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ABSTRACT 
 

Sequence and chemostratigraphic study across the basal Eureka Quartzite 
unconformity in the Great Basin, Nevada: implications for the origin of 

the Late Ordovician carbon isotope excursion 
 

by 
 

Apostolos Paul Kosmidis 
 
 

Dr. Ganqing Jiang, Examination Committee Chair 
Assistant Professor of Geoscience 
University of Nevada, Las Vegas 

 
 
 

The positive carbon isotope (δ13C) excursion from the late Middle Ordovician 

Copenhagen Formation that underlies the Eureka Quartzite in central Nevada has been 

hypothesized to record a global cooling event ~10 Myr prior to the well-recognized Late 

Ordovician Hirnantian glaciation (~443 Ma). However, direct evidence for pre-

Hirnantian continental glaciation remains scarce, raising uncertainties in the relationship 

between the inferred eustatic sea-level fall and the origin of the positive δ13C excursion.  

Additionally, previous stratigraphic studies from southern Nevada and California suggest 

relative sea-level fall in excess of ~ 150 meters, which exceeds estimates for younger 

glacial periods (e.g., Hirnantian: ~45-60 m, Late Paleozoic: ~ 60-75 m, and Last Glacial 

Maximum: ~125 m of sea-level fall) despite the paucity of glaciogenic deposits at this 

time.     

An integrated sequence and chemostratigraphic study across the basal Eureka 

Quartzite unconformity and underlying carbonate strata (Antelope Valley Limestone) 

indicates that the Copenhagen Formation in central Nevada was most likely deposited in 

a fault-controlled sedimentary basin. The absence of a comparable positive δ13C 

 iii



excursion in sections away from the Monitor and Copenhagen valleys suggests that the 

δ13C excursion reported from the Copenhagen Formation in central Nevada was likely a 

localized signal formed through carbon cycling (e.g., high biologic production and 

eutrophication) in a restricted, geographically limited formation that was deposited 

during the period of exposure and karstification of the paleo-shelf in southern Great 

Basin locations.  
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CHAPTER 1 

INTRODUCTION 

Studies on deep-time climate changes show a strong correspondence between 

atmospheric CO2 concentration and average global seawater temperature. Ordovician to 

Neogene paleoclimate records (Royer et al., 2004; Royer, 2006) indicate that the Earth’s 

climate has varied between global icehouse and greenhouse conditions corresponding 

with times of low (< 500 ppm) and high (> 1000 ppm) pCO2 concentrations.  An 

intriguing interval in Earth history is the Late Ordovician time (Mohawk Stage; ~454 to 

~443 Ma) when widespread glacial conditions existed in mid-latitude Gondwana despite 

atmospheric CO2 levels 10-18 times higher than the present (Berner 1994; Kump et al., 

1999; Berner and Kothavala, 2003).  In the stratigraphic record this glaciation is 

represented by physical evidence, such as glacially-striated pavements, tillites and glacial 

diamictites (Hughes, 1981; Frakes et al., 1992; Crowley and Baum, 1995; Crowell, 

1999), which are closely associated with unconformities in carbonate strata believed to 

have developed during the ensuing eustatic sea-level fall (Marshall and Middleton, 1990; 

Brenchley et al., 1994; Brenchley et al., 1997; Berry et al., 2002).  Correlation of these 

unconformities globally has placed the initiation of the climatic shift at the terminal 

Ordovician Hirnantian Stage, approximately 442 Ma, and suggests a short-duration event 

that lasted 0.5 to 2 million years (Brenchley et al., 1997).     

In addition to physical sedimentary evidence, proxy data in the form of positive 

carbon isotope excursions in sedimentary rocks also supports a strong correlation 

between fluctuations of pCO2 and changes in the Earth’s climate at the end of the 

Ordovician period. The transfer and removal of carbon from one reservoir to another 
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often leaves traces in the sedimentary record reflecting biologic, chemical, and physical 

processes, and can be studied employing chemostratigraphic and sequence stratigraphic 

principles. In the case of the Hirnantian Stage positive δ13C excursion, a widely accepted 

mechanism regarding the origin is glacially-induced de-stratification of the water column 

resulting in nutrient enrichment and higher rates of bio-production in Earth’s oceans. This 

proliferation of biologic production results in an increase in the rate of sedimentary burial 

(sequestration) of isotopically light (12C-enriched) organic carbon leading to a positive 

shift in δ13C values of contemporaneous marine carbonates (Knoll et al., 1986; Kaufman 

and Knoll, 1995; Weissert et al., 1998; Kump & Arthur, 1999). 

Recently a positive δ13C excursion with maximum values up to +3‰ was 

documented from late Middle Ordovician (Chatfieldian Stage, ~454 - 443 Ma) strata of 

the Great Basin, approximately 10 My earlier than the Hirnantian glaciation (Saltzman 

and Young, 2005; Fig. 1A).  In the stratigraphic record this δ13C excursion was obtained 

from the upper member (informally designated as “Member C”) of the Copenhagen 

Formation in central Nevada, and occurs stratigraphically below the Eureka Quartzite.  

Coupled with additional proxy data such as phosphorite deposits which indicate 

continental margin upwelling during this time (Pope and Read, 1997, 1998; Pope and 

Steffen, 2003), it has been hypothesized that the primary processes responsible for the 

formation and deposition of this excursion were identical to those active during the 

Hirnantian glaciation.  This is supported indirectly by the presence of 13C-enriched strata 

worldwide, varying in age throughout Middle to Late Ordovician time (Hatch et al., 

1987; Bergström, 1995; Ainsaar et al., 1999, 2004; Ludvigson et al., 1996, 2004; 

Patzkowsky et al., 1997; Young et al., 2005; Tobin et al., 2005), and implies a global-
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scale cooling event.  However, unlike the younger Hirnantian Glacial epoch for which 

there is much documented physical evidence, the paucity of glaciogenic deposits during 

the late Middle Ordovician period across Gondwana (Hamoumi, 1999) argues against a 

glacio-eustatic origin for this isotopic excursion.    

This problem becomes more apparent when the late Middle Ordovician stratigraphic 

record in southern Nevada and California is considered (Fig. 1B).  In these southern 

Great Basin locations the Eureka Quartzite is in direct contact with the Pogonip Group, 

with the majority of the Copenhagen Formation missing (~ 140 meters thick; Ross, 1964, 

1967; Ross and Shaw, 1970).  The absence of the Copenhagen Formation in southern 

Nevada can have two interpretations: 1) erosion of this unit occurred during regression 

prior to Eureka Quartzite deposition, resulting in a juxtaposition of carbonate strata of the 

Antelope Valley Limestone and siliciclastic strata of the Eureka Quartzite; and 2) the 

Copenhagen Formation is a local unit with limited geographic extent. The first 

interpretation would require a major sea-level fall (> 140 m) in order to erode the entire 

Copenhagen Formation in southern Nevada, exceeding the magnitude of sea-level change 

during the Last Glacial Maximum (~120 m) and the Hirnantian glaciation (~45-60 m) and 

would result in a prominent unconformity containing significant erosional relief across 

the study area in addition to definitive glaciogenic deposits worldwide.  Alternatively, the 

second interpretation implies that the Copenhagen Formation is a localized facies 

deposited in a tectonically controlled basin and the geochemical signal obtained from this 

unit may not be representative of the global average ocean isotopic composition. 

Therefore, determining the origin and paleoenvironmental setting of the Copenhagen 
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Formation would elucidate the significance of the positive δ13C excursion as a proxy for 

glaciation and initiation of the climatic transition in the late Middle Ordovician.  

In order to test the two alternative interpretations on the origin of the positive carbon 

isotope excursion and its connection to glaciation, two hypothetical depositional models 

are proposed.  Each model outlines the expected sedimentologic and chemostratigraphic 

patterns, assuming that glacioeustasy would result in a shoaling deposition and formation 

of a major sequence boundary post-dating the positive excursion.   

Model 1:  This model features deposition of the Copenhagen Formation uniformly 

across the paleo-shelf.  The Copenhagen Formation was subaerially exposed and eroded 

during the subsequent sea-level fall.  This interpretation requires that the Copenhagen 

Formation to be a regressive unit which was deposited during the sea-level fall. In this 

case, the positive carbon isotope excursion in the upper Member “C” should correspond 

to the global cooling, polar ice sheet expansion, and high rates of biologic production and 

organic matter burial (Fig. 2).  Sedimentologic evidence should indicate a shallowing-

upward trend in its type location and the presence of a sharp, erosional contact between 

the Eureka Quartzite (EQ) and Copenhagen Formation.  Accordingly, studied locations 

outside of the Monitor-Antelope Valley area should also exhibit erosional relief at the 

unconformity, corresponding to the amount of sea-level fall necessary to erode the 

thickness of this unit.  Chemostratigraphic evidence should corroborate these 

observations by the presence of a negative isotopic shift at the EQ-Copenhagen contact 

due to diagenetic modification by 12C-enriched meteoric fluids during sub-aerial exposure 

following sea-level fall, or a reproducible positive δ13C excursion in strata that did not 

experience significant alteration.  Additionally, a conformable contact between the 
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Antelope Valley Limestone and the Copenhagen Formation is expected as deposition 

shifts gradually from the Antelope Valley Limestone into the Copenhagen Formation. 

Model 2:   In this scenario the Copenhagen Formation is deposited over a limited 

geographic extent within a restricted circulation environment, and undergoes a facies 

change across the shelf (Fig. 3) at Lone Mountain and southern sections in the Pahranagat 

and Arrow Canyon Ranges, and White River Narrows.  Time equivalent units of the 

Copenhagen Formation outside of the Monitor-Antelope Valley area should be the mixed 

siliciclastic-dolomitic units first described by Kirk (1933) as the transitional lithology 

between the pure carbonate strata of the Antelope Valley Limestone and the siliciclastic 

Eureka Quartzite at Lone Mountain or the basal Eureka Quartzite unconformity itself.  

