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ABSTRACT 

 

 

FROM THE FORELAND TO THE HINTERLAND: TAPHONOMY ACROSS 

THE CRETACEOUS TO PALEOGENE SEVIER  

RETROARC REGION OF NEVADA 

 

by  

 

Joshua William Bonde 

 

Dr. Stephen M. Rowland, Examination Committee Chair 

Professor of Geoscience 

University of Nevada, Las Vegas 

 

 Until 2004 very little paleobiology, let alone paleoecology, had been studied 

within exposures of the Sevier retro-arc foreland and hinterland, in the state of Nevada.  

This is due largely to poor and spotty exposure.  This study focuses on taphonomic 

processes within three stratigraphic intervals in the foreland and hinterland of the Sevier 

retro-arc region, and what these taphonomic indicators reveal about the geography of the 

hinterland. 

 First, the Willow Tank Formation of southern Nevada was deposited in the 

foredeep of the Sevier retroarc foreland basin.  This unit represents a multi-channel, 

aggradational, fluvial system that drained the Sevier highlands to the west.  High amounts 

of volcaniclastic input have preserved a “snapshot” of a Late Cretaceous (Cenomanian) 

flora in situ.  Representative taxa include the ferns Cladophlebis, cf. Matonia, and 

Tempskya; the horsetail Equisetites; the angiosperms Magnolia sp., Sapindopsis 

magnifolia; as well as unidentified taxa.  These taxa are represented by various organs 

(leaves and stems) and are preserved in a manner which suggests rapid burial, likely in 

less than a year.  This floral record aids in paleoecological reconstructions of an area very 

proximal to the Sevier fold and thrust front, a region not nearly as well documented as the 



iv 
 

backbuldge of the Sevier fold and thrust front (i.e., Cedar Mountain Fm of Utah) of this 

time interval. 

 Second, the Newark Canyon Formation of east-central Nevada has been 

interpreted as the deposits of an Early Cretaceous (Aptian) piggy-back basin.  This study 

identifies a diverse vertebrate assemblage which includes fish, turtles, crocodilians, 

armored dinosaurs, iguanodontid dinosaurs, and theropod dinosaurs.  This fauna is hosted 

within small-channel sandstones, lacustrine mudrocks, debris-flow conglomerates, and 

hyperconcentrated-flow cobbly mudrocks.  These depositional settings indicate a region 

with some internal drainage, as well as significant topography, but similar in elevation to 

the foreland, based upon similar small vertebrate taxa. 

 Finally, the Sheep Pass Formation [Late Cretaceous (Maastrichtian)-Eocene] is 

interpreted as Sevier hinterland deposits.  Unlike the Newark Canyon Formation, the 

Sheep Pass Formation is considered to be deposits of a basin analogous to those of the 

modern, highland Altiplano of South America, in this case Nevadaplano.  This is a long 

lived lake basin, with debris flow deposits and occasional fluvial input.  From this 

formation I have recovered a diverse invertebrate fauna, a limited flora, and a vertebrate 

fauna consisting exclusively of frogs.  The frogs are preserved in various taphonomic 

modes, including attritional assemblages, reworked elements, and a frog bonebed.  The 

biological remains suggest an environment which was cool, at least seasonally.  

Occurring during a global climatic optimum, the inferred cool climate reinforces the 

conclusion that the Sevier hinterland was a high elevation plateau, which agrees with the 

stable isotope data from another study, as well as with structural studies. 
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CHAPTER 1 

INTRODUCTION 

 This dissertation comprises three separate studies that all share the central theme 

of taphonomic settings within the Sevier Orogenic belt of eastern Nevada (Figures 1.1, 

1.2). The timing of the Sevier Orogeny is debatable, but it is generally considered to have 

begun during the Late Jurassic and terminated in the Paleogene (Figure 1.2) (DeCelles, 

2004, and references therein).  I wrote these three studies as individual chapters, suitable 

for individual submission to technical, peer-reviewed journals.  This introductory chapter 

will serve as a review-style paper to introduce readers to the research question, field of 

taphonomy, and the geologic setting of the Sevier Orogeny. 

Research Question 

Does the biotic record of Nevada during the Sevier Orogeny agree with or 

disagree with current interpretations of the paleogeography of the Nevadaplano? 

Taphonomy 

 The classic definition of taphonomy is that it is the study of an organism’s 

transition from the biosphere to the lithosphere (Efremov, 1940); however the field has 

expanded through time to incorporate all biotic and abiotic factors which influence an 

organism after death (Behrensmeyer et al., 1992).  In general, taphonomic data are 

gathered in the field and lab, including map orientation of elements, articulation and/or 

association of elements, as well as bone-bone contacts, lack of contacts, complete 

disassociation, breaks, break style, and alteration halos.  In the lab, and after the 

preparation of elements, surface modification data are obtained, because modification is 

often obstructed by matrix (Eberth et al., 2007).  Surface modification data include 
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weathering (Behrensmeyer, 1978), abrasion (Shipman, 1981), tooth marks, bioerosion, 

trample marks, and the nature of breaks (e.g., faults, blocky, spiral).  Trend and plunge 

data are used to determine whether elements have been aligned, which suggests the 

influence of fluid flow, or whether they are randomly oriented.  Random orientation of 

bones may reflect rapid burial (Eberth et al., 2006) or trampling (Fiorillo, 1989).  Further, 

studies of modern coyote and sheep bones by Voorhies (1969) show that bones with a 

“heavy” end tend to orient themselves with the “heavy” end pointing upstream in the case 

of fluid flow.  Orientation data are displayed in a rose diagram if the majority of elements 

are within 5⁰ of horizontal; if elements are largely >5⁰ from horizontal orientation, data 

are analyzed with a stereonet (Eberth et al., 2007).   

Weathering is used as a proxy for how long an element was exposed on the 

surface.  Behrensmeyer (1978) conducted a study documenting how bones weather 

through time.  She established a rank system from 0-5 to classify different states of 

weathering on elements.  According to her system, a greasy bone with fresh surfaces is a 

“0”, whereas a deeply cracked bone in which all cortical bone is gone is a “5” 

(Behrensmeyer, 1978).  Degree of weathering, in addition to being used as a measure of 

the length of time bones have been exposed on the surface, is used to determine time-

averaging of an assemblage.  If different elements from the same assemblage show 

different degrees of weathering, one can infer that the assemblage accumulated over a 

relatively long time interval, on the order of seasons to decades (Behrensmeyer, 1978).   

Abrasion, like weathering, is used to determine the degree of time-averaging of an 

assemblage.  If different elements show different degrees of abrasion, they likely reflect a 

mixed assemblage, or elements of variable provenance and age.  Shipman (1981) 
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established a rank system of 0-3 to characterize levels of abrasion, with “0” representing 

pristine bone and “3” being bone with the ends completely rounded off.  Abrasion is also 

directly related to transport mechanisms; the higher the degree of abrasion, the further a 

given element has been transported.  Abrasion data can thus be used to determine relative 

site fidelity of an assemblage.   

Trample marks are recognized as sub-parallel scoring of bones (Eberth et al., 

2007).  If elements possess trample marks, the assemblage is probably time-averaged.  

Trample marks can also be environmental proxies; riparian habitats experience minor 

amounts of trampling whereas water hole sites are intensively trampled (Eberth et al., 

2007).   

Tooth marks on bones are tell-tale signs of carcass processing and evidence of 

direct interactions between organisms.  Different types of tooth marks are pits, punctures, 

scores, and furrows (Eberth et al., 2007, and references therein).  Pits are depressions in 

cortical bone; punctures are depressions which go through the cortical bone; scores are 

sub-parallel marks along a bone where teeth were dragged across the surface of the bone; 

and furrows are scalloped or ragged edges of bone resulting from intense bone processing 

(Eberth et al., 2007 and references therein).  In some cases the identity of a bone 

processor may be established (Haynes, 1980; Haynes, 1983; Dominguez-Rodrigo and 

Piqueras, 2003).   

Bioerosion refers to processes such as etching by plant roots and boring by 

invertebrates; evidence of such processes can shed light on the paleoecology of the site, 

such as whether the area was heavily vegetated.  Breakage patterns can reveal whether 

bone was broken fresh (spiral) or weathered/mineralized (blocky) (Eberth et al., 2007).  
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Bone is not usually broken during fluvial transport, so any broken bones in a fluvial 

assemblage can be assumed to have entered the system broken as a result of biogenic or 

physical processes (Behrensmeyer, 1982). 

All of these processes are taken into account to understand the biases which exist 

in a fossil assemblage.  I employed these taphonomic methodologies in each of the three 

chapters that follow. 

Geological Settings within the Sevier Orogeny 

The Sevier Orogeny is characterized by thin-skinned thrust faulting and resultant 

crustal thickening in the Sierra Nevada retroarc region, as a result of Jurassic to 

Paleogene subduction of the oceanic Farallon Plate beneath the western margin of North 

America (Figure 1.3) (DeCelles, 2004, and references therein).  Following maximum 

crustal thickening in the Late Cretaceous, east-central Nevada is generally envisioned as 

part of a high-elevation orogenic plateau, termed the Nevadaplano (Coney and Harms, 

1984; Jones et al., 1998; Dilek and Moores, 1999, DeCelles, 2004). 

Each of the three formations examined in this study is found in a different 

geological setting within this contractional orogen.  The Willow Tank Formation 

(Chapter 2) represents the only one of these formations that lies within the Sevier retroarc 

foreland (Figure 1.3).  The Willow Tank Formation consists of terrestrial deposits of a 

multi-channel, aggradational, fluvial system which drained the Nevadaplano to the west, 

and which was deposited within the foredeep of the foreland (Schmitt and Kohout, 1986; 

Reese, 1989; Schmitt and Aschoff, 2003; Bonde et al., 2008).  The Newark Canyon 

Formation (Chapter 3) is interpreted to have been deposited within a wedgetop, piggy-

back basin (Figure 1.3) (Vandervoort and Schmitt, 1990).  Newark Canyon Formation 

deposits represent through-flowing fluvial deposits as well as major lacustrine units 
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(Vandervoort and Schmitt, 1990; Druschke et al., 2011).  The focus of the final study, the 

Sheep Pass Formation (Chapter 4), represents the deposits of a synconvergent, 

extensional basin which, at the time of deposition, was high up on the orogenic 

Nevadaplano plateau (Figure 1.3) (Druschke et al., 2009a,b).  Each of these formations, 

occupying a different position within the orogenic belt, has a unique suite of taxa 

preserved, and exhibits distinctive taphonomic modes.  The focus of this research is the 

documentation of the taphonomic history of each of these three tectonic settings within 

the Sevier retroarc region of Nevada, and to document if these taphonomic settings can 

shed light on the paleogeography of Nevada during this orogenic event. 

Hypothesis 

The Null Hypothesis is that the biota of the Aptian Newark Canyon Formation, 

Cenomanian Willow Tank Formation, and Maastrichtian-Eocene Sheep Pass Formation 

were deposited at the same elevation. 

 If this is true, then preservational modes should be similar between all three units. 

If all units were deposited at a similar elevation, then I expect the biota to be comparable 

as well as the preservational modes which preserve the organismal remains. 

 An alternative hypothesis is, that each unit was deposited at different elevations. 

If this hypothesis is true, then I would expect to see disparate preservational modes 

between units. If biota which are climatically and ecologically sensitive are differentially 

preserved between units, then I would expect that elevation would have played a roll in 

altering the local environments which would allow or not allow those organisms to 

survive, perish, and become preserved. The null and alternative hypotheses will be 

revisited at the end of each chapter.  
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Figure 1.1. Map of Nevada highlighting the mountain ranges in which the 

study areas are located. 



7 
 

   

 

 

WTF 

NCF 
SPF 

Figure 1.2. Sequence of tectonic, depositional, climatic, and evolutionary events with 

direct impact on the Cretaceous and Paleogene of Nevada. 
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Figure 1.3.  A very generalized cross section of North America during the Sevier 

Orogeny, depicting the tectonic settings of the formations discussed in the text (after 

DeCelles, 2004). A) represents a hypothetical configuration supporting the null 

hypothesis, in which the hinterland and the foreland are nearly the same elevation. B) 

represents a hypothetical configuration where the alternative hypothesis where deposits 

of the hinterland and the foreland would be at drastically different elevations. 
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CHAPTER 2 

VOLCANICLASTIC PRESERVATION OF A MID-CRETACEOUS (CENOMANIAN) 

FLORA IN THE WILLOW TANK FORMATION OF SOUTHERN NEVADA 

 

Introduction 

 

The Cretaceous was a very significant interval in the evolution of global floras. It 

was not until the Aptian (125-112 Ma) that Angiospermophyta, the flowering plants, 

became widespread, adding a major new component to terrestrial ecosystems (Lupia et 

al., 1999; Feild and Arens, 2005). This significant evolutionary event is preserved in 

many regions around the globe. Here I report a new occurrence of a mid-Cretaceous 

(Cenomanian) flora from southern Nevada, which was positioned at the very front of the 

Sevier fold and thrust belt (Schmitt and Kohout, 1986; Schmitt and Aschoff, 2003; Bonde 

et al., 2008). This flora, located close to the Sevier plateau, provides insight into an 

ecosystem separate from more coastal contemporary floras in Utah, Wyoming, and 

Montana. If the flora of the Willow Tank Formation are similar to these more coastal 

floras, then the flora would support a low “coastal” elevation. If the Willow Tank 

Formation flora are dissimilar from the coastal floras, then that would support a different 

paleogeographic setting. 

