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ABSTRACT 

The Mayan Ice Cap: Glacial Geology and Paleoclimate of 
the Northern Guatemalan Highlands 

by 

Alex Joseph Roy 

Dr. Matthew Laclmiet, Examination Committee Chair 
Assistant Professor of Geology 

University ofNevada, Las Vegas 

The Sierra de los Cuchumatanes region of the northern Guatemalan highlands 

supported a large plateau ice cap with an area of -40 km2 along with a group of 5 cirque 

glaciers -1 to 2 km2 during the local last glacial maximum (LLGM). A comprehensive 

mapping reconstruction of the northern Guatemalan highlands is presented here, 

including glacial geology and an estimate of maximum ice limits from physical evidence 

and computer modeling. The glacial geologic map was produced via field mapping with 

global positioning system (GPS) surveying combined with aerial stereo photographic and 

topographic map analysis. This new field work on moraine limits expands upon previous 

reconnaissance-level studies and preliminary reconstruction efforts. Elevation of the 

northern Guatemalan highlands LLGMaR= 2 oequilihrium line altitude (ELA) was 

estimated to be 3515 m for the cirque glaciers and an average of 3703 m for the plateau 

ice cap. Glacial evidence and regional climate data were employed as input to a 

physically based geographical information system (GIS) mass-balance model, developed 

by Plummer and Phillips (2003). Using the target ELA ofthe ice cap (3650 m) and cirque 
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(3550 m) glaciers, the mass balance model results reveal that an average LLGM 

temperature depression was -5.0°C from present day, accompanied by precipitation that 

was equal to I 00% of present day totals. Using the present day Central American ELA of 

4900 ± 200 m, the glacial evidence shows 1197 ± 200 m of ELA lowering for the plateau 

ice cap and 1385 ±200m for the north facing cirques. When the amount ofELA 

lowering is multiplied by the Guatemalan temperature lapse rate of -5.3°C km'1, an 

LLGM cooling is given as· 7.4 ± 1.1 °C for the cirques and a -6.4 ± 1.1 °C average for the 

plateau ice cap. Although the physical evidence suggests a greater temperature reduction, 

during the LLGM of Guatemala, than the GIS model output, both methods place detailed 

constraints on Guatemalan highland paleoclimate and the LLGM ELA. Although the age 

ofthe Guatemalan glacial maximum is unconstrained, a qualitative assessment of 

moraine morphology suggests a correlation between the plateau moraines and the LLGM 

(20 to 17.5 ka) moraines of Mexico. 
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CHAPTER 1 

INTRODUCTION 

Glacial evidence found in highland areas provide an excellent record of climatic 

changes, especially changes in glacier mass balance due to temperature and precipitation 

fluctuations (Laabs et al., 2006; Benn and Lehmkuhl, 2000; Hostetler and Clark, 2000). 

In tropical highlands, glacial evidence may be the principal source of data for 

paleoclimate reconstruction (Hostetler and Clark, 2000) and comprehensive studies of 

Central American glaciated regions are limited to only a few viable loeations (i.e., 

Guatemala, Costa Rica). The formerly glaciated Sierra de los Cuchumatanes of the 

northern Guatemalan highlands presents a unique opportunity to study Central American 

paleoclimate using glacial geomorphology and to complement previous work from 

nearby highlands in Costa Rica, Mexico and Venezuela (Fig. 1 ). 

A recurring theme in recent tropical paleoclimatology is the inconsistency between 

the temperature estimates ofthe land surface and sea surface during the global last glacial 

maximum, called the 'tropical temperature paradox' (Seltzer, 1992; Porter, 2001; Market 

a!., 2005; Lachniet and Vazquez-Selem, 2005). Estimates of Late Quaternary tropical sea 

surface temperatures (i.e. CLIMAP, 1976, 1981) were shown by Rind and Peteet (1985) 

to be less depressed than concurrent land surface temperatures during the global last 

glacial maximum. Tropical land surface temperature depressions for the Late Quaternary 



range 5 to 8°C from present while concurrent sea surface temperature depressions are 

only estimated to -2 to 3°C; not enough sea surface cooling to support data from tropical 

glacial records (Market a!., 2005). The paleoclimate estimates from the northern 

Guatemala highlands, which are based on physical evidence and glacier modeling, will 

provide a more thorough tropical highland input for global climate model simulations. 

Atlantic Ocean 

2SN 

Pacific Ocean 
Caribbean St>a 

10N 

Figure !.Generalized location map of Central America and surrounding regions. Open 

star represents the location of the Trans-Mexican volcanic belt (TMVB) and closed star 

shows the location of tbe Cariaco Basin, a large source of paleoclimatic proxy data for 

this region. 

Interpreting formerly glaciated terrains provide an excellent scientific resource for 

constructing paleoclimate proxy records from glacier mass balance models (i.e., Benn 

and Lehmkuhl, 2000; Hostetler and Clark, 2000) and direct glacial evidence ice 

reconstructions (i.e., Lachniet and Seltzer, 2002). Assembling a record of paleo-

temperature and paleo-precipitation values for tropical regions typically relies on a 
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variety of proxy records such as palynology and analysis of high mountain glacial ice 

core chemistry. In Guatemalan paleoclimate research the focus has been primarily on 

data obtained from sedimentary records cored in Lake Quexil, Guatemala (i.e., Leyden et 

a!., 1994; Leyden, 2002) and the deepest lowland Central American Lake, Lake Peten 

Itza, Guatemala (Anselmetti eta!., 2006; Hodell eta!., 2007; Hodell eta!., 2008) located 

in the northern Guatemalan Lowlands (-15m above sea level- a.s.l.) (Fig 2). These data 

provide a background for estimating the paleoclimate and moisture potential for the 

northern Guatemalan highlands, although location specific glacial evidence will allow a 

more realistic estimate of highland paleoclimate to be completed. 

The primary focus of this research was to utilize the glacial geomorphology of the 

Sierra de los Cuchumatanes, including lateral, terminal and recessional moraine traces, 

scoured bedrock surfaces, outwash plains, ephemeral moraine dammed lake beds and 

other glacial landforms to reconstruct the greatest extent of ice in this region. From that 

reconstruction, an estimate of the regional temperature depression from present could be 

made. Mapping the physical remnants ofthe largest ice extent provided input for a 

physically based GIS mass balance glacier model by Plummer and Phillips (2003). The 

use of GIS-based studies in glacial geomorphology provide a computer-aided approach 

for reconstructing ice margins and interpreting complex glacial geomorphology where no 

glacier ice currently exists (Napieralski eta!., 2007). The GIS model incorporates 

Guatemalan present-day climate data such as precipitation, temperature, cloudiness, 

wind-speed, along with estimated temperature and precipitation lapse rates, to estimate 

the climate that would be necessary to sustain steady-state glacier ice in this highland 

tropical environment. 
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Geology of Guatemala 

According to Marshall (2006) few regions on the planet exhibit the geomorphic 

diversity of Central America, its structure defined principally by the northwest trending 

Middle America trench and the Central American volcanic province. Guatemala is the 

most northern country in Central America, located between -14° to l8°N latitude, and is 

transected east to west by the large Polochic- Motagua- Chamalecon fault system which 

trends from the northeast to southwest (Fig. 2). These faults demarcate a continental 

boundary between the North American (Mayan block) and Caribbean plates (Chortis 

block) (Bundschuh and Alvarado, 2007) along with dominating the varied topography of 

Guatemala. 

The Mayan block is topped by a thick sequence of upper-Paleozoic clastic and 

carbonate sediments, along with Cretaceous to Eocene carbonate and evaporate rocks 

(Bundschuh and Alvarado, 2007). The study area (Fig. 3) is centered atop the highest 

portion of the Sierra de los Cuchumatanes, a northwest trending extension of Mexico's 

Sierra Madre Massif, which is located within the Mayan Highlands section of northern 

Central America. The Sierra de los Cuchumatanes is formed primarily upon a -2500m 

thick sequence of Cretaceous Limestone and Dolomite extensively capping the Mayan 

highlands sedimentary sequence (Bundschuh and Alvarado, 2007). This limestone 

plateau which rests primarily on the Mayan Block corresponds to the most southern limit 

of the North American continent, and contains the highest non-volcanic point in Central 

America at 3837 m. 
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Modern Climate of Guatemala 

The present day Guatemalan climate is influenced locally by the varied topography 

but regionally by its proximity to the Gulf of Mexico, Caribbean Sea and Pacitlc Ocean. 

The average monthly precipitation cycle for the northern Guatemalan highlands consists 

of a pronounced summer wet season starting in April and ending mid-September. The 

wet season is punctuated by drier winter conditions between October and March, along 

with a slight precipitation minimum during the mid-summer wet season centered on mid­

July. Mean annual temperature for Todos Santos Cuchumatan (2480 m), a small town 

located west of the main tleld area (Fig. 3), is -14.2°C with a mean armual precipitation 

total of -1155 mm (n = 15y). Data for relative humidity, cloud cover and number of days 

with rain indicates that the climate ofTodos Santos is humid inner-tropical with a mean 

annual humidity of -84.1%. Since there are no direct climate measurements at the tleld 

area (i.e., plateau), present day precipitation and temperature is estimated from the 

present day atmospheric lapse rate of -5.3°C k:m-1
, which measures the change in 

temperature with rising altitude, and average annual temperature ofTodos Santos 

(14.2°C) giving an annual average temperature on the main plateau at -3700 m to be 

-7.7"C. The current atmospheric temperature lapse rate was calculated by comparing the 

monthly average temperature data of a lowland station in Puerto San Jose to the highland 

town of Todos Santos, which was later contlrmed by comparing averages for multiple 

stations throughout Guatemala. Isohyet maps for Guatemalan precipitation and isotherm 

maps for temperature (INSIVUMEH, 2006) show that the eastern regions near the 

Caribbean Sea, along with the windward Pacitlc facing highlands have higher 
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Figure 2. A SOOm digital elevation model (DEM) of Guatemala along with bordering 

Central American countries. Dotted lines are large transform faults which demarcate the 

North American and Caribbean tectonic plates. The northern highlands (N) contain the 

Sierra de los Cuchumatanes region and the field area (centered on 9!.5°W; 15.5°N) while 

the southern highland (S) consists of volcanic peaks from the Central American Volcanic 

province. Black star in the northern lowlands represents the location of Lake Peten Itzil 

and Lake Quexil mentioned in the text. 

6 



Figure 3. A topographic map of the Sierra de los Cuchumatanes region located in the 

northern Guatemalan highlands, including the plateau region and Montaiia San Juan. The 

town of Todos Santos Cuchumatan is shown, along with the specific valley names and 

locations mentioned in the text; the San Miguel Valley is centered on -91.5°W, 15.5°N. 
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precipitation maximums suggesting some orographic precipitation influences of the 

southern highlands and precipitation increases due to the easterly trade winds. Similarly 

the interior regions of Guatemala, including the field area, show dramatic decreases in 

precipitation compared to other more coastal sites on the Caribbean Sea at the same 

latitude (INSIVUMEH, 2006). 