Validation of this model would require sedimentologic evidence to indicate disparate 

depositional trends across the paleo-shelf in the type section of the Copenhagen 

Formation and in sections outside the Monitor-Antelope Valley region.  In the Monitor-

Antelope valley area, a gradual transition between the Antelope Valley Limestone and 

the Copenhagen Formation is expected, while outside of this region a shoaling-upward 

trend towards the top of the Antelope Valley Limestone should be observed, along with 

the development of paleokarst features indicative of exposure and erosion below the 

Eureka Quartzite.  This interpretation should also be supported isotopically by the 

absence of an associated δ13C excursion outside the Monitor-Antelope Valley area and 

the background δ13C values may differ due to the local environmental effects on isotope 

values. Also expected is the potential diagenetic alteration of isotope values associated 

with subaerial exposure at the unconformity between the Eureka Quartzite and the 

Antelope Valley Limestone.  
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In this thesis, I present the data that support the second interpretation, which invokes 

local carbon cycling as the primary cause of the positive carbon isotope excursion in the 

Great Basin. Paleoenvironmental reconstruction of the five studied localities indicates a 

shallowing-upward trend in the Antelope Valley Limestone and a deepening-upward 

trend in the Copenhagen Formation. However, the effects of local carbon cycling cannot 

be separated from global effects of glacio-eustasy and increased organic carbon burial 

because the presence of a major sequence boundary below the Eureka Quartzite implies a 

net base-level fall. Whether this base level fall was caused by glacioeustatic sea-level fall 

or regional tectonic uplift requires further investigation in broader areas.   Nonetheless, 

the disparate depositional environments indicated by the Copenhagen Formation and 

Antelope Valley Limestone argue against a uniform deposition of the Copenhagen 

Formation across the paleo-shelf. 
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CHAPTER 2 

  GEOLOGIC BACKGROUND 

Tectonic Setting 

Paleozoic strata of western North America record deposition along a passive 

continental margin following a complex episode of rifting beginning in the Latest 

Proterozoic (Bond et al., 1985).  Cambrian to Late Devonian strata form a westward-

thickening wedge of shallow-water carbonates with minor amounts of siliciclastic 

sediments. These carbonate-rich strata overlie older terrigenous units derived from the 

ancient craton during the rift stage (Finney et al., 2000; Dickinson, 2004).  Comparison of 

subsidence rates derived from Cambrian to Ordovician strata from southwestern United 

States to Canada, and model-driven inferences of thermal decay constants of thinned 

lithosphere indicated a good fit between subsidence and the exponential decay curves, 

supporting a thermal decay mechanism as the primary driver of crustal subsidence during 

the early Paleozoic (Stewart and Suczek, 1977; Manspeizer and Cousminer, 1988).  

Quantitative analyses of these strata suggest that post-rift thermo-tectonic subsidence of 

the passive continental margin did not begin until 525-515 Ma (Bond et al., 1983; Armin 

and Mayer 1983; Bond & Kominz 1984; Levy and Christie-Blick, 1991), and lasted 

approximately 55-65 million years.  This estimate reflects the revision of the base of the 

Cambrian from 570 Ma to 541 Ma, and places the onset of thermal subsidence within 

Early Cambrian time (Dickinson, 2006).  

This conservative time frame proposed for rift-to-drift transition and thermal 

lithospheric contraction suggests that eustasy was the dominant control on sedimentation 

in an exponentially-subsiding basin well before deposition during Ordovician time (Bond 

  7



and Kominz, 1988). Deposition occurred along the length of the continental margin 

nearly uninterrupted until the inception of the late Devonian-Mississippian Antler 

Orogeny, which marked the transition from passive to accretionary margin at the western 

edge of the Laurentian paleocontinent. Earliest evidence for tectonic destruction of the 

passive margin by overthrust oceanic allochthons exists along the Roberts Mountains 

Thrust belt, where miogeoclinal strata of Ordovician and Cambrian age are emplaced 

above younger Silurian and Devonian platform carbonates (Finney et al., 2000).       

More recent tectonic displacement of Ordovician strata occurred during the Permian-

Triassic Sonoma Orogeny, although no tectonic episode had more influence on the 

current position of Ordovician rocks than Cenozoic extension (Dickinson, 2004).  

Present-day exposures of Middle Ordovician carbonate rocks occur throughout Nevada in 

north-to-south trending mountain ranges as far west as the Toquima Range, separated by 

longitudinal extensional valleys.             

The effects of local tectonism should not be overlooked on the regional and local 

expression of sequences within the stratigraphic record.   Tectonic activity during the 

Ordovician has been demonstrated by several researchers (Webb, 1958; Ketner, 1977, 

1986; Cotkin, 1989), although no definitive evidence has been put forth, partially due to 

the lack of preserved strata indicative of extension or contraction.  Nonetheless, indirect 

evidence such as intrusive rocks of Middle to Late Ordovician age support the notion that 

local tectonism could have had a significant impact on depositional patterns during the 

Ordovician (Cotkin, 1992).  Thus, it is possible, as Ketner (1977) suggested, that offshore 

tectonic elements could have been active and influenced sedimentation to the east well 

before thrusting initiated in the latest Devonian to Mississippian time.   
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Ordovician Paleogeography of Laurentia 
 

The Middle to Late Ordovician strata of this study were deposited in a broad 

carbonate platform situated 5° to 20° south of the paleo-equator, with an area ~500 km in 

length and up to 200 km wide.  Despite the immense paleogeographic extent of this 

carbonate shelf, estimates of paleodepth do not exceed ~75 meters at the slope-shelf 

margin (Ross, Jr., 1977), which can be approximated by the 0.706 line of 87Sr/86Sr.  The 

orientation of this marker also roughly correlates to the hinge point of the subsiding 

basin, and can be used to infer shallow versus deeper parts of the basin along a shoreline 

to slope transect.  The orientation of the continental margin during Ordovician time has 

been estimated as striking towards northeast-southwest (Fig. 4), which is supported by 

sedimentologic evidence of deep-water deposits at northwestern sections and exposure 

and erosion at more southern locations (Zimmerman and Cooper, 1999; Cooper and 

Keller, 2001).     

Palinspastic restoration of Ordovician strata in the Great Basin is not attempted in this 

study due to the lack of published data for the mountain ranges from which measured 

sections were documented.  Additionally, previous studies (Parsons, 1996) have 

demonstrated that sedimentologic evidence does not necessarily support the inferred 

position of studied locations with respect to location within the paleo-basin.          

 
Ordovician Biostratigraphy of the Great Basin 

 
Biostratigraphic data serve as the basis for the sequence stratigraphic analysis in this 

study.  The data sets are the results of work that began in the 1960’s (Webb, 1958; Byers 

et al., 1961; Langenheim et al., 1962; Ross et al., 1964, 1967, 1970; Chamberlin, 1975; 

Ross and Shaw 1972; Ethington and Schumacher, 1969; Fortey and Droser, 1999; Li and 
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Droser, 1999; Finney and Ethington, 2000).  In the Great Basin the stratigraphic units of 

interest span the Middle Ordovician Whiterockian and Late Ordovician Mohawkian 

Series of North America.  Comparable chronostratigraphic units have been recognized in 

eastern United States (Fisher, 1957; Finney et al., 1999; Kapp and Stearn, 1975), Great 

Britain (Fortey et al., 1991, 1995), Baltoscandia (Bergström, 1995; Brenchley et al., 

2003) and serve as the basis for the correlation of eustatic events and isotopic excursions 

at regional and global scales (Fig. 5).  The approximate time spanned by the 

Whiterockian and Mohawkian Series is ~464-443 Ma, which were mainly determined by 

distinct conodont, brachiopod, graptolite, and coral fossil zones (Ross et al., 1991) and 

later confirmed by isotopic stratigraphy.  The relevant units of this study in Nevada are 

the upper member of the Antelope Valley Limestone, the Copenhagen Formation and the 

Eureka Quartzite, which have been dated according to the appearance of fossil zones 

across the basin.   

The Whiterockian Series, a chronostratigraphic unit of global significance, is well-

constrained by four different phyla and permits correlation from basin to platform 

environments across the globe (Table 1; Ross et al., 1989).  The type section of the 

Whiterockian Series is found in Whiterock Canyon, southern Monitor Range, central 

Nevada, and was proposed by Ross et al., (1991).  Division of this series is based on the 

presence of three distinct faunal zones and two subzones, and its base is defined by the 

first occurrence of the Isograptus victoriae graptolite fauna in basin and slope settings, 

and the Orthidiella sp. brachiopod zone in shallow shelf environments.  The upper 

boundary of the Whiterockian Series is defined by the appearance of the Baltoniodus 

gerdae conodont Subzone. However, this boundary is ambiguous in the Great Basin due 
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to the absence of sufficient fossils across the lithologic change of the Antelope Valley 

Limestone and Eureka Quartzite. 

The Late Ordovician Mohawkian Series is not as well-defined in the Great Basin as 

the older Whiterockian Series, mostly due to the paucity of preserved fossils within the 

Eureka Quartzite.  Nonetheless, the appearance of new faunal assemblages following the 

Sauk-Tippecanoe regression in the mid-continent and eastern United States (Fisher, 

1957) provide enough evidence to correlate this chronostratigraphic unit to the well-

defined Late Ordovician British Series, most notably the Caradocian Series.  Globally, 

the basal boundaries of the North American Mohawkian and British Caradocian Series 

coincide at the first appearance of the Baltoniodus gerdae conodont subzone, but differ at 

their upper boundaries, with the Caradocian representing another ~4 my of deposition 

(Barnes, 1992).  In the study area this stratigraphic interval is either obscured by Eureka 

Quartzite debris or eroded prior to, and during deposition of the Eureka Quartzite.     

Strata of the Great Basin that comprise the Whiterockian and Mohawkian Series are 

divided into three major units, including 1) carbonate-dominated strata of the Antelope 

Valley Limestone and this unit’s southern Nevada equivalent, (i.e., the unnamed upper 

Pogonip Group units); 2) interbedded fine-grained siliciclastic and carbonate strata of the 

Copenhagen Formation; and 3) the conspicuous siliciclastic Eureka Quartzite.  From the 

Eureka District to southern Nevada, the Copenhagen Formation between the Antelope 

Valley Limestone and Eureka Quartzite varies in thickness from up to ~180 meters at 

Martin’s Ridge to less than 30 meters approximately 20 km southward at Hot Creek 

Canyon.  At Meiklejohn Peak in southern Nevada, a transitional unit that is ~10 m thick 

between the Antelope Valley Limestone and Eureka Quartzite was ascribed to the 
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Copenhagen Formation (Webb, 1958; Ross et al., 1977), but in most other sections such 

as the Arrow Canyon Range, this unit is either absent or has a minor thickness of less 

than 5 m. This variation in thickness and the presence of an unconformity below the EQ 

in southern Nevada has led some researchers to believe that the Copenhagen Formation is 

time equivalent to the lower part of the Eureka Quartzite in some areas of the Great Basin 

(Cooper, 1956).  This discrepancy could not be easily reconciled because of poor 

biostratigraphic control across the stratigraphic units and potential erosion at the base of 

the Eureka Quartzite.  A definitive relationship between the Copenhagen Formation and 

lower Eureka Quartzite members has not yet been elucidated, and underlies the impetus 

for this study. 

