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ABSTRACT 
 

The Effects of Contact Metamorphism on Host Rocks for Carlin-Type 
Mineralization at the Getchell Deposit, Nevada, USA 

 
by 
 

Nathan Charles Eck 
 

Dr. Adam Simon, Examination Committee Co-chair 
Assistant Professor 

University of Nevada, Las Vegas 
 

Dr. Jean Cline, Examination Committee Co-chair 
Professor 

University of Nevada, Las Vegas 
 

     Carlin-type gold deposits (CTGDs) result from low to moderate temperature 

hydrothermal systems which form replacement bodies in carbonate or calcareous host 

rocks. The Getchell CTGD is located on the Getchell trend in north central Nevada. The 

Eocene age mineralization is locally hosted within the metamorphic aureole of the 

Cretaceous age Osgood stock. Previous studies have noted that the effects of the contact 

metamorphism can be heterogeneous, with strongly calc-silicate altered carbonates 

transitioning to relatively pristine limestone over short distances. The main finding of this 

study was that the variability in calc-silicate alteration is largely dependent on the 

differing host lithologies at the deposit. Strong calc-silicate alteration from contact 

metamorphism commonly exists in rocks composed of argillaceous mudstone inter-

bedded with limestone while the rocks composed of siliceous carbonaceous mudstones 

and limestones just a few meters away show no evidence of calc-silicate alteration. 

     The different ways in which these rock types respond to the contact metamorphism 

plays an important role in ore control at the deposit. The strongly calc-silicate altered 

rocks are poor hosts for Carlin-type gold deposition. The ore fluids which were 
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moderately acidic, pH 3-4, required carbonates to generate porosity and permeability, as 

well as to liberate iron for the ore fluids to sulfidize to form the Au-bearing pyrite. As 

such the strongly calc-silicate altered lithologies are not receptive to the Carlin ore fluids, 

due to most of the carbonate being replaced by calc-silicate minerals. The limestones 

inter-bedded with siliceous carbonaceous mudstones which have not been altered to calc-

silicates, are the best hosts for Carlin-type mineralization. This study observed several 

locations where strong mineralization is present in this rock type up to the contact with 

the strongly calc-silicate altered argillaceous mudstones inter-bedded with limestones.  

     Additionally mineralization is restricted to areas adjacent to conduits for ore fluids, 

most commonly faults, but also along dikes. Where conduits transporting ore fluids 

contact the receptive areas host rock mineralization permeates outward away from the 

conduit. The best hosts, those which are dominantly limestone, contain grades >1.000 

ounce Au per ton (oz/t). Sections composed dominantly of siliceous carbonaceous 

mudstones have little to no calcareous material for the ore fluids to replace aside from 

calcite filled fractures. Gold grade in mineralized sections of siliceous carbonaceous 

mudstone are <0.100 oz/t Au. Faults which cut the strongly calc-silicate altered rocks 

typically have mineralization which is confined to the fault gouge and does not permeate 

into the surrounding rock, although in heavily faulted areas there can be significant 

intervals of fault gouge and breccia with ore grade mineralization (>0.300 oz/t Au). 

     The secondary focus of this study examined the distribution of iron-bearing carbonate 

proximal to the Osgood stock to determine if the stock was responsible for adding iron to 

the surrounding carbonates. Iron-bearing carbonates have been proposed to be better 

hosts for Carlin mineralization, providing a source of iron for the ore fluids to sulfidize 
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and precipitate Au-bearing pyrite. This study revealed no systematic distribution of 

ferroan carbonate that would indicate the iron was sourced from the stock. Rather, the 

distribution of ferroan carbonate is found to be largely controlled by lithology. The 

limestones with a silty component were found to be iron-rich while pure limestones 

associated with the siliceous carbonaceous mudstones were iron-poor. 
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CHAPTER 1  

INTRODUCTION 

The state of Nevada in the western United States is the type locality for the world 

class Carlin-type gold deposits (Fig. 1). The total gold in Nevada’s Carlin-type deposits, 

including past production and current reserves is in excess of 200 million ounces (Moz) 

(Sillitoe, 2008). These deposits account for much of the 5.6 Moz of gold produced in 

Nevada during 2008, which made up 76% of U.S. gold production that year (The Nevada 

Mineral Industry, 2008). This made Nevada alone the world’s 4
th

 largest gold producer 

behind China, Australia and South Africa (The Nevada Mineral Industry, 2008).  
Carlin-type deposits are large sediment-hosted gold deposits which typically contain 

structurally and/or stratigraphically controlled, disseminated gold-bearing pyrite 

mineralization (Cline et al., 2005). Host rocks for these types of systems are dominantly 

pyritic, carbonaceous, silty carbonates and less commonly calcareous shales (Cline et al., 

2005 and references therein). These deposits occur along linear trends in north central 

Nevada (Fig. 1), which are thought to overlie deep crustal scale faults (Tosdal et al., 

2000; Crafford and Grauch, 2002; Cline et al., 2005). The main trends are the NW 

trending Carlin Trend, the NW trending Battle Mountain – Eureka Trend and the NNE 

trending Getchell Trend (Figs. 1 and 2). 

Several large Carlin-type deposits, including the Betze-Post and Getchell deposits, 

occur in host rocks adjacent to Mesozoic intrusions (Figs. 2 and 3). During subsequent 

deformation events after their emplacement these Mesozoic plutons are thought to have 

acted as rigid bodies, resulting in the generation of enhanced fracture networks around 

the plutons providing fluid pathways for the later Eocene aged Carlin mineralization 
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event (Cline et al., 2005). However, the contact metamorphism associated with the 

intrusion of these plutons also caused calc-silicate alteration; which replaced the reactive, 

favorable, carbonate host rocks near these stocks with less favorable, unreactive, calc-

silicate minerals such as wollastonite. Due to this replacement the Carlin ore fluids could 

not generate porosity and permeability in the rocks via dissolution of carbonate by acidic 

fluids. Additionally the dissolution of carbonates is hypothesized as necessary to liberate 

iron vital for the ore fluids to sulfidize and form gold bearing pyrite. As a result calc-

silicate rocks are generally poor host rocks for Carlin-type mineralization. 

The Getchell Property has been the site of large scale gold mining since 1938. The 

site contains three deposits; 1) The Getchell Open Pits were mined along the surface 

exposure of the Getchell fault intermittently from 1938-1998 (Joralemon, 1951; 

Chevillon et al., 2000) 2) the Getchell Main Underground mineralization in the footwall 

of the Getchell fault was mined from 1994-2008 (Tretbar, 2004), and 3) the Turquoise 

Ridge underground mine, the only current mining activity on the property, is targeting 

mineralization in the hanging wall above the Getchell fault and has been mined from 

1997-present (Cline et al., 2008).  

The purpose of this study is to determine how contact metamorphism, in particular, 

calc-silicate alteration, caused by Mesozoic intrusions, impacts the ability of various 

lithologies to host Carlin-type gold mineralization at the Getchell deposit. This study is 

focused on an area of mineralization located in the hanging wall of the Getchell fault to 

the south-southwest of the Turquoise Ridge deposit (Fig. 4). This mineralization occurs 

within the metamorphic aureole of the Osgood stock and is adjacent to a lobe of the 

Osgood stock located in the hanging wall.  
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The primary goal of this study was to constrain the effects of calc-silicate alteration 

on the various lithologies potential for hosting Eocene aged Carlin type mineralization 

within the metamorphic aureole of the Cretaceous Osgood stock on the Getchell Property 

(Fig. 2). The secondary goals of this project were to 1) conduct carbonate staining for the 

presence of iron in non or minimally calc-silicate altered limestones in order to determine 

if the Osgood stock was responsible for adding iron to the surrounding carbonates, and 2) 

better develop the stratigraphy in this area and relate it to the stratigraphy that has been 

established at Turquoise Ridge. 
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CHAPTER 2  

GEOLOGIC HISTORY 

 The complex geologic history of Nevada played a vital role in creating favorable host 

rocks, structures to transport ore fluids, and traps to localize the mineralization. 

Beginning in the Late Proterozoic, rifting generated deep seated basement faults in the 

thinned continental crust along the western margin of North America (Tosdal et al., 2000; 

Crafford and Grauch, 2002). Above this rifted margin a sedimentary sequence developed, 

initially dominantly composed of clastic material which built up to a thickness of >6 km 

from the Neoproterozoic to the Cambrian (Stewart, 1980; Emsbo et al., 2006). From the 

Cambrian to the Devonian a carbonate platform developed along this passive margin 

generating a package of sedimentary rocks consisting largely of shelf and slope carbonate 

rocks (Cook, 2005). These rocks transition from dominantly shallow water carbonates in 

eastern Nevada to deep water siliciclastic mudstones, and cherts locally inter-bedded with 

carbonates, transported off the Paleozoic carbonate shelf as turbidites, in western Nevada 

(Cook, 2005). 

In the late Devonian, compressional tectonics began as a subduction zone developed 

along the western margin of North America culminating in the Devonian-Mississippian 

Antler Orogeny (Crafford and Grauch, 2002; Dickinson, 2004; Metcalf, 2004). The 

orogeny thrust the deep water siliciclastic sediments and basalts of the Roberts Mountain 

Allochthon, referred to as the upper plate, over the slope and shelf carbonate sequences, 

referred to as the lower plate, along the Roberts Mountain Thrust (Roberts, 1960). Active 

compressional tectonics continued from the Triassic into the Tertiary with the Sonoma 
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and Sevier Orogenies (Dickinson, 2004). These events resulted in further thrusting and 

folding of the sedimentary rocks along the western margin of North America.  

During the Mesozoic, east dipping subduction of the Farallon plate generated 

magmatism which gave rise to the Sierra Nevada batholiths as well as the intrusion of 

several back arc plutons (Crafford and Grauch, 2002; Dickinson, 2004; Emsbo et al., 

2006). The distribution of these plutons along linear trends suggests that they were 

emplaced along the earlier crustal scale faults (Tosdal et al., 2000; Emsbo et al., 2006). 

These Mesozoic plutons include the Jurassic Goldstrike diorite on the Carlin Trend and 

the Mesozoic Osgood stock on the Getchell trend (Ressel et al., 2000). Magmatism 

shutdown as the angle of subduction became increasingly shallow eventually resulting in 

the slab becoming coupled to the base of the continental crust (Humphreys, 1995).  

Magmatism resumed in the Eocene with the introduction of hot asthenospheric 

mantle to the base of the crust. In the northern Basin and Range this magmatism began in 

Idaho around 50 Ma and swept south through Nevada as the Farallon plate, which had 

been previously coupled to the base of the crust, was removed (Humphreys, 1995). The 

timing of the onset of extension and magmatism in northern Nevada is consistent with the 

age of formation for the Carlin-type gold deposits at 43-37 Ma (Ressel et al., 2000; 

Tretbar, 2004; Cline et al., 2005; Emsbo et al., 2006).  

The extension opened and/or reactivated favorably oriented structures from previous 

tectonic events, providing pathways for ore fluids (Cline et al., 2005). These fluids 

exploited areas of crustal weakness and moved upward into areas of receptive carbonate 

host rocks. The Eocene magmatism provided at the minimum a heat source for the 

hydrothermal system which generated the Carlin-type deposits and may have contributed 
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the metals as well (Ressel et al. 2000; Cline et al., 2005; Ressel and Henry, 2006). 

Subsequent uplift and erosion since the Eocene has exhumed Carlin deposits, which are 

proposed to have formed at depths of 1-3 km, to their present location at or near the 

surface (Cline et al., 2005).  
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CHAPTER 3  

PREVIOUS WORK AT GETCHELL 

Stratigraphy 

 The host rocks for the Carlin-type gold deposits on the Getchell trend consist of Late 

Cambrian through Ordovician carbonates, silty carbonates, calcareous shales, and shales. 

Historically these host rocks have been mapped as the Cambrian Preble Formation and 

the Cambro-Ordovician Comus Formation (Holtz and Willden, 1964) (Fig. 3). Fossils are 

uncommon in the area and where they have been located they have been significantly 

altered by the metamorphism associated with the intrusion of the Osgood stock (Boskie, 

2001). These factors have made precise dating of the units difficult. Where trace fossils 

have been recovered they yield Cambrian to early Ordovician ages (Holtz and Wilden, 

1964; Boskie, 2001). In the vicinity of Getchell and Turquoise Ridge the sedimentary 

sequence is capped by Ordovician basalt (Breit et. al, 2005) 

These formations were later intruded in the Cretaceous, first by dacite dikes dated 115 

± 2.3 Ma and later by the Osgood granodiorite stock at 92 Ma (Groff et al., 1997; Breit et 

al. 2005; Cline et al. 2008). The intrusion of the Osgood stock altered many of the 

surrounding carbonates and mudstones the calc-silicates and hornfels within a 

metamorphic aureole extending out 2000-3000 feet from the stock (Cline et. al, 2008). 

The deposits along the Getchell trend lack evidence of the Eocene magmatism which is 

ubiquitous on the Carlin Trend, in the form of dikes and sills, further to the east (Ressel 

and Henry, 2006). 

Controversy still exists over which formation or formations are present along the 

eastern flank of the Osgood Mountains, and host the Carlin-type gold deposits of the 
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Getchell trend. It has been suggested that the units mapped as the Comus Formation 

along the eastern flank of the Osgood Mountains more closely resemble the lithology and 

structural deformation observed in the Preble Formation than the Comus Formation at its 

type locality (Madden-Maguire and Marsh, 1991; Boskie, 2001). Further, Boskie (2001) 

concluded, based on litho-geochemistry of samples, that the units mapped as Comus 

Formation and Preble Formation along the Osgood Mountains were chemically 

indistinguishable.  

The stratigraphy at Turquoise Ridge and Getchell is further complicated by lack of 

conspicuous stratigraphic marker horizons and discontinuity of units over short distances 

(Joralemon, 1951; Cline et al., 2008). Boskie (2001) mapped the eastern flank of the 

Osgood Mountains in and around the Getchell and Pinson mines and concluded that no 

stratigraphic continuity exists between the units in the area. The study proposed that the 

rocks on the eastern flank of the Osgood Mountains are part of a tectonic mélange. This 

mélange incorporated slices of differing lithologies and juxtaposed them resulting in the 

complex geology that is observed in the area (Boskie, 2001).  

Geologists working on the Getchell/Turquoise Ridge deposit for Placer Dome, and 

later Barrick Gold, as well as research conducted by Cline et al. (2008) have interpreted 

this complex stratigraphy as an olistostrome, based on the interpretation of thousands of 

feet of core drilled on the property. This unit consists of a series of one or more large 

scale debris flow deposits or soft sediment slumps occurring on the slope of the Paleozoic 

continental margin. The thickness of the unit is unknown but has been drilled to depths of 

5000 feet at Turquoise Ridge in the hanging wall of the Getchell fault (Keith Wood, per. 

comm., 2009).   
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Structure 

The key structural feature of the property is the Getchell fault, located along the 

eastern flank of the Osgood Mountains (Figs. 2 and 3). The fault strikes NNW and dips 

30°-50° to the east. The fault is observed as a gouge zone ranging from 50-200 feet thick. 

The history of movement on the fault is long and complex. Many dikes in the area are 

emplaced along Getchell parallel structures suggesting the fault existed prior to the 

emplacement of the 92 Ma Osgood stock. The early motion on the fault was dominated 

by left-lateral strike-slip movement, based on the presence of large horizontal mullions 

(Boskie, 2001). A second, later stage of movement was normal displacement, inferred 

from vertical slickenlines overprinting the horizontal mullions, was associated with 

extension in the Basin and Range (Boskie, 2001). Slickenlines of the late stage ore 

mineral realgar, and offset of alluvial fans suggest post-mineralization movement on the 

fault (Boskie, 2001; Tom Chadwick, per. comm. 2010). 

 The surface expression of the fault consists of a series of splays which diverge and 

coalesce along the strike of the fault. The resulting fault zone expands out to 400 feet in 

thickness where the splays diverge in the south pit, and necks down to 20 feet where the 

splays coalesce between the Main and North Pits (Fig. 4; Tom Chadwick, Per. Comm. 

2009) The Getchell fault was the primary conduit for the ore forming fluids during 

mineralization (Joralemon, 1951; Cline, 2001; Tretbar, 2004; Cline et al., 2008). The 

early mining at Gechell focused on the surface exposures of the altered carbonaceous 

fault gouge, which were developed into open pits (Joralemon, 1951). Later underground 

mining at Turquoise Ridge has focused on mineralization in the hanging wall above the 

Getchell fault (Cline et al., 2008). 
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Mineralization 

The Carlin-type mineralization has been extensively studied at the Getchell and 

Turquoise Ridge deposits (Joralemon, 1951; Cline and Hofstra, 2000; Cline, 2001; 

Tretbar, 2004; Longo et al., 2008; Cline et al., 2008). Fluid inclusion and geochemical 

data from Getchell indicate that mineralizing fluids precipitated gold-bearing trace 

element rich pyrite at temperatures between 180º and 220º C, had bulk salinities of 4 to 5 

wt. % NaCl eq., and contained H2S with which the gold may have been complexed as a 

gold-bisulfide species (Cline and Hofstra, 2000; Cline, 2001; Cline et al., 2005). These 

characteristics are salient features of most Carlin-type deposits. The ore fluids were 

mildly acidic, having inferred pH ranging from 3 to 4.5, which allowed them to react with 

and dissolve the calcareous host rock, creating further permeability for ore fluids (Cline 

et al., 2005).   