Geologic Setting 

 Deposits which contain the fossil assemblage lie within the Willow Tank 

Formation. This formation represents deposits of a seasonally arid, fluvial system which 

drained the Sevier highlands to the west (Reese, 1989; Bonde et al., 2008).  The 
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interpretation of a seasonally arid environment is supported by the presence of abundant 

carbonate nodule horizons I interpret to be calcisols (cf. Mack et al., 1993). The Willow 

Tank Formation is up to 150 m thick in places and is divided into two informal members, 

a basal conglomerate and an overlying “mudrock” unit (Figure 2.1) (Carpenter, 1989). 

This formation was deposited in the foredeep of the Sevier retroarc foreland basin  

(Figure 1.2) (Schmitt and Kohout, 1986; Schmitt and Aschoff, 2003). Recent 
40

Ar/
39

Ar 

dates of volcanic ash beds place the upper member within the Cenomanian (Pape et al., 

2011). Although not observed in this study, Ash and Read (1976) report the presence of 

the tree fern Tempskya, which also supports a mid-Cretaceous age for the Willow Tank 

Formation as this taxon is only known from the Aptian to the Cenomanian of North 

America (Tidwell and Hebbert, 1992). The upper mudrock member consists of thin- to 

medium-bedded gray claystone and sandstone (Carpenter, 1989).  Approximately 15% of 

this member consists of volcaniclastic sediments, with the remainder being siliciclastic 

(Bonde, 2008). Deposits of this upper member are interpreted to represent a 

multichannel, aggradational fluvial system with abundant volcaniclastic input (Bonde 

2008). This interpretation is based upon the deposits of the Willow Tank Formation being 

consistent with Makaske’s (2001) model for anastomosed fluvial systems. The upper 

member of the Willow Tank Formation has single-storied channel sandstones, which are 

in sharp contact with overbank mudrocks, there is an abundance of overbank fine 

deposits, there are common crevasse splay deposits, and avulsion deposits, and some 

evidence for overbank ponding; the final criterion of Makaske’s (2001) is the presence of 

ribbon sandstone bodies, which cannot be determined in exposures in Valley of Fire due 

to the cross-sectional nature of the outcrop (Bonde, 2008).  
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Figure 2.1. Diagramatic stratigraphic section of the Willow Tank Formation.  Leaves 

denote horizons which have produced plant fossils.  There is a slight angular 

unconformity between the Aztec and Willow Tank.  The contact with the Baseline 

Sandstone is interbedded. 
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Location and Methods 

 In this study I focused on exposures of the Willow Tank Formation in the North 

Muddy Mountains (Figure 1.1), within Valley of Fire State Park, Clark County, Nevada. 

Precise coordinates of collection sites may be obtained upon request at the curatorial 

repository, the Nevada State Museum-Las Vegas. 

Collection.—Fossil-bearing localities were identified by prospecting exposures of the 

Willow Tank Formation and revisiting known sites from previous studies. Once a fossil-

bearing locality was discovered the location was noted using GPS.  

 After a site was identified, any specimens found on the surface as float, or any 

specimens that were in danger of being destroyed by the elements, were collected.  

Highly fossiliferous sites were left alone, and a crew was later brought back to properly 

extract the specimens.  In the lab, broken specimens were glued back together with 

cyanoacrylate glue. As necessary, matrix was removed with a dental pick or Dremmel 

tool. 

 To excavate the second plant site, a meter floating grid (after Organ et al., 2003) 

was placed on the surface of the volcaniclastic unit of interest, aligned to strike and 

roughly parallel to dip. Volunteers then set to digging down to the plant bearing horizon 

at the base of the unit. Samples collected from the first volcaniclastic plant site were 

gathered from surface collection as noted above and by digging into the unit to recover 

specimens. No attempt was made to quarry this site as it is found on a steep exposure. 

Identification.—I compared the leaf impressions to published figures and descriptions of 

other plant specimens. Description of angiosperm leaves follow Hickey’s (1973) 

morphological terminology. Resources used for comparison include Hickey and Doyle 
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(1977), Dilcher and Crane (1984), Crabtree (1987), Dilcher and Basson (1990), Tidwell 

(1998), Spicer and Herman (2001), Deng (2002), Peppe et al. (2007), and Peppe et al. 

(2008). 

Site Geology.—I described and interpreted the sedimentology of each fossil-bearing 

horizon and placed it into a stratigraphic context. This was done by identifying the 

lithology of the fossil bearing horizons in addition to sedimentary structures or lack of 

structure within the unit. As the focus of this study is on volcaniclastic units, the 

bounding beds were also described based upon lithology and sedimentary structures.  

Once the lithology and sedimentary structures were identified, the geometry of the bed 

was described.  This information was then used to make an interpretation as to the 

depositional environment of the fossil bearing horizon. Once the sedimentology was 

resolved the unit was place within the stratigraphic framework of Bonde (2008). 

Curation.--Upon completion of the study, all specimens will be reposited at the Nevada 

State Museum and Historical Society, Las Vegas (abbreviated VM). 

Systematic Paleontology 

 This study identifies 5 taxa present within exposures of the Willow Tank 

Formation. There is one sphenophyte, two filicophytes, and two angiosperms.  

Description and diagnoses of taxa are included below. 

Division SPHENOPHYTA (Horse-tails) 

EQUISETALES 

Genus Equisetites Sternberg 1883 

Equisetites sp. 
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Description.— Numerous specimens of stalk-like body fossils are preserved in the second 

preservational site of the Willow Tank Formation. These stalk-like fossils are nodal; most 

are single stalked, although some stalks are branched.  Stalks range in width from 4-32 

mm. Internodal length is highly variable.  Occasionally single leaves are preserved.  

These specimens are assigned to the extinct Equisetale Equisetites (Figure 2.2A), which 

is defined as fossil Equisetales which cannot be positively assigned to the modern genus 

Equisetum (Watson and Batten, 1990). 

Division FILICOPHYTA (Ferns) 

OSMUNDACEAE 

Genus Cladophlebis Brongniart 1849 

Cladophlebis sp. 

Description.—Specimens referred to the genus Cladophlebis have a rachis measuring at 

least 55 mm long with fully attached pinnae.  The longest of the pinnae is 24 mm; the 

pinnae become increasingly shorter toward the distal end of the rachis.  The pinnae have 

an undulating texture composed of secondary pinnae, which are up to 1 mm in amplitude 

(Figure 2.3). 

MATONIACEAE 

Genus cf. Matonia Brown 1829 

cf. Matonia 

Description.—Specimens referred to Matonia consist of a rachis with pinnae. The longest 

specimen, which is not complete, is 42 mm.  The pinnae of this taxon are roughly the 

same length, 24 mm, from proximal to distal end of the rachis.  Pinnae are completely 

attached to the rachis (Figure 2.4). 
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Division ANGIOSPERMOPHYTA (Flowering plants) 

Class DICOTYLEDONAE 

MAGNOLIACEAE 

Genus Magnolia L. 

Magnolia sp. 

Description.—Specimens attributed to the genus Magnolia consist of simple, obovate 

leaves, with an acute apex and entire margin. Venation is eucamptodromous, consisting 

of a well-defined primary vein with curving, unintercepting secondaries which alternately 

diverge from the primary (Figures 2.2B & 2.5).  

INDETERMINATE FAMILY 

Genus Sapindopsis Fontaine 1889 

Sapindopsis magnifolia Fontaine 1889 

Description.—Leaves attributed to Sapindopsis magnifolia are odd-pinnately compound. 

Leaflets have an entire margin, are eucamptodromus in venation, and are oblong in shape.  

Both the apex and base of leaflets are acute in morphology.  Secondary veins are opposite 

and parallel to their terminations (Figure 2.2C). 
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Figure 2.2. A) Stalk of Equisetites; B) Magnolia leaf; C) petiole of Sapindopsis 

(previously figured in Bonde et al., 2010). 

 

 

 

 

A 

C 

B 



17 
 

 

Figure 2.3. Cladophlebis sp.  Scale bar to right is in centimeters (previously figured in 

Bonde et al., 2010). 
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Figure 2.4. cf. Matonia (previously figured in Bonde et al., 2010), scale bar at the right is 

in centimeter intervals. 
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Figure 2.5. Magnolia sp. (previously figured in Bonde et al., 2010) 
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Taphonomy 

 Plant fossils in the Willow Tank Formation are preserved in two taphonomic 

modes.  The first mode consists of plant body fossils distributed in a tabular, massively 

bedded, volcaniclastic unit near the top of the formation (Figure 2.1).  The second mode 

is plant macrofossils preserved in a lenticular, planar-laminated, volcaniclastic unit near 

the base of the formation (Figure 2.1).  To date, no plant macrofossils have been 

discovered in any of the siliciclastic units of the Willow Tank Formation. 

 The first preservational mode is dominated by ferns (Cladophlebis and cf. 

Matonia); no angiosperms were observed in the massively bedded unit.  This tabular unit 

is traceable for roughly 50-60 m and is 2-3 m thick.  This volcaniclastic unit is bounded 

on top and bottom by tabular massive mudrocks (Figure 2.1).  The upper mudrock is 

mottled red-green and contains abundant carbonate nodules.  Plant fossils are not found 

along bedding planes but are found three dimensionally throughout the unit. Although no 

complete organism has been recovered, large portions have been successfully collected. 

The second preservational mode is dominated by angiosperms and sphenophytes, 

with no ferns present.  All plant macrofossils, with one exception, are found along a 

single bedding plane at the base of the volcaniclastic sediment (Figure 2.6).  The one 

exception is a large branch or trunk of unknown affinity lying perpendicular to the strike 

of the bed, roughly 25 cm above the base of the unit (Figure 2.6). This “trunk” has a 

width of 16 cm and at least 60 cm of the specimen was exposed.  It continues into the hill 

and has not been fully excavated due to problems of overburden removal.   

Many stalks and leaves are preserved flat, however a number of leaves are 

preserved at or just above the base of the volcaniclastic unit and are found curled in three 
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dimensions as if folded over on themselves in a parabolic shape in cross-section.  There is 

not an apparent difference in distribution of taxa across the base of this unit.  This 

lenticular unit is roughly 20-30 m wide; and 2 m thick at its thickest point, tapering in 

both directions. 

Some leaves from this unit have small (<2 mm diameter) spherical impressions 

within them of unknown origin.  These occur on both the flat and curled specimens.  

 

Discussion 

 Volcaniclastic sedimentation is ideal for preserving snapshots of prehistoric 

ecosystems as deposition typically ranges from the span of a day to a year (Behrensmeyer 

et al., 1992). The rate of deposition is a function of the rate that the volcaniclastic 

sediment is delivered and transported across a landscape.  Modern volcanic events 

reliably preserve the regional autochthonous vegetation in the form of compressional and 

Figure 2.6. A) Image showing the basal 

plant bed in relation to the underlying 

mudrock. B) Image showing the 

relationship of the “trunk” to the plant 

bed. 
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impressional remains of macroscopic organs (Burnham and Spicer, 1986).  Both 

taphonomic modes identified in this study are volcaniclastic in nature but differ in the 

interpreted depositional environment.  Burnham and Spicer (1986) observed the effects of 

a volcanic eruption in Chiapas, Mexico, in an area with a large amount of agricultural 

development, so the pre-eruptive vegetation was known.  When they went back post-

eruption they observed that ash-fall beds nicely preserved only the autochthonous 

vegetation and that allochthonous material was rare if present at all (Burnham and Spicer, 

1986), showing the spatial fidelity of ash-fall beds. 

