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ABSTRACT 

Uncertainty, Sensitivity and Geostatistical Studies of Flow and Contaminant 
Transport in Heterogeneous Unsaturated Zone 

by 

Feng Pan 

Dr. Zhongbo Yu, Examination Committee Chair 
Associate Professor of Hydrology 
University of Nevada Las Vegas 

Dr. Jianting Zhu, Examination Committee Co-Chair 
Associate Professor of Hydrologic Science 

Desert Research Institute 

The objectives of this study are: (1) to develop a methodology of estimating 

probability density functions (PDFs) of unsaturated hydraulic parameters when field 

samples are sparse, (2) to evaluate the predictive uncertainties in flow and contaminant 

transport due to parameter uncertainties in the layer- and local-scale heterogeneities of 

hydraulic parameters in unsaturated zone (UZ), (3) to investigate the contributions of the 

parameter uncertainties to the flow and transport uncertainties, and (4) to estimate the 

spatial correlation structures of hydraulic parameters by incorporating prior information 

and site measurements. 

At layer scale, the uncertainty assessment of flow and contaminant transport in 

UZ entails PDFs of the hydraulic parameters. A non-conventional maximum likelihood 

(ML) approach is used in this study to estimate the PDFs of water retention parameters 



(e.g., van Genuchten a and ri) for situations common in field scale applications where 

core samples are sparse and prior PDFs of the parameters are unknown. This study also 

investigates the effects of the uncertainties in the water retention parameters on the 

predictive uncertainties in flow and transport in UZ. By comparing the predictive 

uncertainties with and without incorporating the random water retention parameters, it is 

found that the random water retention parameters have limited effects on the mean 

predictions of the state variables including percolation flux, normalized cumulative mass 

arrival, and contaminant travel time. However, incorporating the uncertainties in the 

water retention parameters significantly increases the magnitude and spatial extent of 

predictive uncertainties of the state variables. 

The layer-scale uncertainty is specific to hydrogeologic layers, while the local-

scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. 

The local-scale heterogeneity is important in predicting flow path, velocity, and travel 

time of contaminants, but it is often neglected in modeling practices. This study 

incorporates the local-scale heterogeneity and examines its relative effects to the layer-

scale uncertainty on flow and transport uncertainties in UZ. Results illustrate that local-

scale heterogeneity significantly increases predictive uncertainties in the percolation 

fluxes and contaminant plumes, whereas the mean predictions are only slightly affected 

by the local-scale heterogeneity. Layer-scale uncertainty is more important than local-

scale heterogeneity for simulating overall contaminant travel time, suggesting that it 

would be more cost-effective to reduce the layer-scale parameter uncertainty in order to 

reduce predictive uncertainty in contaminant transport. 
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The sensitivity analysis is an important tool to direct the future field 

characterizations to reduce the predictive uncertainties in unsaturated flow and transport 

modeling. This study presents an integrated approach to evaluate the contributions of the 

uncertainties in input parameters to the predictive uncertainties in unsaturated flow and 

contaminant transport with and without the consideration of parameter correlations. This 

study also investigates the effects of parameter correlations on the sensitivity of flow and 

transport. When the input parameters are independent, the parameter uncertainty in 

permeability has the largest contributions to the uncertainties in percolation flux and mass 

arrival of the reactive contaminants. The sorption coefficient of the reactive contaminant 

becomes the dominant parameter in contributing to the uncertainty in overall contaminant 

transport at late stage. When the input parameters are correlated, the uncertainties in van 

Genuchten n and porosity have more contributions to the percolation flux and tracer 

transport uncertainties due to their correlations with the van Genuchten a and 

permeability, respectively. The rankings of parameter importance also change if the 

parameter correlations are taken into account, indicating that the significant effects of 

parameter correlations on the sensitivity of flow and contaminant transport in UZ. 

Improving the heterogeneity characterizations of hydraulic parameters is critical 

to reduce the predictive uncertainties in flow and contaminant transport. This study 

presents a coupled method of Bayesian updating and the adjoint state maximum 

likelihood cross validation (ASMLCV) to estimate the spatial correlation structures of 

hydraulic parameters with the incorporation of prior information and site measurements. 

The prior distribution is updated to yield the posterior distribution by the likelihood 

function estimated from the on-site measurements and ASMLCV. The mean of posterior 
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probability distribution for spatial correlation scales can then be used for subsequent 

heterogeneous field generations by kriging. The good agreement between measured and 

kriged hydraulic data indicates that the coupled approach may improve the estimation of 

spatial correlation structure with sparse measurements and known prior information in 

the heterogeneous UZ. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Understanding flow and contaminant transport in unsaturated zone (UZ) is 

important to evaluate and monitor possible effects of the remediation sites on the 

groundwater water and environmental systems, since UZ acts as a critical natural barrier 

to delay the arrival of the contaminants to groundwater table (BSC, 2004a; Haukwa et al., 

2003; Illman and Hughson, 2005; Lu and Zhang, 2004; Nichols and Freshley, 1993; Pan, 

2005; Ye et al., 2007b; Zhang et al., 2006; Zhou et al., 2003). Many three-dimensional 

(3-D) site-scale numerical models have been developed to incorporate various physical 

processes in UZ for specific sites (Ahlers et al., 1999; Viswanathan et al., 1998; Wu et 

al., 1999). The flow and contaminant predictions simulated by these site-scale models are 

acceptable based on the model calibrations in UZ (Bardurraga and Bardvarsson, 1999; 

BSC, 2004a, b; Ji et al., 2008; Vrugt et al., 2004; Wu et al., 1999). Because most UZ 

consists of complex hydrogeologic units with systematic and spatial variability of 

hydraulic properties at multiple scales, it is difficult to predict the flow and contaminant 

transport under such uncertain conditions (Flint, 2003; Nichols and Freshley, 1993; Pan, 

2005; Ye et al., 2007b). The uncertainties in the model predicted unsaturated flow and 

contaminant transport can be quantified using stochastic methods (Dagan, 1989; Dagan 

and Neuman, 1997; Gelhar, 1989; Rubin, 2003; Ye et al., 2004a; Zhang, 2002). 
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Generally, uncertainties in flow and contaminant transport at UZ could come from 

various types of uncertainties such as parameter uncertainty, measurement uncertainty, 

scenario uncertainty in climate, conceptual model uncertainty in hydrogeological models 

etc. (BSC, 2004a; Flint, 1998, 2003; Flint et al., 2006; Holt et al., 2002, 2003; Wu et al., 

2002, 2004). The measurement errors could lead to biased predictions of flow and 

contaminant transport (Holt et al., 2002, 2003). The conceptual model uncertainty in 

hydrogeologic models such as steady-state flow approximation, geological layering, 

lateral flow, and fast-flow pathways could cause significant uncertainties in flow and 

contaminant transport in UZ (BSC, 2004a; Flint et al., 2001). The scenario uncertainty in 

surface infiltration such as due to climate change is another important source of 

uncertainty in UZ modeling (BSC, 2004a; Wu et al., 2002). The flow and contaminant 

transport uncertainties due to measurement uncertainty, conceptual model uncertainty and 

scenario uncertainty are beyond the scope of this study, although these uncertainties can 

be evaluated by the numerical simulations and the Maximum Likelihood Bayesian Model 

Averaging method (Neuman, 2003; Ye et al., 2004b). This study is focused on the 

uncertainty assessments of flow and contaminant transport due to parameter uncertainties 

in heterogeneous UZ. The parameter uncertainties due to the spatial variability of 

hydraulic parameters can be quantified using the measurements from core samples 

according to the ergodicity assumption, which assumes that any realization of a stochastic 

process in space has the same probability distributions as the ensemble of possible 

realizations (Li and Yeh, 1999; Ye et al., 2007b). 

The hydraulic properties controlling water movement in UZ mainly include 

parameters such as hydraulic conductivity, porosity, water content, and water retention 
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parameters (Hillel, 1998). The van Genuchten a and n parameters from van Genuchten 

equation (van Genuchten, 1980) are widely used as water retention parameters to 

describe the water retention characteristics. The contaminant transport in UZ is largely 

controlled by three important processes such as advection, diffusion, and dispersion for 

conservative contaminants. Additional processes such as adsorption and radionuclide 

decay should also be considered for reactive contaminants (Domenico and Schwartz, 

1990; Fetter, 1994). The transport parameters controlling the transport processes mainly 

include molecular diffusion, hydrodynamic dispersion, grain density, tortuosity, 

adsorption, and radionuclide half-time. The parameter uncertainties in the hydraulic and 

transport parameters due to the multi-scale spatial variability from core samples to layer 

structures and lithofacies would cause uncertain model predictions of flow and 

contaminant transport in UZ (Nichols and Freshley, 1993; Pan, 2005; Pan et al., 2009a, b; 

Ye et al., 2007b). Quantification of parameter uncertainty and its propagation in 

hydrogeological models has been studied for decades using stochastic methods, as 

reviewed in several books (e.g., Dagan, 1989; Dagan and Neuman, 1997; Gelhar, 1989; 

Rubin, 2003; Zhang, 2002). Quantifying uncertainty at the field scale is of particular 

importance because decisions are often based on the field-scale predictions. However, 

field-scale models for representing complex hydrogeologic environments are 

complicated, making it difficult to evaluate the propagation of parameter uncertainty 

through the complicated models. 

In field-scale modeling, it is common practice to separate a large field domain 

into hydrogeologic layers (or lithofacies and hydrofacies) based on available data such as 

site geology, hydrogeology, and geophysics (Flint, 1998, 2003; Flint et al., 2006). 
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Hydraulic and transport parameters of each layer often are treated as homogeneous 

variables and are calibrated to match the field observations of state variables (BSC, 

2003b, 2004a; Wu et al., 2004; Zhang et al, 2006). The layer scale refers to the 

hydrogeologic layers with layerwise average properties, while the local scale refers to the 

spatial variation in hydraulic properties within a layer. Layer-scale heterogeneity, 

especially after layerwise parameters are calibrated, is important in simulating the overall 

flow and transport trend and pattern. The local-scale heterogeneity within the layers is 

important in predicting flow path, velocity, and travel time of contaminants (Bodvarsson 

et al., 2001; Haukwa et al., 2003; Illman and Hughson, 2005; Nichols and Freshley, 1993; 

Viswanathan et al., 2003; Zhou et al., 2003). Therefore, this dissertation is focused on the 

characterizations of both layer- and local-scale heterogeneities in the hydraulic and 

transport parameters and the assessments of associated predictive uncertainties in flow 

and contaminant transport in heterogeneous UZ. 

For layer-scale uncertainty characterizations, the hydraulic and transport 

parameters are often treated as homogeneous random variables (Nichols and Freshley, 

1993; Pan, 2005; Pan et al., 2009b; Ye et al., 2007b). Probability density functions 

(PDFs) of the parameters are required for evaluating the parameter uncertainty and its 

propagation through unsaturated flow and contaminant transport models (Avanidou and 

Paleologos, 2002; Boateng, 2007; Chen et al., 2005; Christiaens and Feyen, 2001; Lu and 

Zhang, 2004; Zhou et al., 2003). The PDFs of hydraulic and transport parameters can be 

rigorously identified based on a large data set of core samples (e.g., Pan, 2005; Ye et al., 

2007b). However, it is difficult to estimate the PDFs of hydraulic parameters with sparse 

measurements and unknown prior PDFs, especially for water retention parameters (i.e., 
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van Genuchten a and n in this study). Although many methods (e.g., Least-Square (LS), 

Maximum Likelihood (ML), pedotransfer method with bootstrap) have been used to 

estimate the water retention parameters and the associated estimation uncertainties 

(Hollenbeck and Jensen, 1998; Schaap and Leij, 1998; van Genuchten et al., 1991), these 

methods do not explicitly yield the parameter PDFs. The Bayesian methods can give the 

parameter PDFs but it requires the prior PDFs from subjective estimation (Meyer et al., 

1997). To resolve this problem, this study presents a direct method of estimating the 

PDFs for measuring uncertainties in the water retention parameters with unknown prior 

PDFs and sparse measurements. The PDFs of the water retention parameters are 

estimated using a Bayesian framework based on a non-conventional ML method 

introduced by Berger (1985) in statistical literature. The associated predictive 

uncertainties in unsaturated flow and contaminant transport due to hydraulic parameter 

uncertainties are then examined by Monte Carlo simulations using a 3-D flow and 

transport model. 

For local-scale heterogeneity characterizations, the hydraulic parameters are 

treated as heterogeneous random variables (Pan et al., 2009a; Zhou et al., 2003). 

Parameter uncertainty and sensitivity analysis for contaminant transport in UZ has been 

conducted mainly at the layer scale (Illman and Hughson, 2005; Nichols and Freshley, 

1993; Pan et al., 2009b; Ye et al., 2007b; Zhang et al., 2006). Local-scale heterogeneity 

in the model parameters within a layer is also important since it affects the flow path, 

velocity, and travel time of contaminants (Bodvarsson et al., 2001; Haukwa et al., 2003; 

Illman and Hughson, 2005; Viswanathan et al , 2003; Zhou et al, 2003). This study 

incorporates the layer- and local-scale heterogeneities in hydraulic parameters into the 
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uncertainty assessments of flow and transport to investigate relative effects of layer- and 

local-scale heterogeneities on the uncertainties in flow and contaminant transport in 

heterogeneous UZ. 

The parameter uncertainties due to layer- and local-scale heterogeneities in 

hydraulic parameters could cause significant predictive uncertainties in flow and 

contaminant transport in UZ (Bodvarsson et al., 2001; Haukwa et al., 2003; Illman and 

Hughson, 2005; Nichols and Freshley, 1993; Viswanathan et al., 2003; Pan, 2005; Pan et 

al., 2009a, b; Ye et al., 2007b; Zhou et al., 2003). The sensitivity analysis is an important 

tool to help design future data collection to reduce the parameter uncertainties, which also 

reduce the associated predictive uncertainties in flow and contaminant transport in UZ. 

The local sensitivity analysis with only one varied parameter within one standard 

deviation at a time was conducted by Zhang et al. (2006). Parameter correlations have not 

been considered in previous sensitivity analysis (Arnold et al., 2008; Boateng and 

Cawlfield, 1999; Mertens, et al, 2005; Sallaberry et al., 2008). Therefore, this study seeks 

to conduct global sensitivity analysis of hydraulic and transport parameters on flow and 

contaminant transport uncertainties using the sampling-based method and to investigate 

the effects of parameter correlations on sensitivity of flow and transport in UZ. 

Improving the heterogeneity characterizations of hydraulic parameters is also 

critical to reduce the predictive uncertainties in flow and transport in UZ (Kitanidis and 

Lane, 1985), due to that the accuracy of flow and contaminant transport predictions 

largely depends on the heterogeneity characterizations of hydraulic parameter fields, 

especially spatial variability of the parameters. Because of the paucity of hydraulic 

parameter field measurements, it is difficult to accurately estimate their spatial 
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variability, which is typically estimated by the traditional geostatistical approach such as 

sample variogram. The variogram models are often used in the heterogeneity 

characterizations to measure the extent of spatial variability for the hydraulic parameters. 

However, it is difficult, if not impossible, to estimate the spatial correlation structures of 

hydraulic parameters from the empirical and fitted variograms because of sparse data in 

most cases, especially for saturated hydraulic conductivity, and water retention 

parameters. Therefore, there are needs for methods to improve the estimation of spatial 

correlation structures of hydraulic parameters when the field measurements are sparse. 

Many parameter estimation approaches have been proposed to estimate the spatial 

correlation structures of hydraulic parameters such as LS, ML estimation, restricted 

maximum likelihood (RML) estimation, and adjoint state maximum likelihood cross 

validation (ASMLCV) (Dietrich and Osborne, 1991; Kitanidis an Lane, 1985; Samper 

and Neuman, 1989a, b, c; Pardo-Iguzquiz, 1998). However, the prior information is not 

included in the ML approaches and it may produce unreliable results with only several 

measurements available (Pardo-Iguzquiz, 1999). Although the Bayesian updating method 

can update the moments of prior PDFs to yield the posterior PDFs with sparse field data 

(Meyer et al., 1997), it cannot change the type of prior PDF and its accuracy largely 

depends on the accuracy of prior PDF assumption. In order to incorporate the prior 

information and available site measurements for improving the heterogeneity 

characterizations of hydraulic parameters, this study tries to couple the ASMLCV with 

Bayesian updating to estimate the spatial correlation structures of hydraulic parameters 

and to improve the local-scale heterogeneity characterizations of hydraulic parameters. 
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The UZ of Yucca Mountain (YM) in Nevada, U.S., is selected as a case study to 

illustrate the applications of layer- and local-scale heterogeneity characterizations, 

predictive uncertainty and sensitivity analysis of flow and contaminant transport. The UZ 

of YM is proposed by the U.S. Department of Energy (USDOE) as the nation's first 

permanent geologic repository for spent nuclear fuel and high-level radioactive waste 

(BSC, 2003a). The UZ of YM is a complex system in geology and hydrogeology with 

significant parameter uncertainty and associated contaminant transport uncertainty. The 

UZ consists of various complex hydrogeologic units, and spatial variability of hydraulic 

properties in each unit can be viewed as deterministic and/or random processes of 

multiple scales. Yet, only limited data are available to characterize multi-scale 

heterogeneities, which results in uncertainties in model parameters and, subsequently, 

model predictions. The site also provides a good setting for illustrating and testing the 

non-conventional ML approach to estimate the PDFs of water retention parameters with 

only several samples available for each layer. A conservative tracer, technetium (99Tc), 

and a reactive tracer, neptunium (237Np) are selected as synthetic tracers for the 

contaminant transport simulations in the UZ of YM. The hydraulic and transport 

parameters (e.g., permeability, porosity, van Genuchten a and n, and sorption coefficient 

of the reactive tracer) are treated as the random variables. Other parameters (e.g., residual 

saturation, molecular distribution, and hydrodynamic dispersion) are treated as the 

deterministic variables because the parameters are less variable based on the sensitivity 

analysis of Zhang et al. (2006). The uncertainties in fracture properties are also assumed 

to be deterministic due to their limited significance to the flow and transport simulations 

(BSC, 2004a; Zhang et al., 2006). 
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The Sisson and Lu (S&L) injection site, designed for infiltration experiments 

within the Hanford Site, Washington State (Sisson and Lu, 1984), is selected as a case 

study to estimate the spatial correlation structures of hydraulic parameters. The site 

provides a good setting for illustrating and testing the coupling of Bayesian updating and 

ASMLCV approach to estimate the spatial correlation structures of hydraulic parameters. 