Cline (2001) proposed that Carlin-style mineralization occurred during a single ore-

fluid event at each deposit. After the hydrothermal system collapsed and cooled, marked 

by the precipitation of late ore-stage minerals such as realgar, there were no further 

overprinting gold mineralization events (Cline, 2001). Electron probe microanalysis 

(EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

analyses of ore-stage pyrite from the Getchell deposit show chemical variation occurred 

over the duration of the hydrothermal system (Cline et al., 2005; Longo et al., 2008). 

These later studies report and discuss data that are consistent with mineralizing fluids that 

evolved chemically in space and time throughout the Getchell deposit (Longo et al., 

2008). New research using high resolution Secondary Ion Mass Spectrometer 

(nanoSIMS) analysis of ore stage pyrite from Turquoise Ridge conducted by Barker et al. 
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(2009) suggests that there were two pulses of chemically distinct ore fluids separated by a 

low gold event. 
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CHAPTER 4  

METHODS 

Drill Core Logging 

During the summer of 2009 approximately 9000 feet of 63.5 mm diameter drill core 

was logged for this study, noting lithology, alteration, and mineralization. The drill holes 

selected are within 100 feet of either side of two cross section planes, A-A’ and B-B’, 

extending outward from the lobe of the Osgood stock in the hanging wall of the Getchell 

fault (Fig. 4). The cross section lines were chosen to examine the effects of calc-silicate 

alteration on the host rocks extending outward from the lobe of the Osgood stock in the 

hanging wall of the Getchell fault (Fig. 4). The goals of producing these cross sections 

were to 1) determine the extent and intensity of calc-silicate alteration in the area; 2) 

identify areas of mineralization and see how they are spatially related to the areas of calc-

silicate alteration; and 3) clarify the stratigraphy south of Turquoise Ridge. 

The drill core that was logged and sampled came from eleven drill holes as well as 

rock chips from one reverse circulation drill hole. Five of the core holes were logged 

completely and portions of six holes were logged in and around areas that intersected 

mineralization due to preservation of only the mineralized portions of core. Core logs for 

the rest of the holes were used to construct the cross sections as well. Gold grades and 

multi-element assays were provided by Barrick. 

Optical Petrography 

Twenty-five polished thin sections were cut from core samples for petrographic 

analysis. These samples represented a wide range in rock types and degrees of calc-
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silicate alteration as well as varying degrees of mineralization. The thin sections were 

analyzed by both standard transmitted and reflected light microscopy. 

X-Ray Diffraction 

Many of the samples contained very fine grained mineral assemblages which made 

mineral identification with optical petrography difficult. X-ray diffraction (XRD) was 

utilized to identify the mineralogy of the fine-grained assemblages in samples. Twenty-

five samples of varying lithologies and with varying amounts of calc-silicate alteration, 

including several samples of mineralized material, were taken from drill core hand 

samples for XRD analysis. Samples were ground to a fine powder with a corundum 

mortar and pestle. These powders were mounted onto 10 mm sample discs and analyzed 

with a PANalytical X'PERT Pro X-ray Diffraction Spectrometer in the University of 

Nevada, Las Vegas XRD/XRF Laboratory. Data were collected in twenty minute runs 

analyzed from 10-84 2θ. Analysis of the XRD spectra for mineral identification and 

semi-quantitative mineral abundances were conducted using the X’pert Highscore Plus 

software package.  

Carbonate Staining 

Staining of carbonates for the presence of iron was completed following methods 

outlined in Hitzman (1999) and Cline et al. (2008). Staining in this study was conducted 

to determine if there is any spatial distribution of iron-rich carbonates which would 

suggest that the iron was sourced from the Osgood stock or fluids related to its intrusion. 

Three staining solutions were prepared: 1) a solution of potassium ferricyanide was 

prepared using 125 mL of 2% HCl and 0.625 g of potassium ferricyanide; 2) a solution of 

Alizarin Red S was prepared using 125 mL of 2% HCl and 0.15 g of alizarin red S; 3) a 
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solution was made by combining equal parts of the alizarin red S and potassium 

ferricyanide solutions. The potassium ferricyanide stains iron-bearing phases blue and the 

Alizarin Red S stains calcite red. The composite solution stains pure limestone red, 

ferroan limestone purple, ferroan dolomite blue, and dolomite has no stain. Care was 

taken during staining to avoid areas of limestone with iron sulfides which may cause a 

false iron positive result. 
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CHAPTER 5  

DATA 

Core Logging and Cross Sections 

Footwall Section 

 This study primarily deals with the rocks in the hanging wall of the Getchell fault; 

however in the drill core examined for Cross Section B, rocks in the footwall of the 

Getchell fault were encountered. These rocks are the lowest unit encountered in core; 

however, due to the substantial offset caused by the Getchell fault, their stratigraphic 

relationship to the rocks in the hanging wall remains uncertain. These footwall rocks 

consist dominantly of light to dark gray carbonaceous limestones with lesser inter-bedded 

dark gray to black calcareous carbonaceous mudstones and lesser amounts of siliceous 

carbonaceous mudstone (Fig. 5-A and 6).  The limestone beds can range in thickness 

from <1 cm to >1 m but generally range in thickness from 2-6 cm. The calcareous and 

siliceous mudstone beds are generally thinner and <2 cm. The limestone beds in these 

rocks are commonly weakly to moderately altered to calc-silicate minerals, dominantly 

wollastonite. The footwall rocks appear to be fairly homogeneous with consistent 

bedding angles in the upper 200-300 feet encountered by the core in Cross Section B, 

unlike the rocks in the hanging wall described below. 

Hanging Wall Section 

 The hanging wall above the Getchell fault, the stratigraphy becomes far more 

complex.  As described previously in the deposit geology section, the rocks in this area 

have no lateral continuity and exhibit rapid/abrupt changes in lithology over very short 

intervals. As such, logging these rocks and correlating them between drill holes even 
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100-200 feet apart was difficult.  The rocks of the hanging wall can be divided into two 

distinct groups by the composition of the mudstones. One group consists of siliceous 

carbonaceous mudstones and the other consists of argillaceous mudstones. Both groups 

of mudstones are inter-bedded with variable amounts of limestone and locally are 

dominantly limestone. The siliceous carbonaceous mudstones with limestone are best 

thought of as clasts ranging in some cases up to 300 feet in thickness that are found in a 

matrix of argillaceous mudstone. Contacts between the two rock types are commonly 

broken in core, but locally are found intact (Figs. 7 and 8). The boundary between the 

clast and matrix consists of fragments of limestone and siliceous mudstone locally mixed 

with the argillaceous mudstone. These fragments have a sheared fabric near the contact 

and become chaotic and jumbled with distance away from the contact (Fig. 7). Further 

into the siliceous carbonaceous mudstone clasts the chaotic jumble of fragments 

transitions to more regular bedding. 

Siliceous Carbonaceous Mudstone and Limestone 

The black siliceous carbonaceous pyritic mudstones are commonly inter-bedded with 

gray to dark gray limestone turbidites (Fig. 9). Intervals vary from dominantly mudstone 

to, less commonly, dominantly limestone. The bedding in the mudstone is generally 1-3 

cm thick and typically bounded by thin, 1-3 mm, carbon-rich mudstone inter-beds (Fig. 

10). The limestone beds generally range from a few centimeters to several meters in 

thickness. In some cases the limestone turbidites contain a basal conglomerate with rip-

up clasts of mudstone near the contact with the underlying mudstone bed (Fig. 11). 

A distinctive feature of these rocks is the occurrence of calcite veins, oriented 

perpendicular to beds of carbonaceous mudstone; these are generally restricted to a single 
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bed (Figs. 10 & 12). The calcite veins terminate at the thin inter-beds of carbon-rich 

mudstone (Figs. 10 and 13). These thin carbon-rich mudstone inter-beds appear to have 

behaved in a ductile manner during deformation. In some samples these carbon-rich mud 

inter-beds are observed partially filling the tension fractures (Fig. 10). In contrast the 

partially lithified siliceous beds between them behaved in a brittle manner and fractured, 

generating space for calcite veins. In addition to the tension gashes the siliceous 

carbonaceous mudstones and limestones are often deformed by folding of the bedding 

observed as changes in bedding orientation within one clast in core (Fig. 14). Differences 

in bedding angles are also commonly observed between clasts (Fig. 15). 

The mineralogy of the siliceous carbonaceous mudstones is difficult to determine via 

optical microscopy; due to their high carbon content they are typically opaque in thin 

section. With the exception of veins filled with coarse calcite, analysis by XRD shows 

that these mudstone units are comprised dominantly of quartz with lesser amounts of 

feldspar and diagenetic pyrite (Fig. 16). 

In thin section the limestone portions of these units are dominantly pure calcite, often 

finely recrystalized. There are locally small grains of quartz, ranging from ~0.5-1 mm in 

diameter, commonly near the base of the limestone bed associated with the basal 

conglomerate containing rip-up clasts of the siliceous carbonaceous mudstone from the 

underlying bed. Analysis by XRD confirms the observations via optical petrography of 

dominantly pure calcite with small amounts of quartz (Fig. 16). 

Argillaceous Mudstone and Limestone 

The second group of rocks in the debris flow consists of argillaceous mudstones, 

often with inter-beds of limestone. Less commonly some sections are dominantly 
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limestone with thin inter-beds of argillaceous mudstone. In the area of this study, the 

intrusion of the Osgood stock has metamorphosed the argillaceous mudstones to fine-

grained biotite hornfels, which are characteristically maroon to brown in color (Fig. 17). 

The bedding in the mudstones varies from finely laminated, often with soft sediment 

deformation, to massive. The limestones associated with the argillaceous mudstones are 

generally more thinly bedded than those found in association with the siliceous 

carbonaceous mudstones, ranging from 1-3 cm. The limestones are commonly cut by a 

developed cleavage fabric, defined by bands of biotite. These planes commonly cut and 

produce minor offsets in the bedding in the limestones (Fig 18).  

The argillaceous mudstones are very fine grained. Their mineralogy is difficult to 

determine in hand-sample. Under a microscope the argillaceous mudstones are revealed 

to be composed of fine-grained biotite and quartz. Analysis of samples of argillaceous 

mudstone by XRD indicates that these mudstones are composed of equal amounts of 

biotite and quartz with a small component of orthoclase, which was not observed under 

optical petrography (Table 1). Locally there are lenses that are composed dominantly of 

fine grained quartz.  

Samples of limestone are fine-grained calcite and commonly have thin beds of 

mudstone composed of biotite and quartz similar to the sections dominantly composed of 

argillaceous mudstone. Samples of limestone analyzed with XRD show they are 

composed of dominantly calcite, with a smaller component of orthoclase (Table 1). These 

limestones also commonly contain variable amounts of calc-silicate minerals which will 

be discussed below. 
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In core the argillaceous mudstones and limestones show pronounced soft sediment 

deformation with ductile folding in comparison to the more blocky and brittle 

deformation observed in the siliceous carbonaceous mudstones. The argillaceous 

mudstones also commonly have a fragmental texture with a matrix composed of 

dominantly argillaceous mudstones and small clasts of limestone ranging up to tens of 

centimeters in size, but typically 3-5 cm (Fig. 19). Some of the fragmental fabrics have 

limestone clasts with flow patterns around them suggesting that these rocks behaved in a 

ductile manner during the formation of the debris flow. These fragmental fabrics are 

often found on the borders of larger sections, tens of meters, of argillaceous limestone 

(Fig 19).  

Both groups of rocks, siliceous carbonaceous mudstones and argillaceous mudstones 

along with their associated limestones, occur together in the lower portions of the debris 

flow (Plates 1 and 2). Moving upward through the hanging wall section the amount of the 

siliceous carbonaceous mudstones and associated limestones decreases. The clasts of 

siliceous carbonaceous mudstone and limestone no longer occur above a broadly defined 

horizon at 4000’- 4200’ a.s.l in Cross Section B and 3600’- 3800’a.s.l in Cross Section A 

(Plates 1 and 2). The variations in the contact elevations suggest this horizon dips 

shallowly to the north. 

The upper portion of the debris flow is composed only of argillaceous mudstones and 

associated limestones (Fig. 5-D). The upper section also contains thicker intervals 

composed dominantly of limestone with thin layers of argillaceous mudstone, although 

clasts of the same limestone may also be found in the lower portions of the section. These 

larger intervals of dominantly limestone with thin inter-beds of argillaceous mudstone 
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also appear to be clasts in a dominantly argillaceous mudstone matrix. Along the margins 

of such clasts, fragments of the limestone are ripped off and incorporated into the mud 

matrix (Fig. 19). 

Upper Siliceous Carbonaceous Mudstone 

Above the upper portion of the debris flow deposit there is a continuous unit of 

siliceous carbonaceous black mudstone (Fig. 5-E). This layer ranges from 25-150 feet 

thick, with thicker intervals in Cross Section A as opposed to Cross Section B to the 

south, suggesting the unit may thicken to the north. Individual mudstone beds measure 1-

3 cm thick although they are locally finely laminated on a millimeter scale (Fig. 20). 

Diagenetic pyrite is also common along bedding planes. Unlike the rock in the siliceous 

carbonaceous mudstone that occurs as clasts in the lower parts of the stratigraphy, these 

siliceous carbonaceous mudstones form a continuous layer traceable across and between 

both cross sections. In addition these upper siliceous carbonaceous mudstones lack 

limestone inter-beds which are common in the similar rocks lower in the stratigraphy; 

however, these upper mudstone beds locally contain small clasts of limestone.  

Analysis of a sample of this material by XRD shows that it is dominantly composed 

of quartz with lesser amounts of orthoclase, plagioclase, biotite, and pyrite (Table 1). 

This composition is a distinctly different from the argillaceous mudstones which underlie 

this unit. Overall this unit is more similar in mineralogy to the siliceous carbonaceous 

mudstones found lower in the section. 

Within the upper siliceous carbonaceous mudstones there are inter-beds, or small 

debris flows, of hyaloclastite with clasts of vesiculated basalt (Fig. 21). These inter-beds 

range up to tens of meters in thickness (Plates 1 and 2). In some areas these inter-beds are 
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fine grain hyaloclastite “tuff”. In other areas the units consist of a mix of rounded 

siliceous mudstone clasts 1-3 cm in diameter and wispy irregular clasts of vesiculated 

basalt scoria up to 3 cm across. In these more conglomeratic sections there are commonly 

significant amounts of sulfides, locally ~5% by volume, dominantly pyrrhotite with lesser 

amounts of pyrite. 

Upper Basalt 

The uppermost unit in the area is basalt, referred to as the upper basalt or Valmy 

Basalt (Fig. 5-F). The basalt generally extends from the surface to depths of 500-700 feet 

in the Cross Section B and as deep as 1200 feet in the eastern portions of Cross Section A 

where it is down dropped by a large normal fault. The unit varies from green (due to 

chlorite alteration) to brown (due to biotite hornfels alteration) in color. The upper basalt 

locally is vesiculated and pillow margins are observed in core (Fig. 22). There are also 

intervals of hyaloclastite material which is generally tan to brown in color, and varies 

from very fine grained “tuff” to clasts of vesiculated basalt. 

Igneous Intrusive Units 

The sedimentary rocks in the area are cut by dikes and sills of two compositions, the 

earlier of which are the diabase dikes. The diabase dikes are fine grained mafic dikes 

typically dark gray to dark green (chlorite alteration) in hand sample (Fig. 23). These 

dikes are commonly cut by sulfide veins composed of pyrite or pyrrhotite. These dikes 

range in thickness from <1 m to >20 m. Diabase dikes are only found in the upper 

portions of the cross sections (Plates 1 and 2) which suggests they are near horizontal in 

orientation. 



22 
 

The other group of dikes is the dacite dikes, which are more variable in their 

appearance than the diabase dikes. The dacite dikes are fine to coarse grained felsic dikes. 

The dikes range in thickness up to 10-20 m and are commonly gray-pink in color and 

have an aphanitic matrix with plagioclase, hornblende and locally biotite phenocrysts.  In 

several locations these dikes appear to be emplaced along structures parallel to the 

Getchell fault (Plate 1). 

Calc-Silicate Alteration 

The major effect of the contact metamorphism resulting from the intrusion of the 

Osgood stock is the calc-silicate alteration of the limestones and calcareous units in the 

study area. The distribution of calc-silicate alteration is variable throughout the study 

area. Cross Section A shows a general decrease in the intensity of calc-silicate alteration 

from west to east, with increasing distance away from the stock, although non calc-

silicate altered rock can be observed in drill core closer to the stock (Fig. 24). Cross 

Section B does not show this trend; rather, strongly calc-silicate altered rocks are still 

present in the eastern most drill core sampled, farthest from the stock (Fig. 25). Although 

similar to Cross Section A, there are still zones/pods of reactive limestone within this 

area. 

 The rocks composed of argillaceous mudstone and limestone are more commonly 

calc-silicate altered than those composed of siliceous carbonaceous mudstone and 

limestone. This variability in the intensity of calc-silicate alteration is often abrupt and 

can be observed over as short a distance as the contact between the two rock types (Figs. 

8 and 26). The argillaceous mudstones and limestones are altered to calc-silicate minerals 
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while the limestones inter-bedded with siliceous carbonaceous mudstones in contact with 

the argillaceous mudstones are not though they may be recrystallized.  

