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ABSTRACT 

 

 

Burial and Exhumation History of Mississippian Strata in East-Central Nevada  

 

by 

 

Yuki Yunika Agulia 

 

Dr. Andrew Hanson, Examination Committee Chair 

Associate Professor of Geology 

University of Nevada, Las Vegas 

 

 

 

Zircon (U-Th)/He analyses and vitrinite reflectance (Ro) analyses were performed 

on a suite of Mississippian sedimentary rocks collected in east–central Nevada in order to 

test Permian exhumation described in a previous study.  

 The zircon analyses produced three clusters of ages: 1) older than, 2) similar to, 

and 3) younger than depositional age. The majority of zircons shows ages that are older 

than the sandstone deposition age. Young ages were recorded in three localities that may 

indicate reset ages/residence within the (U-Th)/He partial retention zone (HePRZ). 

Moderate-high ratios of Th/U may indicate a magmatic source. Vitrinite reflectance (Ro) 

analyses show values between 0.54% - 1.56% which indicate early mature - postmature 

stage with respect to potential hydrocarbon maturation. The hypothesized regional 

Permian exhumation was not documented in this study, and the Ro values in all locations 

are too low to have caused thermal resetting of the (U-Th)/He system. 
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CHAPTER 1 

 

INTRODUCTION 

East-central Nevada is known, in part, for its petroleum resources. The main 

location of these resources is Railroad Valley (RRV) which is located in Nye County, 60 

miles southwest of Ely and approximately 250 miles north of Las Vegas (Figure 1). 

Bound by the Pancake Range on the west and the Grant Range and White Pine Range on 

the east, the Grant Canyon field has produced the largest volume of oil in RRV. It has 

produced approximately 20 million barrels of oil since the 1980s (Anna et al., 2007). 

Previous studies in this area indicated that several formations potentially 

contribute to the oil and gas in RRV. However, the Mississippian Chainman Shale is 

known as the most important source rock because of its great thickness, organic richness, 

and wide lateral distribution from eastern Nevada to western Utah (Meissner, 1995; Anna 

et al., 2007). 

Although the Mississippian Chainman Shale is an important source rock, few 

studies have been conducted to constrain the burial history of these Mississippian strata. 

One previous (U-Th)/He zircon study by Druschke (2009) indicated that there was 

significant burial (>6 km) of the Mississippian strata followed by exhumation in the 

Permian, which resulted in major erosion of Pennsylvanian to Permian strata in the Egan 

Range (the next range to the east of RRV). I hypothesized that significant post-

Mississippian deposition occurred (>6 km) which was followed by exhumation in the 

Late Permian in east-central Nevada. I tested this hypothesis by collecting and analyzing 

a suite of rock samples taken from ranges that surround RRV. Outcrop samples were 



2 

 
 

collected from both the Chainman Shale and Scotty Wash Sandstone, which is a clastic 

member of the Chainman Shale, in widespread areas with good spatial distribution.  

The (U-Th)/He zircon analysis method is well established in geochronology and 

thermochronology studies for understanding the thermal history of a variety of rock types 

(e.g. Farley, 2002; Reiners et al., 2004; Reiners, 2005). This analysis involves age 

determination from the retention of alpha particles (
4
He nuclei), as a function of 

temperature, within a mineral during the radioactive decay of 
238

U, 
235

U, 
232

Th, and 
147

Sm 

(e.g. Wolf et al., 1996; Reiners, 2005). Closure temperatures represent the quantitative 

retention of helium retained within the crystal. Reiners and Farley (2000) proposed a 

minimum closure temperature of about 180°C for helium diffusion from zircon. 

However, Reiners et al. (2002), Tagami et al. (2003), Stockli (2005), and Wolfe and 

Stockli (2010) showed that helium is partially retained within zircon between 140 - 200 

°C, a phenomenon known as helium partial retention, which occurs within the helium 

partial retention zone (zircon HePRZ). If a geothermal gradient of 30 °C/km is assumed 

then a zircon closure temperature of ~180 °C corresponds to the depth of 6 km in the 

crust. 

Nasdala et al. (2004), Reiners (2005), and Shuster et al. (2006) studied the 

relationship of effective uranium concentration (calculated as [U]e = [U] + [Th]0.235 + 

[Sm]0.005), as a proxy for radiation damage, and a decrease in helium retentivity. Alpha 

particles are more likely to be lost from the crystal when [U]e is high, thus resulting in 

the calculation of anomalously young ages. A negative correlation between [U]e and 

zircon helium age is useful for documenting slow cooling and residence of zircons within 

the HePRZ (Stockli et al., 2010).   
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The standard alpha-ejection (FT) correction performed in this analysis assumes a 

homogenous parent isotope distribution to calculate the amount of 
4
He daughter product 

lost due to alpha-ejection in the outer 20 μm of the mineral (e.g. Farley et al., 1996). 

However, heterogeneous distribution of parent isotopes within zircon is a common 

feature and may be responsible for inaccuracies in He ages. Hourigan et al. (2005) 

studied the effects of U-Th zonation on zircons with a wide variety of crystal 

morphologies. He concluded that zircons with U-Th enriched cores produce significantly 

anomalously old ages. Enriched rim zircons, however, shown significantly anomalously 

young age inaccuracies. Geologically meaningless ages due to zonation may be detected 

by examining the dispersion of helium ages from multiple single zircon analyses for a 

single sample. If multiple single zircon helium ages shown good agreement, zonation is 

probably not affecting the helium ages (Reiners, 2005). Another way to detect U-Th 

zonation in single zircons is by using depth-profile techniques developed by Hourigan et 

al. (2005). This method helps to build models to see patterns and customized alpha-

ejection corrections specific to each zircon.  

 (U-Th)/He analyses were performed on zircons separated from the Scotty Wash 

Sandstone. Ages younger than the depositional age may be the result of 1) regional 

exhumation after subjection to deep burial, 2) residence within the HePRZ, or 3) younger 

thermal overprint.  

Vitrinite refers to a group of organic particles that originate from terrigenous 

plants that are commonly preserved as detrital pieces in certain sedimentary rocks. 

Vitrinite reflectance analysis (Ro) is conducted using a petrographic microscope in order 

to rank the thermal maturity of a rock as a function of both time and temperature. 
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Samples are analyzed using light reflected from polished vitrinite particles present in the 

rocks (Rowan, 2006). Vitrinite is an important constituent of Devonian and younger 

sedimentary rocks because land-plants had evolved prior to this time. 

Vitrinite reflectance (Ro) analyses were completed on Chainman Shale samples 

collected in close stratigraphic proximity to Scotty Wash Sandstone samples in order to 

determine the thermal maturity and burial history of the Chainman Shale. The vitrinite 

analyses constrain the rank of shale samples using optical properties that change with 

maturation. The Ro values constrain the maximum time/temperature conditions to which 

the rock has been subjected. The data generated from these analyses were combined with 

the data from previous studies to constrain the burial and exhumation story of much of 

east-central Nevada, including RRV. 

This study significantly contributes to our understanding of the thermal 

maturation of the Chainman Shale in RRV and adjacent areas. It also provides an 

understanding of the source rock and its overburden story for the petroleum system in 

east-central Nevada. 
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CHAPTER 2 

 

GEOLOGICAL FRAMEWORK 

The study area in east-central Nevada (Figure 1) is a part of the Great Basin 

Province. This province extends throughout Nevada, western Utah, southeastern Oregon, 

and northwestern Arizona. Today, this area is characterized by north-south trending 

mountain ranges bound by normal faults and separated by valleys with Tertiary and 

Quaternary strata (Eaton, 1979). 

Stratigraphy in the Great Basin consists of a wide variety of rocks that reflect a 

wide range of depositional environments (Figure 2) (Anna et al., 2007). In the lower to 

middle Paleozoic, the area was a passive margin carbonate platform. The tectonic setting 

changed in the late Paleozoic, which resulted in marine clastic and carbonate deposition. 

Deposition continued with continental lacustrine and volcanic rocks in the Mesozoic and 

Cenozoic. The study area underwent multiple tectonic events that resulted in the geology 

seen today. Late Precambrian rifting was followed by several major tectonic events 

including the Antler orogeny, Sonoma orogeny, development of the Central Nevada 

Thrust, Sevier contraction, and Basin and Range extension. All of these tectonic events 

created complex structural and stratigraphic patterns in this area (Anna et al., 2007). 

The Antler orogeny began in the late Devonian to Early Mississippian and is 

represented by Roberts Mountain thrust as the principal structural feature (Carpenter et 

al., 1994) (Figure 3). This tectonic event transported the Roberts Mountains allochthon, 

which consisted of lower Paleozoic deep marine sedimentary rocks, cherts, dark shales, 

and volcanic rocks, onto the carbonate shelf of the western North America continent and 
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created flexural loading lead to the development of the Antler foreland basin to the east 

of the thrust fault (Wilson and Laule, 1979; Speed and Sleep, 1982; Dickinson et al., 

1983).  

According to Goebel (1991), Giles and Dickinson (1995), and Giles (1996) the 

Antler foreland succession consists of the Devonian Pilot-Joana Limestone and the  

Mississippian Chainman Shale. The paleocurrents and petrographic data from the central 

Diamond Mountains of eastern Nevada indicate that the sediment was derived from the 

Antler orogenic belt and that transport was from the west to the east (Poole and Sandberg, 

1991). Trexler and Cashman (1991) proposed a revision of the Mississippian stratigraphy 

in Nevada based on unconformities that they identified in the Diamond Mountains 

(Figure 4). They concluded that the Antler foreland-basin strata were deformed, 

exhumed, and eroded in the middle Mississippian. This event created what they called the 

C2 boundary. A late Mississippian successor basin was then established and persisted 

into the Pennsylvanian (~318 - 330 Ma). The successor basin is bound on the west by the 

relict Antler highland, and on the east by a siliciclastic shelf and the craton margin. Strata 

that overlay the C2 boundary range from nonmarine, siliciclastic, deltaic rocks in the 

west, to shallow-marine carbonates, conglomerates, litharenites, and lagoonal shales in 

central Nevada, and to shelf and lagoonal carbonaceous shales and quartzites in eastern 

Nevada. They interpreted that the heterolithic siliciclastic sediments of this age as the 

recycled products of the Antler orogen and foreland-basin strata (Trexler and Cashman, 

1991, 1997; Perry, 1994, 1995). In contrast, the quartz arenitic Scotty Wash Sandstone 

was deposited as lowstand shelf deposits derived from the craton which was to the east 
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and southeast (Trexler and Cashman, 1991). These strata are unconformably overlain by 

Pennsylvanian limestone throughout the Great Basin. 

Renewed compressional tectonics resulted in the emplacement of the Golconda 

allochthon above the Antler highland in the Permian - Triassic (Gabrielse et al., 1983). 

This event is known as the Sonoma orogeny. The allochthon consists of deepwater 

sedimentary rocks (chert-argillite-limestone-greenstone). However, this event did not 

have a major impact on the burial or exhumation history of the study area (Anna et al., 

2007). 

Thrusting that caused the Central Nevada Thrust Belt (CNTB) was the next 

tectonic event and its age is constrained to Triassic to middle Cretaceous. The CNTB is a 

set of north-south trending, dominantly east-vergent thrust faults and folds which are 

located in the hinterland of the Sevier orogeny (Figure 5). This belt has been segmented 

by Basin and Range extension in the Neogene. Today the evidence of this thrust system is 

only observed in the ranges of the Basin and Range Province (Taylor, 2001). According 

to Cameron and Chamberlain (1987), these structures can be delineated as far north as the 

northern Diamond Range and as far south as northwestern Clark County. The Newark 

Canyon Formation was deposited in the early Cretaceous in association with CNTB 

thrust faulting and folding (Cameron and Chamberlain, 1987).  

The Cordilleran thrust system developed during the Cretaceous to early Tertiary 

Sevier orogeny. This tectonic event occurred because of convergence between the 

Farallon Plate and the North American continent. The Sevier fold and thrust belt and its 

foreland basin are located to the east in Utah and adjacent areas. The Sevier thrusts 

caused thin-skinned deformation that generally propagated from west to east. This event 
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created repetition of sedimentary sequences above the basement, folding of associated 

strata in the foredeep basin, and deposited thick sediments as much as several thousand 

meters thick (Anna et al., 2007).  