Based on 30 years of Central American climate observations, Portig (1965) reported 

that the primary wind directions during the dry winter months (December, January, 

February) are predominately from the NNE toNE while summer (June, July, August) 

winds, associated with increased easterlies and the inter-tropical convergence zone 

(ITCZ), are from the ESE. An increase in trade wind strength combined with orographic 

uplift produces a precipitation maximum on the Caribbean and inland along the Pacific 

coast. In a region dominated by easterly trade winds such as Central America, an increase 

in sea surface temperatures in the eastern Atlantic or Caribbean Sea could effect 

orographic precipitation, partially due to increased evaporation in the Caribbean Sea or 

Gulf of Mexico along with increasing the duration of the tropical cyclone season (Aguilar 

eta!., 2005). Pacific sources also play an important role in contributing to the 

precipitation that reaches Central America, including the slight depression during the 

midsummer precipitation maximum (Magafia eta!., 1999; Magafia eta!., 2003). Similarly 

decreases in winter temperatures throughout northern Central America have been shown 

to be affected by the prevalence of cold surges, or nortes, that originate in the northern 

mid-latitudes of North America. The cold surges have been linked with anticyclones that 

occur because of atmospheric turbulence east of the Rockies and the Mexican Sierra 

Madre (Schultz eta!., 1997). Nortes can have a severe impact on Central America by 
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lowering temperatures, increasing wind speeds, along with associated higher pressures 

(Schultz et al., 1998). These surges, which are a common occurrence during the winter 

months lasting on synoptic timescales, could also coincide with strong El Nifio years to 

remain as a dominant climate driver during the winter months (Schultz et a!., 1998). 

Regional Late Quaternary Climate 

Reconstructing paleoclimate depends on a correlation between the timing of certain 

geological and climatological events. Following the estimates of Market a!., (2005) the 

global last glacial maximum (LGM) can he defined as occurring at 21 ± 2 ka (18 ± 2 14C 

ka), while other reports suggest a range in the timing of a tropical maximum glacial 

advance covering 19 to 16 ka (Biard et a!., 2007). Presented here are various estimates 

that fall roughly within the time frame of the global LGM, although the term local last 

glacial maximum (LLGM) is defined herein as the northern Guatemalan highlands 

specific last glacial maximum. 

Last glacial maximum temperature depression and precipitation estimates for both 

lowland and highland circum-Caribbean regions have been estimated from a variety of 

proxy records including lake core sediment analysis (Hodel! et al., 1991, 2008; Metcalfe 

et al., 2002; Hilleshiem eta!., 2005; Anselmetti eta!., 2006), paleo-vegetation changes 

(Leyden, 1995; van der Hammen and Hooghiemstra, 2002) and glacial geology (i.e., 

Stansell eta!., 2007; Lachniet and Seltzer, 2002), which are summarized below. 

A majority of the Central American paleo-temperature and paleo-precipitation 

records have been estimated to the Pleistocene/Holocene transition at -11 ka (i.e., 

Anselmetti et al., 2006) and typically do not extend to the global LGM at -21 ka. In 
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Costa Rica a late glacial temperature depression of 8 to 9°C from modern is reported in 

Lachniet and Seltzer, (2002) from glacial evidence of the LGM Talamanca stage 

moraines of Chirrip6 National Park. This estimate falls within the range reported in Islebe 

and Hooghiemstra (1997) who estimated a possible 6 to 9°C of cooling from fossil pollen 

studies carried out in Costa Rica. Data from various tropical locations provide a range of 

LGM temperature depression including the data of Orvis and Horn (2000) who estimated 

a temperature depression of 7.4 to 8.0°C from glacial ELAs with a chronology 

constrained by basal sediments cored from lakes beneath the upper, middle, and lower 

glacier limits of the Costa Rican highlands. The LGM temperature depression inferred 

from glacial moraines of Mexico is reported as between 5 and 9°C in Vazquez- Selem 

and Heine (2004). Further south the LGM temperature depression estimates are reported 

as soc for the high plains of Bogota', Eastern Cordillera, Columbia (Mark and Helmens, 

2005) and 8.8 ± 2oC, estimated from a glacial geologic reconstruction ofthe Cordillera de 

Merida in the Venezuelan Andes (Stansell et al., 2007). 

Late Quaternary paleoclimate reconstructions for Guatemala have relied upon 

terrestrial sediment core analysis of various locations within the lowland Yucatan 

Peninsula. Lake Peten Itza, Guatemala (Anselmetti et al., 2006; Hilleshiem eta!., 2005; 

Rodell eta!., 2008), Lake Quexil, Guatemala (Leyden, 1995) and other studies from the 

northern Yucatan Peninsula (i.e., Leyden, 2002, Rodell eta!., 2007) ). Little to no data is 

available to constrain the northern Guatemalan highland temperature and precipitation 

values. A paleo-vegetation study by Leyden, (2002) estimated a late Pleistocene ( N24 to 

14 14C ka) temperature depression of 6.5 to 8°C for the Mayan lowlands from Lake 

Quexil, Guatemala. Deep water cores from Lake Peten Itza indicate a warmer, wetter 
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climate -11.3 ka following the glacial period (Hilleshiem et a!., 2005). Although these 

data suggest a cooler climate during the Late Quaternary in Guatemala, there remains 

minimal evidence for glacial age temperature and precipitation values in the northern 

highlands where actual glacial evidence is found. Recently, work by Hodell eta!. (2008) 

on Lake Peten Itza sediment cores reported that the LGM (23 to 19 ka) was a moist 

period in the Guatemalan lowlands and Yucatan Peninsula which was derived from 

increased summer precipitation related to a northerly inter-tropical convergence zone 

(ITCZ) and/or winter precipitation related to the nortes cold surges, switching to drier 

conditions at -18 to 14.7 ka. 

Recent studies of marine sediments from the Cariaco basin, north of Venezuela (Fig. 

I), illustrate that the latitudinal shift of the ITCZ is linked to changing precipitation in 

Central America (Peterson and Haug, 2006; Peterson et al., 2000) and may affect climate 

in this region. It was shown that during cold stadia! periods, such as the last glacial, a 

southward shift of the ITCZ was associated with a decrease in precipitation to northern 

South America and Central America. In Guatemala, greater moisture availability was 

likely related to increased winter precipitation associated with frequent polar outbreaks. 

combined with an increase in northerly winds which even today intermittently increase 

precipitation and reduce temperature in northern Guatemala during the boreal winter. 

Studies of Barbados coral reefs, which utilized both 0 isotope and Sr/Ca thermometry 

(Guilderson et al., 1994), indicate a sea surface temperature reduction of -5.0°C at 18 to 

19 ka relative to the CLIMAP, (1976, 1981) sea surface temperature depression estimates 

of 1.4 to I. 7°C which were calculated via planktonic microfossil assemblages. 

Guilderson et al., (2001) employed 8180 analysis to calculate a tropical Atlantic sea 
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surface cooling of 4.5°C which is centered on -19 to 24 ka. A similar study postulates 

that a reduction in global thermohaline circulation (THC), that ultimately affects north 

Atlantic climate, would have had a reverse effect essentially trapping heat in the tropics 

(Leduc et a!., 2007). That increased heat would drive increased evaporation of the 

Caribbean and Gulf of Mexico, possibly affecting precipitation input to the Guatemalan 

highlands. Other work in Mg/Ca thermometry (Lea et a!., 2000) reveals a late Pleistocene 

sea surface temperature reduction of2.8 ± 0.7°C for the tropical Pacific, which includes 

both eastern and western Pacific locations. The affect of the tropical Pacific on forcing 

climate in Central America is unresolved since the changing sea temperatures may be 

related to the El Nino/southern oscillation or even Antarctic influences. A study of faunal 

assemblages by Mix et al. (1999) reported an ice age sea surface temperature estimate of 

-5 to -6°C from present in the equatorial Atlantic and eastern Pacific oceans while 

another study utilizing sea sediment and planktonic records from the Caribbean estimates 

a tropical cooling of 4 oc (Lea et al., 2003). The variations in both terrestrial and ocean 

temperature estimates suggest that supplementary proxy records are necessary for 

completing a more detailed record of the tropical LGM climate. 

Estimating the Equilibrium Line Altitude (ELA) 

In the tropics the equilibrium line altitude (ELA) typically coincides with the 0 ± I oc 

isotherm in the atmosphere, especially for a humid inner-tropical zone like Guatemala 

(Benn eta!., 2005). Due to this atmospheric consistency an estimate of temperature 

change can be determined via an altitudinal change of the paleo-equilibrium line (ELAp) 
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from the current position (ELAc). That change can be calculated from the simple 

equation: 

ELA, - ELAp = ilELA 

By calculating the ilELA, or ELA depression from present to the past, an estimate of 

paleotemperature depression (il T) can be calculated from a known temperature lapse rate 

(TJ), such that: 

ilELA * T1 = Ll T 

On a glacier surface the ELA represents the 'snow line' or boundary between areas of 

ablation and accumulation on the glacier (Fig. 4 ). Even though there is a direct 

relationship between changing climate and a change of the position ofthe ELA (i.e., 

Beun and Evans, 1998), the independent influences of precipitation and temperature on 

the glacier mass balance may be difficult to deconvolve (Benn et a!., 2003; Benn and 

Evans, 1998; Kaser and Osmaston, 2002). Several qualitative methods have been 

proposed for estimating the ELA of paleo-glaciers, some of which are presented in this 

study. For a full account of methods that calculate the paleo-ELA see Porter (2001) and 

Osmaston (2005). 

The most widely used methods for estimating the ELA of paleo-glaciers, provided 

good physical evidence or maps are available, are the terminus-headwall altitude ratio 

(THAR), the accumulation area ratio (AAR) and the area altitude balance ratio (AABR). 

Although each method has been utilized in variety of regions (Benn and Evans, 1998; 

Kaser and Osmaston, 2002) the AABR method, which takes into account the glacier area, 

elevation and the vertical mass balance gradient, is considered the most accurate method 

for estimating paleo-ELA (Osmaston, 2005). 
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The THAR method assumes that the ELA corresponds to some fixed ratio between 

the elevation of the glacier tetminus (Et) and the headwall (Eh) for mountain glaciers. The 

ELA estimated from THAR can be calculated by: 

ELA = [(Eh·E1) * THAR] + E1 

Research on glaciers located in tropical regions have yielded a range of THAR values 

from 0.2 to 0.5 (Kaser and Osmaston, 2002) which means that the ELA is 20 to 50% 

higher in elevation than the toe of the glacier, in contrast a THAR of0.35 to 0.4 is 

typically used for mid·latitude glaciers (Benn and Evans, 1998). The AAR method 

utilizes an assumed ratio of the accumulation area to total area of the glacier surface. The 

AAR can be estimated from the following simplified equation: 

AAR = Sc (S, + Sb)"1 

Where S, is the area of the accumulation area and Sb is the area ofthe ablation area on the 

glacier surface. A value of 0.6 to 0. 7 has been shown to be the most widely used value 

although higher values (i.e., 0.8) have been shown to better represent glaciers in tropical 

regions (Kaser and Osmaston, 2002). The AAR method, unlike the THAR method, takes 

into account the glacier hypsometry (glacier area vs. altitude) giving a more accurate 

representation of the shape of the glacier which can impact ice reconstruction efforts. 

Although the AAR method is more accurate, studies show that debris rich glacier 

surfaces could lower AAR values significantly, thereby complicating ELA estimates if 

that infonnation is unknown (Bennet al., 2005). 
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Ice cap 

ELA -(O±rC) -

Valley glacier 

Figure 4. A map-view diagram of the accumulation A, and ablation (Ab) areas found on 

an idealized ice cap and cirque or valley glacier. The boundary between the two regions 

is the equilibrium line altitude (ELA) which corresponds to the -0°C isotherm in the 

tropical atmosphere. 