Siliceous Assemblage 

In hand samples, contact metamorphism seems to have little visible effect on the 

siliceous carbonaceous mudstones. Locally the black carbon-rich mudstone is bleached to 

off-white/tan near the limestone beds, or early calcite veins, which have been altered to 

calc-silicate minerals (Fig. 27). The limestones inter-bedded with the siliceous 

carbonaceous mudstones are commonly recrystallized. Locally however, they are 

strongly calc-silicate altered to white, coarse-bladed to acicular, wollastonite. Analyses of 

calc-silicate altered siliceous carbonaceous mudstone and limestone by XRD indicates 

alteration to an assemblage of dominantly wollastonite, minor vesuvianite, trace quartz, 

and locally trace diopside (Fig. 28, Table 1).  

In thin section samples of siliceous carbonaceous mudstone and limestones contain 

variable amounts of calc-silicate alteration. In samples of limestone inter-bedded with 

siliceous carbonaceous mudstone the calc-silicate alteration commonly starts at the 

contact between the limestone and mudstone and extends into the limestone. One thin 

section shows strong calc-silicate alteration in limestone at the contact between siliceous 

carbonaceous mudstones and an inter-bed of limestone, with decreasing calc-silicate 

alteration moving away from the contact (Fig. 29). The calcite filled veins in siliceous 

carbonaceous mudstone have also been altered to calc-silicate minerals, dominantly 

wollastonite. 
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Argillaceous Assemblage 

 In hand sample the argillaceous mudstones are altered to fine grained maroon to 

brown biotite hornfels with no grains visible with a hand lens. Limestones associated 

with the argillaceous mudstones tended to alter to an assemblage of wollastonite, garnet, 

fine green minerals (likely diopside), coarse recrystallized calcite, and pyrrhotite, which 

rarely occurs in the siliceous carbonaceous rocks. These limestones inter-bedded with 

argillaceous mudstones commonly have weak to moderate calc-silicate alteration 

throughout the bed taking on a pink/purple grey color in hand sample. In areas of less 

intense calc-silicate alteration there is typically a rind on the contact between the 

limestone and inter-bedded mudstone with limestone remaining less altered away from 

the contact (Fig. 30). Smaller beds or limestone clasts in matrix in these areas are 

commonly completely altered to calc-silicate minerals. 

Analysis by XRD indicates that the argillaceous limestones are variably altered by 

metamorphism to an assemblage of wollastonite, diopside, garnet, vesuvianite, and 

calcite, and locally, amphiboles tremolite and hornblende (Table 1). All samples of the 

limestone inter-bedded with argillaceous mudstone showed some evidence of calc-

silicate alteration, and even weakly altered samples contain some diopside (Table 1). 

Overall diopside is more common in the argillaceous limestones, imparting the common 

green color. The argillaceous limestones also have a more diverse calc-silicate 

assemblage than the limestone associated with the siliceous carbonaceous mudstones. 

Structure 

The dominant structural feature in the study area is the NNW striking Getchell fault. 

This fault is observed in core as a strongly sheared, carbon-rich gouge zone generally 
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ranging from 50-150 feet thick (Fig. 31).  The fault zone dips 30-50 degrees to the east. 

The Getchell fault was only encountered in drill holes on Cross Section B. The drill holes 

in Cross Section A did not penetrate deep enough to reach the fault; the position of the 

Getchell fault is projected on Cross Section A from other drill core in the database. In 

some locations there are splays along the main fault strand with intervening slices of 

competent rock of various lithologies between the splays (Plate 2). 

Several other major faults in the hanging wall were identified and correlated from 

core logging. One major fault runs approximately parallel to the Getchell fault. The fault 

zone, a series of smaller faults and splays, is located ~100-200 feet above the main 

Getchell fault. It is observed in core as broken rubble zone where encountered in the 

siliceous carbonaceous mudstones and strongly sheared gouge in the argillaceous 

mudstones (Plate 2). The fault has a series of small strands and splays and is not as well 

developed as the Getchell fault. There appears to be a small normal offset on the fault 

(Plate 2), however strike-slip offset could not be determined. This fault is not observed in 

Cross Section A.  

A large unnamed west dipping fault is present in Cross Section A. The fault is 

responsible for down dropping the Upper Basalt 600-700 feet in the western portion of 

the Cross Section (Plate 1). In core the fault is observed as a heavily sheared gouge zone. 

There is also a series of splays of this fault branching off to the east of the main fault. A 

smaller west dipping feature is also observed in Cross Section B, although it does not 

appear to be the same fault as it does not have any apparent normal offset. Numerous 

other small faults were observed in the cores for this study, but could not be correlated 

between drill holes with any confidence. 
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Carlin Alteration and Mineralization 

Location and Controls 

Alteration associated with Carlin-type gold mineralization was identified in all drill 

core examined for this study. The dominant controls on the location of mineralization are 

the presence of conduits for ore fluids and reactive host rocks which are receptive to the 

mineralization (Figs. 32 and 33). Ore fluid conduits include dikes and faults. Traditional 

Carlin-style mineralization, defined by replacement of carbonate or calcareous host rocks, 

was most prevalent in areas of inter-bedded limestones and siliceous carbonaceous 

mudstones unaffected by calc-silicate alteration. The strongly decalcified and silicified 

limestones are commonly dark grey to black in hand sample with a pitted and porous 

texture. These porous areas are commonly filled with realgar. 

 The siliceous mudstones themselves remain visibly unaltered by the Carlin fluids due 

to the lack of calcareous material to alter. Fractures and veins in the siliceous mudstone 

which were formerly filled with calcite commonly have had the calcite removed in and 

around areas of Carlin-type mineralization. These formerly calcite filled fractures and 

veins are now voids which are commonly filled with late ore-stage quartz or realgar (Fig. 

34 and 35). Commonly, realgar fills pore spaces, fractures, and locally cements breccias 

(Fig. 36). Late stage veins commonly have late stage calcite and orpiment/realgar (Fig. 

37).  

The grade of mineralization encountered in the siliceous carbonaceous mudstone is 

largely dependent on the amount of inter-bedded limestone. The units consisting of 

dominantly siliceous carbonaceous mudstone generally had the lowest grades, <0.100 

oz/t Au. Sections with larger fractions of limestone typically contained higher grades, 
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locally >1.000 oz/t Au. Mineralization occurred where these receptive rocks are cut by 

structures such as the Getchell fault or other faults or dikes, which were transporting ore 

fluids (Figs. 32, 33, 38a and 38b). In these receptive host rocks, mineralization spreads 

out from the ore fluid conduits. In many places, potential host rock that was not altered to 

calc-silicates has not been mineralized owing to the lack of intersecting ore fluid 

conduits. 

Calc-silicate altered rocks, including those which showed evidence for exposure to 

Carlin-type ore fluids, were typically poor hosts; i.e., realgar replacing calcite on fracture 

surfaces or along mineralized faults. In areas of less receptive calc-silicate altered host 

rocks, mineralization occurs locally, but is generally restricted to heavily fractured rock 

within the fault gouge and fluids did not alter or move into the surrounding calc-silicate 

rocks (Fig. 38a). Wider areas of mineralization in these rocks are associated with fault 

intersections and fault jogs (Fig. 39). Mineralization in these highly faulted areas is not 

dependent on rock type or lack of calc-silicate alteration because it is largely contained 

within the fault material. Mineralization in these zones can be high grade, >1.000 oz/t Au.  

Mineralogy 

The mineralogy of the ore is dependent largely on the alteration type. The strongly 

decalcified and silicified limestones of the siliceous carbonaceous mudstone and 

limestone are altered to dark gray to black porous silica. Locally, realgar or white to tan 

clay fills in the pores and voids (Fig. 36).  In some locations there are dissolution breccias 

in the limestone inter-beds. 

In thin section, mineralized areas of limestone show complete replacement of calcite 

by fine grained jasperoid quartz with lesser fine grained sulfides (Fig. 34). Analysis by 
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XRD of mineralized samples of units formerly composed of limestone are now composed  

dominantly of quartz, with lesser realgar, kaolinite, pyrite, marcasite, and locally stibnite 

(Figs. 40 and 41). Locally there are sections of less altered limestone bounded by areas of 

mineralization. Samples of these less altered limestones analyzed by XRD show evidence 

for minor silicification by the Carlin-type ore fluids, but no evidence for calc-silicate 

alteration (Fig. 42, Table 1). 

The zones that are dominated by argillization show alteration of maroon-brown 

biotite hornfels to white-tan clays with abundant sulfides. These sulfides are often 

concentrated along former foliation/cleavage in the biotite hornfels (Fig. 18). Analysis by 

using XRD of a sample of argillized biotite hornfels from above an area of mineralization 

in drill hole 07-GC-020 on Cross Section B shows alteration to kaolinite + quartz + 

marcasite (Fig. 43, Table 1).  

Chemistry 

The chemistry of the mineralized zones examined in this study is consistent with the 

chemistry associated with Au mineralization in other CTGDs. Common elements 

associated with Au mineralization include  As, Hg, Sb, Se, Te, and Tl. Variability in the 

chemistry of the ore mineralization is apparent in whole rock multi-element assays of 

various ore intercepts encountered in this study. The amount of gold in relation to other 

trace metals commonly found in CTGD’s (e.g. Hg, Sb, and Tl) is quite variable. In some 

areas ratios Au to Hg, Sb, and Tl are approximately 1:1 while in other areas the values 

are 1:100 or less. However, patterns emerge when mineralization is divided into three 

broad types: I, II and III (Fig. 44). These divisions were based primarily on the ratio of 

Au to Ag in the samples. See Appendix B for full whole rock geochemistry data.  
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Type I mineralization is characterized by moderate amounts of Ag resulting in Au:Ag 

of 2:1 to 1:1. Additionally values of Hg, Sb, and Tl are also high relative to Au (Figs. 45 

and 46). Type I mineralization is most common in the mineralized limestone inter-bedded 

with siliceous carbonaceous mudstone adjacent to the Getchell fault or the Getchell 

parallel fault in Cross Section B (Fig. 44). Alteration associated with Type I 

mineralization is commonly strong decalcification and silicification. The ore grade 

associated with this mineralization type is low in comparison to Turquoise Ridge where 

grades are commonly >1.000 oz/t Au. However economic gold grades (>0.300 oz/t Au) 

are possible in the areas of low Au:Ag ratios. For example, Type I mineralization 

averages 0.354 oz/t Au over 78.3 feet, including 5 feet at 1.110 oz/t Au in drill hole 08-

GC-035 (Fig. 38b).  

A correlation matrix produced using 24 sampled intervals of Type I mineralization 

with grades >0.300 oz/t Au shows strong correlation (R>0.75) of Au with Cu, Hg, and Tl; 

moderate correlation (0.50<R<0.75) of Au with Te; and a weak but notable correlation 

(0.40<R<0.50) of Au with Ag and S (Table 2). 

Type II mineralization is characterized by essentially no added Ag above background 

levels resulting in very high Au:Ag values (Figs. 45 and 46). In addition to low Ag values 

Type II mineralization also has much lower Hg, Sb, and Tl values than are found in Type 

I mineralization (Figs. 45 and 46). The mineralization type occurs along a west dipping 

hanging wall fault in Cross Section B (Fig. 44). Type II mineralization is associated with 

strong argillization and weak silicification of the gouge material in this fault.  

Additionally there is a large amount of bleaching and argillization in the non-mineralized 
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rock adjacent to the fault zone (Fig. 47). Type II mineralization has the highest gold 

grades sampled in this study, locally >2.000 oz/t Au (Fig. 46). 

A correlation matrix evaluated 13 sampled intervals of Type II mineralization grading 

>0.300 oz/t Au, and indicates strong correlation (R>0.75) of Au with As, Hg, Se and Tl; 

moderate correlation (0.50<R<0.75) of Au with Cr, Cu, In, Mg, Mn, Ni, Sb, Sc, Te, and 

W; and a weak but notable correlation (0.40<R<0.50) of Au with Ge, Sn, and Ta (Table 

3).  

Type III mineralization is characterized by Au<Ag. In addition to having high Ag 

values, values of Hg and Tl are also higher than values in Type I and II. However, Tl 

values for Type III mineralization are similar to those for Type I mineralization (Figs. 45 

and 46). This mineralization is typically low grade <0.1 oz/t Au. It is associated with 

alteration in areas of siliceous carbonaceous mudstone lacking limestone, which is 

typically a poor host lithology. In these areas, mineralization is largely restricted to 

replacement of formerly calcite filled fractures and tension gashes with quartz, minor 

sooty pyrite, and late realgar.  No samples of mineralization with this signature contained 

>0.300 oz/t Au.  

A correlation matrix produced with the lower grade intercepts (ranging from 0.01 to 

0.244 oz/t Au) indicated a moderate correlation of Au with Tl with an R value of 0.549 

and a weak but notable correlation of Au with Te and S with R values of 0.442 and 0.426 

respectively (Table 4).  

Locally some ore zones display multiple mineralization types within one zone 

(Appendix – 08-GC-037). In other locations such as ore zones associated with the jog in 

the Getchell fault in Cross Section B, the ore chemistry reflects aspects of type I and type 
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II mineralization; with high concentrations of Hg, Sb, and Tl and low to absent Ag 

respectively (Fig. 44; Appendix B drill hole 07-GC-023). 

Carbonate Staining 

For this study a total of 144 samples of carbonate from drill core were stained for the 

presence of iron. See Appendix C for full staining data. Limestones associated with the 

argillaceous mudstones generally stained purple indicating the presence of iron (62/68) 

(Fig. 48). Limestones associated with the siliceous carbonaceous mudstones generally 

stained red/pink (48/59) indicating they lacked iron-bearing calcite (Fig. 48). Limestones 

in the footwall rocks all stained red/pink (17/17). Overall the upper portions of the cross 

sections, hanging wall to the Getchell fault, tended to have carbonates that were more 

ferroan while the lower portions had limestones which were iron poor. This correlates to 

the distribution of the limestone associated with the siliceous carbonaceous mudstones 

(Figs. 49 and 50). 

Carbonate staining was complicated by the large amount of calc-silicate alteration 

from the contact metamorphism; in particular in areas closest to the Osgood stock (Figs 

24 and 25). The units of argillaceous mudstone containing fragments of limestone were 

often intensely calc-silicate altered throughout drill holes in both sections. These rocks 

composed large portions of the cores for these sections. The lack of available reactive 

limestone due to the prevalence of these calc-silicate altered units in these areas limited 

staining coverage. 

 

 

 

 

 



32 
 

CHAPTER 6 

DISCUSSION AND INTERPRETATION 

Stratigraphy 

Logging of drill core for this study indicates that the complex stratigraphy established 

at the Turquoise Ridge deposit, consisting of one or more debris flows and soft-sediment 

slumps resulting in the physical mixing of two discrete lithologies, can in large part be 

extended to this study area further to the south. The dominant architecture of blocky, 

brittle clasts of siliceous carbonaceous mudstone and limestone in a matrix of poorly 

lithified, strongly soft-sediment deformed, argillaceous mudstone and limestone in the 

lower portions of the hanging wall, and 2) argillaceous mudstone and limestone in the 

upper portions of the section, is consistent with the stratigraphy at Turquoise Ridge 

(Cline et al., 2008).  

Although they are generally similar, several differences are observed between the 

stratigraphy in this study area and at Turquoise Ridge further north. Most notable is the 

lack of the carbonaceous shear texture breccia unit, which is a major host for 

mineralization at Turquoise Ridge. At Turquoise Ridge this siliceous carbonaceous 

mudstone unit with limestone fragments occurs above the lower portions of the debris 

flow deposit, defined by the upper occurrence of the siliceous carbonaceous mudstone 

and limestone clasts (Cline et al., 2008; Keith Wood, per. comm. 2009). This unit has 

been observed to thin to the south and the lack of observation of the shear texture breccia 

unit in this study confirms that finding (Cline et al., 2008; Keith Wood, per. comm., 

2009). The upper extent of clasts of the siliceous carbonaceous mudstone and limestone 

lithology is at a higher elevation in this study area, typically 3800’ to 4200’ a.s.l., in 
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comparison to elevations of 2500 feet a.s.l. where observed at Turquoise Ridge, 

suggesting that this boundary dips to the north (Cline et al., 2008).  

The current study also documented a siliceous carbonaceous mudstone unit below the 

Upper Basalt. This mudstone unit is observed as the upper sedimentary layer in both 

cross sections, suggesting that these rocks were deposited after and above the 

discontinuous stratigraphy of the debris flow below them. The upper carbonaceous 

mudstone unit locally contains small inter-beds or flows of hyaloclastite material. These 

inter-beds suggests that the upper basalt is in depositional contact with this unit and not 

faulted in via the Roberts Mountain Thrust as some previous studies have suggested. 

Calc-Silicate Alteration 

The key focus of this study was to elucidate the effects of calc-silicate alteration, 

owing to the intrusion of the Osgood stock at 92 Ma, on host rock potential at the 

Getchell and Turquoise Ridge deposits. Overall the study found that extent and intensity 

of calc-silicate alteration within the metamorphic aureole is variable. Variability in the 

intensity of calc-silicate alteration has been previously noted by Boskie (2001) even in 

areas within ten of meters from the stock. The effects of contact metamorphism observed 

in this study are variable with moderate calc-silicate alteration locally present out to 

approximately 2,000 ft from the stock. In Cross Section A the intensity of calc-silicate 

alteration generally decreases away from the stock. In Cross Section B a clear pattern is 

not discernable, with strongly calc-silicate altered rocks occurring locally in the drill 

holes most distant from the lobe of the stock in the hanging wall. This more intense calc-

silicate alteration may be due to the closer proximity of Cross Section B, which is located 

further to the south, to the main body of the Osgood stock (Fig. 4).  
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The key finding of this study was that variability in the intensity of calc-silicate 

alteration is strongly influenced by lithology. The limestone inter-bedded with 

argillaceous mudstone was found to alter to calc-silicate minerals more readily than the 

limestone inter-bedded with the siliceous mudstones (Fig. 26). The limestone associated 

with the argillaceous mudstone commonly contains a small silty component, evidenced 

by the small feldspar signature observed in the XRD spectra. This silty component would 

provide the necessary constituents to create the more diverse calc-silicate assemblage, 

including abundant diopside, garnet, and vesuvianite, observed in the argillaceous 

limestones. In comparison, the relatively silt-free limestone inter-bedded with the 

siliceous carbonaceous mudstone is altered to a wollastonite dominated calc-silicate 

assemblage. 