In the Tertiary, extension caused numerous normal faults that led to the formation 

of the Basin and Range Province in western North America (Armstrong, 1972). The 

extension is temporally linked with the cessation of plate convergence and the initiation 

of lateral slip of the Pacific plate past the North American plate (Eaton, 1979). Dickinson 

(2002) proposed that the extension was driven by gravitational collapse due to unstable 

over-thickened crust. This tectonic event extended the Basin and Range by up to 200% 

since the late Oligocene (Hamilton, 1978; Wernicke et al., 1988). Metamorphic basement 

is visible at some localities in the Basin and Range as metamorphic core complexes 

(MCC) that were brought to the surface as a result of the crustal extension (Spencer, 

1984; Wernicke, 1981; Coney and Harms, 1984). The timing and magnitude of the 

extension varied in many places. Salyards and Shoemaker (1987) suggested that the 

extension initially began in the southern Basin and Range and propagated north over 

time. This tectonic event was accompanied by volcanism and the peak of eruptions 

occurred in the late Oligocene – early Miocene (Christiansen and Yeats, 1992). 

 The Mississippian Chainman Shale is the main focus of this study and it is the 

main petroleum source rock for RRV (Sadlick, 1965; Poole and Claypool, 1984; 

Meissner, 1995). The thickness of this formation in eastern Nevada is between 600 and 

1,800 m, and it dominantly contains type II kerogen that is oil prone, with a minor 

amount of gas prone type III kerogen (Sadlick, 1965; Poole and Claypool, 1984). 

According to French (1983), total organic carbon for this formation ranges from 1.0% to 
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3.5% and the thermal maturity is in the mature - overmature stage. As described by 

Trexler et al, (2003), the Chainman Shale overlies the C2 boundary (Figure 4). In central 

and eastern Nevada, this formation was deposited in a lagoonal to shelf environment with 

a source that appears to be recycled Antler foreland-basin strata (Trexler and Cashman, 

1991). The Chainman Shale has been divided into at least six members (Sadlick, 1965), 

the most prominent member is the Scotty Wash Sandstone (Trexler et al., 1995). The 

thickness of this member ranges from 120 - 250 m (Trexler et al., 1995). This member 

consists of super-mature, well-bedded, quartz arenite sandstone, which characteristically 

has amalgamated, meter-scale, cross laminated beds (Trexler et al., 1995). The detritus 

for the Scotty Wash Sandstone was derived from the craton to the east (Trexler and 

Cashman, 1991). According to Cashman and Trexler (1994), in the northern and western 

part of east-central Nevada, the Scotty Wash Sandstone is equivalent to the Diamond 

Peak Fm. To the south, it is equivalent to the Eleana Fm.  

According to a study by Wilson and Laule (1979), the Diamond Peak Formation 

is thickest near the Antler belt and thins rapidly eastward. Their study indicated that the 

formation is composed mainly of coarse sands and gravels conglomerate and limestone 

and that clast size increases toward to the Antler belt to the west. 

Petrography and stratigraphic studies in southern Nevada (Cashman and Trexler, 

1991) separated the Mississippian Eleana Formation into two units. The first unit consists 

of sedimentary rocks from the western Eleana Range that were interpreted as submarine 

fan deposits; they contain significant amounts of chert, feldspar, and both volcanic and 

sedimentary lithic grains. They correlated this unit with the Dale Canyon - Chainman 

Shale - Diamond Peak section near Eureka. The source of these sediments was the Antler 
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allochthon and foreland basin. The second unit consists of quartz arenites with rare chert 

and detrital heavy minerals from the eastern Eleana Range. They tentatively interpreted 

these strata to be a shallow shelf deposit, with sediments derived from the continent to the 

east. They considered them to be equivalent to the Scotty Wash - Chainman section of 

eastern Nevada. One sample of the Eleana Formation was collected at the Hot Creek 

locality for this study, which is located to the west of Eleana Range. Therefore, this 

sample is considered to be equivalent with rocks in the western Eleana Range, e.g. the 

Diamond Peak Formation and thus is considered to be laterally equivalent to the Scotty 

Wash Sandstone (Figure 2).   

 

Previous Studies 

Because Railroad Valley (Figure 6)  is the main oil producer in the state of 

Nevada, numerous studies have been conducted specifically to understand its petroleum 

system (e.g. Anna et al., 2007; Walker et al., 1992; Montgomery et al., 1999; French, 

1983; Pekarek, 2005). The Chainman Shale is known as the most important source rock, 

and thermal maturity studies of this formation have been conducted by several 

researchers.  

Harris et al. (1980) reported that in the western, northern, and far north eastern 

areas of Nevada, the Mississippian through Triassic rocks have high to very high 

conodont alteration index (CAI) value from 4.0 to 8.0. However, in southern and eastern 

Nevada, the value are uniformly low (CAI value ranging from 1.0 to 2.0 which indicate 

immature to mature rocks with respect to oil generation) with a few exceptions likely due 

to high heat flow from nearby igneous or hydrothermal sources.  
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Poole and Claypool's (1984) data indicate that submature and marginally mature 

Mississippian source rocks are present in west-central Utah and east-central Nevada. 

However, the Diamond Mountains (Eureka mining district) reached a super-mature stage 

of maturation. Rowan et al. (1992) used Landsat Thematic Mapper Images to map 

thermal maturity in the Chainman Shale and found high values, which correspond to the 

high maturity in the Chainman, are also present in the Diamond Mountains. On the other 

hand, low to moderate values that correspond to low maturity are found in the 

northwestern Pancake Range. In addition, Ahdyar (2011) conducted several analyses on 

the Eocene Sheep Pass Formation and Chainman Shale samples in the southern Egan 

Range. His vitrinite reflectance data indicate that the Sheep Pass Formation has low 

maturity (0.46% Ro and Tmax 436-347 °C); in contrast his Chainman Shale samples 

exhibit moderate - high maturity (0.68 - 1.01% Ro and Tmax 442 - 455 °C).  

Anna et al. (2007) suggested that there are several potential sources that may have 

contributed to the heating of source rocks in the eastern Great Basin. These include heat 

flow from mantle and crustal sources, and hydrothermal fluids associated with gold 

deposits, geothermal systems, and volcanic activity. They noted that in the Battle 

Mountain High (BMH), northern part of the Great Basin province, along with several hot 

spots along the western and northeast province margins indicate high heat flow. 

Druschke (2009) produced (U-Th)/He detrital zircon ages from the Mississippian 

Scotty Wash Sandstone in the Egan Range, east of RRV, that are Late Permian (265 Ma). 

He interpreted this age as being indicative of deep burial followed by later Permian 

exhumation and cooling (Figure 7.A and 7.B). If this interpretation is correct and occurs 
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throughout the region, it would significantly alter our understanding of Late Permian 

burial and exhumation.  
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CHAPTER 3 

 

METHODS 

The methods for this project consisted of fieldwork and laboratory analyses. 

Fieldwork was conducted in order to collect rock samples for subsequent laboratory 

analyses. The laboratory methods included rock sample preparation for vitrinite 

reflectance (Ro) and analysis using (U-Th)/He methods.  

 

Rock Sample Collection 

Field activity was done to collect samples in Mississippian strata in east - central 

Nevada. Two Mississippian formations were targeted: the Chainman Shale and the Scotty 

Wash Sandstone (Figure 8), or their lateral age-equivalent units (i.e. the Eleana 

Formation and the Diamond Peak Formation). Published geologic maps of Northern Nye 

County (Kleinhampl and Ziony, 1985), Eureka County (Roberts et al., 1967), White Pine 

County (Hose et al., 1976), and Lincoln County (Tschanz and Pampeyan, 1970) were 

used to identify the field localities. I collected samples in targeted areas that provide 

relatively equal distribution of samples throughout the study area (Figure 9). All sample 

collection locations were recorded by hand-held GPS (Table 1 and Table 2).  

Eighteen Mississippian sandstone samples were collected in several different 

locations. The localities include Antelope Valley (z10AV35), Burnt Mountain 

(z10BM04), Buck Mountain (z10BU26), Cherry Creek (z10CC34), Cave Lake 

(z10CL29), Diamond Peak (z10DP21), Duckwater (z10DW17), Ely (z10EL41), Gap 

Mountain (z10GM01), Grant Range (z10GR07), Hot Creek (z10HC10), Illipah 
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(z10IL27), southern Snake Range (z10MW37), northern Pancake Range (z10NP19), 

Pancake Range (z10PR13 and z10PR16), Sixmile Spring (z10SP32), and northern Snake 

Range (z10SR39) (Figure 9). 

Twenty two samples from the Chainman Shale were collected from different 

areas. The sample localities include Gap Mountain (10GM02, 10GM03), Burnt Mountain 

(10BM05, 10BM06), Grant Range (10GR08, 10GR09), Hot Creek (10HC11, 10HC12), 

Pancake Range (10PR14), Duckwater (10DW18), northern Pancake Range (10NP20), 

Diamond Peak (10DP22, 10DP23), Buck Mountain (10BU24, 10BU25), Illipah 

(10IL28), Cave Lake (10CL30), Sixmile Spring (10SP31), northern Egan Range 

(10SE33), Antelope Valley (10AV36), southern Snake Range (10MW38), and Ely 

(10EL40) (Figure 9). 

All samples were collected from outcrops. Targeted outcrops were fresh, not 

weathered, and free of alteration that was suggestive of hydrothermal activity. The 

Chainman Shale was recognized in the field based on its black/dark grey color and its 

stratigraphic position. Because of the nature of shale, outcrops were sometimes covered 

by soil at the surface. Therefore, fresh samples were collected by creating a pit by 

digging into the soil using a shovel/hammer. I sampled shales that were black, fresh, 

platy, unaltered, and free of recent organic material. The Scotty Wash Sandstone in the 

field is yellow-red to purplish, clean quartz sandstone or pebbly conglomerate. 

Weathered rinds of Scotty Wash samples were removed in the field to get the freshest 

possible sample and to protect them from contamination.  

All samples were labeled sequentially using a consistent method. The first two 

numbers for each sample indicate the year when the sample was collected. The following 
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two letters indicate the location, and the last two numbers indicate the samples' number. 

For example, 10DP21 indicates the sample was taken in the year 2010, at a location near 

Diamond Peak, and was the twenty first sample collected. In addition, a lower case "z" 

was added to the front of the sample number for each sample that underwent (U-Th)/He 

zircon analyses (a laboratory requirement).  

(U-Th)/He Zircon Analyses 

Before zircons could be sent out for analyses, detrital zircons had to be extracted 

from the sandstone samples. The samples were first crushed and zircons were removed 

using standard heavy liquid and magnetic separation techniques at the Rock Preparation 

Laboratory of the University of Nevada Las Vegas. The method used was similar to the 

one used described by Forrester (2009).  

Once zircons were separated in the laboratory, the individual zircons were 

handpicked, photographed, and measured under a microscope (dimensions are listed for 

all zircons on Figures 10A-R) for -ejection correction. The zircons were then analyzed 

following the procedures from the (U-Th)/He laboratory, University of Kansas 

(http://www.geo.ku.edu/programs/tectonics/helab.shtml) described by Wolfe and Stockli 

(2010). This analysis involved a single-zircon technique where the daughter and parent 

products were measured for each zircon. Preferred zircons are euhedral to subhedral with 

morphology as close as possible to the ideal geometry. Analyzed zircons had a/b axes 

that were at least 70μm. All zircons had c axis lengths between 80-200 μm. Grains ideally 

have no visible fractures and minimal inclusions. However, the zircons from the Scotty 

Wash Sandstone were typically subrounded. 
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Each zircon was individually imaged and measured to complete the alpha-ejection 

(FT) correction (e.g. Farley, 2002). The zircons were then wrapped in Pt foil (1×1 mm) 

and degassed by laser heating at ~1300°C for 10 minutes and subsequently reheated until 

completely degassed (>99% of He had been extracted). Helium abundances were 

measured using 
3
He isotope dilution and quadrupole mass spectrometry was used to 

measure the ratios of 
3
He/

4
He. Each zircon was then unwrapped and dissolved using HF-

HNO3 and HCl pressure vessel digestion procedures for a total of 4 days. U-Th parent 

concentrations were then measured by inductively coupled plasma-mass spectrometry 

(ICP-MS). All of the zircons have been corrected for alpha-ejection using techniques 

described by Farley (2002). Analytical uncertainties quoted from internal laboratory 

standards are 8% (2σ).  