The oldest strata involved in this study belong to the Antelope Valley Limestone, 

which overlies the Early Ordovician Ninemile Formation at most locations in Nevada, 

and represent the majority of Middle Ordovician deposition in the Great Basin.  This 

formation was first defined by Nolan et al. (1956) in the vicinity of Eureka, Nevada as the 

limestone units deposited between the siliciclastic Ninemile Formation and Eureka 

Quartzite.  In southern Nevada further subdivision of the Pogonip Group by Byers et al. 

(1961) created three members within the Antelope Valley Limestone (AVL), named the 

Paiute Ridge, Ranger Mountains, and Aysees Peak Members.  These members are 

laterally persistent in a north-south trend, but lose their expression to the west and east, 

where they transition into fine-grained mudstone and siltstone of the basin deposits to the 

west, and proximal siliciclastic deposits to the east.  In the southern Great Basin these 

members are equivalent to Units Opc-Opf (1962) of Langenheim et al. in Arrow Canyon, 

but only the correlation of Byers et al. (1961) Aysees Peak Member and Unit Opf is 
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currently documented in the published record (Ross et al., 1989; Kaya and Friedman, 

1997).  Because the oldest strata described in this study are of the upper Aysees Peak 

member, the upper Pogonip Group units will also be referred to as the Antelope Valley 

Limestone (AVL).  During field work the upper Aysees Peak member was easily 

distinguishable across the field area by the presence of the “Girvanella algal shoals” (Fig. 

6), which marks the upper extent of the middle Aysees Peak Member. 

The stratigraphic unit of greatest interest is the Copenhagen Formation, first described 

by Kirk (1933) as the “brownish-weathering sandy dolomite” above the AVL and 

beneath the Eureka Quartzite at Lone Mountain, central Nevada.  Further work since that 

time has determined the presence of three members, spanning approximately 140 meters 

from the top of the AVL to the base of the Eureka Quartzite in Copenhagen Canyon of 

Antelope Valley, approximately 18 km south of Lone Mountain (Cooper, 1956).  The 

oldest member of the Copenhagen Formation is composed of brown lithic arenite, resting 

conformably on Antelope Valley Limestone (Ross and Shaw, 1972).  This basal 

sandstone member transitions gradually into thin-bedded limestone and dark-colored 

argillaceous limestone units of the middle and upper members, respectively.  The three 

members are informally designated A, B, and C, and will be referred to as such in this 

thesis.  Correlation of these members across the shelf is hampered by lack of outcrops 

and the great variability of the thickness of this unit over short geographic distance.  This 

variation has led many researchers to believe that this unit has either been eroded along 

the shelf prior to EQ deposition (Webb, 1958; Miller, 1977; Cooper and Keller, 2001), or 

deposited in a restricted basin (Finney and Ethington, 2000).  Member C is of particular 

importance to this thesis, as it includes the stratigraphic interval from which the positive 

  13



carbon isotope excursion was documented, and interpreted as a period of glaciation and 

sea-level fall (Fig. 1A; Saltzman, 2005).   

Above the Copenhagen Formation, the Eureka Quartzite spread across the shelf and 

inundated carbonate production until deposition of the Late Ordovician Ely Springs 

Dolomite.  In the type section at Lone Mountain three members can be recognized within 

the Eureka Quartzite.  Description of these members and correlation to the south indicates 

the persistence of all members, and recognition of a fourth, youngest member (Webb, 

1958) in the Grant Range, central Nevada.  The thickness of this unit varies predictably in 

sections north of the Pahranagat Range where it attains its maximum, but thins 

consistently from this location toward the south until it disappears conspicuously south of 

Las Vegas.  At the west flank of Arrow Canyon it has a thickness of ~30 meters but three 

recognizable members are still present and they are correlatable with those from the 

Pahranagat Range and the White River Narrows locations in the north.           

Correlation of these units across the Great Basin indicates a complex relationship 

between lithologic and biochronologic boundaries of Ordovician subdivisions, and 

suggests a diachronous deposition for the Antelope Valley, Copenhagen and Eureka 

Quartzite Formations (Ross et al., 1989).  In general, existing data suggest that the 

siliciclastic Eureka Quartzite is oldest in central Nevada and is progressively younger 

toward the south-southeast.   

Sequence Stratigraphic Concepts and Controls 

Sequence stratigraphy is a methodology that was initially used to interpret the ordered 

arrangement of strata in seismic reflection profiles by subdividing sedimentary packages 

into units that correspond to deposition during the different phases of base-level rise or 
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fall (Vail et al., 1977; Posamentier et al, 1988; Van Wagoner et al., 1988).  Unlike 

lithostratigraphy which divides strata solely on their lithological similarities, sequence 

stratigraphy emphasizes the stratal geometry and their bounding surfaces that have been 

implicitly linked to “relative” sea-level changes.  The primary controls on “relative” sea-

level change can be tectonic, eustatic, or fluctuations in sediment supply.  Since its 

inception and subsequent modification, this approach has been applied to the outcrop 

scale by identifying meter-scale sedimentary cycles and their vertical stacking patterns to 

infer the position of stratigraphic discontinuities and the migration of depositional 

environments relative to coastal lines and/or continental shelf margins. Sequence 

boundaries, defined as unconformities in shallow-water environments and their 

correlative conformities in deep-water environments, have been used to package the 

stratigraphic units into depositional sequences that have chronostratigraphic meaning in 

intra- and inter-basinal correlations (Vail et al., 1977; Haq et al., 1987; Posamentier et al., 

1988; Sarg 1988).  Identification of key surfaces (sequence boundaries) in the rock record 

involves lithologic, biostratigraphic and chemostratigraphic data, and a well-defined 

sequence stratigraphic framework can be used to investigate the influence of local 

tectonism and global eustasy on sediment accumulation in sedimentary basins as old as 

the Proterozoic (Christie-Blick et al., 1988).   

The main element of sequence stratigraphy is a sequence, first described in the work 

of Sloss (1963) as a “stratigraphic unit[s]… traceable over major areas of continent and 

bounded by unconformities of interregional scope”.  This definition of a sequence has 

been modified in subsequent sequence stratigraphic models as “a relatively conformable 

succession of genetically related strata… bounded at its top and base by unconformities 
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and their correlative conformities” (Vail et al., 1977).  Sequence boundaries separate a 

sequence from the one below or above it, and typically exist as unconformities at the 

landward edge of a basin, to correlative conformities in deep-water parts of basins.  

Parasequences form the basic units of sequence stratigraphy, and their arrangement 

and expression determine the architectural elements of depositional systems tracts.  A 

parasequence is defined as a relatively conformable succession of genetically related beds 

or bed-sets that exhibit an upward-shoaling or deepening trend of lithofacies deposited in 

lateral continuity across a basin.  The upper and lower contacts reflect an abrupt shift in 

facies usually with deeper-water facies overlying shallow-water deposits. Parasequences 

can exhibit progradational, retrogradational, or aggradational stacking patterns according 

to the position of facies in relation to the parasequence below and above (Fig. 7).    

The vertical stacking patterns of parasequences are used to infer systems tracts, which 

comprise the major architectural subdivisions of a depositional sequence.  Systems tracts 

(Fig. 8; Brown and Fisher, 1977) comprise a distinct assemblage of depositional systems 

that are active during different phases of sea-level fluctuations.  In theory systems tracts 

occur in an ordered arrangement along the dip direction, and are enveloped by key 

surfaces that record maximum and minimum positions of sea-level.  Much of the 

disagreement in sequence stratigraphy stems from the variety of defined systems tracts 

and their nomenclature, and by which surfaces sequences are bounded.  An excellent 

review of the competing models and their differences and similarities is given in 

Catuneanu (2002) and Catuneanu et al. (2009). However, because defining the systems 

tracts requires information on spatial geometric organization of sedimentary units that is 

commonly unavailable in separated outcrops, outcrop sequence stratigraphy focuses on 
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identifying the key surfaces and stacking patterns rather than packing the stratigraphic 

units into systems tracts.  Within the context of a sequence stratigraphic study the main 

focus of this thesis is to identify the position of the major sequence boundary related to 

the isotopic excursion.  

Sequence boundaries have received the most attention in the literature due to their 

chronostratigraphic value and utility as intra-basinal correlation surfaces (Catuneanu et 

al., 1988; Miall, 1991).  Their expression can be conformable along the dip direction 

towards the basin.  In the up-dip direction sequence boundaries are unconformable 

surfaces formed during times of base-level fall that eliminates the accommodation space 

for sediment accumulation. They are expressed as exposure and/or erosional surfaces, 

and in some cases manifested by paleosols and locally by incised-valley fills (Rankey and 

Bechtel, 1998). Ideally, exposure and erosion created by base-level fall would leave 

identical dissolution features and stratigraphic truncation along the sequence boundaries, 

yet examples from ancient carbonate platforms (e.g., Montanez and Osleger, 1996; 

Osleger and Montanez, 1996; Jiang et al., 2002) indicated that, at a particular outcrop 

location, the expression of sequence boundaries would be very subtle. In such cases, 

changes in stratigraphic stacking patterns would be very useful to locate the potential 

sequence boundaries and lateral tracing of surfaces in closely spaced sections is important 

to reveal the small-scale stratigraphic truncation and/or erosion at the sequence boundary. 

In this study, efforts for interpreting the sequence boundaries have been made in 

looking for one or more of the following lines of evidence indicative of subaerial 

degradation (Jiang et al., 2002): 1) local stratigraphic truncations underneath the 

sequence boundary demonstrable by comparing closely-spaced sections; 2) paleokarstic 

  17



depressions with visible relief; 3) subaerial dissolution and weathering products (breccias 

and calcrete) filling vertical fissures, dikes, cavities, and shallow depressions in 

underlying carbonate rocks; and 4) small-scale evidence for subaerial exposure at an 

erosion surface. 
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CHAPTER 3 
 

METHODOLOGY 
 

Sequence Stratigraphy and Chemostratigraphy 
 

An integrated sequence and chemostratigraphic approach was employed in this thesis 

to determine the plausibility of a possible proxy record of glaciation in Ordovician strata 

of the Great Basin.  Isotope stratigraphy has made major advances since the pioneering 

works of Friedman and Hall (1963), O’Neil and Epstein (1966), Veizer and Hoefs (1976), 

and others, enabling stratigraphic correlation as well as investigation of geochemical 

processes through time.  Coupled with advances in sedimentologic studies within a 

sequence stratigraphic context, this dual approach has proven successful in deciphering 

the relationship between sedimentary and biogeochemical processes and the secular 

variations in the carbon isotope record.  In this study, isotopic data are used to: (1) trace 

the extent of the positive δ13C excursion to the north and south of the Antelope Valley, 

and (2) document the potential isotope variations resulting from subaerial exposure and 

meteoric diagenesis along the sequence boundary.  