Structure 

The major structural feature of the deposit is the Getchell fault, observed as a gouge 

zone 50-100 feet thick that dips approximately 30°-50° to the east. Numerous other small 

faults occur in the hanging wall. Overall there appears to be two main orientations of 

faults in the hanging wall, the east-dipping Getchell-parallel structures and the west-

dipping faults. The major west dipping fault in Cross Section A, responsible for down 

dropping the Upper Basalt, may correspond to the NNE striking structures which have 

been previously mapped in the area (Fig. 4; Tom Chadwick per. comm. 2010). Additional 

smaller west dipping structures are observed in both cross sections. The other major 

structure is the east dipping Getchell-parallel fault in Cross Section B, which may be 

similar to a structure along which dacite dikes were emplaced in Cross Section A. As 
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discussed below both sets of structures in the hanging wall played an important role in 

transporting ore fluids.  

Mineralization 

Controls 

The dominant control on ore mineralization is the presence of reactive host rocks in 

contact with ore fluid conduits. Ore fluids were dominantly mobilized along the Getchell 

fault which is weakly to moderately mineralized where encountered in this study, with 

grades typically ranging from 0.01 oz/t Au up to 0.20 oz/t Au. Fluids moved upward from 

the Getchell fault into the hanging wall, either into zones of reactive carbonate in direct 

contact with the fault or along faults and dikes intersecting the Getchell fault (Figs. 32 

and 33). Mineralization is generally not present in the footwall of the fault even in areas 

where reactive host rock is present. These findings are consistent with the findings of 

Cline et al. (2008). 

Where the faults intersect receptive clasts of siliceous carbonaceous mudstones with 

inter-bedded limestone, mineralization extends beyond these subsidiary hanging wall 

structures. However where the fault intersects calc-silicate altered rocks the 

mineralization remains tightly restricted to the gouge zone, as is the case with the major 

west dipping structures observed in this study. Although the Getchell fault appears to 

have been the primary local conduit for the Carlin-type ore fluids, it typically hosts only 

lower grade mineralization that grades <0.100 oz/t Au (Plate 1). 

As noted in previous studies (Heitt et al., 2003), rocks which have been altered to 

calc-silicates and hornfels are typically poor hosts for Carlin-type mineralization. This is 

largely due to the lack of carbonate mineralogy for the acidic Carlin ore fluids to dissolve 
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and create enhanced permeability and porosity of the hydrothermal system and perhaps to 

liberate and sulfidize reactive Fe. In addition to being poor hosts for Carlin-type 

mineralization, the calc-silicate altered rocks also acted as an aquitard to the migration of 

the Carlin-type fluids. In many places (Figs. 38a and 38b) mineralization stops at the 

contact between the calc-silicate and non calc-silicate altered rocks. Potentially receptive 

and reactive rocks which are surrounded by calc-silicate altered rocks remain non-

mineralized unless they are intersected by structures that carried ore fluids.  

Zones of calc-silicate altered argillaceous mudstone and limestone near 

mineralization in the limestone and siliceous carbonaceous mudstone preserve evidence 

that they were exposed to the ore fluids, however they are not well mineralized. They 

commonly contain realgar on fractures or are cut by faults with ore-grade mineralization. 

However, no mineralization extends beyond the fractures or fault gouge (Fig. 38a). 

Evidence, apparent in hand samples, for a lack of calc-silicate alteration in limestone 

inter-bedded with siliceous carbonaceous mudstone includes the visible alteration by 

Carlin ore fluids of strong decalcification and silicification that produced porous silica 

along former limestone beds. These observations, of a lack of calc-silicate minerals in the 

mineralized limestone units, were confirmed by thin section petrography and XRD 

analyses of samples of ore grade mineralization. 

Although the siliceous carbonaceous mudstones themselves are typically poor hosts 

due to their lack of carbonate material for the ore fluids to mineralize, they appear to play 

an important role in the transport of ore fluids. These mudstone beds commonly have a 

well developed fracture network of small tension fractures filled with calcite (Figs. 10 

and 12). The Carlin-type ore fluids removed the calcite from these fractures and 
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generated permeability through a rock type that would otherwise be very impermeable 

and difficult to alter. Further, because the mudstones are dominantly composed of quartz 

they generally remain relatively unaltered, unlike the argillaceous mudstones, which 

became argillized where they reacted with ore fluids, generating voids which remained 

open, possibly for the duration of the Carlin hydrothermal system. This porosity is 

evidenced by late stage realgar and quartz filling these voids, some of which locally 

remain open (Fig. 34).  

Chemistry 

The variations in the chemistry determined for the ore zones in this area have been 

classified into Type I, II, and III mineralization (Table 5). These variations in chemistry 

most likely reflect the whole-rock signature response to pulses of ore fluids with different 

trace metal chemistries. Previous studies by Longo et al. (2008) and Barker et al. (2009) 

have identified discrete zonations in pyrite rims which have distinct elemental signatures. 

These studies conclude that the variations observed in the ore-stage pyrite chemistry 

reflect changes in the chemistry of the ore fluid as the hydrothermal system evolved and 

as new pulses of ore-fluids were introduced to the system.  

Type I mineralization has much lower Au:Ag ratios, typically 2:1 to 1:1, than is 

common in most Carlin-type ore deposits, which typically have ratios of 10:1 and as high 

as 100:1 (Kretschmer, 1990; Emsbo et al., 2006). Type I mineralization appears to be 

associated with later stage mineralization. These ore zones commonly contain abundant 

late-stage realgar and there tends to be very little alteration adjacent to these mineralized 

zones possibly reflecting cooler ore fluids (Figs. 38a and 38b).  
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Type II mineralization typically has wider areas of alteration, such as bleaching and 

argillization, associated with it and realgar is much less common (Fig. 47). Additionally, 

Type II mineralization appears to be able to alter and mineralize less favorable host rocks 

than Type I mineralization. Further, Longo et al. (2008) reported that the early fluids 

have low Tl, consistent with the much lower Tl present in Type II mineralization in 

comparison to Type I mineralization. This suggests the Type II fluids may possibly 

represent the early fluids in the system. 

Type III mineralization is commonly adjacent to zones of Type I mineralization, and 

typically occurs in areas of limestone poor siliceous carbonaceous mudstone. The 

chemistry most closely resembles that of Type I mineralization. Type III mineralization 

therefore may represent more distal portions of the Type I mineralization or may be the 

result of Type I mineralization altering a different, less receptive, rock type. 

Carbonate Staining 

The results of the staining of limestone in the area showed no discernable pattern that 

would suggest the source of iron in carbonates was from fluids evolved from the Osgood 

stock. Rather, the distribution of ferroan carbonate seems to be dominantly controlled by 

the pre-stock lithology. The ferroan limestone is far more commonly inter-bedded with 

the argillaceous mudstones. Alternatively, little to no ferroan limestone is inter-bedded 

with the siliceous carbonaceous mudstones. 

In this study the majority of the ferroan limestone occurs in the limestone below the 

Upper Basalt. This is similar to the distribution of ferroan carbonate observed in other 

studies at Turquoise Ridge to the north (Cline et al., 2008). However, the distribution 

observed in the present study also correlates with the distribution of the argillaceous 
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limestone that is more common in the upper portions of the section. Further, the presence 

of the argillaceous limestone which also stained for iron deeper in the section, likely 

indicates that the iron in the limestone is intrinsic to the limestone of that lithology rather 

than an addition of iron by some post depositional process. 

With respect to iron-bearing carbonates being better hosts for Carlin-type 

mineralization, owing to the tendency for the argillaceous limestones to readily alter to 

calc-silicates, these limestones are typically not the best host rocks in this study area. 

However, locally where they are mineralized, generally in areas of Type II 

mineralization, the argillaceous limestones host the highest gold grades (e.g., drill hole 

07-GC-027 with 25 feet grading 1.439 oz/t Au). This is in comparison to the more 

commonly mineralized siliceous carbonaceous mudstones and limestones, which are 

generally lower grade (e.g., drill hole 08-GC-035 with 78 feet grading 0.354 oz/t Au). 

Whether this is a result of the presence or absence of iron bearing carbonates or different 

ore fluids is difficult to distinguish, owing to the small sampling of ore zones associated 

with iron-rich carbonates. 
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CHAPTER 7  

CONCLUSIONS 

Effects of Calc-Silicate Alteration 

The major focus of this study was to determine how calc-silicate alteration of 

Cambro-Ordovician sediments by a Mesozoic intrusion affected host rock receptivity for 

younger Eocene-age Carlin mineralization at the Getchell Deposit. With regards to calc-

silicate alteration caused by the intrusion of the Osgood stock, this study found the 

following: 1) the intensity and extent of calc-silicate alteration of host rocks is quite 

variable within the greater extent of the metamorphic aureole; 2) within the aureole, 

limestones and calcareous shales inter-bedded with siliceous carbonaceous mudstones are 

less likely to become calc-silicate altered compared to those limestones and calcareous 

mudstones inter-bedded with the argillaceous mudstones, and limestones and calcareous 

shales inter-bedded with siliceous carbonaceous mudstones are therefore more likely to 

remain receptive host rocks for Carlin-type mineralization; 3) the calc-silicate altered 

rocks are poor hosts for Carlin-type mineralization, with the exception of heavily faulted 

areas; and 4) the boundaries between these two rock types exhibit strong lithologic 

control on mineralization, and grades range from >0.300 oz/t Au to background levels 

across the contact. 

Mineralization documented in this study within the metamorphic aureole of the 

Osgood stock occurs primarily within zones or pods of re-crystallized limestone which 

have not been altered to calc-silicate minerals. These areas are most commonly the 

limestone and calcareous mudstone inter-bedded with siliceous carbonaceous mudstone. 

Mineralization in these units is associated with strong decalcification and silicification of 
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the formerly calcareous units. Argillization is not a dominant alteration in the siliceous 

mudstones host likely due to the small amount of aluminum-silicate minerals present in 

these units.  

Mineralization locally occurs in calc-silicate or otherwise non-reactive rocks in areas 

that are strongly structurally deformed; such locations include jogs or intersections of 

faults. Similar mineralization restricted largely to fault gouge and breccia zones has been 

documented at other deposits, such as Deep Star, which occur in strongly calc-silicate 

altered host rocks (Heitt et al., 2003). In these areas the alteration is dominated by 

argillization with local silicification. Minor mineralization also occurs in the upper 

siliceous carbonaceous mudstone, just below the base of the Upper Basalt. Mineralization 

is associated with strong silicification and bleaching, and gold grades in these areas are 

generally low (i.e., <0.100 oz/t Au) again due to the lack of receptive carbonate.  

Stratigraphy 

In an effort to understand the effects of calc-silicate alteration, which has been shown 

to be influenced by lithology, it was important to understand the stratigraphy of the area 

and how it relates to Turquoise Ridge to the north. This study demonstrates that the 

stratigraphy in this study area is very similar to the stratigraphy observed at Turquoise 

Ridge. The large debris flow(s) is observed with the inter-mixing of two distinct groups 

of rocks: 1) clasts of siliceous carbonaceous mudstones inter-bedded with limestones; and 

2) a matrix of argillaceous mudstones inter-bedded with limestones in the lower portions 

of the hanging wall section. The upper portions of the stratigraphy in this field area 

consist of another siliceous and carbonaceous unit of mudstone.  Unlike similar rocks 

lower in the stratigraphy, these rocks are continuous, contain no limestone, and exhibit 
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less brittle deformation. Locally, these rocks contain small clasts of limestone.  The major 

distinction of the stratigraphy in the study area in comparison to Turquoise Ridge to the 

north is the lack of the carbonaceous shear texture breccias and the North Pillow Basalt. 

Both of these units strongly influence the mineralization at Turquoise Ridge, with the 

shear texture breccia as a common host and the North Pillow Basalt commonly serving as 

a cap and focus for mineralization. 

Staining 

The results from the iron staining indicate no discernable spatial pattern that would 

suggest that iron in the carbonates was sourced from the Osgood stock or related 

metamorphic fluids. However, there is a correlation of iron-bearing carbonate with 

certain lithologies. Limestones inter-bedded with argillaceous mudstones tend to be more 

iron rich, staining purple, than the limestones inter-bedded with the siliceous 

carbonaceous mudstones, that typically stain red indicating no iron.  

The majority of the carbonates staining purple for the presence of iron are in the 

upper parts of the sections below the Upper Basalt. However, I conclude that this has 

more to do with the distribution of the argillaceous limestone, which is also more 

common in the upper parts of the hanging wall section, than the proximity to the Upper 

Basalt. In the lower parts of the section where iron-free carbonates are more common, a 

few samples of limestone which stain for purple iron do occur, however they are typically 

in lithologies identified as argillaceous limestone. A few sections of limestone inter-

bedded with the siliceous carbonaceous mudstones do stain for iron; these samples are 

commonly on the boundary between the two lithologies. Further the limestones that are 
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inter-bedded with siliceous carbonaceous mudstones in the footwall all stain red 

indicating no iron in the carbonate. 

Future Work 

The stratigraphy of the Osgood Mountains which hosts the Carlin-type gold 

mineralization at Getchell/Turquoise Ridge and Twin Creeks is very complex and 

remains poorly understood. The understanding of the stratigraphy is further complicated 

by different nomenclatures and naming systems used by different investigators and 

mining companies in the area over the last 70 years. A comprehensive stratigraphic 

model of the rocks would greatly help in elucidating how the rocks along the eastern 

flank of the Osgood Mountains formed and came to be in their present complex 

arrangement. This would potentially lead to a better understanding of the rocks which 

host the gold deposits along the Getchell trend and perhaps provide insight for targeting 

new deposits along this trend. 

The variation in the whole rock geochemistry of the ore zones was a secondary but 

interesting result of this study. The observation that ore zones with certain chemistries 

tend to be higher grade, have wider zones of alteration, and can potentially mineralize 

less favorable hosts is a topic worth exploring. A study to expand on this idea, detailing 

how ore zone geochemistry varies across the deposit would be useful. Further correlation 

between whole rock geochemistry and ore-stage pyrite zoning using EPMA along the 

lines of the work conducted by Longo et al. (2008) to trace out the evolution of the ore 

fluids through the deposit could also provide new insight to deposit formation. 
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Core ID Quartz Calcite Biotite Muscovite Kaolinite Plagioclase Orthoclase Grossular Marcasite 

007-1621 Major Major               

020-1048 Major       Major   Trace   Trace 

035-1494                   

035-1564 Trace Minor               

035-2012 Major       Trace         

037-1352 Trace Minor               

037-1668                   

037-1704a   Major       Minor Minor     

037-1704b Trace         Major Minor     

037-1797 Major       Trace       Trace 

037-1878 Minor Major         Minor     

037-1887a Minor Major         Minor     

037-1887 Major       Trace       Trace 

037-1913   Minor         Minor Minor   

088-1620 Major                 

094-2152   Major       Minor       

094-2724a Minor Major               

094-2724b Major           Minor     

142-1620 Major Trace       Trace       

148-1007 Major   Minor       Major   Trace 

148-1216   Major       Minor Minor     

148-1269 Major Trace Major       Minor     

151-1622a Minor Trace   Major           

151-1622b Minor Trace Major   Minor         

151-1822   Trace           Minor   

          Core ID Realgar Diopside Pyrite  Stibnite Dolomite Wollastonite Vesuvianite Tremolite Hornblende 

007-1621                   

020-1048                   

035-1494                   

035-1564 Minor                 

035-2012 Trace                 

037-1352           Major Minor     

037-1668                   

037-1704a   Minor               

037-1704b                 Minor 

037-1797 Trace                 

037-1878                   

037-1887a                   

037-1887 Trace                 

037-1913   Minor             Minor 

088-1620 Minor     Trace           

094-2152   Minor               

094-2724a                   

094-2724b     Trace         Trace   

142-1620   Minor               

148-1007                   

148-1216   Minor               

148-1269                   

151-1622a     Trace   Minor         

151-1622b                   

151-1822   Minor       Major Major     

Table 1. Mineral identification and abundance data from XRD runs with major (>50%) 

minor (50-10%) trace (<10%) as determined by the X’pert Highscore Plus software 

program. 
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Type I Au Ag Al As B Ba Be Bi Ca Cd Ce Co 