Data collected from these analyses were entered into a relative probability plot 

using the Isoplot3.70 program created by Ludwig (2008) to show the distribution of ages. 

The age distribution is shown in cumulative-probability/histogram plots. The input data 

were the values and their errors. These plots show the cumulative probability distribution 

obtained by summing the probability distributions of a suite of data with normally-

distributed errors. The input data were comprised of 2 columns which are the age values 

and their errors. The program processed the selected data and presented them in graphic 

form for the each location. The x-axis shows the age distribution and the y-axis shows the 

number of samples that plot in each bin. The curve shows the age relative probability. 

The Age Pick program of Gehrels (2009) was then used to generate ages that would 

represent the cumulative probability ages derived from a minimum of three (3) data 

points that are close to each other. 
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Vitrinite Reflectance Analyses 

Twenty two (22) samples from the Chainman Shale were collected from different 

areas and sent to the Egsploration Company for analysis (http://egsploration.com). In the 

laboratory, all samples were prepared and analyzed by using the methods from ISO 7404-

2, ISO 7404-3, and ISO 7404-5 with some modifications. Vitrinite reflectance 

determination was performed in a dark-room using a Zeiss Standard Universal research 

microscope-photometer system (MPM01K) equipped with a tungsten-halogen lamp 

(12V, 100W). The stage of maturation was defined by a quantitative measurement of the 

light reflected by vitrinite from a vertical beam of 546 nm incident light.  The reflected 

light is measured from the surface of a polished sample submerged under the standard oil 

(Zeiss immersion oil with ne 1.517 at 23°C). 

Source rock maturation stages were defined by Peters and Cassa (1994). Based on 

their classification, vitrinite reflectance (Ro) values less than 0.60% correspond to the 

immature stage, Ro values between 0.60% - 0.90% correspond to the mature stage, and 

Ro values greater than 1.20% correspond to post-mature stage.  
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CHAPTER 4 

 

RESULTS 

From the sandstone samples, a total of 164 zircons were separated and analyzed 

using the zircon (U-Th)/He technique (Figure 10.A to 10.R). The helium ages results are 

presented in Table 3. 

The vitrinite reflectance laboratory reported that the vitrinite reflectance analyses 

for the Chainman Shale samples revealed low to high abundance of organic matter. The 

lowest organic matter abundance was found in sample 10NP20 (northern Pancake 

Range), and the highest organic matter abundance was found in sample 10BM05 (Buck 

Mountain) and 10GR09 (Grant Range). Organic matter identified as vitrinite material was 

plentiful in many samples, as well as inertinite and liptinite materials. Pyrite also 

occurred in many shale samples. Vitrinite images were photographed under the 

microscope and are shown in Figure 11.  

 Figures 12.A to 12.R are geologic maps that show where the Scotty Wash 

Sandstone and Chainman Shale samples were collected at every location.  

The (U-Th)/He ages and Ro results for every location will be explained in the 

following paragraphs. 

4.1. Antelope Valley (U-Th)/He zircon and Ro Analyses 

The Scotty Wash sample collected at Antelope Valley produced twelve zircons 

that were analyzed for (U-Th)/He ages. Three of the zircons (z10AV35- 1, 2, and 3) did 

not produce helium ages due to laboratory procedural error during laser heating process 

(these ages are not included in calculations and interpretations). Three zircons, z10AV35-
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4, 7, and 11, yielded zircon ages (430.4 ± 34.4 Ma, 391.4 ± 31.3 Ma, and 1078.4 ± 86.3 

Ma respectively) that are older than the Mississippian age. One zircon (z10AV35-9) 

yielded an age (319.3 ± 25.5 Ma) that is similar to the depositional age. Five other 

zircons (z10AV-5, 6, 8, 10, 12) show ages (250.5 ± 20.0 Ma, 245.6 ± 19.6 Ma, 289.7 ± 

23.2 Ma, 267.5 ± 21.4 Ma, and 232.9 ± 18.6 Ma) younger than the depositional age. The 

Chainman Shale sample from this location (10AV36) has an Ro value of 0.57%.  

4.2. Burnt Mountain (U-Th)/He zircon and Ro Analyses 

The Scotty Wash Sandstone sample collected at Burnt Mtn. yielded eight zircons that 

were analyzed using the zircon (U-Th)/He technique. One zircon (zBM04-1) did not 

record any He concentration (0 age) due to laboratory procedural error during the laser 

heating process. Therefore, this sample was not used for further calculations. The other 6 

zircons (zBM04- 2, 3, 4, 5, 6, and 7) yielded ages of 337.0 ± 27.0 Ma, 419.5 ± 33.6 Ma, 

523.8 ± 41.9 Ma, 561.3 ± 44.9 Ma, 358.9 ± 28.7 Ma, and 812.9 ± 65.0 Ma respectively. 

A single zircon (z10BM04-8) yielded an age (132.2 ± 10.6 Ma) that is younger than 

Permian. Two Chainman Shale samples that were sent for Ro analyses (10BM05 and 

10BM06) show results of 0.83% and 0.82% respectively.  

4.3. Buck Mountain (U-Th)/He zircon and Ro Analyses 

All nine zircons that were analyzed from the Scotty Wash Sandstone sample at 

Buck Mountain yielded helium ages that are older than the Mississippian. The ages range 

from 452.1 ± 36.2 Ma (z10BU26-1) to as old as 1580.0 ± 126.4 Ma (z10BU26-7). Two 

Chainman samples (10BU24 and 10BU25) collected from this locality show Ro value of 

0.86% and 0.87% respectively.  
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4.4. Cherry Creek (U-Th)/He zircon and Ro Analyses 

The Scotty Wash Sandstone sample collected at Cherry Creek produced ten 

zircons that were analyzed for (U-Th)/He ages. All of them yielded ages that are younger 

than the sandstone depositional time. The helium ages recorded in the sample range from 

83.9 ± 6.7 Ma (z10CC34-4) to 217.2 ± 17.4 Ma (z10CC34-5). The Chainman Shale 

sample was not found at this location. Therefore, vitrinite reflectance analysis was not 

performed.  

4.5. Cave Lake (U-Th)/He zircon and Ro Analyses 

There were a total of nine zircons collected from Scotty Wash Sandstone at this 

location. There are two zircons that have ages that are younger than the sandstone 

depositional age. Those zircons are z10CL29-4 and z10CL29-5 and they have ages of 

250 ± 20.1 Ma and 255.4 ± 20.4 Ma respectively. The z10CL29-3 zircon has an age value 

(298.2 ± 23.9 Ma) that is similar to the sandstone depositional age. The other 6 zircons 

produced older ages that range between 347.3 ± 27.8 Ma (z10CL29-7) to as old as 1170.0 

± 93.6 Ma (z10CL29-1). One Chainman Shale sample collected from this location 

(10CL30) produced a result of 0.89% Ro.  

4.6 Diamond Peak (U-Th)/He zircon and Ro Analyses 

A total of 10 zircons from the Diamond Peak locality were measured for (U-

Th)/He analyses. All 10 of the zircons produced ages that are younger than the 

Mississippian. One zircon, z10DP21-10, recorded a very young age of 15.0 ± 1.2 Ma. 

The rest of the zircons within the sample recorded ages that are no older than 232.2 ± 

18.6 Ma. The two Chainman samples that were collected from this area show the highest 

Ro values compared to the rest of the samples in this study. 10DP22 produced an Ro 
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value of 1.56%, and 10DP23 collected from the upper stratigraphy yielded an Ro value of 

1.50%. 

4.7. Duckwater (U-Th)/He zircon and Ro Analyses 

The majority of the zircons collected at the Duckwater locality yielded ages that 

are older than the Mississippian. Two of the 10 zircons, z10DW17-3 and z10DW17-8 

show ages that are younger than the sandstone depositional age (176.5 ± 14.1 Ma and 

186.3 ± 14.9 Ma respectively). The remaining 8 zircons yielded ages that range from 

507.4 ± 40.6 Ma (z10DW17-2) to 1424.4 ± 114.0 Ma (zDW17-10). Zircons z10DW17-3 

and z10DW17-8 have U concentration of 485.3 ppm and 441.7 ppm respectively, which 

are higher than the rest of the zircons within this sample (Table 3).  One Chainman Shale 

sample was sent for vitrinite reflectance analysis. The sample had an Ro result of 0.84%. 

4.8. Ely (U-Th)/He zircon and Ro Analyses 

For the 6 zircons collected from the Scotty Wash Sandstone near Ely, most of 

their ages lay within the range of the sandstone depositional age (z10EL41- 1, 2, 3, 4, and 

6 yielded helium ages of 339.6 ± 27.2 Ma, 324.0 ± 25.9 Ma, 305.0 ± 24.4 Ma, 299.3 ± 

23.9 Ma, and 332.5 ± 26.6 Ma respectively).  One zircon (zEL41-5, with an age of 283.5 

± 22.7 Ma) is slightly younger than the majority of the zircons within the sample. The 

Chainman Shale sample collected from this locality has an Ro value of 1.0%. 

4.9. Gap Mountain (U-Th)/He zircon and Ro Analyses 

Of the 10 zircons that were analyzed using the (U-Th)/He technique, two of them 

show ages that are older than the sandstone deposition. These older ages are shown by 

zircons z10GM01-3 and z10GM01-8. Their helium ages are 374.0 ± 29.9 Ma and 392.4 ± 

31.4 Ma respectively. Meanwhile, 7 other zircons (z10GM01- 1, 2, 4, 5, 7, 9, and 10) 
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produced ages similar to the Scotty Wash Sandstone depositional age (327.2 ± 26.2 Ma, 

299.8 ± 24.0 Ma, 350.0 ± 28.1 Ma, 306.3 ± 24.5 Ma, 448.4 ± 35.9 Ma, 342.5 ± 27.4 Ma, 

and 315.1 ± 25.2 Ma respectively). Meanwhile, z10GM01-6 shows a minor age of 283.9 

± 22.7 Ma. Two Chainman Shale samples were collected at this area. Sample 10GM02 

has an Ro value of 0.62%. Sample 10GM03, which is stratigraphically located below 

10GM02, shows an Ro value of 0.63%.  

4.10. Grant Range (U-Th)/He zircon and Ro Analyses 

Out of 10 zircons that were measured using (U-Th)/He technique, half of them 

produced ages that are similar to the Scotty Wash Sandstone depositional age. z10GR07- 

1, 3, 5, 6, and 10 show helium ages of 313.9 ± 25.1 Ma, 327.4 ± 26.2 Ma, 348.7 ± 27.9 

Ma, 331.5 ± 26.5 Ma, and 350.4 ± 28.0 Ma. The other half of the samples show ages that 

are older than the sandstone deposition. z10GR07- 2, 4, 7, 8, and 9 produced helium ages 

that range between 388.0 ± 31.0 Ma and 460.9 ± 36.9 Ma. Two Chainman samples were 

collected from this mountain range. 10GR08 and 10GR09 have Ro results of 0.76% and 

0.70% respectively.  

4.11. Hot Creek (U-Th)/He zircon and Ro Analyses 

The Eleana Sandstone sample from Hot Creek locality produced 8 zircons that 

were processed for (U-Th)/He analyses. The majority of the zircons within the sample 

produced ages that are older than the Mississippian, and they range from 380.1 ± 30.4 Ma 

to 1000.2 ± 80.0 Ma. One zircon (z10HC10-2) has an age that is younger than the 

Permian (217.2 ± 17.4 Ma). The two Chainman samples collected from the Hot Creek 

Range (10HC11 and 10HC12) were sampled at locations that were separated by a normal 

fault. Sample 10HC11 has an Ro value 0.85%, and 10HC12 has an Ro value 0.92%.  
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4.12. Illipah (U-Th)/He zircon and Ro Analyses 

Only 3 zircons were collected from this location, and they were measured using 

(U-Th)/He technique. One zircon (z10IL27-3) produced a late Permian age (288.0 ± 23.0 

Ma), and the other two zircons (z10IL27- 1 and 2) produced ages that are older than the 

Mississippian (429.5 ± 34.4 Ma and 360.7 ± 28.9 Ma). One Chainman Shale sample 

collected from the Illipah locality has an Ro value of 0.65% Ro.  

4.13. Southern Snake Range (U-Th)/He and Ro Analyses 

From the Scotty Wash Sandstone collected at this location, 13 zircons (labeled 

z10MW37- 1 to 13) produced (U-Th)/He ages. All of the zircon ages (362.3 ± 29.0 Ma to 

686.7 ± 54.9 Ma) are older than the Mississippian. The Chainman Shale taken from this 

locality has an Ro value of 1.02%. 