15 



The AABR method applies the vertical mass balance gradients (mmlm) of the 

accumulation area and ablation area to calculate a balance ratio for a specific glacier 

(Benn and Evens, 1998; Osmaston, 2005). On the glacier surface the accumulation and 

ablation gradients can vary and are controlled primarily by changes in precipitation and 

temperature. In the tropics the vertical mass balance profile has a strong gradient below 

the ELA and weak gradient above the ELA due in part to the year-round ablation 

common to tropical glaciers (Kaser and Osmaston, 2002; Benn et al., 2005). It becomes 

an important aspect of glacier reconstruction efforts to include the vertical mass balance 

gradients and calculate a balance ratio for specific glaciers. For a rectangular slab shaped 

glacier the balance ratio (BR) can be calculated from: 

BR = bb I b, 

where bb is the mass balance gradient for the ablation area and b, is the gradient of the 

accumulation area, typically measured in mm water equivalent I m elevation. The BR 

typically increases equatorward from the poles although most reviews of published 

tropical glacier studies used a BR = 2 to 4 (Benn and Evans, 1998; Benn and Gemme!, 

1997; Market al., 2005; Kaser and Osmaston, 2002). 

Central American Late Quaternary ELAs 

Past published glacier reconstructions for the Sierra de los Cuchumatanes (Anderson, 

1969a, b; Hastenrath, 1974; Lachniet and Vazquez-Selem, 2005) have been based 

primarily upon limited field evidence, combined with a broad reconstruction of ice extent 

using established methods mentioned above. Initial calculations of the Guatemalan ELA 

and estimation of maximum ice extent were carried out by Lachniet and Vazquez-Selem 
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(2005) to reconstruct the LLGM extent and ELA using the modified ice limits of 

Anderson, ( 1969a, l;l) and Hastenrath, ( 197 4 ). The estimated Guatemalan ELALLGM is 

3655 m and 3544 musing THAR values of0.5 and 0.2 respectively. Based on the present 

day 0°C isotherm of 4900 ± 200 m in Costa Rica and Mexico, a Guatemalan highland 

ELALLGM depression of 1300 to 1500 m was calculated (Lachniet and V azquez-Selem, 

2005). 

The glaciers of Mexico are well documented, occurring mainly across the Trans­

Mexican volcanic belt (TMVB) in central Mexico. Glacial geologic studies report 

evidence for modem highland glaciation (e.g., lztaccihuatl, Popocatepetl) and up to 5 or 6 

different glacial advances since the LLGM for other Mexican locations (e.g., Vol can 

Ajusco) (White, 1981; 1986; 2002; White and Valastro Jr., 1984, V azquez-Selem and 

Heine, 2004). The mean ELAtwM in the TMVB, calculated from 20 glaciers, is 3650 ± 

140m, 3940 ±130m and 4090 ±130m for THAR values of0.2, 0.4, 0.5 respectively 

(Lachniet and V azquez-Selem, 2005). The timing of the two major late glacial advances, 

named Hueyatlaco -1 and Hueyatlaco -2 was -20 to 17.5 36Cl ka and -17 to 14 36C1 ka 

respectively (V azquez-Selem and Phillips, 1998). Based on modern ELA estimates of 

4900 to 5000 m the ELALLGM depression is calculated to be 1000 to 1300 m, although 

geomorphological evidence from Vol can Ajusco indicates as much as 1500 m of ELA 

lowering could have occurred from the pre-LGM and late glacial advances (Vazquez­

Selem and Heine, 2004; Lachniet and Vazquez-Selem, 2005). 

In the Cordillera de Talamanca, Costa Rica, glacial geologic studies report that the 

LLGM Talarnanca moraines extend from 3450 to 3040 m, along with glacial features 

present at -3000 m (Orvis and Horn, 2000; Lachniet and Seltzer, 2002; Lachniet and 
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Vazquez-Selem, 2005). Estimates ofpaleo-ELA, utilizing the common THAR (0.5) and 

AAR (0.65) methods, are 3545 to 3535 m and 3420 to 3370 m respectively. Calculated 

from the present day tropical ELA of -4900 m the Quaternary ELALLGM was estimated to 

be -1500 m lower than present for Costa Rica (Lachniet and Seltzer, 2002; Lachniet and 

V azquez-Selem, 2005). 

A range of moraine elevations have been reported for the Merida Andes of 

Venezuela, divided into early glacial (-2600 m) and late glacial (2900 to 3500 m) events 

with sufficient chronological control (Schubert and Rinaldi, 1987). Organic matter 14C 

dates obtained from an outwash fan constrain ice proximal sediment deposition between 

19,080 ± 820 14C yr (basal age) and 16,500 ± 290 14C yr (deposition ceased) while basal 

peat from an outwash terrace provides a minimum age of deglaciation at 12,650 ± 130 

14C yr. Estimations of the LLGM ELA for two glacial sites yielded values of 3665 ± 204 

m (BR = 1.8) and 3760:!: 163m (BR = 4.0) (Lachniet and Vazquez-Selem, 2005). 

Assuming a modern ELA value of -4700 m (Schubert, 1974), ELALLGM depression 

ranges from -1100 m to -1300 m (Lachniet and Vazquez-Se1em, 2005). Recent work by 

Stansell et al, (2007) has provided more insight into the glacial geology and paleoclimate 

of Venezuela by estimating LLGM ELA depressions of 850 to 1420 m lower than 

present. Temperature depression estimates in the Venezuelan Andes during the LGM are 

reported as 8.8 :1: 2.0°C and possibly as much as -11 °C from present when using a 

combined energy and mass-balance equation (Stansell et a!., 2007). 
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CHAPTER2 

METHODS 

It is essential for any study using glacial geomorphology as a proxy for paleoclimate 

reconstruction to utilize a variety of methods since each typically has inherent associated 

errors and assumptions (Benn et a!., 2005). The strength ofthis study was the ability to 

utilize proven methods such as the AAR and AABR, combined with a physically based 

mass balance glacier model, to estimate the northern Guatemalan highlands LLGM ELA. 

Using a variety of ice reconstruction methods, with the use of GIS to build accurate 

glacial geologic maps, has been marked as a necessary step in calculating more accurate 

LLGM climate estimates (Market a!., 2005; Napieralski eta!., 2007). 

Glacial Geology 

The glacial geomorphologic and geologic field mapping of the plateau region was 

conducted over a 6 day period in March 2006. Extensive moraine sequences and various 

glacial landforms were observed and mapped along the eastern edge the San Miguel, 

Tuizoche and Ninguitz Valleys (Fig. 5, 6 and 7). Mapping of these sinuous moraine 

crests was done using a global position system (GPS) receiver (error average± 4m) 

which allowed geo-referenced glacial landforms to be utilized for the completion of the 

GIS. Moraines that appeared to represent the furthest extent of the ice cap during the 
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Figure 5. A small whale back (center picture) fotmed below advancing ice in the eastern 

Ninguitz Valley, notice also the scoured bedrock surfaces and plucked lee faces of the 

background forested ridgeline which is a good indicator of ice flow direction and ice 

dynamics; photograph, Alex J. Roy 

20 



Figure 6. A large lateral moraine is evident looking north across the previously glaciated 

terrain of the Ninguitz Valley. Areas of scoured bedrock are visible along the bottom of 

the valley including smaller more muted recessional moraine segments along the valley 

floor; photograph, Alex J. Roy 
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Figure 7. The author examining a deposit of large boulder sized till material at the base of 

eastern Ninguitz Valley. The large boulder on the left is resting on a pedestal made of till 

material which was deposited as ice receded; photograph, Matthew Lachniet 

LLGM were mapped for ice extent reconstruction. Rock samples, for cosmogenic 

exposure age determination, were collected from boulders resting upon the most 

prominent large scale moraine crests along the eastern plateau region and accounted for a 

majority of the field effort. Field reconnaissance occurred primarily on the plateau region 

of the previously glaciated terrain, although a second trip in October, 2007 did allow 

further direct observation of the moraine-rich areas of the Colinas Planas. Extensive 

photographic evidence was taken for further morphological comparisons between the 
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various moraine segments and for a qualitative assessment of the ice cap and glacier 

dynamics. 

Building the GIS 

Aerial photographs. purchased from the Guatemalan National Institute of 

Seismology, Volcanology, Meteorology and Hydrology were used for glacial-geologic 

mapping in all the previously glaciated areas. The scope of the aerial photographic 

coverage for this field area encompassed the entire high plateau and nearby Montana San 

Juan so that stereo pairs of areas that reach above the previously reported ELALLGM of 

-3650m (Lachniet and Vazquez-Selem, 2005) could be examined in full detail (Fig. 8). 

This type of inspection enabled a comprehensive glacial geologic map of the entire field 

area to be created, including the ability to plot muted moraine segments and subglacial 

till deposits, landforms not apparent on typical topographic maps. In order to map the 

extensive landforms stereo-pairs were fitted with laminate covering so that the glacial 

features could be easily marked, along with regional geography for further spatial 

references. Any glacial moraines mapped in the field via GPS surveying and field 

location methods were utilized as a spatial reference for compiling the aerial 

photographic segments into a complete map. Once the entire field area was mapped with 

the aerial photographs the sections were scanned and digitized to be georeferenced into 

the GIS for completing the final map (Fig. 9). 
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Figure 8. Shown is an aerial photograph of the western Colinas Planas region of the 

plateau which was used to map the extensive glacial geology of the plateau region with 

white dotted lines that demarcate subdued recessional moraine segments. The steep 

southern edge of the plateau is clearly shown along with a secondary road that runs 

through the field area. 
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Figure 9. A graphic representation of the methods that were employed to create the final 

glacial geologic map; glacial evidence was field located using GPS (A); aerial 

photographs (B) were utilized to trace all other recognizable glacial evidence, including 

moraine segments and glacial outwash as shown in (C) which was then georeferenced 

into the GIS to create the final map (D). Black cross represents one of the georefrenced 

points for the plateau region. 
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Glacier Modeling 

The glacier model employed in this study utilizes a 2-D precipitation 

accumulation/ablation model combined with a glacier flow model first described in 

Plummer and Phillips (2003). The annual net accumulation and ablation for each grid 

section are calculated from the energy balance of the snow surface during the melt 

season. The mass balance output data is then used as input for the glacier flow model. 

The mass balance model can determine the amount of snow that will form based on 

regional temperature and precipitation data, along with local aspect, shading and 

insolation at the field site. The digital elevation model (DEM), which is required as the 

baseline input for the glacier model, was compiled by hand digitizing geo-referenced 

I :50,000 scale topographic maps. The resultant DEM that was produced had a 50 m 

resolution which provided a detailed topographic model for the cirque glacier and ice cap 

reconstruction. The preliminary input for the glacier model requires aDEM for hillshade 

analysis whieh measures the amount of ground surface exposure to the sun and the 

viewfactor which takes into account the aspect of different slopes. The GIS analysis 

provides a way to estimate the amonnt of insolation at the land surface, which affects 

glacier ablation and any topographic shading or aspect variations that may affect glacier 

dynamics. 

Given that glacier dynamics are most dependant on changes in mass balance at the 

glacier surface, the monthly precipitation and temperature climate data were important 

primary inputs to the mass balance model (table I) (Benn and Evens, 1998; Plummer and 

Phillips, 2003). Daily temperature and precipitation data from two Guatemalan weather 

stations were used as the primary input files for the GIS mass balance and glacier model. 
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Additional climate parameter input included mean monthly averages of relative humidity, 

cloudiness, and wind speed, along with the standard deviation of daily temperatures for 

each month. In order to calculate the local environmental lapse rates necessary for the 

model runs climate data was analyzed from weather stations in Todos Santos 

Cuchumatan and Puerto San Jose, the latter located along the southern Guatemalan 

Pacific coast. Average monthly temperature, precipitation, relative humidity, wind speed 

and cloudiness data were analyzed from Todos Santos Cuchumatan for the years 1990 to 

2006, while only temperature and precipitation data were collected from San Jose for 

environmental lapse rate calculations. 

Table !. Climate input for the Plummer and Phillips, (2003) mass balance GIS model. 