Au 1.000                       

Ag 0.418 1.000                     

Al -0.305 -0.214 1.000                   

As 0.119 0.274 -0.136 1.000                 

B 0.107 -0.119 0.256 0.075 1.000               

Ba -0.259 -0.353 0.186 0.038 0.095 1.000             

Be -0.390 -0.371 0.276 -0.078 0.057 0.513 1.000           

Bi -0.082 0.086 0.289 0.077 0.233 -0.260 -0.084 1.000         

Ca -0.408 -0.116 0.463 0.070 -0.095 0.115 0.620 -0.014 1.000       

Cd 0.153 0.614 0.194 0.162 0.093 -0.182 -0.310 -0.085 0.098 1.000     

Ce -0.303 -0.234 0.452 -0.499 0.032 0.015 0.424 0.317 0.383 -0.108 1.000   

Co -0.432 -0.444 0.380 -0.633 0.031 0.236 0.486 0.274 0.194 -0.318 0.794 1.000 

Cr -0.076 -0.065 0.065 0.060 0.130 0.178 -0.123 -0.171 0.002 0.136 0.017 -0.194 

Cs -0.221 0.266 0.003 -0.066 0.002 0.263 0.513 -0.242 0.303 0.342 0.031 0.092 

Cu 0.751 0.432 0.013 0.138 0.234 -0.050 -0.290 0.071 -0.379 0.476 -0.126 -0.249 

Fe 0.212 -0.251 0.352 -0.538 0.334 0.233 0.307 0.217 -0.040 -0.118 0.595 0.687 

Ga -0.223 -0.161 0.908 -0.246 0.416 0.140 0.210 0.389 0.317 0.228 0.616 0.482 

Ge 0.197 0.637 0.026 0.066 0.032 -0.341 -0.547 0.099 -0.183 0.552 -0.004 -0.193 

Hf -0.187 -0.007 0.658 -0.026 0.231 -0.151 -0.063 0.573 0.165 0.338 0.261 0.141 

Hg 0.776 0.589 -0.114 0.180 0.155 -0.198 -0.326 -0.033 -0.329 0.580 -0.277 -0.455 

In 0.306 0.761 -0.077 0.136 -0.034 -0.386 -0.338 0.075 -0.088 0.785 -0.106 -0.319 

K -0.261 -0.284 0.302 -0.072 0.317 0.683 0.708 -0.122 0.185 -0.136 0.073 0.363 

La -0.286 -0.197 0.459 -0.518 0.044 -0.035 0.323 0.333 0.329 -0.041 0.991 0.769 

Li -0.331 -0.300 0.832 -0.401 -0.029 0.241 0.356 0.102 0.558 -0.007 0.588 0.527 

Mg -0.161 -0.169 0.254 0.061 -0.089 0.576 0.590 -0.203 0.327 -0.212 0.004 0.167 

Mn -0.372 -0.309 0.467 0.018 -0.032 0.369 0.744 -0.054 0.877 -0.162 0.327 0.301 

Mo -0.065 0.189 0.224 0.125 0.135 -0.294 -0.619 0.491 -0.382 0.339 0.004 -0.064 

Na -0.163 -0.098 0.693 -0.225 -0.017 0.417 0.470 -0.227 0.486 0.199 0.446 0.436 

Nb 0.015 0.561 0.258 0.150 0.035 -0.177 -0.296 0.178 0.203 0.735 -0.045 -0.225 

Ni -0.258 -0.014 0.438 -0.127 0.134 -0.163 -0.255 0.649 -0.154 0.194 0.443 0.416 

P 0.125 0.482 0.269 0.240 0.015 -0.227 -0.445 0.351 -0.131 0.430 0.065 -0.200 

Pb -0.034 -0.034 0.238 -0.405 -0.172 0.048 0.236 -0.218 0.092 0.017 0.260 0.464 

Rb -0.219 -0.312 0.316 -0.125 0.320 0.665 0.724 -0.099 0.187 -0.148 0.210 0.456 

Re -0.153 0.192 0.305 0.199 0.086 -0.301 -0.438 0.620 -0.161 0.339 -0.051 -0.138 

S 0.431 0.750 -0.177 0.048 -0.153 -0.360 -0.395 0.038 -0.076 0.591 -0.062 -0.217 

Sb 0.333 0.878 -0.250 0.186 -0.155 -0.253 -0.257 -0.132 -0.102 0.590 -0.301 -0.464 

Sc -0.351 -0.395 0.327 -0.277 0.132 0.526 0.890 0.015 0.567 -0.372 0.492 0.648 

Se 0.340 0.833 -0.294 0.226 -0.159 -0.308 -0.492 -0.070 -0.176 0.508 -0.231 -0.393 

Sn 0.017 -0.030 -0.006 0.091 -0.099 -0.456 -0.121 0.588 0.034 -0.086 0.325 0.180 

Sr -0.154 0.159 0.287 0.164 -0.071 0.172 0.430 0.013 0.545 0.169 0.449 0.159 

Ta -0.195 0.331 0.462 0.089 -0.161 -0.370 -0.122 0.323 0.459 0.408 0.069 -0.105 

Te 0.693 0.814 -0.245 0.288 -0.045 -0.444 -0.453 -0.057 -0.229 0.599 -0.389 -0.548 

Th -0.421 -0.426 0.482 -0.517 0.043 0.139 0.591 0.305 0.433 -0.287 0.931 0.900 

Ti -0.132 0.171 0.200 0.057 -0.103 0.379 0.447 -0.220 0.372 0.159 -0.002 0.014 

Tl 0.840 0.391 -0.062 0.124 0.187 -0.212 -0.317 0.053 -0.378 0.390 -0.184 -0.347 

U -0.094 0.276 0.328 0.169 0.001 -0.485 -0.576 0.575 -0.133 0.364 0.109 -0.068 

V -0.022 0.199 0.520 0.184 0.386 -0.090 -0.339 0.508 -0.135 0.500 0.069 -0.080 

W 0.100 -0.204 -0.360 0.066 -0.104 -0.051 -0.072 -0.360 0.076 -0.099 -0.330 -0.435 

Y -0.007 0.240 0.693 -0.008 0.235 -0.107 0.003 0.455 0.251 0.397 0.543 0.217 

Zn -0.065 0.314 0.490 -0.056 0.108 -0.325 -0.173 0.112 0.250 0.775 0.359 0.035 

Zr -0.292 -0.124 0.748 -0.189 0.194 -0.057 -0.121 0.363 0.230 0.331 0.438 0.279 

Table 2. A correlation matrix generated from multi element assay data from available 

intercepts of Type I mineralization >0.300 opt (n=24).  
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Cr Cs Cu Fe Ga Ge Hf Hg In K La Li Mg 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

-0.086 1.000                       

0.121 -0.053 1.000                     

-0.176 0.004 0.387 1.000                   

0.138 -0.009 0.143 0.502 1.000                 

0.205 -0.122 0.337 -0.094 0.132 1.000               

0.066 0.025 0.173 0.190 0.668 0.158 1.000             

0.092 0.148 0.920 0.165 -0.013 0.323 0.170 1.000           

-0.094 0.319 0.476 -0.109 0.003 0.657 0.330 0.645 1.000         

-0.070 0.594 -0.018 0.376 0.273 -0.433 -0.031 -0.077 -0.289 1.000       

0.072 -0.002 -0.090 0.581 0.633 0.075 0.301 -0.240 -0.052 0.006 1.000     

-0.002 -0.066 -0.173 0.383 0.741 -0.067 0.392 -0.320 -0.249 0.149 0.573 1.000   

-0.158 0.194 -0.100 0.072 0.162 -0.347 -0.133 -0.192 -0.312 0.530 -0.093 0.412 1.000 

-0.159 0.230 -0.356 0.128 0.325 -0.368 0.083 -0.394 -0.323 0.388 0.236 0.642 0.650 

0.275 -0.378 0.244 -0.119 0.337 0.526 0.573 0.140 0.287 -0.417 0.092 0.019 -0.312 

0.047 0.274 0.100 0.423 0.625 0.065 0.138 -0.029 -0.064 0.458 0.421 0.754 0.463 

0.019 0.277 0.210 -0.141 0.287 0.592 0.591 0.337 0.733 -0.214 0.000 0.127 -0.114 

0.121 -0.257 0.083 0.221 0.569 0.330 0.592 -0.091 0.119 -0.172 0.508 0.255 -0.228 

0.360 -0.232 0.286 -0.182 0.341 0.518 0.289 0.266 0.366 -0.304 0.136 0.023 -0.193 

-0.178 0.158 0.087 0.349 0.237 -0.174 -0.134 -0.008 -0.170 0.330 0.233 0.359 0.424 

-0.076 0.558 0.034 0.476 0.333 -0.423 -0.056 -0.058 -0.305 0.976 0.144 0.190 0.491 

0.204 -0.194 0.153 -0.198 0.327 0.314 0.764 0.143 0.301 -0.320 0.018 0.042 -0.258 

-0.171 0.158 0.385 -0.007 -0.098 0.730 0.107 0.510 0.860 -0.381 -0.018 -0.208 -0.292 

-0.082 0.407 0.306 -0.321 -0.252 0.591 -0.114 0.509 0.770 -0.176 -0.263 -0.331 -0.192 

-0.253 0.352 -0.295 0.488 0.302 -0.477 -0.045 -0.388 -0.385 0.639 0.395 0.499 0.603 

-0.024 0.027 0.281 -0.279 -0.245 0.844 -0.147 0.370 0.726 -0.433 -0.182 -0.310 -0.237 

-0.144 -0.297 -0.024 0.024 0.059 0.033 0.393 -0.073 0.093 -0.516 0.341 0.039 -0.268 

0.335 0.182 -0.078 0.000 0.286 0.056 -0.046 -0.107 0.033 0.097 0.434 0.298 0.229 

-0.039 0.192 -0.155 -0.255 0.324 0.222 0.555 0.004 0.304 -0.160 0.097 0.296 -0.127 

-0.032 0.075 0.666 -0.136 -0.211 0.523 0.020 0.810 0.755 -0.311 -0.347 -0.417 -0.241 

-0.150 0.093 -0.271 0.638 0.574 -0.205 0.245 -0.430 -0.276 0.261 0.895 0.628 0.143 

-0.162 0.467 -0.062 -0.101 0.170 -0.154 -0.014 -0.010 0.054 0.380 -0.074 0.346 0.848 

0.044 -0.108 0.951 0.322 0.042 0.215 0.151 0.941 0.463 -0.116 -0.154 -0.245 -0.183 

0.101 -0.414 0.094 -0.207 0.371 0.512 0.584 0.049 0.348 -0.543 0.189 0.120 -0.335 

0.277 -0.098 0.370 0.082 0.604 0.366 0.720 0.302 0.307 -0.019 0.139 0.116 -0.206 

0.339 -0.157 -0.084 -0.378 -0.428 -0.208 -0.389 -0.015 -0.272 -0.199 -0.331 -0.231 -0.066 

0.349 -0.074 0.339 0.283 0.792 0.442 0.579 0.228 0.300 -0.020 0.588 0.468 -0.050 

0.183 0.095 0.246 0.066 0.546 0.480 0.505 0.274 0.588 -0.233 0.433 0.296 -0.323 

0.427 -0.071 0.073 0.208 0.775 0.292 0.797 -0.002 0.118 -0.050 0.505 0.552 -0.223 

Table 2. Continued 
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Mn Mo Na Nb Ni P Pb Rb Re S Sb Sc Se 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

-0.476 1.000                       

0.565 -0.180 1.000                     

0.039 0.416 0.128 1.000                   

-0.259 0.803 0.003 0.247 1.000                 

-0.370 0.606 -0.033 0.338 0.581 1.000               

0.202 -0.135 0.513 -0.184 0.040 -0.039 1.000             

0.388 -0.424 0.520 -0.266 -0.126 -0.304 0.364 1.000           

-0.293 0.875 -0.267 0.494 0.742 0.540 -0.246 -0.375 1.000         

-0.268 0.157 -0.036 0.687 0.057 0.337 -0.141 -0.380 0.093 1.000       

-0.305 0.003 -0.047 0.455 -0.189 0.287 -0.152 -0.210 0.013 0.701 1.000     

0.777 -0.590 0.491 -0.241 -0.184 -0.478 0.304 0.669 -0.463 -0.315 -0.357 1.000   

-0.349 0.210 -0.101 0.541 -0.022 0.421 -0.164 -0.455 0.051 0.851 0.800 -0.448 1.000 

-0.057 0.452 -0.292 0.117 0.515 0.081 -0.198 -0.453 0.503 0.079 -0.174 -0.137 -0.080 

0.336 -0.114 0.370 0.025 0.145 0.459 0.113 0.124 -0.083 0.064 0.101 0.272 0.083 

0.208 0.232 0.105 0.629 0.302 0.400 -0.004 -0.211 0.498 0.279 0.210 -0.130 0.161 

-0.402 0.131 -0.151 0.435 -0.128 0.393 0.043 -0.340 0.122 0.726 0.719 -0.492 0.701 

0.474 -0.128 0.472 -0.159 0.365 -0.165 0.291 0.375 -0.124 -0.208 -0.458 0.689 -0.421 

0.560 -0.210 0.414 0.257 -0.195 -0.068 0.357 0.344 -0.122 -0.004 0.142 0.436 0.002 

-0.382 0.136 -0.040 0.123 -0.034 0.237 0.028 -0.068 0.105 0.366 0.289 -0.339 0.213 

-0.334 0.876 -0.177 0.457 0.805 0.758 -0.116 -0.546 0.835 0.270 0.065 -0.533 0.284 

-0.261 0.739 0.002 0.500 0.735 0.678 -0.138 -0.040 0.799 0.120 0.027 -0.357 0.065 

0.028 -0.265 -0.329 -0.326 -0.378 -0.232 -0.275 -0.198 -0.172 -0.303 -0.068 -0.160 -0.180 

0.067 0.465 0.430 0.368 0.611 0.725 0.121 0.039 0.436 0.209 0.091 -0.018 0.158 

-0.082 0.409 0.306 0.529 0.483 0.558 0.065 -0.199 0.389 0.403 0.295 -0.241 0.269 

0.071 0.575 0.374 0.473 0.657 0.423 0.014 -0.024 0.600 0.015 -0.217 -0.081 -0.128 

Table 2. Continued 
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Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

0.042 1.000                       

0.170 0.165 1.000                     

-0.050 0.007 0.193 1.000                   

0.287 0.324 0.026 -0.566 1.000                 

-0.200 0.255 0.132 -0.027 0.045 1.000               

0.010 -0.141 -0.127 0.705 -0.318 -0.143 1.000             

0.501 0.085 0.509 0.198 -0.037 -0.199 0.060 1.000           

0.156 0.083 0.477 0.181 -0.055 -0.089 0.276 0.717 1.000         

-0.121 -0.126 -0.115 -0.094 -0.345 -0.092 0.017 -0.285 -0.247 1.000       

0.167 0.547 0.413 0.181 0.351 0.016 0.248 0.582 0.668 -0.372 1.000     

0.140 0.426 0.447 0.324 0.161 -0.065 0.208 0.562 0.563 -0.245 0.692 1.000   

0.220 0.144 0.547 -0.133 0.351 -0.138 -0.013 0.577 0.693 -0.257 0.727 0.591 1.000 

Table 2. Continued 
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Type 

II Au Ag Al As B Ba Be Bi Ca Cd Ce Co 

Au 1.000                       

Ag 0.172 1.000                     

Al -0.597 -0.025 1.000                   

As 0.879 0.169 -0.665 1.000                 

B -0.064 -0.061 0.059 0.104 1.000               

Ba -0.183 0.127 0.146 -0.144 0.409 1.000             

Be -0.597 0.123 0.492 -0.766 -0.198 -0.034 1.000           

Bi -0.100 -0.066 0.313 -0.202 0.518 0.559 -0.029 1.000         

Ca 0.257 -0.023 0.540 0.039 0.032 -0.081 0.068 0.071 1.000       

Cd -0.079 0.363 -0.029 -0.058 -0.338 -0.312 0.352 -0.260 -0.167 1.000     

Ce -0.575 0.191 0.458 -0.560 -0.025 0.071 0.359 0.259 -0.197 0.055 1.000   

Co 0.221 -0.257 -0.049 0.159 -0.035 0.347 -0.249 0.105 0.185 -0.090 0.094 1.000 

Cr 0.601 -0.237 -0.029 0.330 -0.142 -0.142 -0.288 0.245 0.504 -0.109 -0.059 0.614 

Cs -0.340 0.125 0.172 -0.102 -0.053 0.495 0.015 -0.284 -0.111 -0.084 -0.149 -0.001 

Cu 0.731 0.339 -0.185 0.450 -0.125 -0.169 -0.178 0.026 0.506 0.174 -0.539 -0.013 

Fe 0.273 0.305 -0.301 0.486 0.029 0.033 -0.335 -0.345 -0.165 0.465 -0.435 0.032 

Ga -0.681 0.010 0.974 -0.739 0.028 0.146 0.511 0.297 0.410 0.036 0.603 -0.016 

Ge 0.486 0.193 0.033 0.486 0.305 0.364 -0.521 0.068 0.517 -0.273 -0.210 0.575 

Hf -0.619 0.001 0.799 -0.656 -0.022 -0.138 0.475 0.361 0.210 0.304 0.666 -0.156 

Hg 0.866 0.365 -0.583 0.822 -0.100 -0.144 -0.609 -0.049 0.000 -0.023 -0.521 -0.123 

In 0.501 0.430 -0.145 0.550 -0.321 -0.248 -0.307 -0.180 0.094 0.550 -0.304 -0.053 

K -0.164 -0.015 -0.224 -0.058 0.339 0.555 0.117 -0.105 -0.239 -0.188 0.051 0.441 

La -0.525 0.180 0.448 -0.483 0.020 0.030 0.231 0.313 -0.187 0.056 0.982 0.068 

Li -0.604 0.001 0.657 -0.669 0.253 0.355 0.203 0.632 0.016 -0.128 0.598 -0.091 

Mg 0.684 -0.022 -0.125 0.492 0.186 -0.040 -0.278 -0.068 0.724 -0.233 -0.491 0.379 