4.14. Northern Pancake Range (U-Th)/He and Ro Analyses 

A Scotty Wash Sandstone sample collected in the northern Pancake Range 

produced a total of ten zircons. The zircons were measured using the (U-Th)/He 

technique. The majority of them show ages that are older than the Mississippian. The 

older ages are from 8 zircons labeled z10NP19- 1, 2, 3, 4, 7, 8, 9, and 10, and they 

yielded ages that range from 706.0 ± 56.5 Ma to 1579.7 ± 126.4 Ma. In addition to these 

results, there are two other zircons that represent younger ages. Zircon z10NP19-5 shows 

an age of 307.6 ± 24.6 Ma, and z10NP19-6 shows 171.5 ± 13.7 Ma. These last two 

zircons also show higher U concentration than the rest of the zircons within the sample 

with 482.5 ppm and 943.3 ppm respectively. One sample that was analyzed for vitrinite 

reflectance analysis did not yield any results due to insufficient organic matter content.  
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4.15. Pancake Range (U-Th)/He and Ro Analyses 

There were two Scotty Wash Sandstone samples collected at different locations in 

the Pancake Range, they are z10PR13 and z10PR16. From sample z10PR13, 9 zircons 

were measured for (U-Th)/He analyses. Of the 9 zircons, the majority of them show ages 

that are older than Mississippian (514.4 ± 41.2 Ma - 1246.3 ± 99.7 Ma). One zircon from 

z10PR13-9 produced a younger age of 167.3 ± 13.4 Ma. One Chainman Shale sample 

collected from this location has an Ro value of 0.76%. Ten zircons from the z10PR16 

sample were measured using the (U-Th)/He technique. Four of the zircons (z10PR16- 1, 

4, 6, 7, and 10) show ages that ranged from 364.7 ± 29.2 Ma to 776.8 ± 62.1 Ma, which 

are older than the sandstone depositional age. The other four zircons (z10PR16- 2, 3, 5, 

and 8) have upper Mississippian ages (305.5 ± 24.4 Ma, 323.9 ± 25.9 Ma, 355.1 ± 28.4 

Ma, and 348.0 ± 27.8 Ma) that overlap with the sandstone depositional age. Meanwhile, 

two zircons from z10PR16-2 and z10PR16-9 produced ages that are younger than the 

Mississippian (305.5 ± 24.4 Ma and 226.2 ± 18.1 Ma respectively). The last two zircons 

also show higher U concentrations than the rest of the zircons within the same sample 

(374.4 ppm for z10PR16-2 and 496.8 ppm for z10PR16-9).  

4.16. Sixmile Spring (U-Th)/He zircon and Ro Analyses 

Ten zircons from Sixmile Spring were measured for (U-Th)/He helium ages. 

Eight zircons yielded ages that are older than the Mississippian (519.0 ± 41.5 Ma to 

1194.9 ± 96.6 Ma). However, two zircons produced ages that are younger than the 

Mississippian. Sample z10SP32-7 produced an age of 255.9 ± 20.5 Ma, and another 

zircon (z10SP32-9) produced an age of 18.4 ± 1.5 Ma. The z10SP32-7 and z10SP32-9 

zircons also show higher U concentrations than the remaining zircons within the sample 
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(374.4 ppm and 322.8 ppm respectively). One Chainman Shale sample was sent for Ro 

analysis. It has an Ro value of 0.54%. This value is the lowest Ro value compared to 

other samples throughout the study area. 

4.17. Northern Snake Range (U-Th)/He zircon and Ro Analyses 

One Scotty Wash Sandstone sample was collected in the northern Snake Range. 

Of the 7 zircons analyzed, four zircons from this sample produced ages that are similar to 

the sandstone depositional age. Zircons z10SR39- 2, 4, 6, and 7 show ages of 302.6 ± 

24.2 Ma, 340.9 ± 27.3 Ma, 321.0 ± 25.7 Ma, and 345.0 ± 27.6 Ma. Two of the zircons 

(z10SR39-5 and z10SR39-8) show older ages of 412.6 ± 33.0 Ma and 602.1 ± 48.2 Ma 

respectively. One zircon (z10SR39-1) shows an anomalously old age of 2988.7 ± 239.1 

Ma.  

4.18. Northern Egan Range Ro Analysis 

One Chainman Shale sample (10SE33) was collected at this locality. It has an Ro 

value of 0.92%. No Scotty Wash Sandstone samples were found at this locality.  
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CHAPTER 5 

 

DISCUSSION 

Generally, zircon age results from (U-Th)/He analyses in this study can be 

clustered into three groups: 1) older than the Scotty Wash Sandstone depositional age, 2) 

similar to the sandstone depositional age (~318 – 330 Ma), and 3) younger than the 

sandstone depositional age. Zircon ages in the third group are generally younger than 

Permian.  

Based on these data, there is little evidence for Permian cooling as previously 

hypothesized. Out of the total 163 samples, only 3 zircons from separate locations 

produced Permian ages. These include one zircon from Antelope Valley (z10AV35-10) 

that shows 267.0 ± 21.4 Ma, one zircon from Cave Lake (z10CL29-5) that shows 255.4 ± 

20.4 Ma, and one zircon from the Illipah (z10IL27-3) that shows 288.0 ± 23.0 Ma. 

Throughout the study area, the (U-Th)/He zircon results are shown to be 

dominated by ages that are older than the Mississippian Scotty Wash Sandstone 

depositional age. This result is seen in many locations including Burnt Mountain, Buck 

Mountain, Cave Lake, Duckwater, Hot Creek, Illipah, southern Snake Range, northern 

Pancake Range, Pancake Range (z10PR13), and Sixmile Spring. Samples from the Grant 

Range and the Pancake Range (z10PR16) contain zircons with ages that are older than 

the sandstone depositional age as well as zircons that are within the depositional age 

range of the Scotty Wash Sandstone. Zircons from Scotty Wash Sandstone sample taken 

from Ely, Gap Mtn., and northern Snake Range localities show He age results that are 

mainly dominated by ages within the range of the sandstone depositional time. Zircons 
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that are dominated by younger ages are mainly found in samples from Antelope Valley, 

Diamond Peak, and Cherry Creek.  

Several zircon ages are considered to be discrepancies from analytical errors, and 

therefore they are excluded from probability age calculations. Samples z10BM04-8, 

z10CL29-4, z10CL29-5, z10DP21-10, z10DW17-3, z10DW17-8, zEL41-5, z10GM01-6, 

z10HC10-2, z10IL27-3, z10PR13-9, z10PR16- 2 and z10PR16-9 produced younger ages 

than the majority of ages within their samples. These anomalously young ages may occur 

because of parent zonation due to high U concentration within the crystal rim, irregular 

morphologies, inclusions, or unidentified cracks that lead to  helium loss. On the other 

hand, z10SR9-1 produced anomalously old age. The most likely explanation for this age 

is due to low U concentration within the rim of the crystal, or a crystal rim being broken 

during unpacking from the Pt foil. Inaccuracies due to parent isotope zonation within the 

zircon crystals can be addressed using LA-ICPMS prior to the (U-Th)/He analysis as 

described by Hourigan et al. (2005). Unfortunately, this method was not performed in this 

study. 

Probability plots for helium ages in every sample are shown in Figure 13.A to 

13.R. The (U-Th)/He detrital zircon dating produced peak ages of  250 Ma (Antelope 

Valley), 1044 Ma and 1321 Ma (Buck Mountain), 148 Ma (Cherry Creek), 357 Ma (Cave 

Lake), 50 Ma (Diamond Peak), 1009 Ma and 1319 Ma (Duckwater), 318 Ma (Ely), 322 

(Gap Mountain), 338 Ma (Grant Range), 397 Ma and 468 Ma (Hot Creek), 338 Ma 

(southern Snake Range) ,  353 Ma and 1155 Ma (two samples at Pancake Range), 1131 

Ma (Sixmile Spring), 327 Ma (northern Snake Range). Meanwhile, the probability age 

calculations for samples from Burnt Mountain., Illipah, and northern Pancake did not 
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produce any age peaks because of large age differences among the zircons in those 

samples. The probability ages for all samples in each location are presented in Figure 14. 

Both Antelope Valley and Cherry Creek are located in the northern part of the 

study area, whereas Diamond Peak is located on the western edge of the study area. 

According to the data presented in Table 3, negative correlations between effective 

uranium concentration [U]e and zircon helium ages are found within the sandstone 

samples collected at Antelope Valley and Diamond Peak (Figure 15.A and 15.B). This 

may be best explained by residence within a paleo-zircon HePRZ. A negative correlation 

between [U]e and zircon helium ages is not seen for the Cherry Creek sample, therefore I 

interpret the helium ages from Cherry Creek to represent a resetting event.  

Paired vitrinite reflectance and zircon ages from each location provide the ideal 

data needed in order to constrain the burial history of the Mississippian strata in this 

study (Figure 16). Unfortunately, there was no vitrinite reflectance sample collected from 

Cherry Creek. The majority of vitrinite reflectance values in the area around RRV were 

in the range of 0.70% - 0.90%. Based on source rock classification from Peters and Cassa 

(1994) (Figure 17), these values indicate mature source rock with respect to oil and gas 

generation. The lowest (0.54% Ro) value was found in Sixmile Spring and in Antelope 

Valley (0.57% Ro). These numbers indicate that the rocks have reached a very late 

immature stage of source rock or a very early maturity where the source rock has just 

started to generate oil (Peters and Cassa, 1994). On the other hand, two samples taken 

from farther west at the Diamond Peak location recorded the highest Ro value (1.56% 

and 1.50%), which indicate postmature source rock (Peters and Cassa, 1994). Based on 

these data, vitrinite reflectance values in the study area show that the Chainman Shale 
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generally reached the oil generation stage. Figure 18 shows that the lowest Ro value in 

this study (0.54%) is roughly equivalent to paleotemperature of ~55°C, and the highest 

Ro value from the Diamond Peak is roughly equivalent to an ~150°C paleotemperature 

(Hunt, 1996). Figure 19 shows Ro value contour lines throughout the study area.  
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CHAPTER 6 

 

INTERPRETATION 

The majority of the vitrinite reflectance samples are between 0.70% - 0.90% Ro, 

which indicates they reached the oil window. These results are in good agreement with 

previous studies regarding the thermal maturity of the Chainman Shale in east-central 

Nevada (Poole and Claypool, 1984; Rowan et al., 1992).  

The majority of zircons collected from this study show ages older than the Scotty 

Wash Sandstone depositional age. These zircons mostly have sub-rounded shapes 

indicative of abrasion during transportation. I interpret these as detrital zircons that were 

eroded from either older rocks of the exhumed Antler orogen and Antler foreland or the 

North American craton which were then transported and were re-deposited in the Antler 

successor basin.  

The zircon ages that are similar to the sandstone depositional age could be 

attributed to two different possibilities. One possibility is that they resulted from deep 

burial and rapid exhumation, erosion, transportation, and deposition of the sediments 

from the Antler highland in the west to the Antler successor basin during this period of 

time. A second plausible explanation is that these zircons came from volcanic eruptions 

from a postulated island arc farther to the west of the Antler highland, or from the North 

American craton, and that they were transported by wind to the Antler successor basin. 

One possible source for volcanic zircons is from the northern Sierra Nevada, e.g. Upper 

Paleozoic volcanic rocks studied by Hannah and Mores (1986) that may have contributed 

to the provenance of the zircons within the Scotty Wash Sandstone. 
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Several ages younger than Permian were recorded in zircons collected from 

Diamond Peak, Cherry Creek, and Antelope Valley locations. Each location will be 

individually explained in the following paragraphs.  

 

Antelope Valley 

The relative probability plot from Antelope Valley shows one peak age (250 Ma) 

younger than the Permian (Figure 13.A), and the negative correlation between the 

effective uranium concentration and zircon ages may indicate that the sample resided in 

the HePRZ (Stockli et al., 2010). On the other hand, the corresponding Chainman Shale 

sample has a very low vitrinite reflectance value (0.57% Ro). This phenomenon may 

have occurred because of a local thermal source that occurred near the location of the 

sandstone sample, but was far enough away from the Chainman Shale to not influence its 

thermal maturity. If this scenario is true, the area that is closer to the thermal source 

would have reached higher temperatures. This could explain how the zircon was heated 

and was reset or partially reset but left the Chainman Shale exposed to lower 

temperatures (low Ro). Evidence of hydrothermal veins was found near the area where 

the rock samples were collected. However, this explanation is problematic because both 

samples were separated by only a short distance (~100 m) in the field, so the Chainman 

Shale sample should have also recorded high heat flow.  

