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ABSTRACT 

The Sheep Pass Formation, a record of Late Cretaceous and Paleogene extension 
within the Sevier hinterland, east-central Nevada 

by 

Peter Alexander Druschke 

Dr. Andrew Hanson, Examination Committee Chair 
Associate Professor of Geology 

University of Nevada, Las Vegas 

The Sevier hinterland of western North America is considered by many to be an 

ancient proxy for the modern Andean Puna-Altiplano or Tibetan Plateau. However, 

controversies exist as tectonic setting and overall paleogeography of the Sevier hinterland 

during the Late Cretaceous and Paleogene. The Sheep Pass Formation type section within 

the southern Egan Range of east-central Nevada comprises a > 1 km thick sedimentary 

succession spanning the latest Cretaceous to Eocene, and provides a rare opportunity to 

test prevailing tectonic and paleogeographic models for the Sevier hinterland. New 

1:12,000 scale field mapping in the southern Egan Range indicates that up to three km of 

stratigraphic throw occurred along the Ninemile fault, a presently low-angle down-to-the-

northwest normal fault, during deposition of the Sheep Pass Formation type section. 

Subsequent reactivation of the Ninemile fault produced an additional ~1 km of 

stratigraphic throw during deposition of the Garrett Ranch Group, which unconformably 

overlies the Sheep Pass Formation type section. New U-Pb and (U-Th)/He detrital zircon 

dating and U-Pb carbonate age analyses from the Sheep Pass Formation type section 
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indicate that the Ninemile fault system was active in latest Cretaceous time, and 

documents for the first time the presence of surface-breaking, synconvergent normal 

faults within the Sevier hinterland. New U-Pb detrital zircon and 40Ar/39Ar age analyses 

from the overlying Garrett Ranch Group document reactivation of the Ninemile fault in 

the middle to late Eocene, indicating that two discrete episodes of extension affected the 

Sevier hinterland. Movement along the Ninemile fault was coeval with Late Cretaceous 

and early Paleogene mid-crustal extension within the Sevier hinterland, and suggests a 

possible link. Middle to late Eocene extension was coeval with extension in the Sevier 

foreland of central Utah, and foundering of the Farallon slab. Evidence that extension 

significantly predated volcanism within the Sevier hinterland invalidates the theory that 

Paleogene volcanism drove coeval extension. Recognition of synconvergent extensional 

basins within the Sevier hinterland strengthens comparisons to the modern Puna-

Altiplano and Tibetan plateau, where similar processes have been documented. 
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CHAPTER 1 

DISSERTATION OVERVIEW 

The Jurassic to Eocene Sevier orogen of western North America is considered the 

archetypical example of an ancient noncollisional orogenic belt (DeCelles, 2004), and is 

considered by many as an ancient proxy for the modern Andean Puna-Altiplano orogenic 

plateau (Coney and Harms, 1984; Jordan and Alonso, 1987; Jones et al., 1998; House et 

al., 2001; DeCelles, 2004). While numerous studies that have characterized the combined 

structural and stratigraphic history of the Sevier foreland (e.g. DeCelles, 1994; DeCelles 

et al., 1995; DeCelles and Currie, 1996; DeCelles, 2004, Horton et al., 2004a), 

controversies exist concerning the paleogeography and tectonic setting of the Sevier 

hinterland. The Sheep Pass Formation type section within the southern Egan Range of 

east central Nevada comprises a > 1 km thick succession of alluvial, fluvial and lacustrine 

strata spanning the latest Cretaceous to Eocene (Fouch et al., 1979; Good, 1987), and 

comprises one of the thickest and most complete sedimentary sections in the Sevier 

hinterland. This study tests current models for the tectonic setting and paleogeography of 

the latest Cretaceous to Paleogene Sevier hinterland through 1:12,000 scale field mapping 

of the Sheep Pass Formation type section combined with stratigraphic, geochronologic 

and structural analyses, and comparisons with additional sections of the Sheep Pass 

Formation widely scattered throughout east-central Nevada. 
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Chapter 1 presents evidence for an extensional basin setting for the Sheep Pass 

Formation type section through documentation of a series of syndepositional normal 

faults within the basal Member A that are overlapped by younger members of the Sheep 

Pass Formation. In addition, the Ninemile fault, a presently low-angle, down-to-the-

northwest normal fault exposed 3-5 km to the south and west of the Sheep Pass 

Formation type section is newly interpreted to represent the basin-bounding fault for the 

Sheep Pass basin. New U-Pb detrital zircon ages from the uppermost Sheep Pass 

Formation Member A in combination with a new U-Pb carbonate age from overlying 

Member B indicate a Maastrichtian age for the basal Sheep Pass Formation type section. 

Detrital zircon (U-Th)/He dating indicates an 81.3 ± 3.7 Ma cooling age population is 

present despite the lack of a corresponding Campanian U-Pb detrital zircon 

crystallization age population, and suggests that up to 6 km of unroofing occurred within 

the Sevier hinterland between 80-70 Ma. These new data represent the first published 

absolute age control for the Sheep Pass Formation, and provide the strongest evidence to 

date for the presence of Late Cretaceous surface-breaking normal faults within the Sevier 

hinterland. 

Chapter 1 comprises a manuscript submitted to the journal Geology, which was 

accepted for May 2009 publication. Fieldwork and interpretations concerning the nature 

of the Ninemile fault were assisted Dr. Andrew Hanson and Dr. Michael Wells. U-Pb 

carbonate age analyses presented in this chapter were performed under the guidance of 

Dr. Troy Rasbury of Stony Brook University. (U-Th)/He zircon age analyses were 

performed under the guidance of Dr. Daniel Stockli at the University of Kansas. U-Pb 

detrital zircon age analyses were performed under the guidance of Dr. George Gehrels at 
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the University of Arizona. Each contributor appears as a co-author for the corresponding 

Geology submission. 

Chapter 2 focuses on the U-Pb and (U-Th)/He detrital zircon provenance history of 

Cretaceous to Eocene sedimentary units within the Sevier hinterland, including the Early 

Cretaceous Newark Canyon Formation, the latest Cretaceous to Eocene Sheep Pass 

Formation type sections, and additional sections of middle to late Eocene strata located 

throughout east-central Nevada previously correlated to the Sheep Pass Formation by 

Fouch (1979). Over 1,300 detrital zircon analyses are used to test paleogeographic 

models for the Sevier hinterland, and to link changes in detrital zircon provenance to 

regional tectonic events. Results indicate that Precambrian zircon populations are 

dominant within the Newark Canyon and Sheep Pass Formation type sections prior to the 

ca. 38-35 Ma onset of volcanism locally, reflecting recycling of primarily upper 

Paleozoic strata originally derived from the Robert's Mountain allochthon. Subordinate 

Late Jurassic and Early Cretaceous populations were derived from hinterland magmatic 

centers, and populations of Triassic, Early to Middle Jurassic, and Late Cretaceous 

populations common in the Sierra Nevada magmatic arc and terranes of western Nevada 

(Evernden and Kistler, 1970; Stern et al., 1981; Bateman, 1983; Manuszak et al., 2000; 

Spurlin et al., 2000; DeGraaf-Surpless et al., 2002) are absent. These results indicate that 

the Sevier hinterland was paleogeographically isolated through high elevation, formation 

of the central Nevada fold and thrust belt to the west in Early Cretaceous time, and 

subsequent development of Late Cretaceous to early Paleogene extensional basins. 

Chapter 2 comprises a manuscript submitted to the journal Geological Society of 

America Bulletin, which is currently in review. Sample collection, zircon separation, and 
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provenance interpretations were assisted Dr. Andrew Hanson and Dr. Michael Wells. U-

Pb detrital zircon dating was performed under the guidance of Dr. George Gehrels at the 

University of Arizona. (U-Th)/He zircon dating was performed under the guidance of Dr. 

Daniel Stockli at the University of Kansas. Each contributor appears as a co-author for 

the corresponding Geological Society of America Bulletin submission. 

Chapter 3 presents evidence for continued extension within the Sevier hinterland 

from latest Cretaceous to early Paleogene time, and a subsequent episode of middle to 

late Eocene extension that overlapped with the local onset of volcanism. Results of 

1:12,000 scale mapping in the Sheep Pass Canyon indicate that the Blue Spring fault 

system, a splay of the Ninemile fault, repeats the Sheep Pass Formation type section but 

is overlapped by late Eocene members of the Garrett Ranch Group. A comparison to 

structural and stratigraphic relationships at Shingle Pass in the southern Egan Range 

reveals a similar history of early Paleogene extension, followed by renewed middle to 

late Eocene extension. New 40Ar/39Ar ages from Eocene volcanic strata of the southern 

and central Egan Range and Schell Creek Range indicate that deposits of middle to late 

Eocene age overlapping with the ca. 38-35 Ma initiation of volcanism are separated from 

earlier deposits of the Sheep Pass Formation type section by a regional unconformity. 

These data strongly suggest that the latest Cretaceous to Eocene Sevier hinterland 

experienced two discrete episodes of extension. 

Chapter 3 comprises a manuscript submitted to a special Sevier hinterland issue of 

the journal International Geology Review, which is currently in review. Fieldwork and 

interpretations concerning the structural and stratigraphic history of the southern Egan 
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Range were assisted by Dr. Andrew Hanson and Dr. Michael Wells, who appear as co

authors for the corresponding journal submission. 

Together, the results of this study challenge previous concepts of a high-elevation, 

low relief Sevier hinterland that experienced either Late Cretaceous to early Paleogene 

regional shortening or tectonic quiescence (Armstrong, 1968, 1972; Gans and Miller, 

1983). New results suggest that the Sevier hinterland formed a high-elevation, 

paleogeographically isolated plateau that experienced a Late Cretaceous transition from 

contraction to extension, and that rugged topography and locally high relief formed in 

response to extension. Latest Cretaceous to early Paleogene extension temporally 

overlapped with hinterland mid-crustal extension (Wells et al., 1990; Hodges and Walker, 

1992; Camilleri and Chamberlain, 1997; McGrew et al., 2000; Harris et al., 2007; Wells 

and Hoisch, 2008), as well as with continued contraction within the Sevier foreland 

(DeCelles, 1994; 2004). Synconvergent extension within the Sevier hinterland is similar 

to processes within the modern Andean Puna-Altiplano and Tibetan Plateau (Dalmayrac 

and Molnar, 1981; Molnar and Chen, 1983; Allmendinger et al., 1997; Kapp et al., 2008), 

strengthening the hypothesis that the Sevier hinterland is an ancient proxy for an orogenic 

plateau. In contrast, middle to late Eocene hinterland extension and volcanism coincided 

with extension within the Sevier foreland (Constenius, 1996), and signals a shift toward 

orogen-wide extension and orogenic collapse. The observation that extension 

significantly predated volcanism within the Sevier hinterland invalidates the hypothesis 

that volcanism was a driver for Eocene extension (Coney and Harms, 1984; Gans et al., 

1989; Armstrong and Ward, 1991). 
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CHAPTER 2 

SYNCONVERGENT SURFACE-BREAKING NORMAL FAULTS OF LATE 

CRETACEOUS AGE WITHIN THE SEVIER HINTERLAND, 

EAST-CENTRAL NEVADA 

Abstract 

The hinterland of the Sevier orogenic belt of western North America is widely 

interpreted as a Cretaceous to Paleogene orogenic plateau. Although evidence for mid-

crustal extension of Late Cretaceous age within the Sevier hinterland is widespread, 

coeval surface-breaking normal fault systems have not been documented. New 1:12,000 

scale mapping within the type section of the latest Cretaceous to Eocene Sheep Pass 

Formation of east-central Nevada suggests that deposition occurred in response to normal 

fault movement recording up to 4 km of Late Cretaceous and Paleogene stratigraphic 

throw. Intrabasinal normal faulting caused lateral thickness variations within the basal 

Sheep Pass Formation, although upper members are largely unaffected. An extensional 

basin setting best explains the fanning of bedding dips, the deposition of megabreccia and 

the presence of syndepositional normal faults within the Sheep Pass Formation. 

Deposition of the basal member of the Sheep Pass Formation is bracketed between ca. 

81.3 ± 3.7 Ma and 66.1 ±5.4 Ma, based on the (U-Th)/He cooling ages of detrital 

zircons, and on a U-Pb carbonate age derived from the overlying lacustrine limestone 
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member. These new data provide the strongest evidence to date for the existence of Late 

Cretaceous, surface-breaking normal faults in the Sevier hinterland. Normal faulting was 

coeval with mid-crustal hinterland extension and with continued contraction within the 

Sevier foreland to the east. 

Introduction 

Synconvergent extension and associated extensional basins are recognized within 

hinterlands of modern orogens such as the Puna-Altiplano and Tibetan Plateau (e.g., 

Dalmayrac and Molnar, 1981; Molnar and Chen, 1983; Allmendinger et al., 1997). Some 

workers (e.g., Coney and Harms, 1984; DeCelles, 2004) have speculated that the Late 

Cretaceous to Paleogene Sevier hinterland of western North America was analogous to 

the modern Andean Puna-Altiplano. However, surface-breaking synconvergent 

extensional fault systems were not previously recognized within the Sevier hinterland 

(Hodges and Walker, 1992). The Late Cretaceous and Paleogene Sevier hinterland has 

generally been interpreted as a tectonically quiescent, low relief setting (Armstrong, 

1972). 

Although disagreement persists as to whether the Late Cretaceous hinterland was 

low-relief and tectonically quiescent, the existence of coeval mid-crustal extension is well 

established within the Raft River-Albion-Grouse Creek and Ruby-East Humboldt core 

complexes (Wells et al., 1990, Hodges and Walker, 1992; Camilleri and Chamberlain, 

1997). Late Cretaceous extension is interpreted to have resulted in 10-20 km of vertical 

crustal thinning based on barometry of Barrovian metamorphic mineral assemblages and 

thermochronometry (Hodges and Walker, 1992; Camilleri and Chamberlain, 1997, Wells 
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and Hoisch, 2008). Ar/ Ar cooling ages on barometrically constrained plutons within 

the Raft River-Albion-Grouse Creek and Ruby-East Humboldt core complexes indicate 

that mid-crustal extension initiated in the Late Cretaceous (88-84 Ma) and continued 

during the early Paleogene (Wells et al., 1990; Camilleri and Chamberlain, 1997; 

McGrew et al., 2000). The lack of evidence for surface-breaking normal faults within the 

Sevier hinterland led Hodges and Walker (1992) to hypothesize that Late Cretaceous to 

early Paleogene extension was limited to the mid-crust, while the upper crust was 

decoupled, allowing it to be tectonically neutral or in compression. Late Cretaceous mid-

crustal extension has not been documented in the Snake Range core complex, although 

Paleocene to middle Eocene (57-50 Ma) 40Ar/39Ar muscovite cooling ages have been 

reported from the northern Snake Range decollement (Lee and Sutter, 1991). 

The distribution of the latest Cretaceous to Eocene Sheep Pass Formation within the 

Sevier hinterland is currently highly fragmented owing to subsequent extension and 

erosion (Fig. 1). Nevertheless, the Sheep Pass Formation provides a critical sedimentary 

record with which to test many models pertaining to the tectonic and paleogeographic 

evolution of orogenic hinterlands. Vandervoort and Schmitt (1990) previously interpreted 

a Late Cretaceous transition from contraction to extension in the Sevier hinterland based 

on sedimentology and biostratigraphy. However, due to the lack of absolute age control 

or direct evidence for the synextensional nature of these deposits, this interpretation has 

remained speculative. 

Here we present new evidence for syndepositional normal faulting within the basal 

members of the Sheep Pass Formation type section based on 1:12,000 scale geologic 

mapping, new LA-ICP-MS U-Pb and (U-Th)/He dating of detrital zircons, and U-Pb 
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carbonate dating. These data demonstrate that sedimentation was related to movement 

along surface-breaking normal faults, and that upper-crustal extension was coeval with 

regional mid-cmstal extension. 

Previous Work 

The Sheep Pass Formation 

The Sheep Pass Formation is named for exposures of non-tuffaceous alluvial, fluvial 

and lacustrine strata in east-central Nevada. The type section, at Sheep Pass Canyon in 

the southern Egan Range, exceeds 1 km in thickness and is divided into six members (A-

F) (Winfrey, 1960). The Sheep Pass Formation type section unconformably overlies 

upper Paleozoic strata, and is unconformably overlain by the volcaniclastic late Eocene to 

Oligocene Garrett Ranch Group (Winfrey 1960; Kellogg, 1964). Previous age 

assignments for the Sheep Pass Formation type section are based on invertebrate 

biostratigraphy and palynology, and suggest a Maastrichtian (ca. 70-65 Ma) to Paleocene 

age for Member B, and a middle Eocene age (ca. 50.5-45.4 Ma) for Member E (Fouch, 

1979; Good, 1987). No biostratigraphic control exists for Member A and no tuffaceous 

beds have been identified within the Sheep Pass Formation type section. 

Winfrey (1960) interpreted an extensional half-graben setting for the Sheep Pass 

Formation based on westward thinning and fining of members. However, no associated 

normal faults were identified. Documenting the presence of megabreccia within the 

Sheep Pass Formation type section, Kellogg (1964) similarly interpreted an extensional 

basin setting. The initiation of widespread extension within east-central Nevada, as 

documented by clear evidence of normal faulting and associated volcanism, is generally 
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accepted as late Eocene (ca. 38-35 Ma) (Gans et al., 1989; Axen et al., 1993; Gans et al., 

2001). 

Revised Age Control 

U-Pb and CU-ThVHe Detrital Zircon Dating 

LA-ICP-MS U-Pb detrital zircon dating of Member A was performed at the 

University of Arizona. Results from 167 analyses indicate that Precambrian and 

Paleozoic zircons reworked from Paleozoic sedimentary rocks dominate the detrital 

zircon population, with a subordinate Mesozoic component (Fig. 2A) (Appendix I). Peaks 

at 420 Ma (Silurian) and between 1.4 and 1.8 Ga are typical for local upper Paleozoic 

strata, and ca. 1.1 Ga peaks have been identified within the Roberts Mountain allochthon 

of central Nevada (Gehrels et al., 2000). Two zircons of respective 70 and 68 Ma 

(Maastrichtian) age were analyzed from the uppermost portion of Member A, whereas 

the youngest detrital zircon population from the middle portion of the member is mid-

Cretaceous, ca. 103 Ma, with additional peaks at 108 Ma and 111 Ma (Albian) (Fig.2B). 

Nine detrital zircons from the middle portion of Member A were dated by the (U-

Th)/He method at the University of Kansas to constrain the exhumation history of the 

Sheep Pass basin. Four subrounded zircons and five euhedral zircons were selected. 

Results indicate that a majority of the zircons preserve Permian (U-Th)/He ages defining 

a broad peak between 320 and 220 Ma (Fig. 2C) (Appendix II). Three euhedral zircons 

define a Late Cretaceous peak at ca. 81.3 ± 3.7 Ma. 

The lack of a corresponding U-Pb age peak suggests that these zircons crystallized 

prior to the Late Cretaceous and cooled through 180 °C (~6 km burial depth) at 81 Ma. 
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However, while U-Pb and (U-Th)/He dating was performed on zircons obtained from the 

same samples, they were not conducted on the same zircons (Reiners et al., 2005). 81 Ma 

cooling ages may therefore correspond to an unidentified U-Pb age population, although 

the large number of U-Pb detrital zircon analyses (167) performed does not favor this 

interpretation. Results from (U-Th)/He dating demonstrate that source areas for the Sheep 

Pass basin, dominantly upper Paleozoic strata, did not undergo deep stratigraphic or 

tectonic burial during the Sevier orogeny owing to the preservation of Paleozoic (U-

Th)/He zircon cooling ages. 

U-Pb Microbial Carbonate Dating 

Member B was deposited within a shallow freshwater lake (Fouch, 1979) and 

contains abundant microbially laminated limestone. Recent studies of lacustrine 

carbonates have shown that calcite may contain elevated levels of uranium due to 

complexation with organic matter from sources such as microbial mats, and that U-Pb 

ages representing depositional ages may be determined by TIMS (Cole et al., 2005). 

Phosphor imaging of thick sections from carbonates within Member B indicate 

radioactivity localized along microbial laminae, consistent with microbially-induced 

uranium enrichment. A sample from the base of Member B in the type section was 

analyzed by TIMS at Stony Brook University following the method of Cole et al. (2005). 

The resulting errorchron age of 66.1 ±5.4 Ma (MSWD = 34) (Appendix III) corroborates 

earlier Maastrichtian to Paleocene fossil age assignments (Fouch, 1979; Good, 1987). 

Given that Member A has produced two zircon ages of 68 ± 1 Ma and 70 ± 1.3 Ma, and 

that its contact with Member B is gradational, the Sheep Pass basin may have initiated in 
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the Maastrichtian with a significant lag following Campanian (ca. 81 Ma) (U-Th)/He 

detrital zircon cooling. 

New Structural Interpretations 

The Ninemile Fault 

In Ninemile Canyon, ~3 km south of Sheep Pass Canyon, a presently low-angle 

normal fault juxtaposes Ordovician strata in its footwall against upper Paleozoic strata in 

its hanging wall (Fig 3A). Striking NE and dipping 15-25° NW with ~4 km of 

stratigraphic throw, this normal fault was mapped by Kellogg (1964) as the Ninemile 

fault. Ordovician carbonates in the footwall within close proximity to the fault are highly 

sheared and recrystallized, and exhibit extensive calcite veining. A normal, down-to-the-

northwest sense of motion is inferred from the younger over older relationship displayed 

between the respective hanging wall and footwall, in addition to fault surfaces exhibiting 

Riedel shears consistent with normal fault motion and a NW direction of transport. 

Within the hanging wall of the Ninemile fault, the Sheep Pass Formation 

unconformably overlies upper Paleozoic strata. Where exposed in contact above the 

Ninemile fault, the Sheep Pass Formation does not display the extensive calcite veining, 

recrystallization and shearing that is prevalent in footwall strata. Portions of the Sheep 

Pass Formation are cut by splays of the Ninemile fault; however, stratigraphic offset of 

the Sheep Pass Formation along the Ninemile fault is less than 1 km, with juxtaposition 

of lower members against upper members. Stratigraphic offset of Paleozoic strata and the 

Sheep Pass Formation along the Ninemile fault suggests that up to 3 km of stratigraphic 
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throw occurred in the latest Cretaceous and Paleocene, with later reactivation producing 

up to 1 km of additional stratigraphic throw. 

We interpret the Ninemile fault to be the basin-bounding normal fault for the Sheep 

Pass basin. Member A within Sheep Pass Canyon contains megabreccia composed of 

upper Paleozoic lithologies that comprise block-slide deposits extending over 1 km 

laterally in outcrop (Kellogg, 1964). Member A was deposited as a complex of alluvial 

fans that thin and fine to the west (Winfrey, 1960; Fouch, 1979), suggesting derivation 

from highlands to the east. Beds of Member A display dips of 65° to 45° to the east, 

while the dips of upper members of the Sheep Pass Formation average 35° to the east. 

This pattern of fanning dips further suggests the presence of a basin-controlling normal 

fault to the east. 

Intra-basinal Faulting and Influence on Stratigraphy 

Member A displays significant lateral thickness variations controlled by 

syndepositional normal faults. Along the main drainage of Sheep Pass Canyon, Member 

A is -250 m thick (Winfrey 1960; Fouch, 1979). To the south, Member A thins and fines 

abruptly across a series of normal faults that display relatively minor offset, and pinches 

to zero thickness (Fig. 3C). A similar pinch-out occurs across an intrabasinal normal fault 

in Ninemile Canyon. Here up to 100 m of Member A is preserved in the hanging wall, 

but in the footwall Member B is deposited on Pennsylvanian Ely Limestone with 

Member A locally absent (Fig 3A). 

Intrabasinal faults south of Sheep Pass Canyon strike largely E/W and dip moderately 

to steeply north. The syndepositional nature of these faults is evident from the following 

observations: (1) Member A abruptly thins across the faults, (2) several of the faults cut 
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the lower beds of Member A, but beds of Member B overlap the faults, and (3) boulder-

sized clasts and megabreccia common within Member A in Sheep Pass Canyon are 

absent to the south. 

Discussion and Conclusions 

Initiation of the Sheep Pass basin and syndepositional normal faulting within its basal 

member are now bracketed between ca. 81.3 ± 3.7 Ma and 66.1 ±5.4 Ma based on new 

(U-Th)/He detrital zircon cooling ages from Member A and a U-Pb carbonate age from 

the base of the overlying Member B. Megabreccia, fanning of dips, and syndepositional 

intrabasinal normal faults provide strong evidence that the Sheep Pass Formation was 

deposited in an extensional basin setting in response to up to 4 km of normal, down-to-

the-west stratigraphic throw along the Ninemile fault. These data demonstrate that normal 

faulting associated with initiation of the Sheep Pass basin was coeval with mid-crustal 

extension in the Sevier hinterland (Wells et al., 1990; Hodges and Walker, 1992; 

Camilleri and Chamberlain, 1997; Wells and Hoisch, 2008), challenging earlier models in 

which Late Cretaceous hinterland extension was inferred to have been confined to the 

middle crust (Hodges and Walker, 1992). 

Structural and stratigraphic evidence from the Sheep Pass Formation challenges low 

relief interpretations for the Late Cretaceous to early Paleogene Sevier hinterland, at least 

locally (Armstrong, 1972). Armstrong (1972) concluded that the unconformity separating 

the Sheep Pass Formation from upper Paleozoic strata was typically <10°, and 

hypothesized that this relationship was due to low relief at the time of deposition. 

However, Late Cretaceous and Paleogene deposits found directly above this 
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unconformity are commonly composed of coarse fanglomerates with evidence for mass 

wasting. These features are associated with significant relief and steep gradients between 

source areas and basin. New observations suggest that dip discordance between the Sheep 

Pass Formation and underlying upper Paleozoic strata is highly variable and locally 

exceeds 40°. While the modern distribution of the Sheep Pass Formation is sparse, this 

may be due in part to a low preservation potential for high-altitude basins, and to 

subsequent erosion and fragmentation during extension. 

The Late Cretaceous and Paleogene Sevier hinterland is hypothesized to represent an 

orogenic plateau, broadly analogous to the modern Andean Puna-Altiplano (e.g. Coney 

and Harms, 1984; DeCelles, 2004). Widely documented examples of synconvergent 

extension in the Puna-Altiplano and Tibet (Dalmayrac and Molnar, 1981; Molnar and 

Chen, 1983; Allmendinger et al., 1997), and new evidence for synconvergent extensional 

basins within the Sevier hinterland, strengthen this hypothesis. 

Extension in mid-crustal core complexes of the Sevier hinterland closely follows 

maximum Barrovian metamorphism (ca. 100-85 Ma) representing maximum crustal 

thickening (Camilleri and Chamberlain, 1997; McGrew et al., 2000; Wells and Hoisch, 

2008). Latest Cretaceous and Paleogene extension may therefore have been driven by 

gravitational potential energy as hinterland crust reached a maximum sustainable 

thickness and spread laterally toward the lower elevation foreland (Vandervoort and 

Schmitt, 1990; DeCelles, 2004; Piatt, 2007). Initiation of hinterland extension 

corresponds with the Sierran amagmatic gap and the onset of the Laramide orogeny, 

suggesting that lithospheric delamination during flat-slab subduction also played an 

important role in extension (Piatt, 2007; Wells and Hoisch, 2008). 
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While previous workers have interpreted the Sheep Pass Formation as an extensional 

basin system (Winfrey, 1960; Kellogg, 1964; Vandervoort and Schmitt, 1990), these new 

data provide the first evidence directly linking the deposition of the Sheep Pass 

Formation to a surface-breaking extensional fault system of demonstrably Late 

Cretaceous age. Late Cretaceous megabreccia-containing deposits have also been 

documented over 100 km to the west (Vandervoort and Schmitt, 1990), suggesting that 

coeval extensional basin systems were widespread within the Sevier hinterland. Although 

the magnitude of synconvergent upper crustal extension within the Sevier hinterland is 

still poorly understood, its occurrence may have played an important role in the early 

unroofing history of mid-crustal core complexes, and influenced structural patterns 

during later extension in the Basin and Range Province. 

Figure Captions 

Figure 1. A: Generalized geologic map of the Sevier orogen in the vicinity of east-central 

Nevada. LFTB—Luning-Fencemaker thrust belt, CNTB—central Nevada thrust belt, 

REH—Ruby-East Humboldt core complexes, GRA—Grouse Creek-Raft River-Albion 

core complex, SR—Snake Range core complex (modified from DeCelles, 2004). Box 

corresponds to area of Figure IB. B: Geologic map of the southern Egan Range in the 

vicinity of Sheep Pass Canyon (modified from Kellogg, 1964). Boxes correspond to area 

of Figure 3 A (Ninemile Canyon) and 3B (Sheep Pass Canyon). K—Cretaceous. 

Figure 2. Probability density plots for U-Pb and (U-Th)-He detrital zircon age analyses. 

A: U-Pb detrital zircon age plot for Member A of the Sheep Pass Formation. B: U-Pb age 
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plot displaying the Mesozoic age distribution of Member A. C: (U-Th)/He detrital zircon 

age plot for Member A. Mean age of Cretaceous age peak is 81.3 ± 3.7 Ma. 

Figure 3. A: Geologic map of Ninemile Canyon. B: Cross-section from A to A' in Figure 

2B. Sheared blebs of the Mississippian Chainman Shale and Scotty Wash Sandstone form 

discontinuous outcrops along the Ninemile fault. C: Geologic map of Sheep Pass Canyon. 

Abbreviations: Cretaceous = K, Formation = Fm. 
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CHAPTER 3 

PALEOGEOGRAPHIC ISOLATION OF THE CRETACEOUS TO EOCENE SEVIER 

HINTERLAND, EAST-CENTRAL NEVADA: INSIGHTS FROM U-Pb AND 

(U-Th)/He DETRITAL ZIRCON AGES OF HINTERLAND STRATA 

Abstract 

The Late Cretaceous to Paleogene Sevier hinterland of east-central Nevada is widely 

regarded as an ancient orogenic plateau that has since undergone topographic collapse. 

New U-Pb and (U-Th)/He detrital zircon age data from Cretaceous to Eocene 

sedimentary strata of east-central Nevada shed new light on the tectonic and 

paleogeographic evolution of the Sevier plateau. Precambrian detrital zircon populations 

are dominant within Sevier hinterland strata, including the Early Cretaceous, syn-

contractional Newark Canyon Formation, and the latest Cretaceous to Eocene, syn-

extensional Sheep Pass Formation. These results reflect recycling of local Paleozoic 

sedimentary strata. Subordinate Mesozoic zircon populations are derived from backarc 

volcanic centers of latest Jurassic and Early Cretaceous age. The local onset of late 

Eocene syn-extensional volcanism is recorded within sections of hinterland strata 

containing ca. 36 Ma detrital zircon age peaks. The Sheep Pass Formation type section 

records Permian, Early Cretaceous, and Campanian (U-Th)/He cooling ages. Ca. 80 Ma 

cooling ages within the Sheep Pass Formation type section suggest a link with hinterland 

mid-crustal extension, and initiation of the Sheep Pass basin. 
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Sevier hinterland deposits of east-central Nevada lack significant Early Mesozoic and 

Late Cretaceous zircon populations common in terranes of western Nevada and the Sierra 

Nevada magmatic arc. Long-term paleogeographic evolution of the Sevier Plateau 

involved isolation through a combination of high relief and rugged topography related to 

Early Cretaceous shortening, and later, through development of latest Cretaceous to 

Paleogene extensional basins. These data provide support for previous interpretations that 

the Sevier hinterland represents an ancient high-elevation orogenic plateau. 

