering of the source rock samples collected from outcrop was a concern. 

Therefore, to reduce the weathering effect I dug into the selected outcrop and collected 

the rock samples from the freshest layer possible.  

 Whole crude oil samples from Railroad Valley were collected from the Trap Spring, 

Eagle Spring, Kate Spring, Ghost Ranch, and Grant Canyon oil fields (see Figure 3). 

Sample vials with a Teflon cap were used to store the oil samples collected from 

wellhead and battery tank. In addition, David Zinniker of Stanford University donated oil 

samples from Eagle Spring-1, Grant Canyon-6, and Tomaro Ranch (oilfield outside 

RRV). All the oil samples are listed in Table 1. 
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Laboratory Work 

Source rock screening 

 Source rock screening was performed on all rock samples in order to assess their 

organic richness, quality, and maturity. Total organic carbon (TOC) measurements and 

Rock-Eval pyrolysis of all samples were performed at Weatherford Laboratories, while 

four selected samples from those two formations were sent to Egsploration Company for 

vitrinite reflectance analysis and thermal alteration analysis. Based on the results of the 

initial screening, the best source rocks were selected for further geochemical analyses, 

including molecular organic geochemistry analysis (biomarker analysis) and stable 

carbon isotope analysis. 

Molecular organic geochemistry  

 A total of 16 oil samples and two source rocks extracts from the Chainman Shale 

were analyzed in this study. Geochemical analyses consisted of normal alkane analysis 

using gas chromatogaphy (GC), diamondoid analysis on gas chromatography–mass 

selective detector (GC-MSD), and biomarker analysis using gas chromatography–mass 

selective detector (GC-MSD) and metastable reaction monitoring GC–mass spectrometry 

(MRM-GCMS). In addition, stable carbon isotope analysis was conducted in order to 

support geochemical results. All of these analyses were done at the Molecular Organic 

Geochemistry Laboratory at Stanford University except for the stable isotopic analyses, 

which were performed in the Stable Isotope Biogeochemistry Laboratory at Stanford 

University. 

 Prior to the molecular geochemical analysis, the best source rocks were crushed 

using mortar and pestle, and a mechanized crushing tool. Approximately ninety grams of 
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rock powder from each sample was used. Soluble bitumen within those samples was 

extracted using a mixture of methanol (50%) and dichloromethane (50%). Whole oil 

samples and source rock extracts were diluted with solvent (pentane) to 1.5 ml and were 

analyzed using a Hewlett-Packard 5890 series Gas Chromatograph (GC) equipped with 

Flame Ion Detector (FID). Approximately 1 µl of each sample was auto-injected to the 60 

m DB-1 long column GC with an internal diameter of 0.25 mm, 25 micron phase 

thickness, and hydrogen carrier gas. The initial temperature was 350 C for 0.5 minutes; 

the temperature then rose to 3200C at 30 C/min and was held at 3200C for 20 minutes. 

One sample (sample LA-04) contained high molecular weight n-alkanes, so it was run an 

extended period with a final temperature of 3300C, which was held for 40 minutes while 

other parameters were the same.  

 Another portion of each whole oil sample was separated into saturate and aromatic 

fractions prior to biomarker analysis. The saturate/aromatic separation was done using 

glass columns filled with silica gel. Hexane flush was used to collect the saturate fraction 

and subsequently the remaining materials on the column were flushed with 

dichloromethane to obtain the aromatic fractions. Afterwards, the n-alkanes within the 

saturate fractions were removed using molecular sieves (high Si/Al ZSM-5 

zeolite/“silicalite”, pore size of 6 Å) with isooctane as a solvent. Silicalited saturate 

fractions and aromatic fractions were analyzed for biomarkers using a selected ion 

monitoring gas chromatography–mass selective detector (SIM GC-MSD). For silicalited 

saturate fractions, m/z 191, 217, 238, 218, 259, 177, 123, 205, and 231 were monitored, 

and m/z 253, 231, 245, 192, and 191 were monitored for the aromatic fractions. I utilized 

Hewlett-Packard 5973 series GC-MSD with a 60 m DB-1 long column, 0.25 mm i.d., 25-
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micron phase thickness, and helium carrier gas. The GC-MSD program started at 1400 C 

for 1 minute, then increased 20C/min to 3200C and stayed at 3200C for 20 minutes. In 

addition, silicalited saturate and aromatic fractions were further analyzed using 

metastable reaction monitoring (MRM-GCMS) Hewlett-Packard 5890 Series II 

Autospec. 

 Finally, one portion of each oil sample and source rock extract was allocated for 

diamondoid analysis. Diamondoids is a small, thermally stable, cage-like hydrocarbon, 

form as a result of carbonium ion arrangements of suitable organic precursors on a clay 

mineral (Peters et al., 2007). The purpose of the diamondoids analysis is to determine the 

degree of oil cracking in the oil because the high abundances of diamondoids within the 

oil samples represent the intense degree of oil cracking. In order to accurately measure 

the diamondoid concentrations, 20 µl of deuterated diamondoids internal standard (5β-

cholane) with known quantity was added to 20 mg of each oil sample and source rock 

extract. The saturate aromatic separation was performed using the same procedure 

outlined above. The saturate fractions were analyzed using a Hewlett-Packard 5890 series 

II plus gas chromatography–mass selective detector (GC-MSD) with a 60 m long DB1 

column, 0.25 mm internal diameters; the carrier gas was helium. The oven temperature 

started at 500 C for 1 minute, increased 150C/minute up to 800C, then programmed 30 

C/minute to 3200C, which was held for 15 minutes.  

Statistical analysis 

Statistical analysis was performed to help show the genetic relationship among oil 

samples in Railroad Valley and source rock extracts. The hierarchical cluster analysis 

using Ward’s minimum variance method (JMP, 1995) was the primary statistical analysis 
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that I used. Basically, I entered the values of specific biomarker parameters to statistical 

software (JMP v.8) and allowed the program to determine the similarity among samples 

based on those values. The end product of this statistical analysis is a dendrogram 

showing genetic relationships among the 19 oil samples and 2 source rock extracts.  
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

Source Rock Screening 

Results of total organic content (TOC) analysis, Rock-Eval pyrolysis, vitrinite 

reflectance (Ro), and thermal alteration index (TAI) are provided in Table 2. I classified 

the source rocks using the criteria of Peters and Cassa (1994). The results indicate that the 

Sheep Pass Formation Member B is a poor source rock and the highest TOC was 0.24 wt 

% (10SP09). On the other hand, the Chainman Shale has high TOC values ranging from 

0.79 wt % to 4.31 wt %, which classifies it as a fair to excellent source rock. 

Hydrogen Index (HI) and Oxygen Index (OI) values of the Sheep Pass Formation 

Member B plot between type II and III kerogen pathways. In contrast, Chainman Shale 

samples plot near the origin on the pseudo van Krevelen diagram (Figure 8). 

In terms of maturity, the Sheep Pass Formation Member B has a vitrinite 

reflectance value of 0.46 %, a thermal alteration index value 2 to 2+, and Tmax values 

varying from 436 0C to 487 0C. The Chainman Shale has Ro values of 0.68 % to 1.01 %, 

TAI values of 2+ to 4, and Tmax ranging from 442 0C to 455 0C.  

Based on the results of the initial source rock screening, two samples (10CH03 

and 10CH04) of organic-rich and thermally mature Mississippian Chainman Shale were 

subjected to further molecular organic geochemistry analysis. However, due to 

insufficient TOC, none of Sheep Pass Formation Member B samples were included in 

further detailed geochemistry analyses.  
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Source Rock Geochemistry Results 

Gas chromatography (GC) data were collected for two rock extracts of the 

Chainman Shale (10CH03 and 10CH04). GC traces are provided in Appendix 1. Gas 

chromatography-mass spectrometry results of these extracted whole-rock samples 

(10CH03 and 10CH04) reveal the presence of several important biomarker compounds 

including terpane and hopanes (m/z 191), steranes (m/z 217), and aromatic hydrocarbons 

(m/z 231, m/z 253, m/z 245) as shown in Appendix 2. Appendix 3 shows representative 

GCMS-MRM traces (m/z 358  217, m/z 372  217, 386  217, 400  217, 414  

217, and 412  191). Additionally, the stable carbon isotope values of saturate and 

aromatic compounds in source rock extracts are listed in Table 3. 

 

Oil Geochemistry Result 

Geochemistry analyses of all oil samples in this study (n=19) included GC, GC-

MSD, MRM-GCMS, diamondoids analysis using GC-MSD, and stable carbon isotopes 

analysis. Representative GC traces for oil samples from each field are shown in Appendix 

4. My GC-MSD analysis of oil samples generated m/z 191, m/z 217, m/z 231, m/z 253, 

and m/z 245 chromatograms. Selected traces from each field are presented in Appendix 5. 

The MRM-GCMS analyses produced the following traces: m/z 358  217, m/z 372  

217, 386  217, 400  217, 414  217, and 412  191. Representative traces from the 

GCMS-MRM results are shown in Appendix 6. All of the peak height and useful 

biomarker calculated ratios of oil and source rock samples that were derived from 

chromatograms are provided in Table 4 and 5. Finally, the stable carbon isotope and 
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diamondoids values of both saturate and aromatic compounds in oil samples are shown in 

Table 6 and 7. 

 

Discussion 

Geochemistry results of oils and source rocks reveal some important trends of 

biomarker signatures and are discussed in detail in this chapter. Most of the oil and 

source rock samples have similar GC patterns, except for LA-03 (Trap Spring), LA-09 

(Grant Canyon), and LA-12A (Kate Spring), which show a small unresolved complex 

mixture (UCM). An important piece of information from GC data is the Pr/Ph ratio. Two 

general trends of Pr/Ph ratio are present in my data set. A high Pr/Ph ratio (>1) is present 

in the Chainman Shale extracts as well as in oil samples from Trap Spring, Grant 

Canyon, and Tomaro Ranch (group 1) and a low Pr/Ph ratio (<1) appears in oil samples 

from Eagle Spring, Kate Spring, and Ghost Ranch (group 2). The n-alkane distribution in 

the n-C25 to n-C27 range for group 1 and 2 show different odd/even preference (OEP) 

ratios (see Appendix 4). Group 1 oils and the Chainman Shale extracts have high OEP 

values, whereas group 2 oils have low OEP ratios. A cross plot of Pr/Ph ratios and OEP 

values are presented in Figure 9. None of the samples show any signature of β-carotane.  

The relative abundance of a number of important peaks in the m/z 191 and m/z 

217 chromatograms suggests two different trends. High tricyclic/hopane and Ts/(Ts+Tm) 

ratios (Figure 10) as well as C29 Ts/(C29Ts+C29), diahopane/(diahopane + C30 hopane) 

and moretane/hopane ratios consistently occur in the group 1 oils and the Chainman 

Shale extracts while low ratios of those compounds are mostly present in group 2 oils. 

Furthermore, high relative abundance of C24 tetracyclic, oleanane, gammacerane, and 
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homohopane are seen in group 2 oils, while those compounds have low relative 

abundances in group 1 oils and the Chainman Shale extracts (Figure 11). Group 1 oils 

tend to have poor homohopane preservations reflected by low concentration of C30 – C35 

22S + 22R (homohopane index) and low C35/C34 homohopane ratio (Figure 12). In 

contrast, group 2 oils have high C35 homohopane index and high C35/C34 homohopane 

ratios, indicating good homohopane preservations. 

Biomarker analyses of aromatic compounds reveal different trends. Triaromatic 

dinosterane relative peak heights (m/z 245 chromatograms) are high in all group 2 oil 

samples whereas triaromatic dinosterane relative peak heights for group 1 oils and the 

Chainman Shale extracts are all very low (see Appendix 2.E and 5.E). Furthermore, 

elevated C21+C22 triaromatic steroid (TA I) and C27 triaromatic steroid from m/z 231 

chromatograms as well as C20+C21 monoaromatic steroid (MA I) ratios from m/z 253 

chromatograms consistently occur in group 1 oils, whereas the ratios are low in group 2 

(see Appendix 5.C and 5.D).  

The analysis of sterane compounds suggests two trends in the sterane data. Group 

2 oils, in contrast to group 1 oils and the Chainman Shale extracts, have high relative 

abundances of C26 21-norcholestanes, C26 24-norcholestanes, and C26 27-norcholestanes 

as shown in m/z 358 217 chromatograms (Figure 13). Most of the oils from group 2 

have a higher tetracyclic polyprenoid (TPP) ratio compared to group 1 oils and the 

Chainman Shale extracts. Moreover, group 1 oils are distinguished by high relative 

abundances of C27 and C30 diasteranes in the m/z 372  217 and m/z 414  217 

chromatograms. A cross plot of the TPP ratio versus C30 diasteranes is provided in Figure 

14. Additionally, m/z 217 and m/z 386  217 chromatograms suggest that group 1 oils 
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and the Chainman Shale extracts have higher diasteranes/steranes ratio values than group 

2 oils (see Appendix 3.B and 5.B). 

Further investigation of the biomarker signatures reveals that there is some 

variability of the biomarker trends within the group 2 oil (Eagle Spring, Ghost Ranch, 

and Kate Spring). Based on the m/z 191 chromatograms, oil samples from Eagle Spring 

have a higher C24 tetracyclic / (C24 tetracyclic + C26 tricyclic) ratio, as well as higher 

oleanane, gammacerane, and homohopane index values than those from Ghost Ranch and 

Kate Spring. The relative abundance of C28 triaromatic steroids from Eagle Spring oil 

samples are higher than oils from Ghost Ranch and Kate Spring, as indicated by m/z 231 

chromatograms. Additionally, oils from Eagle Spring, in contrast with those from Ghost 

Ranch and Kate Spring, have relative low abundances of C27 regular steranes derived 

from m/z 372  217 chromatograms. A cross plot of these parameters is provided in 

Figure 15. 

Stable carbon isotope values of saturate and aromatic fractions from oil and 

source rock samples show two trends (Figure 16), which include isotopically heavy 

values that range from -29.5 ‰ to -28.5 ‰ and light carbon isotope values from -30 ‰ to 

-30.5 ‰. 

Diamondoids analysis, which is useful to determine the degree of oil cracking, 

show that most of my oil samples have low values (0.74 ppm – 19.26 ppm) of 

methyldiamantane (Figure 17). 
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CHAPTER 5 

INTERPRETATION 

Geochemical Attributes of Source Rocks 

Source rock assessment 

Based on source rock screening (chapter 4), the geochemical characteristics of the 

Chainman Shale and the Sheep Pass Formation Member B were made. The Chainman 

Shale is a fair to excellent source rock (0.79 wt % to 4.31 wt %) based on the 

classification by Peters and Cassa (1994). Also, the Chainman Shale can be classified as a 

mature source rock as indicated by the Tmax (442 0C - 455 0C), Ro (0.68% – 1.01%), and 

TAI (2+ to 3-) values. In terms of quality of the source rock, the Chainman Shale samples 

plot near the origin on the pseudo-van Krevelen diagram (see Figure 8), which means that 

they do not contain sufficient kerogen to characterize their quality using the pseudo-van 

Krevelen diagram. The fact that all of the Chainman samples plot near the origin on the 

pseudo-van Krevelen diagram indicates that the HI and OI values have been affected by 

thermal maturity (Peters and Cassa, 1994).  