Diamond Peak 

The Diamond Peak location has the highest Ro values (1.50% and 1.56%) and the 

youngest zircon peak age at 50 Ma (Figure 13.F). These results may have arisen from 

three possible scenarios. The first scenario is that the young zircon ages and high Ro 
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values are the result of deep burial in the Antler successor basin that occurred as the 

result of the emplacement of the Roberts Mountain allochthon. According to Trexler et 

al. (1995) the Roberts Mountain Thrust (RMT) is located directly west of the Diamond 

Peak Range, which means that the thickest sections in the Antler foreland basin occur to 

the east of the thrust. Another similar scenario that may have contributed to this 

phenomenon is the presence of the Triassic - Middle Cretaceous Central Nevada Thrust 

Belt (CNTB), which occurred east of the Diamond Peak Range. The third scenario 

involves younger thermal overprinting that resulted in increased thermal maturation of 

the shale. Anna et al. (2007) pointed out that areas in northern and western Nevada have 

high thermal gradients that may be associated with geothermal systems linked to 

mineralization. This phenomenon might have affected the Diamond Peak area, causing 

the high maturity of the Chainman and causing a partial resetting of ages for the zircons 

in the Scotty Wash Sandstone. According to Hose et al. (1976), the Diamond Peak 

location is located close to the Newark mining district (about ~3 km from the sample 

location). Tertiary volcanic rocks (map unit = Tov) consisting of rhyodacite, quartz latite, 

andesite, and tuff are mapped adjacent to the mountain range and may have contributed 

to this mineralization (Figure 12.F). Schmauder et al. (2005) found that hydrothermal 

activity that produced mineralization at Bald Mountain (Ruby Range), 80 km northeast of 

Eureka may have taken place in the Eocene and became significantly more intense during 

the Miocene. 

The negative correlation between zircon helium age and effective uranium 

concentration in this sample may indicate residence within a paleo-zircon HePRZ setting 
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(e.g. Shuster et al., 2006). The high Ro values from this location also support this 

interpretation because they roughly correspond to a ~150°C paleotemperature.  

Cherry Creek 

Located farther to the north in the study area, the Cherry Creek location zircons 

also yielded ages younger than the depositional age of the Scotty Wash Sandstone. The 

majority of zircons in this location have early Cretaceous ages, and the peak age is 148 

Ma (Figure 13.D). Unfortunately, no Chainman Shale sample was collected from this 

locality.  

One interpretation is that this location was subjected to a younger thermal 

overprint that produced thermal resetting of the zircons. Another interpretation for this 

young cooling age is that it resulted from the resetting of the zircons as a result of 

differential loading and exhumation that locally occurred in this area. However, no major 

geological structures that could account for this scenario are known. 

Overall, the (U-Th)/He results shows little evidence for the hypothesized Permian 

cooling reported in the previous study in the Egan Range (Druschke, 2009). In addition, 

no Ro samples in this study have values higher than 1.56%. Based on Hunt's (1996) 

classification, the maximum vitrinite reflectance values determined in this study represent 

paleotemperatures of approximately 150°C for Mississippian rocks in the study area 

which is not adequate to cause complete resetting of the (U-Th)/He system. The Ro 

results in this study are in good agreement with other studies, e.g. from Ahdyar (2011) 

and Rowan et al. (1992), regarding the thermal maturity of the Chainman Shale. 

I conclude that burial of the Chainman Shale and the Scotty Wash Sandstone was 

not sufficient to produce temperatures high enough to reset the (U-Th)/He system in east-
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central Nevada. I infer that the Permian "cooling ages" reported by Druschke (2009) are 

not the result of deep burial followed by exhumation in the Permian. The zircons in that 

study were possibly metamict or there were flaws in the data set. The data may have been 

misinterpreted if the author failed to recognize potential residence within a (U-Th)/He 

partial retention zone (HePRZ). 

Magmatic versus metamorphic zircons 

Although it was not central to this project, recent research has shown that the 

Th/U ration of zircons can be used for provenance interpretations. Williams et al. (1996) 

suggested that magmatic zircon could be distinguished from metamorphic zircon by 

looking at the ration of Th/U. According to their study, metamorphic zircons have lower 

Th/U (<0.1) concentration compared to zircons from magmatic crystallization. 

Table 3 shows that the zircons in this study have moderate to high ratios with the 

exception of two zircons that show low values of 0.09 in z10NP19-6 and z10PR16-10. 

This finding leads to the interpretation that zircons from the study area are most likely 

magmatic and may support the scenario of an island arc provenance for the zircons that 

have Mississippian (U-Th)/He ages, or other igneous provenance from the exhumed and 

eroded Antler highland, or magmatism from eastern North America. 

However, Moller et al. (2002) suggested that metamorphic zircons in their study 

were not always easily distinguished by low Th/U concentration as previously suggested 

by Williams et al. (1996). Furthermore, Moller et al. (2003) prefer identification of 

metamorphic and magmatic zircon based on morphology and internal structure using 

cathodoluminescence. Crystals with oscillatory zoning can be interpreted as magmatic 

growth that reflects slow growth from a fluid-rich boundary layer. In contrast, 
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metamorphic zircons often have recrystallized rims on existing crystals that show little or 

no internal zoning and have shapes unrelated to existing features. Moreover, geochemical 

characterization of zircon based on trace elements like Hf and Y could also be used to 

support the interpretation (Moller et al., 2003).  
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CHAPTER 7 

 

CONCLUSION 

 (U-Th)/He data from zircons in the Scotty Wash Sandstone indicate cooling ages 

dominated by Mississippian and older ages in most locations (Burnt Mtn., Buck Mtn., 

Cave Lake, Duckwater, Hot Creek, Illipah, southern Snake Range, northern Pancake 

Range, Pancake Range, and Sixmile Spring). These older ages are interpreted as detrital 

zircons that were eroded from older sources which were deposited in the Antler successor 

basin. Zircons from Ely, Gap Mtn., and northern Snake Range localities are dominated by 

ages that are similar to the depositional age of the Scotty Wash Sandstone, and may 

represent rapid burial and exhumation of the Antler orogen or from volcanic input, e.g., 

the northern Sierra Nevada. Zircons from Grant Range and Pancake Range localities 

show ages that fall within the span of the deposition time of the Scotty Wash Sandstone 

and older. 

Zircons from Diamond Peak, Antelope Valley, and Cherry Creek produced ages 

that are younger than the Permian. I interpret that Antelope Valley and Diamond Peak 

results to represent partially reset ages, and Cherry Creek's zircon ages are reset. These 

phenomena are probably related to burial and/or younger thermal overprints.  

In addition to these data, most zircons show moderate to high Th/U and may 

indicate a magmatic source.  

The majority of vitrinite reflectance (Ro) values in the study area are in the range 

of 0.70% to 0.90%. These values indicate paleo-temperatures that roughly correspond to 

~55 to ~150°C. The lowest Ro values were recorded in sample 10SP31 (Sixmile Spring) 
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and 10AV36 (Antelope Valley), with Ro values of 0.54% and 0.57% respectively. The 

highest value recorded was taken from Diamond Peak (10DP22) with Ro value of 1.56%. 

Based on the vitrinite reflectance analyses, the maximum burial of Mississippian 

strata occurred in the western part (Diamond Range) of the study area, but the depth of 

burial did not exceed 5 km. 

Overall, this study does not support the hypothesized regional Permian cooling 

documented in Egan Range. 
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Figure 1. Map shows the state of Nevada. The study area in east–central Nevada occupies 

the area inside the red box.  

 

 

(U.S. Geological Survey, 2004) 
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Figure 2. Regional stratigraphy and major tectonic events history for east-central 

Nevada region (modified from Anna et al., 2007). 
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Figure 3. Hypothetical tectonic configuration of western North America during Late 

Devonian – early Mississippian time. East vergent thrusting resulted in uplift of the 

Antler Orogenic Highlands, and flexural loading of the craton edge created an eastward-

migrating foredeep which is shown here as the site of the foreland basin (Cook, 1988; 

Anna et al., 2007). 
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Figure 4. Regional unconformities of the Carboniferous in the Great Basin, western North 

America (Snyder and Trexler, 2000; Snyder et al., 2000; Trexler et al., 2004). The 

Mississippian Chainman Shale and Scotty Wash Sandstone were deposited within the 

Antler successor basin (Trexler et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

 
 

 

 

 

 

Figure 5. Simplified map showing the major tectonic features of the U.S. Cordillera. The 

map shows the location of the Lunning-Fencemaker thrust belt (LFTB), Central Nevada 

Thrust Belt (CNTB), and Roberts Mountain Thrust (RMT) in east-central Nevada relative 

to the study area (shown by the red square). The stippled region represents the Western 

Interior Basin (modified from DeCelles, 2004). 
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Figure 6. Generalized geologic map of Railroad Valley (RRV) in Nevada. RRV oil fields 

are located along the faults at the western and eastern boundaries of the valley (Hughes 

and Carlson, 1987).  
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Figure 7. A) (U-Th)/He results published by Druschke (2009) based on detrital zircons 

from the Scotty Wash Sandstone in the Egan Range, Nevada; and B) one interpretation of 

the results. In this interpretation the Permian age is assumed to be the result of resetting 

of the (U-Th)/He system. This interpretation assumes a 30°C/km geothermal gradient and 

a burial depth of more than 6 km, followed by exhumation and cooling to temperatures 

less than ~180°C. In this model, the Permian age is interpreted as an exhumation age.  

 

 

 

 

B 



45 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Outcrop photo of A) Scotty Wash 

Sandstone, and B) Chainman Shale. 
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Figure 9. Generalized geologic map of the study area. Numbers represent the sample location; 1) Grant Range, 2) Gap Mtn., 3) Burnt 

Mtn., 4) southern Snake Range, 5) Pancake Range, 6) Hot Creek, 7) Duckwater, 8) northern Pancake Range, 9) Diamond Peak, 10) 

Sixmile Spring, 11) Illipah, 12) Buck Mtn., 13) northern Egan Range, 14) northern Snake Range, 15) Antelope Valley, 16) Cherry 

Creek, 17) Ely, 18) Cave Lake (modified from Nevada Bureau of Mines and Geology Map 57).
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Figure 10.A. Photographs of zircon grains collected from Antelope Valley that were used 

for (U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in 

each photograph is constant and is 100 µm long.  
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Figure 10.B. Photographs of zircon grains collected from Burnt Mtn. that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.C. Photographs of zircon grains collected from Buck Mtn. that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.D. Photographs of zircon grains collected from Cherry Creek that were used for 

(U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in 

each photograph is constant and is 100 µm long. 
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Figure 10.E. Photographs of zircon grains collected from Cave Lake that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.F. Photographs of zircon grains collected from Diamond Peak that were used for 

(U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in 

each photograph is constant and is 100 µm long. 
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Figure 10.G. Photographs of zircon grains collected from Duckwater that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.H. Photographs of zircon grains collected from Ely that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.I. Photographs of zircon grains collected from Gap Mtn. that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.J. Photographs of zircon grains collected from Grant Range that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.K. Photographs of zircon grains collected from Hot Creek that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.L. Photographs of zircon grains collected from Illipah that were used for (U-Th)/He 

analyses. All zircons are shown under reflected light. The scale bar shown in each photograph 

is constant and is 100 µm long. 
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Figure 10.M. Photographs of zircon grains collected from southern Snake Range that were used for 

(U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in each 

photograph is constant and is 100 µm long. 
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Figure 10.N. Photographs of zircon grains collected from northern Pancake Range that were used 

for (U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in each 

photograph is constant and is 100 µm long. 
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Figure 10.O. Photographs of zircon grains collected from Pancake Range (z10PR13) that were 

used for (U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in 

each photograph is constant and is 100 µm long. 
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Figure 10.P. Photographs of zircon grains collected from Pancake Range (z10PR16) that were 

used for (U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in 

each photograph is constant and is 100 µm long. 
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Figure 10.Q. Photographs of zircon grains collected from Sixmile Spring that were used for (U-

Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in each 

photograph is constant and is 100 µm long. 
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Figure 10.R. Photographs of zircon grains collected from southern Snake Range that were used 

for (U-Th)/He analyses. All zircons are shown under reflected light. The scale bar shown in each 

photograph is constant and is 100 µm long. 
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Figure 11. Selected images from each sample that underwent petrographic vitrinite 

reflectance analyses. 
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Figure 12.A. Geologic map showing the sample locations at Antelope Valley (modified 

from Kleinhampl and Ziony, 1985).  
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Figure 12.B. Geologic map showing the sample locations at Burnt Mountain (modified 

from Tschanz and Pampeyan, 1970).   
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Figure 12.C. Geologic map showing the sample locations at Buck Mountain (modified 

from Hose and Blake, 1976).  
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Figure 12.D. Geologic map showing the sample location at Cherry Creek (modified from 

Hose and Blake, 1976).  
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Figure 12.E. Geologic map showing the sample locations at Cave Lake (modified from 

Hose and Blake, 1976).  
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Figure 12.F. Geologic map showing the sample locations at Diamond Peak (modified from 

Hose and Blake, 1976).  
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Figure 12.G. Geologic map showing the sample locations at Duckwater (modified from 

Hose and Blake, 1976). The Scotty Wash Sandstone sample was found in a very small 

outcrop surrounded by Tov which cannot be shown on the geologic map.  
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Figure 12.H. Geologic map showing the sample locations near Ely (modified from Hose 

and Blake, 1976).  
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Figure 12.I. Geologic map showing the sample locations at Gap Mountain (modified from 

Kleinhampl and Ziony, 1985).  
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Figure 12.J. Geologic map showing the sample locations in the Grant Range (modified 

from Kleinhampl and Ziony, 1985). 
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Figure 12.K. Geologic map showing the sample locations at Hot Creek (modified from 

Kleinhampl and Ziony, 1985).  
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Figure 12.L. Geologic map showing the sample locations at Illipah (modified from Hose 

and Blake, 1976).  
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Figure 12.M. Geologic map showing the sample locations in the southern Snake Range 

(modified from Hose and Blake, 1976).  
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Figure 12.N. Geologic map showing the sample locations in the northern Pancake Range 

(modified from Hose and Blake, 1976).  
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Figure 12.O. Geologic map showing the sample locations in the Pancake Range (modified 

from Kleinhampl and Ziony, 1985).  
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Figure 12.P. Geologic map showing the sample location at Sixmile Spring (modified from 

Hose and Blake, 1976).  
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Figure 12.Q. Geologic map showing the sample location in the northern Snake Range 

(modified from Hose and Blake, 1976).  
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Figure 12.R. Geologic map showing the sample location in the northern Egan Range 

(modified from Hose and Blake, 1976).  
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Figure 13.A. Relative probability diagram for zircons collected from Antelope Valley. The 

Age Peak program (Gehrels, 2009) calculated one age peak at 250 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.B. Relative probability diagram for zircons collected from Burnt Mtn. The 

sample did not produce any peak age because the zircon ages are highly distributed.  
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Figure 13.C. Relative probability diagram for zircons collected from Buck Mtn. The Age 

Peak program (Gehrels, 2009) calculated two age peaks; one at 1044 Ma and another at 

1321 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.D. Relative probability diagram for zircons collected from Cherry Creek. The 

Age Peak program (Gehrels, 2009) calculated one age peak at 148 Ma.  
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Figure 13.E. Relative probability diagram for zircons collected from Cave Lake. The Age 

Peak program (Gehrels, 2009) calculated one age peak at 357 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.F. Relative probability diagram for zircons collected from Diamond Peak. The 

Age Peak program (Gehrels, 2009) calculated one age peak at 50 Ma.  
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Figure 13.G. Relative probability diagram for zircons collected from Duckwater. The 

Age Peak program (Gehrels, 2009) calculated two age peaks; one at 1009 Ma and another 

at 1319 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.H. Relative probability diagram for zircons collected from Ely. The Age Peak 

program (Gehrels, 2009) calculated one age peak at 318 Ma.  
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Figure 13.I. Relative probability diagram for zircons collected from Gap Mountain. The 

Age Peak program (Gehrels, 2009) calculated one age peak at 322 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.J. Relative probability diagram for zircons collected from Grant Range. The 

Age Peak program (Gehrels, 2009) calculated one age peak at 338 Ma.  
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Figure 13.K. Relative probability diagram for zircons collected from Hot Creek. The Age 

Peak program (Gehrels, 2009) calculated two peaks; one at 397 Ma and a second one at 

468 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.L. Relative probability diagram for zircons collected from Illipah. This sample 

did not produce any peak ages because only two zircon ages were calculated.  
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Figure 13.M. Relative probability diagram for zircons collected from the southern Snake 

Range. The Age Peak program (Gehrels, 2009) calculated one age peak at 338 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.N. Relative probability diagram for zircons collected from the northern 

Pancake Range. The Age Peak program (Gehrels, 2009) did not calculate any peak ages 

because the zircon ages are widely scattered.  
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Figure 13.O. Relative probability diagram for zircons collected from Pancake Range 

(10PR13). The Age Peak program (Gehrels, 2009) calculated one age peak at 1155 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.P. Relative probability diagram for zircons collected from Pancake Range 

(10PR16). The Age Peak program (Gehrels, 2009) calculated one age peak at 353 Ma.  
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Figure 13.Q. Relative probability diagram for zircons collected from Sixmile Spring. The 

Age Peak program (Gehrels, 2009) calculated one age peak at 1131 Ma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.R. Relative probability diagram for zircons collected from the northern Snake 

Range. The Age Peak program (Gehrels, 2009) calculated one age peak at 327 Ma.  
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Figure 14. A Google image shows peak ages of (U-Th)/He zircons of each sample in 

every location. Red boxes correspond to detrital zircons younger than Permian. Green 

color represents area where the majority of zircons that are similar in age to the Scotty 

Wash depositional age. Blue color represents zircons with Mississippian and older ages 

(* in some locations shows samples are dominated with widely scattered zircon ages that 

are older than Mississippian, but peak ages could not be calculated). Letters within each 

sample number correspond to the name of locality (HC: Hot Creek, PR: Pancake Range, 

DP: Diamond Peak, IL: Illipah, EL: Ely, SP: Sixmile Spring, CL: Cave Lake, MW: 

southern Snake Range, GM: Gap Mtn., GR: Grant Range, DW: Duckwater, AV: 

Antelope Valley, NP: northern Pancake Range; CC: Cherry Creek; SR: northern Snake 

Range; BU: Buck Mtn., BM: Burnt Mtn.). 
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Figure 15. Negative correlation between effective uranium concentration [U]e and helium 

ages of zircons collected at A) Antelope Valley and B) Diamond Peak that indicate 

residence within the (U-Th)/He partial retention zone (HePRZ). Effective uranium 

concentration, a proxy for radiation damage was calculated by [U]e = 

[U]+[Th]0.235+[Sm]0.005 (e.g. Shuster et al., 2006). The increased value of radiation 

damage corresponds to decreased helium retentivity within zircon grains (Reiners, 2005; 

Stockli et al., 2010).  
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Figure 16. Vitrinite reflectance (Ro) analysis results plotted for each sample location. Red 

color indicates post mature Ro values. Green colors represent samples in the mature 

stage. Blue color represents samples in the early mature stage. Letters within each sample 

number correspond to the name of the locality (HC: Hot Creek, PR: Pancake Range, DP: 

Diamond Peak, IL: Illipah, EL: Ely, SP: Sixmile Spring, CL: Cave Lake, MW: southern 

Snake Range, GM: Gap Mtn., GR: Grant Range, DW: Duckwater, AV: Antelope Valley, 

SE: northern Egan Range, BU: Buck Mtn., BM: Burnt Mtn.).  
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Figure 17. Hydrocarbon generation stage relative to vitrinite reflectance (taken from 

Peters and Cassa, 1994); vitrinite reflectance (Ro) of <0.60% corresponds to the 

immature stage, Ro values of 0.60% – 0.90% correspond to the mature stage, and Ro 

value of >1.20% indicate post-mature stage. 
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Figure 18. Modified table (taken from Hunt, 1996) that shows the relationship between 

maturity rank, temperature, and vitrinite reflectance values. 
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Figure 19. Google Earth image showing Ro values with hand drawn contour lines. The 

red dashed line represents the approximate location of the Roberts Mountain Thrust (e.g. 

Trexler et al., 1995; DeCelles, 2004). This figure shows that the highest Ro value occur 

along the western side of study area, are generally lower in the middle, and slowly higher 

to the east. The north-eastern area recorded the coolest temperature.   
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APPENDIX B 

 

 

TABLES 

 

 

Table 1. Sandstone samples for (U-He)/Th analyses 
STA Samples Location GPS 

1 10GM01 Gap Mountain N 38 17' 10.6" , W 115 3' 53" elev 1854 m 

2 10BM04 west of Burnt 

Mountain 

N 38 10' 13.1" , W 114 56' 18.4" elev 1880 m 

3 10GR07 Grant Range N 38 22' 29", W 115 22' 40.6" elev 1913 m 

4 10HC10 Hot Creek N 38 13' 20.3', W 116 23' 3.10" elev 1878 m 

5 10PR13 Pancake Range N 38 49' 16.20" , W 115 50' 11.40" elev 2002 m 

6 10PR16 Pancake Range N 38 53' 37.50", W 115 50' 8.08" elev 2175 m 

7 10DW17 Duckwater  N 38 58' 39.10" , W 115 40' 48.20" elev 1796 m 

8 10NP19 northern Pancake 

Range 

N 39 10' 25" , W 115' 48' 20.9" elev 1982 m 

9 10DP21 Diamond Peak N 39 30' 47.30" , W 115 50' 14.2" elev 2240 m 

10 10BU26  Buck Mountain N 39 45' 13.20" , W 115 34' 45.40" elev 2137 m 

11 10IL27 Illipah N 39 21' 13" , W 115 24' 5.70" elev 2070 m 

12 10CL29 Cave Lake N 39 11" 11.90" ,W 114 41' 10.90" elev 2234 m  

13 10SP32 Sixmile Spring N 39 13' 30.5" , W 115 24' 15.30" elev 2333 m 

14 10CC34 Cherry Creek N 40 07' 49.7" , W 114 47' 04.3" elev 1980 m 

15 10AV35 Antelope Valley N 39 46' 31.38" , W 114 13' 23.13" elev 2030 m 

16 10MW37 southern Snake 

Range  

N 38 44' 30.5" , W 114 19' 47.0" elev 2039 m  

17 10SR39 northern Snake 

Range 

N 39 09' 31.5" , W 114 08' 10.9" elev 1973 m 

18 10EL41 Ely N 39 18' 2.07" , W 114 58' 50.01" elev 2071 m 
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Table 2. Chainman Shale samples for Ro analyses 

STA Location GPS 

Elevation 

(m) Samples 

Ro 

(%) 

1 Gap Mountain N 38 17' 03.0" , W 115 3' 47.7"  1824 10GM02 0.62 

2 Gap Mountain N 38 17' 04" , W 115 3' 46.4"  1817 10GM03 0.63 

3 Burnt Mountain  N 38 10' 08.50.1" , W 114 56' 18.50"  1861 10BM05 0.83 

4 Burnt Mountain  N 38 10 9.60", W 114 56' 14.50"  1869 10BM06 0.82 

5 Grant Range N 38 22' 38.10" , W 115 22' 32.80"  1887 10GR08 0.76 

6 Grant Range N 38 22' 37.60", W 115 22' 34.10"  1891 10GR09 0.7 

7 Hot Creek N 38 13' 23.30", W 116 23' 1.5"  1838 10HC11 0.85 

8 Hot Creek N 38 12' 23.20", W 116 23' 9.96"  1842 10HC12 0.92 

9 Pancake Range N 38 49' 16.20" , W 115 50'11.40"  2002 10PR14 0.76 

10 Duckwater  N 38 58' 37.40" , W 115 41' 9.80"  1765 10DW18 0.84 

11 northern 

Pancake Range 

N 39 10' 38.80" , W 115 48' 47.40" 1974 10NP20 0 

12 Diamond Peak N 39 30' 47.60" , W 115 50' 7.30"  2189 10DP22 1.56 

13 Diamond Peak N 39 30' 39.30" , W 115 50' 8.30"  2176 10DP23 1.5 

14 Buck Mountain N 39 45' 1.70" , W 115 34' 38.80"  2109 10BU24 0.86 

15 Buck Mountain N 39 44' 58" , W 115 34" 33.90"  2125 10BU25 0.87 

16 Illipah N 39 21' 7.00" , W 115 24' 41.50"  2091 10IL28 0.65 

17 Cave Lake N 39 11' 30.1" , W 114 41" 43.20"  2224 10CL30 0.89 

18 Sixmile Spring N 39 12" 41.20", W 115 24' 29.90"   2405 10SP31 0.54 

19 northern Egan 

Range 

N 39 35'53.4" , W 114 59' 11.2" 2045 10SE33 0.92 

20 Antelope Valley N 39 46' 25.7" , W 114 13' 21.2"  2020 10AV36 0.57 

21 southern Snake 

Range  

N 38 47' 00.0" , W 114 17' 36.0"  