Introduction 

The Late Cretaceous to Paleogene hinterland of the noncollisional Sevier retroarc fold 

and thrust belt is widely hypothesized to represent an ancient high-altitude orogenic 

plateau similar to the modern Andean Puna-Altiplano (Coney and Harms, 1984; Jordan 

and Alonso, 1987; Allmendinger, 1992; Jones et al., 1998; Sonder and Jones, 1999; 

House et al., 2001; DeCelles, 2004). Widely scattered outcrops of Early Cretaceous to 

Eocene sedimentary strata across east-central Nevada record a transition from Early 

Cretaceous contraction and orogenic uplift (Allmendinger, 1992; Taylor et al., 2000; 

DeCelles, 2004), to Late Cretaceous-Paleogene extension and collapse of the Sevier 

orogen (Vandervoort and Schmitt, 1990; Druschke et al., in press). While numerous 

studies within the Sevier foreland fold-thrust belt and basin system have established a 

pattern of sediment accumulation, development of regional unconformities, and evolving 

provenance in response to changes in the kinematics of the contractional wedge (e.g., 

Wiltschko and Dorr, 1983; Allmendinger, 1992; DeCelles, 1994; DeCelles and Currie, 

1996; DeCelles et al., 1995; Lawton et al, 1997; DeCelles, 2004, Horton et al., 2004a) 
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the tectonic and paleogeographic implications of coeval sedimentary deposits within the 

Sevier hinterland are poorly understood by comparison. 

The Sevier hinterland west of the foreland fold-thrust belt has been interpreted as a 

tectonically quiescent region dominated by low topographic relief (Armstrong, 1968, 

1972; Gans and Miller, 1983; Miller and Gans, 1989; DeCelles, 2004). Low-relief 

interpretations have been developed in part on the generalization that hinterland deposits 

display less than 10° of dip discordance with underlying upper Paleozoic strata 

(Armstrong, 1968, 1972; Gans and Miller, 1983). In accordance with these 

interpretations, the dominant structural style of the Late Cretaceous to Paleogene Sevier 

hinterland has been characterized as broad, open folds (Armstrong, 1968; 1972; Gans and 

Miller, 1983). Tectonic quiescence is interpreted to have persisted until the onset of late 

Eocene (38-35 Ma) magmatism and associated extension in east-central Nevada (Gans et 

al, 1989; Armstrong and Ward, 1991; Axen et al., 1993; Gans et al., 2001), with high 

topographic relief evolving in response to Neogene establishment of the Basin and Range 

(Dickinson, 2002, 2006). 

Despite interpretations of tectonic quiescence, exposures of coeval mid-crustal rocks 

represented by the Grouse Creek-Raft River-Albion, Ruby-East Humboldt and Snake 

Range metamorphic core complexes (Fig. 1) record a dynamic tectonic history within the 

Late Cretaceous to Paleogene Sevier hinterland. Peak Barrovian metamorphism occurred 

within hinterland core complexes during the Late Cretaceous ca. 100-75 Ma, and is 

interpreted to represent maximum crustal thickening (Miller et al., 1988; Miller and 

Gans, 1989, Wells, 1997; Lewis et al., 1999; McGrew et al., 2000; Sullivan and Snoke, 

2007, Wells and Hoisch, 2008). Following peak metamorphism, an estimated 14 km of 
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mid-crustal extensional thinning occurred within the Grouse-Creek-Raft-River-Albion 

and Ruby-East Humboldt core complexes beginning in the Late Cretaceous to (ca. 75-67 

Ma) based on Barrovian metamorphic mineral assemblages and thermochronometry 

(Wells et al., 1990; Hodges and Walker, 1992; Camilleri and Chamberlain, 1997; Wells 

et al., 1998; Harris et al., 2007; Wells and Hoisch, 2008). Within the Snake Range core 

complex, clear evidence for Late Cretaceous mid-crustal extension has not been 

documented, although sparse thermochronometry and U-Pb monazite ages may indicate 

Late Cretaceous to early Paleogene tectonic unroofing (Lewis et al., 1999). By middle to 

late Eocene time (42-36 Ma), all three core complexes experienced significant extension 

followed by voluminous magmatism (Sullivan and Snoke, 2007). Despite evidence for 

significant mid-crustal extension, Hodges and Walker (1992) hypothesized that given the 

lack of evidence for significant latest Cretaceous to early Paleogene surface breaking 

normal faults within the Sevier hinterland, the upper crust was decoupled from the mid-

crust and behaved either passively, or experienced compression. 

Stratigraphic studies of fragmented but widespread Cretaceous to Eocene hinterland 

sedimentary deposits of east-central Nevada suggest that extension may have affected the 

upper crust of the Sevier hinterland beginning in latest Cretaceous time, synchronous 

with continued Late Cretaceous to Early Eocene contraction within the Sevier foreland to 

the east. While Early Cretaceous hinterland deposits are interpreted to have been 

deposited within piggy-back basin systems (Vandervoort, 1987; Vandervoort and 

Schmitt, 1990), deposition of Late Cretaceous to Eocene strata within the Sevier 

hinterland is interpreted to have occurred in extensional basins (Winfrey, 1958, 1960; 

Kellogg, 1964; Vandervoort and Schmitt, 1990; Fouch et al , 1991; Potter et al., 1995; 
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Dubiel et al., 1996). Recently, syndepositional, surface-breaking normal faults of latest 

Cretaceous to Paleocene age have been documented within the south Egan Range type 

section of the Sheep Pass Formation, supporting a latest Cretaceous timing for the 

transition from contraction to extension, and suggesting that mid-crustal extension was 

coupled with upper crustal extension in the Sevier hinterland (Druschke et al., in press). 

In this interpretation, Late Cretaceous to Eocene basins of the Sevier hinterland are 

potentially analogous to modern extensional basin systems documented within the 

hinterlands of the modern Puna-Altiplano and Tibetan Plateaus (Dalmayrac and Molnar, 

1981; Molnar and Chen, 1983; Allmendinger et al., 1997; Kapp et al , 2008). 

This study presents new LA-ICP-MS U-Pb detrital zircon geochronology from the 

Early Cretaceous Newark Canyon Formation and the latest Cretaceous to Eocene Sheep 

Pass Formation of east-central Nevada (Fig. 2). Results indicate the presence of 

Precambrian, Paleozoic, and subordinate Mesozoic to Cenozoic detrital zircon 

populations that evolved in response to changing tectonics and paleogeography within the 

Sevier hinterland from the Early Cretaceous to late Eocene. These new detrital zircon 

ages provide depositional age constraints for units previously lacking absolute age 

control, as well as a crucial test for previous lithostratigraphic correlations of highly 

dismembered Sevier hinterland strata. In addition, new (U-Th)/He detrital zircon 

thermobarometry of the Sheep Pass Formation and underlying Mississippian strata help 

to constrain the Late Paleozoic to Paleogene shallow crustal thermal history of east-

central Nevada. Together these data offer new insight into the tectonic and 

paleogeographic evolution of the Sevier hinterland, and provide a proxy for long-term 

processes affecting modern orogenic hinterland regions. 
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Geologic Background 

Pre-Mesozoic Framework 

The Pre-Mesozoic tectonic framework of the western U.S. strongly influenced the 

provenance of Sevier hinterland deposits, given that reworked Paleozoic lithologies are a 

dominant constituent of Cretaceous to Paleogene siliciclastic deposits within east-central 

Nevada (Nolan et al., 1956; Winfrey, 1958, 1960; Fouch, 1979; Vandervoort, 1987). 

Initiation of rifting of western Laurentia in the Late Precambrian resulted in the 

deposition of voluminous Neoproterozoic to lower Cambrian siliciclastic syn-rift to early 

post-rift strata derived primarily from the adjacent craton, followed by development of a 

carbonate-dominated passive margin that persisted from mid-Cambrian to latest 

Devonian time in eastern Nevada (Stewart and Poole, 1974; Poole et al., 1992). 

Subduction initiated outboard of the western Laurentian margin during the Late 

Ordovician to Silurian, and western Nevada transitioned to a backarc basin setting 

bordered by fringing island arcs to the west and a carbonate ramp/shelf system to the east 

(Burchfiel et al., 1992; Poole et al., 1992; Dickinson, 2000). 

Successive slab-rollback within the fringing arc system led to initiation of the Antler 

backarc fold-thrust belt in latest Devonian time (Burchfiel, 1992; Dickinson, 2000, 2006). 

As a result, dominantly fine-grained deep marine strata of the Roberts Mountain 

allochthon derived from arc terranes to the west and the Laurentian craton to the east 

were thrust up to 200 km eastward onto the adjacent carbonate shelf (Roberts et al., 1958; 

Speed and Sleep, 1982; Poole et al., 1992). A thick succession of latest Devonian to Early 

Mississippian clastic sediments, derived from the Roberts Mountain allochthon, was shed 

eastward into the Antler foreland basin system (Roberts et al., 1958; Speed and Sleep, 
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1982; Goebel, 1991; Poole et al., 1992; Miller et al., 1992; Giles and Dickinson, 1995). 

Intermittent backarc contraction following the initial Antler orogenic pulse controlled 

deposition of widespread middle Mississippian to Early Permian mixed clastic-carbonate 

strata in eastern Nevada (Miller et al , 1992; Trexler et al; 2004; Dickinson, 2000; 2006). 

Late Paleozoic backarc contraction culminated in the Permian to Early Triassic Sonoma 

orogeny, during which Cambrian to Permian deep marine and volcaniclastic backarc 

strata comprising the Golconda allochthon were thrust up to 50 km eastward over 

portions of the older Antler fold-thrust belt (Oldow, 1984; Miller et al., 1992, Dickinson, 

2000, 2006). In total, tectonic events initiated in pre-Mesozoic time resulted in the 

deposition of a 13-15 km thick, mixed-sedimentary succession of Neoproterozoic to 

Early Triassic age, which presently dominates the geology of east-central Nevada 

(Stewart and Poole, 1974; Poole et al., 1992; Miller et al., 1992). 

Mesozoic to Cenozoic Tectonic Framework 

Following the Sonoma orogeny, Middle to Late Triassic backarc extension and 

thermal subsidence resulted in the establishment of a backarc marine basin in western 

Nevada and the deposition of upwards of 6. km of Triassic to Early Jurassic mixed 

carbonate and volcaniclastic marine strata (Speed, 1978; Wyld, 2000). Final closure of 

the backarc seaway occurred following establishment of the Middle Jurassic Luning-

Fencemaker retroarc fold and thrust belt in western Nevada, during which time Triassic 

to Jurassic backarc basin strata were thrust eastward over the Golconda allochthon 

(Oldow, 1984; Wyld, 2001; Wyld et al., 2002; DeCelles, 2004). Contraction along the 

Luning-Fencemaker fold-thrust belt was followed by a period of widespread Middle-to-

Late Jurassic backarc volcanism (165-145 Ma) (Smith et al., 1993; du Bray, 2007), 

26 



possibly related to the opening of an asthenopheric window following foundering of the 

subducting Mezcalera Plate (Dickinson, 2006). 

A period of waning magmatism and westward arc migration followed in the earliest 

Cretaceous, potentially representing a lull in retroarc contraction (Armstrong and Ward, 

1993; DeCelles, 2004; Dickinson, 2006). The Early Cretaceous also marks a period of 

dextral strike/slip faulting within the Sierra magmatic arc and hinterland of western 

Nevada, with estimates of 200 to 400 km of dextral offset (Schweikert and Lahren, 1990; 

Dickinson, 2000; Wyld and Wright, 2001; Martin et al., in press). In northwestern 

Nevada, the terriginous King Lear Formation was deposited during Barremian time (ca. 

123-125 Ma, Quinn et al., 1997) within a series of transtensional basins that received 

sediment from the coeval arc to the west, as well as from highlands to the east that 

contained Paleozoic strata (Martin et al., in press). By Aptian time, the locus of retroarc 

contraction had migrated eastward to the Sevier foreland fold and thrust belt of western 

Utah (DeCelles et al., 1995), while several hundred km to the west in the Sevier 

hinterland, the central Nevada fold-thrust belt experienced coeval contraction as recorded 

by deposition of the Albian-Aptian Newark Canyon Formation (Vandervoort and 

Schmitt, 1990; Allmendinger, 1992; Carpenter et al., 1993; Taylor et al, 2000). While 

pre-Late Cretaceous paleoelevation of the Sevier hinterland is poorly constrained, 

relatively high relief is hypothesized to have been reached by the Early Cretaceous 

(DeCelles, 2004). Deformation along the central Nevada fold-thrust belt had ceased by 

the mid-to-Late Cretaceous, as documented by the emplacement of undeformed plutons 

(ca. 100-85 Ma) that cut earlier compressional structures (Taylor et al., 2000). 
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The Late Cretaceous to early Paleogene marks an increase in the rate of shortening 

across the foreland of the Sevier orogen as recorded by coeval shortening in the thin-

skinned fold and thrust belt, and basement-involved deformation in the Laramide 

foreland to the east (DeCelles, 2004). Onset of Laramide deformation coincided with a 

cessation of volcanism within the Sierra Nevada magmatic arc and rapid eastward 

migration of the magmatic front, brought on by flattening dip of the subducting Farallon 

Plate (Dickinson and Snyder, 1978). Late Cretaceous (U-Th)/He apatite cooling ages and 

paleodrainage profiles preserved in deeply incised canyons of the Sierra Nevada have 

been interpreted as antecedent river systems similar to modern western Andean 

drainages, and suggest that a > 3km plateau lay to the east (House et al., 2001). Similar 

paleoelevation estimates of 3 to 5 km for the Late Cretaceous to Paleogene Sevier 

hinterland have been based on comparison to the modern Puna-Altiplano and Tibetan 

Plateaus (Coney and Harms, 1984; Dilek and Moores, 1999; DeCelles, 2004). 

Throughout much of the Sevier hinterland, the Late Cretaceous (ca. 80-75 Ma) marks a 

period of widespread intrusion of peraluminous granitic plutons at mid-crustal levels 

(Miller and Bradfish, 1980; Lee et al., 1986; du Bray, 2007), which overlap temporally 

and spatially with mid-crustal extension in the Grouse Creek-Raft River-Albion and 

Ruby-East Humboldt core complexes (Wells et al, 1990; Hodges and Walker; 1992; 

Camilleri and Chamberlain, 1997; Harris et al., 2007; Wells and Hoisch, 2008). Mid-

crustal extension has been attributed to gravitational spreading of overthickened Sevier 

hinterland crust towards the low-elevation foreland (Hodges and Walker, 1992; Jones et 

al., 1998; DeCelles, 2004), or lithospheric delamination and uplift coupled with thermal 
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weakening of the middle crust during the transition to flat-slab subduction (Wells and 

Hoisch, 2008). 

Thermochronometry of mid-crustal rocks in the Ruby-East Humboldt Range suggests 

additional early Paleogene cooling from 63-49 Ma (Paleocene to middle Eocene) 

(McGrew and Snee, 1994; McGrew et al., 2000), and from 57-46 Ma (late Paleocene to 

middle Eocene) within the northern Snake Range (Lee and Sutter, 1991; Lee, 1995; 

Lewis et al., 1999). To the northeast of the Snake Range core complex, the Paleocene(?) 

to early Eocene White Sage Formation of west-central Utah is interpreted to have been 

deposited within an extensional basin setting (Potter et al., 1995; Dubiel et al., 1996). 

Direct evidence for post Late Cretaceous contraction within the Sevier hinterland is 

limited to post-early Eocene, pre-late Eocene folding of portions of the White Sage 

Formation (Potter et al., 1995), although no distinction was made in this study between 

regional shortening deformation and more localized contraction due to extensional fault-

propagation. Potential alternation of contraction and extension in the Sevier hinterland is 

supported by the structural sequence and by PT paths from the Grouse Creek-Raft River-

Albion core complex indicating an episode of middle Eocene shortening (Wells, 1997; 

Harris et al., 2007). 

Eastward-propagating contraction and syntectonic sedimentation along the Sevier 

foreland fold-thrust belt and basin system of central Utah continued into the early Eocene 

(DeCelles, 1994; Lawton et al., 1997; DeCelles, 2004). However, by the middle Eocene 

(ca. 49 Ma), contraction within the Sevier foreland had ceased, as recorded by a change 

from shortening to extension in the fold-thrust belt locally over a time interval as short as 

1-2 m.y. (Constenius, 1996). Asymmetrical foundering of the Farallon slab initiated 
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southward propagating extension and magmatism within the Sevier hinterland of the 

Pacific Northwest in the Early Eocene (Humphreys, 1995). These developments were 

partially coeval with westward extensional collapse of the Sevier fold-thrust belt 

(Constenius, 1996; DeCelles, 2004). Southward-progressing, synextensional magmatism 

is documented in northeastern Nevada beginning in the middle Eocene ca. 43-41 Ma 

(Armstrong and Ward, 1991; Brooks et al, 1995). Synextensional magmatism 

subsequently affected east-central Nevada beginning in the late Eocene ca. 38-35 Ma 

(Gans et al., 1989; Axen et al., 1993; Gans et al., 2001). Plant fossils within the middle 

Eocene Copper basin are interpreted to represent a paleoelevation of approximately 2 km 

within the Sevier hinterland of north-central Nevada (Wolfe et al., 1998). 8180 analyses 

of lacustrine carbonate within the Elko Formation have been interpreted as recording a 

rise in elevation of up to 2 km (to 4 or 5 km) following initiation of middle to late Eocene 

volcanism in north-central Nevada (Horton et al., 2004b). 

Cretaceous-Eocene Hinterland Stratigraphy 

Newark Canyon Formation 

The Newark Canyon Formation consists of scattered exposures of fluvial and 

lacustrine deposits extending from the Piflon Range and Cortez Mountains of north-

central Nevada to the Diamond Mountains, Fish Creek, and Pancake Ranges of east-

central Nevada (Fig. 2). Within the Diamond Mountains type section, the Newark 

Canyon Formation is approximately 500 m thick and is composed of alternating beds of 

conglomerate, sandstone, siltstone and carbonaceous mudstone deposited in fluvial, 

alluvial and lacustrine settings (Nolan et al., 1956) (Fig. 3). An Early Cretaceous age is 
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assigned on the basis of floral and invertebrate fossil assemblages (Aptian-Albian ca. 121 

to 112 Ma) (Nolan et al , 1956; Smith and Ketner, 1976; Swain, 1999). Apatite fission-

track analyses from Newark Canyon Formation deposits of the Fish Creek Range indicate 

Aptian exhumation (116 ± 13 Ma) (Carpenter et al., 1993). 

Within east-central Nevada, the Newark Canyon Formation was deposited 

unconformably on upper Paleozoic strata, although in north-central Nevada it was 

deposited in part on upper Jurassic volcanic strata (Smith and Ketner, 1976). Modal 

analyses of sandstone within the Newark Canyon Formation indicate a recycled orogen 

provenance with no identifiable arc-sourced detritus; conglomerate clast populations are 

similarly composed of reworked local Permian to Ordovician sedimentary units 

(Vandervoort, 1987). The tectonic setting of the Newark Canyon Formation is interpreted 

to have been a series of piggyback basins due to the interbedding of coarse braided 

fluvial and lacustrine deposits, and the presence of east-vergent folds (Vandervoort, 

1987; Vandervoort and Schmitt, 1990). In the Fish Creek Range and Diamond 

Mountains, the Newark Canyon Formation is overlain in part by megabreccia composed 

of upper Paleozoic lithologies, and in part by lacustrine limestone containing 

Maastrichtian to Paleocene floral and invertebrate fossils. The fossils suggest that Upper 

Cretaceous megabreccia and laucstrine deposits of the Fish Creek Range are correlative 

to the basal members of the Sheep Pass Formation type section (Fouch et al., 1979; 

Vandervoort and Schmitt; 1990). 

Sheep Pass Formation 

The Sheep Pass Formation forms a series of isolated exposures located throughout 

east-central Nevada, with outcrop and subcrop scattered over an area of > 15,000 km 

31 



(Fouch etal., 1991). The Sheep Pass Formation was originally designated to describe 

sections of non-tuffaceous fluvial, alluvial and lacustrine strata located in the Pancake, 

Grant and Egan Ranges. The type section is at Sheep Pass Canyon in the southern Egan 

Range (Winfrey, 1958, 1960) (Fig. 3). Six members (A-F) are recognized within the 

Sheep Pass Formation type section (Winfrey 1958, 1960; Fouch, 1979). 

Sparse Maastrichtian detrital zircons (68-70 Ma) analyzed within the basal 

conglomeratic member (A), and a 66.1 ± 5.4 Ma U-Pb carbonate age from the lower 

fossiliferous lacustrine limestone member (B) indicate a Maastrichtian age for basal 

members of the Sheep Pass Formation in the type section (Druschke et al., in press). A 

Maastrichtian to late Paleocene age (70-55 Ma) had been previously assigned to 

Members B-C in the type section on the basis of palynomorphs and invertebrates, while 

fossils within Member E of the type section indicate a middle Eocene age (Bridgerian, 

50.5-45.4 Ma) (Fouch, 1979; Good, 1987; Swain, 1999). No major unconformities have 

been documented within the Sheep Pass Formation type section (Winfrey, 1958, 1960; 

Kellogg, 1964; Fouch, 1979), although it is possible that the sharp transition from the 

latest Cretaceous-Paleocene members (A-C) to middle Eocene members (D-F) represents 

a poorly exposed unconformity. The Sheep Pass Formation is unconformably overlain by 

the Garrett Ranch Group, a thick succession of late Eocene to Oligocene volcanic tuff, 

welded tuff, small-volume basalt and andesite flows, and volcaniclastic sediment 

(Winfrey, 1958; Hose et a l , 1976). 

The Sheep Pass Formation unconformably overlies sedimentary strata of Devonian to 

Permian age throughout much of its outcrop area. Within the type section, the Sheep Pass 

Formation is deposited upon mixed siliciclastic-carbonate units of Mississippian to 
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Pennsylvanian age, and to the south is deposited upon undivided Permian strata (Kellogg, 

1963, 1964). Conglomerate clast lithologies within the Sheep Pass Formation are 

dominated by upper Paleozoic carbonate lithologies, and it has been reported that no 

clasts older than Devonian age are discernable (Winfrey, 1958, 1960; Kellogg, 1964; 

Fouch, 1979). This observation suggests that source areas for clastic sediment within the 

Sheep Pass Formation consisted entirely of upper Paleozoic units, and that lower 

Paleozoic strata were not exposed locally during the Late Cretaceous and early 

Paleogene. 

An extensional half-graben basin setting has been hypothesized for the Sheep Pass 

Formation based on the dominance of lacustrine strata and general westward thinning of 

the Sheep Pass Formation (Winfrey 1958, 1960). The presence of megabreccia within the 

Sheep Pass Formation type section has been cited as evidence for an extensional basin 

setting (Kellogg, 1964). This interpretation is reinforced by the presence of megabreccia 

and lacustrine limestone deposits of Maastrichtian to Paleocene age in the Fish Creek 

Range (Fig. 2) that unconformably overly the Newark Canyon Formation; Vandervoort 

and Schmitt (1990) interpreted these deposits to represent a transition from contraction to 

extension coeval with Late Cretaceous mid-crustal extension in the Sevier hinterland. 

More recently, megabreccia deposition and slip on a series of surface-breaking, 

syndepositional normal faults within the Sheep Pass Formation type section have been 

shown to be Maastrichtian in age (Druschke et al., in press). Deposition of the Sheep Pass 

Formation within the type section is interpreted to have been controlled by up to 3 km of 

latest Cretaceous to Paleocene, down-to-the-northwest stratigraphic throw along the 
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Ninemile fault, presently a low-angle normal fault exposed in the southern Egan Range to 

the southeast of the Sheep Pass Formation type section (Druschke et al., in press). 

Eocene Volcanism and "Tuffaceous" Sheep Pass Formation 

Throughout much of its outcrop area the Sheep Pass Formation is unconformably 

overlain by regionally extensive ash-flow tuff units that mark a major change from 

lacustrine deposition to the local onset of late Eocene volcanism (Fouch, 1979). In the 

southern Egan Range the Sheep Pass Formation is unconformably overlain by >500 m of 

the volcanic Garrett Ranch Group, with 10° of angular discordance between these units 

(Kellogg, 1964). In Sheep Pass Canyon, the basal member of the Garrett Ranch Group is 

a conglomerate >150 m thick, designated the Stinking Spring Conglomerate (Kellogg, 

1964). The Stinking Spring Conglomerate is thickest where it overlies the Sheep Pass 

Formation type section, and thins significantly to the north and south. Overlying the 

Stinking Spring Conglomerate is a ash-flow tuff unit that Hose et al., (1976) correlated to 

the Stone Cabin Formation. The Stone Cabin Formation forms the basal welded tuff 

member of the Garrett Ranch Group within the Grant and Pancake Ranges to the east; it 

has produced a late Eocene 40Ar/39Ar sanidine age of 35.3 ± 0.8 Ma (Radke, 1992). 

The Stinking Spring Conglomerate is dominantly a carbonate-clast conglomerate 

similar to the basal Member A of the Sheep Pass Formation, but it contains a much more 

diverse clast population. Clasts of local Ordovician to Devonian formations are relatively 

abundant within the Stinking Spring Conglomerate, as are clasts derived from the 

underlying Sheep Pass Formation (Kellogg, 1964). Clasts are dominantly cobble-sized, 

though boulders up to 2 m in diameter are present. In the upper portion of the Stinking 

Spring Conglomerate, there is a series of beige sandstone lenses containing detrital 
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sanidine and biotite, indicating a tuffaceous component. Approximately 20 km to the 

south of Sheep Pass Canyon, the basal portion of the Garrett Ranch Group consists of 

megabreccia and block-slide deposits derived from Pennsylvanian limestone and 

Mississippian sandstone (Kellogg, 1964). These mass-movement deposits unconformably 

overlie portions of the Sheep Pass Formation that are late Paleocene age, based on 

molluscan fossil assemblages (Good, 1987). These in turn are overlain by late Eocene to 

Oligocene tuffs of the Garrett Ranch Group. 

Although the Sheep Pass Formation, as originally defined by Winfrey (1958, 1960) 

lacks an obvious volcaniclastic component, the definition was later expanded to include 

lacustrine and fluvial deposits within the central Egan Range that are in part tuffaceous 

(Brokaw, 1967; Hose et al., 1976). Elderberry Canyon, located in the central Egan Range 

immediately south of Ely, Nevada (Fig. 2), contains approximately 120 m of 

conglomerate and lacustrine limestone that thickens toward the south. This interval is 

non-volcaniclastic in its lower part, but it grades upward into increasingly tuffaceous 

lacustrine deposits (Fouch, 1979). A mammalian fossil assemblage in the lower, non-

volcaniclastic portion of the Elderberry Canyon section establishes a middle Eocene 

depositional age (Bridgerian 50.5-45.4 Ma), indicating a potential age overlap with the 

upper members of the Sheep Pass Formation in the type section (Fouch, 1979, Good, 

1987, Emry, 1990). On the basis of similarity of depositional facies and possible age 

overlap, Fouch (1979) correlated the Elderberry Canyon section to the Sheep Pass 

Formation as "type 2" (tuffaceous), although the tuffaceous interbeds were not dated. 

Fouch (1979) also expanded the definition of "type 2" Sheep Pass Formation deposits 

to include conglomerate and lacustrine limestone of the Kinsey Canyon Formation of 
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Young (1960) within the central Schell Creek Range, fluvial conglomerate exposed in 

Murphy Wash of the southern Snake Range, and scattered exposures of tuffaceous 

lacustrine and fluvial strata in the Grant and Pancake Ranges (Fig. 2). Each of these 

sections unconformably overlie upper Paleozoic strata, and are in turn overlain by late 

Eocene to Oligocene tuff units. In the Grant and Pancake ranges, tuffaceous Sheep Pass 

Formation strata are overlain by the Stone Cabin Formation, and in the Schell Creek 

Range the Kinsey Canyon section is overlain by the 35.5 ± 0.5 Ma (K-Ar) Kalamazoo 

Tuff (Hagstrum and Gans, 1989). In Elderberry and Sawmill canyons of the central Egan 

Range, the Sheep Pass Formation is overlain by the 32.8 ±1 .1 Ma (K-Ar) Charcoal 

Ovens Tuff (McKee et al., 1976). 

Conglomeratic clasts within tuffaceous Sheep Pass Formation sections are dominated 

by upper Paleozoic lithologies similar to conglomeratic intervals within the Sheep Pass 

Formation type section (Fouch, 1979). However, a greater abundance of clasts derived 

from lower Paleozoic units is apparent in "tuffaceous Sheep Pass Formation" sections. 

Within Eocene conglomeratic sections of the Schell Creek Range, Neoproterozoic to 

lower Cambrian Prospect Mountain Quartzite and distinctive Late Jurassic granitic clasts 

have been identified and are interpreted to have been derived from the Snake Range to 

the east (Drewes, 1967; Gans et al., 1989). The presence of Prospect Mountain Quartzite 

and Jurassic granitoid clasts suggests up to 7 km of unroofing within the Snake Range by 

the late Eocene (38-35 Ma) (Gans et al., 1989). Middle Eocene lacustrine limestone of 

the Sheep Pass Formation immediately east of Ely, Nevada (Good, 1987), is overlain by a 

series of synextensional tuff units that bracket a period of rapid late Eocene extension 

between 37.56 ± 0.03 Ma and 36.68 ± 0.04 Ma (40Ar/39Ar sanidine) (Gans et al., 2001). 
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Methods 

U-Pb Zircon Geochronology 

A total of 15 samples were selected from six stratigraphic sections of Early 

Cretaceous to late Eocene age within the Sevier hinterland of east-central Nevada (Fig. 

2), and we report 1,307 U-Pb detrital zircon age analyses. One sample was obtained from 

Mississippian Scotty Wash Sandstone in Sheep Pass Canyon, which is overlain by and 

comprises one of the most common siliciclastic clast types in conglomerate exposures of 

the Sheep Pass Formation type section. Two samples were collected from the Diamond 

Mountains type section of the Early Cretaceous Newark Canyon Formation. Eight 

samples were collected from the Late Cretaceous to middle Eocene Egan Range type 

section of the Sheep Pass Formation, which comprises the thickest and best exposed 

section of latest Cretaceous through Eocene strata regionally (Fig. 3). Two samples were 

obtained from the Stinking Spring Conglomerate, the basal member of the Garrett Ranch 

Group. Lastly, four sections of tuffaceous fluvial and lacustrine strata correlated to the 

Sheep Pass Formation by Fouch (1979) were sampled (sample locations DW, SC, KC, 

MW shown on Fig. 2). Two to five kg of material was collected per sample depending on 

the textural and compositional maturity of the sandstone, which ranged across a broad 

spectrum from well-sorted quartz arenite to poorly sorted litharenite. 

Zircon separates were processed by crushing and Wifley table gravity separation, 

followed by standard heavy liquid and magnetic separation. For each sample, a large 

fraction of the recovered zircons was mounted in epoxy resin and polished. Typically 100 

zircons were analyzed per sample, with the beam centered on the core of grains to avoid 

metamorphic overgrowth or alteration. Fractured grains were generally avoided due to 
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possible Pb loss from leaching or alteration along fractures. In general, 10-15% of the 

analyses per sample displayed strong discordance, and these results were discarded. 

Analyses were performed at the University of Arizona LaserChron Center with a 

Micromass Isoprobe multicollector-inductively coupled plasma-mass spectrometer (ICP-

MS) equipped with a New Wave DUV 193 nm Excimer laser ablation system. Laser 

beam diameter was 35 \±m with an output energy of 32 mJ (at 22kV) and a pulse of 8 Hz. 

An in-house zircon standard with a concordant TIMS age of 563.5 ±3.2 Ma (Dickinson 

and Gehrels, 2003) was analyzed once after every five unknowns. In addition, U and Th 

concentrations were monitored by analyzing the National Institute of Standards 610 glass 

standard. 