Model parameters dictate that the arrangement of the monthly climate variahles starts at 

the beginning of the rainy season; for the northern Guatemalan highlands that is early 

May. Data was obtained from published web based climate records for a weather station 

in Todos Santos Cuchumatan (2480 m) and San Jose (-0 m) averaged for the years 1991 

-2003 (appendix I). Tis in °C, while the Temperature Lapse Rate (TLR) is °C/m elev. 

Month MeanT Sky Cover Humidity wind m/s 1LR 
may 15.3 71% 85% 0.9 -0.00527 
jun 15.0 74% 86% 0.9 -0.00525 
jul 14.5 71% 86% 1.0 -0.00526 
aug 14.4 70% 85% 1.0 -0.00513 
sep 14.4 73% 88% 0.9 -0.00543 

oct 13.8 71% 87% 1.2 -0.00530 
nov 13.2 63% 85% 1.1 -0.00524 

dec 12.8 59% 83% 1.3 -0.00546 

jan 12.7 46% 83% 0.5 -0.00520 

feb 13.7 38% 80% 0.8 -0.00537 

mar 14.7 36% 80% 0.8 -0.00554 

apr 16.0 50% 81% 1.0 -0.00544 
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A second temperature lapse rate and present day ELA was compiled from a data set 

of 64 different weather stations located throughout Guatemala (Appendix II). The data 

from INSIVUMEH, (2006) provides only one value per station for the average annual 

precipitation totals and annual daily temperature which yields a slightly steeper estimate 

of the temperature lapse rate at -5.6°C/km'1 and a present day ooc isothem1 of 4650 m 

(Fig. 10); this value is at the low end of the Central American present day ELA range of 

4900 ± 200 m, and may represent an extrapolation error, as no climate stations were 

reported above -2500 m altitude. Since the model input requires very specific average 

monthly data along with the standard deviation ofthe daily temperature fluctuations this 

second 'country average' temperature lapse rate was not input into the GIS model. 
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Figure 10. Plot of the average annual temperature (0 C) data vs. station elevation (m) from 

Appendix II which gives a country average present day ELA for Guatemala of 4651 m. 
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The GIS model takes a typical glacier reconstruction a step further by integrating the 

effects of topography, aspect, and changing climate with altitude, which are typically not 

included in the glacier reconstruction (Mark et a!, 2005). To constrain the range of paleo­

temperature and paleo-precipitation estimates for the northern Guatemalan highlands 

during the LLGM, more than 50 iterations of the mass balance model were run, some of 

which are given in Appendix IlL Since the output of the mass balance model is gridded 

(raster) data, it can then be overlaid on the DEM for determination of the equilibrium line 

altitudes for the various model runs. The model strength also comes from the ability to 

compare model output to the physical data, such as moraine traces, that were mapped in 

the field. The mapped moraine limits were used to evaluate the plausibility of the mass 

balance estimates since the model output would allow a quick rejection of any estimates 

of positive mass balance in any mapped ice free regions. The primary output of the mass 

balance model is the net annual accwnulation or ablation for a given grid section of the 

DEM. The model output permitted the areas of zero mass balance(± 100 mm water 

equivalent) to be contoured, thus providing an estimate of the steady state LLGM ELA 

(Benn and Evens, 1998; Benn and Lehmkuhl, 2000) for the particular model run. Here an 

increase or decrease in values of temperature, precipitation, wind speed and cloudiness, 

such as would occur during the LLGM, can be estimated to constrain how changes in 

various climate parameters affect mass balance. This gridded data of specific mass 

balance estimates was then utilized in building a range of temperature and precipitation 

estimates for the Guatemalan LLGM. 
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THAR, AAR, AABR and Ice Thickness 

Paleoglacier ELAs for the northern Guatemalan highlands ice cap and cirque glaciers 

were determined using the accumulation area balance ratio (AABR), accumulation area 

ratio (AAR) and the terminus-headwall altitude ratio (THAR) methods (Porter, 200 I; 

Benn and Evans, 1998; Bennet al., 2005; Benn and Lehmkuhl, 2000, Kaser and 

Osmaston, 2002). The AAR utilized in this study followed the estimates of Kaser and 

Osmaston, (2002) and Benn et al., (2005) for tropical regions to calculate the ELA of the 

reconstructed Guatemalan ice cap and cirques. This study used a value of 0.65 for the 

AAR which correlates well to other previously published estimates of the tropical 

'optimum' AAR range of0.5 to 0.7 (Kaser and Osmaston, 2002; Lachniet and Vizquez­

Selem, 2005; Market a!., 2005) . 

Other ELA estimates, using the AABR method, were calculated via a balance ratio 

spreadsheet which allowed for the area vs. altitude of the Guatemalan glaciers to be 

compared to outer tropical (BR = 1.0 to 2.0) and inner tropical (BR = 2.0 to 5.0) balance 

ratios (Osmaston, 2005; Lachniet and Vazquez-Selem, 2005; Bennet a!., 2005; Market 

a!., 2005). The tropical balance ratio, like the tropical AAR, is affected by the year-round 

ablation and an almost constant elevation of the 0°C isotherm giving balance ratio 

estimates as higher in the tropics (>2.0 Kaser and Osmaston, 2002) than the mid-latitude 

estimate of 1.8 (Furbish and Andrews, 1984). The balance ratio assumes that for steady 

state conditions the total annual accumulation above the ELA must equal the total annual 

ablation below the ELA and can be determined from the equation (Benn and Evans, 

1998): 
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Where db and d, are the average net annual ablation and accumulation respectively, and 

Ab and Ac represent the area of the ablation and the accumulation area respectively. 

Another assumption is that typically the vertical mass balance gradients above and below 

the ELA is linear, so both db and da are equal to Zb and z. which represent the 

ablation/accumulation at the area weighted mean elevation of the ablation/accumulation 

area. For steady state conditions the ELA can then be determined by the balance ratio 

according to the relationship: 

bab I hac = z,A, I ZbAb 

By convention Zb and Zc are associated with the Y:.Ab and Y:.Ac elevations, such that the 

ELA can be determined from either assuming a typical BR (i.e., from mid-latitudes, 

tropics) or to measure the mass balance ratios from direct field observations or glacier 

modeling (Benn and Evans, 1998). Due to the year-round ablation and homogeneous 

atmosphere of the tropics, balance ratios of 1.0 to 25 were used to determine the LLGM 

ELAs, although for this research values that range from a BR = 2.0 to a BR = 4.0 were 

determined to fit this tropical highland region based on previous studies in the circum­

Caribbean region (Laclmiet and V azquez-Selem, 2005). 

Although the toe-to-headwall altitude ratio (THAR) provides a crude estimation of 

the ELA, it did allow for an immediate estimate of the entire Plateau region and Montana 

San Juan. A THAR value of 0.4 is typical for tropical regions although further research 

suggests that this value can change depending on the shape ofthe glacier or the size of 

the discharge area; higher values were used (0.46 to 0.57) to estimate the ELA of the 

tropical Rwenzori glaciers in Africa (Kaser and Osmaston, 2002) while lower values 

(0.35 to 0.4) may be used for mid-latitudes (Benn and Evans, 1998). Following estimates 
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ofthe tropical THAR a value of0.4 was determined to be a good average (Kaser and 

Osmaston, 2002), which also correlates to local glacial studies of Mexico and Costa Rica 

(Lachniet and Vazquez-Selem, 2005; Market a!., 2005). 

The maximum extent of the ice cap and cirque glaciers were contoured via field 

evidence and glacial geologic mapping. Basal shear stress calculations were used to 

determine the plausibility of the ice reconstruction. Following the methods of Paterson 

(1981) and Benn and Evans (1998), glacier ice thickness can be calculated by the 

relationship between the slope of the glacier and bedrock surface and the density of ice. 

Based off the simplified glacier basal shear stress formula from Benn and Evans, (1998), 

'= p; gh sin a 

where -r is the shear stress, p; the density of ice ( -900 kg m·\ g the gravitational 

acceleration (9.81 m s·1), his the ice thickness (m) and a is the surface slope of the ice 

given in degrees. For a glacier sliding on its bed the average range of potential basal 

shear stress values is from 50 to 150 kPa (Paterson, 1981 ), while a slightly lower range is 

found in Seltzer (1992) who estimated only 40 to 120 kPa. The basal shear stress ranges 

provide constraints on tl1e amount of ice, or ice thickness, for a given slope. A 

spreadsheet was created for the basal shear stress calculations since the slope of glaciated 

surfaces ranged from 1 to 55° based on topographic cross sections of the plateau region 

and the Montana San Juan. Another application ofthis method can be found in Stansell et 

a!., (2007) which utilized the comparable methods of Seltzer, (1992) to calculate the basal 

shear stress and ice thickness for the glaciers of the Cordillera de Merida, Venezuela. 
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CHAPTER3 

RESULTS 

Glacial geologic mapping, utilizing GPS location and aerial photographic analysis, 

was conducted in the eastern portions of the San Miguel, Tuizoche, and Ninguitz Valleys 

along with exploration of the Ventura Valley and the northern Buena Vista Ridge. Glacial 

landforms that were mapped solely by stereo-photographs were compared to t!eld-located 

glacial landforms to assure correct interpretation of glacial deposits from the stereo­

photographic analysis. Aerial photographs also present a spatial reference between the 

GPS located moraine crests mapped in the field and the moraines plotted via aerial 

photographic analysis. Since there are inherent errors (i.e. scale changes) from the 

distortion of aerial photographs (Bolstad, 2005), geo-referencing glacial evidence was an 

iterative process which combined GPS located moraine crests, aerial photographic 

overlays and photographic evidence to construct the final glacial geologic map and to 

estimate the maximum ice extent. 

Glacial Geomorphology 

Two prominent moraine groups were observed based on relative size and moraine 

crest morphology. The first moraine group consists of large terminal and lateral moraine 
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segments which dominate the eastern valleys of the plateau region (Fig. II). The second 

types of moraine segments are smaller, muted recessional moraines which are typically 

Figure II. Topographic map ofthe plateau region and Montana San Juan along with the 

location of mapped moraines, glacial outwash and cirque headwalls. Scoured bedrock 

surfaces mapped here represent large tracts of glacial scour; smaller areas, not marked, 

are present throughout the region. 

34 



found up-valley from the larger eastern plateau moraine segments and nested in groups 

across a large portion of the Colinas Planas. The larger moraine segments typically have 

distinctly peaked crests while some, interpreted as a possibly older sequence, are 

observed with more rounded broad crests. Most of the larger moraine segments were 

boulder rich (size> lm) although most were cobble and gravel covered. The larger 

moraine segments range in height from >5 to 15 m and some of the eastern valley 

moraines, most notably in the Tuizoche Valley, are double crested, suggesting successive 

steady state glacial events that advanced to the same terminus position. Further work may 

help in delineating additional or sequential moraine groups. 

A soil horizon above San Miguel Valley till deposits was viewed from a road cut 

through a prominent end moraine segment and averaged -3 to 4 em with some areas as 

thick as -I 0 em above the till. The largest moraine segments found along the eastern 

valleys of the plateau region indicate past steady state positions of the large ice cap. 

Along the eastern portion of the San Miguel Valley the large moraine segments include a 

valley-wide end and left-lateral moraine sequence that display well defined crests, with 

gentle relief and slopes; the boulder-rich moraines were utilized for sampling of material 

for potential cosmogenic exposure age determination. A majority of large the eastern 

valleys moraine segments had a minor cover of evergreen trees and grass, with small 

cobble and gravel deposits. Evergreen trees were said to have been more prevalent than 

recent but were removed over time for local animal husbandry (Ramirez, pers. comm., 

2006). Smaller more muted moraine segments up valley of the prominent end moraines in 

the eastern Ninguitz Valley and the western Colinas Planas are likely recessional. Across 

the plateau there are extensive scoured bedrock surfaces, although they typically lie at the 
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base of the valleys which have very little soil development and only grass type 

vegetation. 