Sequence stratigraphic study in outcrops focused on the upper ~100 m of the Aysees 

Peak Member and the Eureka Quartzite and included bed-by-bed measurement of 

stratigraphic sections aimed at understanding the depositional environments of facies, 

their stacking patterns, and exposure/erosional features along sequence boundaries. 

Meter-scale carbonate cycles and their stacking patterns were used to determine the 

temporal evolution of the carbonate platform before the deposition of the Eureka 

Quartzite and to locate potential stratigraphic truncation at the unconformity below the 

Eureka Quartzite. 
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Six localities were investigated across Nevada in an approximate north-south transect 

from the Arrow Canyon Range in the south to the northern edge of Lone Mountain in 

central Nevada.  Four of those locations provided sedimentologic and stratigraphic data, 

and were complemented with chemostratigraphic data obtained from three of the six 

sections (Fig. 9).  The sampling interval in these sections varied between 1 to 1.5 meters, 

in an effort to choose micritic versus coarse or re-crystallized lithology.   

Thin-sections created from samples collected at these four localities were used to 

classify carbonate lithologies, and interpret sedimentary textures according to methods 

outlined in Scholle and Scholle-Ulmer (2003), Tucker (1988) and Tucker and Wright 

(1990).  Petrography was used to support a list of widely-accepted criteria to define 

stratigraphic surfaces in carbonate sediments (Handford and Loucks, 2001) which was 

then used to identify the position of the sequence boundary across the study area.  

Sequence boundary recognition and correlation were conducted by field observations 

documenting erosional relief and lithological changes across the key surfaces.  A total of 

128 samples were collected and analyzed for δ13C and δ18O values to determine the 

extent of the positive carbon isotope excursion, and possible diagenetic overprinting 

during exposure at the sequence boundary.  

The δ13C–δ18O pattern and their regional consistency were used to determine the 

degree of diagenetic alternation. Although such criteria may not be definitive, numerous 

studies suggest that fine-grained carbonates such as micritic limestone or micritic matrix 

of packstone and wackestone preserve δ13C values close to their primary seawater 

composition (e.g., Ripperdan et al., 1992; Saltzman et al., 1998; Kump et al., 1999; 

Saltzman et al., 2000; Joachimski et al., 2002; Railsback et al., 2003; Saltzman and 
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Young, 2005; Shields et al., 2005; Dilliard et al., 2007; Theiling et al., 2007).  This 

inference has been confirmed by the similarity of features between micrite-based and 

brachiopod-based δ13C curves; the latter has been considered as the most stable mineral 

phase during diagenesis because brachiopod shells are precipitated as low-Mg calcite 

from seawater – the only metastable mineral phase in natural carbonates (Azmy et al., 

1998; Mii et al., 1999; Saltzman, 2002). Oxygen isotopes (δ18O) are vulnerable to 

diagenetic alteration because oxygen is a major component in meteoric and formation 

fluids.  

Isotope analysis was conducted at the Las Vegas Isotope Science Lab.  Samples were 

cut, polished, and drilled using the FOREDOM micro-drill apparatus, and the powder 

analyzed using the ThermoElectron Delta V Stable Isotope Ratio Mass Spectrometer 

coupled to a Kiel IV automated carbonate preparation device.  Isotopic results are 

reported in the standard -notation as per mil (‰) deviations from Vienna-Pee Dee 

belemnite (V-PDB) and the data are given in Appendix 1. 
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CHAPTER 4 
 

DATA AND RESULTS 

Stratigraphic Analysis 

Fourteen lithofacies have been identified from the sections in Arrow Canyon, 

Pahranagat Range, White River Narrows, Hot Creek Canyon, Martin’s Ridge (in 

Copenhagen Canyon) and Lone Mountain, covering stratigraphic intervals including the 

upper member of the Antelope Valley Limestone, Copenhagen Formation and the Eureka 

Quartzite. These lithofacies and their vertical arrangement allow the identification of 

carbonate cycles and critical exposure/erosional surfaces in a sequence stratigraphic 

framework. Key features of lithofacies are summarized in Table 2 and their 

paleodepositional interpretations are given in Figure 10. 

Correlation of sections across the study area was based on the unconformity at the 

basal Eureka Quartzite and the readily-identifiable marker bed composed of “Girvanella” 

oncolitic and oolitic grainstones in the middle member of the Antelope Valley Limestone.  

Litho- and biostratigraphic studies of this marker bed indicated that it belongs to the 

Anomalorthis and Palliseria biozones (Kaya and Friedman, 1997) and can be used as a 

marker for regional stratigraphic correlation across the Basin and Ranges Province (Ross, 

Jr. 1964; Ross, Jr. et al., 1989). 

Facies Associations 

The fourteen lithofacies identified from the upper Aysees Peak member of the 

Antelope Valley Limestone, Copenhagen Formation, and Eureka Quartzite can be 

grouped into five facies associations according to their depositional environments (Fig. 

11), including (1) foreshore to shoreface siliciclastics, (2) shallow-marine carbonate-
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siliciclastics, (3) restricted subtidal shale and carbonates, (4) peritidal carbonates, and (5) 

oncolitic-oolitic sand shoals.   

Facies Association 1: Foreshore-shoreface siliciclastics (Lithofacies I and II) 

The foreshore-shoreface siliciclastic facies association is composed of two main 

facies: cross-bedded quartz arenite and bioturbated lithic arenite (lithofacies I and II, 

Figs. 12 and 13; Table 2). These two facies comprise the Eureka Quartzite and alternate 

at uneven thickness. Locally, intervals of intensely bioturbated fine-grained sandstones 

and parallel-laminated siltstone and dolowackestone are also present.  

The lower 4 to 15 m of the Eureka Quartzite is composed predominantly of 

bioturbated lithic arenite (lithofacies I; Figs. 12C and 13A) that contain trough and planar 

cross stratifications. Locally, 5 to 10 cm thick ripple cross-laminated siltstone and fine-

grained sandstone layers are present between silica-cemented fine sandstone beds. 

Burrows characteristic of the Skolithos ichnofacies are common in addition to vermiform, 

silt and fine sand-infilled irregular burrows (Fig. 13D).  At the top of this lithofacies, 

there is a 0.5 to 1.0 m thick sandy dolostone interval containing oncoids of 0.5 to 1 cm in 

size, separating this lithofacies from the overlying quartz arenite-dominated facies. 

 Lithofacies II characterizes the upper part of the Eureka Quartzite.  This lithofacies is 

composed of coarse- to medium-grained quartz arenite with low-angle planar and trough 

cross stratifications and parallel laminations, and less commonly, ripple cross-laminated 

siltstone layers (Fig. 12B, D).  Trough cross-stratification is prevalent in the lower 

portion of this subdivision, but becomes relatively sparse toward the top. Burrows are 

common. In the lower part, most of the burrows are Skolithos, but Calianassa-type (Fig. 

13C, F) ichnofacies are observed to increase up - section. A parallel-laminated siltstone 
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to fine sandstone interval up to 5-10 m thick is present in the upper part of the sections, 

containing flat to rounded, columnar features interpreted as stromatolites (Fig. 13B, E; 

Druschke et al., in press). In the topmost part of the Eureka Quartzite, a herringbone 

cross-stratified, ripple cross-laminated dolomitic quartz arenite and parallel-laminated 

sandy dolomite interval makes the transition to the overlying Hanson Creek Limestone-

Ely Springs Dolomite.  This transitional unit varies in thickness from less than 2 m in 

sections of the Lone Mountain, Pahranagat Range and White River Narrows to about 10 

m in the Arrow Canyon Range section. 

 Lithofacies I and II are interpreted as deposited from the upper shoreface to 

foreshore environments (Fig. 14). The presence of trough and planar cross bedding 

indicates high-energy conditions where subaqueous sand dunes migrated to form cross 

bedding. The abundance of vertical burrows (Skolithos) is consistent with resting traces 

in high-energy upper shoreface environments. Herringbone cross stratification may have 

been formed in tidal channels, suggesting that in the uppermost part of lithofacies II the 

shoreface may have evolved into a barrier-island system, consistent with the thickness 

change of the interval across the sections.  Locally present fine-grained sandstone and 

siltstone with Calianassa-type ichnofacies may have been deposited from relatively low-

energy environments protected by large sand dunes. Lithic fragments in lithofacies I may 

record a more proximal terrestrial source during the early transgression following the 

basal Eureka Quartzite unconformity, while the quartz arenite of lithofacies II records 

deposition from compositionally mature coastal environments during the latter stage of 

transgression and highstand. 
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Facies Association 2: Tidal flat mixed carbonate- siliciclastics (Lithofacies III, VI) 

This facies association consists of alternating dolomitic siltstone and lime mudstone 

(lithofacies III; Fig. 15) and fenestral silty dolostone (lithofacies IV) and occurs as a 

transitional unit between the Antelope Valley Limestone and Eureka Quartzite. This unit 

was first recognized by Nolan et al. (1956) at Lone Mountain and this study found its 

presence in most sections outside of the Antelope Valley-Monitor Valley region, with a 

thickness change from 5 to 16 meters.  

Thinly bedded (5-10 cm thick) dolomitic siltstone and lime mudstone are moderately 

bioturbated and in some cases, layer-parallel muddy drapes in siltstone layers form flaser 

bedding. Less commonly, thin (1-2 cm thick) fenestral silty dolostone is present as 

interbeds between dolomitic siltstone and lime mudstone. 

This facies association is interpreted as having formed in a tidal flat environment. 

Carbonate mud was brought into the intertidal to supratidal areas by waves and tides, 

where microbial mats may have colonized. Decomposition of microbial mats created 

layer-parallel cavities that were filled in with calcite, forming fenestral structures (Fig. 

15E).   

Facies Association 3: Restricted subtidal shale and carbonates (Lithofacies V and VI) 

The restricted subtidal facies association is composed of two lithofacies: shale and 

argillaceous limestone (lithofacies V; Fig. 16D) and lime mudstone/wackestone 

(lithofacies VI; Fig. 16A, B, C). These facies constitute the classic Copenhagen 

Formation in the Antelope Valley and Monitor Valley areas and are not present outside of 

this region.  In the Hot Creek Range to the south of Monitor Valley observance of these 

lithofacies indicates the presence of all three members of the Copenhagen Formation, 
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suggesting a thinning trend of the entire formation, consistent with the local geographic 

extent of this unit.   