Mn 0.603 -0.101 0.089 0.381 0.122 -0.087 -0.205 0.012 0.864 -0.254 -0.430 0.344 

Mo 0.060 0.318 -0.183 0.273 -0.191 -0.148 -0.362 -0.227 -0.360 0.165 -0.215 -0.560 

Na 0.140 0.156 0.270 0.136 -0.223 -0.223 0.103 -0.241 0.514 0.339 -0.539 -0.372 

Nb 0.116 -0.051 -0.445 0.218 -0.143 -0.346 0.168 -0.502 -0.252 0.603 -0.142 0.239 

Ni 0.652 -0.215 -0.304 0.487 -0.133 -0.068 -0.415 0.117 0.229 -0.142 -0.063 0.753 

P -0.094 -0.064 0.188 -0.051 0.023 0.620 -0.069 -0.133 0.263 -0.242 -0.143 0.591 

Pb -0.349 0.005 -0.067 -0.308 0.005 0.175 0.385 -0.022 -0.276 0.595 0.166 0.258 

Rb -0.472 -0.043 0.018 -0.302 0.165 0.488 0.330 -0.237 -0.244 -0.005 0.126 0.308 

Re 0.314 0.225 0.157 0.225 -0.153 -0.153 -0.141 0.073 0.362 0.213 0.170 0.411 

S 0.181 0.373 -0.308 0.402 -0.004 0.087 -0.242 -0.391 -0.244 0.533 -0.300 0.099 

Sb 0.503 0.057 -0.163 0.227 0.107 0.065 -0.421 0.413 0.222 -0.235 0.048 0.341 

Sc 0.608 -0.191 -0.135 0.474 0.219 0.070 -0.330 -0.080 0.659 -0.293 -0.513 0.529 

Se 0.807 0.170 -0.370 0.495 -0.204 -0.224 -0.242 0.049 0.351 0.032 -0.314 0.183 

Sn 0.429 0.528 -0.289 0.562 -0.300 -0.264 -0.338 -0.312 -0.090 0.218 -0.318 -0.483 

Sr -0.263 -0.008 0.897 -0.416 -0.099 -0.080 0.421 0.166 0.801 0.047 0.200 -0.012 

Ta 0.495 -0.071 0.188 0.226 -0.337 0.101 -0.142 0.113 0.682 -0.167 -0.149 0.633 

Te 0.677 0.545 -0.626 0.680 -0.100 -0.178 -0.479 -0.030 -0.278 0.027 -0.177 -0.271 

Th -0.700 0.092 0.425 -0.662 0.147 0.081 0.327 0.353 -0.363 -0.012 0.829 -0.272 

Ti 0.017 -0.103 0.037 0.148 0.306 0.499 -0.200 -0.220 0.276 -0.303 -0.353 0.431 

Tl 0.945 0.191 -0.705 0.874 -0.188 -0.233 -0.578 -0.187 0.023 -0.056 -0.436 0.198 

U -0.723 -0.038 0.709 -0.666 -0.009 -0.074 0.553 0.070 0.131 0.490 0.589 0.053 

V -0.034 -0.223 0.485 -0.086 0.220 0.359 -0.023 0.035 0.719 -0.278 -0.159 0.507 

W 0.602 0.101 -0.367 0.548 -0.260 -0.191 -0.430 -0.105 0.063 0.036 -0.030 0.505 

Y 0.228 0.000 0.232 0.145 -0.158 0.004 -0.147 -0.073 0.534 -0.227 0.248 0.666 

Zn -0.647 0.105 0.500 -0.591 -0.042 0.032 0.427 0.176 -0.154 0.530 0.697 0.045 

Zr -0.679 -0.030 0.918 -0.735 0.022 0.008 0.483 0.376 0.304 0.163 0.606 -0.137 

Table 3. A correlation matrix generated from multi element assay data from available 

intercepts of Type II mineralization >0.300 opt (n=13). 
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Cr Cs Cu Fe Ga Ge Hf Hg In K La Li Mg 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

-0.570 1.000                       

0.441 -0.348 1.000                     

-0.175 0.435 0.219 1.000                   

-0.060 0.152 -0.284 -0.299 1.000                 

0.414 0.193 0.385 0.363 -0.012 1.000               

-0.013 -0.217 -0.238 -0.353 0.847 -0.308 1.000             

0.299 -0.171 0.659 0.423 -0.651 0.304 -0.556 1.000           

0.201 0.051 0.515 0.708 -0.187 0.230 -0.052 0.670 1.000         

-0.226 0.378 -0.387 0.049 -0.170 0.242 -0.434 -0.364 -0.525 1.000       

-0.026 -0.206 -0.500 -0.405 0.590 -0.180 0.706 -0.450 -0.229 -0.064 1.000     

-0.101 -0.005 -0.266 -0.283 0.744 -0.054 0.683 -0.428 -0.276 -0.170 0.632 1.000   

0.610 -0.243 0.622 0.030 -0.223 0.681 -0.387 0.317 0.051 0.133 -0.489 -0.379 1.000 

0.680 -0.260 0.606 -0.075 -0.031 0.629 -0.195 0.249 0.076 -0.044 -0.418 -0.268 0.961 

-0.435 0.378 0.035 0.564 -0.178 -0.123 -0.116 0.501 0.592 -0.464 -0.134 0.013 -0.433 

-0.088 0.265 0.440 0.331 0.133 0.027 0.107 0.205 0.537 -0.467 -0.506 -0.229 0.217 

-0.014 -0.145 -0.034 0.289 -0.416 -0.174 -0.205 -0.105 0.124 0.332 -0.190 -0.655 0.056 

0.868 -0.471 0.339 -0.080 -0.325 0.445 -0.261 0.348 0.175 0.006 -0.045 -0.329 0.496 

-0.012 0.715 -0.126 0.228 0.173 0.608 -0.284 -0.259 -0.155 0.616 -0.216 -0.010 0.293 

-0.177 0.000 -0.221 0.045 0.034 -0.240 0.178 -0.511 -0.196 0.455 0.121 -0.003 -0.143 

-0.462 0.594 -0.550 0.071 0.069 0.045 -0.192 -0.605 -0.489 0.897 0.004 -0.098 -0.116 

0.454 -0.298 0.452 0.075 0.125 0.420 0.225 0.196 0.426 -0.297 0.218 -0.058 0.204 

-0.223 0.469 0.107 0.970 -0.265 0.334 -0.329 0.303 0.622 0.202 -0.293 -0.263 -0.014 

0.672 -0.569 0.498 -0.150 -0.112 0.445 -0.079 0.388 0.027 -0.161 0.110 0.281 0.465 

0.597 -0.105 0.462 0.077 -0.229 0.718 -0.446 0.210 -0.021 0.278 -0.521 -0.391 0.963 

0.739 -0.569 0.707 -0.039 -0.396 0.265 -0.307 0.628 0.309 -0.229 -0.295 -0.306 0.669 

-0.167 0.195 0.302 0.460 -0.340 -0.016 -0.235 0.722 0.733 -0.474 -0.251 -0.361 -0.080 

0.215 0.013 0.150 -0.272 0.813 0.129 0.684 -0.354 0.060 -0.390 0.201 0.354 0.181 

0.789 -0.108 0.491 -0.130 0.097 0.543 -0.063 0.230 0.247 -0.140 -0.161 -0.163 0.588 

0.097 -0.272 0.443 0.233 -0.628 0.061 -0.424 0.882 0.510 -0.305 -0.112 -0.329 0.043 

-0.304 -0.091 -0.568 -0.331 0.575 -0.389 0.638 -0.472 -0.352 -0.070 0.833 0.807 -0.648 

-0.113 0.660 -0.082 0.340 -0.007 0.659 -0.439 -0.171 -0.184 0.666 -0.404 -0.168 0.445 

0.537 -0.314 0.535 0.257 -0.753 0.326 -0.650 0.867 0.497 -0.125 -0.402 -0.658 0.484 

-0.157 0.029 -0.380 -0.104 0.787 -0.211 0.852 -0.768 -0.108 -0.051 0.584 0.497 -0.335 

0.276 0.352 0.061 0.039 0.422 0.672 0.025 -0.320 -0.174 0.320 -0.187 0.127 0.596 

0.515 -0.330 0.399 0.083 -0.389 0.369 -0.249 0.453 0.374 -0.125 0.009 -0.426 0.248 

0.524 -0.093 0.130 -0.255 0.203 0.564 0.072 -0.089 -0.033 0.102 0.242 -0.137 0.440 

-0.118 -0.011 -0.448 -0.022 0.651 -0.264 0.763 -0.588 -0.032 -0.023 0.700 0.604 -0.458 

-0.058 -0.030 -0.239 -0.304 0.951 -0.180 0.953 -0.596 -0.105 -0.368 0.629 0.786 -0.343 

Table 3. Continued 
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Mn Mo Na Nb Ni P Pb Rb Re S Sb Sc Se 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

-0.434 1.000                       

0.330 0.353 1.000                     

-0.070 -0.275 -0.033 1.000                   

0.482 -0.434 -0.326 0.216 1.000                 

0.255 -0.216 0.040 -0.073 0.055 1.000               

-0.236 -0.383 -0.095 0.615 -0.133 0.148 1.000             

-0.232 -0.349 -0.245 0.367 -0.257 0.658 0.566 1.000           

0.249 -0.168 0.006 0.141 0.592 -0.042 -0.133 -0.319 1.000         

-0.146 0.482 0.231 0.373 -0.112 0.295 0.216 0.232 0.020 1.000       

0.430 -0.191 -0.352 -0.348 0.549 -0.094 -0.195 -0.495 0.276 -0.173 1.000     

0.919 -0.476 0.149 0.104 0.528 0.460 -0.080 0.048 0.139 0.043 0.383 1.000   

0.641 -0.162 0.095 0.006 0.567 -0.200 -0.148 -0.526 0.143 -0.065 0.686 0.544 1.000 

-0.081 0.803 0.528 -0.100 -0.183 -0.270 -0.391 -0.435 -0.017 0.391 -0.160 -0.191 0.225 

0.409 -0.236 0.520 -0.314 -0.092 0.128 -0.144 -0.180 0.331 -0.320 -0.096 0.125 -0.065 

0.689 -0.372 0.184 -0.130 0.721 0.376 -0.241 -0.232 0.560 -0.181 0.385 0.593 0.519 

-0.058 0.503 -0.049 -0.066 0.216 -0.474 -0.394 -0.537 0.152 0.181 0.338 -0.105 0.504 

-0.591 0.079 -0.469 -0.375 -0.415 -0.290 0.059 0.008 -0.202 -0.245 0.056 -0.677 -0.403 

0.360 -0.176 0.098 0.027 -0.031 0.900 0.091 0.652 -0.151 0.374 -0.142 0.602 -0.204 

0.391 0.140 -0.007 0.183 0.650 -0.174 -0.348 -0.425 0.232 0.197 0.405 0.423 0.753 

-0.220 -0.237 0.094 0.161 -0.309 0.032 0.518 0.244 0.156 -0.011 -0.295 -0.312 -0.474 

0.654 -0.415 0.244 -0.183 0.112 0.787 0.025 0.338 0.055 0.045 0.085 0.701 -0.006 

0.202 -0.121 -0.220 0.295 0.808 -0.064 -0.182 -0.277 0.819 0.039 0.330 0.224 0.322 

0.486 -0.497 -0.141 0.049 0.640 0.377 -0.128 0.055 0.707 -0.233 0.225 0.458 0.134 

-0.390 -0.062 -0.102 0.066 -0.302 -0.056 0.555 0.174 -0.052 0.117 -0.085 -0.443 -0.291 

-0.139 -0.089 0.144 -0.377 -0.336 -0.082 0.068 -0.118 0.163 -0.297 -0.075 -0.377 -0.379 

Table 3. Continued 
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Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

-0.133 1.000                       

-0.065 0.454 1.000                     

0.719 -0.498 -0.036 1.000                   

-0.253 0.069 -0.501 -0.159 1.000                 

-0.218 0.009 0.171 -0.410 -0.406 1.000               

0.506 -0.422 0.392 0.772 -0.585 -0.104 1.000             

-0.392 0.569 -0.151 -0.672 0.497 -0.083 -0.754 1.000           

-0.387 0.534 0.501 -0.625 -0.274 0.786 -0.234 0.222 1.000         

0.102 -0.155 0.535 0.436 -0.418 -0.136 0.623 -0.295 -0.164 1.000       

-0.239 0.386 0.722 -0.137 -0.253 0.251 0.176 0.104 0.460 0.658 1.000     

-0.249 0.278 -0.270 -0.413 0.692 -0.223 -0.588 0.858 0.016 -0.376 -0.124 1.000   

-0.293 0.763 -0.012 -0.540 0.640 -0.248 -0.747 0.824 0.214 -0.360 0.068 0.709 1.000 

Table 3. Continued 
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Type 

III Au Ag Al As B Ba Be Bi Ca Cd Ce Co 

Au 1.000                       

Ag 0.131 1.000                     

Al -0.121 -0.290 1.000                   

As 0.247 0.336 0.031 1.000                 

B -0.132 -0.145 0.445 -0.112 1.000               

Ba -0.266 -0.315 0.050 -0.515 -0.024 1.000             

Be -0.037 -0.175 0.631 -0.162 0.414 0.254 1.000           

Bi 0.010 -0.026 0.413 0.239 0.259 -0.136 0.181 1.000         

Ca -0.235 0.060 -0.568 -0.056 -0.246 0.160 -0.283 -0.428 1.000       

Cd 0.116 0.150 0.038 0.292 -0.025 0.019 -0.087 0.215 0.074 1.000     

Ce -0.036 -0.183 0.686 0.147 0.136 -0.096 0.297 0.608 -0.539 0.187 1.000   

Co 0.061 -0.196 0.765 0.087 0.255 -0.128 0.388 0.478 -0.743 0.062 0.836 1.000 

Cr 0.148 -0.015 0.284 0.090 0.017 -0.101 0.013 0.210 -0.321 0.213 0.367 0.349 

Cs 0.149 0.892 -0.185 0.377 -0.113 -0.326 -0.155 -0.053 -0.013 0.111 -0.158 -0.135 

Cu 0.096 0.021 0.343 0.067 0.080 -0.152 0.080 0.190 -0.354 0.345 0.381 0.448 

Fe 0.212 -0.198 0.593 0.119 0.226 -0.179 0.282 0.530 -0.695 0.015 0.664 0.800 

Ga 0.053 -0.137 0.930 0.166 0.332 -0.090 0.509 0.460 -0.620 0.161 0.747 0.793 

Ge 0.367 0.595 0.036 0.386 -0.115 -0.331 0.010 0.242 -0.197 0.210 0.108 0.035 

Hf -0.164 -0.221 0.576 0.089 0.316 0.025 0.265 0.666 -0.382 0.295 0.621 0.452 

Hg 0.175 0.895 -0.253 0.411 -0.157 -0.354 -0.216 -0.036 0.003 0.167 -0.184 -0.175 

In 0.389 0.354 0.072 0.461 -0.156 -0.310 0.014 0.342 -0.156 0.211 0.138 -0.009 

K -0.072 -0.233 0.815 -0.025 0.549 0.020 0.613 0.519 -0.648 -0.109 0.600 0.760 

La -0.002 -0.136 0.652 0.202 0.111 -0.108 0.260 0.632 -0.499 0.267 0.987 0.808 

Li -0.089 -0.155 0.512 -0.102 0.134 0.420 0.474 0.009 -0.051 0.093 0.180 0.156 

Mg 0.073 -0.023 -0.435 -0.303 -0.237 0.268 -0.206 -0.224 0.247 -0.347 -0.414 -0.459 

Mn -0.061 -0.066 -0.498 -0.178 -0.262 0.128 -0.216 -0.335 0.580 -0.345 -0.497 -0.606 

Mo 0.026 -0.164 0.208 0.009 0.028 0.002 -0.031 0.137 0.021 0.576 0.282 0.147 

Na 0.009 0.244 0.056 -0.344 -0.148 0.184 0.032 -0.320 0.032 -0.252 -0.138 -0.082 

Nb 0.115 0.147 0.078 0.177 -0.113 0.007 -0.045 0.307 0.027 0.264 0.063 -0.086 

Ni 0.037 -0.210 0.516 -0.011 0.091 -0.100 0.143 0.265 -0.429 0.333 0.593 0.616 

P -0.028 -0.167 0.507 0.124 0.168 0.067 0.224 0.299 -0.223 0.319 0.552 0.389 

Pb 0.162 -0.059 0.358 -0.056 0.176 -0.051 0.188 0.182 -0.569 0.042 0.264 0.482 

Rb -0.072 -0.204 0.849 0.088 0.484 -0.018 0.619 0.539 -0.679 -0.038 0.679 0.807 

Re -0.257 -0.300 0.265 -0.122 0.138 0.134 0.038 0.226 -0.120 0.463 0.337 0.206 

S 0.426 0.437 0.225 0.584 -0.050 -0.468 0.082 0.456 -0.400 0.196 0.368 0.334 

Sb 0.136 0.607 -0.198 0.437 -0.197 -0.326 -0.094 0.137 0.083 0.209 -0.143 -0.244 

Sc -0.062 -0.075 0.276 0.011 0.033 -0.040 0.393 0.303 0.069 -0.201 0.347 0.268 

Se 0.191 0.560 -0.075 0.425 -0.168 -0.335 -0.111 0.242 -0.077 0.226 -0.027 -0.126 