The varied scoured surfaces and erosional glacial landforms allude to the dynamics of 

glaciation in this region and allow for ice flow direction to be determined. Most valleys 

show the characteristic U-shape form along with the common lee side plucked bedrock 

surfaces and erosional and depositional bed-fonns; all of which provide further 

constraints on ice flow direction ofthe plateau ice cap. Post-glaciallandscape 

modification of the easily eroded limestone bedrock has resulted in the chemical erosion 

of striations. Only a few striated boulders were observed from recently quarried till 

material, while most exposed boulders and non-scoured bedrock outcrops were covered 

in carbonate dissolution forms such as rillenkarren furrows. Rillenkarren furrows formed 

in boulders perched along moraine crests provide evidence of the relative stability of 

these deposits if the furrows cut into the boulders were roughly perpendicular to the 

ground surface. 

Ice Cap and Cirque Glaciers 

The plateau region of the Sierra de los Cuchumatanes supported an ice cap -40 km2 

along with smaller cirque glaciers and nivation basins or perennial snow fields along the 

northern facing slopes of the Montana San Juan (Fig. 12). The eastern half of the plateau 

supports the most prominent and large-scale glacial moraine segments easily observed as 

a continuous band extending from the northern San Miguel Valley to the southern 

Ninguitz Valley. The central portion of the plateau, which consists of two relatively 
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parallel broad U -shaped valleys, is dissected by a ridgeline of high prominent peaks and 

the highest point of the plateau region (3837 m). Based on aerial photographic 

Figure 12. Map of the reconstructed Mayan ice cap and cirque glaciers (black box shown 

in Fig 13). Ice limits are based on mapped maximum moraine limits and glacial 

geomorphology. The ice contours (black dashed lines) have a contour interval of 50 m for 

an enhanced representation of ice thickness. Scale bar below key is equal to 3 km. 
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analysis the central portion of this high limestone plateau shows evidence of three 

possible late-stage cirques that supported ice that t1owed into the confluence between the 

Ventura and San Miguel Valleys. The topographic and aerial photographic observations 

suggest that these late-stage cirques deposited moraine evidence over the large ice cap 

subglacial till deposits. Field evidence from the broad San Miguel and Ventura Valleys 

included exposed areas of glacially scoured limestone bedrock along with widespread 

subglacial till deposits. The eastern region of the plateau consists of a large outwash plain 

which constrains paleodrainage of the San Miguel, Tuizoche and Ninguitz Valley tongues 

of the ice cap. Additional outwash deposits were also observed in the E-W trending 

Chemal Valley north of the Buena Vista Ridge (Fig. 3), as based on aerial photographs. 

Deposits of unconsolidated material, considered subglacial till, were observed at the 

western edge of the Ventura Valley. A thorough reconnaissance revealed no clear 

recognizable moraines in the western region of the Ventura Valley. Buena Vista Ridge, a 

heavily scoured low relief region on the plateau, was observed with glacially plucked 

surfaces, including roche moutonnees that descend into Chemal Valley to the north. 

Although agriculture dominates the landscape obscuring small scale landforms, minor 

segments of lateral and end moraines were mapped which constrain the maximum ice 

extent. 

The Montana San Juan, which was mapped entirely from aerial photographic 

analysis, is comprised of an east-west trending rounded mountain ridge ~3700 m a.s.l 

flanked by a group of compound cirques which scallop the north facing slopes (Fig. 13). 

From the aerial photographs the small valleys below the main cirques contain small 

lateral and end moraine segments, although further evidence of glacial forms may be 
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concealed within shadowed regions of the aerial photographs. The limit on the glacial 

geologic mapping of the Monta:fia San Juan was mainly due to the Jack of direct field 

observations and glacial evidence or landforms too small to be recognized in the aerial 

photographs. A high overlook on the southern edge of the plateau region named "La 

Torre" enabled a limited view of the cirques of the Montana San Juan across the valley. 

Figure 13. Map ofthe reconstructed cirque glaciers and snow fields outlined in Figure 12 

located south of the main plateau field area on the Montana San Juan. Ice contour 

intervals are 50 m, the cirque glaciers are marked with roman numerals (I to IV) as 

described in the text. 
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Photographic evidence shows these cirques as shallow basins with limited large scale 

landforms. Investigation of the aerial photographs also reveals that areas above the 

estimated equilibrium line altitude which showed glacial weathering or glacial sediments 

may have supported persistent snowfields or smaller nivation basins around the periphery 

of the ice cap and along the southern edge of the Montafta San Juan. 

Past and Present ELAs 

Equilibrium line altitude (ELA) estimates were made following the methods 

described previously (i.e., Kaser and Osmaston, 2002; Lachniet and Seltzer, 2002; 

Stansell eta!., 2007; Benn and Evans, !998). The values tor each ratio depends on the 

size, shape and mass balance gradients of each glaciated region as a result employing 

multiple techniques provides the best constraint of the ice cap and cirque paleo-ELAs. 

There is good internal consistency between the estimate of the Guatemalan LLGM 

ELAs when using the AABR and AAR methods. The LLGM ELAaR=2 estimate of3703 

m for the plateau ice cap and 3515 m for the cirque glaciers is similar to the LLGM 

ELAAAR = o.6s of 3650 m for the ice cap, while the cirque average is again> 150 m lower at 

3491 m. Because of the small altitudinal range between the lowest and highest elevation 

of glacial evidence of the plateau (3470 to 3840 m) and cirque glaciers (3200 to 3700 m) 

these LLGM ELA estimates are well constrained. The ELAs of the plateau ice cap and 

cirque glaciers were markedly different, in some instances the ice cap ELAs were as 

much as 200 above the cirque glaciers. The affects of a north facing aspect on the 

Montaila San Juan is apparent by the presence of these cirques and the difference 

between the LLGM plateau and cirque ELAs. 
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Table 2. Equilibrium line altitude (ELA) estimates (m) for the plateau ice cap, each 

cirque glacier (I to IV) and the cirque mean. These data show LLGM ELAs of -3500-

3700m 

Glacier THAR•0.7 THAR=0.5 AAR=0.6 AAR=0.65 BR • 1.0 BR· 2.0 

I 3563 3480 3550 3535 3600 3576 
II 3479 3345 3460 3440 3491 3445 

lii 3516 3420 3510 3500 3552 3515 

IV 3522 3400 3510 3490 3562 3523 
Ice Cap 3715 3625 3660 3650 3727 3703 

Cirque Mean 3520 34/l 3508 3491 3551 3515 

Table 3. Estimates of the f).ELA (±200m) for the plateau ice cap, cirque glaciers and 

cirque mean using the present day Central American ELA of 4900 m. The cirque glaciers 

consistently show f).ELA that is -150 to 200 m lower than the ice cap estimates; due in 

part to the effects of aspect on perennial ice. 

Glacier THAR=0.7 THAR=0.5 AAR=0.6 AAR=0.65 BR = 1.0 BR= 2.0 

I 1337 1421 1350 1365 1300 1324 
!1 1421 1555 1440 1460 1409 1455 

III 1384 1480 1390 1400 1348 1385 

IV 1378 1500 1390 1410 1338 1377 

lee Cap 1185 1275 1240 1250 1173 1197 

Cirque Mean 1380 1489 1393 1409 1349 1385 

Previous work in the circum-Caribbean region suggests the present day ooc isotherm 

and ELA for Mexico, Costa Rica and Venezuela is - 4900 ± 200 m, which provides a 

rough estimate for the entire Central American region (Lachniet and Seltzer, 2002; 

Lachniet and V azquez-Selem, 2005). This estimates falls within the range of Kageyama 

eta!., (2005) who modeled temperature lapse rates and the 0°C isotherm in the tropical 
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atmosphere. For the Guatemalan field site (91.5°W, 15.5°N) modeling efforts suggest a 

present day ELA of 4800 to 5000 m which is similar to the circum-Caribbean estimate. 

For this research the circum-Caribbean present day ELA of 4900 ±200m will be used 

for .!lELA calculations. The .!lELAs for the plateau ice cap and cirque glaciers are given 

in table 3 which estimates the amount of ELAsR=2 to be -1200 ± 200 m for the ice cap 

and -1400 ± 200 m for the cirques which is consistent with previously published values 

from Lachniet and V azquez-Selem, (2005) of 1300 to 1500 m for the entire circum­

Caribbean region. 

Calculating the LLGM paleotemperature of the plateau and Montafia San Juan from 

THAR, AAR and AABR ELA estimates is done by multiplying the present day 

temperature lapse rate and the t-ELA. Present day temperature lapse rates for Guatemala 

were calculated to be -5.JOC km'1 from the INSUVIMEH, (2006) climate data which is 

similar to the NCEP estimated temperature lapse rate presented in Kageyama et al., 

(2005) who reports it to be -5.25 to -5.5°Ckm'1 at -l5°N. An assessment of the northern 

Guatemalan highlands temperature depression from present (t. T) was made using the 

t.ELAsR=2 for the ice cap, which yields: 

(-5.3°C km'1)(1197m) = .!l T= -6.3°C 

An average for all 5 cirques yields: 

(-5.3°C km'1)(1385 m) = L'.T = -7.3°C 

There is a distinct -1 oc difference between the two regions, evident by the data in Table 

4. The 200-m uncertainty of the present day Central American ELA (4900 ±200m) 

translates into a ± 1.1 oc uncertainty in the temperature estimate based on the lapse rate of 

-5.3°C km-1• The full range oft. Tis given in table 4 for each of the table 3 .!lELA 
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estimates. A clear -1 °C difference is evident by the values of L\. T between the north 

facing cirque glaciers and the small plateau ice cap. The estimates show good internal 

consistency between the different reconstruction methods; a range of L\. T is only -6. 9°C to 

-8.2°C for the cirques and -6.2°C to -6.8°C for the plateau ice cap. Both of these ranges 

also fall within or near the± 1.1 °C uncertainty that is introduced by the present day ELA 

error of ±200m. 

Table 4. Table of specific temperature depression values (L\.T) (± 1.1 °C) for the plateau 

region and the Montana San Juan showing two estimates of the THAR, AAR and the 

AABR methods used in this analysis. 

Glacier THAR=0.7 THAR = 05 AAR= 0.6 AAR=0.65 BR = 1.0 BR=2.0 

I • 7.1 -7.5 -7.2 -7.2 -6.9 -7.0 

II -7.5 -8.2 -7.6 -7.7 -7.5 -7.7 

lTI -7.3 -7.8 -7.4 . 7.4 -7.1 -7.3 

IV -7.3 -8.0 -7.4 -7.5 -7.1 -7.3 

lee Cap -6.3 -6.8 -6.6 -6.6 -6.2 -6.3 

Cirque Mean -7.3 -7.9 -7.4 -7.5 -7.1 -7.3 

Glacier Modeling Estimates 

The GIS glacier model of Plummer and Phillips, (2003) provides a quantitative way 

to reconstruct paleoclimate based on modeling mass balance of a previously glaciated 

region. This procedure has been used with some success in mid-latitude and tropical 

paleo glacier and paleoclimate reconstructions (i.e., Laabs eta!., 2006) although never 

before used to model a tropical ice cap. Modeling the specific mass balance of the plateau 

and Montana San Juan regions provided a comparison of the temperature estimates made 
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via the ~ELA calculated from the THAR, AAR and AABR methods. Target ELAs for 

the ice cap were taken from the estimates of the previously published Guatemalan LLGM 

ELA of3650 m (Lachniet and Vazquez-Selem, 2005) while for the cirque glaciers, the 

estimate was made from the maximum elevation of lateral moraines (MELM) which 

gives an average target ELA of -3500 m. Any estimate of the GIS-calculated LLGM 

ELA that was within± I 00 m of the target ELAs was considered a suitable paleoclimate 

representation; those values are given in table 5. Since there are multiple combinations of 

temperature depression and precipitation totals that would infer estimates close to the 

target ELAs, the model provides a range of the Guatemalan highland LLGM climate. 