The shale and argillaceous limestone (lithofacies IV) alternates with lime mudstone 

and wackestone (lithofacies V). In general, the ratio of shale to argillaceous limestone 

increases up-section. Millimeter-thick parallel laminations are common in shales and 

argillaceous limestones. Lime mudstone and wackestone beds are relatively thicker (5-15 

cm) than the shaley beds and are often intensively bioturbated. Fossil fragments and 

abundant well-preserved body fossils of brachiopods, bryozoans, and gastropods are 

observed in lime mudstone and wackestone beds. 

These lithofacies are interpreted as having formed in a low energy, deep subtidal 

environments, possibly in a restricted embayment (sensu Rees, 1986). The presence of 

parallel laminations and the lack of packstones and grainstones and other shallow-water 

sedimentary features such as fenestrae, cross beds, and desiccation cracks suggest 

deposition from suspension below the fair-weather wave base. Bioclastic fragments were 

possibly brought into the depositional sites by storms or washed out into depositional 

sites from coeval shallow-water environments. The increase of parallel-laminated shales 

up-section suggests an overall deepening upward trend during deposition of the 

Copenhagen Formation (Fig. 17). 

Facies Association 4: Peritidal carbonates (Lithofacies VII, VIII, IX, X, XI, and XII) 

The peritidal carbonate facies association forms the upper Antler Valley Limestone in 

the study areas. It include lithofacies VII (peloidal wackestone), VIII (mudcracked lime 

mudstone), IX (bioclastic packstone and grainstone), X (intraclastic conglomerate), XI 

(bioturbated/nodular mudstone), and XII (bioturbated/nodular wackestone; Figs. 18, 19, 

  26



20, and 21). These facies commonly form 3 to 10 meter thick, shallowing-upward cycles 

(Fig. 22) bounded by exposure surfaces expressed by fenestral structures, mudcracks, and 

dissolution cavities and depressions filled with sandstone/siltstone and conglomerates. 

The peloidal wackestone lithofacies (VI) occurs as 0.3 to 1.5 meter thick units that 

show thin (1-3 cm) wavy or flat bedding. Compositionally this facies contains visible 

peloids and subordinate bioclasts including brachiopod and bryozoan fragments. In many 

cases the tops of this lithofacies exhibit dissolution cavities and brecciation, locally 

infilled with poorly-sorted deposits consisting of rounded carbonate clasts in a silty to 

sandy matrix (Fig. 18A, B, C). Vertical thin burrows approximately 3 to 5 millimeters are 

common, particularly towards the top of the units. This facies is interpreted to have 

deposited from the upper intertidal to supratidal environments on the basis of dissolution 

cavities and brecciation. 

Mudcracked lime mudstone (VIII) occurs as 10 to 20 cm thick, yellowish to light 

gray units that are commonly found at the top of the meter-scale cycles (18D). These 

units often exhibit abrupt thickness change due to erosion by overlying coarser-grained 

facies (e.g., intraclastic grainstone and packstone) and in many cases are completely 

eroded; in such instances the presence of mudcracked lime mudstone facies is inferred 

from rounded centimeter-wide clasts incorporated within the overlying lithofacies. Less 

commonly, fenestral fabrics are present, along with partial dolomitization at the top. 

Mudcracks, when present, are filled with siltstone and curve upward around the edges, 

suggesting microbial encrustation (Fig. E). Trace and body fossils are rare, except for a 

few small gastropods occurring as millimeter-thick grainstone lenses, and sparse 
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bioturbation (Fig. 18F). The presence of mudcracks and fenestrae indicates that this 

facies was deposited in supratidal environments with subaerial exposure.   

Bioclastic packstone and grainstone (IX; Fig. 19) forms 5-25 cm thick beds that 

commonly show erosional bases. Occasionally ripple cross laminations and planar cross 

beds are present. Bioclasts include brachiopods, crinoids and gastropods. This facies is 

interpreted as having formed in a subtidal environment above the fair-weather wave base, 

but have also been observed within lithofacies XI and XII, here interpreted as storm-

generated deposits below fair-weather wave base. 

Intraclastic conglomerates (X) are conspicuous in the studied sections (Fig. 20A, B, 

C, D). They appear as 20 to 35 cm thick beds that typically overlie mudcracked lime 

mudstone (VIII; Fig. 20E) or peloidal wackestone (VI). This facies is commonly present 

at the base of the meter-scale cycles with erosional bases. Intraclasts are composed of 

laminated lime mudstone and wackestone (Fig. 20F). Additional grains include 

brachiopod and gastropod fragments and subordinate quartz. This facies is interpreted as 

deposited from shallow subtidal environments above fair-weather wave base. 

Bioturbated mudstone and wackestone lithofacies (XI and XII; Fig. 21) make up the 

majority of each cycle in the Pahranagat Range and White River sections, but are less 

abundant in cycles of the Lone Mountain and Arrow Canyon Range sections, where 

cycles are generally composed of coarser-grained facies (lithofacies VI and IX). These 

facies are thinly bedded (1-4 cm) and laterally persistent. Parallel and wavy dolomitized 

laminations are present but are often disrupted by Calianassa-type burrows (Fig. 21A, 

C). Occasionally thin (< 10 cm), lenticular bioclastic grainstone layers or lenses with 
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erosional bases are present within these facies. They are interpreted as deposition from 

lower intertidal to protected, low-energy lagoonal environments. 

Facies Association 5: Oncolitic-oolitic sand shoals (Lithofacies XII, XIII) 

This facies association is composed of two lithofacies: oolitic grainstone (XII) and 

oncolitic packstone (XIII; Fig. 6). They are present in the middle Upper Antelope Valley 

Limestone and form 5 to 10 m thick units that show up to 3 m relief (Fig. 6A). Oolitic 

grainstones form 10-30 cm thick beds and contain planar cross bedding. Laterally this 

facies can be transitional to oncolitic packstones, which also contain a significant amount 

of ooids. Oncoids form lenticular units up to several meters thick, serving as one of the 

most distinctive markers easily recognizable across the study area. These facies are 

interpreted as deposits from shallow, high-energy oncolitic-oolitic sand shoals. 

 
Chemostratigraphic Data 

 
Carbon isotope analysis of upper Antelope Valley Limestone beds were initially 

undertaken to document the extent of the positive δ13C excursion in sections outside 

Antelope Valley, which was to be used for stratigraphic correlation of the upper 

Copenhagen Formation elsewhere.  Paired carbon and oxygen isotopes are also used to 

investigate the potential diagenetic alteration of carbonate strata below sequence 

boundaries, where meteoric fluids may have been pervasive due to prolonged subaerial 

exposure, karstification and erosion. Isotope profiles obtained from the four sections in 

Arrow Canyon, Pahranagat Range, Hot Creek Range, and Lone Mountain are shown in 

Figures 23 and 24, where the data of the Monitor Valley section are from Saltzman 

(2005).  Paired oxygen and carbon isotope curves have been used previously to evaluate 

the effects of meteoric diagenesis in carbonate strata of modern environments (Allan and 
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Matthews, 1982), and successfully applied to deposits of Miocene (Goldstein et al., 

1990), Cretaceous (Moldovanyi and Lohmann, 1984; Joachimski, 1994; Immenhauser et 

al., 1999) and Ordovician age (Railsback et al, 2003; Thieling et al., 2007).  In particular, 

Railsback et al. (2003) and Thieling et al. (2007) have demonstrated the utility of isotopic 

excursions in the identification of sequence boundaries where other obvious exposure 

criteria are absent, or difficult to interpret from the sedimentary record.   

Isotope profiles obtained from the four sections in Arrow Canyon, Pahranagat, and 

Hot Creek Ranges, and Lone Mountain show substantial variability compared to those 

from the Monitor-Antelope Valley composite section of Saltzman (2005). In Lone 

Mountain (Figs. 23A and 24A), isotope measurements cover the uppermost 30 m of the 

Antelope Valley Limestone. In the lower 15 m, δ13C values are slightly positive (+0.5–

1.2 ‰). The upper 15 m has δ13C values mostly from -0.5‰ to -2.3‰ and reach 

minimum values of -3‰ to -5‰ in the uppermost part close to the basal Eureka 

unconformity. The up to +3‰ positive δ13C excursion seen in the Copenhagen Formation 

(Fig. 23B) is missing in the Lone Mountain. Oxygen isotopes of the Lone Mountain 

section are mostly from -4‰ to -6‰, with a few reaching -7.5‰ immediately below the 

basal Eureka unconformity (Fig. 24A). No systematic covariation exists between δ13C 

and δ18O (R2 = 0.3369) if all the samples are considered, but in the uppermost 3 m of the 

Antelope Valley Limestone (the transitional unit; Facies Association 2 in Table 2) right 

below the Eureka Quartzite, samples that produced the most negative δ13C values do have 

the lowest δ18O values. 

The δ13C and δ18O trends from the Hot Creek Range (Figs. 23C and 24C) are similar 

to those of the Lone Mountain section, but the absolute values differ. Most of the δ13C 
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values in this section are negative, varying from -0.5‰ to -1.5‰, but close to the basal 

Eureka Quartzite unconformity, a few δ13C values are as low as -4.5‰. These low δ13C 

values are associated lower δ18O, suggesting diagenetic modification (e.g., Kaufman and 

Knoll, 1995). Again, the positive δ13C excursion reported from the Copenhagen 

Formation (Saltzman, 2005) is not present here below the Eureka Quartzite. Most of the 

δ18O values of this section are -4–6‰, but lower values down to -11.8‰ are found close 

to the basal Eureka Quartzite unconformity.  

In the Pahranagat Range section isotope measurements cover the uppermost 61 m of 

the Antelope Valley Limestone below the Eureka Quartzite (Figs. 23D and 24D). When 

compared to the other sections, δ13C values in this section show larger variations from 

about -1‰ to -4‰, with two intervals (10-21 m and 42-50 m, respectively), displaying a 

negative shift with a minimum value down to -4.5‰. Carbon isotope values become less 

negative (-0.7–1.6‰) in the transitional unit (facies association 2, table 3) between the 

Antelope Valley Limestone and Eureka Quartzite, but no positive excursion is observed.  

In the lower 50 m of the measured section, δ18O values are quite stable, from -6‰ to -

8‰, but a positive shift from -7‰ to -2‰ is found right below the basal Eureka Quartzite 

unconformity (Fig. 24D). This type of oxygen isotope shift is similar to those found at 

prolonged exposure surfaces where localized evaporation may have led to high δ18O 

values that were partially preserved through the later stage of diagenesis (Railsback et al., 

2003; Thieling et al., 2007). 