Age probability plots in this study were constructed using the z"°Pb/"°U age for 

zircons younger than 1 Ga, and the Pb/ Pb age for grains older than 1 Ga. For 

Paleoproterozoic and Archean grains, ages with >20% discordance or >10% reverse 

discordance were considered unreliable and were discarded. A population is considered 

statistically robust if three or more different grains within one sample yield overlapping 

Pb/ U or Pb/ Pb ages. For samples containing significant population clusters of 

euhedral, potentially tuff-sourced zircons, the TuffZirc (Ludwig and Mundil, 2002) age 

extractor program was used to evaluate the probability of a single source for age clusters 

within 90% statistical confidence. While the TuffZirc ages typically represent a reworked 

volcaniclastic/epiclastic component within mixed-sourced sedimentary strata, we 

generally interpret these as depositional ages within the range of 2a statistical 

uncertainty. Regardless, TuffZirc ages indicate the maximum age of deposition. 
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Additional data tables used for the construction of Concordia diagrams, probability plots 

and TuffZirc ages are presented in the appendices (Appendix I). 

("U-ThVHe Zircon Thermochronology 

Zircon is a commonly used (U-Th)/He thermochronometer that is characterized by a 

He closure temperature of ~180-200°C, assuming a cooling rate of 10°C/m.y. (e.g., 

Reiners et al., 2005) and a partial retention zone spanning a temperature range from 

-120-180°C (e.g., Stockli, 2005; Wolfe and Stockli., 2008). For this study, a total of 52 

zircons from the Sheep Pass Formation, Scotty Wash Sandstone, and Stinking Spring 

Conglomerate were selected for (U-Th)/He thermochronology at the University of 

Kansas. Zircons were selected from the remaining unmounted fractions of samples that 

had previously undergone U-Pb dating, but were not performed on zircons that had been 

previously dated (Reiners et al., 2002). Heavy mineral separates from the Sheep Pass 

Formation were also screened for apatite, but apatite crystals were found to be sparse and 

too highly abraded to be amenable to (U-Th)/He dating. 

Zircons were handpicked, and selected based on minimum dimensions of 70 urn 

across a/b axes, between 80-200 um along the c axis, and on the lack of visible fractures 

and minimal inclusions. Zircons were also selected based on two general morphologies; 

euhedral to subhedral zircons that typically have Mesozoic U-Pb crystallization ages, and 

subrounded zircons that typically have Precambrian crystallization ages (Fig. 4). Roughly 

2/3 of the zircons selected were of the subrounded type based on the fact that zircons with 

Precambrian crystallization ages are dominant in the Sheep Pass Formation, comprising 

roughly 65% of the population. All analyses were carried out on single grains. 
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All (U-Th)/He age determinations were carried out at the University of Kansas using 

laboratory procedures described in Biswas et al. (2007). Selected zircons were wrapped 

in Pt foil, heated for 10 minutes at ~1300°C and reheated until >99% of the He was 

extracted. All ages were calculated using standard a-ejection corrections using 

morphometric analyses (Farley et al., 1996; Reiners, 2005). After laser heating, zircons 

were unwrapped from Pt foil and dissolved using HF-HNO3 and HC1 pressure vessel 

digestion procedures. U and Th concentrations were determined by isotope dilution ICP-

MS analysis. Uncertainties (2a) of single-grain ages reflect the reproducibility of 

replicate analyses of laboratory standard samples (Farley et al., 2001) and are ~8% (2a) 

for zircon He ages. All single grain zircon (U-Th)/He data tables are presented in the 

appendices (Appendix II). 

Results 

U-Pb Detrital Zircon Geochronology 

Results of LA-ICP-MS U-Pb detrital zircon dating yielded crystallization ages 

ranging from Archean to Late Cretaceous, with a significant component of Eocene 

zircons from samples collected from the "tuffaceous" Sheep Pass Formation at several 

localities (Fig. 5). The detrital zircon age distribution for each sample and significant age 

peak determinations are displayed as a series of probability-density plots (Fig. 6). 

Scottv Wash Sandstone 

One sample was collected from the Mississippian Scotty Wash Sandstone in Sheep 

Pass Canyon, directly below the basal contact with the Sheep Pass Formation. This 
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sample was analyzed to provide direct comparison with detrital zircon age distributions 

within the Sheep Pass Formation type section, due to the prevalence of Scotty Wash 

Sandstone clasts in conglomerates of the Sheep Pass Formation. Within Sheep Pass 

Canyon, the Scotty Wash Sandstone consists of a well-sorted, ripple-marked and cross-

stratified quartz arenite deposited in a shallow marine setting during the Late 

Mississippian to Early Pennsylvanian (Kellogg, 1963). Detrital zircon separates from the 

Scotty Wash Sandstone are dominantly pale yellow to dull white and sub-rounded to 

well-rounded. A small percentage of blocky, subhedral grains were observed. Results of 

U-Pb age analyses indicate dominant age peaks at 1.82 Ga, 1.49 Ga, and 1.11 Ga. 

Smaller peaks occur at 2.53 Ga, 1.65 Ga, and 426 Ma (Silurian). 

Newark Canyon Formation 

Two samples were collected from the Newark Canyon Formation type section, from 

the Upper Conglomerate Member and the Upper Carbonaceous Assemblage. Sample 

07NW2 from the Upper Conglomerate Member yielded a mix of pale yellow to clear 

subrounded to rounded zircons, with a nearly equal proportion of clear, prismatic, 

euhedral zircons. Results of U-Pb age analyses yield zircons ranging from Archean to 

Early Cretaceous in age, with the most significant age peaks at 1.85 Ga, 1.17 Ga and 121 

Ma (Aptian). Smaller peaks are recorded at 1.42 Ga, 1.25 Ga, 976 Ma, 449 Ma (Late 

Ordovician), 437 Ma (Silurian) and 129 Ma (Barremian). TuffZirc age extraction 

computations (Ludwig and Mundil, 2002) performed on the Cretaceous zircon 

component from sample 07NW2 suggests a single tuff source with an eruptive age of 

120.7 ± 3.2 Ma (Aptian) (Fig. 7A). 
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Sample 06NW1 was collected from a thin bed of poorly sorted sandstone within the 

mudstone-dominated Upper Carbonaceous Assemblage. Separates yielded only relatively 

large (>100 um) clear, prismatic, euhedral zircons. U-Pb age results from 06NW1 

indicate that this sample is a water-lain tuff with a U-Pb age of 116.1 ± 1.6 Ma (Aptian) 

(Fig. 5), rather than sandstone as indicated in previous stratigraphic sections (Nolan et al., 

1956; Vandervoort, 1987). This is the first report of a directly datable tuff within the 

Newark Canyon Formation type section. 

Sheep Pass Formation Type Section 

A total of five samples were collected from the Maastrichtian to middle Eocene 

Sheep Pass Formation type section in the southern Egan Range, including two samples 

(06SP29 and 06SP20) from the respective middle and upper portions of conglomeratic 

Member A, two samples (05SP14 and 05SP18) from the respective lower and middle 

portions of the fluvial sandstone dominated Member C, and one sample (06MR19) from 

sandy interbeds within Member E. Detrital zircon separates reveal a population 

dominated throughout the Sheep Pass Formation type section by yellow to dull white, 

abraded, rounded to subrounded zircons. A smaller population of clear, blocky to 

prismatic, euhedral to subhedral zircons is also discernable, but constitutes only 

approximately 10-15% of the zircon population. Euhedral to subhedral zircons are most 

abundant within Member A, generally decreasing upsection. 

Samples from Member A were collected from coarse-to medium-grained, poorly 

sorted litharenites within sandstone lenses of the predominantly conglomeratic member. 

The lowermost interval of Member A was not sampled due to a lack of channel sands or 

sandy matrix within the debris-flow dominated base of the section. Results from Member 
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A reveal zircon crystallization ages ranging from Archean to Late Cretaceous (Figs. 5 and 

6). While the two youngest zircons (two single analyses of 68 and 70 Ma) were obtained 

from the uppermost portion of Member A (06SP20) (Druschke et al., in press), overall 

similarity of the age peaks allows for the combination of the two analyses into a single 

probability plot (Fig. 6). Major age peaks for Member A includel.67 Ga, 1.1 Ga, 424 Ma 

(Silurian), 110 Ma and 103 Ma (Albian). Smaller peaks occur at 2.78 Ga, 2.36 Ga, 1.88 

Ga, 1.38 Ga and 363 Ma (Late Devonian). 

Member C is dominated by medium to coarse-grained litharenitic sandstones that 

generally display a greater degree of sorting than sandstone lenses within Member A. 

Member C is locally present in Sheep Pass Canyon, but is absent within sections located 

to the south in the Egan Range, and in the subsurface of White River to the west (Winfrey 

1958, 1960; Fouch, 1979), suggesting derivation from the east. Results from samples 

collected from the lower and middle portion of the member were combined into a single 

age probability plot. The dominant age peaks for Member C include 1.91 Ma, 1.63 Ga, 

1.5 Ga, 1.2 Ga, 1.05 Ga, and 155 Ma (Late Jurassic). Minor age peaks include 3.12 Ga, 

2.88 Ga, 2.67 Ga, 650 Ma, 423 Ma (Silurian) and 186 Ma (Early Jurassic). 

The final sample analyzed from the Sheep Pass Formation type section was obtained 

from medium-grained, well sorted and quartz-rich sandstone interbeds within the base of 

the lacustrine-limestone-dominated Member E. Sandy interbeds occur within the basal 

portion of the member only in the easternmost exposures within the type section (Milk 

Ranch Canyon), and are absent from exposures to the west and south. Results indicate 

major age peaks at 1.85 Ga, 1.75 Ga, 1.48 Ga, 1.18 Ga, 1.06 Ga and 112 Ma (Albian). 

Minor peaks occur at 2.77 Ga, 1.94 Ga, 1.65 Ga, and 1.0 Ga. 
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Stinking Spring Conglomerate 

Two samples were obtained from the middle (06SP21) and uppermost (06SP22) 

portions of the Stinking Spring Conglomerate within Sheep Pass Canyon. Similar to 

Sheep Pass Formation Member A, samples were not collected at the base of the Stinking 

Spring Conglomerate due to a lack of sandy matrix within the conglomerate and a lack of 

sandstone lenses or interbeds. Sample 06SP21 was obtained from a poorly sorted, 

dominantly medium-grained sandstone lens. Sample 06SP22 was collected from near the 

top of the member from a thick, medium-grained sandstone bed containing detrital biotite 

and sanidine indicative of a tuffaceous component. Zircon separates from 06SP21 

consisted of largely pale yellow to dull white, rounded to subrounded zircons, with a 

small component of clear, elongate, euhedral zircons. Separates from 06SP22 were 

similar, but euhedral zircons comprised roughly 50% of the population. Results from 

these samples were combined into a single age probability plot. The dominant age 

populations within the Stinking Spring Conglomerate are 1.65 Ga, 1.15 Ga, 1.1 Ga, 422 

Ma (Silurian), and 37 Ma (late Eocene). A TuffZirc age extraction of Eocene zircons 

within sample 06SP22 indicates a single tuff source with an eruptive age of 37.7 ± 0.6 

Ma (Fig. 7B). 

"Tuffaceous" Sheep Pass Formation 

A total of 5 samples were collected from widely separated sections of tuffaceous 

lacustrine and fluvial strata previously correlated to the Sheep Pass Formation (Fouch, 

1979). Sample 05DW1 was collected immediately north of Duckwater Mountain in the 

northern Pancake Range. The lower portion of this section consists of coarse 

fanglomerate containing boulders of Devonian and Mississippian lithologies up to 2 m in 
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diameter; the section fines upward into coarse sandstone and conglomerate interfingering 

with marginal lacustrine strata. The Duckwater Mountain section is unconformably 

overlain by the late Eocene Stone Cabin Formation (35.3 ± 0.8 Ma) (Radke, 1992); and 

although its contact with underlying units is not exposed, it contains 140 m of strata. 

Sample 05DW1 was collected from a coarse, poorly sorted sandstone bed approximately 

40 m above the base of the section. The zircon separates reveal nearly equal proportions 

of pale yellow to dull white, rounded to subrounded zircons, and clear, elongate, euhedral 

zircons with abundant accessory barite. Results of U-Pb age analyses indicate major 

peaks at 36 Ma (late Eocene), 1.86 Ga, and 1.91 Ga. Smaller peaks occur at 2.73 Ga, 2.08 

Ga, 1.02 Ga, and 112 Ma (Albian). A TuffZirc age extraction of the Eocene age 

component suggests a single tuffaceous source with an eruptive age of 35.7 ± 0.7 Ma 

(Fig. 7C). 

Sample 04LC1 was collected at Lowry Spring section in the central Egan Range. The 

Lowry Spring section is contiguous with the Elderberry Canyon section to the north, 

which was designated as the type locality for the "tuffaceous" Sheep Pass Formation 

(Fouch, 1979). The Lowry Spring section consists of approximately 50 m of 

conglomerate and coarse-to-medium-grained sandstone deposited unconformably on the 

Permian Arcturus Formation (Brokaw, 1967). Conglomerate clasts consist dominantly of 

upper Paleozoic limestone and siliciclastic strata, with no volcaniclastic component 

discernable. Lowry Spring lies immediately north of Sawmill Canyon, but the two 

sections are separated by a normal fault with an unknown amount of displacement. 

Sample 04LC1 was collected from a medium-grained, well-sorted, quartz-rich sandstone 

near the top of the section. Detrital zircon separates consist of pale yellow to dull white, 
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subrounded to well-rounded zircons, with a very small component of subhedral zircons. 

Results reveal major populations at 1.77 Ga, 1.68 Ga, 1.3 Ga, and 1.11 Ga. Smaller peaks 

occur at 2.88 Ga, 2.76 Ga, 1.83 Ga, 953 Ma, and 420 Ma (Silurian). A single zircon with 

an age of 154 Ma (Late Jurassic) was analyzed; high analytical precision (± 1.5 Ma) 

creates a large probability peak despite the fact that this single analysis does not 

constitute a statistically robust population. 

Sample 05SM2 was collected from Sawmill Canyon immediately to the south of 

Lowry Spring. The sample was collected from a coarse-grained, poorly sorted litharenite 

within the lower portion of the section. Detrital biotite within the sandstone and small 

well-rounded clasts of basalt within the dominantly Paleozoic-clast conglomerates at 

Sawmill Canyon indicate a volcaniclastic component. This volcaniclastic component 

increases upsection, with thick beds of tuffaceous sandstone dominating the upper portion 

of the section below the Charcoal Ovens Tuff. Detrital zircons from 05SM2 consisted of 

roughly 70% clear, elongate, euhedral zircons, with the remainder consisting of pale 

yellow to dull white, rounded to subrounded zircons. Results indicate a major age peak at 

36 Ma (late Eocene), with smaller peaks at 1.86 Ga, 1.65 Ga, and 1.11 Ga. A TuffZirc 

age extraction indicates a single tuff source with an eruptive age of 36.8 ±1.1 Ma (Fig. 

7D). 

Sample 05KC1 was collected from the Kinsey Canyon section in the northern Schell 

Creek Range. This is the type section of the Kinsey Canyon Formation of Young (1960), 

and was later correlated to the Sheep Pass Formation (Fouch, 1979). The Kinsey Canyon 

section consists of approximately 120 m of dominantly carbonaceous and tuffaceous 

siltstone deposited within a shallow lacustrine setting (Young, 1960; Fouch, 1979). The 
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contact between the Kinsey Canyon section and underlying strata is not exposed, but it is 

unconformably overlain by the late Eocene Kalamazoo Tuff. Sample 05KC1 was 

collected from a coarse, litharenitic sandstone at the base of the section; separates consist 

predominantly of clear, prismatic, euhedral zircons with approximately 10% of the 

population consisting of pale yellow to dull white, rounded to subrounded detrital 

zircons. Results of U-Pb dating indicate a dominant population at 36 Ma, with minor 

peaks at 1.41 Ga and 1.08 Ga. A Tuffzirc age extraction suggests a single tuff source with 

an eruptive age of 35.8 ± 0.5 Ma (Fig. 7E). 

The final "tuffaceous" Sheep Pass Formation sample (07SR1) was collected from the 

Murphy Wash section of the southern Snake Range. Murphy Wash is the easternmost 

section correlated to the Sheep Pass Formation (Fouch, 1979); it lies in close proximity to 

the northern Snake Range core complex. The Murphy Wash section consists of 120 m of 

fluvial to alluvial conglomerate and sandstone deposited unconformably on the 

Mississippian Chainman Formation. The Murphy Wash section is unconformably 

overlain by a n ash-flow tuff that has produced a 40Ar/39Ar age of 31.07 ± 0.07 Ma 

(Oligocene) (Miller et al., 1999). Sample 07SR1 was collected near the top of the section, 

and zircon separates consist mainly of clear, prismatic, euhedral zircons, with <10% 

consisting of pale yellow to dull white rounded to subrounded zircons. The dominant U-

Pb age population is 32 Ma (Oligocene) with minor peaks at 1.17 Ga and 1.02 Ga. A 

Tuffzirc age extraction of the Oligocene zircon population suggests a single tuff source 

with an eruptive age of 31.9 ± 0.6 Ma (Fig 7F). 
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(U-ThVHe Detrital Zircon Thermochronology Results 

Twelve zircons were analyzed from the Scotty Wash Sandstone in Sheep Pass 

Canyon (06SP30) in order to constrain the thermal history for the upper Paleozoic section 

serving as basement for the Sheep Pass basin. (U-Th)/He ages represent zircon cooling 

through 180° C, equivalent to approximate 6 km burial depths under normal crustal 

conditions. Results are also compatible with somewhat shallower depths under conditions 

of higher crustal heat flow; metamorphism at relatively shallow crustal levels 

accompanied Late Cretaceous intrusion within the Snake Range core complex (Miller et 

al., 1988; Miller and Gans, 1989). Results from (U-Th)/He detrital zircon dating of the 

Scotty Wash Sandstone indicate a broad peak at 265 Ma (Permian), with a single outlier 

at 680 Ma (Fig. 8). 

A total of 26 zircons from the Sheep Pass Formation type section were analyzed from 

three samples corresponding to Member A (06SP29), Member C (05SP18) and Member 

E (06MR19). In addition, 9 zircons from the overlying Stinking Spring Conglomerate 

were analyzed. Dominant (U-Th)/He age peaks occur at 304 Ma (Permian), 135 Ma 

(Berriasian) and 106 Ma (Albian), with the largest age peak at 80 Ma (Campanian). A 

total of three euhedral zircons from the Stinking Spring Conglomerate (06SP21) 

comprise a 40 Ma cooling peak. 

Discussion 

Zircon Provenance 

Detrital zircon U-Pb age populations of Sevier hinterland strata are largely dominated 

by Precambrian peaks. We attribute this to the predominance of recycled Paleozoic 
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sedimentary strata within the Newark Canyon and Sheep Pass Formations, and also to the 

fact that Sevier hinterland deposits unconformably overlie Devonian to Permian strata 

(Nolan et al., 1956; Winfrey 1958, 1960, Fouch, 1979). Detrital zircon populations of the 

Mississippian Scotty Wash Sandstone presented here provide a useful addition to the 

large, previously established U-Pb detrital zircon provenance framework for Paleozoic 

strata of western Laurentia, and they also provide a direct comparison to Paleozoic and 

Precambrian U-Pb detrital zircon populations of Sevier hinterland deposits. The most 

significant detrital zircon population of the Scotty Wash Sandstone is defined by a 1.1 Ga 

peak, but includes a broad age cluster ranging from 900 Ma to 1.2 Ga (n=53 or 55%). 

Similar Grenville age peaks make up the major Precambrian populations of the Newark 

Canyon Formation (1.08 to 1.25 Ga, n=33 or 35%) and the Sheep Pass Formation type 

section (30%). Grenville-age populations are also significant within the Stinking Spring 

Conglomerate and the Lowry Spring section. Smaller populations of Grenville-age 

zircons are found in the Duckwater Mountain, Sawmill Canyon, Kinsey Canyon, and 

Murphy Wash sections. 

Cambrian to Ordovician strata within the Roberts Mountain allochthon contain 

significant populations of zircons with Grenville affinity (Smith and Gehrels, 1994; 

Gehrels and Dickinson, 1995; Gehrels et al., 2000), and Grenville-derived zircons are a 

major component in many Neoproterozoic to Cambrian quartz arenites of the western 

Laurentian margin (Rainbird et al., 1992; Stewart et al., 2001). The Scotty Wash 

Sandstone is part of the Antler foreland basin that received siliciclastic sediment shed 

from the Roberts Mountain allochthon, although input from the craton to the east is a 

possible contributor based on compositional maturity and some west-directed 

49 



paleocurrent indicators (Trexler et al., 1995). The ultimate source for 1.0 to 1.3 Ga 

populations is the eastern Laurentian Grenville/Marathon belt, with Neoproterozoic to 

Cambrian cross-continental fluvial transport and successive reworking responsible for 

wide redistribution (Rainbird et al., 1992; Stewart et al., 2001). 

The Scotty Wash Sandstone also contains significant Mesoproterozoic peaks at 1.48 

Ga, 1.65 Ga, and 1.82 Ga, and a Paleoproterozoic peak at 2.52 Ga. Detrital zircon age 

peaks of 1.43, 1.60 and 1.80 Ga have been recorded in the Ordovician Vinnini Formation 

of the Roberts Mountain allochthon, and peaks of 2.30 to 2.80 Ga similarly derived from 

the Roberts Mountain allochthon are common within the Antler overlap sequence 

(Gehrels et al., 2000). Within the Newark Canyon Formation, peaks of 1.42 Ga and 1.85 

Ga represent the remaining significant Precambrian peaks. A compilation of Precambrian 

zircon ages from the Sheep Pass Formation (Fig. 9A) similarly reveals major peaks at 

1.51 Ga, 1.66 Ga, 1.86 Ga, 2.73 Ga, and 2.87 Ga. 

Previous workers have asserted that no clasts older than Devonian are present within 

conglomerates of the Sheep Pass Formation type section (Winfrey, 1958, 1960; Kellogg, 

1964). However, our study has identified clasts of the highly distinctive Ordovician 

Eureka Quartzite within Member A in the type section, indicating that source areas 

containing lower Paleozoic strata did contribute to the Sheep Pass basin. A shift toward 

older Precambrian ages relative to Grenville-sourced grains within the Sheep Pass type 

section, as well as an upward trend toward greater textural and compositional sandstone 

maturity, suggests an unroofing signal involving increased input from lower Paleozoic 

sources following Paleocene to Eocene widening of the Sheep Pass basin. 
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A trend toward older Precambrian ages is seen within the Lowry Spring section, and 

also within the Duckwater Mountain, Sawmill Canyon and Kinsey Canyon sections. 

Within many of the "tuffaceous" Sheep Pass sections, this trend correlates with a greater 

proportion of Cambrian to Devonian clasts within conglomeratic beds, as compared to 

dominantly upper Paleozoic clasts within the Sheep Pass Formation type section. The 

Precambrian peaks within the Stinking Spring Conglomerate are more similar to those 

seen within the Sheep Pass Formation type section, although the Stinking Spring 

Conglomerate contains a large number of clasts derived from recycling of the underlying 

Sheep Pass Formation type section. The relatively small Precambrian population of the 

Murphy Wash section is also dominated by Grenville grains, likely derived from sandy 

interbeds within the underlying Mississippian Chainman Formation. 

The final significant peaks within the Scotty Wash Sandstone are 426 and 412 Ma 

(Silurian), obtained from typically moderately abraded, subhedral zircons. Similar Late 

Ordovician to Silurian peaks are present in the Newark Canyon Formation (449 and 437 

Ma, n=9), and a 424 Ma peak represents the single largest peak within Member A of the 

Sheep Pass Formation type section (n=22 or 13%). Smaller ca. 420 Ma peaks occur in 

Member C and E of the Sheep Pass Formation type section, the Stinking Spring 

Conglomerate, and the Lowry Spring section. Relatively minor populations of Devonian 

zircons are also present in Sheep Pass Formation Member A (363 Ma, n=5) and in the 

Stinking Spring Conglomerate (377 Ma, n=6). Lower Paleozoic population ages of 420 to 

350 Ma are recognized within Triassic strata of eastern Nevada (Gehrels and Dickinson, 

1995), although major Silurian peaks are not recognized within the Roberts Mountain 

allochthon. Major detrital zircon age peaks of 410 to 445 Ma are, however, recognized 
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within Devonian to Triassic miogeoclinal strata of Alaska and British Columbia (Ross et 

al., 1997, Gehrels and Ross, 1998, Gehrels et al., 1999). A compilation of Paleozoic 

detrital zircon U-Pb ages from the Sheep Pass Formation and "tuffaceous" Sheep Pass 

Formation indicate that the principle Paleozoic age peaks are Silurian (423 and 442 Ma) 

(Fig 9B). The existence of a Silurian age peak in the Mississippian Scotty Wash 

Sandstone and incorporation into a majority of the Sevier hinterland sections analyzed 

suggests that this may be a more important age peak for upper Paleozoic strata in Nevada 

than previously recognized. Silurian detrital zircons were likely derived from lower 

Paleozoic volcanic arc terranes such as the Klamath Mountains where Silurian volcanism 

is documented (Metcalf et al., 2000), and subsequently incorporated into backarc basin 

strata of the Roberts Mountain allochthon. 

Our studies indicate that Sevier hinterland strata contain significant populations of 

Mesozoic zircons, despite the fact that previous studies of the Newark Canyon Formation 

(Nolan et al., 1956; Vandervoort, 1987) and the Sheep Pass Formation type section 

(Winfrey, 1958, 1960; Kellogg, 1964; Fouch, 1979) (Fig. 9C) indicate the lack of a 

discernable volcaniclastic component. Petrographic sections of Sample 07NW2 from the 

Newark Canyon Formation type section however, indicate that altered lithic volcanic 

grains are a common sandstone constituent (Fig. 10A). The Newark Canyon Formation 

contains both volcanic-derived zircons (TuffZirc age of 120.6 ±3.2 Ma) and a previously 

unrecognized water-lain tuff (116.1 ± 1.6 Ma) within the upper portion of the type 

section. The Newark Canyon Formation type section also contains a small Barremian 

population (129 Ma, n=3), a single grain of 141.5 ± 1.4 Ma age (Berriasian), and a single 

Middle Jurassic grain (171.1 ± 1.7 Ma). 
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The Sheep Pass Formation type section contains a significant population of Mesozoic 

zircons (n=62, or 13%), the age population of which changes markedly upsection. 

Nineteen Mesozoic grains were recovered from Member A (11% of the total) with peaks 

at 103 (n=8) and 110 Ma (n=4). Two Maastrichtian grains (with ages of 67.8 ± 1 Ma and 

70 ± 1.3 Ma) were obtained from the uppermost sample within Member A (06SP20). The 

remaining Mesozoic grains within Member A display a wide spread of Early Cretaceous 

to Late Triassic ages, none of which define a robust population. Member C contains the 

largest component of Mesozoic grains with 35 grains (23%), but contains relatively few 

Cretaceous grains. The major Mesozoic age peak within Member C is Late Jurassic at 

155 Ma (Kimmeridgian), with a minor Early Jurassic population at 186 Ma. Member E 

contains the smallest percentage of Mesozoic grains (n=7 or 8%), and these grains fall 

within a single 112 Ma age peak (Aptian). The overlying Stinking Spring Conglomerate 

also contains a relatively small Mesozoic population which defines an Aptian peak at 118 

Ma (n=7) and two additional grains with ages of 92.1 ±3.2 Ma and 97.7 ± 2.8 Ma. Thin-

sections of sandstone cobbles within Member A of the Sheep Pass Formation type section 

indicate the reworking of older (Cretaceous?) volcaniclastic strata (Fig. 10B); while 

sandstones within the Sheep Pass Formation are dominated by grains of quartz, chert, and 

detrital carbonate (Fig. IOC), altered lithic volcanic grains are discemable as a minor 

component. 

Sections of the "tuffaceous" Sheep Pass Formation typically contain no major 

Mesozoic detrital zircon populations, although relatively small populations or individual 

grains of Mesozoic age are common and worth noting. The Lowry Spring section yielded 

only one Mesozoic grain, which was of Late Jurassic age (154 ± 1.5 Ma, Kimmeridgian), 
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while the overlying Sawmill Canyon section yielded a total of three mid- to Late 

Cretaceous grains (99.8 i l . l M a , 82.9 Ma± 2.0 Ma, and 69.8 ± 2.3 Ma). Grains from 

the Duckwater Mountain section produced a small Cretaceous peak at 112 Ma (Albian), 

while the Kinsey Canyon section yielded only two Mesozoic grains with ages of 81.3 ± 

2.1 Ma and 238.7 ± 5.2 Ma (Middle Triassic). The Murphy Wash section of the southern 

Snake Range yielded a single Late Cretaceous zircon with an age of 94.9 ±3.5 Ma. 

A compilation of geochronologic data from Mesozoic intrusions in north-central and 

east-central Nevada indicates a bimodal age distribution, with the Late Jurassic (145-175) 

and mid-to Late Cretaceous (65-110 Ma) representing two major intrusive pulses within 

the Sevier hinterland (du Bray, 2007). A bimodal age distribution is also apparent from a 

compilation of Mesozoic grains within the Sheep Pass Formation type section and 

"tuffaceous" Sheep Pass Formation, with major peaks at 154 Ma and 111 Ma (Fig 9C). 

Although the Sheep Pass Formation type section lacks identifiable volcanic clasts within 

conglomerate beds, cobbles of litharenitic sandstone not derived from local Paleozoic 

strata are present, suggesting that the ultimate source for many of the Mesozoic zircons 

present may have been from reworking of older Cretaceous volcaniclastic sedimentary 

strata such as the Newark Canyon Formation. Aptian to Barremian (116 to 129 Ma) 

zircons present in the Newark Canyon type section are also present in the Sheep Pass 

Formation type section, and widely scattered sections assigned to the Newark Canyon 

Formation have been assigned Albian-Aptian ages based on biostratigraphy (Nolan et al., 

1956; Fouch et al., 1979). While few localities of Cretaceous or Jurassic volcanic strata 

are known in east-central Nevada, erosion during the Cretaceous and early Paleogene 

may have removed extrusive volcanic strata linked to currently exposed intrusions (du 
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Bray, 2007). Successive recycling of older hinterland strata as seen in the Sheep Pass 

Formation type section and the overlying Stinking Spring Conglomerate illustrates that 

intervals of hinterland deposition were separated by widespread erosion and reworking. 

Late Cretaceous plutons of 95-65 Ma are relatively common in eastern Nevada (du Bray, 

2007), but lack of corresponding age peaks in Sevier hinterland strata suggest that 

intrusions during this period were dominantly deep-seated and were unroofed following 

the Eocene. 

Sections of the "tuffaceous" Sheep Pass Formation are distinct from the Sheep Pass 

Formation type section in that thin-sections reveal abundant lithic volcanic fragments 

(Fig. 10D), detrital biotite, and abundant feldspar. Detrital zircon separates contain 

distinctly elongated, volcanic-sourced zircons that range in age from 35 to 38 Ma. A 

compilation of Eocene detrital zircon ages indicate a peak in magmatic activity in east-

central Nevada at 36 Ma (Fig. 9D). The TuffZirc age determination of 37.7 ± 0.6 Ma 

from the upper portion of the Stinking Spring Conglomerate invalidates the "tuffaceous" 

Sheep Pass Formation correlation of Fouch (1979), indicating instead that the Duckwater 

Mountain, Sawmill Canyon, and Kinsey Canyon sections are younger than or coeval with 

the deposition of the basal member of the Garrett Ranch Group which unconformably 

overlies the Sheep Pass Formation type section. The Oligocene ZircTuff age of 31.9 ± 0.6 

Ma obtained from the Murphy Wash section overlaps with K-Ar and 4 Ar/39Ar ages 

obtained from volcanic strata within the Garrett Ranch Group (Hose et al., 1976; Best et 

al., 1993). 