 The TOC analyses of the Sheep Pass Formation Member B samples show that 

most of the samples are poor source rocks; the highest TOC measurement was 0.24 wt %. 

This result most likely is due to the fact that rock samples were taken from outcrops, 

where oxidation probably reduced the organic content within the Sheep Pass Formation 

Member B interval. In terms of quality of source rock, the Sheep Pass samples appear to 

be mixed oil and gas prone (type 2 kerogen)(see Figure 8). Furthermore, the Sheep Pass 

Formation Member B is a thermally immature to early mature source rock. Even though 

Ro value of the Sheep Pass indicates immature source rocks (0.46 %), the other maturity 
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indicators, TAI (2 to 2+) and Tmax (436 0C – 487 0C) values, suggest that the Sheep Pass 

samples are in the early mature stage. 

Source rock geochemistry 

 The high Pr/Ph, diasteranes/steranes, and Ts/(Ts+Tm) ratios as well as low C35 

homohopane index (see Appendix 2.A-B and Figure 18) in my source rock extracts is a 

strong indication of a shale source rock (Peters et al., 2007). Low oleanane relative 

abundances and TPP ratios, as well as high C30 diasteranes, tricyclic/hopane and Pr/Ph 

ratios in my source rock samples all suggest marine-derived organic matter in the source 

rock (Peters et al., 2007; Holba et al., 2000). In terms of oxicity and salinity, the 

Chainman Shale source rock was deposited in relatively dysoxic conditions and has 

normal marine salinity, as indicated by consistently low gammacerrane and homohopane 

index, as well as low C24 tetracyclic/(C24 tetracyclic + C26 tricyclic) and high Pr/Ph ratios. 

Regionally, the Chainman Shale is widely known as a Mississippian source rock and my 

geochemical results agree with that interpretation. I found no evidence of oleanane (see 

Figure 11), C26 21, 24, 27-norcholestanes (see Figure 13) and triaromatic dinosteranes in 

my samples. Maturity-related parameters, such as triaromatic steroids, C29Ts/ (C29Ts+C29 

hopane), Ts/(Ts+Tm), diasterane/sterane ratios, and sterane isomerization ratios show the 

Chainman extracts are thermally mature. 

 

Geochemical Attributes of Oils 

Oil biodegradation 

Most of my oil samples have not been biodegraded, which is indicated by an 

absence of unresolved complex mixture (UCM) in most of my oil samples. However, 
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three of the oil samples experienced moderate biodegradation. These are LA-03 (Trap 

Spring), LA-09 (Grant Canyon), and LA-12A (Kate Spring). The biodegradation of these 

three oil samples is attributed to the fact that they sat at the surface and were biodegraded 

there.  

Oil geochemistry 

 Several biomarker parameters in crude oils are very powerful to effectively 

discriminate the oil group. For example, oleanane is highly specific for higher plant input 

of Cretaceous or younger age. Therefore, the cross plot of those highly specific 

biomarker parameter is used to further differentiate the oil group and to obtain the 

information about source rock age, organic matter type, depositional environment, and 

source rock facies.  Critical information regarding their specificity and the means will be 

discussed more detail in this part.  

Group 2 oils are characterized by low Pr/Ph, diahopane/diahopane + C29 hopane, 

and diahopane/diahopane + C30 hopane ratios as well as a high homohopane index (see 

Figure 18). These characteristics typify oils generated from lacustrine anoxic 

environments (Peters et al., 2007).  In contrast, oils from group 1 differ from those in 

group 2 by having distinct high Pr/Ph, diahopane/diahopane + C29 hopane, 

diahopane/diahopane + C30 hopane ratios and a low homohopane index, which is 

indicative of oils that originated from a dysoxic marine environment (Peters et al., 2007).  

I employed highly specific biomarker parameters, such as gammacerane, C24 

tetracyclic, and homohopane index, in order to determine the environment and conditions 

during source rock deposition. Gammacerane is a highly specific biomarker of 

hypersaline lacustrine oil and bitumen (Peters et al., 2007). Gammacerane originates from 
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the reduction of tetrahymanol (produced by bacterivorous ciliates), which is present in 

the stratified water columns in lacustrine systems (Venkatesan and Dahl, 1989; Sinninghe 

Damste et al., 1995). Therefore, the existence of high relative abundances of 

gammacerrane in group 2 oils, and low relative abundance in group 1, is strongly linked 

to hypersaline lacustrine source rocks. This interpretation is also supported by a high C24 

tetracyclic / (C24 tetracyclic + C26 tricyclic) ratio in group 2 oils, which is indicative of 

hypersaline condition during carbonate-rich source rock deposition (see Figure 11). 

Moreover, Peters and Moldowan (1993) suggest that high C35 homohopane preservation 

can be used as a general indicator of highly reducing conditions. Therefore, very well 

preserved homohopanes, specifically C34 and C35 homohopanes, in group 2 oils relative 

to those in group 1, suggest anoxic conditions during source rock deposition (see 

Appendix 5.A and Figure 12). All of the evidence described above strengthens the 

interpretation of strongly reducing and anoxic conditions in a lacustrine environment 

during source rock deposition for group 2 (Sheep Pass-derived). This is in contrast to 

group 1 oils, which originated from a source rock deposited in a marine setting under 

dysoxic condition (Chainman Shale-derived).   

In terms of source rock facies, oils from group 2 can be interpreted as having been 

derived from a carbonate-dominated source rock as all the samples in group 2 

consistently have low Ts/(Ts+Tm) as well as a high C35 homohopane index and C24 

tetracyclic terpanes (Peters et al., 2007). This interpretation is also supported by low 

diasterane/sterane ratios in group 2 oils, which is indicative of clay-poor sediments 

during source rock deposition (Figure 19). As suggested by Peters et al. (2007), 

diasteranes and Ts/(Ts+Tm) could be affected by maturity (diasteranes/steranes and 
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Ts/(Ts+Tm) ratios increase as maturity increases). However, other maturity-related 

parameters show that group 2 oil is less mature than group 1. Therefore, maturity is not 

the main issue here, and the use of diasteranes and Ts/(Ts+Tm) as an indicator of 

lithology is reasonable. In contrast to group 2 oils, a clay-rich source rock is the main 

source of oils in group 1. This interpretation is based on elevated diasterane relative 

abundances, such as C27 and C30 diasteranes (see Figure 14). Diasteranes are moderately 

specific for source rock lithology because abundant clays can catalyze the conversion of 

sterols to diasteranes (Peters et al., 2007). High Ts/(Ts+Tm) accompanied by the low 

occurrence of C24 tetracyclic terpanes in my samples, also suggests a shale-dominated 

source rock for the origin of group 1 oils.  

In terms of organic matter input, land-plant organic matter derived from a 

lacustrine environment is the main contributor to the source rock that generated group 2 

oils. Numerous lines of evidence support this interpretation. Most notable is the high 

concentration of oleananes, a compound derived from betulins and taraxerene that are 

produced from land plant angiosperms (Peters et al., 2007). The high tetracyclic 

polyprenoid (TPP) ratio in the group 2 oils, which is highly specific for a lacustrine 

source rock (Holba et al., 2000), also shows that the source rock that generated group 2 

oil was influenced by significant input of land-plant organic matter in a lacustrine setting. 

Additionally, the monoaromatic ternary diagram (Figure 20) shows that most of the oil 

samples in group 2 have high C29 monoaromatic steroids indicative of non-marine 

organic-matter-derived oil (Volkman, 1986; Peters et al., 2007). Group 1 oil is slightly 

different from group 2 oil in terms of the relative abundances of organic-matter-specific 

biomarkers. A significant lack of oleanane and low TPP ratio in most of the oil samples 
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are the supporting evidence that indicates that group 1 oil was not generated from a 

source rock rich in land plant input (Figure 21). Instead, group 1 oils originated from a 

source rock rich in algal input that was deposited in a marine setting, as suggested by a 

high tricyclic/hopane ratio (see Figure 10). It was proposed by Volkman et al. (1989) that 

the elevated concentrations of tricyclic terpanes is linked to primitive algae called 

Tasmanites. Further evidence shows that low TPP ratios and high relative abundances of 

C30 diasteranes in group 1 oils (see Figure 14), as well as where the samples plot on a 

sterane ternary diagram (Figure 22), strengthen my interpretation that group 1 oil is 

derived from a marine, algae-rich source rock.  

In addition, stable carbon isotope analysis results support the depositional 

environment interpretation of the source rocks. Consistently heavy δ13C values, ranging 

from -29.5 ‰ to -28.5 ‰, of saturate and aromatic fractions in group 2 oil are interpreted 

as typical of saline lake environments (Peters et al., 1993). Conversely, light δ13C isotope 

values (-30 ‰ to -30.5 ‰) in both saturate and aromatic fractions within group 2 oil are 

indicative of marine-derived oil (see Figure 16). 

Age-related biomarkers play an important role in differentiating oil families in 

Railroad Valley (Figure 23). Group 2 oil shows high proportions of oleanane, C26 21-

norcholestane, C26 24-norcholestanes, C26 27-norcholestanes and triaromatic 

dinosteranes, which are indicative of source rocks younger than Cretaceous (Moldowan 

et al., 1994; Holba et al., 1998). It is interesting to note that triaromatic dinosterane 

biomarkers exist in my lacustrine-derived oils. It is widely known that triaromatic 

dinosteroids are derived from dinoflagellates, one of the main producers in the modern 

ocean, which first occurred in the Triassic period (Moldowan et al., 1996). However, 
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Tasch (1980) proposed that dinoflagellates may occur in water bodies in non-marine 

settings, such as in the Great Salt Lake, and Hanson et al. (2001) provide a good example 

of the existence of triaromatic dinosterane in a hypersaline lacustrine source rock in 

Qaidam Basin, China. Therefore, I confidently interpret the relative abundance of 

triaromatic steroids in my group 2 samples to indicate a significant input of 

dinoflagellates in a post-Cretaceous lacustrine system. Furthermore, group 1 oils are 

remarkable by the absence of oleanane, C26 21-norcholestane, C26 24-norcholestanes, C26 

27-norcholestanes and triaromatic dinosteranes and appear to have high OEP (C25-C27) 

and tricyclic terpanes. Those characteristics suggest that group 1 were derived from 

source rocks older than the Mesozoic. 

Maturity-related parameters, which include Ts/(Ts+Tm), C29 Ts / (C29Ts + C29 

hopane), moretane/hopane, diasteranes/steranes, C27 / C28S triaromatic steroids, TA(I) / 

((TA(I) + TA(II))), MA(I) / ((MA(I) + MA(II))), C29 sterane isomerization and C29 

αββ/(αββ+ααα), consistently have higher concentrations in group 1 oil than in group 2 

oil (Figure 24). The agreements between all maturity-related biomarker parameters 

indicate that group 1 oils are more thermally mature than group 2 oils. Additionally, 

diamondoids analyses show that most of the oil and source rock extracts have low 

concentrations of diamondoids (0.74 – 19.26 ppm), which suggests that intense oil 

cracking has not yet occurred (Dahl et al., 1999) (see Figure 17).  

Hierarchical cluster analysis using Ward’s method (Figure 25) strengthens the 

interpretation that two oil families are present in this basin. A dendrogram, which was 

generated by entering important biomarker parameters (Appendix 8) into the statistical 

software, suggests that Trap Spring, Grant Canyon, and Tomaro Ranch are genetically 
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related, whereas, oils from Eagle Spring, Ghost Ranch and Grant Canyon clustered in a 

second oil family. This fact further suggests that reservoirs in Railroad Valley basin have 

been charged by two source rock intervals. One source rock interval generated Trap 

Spring and Grant Canyon oils (Group 1) and another source rock interval generated Eagle 

Spring, Kate Spring, and Ghost Ranch oils (Group 2). 

One interesting fact that can be seen in my dendrogram (see Figure 25) is the 

presence of a subgroup within the group 2 (lacustrine-derived) oils. Both Ghost Ranch 

and Kate Spring oils are slightly different from Eagle Spring oils but still closely related. 

I interpret this difference to be due to spatial variations in salinity, redox, depth, and 

organic matter input in the lacustrine system during source rock deposition (Figure 26). 

As suggested by Katz (1995), lacustrine systems commonly show more variability of 

specific conditions than marine settings. Greene et al. (2004) showed that the difference 

in source rock facies and source rock depositional conditions in a lacustrine system 

influence the oil characteristics in Turpan-Hami Basin, China. Therefore, I interpreted the 

oils from Eagle Spring to have been generated by lacustrine source rocks that were 

deposited in more anoxic and hypersaline conditions with high land plant contribution, as 

indicated by elevated oleanane, gammacerane, C24 tetracyclic, and homohopane, and C28 

triaromatic steroid. Those conditions are indicative of a deep and stratified water column 

in a lacustrine system. In contrast, Ghost Ranch and Kate Spring oils originated from 

lacustrine source rock deposited in a lake with shallower water depths, lower salinity, and 

less anoxic conditions, as shown by relatively lower oleanane, gammacerane, C24 

tetracyclic terpane, homohopane, and C28 triaromatic steroid compared to those exist in 

Eagle Spring oils (see Figure 15).  
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CHAPTER 6 

CONCLUSION 

I conclude that two genetically related groups of oils and one sub-group of oils 

occur in Railroad Valley and that they originated from two different source rock 

intervals. All of the geochemical evidence supports this interpretation.  

Group 1 oils come from Trap Spring and Grant Canyon. Oils in this group have 

light δ13C isotopic values (-30 ‰ to -30.5‰), low relative abundances of oleanane, C24 

tetracyclic, gammacerane, homohopane index, triaromatic dinosteranes, C26 21 

norcholestanes, C26 24 norcholestanes, C26 27 norcholestanes and TPP ratios, and have 

high relative abundances of Pr/Ph, tricyclic/hopane ratio, Ts/(Ts+Tm), 

diasteranes/steranes ratio, and high C30 diasteranes. This geochemical evidence indicates 

that this oil family originated from a marine shale source rock older than the Cretaceous 

that was deposited in a dysoxic zone, under normal marine salinity conditions, with a lack 

of land plant input. These findings suggest that oils from Trap Spring and Grant Canyon 

originated from the Mississippian marine Chainman Shale. 

Oils from Eagle Spring, Kate Spring, and Ghost Ranch are clustered in one oil 

family (group 2). This oil family has geochemical characteristics as follows: heavy δ13C 

isotopic values (-29.5 ‰ to -28.5 ‰), high relative abundances of oleanane, C24 

tetracyclic, gammacerane, homohopane index, triaromatic dinosteranes, C26 21 

norcholestanes, C26 24 norcholestanes, C26 27 norcholestanes and TPP ratios, and have 

low Pr/Ph, tricyclic/hopane, Ts/(Ts+Tm), diasterane/sterane ratios, and low C30 

diasteranes. These characteristics typify oil generated from hypersaline and anoxic 



  28 

lacustrine carbonate-rich source rock, which is post-Cretaceous in age. This points to the 

Sheep Pass Formation Member B as the source rock.   