The isotope profiles from the Arrow Canyon section (Figs. 23E and 24E) differ from 

the other sections. In the 67 m section below the Eureka Quartzite, δ13C values vary from 

-2‰ to -4.5‰ in the lower 41 m, but shift to near 0‰ in the upper 16 m approaching the 
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Antler Valley/Eureka contact.  Although the δ13C values shift from more negative to less 

negative values, this change seems to be consistent with that of the Monitor Valley 

section (Fig. 23B), the absolute δ13C values are different. The δ18O values do not co-vary 

with δ13C, showing a positive shift from -8‰ to -2‰ at the interval from 30 to 40 m of 

the section where δ13C values are stable (around -2‰). 

In summary, none of the sections outside of the Monitor Valley section contain a 

positive δ13C excursion reported from the Copenhagen Formation (Saltzman, 2005), 

where the lithological contents are also different. In addition, the δ13C and δ18O trends 

and absolute values vary from one section to another, suggesting that either localized, 

facies-dependent isotope variation or diagenetic alterations below a regional 

unconformity. 
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CHAPTER 5 

DISCUSSION 

The positive carbon isotope excursion from the late Middle Ordovician Copenhagen 

Formation that underlies the Eureka Quartzite in central Nevada (Fig. 23B; Saltzman, 

2005) has been hypothesized to record the initiation of the Late Ordovician climatic 

transition ~10 Myr prior to the well-recognized Hirnantian glacial epoch (~443 Ma).  A 

particular question is whether this positive δ13C excursion is a record of increased organic 

carbon burial associated with a glacio-eustatic sea-level fall (Saltzman, 2005), or a facies-

dependent variation of local carbon cycling processes superimposed on the global carbon 

cycle signal.  Although positive isotope excursions of similar magnitude have been 

documented elsewhere in epeiric and continental margin carbonate strata of the late 

Middle Ordovician age (Hatch et al., 1987; Ludvigson et al., 1996; Patzkowsky et al., 

1997; Simo et al., 2003), the synchrony of these excursions still needs to be confirmed 

(Fig. 5). In contrast, local carbon cycling processes have been shown to influence secular 

variations (Panchuk et al., 2006) in δ13C, particularly during times of sea-level change 

and basin restriction.  During the Whiterockian Series the majority of the North American 

continent was experiencing a major depositional hiatus with the exception of western 

Laurentia, suggesting a period of sea-level instability, increased silicate and carbonate 

exposure and weathering, and variable circulation and exchange of marginal seas with the 

open ocean, which could potentially lead to development of restricted basins where local 

carbon cycling could overprint the secular δ13C variations of the global ocean.  Therefore, 

determining the geographic extent of the positive carbon isotope excursion in the Great 
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Basin and depositional trends across the paleo-shelf is critical for evaluating the origin of 

the δ13C excursion documented from the Copenhagen Formation.   

The absence of the positive δ13C excursion below the Eureka Quartzite outside of the 

Copenhagen and Monitor Valley (Figs. 23 and 24) invokes two alternative 

interpretations: (1) the Copenhagen Formation, along with the positive δ13C excursion, 

existed across the carbonate shelf  but was later eroded during development of the basal 

Eureka Quartzite unconformity, leaving only a localized lithologic unit and isotope 

record (such as those documented from the Monitor Valley); and (2) the Copenhagen 

Formation and associated δ13C excursion were deposited in a restricted basin where 

carbon cycling processes were influenced by local fault-controlled differential 

subsidence, which preserved the isotopic record of sea-level fall. Using the 

sedimentological and stratigraphic results, these interpretations are evaluated below. 

If the Copenhagen Formation was deposited as a uniform stratigraphic unit but was 

eroded during development of the basal Eureka Quartzite unconformity, 

sedimentologically one would expect to see (1) a similar shallowing-upward trend from 

the upper Antler Valley limestone to the Copenhagen across the sections and (2) similar 

δ13C values between the transitional facies (Facies association 2; Table 3) in measured 

sections (Lone Mountain, Pahranagat Range, White River Narrows and Arrow Canyon 

Range) and the basal Copenhagen Formation. 

These expectations, however, are not satisfied with the sedimentological observations 

and isotope data. Sedimentologic evidence in the Monitor-Antelope Valley region (Fig. 

25) indicate that the Copenhagen Formation was deposited in a restricted  deep subtidal 

environment and the upward increase of thinly-laminated shales suggests a deepening-
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upward trend. In contrast, the peritidal carbonate facies and the tidal flat carbonate and 

siliciclastic (Facies associations 2 and 3) outside the Monitor-Antelope Valley region 

show an overall upward-shallowing trend towards the basal Eureka Quartzite. In concert 

with this discrepancy in depositional trends, chemostratigraphic data also do not support 

a glacio-eustatic origin for the positive carbon isotope excursion. The absolute δ13C 

values from the transitional unit below the Eureka Quartzite in Lone Mountain, 

Pahranagat Range, White River Narrows and Arrow Canyon Range sections vary from 

one section to another, in contrast to the exclusively negative δ13C values (-1.35–2.7‰) 

of the lower Copenhagen Formation in the Monitor-Antelope Valley region (Saltzman, 

2005). Because of the large variations in δ13C below the Eureka Quartzite and the unique 

δ18O patterns that in most cases indicate either homogenization of δ18O (e.g., Fig. 24C) or 

covariation between δ13C and δ18O immediately below an unconformity, it is more likely 

that the isotope values below the Eureka Quartzite have been significantly modified by 

meteoric diagenetic alterations (Allan and Matthews, 1982). In addition, the magnitude of 

a glacio-eustatic sea-level fall required to remove the Copenhagen Formation, which is > 

140 m thick in the Monitor Valley (Saltzman, 2005), should exceed this amount. This 

magnitude of sea-level fall is larger than that of the Hirnantian glaciation (~45 to 80 m; 

Crowley and Baum, 1991; Brenchley et al. 2005) and the Last Glacial Maximum (~125 

m; Denton and Hughes, 1981). Considering the widespread glacial deposits of Hirnantian 

and early Holocene ages, the paucity of documented Chatfield Stage glacial deposits 

globally argues against a > 140 m glacio-eustatic sea-level fall that is even larger than 

Hirnantian and early Holocene, especially when considering that only a few meters of 
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erosional relief were documented at the Eureka Quartzite-Antelope Valley Limestone 

contact (Fig. 26). 

An alternate scenario for the origin of the positive carbon isotope excursion and 

Copenhagen Formation requires deposition in a restricted geographic environment, much 

different than the typical shelf to ramp carbonate sequences representative of the upper 

Antelope Valley Limestone. Such environments have been shown to have significant 

isotopic departure from the average ocean seawater values. In the modern Florida Bay 

areas, the δ13C values from the restricted lagoon is up to 4‰ lower than those from the 

carbonate platform margins (Patterson and Walter, 1994). A statistic of the global isotope 

trends of the last 10 million years show large isotope variations particularly from areas 

where circulation was sluggish (Swart, 2008). Isotope analyses from the modern lakes 

show up to 2.5‰ increase in δ13C during the summer seasons, due to the increase of 

biological production and eutrophication (Hollander and McKenzie, 1991) and the 

limited size of the dissolved inorganic carbon (DIC) pool in a confined lake basin. Large 

variations up to 5‰ to 10‰ in δ13C from restricted basins have also been documented 

from the Paleozoic and Precambrian carbonate platforms. For example, up to 4.5‰ 

variation in δ13C was documented from the Late Ordovician Mohawkian Sea of eastern 

Laurentia (Panchuk et al., 2006) and up to 10‰ differences in δ13C are found in the 

Ediacaran Doushantuo basin (Jiang et al., 2007; 2008). It is thus possible that the positive 

δ13C excursion of the Copenhagen Formation in Monitor-Antelope Valley was derived 

from local carbon cycling in a restricted basin where high biological production and 

eutrophication led to 13C-enrichment in local water bodies away from open ocean 

circulation. 
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   The most pertinent line of evidence supporting the localized extent of the 

Copenhagen Formation is the contrasting depositional environments implied by 

sedimentologic evidence from the studied sections. Four sections (Fig. 25) are 

characterized by shallow-water peritidal sequences represented by Facies Association 4 

below the Eureka Quartzite and change dramatically in the Monitor-Antelope Valley area 

into the deeper-water environment of Facies Association 3 comprising the Copenhagen 

Formation.  Such a lithologic change implies a distinct difference in depositional 

environments over a relatively limited geographic area, and would not occur if 

Copenhagen Formation deposition across the basin was uniform prior to any subsequent 

erosion by the Eureka Quartzite unconformity. Additional stratigraphic evidence includes 

the observation of the three informal members of the Copenhagen Formation (Cooper 

1956) in the Hot Creek Range at much thinner intervals, implying a facies change across 

sections rather than a prominent stratigraphic erosion/truncation at the end of the 

Copenhagen Formation, as would be expected if the Copenhagen Formation was 

deposited uniformly below the Eureka Quartzite.   

In addition to the disparate paleoenvironmental interpretation inferred from the 

lithologic record, the evolving depositional trends below the Eureka Quartzite also 

support a restricted depositional setting for the Copenhagen Formation.  Facies analysis 

of the upper Antelope Valley Limestone in studied locations implies an upward 

shallowing trend inferred from an increase of subaerially exposed lithofacies toward the 

Eureka Quartzite.  Conversely, the composition of the Copenhagen Formation exhibits a 

gradual increase of fine-grained siliciclastic, organic-rich facies and coincident decrease 

of limestone strata upward, and is here interpreted as either an increase of detrital input 
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into the basin resulting in a decrease of carbonate production, or a change in depositional 

environments resulting from differential subsidence across the basin.  The Copenhagen 

Formation represents deep-water deposits, but it overlies shallow-water carbonate facies 

and is overlain by the Eureka Quartzite. This phenomenon suggests an abrupt increase in 

accommodation space at the beginning of the Copenhagen deposition, possibly derived 

from syndepositional faults. 

The presence of a sequence boundary above the Copenhagen Formation, but a 

conformable lower contact with the Antelope Valley Limestone also suggests that this 

unit is not time-equivalent to the lower Eureka Quartzite. Instead, it was more likely to 

have deposited prior to the transgression that deposited the Eureka Quartzite. Although 

this observation does not exclude either of the localized deposition or glacio-eustatic 

interpretations for the origin of the Copenhagen Formation, when considered in the 

context of depositional trends across the platform, it seems more plausible that the 

sequence boundary above the Copenhagen Formation in Antler-Monitor Valley region 

should coincide with subaerial exposure at the top of the Antelope Valley Limestone in 

other sections.    