A small number of zircons indicate ages from 39 to 49 Ma, however none of the 

sections analyzed contain statistically robust populations older than 37 Ma. Volcanic 

55 



strata ranging in age from 43-39 Ma have been documented in northeastern Nevada and 

adjacent Utah (Brooks et al., 1995). Ages of 39-40 Ma have also been obtained from 

volcanic strata and granitic dikes of the Kern and Deep Creek Ranges northeast of the 

study area (McKee et al , 1976; Gans et al., 1989) and from tuffs overlying the White 

Sage Formation of west-central Utah (Dubiel et al., 1996). 

Results of (U-Th)/He detrital zircon dating of the Mississippian Scotty Wash 

Sandstone, Sheep Pass Formation type section, and Stinking Spring Conglomerate 

indicate mid-to late Permian cooling ages (ca. 265-313 Ma) derived largely from zircons 

with Precambrian crystallization ages. These new data corroborate interpretations based 

on previous conodont alteration studies which suggest that neither deep thrust burial nor 

accumulation of a thick Mesozoic sedimentary succession have affected large regions of 

upper Paleozoic strata in east-central Nevada (Gans et al., 1990). The preservation of 

Permian cooling ages coeval with the Permian to Early Triassic Sonoma orogeny also 

support the hypothesis that following Early Cretaceous contraction along the central 

Nevada fold-thrust belt, eastward propagation of the Sevier foreland fold-thrust belt 

occurred without the development of major surface-breaking thrust faults in east-central 

Nevada, at least locally (Armstrong, 1972; Gans and Miller, 1983; Gans et al., 1989; 

Miller and Gans, 1989). 

Mesozoic cooling ages preserved in the Sheep Pass Formation type section reveal 

three distinct peaks at 135 Ma (Berriasian), 106 Ma (Albian), and 80 Ma (Campanian). 

While Albian cooling ages overlap with 104 Ma and 111 Ma U-Pb crystallization peaks, 

the largest cooling age peak occurring at 80 Ma does not correspond with any U-Pb 

crystallization ages from the Sheep Pass Formation type section, and a 135 Ma 
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crystallization peak is similarly unrepresented. The principle cooling age peak of the 

Stinking Spring Conglomerate is 40 Ma, although the fact that zircons with Eocene 

cooling ages are euhedral may indicate a genetic link with ca. 38 Ma tuff-sourced U-Pb 

crystallization ages. 

Tectonic and Paleogeographic Implications 

Distributions of detrital zircon populations within the Newark Canyon Formation and 

Sheep Pass Formation suggest that sediment was derived primarily from local sources, 

with little evidence of long-range Cretaceous to Paleogene transport. Detrital zircon 

studies of the volcaniclastic Pine Nut, Luning and Lovelock assemblages of western 

Nevada contain Triassic populations with ages ranging from 218 to 243 Ma (Manuszek et 

al., 2000), while upper Paleozoic to lower Mesozoic terrenes of the northern Sierra 

Nevada have yielded detrital zircons ranging from 370 to 185 Ma (Permian to Early 

Jurassic) (Spurlin et al., 2000) (Fig. 11). Geochronological studies within the Sierra 

Nevada magmatic arc indicate that pluton emplacement occurred over protracted 

intervals during the Triassic to Jurassic (206-155 Ma) and Cretaceous (125-88 Ma) 

(Evernden and Kistler, 1970; Stern et al., 1981; Bateman, 1983; Saleeby et al., 1989), and 

volcaniclastic sediments within the Cretaceous Great Valley forearc basin similarly 

display a wide range of Triassic to Late Cretaceous zircon populations reflecting 

sediment derivation primarily from the Sierra Nevada magmatic arc (DeGraaf-Surpless et 

al., 2002). Lack of significant populations of Triassic, Early to Middle Jurassic, and Late 

Cretaceous zircons within Sevier hinterland deposits of east-central Nevada suggest 

geographic isolation from lower Mesozoic terranes of western Nevada and the Sierra 

Nevada magmatic arc. Geographic isolation is also reflected in late Eocene Sevier 
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hinterland strata of east-central Nevada, which lack discernable populations derived from 

the Middle Eocene (43-39 Ma) northern Nevada volcanic field (Brooks et al., 1995). 

The deposition of the Newark Canyon Formation was intimately linked with motion 

along the central Nevada fold-thrust belt in Albian-Aptian time (Vandervoort and 

Schmitt, 1990; Carpenter et al., 1993). The central Nevada fold-thrust belt largely 

involved east-vergent deformation of Cambrian-Pennsylvanian strata (Speed et al, 1988; 

Allmendinger, 1992; Carpenter et al., 1993; Taylor et al., 2000), with the Newark Canyon 

Formation deposited as a piggyback basin system (Vandervoort and Schmitt, 1990). Lack 

of significant zircon populations with a clear link to lower Mesozoic volcaniclastic 

sources of western Nevada suggests that local Paleozoic strata involved in fold-thrust belt 

deformation served as the principle sediment source for the Newark Canyon Formation. 

This observation suggests that the mid-Jurassic Luning-Fencemaker belt (Oldow, 1984; 

Wyld et al., 2001; Wyld, 2002) was not a major contributor of sediment to the Newark 

Canyon Formation, contrary to previous paleogeographic reconstructions (DeCelles, 

2004, his fig. 10). Geographic isolation of the Newark Canyon Formation basin system 

from fluvial systems draining the Sierra Nevada and Early Mesozoic terranes of western 

Nevada was likely the result of intervening topographic lows represented by the King 

Lear Formation basin system of western Nevada (Martin et al., in press), as well as by the 

creation of high-standing topography within the central Nevada fold-thrust belt (Fig. 

12A). 

Extension and deposition of the Sheep Pass Formation type section was initiated in 

Campanian to Maastrichtian times (Vandervoort and Schmitt, 1990; Druschke et al., in 

press) following the onset of the Late Cretaceous amagmatic gap (Dickinson and Snyder, 

58 



1978) and the initiation of hinterland mid-crustal extension (Wells et al., 1990; Hodges 

and Walker, 1992; Camilleri and Chamberlain, 1997; McGrew and Snee, 2000; Wells 

and Hoisch, 2008). Stratigraphic patterns and paleoflow indicators within the Sheep Pass 

Formation type section indicate that proximal source highlands lay to the east (Winfrey, 

1958, 1960, Kellogg, 1964; Fouch, 1979, Druschke et al., in press) (Fig. 12B). The 

presence of Albian-Aptian detrital zircon populations and reworked volcaniclastic 

sandstone clasts within the Sheep Pass Formation type section suggest that Early 

Cretaceous strata partially coeval with the Newark Canyon Formation were once 

relatively extensive in the Sevier hinterland, and were subsequently eroded during the 

Late Cretaceous to Paleogene. However, the preservation of Permian cooling ages within 

upper Paleozoic strata of the Sevier hinterland indicates that post-Permian sedimentary 

sequences did not exceed 4 km in thickness. 

The absence of significant detrital zircon populations younger than 103 Ma within the 

Sheep Pass Formation implies that topography was sufficient during the Late Cretaceous 

and Paleogene to isolate depocenters within the Sevier hinterland from the high-standing 

Sierra Nevada arc (Fig. 10B). Indications that west-flowing Late Cretaceous 

paleodrainages extended well into the interior of the Sierra Nevada (House et al., 2001) 

suggest that the majority of arc-related detritus was shed west into the Great Valley 

forearc basin. Peripheral antecedent river systems and interior extensional basins 

exhibiting internal drainage patterns are features common within the modern Tibetan, 

Turkish and Iranian plateau systems (Dilek and Moores, 1999). Internal drainage was 

initiated within portions of the Puna-Altiplano in the Miocene (Vandervoort et al., 1995). 

Similar conditions may have been widespread within the latest Cretaceous and Paleogene 
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Sevier hinterland of east-central Nevada. Width and configuration of the Sevier plateau 

varied substantially along the length of the orogen, allowing post-Early Cretaceous direct 

drainage connections between the magmatic arc and the Sevier foreland basin system to 

exist elsewhere, as in the case of the McCoy basin (Fig 10A, Barth et al., 2004). 

The presence of abundant clasts derived from Ordovician to Neoproterozoic 

lithologies within the Stinking Spring Conglomerate (Kellogg, 1964) and sections of 

"tuffaceous" Sheep Pass Formation (Drewes, 1967; Gans et al., 1989) point to 

progressively deeper stratigraphic levels of unroofing during the middle to late Eocene. 

The late Eocene (ca. 35-38 Ma) marks a period of widespread extension and volcanism in 

east-central Nevada (Gans et al., 1989; Armstrong and Ward, 1991; Axen et al., 1993; 

Gans et al., 2001), however the existence of Late Cretaceous to middle Eocene alluvial 

and lacustrine deposits suggests that the initiation of upper crustal extension significantly 

predated volcanism within the Sevier hinterland. In this interpretation, the 7 km of 

structural unroofing interpreted by Gans et al. (1989) from the presence of 

Neoproterozoic quartzite and Jurassic volcanic clasts within late Eocene conglomerates 

of the Schell Creek Range may represent the combination of late Eocene and earlier 

episodes of Late Cretaceous to middle Eocene extension within the Sevier hinterland. 

Conglomerate clast provenance (Drewes, 1967; Gans et al., 1989) and paleocurrents 

within late Eocene sections of the Schell Creek and central Egan Ranges indicate that 

sediment was largely derived from the east, similar to paleodispersal patterns of the 

Sheep Pass Formation type section. These observations suggest that the Snake Range 

formed a long-lived highland and potential drainage divide, as proposed by Christiansen 

et al. (1992, their fig. 15). Previous studies have suggested that the Grouse Creek-Raft 
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River-Albion core complex may represent a major ramp anticline related to the Sublett 

synclinorium, and that topographic uplift occurred as a result of hanging wall 

displacement over the ramp (Wells, 1997). The Confusion Range synclinorium (Hose, 

1977) of east-central Utah lies along strike with the Sublett synclinorium, and is located 

east of the Snake Range core complex. The Snake Range core complex may therefore 

represent a southern continuation of this anticlinal ramp structure, which potentially 

contributed to its high relief relative to Late Cretaceous to Eocene depocenters of east-

central Nevada. 

Extensional basin deposits of latest Cretaceous to early Eocene age are widely 

distributed in the Sevier hinterland and have been identified within the Fish Creek 

Mountains, Grant Range, Egan Range and adjacent subsurface of Railroad and White 

River Valleys of east-central Nevada (Winfrey, 1958, 1960; Kellogg, 1964; Fouch, 1979; 

Vandervoort and Schmitt, 1990; Fouch et al., 1991; Druschke et al., in press), and the 

vicinity of Gold Hill in western Utah (Potter et al, 1995; Dubiel et al., 1996). Contrary to 

reconstructions that imply that the Sheep Pass Formation represents a single large lake 

basin (Winfrey, 1958, 1960), distribution of megabreccia and coarse alluvial deposits of 

variable Late Cretaceous to Paleocene age over a wide area of east-central Nevada 

suggests a number of discrete sedimentary basins. Middle to late Eocene extensional 

deposits are generally more abundant within east-central Nevada than latest Cretaceous to 

early Eocene deposits, potentially due to greater extensional fragmentation of the Sevier 

hinterland, or due to preservational bias of younger deposits. In many cases (i.e., the 

Sheep Pass Formation type section) middle to late Eocene deposits overlie older Sevier 
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hinterland strata, which suggests that structural reactivation controlled long-lived 

depocenters. 

Conclusions 

Over 1300 LA-ICP-MS U-Pb detrital zircon analyses of strata within east-central 

Nevada record evolving tectonics and paleogeography throughout the transition from 

Early Cretaceous contraction to latest-Cretaceous-through-Eocene extension in the Sevier 

hinterland. Analyses from the Mississippian Scotty Wash Sandstone reveals major age 

peaks at 426 and 412 Ma, 1.1 Ga, 1.48 Ga, 1.65 Ga, 1.82 Ga, and 2.52 Ga, reflecting 

derivation primarily from the Roberts Mountain allochthon. Detrital zircon analyses of 

the Newark Canyon Formation type section and Sheep Pass Formation type section 

reveal that the majority of the zircons present were derived from recycling of upper 

Paleozoic strata found throughout east-central Nevada, and contain Silurian, Grenville 

(1.0 to 1.3 Ga), and mid-Mesoproterozoic to Archean age peaks similar to those in the 

Scotty Wash Sandstone. 

The Newark Canyon Formation type section contains a previously unrecognized 

Aptian volcaniclastic component as revealed by a 120.6 ±3.2 Ma U-Pb age within the 

Upper Conglomerate Member, and a 116.1 ± 1.6 Ma U-Pb age from a water-lain tuff 

within the Upper Carbonaceous Member. These new data indicate that the Newark 

Canyon Formation type section is Aptian or older. Absence of significant Jurassic or 

Triassic detrital zircons suggests that the Newark Canyon basin system was isolated from 

terranes to the west by high-standing topography within the central Nevada fold-thrust 

belt. Early Cretaceous volcaniclastic input to the Newark Canyon Formation type section 
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may have been deposited as airfall from the coeval arc to the west, but was more likely 

the product of local volcanic sources within the Sevier hinterland today represented by 

scattered occurrences of coeval plutonic rocks. 

The Sheep Pass Formation type section contains a relatively minor Mesozoic detrital 

zircon component comprising roughly 15% of the zircons analyzed, and displays a 

distinctly bimodal distribution of Early Cretaceous (111 Ma) and Late Jurassic (154 Ma) 

ages. This pattern resembles the bimodal age distribution of intrusions within east-central 

and north-central Nevada (du Bray, 2007); the lack of older Mesozoic populations and 

Late Cretaceous populations within the Sheep Pass Formation indicate continued 

geographic isolation of the Sevier hinterland from source areas of western Nevada and 

the Sierra Nevada. Mesozoic detrital zircon populations within the Sheep Pass Formation 

type section were likely derived from widespread Early Cretaceous volcaniclastic strata 

and hinterland volcanic centers that were subsequently eroded during the Late Cretaceous 

to Eocene. Geographic isolation of the Sevier hinterland during the Late Cretaceous to 

Paleogene from the high-standing Sierra Nevada to the west was likely due to the 

combination of 1) antecedent river systems on the periphery of the plateau to the west 

that transported arc-derived detritus primarily to the Great Valley forearc basin, 2) 

internal drainage within the interior plateau following a Late Cretaceous transition from 

regional shortening to extension, and 3) locally rugged topography within the plateau 

interior recorded by widespread coarse fanglomerate and block-slide deposits. 

The ca. 25-30 m.y. gap between the deposition of Late Cretaceous-Paleocene 

extensional deposits of the Sheep Pass Formation type section, and more widespread 

middle to late Eocene sedimentary deposits suggest that two distinct extensional events 
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occurred within the Sevier hinterland. Detrital zircon analyses of the Stinking Spring 

Conglomerate and the "tuffaceous" Sheep Pass Formation of Fouch (1979) reveal an up-

section increase of late Eocene volcanic-derived zircons, defining a peak in magmatic 

activity at 36 Ma in east-central Nevada. In many cases, thick intervals of coarse 

conglomeratic strata lacking a tuffaceous component form the base of "tuffaceous" Sheep 

Pass Formation sections. This pattern suggests that extension preceded late Eocene 

magmatism in east-central Nevada and potentially initiated as early as the middle Eocene 

(Bridgerian, ca. 50.5-45.4 Ma) based on biostratigraphic age correlations. The overlap of 

late Eocene TuffZirc ages in the Stinking Spring Formation with sections of the 

"tuffaceous" Sheep Pass Formation invalidates the correlation of Fouch (1979) and 

indicates that late Eocene volcaniclastic strata variously assigned to the Sheep Pass 

Formation and basal Garrett Ranch Group are coeval. 

(U-Th)/He detrital zircon thermochronommetry of the Scotty Wash Sandstone, Sheep 

Pass Formation type section, and Stinking Spring Conglomerate reveal that middle to late 

Permian cooling ages are preserved in zircons derived from local upper Paleozoic strata. 

These data corroborate earlier interpretations based on conodont alteration studies that 

upper Paleozoic strata were not buried under a thick Mesozoic section (Gans et al., 1990). 

Cretaceous cooling ages of 80 Ma (Campanian) are preserved within the Sheep Pass 

Formation type section, and no crystallization ages correspond to this Late Cretaceous 

cooling age peak. This suggests that 5-6 km of unroofing has occurred between 

Campanian cooling through 180° C, to Maastrichtian redeposition in the Sheep Pass 

Formation, a period of 10-15 m.y. 
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Figure Captions 

Figure 1. Map of the western U.S. Cordillera showing the location of major Paleozoic to 

Mesozoic tectonic elements and potential detrital zircon source areas for Sevier 

hinterland strata. Box corresponds to area of Figure 2. GA = the Permo-Triassic 

Golconda Allochthon, RMA = the Devonian to Mississippian Roberts Mountain 

Allochthon, CNTB = the Early Cretaceous Central Nevada fold-thrust belt, GRA = the 

Grouse Creek/Raft River/Albion core complex, RH = the Ruby/East Humboldt core 

complex, SR = the Snake Range core complex. Modified from Smith and Gehrels (1994); 

Wyld, (2002); Wells and Hoisch, (2008); and Dickinson, (2008). 

Figure 2. General geologic map of east-central Nevada modified from Stewart and 

Carlson, (1977). NW = Newark Canyon type section of the Newark Canyon Formation, 

DW = Duckwater Mountain section of the Sheep Pass Formation, SP = Sheep Pass 

Canyon type section of the Sheep Pass Formation, EB = Elderberry Canyon section of the 

Sheep Pass Formation, SC = Sawmill Canyon section of the Sheep Pass Formation, KC = 

Kinsey Canyon type section of the Kinsey Canyon Formation, MW = Murphy Wash 

section. 

Figure 3. Stratigraphic columns for Cretaceous to Eocene hinterland deposits within east-

central Nevada, including the Newark Canyon Formation type section (after Nolan et al., 

1956, Vandervoort, 1987), Sheep Pass Formation type section (after Winfrey, 1958, 

1960; Fouch, 1979, and the Sawmill Canyon section of the "tuffaceous" Sheep Pass 
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Formation. Additional age control for the Sheep Pass Formation type section from Good 

(1987) and Druschke et al. (in press). 

Figure 4. A). A plain light image of detrital zircon separates from sample 06SP29, 

illustrating the dominant well-abraded zircon population, and subordinate euhedral to 

subhedral zircon population typical of the Sheep Pass Formation type section. B). A plain 

light image of an abraded, sub-rounded grain (from 06SP29). Generally grains displaying 

similar morphologies reveal Precambrian crystallization ages. C). Plain light image of a 

typical euhedral grain (from 06SP29), euhedral grains within the Sheep Pass Formation 

type section typically reveal Mesozoic crystallization ages. Grains B and C were sampled 

for (U-Th)/He dating. 

Figure 5. Concordia diagrams of selected U/Pb detrital zircon age analyses from 

Cretaceous to Eocene hinterland strata of east-central Nevada. Sample 06NW1 (top 

center) is a tuff with a 116.1 ± 3.0 Ma eruptive age. Error ellipses are la sigma. 

Figure 6. Probability density plots of U-Pb detrital zircon data from the complete suite of 

Sevier hinterland deposits reported in this study, and the Mississippian Scotty Wash 

Sandstone (06SP30). The histogram and scale at left indicate the number of single grain 

U-Pb analyses corresponding to the probability curve. Mesoproterozoic and older peak 

determinations are given in Ga. 
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Figure 7. TuffZirc age extraction analyses (Ludwig and Mundil, 2002) for samples 

containing a single-source tuffaceous component. A). Sample 07NW2 from the Newark 

Canyon Formation type section; B). Sample 06SP22 from the uppermost Stinking Spring 

Conglomerate in Sheep Pass Canyon; C). Sample 05SM2 from the Sawmill Canyon 

section of the central Egan Range; D). Sample 05DW1 from the Duckwater Mountain 

section of the Pancake Range; E). Sample 05KC1 from the Kinsey Canyon section of the 

Schell Creek Range; F). Sample 07SR1 from Murphy Wash in the southern Snake Range. 

Figure 8. Probability density plots of (U-Th)-He detrital zircon data from the: A). 

Mississippian Scotty Wash Sandstone , B). the Sheep Pass Formation type section, and 

C). the Stinking Spring Conglomerate. The histogram and scale at left depicts the number 

of single grain (U-Th)/He age analyses corresponding to probability curve peaks. 

Figure 9. Probability density plots for Precambrian, Paleozoic, Mesozoic, and Eocene 

zircon populations compiled from the Sheep Pass Formation type section, Stinking 

Spring Conglomerate and 'tuffaceous" Sheep Pass Formation. Analyses from the 

Mississippian Scotty Wash Sandstone, Early Cretaceous Newark Canyon Formation, and 

Oligocene Murphy Wash section are not included in these plots. 

Figure 10. Thinsections from Sevier hinterland strata: A). Sample (07NW2) from the 

Newark Canyon Formation with crossed nichols displaying lithic volcanic fragments (Lv) 

and monocrystalline quartz grains (Qm). B). Reworked Cretaceous(?) sandstone cobble 

from Member A of the Sheep Pass Formation type section in plain-polarized light 
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displaying mainly silicified volcanic lithic fragments (Lv). Circular structures within 

volcanic lithic grains are spherulites (sp) formed from devitrification of the originally 

glassy volcanic groundmass. C). Sample (06SP18) from Member C of the Sheep Pass 

Formation type section. Relatively well-sorted, fine sand grains are dominantly composed 

of monocrystalline quartz (Qm) and detrital carbonate (Ls), although sparse, altered lithic 

volcanic fragments (Lv) are discernable. D). Sample 05KC1 from the Kinsey Canyon 

Formation type section. Unaltered volcanic lithic fragments (Lv), feldspar and detrital 

biotite books (not shown) in addition to monocrystalline quartz (Qm) and detrital 

carbonate (Ls) grains are common sandstone constituents of stratigraphic sections 

grouped within the "tuffaceous" Sheep Pass Formation by Fouch (1979). Arrows are .25 

mm in length. 

Figure 11. Normalized age probability density plots for detrital zircon data including 

from the bottom up; the Sheep Pass Formation type section, Mississippian Scotty Wash 

Sandstone, and the Upper Conglomeratic Member of the Newark Canyon Formation type 

section. These are plotted against previously published U-Pb detrital zircon ages for the 

Golconda allochthon (Riley et al., 2000), Robert's Mountain allochthon (Gehrels et al., 

2000), upper Paleozoic to Jurassic terranes of the northern Sierra Nevada (Spurlin et al., 

2000), Cambrian to Devonian miogeoclinal reference for Nevada (Gehrels and 

Dickinson, 1995), and the upper Triassic Lovelock/Luning assemblages of western 

Nevada (Manuszek et al., 2000). 
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Figure 12. A). Schematic reconstruction of elements of the Early Cretaceous (Barremian-

Albian) Sevier orogen (modified from DeCelles, 2004). Deposition of Newark Canyon 

Formation-correlative units within the Sevier hinterland likely occurred within localized, 

discrete sub-basins (Vandervoort and Schmitt, 1990) MSNI = Mojave-Snowlake-Nevada-

Idaho dextral transform fault (after Wyld and Wright, 2001), KLB = King Lear basin 

system (location and paleocurrent data after Martin et al., in press), LFTB = Luning-

Fencemaker fold and thrust belt which was inactive following the Middle Jurassic (after 

Wyld, 2002); CNTB = Central Nevada fold and thrust belt). Schematic reconstruction of 

the Sevier orogen during Maastrichtian to Early Eocene time including locations of 

developing core complexes (adapted from DeCelles, 2004). Potential Late Cretaceous 

reactivation of the McCoy basin is based on interpretations by Welle (2008) and T. 

Lawton (written comm.). During the middle to late Eocene, renewed extension led to the 

establishment of more widely distributed extensional basins that partially overlapped 

elements of the Maastrichtian to middle Eocene Sheep Pass basin. GRA = Grouse Creek-

Raft River-Albion metamorphic core complex, RH = Ruby-East Humboldt core complex, 

SR = Snake Range core complex, SPB = Sheep Pass basin system, WSB = White Sage 

basin. Location of the zone of Late Cretaceous peraluminous granite intrusions is after 

Miller and Bradfish (1980). This zone generally corresponds to areas that experienced 

Late Cretaceous to Paleogene mid-crustal extension. 
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Figure 10. 
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CHAPTER 4 

STRUCTURAL, STRATIGRAPHIC, AND GEOCHRONOLOGICAL EVIDENCE FOR 

EXTENSION PREDATING PALEOGENE VOLCANISM IN THE SEVIER 

HINTERLAND OF EAST-CENTRAL NEVADA 

Abstract 

Alluvial and lacustrine deposits of the > 1 km thick, uppermost Cretaceous to middle 

Eocene Sheep Pass Formation of east-central Nevada provide a unique opportunity to test 

models pertaining to the tectonic and paleogeographic evolution of the Sevier hinterland. 

Within the south Egan Range, new 1:12,000 geologic mapping and stratigraphic 

observations reveal that latest Cretaceous initiation of the Sheep Pass basin was marked 

by megabreccia deposition, growth faults, and fanning dips that formed in response to 

down-to-the-northwest motion along the Ninemile fault, a presently low-angle normal 

fault displaying 4 km of stratigraphic throw. Continued Maastrichtian to late Paleocene 

motion along the Ninemile fault is suggested by widespread soft-sedimentary 

deformation within the Sheep Pass Formation, interpreted as seismites. Located 20 km to 

the south of the Sheep Pass Formation type section, the Shingle Pass fault similarly 

shows evidence for late Paleocene motion. 

A subsequent episode of Eocene extension is recorded within the Sevier hinterland by 

a series of normal faults that repeat the Sheep Pass Formation type section, but are 

overlapped by the upper Eocene to Oligocene Garrett Ranch Group. These faults are 
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interpreted as splays related to reactivation of the Ninemile fault system. Megabreccia 

deposits of middle to late Eocene age in the hanging wall of the Shingle Pass fault also 

record this younger event. New 40Ar/39Ar ages of Eocene volcanic strata in the Egan and 

Schell Creek Ranges presented here indicate that while this later period of extension 

overlapped with ca. 38-35 Ma volcanism across a wide swath of east-central Nevada, 

renewed extension may have begun as early as the middle Eocene. Paleocurrent data 

from uppermost Cretaceous to upper Eocene alluvial fanglomerates of the Egan and 

Schell Creek Ranges record westward paleoflow away from the foreland and suggest that 

the area of the central Nevada/Utah borderlands formed a series of long-lived highlands 

bounded to the west by west-dipping normal faults. These data indicate that the Sevier 

hinterland of east-central Nevada was topographically more rugged than generally 

envisioned and experienced episodic extension throughout the latest Cretaceous and 

Paleogene. Late Cretaceous to Paleocene extensional basins overlapped temporally with 

previously documented mid-crustal extension within the Sevier hinterland, and with 

shortening within the Sevier foreland to the east. Orogen-top, synconvergent extensional 

basins are documented in both the modern Puna-Altiplano and Tibetan plateaus, and our 

new data strengthen their comparison with the Late Cretaceous to Paleogene Sevier 

hinterland. 

Introduction 

The Sevier hinterland is regarded by some as an ancient high-altitude orogenic 

plateau generally analogous to the modern Andean Puna-Altiplano or Tibetan Plateau 

(e.g., Coney and Harms, 1984, Jordan and Alonso, 1987; Jones et al., 1998; Dilek and 
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Moores, 1999; House et al., 2001; DeCelles, 2004), but many aspects of Late Cretaceous 

to Paleogene paleogeography and tectonics of the Sevier plateau remain controversial. 

The current prevailing paleogeographic model for the Sevier hinterland was advanced by 

Armstrong (1968, 1972); he concluded that the unconformity separating upper 

Cretaceous and Paleogene sedimentary deposits of eastern Nevada from underlying upper 

Paleozoic strata displays generally less than 10° of angular discordance, and therefore 

represents a widespread low-relief erosional surface. Similarly, later regional models 

have proposed that the Late Cretaceous to Paleogene Sevier hinterland was a region of 

low-relief, and experienced either tectonic quiescence or only minor contractional 

deformation (Gans and Miller, 1983). These conditions are hypothesized to have ended 

with the onset of southward migrating volcanism and extension that affected northeastern 

Nevada beginning in the middle Eocene (ca. 43-41 Ma) (Armstrong and Ward, 1991; 

Brooks et al., 1995; Mueller et al., 1999; Rahl et al., 2002; Haynes, 2003), and east-

central Nevada beginning in the late Eocene (ca. 38-35 Ma) (Gans et al., 1989; 

Armstrong and Ward, 1991; Axen et al., 1993; Gans et al., 2001). 

In contrast with models that advocate a contractional or quiescent tectonic setting for 

the Late Cretaceous to early Eocene Sevier hinterland, numerous studies have proposed 

that coeval hinterland sedimentary deposits of east-central Nevada and west-central Utah 

were deposited in extensional basins (Winfrey, 1958, 1960; Kellogg, 1959, 1964; 

Newman, 1979; Vandervoort and Schmitt, 1990; Fouch et al., 1991, Potter et al., 1995; 

Dubiel et al., 1996; Druschke et al., in press; Druschke et al., in review). The timing for 

the transition from contraction to extension in the Sevier hinterland is critical for 

determining the driving mechanisms of extension, and understanding long-term tectonic 
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processes affecting orogenic plateaus. Previous models have hypothesized that volcanism 

was the driver of coeval middle to late Eocene extension in eastern Nevada through 

thermal weakening of the upper crust (Coney and Harms, 1984; Gans et al., 1989; 

Armstrong and Ward, 1991). However, evidence for upper crustal extension predating 

volcanism by 5-25 m.y. within the Sevier hinterland (between the latest Cretaceous and 

middle Eocene) suggests instead a potential link with coeval mid-crustal extension 

(Vandervoort and Schmitt, 1990, Druschke et al., in press). 

Regardless of uncertainties concerning the timing for the onset of upper crustal 

extension, studies of the Grouse Creek-Raft River-Albion and Ruby-East Humboldt core 

complexes have established that the Sevier hinterland underwent -14 km of mid-crustal 

extensional thinning during Late Cretaceous to Paleogene time based on 

thermochronology and thermobarometry of Barrovian mineral assemblages (Wells et al., 

1990; Hodges and Walker; 1992; Camilleri and Chamberlain; 1997; McGrew et al., 2000; 

Harris et al., 2007; Wells and Hoisch, 2008). Within the Snake Range, Late Cretaceous 

mid-crustal extension is not recognized in most studies, although Lewis et al. (1999) 

speculated on the possibility of Late Cretaceous tectonic unroofing within the Snake 

Range core complex based on U-Pb monazite ages and a post ca. 75 Ma lowering of 

metamorphic temperature gradients. Paleocene to middle Eocene (57-41 Ma) motion 

along the northern Snake Range decollement is suggested by 40Ar/39Ar muscovite and K-

spar cooling ages (Lee and Sutter, 1991; Lee et al., 1995). 

The previous hypothesis of Hodges and Walker (1992) postulates that the upper crust 

of the Sevier hinterland was effectively decoupled during Late Cretaceous to early 

Paleogene mid-crustal extension, and behaved either passively, or experienced 
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compression. This model is challenged by recent evidence documenting surface-breaking 

normal faults of latest Cretaceous age within east-central Nevada (Druschke et al, in 

press). Synconvergent extensional basins are features documented in the modern Andean 

Puna-Altiplano (Dalmayrac and Molnar, 1981; Allmendinger et al, 1997) and Tibetan 

Plateau (Molnar and Chen, 1983; Kapp et al., 2008). Extension preceding the onset of 

volcanism within the high-elevation Sevier plateau may have been driven by gravitational 

spreading toward the foreland (e.g. Axen et al., 1993; Jones et al., 1998, Sonder and 

Jones, 1999). Lithospheric delamination and mid-crustal thermal weakening during the 

transition to flat-slab subduction at the onset of the Laramide orogeny also have been 

proposed as mechanisms for Late Cretaceous to early Paleogene hinterland extension 

(e.g. Piatt, 2007; Wells and Hoisch, 2008). In contrast, middle to late Eocene extension 

which affected both the hinterland and foreland regions of the Sevier orogen was likely 

the product of a decrease in plate convergence rates between North American and the 

Farallon/Kula plates, and subsequent slab rollback/foundering (Engebretson et al., 1985; 

Humphreys, 1995; Constenius, 1996; Dickinson, 2002). 