These comprehensive geochemical analyses also produce a new interesting result 

regarding the origin of oil in Railroad Valley that was previously unrecognized. 

Specifically, I suggest that one subgroup of oils are present within the main group of the 

Sheep Pass-derived oil. Oils from Kate Spring and Ghost Ranch are slightly different 

from Eagle Spring oils. My data indicate that the differences are primarily due to 

spatial/temporal variation in a lacustrine system, such as different depth of the water 

column, which affects the source rock facies and source rock depositional conditions. The 

Eagle Spring oils are derived from a source rock that was deposited under hypersaline 

and anoxic conditions. On the other hand, the source rock that generated Ghost Ranch 

and Kate Spring oils was deposited under less saline and less anoxic condition.  

My results support the idea that two oil families from two different source rock 

intervals (Chainman Shale and Sheep Pass Formation Member B) are present in Railroad 

Valley area (Poole and Claypool, 1984; Conlan, 1995). Furthermore, I disagree with 

some workers who have proposed that oils in Railroad Valley basin were sourced from 

only one source rock (Picard, 1960; Poole et al., 1979), and with those who have 

proposed that the oils were produced by the mixing from 2 intervals (Bortz and Murray, 

1979; Duey, 1979; French, 1983).  

Additionally, from the diamondoids analyses I observe that all of my oil samples 

show low diamondoid concentrations. This result suggests that intense oil cracking has 

not yet occurred.  
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FIGURES

Figure 1. Map of Nevada with research area highlighted by box (modified from 
DeCelles, 2004) 

 

(LFTB) 
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Figure 2. Google earth image of Railroad Valley and adjacent ranges, i.e. Egan Range, Grant Range, Pancake Range. A: 
Duckwater airport, Nye County. 
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Figure 3. Location of oil fields in Railroad Valley (modified from LaPointe et al., 2007) 



  32 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Generalized stratigraphic column of Phanerozoic strata in the eastern Great 
Basin showing intervals of petroleum production (green dots), source rocks (black 
dots), major sequence boundaries, hiatus intervals, and unconformities. Paleozoic 
section modified from Cook and Corboy, 2004. Ls: limestone; Dolo: dolomite; Fm: 
formation; Vol: volcanic ; Ss: sandstone. Two blue rectangles are the source rock 
intervals in RRV. Black dots are potential source rocks intervals and green dots are 
reservoir intervals. 
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Figure 5. Geologic map 
of Egan Range 
(Druschke, 2009) note 
that green box is the 
sample location for the 
Chainman Shale outcrop 
and blue box is the 
location of samples from 
the Sheep Pass member 
B outcrop. 
  
Figure 6. Outcrop photo 
of the lacustrine-Sheep 
Pass Formation member 
B. 
 
Figure 7. Outcrop photo 
of the marine-Chainman 
Shale.  
 
Note that geologic 
hammer (6) and finger 
(7) are used for scale. 
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Figure 8. Cross plot of the Chainman Shale and Sheep Pass samples on a modified 
pseudo van Krevelen diagram. Dashed line (A) is the limit of oxygen index values as 
described in Peters (1986). Oxygen Index (x-axis) was expanded due to elevated OI 
values on the Sheep Pass samples. Note that pseudo thermal maturation pathway (Peters, 
1986) is added to this diagram because the high maturity is interpreted to have reduced 
the amount of organic matter in the Chainman Shale samples. Therefore, the observed HI 
and OI values of the Chainman samples do not reflect original kerogen amounts. 
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Figure 9. Cross plot of Pr/Ph ratios and OEP 5 ratios (as defined in Table 5) 
 

Figure 10. Cross plot of tricyclic/hopane vs Ts / (Ts+Tm) suggests group 1 oils, in 
contrast to group 2 oils, were derived from an algal-rich and clay-rich source rock. 
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Figure 11. Cross plot of oleanane, gammacerane index, homohopane index, and C24 
tetracyclic / (C24 tetracyclic + C26 tricyclic) suggests that group 2 oils are derived from 
a carbonate-rich lacustrine source rock (hypersaline and anoxic), whereas group 1 oils 
are marine-derived oil (normal marine salinity and dysoxic). 
 



  37 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Homohopane distribution of group 1 (upper) and group 2 oils (lower). X-
axis is homohopane homologs and y-axis is relative peak heights of homohopane. 
Note that group 2 oils have well-preserved and high C34 and C35 homohopane relative 
abundances suggesting highly reducing conditions during deposition (Peters and 
Moldowan, 1993). GC: Grant Canyon; ES: Eagle Spring. 
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Figure 13. Cross plot of C26 27-norcholestanes, C26 24-norcholestanes, and C21 27-
norcholestanes. Note that group 2 oils have higher proportions of C26 21, 24, 27 
norcholestanes than group 1 oils, which indicates oils derived from a source rock 
younger than Cretaceous.  
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Figure 14. Cross plot of C30 diasteranes vs TPP ratio. This diagram illustrates the 
separation between the lacustrine Sheep Pass Fm and the marine Chainman Shale. 
Holba et al. (2000) suggested that lacustrine crude oils, as opposed to marine oils, 
have high tetracyclic polyprenoid (TPP) and low C30 diasteranes.  
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Figure 15. Cross plot 
to differentiate Sheep 
Pass-derived oils. 
Note that Eagle 
Spring oils plot 
differently from Kate 
Spring and Ghost 
Ranch oils. Based on 
these specific 
biomarker parameters, 
it is concluded that the 
Eagle Spring oils 
originated from a 
hypersaline-anoxic 
lacustrine source rock 
with significant land 
plant input, whereas 
Kate Spring and 
Ghost Ranch oils are 
derived from a 
shallower part of the 
lacustrine system in 
which relatively less 
saline and less anoxic 
conditions occurred. 
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Figure 16. Cross plot of carbon isotope values of saturate and aromatic fractions. Note 
that Chainman Shale extract, Trap Spring and Grant Canyon oils (green) clustered in 
the same area, where Eagle Spring (blue), Kate Spring (black), and Ghost Ranch (red) 
oils are clustered in one group.  
 

Figure 17. Cross plot of diamondoids (methyldiamantane) vs stigmastane indicating 
that Railroad Valley’s oils have not been cracked (modified from Dahl et al., 1999) 
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Figure 18. Cross plot of Pr/Ph vs homohopane index suggests anoxic conditions 
during Sheep Pass deposition and dysoxic conditions during the Chainman Shale 
deposition. 
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Figure 19. Cross plots of Ts/(Ts+Tm), diasteranes/steranes, C24 tetracyclic / (C24 
tetracyclic + C26 tricyclic) ratios and homohopane index. The plots of group 2 oils  
indicate carbonate-derived oil, where the plots of group 1 oil suggest clay-rich derived 
oils. Note that group 1 oils always plot near the Chainman Shale extracts suggests that 
group 1 oils originated from the clay-rich Chainman Shale source rock. 
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Figure 20. Monoaromatic steroid ternary diagram shows high concentrations of C29 
monoaromatic steroids on most of the oil samples in group 2 oils. This suggests that 
these oils were derived from non-marine organic matter (Volkman, 1986; Peters et 
al., 2007). 
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Figure 21. Cross plot of oleanane vs TPP ratio. This cross plot suggests that the 
Chainman Shale source rock is older than the Cretaceous because no oleanane is 
present in the samples.  
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Figure 22. Ternary diagram showing the relative abundance of C27, C28, and C29 
regular steranes (Moldowan et al., 1985). Overlap in a sterane ternary diagram limit 
the use of this diagram to describe the source-rock depositional environment. Although 
this figure does not show clear separation between group 1 and group 2 oils, the results 
of sterane ternary diagrams suggests that most group 2 oils are non marine-derived oil 
and most oils in group 1 are marine-derived oil.  
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Figure 23. Age related biomarkers adapted from Peters et al. (2007). High tricyclic terpanes, C25-C27 odd preference and low aromatic 
dinosteroid are present in group 1 oils. Those compounds occur earlier in geologic history. This fact indicates group 1 oils were 
derived from source rock that is older than the Mesozoic (Chainman Shale). Contrastingly, group 2 oils show low tricyclic terpanes 
and abundant oleanane, C26 24-norcholestanes, and triaromatic dinosteranes. Those compounds show later in geologic history, which 
strongly suggest that group 2 oil originated from a source rock that is younger than the Cretaceous (Sheep Pass Formation Member B). 

Mississippian 
Chainman Shale 

Sheep Pass 
Formation 
Member B 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Figure 24. Cross plots of maturity related parameters. Note that all maturity related parameters show that oils from group 1 appeared 
to be more thermally mature than group 2 oil.  
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Figure 25. Dendrogram showing genetic relationship between 19 oil samples from 
Railroad Valley and two source rock extracts from the Chainman Shale. This dendrogram 
is based on statistical analysis using Ward’s method. All input parameters for the cluster 
analysis are provided in Appendix 8. G. Ranch: Ghost Ranch. 
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Figure 26. Depositional model of Paleogene-lacustrine Sheep Pass Formation member B source rock. This figure shows that spatial 
variations in lacustrine systems, such as salinity, redox, depth, temperature, and organic matter, influence the source rock facies, 
which in turn control the petroleum characteristics. Note that Eagle Spring oils were derived from a deeper lacustrine source facies 
(stratified, anoxic and hypersaline conditions) while the Kate Spring and Ghost Ranch oils originated from shallower lacustrine source 
facies (dysoxic and less reducing conditions). Arrows indicate land plant and algae input. Figure is modified after Department of 
Environment and Resource Management of Queensland (http://www.derm.qld.gov.au/). 



  51 

APPENDIX 1 

GC CHROMATOGRAM OF SOURCE ROCK EXTRACT 

(All numbered peaks correlate to different biomarker compounds as listed in Appendix 7) 
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APPENDIX 2 

GC-MSD CHROMATOGRAMS OF SOURCE ROCK EXTRACTS 

(All numbered peaks correlate to different biomarker compounds as listed in Appendix 7) 

 

A. m/z 191 chromatogram of CH-03 

 

 

 

 

 

 

 

 

 

 

B. m/z 217 chromatogram of CH-03 
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C. m/z 253 chromatogram of CH-03 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. m/z 231 chromatogram of CH-03 
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E. m/z 245 chromatogram of CH-03 
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APPENDIX 3 

GCMS-MRM CHROMATOGRAMS OF SOURCE ROCK EXTRACTS 

(All numbered peaks correlate to different biomarker compounds as listed in Appendix 7) 

 
 
F. m/z 358  217 chromatogram of CH-03 
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APPENDIX 4 

GC CHROMATOGRAM OF OIL SAMPLES 

(All numbered peaks correlate to different biomarker compounds as listed in Appendix 7) 

A. GC trace of group 1 oil (Trap Spring and Grant Canyon) 
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B. GC trace of group 2 oil (Eagle Spring, Kate Spring, and Ghost Ranch) 
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APPENDIX 5 

GC-MSD CHROMATOGRAMS OF OIL SAMPLES  

(All numbered peaks correlate to different biomarker compounds as listed in Appendix 7) 

A.1. m/z 191 chromatogram of group 1 oil (Trap Spring and Grant Canyon) 
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A.2. m/z 191 chromatogram of group 2 oil (Eagle Spring, Kate Spring, and Ghost Ranch) 
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B.1. m/z 217 chromatogram of group 1 oil (Trap Spring and Grant Canyon) 
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B.2. m/z 217 chromatogram of group 2 oil (Eagle Spring, Kate Spring, and Ghost Ranch) 
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C.1. m/z 231 chromatogram of group 1 oil (Trap Spring and Grant Canyon) 
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C.2. m/z 231 chromatogram of group 2 oil (Eagle Spring, Kate Spring, and Ghost Ranch) 
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D.1. m/z 253 chromatogram of group 1 oil (Trap Spring and Grant Canyon) 
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D.2. m/z 253 chromatogram of group 2 oil (Eagle Spring, Kate Spring, and Ghost Ranch) 
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E.1. m/z 245 chromatogram of group 1 oil (Trap Spring and Grant Canyon) 
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E.2. m/z 245 chromatogram of group 2 oil (Eagle Spring, Kate Spring, and Ghost Ranch) 
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APPENDIX 6 

GCMS-MRM CHROMATOGRAMS OF REPRESENTATIVE OIL SAMPLES  

(All numbered peaks correlate to different biomarker compounds as listed in Appendix 7) 

A. m/z 358  217 chromatogram of group 1 oil (Trap Spring) 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

B. m/z 358  217 chromatogram of group 2 oil (Eagle Spring) 
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APPENDIX 7 

KEY FOR PEAK NUMBERS USED TO IDENTIFY PEAKS  

ON THE CHROMATOGRAMS 

A. Peaks in the GC trace 

10 : n – C10   

11 : n – C11 

12 : n – C12 

13 : n – C13 

14 : n – C14 

15 : n – C15 

16 : n – C16 

17 : n – C17 

18 : Pristane (Pr) 

19 : n – C18 

20 : Phytane (Ph) 

21 : n – C19 

22 : n – C20 

23 : n – C21 

24 : n – C22 

25 : n – C23 

26 : n – C24  

27 : n – C25 

28 : n – C26 

29 : n – C27 

30 : n – C28 

31 : n – C29 

32 : n – C30 

33 : n – C31 

34 : n – C32 

35 : n – C33 

36 : n – C34 

37 : n – C35 

38 : n – C36 

39 : n – C37 

40 : n – C38 

 

B. Peaks in the m/z 191 chromatogram 

1 :  C24 tetracyclic terpane 

2 :  C26 tricyclic terpane (S+R) 

3 :  Ts 18α (H)-trisnorhopane 

4 :  Tm 17α (H)-trisnorhopane 

5 :  C30 17α (H)-hopane 

6 :  Gammacerane 
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7 :  C31 homohopane 

8 :  C32 homohopane 

9 :  C33 homohopane 

10 :  C34 homohopane 

11 :  C35 homohopane 

C. Peaks in the m/z 217 chromatogram 

1 :  C27 ααα 20S 

2 :  C27 αββ 20R 

3 :  C27 αββ 20S 

4 :  C27 ααα 20R 

5 :  C28 ααα 20S 

6 :  C28 αββ 20R 

7 :  C28 αββ 20S 

8 :  C28 ααα 20R 

9 :  C29 ααα 20S 

10 :  C29 αββ 20R 

11 :  C29 αββ 20S 

12 :  C29 ααα 20R 

D. Peaks in the m/z 217 chromatogram 

TA (I) : Triaromatic steroid (C20 pregnane + C21 20-methylpregnane) 

TA (II)  : 

1 :  C26 cholestane 20S 

2 :  C26 + C27 cholestane 20R + ergostane 20S 
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3 :  C28 stigmastane 20S 