During the late Middle Ordovician period it is believed that the Earth’s climatic 

change initiated the geochemical perturbations that could have been a pre-cursor to the 

well-established but short-lived Hirnantian glacial epoch.  Positive δ13C excursions 

documented prior to the glaciation could represent an earlier episode of glaciation, or a 

prolonged, cooling trend highlighted by local excursions in δ13C prior to the Hirnantian 

glacial epoch.  If our sedimentologic analysis is correct the δ13C excursion in the 
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Copenhagen Formation could represent a localized proxy record of glacio-eustasy across 

the paleo-shelf that was not exposed or eroded as a result of fault-controlled subsidence.            
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CHAPTER 6 

SUMMARY 

Sedimentologic analysis of strata directly below the Eureka Quartzite indicates a 

geographically limited depositional extent of the Copenhagen Formation.  This 

interpretation is supported by several lines of evidence including: 1) a shallowing-upward 

trend in studied sections of the Pahranagat Range, White River Narrows, Arrow Canyon 

Range, and at Lone Mountain; 2) progressively deeper depositional environments 

comprising the middle and upper Members B and C of the Copenhagen Formation, as 

other sections experienced exposure and erosion, and; 3) contrasting depositional 

environments between the Monitor-Antelope Valley area and locations to the north and 

south.  This interpretation is strengthened by the presence of a sequence boundary above 

the Copenhagen Formation and Antelope Valley Limestone across the study area, 

indicating both units were deposited concurrently and prior to the transgressive Eureka 

Quartzite.  The gradual thinning of members of the Copenhagen Formation in the Hot 

Creek Range just south of the Monitor-Antelope Valley area, rather than attaining a 

uniform thickness also suggests a facies change across the paleo-shelf.  Transition of 

facies from shallow-to-deep water environments is explained by an inferred listric fault 

located between the Lone Mountain and Copenhagen Canyon sections consistent with a 

localized deepening trend as the footwall subsided throughout deposition of the 

Copenhagen Formation.  Isotopic analysis of the upper Antelope Valley Limestone 

suggests the presence of an exposure surface above both the Copenhagen Formation and 

Antelope Valley Limestone.  Coupled with the magnitude of documented erosional relief 

of approximately 6 meters at the sequence boundary, it is likely the two stratigraphic 
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units are regressive, with the Copenhagen Formation being deposited in a fault-controlled 

basin during exposure of the upper Antelope Valley Limestone southward and at Lone 

Mountain. 
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FIGURES 
 

 
Figure 1.  Isotopic excursions and stratigraphy of Late Ordovician strata.  A.  Carbon 
isotope excursions and inferred climatic variation during the Middle and Late Ordovician 
period.  The positive excursion occurring in the Hirnantian Stage is preceded by a similar, 
yet smaller isotope enrichment in the Chatfield Stage, suggesting a climatic transition 
from greenhouse-to-icehouse conditions approximately 10 million years earlier.  B. 
Stratigraphic correlation of key units in the southwestern United States.  The absence of 
the Copenhagen Formation outside of Antelope Valley, NV raises doubt about the origin 
and extent of the isotopic excursion.   
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Figure 2. Hypothetical Model 1.  This model depicts uniform deposition of the 
Copenhagen Formation across the paleo-shelf.  This interpretation attributes the absence 
of the Copenhagen Formation to base-level fall and subsequent erosion, and karstification 
of the underlying Antelope Valley Limestone at the sequence boundary below the Eureka 
Quartzite. 
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Figure 3.  Hypothetical Model 2.  This model depicts fault-controlled deposition of the 
Copenhagen Formation across the paleo-shelf.  This interpretation implies the 
Copenhagen Formation was deposited in a fault-bounded basin coinciding with base-
level fall, culminating at the sequence boundary below the Eureka Quartzite. 
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Figure 4.  Paleogeographic reconstruction of land masses during the Middle Ordovician 
period.  Isotopic excursions in literature are documented from shallow-marine carbonate 
strata, within 10-15° of the inferred paleogeographic equator.  Figure modified from R. 
Blakey’s paleogeographic globes.   
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Figure 5.  Correlation of North American and British Stages and Series, and 
corresponding stratigraphic units in North America.  Lithostratigraphic units correspond 
to deposition during the Copenhagen Formation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  46



 
Figure 6.  Girvanella-algae preserved in carbonate strata of the Great Basin.  This 
diagnostic stratigraphic unit was used to correlate sections across the field area, and 
demarcated the oldest studied member of the Antelope Valley Limestone. 
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Figure 7.  Parasequence set stacking patterns.  The vertical variation of parasequence sets 
enables evaluation of base level fluctuation and sedimentation rates relative to the 
strandline. Modified from Van Wagoner et al., 1988. 
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Figure 8.  Systems tract architecture.  Depositional sequence hierarchy comprising one 
transgressive-regressive cycle.  Modified from Van Wagoner et al., 1990. 
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Figure 9.  Site location map of studied sections in Nevada.   
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Figure 10.  Paleoenvironmental reconstruction of sequences.  Lithofacies of the upper 
Antelope Valley Limestone, Copenhagen Formation and Eureka Quartzite.  
Reconstructed depositional environments and their relative position on a shoreline to 
basin transect inferred from vertical facies variation.   
 

  51



 
Figure 11.  Lithostratigraphic correlation of facies across study area showing position of 
sequence boundary and Girvanella-rich member of the Antelope Valley Limestone.  
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Figure 12.  Lithofacies comprising Facies Association 1.  A. Bioturbated lithic arenite 
lithofacies of the lower Eureka Quartzite.  B. Vermiform mud and silt-infilled burrows 
disrupting bedding surfaces in lithic arenite lithofacies of the lower Eureka Quartzite. 
Scale bar is 1.2 cm.  C. Silt and fine sand comprising algal laminated interval in upper 
Eureka Quartzite.  D. Thin-section depicting laminated silt and fine sand representing 
alternating algae-growth and sedimentation.  Scale bar is 1mm. E, F. Calianassa-type 
burrows representing low-energy deposition within upper Eureka Quartzite.  
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Figure 13. Field photographs of Facies Association 1.  A. Eureka Quartzite exposed at 
Pahranagat Range showing upper and lower lithofacies.  EQ is 88 meters thick.  B.  
Contact of lower bioturbated lithic arenite lithofacies and transitional siliciclastic-
carbonate lithofacies.  C, D.  Upper lithofacies consisting of well-sorted, silica-cemented 
quartz arenite. 
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Figure 14.  Interpretation of Facies Association 1.  Lithofacies comprising the Eureka 
Quartzite and upper Copenhagen Formation age-equivalent strata outside of the Monitor-
Antelope Valley region.   
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Figure 15.  Interpretation of Facies Association 2.  Lithofacies comprise the transitional 
interval between the pure carbonate cycles of the Upper Antelope Valley Limestone and 
the silica-rich Eureka Quartzite. 
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Figure 16.  Thin-section photographs of Facies Association 3.  A, C.  Lime mudstone and 
wackestone lithofacies comprising middle to upper Copenhagen Formation.  B. Burrows 
commonly exhibit lower amount of mud and silt than surrounding matrix.  D. Parallel-
laminated shale and mudstone of the upper Copenhagen Formation.   
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Figure 17.  Interpretation of Facies Association 3.  Lithofacies comprising upper 
members “B and C” of Copenhagen Formation in the Monitor-Antelope Valley area, and 
unconformable contact with the overlying Eureka Quartzite. 
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Figure 18. Field and thin-section photographs of Facies Association 4.  A, B. Peloidal 
wackestone lithofacies exhibiting irregular upper contact with Intraclast conglomerate 
lithofacies. C. Thin-section of peloidal wackestone. D. Mudcracked lime mudstone and 
intraclast conglomerate contact. E,F. Mudcracked lime mudstone thin-sections. Scale bar 
is 1.2 mm. 
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Figure 19. Bioclastic packstone and wackestone lithofacies. Scale bar is 1.2 mm in 
A,B,C, and 1.4 cm in D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  60



 
 
 
 

 
Figure 20.  Intraclast conglomerate lithofacies. A. Thin-section of representative sample. 
B, C, E. Thin-sections of laminated clasts within a packstone to grainstone matrix. D. 
Field exposures of intraclast facies overlying intertidal limestone facies in Arrow Canyon 
Range. F. Brecciated interval in Intraclast facies in the Pahranagat Range.  
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Figure 21. Thin-section photographs of Copenhagen Formation lithofacies.  Bioturbated 
mudstone and wackestone lithofacies. A, C, D. Thin-sections show dolomitized silty 
laminae, with close-up of laminae in C. Scale bar is 1.2 mm in A, C, and D; 2mm in B.  
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Figure 22. Lithofacies comprising peritidal carbonate cycles of Facies Association 4. 
Idealized cycles are commonly not observed in outcrop; reconstructed vertical 
arrangement is based on stratal order of several documented cycles from White River 
Narrows and Pahranagat Range sections. Arrow Canyon cycles contain coarser clastic 
carbonate lithology, thinner cycles, and less lithologic variation. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  63



 
Figure 23. Carbon isotope chemostratigraphy of upper Antelope Valley Limestone. Green 
line represents most consistent lithologic datum throughout studied sections.  
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Figure 24. Oxygen isotope chemostratigraphy of upper Antelope Valley Limestone. 
Green line represents most consistent lithologic datum throughout studied sections.  
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Figure 25. Sequence stratigraphic and chemostratigraphic results.  The presence of a 
listric fault between the Lone Mountain and Copenhagen Canyon sections is inferred 
from the abrupt change in lithofacies between these two locations, and the gradual change 
and thinning of traceable lithofacies southward.  
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Figure 26. Erosional relief at sequence boundary.  Erosion encompassed by unconformity 
at Eureka Quartzite-Antelope Valley Limestone at Pahranagat Range. 
 