The > 1 km thick Sheep Pass Formation type section comprises one of the most 

complete sedimentary sections within the Sevier hinterland, and strata correlative to the 

Sheep Pass Formation are scattered over an area of > 15,000 km2 of modern-day east-

central Nevada (Fouch et al., 1991) (Fig. 1). A Maastrichtian to middle Eocene age has 

been established for the Sheep Pass Formation type section based on biostratigraphy 

(Fouch, 1979; Good, 1987; Swain, 1999) as well as U-Pb detrital zircon and carbonate 

dating (Druschke et al., in press). Additional sections containing strata as young as 

Oligocene have been correlated to the Sheep Pass Formation on the basis of 
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lithostratigraphy and proposed similarity in depositional age (Brokaw, 1967, Hose et al., 

1976; Fouch, 1979, Good, 1987; Emry, 1990). Recent U-Pb detrital zircon studies 

indicate that the depositional age of many sections previously correlated to the Sheep 

Pass Formation overlap with deposition of the basal members of the Eocene to Oligocene 

Garrett Ranch Group (Druschke et al., in review). These data indicate that deposition of 

Upper Cretaceous to Eocene Sevier hinterland strata within east-central Nevada occurred 

in response to at least two discrete episodes of extension. 

This paper presents new 1:12,000 scale geologic mapping from the southern Egan 

Range, in addition to new stratigraphic and paleocurrent data from sections correlated to 

the Sheep Pass Formation throughout the Egan and Schell Creek Ranges. Previous 

studies have documented latest Cretaceous (Druschke et al., in press) and late Eocene 

(Gans et al., 1989; Axen et al., 1993; Gans et al., 2001) normal faults and extensional 

basin deposits within east-central Nevada. This study presents additional evidence for 

latest Cretaceous and late Eocene extension in the Sevier hinterland, as well as the 

intervening interval of the Paleocene to middle Eocene. New 4 Ar/ Ar geochronology 

from volcanic strata of the basal Garrett Ranch Group, and volcaniclastic sections 

previously correlated to the Sheep Pass Formation in the central Egan Range and Schell 

Creek Range establish that extension predated the ca. 38 to 35 Ma initiation of volcanism 

throughout east-central Nevada. 

Regional Tectonic Framework 

Previous studies within the Ruby-East Humboldt and Snake Range core complexes 

indicate that the earliest Sevier-related deformation, metamorphism and volcanism began 
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locally in the Late Jurassic (Miller et al., 1988; Miller and Gans, 1989; Hudec, 1992, 

Miller and Hoisch, 1995; DeCelles, 2004, Sullivan and Snoke, 2007). East-vergent 

shortening deformation associated with the Sevier-related central Nevada fold-thrust belt 

is widely distributed throughout east-central Nevada (Speed et al., 1988; Allmendinger, 

1992; Taylor et al., 1993; Taylor et al., 2000; DeCelles, 2004). The timing of deformation 

along the central Nevada fold-thrust belt is loosely constrained by deposits of the Aptian-

Albian, syn-contractional Newark Canyon Formation (Vandervoort and Schmitt, 1990; 

Taylor et al., 2000). The Newark Canyon Formation has produced Aptian apatite-fission 

track exhumation ages (116 ± 13 Ma, Carpenter et al., 1993) and an Aptian U-Pb zircon 

age (116.1 ± 1.6 Ma) from a water-lain tuff in the uppermost member of the type section 

(Druschke et al., in review). Contraction along the central Nevada fold-thrust belt had 

ceased by mid-to Late Cretaceous times as indicated by a series of undeformed or untilted 

plutons (ca. 100-85 Ma) that cut earlier compressional structures in the Grant Range and 

adjacent Golden Gate Range (Taylor et al., 2000). 

Cretaceous to Eocene strata of east-central Nevada unconformably overlie shallow 

marine sedimentary deposits of generally Devonian to Permian age (Winfrey, 1958, 

1960; Armstrong, 1968, 1972; Fouch, 1979), and contain detritus derived primarily from 

recycling of local Paleozoic units prior to the onset of late Eocene (ca. 38-35 Ma) 

volcanism (Druschke et al., in review). Detrital zircon U-Pb ages of Sevier hinterland 

strata, including the Newark Canyon Formation type section and the Sheep Pass 

Formation type section, lack significant populations of Triassic, Early to Middle Jurassic, 

or Late Cretaceous zircons. These results indicate that the Sevier hinterland was 

geographically isolated from the Sierra Nevada magmatic arc and Triassic to Jurassic arc-
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related terranes of western Nevada (Druschke et al., in review). Geographic isolation of 

the Sevier hinterland was likely the result of uplift and rugged topography following 

initiation of the central Nevada fold-thrust belt in the Early Cretaceous, and continued 

during the latest Cretaceous and Paleogene due to sustained high elevation and initiation 

of hinterland extensional basins (Druschke et al., in review). 

Detrital zircon (U-Th)/He detrital zircon dating within the Sheep Pass Formation type 

section, and the underlying Mississippian Scotty Wash Sandstone indicate that Permian 

cooling ages (representing cooling through ~6 km depths) have been retained (Druschke 

et al., in review). While these data suggest that source areas for the Sheep Pass basin did 

not experience deep stratigraphic or thrust burial, the Sheep Pass Formation also contains 

a significant zircon population of ca. 80 Ma (U-Th)/He cooling ages despite the lack of a 

corresponding Late Cretaceous U-Pb detrital zircon crystallization age peak (Druschke et 

al., in press; Druschke et al., in review). These cooling ages indicate significant unroofing 

occurred locally between Campanian time and Maastrichtian initiation of the Sheep Pass 

basin. 

The only direct record of shortening of Laramide (80-50 Ma) age within the Sevier 

hinterland is a dated compressional P-T path from upper amphibolite facies metamorphic 

rocks of the Grouse Creek Range of northwestern Utah (Hoisch et al., 2008), pre-late 

Eocene recumbent folding of Late Cretaceous low-angle normal faults in the Grouse 

Creek-Raft River-Albion core complex (Wells, 1997), and post-early Eocene, pre-late 

Eocene folding of portions of the early Eocene White Sage Formation of west-central 

Utah (Potter et al., 1995). Folding due to fault-propagation in extensional settings is well 

established (e.g., Sharp et al, 2000) but studies documenting pre-late Eocene folding of 
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the White Sage Formation do not distinguish between regional contraction and more 

localized contraction within an extensional setting (Potter et al., 1995; Dubiel et al., 

1996). Gans (2000) interpreted folding of the Sheep Pass Formation in the northern 

White Pine Range to be related to strike-slip faulting in an overall extensional setting. 

Open, east-plunging folds affecting the Sheep Pass Formation and overlying Garrett 

Ranch Group were mapped by Kellogg (1959, 1964), who interpreted an extensional 

basin setting for the affected units. The middle Eocene (ca. 50 Ma) marks the cessation of 

contraction within the Sevier foreland as recorded by the development of extensional 

lacustrine basin systems superimposed on elements of the former Sevier contractional 

wedge in Utah (Constenius, 1996; DeCelles, 2004). 

Background: The Sheep Pass Formation 

The Sheep Pass Formation was originally named for non-volcaniclastic alluvial, 

fluvial and lacustrine strata in the Pancake, Grant and southern Egan ranges (Winfrey, 

1958, 1960). Six members (A-F) were identified within the > 1 km thick type section at 

Sheep Pass Canyon (Fig. 2) in the southern Egan Range. A Maastrichtian to middle 

Eocene age (Bridgerian, 50.5-45.4 Ma) was assigned to the type section based on 

palynomorphs (Fouch, 1979), mollusks (Good, 1987), and ostracodes (Swain, 1999). A 

latest Cretaceous fossil age assignment for the basal Sheep Pass Formation type section 

has recently been corroborated by a Maastrichtian (66.1 ±5.4 Ma) U-Pb age from 

lacustrine carbonate at the base of member B, in addition to Maastrichtian zircons (70 ± 

1.3 Ma and 68 ± 1 Ma) within the uppermost beds of Member A (Druschke et al , in 

press). Megabreccia-containing deposits of the Sheep Pass Formation type section 
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(Member A) are latest Cretaceous age, similar to lacustrine limestone and associated 

megabreccia deposits of the Fish Creek Range (Vandervoort and Schmitt, 1990). 

However, megabreccia deposits within the Sheep Pass Formation in the Grant Range 

(Newman, 1979) are middle Eocene in age (Fouch, 1979), and megabreccia deposits at 

Shingle Pass (Kellogg, 1959; 1964) in the southern Egan Range overlie strata of late 

Paleocene to middle Eocene(?) age (Good, 1987). 

Kellogg (1959, 1964) interpreted deposition of the Sheep Pass Formation to have 

been controlled by motion along the Shingle Pass fault, a NW-dipping normal fault 

approximately 20 km south of the Sheep Pass Formation type section in the southern 

Egan Range. The 20 km distance of the Shingle Pass fault from the Sheep Pass Formation 

type section suggests that this hypothesis is unlikely (Newman, 1979). More recently, 

Druschke et al. (in press) interpreted deposition of the Sheep Pass Formation type section 

to have been controlled by the Ninemile fault, a presently low-angle, NW-dipping normal 

fault located 3 km south of Sheep Pass Canyon. The Ninemile fault exhibits 

approximately 4 km of stratigraphic throw based on the juxtaposition of upper Paleozoic 

strata against lower Paleozoic strata (Kellogg, 1963, 1964). The Ninemile fault shows 

evidence for motion during deposition of the basal Sheep Pass Formation, and subsequent 

reactivation (Druschke et al., in press). 

Winfrey (1958, 1960) originally interpreted the Sheep Pass Formation to be deposited 

in an extensional half-graben, due to westward thinning of exposures and subcrop, 

although no related normal faults were identified. Subsequent documentation of 

megabreccia associated with the Sheep Pass Formation in the southern Egan Range 

(Kellogg, 1959, 1964), Grant Range (Newman, 1979), and the Fish Creek Range 
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(Vandervoort and Schmitt, 1990), have been cited in support of an extensional basin 

interpretation. The Sheep Pass Formation type section unconformably overlies 

sedimentary strata of Mississippian to Pennsylvanian age, and in turn is unconformably 

overlain by the volcaniclastic Garrett Ranch Group of late Eocene to Oligocene age 

(Winfrey, 1958, 1960; Kellogg, 1959, 1964; Hose et al., 1976). Locally, the basal 

member of the Garrett Ranch Group is a >150 m thick conglomerate unit designated the 

Stinking Spring Conglomerate (Kellogg, 1959, 1964). A reworked tuff within the upper 

portion of the Stinking Spring Conglomerate in Sheep Pass Canyon has produced a U-Pb 

age of 37.7 ± 0.6 Ma (Druschke et al., in review), indicating a late Eocene maximum 

depositional age. The Stinking Spring Conglomerate in turn is unconformably overlain by 

approximately 400 m of rhyolitic ashflow tuff, reworked tuff, and localized basalt flows 

of the Garrett Ranch Group in Sheep Pass Canyon (Winfrey 1958; Kellogg, 1964; Hose 

et al., 1976) (Fig. 2). The basal rhyolitic tuff unit of the Garrett Ranch Group within 

Sheep Pass Canyon has been correlated to the Stone Cabin Formation, a welded tuff 

member of the Garrett Ranch Group in the Grant Range, based on phenocryst mineralogy 

(Hose et al., 1976). Radke (1992) reported a 40Ar/39Ar sanidine age of 35.3 ± 0.8 Ma 

from the Stone Cabin Formation. 

The Sheep Pass Formation was expanded to include alluvial, fluvial and lacustrine 

strata within the central Egan Range (Ely Quadrangle) that is in part volcaniclastic 

(Brokaw, 1967; Hose et al., 1976; Fouch et al., 1979) (Fig. 2). Sheep Pass Formation 

deposits in the central Egan Range contain fossil assemblages that indicate a Bridgerian 

age (50.5-45.4 Ma) (Fouch, 1979; Good, 1987; Emry, 1990; Emry and Korth, 1990), but 

grade upward into tuffaceous alluvial and lacustrine strata. Sections of the Sheep Pass 
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Formation within the Ely Quadrangle are unconformably overlain by the Charcoal Ovens 

Tuff, which has produced a K-Ar age of 32.8 ± 1.1 Ma (McKee et al., 1976). On the basis 

of potential age overlap with the Sheep Pass Formation type section, Fouch (1979) 

designated these deposits "type 2" Sheep Pass Formation to denote the presence of a 

volcaniclastic component that is lacking in the type section. Fouch (1979) also correlated 

tuffaceous alluvial and lacustrine strata of the Schell Creek Range, originally designated 

the Kinsey Canyon Formation (Young, 1960) (Fig. 2), to the Sheep Pass Formation. 

However, recent U-Pb detrital zircon analyses of "type 2" Sheep Pass Formation deposits 

in the central Egan Range, and the Kinsey Canyon Formation type section indicate a 

substantial contribution from ca. 37-36 Ma volcanic sources (Druschke et al., in review). 

At Cooper Summit in the Schell Creek Range (Fig. 1), a sequence of intercalated 

conglomerate, ashflow tuffs, and minor lacustrine limestone are interpreted to have been 

deposited in the hanging wall of a west-dipping normal fault (Gans et al., 1989). K-Ar 

dating of the intercalated tuffs indicates eruptive ages of ca. 38 to 35 Ma (McKee, 1976). 

Based on the presence of characteristic Jurassic granitic clasts derived from the Snake 

Range to the east, and Neoproterozoic quartzite within the conglomerates at Cooper 

Summit, Gans et al. (1989) concluded that 7 km of structural unroofing had occurred 

within the Snake Range by the late Eocene. The late Eocene age for the strata at Cooper 

Summit is similar to the eruptive ages of a series of synextensional tuff units within the 

Robinson District west of Ely, Nevada that bracket a period of rapid extension between 

37.56 ± 0.03 Ma and 36.68 ± 0.04 Ma (40Ar/39Ar sanidine) (Gans et al., 2001). Upper 

Eocene tuffs in the Robinson District overlie lacustrine limestone of the Sheep Pass 

Formation that locally are middle Eocene based on biostratigraphy (Good, 1987). In the 
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northern White Pine Range, conglomerate and lacustrine limestone correlated to the 

Sheep Pass Formation are overlain by flows of basaltic andesite of late Eocene age 

(40Ar/39Ar age of 38.2 ± 0.2 Ma) (Gans, 2000). 

40Ar/39Ar Geochronology Methods 

At numerous localities within the Egan and Schell Creek ranges of east-central 

Nevada, the Sheep Pass Formation and correlative strata are unconformably overlain by, 

or intercalated with, volcanic units that are either undated or were dated using methods 

less precise than Ar/ Ar geochronology. In order to provide a more robust 

geochronologic framework for Paleogene strata of east-central Nevada, five samples 

were collected from volcanic units capping the Sheep Pass Formation in the Egan Range, 

and four samples were collected from upper Eocene deposits of the Schell Creek Range 

(sample locations are depicted on Fig. 1). Eight of the samples were composed of 

rhyolitic tuff containing abundant sanidine, while the ninth sample was aphanitic basalt 

(see Table 1 for sample descriptions). For each sample, 2-5 kg of freshly broken material 

was collected based on stratigraphic position within previously undated sections, in order 

to provide a series of bracketing ages across angular unconformities. Thin sections were 

made to assess the suitability for dating, and only samples displaying little to no 

alteration were selected for final processing. 

Samples were crushed following standard procedures and sieved to varying size 

fractions based on average phenocryst dimensions for the individual samples, typically 

100 to 300 um. For the rhyolitic tuff samples, approximately 100 mg of sanidine crystals 

were hand-picked, and 300 mg of fresh glassy groundmass was hand-picked for the basalt 
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sample. Separates were ultrasonically bathed in acetone and rinsed in deionized water. 

The sanidine fractions were briefly bathed in HF acid solution to remove any remaining 

glass. Samples were irradiated at the Oregon State University Radiation Center. 

Following irradiation, samples were analyzed at the Nevada Isotope Geochemistry 

Laboratory (NIGL). K-glass and CaF2 correction factors from neutron induced reactions 

were determined using single crystal laser fusions. J factors for each sample were 

determined by laser fusion of 5-10 single crystals of neutron fluence monitors (FCT, Fish 

Canyon Tuff sanidine) (Cebula et al., 1986). Discrimination and sensitivity of the mass 

spectrometer was verified by repeated atmospheric argon analyses. Standard step-heating 

procedures (see Staudacher et al., 1978) for the basalt groundmass ages were performed 

using a resistance furnace. Single crystal age determinations for the sanidine samples 

were carried out using a 20 W CO2 laser. Automation and age calculations were 

performed using LabSpec software (Lehigh University). Data used to construct age 

determination plots are presented in the appendices (Appendix IV). 

40Ar/39Ar Geochronology Results 

The Egan Range 

The type section of the Sheep Pass Formation is unconformably overlain by the 

Garrett Ranch Group of late Eocene to Oligocene age (Winfrey 1958, 1960; Kellogg, 

1959, 1964; Hose et al , 1976; Best et al., 1993). Previous dating of the Garrett Ranch 

Group has largely been performed on members located in the Grant Range to the east 

(Hose et al., 1976; Radke, 1992; Best et al., 1993), and members present in the Egan 

Range have largely been correlated based on lithology and phenocryst mineralogy. 

94 



However, while the thickness of the Garrett Ranch Group in the Grant and Pancake 

Ranges to the west is > 1 km (Hose et al., 1976), the thickness of the Garrett Ranch 

Group where it overlies the Sheep Pass Formation type section is approximately 500 m 

(Kellogg, 1959; 1964). In addition, Kellogg (1959, 1964) identified a >150 m thick 

carbonate-clast conglomerate, the Stinking Spring Conglomerate, as the basal member of 

the Garrett Ranch Group in Sheep Pass Canyon. The Stinking Spring Conglomerate has 

not been identified in exposures of the Garrett Ranch Group elsewhere. 

The Stinking Spring Conglomerate in Sheep Pass Canyon is unconformably 

overlain by a series of thin, local basalt flows, which are in turn overlain by non-welded 

rhyolitic ashflow tuffs. 40Ar/39Ar groundmass analyses of basalt (Sample 06SP10) 

overlying the Stinking Spring Conglomerate indicate a pseudo plateau age of 35.7 ± 0.3 

Ma (Fig. 3). Sample 04SP18 was collected from basal exposures of the overlying ashflow 

tuff, and indicates a 40Ar/39Ar sanidine weighted mean age of 35.43 ±0.11 Ma (Fig. 3). 

While the basalt pseudo plateau age indicates disturbance, possibly due to weathering or 

alteration, results are consistent with the overlying tuff age, and with the U-Pb detrital 

zircon maximum depositional age of the uppermost Stinking Spring Conglomerate. 

Sample 06MR2 was collected from a welded tuff comprising the uppermost member of 

the Garrett Ranch Group in Milk Ranch Canyon, located just below the contact with 

Miocene(?) siliciclastic deposits of the Milk Ranch section (Kellogg, 1959, 1964). 

Exposures of the Sheep Pass Formation and Garrett Ranch Group in Milk Ranch Canyon 

are contiguous with exposures in Sheep Pass Canyon. Results indicate a 40Ar/39Ar 

sanidine weighted mean age of 26.68 ± 0.04 Ma (Oligocene) (Fig. 3). 
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Approximately 20 km to the south of Sheep Pass Canyon at Shingle Pass (Fig. 1), 

150 m of conglomerate and lacustrine limestone of the Sheep Pass Formation 

unconformably overlie Permian strata. At this locality, biostratigraphic correlations 

indicate that the Sheep Pass Formation is late Paleocene in age, similar to the basal strata 

of Member C within the type section (Good, 1987). The Sheep Pass Formation at Shingle 

Pass is overlain by megabreccia derived from the Pennsylvanian Ely Limestone 

extending for > 1 km to the north (Kellogg, 1959; 1964). Megabreccia deposits are in 

turn overlain by rhyolitic tuff, reworked tuff, and conglomerate of the Garrett Ranch 

Group. Sample 05SHI was collected from basal exposures of the Garrett Ranch Group 

consisting of interbedded tuff, and conglomerate, and yielded a 40Ar/39Ar sanidine 

weighted mean age of 35.52 ± 0.08 Ma (Fig. 3). 

Within the central Egan Range near Ely Nevada, the Sheep Pass Formation crops 

out continuously for a distance of approximately 20 km (Brokaw, 1967) (Fig. 1). 

Biostratigraphic correlations based on mammalian fossils from the basal beds of the 

Sheep Pass Formation within the central Egan Range (Elderberry Canyon) indicate a 

middle Eocene age (Bridgerian ca. 50.5-44.5 Ma) (Emry, 1990; Emry and Korth, 1990). 

Beds of middle Eocene age are, however, overlain by as much as 300 m of lacustrine 

limestone, and fluvial sandstone and conglomerate containing tuffaceous interbeds. U-Pb 

detrital zircon dating of tuffaceous sandstone and conglomerate at Sawmill Canyon 

indicate a 36.8 ±1.1 Ma maximum depositional age (Druschke et al., in review). This 

sequence of non-tuffaceous and volcaniclastic strata equivalent to the Sheep Pass 

Formation (Brokaw, 1967; Hose et al., 1976; Fouch, 1979) is in turn unconformably 

96 



overlain by the Charcoal Ovens Tuff, which displays approximately 10° of angularity 

with respect to the underlying Sheep Pass Formation. 

Sample 05SM1 was collected from the base of the Charcoal Ovens Tuff in 

Sawmill Canyon. Results indicate a 40Ar/39Ar sanidine weighted mean age of 36.17 ± 

0.08 Ma (Fig. 4). This late Eocene age is significantly older than the previously reported 

K-Ar age of 32.8 ± 1.1 Ma for the Charcoal Ovens Tuff (McKee et al., 1976). A late 

Eocene rather than Oligocene age is supported by correlation of the sphene-bearing 

Charcoal Ovens Tuff to the Cooper Summit Tuff of the central Schell Creek Range based 

on phenocryst mineralogy (Hose and Blake; 1976). The Cooper Summit Tuff has 

produced a K-Ar biotite age of 38.0 ± 3.8 Ma (Drewes, 1967). Additional data used for 

age determinations are presented in the appendices (Appendix IV). 

The Schell Creek Range 

The Kinsey Canyon Formation is named for discontinuous exposures of lacustrine 

limestone, conglomerate and interbedded tuffaceous sandstone within the central Schell 

Creek Range (Young, 1960). The type Kinsey Canyon Formation consists of 

approximately 140 m of thinly laminated lacustrine limestone, unconformably overlain 

by the Kalamazoo Tuff. Based on compaction foliation, the Kalamazoo Tuff displays 

approximately 20° of dip discordance with respect to the underlying Kinsey Canyon 

Formation The Kinsey Canyon Formation is visibly truncated by the planar erosional 

surface below the Kalamazoo Tuff. The Kalamazoo Tuff has produced a K-Ar age of 

35.5 ± 0.5 Ma (Hagstrum and Gans, 1989), and K-Ar biotite age of 37.8 ± 1.0 Ma has 

been reported from exposures of rhyolite lava interbedded with the Kinsey Canyon 

Formation several km south of the type section (Gans et al., 1989). U-Pb detrital zircon 
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dating of conglomerate beds at the base of the Kinsey Canyon Formation type section 

indicate a 35.8 ± 0.5 Ma maximum depositional age (Druschke et al., in review). 

Previous studies have described beds of tuffaceous sandstone within the Kinsey 

Canyon Formation type section (Young, 1960; Fouch, 1979). We have concluded that 

these beds are in fact a series of water-lain tuffs based on their composition of crudely 

graded euhedral phenocrysts within a glassy groundmass in sharp, planar contact with 

thinly laminated lacustrine carbonate. A tuff bed approximately 30 cm thick, located 75 

m above the base of the section (sample 05KC6) has produced a 40Ar/39Ar sanidine 

weighted mean age of 35.29 ± 0.12 Ma (Fig. 4). A new 40Ar/39Ar sanidine age 

determination of the overlying Kalamazoo Tuff (sample 06KZ1) yielded a weighted 

mean age of 35.30 ± 0.12 Ma, and a resulting isochron age of 35.39 ± 0.07 Ma (Fig. 4). 

Located 40 km to the south of the Kinsey Canyon Formation type section, the Cave 

Lake section of the Kinsey Canyon Formation consists of approximately 350 m of 

conglomerate, stromatolite-bearing lacustrine limestone, and interbedded tuff (Fig. 2). 

Thickness must be considered approximate due to poor exposure within the upper portion 

of the section, although scattered exposures high within the section display bedding 

attitudes that are concordant with lower portions of the section. The Cave Lake section 

unconformably overlies the Mississippian Chainman Formation and brecciated, 

discontinuous blocks of the Pennsylvanian Ely Limestone. The Cave Lake section in turn 

is overlain by a sequence of rhyolite vitrophyre, rhyolitic tuff, rhyolite lavas and dacite 

lavas (Drewes, 1967). The volcanic sequence unconformably overlies the Kinsey Canyon 

Formation with 30° of angularity. Tuff interbedded with conglomerate in the upper Cave 

Lake section (sample 04CL12) yielded a 40Ar/39Ar sanidine weighted mean age of 36.38 
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± 0.11 Ma (Fig. 4). The overlying rhyolite vitrophyre (sample 04CL13) yields a Ax I Ar 

sanidine weighted mean age of 35.97 ±0.10 Ma (Fig. 4). 

Paleocurrent Analysis Methods and Results 

Previous workers have inferred paleotransport directions for the Sheep Pass 

Formation based on conglomerate clast provenance, and the thickness and distribution of 

lithostratigraphic members, although no paleocurrent analyses of the Sheep Pass 

Formation have previously been published. A westward direction of transport has been 

inferred for alluvial and fluvial facies of the Sheep Pass Formation type section, based on 

thinning of conglomerate and sandstone-dominated Members A and C to the west 

(Winfrey, 1958, 1960; Fouch, 1979). A westward direction of transport has similarly 

been inferred for conglomeratic intervals of the Cooper Summit and Cave Lake sections 

of the Kinsey Canyon Formation based on the presence of Jurassic granite clasts exotic to 

the Schell Creek Range. Given the presence of Jurassic granitoids and the potential for 

significant unroofing by late Eocene time, the Snake Range to the east has been proposed 

as the likely source area (Drewes, 1967; Gans et al., 1989). 

Alluvial and fluvial facies of the Sheep Pass Formation contain conglomerate and 

coarse-grained sandstone that preserve abundant unidirectional current ripples and pebble 

imbrication. Paleocurrent measurements, principally from pebble imbrications within 

alluvial fanglomerates, were collected from numerous intervals of Member A and C of 

the Sheep Pass Formation type section, and from the overlying Stinking Spring 

Conglomerate. Additional paleocurrent measurements were recorded from several 

fanglomerate intervals of the Sawmill Canyon section in the central Egan Range, and 
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from the Cave Lake section of the Kinsey Canyon Formation in the Schell Creek Range. 

In total, 215 paleocurrent measurements were measured (Appendix V). Following 

restoration of original horizontality through use of a stereonet, results confirm previous 

inferences of a dominantly westward direction of transport for the Sheep Pass Formation 

(Fig. 5). A mean azimuth paleotransport direction of 278° was obtained from the Sheep 

Pass Formation type section, and a similar mean paleotransport direction of 265° was 

obtained from the overlying Stinking Spring Conglomerate. The Sawmill Canyon section 

and the Cave Lake section, separated by 20 km of the intervening Steptoe Valley, record 

mean paleotransport directions of 262° and 264° respectively. Previous paleomagnetic 

analyses of the Kalamazoo Tuff suggest that 28° ± 12° of clockwise rotation have 

affected the northern Schell Creek Range since late Eocene time (Hagstrum and Gans, 

1989). Restoration of approximately 15-40° of clockwise vertical-axis rotation would not 

significantly alter the dominantly westward paleoflow direction indicated by pebble 

imbrication of the Cave Lake section. 

Late Cretaceous to Eocene Structure and Stratigraphy of the 

Egan and Schell Creek Ranges 

The Blue Spring Fault System 

Located 3-5 km to the south and east of Sheep Pass Canyon, the presently low-angle 

Ninemile fault served as the basin-bounding normal fault during latest Cretaceous 

initiation of the Sheep Pass basin (Druschke et al., in press). Additional structural and 

stratigraphic evidence in the vicinity of Sheep Pass Canyon indicates that the Ninemile 

fault was reactivated in Eocene time. At Blue Spring approximately 3 km south of Sheep 
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Pass Canyon (Fig. 6), a series of exposures of Mississippian Chainman Shale and Scotty 

Wash Sandstone, Pennsylvanian Ely Limestone and Cretaceous to Paleocene Member B 

of the Sheep Pass Formation are juxtaposed against late Paleocene to middle Eocene 

Members C-F of the Sheep Pass Formation type section. 

This previously unrecognized stratigraphic repetition is best explained by the 

presence of a series of two or more poorly exposed, NE-trending, down-to the west 

normal faults, here designated as the Blue Spring fault system. The inferred trace of the 

Blue Spring fault system extends from the Ninemile fault for approximately 3 km to the 

NE based on the outcrop pattern of repeated strata, and thereafter is overlapped by the 

Garrett Ranch Group. The basal member of the Garrett Ranch Group, the Stinking Spring 

Conglomerate, displays no apparent offset where it overlaps the trace of the Blue Spring 

fault system. In the footwall of the Blue Spring fault system, the Stinking Spring 

Conglomerate and overlying volcanic strata of the Garrett Ranch Group were deposited 

unconformably upon repeated beds of the Sheep Pass Formation Member B, as well as 

the underlying Pennsylvanian Ely Limestone. In the hanging wall of the Blue Spring fault 

system, the Stinking Spring Conglomerate unconformably overlies the Sheep Pass 

Formation type section with approximately 10° of angular discordance, locally truncating 

middle Eocene Members E and F. 

Structural repetition along the inferred trace of the Blue Spring fault system is 

interpreted to represent up to 1 km of stratigraphic throw along the Blue Spring fault 

system based on the juxtaposition of the upper members of the Sheep Pass Formation 

with the basal Sheep Pass Formation and underlying upper Paleozoic strata. Motion on 

the Blue Spring fault system occurred following deposition of the Sheep Pass Formation, 
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and preceded deposition of the Garrett Ranch Group. South of Blue Spring, the exposed 

trace of the Ninemile fault is not offset along the inferred trend of the Blue Spring fault 

system. A series of similar NE trending, down-to-the-northwest, normal faults repeat 

lower Paleozoic strata within the footwall of the Ninemile fault, but are not contiguous 

with the Blue Spring fault system. 

The Blue Spring fault system is interpreted to represent a series of farming-upward 

fault splays that merge with the through-going Ninemile fault at depth (Fig. 7). A similar 

relationship between presently low-angle normal faults and upward fanning splays of late 

Eocene age has been documented within the northern Egan Range (Gans and Miller, 

1983). Motion on the Blue Spring fault splays was accompanied by motion along the 

Ninemile fault, an interpretation that is supported by the following observations: 1) the 

inferred trace of the Blue Spring fault splays are sub-parallel to the overall trend of the 

Ninemile fault, 2) the sense of down-to-the-northwest transport is the same as that of the 

Ninemile fault, and 3) the approximately 1 km of strati graphic throw exhibited by the 

Blue Spring fault system is far less than the approximate 4 km stratigraphic throw along 

the Ninemile fault. While the present dip of the Ninemile fault averages 25° to the west, 

an original orientation of approximately 50° may be inferred if 25° of Neogene eastward 

rotation of the southern Egan Range block is restored. 