 The fern-dominated, first taphonomic mode of the Willow Tank Formation flora 

is interpreted to represent a dry, overbank setting.  This is indicated by the tabular nature 

of the underlying and overlying massive, mottled, carbonate-bearing mudrock units.  The 

beds are interpreted as overbank fines with pedogenic development in a seasonally arid, 

well-drained floodplain (Bonde et al., 2008).  In this taphonomic mode ferns are the only 

preserved plant.  It is not uncommon in modern volcanic settings to find ferns as the most 

common plant in volcanically-disturbed regions. Ferns are easily dispersed by long-or 

short-range transport of spores, in addition to their ability to vegetatively expand from 

rhizomes (Spicer et al., 1985; Walker and Sharpe, 2010).  Once established, ferns can 

create dense stands which may inhibit other vascular plants from colonizing a disturbed 

area (Walker and Sharpe, 2010).  These sorts of fern-dominated, volcanic ash flats have 

been reported from other regions of North America during the Cretaceous (Crabtree, 

1983).  Thus I interpret the first taphonomic mode to represent early successional ferns 

established on a well-drained floodplain subject to episodic volcaniclastic input. 
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 The second taphonomic mode I interpret to represent a paludal setting.  The 

lenticular nature of the volcaniclastic unit, with horizontal laminae and underlying fine-

grained, laminated mudrock with no pedogenic development is consistent with a pond 

setting.  This taphonomic mode, unlike the first, is dominated by angiosperms rather than 

ferns.  In this taphonomic mode abscised leaves are the most common structure 

preserved.  In modern volcanic settings volcaniclastic input has been found to initially 

bury pre-existing leaf litter. Subsequent volcaniclastic input can cause abscission of 

leaves still on the twig (Burnham and Spicer, 1986).  Modern studies of leaf assemblages 

have shown that leaves rarely fall farther from their source than the original plant is tall; 

therefore, leaves rarely fall more than 50 m from their source (Ferguson, 1985).  Elongate 

plant remains, such as Equisetites stalks and twigs, were not preferentially aligned so 

there is no indication of a current or perhaps an eruption direction.  Early angiosperms, 

especially Sapindopsis, were predominantly herbaceous and weedy, and they were most 

common along water ways during the mid-Cretaceous (Hickey and Doyle, 1977; Wing 

and Boucher, 1998). 

 The presence of Sapindopsis magnifolia indicates that the Willow Tank 

Formation flora is most similar to Potomac Flora Zone IIB of Hickey and Doyle (1977), 

interpreted to be Albian to earliest Cenomanian in age.  By the Cenomanian, Crabtree 

(1987) observed that a north-south provinciality had developed between the northern and 

southern Rocky Mountains. The flora of the Willow Tank Formation is not complete or 

diverse enough to say whether southern Nevada’s flora has affinities with one or the other 

of these provinces, or whether it represents a separate botanical province. That said, the 

Willow Tank Formation flora is superficially similar to the uppermost plant bearing 
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levels of the Albian Aspen Shale flora of western Wyoming with the co-occurrence of the 

fern Cladophlebis and the angiosperm Sapindopsis magnifolia (Peppe et al., 2008).  The 

one major difference between all of the Rocky Mountain floras and the southern Nevada 

flora is the presence of Magnolia in southern Nevada compared to the former locales.  It 

is not known whether this difference is due to paleoecological differences or to 

taphonomic biases.  Another difference between the Rocky Mountain floras and the 

southern Nevada flora is that there are no toothed-margin leaves present in southern 

Nevada.  This may reflect paleoclimatic differences between the two regions, but more 

specimens would need to be recovered from southern Nevada for a proper comparison.  

A higher proportion of angiosperm taxa with toothed-margins versus entire margins is a 

reliable proxy for cooler versus warmer temperatures (Royer et al., 2009 and references 

therein).  Royer et al. (2008) show that there can be intraspecific variation in leaf margin 

morphology related directly to mean annual temperature, with colder areas having more 

teeth than members of the same species in warmer regions.  This could point toward the 

Willow Tank flora representing a warmer climate than the contemporaneous Rocky 

Mountain flora based upon the morphology of Sapindopsis leaves between the two 

regions. 

 The flora of the Willow Tank Formation provides an interesting, preliminary 

comparison to better known floras of the Rocky Mountain region and New England.  In 

the future the Cretaceous flora of the southwest will become more robust with further 

sampling and provide more insightful comparisons.  In the meantime, the southern 

Nevada flora can be said to be superficially similar to contemporaneous floras of other 
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parts of North America, with the one exception that no toothed-margin leaves have been 

found in Nevada. 

Conclusion 

 The taphonomic modes of the volcaniclastic, plant-bearing horizons within the 

Willow Tank Formation are consistent with an autochthonous floristic assemblage 

preserved in what is interpreted to be the foredeep of the Sevier foreland basin during the 

Cenomanian. Taxonomically, the Willow Tank Formation flora is similar to other more 

coastal floras from the Rocky Mountain region. These similarities suggest a similar 

elevation of deposition.  The differences between the Rocky Mountain flora’s and the 

Willow Tank Formation flora imply that southern Nevada was warmer than the Rocky 

Mountain region during the mid-Cretaceous, however more material needs to be 

recovered from Nevada for a more rigorous comparison. Floral remains from the Rocky 

Mountain region are found in not only volcaniclastic settings, but also in other clastic 

settings.  Thus a preservational bias between these different depositional settings may 

also be at play.  This study does not invalidate either the null hypothesis or my alternative 

hypothesis. 
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CHAPTER 3 

TWO NEW CRETACEOUS (BARREMIAN?-APTIAN) VERTEBRATE 

OCCURRENCES FROM CENTRAL NEVADA 

Introduction 

 

 Vertebrate fossils have long been known from the Lower Cretaceous Newark 

Canyon Formation of central and eastern Nevada (David, 1941; Smith and Ketner, 1976).  

Here I describe two new occurrences of vertebrate remains from the Newark Canyon 

Formation from central Nevada.  Previous vertebrate finds have been confined to the 

Diamond Range of central Nevada (David, 1941); this study expands vertebrate-bearing 

locales to the Pancake and Fish Creek Ranges (Figure 1.1). These vertebrate faunas will 

be compared to the roughly contemporaneous Ruby Ranch Member of the Cedar 

Mountain Formation.  If preservational modes differ, or if geographically sensitive taxa 

are different between the two units then this supports that the Newark Canyon Formation 

and the Cedar Mountain Formation were deposited in different paleogeographic settings. 

If perservational modes are similar and geographically sensitive taxa are similar, then the 

Newark Canyon Formation and the Cedar Mountain Formation likely were deposited 

under similar environmental conditions. 

Geologic Setting 

The Newark Canyon Formation represents lacustrine and fluvial deposits of a 

wedge top, piggy-back basin (Figure 1.2) (Vandervoort and Schmitt, 1990; Druschke et 

al., 2011).  This formation was first named by Nolan et al. (1956) for post-Paleozoic 

sedimentary rocks which underlie Paleogene volcanic rocks in the Diamond Range of 

central Nevada.  Biostratigraphy of plant, invertebrate, and vertebrate remains were used 
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to designate the unit as Lower Cretaceous (MacNeil, 1939; David, 1941; Fouch et al., 

1979).  Druschke et al. (2011) subsequently used U/Pb dates of detrital and primary 

zircons to confirm an Early Cretaceous (Barremian?-Aptian) age.  With a 116.1 ±1.6 Ma 

U/Pb date on primary zircons from a waterlain tuff, Drushcke et al. (2011) were able to 

establish that the upper portion of the Newark Canyon Formation in the type section in 

the Diamond Range was Aptian in age.  Units within the Diamond Range have been 

lithostratigraphically correlated southward to exposures in the Fish Creek Range 

(Vandervoort, 1987), one of the areas of interest in this study.  This makes the Newark 

Canyon Formation in the Diamond and Fish Creek Ranges roughly temporally correlative 

to the lower Ruby Ranch Member of the Cedar Mountain Formation from the Sevier 

Foreland of Utah (Kirkland et al., 1999).  Vandervoort (1987) and Vandervoort and 

Schmitt (1990) interpreted deposits of the Newark Canyon Formation as being proximal 

to highlands of the Sevier retroarc hinterland, yet west of the Sevier fold and thrust front.  

The basal portion of the formation is interpreted to represent a period of time when 

through-flowing river systems drained the Nevadaplano highlands to the west out into the 

Sevier foreland (Vandervoort, 1987; Vandervoort and Schmitt, 1990).  Later the Newark 

Canyon basin transitioned into a lacustrine basin (Vandervoort, 1987; Vandervoort and 

Schmitt, 1990), in which the oldest lacutrine units in the Great Basin were deposited 

(Fouch et al., 1979). 

Background 

 Previous paleontological studies of the Newark Canyon Formation are primarily 

descriptive and biostratigraphic in scope.  MacNeil (1939) described the mollusk fauna, 

with a note about the macroflora, concluding that the formation is Cretaceous in age.  
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David (1941) described a new teleost fish, Leptolepis nevadensis, in a genus known from 

the Jurassic through the Cretaceous.  Smith and Ketner (1976) were the first workers to 

recognize the presence of terrestrial vertebrates in the Newark Canyon Formation.  In a 

study focused on mapping and stratigraphy of the area around Eureka, Nevada, for 

economic purposes, they noted the occurrence of indeterminate crocodilian teeth 

fragments, possible ankylosaur tooth fragments, and one “coelurid” dinosaur tooth (Smith 

and Ketner, 1976).  This was the first mention of Cretaceous terrestrial vertebrates in the 

state of Nevada.  Subsequently numerous researchers have combed exposures of the 

Newark Canyon Formation without much success.  Clemens et al. (1979) reported the 

recovery of two multituberculate mammal teeth from an abandoned ant hill near Eureka, 

Nevada, but these teeth were unidentifiable to genus level, and no additional information 

was provided.  An additional unidentifiable bone fragment was reported by Vandervoort 

and Schmitt (1990), which was the last mention of vertebrate material in the Newark 

Canyon Formation until this study. 

 Beginning in 2008 a multi-institutional research group has focused on the study of 

the paleoecology of sedimentary units of east-central Nevada.  As part of this group, I 

have extensively prospected exposures of the Newark Canyon Formation in the Pancake 

and Fish Creek Ranges.  The fossils reported here greatly expand the known distribution 

and diversity of Cretaceous vertebrates from the Newark Canyon Formation. 

Location and Methods 

 The foci of this study are exposures of the Newark Canyon Formation which crop 

out in the Fish Creek and Pancake Ranges of east-central Nevada (Figure 1.1).  Specific 

fossil bearing locations are identified by scouring previously mapped and unmapped 
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exposures of the unit. Specific locations are recorded with a hand held GPS unit and 

coordinates are noted and reposited at the final specimen repository, the Sierra College 

Natural History Museum, in Rocklin, California. 

Institutional Abbreviations 

SCNHM--Sierra College Natural History Museum, Rocklin, CA 

Prospecting 

 As most of the units under examination in this study have never been or have not 

been prospected in decades I set to systematically scouring aerial exposure of the Newark 

Canyon Formation.  With the aid of a crew, ranging from 3-5, we conducted north-south 

transects or east-west transects, depending on the nature of exposure, of surficial 

exposures of the unit. Fossil localities were documented as noted above. 

Collection 

 All material was recovered as surficial float with the exception of one excavation.  

The recovery of float entails documentation of the fossil site, and whether or not the 

material is in situ or is allochthonous.  If a site is found, the nearby surroundings are 

closely examined to see if any materials are within a “fingers” depth in the highly 

weathered matrix. In sandstones most material is visible on the surface without doing the 

“fingers” depth approach. 

 The single excavation which was conducted utilized the Organ et al. (2003) 

floating meter grid system.  A meter grid was laid out over the exposure, utilizing non-

invasive means (no nails) and a floating pvc pipe grid.  All materials recovered were 

mapped to within a centimeter. 

Taphonomy 
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 Due to careful transect oriented prospecting, stratigraphic units were well known 

while prospecting.  Therefore, when a fossil site was identified it was immediately noted 

which stratigraphic interval from which it came.  More specifically, sedimentological 

data was obtained, such as grain size and sedimentary structures of fossil bearing 

horizons.  Poor lateral exposure made determining geometry difficult with the exception 

of the most resilient beds (channel sandstones).  All characteristics mentioned in the 

taphonomy section of Chapter 1 were summarized for each fossil site in the field and in 

the lab. 

Identification 

 Fossil material was identified using published reference material (Hay, 1908; 

Maisey, 1978; Kirkland et al., 1998; Cifelli et al., 1999; Kirkland et al., 1999; 

Weishampel et al., 2004) and using personal experience from working in other mid-

Cretaceous units in Montana, Wyoming, Idaho, Utah, and Nevada. 

Systematic Paleontology 

CHONDRICHTHYES Huxley, 1880 

HYBODONTIDAE Owen, 1846 

Diagnosis- Hybodontidae is represented by a single dorsal fin spine (Figure 3.1).  The 

very distal tip of the spine is missing.  The length of the preserved portion is 2.7 cm with 

a diameter of 0.5 cm.  This spine has 5 visible longitudinal ridges running the entire 

length of the preserved portion.  There is a slight dorsal curve in the specimen, however 

due to shortness of the spine the degree of curve cannot be determined. 

Discussion- The longitudinal ridges and hollow base of this specimen are consistent with 

identification as a hybodont dorsal-fin spine (Maisey, 1978).  The other diagnostic 
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characteristics of a hybodont fin spine are denticles on the posterior side of the element 

(Maisey, 1978), in this case the posterior side is obscured by matrix and the vertebra of 

an archosaur.  Preparation was halted out of concern for the fragile nature of the 

specimen.  This element was found in a granule-to-pebble-rich, coarse sandstone.  The 

high energy needed to transport these coarse grains likely led to the fragmentary nature of 

the element and possible abrasion of denticles.  Hybodontidae is a group known to 

inhabit marine, brackish, and freshwater environments (Maisey, 1978).  Hybodont shark 

remains are known from the roughly contemporaneous Cedar Mountain Formation of 

Utah, a unit interpreted to have been deposited in fluvial-channel and overbank settings 

(Kirkland et al., 1999). 