From the GIS model a LLGM temperature depression is estimated at -4.5°C for the 

plateau and -4.75 to -5.0°C when combined with precipitation totals that are equal 

(100%) to present day (Fig. 14).The graph shows an apparent dominant control of 

temperature on glaciation vs. precipitation changes. Changes in precipitation totals do 

affect the temperature depression values, so a range of realistic precipitation totals was 

created based on INSIVUMEH, (2006) climate data. The 1990 2003 Todos Santos 

yearly precipitation records show no precipitation totals that are below 50% and above 

30% of the average for the entire record. The GIS model was therefore run with 

precipitation totals that are below 150% and above 50% of present day totals. 

Mass balance gradients were calculated from the model output GIS data in order to 

check the model's ability to realistically portray tropical balance ratios. Four model runs 

that fell within the cirque target ELA were used to determine the average mass balance 

gradient of the Montana San Juan region. The cirque glaciers place a tight constraint on 

the specific mass balance vs. elevation estimates due to the small extent ofthe ice. The 
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plateau region was too broad to provide an accurate average for the entire ice cap. The 

model output also revealed there was a prevalent north-northwest dipping gradient of the 

0 mass balance line making a generalization of the plateau ice cap ELA difficult. The 

output data provides an estimate of the mass balance at some elevation; in order to 

constrain the mass balance gradient for the cirque glaciers, data was taken for each 50 m 

Table 5. A table of the LLGM ice cap (!C) and cirque average (C) equilibrium line 

altitude (ELA) estimates based on the modeled variations in temperature (T) and 

precipitation (amount of present day annual totals) (P). Bold ELA estimates represent the 

values that were within I OOm of the target ELAs of 3650m for the ice cap and the cirque 

glaciers of 3500m. 

T (°C) p IC ELA C ELA (avg) 

-6.3 50% 3600 3620 

-6.0 60% 3540 3500 

-5.8 60% 3580 3560 

-5.5 60% 3620 3620 

-5.5 75% 3540 3540 

-5.0 75% 3620 3620 

-5.0 80% 3600 3620 

-4.8 100% <3400 3540 

-4.8 80% <3400 3520 

-4.5 100% 3640 3640 

-4.5 80% 3700 3680 

-4.0 125% 3700 3700 
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Figure 14. Climate-space diagram showing temperature and precipitation combinations 

for modeled ELAs that were similar to the ice cap target ELA of 3650 m and the cirque 

target ELA of3500 m. Estimates of the plateau (boxes) and Montafia San Juan 

(diamonds) LLGM climate shows that temperature changes are the dominant control for 

sustaining glacier ice in this region. Ranges in the precipitation totals for a given 

temperature are due to slightly different ELAs relative to the target ELA, typically not to 

exceed 50m. 
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contour from 3150 to 3 700 m. The four mass balance gradients were plotted and the 

mean taken to determine that the BR = -1.5 for the cirque glaciers of the Montana San 

Juan (Fig. 12). This estimate falls below previously published tropical BR values (i.e., 

BR = 2-4) although is in line with a BR = 1-2 that was found for outer-tropical regions by 

Osmaston, (2005). It has been shown that the aspect, shading and debris cover can 

significantly decrease the BR, both by increased accumulation due to shading or 

decreased ablation due to debris cover on the glacier surface. 
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Figure 15. A plot of four mass balance gradients and the mean for the reconstructed 

cirque glaciers of the Montana San Juan. Data come from climate estimates (i.e., -5.5°C, 

75% Precip.) that matched the target ELA of -3500m for the cirque glaciers. A balance 

ratio (BR) = -1.5 was calculated which is consistent for some tropical locations. 
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The ice flow model is used to match maximum ice extent to the physical data mapped 

on the GIS. Based on numerous simulations the flow model failed to match the glacial 

geologic data for the ice cap by over and underestimating the ice extent. The physical 

data clearly demarcate the most eastern portions of the San Miguel, Tuizoche and 

Ninguitz Valleys maximum ice extent. The model results in ice limits that are far beyond 

the limits of the Ninguitz Valley moraines, but in the San Miguel Valley the model 

underestimated the advance (fig 16).The ice flow model does allow for some variation in 

the default values of ice velocity due to deformation and sliding which gives the flow 

model the ability to match regional geologic aspects. Uncertainties in describing glacier 

flow on an open plateau arose most likely due to the methods used in the Plummer and 

Phillips, (2003) model which have been set for regions with steep, narrow, glaciated 

valleys that constrain the ice (Refsnider eta!., 2008; Laabs eta!., 2006). The flow model, 

for even a small ice cap, cannot take into account a potential spatial precipitation gradient 

that could distribute precipitation unevenly across the accumulation area or a change in 

the majority wind direction which could cause drifting snow to accumulate in otherwise 

ice free areas, nor can it account for spatial variations in subglacial hydrology. Glacier ice 

flow was underestimated and overestimated using this same 2-D t1ow model for the 

western Uinta ice field in Utah, which was explained away by the inability of the climate 

portion of the model to correctly describe specific climate gradients across the field area 

(Refsnider et a!., 2008). 
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Figure 16. One version (-4.5°C and 100% of present day precipitation totals) of the 

modeled maximum ice extent and thickness for the eastern portion of the plateau ice cap, 

using the GIS flow model. The ice is clearly overextended past the largest moraine 

segments (black lines; smaller moraines are in grey) of the southern Ninguitz Valley (B) 

while the previously glaciated northern San Miguel Valley (A) remains ice free. The 

results indicate that the flow model was unable to accurately constrain ice dynamics on 

this tropical highland plateau. 
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CHAPTER4 

DISCUSSION 

The study presented here utilized a combined approach to reconstructing the northern 

Guatemalan highlands maximum ice extent and subsequent LLGM ELA. This study also 

provides new insights into tropical highland paleoclimate that moves towards an 

improved understanding of the unresolved tropical temperature paradox. The prevalence 

of the glacial geomorphic evidence combined with computer-aided mapping and GIS 

modeling provides a robust reconstruction of the steady state maximum ice extent in this 

region. The tropical highland t;. T estimates presented here represent further evidence for 

more heavily depressed terrestrial temperatures than the average concurrent sea surface 

temperatures, while introducing new constraints on the Guatemalan highlands LLGM 

ELA and paleoclimate. 

The Mayan Ice Cap and Cirque Glaciers 

The Sierra de los Cuchumatanes supported a 35 to 40 km2 plateau ice cap and a group 

of five north facing cirques along the Montana San Juan (MSJ) ranging in length from I 

to 2 km. Mapping this region expands on previous work by Anderson (!969a, 1969b) and 

Hastenrath (1974) which provided a reconnaissance view ofthis region's diverse glacial 

geomorphology. There is noticeable evidence of glaciation in this region by the presence 
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of large terminal and lateral moraine segments, glacially scoured bedrock, plucked 

surfaces, subglacial till and pro glacial sediment deposits. Field evidence suggests more 

extensive glacial ice extent than suggested by previous publications. The THAR, AAR 

and AABR methods were employed to determine the LLGM ELA after extensive glacial 

geologic mapping was completed. The AABR calculated LLGM ELAsR=z.o is 3 703 m for 

the plateau ice cap and a cirque average LLGM ELAsR=2.o of 3515 m. These estimates are 

in good agreement with the circum-Caribbean mean ELAsR=LS of 3839 ±370m which 

was reported in Lachniet and V azquez-Selem, (2005). The small altitudinal range of the 

plateau (3470 to 3830 m) and MSJ (-3000 to 3700 m) glacial evidence presents further 

constraints on these northern Guatemalan highlands LLGM ELA estimates. The present 

day ELA for Guatemala is taken from the circum-Caribbean average of 4900 ± 200 m 

which yields a !lELA to be -1200 ±200m for the plateau and -1380 ±200m for the 

cirque glaciers of the Montana San Juan. Published !lELA estimates from Mexico ( -1500 

m), Costa Rica (-1500 m) and Venezuela (-1300 m) (i.e., Lachniet and Vazquez-Selem, 

2005, Stansell eta!., 2007) provide further correlation to the values presented here. 

The method of calculating a temperature depression based solely on the !lELA 

depends on including 1) a reliable regional temperature lapse rate and 2) the present day 

atmospheric 0°C isotherm and 3) adequate glacial evidence that allows for a 

comprehensive estimate of the maximum ice extent (Benn et al., 2005). The temperature 

lapse rate varies slightly in the tropics ranging from -5.1 to -6.0°C 1an·1 (Kageyama eta!., 

2005; Market al., 2005) most likely due to minor differences in humidity which can alter 

the lapse rate estimate. This range is in good agreement with the calculated Guatemalan 

atmospheric lapse rate of -5.3°C/km.1 used in this project. When combined with the well 
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recognized present day 0°C isotherm estimate of 4900 ± 200m for this region (Lachniet 

and Vazquez-Selem, 2005; Vazquez-Selem and Heine, 2004; Lachniet and Seltzer, 2002) 

yields a northern Guatemalan highland LLGM temperatures which were -6.4 ± 1.1 oc 

(plateau) and as much as -7.4 ± 1.1 °C (Montaiia San Juan) from present day. 

Although no chronology was established, photographic evidence provided constraints 

on ice dynamics and an apparent correlation between the morphology (i.e., crest shape, 

size) of the Mexican LLGM (MIS 2; -18 to 21 ka) moraines and the purposed LLGM 

moraines of the northern Guatemalan highlands (Vazquez-Selem, pers. comm., 2006). 

Field observations suggest that the high weathering rate of the limestone bedrock, along 

with the prevalence of well formed glacial geomorphology, places the timing of 

maximum glacial advance during the global LGM -16 to 24 ka. The Guatemalan 

moraines that correlated to the Mexican moraines show defined crests along with 

pronounced peaks that would not have been observed if glaciation occurred during the 

penultimate marine isotope stage (MIS) 6 (-125 ka) previous glacial maximum. These 

moraines and glacial evidence would be far more weathered if glaciation had occurred 

during the previous MIS 6 glaciations. There are large, muted moraine segments that are 

positioned up valley from the prominent eastern San Miguel Valley moraines, but it is 

unclear at this time what glaciation or ice advance period they represent. 

Paleotemperature Discrepancies 

The Plummer and Phillips (2003) model provides a new method for reconstructing 

former ice extents, along with providing estimates of both paleotemperature and 

paleoprecipitation. The modeled range of D.T (-4.0 to -6.3°C from present) estimates for 
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the entire Sierra de los Cuchumatanes was noticeably higher than the -7.4 to -6.4°C llT 

calculated from the physical data. Modeling the Sierra de los Cuchumatanes plateau 

region and nearby Montana San Juan cannot be easily grouped together with equal affects 

of glacier aspect and climate. 

There are many factors that could account for the discrepancy between the 

temperature estimates that were based on the physical data and those estimated via the 

GIS model. Uncertainties associated with the modeling efforts started with the lack of 

any net annual snow accumulation that could be used to calibrate the model to present 

day climate. Plummer and Phillips (2003) modeled present day small perennial snow 

fields that were mapped on topographic maps before the paleo-glacier GIS modeling 

began. Similarly the climate data, which are the primary input for the glacier model, were 

valley specific for the reconstructed glaciers reported in Plummer and Phillips (2003). 

For this research the closest available monthly climate data came from Todos Santos 

(2480 m), a small town situated in a large valley 1220 m lower in elevation than the 

-3700 m average of the plateau and Montaiia San Juan field areas. Several key climate 

factors that affect a glaciers annual mass balance were unresolved when using this model. 