70 data sets of soil hydraulic parameters are available from six boreholes with 53 of these 

data from three close boreholes in the study site (Ye et al., 2007a). It is very difficult to 

determine the spatial correlation structures based on the traditional geostatistical 

approach (i.e., sample variogram), especially for the horizontal correlation scale. 

1.2 Objectives 

In summary, the objectives of this dissertation are as follows: 

(1) Develop a methodology of estimating PDFs of the unsaturated 

hydraulic parameters when field samples are sparse; 

(2) Characterize the layer- and local-scale heterogeneities of hydraulic 

parameters and evaluate the associated predictive uncertainties in flow 

and contaminant transport in UZ; 

(3) Investigate the contributions of individual parameter uncertainties to 

predictive uncertainties in flow and contaminant transport in UZ by the 

global sensitivity analysis; 

(4) Estimate the spatial correlation structures of hydraulic parameters to 

improve the heterogeneity characterizations by a coupled method of 

Bayesian updating and ASMLCV. 
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Thus, this dissertation is comprised of four individual but related parts. The first 

part (Chapter 2) is to present a direct method to estimate the PDFs of the water retention 

parameters using a Bayesian framework based on a non-conventional ML method when 

the core samples are sparse and prior PDFs of the parameters are unknown. The layer-

scale uncertainties in hydraulic parameters can be characterized and the associated 

uncertainties in flow and contaminant transport in UZ are also evaluated. The second part 

(Chapter 3) is to incorporate the layer- and local-scale heterogeneities in hydraulic 

parameters (only permeability and porosity in this part) to investigate relative importance 

to the propagation of parameter uncertainty to flow and contaminant transport. The third 

part (Chapter 4) is to evaluate the relative importance of individual hydraulic parameters 

on flow and transport uncertainties using the sampling-based sensitivity analysis method. 

In addition, the effects of parameter correlations on the sensitivity analysis results are 

also investigated by comparing the sensitivity results with and without considering 

parameter correlations. The fourth part (Chapter 5) is to present a coupled method of 

Bayesian updating and ASMLCV to estimate the spatial correlation structures of 

hydraulic parameters and to improve the heterogeneity characterizations of the hydraulic 

parameters. 

1.3 Study Site, Conceptual Model and Numerical Model 

1.3.1 Study Site 

The study site, UZ of YM, is applied in first three parts of this dissertation and is 

briefly described here. The study site, S&L injection site, is only employed in the study 

of spatial correlation structure estimation and is introduced in Chapter 5. 
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The UZ of YM is between 500 and 700 meters thick and is a complex geologic 

formation with heterogeneous layered and anisotropic fractured tuffs (BSC, 2003a). The 

UZ consists of five major geologic units: Tiva Canyon welded unit (TCw), Paintbrush 

nonwelded unit (PTn), Topopah Spring welded unit (TSw), Calico Hills nonwelded unit 

(CHn), and Crater Flat undifferentiated unit (CFu) (Figure 1.1). Each unit is further 

divided into multiple hydrogeologic layers, which results in a total of 30 layers. A 3-D 

numerical grid of the UZ encompassing approximately 40 km was developed, which 

consisted of 980 mesh columns and 45 numerical layers (BSC, 2004a). Figure 1.2 shows 

the plane-view of the numerical grid with the model domain, with proposed repository 

layout being highlighted in blue dots, borehole locations and faults. 
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Figure 1.1 Schematic illustration of the conceptualized flow processes and effects of 
capillary barriers, major faults, and perched-water zones within a typical east-
west cross section of the UZ flow model domain (modified from BSC, 2004a). 
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Figure 1.2 Plan view of the 3-D UZ numerical model grid showing the model domain, 
faults, proposed repository layout, and locations of several boreholes 
(modified from BSC, 2004a). 

A total of 5,320 rock core samples from 33 boreholes were collected to analyze 

the spatial variability of hydrologic properties in the UZ of YM (BSC, 2003b; Flint, 

1998, 2003). There are 546 matrix saturated hydraulic conductivity samples (converted 

into permeability in this study) and 5,257 porosity samples measured from the cores at 

several clusters of shallow boreholes and 7 deep boreholes (BSC, 2003b; Flint, 1998). 

Matrix porosity was calculated based on the saturated weight, volume, and dry weight of 

the sample, which was obtained from the dried sample in 105°C for at least 48 hours 
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(Flint, 1998). The matrix saturated hydraulic conductivity was calculated by Darcy's law 

after measuring the outflow over time using the permeameter (Flint, 1998). The water 

retention curves (water potential vs. saturation) of samples were obtained using the 

laboratory equipment of chilled-mirror psychrometer (Flint, 1998). The van Genuchten a 

and n parameters used in this study are derived by fitting the measured water retention 

curves (BSC, 2003b; Flint, 1998). Over 700 sample data of sorption coefficient (Kd) of 

the reactive tracer (237Np) was experimented for three types of rocks (devitrified, vitric, 

and zeolite tuffs) (BSC, 2004b). 

1.3.2 Conceptual Model 

Since 1980s, conceptual models have been developed by many researchers to 

simulate the physical processes in the UZ of YM (Flint et al., 2001). The recently 

developed conceptual model is consistent with the measured data and observations 

reflecting the hydrologic processes in the UZ of YM (BSC, 2004a; Flint et al, 2001). 

The infiltration pulses with spatial and temporal variability from precipitation are 

major sources of percolation fluxes through the highly fractured TCw unit on the top. The 

PTn unit with high porosity and low fracture intensity has a large capacity to store the 

groundwater penetrated through TCw as rapid fracture flow and to form more uniform 

flux at the base of PTn. The capillary barriers exists within the PTn unit at the upper and 

lower interfaces with TCw and TSw units due to large contrasts in rock properties across 

the interfaces (Montazer and Wilson, 1984). The perched water affecting flow paths in 

the UZ can be found on the top of low-permeability zeolites in CHn unit or the densely 

welded basal vitrophyre of the TSw unit in several boreholes (e.g., UZ-14, SD-7, SD-9, 

and SD-12 shown in Figure 1.2). In addition, faults with high permeability can play an 
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important role in percolation flux of UZ. More descriptions of flow conceptual model are 

referred to BSC (2004a) and Wu et al. (2007). 

The contaminants can transport through the UZ as dissolved molecular species or 

in colloidal form, involving the physical processes of advection, molecular diffusion, 

sorption for reactive tracers, and radioactive decay. The mechanical dispersion through 

the fracture-matrix system is ignored, since sensitivity studies indicated that the 

mechanical dispersion has insignificant effect on the cumulative breakthrough curves of 

tracers at the water table (BSC, 2004a). The sorption processes involve three basic rock 

types (devitrified tuffs, vitric tuffs, and zeolitic tuffs). The contaminant transport in the 

TSw unit mostly occurs in the fractures. The transport occurs in both matrix and fractures 

with longer contact times between the tracers and the media leading to the increase of 

sorption and retardation when tracers travel to the vitric layers in CHn unit. However, for 

those zeolitic layers in CHn unit, fast transport dominated by fractures occurs due to the 

high disparity in permeability between matrix and fractures in those layers. When tracers 

move through the devitrified layers in CHn unit, the transport has similar behaviors to the 

vitric layers. More descriptions of the conceptual model of tracer transport are referred to 

BSC (2004b). 

For the steady-state flow model, the ground surface and the water table are treated 

as the top and bottom model boundaries, where the pressure and saturation are specified 

as boundary conditions. The no-flux boundary condition is specified for the lateral 

boundaries. A present-day net infiltration estimate (Figure 1.3) is applied to the fracture 

blocks within the second grid layer from the top of the domain, as the first layer is treated 

as a Dirichlet boundary to represent average atmospheric conditions on the land surface. 
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The transient-state transport simulation was carried out for 1,000,000 years. At the 

starting time of simulation, constant concentration source is instantaneously released 

from the fracture continuum blocks (blue points in Figure 1.2) representing the proposed 

repository (BSC, 2004a). The transport model shares the same boundaries as the flow 

model, with zero concentration at the top and bottom boundaries and no-flux lateral 

boundary conditions. More descriptions of the boundary conditions are referred to BSC 

(2004a, b). 
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Figure 1.3 Plan view of present-day net infiltration distributed over the 3-D unsaturated 
zone flow model grid. 

Several approximations and assumptions have been used in the conceptual model, 

numerical model approaches and model boundary conditions such as vertical faults, 
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quasi-steady-state flow approximations, and no flow at lateral boundaries (BSC, 2004a). 

Although these assumptions may limit the applications in estimating the gradients of 

pressures, and concentrations, the present conceptual and numerical models can better 

understand the flow and contaminant transport processes in the UZ of YM than previous 

models (BSC, 2004a; Flint et al., 2001). The details of assumptions for conceptual and 

numerical models are referred to BSC (2004a) and Flint et al. (2001). 

1.3.3 Numerical Model 

A 3-D site-scale numerical model (TOUGH2 code) has been developed to 

simulate the flow and transport of three mass components (air, water, and tracer) in the 

UZ of YM (BSC, 2004a; Pruess et al., 1999; Wu et al., 1996). The site-scale numerical 

model can integrate the hydrologic processes in multiple temporal and spatial scales and 

provide consistent simulations with the available measurements and observations in the 

UZ of YM (BSC, 2004a; Flint et al., 2001). Since the dual-continuum approach, 

primarily the dual-permeability concept, is used, a doublet of governing equations of flow 

and transport are used to simulate fluid flow, chemical transport, and heat transfer 

processes in the two-phase (air and water) system of fractured rock for fracture and 

matrix, respectively. The governing equations for either continuum are in the same form 

as those for a single porous medium. The details of the governing equations of the 

unsaturated flow and tracer transport are described in Appendix A. The integral finite-

difference method is used to solve the governing equations numerically. The 3-D 

numerical model grid representing the UZ system consists of 980 mesh columns of both 

fracture and matrix continua along a horizon grid layer, and each column includes an 

average of 45 model layers representing the hydrogeologic layers. Refined mesh is used 
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near the proposed repository and natural faults. More details of the numerical model can 

be found at Wu et al. (1999, 2002, 2004, 2007) and BSC (2004 a, b). 

Because of the dual-continuum approach, two sets of hydraulic and transport 

properties and other intrinsic properties are needed for the fractured and matrix continua. 

The basic parameters used for each model layer include (a) fracture properties 

(frequency, spacing, porosity, permeability, van Genuchten a and n parameters, residual 

saturation, and fracture-matrix interface area); (b) matrix properties (porosity, 

permeability, van Genuchten a and n parameters, and residual saturation); (c) transport 

properties (grain density, diffusion, adsorption, and tortuosity coefficients); and (d) fault 

properties (porosity, matrix and fracture permeability, and active fracture-matrix interface 

area). 
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CHAPTER 2 

LAYER-SCALE UNCERTAINTY CHARACTERIZATION OF WATER RETENTION 

PARAMETERS AND PREDICTIVE UNCERTAINTY ASSESSMENT OF FLOW 

AND CONTAMINANT TRANSPORT IN UNSATURATED ZONE 

This chapter characterizes the layer-scale uncertainties in the hydraulic 

parameters and evaluates the predictive uncertainties in flow and contaminant transport in 

UZ. The hydraulic and transport parameters (i.e., permeability, porosity, water retention 

parameters, and sorption coefficient of the reactive tracer in this study) are treated as 

homogeneous random variables to evaluate the parameter uncertainties in the layer-scale 

uncertainties. The PDFs of the parameters are required for the layer-scale uncertainty 

characterizations and associated predictive uncertainty assessment in unsaturated flow 

and contaminant transport. The PDFs of permeability, porosity, and sorption coefficient 

of the reactive have been rigorously identified based on a large data set of core samples in 

Pan (2005) and Ye et al. (2007b). This study aims to estimate the PDFs of water retention 

parameters (i.e., van Genuchten a and n in this study) with only sparse measurements and 

unknown prior PDFs based on a non-conventional ML method and evaluate the 

predictive uncertainties in flow and contaminant transport in UZ due to uncertainties in 

the water retention parameters. 
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2.1 Introduction 

Numerical simulations of flow and contaminant transport in UZ require 

relationships describing water retention characteristics. The van Genuchten (1980) 

equation is one of the most widely used relationships, 

SAh)=^^^ = (l + \ah\"r (2.1) 
ds Or 

where Se is effective saturation, h is pressure head, 6 is volumetric water content, 8S and 

6r are saturated and residual volumetric water contents, respectively, a and m (n=l-l/m) 

are water retention parameters related to water entry pressure and soil pore size 

distribution, respectively. The water retention parameters are usually estimated from 

water retention data obtained from core samples, and how to more accurately estimate 

these parameter values has been an active research field for many years (Chirico et al., 

2007; Christiaens and Feyen, 2001; Yates et al., 1992). Due to their spatial variability, the 

water retention parameters are treated as random variables in stochastic subsurface 

hydrology. PDFs of the parameters are required for evaluating uncertainty of the 

parameters and its propagation through unsaturated flow and contaminant transport 

models (Avanidou and Paleologos, 2002; Boateng, 2007; Chen et al., 2005; Christiaens 

and Feyen, 2001; Lu and Zhang, 2004; Ye et al., 2008b; Zhou et al., 2003). The 

parameter estimates and the PDFs can be obtained in two ways: direct methods of fitting 

water retention data (e.g., B0rgesen and Schaap, 2005; Chirico et al., 2007; Christiaens 

and Feyen, 2000, 2001; Hollenbeck and Jensen, 1998; Meyer et al., 1997; Schaap and 

Leij, 1998; Vrugt and Bouten, 2002; Ye et al., 2007a) and indirect methods of calibrating 

the Richards' equation (Abbaspour et al., 2004; Hughson and Yeh, 2000; Minasny and 

Field, 2005; Wang et al., 2003; Yeh and Zhang, 1996). This study presents a direct 
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method of estimating the PDFs for measuring uncertainties in the water retention 

parameters and for evaluating effects of the uncertain parameters on predictive 

uncertainties in unsaturated flow and contaminant transport. 

Many methods have been developed for estimating the water retention parameters 

and the associated estimation uncertainties. Among them, LS method is the most widely 

used due to its simplicity and flexibility. The LS method has been implemented in the 

RETC (Retention Curve) software (van Genuchten et al., 1991; Yates et al., 1992), and 

accuracy of the LS estimates is measured by a covariance matrix. The ML method 

incorporates measurement errors in a rigorous manner and can evaluate adequacy of 

model fit (Hollenbeck and Jensen, 1998). In addition, the ML method gives the Cramer-

Rao lower bound for describing the parameter estimation uncertainty. The pedotransfer 

method (B0rgesen and Schaap, 2005; Chirico et al., 2007; Christiaens and Feyen, 2000, 

2001; Schaap and Leij, 1998; Ye et al., 2007a) is another type of parameter estimation 

method, and it uses the bootstrap method (Efron and Tibshirani, 1993) to measure 

accuracy of the estimates (B0rgesen and Schaap, 2005; Schaap and Leij, 1998). These 

methods do not explicitly yield the parameter PDFs and this renders these methods 

insufficient for uncertainty assessments of unsaturated flow and contaminant transport. 

While the Bayesian methods (e.g., Meyer et al., 1997; Minasny and Field, 2005; Vrugt 

and Bouten, 2002) give the parameter PDFs, they require estimating the prior PDFs from 

published datasets of the soil hydraulic parameters. Although estimating the prior PDFs 

of hydraulic parameters is not difficult for soils, it may be difficult, if not impossible, for 

other types of unsaturated media such as fractured rock in this study. 

29 



This study estimates the PDFs of the water retention parameters in a Bayesian 

framework based on a non-conventional ML method introduced by Berger (1985, p223) 

in statistical literature. In particular, the PDFs are estimated for a situation common in 

field-scale modeling where core samples are sparse and prior PDFs of the parameters are 

unknown. When core samples are sparse, conventional statistical methods (e.g., Carsel 

and Parrish, 1988; Mallants et al., 1996; Russo and Bouton, 1992; Russo et al., 2008) of 

estimating the PDFs based on a large database become inappropriate. When prior PDFs 

are unknown, regular Bayesian methods cannot be applied. The non-conventional ML 

approach used in this study resolves the problems of sparse core sample measurements 

and unknown prior PDFs, since it shows in a Bayesian framework that the PDFs can be 

approximated as multivariate Gaussian for unknown prior PDF regardless of the number 

of measurements (Berger, 1985, p223). This is the major advantage of this approach over 

conventional ML methods, which give only ML parameter estimates and estimation 

uncertainty bounds, not the PDFs. Another feature of this approach is that it explicitly 

considers correlation between the water retention parameters through the multivariate 

Gaussian PDF, instead of ignoring the correlation (e.g., Zhou et al., 2003) or assuming a 

perfect correlation (e.g., Avanidou and Paleologos, 2002). The ML approach gives only 

mathematical expression of the multivariate Gaussian PDF, but not the way of estimating 

its mean and covariance. This study shows that the mean of the multivariate normal 

distribution is the same as the LS parameter estimates and that the covariance can be 

estimated using the sensitivity matrix. This provides a practical way of using the non-

conventional ML approach, since the LS parameter estimates and the sensitivity matrix 

can be easily obtained. 
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Although the non-conventional ML approach was introduced decades ago, it has 

not received attention from vadose zone hydrologists for estimating the PDFs of the 

water retention parameters. The UZ of YM, the proposed geologic repository for spent 

nuclear fuel or high-level radioactive waste (BSC, 2003a), is selected as a cause study. 