 

Figure 3.1. A) Hybodont shark spine resting against an archosaurian vertebra (SCNHM 

VRD 208).  Note the coarse nature of the matrix. B) Line drawing of A, highlighting the 

longitudinal ridges on the spine and more clearly delineating the vertebra. Scale is 1 cm 

in both images. 

 

 

Fin spine 
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REPTILIA 

TESTUDINES Linnaeus, 1758 

GLYPTOPSIDAE Marsh, 1890 

GLYPTOPS SP. Marsh, 1890 

Diagnosis- A portion of a turtle carapace, isolated shell elements and appendicular 

elements are attributed to the genus Glyptops (Figure 3.2).  The shell material has a 

serpentine, ridge-like ornamentation, which is diagnostic of this genus (Marsh, 1890; 

Hay, 1908).  An isolated neural has the diagnostic hexagonal shape (Hay, 1908), with one 

broad end which would be anterior in this genus. 

Discussion- Glyptops is the only identifiable turtle taxon from the Newark Canyon 

Formation. Material is known from numerous localities in varying degrees of 

preservation.  In some instances material is found only as isolated fragments, and in 

others elements are articulated or associated.  The most complete carapace of Glyptops is 

a 12 cm by 9 cm portion (Figure 3.2A).  Also recovered have been two non-shell 

elements, two partial, unassociated tibiae.  

 

 

 

Figure 3.2. A) Recovered portion of a 

Glyptops carapace (SCNHM VRT 89). 

B) Isolated fragments of Glyptops shell 

and an appendicular element (SCNHM 

VRT 92 & 93). Notice the diagnostic 

serpentine ornamentation of the shell. 

A 

B 
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  CROCODILIA Owen, 1842 

CF. GONIOPHOLIDIDAE Cope, 1875 

Diagnosis- Numerous crocodilian osteoderms and teeth have been recovered from the 

Newark Canyon Formation (Figure 3.3).  No complete osteoderm has been found, but the 

portions recovered have an irregular, deep sculpturing.  Many of the pieces show well-

developed annuli.  Two crocodilian teeth have been found, one is a nearly complete 

tooth, conical in shape with a broken tip.  The tooth is 12 mm long and possesses parallel 

carinae along its length (Figure 3.3 B). The other is similar to the first but is complete and 

possesses a rounded, blunt tip (Figure 3.3 C). 

Discussion-  Although no family- or genus-level diagnostic material has been found, the 

ornamentation on the portions of recovered osteoderms are most similar to those of 

goniopholid crocodilians, the irregular deep sculpturing in particular. 

Figure 3.3. A) Crocodilian 

scutes showing the deep 

sculpturing which is typical of 

goniopholids but not 

diagnostic (SCNHM VRC 

56).  B & C are well-preserved 

crocodilian teeth (SCNHM 

VRC 55 & 56). 
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DINOSAURIA Owen, 1842 

ORNITHISCHIA Seely, 1888 

CF. THYREOPHORA Nopsca, 1915 

Diagnosis- A number of elements of thick, blocky structure are attributed to thyreophoran 

dinosaurs (Figure 3.4).  No absolutely diagnostic elements have been found in this study.  

Unpublished teeth in the University of California Museum of Paleontology collections 

collected from the Newark Canyon Fm by Don Lofgren are most definitely thyreophoran, 

as identified by having a blade-like crown and basal keel, these being diagnostic features 

of thyreophorans (Norman et al, 2004).  Two dorsal ribs from the Pancake Range have a 

very blocky cross-section and are most similar in morphology to those of thyreophorans; 

these were found associated with some 

unidentified blocky articulated 

elements.  

 

 

 

 

 

Figure 3.4. A) Articulated blocky bones with similar bone 

texture to thyreophorans, but without a diagnostic texture 

or morphology (SCNHM VRD 181).  B) The head of one 

of the blocky ribs found in association with A (SCNHM 

VRD 190).  Diagnostic thyreophoran teeth collected from 

the Newark Canyon Formation by Lofgren are not figured 

but can be found within the University of California 

Museum of Paleontology collections. 
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CF. ORNITHOPODA Marsh, 1881 

Diagnosis- A vertebra from a conglomerate bed in the Pancake Range (Figure 3.5) is 

attributed to the Ornithopoda on the basis of a relatively dish-shaped centrum with an 

associated portion of the neural arch.  In the Fish Creek Range, an associated ungual and 

metapodial are attributed to Ornithopoda (Figure 3.6).  The ungual in particular is “hoof” 

shaped, similar to that of ornithopods.  None of these elements is confidently diagnostic, 

thus the conferred diagnosis. 

 

Figure 3.5. Image of the vertebra (SCNHM VRD 186) recovered from a pebble-cobble 

conglomerate in the Pancake Range. A) Cranial view. B) Lateral view.  Note in A the 

right lateral plastic deformation of the centrum. 
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Figure 3.6. A&B) Ungual attributed to an ornithopod, showing differential weathering 

indicative of the element resting on a single side for several seasons. C&D) A metapodial 

associated with the above ungual, also attributed to an ornithopod, also showing 

differential weathering.  The red oval on C and the red arrow on D denote a freshwater 

mussel which has grown on the element, a sign that the element was subjected to 

subaqueous conditions, in addition to subaerial weathering (SCNHM VRD 203). 
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SAURISCHIA Seely, 1888  

THEROPODA Marsh, 1881 

Diagnosis- The diagnosis of the presence of Theropoda within the Newark Canyon 

Formation is based upon two teeth from the Pancake Range.  One broken tooth is less 

than a centimeter long and is tear-drop shaped in occlussal cross-section (Figure 3.7A).  

This specimen has square-shaped denticles on the posterior side, while the anterior side is 

relatively smooth and rounded.  This tooth is visually similar to a dromaeosaur tooth but 

is not diagnostic enough for such a designation.  The second tooth is nearly complete, 

missing the very tip, but poorly preserved (Figure 3.7B).  It is roughly 3 cm long and 

recurved.  Poor preservation prevents description of the denticles of this specimen. 

Discussion- The two teeth from the Pancake Range are the only diagnostic theropod 

material from this study.  Several skeletal elements from the Newark Canyon Fm in the 

Fish Creek Range may also be from theropods but are not preserved well enough as to be 

diagnostic. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. A) Unweathered theropod 

tooth from the Pancake Range with well-

preserved denticles on the posterior side 

(SCNHM VRD 195). B) Highly- 

weathered large theropod tooth from the 

Pancake Range (SCNHM VRD 194). 
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Table 3.1. Known vertebrates from the Newark Canyon Formation of east-central Nevada 

Vertebrata   

Chondrichthyes   

  Hybodontidae 

Osteichthyes   

 Teleostei  

  Leptolepis nevadensis* 

Reptilia   

 Testudines  

  Glyptops sp. 

 Crocodilia*  

  cf. Goniopholididae 

 Dinosauria  

  Thyreophora* 

  cf. Ornithopoda 

  Theropoda* 

  Indeterminate 

Mammalia   

 Multituberculata*  

  Indeterminate 

*Denotes taxa reported from previous studies (David, 1941; Clemens et al., 1979; Smith 

and Ketner, 1976). 

 

Taphonomy 

 Vertebrate remains from exposures of the Newark Canyon Formation exposed in 

the Fish Creek and Pancake Ranges are preserved in several different taphonomic modes.  

Preservational settings in the Pancake Range exposures are dominated by sediment 

gravity-flow lithofacies, whereas preservational settings in the Fish Creek Range are an 

array of fluvial and lacustrine settings. All preservational units are consistent with a basin 

with an active and complex tectonic history (Vandervoort and Schmitt, 1990; Drushcke et 

al., 2011). 

 Pancake Range exposures are aerially not very extensive.  Fossils recovered from 

the Pancake section include the material identified as thyreophoran elements, as well as 

the theropod teeth, a single piece of dinosaur egg shell, and the ornithopod vertebra. 

Vertebrate remains are found in two lithofacies in the Pancake Range section (Figure 
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3.8).  The first lithofacies is a massive, dark-brown mudrock.  There are no pedogenic 

features or sedimentary structures.  These beds can be tens of meters thick. Bones as well 

as other non-bioclasts are found “floating” in the fine-grained matrix. In other portions of 

the section, massive mudrocks are associated with stromatolites. Bones from these 

horizons are disarticulated (with one exception), and most exhibit some signs of pre-

burial weathering [2-3 on the Behrensmeyer (1978) weathering scale]. The only element 

from the massive mudrock lithofacies which is not weathered is a single, partial theropod 

tooth (Figure 3.7A). 

 I interpret the first lithofacies to be both hyperconcentrated flow and lacustrine 

deposits. Floating clasts in a massive matrix are consistent with deposits of a 

hyperconcentrated-flow diamictite (Zaleha and Weisemann, 2005). 

 

Figure 3.8. A) A block of massive 

mudrock with floating pebbles.  

Most elements recovered from 

the Pancake Range come from 

this lithofacies, interpreted as 

deposits of hyperconcentrated 

flows. B) Image showing the 

interbedded nature of fine and 

coarse clastics. C) Close up of 

debris-flow facies, showing lack 

of grading or imbrication. 
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 The second vertebrate-bearing lithofacies has produced a single vertebra.  This 

lithofacies is a well-cemented, poorly-sorted, pebble-cobble conglomerate.  Clasts are 

well rounded, with no observed sedimentary structures (Figure 3.8C). These beds are up 

to 0.5 m in thickness and are interbedded with the fine-grained lithofacies. 

 I interpret this second lithofacies as being the deposits of debris flows. Non-

graded, poorly-sorted conglomerates with no sedimentary structures are consistent with 

this interpretation. 

 Unlike the Pancake Range section, the Fish Creek Range section is locally 

extensive in exposure.  Vandervoort (1987) measured a representative section (Figure 

3.9) through this area and was able to lithologically correlate it to the Diamond Range 

type section.  He interpreted these exposures to represent fluvial and lacustrine lithofacies 

(Vandervoort, 1987), and I agree with his interpretation.  From the Fish Creek Range, 

both vertebrate and invertebrate material is found in fluvial and lacustrine lithofacies. 

 The most productive lithofacies for fossil material consists of lenticular, fine-to-

coarse-grained sandstones which exhibit planar and trough cross-lamination.  Grains are 

heterolithic and angular to subangular.  Occasional granules are also incorporated into 

these sandstone bodies.  The resistant archosaur elements, the single shark dorsal-fin 

spine (SCNHM VRD 208), as well as the poorly preserved turtle shell fragments were 

recovered from this lithofacies.  Bone elements from this lithofacies rarely exhibit 

evidence of pre-burial weathering, although most elements are fragmentary. 

 I interpret this lithofacies to represent fluvial channels.  Trough cross-beds as well 

as planar bedding are formed by lower-to-upper-flow-regime currents (Miall, 1977).  
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Elements from this lithofacies are likely allochthonous; they are from the catchment, if 

not from this particular reach of the paleoriver. 

 

 The second fossiliferous lithofacies consists of calcareous, fine-grained mudrocks.  

These beds are easily eroded and thus are not well defined in outcrop (Figure 3.9A).  

These beds range in color from dark brown, to red, to green.  Freshwater mussels are 

common in the dark brown and light brown beds.  The red beds contain hard, iron-rich 

horizons which can be up to a decimeter thick.  Although fossils are not as well 

Figure 3.9. A) Newark 

Canyon Formation section 

measured by Vandervoort 

(1987) in the Fish Creek 

Range showing different 

lithofacies. B) Exposure of 

fluvial sedimentary structures 

in the Lower Sandstone unit. 
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preserved, I have recovered most of the vertebrate material from this study in these fine-

grained lithofacies. 

 In agreement with Vandervoort (1987), I interpret these beds to represent both 

overbank and lacustrine units.  Two specimens in particular illustrate this point: SCNHM 

VRD 203 A & B are an associated ornithopod ungual and metapodial (Figure 3.6).  Both 

specimens exhibit a similar preservational style.  One side of each exhibits stage 3-4 

weathering on the Behrensmeyer (1978) scale, suggesting that one side of the element 

was exposed subaerially for several years.  The opposite side of each of these elements is 

weathered at only stage 1-2, showing a side effect.  The bones were evidently lying out 

on the flood plain on one side for several years.  Interestingly, on the metapodial 

(SCNHM VRD 203) a freshwater mussel is attached to the marrow cavity of the 

specimen (Figure 3.6B).  The shell of the mussel is roughly 3 cm long, indicating that 

after exposure on the surface for a couple of years the bones became submerged long 

enough for mussel spat to attach and grow to maturity.  These two specimens exhibit 

diagnostic taphonomic indicators of subaerial and subaqueous settings.  Most bone from 

these fine-grained beds is highly weathered (stage 2-3) and is fragmentary.  One 

exception is the turtle elements.  Some well-preserved, non-shell, appendicular turtle 

elements, as well as some large portions of the shell of Glyptops, have been recovered.  