From the present climate data an apparent change in the environmental lapse rate with 

elevation remains uncertain, especially in the highland regions above 2000m. Other 

climate paran1eters such as increased windiness, which causes snow drifting, and changes 

in the insolation budget on the glacier surface due to debris cover were unconstrained. 

Similarly, in the tropics a common daily occurrence is mid-aftemoon precipitation 

combined with increased cloudiness due to the effects of convection and evaporation. 

This increase in cloudiness during the afternoon hours, or the warmest part of the day, 
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has been shown to favor a westward aspect of glaciers in the tropics by reducing the 

available incoming solar radiation to western slopes (Benn, 2006). The glacier modeling 

did provide estimates of mass balance vs. elevation which allowed for a regional balance 

ratio to be calculated. Mass balance data from the Monta:fia San Juan cirque glaciers gives 

a representative balance ratio of~ 1.5 which is slightly below typical values found in 

tropical regions of 1.7 to 4.0 (Market a!., 2005; Kaser and Osmaston, 2002) although 

further modeling could constrain this regional value. 

Highland Glacier Dynamics 

Glacier flow modeling efforts were unsuccessful in reproducing maximum ice extents 

that matched the physical evidence, although the model did provide valuable insight into 

ice accumulation and flow characteristics across the plateau surface and nearby Monta:fia 

San Juan. The glacial evidence observed on the plateau corresponds to a history of 

multiple glacial advances and in some cases a slow retreat of a small ice cap. This is 

made apparent by the large (15 to 20 m) double crested terminal moraines of the eastern 

Tuizoche and San Miguel Valleys along with groups of nested muted recessional 

moraines mapped along the Colinas Planas to the west. Local topography had a large 

influence on ice dynamics by providing a general dip direction of the plateau region to 

the northeast and the east-west trending ridgeline of the Montana San Juan. The largest 

(i.e. highest relief) moraine segments are concentrated along the eastern edge of the 

plateau region which corresponds to the general dip of the plateau. Although little 

evidence was observed on the southern edge ofthe plateau, avalanching could have 

influenced the minimum elevation ice would flow down valley, which is common in 
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steep glaciated regions (Benn and Evans, 1998). Similarly, there were certain smaller 

valleys along the southern edge that revealed no observable glacial evidence, but that the 

GIS model would specifically utilize as an outlet for ice cap glacier tongues. The highest 

point on the plateau region was not directly observed, so it is unclear if these areas were 

completely glaciated or existed as nunataks during the Guatemalan LLGM. Further 

mapping efforts that could describe the location-specific glacial geology and the full 

extent of glacial evidence may improve the glacier reconstruction. 
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Figure 17. Topographic profile of the plateau region and Montana San Juan (see inset) 

showing the location of the LLGM ELAsR ~ 2 (grey dashed lines) along with the lowest 

limit of glacial evidence (black dotted line). For the plateau the difference between the 

highest glaciated peak and lowest ice positions is ~370m while for the Montana San Juan 

the value reaches almost 600m. There is a distinct difference in the lowest ice limits 

between the two regions, although the affect of aspect on glaciation is more apparent 

when vie\\~ng the Montaiia San Juan. 
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Shading, slope and aspect have been shown to influence the microclimate around a 

glaciers surface which in turn alters glacier dynamics (Evans, 2006). A global review of 

present glaciers reveals there is a preferred pole ward orientation which is more prevalent 

in the mid-latitudes but still common in the tropics (Evans, 2006). The effect of aspect on 

Guatemalan glaciation is apparent by the prevalence of perennial ice that is situated at 

much lower elevations along the north to northeast facing slopes and the dominance of 

ice along the northern lopes of the Montafia San Juan (Fig. 17). It is unclear at this time 

of the effects of asymmetry of the Montana San Juan ridge, which suggests that the more 

gentle northern slopes could have allowed for greater accumulation rates. Whatever the 

primary influence on glaciation was during the LLGM, the importance of shading and the 

glaciers solar radiation budget on the glaciers mass balance must be considered (Evans, 

2006). The effects of aspect allow for changes in the solar radiation budget to alter glacier 

dynamics, where a minimum occurs either due to shading or a loss of heat transfer when 

winds are blocked or subdued (Evans, 2006; Plummer and Philips, 2003; Benn and 

Evans, 1998). Aspect had minor effect on the plateau ice cap since the amount of solar 

radiation was similar across the plateau although in some instances, like the northern 

slopes of high ridges and the eastern sections of the San Miguel, Ninguitz and Tuizoche 

valleys, shading and insolation minimums could have occurred. 

Subsole deformation of the basal sediments and basal sliding account for a large part 

of a glacier's forward movement, and varies via the pore water pressure at the base of the 

glacier (Benn and Evens, 1998). If the predominately carbonate/limestone rich bedrock 

was well drained (i.e. subglacial sinking streams) and reduced the amount of water 

available at the base, sliding would be diminished due to the lack of high porewater 
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pressures between the ice and bedrock along with a reduction of available water within 

the deforming sediments at the base of the glacier. One area of subsole deformation was 

observed in a well dug into the terminal glacial sediments in Ninguitz Valley, which 

indicates the ice moved via some deforming sediments and not entirely by basal sliding. 

Since the GIS model allows for only a broad estimate of the glaciers basal sliding 

dynamics, these small scale differences in the subsurface that could affect the flow model 

remain unconstrained at this time. The spatial distribution of water plays a critical role in 

the movement of the glacier along the base; studies have shown that there is enhanced 

movement of glacier ice during times of increased basal water pressure (Benn and Evens, 

1998). If the basal water is redirected, through dissolution features or subsurface 

drainage, sliding amounts would be disproportional across the basal surface of the 

glacier. Important factors that influence glacier sliding like adhesion of ice to the bed 

surface due to freezing or the amount of bed roughness may have been affected by the 

presence of easily eroded limestone due to its lower density (Benn and Evens, 1998). 

Future Work 

A large portion of the field work included sampling boulders resting along moraine 

crests for cosmogenic exposure age determination. Fifteen boulders were sampled from 

the apparent terminal moraines of the eastern plateau region. At this time funding is not 

currently available for the 36Cl dating, so it was not completed for this study. If these 

samples could be analyzed using the accumulation of cosmogenic 36Cl in the limestone 

(CaC03) an absolute chronology of the Guatemalan highlands LLGM could be made. 
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The retreat of the ice cap resulted in the formation of small lakes set behind the 

plateau region moraines (Fig. 18), trapping glacial sediments during the ice retreat. If 

Figure 18. DEM of the plateau region showing the location of ephemeral moraine 

dammed lakes (circled in red). During field work these lakes were empty (March) but if 

cored could provide samples of organic material for 14C dating; this would allow some 

estimate of the minimum age of deglaciation for the plateau region. 
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suitable organic material can be discovered in core samples, combined with 

interpretations of sediment facies, a minimum age of deglaciation can be estimated. At 

least four ephemeral moraine dammed lakes may provide suitable organic material used 

in building a 14C chronology. Two of the lakes were visited during the March 2006 field 

work and were observed to be completely dry. The lakes are tilled during the wet season 

(Geronimo Pablo Ramirez pers. comm., 2006) and are emptied most likely through 

subsurface drainage in the limestone bedrock. Based on the location of the lakes relative 

to the mapped moraines there may be evidence of the timing of deglaciation for at least 

two different large glacial pulses, one during the maximum extent and a smaller advance 

that only covered the interior of the plateau region. 

Using basal shear stress calculations to evaluate ice thickness allowed for some small 

outlet glaciers to be mapped, but with no apparent glacial evidence. Visiting these 

specific valleys could reveal more evidence for the determination of maximum ice extent. 

Furthermore, mapping all of the moraines via GPS with altitude, relief and length 

measurements would provide further confirmation between the different moraine groups 

based on more specific spatial references. Only the furthest extents of glacial moraines 

were mapped with GPS, as a result mapping the detailed location of smaller moraines 

would alter the present cirque and ice cap reconstruction. For the cirques of the Montana 

San Juan there was no direct field evidence made. The mapped moraines were taken from 

aerial photographs with a large degree of shading hiding possible small scale or muted 

glacial deposits. Small scale deposits in the cirques may have eluded the aerial 

photograph scale and would warrant a more comprehensive visit to the northern 

Guatemalan highlands field area. 
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APPENDIX! 

GIS MODEL CLIMATE DATA 

Tables of climate data from station Todos Santos Cuchumatan (2480m) and station 

San Jose (~2m) that was used to calculate the primary climate input for the Plummer and 

Phillips, (2003) GIS model. Data was collected from stored records in the Guatemalan 

Institute Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (National 

Institute of Seismology, Volcanology, Meteorology and Hydrology) website at 

www.insivumeh.gob.gt/. 

Todos Santos· Average monthly temperature (0 C) 

JAN FEB MAR APR MAY JUN 

1990 10.9 12.5 12.8 13.1 14.6 13.9 

1991 I 1.5 12.1 15.0 15.0 16.6 15.2 

1992 11.9 13.6 15.1 15.3 15.6 15.2 

1993 I 1.4 13.4 14.1 15.7 15.3 14.9 

1994 12.7 13.2 15.2 16.0 15.9 15.2 

1995 13.2 15.1 14.6 15.0 15.0 15.0 

1996 12.0 12.5 14.2 14.0 14.4 14.1 

1997 12.7 15.0 14.2 15.0 14.3 14.0 

1998 14.0 16.0 16.0 16.0 16.0 16.0 

1999 14.0 14.2 15.6 16.0 15.4 16.0 

2000 13.7 12.6 15.4 15. I 16.0 15.1 

2001 14.7 14.6 14.6 15.4 15.0 16.0 

2002 14.0 13.7 14.7 16.5 14.2 13.4 

2003 10.8 13.1 13.9 15.7 15.2 15.4 

AVG 12.68 13.69 14.67 15.27 15.25 14.96 
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Todos Santos- Average monthly temperature COC) 

JUL AUG SEP OCT NOV DEC 

1990 13.6 13.2 13.9 12.3 12.6 11.5 

1991 14.8 14.3 13.9 13.0 11.4 11.2 

1992 14.6 14.3 13.7 12.6 12.0 11.9 

1993 14.8 13.9 14.0 13.9 13.5 13.0 

1994 14.9 15.3 14.7 14.9 13.9 11.9 

1995 14.7 14.6 14.2 14.6 14.1 13.0 

1996 13.8 14.0 14.0 13.6 12.6 12.9 

/997 13.0 14.0 14.0 14.0 15.0 15.0 

1998 16.0 15.7 16.0 15.0 15.0 15.0 

1999 14.0 14.0 14.5 14.0 12.5 13.1 

2000 14.8 14.0 14.7 13.7 13 .I !2.9 

2001 15.0 15.0 15.0 14.0 13.0 14.0 

2002 14.5 14.5 14.2 13.8 12.5 12.3 

2003 14.7 14.4 14.9 13.8 13.2 11.0 

AVG 14.51 14.37 14.41 13.80 13.17 12.76 

Todos Santos- Average monthly precipitation totals (mm) 

JAN FEB MAR APR MAY JUN 

1990 8.3 14.7 29.4 149.6 197.8 233.0 

1991 0.0 0.0 0.0 60.2 270.9 245.0 

1992 13.1 12.6 21.1 47.0 80.2 253.5 

1993 7.0 50 45.6 46.8 144.2 262.1 

1994 33.7 3.1 14.2 74.9 150.8 202.8 

1995 9.0 4.2 31.3 178.4 204.3 202.7 

1996 30.1 7.6 22.2 208.3 253.3 232.8 

1997 7.6 39.1 17.5 72.3 174.1 208.0 

1998 0.0 0.8 11.8 5.6 165.5 171.2 

1999 11.6 26.9 1.7 104.7 156.2 305.3 

2000 4.3 0.0 6.4 8.5 156.7 305.8 

2001 10.3 5.8 2.3 42.7 171.9 112.8 

2002 0.0 0.0 0.0 0.0 0.0 228.8 

2003 7.7 6.0 38.7 25.7 81.5 209.9 

AVG 10.56 8.99 17.30 73.19 157.67 226.69 
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Todos Santos· Average monthly precipitation totals (mm) 