The site provides a good setting for illustrating and testing the ML approach. In each 

hydrogeologic layer of the UZ, there are only several available measurements of the 

water retention parameters, insufficient for estimating the PDFs using conventional 

statistical methods. On the other hand, regular Bayesian methods cannot be applied 

because the prior parameter PDFs are unknown for the fractured porous medium. Due to 

these obstacles, uncertainties in the water retention parameters has not been fully 

assessed, despite its importance to the unsaturated flow and tracer transport uncertainties 

as shown in previous studies (e.g., Paleologos et al., 2006; Zhang et al., 2006). 

Necessity of assessing uncertainties in the water retention parameters at the site is 

illustrated in Figure 2.1. The solid line represents the van Genuchten model fitted using 

the LS method from water retention data (symbols) of three core samples in the 

hydrogeologic layer TMN (details of the parameter fitting are referred to BSC, 2003b). 

Uncertainties in the parameter estimates are quantified by the 95% confidence intervals 

of the parameters, and the corresponding van Genuchten models are plotted in the dashed 

lines of Figure 2.1. However, when the PDFs of the parameters are unknown, using the 

95% confidence intervals for quantifying the uncertainties is empirical. Knowing the 

parameter PDFs would better quantify the parameter uncertainties. It is also expected that 

incorporating the parameter uncertainties into numerical modeling will better simulate the 

variability of the simulated state variables (e.g., saturation and concentration). However, 
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the extent of improvement is yet to be examined at the site, which partly motivates this 

study. 
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Figure 2.1 The van Genuchten model fitted to the water retention data of three samples 
for the hydrogeologic layer TMN of the UZ model of YM. Symbols denote the 
water retention data of three samples, and the solid and dashed lines are the 
fitted van Genuchten model and their 95% confidence intervals. The water 
retention data are adopted from BSC (2003b). 

Another focus of this study is to investigate the effects of uncertainties in the 

water retention parameters on the predictive uncertainties in unsaturated flow and 

contaminant transport. We are particularly interested in the effects relative to that of 
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permeability and porosity, since understanding the relative effects is important for 

directing future efforts of data collection for uncertainty reduction. The relative effects 

have not been examined in previous uncertainty analyses (e.g., Avanidou and Paleologos, 

2002; Haukwa et al., 2003; Illman and Hughson, 2005; Nichols and Freshley, 1993; 

Oliveira et al., 2006; Paleologos et al., 2006; Ye et al., 2007b; Zhou et al., 2003). This 

study investigates the relative effects by incorporating the uncertainties in the water 

retention parameters into the numerical modeling of Ye et al. (2007b). Since Ye et al. 

(2007b) already assessed the predictive uncertainties due to the uncertainties in the 

permeability and porosity, the relative effects will be revealed by comparing the 

predictive uncertainties of this study with that of Ye et al. (2007b). 

2.2 ML Method of Estimating the PDFs 

This study determines the PDFs of the water retention parameters based on the 

ML theory of Berger (1985, p224): "Suppose that X\, Xi, ...,XN are i.i.d. from the density 

/o(*;|P)> P = (/?i> @2, • • -, PP)T being an unknown vector of parameters. (We will write x = 

(x\,xi, ..., xN)Tand /(x | p) = J J f0(x( |P), as usual.) Suppose 7r(P) is a prior density, and 

that 7r(P) and /(JC,|P) are positive and twice differential near p , the (assumed to exist) 

maximum likelihood estimate (MLE) of p. Based on the Bayes' theorem, the posterior 

density of p 

p(P|x) = /(x|P)^r(P)/m(x) (2.2) 

(m(x) being a normalizing factor), can be approximated by a multivariate normal 

distribution, Np(p,[I(x)]_1), where I is the observed (or conditional) Fisher information 

matrix, having (i, j) element 
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' , , ( * ) = -y 

WPj 
ln/(x|P) - Z 

;=i 

32 m/(x,|p) 
d/Sfifij 

(2.3) 

Taking x as the retention data and p as the water retention parameters (or their transforms 

such as logarithm), this ML approach provides a method of estimating the PDFs of the 

water retention parameters. Without having large number of measurements of the water 

retention parameters and knowing the prior PDF, the posterior PDF is approximated as 

multivariate Gaussian. This feature renders the ML theory the only way of identifying the 

PDFs of the retention parameters for the UZ and other site of the similar situation. 

The ML approach only gives the expression of the Gaussian PDF, Np(p,[i(x)]"1); 

this study shows that its mean (the MLE) is the same as the least square estimates (LSE) 

and that its covariance can be estimated from the sensitivity matrix at the fitted parameter 

values. Assuming that residuals, r = 6 - 0(P), between observed water saturation data (8) 

and estimated data (0) using the van Genuchten model, follow normal distribution with 

mean of zero and covariance matrix of <72<o~' (where a1 is unknown and the same for all 

xt and eo is weight matrix of the residuals related to measurement error and model 

quality) (Carrera and Neuman, 1986), the likelihood function is 

/(xlp,g2)= , 1 e x p ( ^ ^ ) (2.4) 
V W l ^ o T ' l 2<72 

Taking its natural logarithm and multiplying it by -1 on both sides gives 

-ln/(x|p,cr2) = ̂ ln(2^) + ̂ ln(c72) + iX l n l 0 >" , l + - ^ (2-5) 

One of the difference between the ML and LS methods is that the ML estimates both p 

and a2, while the LS only estimates p. Considering that p and <y2 are independent, the 
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ML estimate P of p can be obtained by setting -3 ln[ / (x |p ,c r 2 ) ] /dp = 0 without 

knowing <72. Since 7VZ In (2;r), iVzln<72 and In co"1 in Eq. (2.5) are independent of p, 

this is equivalent to minimizing the LS objective function 

0(p) = rrcor = [G - 8(p)f<o[6 - 8(p)] (2.6) 

Therefore, the ML estimate p is the same as the LS estimates. The equivalence between 

the MLE and LSE is achieved based on the assumption that the residuals, r , are 

Gaussian, a reasonable assumption according to Press et al. (1992) and Carrera and 

Neuman (1986). General comparison between the ML and LS methods can be found in 

Hollenbeck and Jensen (1998), Hill and Tiedeman (2007), and Ye et al. (2008a). One can 

then estimate a2, a posteriori, by setting -3In /(p,<72|x) /d<72 = 0 , which results in 

the ML estimate (Carrera and Neuman, 1986; Seber and Wild, 1989; Seber and Lee, 

2003) 

.2 rTtor 
a = 

TV 

(2.7) 

To estimate the Fisher information matrix in Eq. (2.3), taking the second order derivative 

of Eq. (2.5) with respect to the water retention parameters gives 

; 1 32(rrcor)_ 1 32((x-x) ro(x-x)) 

which can be approximated by (Nelles, 2001) 

i(x) = ̂ -J ra>J (2.9) 
a 

where J is the Jacobian matrix with element J~ = dx^dPj evaluated at p. The covariance 

matrix explicitly measures the correlation between the water retention parameters. The 
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expression of Eq. (2.9) can also be found in Carrera and Neuman (1986), Hill and 

Tiedeman (2007), and Ye et al. (2008a). The ML approach is applied to the 

hydrogeologic layers of the UZ, and the approximated Gaussian PDFs are evaluated in 

two ways described below. 

2.3 Uncertainty Assessments of Water Retention Parameters, Unsaturated Flow and 

Contaminant Transport 

In addition to the numerical evaluation of approximated Gaussian PDF, this 

section also discusses the effects of the uncertainties in the water retention parameters on 

the predictive uncertainties in the unsaturated flow and contaminant transport. Random 

parameters in this study include not only the water retention parameters but also matrix 

permeability, porosity, and sorption coefficient. Uncertainties of the latter three 

parameters have been addressed in Pan (2005) and Ye et al. (2007b). By comparing the 

statistics in this study with those of Ye et al. (2007b), the relative (to permeability and 

porosity) effects of the uncertainties in the water retention parameters on the predictive 

uncertainties of unsaturated flow and tracer transport at the UZ of YM are investigated. 

2.3.1 Uncertainty in Matrix van Genuchten a and m 

Following the tradition of fitting water retention data, the loga and m are fitted 

from water retention data for each hydrogeologic layer of the UZ, and the fitted mean and 

standard deviation of the two parameters are listed in Table 2.1. Values of the mean and 

standard deviation are significantly different for different layers, reflecting the layering 

structure of the UZ. Uncertainty in loga is particularly large, resulting in uncertain flow 

path in matrix and between the matrix and fracture. Figure 2.2 shows the cumulative 
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distribution functions (CDFs) of the two parameters together with the five parameters 

fitted from core samples using the RETC software for the TLL layer. The CDF is 

estimated based on 200 random numbers of the retention parameters generated using the 

Latin Hypercube Sampling (LHS) method (McKay et al., 1979). It is well known that the 

LHS is more efficient for sampling the parameter space than random sampling methods. 

The parameter correlation is measured using the Spearman rank correlation coefficient, 

which can measure nonlinear correlation and is thus superior to the commonly used 

Pearson correlation coefficient (Helton and Davis, 2003; Iman and Conover, 1982). In 

order to obtain the rank correlation from the covariance matrix, the statistic software 

MINITAB (http://www.minitab.com/) is used to generate 2,000 realizations based on the 

multivariate Gaussian PDF, and the Spearman rank correlation is estimated based on the 

2,000 realizations. Figure 2.2 shows that the fitted parameter values are within the range 

of their respective CDFs, indicating that the approximated Gaussian distribution is able to 

describe the uncertainties in the water retention parameters. 

2.3.2 Predictive Uncertainty in Unsaturated Flow 

Figure 2.3 shows the mean and uncertainty bounds of the simulated matrix 

saturation and corresponding observations at borehole SD-12 (its location is shown in 

Figure 1.2). The uncertainty bounds are the 5th and 95th percentiles of the simulated state 

variables (e.g., saturation and percolation fluxes) based on 200 Monte Carlo realizations. 

Both the variance and uncertainty bounds are used to measure the predictive uncertainty. 

Since the uncertainty bounds correspond to the 5th and 95th percentiles and directly 

reveal variability of the simulated variables, they are considered more informative than 

the variance. The mean predictions capture the observed variation trend reasonably well, 
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and the uncertainty bounds bracket a large portion of the observations. It suggests that the 

approximated Gaussian PDFs of the water retention parameters result in reasonable 

simulations of the observed state variables. 

Table 2.1 The estimation of mean and standard deviation of van Genuchten a and m 
parameters. 

Layer Name 

CCR&CUC 
CUL&CW 

CMW 
CNW 
BT4 
TPY 
BT3 
TPP 
BT2 
TC 
TR 

TUL 
TMN 
TLL 

TM2&TM1 
PV3 
PV2a 
PV2v 
BTla 
BTlv 
CHV 
CHZ 
BTa 
BTv 
PP4 
PP3 
PP2 
PP1 
BF3 
BF2 

Core sample number 

3 
10 
6 
8 
8 
2 
3 
3 
11 
4 
5 
4 
3 
5 
3 
5 
1 
1 
3 
3 
5 
4 
1 
1 
3 
5 
3 
3 
2 
1 

/Aog(«) 

0.004 
-0.509 
-0.488 
1.207 
1.164 
0.391 
1.897 
1.015 
1.992 
0.939 
0.055 
-0.210 
-0.074 
0.032 
-0.081 
-0.206 
-0.337 
0.686 
-1.678 
0.940 
1.413 

-0.648 
-1.807 
0.196 
-1.349 
-0.055 
-0.622 
-1.036 
0.098 
-1.921 

°iog(a) 

0.244 
0.199 
0.192 
0.269 
0.169 
0.728 
0.375 
0.189 
0.335 
0.544 
0.118 
0.114 
0.776 
0.447 
0.934 
0.446 
0.156 
0.043 
0.183 
0.050 
0.092 
0.094 
0.043 
0.253 
0.513 
0.094 
0.168 
0.442 
0.940 
0.032 

Mm 
0.388 
0.280 
0.259 
0.245 
0.219 
0.247 
0.182 
0.300 
0.126 
0.218 
0.290 
0.283 
0.317 
0.216 
0.442 
0.286 
0.059 
0.293 
0.349 
0.240 
0.158 
0.257 
0.499 
0.147 
0.474 
0.407 
0.309 
0.272 
0.193 
0.617 

°m 
0.081 
0.046 
0.044 
0.038 
0.019 
0.104 
0.028 
0.039 
0.017 
0.068 
0.025 
0.025 
0.122 
0.058 
0.173 
0.092 
0.007 
0.011 
0.073 
0.008 
0.008 
0.022 
0.036 
0.025 
0.200 
0.033 
0.044 
0.116 
0.077 
0.070 
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Figure 2.2 CDFs of the matrix van Genuchten a and m in the layer of TLL. Fitted 
parameter values of five core samples in the layer are also plotted as solid 
triangles on the x-axis. 
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Figure 2.3 also includes the same statistics obtained in Ye et al. (2007b), in which 

the uncertainties in the water retention parameters were not considered. The mean 

predictions of the both cases (with and without considering uncertainties in the water 

retention parameters) capture the observed variation trend reasonably well. In unit TSw 

where the potential repository will be located,.75% of observations are covered by the 

uncertainty bounds (solid lines) of this study, while the uncertainty bounds (dashed lines) 

of Ye et al. (2007b) cover only 65% of observations. The reason is that the uncertainties 

in the water retention parameters were not incorporated in Ye et al. (2007b). 

The percolation flux through the UZ is a key variable in evaluating the potential 

repository site because percolation flux and its spatial variations could affect the amount 

of water flowing into the waste emplacement drifts, potential tracer release and migration 

from the UZ to the groundwater table. Percolation flux is defined as the total vertical 

liquid mass flux through both fractures and matrices (BSC, 2004a; Wu et al. 2004). For 

better presentation, it is converted to millimeters per year using a constant water density. 

Figures 2.4a and b show the mean and variance of the simulated percolation 

fluxes at the water table, and Figures 2.4c and d are those of Ye et al. (2007b) in which 

the water retention parameters were treated as deterministic. Comparison of the mean 

values (Figures 2.4a and 2.4c) shows that the magnitude and spatial pattern are similar 

over the entire domain, suggesting limited effects of the uncertainties in the water 

retention parameters on the mean predictions. However, comparing Figures 2.4b and 2.4d 

reveals that variance of the percolation flux increases significantly after the uncertainties 

in water retention parameters is incorporated. On average over the simulation domain, the 
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variance increases by about 38%; the number of blocks at the water table with variance 

. 2 / 2 -
larger than 10 (mm /yr ) is almost doubled. 
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Figure 2.3 Comparison of the observed and simulated matrix liquid saturation with (solid 
line) and without (dash line) considering the water retention parameter 
uncertainty for borehole SD-12. 
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Figure 2.4 Mean and variance of the simulated percolation fluxes at water table with (a 
and b) and without (c and d) considering the water retention parameter 
uncertainty. 

2.3.3 Predictive Uncertainty in Unsaturated Tracer Transport 

Transport of a conservative tracer, technetium (99Tc), and a reactive tracer, 

neptunium (237Np) is simulated for a scenario that a constant concentration source is 

released instantaneously from the fracture continuum locks representing the potential 

repository (Figure 1.2). Predictive uncertainty of the tracer transport is quantified in terms 

of plume and breakthrough of the tracers at the water table. Spatial distribution of the 

normalized cumulative mass arrival at the water table is an important variable in 
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investigating transport patterns and in estimating the potential locations of high tracer 

concentrations. The normalized cumulative mass arrival, as defined in BSC (2004b), is 

the cumulative mass arriving at each cell of the water table over time, normalized by the 

total mass of the initially released tracer from the potential repository horizon. Figures 

2.5a and b show the mean and variance of the normalized cumulative mass arrival 

contours of 237Np at the water table after 1,000,000 years. The mean and variance are 

large in the area directly below the footprint of the proposed repository. Spatial pattern of 

the variance (Figure 2.5b) is similar to that of the flow variance contour shown in Figure 

2.4b, indicative of correlation between the uncertainties in flow and tracer transport. 

Figures 2.5c and d depict the same mean and variance of normalized cumulative mass 

without considering the uncertainties in the water retention parameters (Pan, 2005; Ye et 

al., 2007b). Comparing contours of the mean predictions in Figures 2.5a and 2.5c 

suggests limited effects of the uncertainties in the water retention parameters on the mean 

predictions of the tracer transport. However, the variance shown in Figure 2.5b is 

significantly larger than that of Figure 2.5d, almost doubled on average over the whole 

domain. In addition, the area with variance lager than 0.01 in Figure 2.5b also increases 

by about 3% relative to that shown in Figure 2.5d. 
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Figure 2.5 Mean and variance of the normalized cumulative mass arrival contours of the 
reactive tracer ( Np) at the water table after 1,000,000 years with (a and b) 
and without (c and d) considering the water retention parameter uncertainty. 

Tracer travel time from the potential repository to the water table is another 

important variable for performance assessment of the proposed repository to measure the 

overall tracer transport. Different from calculating the normalized cumulative mass 

arrival, the tracer travel time is obtained by summing the cumulative mass arriving at 

water table over all blocks at a given time. Figure 2.6 shows the simulated breakthrough 

GO 9^7 

curves as fractional cumulative mass arriving at the water table for the Tc and Np. 