2417 10MW38 1.02 

22 Ely N 39 18' 2.07" , W 114 58' 50.01"  2071 10EL40 1 
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Table 3. Detrital zircon (U-Th)/He laboratory data 

No. Sample mineral Age, Ma err., Ma U (ppm) 
Th 

(ppm) 

Sm 

(ppm) 
[U]e Th/U 

He 

(nmol/g) 

mass 

(ug) 
Ft 

1 z10AV35-1 zircon 0.0 0.0 89.5 43.2 0.4 99.6 0.48 0.0 4.60 0.75 

2 z10AV35-2 zircon 0.0 0.0 172.2 126.9 0.8 202.0 0.74 0.0 3.55 0.74 

3 z10AV35-3 zircon 0.0 0.0 71.9 54.0 0.3 84.6 0.75 0.0 3.56 0.73 

4 z10AV35-4 zircon 430.4 34.4 124.0 59.0 0.8 137.9 0.48 244.6 3.49 0.74 

5 z10AV35-5 zircon 250.5 20.0 94.2 26.9 0.2 100.6 0.29 106.0 5.31 0.77 

6 z10AV35-6 zircon 245.6 19.6 528.8 128.6 1.9 559.1 0.24 548.2 2.87 0.73 

7 z10AV35-7 zircon 391.4 31.3 32.6 12.6 0.2 35.6 0.39 54.8 2.55 0.71 

8 z10AV35-8 zircon 289.7 23.2 42.0 34.7 0.7 50.2 0.83 57.7 3.37 0.72 

9 z10AV35-9 zircon 319.4 25.5 54.7 33.7 0.5 62.7 0.62 81.6 3.76 0.74 

10 z10AV35-10 zircon 267.5 21.4 110.0 45.3 0.5 120.6 0.41 127.7 2.88 0.72 

11 z10AV35-11 zircon 1078.4 86.3 34.4 30.6 1.3 41.6 0.89 195.3 3.76 0.74 

12 z10AV35-12 zircon 232.9 18.6 172.2 74.3 2.8 189.7 0.43 181.1 3.90 0.75 

13 z10BM04-1 zircon 0.0 0.0 58.6 32.2 -0.3 66.2 0.55 0.0 3.05 0.72 

14 z10BM04-2 zircon 337.0 27.0 47.1 11.9 -0.3 49.9 0.25 67.8 3.19 0.73 

15 z10BM04-3 zircon 419.5 33.6 130.1 43.3 0.7 140.3 0.33 236.2 2.83 0.72 

16 z10BM04-4 zircon 523.8 41.9 36.5 27.4 1.9 42.9 0.75 89.0 2.66 0.71 

17 z10BM04-5 zircon 561.3 44.9 68.1 21.2 1.5 73.1 0.31 167.8 3.17 0.73 

18 z10BM04-6 zircon 358.9 28.7 64.5 24.3 1.0 70.3 0.38 103.2 3.64 0.74 

19 z10BM04-7 zircon 812.9 65.0 41.0 29.2 0.8 47.9 0.71 166.9 4.04 0.75 

20 z10BM04-8 zircon 132.2 10.6 88.4 22.7 0.3 93.8 0.26 51.8 4.91 0.77 

21 z10BU26-1 zircon 452.1 36.2 53.1 27.8 0.2 59.6 0.52 112.7 4.43 0.75 

22 z10BU26-2 zircon 1300.0 104.0 48.3 24.6 1.5 54.0 0.51 348.0 10.51 0.81 

23 z10BU26-3 zircon 1284.2 102.7 31.0 22.6 0.0 36.3 0.73 215.5 4.99 0.77 

24 z10BU26-4 zircon 602.6 48.2 178.1 85.7 8.8 198.3 0.48 530.1 6.45 0.79 

25 z10BU26-5 zircon 1079.4 86.4 44.1 32.4 0.8 51.7 0.73 268.5 10.38 0.81 

26 z10BU26-6 zircon 1035.2 82.8 38.4 24.9 0.5 44.3 0.65 204.4 4.78 0.76 

27 z10BU26-7 zircon 1580.0 126.4 51.0 34.5 1.3 59.2 0.68 435.1 3.77 0.75 

28 z10BU26-8 zircon 1458.7 116.7 40.2 16.0 0.6 43.9 0.40 292.3 3.54 0.74 

29 z10BU26-9 zircon 1006.7 80.5 109.1 48.7 1.8 120.5 0.45 524.3 3.60 0.74 

30 z10CC34-1 zircon 150.3 12.0 69.4 40.7 0.0 78.9 0.59 46.7 2.89 0.72 

31 z10CC34-2 zircon 91.9 7.4 45.6 30.4 0.3 52.7 0.67 19.6 3.77 0.75 

32 z10CC34-3 zircon 149.6 12.0 61.2 20.8 2.2 66.1 0.34 41.8 6.06 0.78 

33 z10CC34-4 zircon 83.9 6.7 109.0 67.3 0.7 124.8 0.62 40.9 2.84 0.72 

34 z10CC34-5 zircon 217.2 17.4 188.2 44.8 1.5 198.7 0.24 172.4 3.48 0.73 
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Table 3. Detrital zircon (U-Th)/He laboratory data - (continued) 

No. Sample mineral Age, Ma err., Ma U (ppm) 
Th 

(ppm) 

Sm 

(ppm) 
[U]e Th/U 

He 

(nmol/g) 

mass 

(ug) 
Ft 

35 z10CC34-6 zircon 152.9 12.2 135.3 63.3 0.8 150.2 0.47 91.4 3.02 0.73 

36 z10CC34-7 zircon 101.0 8.1 88.4 46.0 0.4 99.2 0.52 43.0 7.02 0.79 

37 z10CC34-8 zircon 111.5 8.9 89.8 43.0 4.7 100.0 0.48 46.1 4.51 0.76 

38 z10CC34-9 zircon 120.2 9.6 209.1 50.6 1.4 221.0 0.24 105.6 3.33 0.73 

39 z10CC34-10 zircon 134.1 10.7 41.7 36.8 0.9 50.4 0.88 27.8 4.65 0.76 

40 z10CL29-1 zircon 1170.0 93.6 144.5 18.2 0.0 148.7 0.13 750.9 2.77 0.72 

41 z10CL29-2 zircon 426.2 34.1 155.3 34.5 1.2 163.4 0.22 281.4 3.06 0.73 

42 z10CL29-3 zircon 298.2 23.9 274.3 217.3 4.6 325.4 0.79 399.1 5.39 0.75 

43 z10CL29-4 zircon 250.8 20.1 26.9 12.2 2.0 29.7 0.45 30.9 4.31 0.76 

44 z10CL29-5 zircon 255.4 20.4 206.0 77.0 3.1 224.1 0.37 239.2 5.43 0.76 

45 z10CL29-6 zircon 347.3 27.8 310.0 82.0 1.4 329.3 0.26 488.7 5.69 0.77 

46 z10CL29-7 zircon 415.9 33.3 152.5 44.2 1.3 162.9 0.29 299.7 8.35 0.80 

47 z10CL29-8 zircon 359.5 28.8 140.9 79.4 2.5 159.6 0.56 226.1 2.62 0.71 

48 z10CL29-9 zircon 585.8 46.9 45.7 27.5 1.1 52.2 0.60 134.1 7.05 0.78 

49 z10DP21-1 zircon 52.8 4.2 403.1 318.5 16.2 478.1 0.79 101.7 4.35 0.74 

50 z10DP21-2 zircon 49.1 3.9 635.3 688.4 20.7 797.2 1.08 157.3 4.58 0.74 

51 z10DP21-3 zircon 134.2 10.7 49.7 21.4 0.3 54.7 0.43 29.4 3.23 0.74 

52 z10DP21-4 zircon 132.0 10.6 144.4 109.8 7.2 170.3 0.76 89.5 4.08 0.73 

53 z10DP21-5 zircon 45.4 3.6 538.4 709.7 14.0 705.3 1.32 130.1 4.72 0.75 

54 z10DP21-6 zircon 77.0 6.2 94.2 57.0 1.2 107.6 0.60 36.2 9.32 0.80 

55 z10DP21-7 zircon 78.3 6.3 74.6 44.8 0.9 85.1 0.60 29.0 8.49 0.80 

56 z10DP21-8 zircon 232.2 18.6 58.2 50.6 1.0 70.1 0.87 68.9 6.68 0.77 

57 z10DP21-9 zircon 57.0 4.6 281.7 192.1 9.8 326.9 0.68 75.9 4.50 0.75 

58 z10DP21-10 zircon 15.5 1.2 403.5 105.8 0.7 428.4 0.26 30.5 22.98 0.85 

59 z10DW17-1 zircon 1181.2 94.5 29.8 26.2 -0.5 35.9 0.88 188.2 4.15 0.75 

60 z10DW17-2 zircon 507.4 40.6 39.5 20.0 -0.8 44.2 0.51 88.8 2.48 0.71 

61 z10DW17-3 zircon 176.5 14.1 485.3 343.2 43.3 566.2 0.71 398.5 3.30 0.73 

62 z10DW17-4 zircon 999.0 79.9 100.6 64.9 2.0 115.8 0.64 473.5 2.33 0.71 

63 z10DW17-5 zircon 1332.7 106.6 77.0 42.0 2.5 86.8 0.55 521.7 3.57 0.74 

64 z10DW17-6 zircon 1008.2 80.7 78.9 56.7 1.6 92.2 0.72 421.4 6.06 0.78 

65 z10DW17-7 zircon 1015.8 81.3 95.0 46.9 2.6 106.1 0.49 444.3 2.49 0.71 

66 z10DW17-8 zircon 186.3 14.9 441.7 190.3 19.2 486.5 0.43 357.9 2.78 0.72 

67 z10DW17-9 zircon 993.0 79.4 44.9 33.3 1.2 52.7 0.74 236.6 6.44 0.77 
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Table 3. Detrital zircon (U-Th)/He laboratory data - (continued) 

No. Sample mineral Age, Ma err., Ma U (ppm) 
Th 

(ppm) 