JUL AUG SEP OCT NOV DEC 
1990 179.9 73.8 275.7 75.4 145.1 85.0 

1991 64.0 96.0 212.3 105.3 38.2 77.6 

1992 94.6 104.3 149.4 36.5 55.1 11.8 

1993 93.8 148.3 168.1 119.7 11.5 8.0 
1994 90.4 150.2 129.9 75.6 22.4 9.3 

1995 149.2 191.4 235.6 107.7 21.7 38.7 

1996 293.4 199.2 160.8 186.0 163.9 22.9 

1997 151.5 Ill. 7 276.7 88.6 59.2 33.9 

1998 126.2 93.3 165.1 97.8 91.5 8.9 
1999 182.5 187.1 267.9 122.1 71.0 34.1 

2000 72.1 247.4 401.7 124.2 40.8 10.9 

2001 218.8 189.7 237.3 216.0 14.8 0.7 

2002 125.9 88.2 241.6 90.6 36.3 27.2 

2003 95.5 85.1 133.3 86.0 57.4 30.6 

AVG 138.4 I 140.41 216.91 109.39 59.21 30.02 

Todos Santos· Average monthly Humidity(%) (1990 • 2003) 

JAN FEB MAR APR MAY JUN 

AVO 83 80 80 81 85 86 
JUL AUG SEP OCT NOV DEC 

AVG 86 85 88 87 85 83 

Todos Santos· Average monthly windpseed (km/hr) (1990 · 2003) 

JAN FEB MAR APR MAY JUN 

AVG 1.9 2.9 3.0 3.8 3.4 3.4 

JUL AUG SEP OCT NOV DEC 

AVG 3.5 3.7 3.2 4.2 4.0 4.9 

Todos Santos- Average monthly duodiness (1990 • 2003) 

JAN FEB MAR APR MAY JUN 

AVO 46% 38% 36% 50% 71% 74% 

JUL AUG SEP OCT NOV DEC 

AVG 71% 70% 73% 71% 63% 59% 
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San Jose- Average mnonthly temperature (C) 

JAN FEB MAR APR MAY JUN 

1990 26.4 27.9 28.3 28.9 28.1 27.9 

1991 24.9 25.4 26.8 28.0 28.6 27.7 

1992 26.3 26.4 28.0 28.7 29.0 28.4 

1993 25.8 26.1 27.7 29.1 28.8 27.8 

1994 25.3 26.8 27.7 28.8 29.0 28.1 

1995 26.0 27.0 27.5 27.1 28.9 28.1 

1996 25.3 26.3 27.0 28.3 27.8 28.0 

1997 26.0 26.9 28.4 28.4 29.1 28.0 

1998 26.9 26.6 28.5 29.0 29.2 nd 

1999 26.2 26.3 27.5 28.2 28.5 27.8 

2000 23.7 25.8 27.2 28.6 27.9 28.3 

2001 25.2 27.3 27.4 29.2 29.1 28.4 

2002 26.4 27.1 28.1 29.5 29.4 28.3 

2003 26.9 27.4 nd 29.4 28.9 28.0 

AVG 25.81 26.66 27.70 28.66 28.74 28.06 

San Jose- Average mnonthly temperature (C) 

JUL AUG SEP OCT NOV DEC 
1990 27.0 26.9 26.6 26.3 26.1 25.3 

1991 27.9 27.4 27.6 27.5 26.7 25.8 

1992 27.4 27.9 26.9 27.5 27.1 26.7 

1993 28.3 27.8 27.1 27.4 26.7 26.0 

1994 28.5 28.0 27.6 27.1 27.0 27.4 

1995 27.7 27.3 27.2 26.8 27.3 26.6 

1996 27.4 27.4 27.5 27.2 26.8 25.7 

1997 nd 28.5 27.5 26.5 27.4 27.0 

1998 27.9 28.0 28.0 27.2 27.0 26.1 

1999 27.6 27.6 26.3 26.2 25.9 25.2 

2000 23.3 28.1 27.3 27.0 27.5 26.3 

2001 28.4 28.7 27.3 27.7 27.0 26.7 
2002 28.9 28.6 27.6 28.0 27.3 27.0 

2003 nd nd nd nd nd nd 
AVG 27.5 27.9 27.3 27.1 26.9 26.3 
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San Jose- Average monthly precipitation totals (mm) 

JAN FEB MAR APR MAY JUN 

1990 0.0 38.0 0.0 105.4 329.7 307.3 

1991 0.0 0.0 5.2 18.6 98.8 437.0 

1992 00 0.0 83.1 53.0 123.9 266.1 

1993 14.8 0.0 5.4 13.8 143.3 497.7 

1994 0.0 0.0 0.0 30.5 103.9 149.8 

1995 0.0 0.0 0.0 18.6 96.8 323.4 

1996 4.8 0.0 0.0 69.6 167.7 419.0 

1997 0.0 0.0 14.4 97.2 94.0 281.0 

1998 0.0 0.0 0.0 0.0 40.0 263.3 

1999 0.0 0.0 14.0 59.4 108.6 434.9 

2000 0.0 0.0 32.0 18.7 353.8 181.3 

2001 0.0 0.0 10.5 1.6 114.8 190.2 

2002 0.0 0.0 0.0 3.1 268.1 208.7 

2003 0.0 0.0 0.0 66.0 159.6 547.2 

AVG 1.40 2.71 11.76 39.68 157.36 321.92 

San Jose- Average monthly precipitation totals (mm) 

JUL AUG SEP OCT NOV DEC 

1990 216.3 163.5 107.0 263.6 46.1 29.6 

1991 210.0 175.7 150.2 97.8 37.2 7.6 

1992 434.1 160.3 419.5 94.8 77.9 0.0 

1993 332.7 245.0 374.2 90.8 25.7 0.0 

1994 98.5 330.8 203.4 197.1 45.4 13.0 

1995 138.3 472.1 176.2 271.3 10.8 3.6 

1996 nd 366.1 292.9 167.6 72.8 0.0 

1997 285.8 136.8 636.9 363.2 185.9 41.2 

199.~ 414.4 323.8 221.5 446.0 946.0 0.0 

1999 396.0 183.8 517.5 205.6 nd nd 
2000 119.8 164.5 276.7 225.9 73.3 0.0 

2001 318.5 56.4 296.9 89.4 15.7 0.0 

2002 170.1 148.0 237.9 123. I 8.6 0.0 

2003 nd nd nd nd nd nd 
AVG 261.21 225.14 300.83 202.78 128.78 7.92 
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APPENDIX II 

GUATEMALAN TEMPERATURE AND PRECIPITATION 

Table of climate data showing yearly averages for 64 stations throughout Guatemala; 

given is the altitude above sea level (a.s.l.), average annual precipitation totals and 

average armual temperature for each station. Since this data presented only one annual 

average it could not be used for the Plummer and Phillips, (2003) model which required 

monthly and even daily climate input. 

Average Average 

a.s.l. armual annual 
Location (Guatemala) 

(m) Precipitation Temperature 

totals (mm) (oC) 

Puerto Barrios 0 3111.3 27.6 

Livingston 10 1825.6 26.0 

Moyuta 10 1389.4 26.8 

San Luis 10 4125.8 25.7 

Panzos 30 2656.7 26.6 

San Andres 60 1633.2 26.3 

Tiquisate 70 2016 27.7 
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Los Amates 76 1800.3 27.1 

Panzos, papalha 120 1911.4 26.0 

Flores 123 1553.1 25.7 

Libertad 125 1843.8 25.5 

Chi sec 140 2477.5 25.8 

Retalhuleu 205 2890.7 27.4 

Estanzuela 210 652.3 27.7 

Catarina 233 3565.4 26.0 

Rio Hondo 260 721.3 26.9 

Escuintla, El chupadero 270 2755.3 27.3 

Sta. Lucia Cotz. Camantulul 280 3516.1 25.5 

El Asintal 355 3010.6 25.5 

Morazan 370 780.5 27.0 

Cahabon 380 2386.3 25.3 

Mazatenango 430 3527.3 24.8 

Camotan 450 963.7 25.8 

Asuncion Mita 478 1241.3 27.1 

Poptun 500 1849.1 23.4 

San Juan Bautista 670 3204.3 24.6 

Chicaman 680 I 238.1 24.3 

Escuintla 730 3124.8 23.8 

Cuilapa 737 1552.3 23.8 

lpala 828 920.1 23.7 
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La Union 885 1592.1 21.9 

Cubulco 944 903.3 21.7 

Esquipulas 950 1551.6 22.3 

Monjas 960 974.6 22.0 

Quezada 980 II 04.1 22.4 

Sn. Jeronimo 1000 908.6 21.6 

Villa Canales 1120 1523.9 22.6 

Cuilco 1120 985.2 22.8 

Sacapulas 1180 834.1 21.7 

Amatitlan 1189 924 21.0 

San Pedro Ayampuc 1200 1063.1 21.4 

Sn. Migel Petapa. 1260 1093.7 21.4 

Co ban 1323 2074.9 18.8 

San Pedro Sacatepequez 1400 1031.9 19.9 

Guatemala, Florinda 1470 1310.3 20.6 

Guatemala, INSIVUMEH 1502 1196.8 19.3 

San Lucas Tollman 1562 1011.7 19.9 

Santiago Atitlan 1580 1010 18.4 

San Jose Pinula 1650 1639.3 17.3 

San Pedro Necta 1700 1475.3 19.0 

Jalapa 1760 1002.8 15.2 

Sn. Martin Jilotepeque 1800 1272.7 17.8 

Santa Lucia Ia Reforma 1840 938.7 18.6 
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Huehuetenango 1870 974.9 17.7 

Chinique 1880 1543.9 16.6 

Nebaj 1906 1925.6 15.9 

Chichicastenango 2025 1386.4 15.8 

Santa Maria de Jesus 2065 1221.1 16.1 

Santa Cruz Balanya 2080 970.4 16.1 

San Lucas Sacatepequez 2105 991.8 12.7 

San Pedro Soloma 2260 2138.8 13.4 

Olintepeque 2380 842.5 13.8 

San Marcos 2420 1026.5 13.0 

Todos los Santos 2480 1155 14.2 
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APPENDIX III 

EXAMPLES OF MASS BALANCE MODEL OUTPUT 

Selected output maps of the Plummer and Phillips, (2003) mass balance GIS model, 

scale bar is lm, mass balance scale can be found in figure I 0. Present are only I 0 out -50 

iterations completed for this research, although these represent model outputs that 

demonstrate the sensitivity of the model results. Modeled areas of 0 mass balance that 

matched the target ELAs of the plateau region (3650 m) and Montafia San Juan (3500 m) 

were used to determine the northern Guatemalan highlands paleoclimate. Each map has 

the corresponding temperature depression CCC) and the % of present day precipitation 

given in white lettering. 

The mass balance output of the plateau and Montafia San Juan region is shown by 

areas of net annual accumulation (blue to purple) and net annual ablation (reds to green). 

The ELA was estimated from grids on the output data that were equal to 0 mm of net 

annual accumulation/ablation. The scale used in the GIS model is given below, measured 

in mm water equivalent of the net annual accumulation and ablation for the modeled 

region. 
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Key represents mm water equivalent 
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