The uncertainty bounds of breakthrough curves in Figure 2.6 show that fractional mass 
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arrival is significantly uncertain. Figure 2.6 also includes the same statistics without 

considering the uncertainties in the water retention parameters (Ye et al., 2007b). Due to 

the large time scale used in Figure 2.6, Table 2.2 lists the 5th and 95th percentiles at the 

10%, 25%, 50%, 75%, and 90% mass fractional breakthrough for both cases for better 

evaluation of the travel time uncertainty. Similar to what has been observed from the 

contours, the mean breakthrough is affected only slightly by considering the uncertain 

water retention parameters, while the uncertainty bounds increases more significantly. 

For example, with the random water retention parameters, the 5th and 95th percentiles of 

simulated travel time of 9Tc are 8.05xl03 and 9.43xl02 years when 50% of the tracer 

arrives at the water table. With the deterministic water retention parameters, the 

corresponding travel times are 7.17xl03 and 8.22xl02 years. The uncertainty range 

increases from 6,348 to 7,107 years if the uncertainties in water retention parameters are 

considered. Similarly, for 50% of the reactive tracer ( Np) arriving at the water table, 

the uncertainty range increases from 255,000 to 278,100 years. 

2.4 Conclusions 

This study addressed two problems in numerical simulations of unsaturated flow 

and contaminant transport. The first is how to estimate the PDFs of the water retention 

parameters when measurements of the parameters are sparse and the prior PDFs are 

unknown; the other is whether the uncertainties in the water retention parameters is 

important in the predictive uncertainties of unsaturated flow and contaminant transport. 

The first problem was resolved using the non-conventional ML approach (Berger, 1985), 

which approximates the PDFs as multivariate Gaussian without requiring the prior PDFs 
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and large number of parameter measurements. This study provided the method of 

estimating the mean and covariance of PDFs based on the least-square fitting results, 

which can be easily estimated from existing software such as RETC. For the case study 

of YM UZ, water retention parameter ranges obtained from the Gaussian distributions 

encompass the parameter values of individual samples, and are significantly larger than 

the ranges of the measured parameter values. This indicates that uncertainties in the water 

retention parameters should not be ignored. 

The relative effects of the uncertainties in the water retention parameters on the 

predictive uncertainties in flow and transport were evaluated using the Monte Carlo 

method. After the random water retention parameters are considered, variability of the 

observed matrix saturations is better represented in that 10% more observations are 

bracketed by the uncertainty bounds. Predictive variance of the percolation flux increases 

if the random water retention parameters are taken into account, while the uncertain water 

retention parameters have limited effects on the mean prediction of percolation fluxes. 

The similar conclusion is also true for the magnitude and spatial pattern of the simulated 

plume of both conservative and reactive tracers. The travel time of the two types of 

tracers also becomes more uncertain after incorporating the uncertain water retention 

parameters, signified by the result that uncertainty bounds of the tracer travel time 

increase by tens of thousands of years. 
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study) and without (Ye et al, 2007b) considering the water retention parameter 
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Table 2.2 Comparison of mean, 5th, and 95th percentiles of simulated travel time of the 
conservative (99Tc) and reactive (23 Np) tracers arriving at water table at 10%, 
25%, 50%, 75% and 90% mass fraction breakthrough with (this study) and 
without (Ye et al., 2007b) considering the water retention parameter 
uncertainty. 

Breakthrough Mass Travel Time of this study 
curves fraction 

yyTc 2ilNp 

5th 10% 4.97x10' 1.43xl04 

percentile 25% 7.53xl02 1.05xl05 

50% 8.05xl03 3.03xl05 

75% 2.55X104 9.42xl05 

90% 1.23x10s >1.00xl06 

95th 10% 3.72 5.91 
percentile 25% 1.08X101 3.00xl03 

50% 9.43X102 2.49xl04 

75% 8.66xl03 1.33x10s 

90% 4.19xl04 4.01x10s 

Travel Time of Ye et al. 
(2007b) 

yyTc *"Np 

1.87x10' 1.99xl04 

1.08xl03 9.40xl04 

7.17xl03 2.75x10s 

2.32xl04 8.38x10s 

1.17x10s >1.00xl06 

3.86 5.34 
1.03X101 1.98xl03 

8.22xl02 2.00xl04 

9.00xl03 1.29x10s 

4.70xl04 5.80x10s 
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CHAPTER 3 

INCORPORATING LAYER- AND LOCAL-SCALE HETEROGENEITIES IN 

NUMERICAL SIMULATION OF UNSATURATED FLOW AND CONTAMINANT 

TRANSPORT 

This chapter incorporates the layer- and local-scale heterogeneities in hydraulic 

parameters into the uncertainty assessments of flow and transport and investigates the 

relative effects of layer- and local-scale heterogeneities on the uncertainties in flow and 

contaminant transport in heterogeneous UZ. The hydraulic parameters (i.e. permeability 

and porosity in this chapter) are treated as heterogeneous random variables to 

characterize the local-scale heterogeneities of the parameters. Due to only several 

available measurements for van Genuchten a and n parameters for each hydrogeologic 

layer and no spatial experiment data for sorption coefficient of the reactive tracer, the 

local-scale heterogeneities in these parameters cannot be characterized and they are 

treated as deterministic variables. 

3.1 Introduction 

Hydrogeologic environments consist of natural soils and rocks that exhibit multi-

scale spatial variability, or heterogeneity, in hydraulic and transport parameters from core 

samples to layer structures and lithofacies. Although the parameters are intrinsically 
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deterministic (i.e., they exist and are potentially measurable at all scales), knowledge of 

these parameters usually is limited, especially at field scales. Parameter uncertainty thus 

arises and renders the predictions of contaminant transport uncertain. Quantifying 

uncertainty at the field scale is of particular importance because decisions are often based 

on the field-scale predictions. It is common in field-scale modeling to separate a large 

field domain into hydrogeologic layers (layer-scale). Layer-scale uncertainty is important 

in simulating the overall flow and transport trend and pattern. While local-scale 

heterogeneity within the layers is critical in predicting flow path, velocity, and travel time 

of contaminants, it is often neglected in modeling practices. This study aims to 

characterize both layer- and local-scale heterogeneities and evaluate their relative effects 

on the predictive uncertainties in unsaturated flow and contaminant transport. 

The study site is the UZ of YM, which consists of various complex hydrogeologic 

units, and spatial variability of hydraulic properties in each unit can be viewed as 

deterministic and/or random processes of multiple scales. Heterogeneities in the 

hydraulic properties in the UZ have been investigated by many researchers. Based on the 

degree of welding, rock properties, and hydraulic properties, the UZ is separated into 5 

major geologic units and 30 hydrogeologic layers (BSC, 2003b; Flint, 1998, 2003; Flint 

et al, 2006). Zhou et al. (2003) categorized the heterogeneity for site, layer, and local 

scales. Typically, in studies of YM, site scale refers to the UZ model domain of 

numerical modeling studies; layer scale refers to the hydrogeologic layers with layerwise 

average properties; and local scale refers to the spatial variation in hydraulic properties 

within a layer. In the last decade, layer-scale uncertainty has been characterized and 

incorporated into the 3-D site-scale numerical model (e.g., BSC, 2004a; Wu et al., 1999, 

56 



2004, 2007). Parameter uncertainty and sensitivity analysis for tracer transport in the YM 

UZ has been conducted mainly at the layer scale (Illman and Hughson, 2005; Nichols and 

Freshley, 1993; Pan, 2005; Ye et al., 2007b; Zhang et al., 2006). Local-scale 

heterogeneity in the model parameters within a layer is also important since it affects the 

flow path, velocity, and travel time of tracers (Bodvarsson et al., 2001; Haukwa et al., 

2003; Illman and Hughson, 2005; Viswanathan et al., 2003; Zhang et al., 2006; Zhou et 

al., 2003). This study incorporates the layer- and local-scale heterogeneities and conducts 

a Monte Carlo simulation to investigate their relative importance to the propagation of 

parameter uncertainty. Based on a-priori knowledge of the UZ described in Chapter 1, the 

model parameters of particular importance in our local-scale heterogeneity 

characterizations include matrix permeability and porosity. Since the uncertainties of 

these two parameters have been characterized at the layer scale in Pan (2005) and Ye et 

al. (2007b), selecting them for the uncertainty analysis enables us to distinguish between 

the effects of local-scale and layer-scale heterogeneities on uncertainties in unsaturated 

flow and tracer transport. 

This study is focused on investigating the relative effects of layer- and local-scale 

heterogeneities on predictive uncertainty, but not on jointly assessing the predictive 

uncertainties due to heterogeneities of the two scales. However, this study can be 

extended for a joint assessment of multi-scale heterogeneity using, for example, the 

Random Domain Decomposition (RDD) approach (Guadagnini et al., 2004; Winter and 

Tartakovsky, 2000, 2002; Winter et al., 2002, 2003, 2006; Xiu and Tartakovsky, 2004). 

The RDD also separates a field-scale geologic system into a number of geologic units 

(e.g., hydrogeologic layers and lithofacies), but treats boundaries of the geologic units as 
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uncertain (the units being random composites). The key input of the RDD is the 

probability of boundary locations, used for averaging local-scale uncertainty to 

incorporate uncertainties in the unit boundaries. While estimating the probability is still 

in its development stage (Winter et al., 2006), the problem may be resolved using 

geostatistical methods (e.g., Guadagnini et al., 2004). When the boundary locations are 

fixed (e.g., Winter et al., 2006), some results of the RDD can also be obtained by 

conventional stochastic methods as observed in this study. In terms of separating a highly 

heterogeneous domain into less heterogeneous hydrogeological layers, this study is 

conceptually analogous to the RDD. If uncertainty in the layer boundary locations can be 

statistically quantified for the UZ, which will be very difficult for the complicated 

geological system with the limited characterization data, this study can be extended to 

incorporate this uncertainty using the RDD. 

3.2 Characterization of Parameter Heterogeneity 

There are two types of available data for matrix permeability and porosity: core 

measurements at the local scale and calibrated values at the layer scale. From 33 

boreholes, 5,320 rock core samples were collected (Flint, 1998, 2003; BSC, 2003b) 

yielding 546 measurements of saturated hydraulic conductivity (which can be converted 

to permeability in our simulations) and 5,257 measurements of porosity. Figure 3.1 

shows the locations of the measurements. Particularly, more porosity measurements are 

available in shallow boreholes than permeability measurements (Figure 3.1) and the 

borehole locations are also shown in Figure 1.2. The other type of parameter data is the 

layer-scale values of permeability obtained from calibrating the 3-D model (BSC, 2004a; 
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Wu et al., 2004, 2007). Calibration of the 3-D model is based on calibration of the earlier 

one-dimensional (1-D) model (BSC, 2004c), which resulted in adjustment of the matrix 

permeability values for the layers BT3, BT2, CHV, and PP3. Since the calibrated 

permeability values in these layers represent the optimum estimate of layer-scale UZ 

heterogeneity, the calibrated permeability values for these layers need to be retained in 

the generated heterogeneous field. 

For each hydrogeologic layer, sequential Gaussian simulation (SGSIM) of GSLIB 

(Geostatistical Software Library) (Deutsch and Journel, 1998) is used to generate the 

conditional heterogeneous parameter realizations to characterize local-scale heterogeneity 

and associated uncertainties. Since the SGSIM does not consider correlations between 

random variables, the random fields of the matrix permeability and porosity are generated 

separately. To satisfy the SGSIM requirement for conditional data to be Gaussian (many 

studies simply assume that the conditioning data are Gaussian), the transform method of 

Ye et al. (2007b) is adopted in this study. At each layer, measurements are transformed to 

be Gaussian by one of the three Johnson transformations (Carsel and Parrish, 1988; 

Johnson and Kotz, 1970) and four classical re-expressions (Mallants et al., 1996). The 

random fields incorporating local-scale heterogeneity are first generated with the 

transformed data and then back-transformed to their real values. 
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Figure 3.1 The locations of measurements in matrix hydraulic conductivity (blue circle) 
and porosity (green square) in the UZ of YM. 

The correlation lengths of the parameters are determined based on variogram 

analysis (e.g., Ye et al., 2005b, 2007a). Since the porosity measurements are abundant 

and widely spread in shallow boreholes, horizontal and vertical correlation lengths of 

porosity in each hydrogeologic layer of the TCw, PTn, and TSw units are estimated by 

calculating and fitting the sample variograms. While the vertical variogram of porosity in 

each hydrogeologic layer of the two deep units of CHn and CFu can be calculated, it is 

not possible to calculate the horizontal variogram in each layer due to the lack of 

measurements in the two units. However, we note that, for three shallow units of TCw, 

PTn, and TSw, the horizontal correlation length in each layer is similar to that of the unit 

where the layer belongs. Consequently, horizontal correlation lengths for the layers 

within the CHn unit are assumed constant and assigned the value of the CHn unit, given 

that the horizontal variogram of the CHn unit can be calculated from measurements. 

Since only one borehole was drilled in the CFu unit (below the CHn unit), the horizontal 
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correlation lengths for the two layers in this unit are assumed to be the same as those for 

the CHn unit. Permeability measurements are sufficient only for estimating the vertical 

correlation lengths for 14 layers, where there appears to be a tendency for permeability 

and porosity to have similar vertical correlation lengths. The similarity may be attributed 

to the strong correlation between permeability and porosity shown in Flint (2003) and to 

the fact that the permeability and porosity measurements were taken from the same 

boreholes. It is thus assumed that, for layers where plotting variograms is impossible due 

to lack of data, the permeability and porosity have the same correlation lengths. 

To honor the layer-scale permeability values obtained from the 3-D model 

calibrations, we first calculate for each numerical block the sample mean (over the 

realizations) of permeability and then average them over each layer. The resulting layer-

averaged values are close to the calibrated values for most model layers, except for layers 

BT3, BT2, CHV, and PP3, where layer-scale permeability is increased during the model 

calibration (BSC, 2004a). To ensure that the mean permeability of each realization equals 

the calibrated value, the layer-averaged permeability is adjusted for the four layers, after 

which, the generated permeability values are no longer conditioned on the local-scale 

core measurements. As a result, the generated values of permeability and porosity in each 

layer randomly fluctuate around a mean value that is the same as calibrated layer-scale 

values or close to them. This procedure omits uncertainties in the calibrated layer-scale 

parameter values. The ideal way is to compare the PDFs of the layer- and local-scale 

parameter values. However, estimating the PDFs of the layer-scale variables will require 

additional field investigation and recalibrating the UZ models, which is beyond the scope 

of this study. 
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Figure 3.2 shows the sample mean of the 200-realization log-permeability at the 

east-west and north-south cross-sections through borehole UZ-14 located in the proposed 

repository area (the two cross-sections are marked in Figure 1.2). Layer-scale uncertainty 

is apparent, since the mean log-permeability is significantly different in the various 

layers. At the bottom layers, Figure 3.2b shows that the mean log-permeability in the 

northern part of the domain is significantly smaller than that in the south, reflecting the 

fact that the CHn-unit zeolitic tuffs (with low permeability) are located in the north, while 

the vitric tuffs (with high permeability) are located in the south. Figure 3.2 also illustrates 

the local-scale heterogeneity within each layer. Sample variance (figures not shown) of 

the log-permeability over the 200 realizations varies significantly, from 0.5 to 8.0 in 

different layers, depending on the density of measurements in each layer. In general, the 

variance is smaller for thinner layers with more measurements. The spatial variability of 

porosity is similar to that of log permeability but with a smaller magnitude of variation. 

3.3 Uncertainty Assessment 

Monte Carlo simulations are conducted to investigate the propagation of 

uncertainties in matrix permeability and porosity into the uncertainties in flow and tracer 

transport at UZ. The mean, variance, and 5th, 50th, and 95th percentiles of the simulated 

state variables (e.g., saturation, percolation fluxes, and concentration) are evaluated from 

200 realizations. In addition to the variance, the 5th and 95th percentiles (also known as 

uncertainty bounds) are used to quantify predictive uncertainty. The deterministic 

simulation results of BSC (2004a) are treated in this study as a baseline case for the 

stochastic simulations. Note that only layer-scale uncertainty was considered in the 

62 



1400 

E, 1200 
c o 
••o 

I 1000 

800 

Drillhole Wash Fault 
Pagany Wash Fault 

CHn 

Mean 

70000 171000 172000 173000 
1N Nevada Coordinate E-W (m) E 

-11.0 
-11.5 
-12.0 
-12.5 
-13.0 
-13.5 
-14.0 
-14.5 
-15.0 
-15.5 
-16.0 
-16.5 
-17.0 
-17.5 
-18.0 
-18.5 
-19.0 
-19.5 

Mean 
-11.0 
-11.5 
-12.0 
-12.5 
-13.0 
-13.5 
-14.0 
-14.5 
-15.0 
-15.5 
-16.0 
-16.5 
-17.0 
-17.5 
-18.0 
-18.5 
-19.0 
-19.5 

|SJ 236000 234000 232000 
Nevada Coordinate N-S (m) 

Figure 3.2 Mean of generated random log permeability at east-west (a) and north-south 
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deterministic simulation. Convergence of the Monte Carlo simulations is investigated in a 

similar manner to Ballio and Guadagnini (2004) and Ye et al. (2004a). Results indicate 

that the statistics reach stabilization after 150 realizations, and therefore, 200 realizations 

are regarded sufficient for meaningful statistics for the uncertainty assessments. 