The taphonomy of these fine-grained beds is complex, but it is consistent with the 

interpretation of both overbank and lacustrine settings, as proposed by Vandervoort 

(1987). 
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Discussion 

 The fauna of the Newark Canyon Formation is similar to that of the Aptian, Ruby 

Ranch Member of the Cedar Mountain Formation of central Utah (Kirkland et al., 1999).  

The presence of a freshwater hybodont shark in both units at roughly the same time is 

consistent with Vandervoort and Schmitt’s (1990) hypothesis that there were through-

flowing rivers from the Nevadaplano to the foreland basin; this explains how sharks 

could have made it so far inland as Nevada has had no direct contact with open marine 

environments since the Jurassic.  The general similarity of the two faunas is interesting in 

that it suggests that the ecological gradient from the more coastal Cedar Mountain 

Formation to the purely terrestrial, inland, Newark Canyon Formation was gentle enough 

to allow some of the same taxa to inhabit both basins. Although a wedgetop, hinterland 

deposit, Vandervoort and Schmitt (1990) and Druschke et al. (2011) do not suggest that 

the Newark Canyon basin was a high-elevation basin.  No paleoaltimetry studies have 

been conducted on the Newark Canyon Formation, unlike the Late Cretaceous-Eocene 

Sheep Pass Formation (Snell, 2011), also of east-central Nevada.  The paleoaltimetry 

study of the Sheep Pass Formation does suggest that the Sheep Pass basin was at a high 

altitude (see Chapter 4).  This suggests that uplift of the Nevadaplano in east-central 

Nevada occurred in post-Aptian time.  

 My study of taphonomy of the Newark Canyon Formation is consistent with 

previous sedimentological interpretations of this formation.  The one taphonomic mode 

which occurs in a lithofacies that was not recognized by previous workers is the 

sediment-gravity-flow-hosted specimens of the Pancake Range.  The presence of such a 
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lithofacies should not be surprising, however, due to the interpretation that the Newark 

Canyon basin was a tectonically-active basin with complex topography. 

 Biogeographically this study helps shed light on a mid-Cretaceous biotic turnover 

in western North America.  The Cedar Mountain Formation of Utah spans from the 

Barremian to the Cenomanian and within these exposures are several members which 

preserved different faunas (Cifelli et al., 1999; Kirkland et al., 1998 & 1999).  These 

faunas record a change from a western North American fauna more closely allied with an 

endemic North American fauna similar to that of the Late Jurassic in the Aptian-Albian 

Ruby Ranch Member of the Cedar Mountain Formation to a fauna more closely allied 

with Asia by the Cenomanian Mussentuchit Member of the Cedar Mountain Formation 

(Kirkland et al., 1998 & 1999).  With the Aptian Newark Canyon Formation and the 

Cenomanian Willow Tank Formation (Bonde et al., 2008), of southern Nevada, I observe 

a similar change in faunas consistent with that of Utah.  These data support Kirkland et 

al.’s (1998 & 1999) hypothesis that this biotic turnover is a continental interchange 

phenomenon, and not a regional change; especially since the Nevada records are from 

different tectonic settings than the Utah records and cover a much larger geographic area. 

Given the aerial extent of Newark Canyon Formation exposures not yet prospected, or 

not examined in recent decades, this biota will probably expand, leading to more 

comprehensive comparisons to other regional records. 

Conclusion 

 Preservational modes of the Newark Canyon Formation are similar to those of the 

Ruby Ranch Member of the Cedar Mountain Formation, suggesting that both units were 

deposited in tectonically active regions with fluvial and lacustrine deposition.  In addition 
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to the preservational modes, several geographically sensitive taxa, the hybodont shark 

and the turtle Glyptops, are common between the two formations.  Turtles are used to 

infer subtle geographic barriers (Lipka et al., 2006) which are passable by larger more 

mobile animals.  This implies that the environmental conditions between the two regions 

were similar enough for both of these taxa to inhabit both basins. Thus these data support 

the null hypothesis that the Newark Canyon Formation must have been deposited at low 

elevation, similar to the Willow Tank Formation (configuration A in figure 1.3). 
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CHAPTER 4 

FROG TAPHONOMY OF THE LATE CRETACEOUS-EOCENE SEVIER 

HINTERLAND, EAST-CENTRAL NEVADA 

Introduction 

Late Cretaceous to early Paleogene deposits of the Sevier retroarc foreland basin 

system of the western U.S. have yielded a wealth of fossil vertebrate, invertebrate, and 

floral remains, however comparatively few paleontological studies exist for coeval 

intermontane deposits of the  Sevier retroarc hinterland region.  The Late Cretaceous-

Eocene Sheep Pass Formation of east-central Nevada represents deposits of a 

synconvergent extensional basin within the Sevier retroarc hinterland (Druschke et al., 

2009a,b; Druschke et al., 2011). It occupied what is widely interpreted as a high-

elevation orogenic plateau (Coney and Harms, 1984; Jones et al., 1998; Dilek and 

Moores, 1999; DeCelles, 2004).  Previous studies of the Sheep Pass Formation type 

section have focused on palynology (Fouch, 1979), and invertebrate faunas such as 

mollusks (Good, 1987) and ostracodes (Swain, 1987). To date, no vertebrate fossils have 

been reported from the >1 km thick Sheep Pass Formation type section.  

Ancient high-elevation sedimentary packages are rarely preserved in the 

stratigraphic record due to intense erosional processes at high elevations over extended 

periods of time.  In addition to erosional processes, the Sevier hinterland has been 

subjected to several episodes of Paleogene and Neogene extension and volcanism that 

have further disrupted the original continuity of synorogenic deposits such as the Sheep 

Pass Formation (Druschke et al., 2009a,b; 2011).  Given the rarity of ancient high-

elevation sedimentary deposits, it is even rarer to find records of ancient high-elevation 
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biotas.  Thus the Sheep Pass Formation provides a rare opportunity to investigate the 

preservation of biological remains in high-elevation settings. 

During the course of this study, I have recovered more than a dozen frog 

specimens from the Sheep Pass Formation type section, many of which are fully 

articulated, as well as an extensive frog bonebed. Frogs are the only vertebrates identified 

within the Sheep Pass Formation type section to date, but I also document crayfish, trace 

fossils, and scattered plant remains, in association with previously documented 

ostracodal, and molluscan faunas.  These discoveries shed light on an interesting pattern 

of community structure and preservation within the Sevier hinterland during the latest 

Cretaceous and Paleogene. In this paper I describe the fossil material collected from the 

Sheep Pass Formation type section and interpret the preservational modes of the fossils. I 

also consider what this fossil material may reveal about the ecology and evolution of this 

long-lived, high-altitude lake basin. 

If the biota and preservational modes of the Sheep Pass basin suggest a cool 

climate during a global climatic optimum then that would support previous 

interpretations that the region was uplifted to a high elevation, thus invalidating the null 

hypothesis and supporting my alternative hypothesis. If the biota and preservational 

modes of the Sheep Pass basin suggest a warm, sub-tropical climate then the null 

hypothesis will not have been invalidated through this entire study and my alternative 

hypothesis can be rejected. 

Geologic Setting 

The Sevier orogen is typified by thin-skinned thrust faulting and resultant crustal 

thickening in the Sierra Nevada retroarc region, that resulted from prolonged Jurassic to 



48 
 

Paleogene eastward subduction of the oceanic Farallon plate beneath the western margin 

of North America (DeCelles, 2004, and references therein).  Following maximum crustal 

thickening in the Late Cretaceous, east-central Nevada is generally envisioned as part of a 

high-elevation orogenic plateau (Coney and Harms, 1984; Jones et al., 1998; Dilek and 

Moores, 1999, DeCelles, 2004). Synconvergent, surface-breaking normal faults 

documented within the Sheep Pass Formation suggest that syncontractional extension had 

initiated by latest Cretaceous time in the Sevier hinterland of east-central Nevada, 

resulting in the establishment of a series of basins generally analogous to the high-

elevation graben systems of the modern Puna-Altiplano and Tibetan Plateau (Druschke, 

2008; Druschke et al., 2009a,b). In support of a high-elevation interpretation, clumped 

stable-isotope analyses of lacustrine carbonates within the basal Sheep Pass Formation 

suggest a 2.6 to 3.5 km paleoelevation for east-central Nevada during the latest 

Cretaceous and earliest Paleocene, perhaps 2.2 km higher than the foreland basin in Utah 

at the time (Snell, 2011).   The Sevier hinterland was subsequently affected by a 

southward younging sweep of middle to late Eocene extension and associated volcanism 

(Armstrong and Ward, 1991; Gans et al., 2001) that reactivated elements of the Sheep 

Pass basin system (Druschke et al., 2009a).  Most recently, large-magnitude Neogene 

Basin and Range extension subjected the Sheep Pass Formation to differential uplift, 

erosion, and burial beneath younger extensional basins. 

 The Sheep Pass Formation, first described by Winfrey (1958, 1960), is a 

sedimentary package that forms isolated outcrops in various mountain ranges of east-

central Nevada (Figure 4.1).  The Sheep Pass Formation is divided into members A-F 

based largely upon lithology (Figure 4.2).  Previous workers have determined that the 
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primary depositional settings of the Sheep Pass Formation represent lacustrine, alluvial 

fan, and fluvial settings (Winfrey, 1958; Winfrey, 1960; Kellogg, 1964; Fouch, 1979; 

Druschke, 2008). 

While the current study documents the first identifiable vertebrate remains from 

the Sheep Pass Formation type section, previous studies have identified vertebrate 

remains from other localities within the Sheep Pass Formation. Fouch (1979) identified 

the remains of the insectivore-like mammal Nyctitherium within Paleocene to Eocene 

lacustrine carbonates of the Grant Range (Figure 4.1). Emry (1990) identified a 

mammalian fossil assemblage (also with bits of anurans) of Eocene (Bridgerian) age 

within the northern Egan Range Elderberry Canyon location. Of most direct relevance to 

the current study, Hecht (1960) identified the remains of two fossil frogs recovered from 

a petroleum exploratory drill core located just west of the Sheep Pass Formation type 

section in White River Valley. These specimens were identified as a new species, 

Eorubeta nevadensis, and were recovered from a lacustrine limestone correlative to 

Member B or C within the Sheep Pass Formation type section. Hecht (1960) noted that 

frog population densities would have to be very high to preserve two specimens within a 

single core, although it would take nearly fifty years for specimens to be found in outcrop 

within the Sheep Pass Formation type section. 

 



50 
 

 

Figure 4.1. Map of east-central Nevada modified from Druschke (2008), showing 

mountain ranges in black and valleys in white.  Sheep Pass Canyon is in the white 

box at the south end of the Egan Range. 
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Figure 4.2. Stratigraphic column of the Sheep Pass Formation type section, adapted from 

Druschke (2008).  Of interest to this study are Members B & C.  Frog symbol denotes 

stratigraphic intervals where fossil frogs have been recovered. 
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Methods 

Prospecting and Surface Collection 

 Fossil localities were discovered by prospecting exposures of the Sheep Pass 

Formation type section within Sheep Pass Canyon.  I mapped all fossil sites, including 

isolated elements, on a topographic map, recorded their GPS locations, and then collected 

the specimens. 

 Only surface collections were made; no excavations were conducted.  Fossil 

material was noted as float or as in situ.  In situ material was discovered by splitting the 

exposed mudrocks with a rock hammer.  The collected specimens were taken to SCNHM 

for preparation and curation. Field work was conducted under BLM permit # 

8270(NV040) 2009. 

I placed the fossil localities within the stratigraphic framework of Druschke 

(2008).  This allowed me to identify which members of the Sheep Pass Formation are 

fossiliferous.  All fossils were collected from Member B (Late Cretaceous-Paleocene) 

and Member C (Paleocene-Eocene).  I recorded sedimentological data for the purpose of 

determinating depositional environments. 

Taphonomic Analysis 

 I recorded as much taphonomic information as possible in the field.  This includes 

spatial distributions of specimens, articulation and/or associations, as well as bone-bone 

contacts, lack of contacts, complete disassociation, breaks, break style, and alteration 

halos.  I obtained data on surface modification back in the lab, after preparation of 

elements, because such features are often obscured by matrix (Eberth et al., 2007).  

Surface modification data include weathering (after Behrensmeyer, 1978), abrasion (after 

Shipman, 1981), tooth marks, bioerosion, trample marks, and the nature of breaks (e.g., 
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faults, blocky, spiral).  Trend and plunge data of long-bone elements are used to 

determine whether elements have been aligned due to fluid flow, or whether the bones 

are oriented randomly.  Random orientations may reflect rapid burial (Eberth et al., 2006) 

or trampling (Fiorillo, 1989). 