Tectonic significance of the basal Garrett Ranch Group in the southern Egan Range 

The Stinking Spring Conglomerate forms the basal member of the Garrett Ranch 

Group in Sheep Pass Canyon (Kellogg, 1959; 1964) and is composed of dominantly 

carbonate-cobble conglomerate, but contains scattered boulders of 0.5 m to >1 m 

diameter. In comparison with the conglomeratic Sheep Pass Formation Member A, the 
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Stinking Spring Conglomerate contains a more diverse clast assemblage, with clasts of 

Devonian to Ordovician lithologies being much more abundant (Druschke et al., in 

review). The Stinking Spring Conglomerate also contains abundant clasts recycled from 

the underlying Sheep Pass Formation type section Members A-E (Kellogg, 1959, 1964). 

These clasts are recognizable as gray-to-beige, ostracodal lacustrine limestone, tan 

sandstone and reworked conglomerate. Clasts of the Sheep Pass Formation indicate uplift 

and locally deep erosion prior to deposition of the Stinking Spring Conglomerate. 

Timing of motion on the Blue Spring fault system is bracketed between the 

Bridgerian age (ca. 50.5 to 45.4 Ma) fossil assemblages within the upper members of the 

Sheep Pass Formation type section (Good, 1987), and a maximum depositional age of 

37.7 ± 0.6 Ma from the uppermost Stinking Spring Conglomerate (Druschke et al., in 

review). However, the Stinking Spring Conglomerate overlaps the Blue Spring fault 

system with no apparent offset, suggesting that potential topography created by motion 

along the fault system was beveled by erosion prior to deposition of the Stinking Spring 

Conglomerate. The incorporation of clasts of the Sheep Pass Formation within the 

Stinking Spring Conglomerate may represent erosion of the Sheep Pass Formation within 

the footwall of the Blue Spring fault system or other potential and as-yet-unidentified, 

upward-fanning fault splays associated with the Ninemile fault. A number of unnamed 

fault splays repeating portions of the Sheep Pass Formation in Ninemile Canyon to the 

south have been identified (Druschke et al., in press). 

In map view (Fig. 6), the outcrop pattern of the Stinking Spring Conglomerate largely 

mirrors Sheep Pass Formation Member A, and similarly thins to the northeast. The 

Stinking Spring Conglomerate is interpreted to have formed in an alluvial fan 
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environment (Kellogg, 1959; 1964) similar to Member A and portions of Member C 

within the underlying Sheep Pass Formation type section (Fouch, 1979). The Stinking 

Spring Conglomerate is unconformably overlain by ashflow tuffs of the lower Garrett 

Ranch Group in Sheep Pass Canyon. Exposures of tuff within the lower Garrett Ranch 

Group along the southern flanks of Blue Mountain contain thick, interbedded 

conglomeratic intervals. Conglomeratic intervals thin rapidly to the north, away from the 

direction of the Ninemile fault, and are interpreted to represent a series of footwall-

derived alluvial fans. Bedding dips within the basal Sheep Pass Formation range from 45° 

to as high as 65° to the east, although dips within the upper members average 35° to the 

east. The Stinking Spring Conglomerate displays bedding dips that average 25° to the 

east, continuing a pattern of fanning dips related to progressive rotation of hanging wall 

strata along the Ninemile fault. These stratigraphic relationships strongly suggest that 

deposition of the Garrett Ranch Group in the vicinity of Sheep Pass Canyon was related 

to motion along the Ninemile fault. 

The Shingle Pass fault 

The Sheep Pass Formation and Garrett Ranch Group at Shingle Pass (Fig. 1) are 

preserved within the hanging wall of the Shingle Pass fault (Kellogg, 1959, 1964). The 

Shingle Pass fault strikes E/W with a 55° dip to the north, and exhibits approximately 4 

km of stratigraphic throw based on the juxtaposition of Cambrian to Ordovician strata in 

its footwall against Devonian to Permian strata in its hanging wall (Fig. 8). The Sheep 

Pass Formation at Shingle Pass consists of coarse fanglomerate (Member A) which 

undergoes a facies change to lacustrine limestone (Member B) approximately 1 km north 

of the Shingle Pass fault. Megabreccia derived from the Pennsylvanian Ely Limestone 
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and Mississippian Scotty Wash Sandstone overlies the Sheep Pass Formation at Shingle 

Pass, which is locally truncated along an unconformity displaying 10° of angular 

discordance (Kellogg, 1959; 1964). This megabreccia deposit thins to the north and is 

overlain by conglomerate, tuff, and reworked tuff of the Garrett Ranch Group. A series of 

conglomerate bodies are interbedded with the lower Garrett Ranch Group at Shingle 

Pass; they thin to the north similar to exposures of the basal Garrett Ranch Group 

adjacent to the Ninemile fault in Sheep Pass Canyon. 

Megabreccia deposits at Shingle Pass are interpreted to represent a series of block-

slide deposits derived from the footwall of the Shingle Pass fault. Given that the 

megabreccia deposits consist of multiple coherent blocks estimated to exceed 30 m in 

width based on current exposures, and extend over 3 km to the north, the footwall of the 

Shingle Pass fault is inferred to have possessed considerably steep topography. Late 

Paleocene motion on the Shingle Pass fault is inferred from the fact that exposures of the 

Sheep Pass Formation consist of coarse fanglomerate (Member A) that undergoes a facies 

change to lacustrine limestone (Member B) abruptly 1 km to the north. Megabreccia 

deposits at Shingle Pass are assumed to be generally age correlative to the Stinking 

Spring Conglomerate, and to record middle to late Eocene reactivation of the Shingle 

Pass fault prior to deposition of the Garrett Ranch Group. 

The Schell Creek Range 

Sections of the Kinsey Canyon Formation within the central Schell Creek Range have 

previously been interpreted as extensional basin deposits related to motion on a west-

dipping normal fault or series of faults of late Eocene age (Gans et al., 1989). The Cave 

Lake and Kinsey Canyon sections bracket major angular unconformities between the 
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deposition of the Kinsey Canyon Formation and eruption of overlying late Eocene 

volcanic strata. Interbedded conglomerate, tuff and sandstone within the Cave Lake 

section dip approximately 45° to the east, and 40Ar/39Ar dating of Sample 04CL12 within 

the upper portion of this sequence indicates a depositional age of 36.38 ±0.11 Ma. The 

unconformity separating the Cave Lake section from the overlying rhyolite vitrophyre is 

a planar erosional surface, indicating significant beveling. The overlying rhyolite 

vitrophyre has produced a 40Ar/39Ar age of 35.97 ± 0.10 Ma, and displays a dip of 

approximately 15° to the east based on compaction foliation of fiamee. The implications 

of these new data are that approximately 30° of structural tilting of the Cave Lake section, 

erosional beveling, and eruption of the overlying rhyolite vitrophyre occurred over the 

span of a maximum of 620 k.y., and potentially as little as 200 k.y. 

The Kinsey Canyon Formation type section displays gentle eastward dips of 

approximately 25°, although the overlying Kalamazoo tuff displays approximately 45° of 

eastward dip based on compaction foliation of flattened pumice. The unconformity 

separating the Kinsey Canyon Formation from the Kalamazoo Tuff is a planar erosional 

surface that visibly truncates the underlying Kinsey Canyon Formation type section. This 

relationship implies that the Kinsey Canyon Formation was tilted 20° to the east and 

erosionally beveled prior to eruption of the Kalamazoo Tuff. New 40Ar/3 Ar age 

constraints indicate that deposition of the upper Kinsey Canyon Formation, 20° of tilting, 

erosional beveling and eruption of the Kalamazoo Tuff took place between 35.29 ±0.12 

Ma (Sample 05KC6) and 35.39 ± 0.07 Ma (Sample 06KZ1). These 40Ar/39Ar ages 

bracket an interval of 290 k.y or less. 
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Seismites within the Sevier hinterland? 

The Sheep Pass Formation type section is dominated by lacustrine limestone 

members deposited within shallow, permanent freshwater lakes spanning the latest 

Cretaceous to middle Eocene (Fouch, 1979; Good, 1987) (Fig. 2). Despite the low-energy 

setting implied by these fine-grained deposits, Members B and C of the Sheep Pass 

Formation contain previously undocumented, abundant, large-scale soft-sedimentary 

slump deposits and de-watering structures. Member B consists of > 250 m of 

predominantly thinly-bedded, microbially-laminated carbonate and carbonaceous 

siltstone. This monotonous succession is interrupted by intervals of complexly folded 

carbonate beds (Fig. 9A). These soft-sedimentary structures are encased within planar, 

undeformed strata, and contain rip-up clasts (Fig. 9B), pebble lags (Fig. 9C), and load 

casts (Fig. 9D) found locally in association with deformed intervals. Slump-folded 

lacustrine limestone beds are common throughout Member B; they include tabular, 

deformed intervals < 1 m thick that are laterally traceable for up to 100 m along strike, to 

lenticular intervals > 5 m thick (Figs. 9E) that are laterally traceable for several hundred 

meters before pinching out into thinly-bedded, undeformed strata. 

Interbedded fluvial sandstone and lacustrine limestone of Member C similarly display 

evidence for widespread soft-sedimentary deformation. In additional to slump-folds (Fig. 

9F), sandy beds of Member C commonly display flame structures, fluidization pipes and 

ball-and-pillar structures (Fig. 9G). The vergence of sigmoidal soft-sedimentary folds and 

deflected flame structures within Members B and C of the Sheep Pass Formation type 

section indicate transport to the west, consistent with westward paleoflow indicators 

within alluvial facies of Members A and C. Large-scale slump deposits demonstrate that 
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low-energy lacustrine deposition within the Maastrichtian to Paleocene (Fouch, 1979; 

Good, 1987; Druschke, in press) Member B of the Sheep Pass Formation type section 

was interrupted repeatedly by mass-movements that transported sediment westward into 

the deeper portions of the lake system. Interbedded alluvial and lacustrine facies of the 

late Paleocene to Eocene(?) Member C (Fouch, 1979; Good, 1987) were similarly 

affected, although widespread examples of soft-sedimentary deformation are lacking in 

the uppermost members of the Sheep Pass Formation (D-F). 

Soft-sedimentary deformation is also present within the Kinsey Canyon Formation 

type section in the Schell Creek Range. Here, a series of intensely folded intervals of 

thinly laminated carbonate mudstone are laterally traceable across the available exposures 

(Fig. 9H). Three intervals of intensely deformed beds are observable ranging from 1 to 5 

dm in thickness, and separated by 5-10 m intervals of planar, undeformed beds. 

Deformed strata at Kinsey Canyon occur in laminated low-energy, shallow lacustrine 

carbonate mudstone and siltstone that preserve grazing trails, agglutinated caddis fly 

larval casings, root casts, and are not in close proximity to thicker or coarser-grained 

beds. 

Water escape and fluidization structures are common where fine-grained deposits are 

rapidly loaded by turbidites, slumps and debris flows (Lowe, 1975). Within the Sheep 

Pass Formation type section, dewatering structures occur in association with slump 

deposits, but also occur in the absence of obvious causes for loading, as in the case of 

folded intervals of the Kinsey Canyon Formation type section. Numerous studies within 

tectonically active sedimentary basins have interpreted a seismic trigger for widespread 

and abundant soft-sedimentary deformation, particularly in lacustrine facies (Leeder, 
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1987; Rodriguez-Pascua et al., 2000; Montenat et al., 2007; Singh and Jain, 2007). 

Sedimentary features formed in response to seismic shocks are termed seismites 

(Seilacher, 1969) and may include slump folds, debris flows, megabreccia, injection 

structures, dewatering pipes and sand volcanoes. 

Widespread soft-sedimentary deformation in the Sheep Pass Formation and Kinsey 

Canyon Formation are interpreted as potential seismites based on: 1) their occurrence 

within basins where normal faulting is indicated by fanning of dips, growth faults, and 

angular unconformities; 2) abundance and scale of structures within shallow lacustrine 

facies that lack evidence for significant bathymetric lows; 3) and morphological 

resemblance to published examples of seismites. Folded intervals within the Kinsey 

Canyon Formation type section strongly resemble the convex-up "mushroom-shaped 

structures" within Miocene silty lacustrine laminates in Spain interpreted as seismites 

(Rodriguez-Pascua et al., 2000, their figs. 7 and 10). Ruptured and overturned bedding in 

sandstone of the Sheep Pass Formation type section (Fig. 9G) resemble examples of sand 

volcanoes caused by seismically induced dewatering (Montenat et al., 2007, their figs. 13 

and 15). Laterally traceable intervals of folded carbonate mudstones within Member B of 

the Sheep Pass Formation may represent "seismoslumps" caused by fluidization, which 

may occur within settings with very low slope gradients (Montenat et al., 2007). The 

occurrence of potential seismites within widely scattered lacustrine deposits of the 

Paleogene Sevier hinterland has not previously been documented. 
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Discussion 

Paleogene extension in the Sevier hinterland of east-central Nevada 

Previous workers have suggested that the earliest surface-breaking extension within 

the Sevier hinterland of east-central Nevada coincided with, and was driven by late 

Eocene volcanism ca. 38-35 Ma (Gans and Miller, 1983; Coney and Harms, 1984; Gans 

et al., 1989; Armstrong and Ward, 1991). Additional studies have documented poorly 

dated normal faults within east-central Nevada that offset Paleozoic units, but are 

overlapped by late Eocene (ca. 35-34 Ma) volcanic strata (Taylor et al., 1989; Axen et al., 

1993). Within the Pequop Mountains of northeastern Nevada, Camilleri (1996) identified 

the Pequop fault as a low-angle normal fault that juxtaposes unmetamorphosed upper 

Paleozoic strata in its hanging wall against rocks exhumed from 11 km mid-crustal 

depths in its footwall. This fault is overlapped by ca. 41-39 Ma volcanic strata, indicating 

significant Late Cretaceous to early Paleogene extension and subsequent erosion prior to 

the onset of local Eocene volcanism (Camilleri, 1996). Normal faults associated with the 

lower Eocene (ca. 55-50.5 Ma) White Sage Formation of west-central Utah are similarly 

overlapped by upper Eocene volcanic strata (ca. 39-37 Ma) (Potter et al., 1995). Our 

documentation of surface-breaking normal faults coeval with deposition of Sheep Pass 

Formation Member A in the type section demonstrates that upper crustal extension 

affected the latest Cretaceous Sevier hinterland (Druschke et al., in press). In many cases, 

the lack of available age control for latest Cretaceous to Paleogene normal faults, possible 

subsequent reactivation, and widespread erosion within the high-elevation Sevier 

hinterland have combined to obscure this earlier extensional history. 
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Structural and stratigraphic evidence from the southern Egan Range indicates that 

continued extension following the latest Cretaceous initiation of the Sheep Pass basin 

affected the Sevier hinterland during Paleocene time. Within the Sheep Pass Formation 

type section, widespread evidence for large-scale soft-sedimentary slumping, 

liquefaction, and dewatering in Maastrichtian to upper Paleocene members suggests that 

unlithified sediments within the Sheep Pass basin were subjected to seismic shocks 

related to motion along the basin-bounding Ninemile fault system. At Shingle Pass, upper 

Paleocene (Good, 1987) beds of the Sheep Pass Formation coarsen toward the Shingle 

Pass fault, an indication that fault motion was coeval with deposition of the Sheep Pass 

Formation (Kellogg, 1959, 1964). Upper Cretaceous to Paleocene deposits of the Sheep 

Pass Formation are documented mainly to the west of the southern Egan Range, and have 

been identified in the Grant Range, Fish Creek Range, and subsurface areas of the 

adjacent valleys (Fouch, 1979; Vandervoort and Schrnitt, 1990, Fouch et al., 1991; 

Carpenter et al., 1993). 

Sections of middle to upper Eocene strata comprising the Elderberry/Sawmill Canyon 

sections in the central Egan Range were interpreted to have been originally contiguous 

with the Sheep Pass Formation type section based on potential middle Eocene age 

overlap (Fouch, 1979). Accordingly, correlative volcaniclastic strata were interpreted to 

have been present in the Sheep Pass Formation type section, but subsequently eroded 

along the unconformity separating the Sheep Pass Formation type section from the 

overlying Garrett Ranch Group (Fouch, 1979). Detrital zircon U-Pb ages from the Sheep 

Pass Formation type section, Stinking Spring Conglomerate, and Sawmill Canyon section 

(Druschke et al., in review) in addition to new 40Ar/39Ar ages presented in this paper 
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invalidate the direct correlation of the Sheep Pass Formation type section with the 

Elderberry/Sawmill Canyon sections. This newly established geochronologic framework 

demonstrates that volcaniclastic strata of the Sawmill Canyon, Cave Lake and Kinsey 

Canyon sections are age correlative with the basal Garrett Ranch Group in Sheep Pass 

Canyon (Fig. 10). The presence of a regional unconformity separating a distinct sequence 

of uppermost Cretaceous to middle Eocene non-volcaniclastic sedimentary strata from a 

sequence of middle to upper Eocene deposits that are in part volcaniclastic suggests that 

extension within the Sevier hinterland occurred in two distinct phases (Fig. 11). 

Middle Eocene timing for renewed extension is supported by structural and 

stratigraphic relationships in the Egan Range. In Sheep Pass Canyon, the initiation of the 

Blue Spring fault system and related reactivation of the Ninemile fault is bracketed by 

middle Eocene Members E-F of the Sheep Pass Formation type section, and upper 

Eocene strata (ca. 38-35.5) of the basal Garrett Ranch Group. At Shingle Pass, deposition 

of megabreccia upon an angular unconformity separating the Sheep Pass Formation from 

the Garrett Ranch Group similarly suggests reactivation of the Shingle Pass fault in 

middle(?) to late Eocene time, and the rejuvenation of considerable local topography. In 

the Elderberry Canyon section, > 40 fossil mammalian taxa of Bridgerian age (ca. 50.5 to 

44.5 Ma) (Emry, 1990; Emry and Korth, 1990) are preserved within a sequence of coarse 

fanglomerate and lacustrine limestone conformably overlain by strata containing 

reworked tuff (Fouch, 1979). The observation that middle Eocene strata of the central 

Egan Range grade upward into strata containing late Eocene volcaniclastic input (Fouch, 

1979) is the strongest indicator that renewed Eocene extension began in the middle 

Eocene prior to the onset of local volcanism. We interpret that deposition of the 
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Elderberry/Sawmill Canyon sections in the central Egan Range in the middle Eocene 

post-dated deposition of the uppermost members of the Sheep Pass Formation type 

section, which is permissible given the > 5 m.y. age range of previous biostratigraphic 

correlations (Fouch, 1979; Good, 1987; Emry, 1990; Emry and Korth, 1991). 

Structural, stratigraphic and geochronologic data from the Cave Lake and Kinsey 

Canyon sections of the Schell Creek Range are consistent with evidence for rapid 

extension (ca. 37.56 ± 0.03 Ma to 36.68 ± 0.04 Ma) in the Robinson District near Ely, 

Nevada (Gans et al., 2001). The ca. 38-35 Ma ages encompassed by synextensional 

deposits of the Schell Creek Range (Drewes, 1967; McKee et al., 1976; Gans et al., 1989) 

are coeval with development of the 10° angular unconformity separating the Sheep Pass 

Formation from the Charcoal Ovens Tuff in the central Egan Range, and possibly coeval 

with the 10° angular unconformity separating the Sheep Pass Formation from upper 

Eocene strata in Sheep Pass Canyon and Shingle Pass in the southern Egan Range. The 

Duckwater Mountain section of the northern Pancake Range, approximately 100 km west 

of the southern Egan Range, has been correlated to the Sheep Pass Formation (Fouch, 

1979). As described by Druschke et al. (in review), a > 140 m thick sequence of boulder 

fanglomerate at Duckwater Mountain interfingers with lacustrine limestone to the south, 

and is unconformably overlain by the Stone Cabin Formation. U-Pb detrital zircon ages 

derived from the basal Duckwater Mountain section indicate a 35.7 ± 0.7 Ma maximum 

depositional age (Druschke et al., in review), while the overlying Stone Cabin Formation 

has produced a 40Ar/39Ar sanidine age of 35.3 ± 0.8 Ma (Radke, 1992). These data 

suggest that rapid late Eocene extension was widespread across east-central Nevada, and 

occurred within multiple pulses and in several areas over the interval of 38 to 35 Ma. 
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Evidence that extension predated volcanism within the latest Cretaceous to Paleogene 

Sevier hinterland supports the hypothesis that deep-seated, mantle-related processes 

rather than thermal weakening of the upper crust drove extension (Axen et al., 1993). 

Deep-seated processes may have included lithospheric delamination coeval with flat-slab 

subduction during Late Cretaceous to early Paleogene extension (Piatt, 2007; Wells and 

Hoisch, 2008), and subsequent slab rollback/foundering during renewed middle to late 

Eocene extension (Humphreys, 1995; Dickinson, 2002). However, evidence for rapid 

deposition and development of major (> 20°) angular unconformities coeval with 

volcanism in the Kinsey Canyon and Cave Lake sections of the Schell Creek Range, 

Cooper Summit (Gans et al., 1989) and the Robinson district (Gans et al., 2001) suggest 

that volcanic-driven upper crustal thermal weakening may have accelerated extension 

that was already underway. Alternatively, variations in angular discordance along 

unconformities in the Schell Creek and Egan Ranges may relate more directly to fault 

proximity and differing kinematics of individual normal faults rather than an overall 

change in the rate or magnitude of Paleogene extension. 

Implications for Paleogeographv of the Sevier hinterland 

The concept of low-relief for the latest Cretaceous to Eocene Sevier hinterland was 

based upon the general observation that the Sheep Pass Formation and correlative 

Cretaceous to Paleogene units of east-central Nevada overlie Paleozoic strata with 

typically less than 10° of angular discordance (Armstrong, 1968; 1972). The assessment 

that upper Cretaceous and Paleogene strata display little discordance with underlying 

upper Paleozoic strata has wide-ranging implications. This conclusion suggests that low-

relief and relatively minor tectonic activity affected the region of eastern Nevada for a 
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duration spanning the Permian to Triassic Sonoman orogeny, and the Jurassic to 

Cretaceous Sevier orogeny. This scenario is unlikely when it is considered that the Sheep 

Pass Formation and correlative units overlie deformed Paleozoic to lower Cretaceous 

strata related to the central Nevada fold and thrust belt (Speed et al., 1988; Vandervoort 

and Schmitt, 1990; Carpenter et al, 1993; Taylor et al., 1993; Taylor et al., 2000), and 

that the Snake Range core complex to the east records evidence for deep burial in 

Cretaceous time (Lewis et al., 1999), as well as evidence for significant Jurassic to 

Cretaceous contractional deformation and metamorphism (Miller et al., 1988; Miller and 

Gans, 1989). 

A more detailed examination of bedding within the Sheep Pass Formation type 

section (Fig. 6) reveals that the average dip discordance between the Sheep Pass 

Formation and the underlying Mississippian Chainman Formation is approximately 20°. 

Only 1 km to the south, the Sheep Pass Formation overlies the Pennsylvanian Ely 

Limestone with dip discordance that is highly variable, but commonly exceeds 45°. The 

angularity of this contact is much greater than a simple comparison of dip angles when it 

is considered that variations in bedding strike across the basal unconformity commonly 

exceed 90°. Throughout the southern Egan Range, upper Paleozoic strata display 

numerous faults and folds that predate, and are overlapped by, the Sheep Pass Formation. 

Similar patterns were mapped by Brokaw (1967) within the Ely Quadrangle of the central 

Egan Range. Here the Sheep Pass Formation overlies folded and faulted Permian and 

Pennsylvanian strata, with dip variations across the basal unconformity that average 45° 

in addition to significant discordance in bedding strike. In the Dry Lake Valley south of 

the Egan Range, angular discordance across the sub-Tertiary unconformity is 60° (Taylor 
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et al., 1989). Within the northern White Pine Range, agular discordance between the 

Sheep Pass Formation and underlying Permian units approaches 90° (Gans, 2000). While 

we do not dispute that areas exist where the angular discordance across the sub-Tertiary 

unconformity is indeed low, exceptions are too numerous for this to remain a valid 

characterization of the Sevier hinterland. 

A low-relief interpretation for the Late Cretaceous to Paleogene Sevier hinterland 

may be further called into question when deposits that directly overlie the "sub-Tertiary 

unconformity" are examined in detail. Within the Sheep Pass Formation type section, the 

basal Member A is composed of >200 m of matrix-supported boulder breccia, 

megabreccia blocks derived from Pennsylvanian and Mississippian strata, and cobble to 

boulder fanglomerate. Alluvial fans, debris flows and block-slide deposits are features 

common in settings where there is considerable differential relief between source areas 

and basin. In Milk Ranch Canyon to the east of Sheep Pass Canyon, and in Ninemile 

Canyon to the south, Member B is locally deposited upon the Ely Limestone, indicating 

that islands of Paleozoic strata protruded up to several hundred meters from the floor of 

the Sheep Pass basin. During late Eocene time, fault reactivation rejuvenated steep 

topographic relief as recorded by deposition of the alluvial fan-dominated Stinking 

Spring Conglomerate, and block-slide deposits at Shingle Pass. Upper Eocene deposits at 

Sawmill Canyon and within the Cooper Summit and Cave Lake sections of the Schell 

Creek Range similarly contain significant thicknesses of cobble to boulder fanglomerates. 

Similar stratigraphic features are documented in deposits of varying Late Cretaceous 

to Eocene age across a wide area of east-central Nevada, suggesting that paleotopography 

of the Sevier hinterland throughout the Late Cretaceous to Eocene was rugged, and 
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included areas of locally high relief. Within the Fish Creek Range 100 km west of Sheep 

Pass Canyon, megabreccia derived from Paleozoic strata has been documented in 

association with Maastrichtian lacustrine deposits correlative to the Sheep Pass 

Formation type section (Vandervoort and Schmitt, 1990). In the northern Pancake Range, 

megabreccia is associated with largely undated sections of the Sheep Pass Formation, and 

blocks of Devonian and Mississippian strata > 2 m in diameter are included in 

fanglomerate deposits of the upper Eocene Duckwater Mountain section (Druschke et al., 

in review). Megabreccia blocks derived from Devonian limestone overlie Paleocene 

limestone and mudstone of the Sheep Pass Formation within the subsurface of Railroad 

Valley adjacent to the northern Grant Range, but are overlain in turn by the upper Eocene 

to Oligocene Garrett Ranch Group (Montgomery, 1997). Blocks of megabreccia in the 

subsurface of Railroad Valley adjacent to the Pancake Range are also contained within 

the informally named "Troy Basin formation", an up to 120 m thick interval of tuffaceous 

lacustrine limestone and siltstone underlying the Garrett Ranch Group (Montgomery, 

1997). The Troy Basin formation is likely correlative to exposures of the nearby 

Duckwater Mountain section. Megabreccia derived from recrystallized Paleozoic 

carbonate has been documented within Paleocene beds of the Sheep Pass Formation in 

the adjacent northern Grant Range (Newman, 1979). Brecciated masses of the Ely 

Limestone overlying the Chainman Formation at the base of the Cave Lake section in the 

Schell Creek Range (Drewes, 1967) are similar to exposures in Sheep Pass Canyon 

interpreted as megabreccia, and may represent previously unidentified block-slide 

deposits. Megabreccia is typically deposited within 5 km of significant basin-bounding 

escarpments (Yarnold and Lombard, 1989), although debris avalanche flow into lakes 
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may significantly increase run-out distances (Yarnold, 1993; Gardner et al., 2000). The 

wide distribution of megabreccia deposits of varying Late Cretaceous to Eocene age 

within the Sevier hinterland indicates that deposition occurred in a number of discrete 

extensional basins in response to two temporally distinct episodes of extension. 

Paleocurrent trends for fanglomerate deposits of the Sheep Pass Formation and late 

Eocene strata of the Egan and Schell Creek Ranges, in addition to conglomerate clast 

provenance indicating progressively deeper levels of unroofing (Drewes, 1967; Gans et 

al., 1989, Druschke et al., in review) strongly suggest that the vicinity of the present-day 

central Nevada and Utah borderlands persisted as a series of long-lived highlands 

bounded to the west by west-dipping normal faults throughout the Paleogene. This 

hypothesis is corroborated by previous studies which suggest that core complexes within 

the Sevier hinterland such as the Snake Range core complex represent formerly high-

standing Sevier-related structural culminations (Christiansen et al., 1992; Wells, 1997). It 

has been suggested that middle to upper Eocene sedimentary deposits of northeastern 

Nevada represent a series of east-flowing paleocanyons, and that relief within the Ruby-

East Humboldt core complex was low in Eocene time (Henry, 2008). However, studies 

supporting the paleocanyon hypothesis lack paleocurrent analyses (Henry, 2008). In east-

central Nevada, no paleocanyons have been identified in association with middle to late 

Eocene deposits, and 215 paleocurrent measurements from the Egan and Schell Creek 

ranges overwhelmingly record a westward direction of transport. 

Conclusions 

Deposition of the Sheep Pass Formation type section was controlled by motion along 

the Ninemile fault, a presently low-angle, down-to-the-west normal fault with initial 
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movement in latest Cretaceous time. Motion along the Ninemile fault is recorded by 

megabreccia and growth faults within Maastrichtian Member A of the Sheep Pass 

Formation type section, and continued motion during deposition of the Maastrichtian to 

late Paleocene Members B and C of the type section is suggested by widespread, large-

scale soft-sedimentary slump deposits, fluidization and dewatering structures interpreted 

as seismites. Reactivation of the Ninemile fault in middle to late Eocene time is indicated 

by motion on the Blue Spring fault system, a series of upward fanning splays of the 

Ninemile fault that repeat the Sheep Pass Formation type section, but are overlapped by 

the late Eocene Garrett Ranch Group. The Shingle Pass fault located 20 km south of 

Sheep Pass Canyon similarly shows evidence for motion during the Paleocene, and 

middle to late Eocene reactivation. New 40Ar/3 Ar dates derived from volcanic strata of 

the Garrett Ranch Group indicates that that Eocene fault reactivation occurred prior to ca. 

36 Ma. 

Deposition of the Sheep Pass Formation within the central Egan Range (Ely 

Quadrangle—Elderberry/Sawmill Canyon section) began during or prior to the middle 

Eocene (ca. 50.5-44.5 Ma) but continued into the late Eocene ca. 37-36 Ma. New 

40Ar/39Ar ages from the Charcoal Ovens Tuff in the central Egan Range, and volcanic 

strata associated with the Cave Lake section of the Kinsey Canyon Formation in the 

Schell Creek Range indicate that these sections were coeval, and potentially contiguous 

when similar paleocurrent trends are considered, and significant post-Eocene east-west 

extension is restored. Evidence for long-lived, westward paleocurrent trends and 

progressive unroofing of Paleogene deposits suggests that Late Cretaceous to late Eocene 
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extension, erosion and sedimentation played an important role in the early unroofing 

history of the Snake Range core complex. 