3.3.1 Uncertainty Assessment of Unsaturated Flow 

3.3.1.1 Comparison of Simulated and Measured Saturation and Water Potential 

Simulated matrix liquid saturation and water potential are verified by comparing 

their statistics with field observations. Figure 3.3 compares the observed and simulated 

matrix water saturation along borehole SD-12. The simulated mean saturation (as well as 

the 50th percentile) is close to the corresponding result for the deterministic case (Wu et 

al., 2004; BSC, 2004a), indicating that layer-scale uncertainty in model parameters 

dominates local-scale heterogeneity in simulating the mean behavior of the unsaturated 

flow. The mean matrix liquid saturation is in reasonable agreement with the observed 

profiles, especially the matched variation patterns. The 5th and 95th percentiles of 

simulated results bracket a large portion of the observations, indicating that observed 

state variability could be explained partially by parameter uncertainties in the matrix 

permeability and porosity. Unbracketed measurements may be attributed to uncertainty 

not considered in this study, such as uncertainties in other model parameters, 

measurement error, conceptual model incompleteness, and different scales between the 

model inputs and the field and laboratory parameter measurements. The simulated and 

observed matrix liquid saturation along other boreholes is also compared, and the 

comparison results are similar to those shown in Figure 3.3. The comparison of simulated 
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and observed water potential along borehole shows similar features as the liquid 

saturation (figure not shown). 

'% 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Saturation 

Figure 3.3 Comparison of observed and 3-D model simulated matrix liquid saturation for 
borehole SD-12. 

3.3.1.2 Flow Pattern and Uncertainty Assessment 

Figure 3.4 depicts the mean, variance, and 5th and 95th percentiles of simulated 

percolation fluxes at the proposed repository horizon, while Figure 3.5a and 3.5b show 

the mean and variance at the water table. The pattern of mean percolation fluxes at the 

proposed repository layer (Figure 3.4a) is similar to the surface infiltration pattern 
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(Figure 1.3), indicating dominant vertical flow and negligible lateral movement from the 

land surface to the proposed repository level. At the water table (Figure 3.5a), the high 

percolation flux zone moves eastward, indicating significant lateral flow from the 

proposed repository level to the water table. This is mainly attributed to the dipping slope 

(around 5 to 10 degrees) and the presence of the CHn unit between the proposed 

repository and the water table (Figure 3.2). Variance in percolation fluxes at the proposed 

repository level (Figure 3.4b) is larger in the western part of the model domain associated 

with the high infiltration rate. In comparison to Figure 3.4b, Figure 3.5b shows that a 

large variance at the water table also occurs at the western side of the domain but covers 

a wider area that extends southward. This may be due to the larger spatial variation of 

matrix permeability at the bottom than at the top of the simulation domain (Figure 3.2) 

and the accumulated effects of parameter uncertainty propagation downward to the water 

table. In Figures 3.4c and 3.4d, the 5th and 95th percentiles of percolation fluxes are 

significantly different, indicating large uncertainty in the percolation fluxes caused by the 

uncertainty in matrix permeability. 

3.3.1.3 Comparison of Flow Uncertainty Assessment 

In Pan (2005) and Ye et al. (2007b), the uncertainty in unsaturated flow caused by 

parameter uncertainty was assessed only at the layer scale. Multiple correlated 

realizations of matrix permeability and porosity were generated using the LHS method 

for each layer where the parameters were treated as homogeneous. This is referred to as 

the homogeneous case, as opposed to the heterogeneous case in this study, where 

randomly heterogeneous parameter fields are generated for each layer based on the 

procedure described in Section 3.2. Figure 3.5 shows the mean and variance of the 
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percolation fluxes at the water table for the heterogeneous (Figure 3.5a and 3.5b) and 

homogeneous (Figure 3.5c and 3.5d) cases. While the mean predictions have a similar 

pattern and magnitude, the variance in the heterogeneous case (Figure 3.5b) is 

significantly larger than that in the homogeneous case (Figure 3.5d), especially under the 

footprint of the proposed repository area shown in Figure 1.2. This indicates that the 

local-scale heterogeneity of matrix permeability results in larger predictive uncertainty in 

the percolation fluxes because the local-scale heterogeneity creates more complicated 

flow paths. 
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Figure 3.4 (a) Mean, (b) variance, (c) 5th percentile, and (d) 95th percentile of simulated 
percolation fluxes at the proposed repository horizon. 
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Figure 3.5 Mean and variance of simulated percolation fluxes at the water table for the 
heterogeneous case (a,b) and homogeneous case (c,d). 

3.3.2 Uncertainty Assessment of Tracer Transport 

The uncertainty in tracer transport is evaluated for two representative tracers: 

conservative (99Tc) and reactive (237Np) tracers. Sorption coefficient of 237Np is treated as 

a random variable, and multiple realizations are generated in the same manner of Ye et al. 

(2007b). Although other transport and geochemical parameters may be also important for 

the uncertainty assessment, this study treats them deterministically and uses the 

parameter values of BSC (2004a, b). 
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3.3.2.1 Uncertainty Assessment of Spatial Distribution in Tracer Plumes 

Figure 3.6a and 3.6b depict the mean and variance of the normalized cumulative 

mass-arrival contours of the reactive tracer (237Np) at 1,000,000 years (extended standard 

of the U.S. Environmental Protection Agency). The mean of mass arrival covers virtually 

the entire area with higher values directly below the footprint of the proposed repository 

shown in Figure 1.2. While the contour spreads widely to the east of the model domain, 

high values appear restricted to the west of Ghost Dance Fault (Figure 1.2, eastern 

boundary of the repository footprint), indicative of the dominant vertical movement for 

tracers. The variance contour (Figure 3.6b) has a similar pattern to the mean contour 

(Figure 3.6a) with higher values of variance below the repository footprint. In addition, 

the area of higher variance corresponds to the area of high mean, except at the northern 

end of the Drillhole Wash Fault (Figure 1.2). The spatial pattern of variance (Figure 3.6b) 

is correlated with the spatial pattern of percolation flux variance (Figure 3.5b), indicating 

that the larger uncertainty in the percolation flux results in the significant uncertainty in 

the cumulative mass arrival. 

3.3.2.2 Uncertainty Assessment of Cumulative Mass Travel Time 

Figure 3.7 shows the mean and the 5th and 95th percentiles of the simulated 

fractional breakthrough curves of cumulative mass arriving at the water table for the two 

tracers in both heterogeneous and homogeneous cases. For the heterogeneous case, the 

5th and 95th percentiles indicate significant uncertainty in travel time. For example, 50% 

of the total mass of 237Np may take from 31,600 to 295,000 years to arrive at the water 

table. Owing to the sorption effects of the reactive tracer, the reactive tracer (237Np) 

travels about two orders of magnitude slower than the conservative tracer (99Tc). For 
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example, the mean travel times of the 50% mass fraction breakthrough is 4,760 years for 

99Tc, but 109,000 years for 237Np. In comparison to 99Tc, 237Np has greater uncertainty in 

the fractional mass travel time due to its uncertain sorption coefficient. 
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Figure 3.6 Contours of mean and variance in normalized cumulative-mass-arrival (%) for 
the reactive tracer (237Np) at the water table after 1,000,000 years for the 
heterogeneous case (a,b) and homogeneous case (c,d). 
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3.3.2.3 Comparison of Transport Uncertainty Assessment 

Figure 3.6 shows the mean and variance of normalized cumulative mass arrival of 

237Np at 1,000,000 years for the heterogeneous (Figures 3.6a and 3.6b) and homogeneous 

(Figures 3.6c and 3.6d) cases. While spatial patterns and magnitudes of the mean 

predictions are similar for the two cases, the variance in the heterogeneous case is much 

greater than that in the homogeneous case. This comparison suggests that incorporating 

local-scale heterogeneity of permeability and porosity results in higher uncertainty for 

tracer transport. In other words, it becomes more difficult to estimate potential locations 

of high-tracer concentration after the local-scale heterogeneity is considered. 

Figure 3.7 shows the simulated fractional breakthrough curves of cumulative 

mass arriving at the water table in both heterogeneous and homogeneous cases. The mean 

travel time for the heterogeneous case increases relative to the homogeneous case for 

both tracers at the early stage. This observation implies that the simulated flow path 

becomes more tortuous, and simulated tracer transport between matrix and fracture 

becomes more complicated after the local-scale heterogeneity is considered. With the 

downward movement of the tracers, since flow paths may develop along the fractures 

with high permeability, the effect of local-scale heterogeneity in the matrix properties on 

tracer transport gradually decreases with time. As a result, the travel time in the two cases 

becomes similar after approximately 20,000 years, with 78% fractional mass 

breakthrough for 99Tc, and 100,000 years, with 48% fractional mass breakthrough for 

237Np. Similar breakthrough behavior was observed in Zhou et al. (2003). Figure 3.7 also 

shows that, for both tracers, the 5th and 95th percentile bound for the travel time 

prediction is much smaller in the heterogeneous case than in the homogeneous case, 
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indicating the reduced uncertainty in travel time. For example, when 75% of the Tc 

mass flows out of the UZ, the variation in travel time is between 9,000 and 23,400 years 

in the homogeneous case, whereas the variation is between 14,200 and 18,900 years in 

the heterogeneous case. This difference suggests the importance of layer-scale 

uncertainty on controlling the overall pattern of tracer transport measured by travel time 

of cumulative mass. In the homogeneous case, the layer-scale parameter values vary 

randomly, rendering significant change in the overall pattern of tracer transport over 

different realizations. In the heterogeneous case, the layer-scale parameter values are the 

same or close to the calibrated values over different realizations, despite that the local-

scale parameter values vary randomly. Therefore, the overall pattern of tracer transport 

varies less significantly than in the homogeneous case. This indicates that, if one wants to 

reduce overall predictive uncertainty in tracer travel time, an effort should be dedicated to 

reducing uncertainty in layer-scale values by improving the 3-D model calibration of 

BSC (2004a), recalling that layer-scale values are obtained from inverse modeling. 

3.4 Discussions 

At a complicated field site such as the proposed YM geological repository, there 

are two other major sources of uncertainties: uncertainty in conceptual models of the 

tracer transport and uncertainty in model scenarios capturing all applicable features, 

events, and processes (FEPs) at the geological repository (BSC, 2003a). Recently, a 

multi-model averaging method has been advocated to assess the conceptual model 

uncertainty (Beven and Binley, 1992; Neuman 2003; Ye et al., 2004b, 2005a, 2008a, b; 

Poeter and Anderson, 2005; Beven, 2006; Refsgaard et al., 2006; Meyer et al., 2007). The 
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study of model scenarios mainly is focused on infiltration (Wu et al., 2002, 2004; 

Faybishenko, 2007), the major driving force of tracer transport to the groundwater. If the 

conceptual model uncertainty and model scenario uncertainty are considered, the 

predictive uncertainty will be significantly larger than that caused only by the parameter 

uncertainty. 

Similarly, if additional random parameters are considered, the predictive 

uncertainty also will increase. As described in Chapter 1, the random parameters are 

selected mainly based on the sensitivity analysis of Zhang et al. (2006). It would be more 

rigorous to conduct a comprehensive sensitivity analysis to determine which parameters 

are influential to predictive uncertainty. In addition, given that the modeling domain is 

delineated into multiple hydrogeologic layers, and local-scale heterogeneity contributes 

more to predictive uncertainty than layer-scale uncertainty, it will be interesting to use 

sensitivity analysis in determining the layers where local-scale heterogeneity should be 

considered and the layers where layer-scale uncertainty would be sufficient. The 

sensitivity analysis will be useful in optimizing limited computing resources and site 

characterization to reduce uncertainty. 

This research follows the traditional modeling scheme of separating a field-scale 

modeling domain into less heterogeneous hydrogeologic layers with fixed layer 

boundaries. Uncertainty in the layer boundaries is not considered in this study. If the 

uncertainty can be quantified statistically, it can be assessed using the framework of 

RDD, whereas it will be difficult to obtain reliable quantification of the uncertainty in 

layer boundaries for the complicated geological systems at the UZ of YM. Although this 

type of uncertainty is not considered, certain findings of this study (e.g., the relative 
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importance of layer-scale versus local-scale heterogeneities) are similar to those of the 

RDD method obtained from simulating saturated flow problems. 
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3.5 Conclusions 

This study leads to the following major conclusions: 

(1) Layer-scale uncertainty is more important than local-scale heterogeneity in 

simulating the trend and pattern of field observations of flow. Therefore, when 

simulating the unsaturated flow, layer-scale uncertainty should be honored by 

using the calibrated values obtained from the 3-D inverse modeling. 

(2) While local-scale heterogeneity slightly affects the mean predictions of 

percolation fluxes and tracer plumes, it significantly increases predictive 

uncertainty in these quantities, implying that more random and complicated flow 

paths are created by the local-scale heterogeneity. This is also true for the spatial 

distribution of the normalized cumulative mass arrival. 

(3) Local-scale heterogeneity increases mean travel time for the reactive and 

conservative tracers in early stage, but the effect gradually decreases over time. 

(4) Layer-scale uncertainty is also more important than local-scale heterogeneity in 

simulating the travel time of cumulative mass to the water table. If one wants to 

reduce overall predictive uncertainty in tracer travel time, an effort should be 

made to reduce the uncertainty in layer-scale values by improving the 3-D model 

calibration, recalling that layer-scale values are obtained from inverse modeling. 
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CHAPTER 4 

SENSITIVITY OF UNSATRUATED FLOW AND CONTAMINANT TRANSPORT 

AND EFFECTS OF INPUT PARAMETER CORRELATIONS 

The predictive uncertainties in flow and contaminant transport due to the 

parameter uncertainties in layer- and local-scale heterogeneities of hydraulic and 

transport parameters have been assessed in Chapter 2 and Chapter 3. The sensitivity 

analysis is an important tool to direct future field characterizations to reduce the 

parameter uncertainties, which also reduce the associated predictive uncertainties in flow 

and contaminant transport in UZ. This study presents an integrated sensitivity analysis 

approach to investigate the contributions of input parameter uncertainties to the flow and 

contaminant transport uncertainties with and without the consideration of parameter 

correlations in each layer and spatial variability within a layer in UZ. In addition, this 

study also examines the effects of parameter correlations on sensitivity of flow and 

contaminant transport in UZ by comparing the results with and without considering the 

parameter correlations. 

4.1 Introduction 

Uncertainty and sensitivity analysis of flow and contaminant transport due to 

parameter uncertainty in UZ is important for evaluating the possible effects of 

contaminant sources on the groundwater and environmental systems. The uncertainty 
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analysis is to determine how uncertainty in flow and contaminant transport is derived 

from the independent parameter uncertainty (Pan, 2005; Pan et al., 2009b; Ye et al., 

2007b; Zhou et al., 2003). The sensitivity analysis is to determine the contributions of 

individual parameter uncertainties to the flow and contaminant transport uncertainties 

(Helton, 1993; Saltelli et al., 1999). The sensitivity analysis is indispensable in (1) 

reducing computational burden of 3-D flow and transport modeling by disregarding 

insignificant parameters, (2) enabling one to utilize limited resources more efficiently on 

characterizing the most influential parameters in order to better understand the predictive 

uncertainties in flow and transport, and (3) helping design more effective sampling and 

monitoring network by improving the accuracy of flow and transport predictions. 

When only limited data are available to characterize the spatial variability of 

hydraulic parameters in UZ, it may affect the accuracy of parameter uncertainty 

characterization and cause the incorrect estimation of predictive uncertainties in flow and 

contaminant transport (Ye et al, 2007a). Due to the limited resources, it becomes critical 

to obtain the information about the relative importance of hydraulic parameters in 

particular layers and the specific locations within the layer in a complex hydrogeologic 

system. In this study, layer-scale sensitivity analysis refers to the assessment of relative 

importance of hydraulic parameters for each hydrogeologic layer; local-scale sensitivity 

analysis refers to the assessment in spatial variability within a layer. This study aims to 

obtain the relative importance of hydraulic parameters at both layer- and local- scales. In 

addition, the hydraulic parameters often exhibit correlations for typical field conditions, 

however, the assumption of parameter independence was adopted in most existing 

sensitivity analysis methods (Arnold et al., 2008; Fang et al., 2004; Sallaberry et al., 

83 



2008). Therefore, another purpose of this study is to incorporate the parameter 

correlations into the sensitivity analysis and investigate their effects on sensitivity results. 

Many methods of sensitivity analysis have been developed such as sampling-

based method, variance-based method, differential analysis, fast probability integration, 

response surface methodology, analysis of variance (ANOVA) (Helton, 1993; Helton, et 

al., 2005, 2006; Saltelli et al., 1999, 2000; Winter et al., 2006). Among them, the 

sampling-based (i.e., Monte Carlo) method has been widely applied due to its conceptual 

simplicity, full range coverage of parameter measurements, direct uncertainty results 

without using surrogate models, easy mapping between uncertainty inputs and analysis 

results (Helton, 1993). The sampling-based sensitivity analysis can be implemented using 

scatterplots, regression analysis, correlation and partial correlation between inputs and 

results, and stepwise regression analysis (Helton et al., 2005, 2006; Saltelli et al., 2000). 

Because the sampling-based method employs linear regression techniques, the rank 

transformation is a preferred way when the relationship between the parameter inputs and 

analysis results is nonlinear (Saltelli and Sobol, 1995). Comparison of those sampling-

based methods in a design of disposal facility example indicated that the standardized 

rank regression coefficient (SRRC) is the most robust and reliable estimator (Helton and 

Davis, 2002; Saltelli and Marivoet, 1990). The SRRC from regression analysis provides a 

measure of parameter importance on output uncertainty. When the input parameters are 

correlated, however, SRRC may give unreliable results on parameter importance (Helton 

et al, 2006). Given the fact that hydraulic parameters often exhibit correlations for typical 

field conditions, it is desirable to incorporate the parameter correlations into the 

sensitivity analysis and investigate the effects of parameter correlations on the results of 
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sensitivity analysis. Several studies have been conducted for sensitivity analysis with 

correlated input parameters (Fang et al., 2004; Helton et al., 1995, Jacques et al., 2006). 