4 :  C27 ergostane 20R 

5 :  C28 stigmastane 20R 

E. Peaks in the m/z 358  217 chromatogram 

1 :  C26 24-nordiacholestanes 20S 

2 :  C26 24-nordiacholestanes 20R 

3 :  C26 27-nordiacholestanes 20S 

4 :  C26 27-nordiacholestanes 20R  

5 :  C26 ααα 24-norcholestanes 20S 

6 :  C26 αββ 24-norcholestanes 20R 

7 :  C26 αββ 24-norcholestanes 20S 

8 :  C26 ααα 24-norcholestanes 20R 

9 :  C26 21-norcholestanes ααα + αββ 

10 :  C26 ααα 27-norcholestanes 20S 

11 :  C26 αββ 27-norcholestanes 20R 

12 :  C26 αββ 27-norcholestanes 20S 

13 :  C26 ααα 27-norcholestanes 20R 
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APPENDIX 8 

INPUT PARAMETERS FOR THE CLUSTER ANALYSIS 

1. Pr/Ph 

2. OEP 5 

3. Tricyclic / hopane 

4. C24 tetracyclic / C26 tricyclic  

5. Ts / (Ts+Tm)  

6. Oleanane  

7. Diahopane / (diahopane + C29) 

8. Diahopane / (diahopane + C30) 

9. C29 Ts / (C29Ts + C29)  

10. Moretane / hopane  

11. Gammacerane  

12. Homohopane  

13. Diasteranes / steranes  

14. C26 21, 24, 27-norcholestance 

15. C27 steranes  

16. C30 diasteranes 

17. TPP ratio 

18. TA dinosteranes 

19. C28 Triaromatic  

20. C27 / C28S Triaromatic  

21. MA (I) / (MA (I) + MA (II)) and TA (I) / (TA (I) + TA (II)) 
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No Sample 
Number Well name Coordinates

Production interval (Formation and 
depth); Cumulative Production 

(Barrels) (2006) 

Field; Operator;        Status 
(2006); 

N 380 38' 10.0" (1) Oligocene Pritchard Station Trap Spring (MR); 

W 1150 37' 44.3" 3,210 - 4,950 feet; Average: 4,005 ft Makoil

N 380 38' 07.7" API: 24.8 33 producers,

W 1150 38' 14.9" 13,752,356 barrels          10 shut-in,1 P&A

N 380 38' 23.4"

W 1150 37' 43.7"

N 380 37' 41.4"

W 1150 37' 40.4"

N 380 38' 06.4"

W 1150 37' 52.0"

N 380 37' 38.8"

W 1150 38' 46.8"

N 380 34' 59.7" (2) Oligocene Garret Ranch Group Eagle Spring

W 1150 31' 41.4" (3) Eocene Sheep Pass Fm Meritage Energy

1 LA - 02 Munson Ranch 
#13-14

Table 1. List of oil samples

2 LA - 03 Munson Ranch 
#14-44

3 LA - 04 Munson Ranch 
#13-45

4 LA - 13 Zuspam 24-3

5 LA - 14 Munson Ranch 13-
24

6 LA - 15 Trap Spring #19

7 LA - 05 Eagle Spring 73-
35
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N 380 35' 41.3" (4) Pennsylvanian Ely limestone 15 producers, 

W 1150 31' 39.3" 6 shut-in, 1injection

N 380 37' 47.3" 5,780 - 7,360 feet; Average: 6,508 ft 

W 1150 31' 10.4" API: 30.8 - 27.8

5,218,259 barrels

11 ES - 1 Eagle Spring #1 -

(5) Neogene Horse Camp Fm Breccia Ghost Ranch; Meritage 

 API: 22.5; 502,023 barrels 4 producers, 1 shut-in 

13 LA - 12A N 380 34' 42.5" (5) Neogene Horse Camp Fm Breccia Kate Spring

14 LA - 12B W 1150 32' 26.7"  API: 22.5; 502,023 barrels Western General

15 LA - 12C 4 producers, 2 shut-in 

N 380 27' 27.5" (6) Devonian Simonson Fm Grant Canyon 

W 1150 34' 39.1"  and Guilmette Fm Grant Canyon O&G

N 380 27' 23.6" 4,374 - 4,426 feet; Average: 3,979 ft 2 producers, 4 shut-in

W 1150 34' 44.5" 20,938,790 barrels

18 GC - 3 Grant Canyon #3 -

(7) Oligocene Indian Well Fm Tomera Ranch; Dixie Co,

1,150 - 1,950 feet; Average: 1,670 ft; 36,4722 shut-in, 1 P&A, 1 injection 

8 LA - 06 Eagle Spring 74-
35

10 LA - 10 Eagle Spring -

9 LA - 07 Eagle Spring 23-
36

12 LA - 11 Ghost Ranch -

Kate Spring #1

16 LA - 08 Grant Canyon #7

-

17 LA - 09 Grant Canyon #9

19 TR
Foreland-

Southern Pacific 
Land Co. No. 1-5
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Tmax

Latitude Longitude S1 S2 S3 (°C)

10SP06 N38044'18.1" N114057'36.5" 2102 - - - - - - 0.46 2 to 2+ - - - - -

10SP05 N38044'18.7" N114057'37.5" 2091 0.19 0.04 0.27 0.29 438 ** 146 157 0.9 22 0.13

10SP07 N38044'18.1" N114057'36.5" 2102 0.07 0.02 0.12 0.23 441 ** 171 329 0.5 29 0.14

10SP08 N38044'17.5" N114057'35.8" 2121 0.06 0.02 0.11 0.35 487 ** 180 574 0.3 33 0.15

10SP09 N38044'17.3" N114057'34.8" 2114 0.24 0.06 1.09 1.08 436 447 443 1.0 25 0.05

10SP10 N38044'17.0" N114057'34.5" 2125 0.06 0.02 0.10 0.21 445 ** 169 356 0.5 34 0.17

10SP11 N38044'16.7" N114057'33.8" 2119 0.05 0.02 0.13 0.22 442 ** 289 489 0.6 44 0.13

10SP12 N38044'16.4" N114057'33.5" 2122 0.17 0.02 0.27 0.45 438 ** 163 271 0.6 12 0.07

10SP13 N38044'16.1" N114057'32.0" 2118 0.20 0.03 0.37 0.44 436 ** 189 224 0.8 15 0.07

10SP14 N38044'16.1" N114058'30.0" 2114 0.12 0.02 0.21 0.25 447 ** 174 207 0.8 17 0.09

10SP15 N38044'17.7" N114057'22.3" 2098 0.05 0.01 0.13 0.31 443 ** 283 674 0.4 22 0.07

10CH01 N38044'04.3" N114058'37.7" 1960 1.10 0.02 0.14 0.28 455 ** 0.90 2+/2+ to 3 13 25 0.5 2 0.13

10CH02 N38044'10.3" N114058'31.0" 2008 0.79 0.03 0.07 0.62 453 ** 1.01 2+/2+ to 3 9 78 0.1 4 0.30

10CH03 N38044'39.7" N114058'09.4" 2108 2.60 0.05 2.31 1.13 442 0.68 4.00 89 43 2.0 2 0.02

10CH04 N38044'39.2" N114058'09.6" 2108 4.31 0.18 5.00 1.37 444 0.72 4.00 116 32 3.6 4 0.03

Notes:

TOC : Total Organic Carbon, wt% %Ro

S1 : Volatile hydrocarbon (HC) content, mg HC/g rock HI

S2 : Remaining HC generative potential, mg HC/g rock OI
S3 : Carbon dioxide content, mg CO2/g rock TAI
** : Low S2, Tmax is unreliable PI

Table 2. Total organic carbon, Rock Eval Pyrolysis, vitrinite reflectance, and thermal alteration index results for source rock samples

Region Age Formation Lithology Sample 
Name

Location Elevati
on (m)

Egan 
Range

Paleo-  
gene

Sheep Pass 
Fm member 

B

Mud-
supported 
carbonate

Missis-
sippian

Chainman 
Shale Shale

: Production index = S1/ (S1+S2)

OI S2/S
3

 S1/T
OC
*100

PILeco 
TOC

RE
**  Ro

% TAI HI

: Measured vitrinite reflectance
: Hydrogen Index = S2 x 100 / TOC, mg HC/ g TOC

: Oxygen Index = S3 x 100 / TOC, mg CO2/ g TOC
: Thermal Alteration Index
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ID#1 ID#2 ID#3 Wt (mg) Amp(V) C Wt. % C d13C VPDB Run

CH3 Saturate SRE 0.220 1.309 76.46 -29.11 25

CH4 Saturate SRE 0.211 1.257 76.68 -30.04 28

CH3 Aromatic SRE 0.233 1.580 87.67 -29.06 46

CH4 Aromatic SRE 0.310 2.122 88.49 -29.93 47

Notes:

ID#1 : Sample number

ID#2 : Fraction

ID#3 : Sample type

SRE : Source rock extracts

Wt : Weight (mg)

Amp :

Wt %C : Weight (%)

d13C VPDB : ((Rsam/Rstd) - 1))*1000, where R equals 13C/12C 

  and the subscripts "sam" and "std" refer to the unknown sample and 

  a standard (Pee Dee Belemnite, PDB), respectively

Run : Run number

Table 3. Stable carbon isotope values of source rock samples
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ES GR ES GC TR

n-C9 0 0 0 0 0 2 0 0 7.8 8.6 - 0 16.8 10.1 9.8 12.9 11.4 5.5 0 0 0

n-C10 1.9 0 0 0 0 3.9 0 0 13.3 9.9 - 6.5 13.2 14.9 14.6 15.9 13.5 10.8 0 0 0

n-C11 2.5 0 1.6 1.6 0.9 6.1 0 0 16.5 10.3 - 5.6 11 16.6 16.7 16.6 14.7 14.3 1.8 0 0

n-C12 4.2 2.8 2.4 3.5 2.6 7.9 0.5 0 16.7 10.1 - 5.2 7.5 14.7 15 13.2 14.1 14.5 7.3 0 0

n-C13 8 6.4 4.35 6.4 5.7 9.8 1 0 16.4 10.9 - 5.3 7.7 15 15.2 14.1 13.8 13.8 12 0 0

n-C14 12.1 10.7 7 9.9 9.2 11.8 3.5 0 15.7 11.9 - 4.9 7.1 14.3 14.7 14.1 13.5 12.7 14.1 8.8 0

n-C15 14.4 14.2 10.1 12.5 12.1 13.6 9 1.8 15.5 13.8 - 4.8 7 13.5 13.8 14.4 13.1 11.6 14.3 12 12.6

n-C16 14.3 15.6 12.8 13.9 13.7 15.3 14.1 6.9 14.7 14.7 - 4.8 7 12.2 13 13.6 12.9 10 13.1 7 9.5

Pr 3.9 5.1 4.8 2.9 2.5 3.8 3.5 2.8 2.7 3.9 - 1.6 2.9 3.7 3.7 3.8 2.5 1.9 2.3 2.4 7.1

Ph 2.7 3.7 3.2 3.8 3.7 5.3 2.5 2.6 3.7 5 - 2.1 3.7 2.4 2.5 2.5 2.9 1.3 1.6 1.9 5.1

n-C17 13.1 16 14.2 13.9 14.1 15.5 16.2 12.2 14.5 14 - 4.2 6.2 10.6 11.4 12.5 13.2 9 12 5.8 7.5

n-C18 11.8 15.2 13.8 14.6 14.1 16 15.8 15.3 14.3 13.8 - 3.7 5.6 9.5 10 11.2 12.5 8 10.1 5.9 7.7

n-C19 10.2 13.9 12.6 14.6 13.8 15.8 14.5 15.7 13.8 12.9 - 3.3 4.8 8.7 8.85 10 12.3 7.1 9.1 5 7.3

n-C20 9.7 12.8 12 14.7 14 16 13.6 15.1 14 13.5 - 3 4.55 8.65 8.5 9.15 12.8 6.55 8.3 4.9 7.5

GC-3LA-08LA-09LA-10LA-11LA-12ALA-12BLA-02LA-03LA-04LA-05LA-06LA-07

GC trace

TR CH-3 CH-4LA-12CLA-13LA-14LA-15 ES-1

Table 4. Measured peak heights for different biomarker compounds

TS ES GC KS TS Chainman
Sample Number

Peak height
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n-C21 8.3 11.4 10.6 13.9 13.2 15.9 12 13.1 13.5 12 - 2.15 3.3 7.35 7.25 8.1 12 5.6 7.4 4.15 6.5

n-C22 7.85 10.3 9.6 14.1 13 16.4 10.5 11.8 13.5 11.3 - 1.6 2.6 6.45 6.3 7.15 11.4 4.95 6.6 3.9 6.7

n-C23 6.3 8.9 8.4 12.7 12.2 15.3 8.9 10 12 10 - 1 1.7 5.35 5.3 6.15 11 4.3 5.8 3.4 5.4

n-C24 5.7 8.1 7.7 12.4 11.4 15.3 7.7 8.8 12 9.3 - 0.7 1.1 4.7 4.55 5.2 10.4 3.7 5.2 3.2 4.6

n-C25 4.6 6.65 6.7 11 9.5 13.2 6.8 7.6 10.5 7.5 - 0.3 0.7 4 4.1 4.6 9 3.2 4.5 2.8 4.25

n-C26 3.95 5.8 6.05 11.5 9.8 13.5 6 7.1 10.5 7.4 - 0 0 3.5 3.5 4.1 9.2 2.8 3.95 2.65 3.9

n-C27 3.3 4.8 5.4 10.2 8.5 11.5 5.3 5.9 9 6 - 0 0 3 2.9 3.45 8 2.3 3.25 2.4 3.1

n-C28 2.8 4.1 4.85 9.3 8.5 10.9 4.7 5.4 9 6 - 0 0 2.8 2.5 2.95 7.65 2 2.8 2.25 3.2

n-C29 2.3 3.3 4 7.4 6.3 8.65 3.8 4.5 7.3 4.5 - 0 0 2.15 2.1 2.45 6.1 1.95 2.3 1.9 2.2

n-C30 1.95 2.8 3.5 6.7 5.8 7.6 3.5 3.9 6.5 4.2 - 0 0 1.8 1.7 1.95 5.2 1.15 1.85 1.7 1.8

n-C31 1.6 2.3 2.7 4.8 4.2 5.5 2.7 3.2 5 2 - 0 0 1.5 1.5 2.65 4 0.85 1.65 1.35 1.7

n-C32 1.3 2 2.25 4.2 3.5 4.6 2.4 2.4 4.2 2.5 - 0 0 1.2 1.1 1.3 3.3 0.65 1.3 1.2 1.2

n-C33 1.15 1.7 2.15 3.2 2.7 3.3 2.1 2.5 3.3 2 - 0 0 1.15 1 1.2 2.5 0.6 1.1 1.2 1.3

n-C34 0.95 1.5 1.7 2.7 2.6 2.9 1.9 2.3 2.8 1.9 - 0 0 0.9 0.85 1 2.1 0.4 1 1 0.9

Carotanes 

Botryococcus

Biodegraded Yes Yes Yes

HBI Abndnt

No

No

m/z 238

No Abundant No Abundant No No
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C19 Tricyclic 0.3 0 0.3 0.1 0.1 0 0.65 0.4 0.25 0.3 0.2 0.4 0.1 0.7 0.65 0.6 0.3 0.65 0.4 1.7 1