Curation 

 Specimens were prepared at the Sierra College Natural History Museum, Rocklin, 

California, USA.  Preparation involved removal of specimens from packaging and 

carefully noting orientation data on the packaging so that orientation data were not lost in 

the lab.  Matrix was removed with small hand tools (e.g., dental picks and toothbrushes), 

and in some cases an air scribe.  As matrix was progressively removed, polyvinyl acetate 

was applied in order to protect/stabilize the element.  Broken elements were 

reconstructed using either cynoacrylate or white glue.  Specimens that displayed 

important patterns along natural breaks were not reassembled. 

 Prepared specimens underwent further taphonomic anaylsis, after which they 

were placed into the appropriate curation tray or appropriate container/cradle.  All 

specimens from this project are reposited at the Sierra College Natural History Museum, 

Rocklin, California, USA. 

 I first describe and interpret the paleontology of Member B, followed by a 

description and interpretation of the paleontology and taphonomy of Member C.  These 

descriptions and interpretations are summarized in Table 4.1. 

Member B Paleontology 

 Member B of the Sheep Pass Formation type section has produced a diverse biota 

of plants, invertebrates and vertebrates.  Ostracods are the most numerous invertebrates, 
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and anurans are the sole vertebrates recovered to date.  In addition to the body fossils, 

there are also some invertebrate traces preserved within Member B.  Fossils are found in 

at least three different lithofacies: dolomitic clayshales, dolomitic microbialites, and 

tempestite beds.   

Plants 

 There are at least three types of plant body impressions.  The first consists of 

portions or brachs of a larger organ, 1 cm long and up to 1.5 mm in diameter.  

Perpendicular to the long axis are shorter (0.5-0.75 cm long) appendages.  The second 

type of body impressions are long (up to 20 cm), 2-3 cm wide, with parallel structures 

along the long axis of the impression (Figure 4.3).  These are the best preserved plant 

specimens.  They maintain their width from the base until they finally taper to a tip at 

their distal end (Figure 4.3).  These two types of plant fossils are found in a very fine 

dolomitic clayshale which contains only plant fossils; no animal body or trace fossils are 

present.  The final type of plant body impression is a single, unidentified, angiosperm leaf 

roughly 5-6 cm from petiole to the tip of the leaf (Figure 4.4).  There is a dominant 

primary vein which runs from the petiole to the tip of the leaf.  There are arcuate 

secondary veins which come oppositely from the primary.  The margin of this leaf is 

entire and is eucamptodromous in morphology (Figure 4.4) (cf. Hickey, 1973).  This 

specimen is found in an irregularly laminated, dolomitic mudstone. 
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Figure 4.3. Plant impressions within very fine, dolomitic clayshale. A) 

Refers to the long plant impressions, B) refers to the smaller 

gymnosperm impressions. 

A 

B 
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Figure 4.4. A) Leaf impression within microbialite facies of Member B.  B) Outline of 

leaf, primary vein and secondary. Scale is 1 cm. 

 

B A 



57 
 

Invertebrates 

 There are numerous invertebrate fossils in Member B of the Sheep Pass 

Formation, including body fossils of mollusks and crustaceans.  Bivalves are typically 

less than a centimeter in diameter and are found isolated in planar-laminated, dolomitic 

mudrock lithofacies, or they are found concentrated along with fine-grained mudstone 

intraclasts, in irregularly bedded dolomitic mudstone.  

Ostracods are extremely abundant in planar laminated, dolomitic mudrock 

lithofacies (Figure 4.5).  In some of these beds ostracods are the only fossils preserved in 

abundance. In other beds they occur in close association with vertebrate remains.  In 

some instances ostracods are preserved in carapace-to-bone contact (Figure 4.8). 

Ostracods present in this unit are Clinocypris? sp., Paracypridopsis? sp., and Cypridea 

bicostata (Swain, 1987). 

 

Figure 4.5. Abundant ostracods (tiny dark grains) in horizontally laminated dolomitic 

clayshale in Member B, associated with disarticulated frog vertebrae (larger white 

objects).  Scale is 1 cm. 
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 Occasional impressions of crayfish carapaces are found within the dolomitic 

mudstone lithofacies, in both the planar-laminated and crinkle fabric beds.  The 

impressions are typically partitioned into 4-5 segments (Figure 4.6).  These attached 

segments are all slightly concave and are nearly a centimeter in length and a few 

millimeters in width.  The specimen shown in Figure 4.6 is articulated with a more 

massive structure divided along a midline and oriented at 90⁰ to the former structure.  I 

interpret these structures to be articulated abdominal somites, part of the telson and 

posterior, dorsal parts of the cephalothorax of a crayfish. 

 

Figure 4.6. Impression of a molted crayfish exoskeleton found in the horizontally-

laminated dolomitic clayshale of Member B, scale is 1 cm. CT-cephalothorax, TE-telson. 

CT 

TE 
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Vertebrates 

 Numerous frog specimens have been recovered from Member B of the Sheep Pass 

Formation within the Sheep Pass type section.  These specimens are found 

stratigraphically throughout the section (Figure 4.2).  All specimens are preserved within 

dolomitic mudstones.  Specimen SCNHM VAF 3 is a nearly complete, articulated frog 

(Figure 4.7).  It occurs on a bedding plane within a mudstone exhibiting crinkle 

sedimentary fabric.  The specimen does not have any pre-burial weathering or abrasion of 

elements; there is, however, significant modern weathering.  There is also significant 

modern, irregular, blocky breakage of many elements.  The presacral vertebrae are absent 

with only a few portions of the transverse processes present.  Distal leg and pes elements 

are still encased in matrix; they have not been prepared out of concern for their fragility.   

 

Figure 4.7. Fully articulated frog skeleton (SCNHM VAF 3) in microbialite facies of 

Member B. Scale is 1 cm. 
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Both manus are mostly missing; only three phalanges on the right manus remain.  

Approximately half of the cranium is missing; the basicranium is preserved, but the 

majority of the dentary and maxilla are gone.  The pectoral girdle is complete, and 

elements appear to be closely associated, if not articulated.  This specimen is found 

isolated, with no other individuals preserved in the same horizon.   

Frog specimen SCNHM VAF 32 A&B (Appendix A, Figure A.1) is also 

preserved in a dolomitic mudstone which exhibits a crinkle fabric and irregular 

lamination.  This specimen is a part and counterpart of an articulated animal.  Due to 

modern weathering processes all of the original bone is now gone and only an impression 

remains.  All elements are in life position.  The impression retains very good detail of the 

original bone, including tooth impressions from the dentary.   

Specimen SCNHM VAF 31(Appendix A, Figure A.2) represents an impression of 

a nearly complete frog.  Due to modern weathering processes the original bone is gone, 

and the cranium and right arm are missing.  The rest of the animal is articulated, with the 

lone exception being that the urostyle has been dislodged and was resting at an angle 

against the left ilium.  It is rare in this unit to have disarticulated elements in mudstones 

exhibiting crinkle fabric.   

Specimen SCNHM VAF 27(Appendix A, Figure A.3) is preserved in a planar 

laminated, dolomitic mudstone, with associated ostracods.  This specimen is partially 

disarticulated, however elements remain in association.  The disarticulation pattern is 

random.  Elements of this specimen have undergone significant modern weathering and 

breakage.  Much of the cranium and right arm are weathered away.  The hind limbs are 

well preserved, but the distal elements are obscured by matrix.   
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Specimen SCNHM VAF 13 A&B (Appendix A, Figures A.4 & A.5) is a nearly 

complete animal.  Most cranial and appendicular elements are articulated.  The pes are 

complete and articulated, the phalanges of the right ped are preserved in a curled posture.  

The dentary is slightly ajar from the cranium.  The cranium and dentary are slightly offset 

at a slight angle from the midline of the animal.  The vertebral column is not well 

preserved and one vertebra is visibly disarticulated and found posterior to the pelvic 

girdle.  There are abundant ostracods associated with this specimen.  This animal is also 

preserved in a planar laminated dolomitic mudstone.   

Specimen SCNHM VAF 28 A&B (Figure 4.8) is also preserved in a planar 

laminated dolomitic mudstone, with abundant ostracods.  Ostracods are in direct contact 

with bone elements.  This specimen is mostly articulated, with some elements 

disarticulated but in close association.  The pattern of disarticulation appears to be 

random.  The cranium is slightly offset from the line of the vertebrae.  The only breaks on 

this specimen were the result of splitting the slab in which  it was discovered.   

Specimen SCNHM VAF 26 A&B (Appendix A, Figure A.6) are preserved nearly 

identically to specimen SCNHM VAF 28 A&B, in a planar bedded dolomitic mudstone, 

with abundant ostracods.  The only difference is that SCNHM VAF 26 does not have 

ostracods in direct contact with bone elements.  SCNHM VAF 26 is also disarticulated in 

a similar pattern as SCNHM VAF 28, the cranium is slightly ajar, and the specimen is 

mostly articulated with some distal elements disarticulated but in close association.   
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SCNHM VAF 15 A&B (Appendix A, Figure A.7) are a part and counterpart 

situated along a bedding plane.  This skeleton is disarticulated.  Limb bones are visible, 

as is the cranium with visible maxillary teeth.  Orientation of the bones appears to be 

erratic.  Associated with this specimen are abundant fine-grained clasts, similar in 

composition to the underlying, very fine claystone.  Bone preservation is excellent, with 

pristine surfaces; only occasional modern blocky breakage obscures elements.   

SCNHM VAF 39 (Figure 4.5) consists of an associated, but disarticulated, 

urostyle and seven vertebrae.  There are abundant ostracods associated with the 

Figure 4.8. Articulated frog 

(SCNHM VAF 28) skeleton 

found in horizontally 

laminated dolomitic clayshale 

of Member B showing 

ostracod swarming.  Some 

ostracods carapaces are found 

in direct contact with bone, a 

sign of ostracod scavenging. 

Scale is 1 cm. 
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specimen.  Orientation of the skeletal elements appears to be random.  A lone metapodial 

is the only appendicular element preserved.  There are no signs of weathering or abrasion 

on elements.  Elements are preserved in a planar-laminated, dolomitic mudstone. 

Trace Fossils 

 There are numerous trace fossils preserved within the dolomitic mudrocks of 

Member B.  One type consists of randomly sinuous, continuous trails (Figure 4.9), 

roughly 0.8-1 cm wide and U-shaped in cross section.  These trails are observed only in 

irregularly laminated mudrocks with crinkle fabric.  Another common trace fossil stands 

out in slight positive relief, ~1 cm, along bedding planes of relatively flat laminated 

mudrock.  In plan view, these are nearly perfectly circular, with diameters ranging from 

5-7 cm. In the lab, one of these traces was cut in half to expose the internal structure 

(Figure 4.10). Along the outer edge of the trace, the mudrock becomes darker in color 

and is lined with numerous ostracods along the margins. In between the dark margins are 

very fine menisci of mudrock infilling the trace, with few ostracods.  These traces are 

found only in the ostracod-rich, horizontally laminated mudrocks, where they are 

common.  These traces match the characteristics of crayfish burrows (Anthony Martin, 

pers. comm., 2010). 
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Figure 4.9. Sinuous invertebrate feeding trace in dolomitic 

mudstone exhibiting crinkle-fabric.  Rock hammer head for 

scale.  The trace varies between 0.8 and 1 cm across. 
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Figure 4.10. Cross-sections of a crayfish burrow, cut perpendicular to bedding.  Note the 

fine meniscate lamina; darker spots within the menisci are ostracods.  The darker margin 

is interpreted to be the agglutinated edge of the burrow. 

 

Member B Taphonomy 

Member B preserves plants in two taphonomic modes, in laminated dolomitic 

clayshale and in irregularly bedded crinkle fabric in dolomitic mudstone.  Body fossils 

and partial body fossils are represented.  Plant fossils are found in two localities in two 

separate lithofacies.  The partial plant remains, which are tentatively assigned to 

gymnosperms, and the long plant body fossils are preserved in a very-fine, planar-

laminated, dolomitic clayshale.  There is no carbonaceous material left, only impressions.  

The long body fossils are likely autochthonous and represent a period of time when lake 

level was low enough for these types of plants to subsist in the middle of the basin. 

Lower and higher in the stratigraphic section the water levels were probably too deep for 

such plants.  This interpretation is supported by the absence of fossil gymnosperms 

higher or lower in the section.  Allochthonous macrofloral material rarely travels farther 

than 50 meters from the source plant (Ferguson, 1985); thus the shore of the paleolake 
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can be interpreted to have been within 50 m of the sites where these fossils were 

deposited. 

 One of the other lithofacies, which preserves the previously mentioned 

eucamptodromus-leaf fossil, is a crinkle-fabric, irregularly laminated, dolomitic 

limestone.  This leaf is slightly deformed, possibly due to a load on the middle of the 

specimen, or it may have already been partially curled upon sinking.  This specimen was 

found in association with frog remains and is the only plant fossil known from the 

crinkle-fabric-bearing limestones.  I interpret this leaf to be allochthonous, having been 

transported out into the lake to settle onto a microbial mat.  The scarcity of plant fossils 

does not allow a more comprehensive picture of the plant life within the basin in which 

the Sheep Pass Formation type-section was deposited.  Little can be said about the plant 

record, as to what the surrounding foliage was like, nor can these fossils lend themselves 

to paleoclimatic analysis. 