Recently, Xu and Gertner (2008) proposed a regression-based method to divide the 

contributions of individual parameter uncertainties into the correlated and uncorrelated 

parts to the output uncertainties. The contributions of input parameter uncertainties to 

flow and transport uncertainties can be estimated by the total partial variances of the 

output results. 

The study site is the UZ of YM, which has been proposed as the high-level 

radioactive waste repository (BSC, 2004a). The UZ of YM is a complex system in 

geology and hydrogeology subject to significant parameter uncertainty and other 

uncertainties (Pan et al., 2009a, b; Ye et al., 2007b; Zhang et al., 2006; Zhou et al., 2003). 

The available measurements of hydraulic parameters are limited in each hydrogeologic 

layer of the UZ, especially for permeability and water retention parameters. 

The sensitivity of the flow and tracer transport at YM has been investigated by 

several studies. Zhang et al. (2006) examined the sensitivity of unsaturated flow and 

tracer transport with only one varied input parameter within one standard deviation at a 

time in the UZ of YM. The sensitivity analysis has been conducted using the sampling-

based method in saturated zone processes with the assumption of parameter 

independence (Sallaberry et al., 2008; Arnold et al., 2008). This study is focused on the 

global sensitivity analysis of individual parameter uncertainties on the predictive 

uncertainties of flow and tracer transport in the UZ of YM. Although the parameter 

correlations exist in a real field, capturing the correlations is difficult when the site 

measurements are sparse. This study employs an integrated approach to evaluate the 
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contributions of individual parameters to flow and transport uncertainties with and 

without parameter correlations at layer- and local- scales. The results can provide useful 

information in these two scales in directing future data sampling for uncertainty 

reductions. The sensitivity analysis in this study is evaluated based on the results of 

uncertainty assessment due to the uncertainties of hydraulic and transport parameters 

(i.e., permeability, porosity, van Genuchten a and n, and sorption coefficient of the 

reactive tracer) in the UZ of YM in Pan et al. (2009b) (i.e., Chapter 2). 

Another objective of this study is to evaluate the relative importance of hydraulic 

parameters on predictive uncertainty with correlated input parameters using regression-

based method proposed by Xu and Gertner (2008) and to investigate the effects of 

parameter correlations on the sensitivity analysis results. Understanding the effects of 

parameter correlations is also important for directing further data collection and 

predictive uncertainty reductions. The parameter correlation effects have not been 

examined in previous sensitivity analysis of flow and transport (e.g., Arnold et al., 2008; 

Boateng and Cawlfield, 1999; Mertens, et al., 2005; Sallaberry et al., 2008). The effects 

of parameter correlations on sensitivity of flow and transport in the UZ of YM can be 

evaluated by comparing sensitivity results with and without consideration of parameter 

correlations. 

4.2 Sampling-based Sensitivity Analysis 

This study presents an integrated approach to conduct the sensitivity of flow and 

contaminant transport with and without considering the input parameter correlations. The 

approach is based on the sampling-based approach (i.e, regression analysis for 
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independent parameters, and regression-based method proposed by Xu and Gertner 

(2008) for correlated parameters). The procedures of sampling-based approach can be 

described as follows (Helton, 1993; Helton et al., 2005): 

(1) Determine the distributions and ranges of individual parameters based on the site 

measurements; 

(2) Generate the random field of each parameter based on the specified distributions 

and ranges estimated in step (1); 

(3) Solve the flow and transport models using Monte Carlo simulations for multiple 

realizations; 

(4) Evaluate the uncertainties of output parameters (e.g., saturation, water potential, 

percolation flux, mass fraction and travel time of tracer transport etc.); 

(5) Conduct the sensitivity analysis to rank the relative importance of the individual 

parameters to the uncertainties of output variables. 

4.2.1 Regression Analysis 

The regression analysis is an effective method to measure the contributions of 

individual input parameters to the output uncertainties when the input parameters are 

independent. 

The regression model between the output results (e.g., percolation flux and 

cumulative mass arriving at water table; m = 200 , number of realizations) and input 

parameters (i.e., permeability, porosity, van Genuchten a and n, and sorption coefficient 

of the reactive tracer; k = 5 , number of input parameters) for each block can be 

constructed as (Helton, 1993): 

9i=bo + yEbjxij+£i' i = U , - / n , 7 = 1 ,2 , -* (4.1) 
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where: yt is the estimation of output yt from regression model; b0,bjare the regression 

coefficients of parameter j ; ei is the error term. 

The total variance (V) of output results can be calculated as: 

1 m 

V = var(v) = T ( ^ - y ) 2 (4.2) 
m-1 i=l 

where: y is the mean of output results. 

The estimated variance (V) of output results by regression model can be written 

as (Helton et al., 2006; Xu and Gertner, 2008): 

1 m 

V = vai(y) = -Yth-yf (4.3) 
m - 1 ,=1 

If the input parameters are independent, Eq. (4.3) can be formulated by taking the 

variance on both sides of Eq. (4.1): 
k 

V = var(j) = ]T b) var(*.) (4.4) 
7=1 

The coefficient of determination (R2) is usually applied to measure the extent of 

regression model successfully accounting for the output uncertainty. It can be expressed 

as (Helton, 1993; Helton, et al., 2006; Saltelli et al., 2000): 

9 V 
R2=- (4.5) 

V 

The regression coefficients (bj) in Eq. (4.1) are unknown and fixed for all 

realizations and can be solved using the LS regression method (Helton, 1993; Saltelli et 

al., 2000). Due to the different units of input parameters and output results, the regression 

coefficient ( bj ) is not suitable to measure the parameter importance in output 
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uncertainties. The standardized regression model can be reformulated as (Helton et al., 

2006; Saltelli et al., 2000): 

(y-y)/s = YibjSj /s)(Xj -x})ls} (4.6) 

where x., Sj are the mean and standard deviation of the input parameter xf, y, s are the 

mean and standard deviation of the output results. The coefficient bjSj/s , called 

standardized regression coefficient (SRC), is used as a measure of parameter importance. 

The parameter with largest SRC contributes the most to the output uncertainties. By 

combining Eqs. (4.4), (4.5), and (4.6), the R2 can be expressed as: 

R2 =^SRC2 • (4.7) 

The SRC2 represents the fractional contributions of parameter j to the output variances. 

If the relationships between the input parameters and output results are nonlinear, 

the regression analysis discussed above may not provide accurate estimations because it 

is based on the linear relationships between the input parameters and the output variables. 

The problem can be solved using the rank regression, which is a method similar to the 

regression analysis. The only difference is that the data used in the usual regression are 

transformed to their corresponding ranks. Correspondingly, the resulting regression 

coefficients are called the standardized rank regression coefficients (SRRC). 

4.2.2 Regression-based Method with Correlated Parameters 

As pointed out by Saltelli et al. (2000) and Helton et al. (2006), the SRC and 

SRRC may be misleading in measuring the parameter importance if the input parameters 

are correlated. A regression-based approach was proposed by Xu and Gertner (2008) to 
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decompose the output variances into the partial variances contributed by the correlated 

and uncorrelated portions when the input parameters are correlated. Because the 

regression-based method proposed by Xu and Gartner (2008) is also based on the linear 

relationships between the input parameters and the output variables, the original values 

are also transformed to their corresponding ranks in this study. 

The partial variance (V ;) contributed by parameter x. is divided into partial 

variance contributed by uncorrelated and correlated variances of parameter x. , 

respectively. The partial variance by parameter x. can be written as (Xu and Gertner, 

2008): 

Vj =V</+VJC (4.8) 

where: Vf is partial variance contributed by uncorrelated variance of parameter JC. ; Vf is 

partial variance contributed by correlated variance of parameter x.. 

The partial variance of y contributed by *. can be estimated by the regression 

analysis (Xu and Gertner, 2008): 

1 m 

y = 0o+ajXj+£ and V,= -^Z(yt-y)2 (4-9) 

The partial variance contributed by the uncorrelated variance of x. can be derived 

from the following regression models (Xu and Gertner, 2008): 

1 m 

f=r0 + rjz+£ a n d V / = -%<$?-y)2 (4.10) 

k 

where: £. = Xj —Xj and Xj =cQ+ ^cpxp . 
P=\ 
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The partial variance contributed by the variation of Xj correlated with other 

parameters can be calculated using Eq. (4.8): 

V}
c =Vj -Vf (4.11) 

The sensitivity indices (ratios of partial variance and total variance, V) of each 

parameter can be described as: 

V Vu Vc 

Sj=^; S1; = - 4 - ; S,c = -4 - (4.12) 
J V V V 

where: Sj, S^, and 5y
c are total, uncorrected, and correlated partial sensitivity indices 

of parameter JC .. 

If the relationship between the input parameters and output results is linear, 

Vj7 can be represented as the conditional variance of one parameter given another 

parameter: 

V" = (1 - r2)b] var(xy) (4.13) 

where: r is the parameter correlation between two the input parameters. 

Combine Eq. (4.7) with Eq. (4.12), the relationship between the SRRC and 

uncorrected S of parameter Xj can be described as: 

Su. =(l-r2)SRRCj2 (4.14) 

4.3 Sensitivity Analysis of Flow and Contaminant Transport 

The permeability and water retention parameters (van Genuchten a and n) are 

treated as homogenous random parameters in flow simulation and two other uncertain 

parameters (porosity and Kd of Np) are incorporated into transport simulation. The 
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regression models are constructed to estimate the sensitivity coefficients (i.e., SRRC2 for 

independent parameters, and S for correlated parameters) for each block. Then, the mean 

of SRRC or S over all blocks within a layer is calculated as the measure of parameter 

importance to the flow and transport uncertainties for the layer. The standard deviation of 

SRRC or S is used to measure the spatial variation of sensitivity coefficients within a 

layer. 

4.3.1 S ensitivity of Uns aturated Flow 

4.3.1.1 Sensitivity of Unsaturated Flow with Independent Parameters 

The R is firstly used to examine the reliability of the regression analysis. The R 

has the values larger than 0.8 in more than 80% blocks of the domain (Figures 4.1a and 

4.2d), indicating that the regression analysis is generally reliable. 

Figure 4.1 shows the mean and standard deviation of SRRC2 for the permeability, 

van Genuchten a, and n parameters to the percolation flux uncertainty for each 

hydrogeologic layer. Note that SRRC value for a parameter represents the relative 

fractional contribution to the output variance from this parameter's uncertainty. The R2 

value for each layer is equal to the summation of SRRC2 values for the three hydraulic 

parameters, validating Eq. (4.7). From the comparison of mean SRRC2 values for the 

three parameters at each layer, the mean SRRC2 values for the permeability are the 

largest for most layers, indicating the parameter uncertainty in permeability has the 

largest contribution to the percolation flux uncertainty for those layers. The contributions 

of parameter uncertainty in permeability to the flux uncertainty vary with the layers from 

20% to 80%. The mean SRRC2 values of van Genuchten a are the second largest in most 

layers in the range of 0 - 40% contributions to the flux uncertainty for different layers. 
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The mean of SRRCZ for van Genuchten n parameter is close to zero for all layers, 

indicating the limited contributions of its uncertainty to the flux uncertainty. The order of 

parameter importance to flux uncertainty is generally permeability, van Genchten a and n 

from the most to least important parameters for most layers. This is partly caused by the 

values of parameter uncertainties in these parameters (Figure 5 in Ye et al. (2007b) for 

permeability and Table 2.1 for water retention parameters). The standard deviation of 

9 9 

SRRC values for each layer (Figure 4.1b) shows the large standard deviation of SRRC 

values for permeability and van Genuchten a, indicating the high variability of SRRC2 

values within the layers. This is partly due to the percolation flux uncertainty is related to 

not only the input parameter uncertainty at its location but also the parameters at other 

locations, especially those above it. Therefore, it is also necessary to investigate the 

spatial distribution of the sensitivity coefficients on unsaturated flow uncertainty within 

each layer. 

Figure 4.2 describes the spatial distribution of SRRC values for the permeability, 

van Genuchten a, and n parameters on the percolation flux uncertainty and R of 

regression analysis at the proposed repository horizon. Figure 4.3 does the same at the 

water table. The large R values (Figure 4.2d) indicate reliable regression analysis in 

general. The SRRC values for the permeability are largest in the east and west parts of 

model domain and are approximately equal or smaller than the ones for van Genuchten a 

in the repository area (blue dots in Figure 1.2). The SRRC2 values of van Genuchten n are 

close to zero in the entire domain. It indicates the flux uncertainty at the repository 

horizon is largely contributed by the parameter uncertainties in permeability and van 

Genuchten a which is consistent with the results of layer-scale results (Figure 4.1a). The 
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Figure 4.1 The mean and standard deviation of SRRC values of permeability, van 
Genuchten a, and n parameters on percolation flux uncertainty for each layer. 

similar observation can also be made for the water table but the SRRC values for the 

permeability are much larger than the ones for the van Genuchten a except in the south­

west corner of model domain, indicating the dominant contributions of permeability to 

the flux uncertainty at the water table. The R2 values at the water table are relatively 

smaller than the ones at the repository horizon in the central-west and south of the model 

domain. The reason is that the flux uncertainty at the water table is partly from the 
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uncertainty of those blocks above the water table and the regression analysis only 

considers the uncertainty at local locations. The observations of sensitivity analysis in 

spatial distribution show the similar results with the ones obtained for each layer. While 

the layer-scale results can point out the parameter importance at each layer, the local-

scale results can provide local signature of parameter importance within a layer for 

directing future field characterizations. 
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Figure 4.2 The SRRC values of permeability (a), van Genuchten a (b) and n (c) 
parameters on percolation flux uncertainty and R2 values of regression 
analysis (d) at repository horizon. 
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Figure 4.3 The SRRC values of permeability (a), van Genuchten a (b) and n (c) 
parameters on percolation flux uncertainty and R2 of the regression analysis 
(d) at the water table. 

4.3.1.2 Sensitivity of Unsaturated Flow with Correlated Parameters 

As discussed in Section 4.2, the total, uncorrelated, and correlated S can be 

estimated to measure the contributions of input parameter uncertainties to the output 

uncertainties. Two pairs of parameter correlations are applied in this study: 1) the 

correlation between the permeability and porosity, and 2) the correlation between the van 

Genuchten a and n. Due to the paucity of measurements, the correlations among other 

parameters are not considered. The Spearman rank correlation was used to estimate the 
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parameter correlations for each hydrogeologic layer (Pan, 2005; Ye et al., 2007b; Pan et 

al. 2009b). The range of the absolute rank correlations between permeability and porosity 

for all layers is from 0.03 to 0.71 (Figure 4.9b). The absolute rank correlations between 

van Genuchten a and n are large than 0.8 for most layers (Figure 4.4b). 

Figure 4.4 shows the mean of uncorrelated, correlated, total S, and uncorrelated S 

estimated by Eq. (4.14) for the permeability, van Genuchten a and n parameters on 

percolation flux uncertainty for each layer. The correlation between van Genuchten a and 

n parameters for each layer is also plotted in Figure 4.4b. The partial variance contributed 

by uncorrelated variance of permeability is dominant for all layers except the TLL layer 

of TSw unit and BF2 layer of CFu unit due to the close to zero correlations between van 

Genuchten a and n in the two layers and the large correlations in other layers (Figure 

4.4b). Based on Eq. (4.14), the uncorrelated S (Figure 4.4d) can be estimated from the 

values of SRRC and parameter correlations if the relationship between the input 

parameters and output results is linear. The comparison of Figure 4.4a and 4.4d shows 

that the mean uncorrelated S values are approximately same for some layers, indicating 

the relationship between the input parameter and output results is approximately linear in 

the layers. But they are quite different in several layers where the correlations between 

van Genuchten a and n are small, indicating that the sensitivity analysis with independent 

parameters cannot be as a special case of the one with correlated parameters. The mean 

correlated S values for van Genuchten a is almost the same as the ones for van 

Genuchten n (Figure 4.4b) due to the correlations between the parameters. The 

permeability has the smallest correlated S (close to zero) due to the assumption of no 

correlations between permeability and van Gencuten a or n parameters. The mean total S 
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(Figure 4.4c) is used to rank the relative importance of parameter uncertainty to the flux 

uncertainty when the input parameters are correlated. Figure 4.4c shows the permeability 

still is the most important parameter for most layers and the van Genuchten a and n have 

more contributions to the flux uncertainty in several layers, indicating the increased 

contributions of van Genuchten n to the flux uncertainty due to the consideration of 

parameter correlations. 
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Figure 4.4 The S of permeability, van Genuchten a, and n parameters for each layer, (a) 
mean of uncorrelated S, (b) mean of correlated S. 
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Figure 4.4 (Cont.) The S of permeability, van Genuchten a, and n parameters for each 
layer, (c) mean of total S, and (d) mean of uncorrelated S estimated 
by Eq. (4.14). 

Figure 4.5 depicts the spatial distribution of total S for the permeability, van 

Genucten a and n on percolation flux uncertainty at the water table. The total partial 

variance of permeability is the largest for almost the entire domain but the west portion, 

where the van Genuchten a has more contribution to the flux uncertainty. The van 

Genuchten n has relatively large contributions in the south part of Solitario Canyon Fault 

(Figure 1.2) with large total S for van Genuchten a in the area, due to the correlations 

between the two parameters. 

99 



237000 

£236000 

w 
z 235000 
4> 

§234000 

rd
 

g 233000 
O 
^ 232000 
§ 
«• 231000 

230000 

gigggEk (a) 

i ^ ^ ^ ^ ^ ^ ^ ^ 

M~T~HrTP*+-4rVV 

S 

1.0 
09 
0.8 
0./ 
U.b 
0.5 
0.4 
0.3 
0.2 
0.1 
nn 

170000 172000 174000 
Nevada Coordinate E-W (m) 

237000 • — . 