Sn 0.146 0.496 0.194 0.387 0.081 -0.281 -0.024 0.286 -0.212 0.245 0.286 0.230 

Sr -0.104 -0.025 -0.434 -0.104 -0.212 0.347 -0.155 -0.334 0.774 0.038 -0.458 -0.607 

Ta -0.126 0.564 -0.171 0.154 0.013 -0.153 -0.153 0.071 0.078 0.144 -0.116 -0.157 

Te 0.442 0.156 0.042 0.390 -0.064 -0.233 0.052 0.301 -0.142 0.152 0.112 -0.008 

Th -0.098 -0.215 0.746 0.051 0.170 -0.052 0.373 0.473 -0.611 0.024 0.913 0.880 

Ti -0.072 -0.132 0.209 -0.292 -0.094 0.334 0.063 -0.092 -0.007 -0.072 0.021 0.074 

Tl 0.520 0.553 0.039 0.579 -0.062 -0.423 -0.070 0.299 -0.341 0.211 0.280 0.284 

U 0.138 -0.084 0.299 0.105 -0.027 -0.019 0.030 0.224 -0.081 0.603 0.442 0.263 

V 0.042 -0.111 -0.021 -0.090 -0.065 0.065 -0.044 -0.038 0.318 0.439 -0.011 -0.243 

W 0.149 -0.016 0.043 0.301 -0.119 -0.131 0.019 0.232 -0.038 0.460 0.268 0.183 

Y -0.147 -0.258 0.533 0.115 0.081 -0.119 0.181 0.405 -0.172 0.222 0.723 0.534 

Zn 0.171 0.072 0.051 0.286 -0.081 0.028 -0.044 0.149 0.138 0.934 0.220 0.065 

Zr -0.006 -0.187 0.624 0.086 0.283 -0.045 0.200 0.633 -0.577 0.370 0.705 0.634 

Table 4. A correlation matrix for Type III mineralization (n=89) 



54 
 

Cr Cs Cu Fe Ga Ge Hf Hg In K La Li Mg 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

0.034 1.000                       

0.338 0.097 1.000                     

0.288 -0.216 0.484 1.000                   

0.402 -0.040 0.394 0.647 1.000                 

0.139 0.658 0.139 -0.008 0.248 1.000               

0.393 -0.200 0.287 0.404 0.594 0.117 1.000             

0.080 0.974 0.096 -0.231 -0.089 0.653 -0.169 1.000           

0.156 0.403 -0.009 -0.033 0.248 0.780 0.247 0.455 1.000         

0.175 -0.179 0.184 0.641 0.716 -0.031 0.497 -0.230 -0.001 1.000       

0.401 -0.131 0.393 0.657 0.741 0.148 0.623 -0.148 0.195 0.547 1.000     

0.173 -0.103 0.011 0.103 0.455 -0.007 0.214 -0.144 -0.020 0.236 0.179 1.000   

-0.286 -0.188 -0.360 -0.152 -0.434 -0.284 -0.336 -0.177 -0.234 -0.342 -0.398 -0.057 1.000 

-0.365 -0.149 -0.269 -0.263 -0.536 -0.299 -0.408 -0.140 -0.257 -0.486 -0.495 -0.118 0.707 

0.325 -0.144 0.519 0.115 0.278 0.029 0.371 -0.103 0.015 -0.125 0.318 0.162 -0.320 

-0.004 0.218 -0.012 -0.103 0.019 0.106 -0.217 0.184 -0.041 -0.005 -0.177 0.254 0.197 

0.255 0.158 -0.095 -0.046 0.208 0.460 0.414 0.205 0.580 0.048 0.112 0.258 -0.095 

0.392 -0.157 0.710 0.488 0.563 0.037 0.438 -0.161 -0.057 0.301 0.579 0.125 -0.453 

0.347 -0.092 0.473 0.329 0.523 0.095 0.645 -0.076 0.127 0.312 0.549 0.300 -0.359 

-0.054 -0.034 0.409 0.468 0.332 0.052 0.162 -0.067 -0.152 0.360 0.206 0.021 -0.166 

0.224 -0.122 0.272 0.657 0.781 0.019 0.528 -0.184 0.046 0.941 0.641 0.220 -0.371 

0.277 -0.264 0.511 0.183 0.232 -0.202 0.561 -0.230 -0.231 0.032 0.338 0.173 -0.278 

0.259 0.465 0.255 0.419 0.436 0.767 0.245 0.490 0.780 0.220 0.417 -0.026 -0.306 

-0.053 0.588 -0.103 -0.264 -0.067 0.727 -0.063 0.626 0.705 -0.172 -0.099 -0.090 -0.176 

0.012 -0.104 -0.081 0.285 0.219 0.007 0.107 -0.149 0.017 0.369 0.330 0.157 -0.121 

0.033 0.606 0.024 -0.139 0.081 0.792 0.031 0.636 0.810 -0.091 0.016 -0.093 -0.215 

0.177 0.502 0.208 0.172 0.365 0.634 0.256 0.484 0.449 0.120 0.326 0.061 -0.242 

-0.255 -0.139 -0.392 -0.478 -0.484 -0.241 -0.244 -0.121 -0.161 -0.475 -0.412 0.180 0.490 

-0.065 0.561 -0.024 -0.201 -0.056 0.540 -0.009 0.514 0.122 -0.127 -0.102 -0.077 -0.080 

0.120 0.181 -0.085 0.004 0.206 0.590 0.162 0.239 0.823 0.021 0.163 -0.024 -0.174 

0.249 -0.166 0.378 0.679 0.750 0.029 0.508 -0.208 -0.007 0.685 0.858 0.221 -0.425 

0.139 -0.108 -0.094 0.063 0.196 -0.087 -0.058 -0.145 -0.124 0.219 0.005 0.519 0.103 

0.211 0.560 0.207 0.372 0.246 0.512 0.037 0.595 0.487 0.145 0.335 -0.133 -0.093 

0.398 -0.070 0.553 0.259 0.443 0.186 0.495 -0.023 0.210 -0.040 0.496 0.206 -0.272 

0.204 -0.173 0.307 -0.082 0.039 -0.028 0.287 -0.126 0.037 -0.283 0.042 0.082 0.052 

-0.002 -0.081 0.198 0.197 0.109 0.061 0.114 -0.060 0.045 0.090 0.291 -0.118 -0.169 

0.326 -0.186 0.403 0.394 0.567 0.029 0.581 -0.189 0.068 0.304 0.713 0.157 -0.450 

0.197 0.030 0.326 0.025 0.172 0.192 0.206 0.079 0.195 -0.149 0.298 0.110 -0.360 

0.500 -0.126 0.471 0.546 0.693 0.157 0.881 -0.115 0.194 0.505 0.714 0.233 -0.384 

Table 4. Continued 
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Mn Mo Na Nb Ni P Pb Rb Re S Sb Sc Se 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

-0.247 1.000                       

0.148 -0.090 1.000                     

-0.148 0.085 0.110 1.000                   

-0.461 0.731 0.017 -0.017 1.000                 

-0.342 0.439 -0.035 0.163 0.489 1.000               

-0.306 0.138 0.135 -0.234 0.456 0.194 1.000             

-0.524 -0.043 -0.119 -0.007 0.389 0.381 0.366 1.000           

-0.258 0.752 -0.118 0.016 0.630 0.504 0.209 0.081 1.000         

-0.311 0.022 -0.071 0.393 0.153 0.172 0.112 0.291 -0.202 1.000       

-0.110 -0.118 0.010 0.409 -0.216 -0.166 -0.130 -0.151 -0.316 0.655 1.000     

0.140 -0.217 0.072 0.075 -0.037 -0.005 -0.128 0.286 -0.161 0.213 0.076 1.000   

-0.203 -0.064 0.005 0.441 -0.110 -0.036 -0.046 -0.045 -0.288 0.741 0.911 -0.013 1.000 

-0.238 0.063 0.062 0.224 0.096 0.201 0.136 0.157 -0.042 0.611 0.473 0.082 0.485 

0.555 -0.082 0.116 0.114 -0.434 -0.080 -0.433 -0.497 -0.177 -0.362 -0.027 0.040 -0.144 

-0.049 -0.068 0.083 0.177 -0.114 -0.087 0.038 -0.128 -0.083 0.225 0.455 -0.012 0.377 

-0.232 0.088 -0.123 0.455 -0.017 0.009 -0.160 0.058 -0.259 0.670 0.572 0.023 0.637 

-0.477 0.177 -0.008 -0.058 0.615 0.434 0.423 0.719 0.277 0.260 -0.210 0.335 -0.110 

-0.018 -0.064 0.429 0.447 0.011 -0.028 -0.053 0.087 -0.081 -0.145 -0.121 0.135 -0.121 

-0.206 -0.118 -0.086 0.143 -0.009 0.085 0.065 0.225 -0.269 0.753 0.431 0.093 0.504 

-0.238 0.830 -0.040 0.217 0.647 0.671 0.158 0.056 0.665 0.220 -0.068 -0.150 0.047 

0.132 0.709 -0.013 0.210 0.349 0.329 -0.165 -0.251 0.518 -0.092 -0.109 -0.172 -0.080 

-0.171 0.081 -0.213 0.055 0.205 0.097 0.152 0.115 0.080 0.159 0.082 0.118 0.065 

-0.251 0.439 -0.115 0.023 0.554 0.695 0.171 0.385 0.452 0.168 -0.176 0.298 -0.071 

-0.284 0.624 -0.203 0.195 0.364 0.308 0.003 -0.086 0.426 0.176 0.150 -0.134 0.155 

-0.541 0.485 -0.168 0.292 0.634 0.648 0.336 0.573 0.618 0.298 -0.132 0.009 0.004 

Table 4. Continued 
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Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

1.000                         

-0.214 1.000                       

0.493 -0.013 1.000                     

0.295 -0.136 -0.053 1.000                   

0.204 -0.552 -0.136 -0.022 1.000                 

-0.144 0.129 -0.045 -0.105 0.090 1.000               

0.515 -0.222 0.192 0.396 0.160 -0.179 1.000             

0.193 -0.083 -0.046 0.127 0.283 -0.058 0.096 1.000           

-0.082 0.252 -0.100 0.100 -0.160 -0.022 -0.193 0.666 1.000         

0.063 -0.042 -0.059 0.046 0.207 -0.104 0.155 0.134 0.074 1.000       

0.193 -0.201 -0.145 -0.013 0.608 -0.115 0.012 0.605 0.259 0.226 1.000     

0.216 0.059 0.049 0.181 0.061 -0.066 0.149 0.645 0.503 0.530 0.297 1.000   

0.300 -0.393 0.012 0.122 0.596 -0.037 0.148 0.604 0.217 0.095 0.584 0.270 1.000 

Table 4. Continued 
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  Type I Type II Type III 

        

Grade Commonly ore grade, 

>0.300 oz/t Au, but 

mineralization is rarely  

> 1.000 oz/t 

Commonly ore grade, 

>0.300 oz/t Au, 

mineralization is commonly 

>1.000 oz/t up to 2.59 oz/t) 

Rarely ore grade >0.300 

oz/t Au, typically low 

grade, 0.010 to 0.100 oz/t 

Au  

        

Chemistry Higher Ag (1-15 ppm),  

higher Hg (100-500 

ppm), Sb (100-400ppm),  

Tl (100-200 ppm) 

Very low Ag (<0.1 ppm), 

lower Hg (50-150 ppm), Sb 

(20-150ppm), and Th (15-

40ppm) than in Type I 

Defined by Au<Ag, Hg, 

Sb, and Tl are common 

along with Au but their 

concentrations are quite 

variable relative to Au 

        

Hosts Dominantly hosted in the 

limestone inter-bedded 

with the siliceous 

carbonaceous mudstones 

that have not been calc-

silicate altered.  

Hosted in strongly argillized 

argillaceous mudstone and 

limestone lithologies within 

a fault gouge. 

Dominantly hosted in 

siliceous carbonaceous 

mudstones that are 

limestone poor.  

        

Controls Mineralization occurs as 

fine grained pyrite in 

jasperoid altered 

limestones where ore 

fluids have spread out 

from ore fluid conduits 

into receptive limestone 

host rocks. 

Ore stage sooty pyrite is 

very structurally controlled 

occurring within the 

argillized gouge a west 

dipping fault zone observed 

in Cross Section B. 

Ore stage sooty pyrite and 

late stage quartz occur 

along formerly calcite 

filled tension gashes and 

veins that are common in 

the siliceous mudstones. 

        

Alteration Strong decalcification 

and silicification of 

limestone units, very 

little alteration in rocks 

adjacent to these 

mineralized zones. 

Commonly associated 

with abundant realgar. 

Strong argillization of fault 

gouge with local 

silicification. Outside the 

mineralized zone areas of 

alteration, such as bleaching 

and argillization, is 

common. Abundant realgar 

is uncommon. 

Decalcification and local 

silicification of formerly 

calcite filled tension 

gashes, mudstones often 

remain visibly unaltered. 

Commonly associated 

with abundant realgar. 

        

Elemental 

Correlations 

Strong correlation 

(R>0.75) of Au with Cu, 

Hg, and Tl; moderate 

correlation 

(0.50<R<0.75) of Au 

with Te; and a weak but 

notable correlation 

(0.40<R<0.50) of Au 

with Ag and S. 

Strong correlation (R>0.75) 

of Au with As, Hg, Se and 

Tl; moderate correlation 

(0.50<R<0.75) of Au with 

Cr, Cu, In, Mg, Mn, Ni, Sb, 

Sc, Te, and W; and a weak 

but notable correlation 

(0.40<R <0.50) of Au with 

Ge, Sn, and Ta.   

Moderate correlation 

(0.50<R<0.75) with Tl 

and a weak but notable 

correlation (0.40<R<0.50) 

with Te and S. 

Table 5. A table summarizing the characteristics and differences between Type I, II, and 

III mineralization. 
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Figure 1. A map (modified from Cline et al., 2005) showing the five major trends of 

Carlin type deposits in Nevada. The Getchell and Turquoise Ridge deposits are circled in 

orange. Trends are interpreted as crustal scale faults (Tosdal et al., 2000) which served as 

conduits for these Carlin-type ore fluids. The Getchell and Turquoise Ridge deposits are 

located at the northern end of the Getchell trend.  
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Figure 2. A geologic map of the Getchell trend (denoted G” on the insert), with the 

Preble, Pinson Getchell/Turquoise Ridge and Twin Creeks deposits, occurring along the 

eastern flank of the Osgood Mountains (modified from Foster and Kretshmer, 1991). The 

Getchell deposit is hosted in the Cambrian Preble Formation and the Ordovician Comus 

Formation. The Getchell Mine is located near the Osgood granodiorite (Kg) and many of 

the rocks have experienced moderate to strong contact metamorphism. 
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Figure 3. A geologic map (modified from Cline et al. 2005) showing the Carlin type gold 

deposits on the northern end of the Getchell trend. The Getchell Main Pit and North Pit 

are centered primarily on the Getchell fault; the Getchell Main Underground is located in 

the footwall adjacent to the open pits; the Turquoise Ridge deposit is located to the east in 

the hanging wall of the Getchell fault. 

 

 

 

 



61 
 

 

 

 

 

 

 

 

 

 

 

  

Figure 4. A map modified from Tretbar (2004) of the Getchell Deposit showing the 

locations of the cross sections produced by this study (red lines) in relation to the outlines 

of the Getchell open pits and the outline of the Turquoise Ridge (underground) deposit. 

Note the location of the lobe of the Osgood stock in the hanging wall of the Getchell 

Fault.  
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Figure 5. A generalized stratigraphic column for the study area. The depth to the 

Getchell fault is variable depending on location due to its moderate eastward dip. 
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Figure 6. Footwall carbonaceous limestones, gray to dark gray, with inter-beds of 

siliceous carbonaceous mudstones, black. The section is composed dominantly of 

limestone and shows little to no alteration to calc-silicate minerals. (63.5 mm diameter 

core, footage 1261’ is upper left, footage 1270’ is lower right) 
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Figure 7. A sample of an intact contact between the siliceous carbonaceous mudstone 

clast (left) and the argillaceous mudstone matrix (right) in drill hole 95-094 2538’. At the 

contact there is a layer of limestones and carbon-rich mudstones foliated parallel to the 

contact (black arrow). Moving further into the siliceous carbonaceous clast there is an 

non-oriented broken jumble of clasts of siliceous carbonaceous mudstones and limestones 

(red arrow) in a matrix of coarse open space filling crystalline calcite (blue arrows). 

Moving further into the clast bedding becomes regular by 2558’ (not shown). (63.5 mm 

diameter core) 
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Figure 8. A sample of the contact, 30-40 degrees to core axis, (blue line) between 

argillaceous mudstone with calc-silicate altered limestone fragments (above) and a small 

clast (1.1’ interval) of non calc-silicate altered limestone and siliceous carbonaceous 

mudstone (below). One limestone bed (red lines) bounded by thin inter-beds of siliceous 

carbonaceous mudstone, 10 degrees to core axis, terminates into the contact between the 

lithologies (63.5 mm diameter core). 
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Figure 9. A section of siliceous carbonaceous mudstone with inter-beds of limestone 

turbidites. The limestones in the section locally have some alteration to calc-silicate 

minerals (red arrows) which is common in the upper intercepts of the siliceous 

carbonaceous mudstones in Cross Section B (63.5 mm diameter core). 
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Figure 10. A sample of siliceous carbonaceous mudstone with well developed calcite 

fractures perpendicular, and restricted, to individual mudstone beds. Beds are bounded by 

thin carbon rich mudstone inter-beds at which the calcite filled fractures end. Locally the 

carbon-rich mudstone fills portions of the fractures suggesting that it remained ductile 

while the siliceous mudstones broke in a brittle manner (63.5 mm diameter core). 
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Figure 11. A sample of limestone turbidite (gray bed) with a basal conglomerate of rip-

ups from the underlying siliceous carbonaceous bed (red arrows). The bed pictured is 

over-turned, however, other beds in the same drill core have normal bedding indicators. It 

is unclear if this is a result of internal folding of the clast or whether the clast is over- 

turned (63.5 mm diameter core). 
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                Calcite veins                                              Carbon rich beds 

Figure 12. A sample of core from a limestone (left, lighter grey) inter-bedded with thin 

carbon rich calcareous mudstone beds (right, darker grey). Note the calcite veins are 

bounded by these carbon rich inter-beds. Also note the injection of the carbon rich 

mudstone into the void later filled with calcite (orange arrow) (63.5 mm diameter core). 