C20 Tricyclic 0.75 0.25 1 0.4 0.4 0.25 2 1.2 0.75 0.95 1.05 1.35 0.55 1.8 1.65 1.6 0.75 1.95 0.85 3.55 2.65

C21 Tricyclic 2.55 1.2 2.75 0.95 0.9 0.55 4.5 2.2 1.25 1.95 2.1 2.6 1.35 4.55 4.05 3.8 1.25 3.4 2.2 9.25 7.75

C22 Tricyclic 0.85 0.5 0.9 0.4 0.5 0.3 1.5 0.65 0.5 0.85 1.05 1.25 0.75 1.2 1.15 1 0.45 1.05 0.6 2.2 1.85

C23 Tricyclic 5.05 3.75 5.75 2.3 2.6 1.65 8.05 3.6 2.6 4.45 5.05 5.9 3.8 6.75 6.5 6.15 2.4 5.7 3.45 11.3 11.4

C24 Tricyclic 4.2 3.25 4.9 1.8 1.9 1.3 6.8 2.95 1.9 3 3.45 3.65 2.4 5.5 5 4.95 2.05 5.1 2.85 9.7 11.4

C25 Tricyclic 3.5 2.6 3.8 1.85 1.8 1.4 4.8 2.3 1.8 2.7 3.1 3.2 2.3 4 3.8 3.65 1.8 3.85 2.5 5.8 6.7

C24* Tetracyclic 0.8 0.9 0.85 0.95 1.2 0.8 1.5 1 1.1 1.15 1.2 1.2 0.95 1 0.95 0.9 0.9 1.1 0.75 1.1 0.75

C26  Tricyclic 3.7 2.25 4 1.4 1.5 1.2 5.4 2.5 1.45 2.4 2.7 2.7 2 4.45 4.25 3.85 1.4 4 2.4 7.8 9.7

C27  Tricyclic 1 0.9 1 0.5 0.4 0.45 1.2 0.8 0.5 0.5 0.5 0.6 0.6 1 1 0.95 0.45 1.1 0.75 1.8 2.25

C28  Tricyclic 4.1 5.3 4.6 1.4 1.4 1.1 5.1 2.7 1.4 2.2 2.4 2.3 2 4.3 4.3 4.15 1.5 4 3.05 7.15 9.1

C29  Tricyclic 4.1 3.4 4.6 2 1.9 1.6 5.3 2.7 0.85 2.7 2.9 2.8 2.55 4.3 4.3 4 1.9 4.4 3.3 6.5 9.3

Ts 1.9 1.8 1.95 1.2 1.3 1.05 2.45 2.2 1.3 1.45 1.45 1.4 1.35 1.95 1.9 1.95 1.25 2.1 1.3 6.9 5.7

Tm 1.45 1.75 1.5 2.35 2.5 2.2 1.9 1.5 2.4 3.15 3.7 3.55 3.1 1.7 1.6 1.5 2.25 1.45 1.85 1.35 1.1

C29 Ts 1.9 2.05 2.15 1.4 1.3 1.15 2 1.7 1.4 1.35 1.15 1.15 1.1 1.85 1.85 2 1.4 1.75 2.55 2.7 2.2

C29 hopane 4.25 4.75 4.35 5.1 6.05 4.4 5.1 6.1 6 7.75 8.6 9.15 7.75 4.9 4.15 4.85 5.5 4.6 5.8 1.5 1.35

Diahopane 1.2 1.05 1.4 0.8 0.45 0.45 1.2 0.75 0.45 0.4 0.55 0.35 0.35 1.2 1.25 1.2 0.45 0.9 1 2.7 1

Oleanane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m/z 191
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C30 hopane 11.1 9.7 11.4 11.7 11.7 11.8 10.7 9.55 11.5 11.5 11.4 11.9 10.4 11.2 11 11.5 11.7 11.1 11.3 4.35 4.2

Moretane 1.15 1.45 1.2 1.2 1.15 1.15 1.1 1 1.05 1 1 1.1 1 1.25 1.15 1.2 1.1 0.9 1.15 1 0.8

Gammacerane 0.95 0.75 0.9 4.7 3.85 4.9 0.95 1.4 4.4 2.7 1.8 1.85 1.35 0.95 0.9 0.9 4.35 1 1.2 0.5 0.5

C31 22S 3.55 3 3.55 3.9 4 3.45 3.5 4.5 4 5.25 5.55 5.85 4.6 3.7 3.45 3.8 3.9 3.25 4.9 1.35 1.4

C31 22R 2.45 2.5 2.65 2.75 2.9 2.45 2.4 3.45 3.1 3.8 3.9 4.45 3.1 2.65 2.6 2.6 3 2.25 3.7 1.15 1.1

C31 22S+22R homohopane 6 5.5 6.2 6.65 6.9 5.9 5.9 7.95 7.1 9.05 9.45 10.3 7.7 6.35 6.05 6.4 6.9 5.5 8.6 2.5 2.5

C32 22S 2.8 2.1 2.85 4.35 4.45 4 2.85 3.6 4.55 4.95 4.75 5.35 3.55 2.8 2.85 2.9 4.65 2.75 4.2 1.4 1.4

C32 22R 2.1 1.75 2.25 3.2 3.2 3.1 1.9 2.7 3.3 3.4 3.25 3.55 2.45 2 1.95 2.05 3.25 1.7 2.65 1 1.05

C32 22S+22R homohopane 4.9 3.85 5.1 7.55 7.65 7.1 4.75 6.3 7.85 8.35 8 8.9 6 4.8 4.8 4.95 7.9 4.45 6.85 2.4 2.45

C33 22S 2.6 1.8 2.8 2.8 2.8 2.35 2.6 4.4 2.8 3.45 3.35 3.75 2.4 2.65 2.4 2.7 2.8 3.4 3.95 1.45 1.8

C33 22R 1.45 1.2 1.5 1.7 1.7 1.5 1.4 2.15 2 2.15 2.05 2.4 1.4 1.45 1.95 1.35 1.95 1.2 1.95 0.55 0.6

C33 22S+22R homohopane 4.05 3 4.3 4.5 4.5 3.85 4 6.55 4.8 5.6 5.4 6.15 3.8 4.1 4.35 4.05 4.75 4.6 5.9 2 2.4

C34 22S 1.7 1.15 1.6 3.3 3 3 1.35 3 3.7 3.15 2.6 3.1 1.7 1.55 1.5 1.5 3.5 1.85 2.15 0.55 0.55

C34 22R 1.1 0.85 1.2 2.25 2.1 2.25 1.05 1.9 2.6 2.2 1.95 2.05 1.3 1.1 1 1.05 2.5 1.05 1.6 0.45 0.45

C34 22S+22R homohopane 2.8 2 2.8 5.55 5.1 5.25 2.4 4.9 6.3 5.35 4.55 5.15 3 2.65 2.5 2.55 6 2.9 3.75 1 1

C35 22S 1.2 0.8 1.2 4.5 4.35 4.2 0.9 2.6 4.7 4.35 3.85 4.35 2.4 1.15 1.05 1 4.5 0.8 1.75 0.3 0.25

C35 22R 1.15 0.9 1.1 3 3.05 3 1 2.25 3.4 2.9 2.7 3.05 1.75 1 1.1 1.05 3.2 1 1.6 0.55 0.55

C35 22S+22R homohopane 2.35 1.7 2.3 7.5 7.4 7.2 1.9 4.85 8.1 7.25 6.55 7.4 4.15 2.15 2.15 2.05 7.7 1.8 3.35 0.85 0.8

Total homohopane (C31 - C35) 20.1 16.1 20.7 31.8 31.6 29.3 19 30.6 34.2 35.6 34 37.9 24.7 20.1 19.9 20 33.3 19.3 28.5 8.75 9.15
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C27 diasterane ααα 20S 15.2 15 15 13.6 9.5 13.8 12.3 13.8 11.7 9.35 7.55 7.1 7.9 14.9 15 15.1 14.9 11.7 14.8 15.1 15

C27 diasterane αββ 20S 3.7 3.5 3.4 3.1 2.35 3.1 2.9 3.2 2.75 2.15 1.7 1.65 1.9 3.5 3.4 3.6 3.4 2.6 3.45 3.15 3.6

C27 diasterane ααα 20R 4.9 4 4.6 3.9 2.9 4.1 3.8 4.65 3.55 2.75 2.2 2.05 2.45 4.5 4.85 4.95 4.25 3.5 4.5 4.4 4.8

C27 diasterane αββ 20R 10.1 10.3 10 9.05 6.85 9.2 8.15 9.75 8.95 6.85 4.5 4.5 5.3 9.6 10.5 10.7 10.8 7.65 10.2 9.55 10

C27 diasteranes total 33.9 32.8 33 29.7 21.6 30.2 27.2 31.4 26.9 21.1 16 15.3 17.6 32.5 33.7 34.3 33.3 25.5 32.9 32.2 33.4

C28 diasterane ααα 20S 14.6 17.5 13.2 14.2 11.8 15 11.6 14.6 12.8 9.3 8 6.9 8.05 16.6 13.2 15.2 15.9 10.7 15.6 25.3 19.6

C28 diasterane αββ 20S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C28 diasterane ααα 20R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C28 diasterane αββ 20R 10.8 12.4 10.7 10.1 8.3 10.3 9.2 11.5 9.75 6.55 5.6 5 5.7 11.5 10.3 10.9 11 8.45 11.6 17.7 14.5

C28 diasteranes total 25.4 29.9 23.9 24.3 20.1 25.3 20.8 26.1 22.6 15.9 13.6 11.9 13.8 28.1 23.5 26.1 26.8 19.2 27.2 43 34

C29 diasterane ααα 20S 8.55 9.3 10.1 8.9 7.1 9.5 6.6 7.9 8.3 6.45 4.95 4.5 5.05 9.05 8.35 8.1 11.1 6.6 10.7 14.7 11.2

C29 diasterane αββ 20S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C29 diasterane ααα 20R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C29 diasterane αββ 20R 7.15 7.3 7.9 6.6 5 6.9 6.7 6.8 5.95 4.7 3.65 3.4 3.9 7.45 6.75 6.2 8.1 6.65 8.2 10.6 9.1

C29 diasteranes total 15.7 16.6 18 15.5 12.1 16.4 13.3 14.7 14.3 11.2 8.6 7.9 8.95 16.5 15.1 14.3 19.2 13.3 18.9 25.3 20.3

C30 diasterane ααα 20S 8.5 10.3 10.3 6.6 5 7.4 9.4 8.9 6.6 5.1 4.7 4.7 4.9 10.1 8.5 8.7 6.9 8.85 9 17.7 13.4

C30 diasterane αββ 20R 7.1 8 7.25 5.8 4.5 5.8 7.7 8.1 5.25 4.7 4.35 3.85 5.2 4.8 6.4 6.65 4.8 6 6.2 12.1 9.7

C30 diasteranes total 15.6 18.3 17.6 12.4 9.5 13.2 17.1 17 11.9 9.8 9.05 8.55 10.1 14.9 14.9 15.4 11.7 14.9 15.2 29.8 23.1

m/z 217 and GCMS - MRM traces
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C27 ααα 20S 11.8 11.5 11.9 11.1 11 11.7 9.9 10.4 11.1 11.6 11.5 11.4 11.8 12.1 12.9 12.8 12.1 10.6 10.5 4.65 6.1

C27 αββ 20S 12 11.4 11.7 10.9 10.6 11.8 12.6 11.4 15.3 12.4 12.6 12.9 14 11.5 12.2 11.8 15.2 12.6 11.1 6 7.9

C27 ααα 20R 12.9 12.3 12.9 15.4 15.4 15.4 11.5 12.1 15.5 13.2 12.9 12.3 13.2 11.9 14.7 13.7 15.4 11 10.5 4.9 6.5

C27 αββ 20R 13.5 12.1 12.7 12.6 12.7 13.5 14.9 14.4 13 15.3 15.5 15.4 15.4 11.9 13.4 14.2 13.6 14.8 11.6 7.1 8.5

C27 Steranes total 50.1 47.3 49.1 49.9 49.6 52.3 48.9 48.3 54.7 52.4 52.5 51.9 54.3 47.4 53.2 52.5 56.2 48.9 43.7 22.7 29

C28 ααα 20S 14 13.8 13.2 13.8 14.2 14.1 11.3 11.5 13.6 11.9 12.6 11.2 12 14.8 14 14 14.3 11.2 12.5 10.9 11.6

C28 αββ 20S 14.7 14.7 14.1 14.5 15.1 15.1 14.5 13.1 15 15.2 15.3 15.1 15.3 14.5 14.6 14.7 14.1 14.3 13.7 13.7 14.2

C28 ααα 20R 9.3 9.5 9.5 11 11.8 10.9 6.8 7.6 11.1 8.4 8.5 7.95 8.25 9.55 9.6 9.75 10.4 7.35 9.6 6.3 7.35

C28 αββ 20R 14.7 14.7 14.1 14.5 15.1 15.1 14.5 13.1 15 15.2 15.3 15.1 15.3 14.5 14.6 14.7 14.1 14.3 13.7 13.7 14.2

C28 Steranes total 52.7 52.7 50.9 53.8 56.2 55.2 47 45.2 54.7 50.6 51.7 49.4 50.9 53.4 52.8 53.2 52.8 47.2 49.5 44.5 47.4

C29 ααα 20S 14.1 13 14.1 12.7 13.6 14 11.6 11.9 14.4 11.9 13.1 12.2 12.1 13 13.9 12.9 15.2 11.8 14.8 9.2 9.65

C29 αββ 20S 14.9 15 14.6 12.9 13.5 15.2 14.9 14.1 13.6 15.2 15.2 15.3 14.9 14.8 14.8 15 13.2 14.8 14.8 14.9 14.6

C29 ααα 20R 12 12.1 13 15.3 15.3 14.9 9.6 11.8 15.3 11.5 11.4 11.8 11.6 11.5 13.3 12 14.2 10.7 13.6 7.7 8.3

C29 αββ 20R 13.5 14.7 14.1 13 13.6 15.3 13.9 13 13.7 14.4 14.9 15.1 15.3 13.7 13 13.3 14.5 14.4 13.4 12.1 12.9

C29 Steranes total 54.5 54.8 55.8 53.9 56 59.4 50 50.8 57 52.9 54.5 54.4 53.8 53 55 53.2 57.1 51.7 56.6 43.9 45.5

C30 ααα 20S 10.9 10.7 10.8 9.5 10 9.1 9.6 7.45 11.4 11 11.3 10.4 10 10.4 10.3 9.85 8.45 9.4 5.9 9.1 9

C30 αββ 20S 10.3 10.8 10.9 10.7 11.7 10.8 12.5 8.45 13 13.9 14 14.1 13.6 9.6 9.9 10.7 9.65 11.4 7.75 12.2 12.2

C30 ααα 20R 13.9 13.6 13 13.1 13.4 13.6 12.3 10.1 13.5 14.2 13.9 14.1 13.4 13.5 13.5 13.6 10.1 11 7.5 9.75 10.3