E 236000 
in 
z 235000 

£ 234000 

rd
 

§ 233000 
O 
« 232000 
re 
> « 231000 

230000 

Nc 

; 

'-
• 

7 

. 
7 

Milk (C) 

t^CESeSl-tffieSpiswM/ 

s C Q ^ ^ ^ ^ & ^ f l ^ K / 

M—r Hnl^+^tv^v' ' 

170000 172000 174 
sva da Coordinate E -W( 

S 

— 
— 
— 

— 

1.0 
0 9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
n n 

'••'"' 

000 
Tl) 

237000 

? 2360001: 

z 235000 

£ 234000 

I 
g 233000 
<J 
« 232000 
a 
I 231000 

230000 

. 

1
1 

I 
I 

I 
1

1 
I 

I 
1 

1
1 

I 
I 

I 
1

1 
1

1 
I 

1
1 

1 
1 

I 
1 

I 
1 

1 

; 
' • 

(b) 

170000 172000 174000 

Nevada Coordinate E-W (m) 

1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 

Figure 4.5 The total S of permeability (a), van Genuchten a (b), and n (c) parameters on 
percolation flux uncertainty at the water table. 

4.3.1.3 Effect of Parameter Correlation on Sensitivity of Unsaturated Flow 

The effects of parameter correlations on sensitivity analysis are examined by 

comparing the sensitivity results with and without the consideration of parameter 

correlations at both layer and local scales discussed above. 

The mean values of correlated S for van Genuchten a and n have the same trend 

as the absolute values of the correlations between van Genuchten a and n for all layers 

(Figure 4.4b), indicating that the partial variances contributed by the correlated input 

parameters largely depend the parameter correlations. The comparison of the mean 
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SRRC2 (Figure 4.1a) and mean total S (Figure 4.4c) shows the SRRC2 values are less 

than the total S for the permeability in most layers but reverse is true for the van 

Genuchten n parameter, indicating that the importance of permeability decreases and the 

van Genuchten n becomes more important when the parameter correlations are 

considered. 

4.3.2 Sensitivity of Contaminant Transport 

Two variables are the focus of contaminant transport sensitivity analysis in this 

study: normalized cumulative mass arrival at each block and cumulative mass travel time. 

The normalized cumulative mass arrival at each block is an important variable in 

evaluating the potential locations of high-radionuclide concentration and migration. The 

cumulative mass travel time is the radionuclide travel time from the proposed repository 

horizon to the water table, which represents a measure of the overall tracer transport. The 

five random parameters (permeability, porosity, van Genuchten a and n, and Kd of 237Np) 

are used in investigating their contributions to the contaminant transport uncertainty. 

4.3.2.1 Sensitivity of Contaminant Transport with Independent Parameters 

Figure 4.6 depicts the mean and standard deviation of SRRC values for the five 

random parameters on the normalized cumulative mass arrival uncertainty of Np after 

1,000,000 years in the layers below the repository horizon. The mean SRRC2 values for 

the permeability are larger than the ones for other parameters in most layers. As noted 

earlier that the permeability also contributes the most to flow uncertainty, the results 

illustrate that the flow uncertainty also translates to uncertainty in tracer transport. The 

Kd of Np has the second largest contributions to the tracer transport uncertainties in the 

layers with zeolitic and devitrified tuffs but is the smallest in the layers with vitric tuff, 
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due to the relatively small parameter uncertainty in Kd for vitric tuff and large parameter 

uncertainty for zeolitic and devitrified tuffs (BSC, 2004b). In general, the parameter 

uncertainty in permeability contributes about 30% to the tracer transport uncertainties for 

each layer and the contributions of other parameters vary with layers from close to zero 

to about 20%, due to the varied parameter uncertainties for different layers. Figure 4.6b 

shows the relative large standard deviation of SRRC values for the parameters, 

indicating the large variability of SRRC2 within a layer. 
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Figure 4.6 The mean and standard deviation of SRRC values of permeability, porosity, 
van Genuchten a, and n, and sorption coefficient (Kd) on normalized 
cumulative mass arrival uncertainty of 237Np after 1,000,000 years in the 
layers below the repository. 
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Figure 4.7 shows the spatial distribution of SRRC2 values for the five random 

parameters on the normalized cumulative mass arrival uncertainty of 237Np at all blocks 

of the water table after 1,000,000 years. The SRRC2 values for the permeability is the 

largest in the footprint of the potential repository and east of model domain and the van 

Genuchten a has more contributions than others in the south of model domain. This is 

consistent with the sensitivity results of flow, indicating the tracer transport uncertainty 

largely comes from the flow uncertainty. The SRRC values for the Kd parameter are the 

largest only in the corner and the contributions of the van Genuchten n and porosity to the 

transport uncertainty are small in the entire model domain. The results can clearly give 

the spatial distribution of parameter importance to provide the detail information for the 

future data sampling within a layer. For example, the data collection for permeability 

should be taken in the footprint of potential repository and east of model domain to 

reduce its parameter uncertainty and associated predictive uncertainty in tracer transport 

inUZ. 

Figure 4.8 shows the SRRC2 values of the five uncertain parameters for travel 

time uncertainty of Np. At early stage, the permeability and van Genuchten a have 

more contributions to the uncertainty in overall tracer transport, similar to the flow 

scenario. This observation may be explained in part by the fact that for tracer's early 

arrival at the water table is mainly along the flow paths with large permeability. As time 

evolves, the porosity starts to make impact on the uncertainty in the overall tracer 

transport. After 10,000 years, the SRRC values for the sorption coefficient are larger 

than other parameters. This is because 80% of mass has arrived at the water table if the 

tracer is conservative without sorption at 10,000 years (Pan et al., 2009b) and the sorption 
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ure 4.7 The SRRC values of permeability (a), porosity (b), van Genuchten a (c) and n 
(d), and Kd (e) on normalized cumulative mass arrival uncertainty of 
each block of the water table after 1,000,000 years. 
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coefficient is the most important parameter on the overall tracer transport uncertainty 

after 10,000 years. Because the travel time uncertainty (Figure 4.8) is calculated by the 

summation of the normalized mass arrival over all blocks at the water table, on average, 

its uncertainty is one to two orders of magnitude smaller than that of the normalized 

cumulative mass arrival at each block (Figure 4.7). Therefore, the sensitivity analysis 

results for travel time uncertainty (Figure 4.8) are quite different from the ones for mass 

arrival uncertainty at each block (Figure 4.7). 
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Figure 4.8 The SRRC2 values of permeability, porosity, van Genuchten a and n, and Kd 

on travel time uncertainty of 237Np. 
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4.3.2.2 Sensitivity of Contaminant Transport with Correlated Parameters 

Figure 4.9 shows the mean of (a) uncorrected, (b) correlated, and (c) total S, and 

(d) uncorrected S estimated by Eq. (4.14) for permeability, porosity, van Genuchten a 

and n, and Kd in the layers below the proposed repository horizon. The correlation 

between permeability and porosity for each layer is also plotted in Figure 4.9b. The mean 

values of uncorrelated S (Figure 4.9a) show that the permeability has the largest 

contributions on transport uncertainty in most layers, which is similar to the results with 

the independent parameters. The significant differences between the uncorrelated S in 

Figure 4.9a and Figure 4.9d indicate that the regression model estimated from 

independent input parameters cannot represent the relationship when the parameters are 

correlated. Figure 4.9b shows the mean of correlated S for permeability and van 

Genuchten a are almost the same as the ones of porosity and van Genuchten n, 

respectively. The partial variances contributed by the correlated parameters to transport 

uncertainty have the same trends as the values of the parameter correlations. The mean of 

correlated S is zero for Kd in all layers, due to no correlations considered between the Kd 

and other parameters in this study. The mean of total S (Figure 4.9c) can be used to rank 

the relative importance of the parameters for each layer. The permeability is the most 

important parameter with around 20% contributions to the transport uncertainty for most 

layers. The relative importance for other parameters varies largely with a range of 0 -

20% contributions to transport uncertainty for different layers. The parameter uncertainty 

in Kd has the second largest contributions to transport uncertainty in the layers of 

devitrified and zeolitic tuffs and the smallest ones in the layers of vitric tuff, which is the 

same as the results without considering parameter correlations. 
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Figure 4.10 describes the spatial distribution of total S of the five uncertain 

parameters for the normalized cumulative mass arrival uncertainty of 237Np at all blocks 

of the water table after 1,000,000 years. The parameter uncertainties in permeability, van 

Genuchten a, and Kd parameters show the similar contributions to the transport 

uncertainty with the independent parameters. The van Genuchten a and n parameters are 

the most importance parameters in the southern portion. The porosity has relatively large 

contributions to transport uncertainty in the north part of Ghost Dance Fault (Figure 1.2). 

Figure 4.11 shows the total (solid line), uncorrected (dash line), and correlated 

(dashdot line) S for the five uncertain parameters on the travel time uncertainty of 237Np. 

At the early stage, the van Genuchten a and n parameters have the largest total S on 

overall tracer uncertainty due to their large contributions from the correlated partial 

variances of the parameters. As time evolves, the porosity and permeability become the 

most important parameters and the van Genuchten a and n parameters become 

insignificant. The sorption coefficient becomes the dominant parameter on the 

uncertainty of overall tracer transport at the water table after 10,000 years. 

4.3.2.3 Effect of Parameter Correlation on Sensitivity of Contaminant Transport 

Figure 4.9b shows the relatively large mean values of correlated S for the 

parameters in several layers, due to the high parameter correlations in these layers (Figure 

4.4b and 4.9b). It indicates the partial variances contributed by the correlated parameters 

largely depend on the values of their correlations. The comparison of parameter 

contributions to the transport uncertainties with (Figure 4.9c) and without (Figure 4.6a) 

parameter correlations shows the parameter Kd has the same contributions for both case 

because the Kd is not correlated with other parameters in this study. The contributions of 
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van Genuchten n significantly increase with the decreased importance of van Genuchten 

a after the parameter correlation are taken into account, while the importance of porosity 

slightly increases with the slightly decreased contributions of permeability to the 

transport uncertainty. This is due to the large correlations between van Genuchten a and n 

(Figure 4.4b) and relatively small ones between permeability and porosity (Figure 4.9b) 

in most layers. The parameter correlations could have significant effects on the sensitivity 

results and extent of the effects largely depends on the values of the parameter 

correlations. Comparison of the spatial distribution of total S with (Figure 4.10) and 

without (Figure 4.8) parameter correlations shows that the van Genuchten n parameter 

has significant contributions in the south part and the porosity becomes more important in 

the north part of the fault after incorporating the parameter correlations, which is 

consistent with conclusions for the layer-scale results. 

The permeability and van Genuchten a are the two most important parameters on 

the travel time uncertainty at the water table at early stage when the parameter 

correlations are not considered. However, the van Genuchten n parameter becomes more 

important than the other parameters when the parameter correlations are considered due 

to large contributions from the correlated partial variances (Figure 4.10). The parameter 

importance on the overall tracer transport uncertainty has the same rankings at the early 

stage. However, the correlated contributions for permeability and porosity account for 

large portions of their total partial variances when the parameter correlations are 

considered, indicating the effect of parameter correlations is an important factor on 

sensitivity results and should be considered. 
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Figure 4.9 The S values of permeability, porosity, van Genuchten a, and n, and Kd in the 
layers below the repository horizon. 
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uncertainty of 23 Np. 

4.4 Conclusions 

This study presented an integrated approach to evaluate the sensitivity of the 

unsaturated flow and contaminant transport uncertainties with and without considering 

parameter correlations. The contributions of input parameter uncertainties to the flow and 

transport uncertainties were investigated at both layer and local scales. The obtained 

insights can provide meaningful information on the sampling and monitoring network to 
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reduce the parameter uncertainties and associated predictive uncertainties in flow and 

contaminant transport in UZ. 

With the independent input parameters, the uncertainty in the permeability has the 

largest contributions to the percolation flux uncertainty. The van Genuchten a is the 

second important parameter with the limited contributions from the van Genuchten n to 

the flux uncertainty. The permeability is also the most important parameter to the 

uncertainty in the normalized cumulative mass arrival at each block of the water table. 

The sorption coefficient of the reactive tracer is the second important parameter in the 

layers of devitrified and zeolitic tuffs and has the smallest contributions in the layers of 

vitric tuff. For the overall tracer transport uncertainty, the uncertainties in permeability 

and van Genuchten a have the most contributions to the uncertainty in total cumulative 

mass arrival at the water table at the early stage. As time evolves, the uncertainty in 

porosity becomes more important. As the transport progresses further, the sorption 

coefficient of the reactive tracer becomes the dominant parameter in contributing to the 

uncertainty in overall tracer transport. 

When the input parameters are correlated, the uncertainty in van Genuchten n has 

more contributions to the percolation flux uncertainty, mainly due to its high correlation 

with the van Genuchten a. The van Genuchten n and porosity also become more 

important on the transport uncertainty when the parameter correlations are considered 

due to their correlations with the van Genuchten a and permeability, respectively. The 

importance of sorption coefficient to the tracer transport uncertainty has not changed 

when the parameter correlations are considered, due to the assumption of zero 

correlations between the sorption coefficient and other hydraulic parameters. The results 
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illustrate that parameter correlations may have significant effects on the sensitivity of 

unsaturated flow and contaminant transport, which should be included in the uncertainty 

and sensitivity analysis of flow and transport in the UZ. 
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CHAPTER 5 

AN ESTIMATION OF SPATIAL CORRELATION STRUCTURES OF HYDRAULIC 

PARAMETERS IN HETEROGENEOUS POROUS MEDIA 

Improving the heterogeneity characterizations is critical to reduce the predictive 

uncertainties in flow and transport in heterogeneous UZ (Kitanidis and Lane, 1985). 

Because of the paucity of hydraulic parameter field measurements, it is difficult to 

accurately estimate their spatial variability, which is typically estimated by a traditional 

geostatistical approach such as a sample variogram. Therefore, there exist needs for 

methods to improve the estimation of spatial correlation structures of hydraulic 

parameters when the field measurements are sparse. This study tries to couple the 

ASMLCV with a Bayesian updating method to estimate the spatial correlation structures 

of hydraulic parameters to improve the local-scale heterogeneity characterizations of 

hydraulic parameters. 

5.1 Introduction 

Accuracy of flow and transport predictions depends, in part, on the closeness 

between the generated hydraulic parameter fields and the real fields. The heterogeneity 

and spatial variability of the hydraulic parameters in heterogeneous media 
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play an important role in generating the heterogeneous fields representing the variability 

of real parameter fields (Pan et al., 2009a, b; Zhou et al., 2003). The spatial correlation 

structures of variogram models characterize the extent of spatial variability and 

heterogeneities of hydraulic parameters. However, it is difficult, if not impossible, to 

estimate the spatial correlation structures of hydraulic parameters from the empirical and 

fitted variograms because of sparse data in most cases, especially for saturated hydraulic 

conductivity and water retention parameters. Therefore, it is often desirable to estimate 

spatial correlation structures of hydraulic parameters based on sparse field measurements. 

The study of spatial correlation structure estimation for hydraulic parameters can improve 

the accuracy of heterogeneous parameter fields, facilitate the design of data sampling and 

monitoring networks, and better understand the effects of spatial correlation structures on 

the flow and contaminant transport predictions in heterogeneous media (Kitanidis and 

Lane, 1985). 

The traditional geostatistical approach (i.e., sample variogram) is widely used to 

estimate the spatial correlation structures of hydraulic parameters (Bardossy and 

Lehmann, 1998; Kennedy and Woodbury, 2002; Pan et al., 2009a; Ritzi et al., 1994; 

Sminchak et al., 1996; Viswanathan et al., 2003; Yates and Warrick, 1987; Ye et al., 

2005b, 2007a; Zhou et al., 2003). Fitting a sample variogram using variogram models is a 

powerful tool for spatial correlation structure estimation with a large set of field 

measurements. However, it is difficult to obtain the correlation structure using a sample 

variogram, especially for horizontal correlation scale, when the field data are sparse. 

Many previous studies assumed that the horizontal correlation scales of hydraulic 

parameters were the same as those of other parameters (e.g., soil texture parameters, 
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initial moisture content, and porosity) with enough field measurements, whose horizontal 

correlation structures can be directly obtained from sample variogram based on the field 

data (Viswanathan et al., 2003; Ye et al., 2005b, 2007a; Zhou et al., 2003). Pan et al. 

(2009a) assumed that the horizontal correlation scales in one layer were the same as those 

of other layers in the same geologic unit. Other studies did not consider the anisotropy of 

spatial data and only the correlation scales in omni direction were determined from 

sample variogram (Kennedy and Woodbury, 2002; Yates and Warrick, 1987). 

Many approaches have been proposed to estimate the spatial correlation structures 

of hydraulic parameters such as LS, ML estimation, RML estimation, ASMLCV, and a 

Bayesian inference approach (Dietrich and Osborne, 1991; Kitanidis an Lane, 1985; 

Kitanidis, 1986; Pardo-Igiizquiz, 1998; 1999; Samper and Neuman, 1989a, b, c). Among 

them, the ML method is widely applied in the parameter estimation. The ML parameter 

estimates are unbiased and minimum-variance with the assumption of data following 

multivariate Gaussian distribution (Kitanidis and Lane, 1985). The computational cost of 

ML estimation can be reduced via RML method (Dietrich and Osborne, 1991). Samper 

and Neuman (1989a) proposed the ASMLCV method to estimate the spatial covariance 

structure based on a ML approach with the cross-validation errors following Gaussian 

distribution. The ASMLCV approach can not only provide the quality information of the 

parameter estimation but also select the best covariance function by model structure 

identification criteria (Samper and Neuman, 1989a). However, the prior information is 

not included in the ML approaches and it may produce unreliable results with only few 

data available (Pardo-Igiizquiz, 1999). The Bayesian inference approach was proposed to 
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infer the posterior probability of spatial correlation structure from its prior probability 

through the likelihood function estimated by the ML approach (Pardo-Iguzquiz, 1999). 