Latest Cretaceous to early Paleogene extension of the Sheep Pass basin temporally 

overlapped with up to 14 km of mid-crustal extensional thinning within the Sevier 

hinterland (Wells et al., 1990; Hodges and Walker, 1992; Camilleri and Chamberlain, 

1997; McGrew et al., 2000; Harris et al., 2007; Wells and Hoisch, 2008), as well as with 

continued contraction within the Sevier foreland fold and thrust belt to the east (DeCelles, 

2004). More widespread middle to upper Eocene strata related to renewed extension 

within the Sevier hinterland overlapped temporally with the westward extensional 

collapse of the Sevier foreland fold and thrust belt (Constenius, 1996). Evidence for 

active normal faults and rugged relief indicates that the latest Cretaceous to Eocene 

Sevier hinterland was more structurally and topographically complex than previous 

models suggest. These features more closely support previous comparisons of the Sevier 

hinterland to the modern Andean Puna-Altiplano and Tibetan Plateau, where active 

synconvergent extensional basins have been documented (Dalmayrac and Molnar, 1981; 

Molnar and Chen, 1983; Allmendinger et al., 1997; Kapp et al., 2008). While indications 

are that latest Cretaceous to Eocene extension-related relief and sedimentation were of 

much smaller magnitude than Neogene extension within the Basin and Range Province, 

older extensional structures potentially exerted a strong tectonic inheritance on younger 

structures given the history of middle to late Eocene reactivation. 
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Figure captions 

Figure 1. General geologic map of east-central Nevada modified from Stewart and 

Carlson (1977). Localities discussed in text include DW—Duckwater Mountain section of 

the Sheep Pass Formation, SP~Sheep Pass Canyon type section of the Sheep Pass 

Formation (SPF), MR—Milk Ranch Canyon, SH-Shingle Pass, NM~Ninemile Canyon, 

EB~Elderberry Canyon section of the SPF, RD~Robinson District, SC~Sawmill Canyon 

section of the Sheep Pass Formation, KC~Kinsey Canyon type section of the Kinsey 

Canyon Formation (KCF), CL—Cave Lake section of the KCF, CS~Cooper Summit 

section of the KCF. Boxes correspond with the area of geologic maps appearing as 

figures in this paper. 

Figure 2. Stratigraphic column for the Sheep Pass Formation type section (modified from 

Fouch, 1979), the Sawmill Canyon section of the central Egan Range, and the Kinsey 

Canyon and Cave Lake sections of the Kinsey Canyon Formation from the Schell Creek 

Range. Biostratigraphic correlations of members for the Sheep Pass Formation type 

section are adapted from Fouch (1979) and Good (1987); and from Emry (1990) for the 

Sawmill Canyon section. U-Pb detrital zircon and (U-Th)/He detrital zircon ages from 

(from Druschke et al., in press, Druschke et al., in review) indicate maximum 

depositional ages. A U-Pb carbonate age from the basal portion of Member B indicates a 

depositional age (Druschke et al, in press). 

Figure 3. 40Ar/39Ar age results for samples collected from the Garrett Ranch Group within 

the southern Egan Range. Results from samples 04SP18, 05SH1, and 06MR2 consist of 
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weighted mean ages of sanidine single crystal fusions. Results for sample 06SP10 consist 

of a pseudo plateau obtained from step heating of basaltic groundmass. No age isochrons 

were produced. 

Figure 4. 40Ar/39Ar age results for samples collected from late Eocene volcanic strata of 

the central Egan Range (05SMI), and the Schell Creek Range. Results for sample 06KZ1 

consist of a weighted mean age of sanidine single crystal fusions, and a resulting age 

isochron. Results for samples 06KC6, 04CL12, 04CL13 and 05SM01 include weighted 

mean ages from sanidine single crystal fusions, with no resulting age isochrons. 

Figure 5. Equal-area rose diagram plots of paleocurrents from the Sheep Pass Formation 

type section (Members A and C combined), the overlying Stinking Spring Conglomerate, 

the Sawmill Canyon section of the Sheep Pass Formation in the central Egan Range, and 

the Cave Lake section of the Kinsey Canyon Formation in the central Schell Creek 

Range. Paleocurrents were derived primarily from pebble imbrication, with transport 

vectors restored to original horizontality using a stereonet. 

Figure 6. Geologic map of Sheep Pass Canyon in the southern Egan Range. The Ninemile 

fault strikes E/W along the southern boundary of the map area, before resuming a NE 

strike to the east of Sheep Pass Canyon. A series of inferred fault splays trend NE from 

the Ninemile fault in the vicinity of Blue Spring juxtapose the Sheep Pass Formation type 

section against the Mississippian Scotty Wash Sandstone and Pennsylvanian Ely 
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Limestone. These fault splays are overlapped by the Garrett Ranch Group, indicating 

motion prior to ca. 38-36 Ma (late Eocene). 

Figure 7. Schematic cross-section from A to A'(Fig. 7) across the type section of the 

Sheep Pass Formation, the basal portion of the Garrett Ranch Group, the Blue Spring 

fault system and the Ninemile fault within the southern Egan Range. Thickness of buried 

Paleozoic strata adapted from Kellogg (1963). 

Figure 8. Geologic map of Shingle Pass within the southern Egan Range, modified from 

Kellogg (1959). Megabreccia within the hanging wall of the Shingle Pass fault overlies 

Members A, B and D of the Sheep Pass Formation. Mapped members at Shingle Pass 

should be considered lithofacies, given that Member B at Shingle Pass is late Paleocene 

in age based on biostratigraphy, while Member B in the type section is Maastrichtian to 

early Paleocene (Good, 1987). Member D within the type section is potentially late 

Paleocene to middle Eocene in age (Fouch, 1979). 

Figure 9. (A) Large-scale soft-sedimentary slump fold in Member B of the Sheep Pass 

Formation type section. (B) Lacustrine limestone rip-up clast associate with a debris 

slump in Member B. (C) Limestone (intra and extra-basinal), chert and quartzite pebbles 

incorporated into a dominantly carbonate-mud debris flow in Member B. (D) Load cast 

associated with a slump fold in Member B. (E) View of a large-scale slump deposit in 

Member B of the Sheep Pass Formation type section displaying contorted beds. F) 

Recumbant soft-sedimentary slump fold in medium-grained sandstone beds of Member C 
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within the Sheep Pass Formation type section. (G) Outcrop of medium-grained sandstone 

of Member C, displaying an array of dewatering pipes, flame structures, and soft-

sedimentary folds. (H) Contorted bedding within lacustrine limestone/siltstone of the 

Kinsey Canyon Formation type section of the Schell Creek Range. Hammer head in B 

and C is 20 cm long. Notebook in D is 18 cm tall. Hat in F is 30 cm in diameter. Pencil in 

G is 15 cm long, pencil in H is 12 cm long. 

Figure 10. Correlation diagram for latest Cretaceous to Eocene strata of the Egan and 

Schell Creek Ranges. In contrast to earlier correlations by Fouch (1979), the latest 

Cretaceous to middle Eocene (Bridgerian; 50.5-45.4 Ma) Sheep Pass Formation type 

section predates the deposition of middle to late Eocene strata of the central Egan Range 

and Schell Creek Range based on age overlap with the basal Garrett Ranch Group in 

Sheep Pass Canyon. Our new correlations are depicted in gray. The Kinsey Canyon 

Formation type section is younger than the Stinking Spring Conglomerate, Sawmill 

Canyon section or Cave Lake section, but overlaps with deposition of the lower Garrett 

Ranch Group in Sheep Pass Canyon. Detrital zircon U-Pb, (U-Th)/He and U-Pb 

carbonate ages from Druschke et al., in review. 

Figure 11. Diagram comparing age relations of normal faults, associated extensional 

basin deposits, angular unconformities and megabreccia within the Egan and Schell 

Creek Ranges. Black arrows depict the potential age span for motion along corresponding 

normal faults. Inferred normal faulting in the Schell Creek Range is after Gans et al. 

(1989). Speculative Late Cretaceous unroofing in the Snake Range from Lewis et al. 
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(1999). AT/ Ar muscovite and Kspar cooling ages along the Snake Range decollement 

from Lee and Sutter (1991), and Lee (1995)—Paleocene cooling ages are treated as 

potentially suspect, while middle Eocene cooling ages (46-41 Ma) are considered more 

robust. Late Eocene extension and volcanism in the Snake Range are after Sullivan and 

Snoke (2007). Ages for contraction within the Sevier foreland are from from DeCelles, 

1994, and timing for initiation of extension in the Sevier foreland from Constensius, 

1996. GR—Garrett Ranch Group, CO—Charcoal Ovens, KZ—Kalamazoo, mb— 

megabreccia U—unconformity. 

Table 1: Sample descriptions for volcanic units selected for Ar/39Ar dating. 
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Table 1 : Sample descriptions for volcanic units from the Egan and Schell Creek Ranges 
processed for 40Ar/39Ar age analyses at the Nevada Isotope Gechemistry Laboratory (NIGL). 

Sample # Rock Mineral Unit Age (Ma) and Previous age 
1 a error 

Egan Range 

04SP18 
Sheep Pass Cyn 

06SP10 
Sheep Pass Cyn 

05SH1 
Shingle Pass 

06MR2 
Milk Ranch Cyn 

05SM1 
Sawmill Cyn 

af tuff 

basalt 

af tuff 

wd tuff 

wd tuff 

Schell Creek Range 

04CL12 
Cave Lake 

04CL13 
Cave Lake 

04KC6 
Kinsey Cyn 

06KZ1 
Kinsey Cyn 

aftuff 

wd tuff 

wltuff 

wd tuff 

san 

gm 

san 

san 

san 

san 

san 

san 

san 

GRG 

GRG 

GRG 

GRG 

COT 

KCF 

? 

KCF 

KZT 

Stone Cabin Fm? (Hose et al., 1976) 

35.43 ±0.11 35.3 ± 0.8 (40Ar/39Ar) Stone Cabin 
Fm. (Radke, 1992) 

35.74 ± 0.21 NA 

35.52 ± 0.08 NA 

26.68 ± 0.04 NA 

36.17 ±0.08 32.8 ±1.1 Ma (K-Ar) 
(McKeeetal., 1976) 

36.38 ±0.11 NA 

35.97 ±0.10 NA 

35.29 ±0.12 NA 

35.39 ± 0.07 35.5 ± 0.5 Ma (K-Ar) 

(Hagstrum and Gans, 1989) 

af = ash flow; wd = welded; wl = water-lain; san = sanidine, gm = ground mass, 
GRG = Garrett Ranch Group; COT = Charcoal Ovens Tuff; KCF = Kinsey Canyon Formation 
KZT = Kalamazoo Tuff 

137 



REFERENCES CITED 

Allmendinger, R.W., 1992, Fold and thrust tectonics of the western United States 

exclusive of the accreted terranes: in Burchfiel, B.C., Lipman, P.W., and Zoback, 

M.L., eds., The Cordilleran Orogen: Conterminous U.S., The Geology of North 

America, Volume G-3: Boulder, Colorado, Geological Society of America, p. 583-

607. 

Allmendinger, R.W., Jordan, T.E., Kay, S.M., and Isacks, B.L., 1997, The evolution of 

the Altiplano-Puna Plateau of the Central Andes: Annual Reviews of Earth and 

Planetary Science, v. 25, p. 139-174. 

Armstrong, R.L., 1968, Sevier orogenic belt in Nevada and Utah: Geological Society of 

America Bulletin, v. 79, p. 429-528. 

Armstrong, R.L., 1972, Low-angle (denudation) faults, hinterland of the Sevier orogenic 

belt, eastern Nevada and western Utah: Geological Society of America Bulletin, v. 

83, p. 1729-1754. 

Armstrong, R.L., and Ward, P., 1991, Evolving geographic patterns of Cenozoic 

magmatism in the North American Cordillera: The temporal and spatial association of 

magmatism and metamorphic core complexes: Journal of Geophysical Research, v. 

96, p. 13,201-13,224. 

Axen, G.J., Taylor, W.J., and Bartley, J.M., 1993, Space-time patterns and tectonic 

controls of Tertiary extension and magmatism in the Great Basin of the western 

United States: Geological Society of America Bulletin, v. 105, p. 56-76. 

138 



Barth, A.P. Wooden, J.L., Jacobson, C.E., and Probst, K., 2004, U-Pb geochronology and 

geochemistry of the McCoy Mountains Formation, southeastern California: A 

Cretaceous retroarc foreland basin: Geological Society of America Bulletin, v. 116, p. 

142-153. 

Bateman, P.C., 1983, A summary of critical relations in the central part of the Sierra 

Nevada batholith, California, U.S.A, in Roddick, J.A., ed., Circum-Pacific Plutonic 

Terranes: Boulder, Colorado, Geological Society of America Memoir, v. 159, p. 241-

254. 

Best, M.G., Scott, R.B., Rowley, P.D., Swadley, W.C., Anderson, R.E., Gromme, C.S., 

Harding, A.E., Deino, A.L., Christiansen, E.H., Tingey, D.G., and Sullivan, K.R., 

1993, Oligocene-Miocene caldera complexes, ash-flow sheets, and tectonism in the 

central and southeastern Great Basin, in Lahren, M.M., Trexler, J.H., Jr., and Spinosa, 

C, eds., Crustal Evolution of the Great Basin and Sierra Nevada: Cordilleran /Rocky 

Mountain Section, Geological Society of America Guidebook, University of Nevada, 

Reno, p. 285-311. 

Biswas, S., Coutand, I., Grujic, D., Hager, C, Stockli, D.F., and Grasemann, B., 2007, 

Exhumation of the Shillong plateau and its influence on east Himalayan tectonics. 

Tectonics, vol. 26, TC6013, doi:10.1029/2007TC002125. 

Brokaw, A.L., 1967, Geologic Map and Sections of the Ely Quadrangle, White Pine 

County, Nevada, White Pine, U.S.G.S., Geologic Quadrangle Map. 

Brooks, W.E., Thorman, C.H., and Snee, L.W., 1995, The 40Ar/39Ar ages and tectonic 

setting of the middle Eocene northeast Nevada volcanic field: Journal of Geophysical 

Research, v. 100, p. 10,403-10,416. 

139 



Burchfiel, B.C., Cowan, D.S., and Davis, G.A., 1992, Tectonic overview of the 

Cordilleran orogen in the western United States, in Burchfiel, B.C., Lipman, P.W., 

and Zoback, M.L., The Cordilleran Orogen; Conterminous U. S., Geological Society 

of America, p. 407-479. 

Camilleri, P.A., 1996, Evidence for Late Cretaceous-early Tertiary(?) extension in the 

Pequop Mountains, Nevada: Implications for the nature of the early Tertiary 

unconformity, in Taylor, W.J., and Langrock, H. eds., Cenozoic Structure and 

Stratigraphy of Central Nevada, Nevada Petroleum Society 1996 Field Conference 

Guidebook, Nevada Petroleum Society, Reno, p. 19-28. 

Camilleri, P.A., and Chamberlain, K.R., 1997, Mesozoic tectonics and metamorphism in 

the Pequop Mountains and Wood Hills region, northeast Nevada: Implications for the 

architecture and evolution of the Sevier orogen: Geological Society of America 

Bulletin, v. 109, p. 74-94. 

Carpenter, D.G., Carpenter, J.A., Dobbs, S.W., and Stuart, C.K., 1993, Regional 

structural synthesis of Eureka fold-and thrust belt, east-central Nevada: in Gillespie, 

C.W., ed., Structural and Stratigraphic Relationships of Devonian Reservoir Rocks, 

East-Central Nevada: Nevada Petroleum Society 1993 Field Conference Guidebook, 

p. 59-72. 

Cebula, G.T., M.J. Kunk, H.H. Mehnert, C.W. Naeser, J.D. Obradovich, and J.F. Sutter, 

1986, The Fish Canyon Tuff, a potential standard for the 40Ar/39Ar and fission-track 

dating methods, Terra Cognita (6th Int. Conf. on Geochronology, Cosmochronology 

and Isotope Geology), v. 6, p. 139. 

140 



Christiansen R.L., Yeats, R.S., Graham, S.A., Niem, W.A., Niem, A.R., and Snavely, 

P.D., 1992, Post-Laramide geology of the U.S. Cordilleran region, in Burchfiel, B.C, 

Lipman, P.W., and Zoback, M.L., eds., The Cordilleran Orogen; Conterminous U. S., 

Geological Society of America, p. 261-406. 

Cole, J.M, Rasbury, E.T., Hanson, G.N., Montanez, LP., and Pedone, V.A., 2005, Using 

U-Pb ages of Miocene tufa for correlation in a terrestrial succession, Barstow 

Formation, California: Geological Society of America Bulletin, v. 117, p. 276-287. 

Coney, P.J., and Harms, T.J., 1984, Cordilleran metamorphic core complexes: Cenozoic 

extensional relics of Mesozoic compression: Geology, v. 12, p. 550-554. 

Constenius, K.N., 1996, Late Paleogene extensional collapse of the Cordilleran foreland 

fold and thrust belt: Geological Society of America Bulletin, v. 108, p. 20-39. 

Dalmayrac, B., and Molnar, P., 1981, Parallel thrust and normal faulting in Peru and the 

constraints on the state of stress: Earth and Planetary Science Letters, v. 55, p. 473-

481. 

DeCelles, P.G., 1994, Late Cretaceous-Paleogene synorogenic sedimentation and 

kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming: 

Geological Society of America Bulletin, v. 106, p. 32-56. 

DeCelles, P.G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and 

foreland basin system, western U.S.A.: American Journal of Science, v. 304, p. 105-

168. 

DeCelles, P.G., and Currie, B.S., 1996, Long-term sediment accumulation in the Middle 

Jurassic-early Eocene Cordilleran retroarc foreland-basin system: Geology, v. 24, p. 

591-594. 

141 



DeCelles, P.G., Lawton, T.F., and Mitra, G., 1995, Thrust timing, growth of structural 

culminations, and synorogenic sedimentation in the type Sevier orogenic belt, western 

United States: Geology, v. 23, p. 699-702. 

DeGraaf-Surpless, K., Graham, S.A., Wooden, J.L., and McWilliams, M.O., 2002, 

Detrital zircon provenance analysis of the Great Valley Group, California: Geological 

Society of America Bulletin, v. 114, p. 1564-1580. 

Dickinson, W.R., 2008, Accretionary Mesozoic-Cenozoic expansion of the Cordilleran 

continental margin in California and adjacent Oregon: Geosphere, v. 4, p. 329-353. 

Dickinson, W.R., 2006, Geotectonic evolution of the Great Basin: Geosphere, v. 2, p. 

353-368. 

Dickinson, W.R., 2000, Geodynamic interpretation of Paleozoic tectonic trends oriented 

oblique to the Mesozoic Klamath-Sierran continental margin in California, in 

Soreghan, M.J., and Gehrels, G.E., eds., Paleozoic and Triassic Paleogeography and 

Tectonics of Western Nevada and Northern California: Boulder Colorado, Geological 

Society of America Special Paper 347, p. 209-245. 

Dickinson, W.R., 2002, The Basin and Range Province as a composite extensional 

domain: International Geology Review, v. 44, p. 1-38. 

Dickinson, W.R., and Gehrels, G.E., 2003, U-Pb ages of detrital zircons from Permian 

and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic 

implications: Sedimentary Geology, v. 163, p. 29-66. 

Dickinson, W.R., and Snyder, W.S., 1978, Plate tectonics of the Laramide orogeny, in 

Matthews, V., ed., Laramide folding associated with block faulting in the western 

United States: Geological Society of America Memoir 151, p. 355-366. 

142 



Dilek, Y., and Moores, E.M., 1999, A Tibetan model for the early Tertiary western 

United States: Journal of the Geological Society [London], v. 156, p. 929-941. 

Dodson, M.H., 1973, Closure temperature in cooling geochronological and petrological 

systems: Contributions to Mineralogy and Petrology, v. 40, p. 259-274. 

Drewes, H., 1967, Geology of the Connors Pass quadrangle, Schell Creek Range, east-

central Nevada: United States Geological Survey Professional Paper 557, 93 pp. 

Druschke P., Hanson, A.D., Wells, M.L., Gehrels, G.E., and Stockli, D., (in review), 

Paleogeographic isolation of the Cretaceous to Eocene Sevier hinterland, east-central 

Nevada: Insights from U-Pb and (U-Th)/He detrital zircon ages of hinterland strata: 

Geological Society of America Bulletin. 

Druschke, P., Hanson, A.D., Wells, M.L., Rasbury, T., Stockli, D., and Gehrels, G., (in 

press), Synconvergent surface-breaking normal faults of Late Cretaceous age within 

the Sevier hinterland, east-central Nevada: Geology. 

Dubiel, R.F., Potter, C.J., Good, S.C., and Snee, L.W., 1996, Reconstructing an Eocene 

extensional basin: The White Sage Formation, eastern Great Basin, in Beratan, K.K., 

Reconstructing the History of Basin and Range Extension Using Sedimentology and 

Stratigraphy: Geological Society of America Special Paper 303, p. 1-14. 

du Bray, E. A., 2007, Time, space and composition relations among northern Nevada 

intrusive rocks and their metallogenic implications: Geosphere, v. 3, p. 381-405. 

Emry, R.J., 1990, Mammals of the Bridgerian (Middle Eocene) Elderberry Canyon Local 

Fauna of eastern Nevada: in Brown, T.M., and Rose, K.D., eds., Dawn of the Age of 

Mammals in the Northern Part of the Rocky Mountain Interior, North America: 

Boulder, Colorado, Geological Society of America, Special Paper 243, p. 187-210. 

143 



Emry, R.J., and Korth, W.W., 1990, Rodents of the Bridgerian (Middle Eocene) 

Elderberry Canyon Local Fauna of Eastern Nevada: Smithsonian Contributions to 

Paleobiology, v. 67, Washington, D. C, Smithsonian Institution Press, 14 pp. 

Engebretson, D.C., Cox, A., and Gordon, R.G., 1985, Relative motions between oceanic 

and continental plates in the Pacific Basin: Special Paper of the Geological Society of 

America, 206, 59 pp. 

Evernden, J.F., and Kistler, R.W., 1970, Chronology of emplacement of Mesozoic 

batholithic complexes in California and western Nevada: U.S. Geological Survey 

Professional Paper 0623, 42 pp. 

Farley, K.A., Rusmore, M.E., and Bogue, S.W, 2001, Post-10 Ma uplift and exhumation 

of the northern Coast Mountains, British Columbia: Geology, v. 29, p. 99-102. 

Farley, K., Wolf, R., and Silver, L., 1996, The effects of long alpha-stopping distances on 

(U-Th)/He ages: Geochimica et Cosmochimica Acta, v. 60, p. 4223-4229. 

Fouch, T.D., 1979, Character and paleogeographic distribution of Upper Cretaceous(?) 

and Paleogene nonmarine sedimentary rocks in east-central Nevada: in Armentrout, 

J.M., Cole, M.R., and Terbest, H., eds., Cenozoic paleogeography of the western 

United States: Pacific Coast Paleogeographic Symposium 3, Pacific Section, SEPM, 

p. 97-111. 

Fouch, T.D., Hanley, J.H., and Forester, R.M., 1979, Preliminary correlation of 

Cretaceous and Paleogene lacustrine and related nonmarine sedimentary and volcanic 

rocks in parts of the eastern Great Basin of Nevada and Utah, in Newman, G.W., and 

Goode, H.D., eds., Basin and Range Symposium: Rocky Mountain Association of 

Geologists and Utah Geological Association, p. 305-312. 

144 



Fouch, T.D., Lund, K., Schmitt, J.G., Good, S.C., and Hanley, J. H., 1991, Late 

Cretaceous(?) and Paleogene sedimentary rocks and extensional(?) basins in the 

region of the Egan and Grant ranges, and White River and Railroad valleys, Nevada: 

their relation to Sevier and Laramide contractional basins in the southern Rocky 

Mountains and Colorado Plateau, in Flanigan, D.M.H., Hansen, M., and Flanigan, 

T.E., Geology of the White River Valley, the Grant Range, Eastern Railroad Valley 

and the Western Egan Range, Nevada: Nevada Petroleum Society, 1991 Fieldtrip 

Guidebook, p. 15-23. 

Gans, P.B, Mahood, G.A., and Schermer, E., 1989, Synextensional magmatism in the 

Basin and Range Province: A case study from the eastern Great Basin: Geological 

Society of America Special Paper 253, 53 pp. 

Gans, P.B., and Miller, E.L., 1983, Style of mid-Tertiary extension in east-central 

Nevada, in Nash, W.P., and Gurgel, K.D., eds., Geological excursions in the 

overthrust belt and metamorphic core complexes of the Intermountain region: Utah 

Geological and Mineral Survey Special Studies 59, p. 107-139. 

Gans, P.B., Repetski, J.E., Harris, A.G., and Clark, D.H., 1990, Conodont 

geothermometry of Paleozoic supracrustal rocks in the eastern Great Basin: Geology 

and ore deposits of the Great Basin: Geological Society of Nevada, Symposium, 

Reno/Sparks, 1990, Program with Abstracts, p. 103. 

Gans, P.B., Seedorff, E., Fahey, P.L., Hasler, R.W., Maher, D.J., Jeanne, R.A., and 

Shaver, S.A., 2001, Rapid Eocene extension in the Robinson District, White Pine 

County, Nevada: Constraints from 40Ar/39Ar dating: Geology, v. 29, p. 475-478. 

145 



Gardner, J.V., Mayer, L.A., and Clarke, J.E.H., 2000, Morphology and processes in Lake 

Tahoe (California-Nevada): Geological Society of America Bulletin, v. 112, p. 736-

746. 

Gehrels, G.E., and Dickinson, W.R., 1995, Detrital zircon provenance of Cambrian to 

Triassic miogeoclinal and eugeoclinal strata of Nevada: American Journal of Science, 

v. 295, p. 18-48. 

Gehrels, G.E., and Ross, G.M., 1998, Detrital zircon geochronology of Neoproterozoic to 

Triassic miogeoclinal strata of British Columbia and Alberta: Canadian Journal of 

Earth Sciences, v. 35, p. 1380-1401. 

Gehrels, G.E., Dickinson, W.R., Ross, G.M., Stewart, J.H., and Howell, D.G., 1995, 

Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western 

North America: Geology, v. 23, p. 831-834. 

Gehrels, G.E., Dickinson, W.R., Riley, B.C.D., Finney, S.C., and Smith, M.T., 2000, 

Detrital zircon geochronology of the Roberts Mountain allochthon, Nevada: in 

Soreghan, M.J., and Gehrels, G.E., Paleozoic and Triassic geochronology of western 

Nevada and Northern California: Geological Society of America Special Paper, v. 

347, p. 19-42. 

Gehrels, G.E., Dickinson, W.R., Darby, B.J., Harding, J.P., Manuszak, J.D., Riley, 

B.C.D., Spurlin, M.S., Finney, S.C., Girty, G.H., Harwood, D.S., Miller, M.M., 

Satterfield, J.I., Smith, M.T., Snyder, W.S.,*Wallin, E.T., and Wyld, S.J., 2000, 

Tectonic implications of detrital zircon data from Paleozoic and Triassic strata in 

western Nevada and northern California, in Soreghan, M.J., and Gehrels, G.E., eds., 

Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern 

146 



California: Boulder Colorado, Geological Society of America Special Paper 347, p. 

133-150. 

Gehrels, G.E., Johnsson, M.J., and Howell, D.G., 1999, Detrital zircon geochronology of 

the Adams Argillite and Nation River Formation, east-central Alaska,: Journal of 

Sedimentary Research, v. 69, p. 147-156. 

Gehrels, G.E., Valencia, V., Ruiz, J., 2008, Enhanced precision, accuracy, efficiency, and 

spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled 

plasma-mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, Q03017, 

doi:10.1029/2007GC001805. 

Giles, K.A, and Dickinson, W.R., 1995, Influence of lithospheric flexure on development 

of stratigraphic sequences in foreland basin settings: An example from the Antler 

foreland, Nevada and Utah: in Dorobek, S., and Ross, G., (eds.) Stratigraphic 

Evolution of Foreland Basins, SEPM Special Publication 52, p. 187-211. 

Goebel, K.A., 1991, Paleogeographic setting of the Late Devonian to Early Mississippian 

transition from passive to collisional margin: in Cooper, J.D., and Stevens, C.H., 

(eds.) Paleozoic Paleogeography of the United States-II, Pacific Section of SEPM 

Special Publication 67, p. 401-418. 

Good, S.C., 1987, Mollusc-based interpretations of lacustrine paleoenvironments of the 

Sheep Pass Formation (Latest Cretaceous to Eocene) of East Central Nevada: Palaios, 

v. 2, p. 467-478. 

Hagstrum, J.T., and Gans, P.B., 1989, Paleomagnetism of the Oligocene Kalamazoo 

Tuff: Implications for middle Tertiary extension in east central Nevada: Journal of 

Geophysical Research, v. 94, p. 1827-1842. 

147 



Harris, C.R., Hoisch, T.D., and Wells, M.L., 2007, Construction of a composite pressure 

temperature path: Revealing the synorogenic burial and exhumation history of the 

Sevier hinterland, USA: Journal of Metamorphic Geology, v. 25, p. 915-934. 

Haynes, S.R., 2003, Development of the Eocene Elko basin, northeast Nevada: 

Implications for paleogeography and regional tectonism: [M. S. Thesis], University of 

British Columbia, 160 pp. 

Henry, CD., 2008, Ash-flow tuffs and paleovalleys in northeastern Nevada: Implications 

for Eocene paleogeography and extension in the Sevier hinterland, northern Great 

Basin: Geosphere, v. 4, p. 1-35. 

Hodges, K.V., and Walker, J.D., 1992, Extension in the Cretaceous Sevier orogen, North 

American Cordillera, Geological Society of America Bulletin, v. 104, p. 560-569. 

Hoisch, T.D., Wells, M.L., and Grove, M, 2008, Age trends in garnet-hosted monazite 

inclusions from upper amphibolite facies schist in the northern Grouse Creek 

Mountains, Utah: Geochimica et Cosmochimica Acta, v. 72, p. 5505-5520. 

Horton, B.K., Constenius, K.N., and DeCelles, P.G., 2004a, Tectonic control on coarse

grained foreland-basin sequences: An example from the Cordilleran foreland basin, 

Utah: Geology, v. 32, p. 545-640. 

Horton, T.W, Sjostrom, D.J., Abruzzese, M.J., Poage, M.J., Waldbauer, J.R., Hren, M., 

Wooden, J., and Chamberlain, C.P., 2004b, Spatial and temporal variation of 

Cenozoic surface elevation in the Great Basin and Sierra Nevada: American Journal 

of Science, v. 304, p. 862-888. 

Hose, R.K., 1977, Structural geology of the Confusion Range, west-central Utah: U.S. 

Geological Survey Professional Paper 971, 9 pp. 

148 



Hose, R.K., Blake, M.C., and Smith, R.M., 1976, Geology and mineral resources of 

White Pine County, Nevada: Nevada Bureau of Mines and Geology Bulletin v. 85, 

105 pp. 

House, M.A., Wernicke, B.P., and Farley, K.A., 2001, Paleo-geomorphology of the 

Sierra Nevada, California, from (U-Th)/He ages in apatite: American Journal of 

Science, v. 301, p. 335-352. 

Hudec, M.R., 1992; Mesozoic structural and metamorphic history of the central Ruby 

Mountains metamorphic core complex, Nevada: Geological Society of America 

Bulletin, v. 104, p. 1086-1100. 

Humphreys, E.D., 1995, Post Laramide removal of the Farallon slab, western United 

States: Geology, v. 23, p. 987-990. 

Jones, C.H., Sonder, L.J., and Unruh, J.R., 1998, Lithospheric gravitational potential 

energy and past orogenesis: Implications for conditions of initial Basin and Range 

and Laramide deformation: Geology, v. 26, 639-642. 

Jordan, T.E., and Alonso, R.N., 1987, Cenozoic stratigraphy and basin tectonics of the 

Andes Mountains, 20°-28° south latitude: American Association of Petroleum 

Geologists Bulletin, v. 71, p. 49-64. 

Kapp, P., Taylor, M., Stockli, D., and Ding, L., 2008, Development of active low-angle 

normal fault systems during orogenic collapse: Insight from Tibet: Geology, v. 36, p. 

7-10. 

Kellogg, H.E., 1959, Stratigraphy and structure of the southern Egan Range, Nevada: 

[Ph.D dissertation] Columbia University, New York, 232 pp. 

149 



Kellogg, H.E., 1963, Paleozoic stratigraphy of the southern Egan Range: Geological 

Society of America Bulletin, v. 74, p. 685-708. 

Kellogg, H.E., 1964, Cenozoic stratigraphy and structure of the southern Egan Range, 

Nevada: Geological Society of America Bulletin, v. 75, p. 949-968. 