C30 αββ 20R 11.1 10.7 11.6 11.8 12.3 9.6 12.7 9.1 12.8 13.3 14.5 14.1 14.4 10.5 10.5 10.5 9.85 12.3 8 11.5 12.6
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C30 Steranes total 46.2 45.8 46.2 45.1 47.4 43.1 47.1 35.1 50.7 52.3 53.7 52.7 51.4 44 44.2 44.6 38.1 44 29.2 42.6 44.1

% C30 Steranes total 22.7 22.8 22.9 22.3 22.7 20.5 24.4 19.5 23.4 25.1 25.3 25.3 24.4 22.2 21.6 21.9 18.6 23 16.3 27.7 26.6

C26 24-nordiacholestane 20S 7.85 14.3 5.75 12.7 13.9 15 12.1 12.7 7.25 11.7 7.15 5.35 14.3 10.1 9.1 5.4 4.5 5.2 3.8 2.45 2.45

C26 24-nordiacholestane 20R 2.7 1.7 2.25 4.15 3.25 2.65 2.45 2.1 3.45 2.45 2.1 1.9 2.1 2.5 2.35 2.05 3.4 4.1 2.4 2.3 2.25

Total 10.6 16 8 16.8 17.1 17.7 14.6 14.8 10.7 14.2 9.25 7.25 16.4 12.6 11.5 7.45 7.9 9.3 6.2 4.75 4.7

C26 27-nordiacholestane 20S 13.3 8.8 12.8 13.8 10.7 9.65 12.3 9.1 12.3 9.45 8.05 8.45 7.5 13 12.7 13.2 11.1 11.5 11.8 13.5 13.4

C26 27-nordiacholestane 20R 10.7 6.7 10.3 14 10.5 8.55 9.75 7.65 14.5 7.9 7 7.4 7.3 9.3 10.1 9.75 12.8 8.75 9.6 9.6 9.95

C26 ααα 24-norcholestane 20S 2.3 1.5 2.3 3.05 2.85 2.85 3.15 2.65 2.75 2.6 2.75 2.6 2.55 2 2.1 1.9 2.35 3.5 1.85 1.75 2.05

C26 αββ 24-norcholestane 20R 3.55 2.5 3.75 6.4 5.6 4.85 3.35 3.55 5.4 4.25 4.2 4.05 4.15 3.5 4.45 3.9 4.75 3.2 3.3 2.75 2.95

C26 αββ 24-norcholestane 20S 4.3 2.75 4.05 6.4 6.8 5.1 4.3 4.1 6.55 5.7 5.7 5.65 5.55 4.95 4.5 4.15 4.8 4 3.45 2.2 2.45

C26 ααα 24-norcholestane 20R 3.95 2.7 3.9 6.65 6.8 4.65 3.75 4.3 6.45 5.3 5.05 4.6 4.8 3.6 4.4 3.9 4.4 3.75 2.9 2 2.2

Total 14.1 9.45 14 22.5 22.1 17.5 14.6 14.6 21.2 17.9 17.7 16.9 17.1 14.1 15.5 13.9 16.3 14.5 11.5 8.7 9.65

C26 21-norcholestane ααα + αββ 5.9 3.5 5.65 10.5 13.4 5.95 8.05 7.2 11.3 10.9 10.5 10.8 11.1 5 5.85 5.2 6.9 7.1 3.45 4.05 4.65

C26 ααα 27-norcholestane 20S 9.5 5.3 9.3 11.9 13.3 7.9 9.75 7.35 12.3 12.5 13 12.7 12.2 8.7 10.1 9.2 10.2 9.4 8.25 4.35 5

C26 αββ 27-norcholestane 20R 10.8 6.7 9.7 13.4 14.3 8.65 11.3 9.9 13.6 14.3 15 14.8 14.6 9.55 12.2 10.7 10.5 10.8 9.15 6.4 7.5

C26 αββ 27-norcholestane 20S 9.35 5.75 8.45 12.3 13.4 7.75 10.2 8.35 12.7 13.3 14.4 14.3 13.6 8.65 9.2 9.55 9.35 9.4 8.55 5.55 6.5

C26 ααα 27-norcholestane 20R 9.85 5.95 8.95 11.9 12.5 8.05 8.75 8.05 11.5 10.9 11 11 10.4 8.05 10 9.3 9.15 8.1 8.15 4.35 5.1

Total 39.5 23.7 36.4 49.4 53.4 32.4 39.9 33.7 50.1 50.9 53.3 52.8 50.8 35 41.5 38.8 39.2 37.7 34.1 20.7 24.1

MRM trace



85

Oleanane 0 0 0 1.5 1.05 1.45 0 0 1.2 0.75 0.5 0.5 0.75 0 0 0 1.55 0 0 2.4 2.2

Hopane 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.6 15.5 15.5 15.2 12.2

Gammacerane 1 0.65 0.9 4.75 3.9 4.75 0.95 1.4 4.2 2.45 1.75 1.85 1.8 1 0.9 0.9 4.65 0.95 1.4 1.65 1

C21 20S 8.35 6.15 8.1 2.25 1.85 1.65 7.6 6.7 1.85 2.5 3.05 3.2 3 7.85 6 6.1 4.1 6 0 0.5 0.1

C21 20R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C21 (20S + 20R) Monoaromatic 8.35 6.15 8.1 2.25 1.85 1.65 7.6 6.7 1.85 2.5 3.05 3.2 3 7.85 6 6.1 4.1 6 0 0.5 0.1

C22 20S 8.4 6.25 8.5 2.1 1.9 1.65 5.95 5.5 1.85 3.6 4.8 4.8 4.8 7.9 6.4 6.3 3.4 3.4 0 0.4 0.2

C22 20R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C22 (20S + 20R) Monoaromatic 8.4 6.25 8.5 2.1 1.9 1.65 5.95 5.5 1.85 3.6 4.8 4.8 4.8 7.9 6.4 6.3 3.4 3.4 0 0.4 0.2

C27 5β 20S 2.35 2.2 2.3 2.6 3.35 2.65 3.2 1.4 3.05 6.05 8.2 8.15 8.15 2.15 2.35 2.25 1.55 0.75 0 0.6 1

C27 diacholestane 20S 7.55 6.65 7.8 5 4.4 4.2 1.25 4.4 4.3 4.5 4.7 4.7 4.75 7.3 7.15 6.95 3.5 1.35 0 1.75 2.6

C27 5β 20S + diacholestane 20S 7.4 7.3 7.9 5.8 6.1 5.6 3.5 4.8 5.7 7.7 9.8 9.5 9.9 7.5 7.15 7.55 4.7 2 0 1.1 1.6

C27 5α 20S 3.9 3.7 4.25 1.9 2.3 1.8 1.5 2.15 2.05 3.6 4.6 4.7 4.6 4 3.65 3.4 1.55 1.1 0 0.35 1

C27 5α 20R 3 2.95 3 1.85 2.2 1.7 0.95 1.35 1.95 3.05 4.15 4.1 3.9 3.05 2.65 2.65 1.6 2.3 0 1.15 1

C27 (20S + 20R) Monoaromatic 24.2 22.8 25.3 17.2 18.4 16 10.4 14.1 17.1 24.9 31.5 31.2 31.3 24 23 22.8 12.9 7.5 0 4.95 7.2

C28 5β 20S + diaergostane 20S 5.55 5.6 6.1 5.35 5.1 5.1 2.35 4.1 4.9 6.1 7 7 6.7 5.5 5.3 5.2 0.7 1.3 0 0.4 0.7

C28 5a 20S 1.65 2.05 1.7 2.3 2.75 2.2 0.55 1.6 2.45 3.85 4.6 4.65 4.7 1.75 1.6 1.55 1.6 1.65 0 1 1.6

C28 5β 20R + diaergostane 20R 3.95 4.2 4.1 5.9 6 5.4 1.55 3.45 5.5 7.85 8.9 9.1 9 4.65 4.25 4.5 4.8 5.2 0 4.9 4.8

m/z 253
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C28 5α 20R 3.2 3.3 3.2 2.6 2.65 2.4 2 2.25 2.6 3.45 4 4.1 4.05 3.3 2.8 2.95 0.85 1.5 0 0.6 0.85

C28 (20S + 20R) Monoaromatic 14.4 15.2 15.1 16.2 16.5 15.1 6.45 11.4 15.5 21.3 24.5 24.9 24.5 15.2 14 14.2 7.95 9.65 0 6.9 7.95

C29 5β 20S+diastigmastane 20S 8.9 8.9 9 12 12 12.1 3.35 6.4 11.9 11.5 11.2 11.4 11.3 8.95 9.25 9.25 4.8 5.2 0 4.9 4.8

C29 5α 20S 3.15 3.25 3.5 3.3 3.5 3.2 1.85 2.85 3.4 3.6 3.8 3.9 3.8 3.5 4.9 3.25 0.5 8.1 0 0.4 0.5

C29 5β 20S+diastigmastane 20R 6.15 5.9 6.4 7.4 7.1 7.1 3.9 4.45 7.3 6.7 6.5 6.5 6.5 7.5 7 7.2 11.5 2.1 0 11.9 11.5

C29 5α 20R 2.3 2.3 2.2 2.55 2.8 2.6 1.8 1.1 2.7 2.95 3.35 3.25 3.1 2.5 2.3 2.25 0.8 1.9 0 0.65 0.8

C29 (20S + 20R) Monoaromatic 20.5 20.4 21.1 25.2 25.4 25 10.9 14.8 25.3 24.8 24.9 25.1 24.7 22.5 23.5 22 17.6 17.3 0 17.9 17.6

C20 20S 8.95 9.1 9.7 2.65 2.65 2.3 8 8.25 2.65 4.4 3.8 4.3 4.1 6.65 7.3 8.5 2.65 7.85 0 7.85 3

C20 20R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C20 (20S + 20R) Triaromatic 8.95 9.1 9.7 2.65 2.65 2.3 8 8.25 2.65 4.4 3.8 4.3 4.1 6.65 7.3 8.5 2.65 7.85 0 7.85 3

C21 20S 10 9.55 11.4 2.4 2.45 2.15 11.1 11.2 2.4 4.5 4.05 4.05 4.3 7.6 8.25 9.05 2.55 11.2 0 11.6 6.25

C21 20R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C21 (20S + 20R) Triaromatic 10 9.55 11.4 2.4 2.45 2.15 11.1 11.2 2.4 4.5 4.05 4.05 4.3 7.6 8.25 9.05 2.55 11.2 0 11.6 6.25

C26 20S 6.6 6.45 6.35 5.3 5.3 4.9 3.5 3.9 5.25 4.95 4.9 5.05 5 6.7 6.5 6.55 5.2 3.9 0 2.25 1.35

C26 20R 11.6 11.4 11.5 12.3 12.2 12.3 7.2 8.3 12.3 12 11.9 11.9 11.9 11.7 11.6 11.6 12.3 7.95 0 3.3 2.1

C26 (20S + 20R) Triaromatic 18.2 17.9 17.9 17.6 17.5 17.2 10.7 12.2 17.5 16.9 16.8 17 16.9 18.4 18.1 18.1 17.5 11.9 0 5.55 3.45

C27 20S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C27 20R 4 3.9 4.1 4.95 5.3 5.6 2.85 3.25 5.5 5.4 5.05 5.35 4.8 4.35 4.05 4.2 5.25 3.15 0 1.2 0.8

m/z 231
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C27 (20S + 20R) Triaromatic 4 3.9 4.1 4.95 5.3 5.6 2.85 3.25 5.5 5.4 5.05 5.35 4.8 4.35 4.05 4.2 5.25 3.15 0 1.2 0.8

C28 20S 8.8 8.3 8.4 8.55 8.25 9.6 6.6 7.2 8.5 6.3 4.75 4.9 4.6 9.15 8.95 9.15 9.5 7.55 0 2.85 1.7

C28 20R 10.4 10 9.9 10.8 10.5 12.1 8.35 8.85 10.5 7.55 6.15 6.5 6.15 11.4 11 10.9 10.7 9.65 0 3.2 1.95

C28 (20S + 20R) Triaromatic 19.2 18.3 18.3 19.3 18.8 21.7 15 16.1 19 13.9 10.9 11.4 10.8 20.5 19.9 20.1 20.2 17.2 0 6.05 3.65

C29 20S 2 2.4 2 0.5 0.55 0.6 1.7 2 0.6 1 1.3 1.3 1.2 2.7 2.5 2.6 0.55 1.8 0 1.5 0.45

C29 20R 1.6 1.5 1.55 0.5 0.55 12.7 1.2 1.4 0.7 0.75 0.95 0.5 0.95 1.95 1.9 1.9 0.6 1.5 0 0.8 0.55

C29 (20S + 20R) Triaromatic 3.6 3.9 3.55 1 1.1 13.3 2.9 3.4 1.3 1.75 2.25 1.8 2.15 4.65 4.4 4.5 1.15 3.3 0 2.3 1

Triaromatic dinosteranes Low Low Low High High High Low Low High High High High High Low Low Low High Low Low Low Low

Note: 

Mark (-) : no data
TS : Trap Spring
ES : Eagle Spring
GC : Grant Canyon
KS : Kate Spring
TR : Tomaro Ranch

m/z 245
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ES GR ES GC TR

Pr/Ph 1.44 1.38 1.50 0.76 0.68 0.72 1.40 1.08 0.73 0.78 - 0.76 0.78 1.54 1.48 1.52 0.86 1.46 1.44 1.26 1.39

Pr/(Pr+Ph) 0.59 0.58 0.60 0.43 0.40 0.42 0.58 0.52 0.42 0.44 - 0.43 0.44 0.61 0.60 0.60 0.46 0.59 0.59 0.56 0.58

Ph / n-C18 0.23 0.24 0.23 0.26 0.26 0.33 0.16 0.17 0.26 0.36 - 0.57 0.66 0.25 0.25 0.22 0.23 0.16 0.16 0.32 0.66

Pr / n-C17 0.30 0.32 0.34 0.21 0.18 0.25 0.22 0.23 0.19 0.28 - 0.38 0.47 0.35 0.32 0.30 0.19 0.21 0.19 0.41 0.95

OEP 1 (C9 - C13) 0.94 0.57 1.45 1.14 1.07 1.03 0.50 0.00 1.03 1.02 - 0.83 1.09 1.05 1.06 1.09 1.03 1.04 0.78 0.00 0.00

OEP 2 (C13 - C17) 1.02 1.02 1.00 1.00 1.01 0.99 1.01 0.83 1.00 1.01 - 0.99 0.99 1.01 0.99 1.02 1.00 1.02 1.01 1.23 2.19

OEP 3 (C17 - C21) 0.96 0.99 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.95 - 0.98 0.94 0.97 0.97 0.99 0.98 0.98 1.01 0.92 0.95

OEP 4 (C21 - C25) 0.94 0.97 0.98 0.95 0.98 0.95 0.99 0.98 0.94 0.96 - 0.92 0.96 0.97 0.99 1.00 1.00 1.00 0.99 0.96 0.95

OEP 5 (C25 - C27) 0.38 0.37 0.37 0.34 0.33 0.34 0.37 0.36 0.34 0.34 - 0.00 0.00 0.36 0.38 0.37 0.34 0.39 0.37 0.36 0.34

C22 tricyclic / C21 tricyclic 0.33 0.42 0.33 0.42 0.56 0.55 0.33 0.30 0.40 0.44 0.50 0.48 0.56 0.26 0.28 0.26 0.36 0.31 0.27 0.24 0.24