 Invertebrate remains and traces in Member B are typically found in a single 

lithofacies, the planar-laminated, dolomitic limestone.  Ostracods tend to be 

congregrated, with dozens of individuals in a small area (less than a meter square).  

Previous workers concluded that ostracods (Swain, 1987) and mollusks (Good, 1987) 

from Member B are indicative of an alkaline, open-lake environment.  In some instances 

the ostracods are found in direct contact with vertebrate bones.  The most dense 

accumulations of ostracods are found in and around the cranium and other bone elements 

of frog fossils.  This suggests that either the ostracods accumulated after the soft tissue of 

the frog was already decomposed or, more likely, that the ostracods swarmed the frog 

carcass to scavenge the carrion.  Ostracod swarming is a diagnostic sign of scavenging in 
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the fossil record and in the modern (Wilkinson et al., 2007).  Other than being found in 

close association with vertebrate remains, ostracods are found scattered along bedding 

planes of the planar-laminated limestones.   

Another occurrence of ostracods in Member B is along the agglutinated edges and 

meniscate infilling laminae of vertical crayfish burrows.  These specimens may either be 

accumulations of ostracods at normal background rates, or they may be the remains of 

individuals preyed upon or scavenged by crayfish.  A study by Gutierrez-Yurrita et al. 

(1998) of crayfish gut contents showed that ostracods account for about 10% of crayfish 

diet.  Ostracods are not found in any other lithofacies in Member B. 

 Segmented impressions (Figure 4.6) and more massive impressions in Member B 

represent the molted telson and abdominal somites of crayfish. The specimen shown in 

Figure 4.6 probably represents a molted cephalothorax (figured in Fetzner, 2002).  

Crayfish impressions have not been found preserved in life-like posture, which leads to 

the conclusion that they are molted skeletons.  Further, molting in crustaceans, occurs 

many times throughout an animal’s life, thus providing a higher chance of finding molted 

carapaces than complete individuals.  Also, as described above, traces of probable 

crayfish burrows occur in the planar-laminated dolomitic limestones (Figure 4.10).  The 

rims of these structures are preserved in positive relief and are nearly circular in plan 

view, which is characteristic of crayfish burrows, and distinct from other burrowers such 

as lungfish (Anthony Martin, pers. comm., 2010). 

 Other invertebrates preserved in Member B include occasional gastropods and 

numerous bivalves. Good (1987) identified this mollusk assemblage as a Valvata, 

Hydrobia-Sphaeriidae association; along with the ostracod assemblage, these taxa 
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support the interpretation of an open, alkaline-lacustrine setting (Good, 1987).  Modern 

analogous mollusk assemblages can be found in temperate lakes of North America 

(Good, 1987). 

 Bivalves are preserved in two taphonomic modes.  The less common mode of 

preservation is as isolated, articulated specimens in planar-laminated, dolomitic 

limestone.  These specimens are interpreted to be the result of attritional accumulation 

over time.  The second, and more common, preservational mode is articulated and 

disarticulated valves found amongst irregular clasts of underlying clayshale strata in an 

otherwise silty, irregularly-bedded, dolomitic limestone.  This preservational style is 

interpreted to represent tempestite beds.  The clasts of mudrock are interpreted to be mud 

rip-up clasts.  That, coupled with the dense accumulation of articulated and disarticulated 

specimens, suggests that at least some of the valves were remobilized.  The irregular 

bedding, disarticulated valves, and mud rip-ups indicate that these beds represent periods 

of increased energy in the system.  These beds probably do not represent fluvial influxes 

as there are no signs of sedimentary structures indicative of fluvial processes, such as 

clast imbrications or cross-laminae. 

 Vertebrates are preserved in three taphonomic modes in Member B.  The first 

includes the individuals preserved within the crinkle-fabric, dolomitic mudstones.  The 

lack of evidence of exposure and transport supports an interpretation that frogs in this 

taphonomic mode died of attrition through time.  This is supported by the stratigraphic 

distribution of specimens which had settled onto microbial mats in life position and were 

subsequently buried and preserved.  Actualistic studies of fish carcasses reveal that water 

temperatures must be below 15⁰C in order for a carcass to sink (Elder, 1985).  In another 
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actualistic study Dodson (1973) showed that a frog bloated and floating in a tank will 

begin to decompose and disarticulate after 21 days.  Therefore, the articulated frog 

specimens encountered in this study most probably sank to the bottom within three weeks 

of death.  The lack of scavenging could be attributed to anoxic or dysoxic conditions; 

however, the relative abundance of invertebrate trace fossils within these crinkle fabric 

horizons suggests that, even if bottom waters were relatively dysoxic, oxygen levels were 

not low enough to deter potential invertebrate scavengers from feeding along the bottom 

of the lake. Oil chemistry of petroleum sourced from the Sheep Pass Formation Member 

B, suggests that the lake was stratified and anoxic to hypersaline (Ahdyar, 2011). Perhaps 

some of these more intact microbialites were formed close to the anoxic-dysoxic 

boundary further deterring scavenging. 

 The second taphonomic mode is similar to the first in that specimens are typically 

nearly articulated; the difference is that there are no signs of microbial mats in the form 

of crinkle fabric.  This mode is hosted in a planar-laminated, dolomitic limestone and, 

unlike the first vertebrate taphonomic mode, these are the horizons which contain 

abundant ostracods.  Many of the frogs preserved in this lithofacies are also slightly more 

out of “life position” than those in the microbialites, suggesting that they may have been 

subject to additional transport or scavenging.  As mentioned above, some of these frogs 

appear to have been scavenged by ostracod swarming.  Other specimens with elements 

displaced in random directions from the main part of the animal are consistent with 

scavenging (Elder and Smith, 1984).  Given that these frogs are also almost completely 

articulated supports the above interpretation that they must have sunk within three weeks 

of death (Dodson, 1973).  In order to sink without bloating and disarticulating, water 
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temperature must have been below 15⁰C (Elder, 1985) for at least part of the year.  Given 

the stratigraphic distribution of this lithofacies, I interpret this taphonomic mode to also 

be attritional, as frogs died and settled to the bottom through time. 

 The final taphonomic mode of frog elements in Member B is related to the 

taphonomic mode described for bivalves in the beds interpreted as tempestite horizons.  

These frog elements are typically found isolated and associated with disarticulated 

bivalve valves and mud rip-up clasts.  These elements are interpreted to be reworked frog 

elements from either the lake bottom or underlying sediments. Dodson (1973) showed 

that even frog bones which have been submerged for long periods of time were still 

easily transported. 

Member C Paleontology 

 A number of anuran specimens have been recovered near the top of Member C 

(Figure 4.2).  In addition to anurans, this member preserves abundant mollusks and 

ostracods.  The most fossiliferous lithofacies in Member C are planar-laminated, silty 

limestones and calcareous siltstones.  Less common in the member are trough-cross-

bedded and ripple-marked sandstones, trough-cross-bedded conglomerates, and rare 

oncolitic limestones, but to date these lithofacies have not produced any vertebrate 

fossils. 

Invertebrates 

 By far the most numerous invertebrates in the fossiliferous beds of Member C are 

ostracods (Figure 4.11).  These remains are found within thin beds of planar-laminated 

silty limestone, either as the only fossil material present or in association with bivalves 

and/or anurans. 
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 Bivalves are common in fossiliferous lithofacies, either as isolated shells or in 

dense concentrations.  Most specimens are less than a centimeter in their longest 

dimension.  Bivalves are always found in association with ostracods in fossiliferous 

horizons in Member C.  Bivalves are predominantly articulated, a sign of low energy 

conditions (Good, 1987) 

Vertebrates 

 Numerous frog specimens were recovered from Member C.  SCNHM VAF 4 

(Figure 4.11) is a nearly complete, articulated frog found in a planar-laminated, 

calcareous siltstone.  This specimen was found within the fossiliferous, silty limestone 

Figure 4.11. Fully articulated frog (SCNHM VAF 4) 

from calcarerous siltstone of Member C.  All of the very 

small, dark structures are ostracods.  Scale is 1 cm. 
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lithofaces and is associated with abundant ostracods and bivalves.  There is no evidence 

of pre-burial, subaerial weathering or abrasion of elements, however many elements 

display irregular, blocky breakage.  There are also abundant calcite rinds over many 

elements, and those which are not covered by a calcite rind have undergone significant 

modern weathering.  Manus elements have not been preserved in this specimen; pes 

elements are fragmentary and articulated, or at least found in close association.  The right 

maxilla and dentary are largely missing and are represented by a calcite rind which had 

coated the underside of those elements.  The posterior of the urostyle is skewed strongly 

to the right side of the individual.  Missing elements and damaged elements are attributed 

to modern weathering processes.  Also represented in the same rock specimen is the 

articulated tibiofibula and femur of another individual, the rest of this second individual 

is missing due to a natural fracture in the rock.     

Another specimen, SCNHM VAF 12 (Appendix A, Figure A.8), was found in a 

very similar lithofacies as SCNHM VAF 4 (Figure 4.11).  This specimen is roughly three 

times larger than SCNHM VAF 4.  The majority of the original bone of this specimen has 

weathered away due to modern processes.  What bone remains is coated in a calcite rind 

and exhibits blocky, irregular breakage.  A few undamaged bone elements (i.e. the left 

radioulna) exhibit no signs of pre-burial, subaerial weathering or abrasion.  Where many 

of the elements have been eroded away, there are moderately defined molds.  The right 

arm, leg, and illium are missing as a result of natural breakage of the rock containing the 

specimen.  Like SCNHM VAF 4, SCNHM VAF 12 was found in close association with 

abundant ostracods and mollusks.   



73 
 

Unlike SCNHM VAF 4 &12, SCNHM VAF 5 (Appendix A, Figure A.9) is a 

mold with only a few remnants of the calcite rind which was found surrounding elements 

in the other two specimens.  Further, SCNHM VAF 5 is represented by the mold of the 

cranium and presacral vertebrae.  The right appendicular elements may be preserved in 

the matrix of the specimen, but they have not been mechanically exposed due to their 

fragile nature.  The left appendicular elements and pelvic girdle are missing as a result of 

a natural break in the rock. 

 SCNHM VAF 2 is found in the same lithofacies as SCNHM VAF 4, 5 & 12.  The 

primary difference between this specimen and the others is that this block contains one or 

more completely disarticulated individual(s).  SCNHM 2 is a jumble of closely associated 

elements.  When elements are recognizable, they seem to be intact, with no pre-burial 

weathering or abrasion.  There does not seem to be any winnowing of less dense or 

mobile elements (cf. Voorhies, 1969).  The only damage to bone elements is irregular, 

blocky breakage and modern weathering.  As in the specimens described above, calcite 

rinds occur on many elements, and bone elements are closely associated with abundant 

ostracods and mollusks. 

 The fossiliferous calcareous siltstone and fine-grained sandstone within Member 

C has irregular bedding and, unlike the previous lithofacies, there are no associated 

ostracods or mollusks.  Bone elements preserved in this lithofacies are completely 

disarticulated and do not appear to be definitively associated with one another.  Typified 

by SCNHM VAF 11 (Figure 4.12), SCNHM VAF 18 (Appendix A, Figure A.10) & 19 

and a number of other specimens that carry SCNHM field number 2278, bones show no 
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signs of pre-burial, subaerial weathering.  Where articular ends are present they show no 

signs of abrasion.  Most specimens appear to have been complete at the time of burial, 

 

Figure 4.12. A sample of the frog bone bed (SCNHM VAF 11) from field site 2278.  All 

of the lighter colored items are frog bones in a darker, very-fine-to-fine, massive 

sandstone.  The prominent white surface beneath and adjacent to the scale bar is a calcite 

rind.  Notice the chaotic distribution of elements. Using an arbitrary north on this sample 

of float, the orientation of 27 bones was measured (see Figure 4.13). The arbitrary north 

direction is indicated. 

 with a few exceptions.  All specimens from SCNHM field site 2278 were collected as 

float, so orientation of the original specimens could not be determined. Using an arbitrary 

north, paleocurrent analysis was conducted on long bone elements within one bone-rich 

specimen (Figure 4.12). The resulting rose diagram (Figure 4.13) shows no strong 

preferred orientation of long-bone elements within this horizon, although there is a weak 

north-south orientation.  The elements range in size from approximately 3 mm (vertebrae 

and phalanges) to 21 mm (ilia). Bones are commonly superimposed upon one another, 
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with bone-on-bone contacts.  This lithofacies is laterally extensive for hundreds of 

meters; it is variable in thickness as well as lithology, varying between silt and fine-

grained sandstone.  The base of this unit does not possess scour marks or any other signs 

of erosional processes.  Further, this bed does not contain any internal or surficial 

sedimentary structures, and appears massive. This lithofacies is observed in only a single 

horizon within Member C. 