Lawton, T.F., Sprinkel, D., DeCelles, P.G., Mitra, G., and Sussman, A.J., 1997, Thrusting 

and synorogenic sedimentation in the central Utah Sevier thrust belt and foreland 

basin: Brigham Young University Geology Studies, v. 42, p. 336-67. 

Lee, D.E., Stacey, J.S.D., and Fischer, L., 1986, Muscovite phenocrystic two-mica 

granites of north-eastern Nevada are Late Cretaceous in age, in Shorter contributions 

to isotope research: U.S. Geological Survey Bulletin 1622, p. 31-39. 

Lee, J., and Sutter, J.F., 1991, Incremental 40Ar/39Ar thermochronology of mylonitic 

rocks from the northern Snake Range, Nevada: Tectonics, v. 14, p. 77-100. 

Leeder, M., 1987, Sediment deformation structures and the paleotectonic analysis of 

sedimentary basins, with a case-study from the Carboniferous of northern England, in 

Jones, M.E., and Preston, R.M.F., Deformation of Sediments and Sedimentary Rocks, 

Geological Society [London] Special Publication, v., 29, p. 137-146. 

Lewis, C.J., Wernicke, B.P., Selverstone, J., Bartley, J.M., 1999, Deep burial of the 

footwall of the northern Snake Range decollement, Nevada, Geological Society of 

America Bulletin, v. 111, p. 39-51. 

Lowe, D.R., 1975, Water escape structures in coarse-grained sediments: Sedimentology, 

v. 22, p. 157-204. 

150 



Ludwig, K. R., and Mundil, R., 2002, Extracting reliable U-Pb ages and errors from 

complex populations of zircons from Phanerozoic tuffs: Geochimica et 

Cosmochimica Acta, v. 66, p. 463. 

MacCready, T., Snoke, A.W., Wright, J.E., and Howard, K.A., 1997, Mid-crustal flow 

during Tertiary extension in the Ruby Mountains core complex, Nevada: Geological 

Society of America Bulletin, v. 109, p. 1576-1594. 

Manuszak, J.D., Satterfield, J.I., and Gehrels, G.E., 2000, Detrital zircon geochronology 

of Upper Triassic strata in western Nevada, in Soreghan, M.J., and Gehrels, G.E., 

eds., Paleozoic and Triassic paleogeography and tectonics of western Nevada and 

northern California: Boulder, Colorado, Geological Society of America Special Paper 

347, p. 109-118. 

Martin, A.J., Wyld, S.J., Wright, J.E., and Bradford, J.H., (in press), The Lower 

Cretaceous King Lear Formation, northwest Nevada: Implications for Mesozoic 

orogenesis in the western U.S. Cordillera: Geological Society of America Bulletin. 

McGrew, A.J., Peters, M.T., and Wright, J.E., 2000, Thermobarometric constraints on the 

tectonothermal evolution of the East Humboldt Range metamorphic core complex, 

Nevada: Geological Society of America Bulletin, v. 112, p. 45-60. 

McKee, E.H., Tarshis, A.L., and Marvin, R.F., 1976, Summary of radiometric ages of 

Tertiary volcanic and selected plutonic rocks in Nevada. Part V: Northeastern 

Nevada: Isochron West, v. 16, p. 15-27. 

Metcalf, R.V., Wallin, E.T., Willse, K.R., and Muller, E.R., 2000, Geology and 

geochemistry of the ophiolitic Trinity terrane, California: Evidence of middle 

Paleozoic depleted supra-subduction zone magmatism in a proto-arc setting, in Dilek, 

151 



Y., Moores, E.M., Elthon, D., and Nicloas, A., eds., Ophiolites and oceanic crust: 

New insights from field studies and the Oceanic Drilling Program: Geological 

Society of America Special Paper 349, p. 403-418. 

Miller, C.F., and Bradfish, L.F., 1980, An inner Cordilleran belt of muscovite-bearing 

plutons: Geology, v. 8, p. 412-416. 

Miller, E.L., and Gans, P.B., 1989, Cretaceous crustal structure and metamorphism in the 

hinterland of the Sevier thrust belt, western U.S. Cordillera: Geology, v. 17, p. 59-62. 

Miller, EX., Gans, P.B., Wright, J.E., and Sutter, J.F., 1988, Metamorphic history of the 

east central Basin and Range province: tectonic setting and relationship to 

magmatism, in Ernst, W.G., ed., Metamorphism and crustal evolution, western United 

States, Rubey Volume VII: Englewood Cliffs, New Jersey, Prentice-Hall, p. 649-682. 

Miller, E.L., Miller, M.M., Stevens, C.H., Wright, J.E., and Madrid, R., 1992, Late 

Paleozoic paleogeographic and tectonic evolution of the western U.S. Cordillera, in 

Burchfiel, B.C., Lipman, P.W., and Zoback, M.L., The Cordilleran Orogen; 

Conterminous U. S., Geological Society of America, p. 57-106. 

Molnar, P, and Chen, W.P., 1983, Focal depths and fault plane solutions of earthquakes 

under the Tibetan Plateau: Journal of Geophysical Research, v. 88, p. 1180-1196. 

Montenat, C , Barrier, P., Ott d'Estevou, P., and Hibsch, C , 2007, Seismites: An attempt 

at critical analysis and classification: Sedimentary Geology, v. 196, p. 5-30. 

Montgomery, S.L., 1997, Lone Tree prospect area, Railroad Valley, Nevada: American 

Association of Petroleum Geologists Bulletin, v. 81, p. 175-186. 

152 



Mueller, K J., Cerveny, P.K., Perkins, M.E., Snee, L.W., 1999, Chronology of polyphase 

extension in the Windermere Hills, northeast Nevada: Geological Society of America 

Bulletin, v. I l l , p. 11-27. 

Nolan, T.B., Merriam, C.W., and Williams, J.S., 1956, The stratigraphic section in the 

vicinity of Eureka, Nevada: USGS Professional Paper 276, 77 pp. 

Oldow, J.S., 1984, Evolution of a late Mesozoic back-arc fold and thrust belt, 

northwestern Great Basin, U.S.A.: Tectonophysics, v. 102, p. 245-274. 

Piatt, J.P., 2007, From orogenic hinterlands to Mediterranean-style back-arc basins: a 

comparative analysis: Journal of the Geological Society, London, v. 164, p. 297-311. 

Poole, F.G., Stewart, J.H., Palmer, A.R., Sandberg, C.A., Madrid, C.A., Ross, R.J. Jr., 

Hintze, L.F., Miller, M.M., and Wrucke, C.T., 1992, Latest Precambrian to latest 

Devonian time; development of a continental margin: in Burchfiel, B.C., Lipman, 

P.W., and Zoback, M.L., The Cordilleran Orogen; Conterminous U. S., Geological 

Society of America, p. 9-54. 

Potter, C.J., Dubiel, R.F., Snee, L.W., and Good, S.C., 1995, Eocene extension of early 

Eocene lacustrine strata in a complexly deformed Sevier-Laramide hinterland, 

northwest Utah and northeast Nevada: Geology, v. 23, p. 181-184. 

Quinn, M.J., Wright, J.E., and Wyld, S.J., 1997, Happy Creek igneous complex and 

tectonic evolution of the early Mesozoic arc in the Jackson Mountains, northwest 

Nevada: Geological Society of America Bulletin, v. 109, p. 461-482. 

Radke, L.E., 1992, Petrology and temporal evolution of the rhyolite ash-flow tuffs of the 

Stone Cabin Formation, central Nevada: [M.S. Thesis], Brigham Young University, 

Provo, 65 pp. 

153 



Rahl, J.M., McGrew, A.J., and Foland, K.A., 2002, Transition from contraction to 

extension in the northeastern Basin and Range: New evidence from the Copper 

Mountains, Nevada: The Journal of Geology, v. 110, p. 179-194. 

Rainbird, R.H., Heaman, L.M., and Young, G., 1992, Sampling Laurentia: Detrital zircon 

geochronology offers evidence for an extensive Neoproterozoic river system 

originating from the Grenville orogen: Geology, v. 20, p. 351-354. 

Reiners, P.W., Campbell, I.H., Nicolescu, S., Allen, CM., Hourigan, J.K., Garver, J.I., 

Mattinson, J.M., and Cowan, D.S., 2005, (U-Th)/(He-Pb) double dating of detrital 

zircons, American Journal of Science, v. 305, p. 259-311. 

Reiners, P.W., Farley, K.A., and Hickes, H.J., 2002, He diffusion and (U-Th)/He 

thermochronornetry of zircon: Initial results from Fish Canyon Tuff and Gold Butte: 

Tectonophysics, v. 349, p. 297-308. 

Riley, B.C.D., Snyder, W.S., and Gehrels, G.E., 2000, U-Pb detrital zircon 

geochronology of the Golconda allochthon, Nevada, in Soreghan, M.J., and Gehrels, 

G.E., eds., Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada 

and Northern California: Boulder Colorado, Geological Society of America Special 

Paper 347, p. 133-150. 

Rodriguez-Pascua, M.A., Calvo, J.P., De Vicente, G., and Gomez-Gras, D., 2000, Soft-

sediment deformation structures interpreted as seismites in lacustrine sediments of the 

Prebic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes 

during the Late Miocene: Sedimentary Geology, v. 135, p. 117-135. 

154 



Roberts, R.J., Hotz, P.E., Gilluly, J., and Ferguson, H.G., 1958, Paleozoic rocks of north-

central Nevada: American Association of Petroleum Geologists Bulletin, v. 42, p. 

2813-2857. 

Saleeby, J.B., Shaw, H.F., Niemeyer, S., Moores, E.M., and Edelman, S.H., 1989, U/Pb, 

Sm/Nd, and Rb/Sr geochronological and isotopic study of northern Sierra ophiolitic 

assemblages, California: Contributions to Mineralogy and Petrology, v. 102, p. 205-

220. 

Schweikert, R.A., and Lahren, M.M., 1990, Speculative reconstruction of the Mojave-

Snowlake fault: Implications for Paleozoic and Mesozoic orogenesis in the western 

United States: Tectonics, v. 9, p. 1609-1629. 

Seilacher, A., 1969: Fault graded beds interpreted as seismites: Sedimentology, v. 13, p. 

155-159. 

Sharp, I.R., Gawthorpe, R.L., Underhill, J.R., and Gupta, S., 2000, Fault-propagation 

folding in extensional settings: Examples of structural style and synrift sedimentary 

response from the Suez rift, Sinai, Egypt: Geological Society of America Bulletin, v. 

112, p. 1877-1899. 

Singh, S., and Jain, A.K., 2007, Liquefaction and fluidization of lacustrine deposits from 

Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along 

active fault zone: Sedimentary Geology, v. 196, p. 47-57. 

Smith, D.L, Wyld, S.J., Miller, E.L., and Wright, J.E., 1993, Progression and timing of 

Mesozoic crustal shortening in the northern Great Basin, in Dunne, G.C., and 

McDougall, K.A., eds., Mesozoic Paleogeography of the Western United States, Vol. 

II: Los Angeles, Pacific Section, SEPM, Book 71, p. 389-405. 

155 



Smith, F.R. Jr., and Ketner, K.B., 1976, Stratigraphy of post-Paleozoic rocks and 

summary of resources in the Carlin-Pinon Range area, Nevada: USGS Professional 

Paper 867-B, 48 pp. 

Smith, M, and Gehrels, G., 1994, Detrital zircon geochronology and the provenance of 

the Harmony and Valmy Formations, Roberts Mountains allochthon, Nevada: 

Geological Society of America Bulletin, v. 106, p. 968-979. 

Sonder, L.J., and Jones, C.H., 1999, Western United States extension: How the west was 

widened: Annual Reviews of Earth and Planetary Sciences, v. 27, p. 417-462. 

Speed, R.C., 1978, Paleogeographic and plate tectonic evolution of the early Mesozoic 

marine province of the western Great Basin, in Howell, D.G., and McDougall, K.A., 

eds., Mesozoic Paleogeography of the Western U.S.; Pacific Section, SEPM, Pacific 

Coast Paleogeography Symposium 2, p. 253-270. 

Speed, R.C., and Sleep, N.H., 1982, Antler orogeny and foreland basin: Geological 

Society of America Bulletin, v. 93, p. 815-828. 

Speed, R.C., Elison, M.W., and Heck, R.R., 1988, Phaerozoic tectonic evolution of the 

Great Basin, in Ernst, W.G., ed., Metamorphism and crustal evolution of the western 

United States, Rubey Volume 7: Englewood Cliffs, New Jersey, Prentice-Hall, p. 

572-605. 

Spurlin, M.S., Gehrels, G.E., and Harwood, D.S., 2000, Detrital zircon geochronology of 

upper Paleozoic and lower Mesozoic strata of the northern Sierra terrane, northeastern 

California, in Soreghan, M.J., and Gehrels, G.E., eds., Paleozoic and Triassic 

Paleogeography and Tectonics of Western Nevada and Northern California: Boulder 

Colorado, Geological Society of America Special Paper 347, p. 89-98. 

156 



Staudacher, T.H., Jessberger, E.K., Dorflinger, D., and Kiko, J., 1978, A refined 

ultrahigh-vacuum furnace for rare gas analysis, Journal of Physical Earth Science 

Instrumentation, v. 11, p. 781-784. 

Stern, T.W., Bateman, P.C., Morgan, B.A., Newell, M.F., and Peck, D.L., 1981, Isotopic 

U-Pb ages of zircon from the granitoids of the central Sierra Nevada, California: U.S. 

Geological Survey Professional Paper 1185, 19 p. 

Stewart, J.H., and Carlson, J.E., 1977, One million scale set geologic map of Nevada: 

Nevada Bureau of Mines and Geology, Map 57. 

Stewart, J.H., and Poole, F.G., 1974, Lower Paleozoic and uppermost Precambrian of the 

Cordilleran miogeocline, Great Basin, western United States, in Dickinson, W.R., ed., 

Tectonics and Sedimentation: SEPM Special Publication 22, p. 28-57. 

Stewart, J.H., Gehrels, G.E., Barth, A.P., Link, P.K., Christie-Blick, N., and Wrucke, 

C.T., 2001, Detrital zircon provenance of Mesoproterozoic to Cambrian arenites of 

the western United States and northwestern Mexico: Geological Society of America 

Bulletin, v. 113, p. 1343-1356. 

Stockli, D.F., 2005, Application of low-temperature thermochronometry to extensional 

tectonic settings; Low-temperature thermochronology; techniques, interpretations, 

and applications: Reviews in Mineralogy and Geochemistry, v. 58, p. 411-448. 

Sullivan, W.A., and Snoke, A.W., 2007, Comparative anatomy of core-complex 

development in the northeastern Great Basin, U.S.A.: Rocky Mountain Geology, v. 

42, p. 1-29. 

Swain, F.M., 1999, Fossil Nonmarine Ostracoda of the United States: Amsterdam, 

Elsevier Science, 401 p. 

157 



Takahiro, T., Farley, K.A., and Stockli, D.F., 2003, (U-Th)/He geochronology of single 

zircon grains of known Tertiary eruption age: Earth and Planetary Science Letters, v. 

207, p. 57-67. 

Taylor, W.J., Bartley, J.M., Lux, D., and Axen, G., 1989, Timing of Tertiary extension in 

the Railroad Valley-Pioche transect, Nevada: Constraints from 40Ar/39Ar ages of 

volcanic rocks: Journal of Geophysical Research, v. 94, p. 7757-7774. 

Taylor, W.J., Bartley, J.M., Fryxell, J.E., Schmitt, J.G., and Vandervoort, D.S., 1993, 

Tectonic style and regional relations of the central Nevada thrust belt, in Lahren, 

M.M., Trexler, J.H., Jr., and Spinosa., C, eds., Crustal Evolution of the Great Basin 

and Sierra Nevada: Cordilleran/Rocky Mountain Section, Geological Society of 

America Guidebook, 1993, Reno, Nevada, p. 57-96. 

Taylor, W.J., Bartley, J.M., Martin, M.W., Geissman, J.W., Walker, J.D., Armstrong, 

P.A., and Fryxell, J. E., 2000, Relations between hinterland and foreland shortening: 

Sevier orogeny, central North American Cordillera: Tectonics, v. 19, p. 1124-1143. 

Trexler, J.H., Jr., Cashman, P.H., Snyder, W.S., and Davydov, V.I., 2004, Late Paleozoic 

tectonism in Nevada: Timing, kinematics, and tectonic significance: Geological 

Society of America Bulletin, v. 116, p. 525-538. 

Trexler, J.H., Jr., Snyder, W.S., Schwarz, D., Kurka, M.T., and Crosbie, R.A., 1995, An 

overview of the Mississippian Chainman Shale, in Hansen, M.W., Walker, J.P., and 

Trexler, J.H., Jr., eds., Mississippian Source Rocks in the Antler Basin of Nevada and 

Associated Structural Traps: Reno, Nevada Petroleum Society, p. 45-60. 

158 



Vandervoort, D.S., 1987, Sedimentology, provenance, and tectonic implications of the 

Cretaceous Newark Canyon Formation, east-central Nevada [M.S. thesis]: Bozeman, 

Montana State University, 145 p. 

Vandervoort, D.S., and Schmitt, J.G., 1990, Cretaceous to early Tertiary paleogeography 

in the hinterland of the Sevier thrust belt, east-central Nevada: Geology, v. 18, p. 567-

570. 

Vandervoort, D.S., Jordan, T.E., Zeitler, P.K., and Alonso, R.N., 1995, Chronology of 

internal drainage development and uplift, southern Puna Plateau, Argentine central 

Andes: Geology, v. 23, p. 145-148. 

Welle, B.A., 2008, Testing the Late Cretaceous Kaiparowits-Mesaverde fluvial 

connection: A detrital zircon U-Pb geochronologic and petrographic provenance 

approach [MS thesis]: New Mexico State University, 145 p. 

Wells, M.L., 1997, Alternating contraction and extension in the hinterlands of orogenic' 

belts: An example from the Raft River Mountains, Utah: Geological Society of 

America Bulletin, v. 109, p. 107-126. 

Wells, M.L., Dallmeyer, R.D., and Allmendinger, R.W., 1990, Late Cretaceous extension 

in the hinterland of the Sevier thrust belt, northwestern Utah: Geology, v. 18, p. 929-

933. 

Wells, M.L., and Hoisch, T.D., 2008, The role of mantle delamination in widespread Late 

Cretaceous extension and magmatism in the Cordilleran orogen, western United 

States: Geological Society of America Bulletin, v. 120, p. 515-530. 

159 



Wells, M.L., Hoisch, T.D., Peters, M.T., Miller, D.M., Wolff, E.D. and Hanson, L.M., 

1998, The Mahogany Peaks fault, a Late Cretaceous-Paleocene normal fault in the 

hinterland of the Sevier orogen: Journal of Geology, v. 106, p. 623-634. 

Wiltschko, D.V., and Dorr, J.A., Jr., 1983, Timing of deformation in Overthrust Belt and 

foreland of Idaho, Wyoming and Utah: American Association of Petroleum 

Geologists Bulletin, v. 67, p. 1304-1322. 

Winfrey, W.M., Jr., 1958, Stratigraphy, correlation, and oil potential of the Sheep Pass 

Formation, east-central Nevada: American Association of Petroleum Geologists, 

Rocky Mountain Section of Geological Records, p. 77-82. 

Winfrey, W.M., Jr., 1960, Stratigraphy, correlation, and oil potential of the Sheep Pass 

Formation, east-central Nevada: Intermountain Association of Petroleum Geologists 

Eleventh Annual Field Conference Proceedings, p. 126-132. 

Wolfe, M.R., and Stockli, D.F., 2008, Empirical Calibration of Rutile (U-Th-Sm)/He 

Thermochronology: Assessing the thermal evolution of the KTB drill hole, Germany 

and adjacent Bohemian Massif: Abstract Volume, 11th International Conference on 

Thermochronology, Anchorage, Alaska, p. 274-275. 

Wolfe, J.A., Forest, C.E., and Molnar, P., 1998, Paleobotanical evidence of Eocene and 

Oligocene paleoaltitudes in midlatitude western North America: Geological Society 

of America Bulletin, v. 110, p. 664-678. 

Wyld, S.J., 2000, Triassic evolution of the arc and backarc of northwestern Nevada, and 

evidence for extensional tectonism in Soreghan, M.J., and Gehrels, G.E., eds., 

Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and 

160 



Northern California: Boulder Colorado, Geological Society of America Special Paper 

347, p. 185-207. 

Wyld, S.J., 2002, Structural evolution of a Mesozoic backarc fold-and-thrust belt in the 

U.S. Cordillera: New evidence from northern Nevada: Geological Society of America 

Bulletin, v. 114, p. 1452-1468. 

Wyld, S.J., and Wright, J.E., 2001, New evidence for Cretaceous strike-slip faulting in 

the United States Cordillera and implications for terrane displacements, deformation 

patterns and plutonism: American Journal of Science, v. 301, p. 150-181. 

Wyld, S.J., Rogers, J.W., and Wright, J.E., 2001, Structural evolution within the Luning-

Fencemaker fold-thrust belt, Nevada: progression from back-arc basin closure to 

intra-arc shortening: Journal of Structural Geology, v. 23, p. 1971-1995. 

Yarnold, J.C., 1993, Rock-avalanche characteristics in dry climates and the effect of flow 

into lakes: Insights from mid-Tertiary sedimentary breccias near Artillery Peak, 

Arizona: Geological Society of America Bulletin, v. 105, p. 345-360. 

Yarnold, J.C., and Lombard, J.P., 1989, A facies model for large rock-avalanche deposits 

formed in dry climates: in Colburn, LP., Abbott, P.L., and Minch, J., Conglomerates 

in Basin Analysis: A Symposium Dedicated to A. O., Woodford: Pacific Section 

S.E.P.M,vol. 62, p. 9-31. 

Young, J.C., 1960, Structure and stratigraphy in the north central Schell Creek Range: 

Intermountain Association of Petroleum Geologists Eleventh Annual Field 

Conference Proceedings, p. 126-132. 

161 



VITA 

Graduate College 
University of Nevada, Las Vegas 

Peter Alexander Druschke 

Home Address: 
38 Sweetleaf Court 
The Woodlands, Texas 77381 

Degrees: 
Bachelor of Science, Geology, 1999 
California State University Sonoma, Rohnert Park, CA 

Masters of Science, Geoscience, 2003 
University of Nevada, Las Vegas, Las Vegas, NV 

Awards and Recognitions: 
2006 Primary author of NSF Tectonics Division grant EAR—0610103 (Hanson 

and Wells 2006-2008) 
2006 Graduate Assistant Excellence in Teaching Award 
2005 Nevada Petroleum Society Eagle Springs Discovery 50th Anniversary 

Silver Ingot Award 
2005-2006 UNLV Graduate College GREAT Assistantship (awarded 2 consecutive 

years) 
2004-2006 Nevada Petroleum Society Scholarship (awarded 3 consecutive years) 
2002-2006 Bernada French UNLV Geoscience Scholarship (awarded 5 consecutive 

years) 
2005-2006 Society for Sedimentary Geology Rocky Mountain Section Donald L. 

Smith Research Grant (awarded 2 consecutive years) 
2005-2006 American Association of Petroleum Geologists Funkhauser Memorial 

Grant (awarded 2 consecutive years) 
2004 Geological Society of America Wanek Fund Grant 
2002 Geological Society of America Research Grant 
2002 UNLV International Studies Program Travel Grant 
1999 Sonoma State Student Union Distinguished Service Award 
1997 Woodard Scholarship for Excellence in Field Geology 
1994 Livermore Eagles Merit Scholarship 

162 



Publications: 
Druschke P., Hanson, A.D., Wells, M.L., Gehrels, G.E., and Stockli, D., (in review), 

Paleogeographic isolation of the Cretaceous to Eocene Sevier hinterland, east-central 
Nevada: Insights from U-Pb and (U-Th)/He detrital zircon ages of hinterland strata: 
Geological Society of America Bulletin. 

Druschke P., Hanson, A.D., Wells, M.L., Rasbury, T., Gehrels, G.E., and Stockli, D., (in 
press), Synconvergent surface-breaking normal faults of Late Cretaceous age within 
the Sevier hinterland, east-central Nevada: Geology. 

Druschke, P., Jiang, G., Anderson, T.B., and Hanson, A.D., 2009, Siliciclastic 
stromatolites in the Late Ordovician Eureka Quartzite of southern Nevada and 
southeastern California, USA: Implications for development and preservation of 
stromatolites in high-energy siliciclastic settings: Sedimentology (in press). 

Druschke, P., 2008, Sedimentology and tectonic setting of the Late Cretaceous to Eocene 
Sheep Pass Formation in the southern Egan Range, in Trexler, J.H., Jr. ed.,: Nevada 
Petroleum Society, 2008 Field Trip Guidebook, Reno, Nevada, 41 p. 

Druschke, P., Hanson, A.D., Yan, Q., Wang Z., and Wang T., 2006, Stratigraphic and 
SHRIMP detrital zircon evidence for a Neoproterozoic continental arc, central China: 
Rodinia implications: Journal of Geology, v. 114, p. 627-636. 

Druschke, P., 2003. The age, stratigraphy, and tectonic provenance of clastic deposits in 
the western Bikou terrane, southwestern Qinling Mountains, China [M.S. thesis]: 
University of Nevada Las Vegas, 160 p. 

Yan, Q., Hanson, A.D., Wang, Z., Druschke, P., Yan, Z., Wang, T., Liu, D., Song, B., 
Jian, P., Zhou, H., and Jiang, C, 2004, Neoproterozoic subduction and rifting on the 
northern margin of the Yangtze Plate, China: Implications for Rodinia reconstruction: 
International Geology Review, v. 46, p. 817-832. 

Yan Q., Hanson, A.D., Wang, Z., Druschke, P.A., Yan, Z., Wang, T., and Lu, H. 2004, 
The timing and setting of Guanjiagou conglomerate in South Qinling and their 
tectonic implications: Chinese Science Bulletin, v. 49, p. 1722-1729. 

Yan, Q.R., Hanson, A.D., Wang, Z.Q., Yan, Z., Druschke, P.A., Wang, T., Liu, D., Song, 
B., and Jiang, C.F., 2004, Geochemistry and Sr-Nd-Pb isotopes and their constraints 
on tectonic setting of the Bikou volcanic terrane on the northern margin of the 
Yangtze block: Acta Petrologica Et Mineralogica, v. 23, p. 1-11. (in Chinese with 
English abstract). 

Yan, Q., Wang, Z., Yan, Z., Hanson, A.D., Druschke, P. A., Liu, D. Song, B., Jian, P., 
and Wang. T., 2003, SHRIMP age of the Bikou volcanic terrane: Geological Bulletin 
of China, v. 22, p. 456-458 (in Chinese). 

163 



Yan, Q., Wang, Z., Hanson, A.D., Druschke, P.A., Yan, Z., Liu, D., Jian, P., Song, B., 
Wang, T., and Jiang, C , 2003, SHRIMP age and geochemistry of the Bikou volcanic 
terrane: Implications for Neoproterozoic tectonics on the northern Margin of the 
Yangtze Craton: Acta Geologica Sinica, v. 77, p. 479-490. 

Yan, Q.R., Wang, Z.Q., Hanson, A D., Druschke, P.A., Wang, T., Yan, Z., 2002, 
Hengdan turbidite terrane: Filling in a late Paleozoic forearc basin developed on the 
passive margin of the Yangtze plate; Geological Bulletin of China: v. 21, p. 495-500 
(in Chinese with English abstract). 

Abstracts: 
Druschke, P., Hanson, A.D., and Wells, M., 2008, Detrital zircon provenance of 

Cretaceous to Eocene strata in the Sevier hinterland, central Nevada: Implications for 
tectonics and paleogeography: GSA Joint Cordilleran/Rocky Mountain Section 
Meeting Abstracts with Programs, v. 40, p. 78. 

Druschke, P., Hanson, A.D., and Wells, M., 2007, Late Cretaceous extensional collapse 
of the Sevier hinterland structural and stratigraphic evidence from the Sheep Pass 
Formation, east-central Nevada; GSA Joint Cordilleran/Rocky Mountain Section 
Meeting Abstracts with Programs, v. 40, p. 44. 

Druschke, P., Hanson, A.D., and Wells, M., 2006, The Sheep Pass Formation, Nevada: 
Stratigraphic Evidence for a Paleogene Transition from Contraction to Extension in 
the Sevier Hinterland?: GSA Annual Meeting Abstracts with Programs, v. 38, p. 145. 

Druschke, P., 2005, The Sheep Pass Formation, Nevada: Record of a Late Cretaceous to 
Eocene Basin developed on the Sevier Plateau: GSA Annual Meeting Abstracts with 
Programs, v. 37, p. 273. 

Druschke, P., Honn, D., McKelvey, M., Nastanski, N., Rager, A., Smith, E.I., and 
Belliveau, R., 2004, Volcanology of the northern Eldorado Mountains, Nevada: New 
evidence for the source of the tuff of Bridge Spring? GSA Annual Meeting Abstracts 
with Programs, v. 36, p. 431. 

Druschke, P., Hanson, A.D., Yan, Q., and Wang, Z., 2003, Is the Bikou terrane of the 
southwest Qinling Mountains, central China, the result of Late Proterozoic subduction 
along the north margin of the Yangtze Plate? GSA Annual Meeting Abstracts with 
Programs, v. 35, p. 343. 

Druschke, P. A., Hanson, A. D., Yan, Q., and Wang, Z., 2002, Recognition of a Late 
Paleozoic arc/forearc system developed on the north margin of the South China Plate, 
southwestern Qinling Mountains, China, GSA Annual Meeting Abstracts with 
Programs, v. 34, p. 376-377. 

164 



Hanson, A. D., and Druschke, P., 2006: Incorporating problem-based research into an 
undergraduate sed/strat class: An alternative to the same old format: GSA Annual 
Meeting Abstracts with Programs, v. 38, p. 524. 

Hanson, A. D., Druschke, P., Howley, R. A., Suurmeyer, N., Benneman, B., Erwin, M., 
and McLaurin, B., 2005, Deformation of the Mio-Pliocene Muddy Creek Formation, 
southern Nevada: Lake Mead fault system, salt tectonics, or both? GSA Cordilleran 
Section Meeting Abstracts with Programs, v. 37, p. 42. 

Hanson, A. D., Yan, Q., Druschke, P. A., and Wang, Z., 2002, The southwestern Qinling 
Shan of central China: A Late Paleozoic subduction/accretionary wedge system and 
continental arc/forearc constructed upon the north-facing Devonian passive margin of 
the South China Block, GSA Annual Meeting Abstracts with Programs, v. 34, p. 509. 

Jiang, G., Druschke, P., and Anderson, T.B., 2008, Stromatolites in the Late Ordovician 
Eureka Quartzite: Implications for microbial growth and preservation in siliciclastic 
settings: GSA Joint Cordilleran/Rocky Mountain Section Meeting Abstracts with 
Programs, v. 40, p. 44. 

Kosmidis, P.G., Jiang, G., and Druschke, P.A., 2008, The unconformity at the basal 
Eureka Quartzite in Nevada and California: Implications for sea-level change and the 
initiation of Late Ordovician glaciation: v. 40, p. 43. 

Miller, N.A, Druschke, P., and Hanson, A. D., 2007, The Milk Ranch section, east central 
Nevada: A Neogene coarse clastic succession: GSA Rocky Mountain Section Annual 
Meeting Abstracts with Programs, v. 59. 

Dissertation Title: The Sheep Pass Formation, a record of Late Cretaceous and Paleogene 
extension within the Sevier hinterland, east-central Nevada 

Dissertation Examination Committee: 
Chairperson, Dr. Andrew Hanson, Ph.D. 
Committee Member, Dr. Michael Wells, Ph.D. 
Committee Member, Dr. Steve Rowland, Ph.D. 
Committee Member, Dr. Wanda Taylor, Ph.D. 
Graduate Faculty Representative, Dr. Peter Starkweather, Ph.D. 

165 