Sm 

(ppm) 
[U]e Th/U 

He 

(nmol/g) 

mass 

(ug) 
Ft 

68 z10DW17-10 zircon 1424.4 114.0 24.1 21.4 0.6 29.1 0.89 176.5 2.50 0.71 

69 z10EL41-1 zircon 339.6 27.2 59.9 26.0 -0.3 66.0 0.43 89.0 2.82 0.72 

70 z10EL41-2 zircon 324.0 25.9 42.8 23.2 -0.4 48.2 0.54 60.9 2.50 0.71 

71 z10EL41-3 zircon 305.0 24.4 72.1 37.0 0.0 80.8 0.51 98.3 2.86 0.73 

72 z10EL41-4 zircon 299.3 23.9 44.7 51.1 1.1 56.7 1.14 70.9 4.71 0.76 

73 z10EL41-5 zircon 283.5 22.7 89.7 24.1 1.5 95.4 0.27 106.6 2.50 0.72 

74 z10EL41-6 zircon 332.5 26.6 126.3 43.9 1.3 136.6 0.35 175.3 2.09 0.70 

75 z10GM01-1 zircon 327.2 26.2 41.5 46.1 0.0 52.4 1.11 72.5 5.51 0.77 

76 z10GM01-2 zircon 299.8 24.0 66.1 40.6 0.0 75.7 0.61 90.0 3.17 0.72 

77 z10GM01-3 zircon 374.0 29.9 42.7 29.2 0.2 49.6 0.68 76.6 4.85 0.75 

78 z10GM01-4 zircon 350.8 28.1 46.4 13.9 0.9 49.6 0.30 73.1 4.86 0.76 

79 z10GM01-5 zircon 306.3 24.5 115.8 26.9 0.7 122.1 0.23 153.2 3.39 0.74 

80 z10GM01-6 zircon 283.9 22.7 137.2 54.2 1.2 149.9 0.40 176.4 4.17 0.75 

81 z10GM01-7 zircon 448.4 35.9 119.8 63.5 0.9 134.8 0.53 242.8 2.82 0.72 

82 z10GM01-8 zircon 392.4 31.4 64.7 35.5 0.6 73.0 0.55 122.7 5.57 0.77 

83 z10GM01-9 zircon 342.5 27.4 334.8 28.3 1.0 341.4 0.08 477.0 3.40 0.74 

84 z10GM01-10 zircon 315.1 25.2 51.2 26.6 0.5 57.5 0.52 76.3 5.12 0.76 

85 z10GR07-1 zircon 313.9 25.1 88.9 25.3 1.1 94.8 0.28 126.6 5.24 0.77 

86 z10GR07-2 zircon 388.0 31.0 109.9 42.6 0.2 119.9 0.39 197.0 5.23 0.76 

87 z10GR07-3 zircon 327.4 26.2 105.3 73.2 0.2 122.5 0.70 164.7 4.17 0.75 

88 z10GR07-4 zircon 395.7 31.7 235.6 123.3 1.4 264.6 0.52 429.9 3.95 0.74 

89 z10GR07-5 zircon 348.7 27.9 165.9 57.2 2.4 179.4 0.35 257.2 3.98 0.74 

90 z10GR07-6 zircon 331.5 26.5 82.2 25.2 1.0 88.2 0.31 123.1 4.80 0.76 

91 z10GR07-7 zircon 446.5 35.7 156.5 51.2 2.5 168.5 0.33 312.2 3.76 0.75 

92 z10GR07-8 zircon 437.1 35.0 98.8 70.2 1.2 115.3 0.71 211.2 4.41 0.75 

93 z10GR07-9 zircon 460.9 36.9 29.7 10.6 0.3 32.2 0.36 60.9 3.29 0.74 

94 z10GR07-10 zircon 350.4 28.0 49.3 32.3 0.4 56.9 0.66 82.4 4.15 0.75 

95 z10HC10-2 zircon 217.2 17.4 150.2 80.0 3.4 169.0 0.53 146.3 3.38 0.73 

96 z10HC10-3 zircon 457.2 36.6 58.2 30.8 -0.3 65.4 0.53 121.9 3.32 0.73 

97 z10HC10-4 zircon 699.5 56.0 27.1 19.1 0.4 31.6 0.70 103.7 12.39 0.82 

98 z10HC10-5 zircon 470.0 37.6 71.5 30.2 0.6 78.6 0.42 149.6 2.92 0.73 

99 z10HC10-6 zircon 542.8 43.4 47.8 30.0 2.8 54.9 0.63 132.5 8.13 0.79 

100 z10HC10-7 zircon 1000.2 80.0 62.0 42.6 1.1 72.1 0.69 325.3 5.66 0.77 
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Table 3. Detrital zircon (U-Th)/He laboratory data - (continued) 

No. Sample mineral Age, Ma err., Ma U (ppm) 
Th 

(ppm) 

Sm 

(ppm) 
[U]e Th/U 

He 

(nmol/g) 

mass 

(ug) 
Ft 

101 z10HC10-8 zircon 761.3 60.9 70.7 39.8 7.5 80.1 0.56 281.3 9.23 0.80 

102 z10HC10-9 zircon 380.1 30.4 116.3 112.7 1.3 142.8 0.97 227.3 4.66 0.76 

103 z10IL27-1 zircon 429.5 34.4 111.6 35.5 -0.3 119.9 0.32 209.6 3.53 0.73 

104 z10IL27-2 zircon 360.7 28.9 24.2 33.4 -0.5 32.0 1.38 46.4 3.66 0.73 

105 z10IL27-3 zircon 288.0 23.0 61.9 26.0 0.5 68.0 0.42 79.3 3.92 0.74 

106 z10MW37-1 zircon 377.8 30.2 144.7 37.2 1.1 153.4 0.26 247.2 5.28 0.77 

107 z10MW37-2 zircon 362.3 29.0 94.5 33.7 0.2 102.4 0.36 157.6 5.44 0.77 

108 z10MW37-3 zircon 370.0 29.6 177.7 62.6 0.4 192.5 0.35 296.6 4.47 0.75 

109 z10MW37-4 zircon 406.0 32.5 43.1 19.8 0.0 47.8 0.46 82.6 5.39 0.77 

110 z10MW37-5 zircon 460.0 36.8 70.7 21.6 0.0 75.8 0.31 149.1 5.69 0.77 

111 z10MW37-6 zircon 454.2 36.3 62.5 17.3 0.0 66.6 0.28 134.0 7.73 0.79 

112 z10MW37-7 zircon 391.4 31.3 143.1 88.1 1.4 163.8 0.62 263.6 4.45 0.74 

113 z10MW37-8 zircon 569.1 45.5 95.4 40.2 0.5 104.9 0.42 254.2 4.56 0.76 

114 z10MW37-9 zircon 435.4 34.8 177.8 38.6 1.2 186.8 0.22 351.4 5.59 0.78 

115 z10MW37-10 zircon 427.1 34.2 47.2 8.5 0.3 49.2 0.18 86.2 3.90 0.74 

116 z10MW37-11 zircon 686.7 54.9 74.2 52.1 0.3 86.4 0.70 255.4 5.51 0.76 

117 z10MW37-12 zircon 367.5 29.4 197.7 78.3 1.4 216.1 0.40 322.7 3.30 0.74 

118 z10MW37-13 zircon 456.5 36.5 40.8 29.1 0.9 47.7 0.71 91.8 4.89 0.76 

119 z10NP19-1 zircon 706.0 56.5 62.7 64.6 2.5 77.9 1.03 230.7 4.38 0.74 

120 z10NP19-2 zircon 1478.4 118.3 72.9 45.6 0.8 83.6 0.63 581.5 4.59 0.76 

121 z10NP19-3 zircon 885.5 70.8 189.1 106.9 0.0 214.2 0.57 805.8 3.35 0.74 

122 z10NP19-4 zircon 1147.0 91.8 34.0 16.5 0.6 37.9 0.48 187.6 2.94 0.73 

123 z10NP19-5 zircon 307.6 24.6 482.5 136.1 6.7 514.5 0.28 651.4 3.79 0.75 

124 z10NP19-6 zircon 171.5 13.7 943.3 80.7 51.4 962.5 0.09 647.5 2.53 0.72 

125 z10NP19-7 zircon 1239.9 99.2 83.6 35.1 1.2 91.8 0.42 473.6 2.12 0.70 

126 z10NP19-8 zircon 724.8 58.0 53.2 27.8 0.4 59.8 0.52 192.0 5.73 0.78 

127 z10NP19-9 zircon 999.1 79.9 81.3 30.8 0.8 88.6 0.38 390.0 4.38 0.75 

128 z10NP19-10 zircon 1579.7 126.4 49.5 28.5 1.1 56.2 0.58 431.8 5.53 0.77 

129 z10PR13-1 zircon 712.1 57.0 177.5 116.8 10.6 205.0 0.66 575.2 2.14 0.70 

130 z10PR13-2 zircon 514.4 41.2 171.8 59.6 5.9 185.8 0.35 377.8 2.30 0.71 

131 z10PR13-3 zircon 1246.3 99.7 66.2 29.6 0.3 73.2 0.45 427.1 5.65 0.78 

132 z10PR13-4 zircon 1411.8 112.9 43.0 31.7 0.8 50.5 0.74 366.1 13.76 0.83 

133 z10PR13-5 zircon 1128.2 90.3 36.8 27.1 0.7 43.2 0.74 232.9 8.48 0.80 
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Table 3. Detrital zircon (U-Th)/He laboratory data - (continued) 

No. Sample mineral Age, Ma err., Ma U (ppm) 
Th 

(ppm) 

Sm 

(ppm) 
[U]e Th/U 

He 

(nmol/g) 

mass 

(ug) 
Ft 

134 z10PR13-6 zircon 1142.7 91.4 50.1 27.5 0.6 56.5 0.55 322.6 13.59 0.83 

135 z10PR13-7 zircon 734.1 58.7 93.1 55.4 0.7 106.1 0.60 348.6 6.35 0.78 

136 z10PR13-8 zircon 968.5 77.5 61.4 28.3 0.9 68.0 0.46 316.8 10.67 0.82 

137 z10PR13-9 zircon 167.3 13.4 315.1 30.5 18.4 322.4 0.10 245.0 13.24 0.83 

138 z10PR16-1 zircon 379.2 30.3 78.5 45.5 0.3 89.2 0.58 134.8 2.89 0.72 

139 z10PR16-2 zircon 305.5 24.4 377.4 36.2 2.5 386.0 0.10 494.5 5.41 0.76 

140 z10PR16-3 zircon 323.9 25.9 235.1 143.3 3.3 268.7 0.61 347.2 3.05 0.72 

141 z10PR16-4 zircon 363.3 29.1 125.7 44.2 1.0 136.1 0.35 210.5 4.90 0.77 

142 z10PR16-5 zircon 355.1 28.4 78.1 57.0 0.6 91.5 0.73 135.9 4.43 0.76 

143 z10PR16-6 zircon 776.8 62.1 145.8 74.2 4.7 163.3 0.51 541.2 3.92 0.75 

144 z10PR16-7 zircon 364.7 29.2 82.9 16.6 0.9 86.8 0.20 136.4 6.33 0.78 

145 z10PR16-8 zircon 348.0 27.8 51.4 41.0 1.3 61.1 0.80 88.0 5.07 0.75 

146 z10PR16-9 zircon 226.2 18.1 496.8 222.5 7.9 549.1 0.45 504.8 4.17 0.74 

147 z10PR16-10 zircon 549.1 43.9 133.3 11.9 2.0 136.1 0.09 319.5 5.08 0.76 

148 z10SP32-1 zircon 556.5 44.5 148.3 45.7 2.1 159.1 0.31 356.0 2.64 0.72 

149 z10SP32-2 zircon 1187.3 95.0 86.3 37.3 0.6 95.0 0.43 510.3 4.32 0.76 

150 z10SP32-3 zircon 519.0 41.5 195.4 70.9 4.9 212.1 0.36 483.1 6.12 0.78 

151 z10SP32-4 zircon 1162.1 93.0 44.1 32.9 0.6 51.8 0.75 266.6 3.86 0.75 

152 z10SP32-5 zircon 1194.9 95.6 54.7 66.0 3.8 70.2 1.21 343.5 2.26 0.70 

153 z10SP32-6 zircon 806.9 64.5 59.9 61.9 2.2 74.4 1.03 243.0 2.75 0.71 

154 z10SP32-7 zircon 255.9 20.5 374.4 375.5 11.1 462.7 1.00 461.1 2.59 0.71 

155 z10SP32-8 zircon 1006.8 80.5 42.4 32.4 0.6 50.0 0.76 226.2 5.47 0.77 

156 z10SP32-9 zircon 18.4 1.5 322.8 136.8 29.7 355.0 0.42 25.6 3.01 0.73 

157 z10SP32-10 zircon 1012.6 81.0 93.5 50.5 3.5 105.4 0.54 441.3 2.41 0.71 

158 z10SR39-1 zircon 2988.7 239.1 9.9 51.3 13.5 22.0 5.20 308.9 2.69 0.69 

159 z10SR39-2 zircon 302.6 24.2 178.8 68.4 0.8 194.9 0.38 245.2 4.67 0.76 

160 z10SR39-4 zircon 340.9 27.3 181.3 66.7 0.8 197.0 0.37 286.3 5.69 0.77 

161 z10SR39-5 zircon 412.6 33.0 148.3 45.8 0.5 159.1 0.31 261.5 2.84 0.72 

162 z10SR39-6 zircon 321.0 25.7 77.0 16.0 0.4 80.8 0.21 105.7 3.87 0.74 

163 z10SR39-7 zircon 345.0 27.6 240.4 78.9 1.8 259.0 0.33 366.9 4.12 0.74 

164 z10SR39-8 zircon 602.1 48.2 51.5 25.2 0.7 57.4 0.49 146.2 4.64 0.75 
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