C24 tricyclic / C23 tricyclic 0.83 0.87 0.85 0.78 0.73 0.79 0.84 0.82 0.73 0.67 0.68 0.62 0.63 0.81 0.77 0.80 0.85 0.89 0.83 0.86 1.00

C26 tricyclic / C25 tricyclic 1.06 0.87 1.05 0.76 0.83 0.86 1.13 1.09 0.81 0.89 0.87 0.84 0.87 1.11 1.12 1.05 0.78 1.04 0.96 1.34 1.45

C29 tricyclic / C30 tricyclic 0.37 0.35 0.40 0.17 0.16 0.14 0.50 0.28 0.07 0.23 0.25 0.24 0.25 0.38 0.39 0.35 0.16 0.40 0.29 1.49 2.21

TS ES GC KS TS ChainmanCalculated Ratio

CH-3 CH-4LA-13 LA-14 LA-15 ES-1 GC-3 TRLA-09 LA-10 LA-11LA-12 ALA-12B

m/z 191 trace

GC trace

LA-12C

Table 5. Calculated biomarker ratios for oil and rock samples
Sample Number

LA-02 LA-03 LA-04 LA-05 LA-06 LA-07 LA-08
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C23 tricyclic / (C23 + C29) tricyclic 0.55 0.52 0.56 0.53 0.58 0.51 0.60 0.57 0.75 0.62 0.64 0.68 0.60 0.61 0.60 0.61 0.56 0.56 0.51 0.63 0.55

C23 tricyclic / (C23 tricyclic + C30 hopane) 0.31 0.28 0.34 0.16 0.18 0.12 0.43 0.27 0.19 0.28 0.31 0.33 0.27 0.38 0.37 0.35 0.17 0.34 0.23 0.72 0.73

C24 tetracyclic / (C24 tetracyclic + C26 
tricyclic)

0.18 0.29 0.18 0.40 0.44 0.40 0.22 0.29 0.43 0.32 0.31 0.31 0.32 0.18 0.18 0.19 0.39 0.22 0.24 0.12 0.07

C26 tricyclic / C24 tetracyclic 4.63 2.50 4.71 1.47 1.25 1.50 3.60 2.50 1.32 2.09 2.25 2.25 2.11 4.45 4.47 4.28 1.56 3.64 3.20 7.09 12.93

C24 tetracyclic / (C24 tetracyclic + C30 
hopane)

0.07 0.08 0.07 0.08 0.09 0.06 0.12 0.09 0.09 0.09 0.10 0.09 0.08 0.08 0.08 0.07 0.07 0.09 0.06 0.20 0.15

C25 / C24 tricyclic 4.38 2.89 4.47 1.95 1.50 1.75 3.20 2.30 1.64 2.35 2.58 2.67 2.42 4.00 4.00 4.06 2.00 3.50 3.33 5.27 8.93

C25 / C26 tricyclic 0.95 1.16 0.95 1.32 1.20 1.17 0.89 0.92 1.24 1.13 1.15 1.19 1.15 0.90 0.89 0.95 1.29 0.96 1.04 0.74 0.69

(C28+C29) tricyclic/(C28+C29)+hopanes 0.42 0.47 0.45 0.23 0.22 0.19 0.49 0.36 0.16 0.30 0.32 0.30 0.30 0.43 0.44 0.41 0.23 0.43 0.36 0.76 0.81

C29 Hopane / (C29 Hopane + C30 Hopane) 0.28 0.33 0.28 0.30 0.34 0.27 0.32 0.39 0.34 0.40 0.43 0.43 0.43 0.30 0.27 0.30 0.32 0.29 0.34 0.26 0.24

C29 Ts / (C29Ts + C29 Hopane) 0.31 0.30 0.33 0.22 0.18 0.21 0.28 0.22 0.19 0.15 0.12 0.11 0.12 0.27 0.31 0.29 0.20 0.28 0.31 0.64 0.62

Ts/(Ts+Tm) 0.57 0.51 0.57 0.34 0.34 0.32 0.56 0.59 0.35 0.32 0.28 0.28 0.30 0.53 0.54 0.57 0.36 0.59 0.41 0.84 0.84

Oleanane / (Oleanane + Hopane) 0.00 0.00 0.00 0.09 0.06 0.09 0.00 0.00 0.07 0.05 0.03 0.03 0.05 0.00 0.00 0.00 0.09 0.00 0.00 0.14 0.15

Gammacerane / C31 22S 0.27 0.25 0.25 1.21 0.96 1.42 0.27 0.31 1.10 0.51 0.32 0.32 0.29 0.26 0.26 0.24 1.12 0.31 0.24 0.37 0.36

C31 22R homohopane / C30 hopane 0.22 0.26 0.23 0.24 0.25 0.21 0.22 0.36 0.27 0.33 0.34 0.37 0.30 0.24 0.24 0.23 0.26 0.20 0.33 0.26 0.26

C31 22S homohopane / (C31 22S + 22R) 
homohopane

0.59 0.55 0.57 0.59 0.58 0.58 0.59 0.57 0.56 0.58 0.59 0.57 0.60 0.58 0.57 0.59 0.57 0.59 0.57 0.54 0.56

C32 22S homohopane / (C32 22S+22R) 
homohopane

0.57 0.55 0.56 0.58 0.58 0.56 0.60 0.57 0.58 0.59 0.59 0.60 0.59 0.58 0.59 0.59 0.59 0.62 0.61 0.58 0.57
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C33 22S homohopane / (C33 22S + 22R) 
homohopane

0.64 0.60 0.65 0.62 0.62 0.61 0.65 0.67 0.58 0.62 0.62 0.61 0.63 0.65 0.55 0.67 0.59 0.74 0.67 0.73 0.75

C34 22S homohopane / (C34 22S + 22R) 
homohopane

0.61 0.58 0.57 0.59 0.59 0.57 0.56 0.61 0.59 0.59 0.57 0.60 0.57 0.58 0.60 0.59 0.58 0.64 0.57 0.55 0.55

C35 22S homohopane / (C34 22S 
homohopane)

0.71 0.70 0.75 1.36 1.45 1.40 0.67 0.87 1.27 1.38 1.48 1.40 1.41 0.74 0.70 0.67 1.29 0.43 0.81 0.55 0.45

C35 22S homohopane / (C34 22S + C35 22S) 0.41 0.41 0.43 0.58 0.59 0.58 0.40 0.46 0.56 0.58 0.60 0.58 0.59 0.43 0.41 0.40 0.56 0.30 0.45 0.35 0.31

% C31 Homohopane 29.85 34.27 29.95 20.94 21.87 20.14 31.13 26.02 20.79 25.42 27.84 27.18 31.24 31.67 30.48 32.00 20.75 28.57 30.23 28.57 27.32

% C32 Homohopane 24.38 23.99 24.64 23.78 24.25 24.23 25.07 20.62 22.99 23.46 23.56 23.48 24.34 23.94 24.18 24.75 23.76 23.12 24.08 27.43 26.78

% C33 Homohopane 20.15 18.69 20.77 14.17 14.26 13.14 21.11 21.44 14.06 15.73 15.91 16.23 15.42 20.45 21.91 20.25 14.29 23.90 20.74 22.86 26.23

% C34 Homohopane 13.93 12.46 13.53 17.48 16.16 17.92 12.66 16.04 18.45 15.03 13.40 13.59 12.17 13.22 12.59 12.75 18.05 15.06 13.18 11.43 10.93

% C35 Homohopane 11.69 10.59 11.11 23.62 23.45 24.57 10.03 15.88 23.72 20.37 19.29 19.53 16.84 10.72 10.83 10.25 23.16 9.35 11.78 9.71 8.74

Tricyclic/hopane 0.61 0.60 0.65 0.26 0.29 0.22 0.88 0.41 0.28 0.38 0.43 0.43 0.43 0.74 0.71 0.68 0.28 0.71 0.40 1.66 2.12

Moretane / Hopane 0.10 0.15 0.11 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.11 0.11 0.10 0.09 0.08 0.10 0.23 0.19

Homohopane index 0.12 0.11 0.11 0.24 0.23 0.25 0.10 0.16 0.24 0.20 0.19 0.20 0.17 0.11 0.11 0.10 0.23 0.09 0.12 0.10 0.09

Gammacerane Index 0.08 0.07 0.07 0.29 0.25 0.29 0.08 0.13 0.28 0.19 0.14 0.13 0.11 0.08 0.08 0.07 0.27 0.08 0.10 0.10 0.11

10XGammacerane/(Gammacerane+C30hop
ane)

0.79 0.72 0.73 2.87 2.48 2.93 0.82 1.28 2.78 1.90 1.36 1.35 1.15 0.78 0.76 0.73 2.72 0.83 0.96 1.03 1.06

Diahopane / (Diahopane + C30 Hopane) 0.10 0.10 0.11 0.06 0.04 0.04 0.10 0.07 0.04 0.03 0.05 0.03 0.03 0.10 0.10 0.09 0.04 0.08 0.08 0.38 0.19

Diahopane / (Diahopane + C29 Hopane) 0.22 0.18 0.24 0.14 0.07 0.09 0.19 0.11 0.07 0.05 0.06 0.04 0.04 0.20 0.23 0.20 0.08 0.16 0.15 0.64 0.43

Diahopane / (Diahopane + C29Ts) 0.39 0.34 0.39 0.36 0.26 0.28 0.38 0.31 0.24 0.23 0.32 0.23 0.24 0.39 0.40 0.38 0.24 0.34 0.28 0.50 0.31
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Tricyclic / (Tricyclic + Hopane) 0.35 0.33 0.37 0.16 0.16 0.13 0.44 0.23 0.15 0.21 0.23 0.23 0.22 0.39 0.39 0.37 0.16 0.39 0.24 0.64 0.70

C27 20S (C27 ααα 20S + C27 αββ 20S) 23.75 22.90 23.55 21.95 21.50 23.40 22.45 21.75 26.30 23.95 24.10 24.25 25.75 23.55 25.10 24.60 27.25 23.10 21.55 10.65 14.00

C27 20R (C27 ααα 20R + C27 αββ 20R) 26.35 24.40 25.50 27.95 28.10 28.90 26.40 26.54 28.40 28.45 28.35 27.65 28.55 23.80 28.05 27.85 28.95 25.80 22.10 12.00 15.00

C27 (20S + 20R) 50.10 47.30 49.05 49.90 49.60 52.30 48.85 48.29 54.70 52.40 52.45 51.90 54.30 47.35 53.15 52.45 56.20 48.90 43.65 22.65 29.00

C28 20S (C28 ααα 20S + C28 αββ 20S) 28.70 28.50 27.30 28.30 29.30 29.20 25.70 24.50 28.60 27.05 27.90 26.30 27.30 29.30 28.55 28.70 28.35 25.50 26.20 24.55 25.80

C28 20R (C28 ααα 20R + C28 αββ 20R) 24.00 24.20 23.60 25.50 26.85 26.00 21.25 20.65 26.10 23.55 23.80 23.05 23.55 24.05 24.20 24.45 24.45 21.65 23.30 19.95 21.55

C28 (20S + 20R) 52.70 52.70 50.90 53.80 56.15 55.20 46.95 45.15 54.70 50.60 51.70 49.35 50.85 53.35 52.75 53.15 52.80 47.15 49.50 44.50 47.35

C29 20S (C29 ααα 20S + C29 αββ 20S) 29.00 27.95 28.70 25.60 27.10 29.15 26.50 26.00 28.00 27.00 28.25 27.45 26.95 27.80 28.65 27.85 28.35 26.55 29.60 24.10 24.25

C29 20R (C29 ααα 20R + C29 αββ 20R) 25.45 26.80 27.10 28.25 28.85 30.20 23.50 24.80 28.95 25.90 26.25 26.90 26.85 25.20 26.30 25.30 28.70 25.10 27.00 19.80 21.20

C29 (20S + 20R) 54.45 54.75 55.80 53.85 55.95 59.35 50.00 50.80 56.95 52.90 54.50 54.35 53.80 53.00 54.95 53.15 57.05 51.65 56.60 43.90 45.45

C27 + C28 + C29 Steranes 157.3 154.8 155.8 157.6 161.7 166.9 145.8 144.2 166.4 155.9 158.7 155.6 159.0 153.7 160.9 158.8 166.1 147.7 149.8 111.1 121.8

C27 + C28 + C29 Diasteranes 75.00 79.30 74.85 69.45 53.75 71.80 61.25 72.15 63.70 48.10 38.15 35.10 40.25 77.05 72.25 74.70 79.25 57.85 78.90 100.5 87.70

Diasterane/sterane 0.68 0.69 0.67 0.59 0.44 0.58 0.56 0.65 0.49 0.40 0.30 0.29 0.32 0.69 0.63 0.65 0.59 0.52 0.75 1.42 1.15

C27 diasterane/(Dia+Reg) sterane 0.40 0.41 0.40 0.37 0.30 0.37 0.36 0.39 0.33 0.29 0.23 0.23 0.24 0.41 0.39 0.40 0.37 0.34 0.43 0.59 0.54

% C27 Sterane 31.86 30.57 31.49 31.67 30.67 31.35 33.50 33.48 32.88 33.61 33.06 33.35 34.16 30.81 33.04 33.04 33.85 33.11 29.15 20.40 23.81

m/z 217 and MRM traces*
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% C28 Sterane 33.51 34.05 32.68 34.15 34.72 33.08 32.20 31.30 32.88 32.46 32.59 31.72 31.99 34.71 32.79 33.48 31.80 31.92 33.06 40.07 38.88

% C29 Sterane 34.63 35.38 35.83 34.18 34.60 35.57 34.29 35.22 34.24 33.93 34.35 34.93 33.85 34.48 34.16 33.48 34.36 34.97 37.80 39.53 37.32

% C27 Diasterane 45.20 41.36 44.02 42.69 40.19 41.99 44.33 43.52 42.23 43.87 41.81 43.59 43.60 42.18 46.64 45.92 42.02 43.99 41.63 32.06 38.08

% C28 Diasterane 33.87 37.70 31.93 34.99 37.30 35.17 33.96 36.11 35.40 32.95 35.65 33.90 34.16 36.40 32.46 34.94 33.82 33.10 34.41 42.76 38.77

% C29 Diasterane 20.93 20.93 24.05 22.32 22.51 22.84 21.71 20.37 22.37 23.18 22.54 22.51 22.24 21.41 20.90 19.14 24.16 22.90 23.95 25.19 23.15

C29 20S / (20S+20R) 0.53 0.51 0.51 0.48 0.48 0.49 0.53 0.51 0.49 0.51 0.52 0.51 0.50 0.52 0.52 0.52 0.50 0.51 0.52 0.55 0.53