 

 

 



70 
 

Figure 13. A photomicrograph of a sample of siliceous carbonaceous mudstone from the 

lower potions of the debris flow (95-088-1627 crossed polars at 40x, field of view 0.25 

mm). The sample is cut by several bedding perpendicular quartz replaced calcite veinlets 

which terminate at a carbon rich mudstone bed, the opaque horizontal feature.  The 

sample is from the margins of a mineralized area and the former calcite veins that have 

been decalcified and replaced with quartz. 
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Figure 14. Samples, spanning 150 feet of core, composed of siliceous carbonaceous 

mudstone inter-bedded with limestone from one interval in core representing one clast. 

Bedding angles vary from near perpendicular to near parallel to core axis. This change in 

bedding orientation is likely due to folding within the clast of siliceous carbonaceous 

mudstone. Changes in bedding orientation may vary from clast to clast but also may be 

variable within one clast (63.5 mm diameter core). 
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Figure 15. Two samples of the siliceous carbonaceous mudstone inter-bedded with 

limestone from two separate intercepts of the lithology separated by a 15’ interval of 

argillaceous mudstone matrix. In this case the clasts appear to have very different 

bedding orientations 60-70 degrees to core axis on the left 0-10 degrees on the right (63.5 

mm diameter core). 
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Figure 16. A sample of the contact between a siliceous carbonaceous mudstone bed and 

an overlying limestone turbidite. Samples were taken from each component and analyzed 

via XRD. The limestone turbidite is dominantly calcite with no calc-silicate minerals 

present. A minor quartz signature confirms observations of small quartz grains in the 

limestone and possibly some material incorporated into the turbidite from the underlying 

siliceous mud. The lower spectrum is from the siliceous carbonaceous mudstone and 

shows a dominant signature of quartz with lesser orthoclase, tremolite, and pyrite. 

Diagenetic pyrite is visible as the small brassy spots in the mudstone bed in the photo 

above. 
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Figure 17. A section of argillaceous mudstone with weak metamorphism to fine grained 

biotite hornfels resulting in the maroon brown color that is common in the argillaceous 

mudstones in the study area. The mudstone is thinly bedded in this section but is often 

massive to locally chaotically bedded due to soft-sediment deformation elsewhere (63.5 

mm diameter core). 
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Figure 18. A sample of argillaceous limestone, locally known as the Powder Hill 

Limestone with weak calc-silicate alteration. The bedding (red line) is cut by a later well 

developed cleavage fabric (blue line) which is common in this unit. The cleavage planes 

cause minor offset in the limestone beds (63.5 mm diameter core). 
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Limestone                   Limestone Clasts        Mudstone Matrix 

 (Pink/Grey)             (Grey/White)                 (Brown/Dark-gray) 

Drill hole 08-GC-035 from 946’ to 973’ moving down-hole left to right 

Figure 19. A section of limestone with thin argillaceous mudstone inter-beds, and weak 

calc-silicate alteration ending ~955’. At 955’ (red bar) there is a transition to dominantly 

argillaceous mudstone (blue arrows) with clasts of calc-silicate altered limestone (red 

arrows), interpreted as being ripped up from the larger dominantly limestone section 

912’-955’ (63.5 mm diameter core). 
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Figure 20. A section of the upper siliceous carbonaceous mudstone unit. The unit is 

thinly bedded, < 1 cm thick, and commonly contains abundant pyrite. The unit forms a 

continuous layer just below the upper basalt in both Cross Sections. Locally the unit 

contains inter-beds of hyaloclastite (63.5 mm diameter core).  
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Figure 21. A 1 foot thick conglomeratic bed of hyaloclastite/scoria (red arrows) and 

rounded clasts of the upper siliceous carbonaceous mudstone (black arrows). The bed is 

located in the upper siliceous carbonaceous mudstone ~150 feet below the basalt 

mudstone contact. (63.5 mm diameter core) 
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Figure 22. A section of vesiculated Upper Basalt which caps the stratigraphy in the study 

area. The vesicles have been filled with calcite (blue arrows). Several pillow margins are 

also visible (red arrows) (63.5 mm diameter core). 
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Figure 23. A contact (red line) between a section of argillaceous mudstone inter-bedded 

with limestone (above) with a diabase dike (below). The diabase is very fine grained and 

dark gray to green in color (63.5 mm diameter core). 
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Figure 24. A diagram showing the intensity of calc-silicate alteration observed in drill 

cores along Cross Section A. Green dots represent limestone with no visible calc-silicate 

alteration. Yellow represent areas of limestone with minor calc-silicate alteration (<25% 

of limestone altered to calc-silicates). Orange represent areas of limestone with moderate 

calc-silicate alteration (25%-75% of limestone altered to calc-silicates). Red representing 

areas of limestone with strong calc-silicate alteration (>75% of limestone altered to calc-

silicates) (no vertical exaggeration). 
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Figure 25. A diagram showing the intensity of calc-silicate alteration observed in drill 

cores along Cross Section B. Green dots represent limestone with no visible calc-silicate 

alteration. Yellow represent areas of limestone with minor calc-silicate alteration (<25% 

of limestone altered to calc-silicates). Orange represent areas of limestone with moderate 

calc-silicate alteration (25%-75% of limestone altered to calc-silicates). Red representing 

areas of limestone with strong calc-silicate alteration (>75% of limestone altered to calc-

silicates) (no vertical exaggeration). 
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Figure 26. A small clast of limestone inter-bedded with siliceous carbonaceous mudstone 

(1311’-1317’ between red lines) in a matrix of argillaceous mudstone and limestone. The 

argillaceous mudstone and limestone are strongly calc-silicate altered while the clast 

composed of the limestone inter-bedded with the siliceous carbonaceous mudstone is not 

(63.5 mm diameter core). 
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Figure 27. A sample of calc-silicate altered limestone inter-bedded with siliceous 

carbonaceous mudstone. The dominant calc-silicate mineral is wollastonite (white/gray) 

with minor amounts of vesuvianite (brown). The siliceous carbonaceous mudstone bed 

adjacent to the calc-silicate altered limestone bed (right of blue line) has been bleached 

(red arrow) (63.5 mm diameter core). 
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Figure 28. A section of calc-silicate altered siliceous carbonaceous mudstone with inter-

bedded limestone. The limestone bed has been altered to dominantly wollastonite, with 

local minor vesuvianite and minor remaining calcite. This section of calc-silicate 

alteration is located above the mineralized zone in the northwest-southeast Cross Section. 

Sample is from a five-foot section that grades 0.0004 oz/t Au (63.5 mm diameter core). 
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Figure 29. Thin section photomicrograph showing change in calc-silicate alteration 

extending from strongly calc-silicate (denoted by 2
nd

 order colors in cross polarized light) 

altered limestone near the limestone siliceous mudstone contact to unaltered, locally 

recrystallized limestone near the center of the bed. Photomicrograph taken at 40x in cross 

polarized light, field of view is 0.25 mm. 
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Figure 30. A sample of argillaceous mudstone with fragments of limestone now mostly 

altered to calc-silicates (off white) with pyrrhotite (bronze). As is common the smaller 

fragments are completely altered to calc-silicates while larger clast still has reactive 

limestone at the center (blue arrow) rimmed by a mantle of calc-silicates (63.5 mm 

diameter core). 
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Figure 31. A typical interval through the gouge of the Getchell Fault, with a strongly 

sheared carbonaceous dark matrix with clasts of limestone which have often been 

silicified where the gouge is weakly mineralized as shown above. The fault appears to 

have incorporated a large amount of footwall carbonaceous material. This section grades 

from 0.0335 to 0.0540 oz/t Au which is typical for the Getchell fault gouge where 

encountered in the study area (63.5 mm diameter core). 
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Figure 32. Hand drawn ore grade contours overlain on Cross Section B. Weak to 

moderate mineralization is common along and within the Getchell fault gouge. Where 

limestones inter-bedded with siliceous carbonaceous mudstones are in contact with the 

Getchell fault there is typically higher-grade mineralization. Other areas of higher grade 

mineralization are centered on heavily structurally disturbed zones such as the jog in the 

Getchell fault. Mineralization is also present along a Getchell parallel fault in the hanging 

wall 100-200 feet above the Getchell fault. A narrow, often high grade, zone of strongly 

fault controlled mineralization occurs along a west dipping hanging wall structure (no 

vertical exaggeration). 
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Figure 33. Hand drawn ore grade contours overlain on Cross Section A. Low grade 

mineralization along the Getchell fault is inferred to be similar to what is observed in 

Cross Section B as no drill hole in Cross Section A reached the Getchell fault. Controls 

on mineralization in Cross Section B are not as clear as the controls in Cross Section A. 

Mineralization along the west dipping fault in the hanging wall is typically low grade and 

confined to gouge.  Mineralization is also channeled along a Getchell parallel dacite dike, 

expanding in areas of receptive host rock. The controls on the two most prominent areas 

of mineralization in Cross Section A are unclear, possibly related to some structure out of 

plane of the cross section (no vertical exaggeration). 
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Figure 34. A photomicrograph of decalcified and silicified limestone from sample 088-

1620 taken with crossed polars at 80x (0.125 mm field of view).  Limestone (red arrows) 

has been replaced by fine grained quartz (grays) and sulfides (black). A late fracture 

(orange arrows) cuts through the sample and is incompletely filled with late euhedral 

coarser grained quartz and later realgar. Sample is from a section averaging 0.091 oz/t 

Au. 
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Figure 35. A sample (088-1620) of mineralized limestone (right) inter-bedded with 

siliceous carbonaceous mudstones (left). Sample has been completely decalcified and 

silicified by Carlin ore fluids with abundant late realgar (orange) and lesser stibnite 

(silver/gray) filling void space. The sample taken for the XRD spectra comes from the 

altered limestone (left) and shows the sample is dominantly quartz, 76%, with lesser 

realgar, 21%, and stibnite, 2%. Abundant realgar does not necessarily correlate to higher 

gold grade; this sample is from a section averaging 0.091 oz/t. The sample pictured is 1” 

by 2“. 
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Figure 36. A sample of mineralized siliceous carbonaceous mudstone (outside redlines) 

with a limestone inter-bed (between blue lines) cut and offset by a small fault (black 

line). The brittle siliceous carbonaceous mudstones have been brecciated and are 

cemented by realgar. The limestone has been strongly decalcified and silicified with open 

pore space locally filled with realgar or white/tan clay, kaolinite (yellow arrows) (63.5 

mm diameter core). 
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Figure 37. A sample of siliceous carbonaceous mudstone with late veins containing 

calcite (white) and orpiment (yellow). The sample comes from just above a mineralized 

zone in drill hole 07-GC-007 associated with the Getchell parallel fault in the hanging 

wall on Cross Section B. 
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Figure 38a. A section of core from drill hole 08-GC-035 (1974.5’-2010’). The 

argillaceous mudstones inter-bedded with limestones from 1974’-1988.8’ are intensely 

calc-silicate altered and are not mineralized, with the exception of a small fault 1980.3’-

1982.7’. At 1988.8’ there is a transition to limestone inter-bedded with siliceous 

carbonaceous mudstone (63.5 mm diameter core). 
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Figure 38b. (Continued from 36a) Continuing down-hole the siliceous carbonaceous 

mudstones inter-bedded with limestones from 1988.8’-2010’ show strong decalcification 

and silicification indicating these rocks were not calc-silicate altered by the intrusion of 

the Osgood Stock. These rocks range in grade from 0.200 to 1.000 oz/t Au. The zone 

continues until it reaches the Getchell Fault at ~2046’ (63.5 mm diameter core). 
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Figure 39. An area of thicker high grade mineralization (red box) in Cross Section B 

occurs in association with a jog in the Getchell fault which generates a wider zone of 

broken faulted material (07-GC-020 with 78' @ 0.300 oz/t Au from 1058’ to 1136’) (no 

vertical exaggeration). 
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Figure 40. A sample taken from a strongly mineralized section 1795-1798.5 averaging 

0.841 oz/t. The original rock was limestone inter-bedded with siliceous carbonaceous 

mudstone becoming all mudstone after 1797.5 (toward lower right). Limestone has been 

completely decalcified and silicified and cut by late abundant realgar mineralization. The 

XRD spectrum from the sample taken from 1797 (red box) shows the sample is 

dominantly quartz with lesser realgar, kaolinite, and marcasite. Based on the alteration 

(decalcification and silicification) from the Carlin-type ore fluids the lower portions of 

Cross Section B were not subject to calc-silicate alteration from the Osgood stock (63.5 

mm diameter core).  
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Figure 41. A sample from  1887’ (red box) ten feet below the sample above. This sample 

is from a mineralized five foot section averaging 0.1255 oz/t. The rock is intensely 

decalcified, and silicified limestone inter-bedded with silicious carbonaceous mudstones 

with weak realgar mineralization. XRD spectrum indicates that the sample is dominantly 

quartz with lesser kaolinite, realgar, marcasite and pyrite (63.5 mm diameter core). 
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Figure 42. A sample (red box) from a section of weakly silicified limestone with local 

inter-beds of siliceous carbonaceous mudstone. XRD spectra show the sample is 

dominantly calcite with moderate quartz. The sample also notably shows an absence of 

calc-silicate minerals. The section is in a broader area of weak mineralization and the five 

foot section containing this sample grades 0.0057 oz/t (63.5 mm diameter core). 
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Figure 43. A sample (red box) taken from a five foot section averaging 0.059 oz/t. The 

sample is strongly altered to quartz and kaolinite and lesser marcasite and orthoclase. The 

sample is from Cross Section B above the jog in the Getchell Fault, just above a strongly 

mineralized zone that is characterized by strong argillization of argillaceous mudstone, in 

comparison to the dominant alteration types elsewhere which are decalcification and 

silicification of carbonate material in non calc-silicate altered rocks (63.5 mm diameter 

core).  
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Figure 44. Mineralization overlay on Cross Section B showing Type I mineralization 

(red box) typically moderate (1.0 to 0.3 oz/t Au) to low grade (0.3 to 0.1 oz/t Au). This 

mineralization is found above the Getchell fault or the Getchell parallel fault in the 

hanging wall. Here ore fluids accessed reactive carbonate and generated wider areas of 

mineralization via carbonate dissolution. Type II mineralization (orange box) is high 

grade mineralization, commonly >1.0 oz/t Au, found along a west dipping hanging wall 

fault, mineralization is confined to gouge zone. Type III mineralization (yellow box) 

typically very low grade mineralization (<0.10 oz/t Au) often found above, or mantling, 

Type I mineralization. Mineralization in the multi-colored box, where the horizontal 

dacite dike intersects the Getchell fault, shares characteristics of both Type I (high Hg, 

Sb, and Tl) and Type II (low Ag) (no vertical exaggeration). 



103 
 

 

 

Figure 45. Graphs of Au verses Ag and Hg in Type I,II, and III mineralization showing 

the variation in chemistry between the three types. 
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Figure 46. Graphs of Au verses Sb and Tl in Type I,II, and III mineralization showing 

the variation in chemistry between the three types. 
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Figure 47. An interval of type II mineralization from drill hole 08-GC-035. Strong 

bleaching occurs above the mineralized zone, starting at 997 and continuing to 1023, 

unlike the type I mineralization which generally has little to no bleaching. The bleached 

zone is not mineralized, grades <0.001 oz/t Au. High-grade mineralization starts abruptly 

in an argillized gouge zone with abundant sooty pyrite; 1023’-1027’ grades 1.645 oz/t 

and 1027’-1032’ averages 1.185 oz/t. There is some disseminated mineralization 

extending below the fault and 1032’-1037’ averages 0.285 oz/t; below mineralization and 

alteration decline rapidly and 1037’-1042’ averages 0.0375 oz/t, 1042’-1045.3’ averages 

0.005 oz/t (63.5 mm diameter core). 
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Figure 48. Staining results on limestone inter-bedded with siliceous carbonaceous 

mudstone and argillaceous mudstone (left and right respectively). The upper spot is 50/50 

mixture of potassium ferricyanide and Alizarin red S, the lower spot is only a solution of 

Alizarin red S, both in a 2% HCl solution. The limestone inter-bedded with siliceous 

carbonaceous mudstone on the left stains red indicating no iron in the carbonate. The 

limestone inter-bedded with argillaceous mudstone on the right stains purple indicating 

the presence of iron in the carbonate (63.5 mm diameter core). 
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Figure 49. A staining overlay on Cross Section A, with samples of ferroan calcite 

denoted in orange and samples of iron poor calcite denoted in white (no vertical 

exaggeration). 
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Figure 50. A staining overlay on Cross Section B, with samples of ferroan calcite 

denoted in orange and samples of iron poor calcite denoted in white (no vertical 

exaggeration).  
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