 

Figure 4.13. Rose diagram of 27 long bone elements in the frog bone bed of Member C, 

oriented to an arbitrary north. This sample was collected as float.  There is no visibly 

apparent, strongly preferred orientation of long-bone elements, although there is a weak 

north-south orientation. The average of the right hemisphere is 76.2° with a 1σ of 60°. 
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Member C Taphonomy 

Member C differs from Member B in that invertebrate remains are found within 

the same lithofacies and with similar preservation as vertebrates.  The first taphonomic 

mode consists of frogs, ostracods, and bivalves occurring together within horizontally 

laminated, calcareous siltstone.  Ostracods in Member C do not show signs of 

“swarming” (in contrast to Member B), and bivalves are fully articulated, unlike those in 

the tempestite beds in Member B.  Ostracod density seems rather uniform, whereas 

bivalve density is variable.  This depositional environment of the horizontally-laminated, 

calcareous siltstone lithofacies is interpreted to be a lacustrine delta (Druschke, 2010).  

As in the case of Member B, the ostracod and bivalve taxa indicate an alkaline pH (Good, 

1987; Swain, 1987).  Similar to Member B, frogs from this taphonomic mode are found 

nearly fully articulated in life position.  This suggests that the frogs were subjected to 

minimal transport and scavenging.  The well preserved “life posture” of these frogs is 

also similar to Member B in requiring the body to settle to the bottom within three weeks 

(Dodson, 1973); bloating and disarticulation were retarded, presumably due to low water 

temperature (Elder, 1985).  Given that Member C is interpreted to be a delta 

environment, the laminae of the siltstones are not varves.  The high degree of articulation 

of the frogs, as in Member B, is likely the product of attritional accumulation through 

time.  A low-energy environment is supported by the presence of articulated bivalves 

(Good, 1987). 

 The second taphonomic mode of Member C is odd, in that frogs are the only 

preserved organisms; invertebrates are completely lacking.  Given that none of the frog 

elements displays evidence of subaerial weathering, I suggest that they were not exposed 
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to air and light for any significant amount of time.  Furthermore, no signs of abrasion are 

present, which supports the interpretation of minimal transport distance.  The bones show 

no strongly preferred orientation, which eliminates the presence of unidirectional or 

bidirectional fluid flow.  The presence of bones of a wide array of sizes in a poorly-sorted 

matrix supports the conclusion that these elements were deposited in a single depositional 

event, such as a sediment-gravity flow.  Other aspects of this unit which support a 

sediment gravity flow interpretation include the massive nature of the host bed, as well as 

lateral variability in bed thickness.  Another interesting observation is that many elements 

occur in a bone-to-bone contact relationship, meaning that the bones were likely without 

flesh prior to burial.  There are no observable articulations or close associations, 

suggesting that the animals were disarticulated when they became entrained within the 

sediment-gravity flow.   

Actualistic studies of frog and toad carcasses in pond water show that frogs can 

begin disarticulating within 21 days, but they remain mostly articulated for up to 45 days 

(Dodson, 1973).  Therefore the depositional event was not likely the culprit in killing the 

organisms; they were already dead and in the catchment before the event.  There are no 

tell-tale signs of scavenging of elements, such as green-stick fractures or tooth marks.  

Mass die-offs of anurans are known to occur today (i.e., Lips, 1999; Rachowicz et al., 

2006) and have been invoked in other prehistoric instances (Henrici & Fiorillo, 1993).  

Given the wide range of element sizes and random orientation of elements, I interpret this 

taphonomic mode to be a non-selective event assemblage.  Henrici & Fiorillo (1993) 

attribute a dense accumulation of frogs in a nearshore environment to lake fetch; here I 
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propose that in this instance the frogs were already dead, and that the concentrating 

mechanism was sedimentary, in the form of a sediment-gravity flow. 

Discussion 

 Of key significance in this study is the documentation of a prehistoric highland 

biota. High elevation is inferred from previous studies (Coney and Harms, 1984; Jones et 

al., 1998; Dilek and Moores, 1999, DeCelles, 2004), and supported in this study.  This 

example also provides for an instance in which taphonomy complements the inferred 

geological setting.  The preservation of frogs that apparently did not bloat and float due to 

cool water temperatures, which lived roughly during the time of the Paleocene-Eocene 

Thermal Maximum, when global temperatures were unusually warm (Zachos et al., 

2001), can easily be explained by invoking high altitude (Snell, 2011). Further support 

for the Sheep Pass basin being a cool-water basin is found in Good’s (1987) work, in 

which he looked for a modern analog for the Valvata, Hydrobia, Sphaerirrdae-mollusk 

association found in the Sheep Pass Formation.  He mentions that, based upon 

palynological data, the Rocky Mountain region is interpreted to have been tropical to sub-

tropical during the time of Sheep Pass Formation deposition. He inquired about mollusk 

assemblages of tropical and sub-tropical regions today, but he found no analog (Good, 

1987).  It was when he looked at more temperate, cooler water lakes that he found 

modern analogs to the Sheep Pass Formation mollusks (Good, 1987). 

 A puzzling aspect of the paleontology of the type section of the Sheep Pass 

Formation is that no vertebrates except frogs have been found, including such aquatic and 

semi-aquatic groups as fish, turtles, crocodilians, or water fowl.  In other localities there 

is a diverse mammalian fauna known from younger portions of the Sheep Pass Formation 
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(Emry & Korth, 1989; Emry, 1990), however in Sheep Pass Canyon the only vertebrates 

are frogs, despite the presence of a diverse invertebrate fauna. 

 As a result of this study, other researchers looking for ancient high-elevation 

biotic records will likely see sedimentary units represented by a combination of 

lacustrine, debris-flow, and minor fluvial components as a result of complex topography.  

It may also be observed that many modern montane basins are in fact lake basins.  The 

Sheep Pass Formation can serve as a model for taphonomic modes one might expect to 

find in other similar environments. 

Conclusions 

 The Sheep Pass Formation type section, spanning from the Maastrichtian to the 

Eocene, represents a highland lacustrine setting on the Nevadaplano of east-central 

Nevada.  This section preserves an abundant invertebrate fauna of gastropods, bivalves, 

and crustaceans.  This section also preserves exceptionally abundant and well preserved, 

though not taxonomically diverse, frog remains, the majority of which were preserved as 

a result of attritional processes in an environment conducive to rapid settling and lack of 

bloat-and-float conditions.  Two settings are the exception, reworked elements in 

presumed tempestite beds of Member B, and a sediment-gravity-flow deposit which 

entrained a number of already dead individual frogs and concentrated them in a single 

massive bed within Member C.  These taphonomic modes (summarized in Table 4.1) 

may help in formulating a model of other high-elevation biotas and the preservation of 

biological remains into the rock record. Since the previous interpretations of a high 

elevation plateau are supported by taphonomic modes of the Sheep Pass Formation, the 

null hypothesis of the Willow Tank Formation, Newark Canyon Formation and the Sheep 
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Pass Formation all being deposited at approximately the same elevation is rejected, and 

the alternative hypothesis is supported (configuration B of figure 1.3). 

 

Table 4.1 Paleontology and taphonomic modes of the Sheep Pass Formation 

Lithofacies Plants & Inverts Frogs Depo. Environment 

Member B    

Dolomitic clayshale Plant impressions, no 

animal body or trace fossils 

 

No frogs Shallow lacustrine 

with emergent veg. 

Crinkle-fabric, 

irregularly-

laminated, dolomitic 

mudstone 

 

Allochthonous leaves, 

abundant invertebrate trace 

fossils 

Abundant, 

articulated 

frogs 

Shallow, lacustrine, 

microbial mats 

Planar-laminated,  

dolomitic mudstone 

Abundant invertebrate body 

and trace fossils. No plants 

Abundant, 

articulated 

and 

associated 

frogs 

Low-energy 

lacustrine 

    

Irregularly bedded 

mudstone with 

common mud rip-up 

clasts 

Abundant articulated and 

disarticulated bivalves 

Isolated 

elements 

Tempestites 

Member C    

Horizontally-

laminated, 

calcareous siltstone 

 

Abundant, articulated 

bivalves and ostracods.  No 

plants 

Common, 

articulated 

frogs. 

Lacustrine delta 

Massive, irregular 

bed of varying 

grain-size and 

element density 

No plants or inverts Abundant, 

disarticulated 

frog 

elements 

Sediment gravity 

flow 
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CHAPTER 5 

SUMMARY 

 This study examined three Cretaceous to Paleogene formations interpreted to be 

the deposits of different tectonic settings of the Sevier orogeny. These studies were done 

to test the hypothesis that the biota and preservational modes of organisms from these 

units could predict whether the Sevier hinterland was deposited at the same elevation as 

the foreland. An alternative hypothesis was that the different tectonic settings would 

preserve basin-fill deposited all at different elevations (Chapter 1). 

 The first study, of plant remains preserved in volcaniclastic units of the 

Cenomanian Willow Tank Formation, suggest that the foredeep of the Sevier foreland in 

southern Nevada during mid-Cretaceous time was deposited at a similar elevation as 

other contemporaneous units from the northern Rocky Mountain region of North 

America. The presence of Magnolia and entire marginated leaflets of Sapindopis 

magnifolia support the interpretation that southern Nevada may have been warmer than 

the northern Rocky Mountain region during mid-Cretaceous time.  This study was not 

instructive as to determining the elevation of deposits of the Sevier hinterland. 

 The second study focused on the exposures of the Aptian Newark Canyon 

Formation from east-central Nevada. Preservational modes as well as the presence of 

geographically and climatically sensitive taxa, hybodont sharks and the turtle Glyptops, 

all in common with contemporaneous deposits of the Sevier foreland Cedar Mountain 

Formation all support the configuration of the null hypothesis during Aptian time for 

central Nevada. 

 The final study focused on the Maastrichtian-Eocene Sheep Pass Formation of 

east-central Nevada. Taphonomic investigations of preservational modes of this unit, in 
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addition to previous paleoaltimetry studies (Snell, 2011) support previous interpretations 

that these deposits represent a high elevation setting (Coney and Harms, 1984; Jones et 

al., 1998; Dilek and Moores, 1999, DeCelles, 2004). Thus the Sheep Pass Formation does 

not support the null hypothesis, but is in line with the configuration of the alternative 

hypothesis (Figure 1.3). 

 Although the Willow Tank Formation was not instructive in determining the 

relative elevation of the Sevier hinterland, the biota was instructive in placing the unit 

into a paleogeographic setting in relation to contemporaneous floras. The Newark 

Canyon Formation biota and their preservational modes are all consistent with a 

relatively low elevation which suggests that the Nevadaplano did not uplift until post-

Aptian time (Figure 5.1). The preservation of organisms in the Sheep Pass Formation 

supports a high elevation setting for this unit, implying that uplift had occurred pre-

Maastrichtian time (Figure 5.1), but post-Aptian time in central Nevada. 
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Figure 5.1. A) Represents the configuration of the null hypothesis. Deposits of the 

Newark Canyon Formation are consistent with being deposited at low elevation based on 

the biota preserved within exposures of the unit. The wedge-top was low lying. B) 

Represents the configuration of the proposed alternative hypothesis. The preservation of 

biotic remains in the Sheep Pass Formation is consistent with being deposited in a high 

elevation setting. Therefore both hypotheses can be rejected as not fully predicting the 

geography of the Sevier hinterland. CNFTB-Central Nevada Fold and Thrust Belt. 
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APPENDIX A 

Images of specimens referred to but not figured in text of Chapter 4. 
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Figure A.1. SCNHM VAF 32A, an impression of a fully articulated frog found in the 

microbialite mudrock lithofacies. 
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Figure A.2. SCNHM VAF 31, an impression of an articulated frog, missing the cranium 

and right arm due to natural breakage of the rock.  This specimen is also from the 

microbialite facies.  



87 
 

 

Figure A.3. SCNHM VAF 27, a mostly disarticulated but closely associated frog 

specimen from the planar-laminated dolomitic mudstone lithofacies, with associated 

ostracods. 
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Figure A.4. SCNHM VAF 13A, one half of a split slab showing a fully articulated frog 

specimen from the planar-laminated dolomitic mudstone facies with associated ostracods. 
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Figure A.5. SCNHM VAF 13B, counterpart to 13A. 
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Figure A.6. SCNHM 26A, a fully articulated frog specimen from the planar-laminated 

dolomitic mudstone lithofacies with some associated ostracods. Scale is 1 cm. 
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Figure A.7. SCNHM VAF 15, represents isolated frog elements in an irregularly bedded 

lithofacies with mud-rip up clasts (lighter colored blobs) interpreted to be a tempestite. 
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Figure A.8. SCNHM VAF 12, is a large, articulated frog specimen from Member C. 
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Figure A.9. SCNHM VAF 5, is an articulated vertebral column and cranium.  The rest of 

the specimen is missing due to breakage of the rock or has been obscured by matrix.  The 

small dark specs are ostracods, the larger dark blobs are bivalves. 
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Figure A.10. SCNHM VAF 18 is a sample of the Member C bonebed.  All of the light 

colored portions are bone elements. Notice the chaotic appearance of the distribution and 

orientation of elements. 
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