C29 αββ/(αββ+ααα) 0.52 0.54 0.51 0.48 0.48 0.51 0.58 0.53 0.48 0.56 0.55 0.56 0.56 0.54 0.51 0.53 0.48 0.57 0.50 0.62 0.61

C28/C29 Steranes 0.97 0.96 0.91 1.00 1.00 0.93 0.94 0.89 0.96 0.96 0.95 0.91 0.95 1.01 0.96 1.00 0.93 0.91 0.87 1.01 1.04

C30 / (C27 - C30) Steranes* 0.23 0.23 0.23 0.22 0.23 0.21 0.24 0.20 0.23 0.25 0.25 0.25 0.24 0.22 0.22 0.22 0.19 0.23 0.16 0.28 0.27

C26 21/(21+27) Norcholestanes* 0.13 0.13 0.13 0.17 0.20 0.16 0.17 0.18 0.18 0.18 0.16 0.17 0.18 0.13 0.12 0.12 0.15 0.16 0.09 0.16 0.16

C26 24/(24+27) Norcholestanes* 0.26 0.29 0.28 0.31 0.29 0.35 0.27 0.30 0.30 0.26 0.25 0.24 0.25 0.29 0.27 0.26 0.29 0.28 0.25 0.30 0.29

C26 24/(24+27) Nordiacholestanes* 0.31 0.51 0.26 0.38 0.45 0.49 0.40 0.47 0.29 0.45 0.38 0.31 0.53 0.36 0.33 0.25 0.25 0.31 0.22 0.17 0.17

TPP ratio* 40.50 24.70 37.40 50.35 54.35 33.35 40.90 34.65 51.10 51.90 0.00 53.80 51.75 35.95 42.45 39.75 40.15 38.70 35.10 0.00 0.00

% 27s 40.98 39.11 41.09 29.32 30.46 28.48 37.48 34.99 29.50 35.12 38.92 38.43 38.93 38.93 38.03 38.68 33.55 21.77 0.00 16.67 21.98

% 28s 24.30 25.99 24.57 27.61 27.39 26.96 23.24 28.29 26.73 29.97 30.32 30.66 30.41 24.66 23.12 24.09 20.68 28.01 0.00 23.23 24.27

% 29s 34.72 34.91 34.34 43.08 42.16 44.55 39.28 36.72 43.77 34.91 30.75 30.91 30.66 36.42 38.86 37.23 45.77 50.22 0.00 60.10 53.74

MA (I) (Sum of C21 to C22) 16.75 12.40 16.60 4.35 3.75 3.30 13.55 12.20 3.70 6.10 7.85 8.00 7.80 15.75 12.40 12.40 7.50 9.40 0.00 0.90 0.30

m/z 253
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MA (II) (Sum of C27 to C29) 59.05 58.30 61.45 58.50 60.25 56.00 27.75 40.30 57.80 70.90 80.80 81.05 80.40 61.65 60.35 58.95 38.45 34.45 0.00 29.70 32.75

MA (I) / ((MA (I) + MA (II)) 0.22 0.18 0.21 0.07 0.06 0.06 0.33 0.23 0.06 0.08 0.09 0.09 0.09 0.20 0.17 0.17 0.16 0.21 0.00 0.03 0.01

C26 / C28S Triaromatic steroid 2.1 2.2 2.1 2.1 2.1 1.8 1.6 1.7 2.1 2.7 3.5 3.5 3.7 2.0 2.0 2.0 1.8 1.6 0.0 1.9 2.0

C27 / C28S Triaromatic steroid 0.5 0.5 0.5 0.6 0.6 0.6 0.4 0.5 0.6 0.9 1.1 1.1 1.0 0.5 0.5 0.5 0.6 0.4 0.0 0.4 0.5

TA (I) (Sum of C20 to C21) 19.0 18.7 21.1 5.1 5.1 4.5 19.1 19.4 5.1 8.9 7.9 8.4 8.4 14.3 15.6 17.6 5.2 19.0 0.0 19.5 9.3

TA (II) (Sum of C26 to C28) 41.4 40.1 40.3 41.9 41.6 44.5 28.5 31.5 42.0 36.2 32.8 33.7 32.5 43.3 42.0 42.4 43.0 32.2 0.0 12.8 7.9

TA (I) / ((TA (I) + TA (II)) 0.3 0.3 0.3 0.1 0.1 0.1 0.4 0.4 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.1 0.4 0.0 0.6 0.5

Note: 

3. OEP 3 = (C29 + 6C31 + C33) / (4C30 + 4C32)
4. OEP 4 = (C33 + 6C34 + C35) / (4C34 + 4C36)
5. OEP 5 = (C35 + 6C37 + C39) / (4C38 + 4C40)

9. Homohopane index = (C35 homohopane S+R) / (C35 + C34 + C33 + C32 + C31 homohopane S+R)

12. C27 diasterane/(Dia+Reg) steranes= C27 diasteranes / (C27 diasteranes + (C27 + C28 + C29) steranes
13. C30/(C27 - C30) steranes = C30 / (C27+C28+C29+C30) Steranes
14. Diasterane / Sterane = C27 diasteranes / C27 Steranes

10. % C27 Steranes = (Total C27 steranes)/(Total C27+C28+C29 steranes)*100
11. % C27 Diasteranes = (Total C27 diasteranes)/(Total C27+C28+C29 diasteranes)*100

1. OEP 1 = (C21 + 6C23 + C25) / (4C22 + 4C24)
2. OEP 2 = (C25 + 6C27 + C29) / (4C26 + 4C28)

6. Tricyclic/(tricyclic + Hopane) = (C20 + C23 + C24 + C25 + C26 + C28 + C29 tricyclic) / (C20 + C23 + C24 + C25 + C26 + C28 + C29 tricyclic) + (Ts + Tm + C29 hopane + C29Ts      

8. Gammacerane Index = Gammacerane / (Gammacerane + C30 hopane)
7. % C31 homohopane = C31 22S+22R homohopane / total homohopane homologs
    diahopane + C30 hopane + moretane + all of the homohopane homologs)

m/z 231
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15. TPP ratio = (2 x C30 tetracyclic polyprenoid) / (2 x C30 tetracyclic polyprenoid) + (total C26 27-norcholestanes) 
16. % 27s = (Total C27 monoaromatic steroid)/(Total C27+C28+C29 monoaromatic steroids)*100                     
17. MA (I) = Sum of C21 to C22 monoaromatic steroid

19. TA (I) = Sum of C21 to C22 triaromatic steroid
20. TA (II) = Sum of C27 to C29 monoaromatic steroid

18. MA (II) = Sum of C27 to C29 monoaromatic steroid



95

Field ID#1 ID#2 ID#3 Wt (mg) Amp(V) C Wt. % C δ13C  VPDB Run
LA02 Saturate Oil 0.259 1.683 84.11 -30.07 8
LA03 Saturate Oil 0.210 1.438 88.20 -29.66 9
LA04 Saturate Oil 0.229 1.522 86.15 -30.13 10
LA13 Saturate Oil 0.170 1.095 82.79 -30.21 22
LA14 Saturate Oil 0.191 1.218 82.07 -30.29 23
LA15 Saturate Oil 0.309 1.923 80.40 -30.17 24
LA08 Saturate Oil 0.187 1.277 88.39 -30.02 14
LA09 Saturate Oil 0.260 1.757 87.36 -28.26 15
LA05 Saturate Oil 0.171 1.096 82.45 -29.80 11
LA06 Saturate Oil 0.180 1.122 80.51 -28.89 12
LA07 Saturate Oil 0.180 1.172 83.74 -29.76 13
LA10 Saturate Oil 0.240 1.522 81.93 -29.23 16

Ghost R LA11 Saturate Oil 0.286 1.913 86.93 -28.90 18
LA12A Saturate Oil 0.171 1.078 80.99 -28.48 19
LA12B Saturate Oil 0.230 0.764 42.58 -28.85 20
LA12C Saturate Oil 0.160 1.111 89.01 -28.60 21
LA02 Aromatic Oil 0.205 1.304 81.82 -30.42 29
LA03 Aromatic Oil 0.250 1.046 53.54 -30.46 30
LA04 Aromatic Oil 0.249 1.716 89.10 -30.53 31
LA13 Aromatic Oil 0.197 1.318 86.03 -30.47 43
LA14 Aromatic Oil 0.252 1.693 86.87 -30.52 44
LA15 Aromatic Oil 0.206 1.283 80.51 -30.45 45
LA08 Aromatic Oil 0.219 1.488 87.38 -30.14 35
LA09 Aromatic Oil 0.184 1.264 88.46 -29.61 36
LA05 Aromatic Oil 0.192 1.309 87.36 -28.96 32
LA06 Aromatic Oil 0.310 2.110 87.40 -28.59 33
LA07 Aromatic Oil 0.223 1.493 86.21 -28.99 34
LA10 Aromatic Oil 0.240 1.593 85.81 -28.82 38

Ghost R LA11 Aromatic Oil 0.201 1.379 88.88 -28.75 39
LA12A Aromatic Oil 0.180 1.190 84.52 -28.61 40
LA12B Aromatic Oil 0.245 1.615 85.23 -28.83 41
LA12C Aromatic Oil 0.182 1.203 85.57 -28.81 42

Notes:
Notes as defined in Table III.

Grant 
Canyon

Eagle 
Spring

Kate 
Spring

Table 6. Stable carbon isotope values of oil samples

Trap 
Spring

Grant 
Canyon

Eagle 
Spring

Kate 
Spring

Trap 
Spring



96

ES GR TS

LA-02 LA-03 LA-04 LA-05 LA-06 LA-07 LA-08 LA-09 LA-10 LA-11 LA-12A LA-12B LA-12C LA-13

D3 1-Methyladamantane (I.S.) 33.9 36.7 47.4 55.5 35.7 29.0 26.3 46.4 43.8 32.1 37.5 51.0 46.0 34.9

1-Methyladamantane 9.2 1.4 5.3 3.6 1.2 2.6 15.2 17.6 9.3 14.8 15.3 25.8 21.0 13.1

2-Methyladamantane 10.0 0.4 1.2 0.9 0.8 1.9 0.7 - 5.0 8.8 7.8 11.7 9.7 10.7

1-Ethyladamantane 10.3 0.3 0.7 0.9 0.7 0.7 1.3 - 2.2 5.0 5.5 8.8 5.4 8.0

2-Ethyladamantane 21.9 0.9 1.4 2.2 1.2 1.7 0.1 - 4.5 6.8 6.9 10.1 7.7 15.7

Adamantane 2.5 0.2 0.3 0.6 0.4 1.4 0.4 0.4 4.1 4.6 4.2 7.3 6.0 3.2

D4 Adamantane (I.S.) 20.4 22.1 28.5 33.4 21.5 17.4 15.8 27.9 26.3 19.3 22.5 30.6 27.6 21.0

1,3-Dimethyladamantane 10.3 0.5 1.2 1.4 0.8 2.6 4.1 0.5 6.8 10.5 11.8 20.0 14.9 14.5

1,4-Dimethyladamantane (1) 13.3 0.7 1.5 1.4 0.9 1.9 2.4 0.3 5.1 8.5 8.8 13.6 9.9 15.2

1,4-Dimethyladamantane (2) 12.2 0.6 1.4 1.3 0.8 1.7 2.1 0.2 4.5 8.0 8.1 11.9 8.8 13.4

1,2-Dimethyladamantane 16.3 1.0 2.0 1.8 1.2 1.9 3.2 0.3 5.2 10.2 11.2 16.1 11.5 17.2

4-Methyldiamantane 12.6 0.4 0.9 0.9 1.6 0.8 1.7 0.8 1.4 1.6 2.3 3.7 3.3 3.7

D3 1-Methyldiamantane (I.S.) 4.2 4.5 5.8 6.8 4.4 3.5 3.2 5.7 5.4 3.9 4.6 6.2 5.6 4.3

1-Methyldiamantane 8.7 0.3 0.4 0.3 0.5 0.2 1.6 2.3 0.6 1.0 1.6 2.1 1.8 2.3

3-Methyldiamantane 6.7 0.3 0.5 0.4 0.6 0.3 0.9 0.6 0.5 0.6 0.8 1.3 1.1 1.7

1-Ethyldiamantane 0.7 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.1 0.1 0.1 0.2 0.1 0.2

D5-Ethyldiamantane 3.0 3.2 4.2 4.9 3.1 2.5 2.3 4.1 3.8 2.8 3.3 4.5 4.0 3.1

2-Ethyldiamantane 1.0 0.1 0.1 0.1 0.1 0.0 0.2 0.4 0.1 0.1 0.1 0.1 0.1 0.3

Diamantane 2.8 0.5 0.8 1.3 1.7 1.2 1.1 0.1 1.8 1.9 2.6 4.7 3.5 2.2

Table 7. Diamondoids concentration of oil samples
Oil Samples

Diamondoids compounds TS ES GC KS
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D4 Diamantane (I.S.) 2.7 2.9 3.8 4.5 2.9 2.3 2.1 3.7 3.5 2.6 3.0 4.1 3.7 2.8

Hopane 670.6 129.4 210.1 354.1 417.9 291.1 162.7 183.9 298.8 319.3 403.5 318.3 290.6 274.4

4,9-Dimethyldiamantane 3.9 0.2 0.3 0.3 0.5 0.3 0.8 0.5 0.4 0.4 0.6 1.0 0.9 1.2

1,4+2,4-Dimethyldiamantane 5.1 0.2 0.4 0.3 0.6 0.3 1.3 0.9 0.4 0.5 0.7 1.2 1.1 1.4

4,8-Dimethyldiamantane 8.0 0.3 0.6 0.5 0.9 0.5 1.8 1.3 0.7 0.8 1.1 1.9 1.6 2.1

3,4-Dimethyldiamantane 8.0 0.3 0.7 0.5 0.8 0.4 1.4 1.2 0.6 0.7 1.0 1.5 1.3 2.0

Cholane (I.S.) 13.6 14.7 19.0 22.2 14.3 11.6 10.5 18.6 17.5 12.8 15.0 20.4 18.4 14.0

C29 ααα 20R Sterane 130.8 21.8 34.2 104.4 128.3 74.6 32.3 24.6 81.1 68.6 78.7 55.8 53.7 65.3

9-Methyltriamantane 18.5 1.3 3.4 1.2 2.8 1.1 5.8 2.7 2.3 1.8 2.0 2.7 2.4 3.6

Triamantane 12.2 0.8 2.0 1.1 1.9 0.8 5.1 2.1 1.2 1.1 1.4 2.0 1.8 3.0

D4 Triamantane 2.0 2.1 2.7 3.2 2.1 1.7 1.5 2.7 2.5 1.8 2.2 2.9 2.6 2.0

Tetramantane-1 1.2 0.1 0.3 0.2 0.3 0.1 0.7 0.6 0.3 0.2 0.3 0.2 0.2 0.3

Tetramantane-2 0.7 0.1 0.1 0.1 0.3 0.1 0.4 0.3 0.2 0.1 0.2 0.2 0.2 0.2

Tetramantane-3 0.3 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Note: 

Diamondois concentration in ppm.

I.S. : Internal standard

: Parameters used for cross plot of diamondoids vs stigmastane (Figure 17).
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