 
 
 
 
 
 
 

  67



TABLES 
 

Table 1 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  68



Table 2 
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APPENDIX I 
 

Isotopic results 
 

Pahranagat Range 
 

*Stratal 
Height 

Sample 
ID Color Lithology δ13C (‰, VPDB) 

δ18O(‰, 
VPDB) 

-65.0 PR-50 Gray Wackestone -2.454 -6.846 
-63.5 PR-51 Gray Wackestone -2.405 -6.978 
-62.5 PR-54 Gray Lime Mudstone -1.847 -6.678 
-61.5 PR-55 Gray Lime Mudstone -2.2 -6.702 
-60.5 PR-56 Gray Wackestone -1.911 -6.912 
-59.5 PR-57 Gray Grainstone -2.483 -6.782 
-58.0 PR-58 Gray Grainstone -2.367 -6.392 
-57.0 PR-59 Gray Lime Mudstone -3.058 -6.313 
-56.0 PR-60 Gray Wackestone -1.298 -6.435 
-55.0 PR-61 Gray Wackestone -2.807 -6.716 
-53.5 PR-62 Gray Lime Mudstone -4.226 -6.819 
-52.5 PR-63 Gray Lime Mudstone -3.091 -6.91 
-51.0 PR-64 Gray Wackestone -2.9 -6.922 
-50.5 PR-65 Gray Lime Mudstone -3.488 -6.492 
-49.5 PR-66 Gray Wackestone -4.032 -6.429 
-48.5 PR-67 Gray Wackestone -4.848 -6.944 
-47.5 PR-68 Gray Wackestone -4.307 -6.544 
-46.5 PR-70 Gray Wackestone -2.389 -6.371 
-45.5 PR-71 Gray Wackestone -3.025 -6.735 
-44.1 PR-72 Gray Grainstone -3.826 -6.342 
-44.0 PR-72B Gray Wackestone -2.755 -6.55 
-43.0 PR-75 Gray Lime Mudstone -1.561 -7.123 
-41.5 PR-76 Gray Lime Mudstone -1.9 -5.833 
-40.0 PR-77 Gray Lime Mudstone -1.649 -7.088 
-39.5 PR-78 Gray Lime Mudstone -1.774 -6.795 
-38.5 PR-79 Gray Lime Mudstone -2.19 -6.65 
-37.5 PR-80 Gray Wackestone -2.083 -6.894 
-36.0 PR-81 Gray Lime Mudstone -2.384 -7.381 
-35.0 PR-83 Gray Packstone -3.654 -7.003 
-34.0 PR-84 Gray Lime Mudstone -1.989 -7.069 
-32.5 PR-87 Gray Lime Mudstone -2.324 -6.963 
-31.5 PR-88 Gray Wackestone -3.224 -7.551 
-30.5 PR-90 Gray Wackestone -2.306 -6.83 
-29.5 PR-91 Gray Lime Mudstone -1.514 -6.474 
-28.5 PR-92 Gray Wackestone -5.268 -8.05 
-27.5 PR-93 Gray Wackestone -2.142 -6.867 
-26.0 PR-94 Gray Lime Mudstone -1.694 -6.845 
-25.0 PR-95 Gray Packstone -2.195 -7 
-24.5 PR-96 Gray Lime Mudstone -1.848 -6.691 
-23.5 PR-97 Gray Lime Mudstone -2.532 -7.061 
-22.0 PR-98 Gray Lime Mudstone -2.119 -6.852 
-21.0 PR-99 Gray Wackestone -1.49 -7.085 
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-20.0 PR-100 Gray Wackestone -4.006 -7.477 
-19.5 PR-101 Gray Lime Mudstone -2.962 -6.986 
-18.0 PR-102 Gray Wackestone -4.104 -7.045 
-17.0 PR-103 Gray Wackestone -3.141 -7.144 
-16.5 PR-104 Gray Wackestone -3.64 -6.999 
-15.5 PR-105 Gray Wackestone -3.954 -7.291 
-14.0 PR-106 Gray Wackestone -4.481 -7.292 
-13.0 PR-107 Gray Wackestone -2.317 -7.208 
-11.5 PR-108 Gray Wackestone -2.645 -7.518 
-10.0 PR-109 Gray Wackestone -2.816 -7.494 
-9.0 PR-110 Gray Wackestone -2.272 -5.427 
-7.5 PR-111 Gray Wackestone -2.194 -8.838 
-6.5 PR-112 Gray Wackestone -0.799 -4.449 
-5.0 PR-113 Gray Wackestone -0.972 -3.066 

-4.0 PR-114 
Light gray-

tan Silty dolostone -0.949 -2.008 

-3.0 PR-115 
Light gray-

tan Silty dolostone -1.354 -1.348 

-1.5 PR-117 
Light gray-

tan Silty dolostone -1.245 -2.028 

-0.5 PR-118 
Light gray-

tan Silty dolostone -1.693 -6.654 
 
 

Hot Creek Canyon 
 

*Stratal 
height 

Sample 
ID Color Lithology δ13C (‰, VPDB) 

δ18O(‰, 
VPDB) 

-43.0 HC-1 Gray Lime Mudstone 1.034 -3.521 
-42.0 HC-2 Gray Lime Mudstone 2.538 -2.601 
-41.0 HC-3 Gray Lime Mudstone 2.639 -2.919 
-40.0 HC-4 Gray Lime Mudstone 2.15 -3.475 
-39.0 HC-5 Gray Lime Mudstone 1.909 -3.252 
-38.0 HC-6 Gray Lime Mudstone -1.005 -6.459 
-37.0 HC-7 Gray Lime Mudstone 0.953 -3.154 
-36.0 HC-8 Gray Lime Mudstone 1.191 -2.465 
-35.0 HC-9 Gray Lime Mudstone 1.015 -2.563 
-34.0 HC-10 Gray Lime Mudstone 0.413 -3.794 
-33.0 HC-11 Gray Lime Mudstone 0.331 -2.862 
-32.0 HC-12 Gray Lime Mudstone 0.641 -6.745 
-31.0 HC-14 Gray Lime Mudstone 0.306 -10.27 
-30.0 HC-15 Gray Lime Mudstone 0.325 -9.1 
-29.0 HC-16 Gray Lime Mudstone -1.55 -8.493 
-28.0 HC-17 Gray Lime Mudstone -1.551 -6.458 
-27.0 HC-18 Gray Lime Mudstone -1.338 -9.019 
-26.0 HC-19 Gray Lime Mudstone -1.714 -7.804 
-25.0 HC-20 Gray Lime Mudstone -1.58 -7.626 
-24.0 HC-21 Gray Lime Mudstone -1.398 -7.531 
-23.0 HC-22 Gray Lime Mudstone -2.111 -8.516 
-22.0 HC-23 Light tan Silty dolostone -1.581 -6.839 
-21.0 HC-24 Light tan Silty dolostone -4.383 -11.508 
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-20.0 HC-25 Light tan Silty dolostone -1.306 -9.355 
-19.0 HC-26 Light tan Silty dolostone -4.529 -5.503 
-18.0 HC-27 Light tan Silty dolostone -3.329 -11.842 
-17.0 HC-28 Gray Lime Mudstone -1.017 -4.759 
-16.0 HC-30 Light tan Silty dolostone -1.439 -4.96 
-15.0 HC-31 Light tan Silty dolostone -1.331 -5.287 
-14.0 HC-32 Gray Lime Mudstone -1.048 -5.33 
-13.0 HC-34 Gray Lime Mudstone -1.006 -4.422 
-12.0 HC-35 Gray Lime Mudstone -0.929 -3.943 
-11.0 HC-36 Gray Lime Mudstone -0.555 -4.811 
-10.0 HC-37 Light tan Silty dolostone -0.572 -2.892 
-9.0 HC-38 Gray Lime Mudstone -0.432 -3.494 
-8.0 HC-39 Gray Lime Mudstone -0.422 -4.18 
-7.0 HC-40 Gray Lime Mudstone -0.312 -4.087 
-6.0 HC-41 Gray Lime Mudstone -0.543 -3.975 
-5.0 HC-42 Light tan Silty dolostone -0.525 -3.763 
-4.0 HC-43 Gray Lime Mudstone -0.746 -4.782 
-3.0 HC-44 Gray Lime Mudstone -1.09 -5.436 
-2.0 HC-45 Gray Lime Mudstone -0.966 -2.806 
-1.0 HC-46 Gray Lime Mudstone -0.814 -4.555 
+0.5 HC-47 Gray Lime Mudstone -0.62 -5.832 
+1.5 HC-48 Gray Lime Mudstone -1.24 -2.338 
+2.5 HC-49 Gray Lime Mudstone -1.17 -4.115 
+3.5 HC-50 Gray Lime Mudstone -1.225 -2.244 
+4.5 HC-51 Gray Lime Mudstone -1.452 -3.587 
+5.5 HC-52 Gray Lime Mudstone -1.543 -3.826 

 
 

Lone Mountain 
 

*Stratal 
height 

Sample 
ID Color Lithology δ13C (‰, VPDB) 

δ18O(‰, 
VPDB) 

-35.5 LM-001 Gray Wackestone 0.568 -3.68 
-34.5 LM-002 Gray Wackestone 0.82 -5.286 
-33.0 LM-003 Gray Wackestone 0.92 -3.96 
-32.0 LM-004 Gray Silty wackestone 1.266 -4.001 
-31.0 LM-005 Gray Silty wackestone 0.901 -4.706 
-30.0 LM-006 Gray Silty wackestone 0.902 -4.237 
-29.5 LM-007 Gray Silty wackestone 0.397 -4.161 
-28.5 LM-008 Gray Wackestone 0.502 -2.593 
-27.5 LM-009 Gray Wackestone 0.644 -3.165 
-26.5 LM-010 Gray Wackestone 0.453 -2.57 
-25.5 LM-011 Gray Silty wackestone 0.73 -6.144 
-22.0 LM-014 Gray Silty wackestone 1.001 -5.975 
-21.0 LM-015 Light tan Silty dolostone 0.704 -5.053 

-20.0 LM-016 
Light gray-

tan Silty dolostone 0.804 -5.559 

-19.0 LM-017 
Light gray-

white 
Silty-sandy 
dolostone 0.825 -4.296 

-18.0 LM-018 
Light gray-

tan Silty dolostone -0.047 -5.337 
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-17.0 LM-019 
Light gray-

tan Silty dolostone -0.894 -2.461 
-16.0 LM-020 Gray Wackestone -0.735 -4.052 
-15.0 LM-021 Gray Wackestone -1.071 -4.942 

-13.5 LM-022 
Light gray-

tan Silty dolostone -0.84 -5.032 

-12.0 LM-023 
Light gray-

tan Silty dolostone -1.253 -4.742 

-11.0 LM-024 
Light gray-

tan Silty dolostone -1.095 -5.447 

-9.5 LM-025 
Light gray-

tan Silty dolostone -1.239 -4.822 
-8.0 LM-026 Gray Wackestone -1.25 -3.074 
-6.5 LM-027 Gray Wackestone -2.387 -6.27 
-5.0 LM-028 Gray Wackestone -4.502 -6.279 
-4.0 LM-029 Gray Wackestone -5.113 -7.149 
-2.0 LM-030 Gray Wackestone -4.414 -7.305 

 
*Stratal height is measured as a negative or positive distance from the lithologic contact 
interpreted as the sequence boundary between the Antelope Valley Limestone and Eureka 
Quartzite. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  74



APPENDIX II 
 

Location of measured sections 
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White River Narrows (Hiko) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  77



Hot Creek Range 
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Copenhagen Canyon (Antelope Valley) 
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Lone Mountain 
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