This study proposes a method to couple the ASMLCV with the Bayesian updating 

method to estimate the spatial correlation structures of hydraulic parameters when the 

field measurements are sparse. The Bayesian updating methods were introduced to 

update the statistics of the prior PDFs of hydraulic parameters based on the Bayes' 

theorem (Meyer et al., 1997; Vrugt and Bouthen, 2002; Ye et al., 2005a). The Bayesian 

updating method cannot change the types of prior PDFs and can only update the moments 

of prior PDF to yield the posterior PDF with the same type of distribution as the prior 

PDF. The ASMLCV approach was based on the ML estimation with the assumption of 

cross-validation errors following a Gaussian distribution without the requirement of prior 

information (Samper and Neuman, 1989a, b). The ASMLCV approach not only measures 

the quality of parameter estimation but also can easily deal with noisy data (Samper and 

Neuman, 1989a). However, the prior information is not included in the ASMLCV 

approach. It may produce better results to incorporate all available prior information. This 

study seeks to couple the Bayesian updating method with ASMLCV to incorporate the 

available prior information and the site measurements of hydraulic parameters. The 

ASMLCV approach is used to estimate the likelihood function based on site 

measurements, while ML estimation is applied in the Bayesian inference approach 

(Pardo-Iguzquiz, 1999). The advantages of ASMLCV approach over ML estimation are 

highly efficient optimization, reduced computational cost, easily dealing with noisy data, 

and easy implementation via kriging. 
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Although the Bayesian updating method and ASMLCV approach were introduced 

decades ago, this study presents the first application of the coupled method of Bayesian 

updating and ASMLCV in vadose zone hydrology to estimate the spatial correlation 

structures of hydraulic parameters in heterogeneous media. The Sisson and Lu (S&L) 

injection site at Hanford Site in Washington State is selected as a case study to illustrate 

the approach. The site provides a good setting for illustrating and testing the coupling of 

Bayesian updating and ASMLCV. 70 data sets of soil hydraulic parameters are available 

from six boreholes with 53 of these data sets from three close boreholes in the study site. 

It is difficult to determine the spatial correlation structures of soil hydraulic parameters, 

especially in horizontal direction. 

This study is focused on the estimation of horizontal and vertical correlation 

scales because the correlation scale is the most important quantity in characterizing the 

spatial variability of hydraulic parameters (Bardossy and Lehmann, 1998). The field data 

of the soil hydraulic parameters (saturated hydraulic conductivity, van Genuchten a and 

n, saturated and residual water content) are firstly transformed and standardized to follow 

a standard normal distribution based on the results of normality test so that the sill of 

variogram model is 1.0. The prior probability of horizontal and vertical correlation scales 

are assumed to follow a triangular distribution and the minimum, most likely, and 

maximum values are inferred from literature, expert judgment, and previous studies in the 

study site or similar sites. Based on the transformed field data, the likelihood functions of 

horizontal and vertical correlation scales for each hydraulic parameter can be obtained 

using the ASMLCV approach. The prior probability is updated to yield posterior 

probability of the correlation scales through the likelihood functions. The means of the 
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posterior probability for horizontal and vertical correlation scales can be obtained and 

used as the inputs of subsequent heterogeneous parameter field generation via kriging. 

5.2 Study Site 

The S&L injection site originally designed by Sisson and Lu (1984) is within the 

200 east area of the USDOE Hanford Site in southeastern Washington State (Ward et al., 

2000). The plan view of the S&L injection site with well numbering scheme is plotted in 

Figure 5.1. The upper portion of the study site was formed during catastrophic glacial 

flooding and a thick sequence of flood sediments known as the Hanford formation were 

deposited during Pleistocene flooding (Ye et al., 2005b). The sediments are about 60 m 

deep in S&L injection site and mainly consist of sand with interstitial silt and silt beds 

(Ye et al., 2005b, 2007a). The lithostratigraphic cross section (B-B' in Figure 5.1) 

through the southeastern portion of the injection site is plotted in Figure 5.2. The study 

site mainly consists of sandy deposits with the stratified slightly silty in the middle of 

sand beds (Ye et al., 2005b) based on the cross section in Figure 5.2. 

Two field infiltration injection experiments were conducted in 1980 and 2000 to 

measure the moisture content distribution and about 1,376 measurements of initial 

moisture content were collect to surrogate the site heterogeneity (Ye et al., 2007a). In 

addition, there are 70 data sets of measurements for the soil hydraulic properties 

(saturated hydraulic conductivity, saturated and residual water content, van Genuchten a 

and n) from core samples in six boreholes (S-l, S-2, S-3, E-7, E-l, and A-7 in Figure 

5.1). The locations of 70 measurements plotted in Figure 5.3 show that 53 data are from 3 

close boreholes S-l, S-2, and S-3 with vertical distances less than 1 m. The descriptive 
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statistics of the data are tabulated in Table 5.1. The saturated hydraulic conductivities for 

four samples of silt are larger than 70 m/d and the van Genuchten n is 11.95 for one 

sample of silt, which are unrealistically high for silt. Therefore, the five values are 

identified as outliers and removed from the data sets. The sample sizes for saturated 

hydraulic conductivity and van Genuchten n parameter are 66, and 69 shown in Table 

5.1. The large standard deviations of the hydraulic data indicate the significant spatial 

variability of soil hydraulic parameters at the study site. 

Figure 5.1 Plan view of the Sisson and Lu (1984) injection site and well numbering 
scheme (modified from Ye et al., 2005b). 
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Figure 5.2 Lithostratigraphic corss section (B-B' shown in Figure 5.1) through the 
southeastern portion of the injection site (modified from Ye et al., 2005b). 
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Figure 5.3 Locations of field measurements at boreholes S-1, S-2, S-3, A-7, E-1, and E-7 
in the S&L injection site. 

Table 5.1 Descriptive statistics for soil hydraulic parameters. 

Hydraulic 
Parameters 
Ks (m/d) 

van Genuchten 
a (1/cm) 

van Genuchten 
n 

0s (%) 

0r (%) 

Mean 

13.704 

9.814 

2.379 

34.745 

3.091 

Standard 
Deviation 

13.863 

11.111 

1.177 

5.404 

1.337 

Minimum 

0.12 

0.43 

1.34 

21.78 

0.00 

Maximum 

51.05 

62.81 

6.05 

47.42 

6.72 

Sample 
Size (N) 

66 

70 

69 

70 

70 
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5.3 Bayesian Updating and ASMLCV Approach 

The Bayesian updating approach can estimate the spatial correlation scale without 

conducting sample variogram analysis, especially for horizontal correlation scale 

estimation with insufficient measurements. The spatial correlation scale is estimated 

using the Bayesian updating approach through the likelihood function of the correlation 

scale and known prior information. The prior distributions of the horizontal and vertical 

correlation scales are updated to yield the posterior distribution based on Bayes' theorem 

(Pardo-Iguzquiza, 1999): 

f(Mx)=Lq\X)fU) L(MX)fU) 5 
fix) \L(X\x)f(X)dX 

where: X is the spatial correlation scale; x are site measurements; f(X) is prior 

probability of X; L(X\x)is the likelihood function of X; andf(X\x) is the posterior 

probability of X. 

5.3.1 Identification of Parameter Distribution 

The field measurements are seldom adequate to describe the corresponding 

parameter distribution without appropriate transforms (Carsel and Parrish, 1988). Three 

distribution types of transformations (lognormal, log ratio, and hyperbolic arcsine) from 

Johnson system (Johnson and Lotz, 1970) and four classical re-expressions (l/X, Xm, 

X , X) (Mallants et al., 1996) are selected to transform the parameter measurements. 

The lognormal (LN), log ratio (SB), and hyperbolic arcsine (SU) transforms are given as 

(Carsel and Parrish, 1988): 

LN: y = ln(Z) (5.2) 
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SB: y = l n £ - £ ) (5.3) 
D — X 

SU: Y = sinlT1 (U) = ln(U + Jl + U2) (5.4) 

where X are untransformed field measurements with limits of variation from A to B (A < 

X <B) and (/ = (X-A)/(Z?-A). Another distribution is Gaussian distribution denoted by NO, 

meaning no transform. The best among the eight transformations (NO, LN, SB, SU, 1/X, 

1/7 11"\ 7 

X , X , and X ) is selected using the Lilliefors goodness-of-fit test for normality, which 

is a variant of the Kolmogorov-Smirnov (K-S) test. Different from the K-S test, the 

Lilliefors test does not require a hypothesized distribution with mean and variance (or, 

more rigorously, cumulative distribution function) to be specified a priori. Instead, mean 

and variance can be estimated from measurements and the required minimum number of 

data points is only 4 for Lilliefors Test. (Bowen and Bennett, 1988). Once the normality 

test is accepted, the transformed field measurements using the selected transformations 

are considered to follow a normal distribution. 

5.3.2 Prior Probability of Spatial Correlation Scale 

Due to insufficient field measurements to estimate the spatial correlation scale, 

especially the horizontal correlation scale, the prior probability of spatial correlation scale 

is estimated subjectively based on literature, expert judgment, and study of similar 

conditions, etc. The prior probability distribution of spatial correlation scale could have 

significant effect on the posterior distribution and subsequent heterogeneous parameter 

field generation. The prior distribution could be proper priors, truncation of the parameter 

space, vague proper priors, transformation of the correlation scale, the Jeffereys prior, 

and the inference prior (Berger et al., 2001). The uniform, trapezoidal, triangular, left 

rectangular triangular, and right rectangular triangular distributions were proposed as 
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prior probability distributions to update the posterior probability through the likelihood 

function (Pardo-Igiizquiza, 1999). The results from Pardo-Iguzquiza (1999) indicated the 

triangular and trapezoidal distributions as priors could better estimate the posterior 

distributions. This study adopts the triangular distribution as the prior probability 

distribution of spatial correlation scale due to its easy implementation, which is defined 

as: 

/U) = 

2^~a) a±X<b 
(c-a)(b-a) .._. 

2 < ^ > b ^ c ( } 

(c-a)(c-b) 

where a<b<c, a, b, and c are the minimum, most likely, and maximum values of the 

spatial correlation scale. The subjective estimation from literature, expert judgments, and 

study of similar conditions are used to determine the values of a, b , and c. After 

determining the prior probability, multiple realizations of the correlation scale can be 

generated to update the posterior probability through the likelihood function. 

5.3.3 ML Function of Spatial Correlation Scale 

The ASMLCV approach was proposed to estimate the likelihood function 

(Samper and Neuman, 1989a). In geostatistical study, the cross-validation approach is a 

traditional method to validate variogram models via kriging estimation. In this study, the 

errors estimated using cross-validation method are assumed to follow a Gaussian 

distribution with a mean of zero and a covariance matrix of C(A). The likelihood 

function can be written as (Carrera and Neuman, 1986): 

1 -e'C~le 
L(A | x) = . -^= exp( ) (5.6) 

J{2x)NCa) 2 
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where TV is the number of field measurements; e are the estimation errors; C(X) is the 

covariance function. 

The negative natural log likelihood (NLL) function can be obtained by taking the 

natural logarithm and multiplying it by -1 on both sides of Eq. (5.6): 

NLL = -\nL(A | x) = — In2^ + - I n | C{X) | +-eC'le (5.7) 

The covariance function C(A) could be one type of exponential model, spherical 

model, Gaussian model, power model, or hole effect model (Deutsch and Journal, 1998). 

The exponential model is adopted in this study due to its simple form and wide 

applications: 

C a ) = o-2exp(--j4 (5.8) 

where <J2 is variance of hydraulic parameters; htj is the distance between two field 

measurements i, and j . 

If the covariance function is validated using the cross-validation method via 

kriging, the NLL can be approximated to a simpler form (Samper and Neuman, 1989a): 

N „ 2 

NLL =-In LU\x) = —ln2n + -y£\n(T?+-Yd\ (5.9) 
2 2 i=1 2 !=1 (7i 

where ai is the estimation variance of measurement i; ei is the estimation error of 

measurement i. 

5.3.4 Posterior Probability of Spatial Correlation Scale 

The multiple-realization values of the correlation scales are generated based on 

the prior probability distribution discussed in Section 5.3.2. The likelihood function of 

the correlation scale for each realization can be estimated by performing cross validation 
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of field measurements via kriging using Eq. (5.9). The posterior probability of correlation 

scale for each realization can be calculated using Eq. (5.1) based on estimated prior 

probability and the likelihood function of each correlation scale. 

The mean of posterior probability of the multiple-realization correlation scale is 

used as the input of the heterogeneous parameter field generation for the soil hydraulic 

parameters. It is defined as: 

E(A | x) = \Af(A | x)dl (5.10) 

5.3.5 Heterogeneous Parameter Field Generation via Kriging 

Kriging is used to interpolate the heterogeneous fields of hydraulic parameters 

based on the known variogram model and spatial correlation scales. Kriging is an 

approach to estimate the unknown values using a weighted linear combination of the 

available data with the characterizations of the best linear unbiased estimator (Isaaks and 

Srivastava, 1989). Since the standardized transformed data appear to follow the standard 

normal distribution, the interpolated parameter fields by kriging must be transformed 

back to original scale using the following equations (Ye et al., 2007b): 

LN: X=exp(F) (5.11) 

SB: X=[5exp(F) + A]/[l + exp(F)] (5.12) 

SU: X = A + (£-A)[exp(F)-exp(-F)]/2 (5.13) 

X=l/Y; X=Y2; X = F 3 ; X = YU2 (5.14) 

where F is the transformed value generated by kriging and X is the parameter value in its 

original scale. 
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5.4 Estimation of Spatial Correlation Structure 

This section discusses the results of spatial correlation structure estimation by the 

coupled method of Bayesian updating and ASMLCV. 

5.4.1 Distribution Identification of Soil Hydraulic Data 

For the soil hydraulic parameters, Table 5.2 lists the values of A and B needed for 

the SB and SU transforms, the selected best transformations based on Lilliefors Test, 

mean and variance of the transformed data, maximum absolute distribution difference 

(7), and Lilliefors criteria (T ) for significance levels of 0.01, 0.05, and 0.1. The selected 

best distributions are determined at the significance level of 0.1 in Lilliefors normality 

test for the saturated hydraulic conductivity, van Genuchten a, saturated and residual 

water content, indicating the transformed data of the parameters follow a normal 

distribution. Only the normality assumption for the van Genuchten n is rejected at all 

significant levels but its T value is close to the critical value at the significant level of 

0.01. 

Figure 5.4 shows the empirical and theoretical CDFs for transformed soil 

hydraulic parameters and the selected best transformations. The empirical CDFs of the 

parameters agree well with the theoretical CDFs shown in Figure 5.4, indicating the 

selected transformations are appropriate. The selected best transformations are SB, LN, 

1/X, and SU for the saturated hydraulic conductivity, van Genuchten a, saturated and 

residual water content. Although the normality test for van Gneuchten n is rejected, its 

best transformation (1/X) is still selected to transform the field data used in the future 

simulations. 
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Table 5.2 Statistical parameters of soil hydraulic properties for distribution 
approximation. 

Hydraulic 
Parameters 

Ks (m/d) 

van 
Genuchten a 

(1/cm) 

van 
Genuchten n 

9s (%) 

6r (%) 

Limits of 
Variation 

A B 

0.11 

0.42 

1.33 

21.77 

0.01 

51.06 

62.82 

6.06 

47.43 

6.73 

Trans 
-form 

SB 

LN 

1/X 

1/X 

SU 

Estimated Distribution 

Mean 

-1.675 

1.83 

0.494 

0.0295 

0.437 

Variance 

6.056 

0.959 

0.026 

2.19E-05 

0.032 

T 

0.080 

0.079 

0.144 

0.051 

0.083 

Critical Values (T*) 

a =0.10 

0.0991 

0.0962 

0.0969 

0.0962 

0.0962 

a =0.05 

0.1091 

0.1059 

0.1059 

0.1059 

0.1059 

a =0.01 

0.1269 

0.1232 

0.1232 

0.1232 

0.1232 
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Figure 5.4 Empirical (dashed) and theoretical (solid) cumulative distribution functions 
(CDFs) for transformed soil hydraulic parameters in the S&L site. The 
selected best transformations are listed in the figures. 
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5.4.2 Prior Probability Determination for Spatial Correlation Scale 

The triangular distribution is adopted as prior probability distribution of the 

spatial correlation scale in this study due to its wide applications (Pardo-Igiizquiza, 

1999). The a, b, c values of the triangular distribution could be estimated subjectively 

from literature, expert judgments, and studies under similar conditions. 

For the vertical correlation scale, the sample variograms of soil texture parameters 

(bulk density, gravel, coarse sand, fine sand, silt, and clay percentages) are fitted to an 

exponential model with a vertical range of around 1.5 m at the study site in Ye et al. 

(2007a). The vertical correlation scale of 1.72 m was estimated from the sample 

variogram fitting of initial moisture content at the S&L injection site (Ye et al., 2005b). 

Therefore, the value of 1.5 m is selected as the most likely vertical correlation scale of the 

triangular distribution. The vertical correlation scale could be as small as the sampling 

interval (0.305 m) of initial moisture content (Ye et al., 2005b) and the minimum value 

(a) is assumed to be a very small value, 0.05 m. The study site is classified into five 

sediment layers with the depths of 2~3 m, and the conclusions that the vertical correlation 

scales of initial moisture content are smaller than the average layer thickness were drawn 

in Ye et al. (2005b). 50-realization correlation scales are generated with an interval of 

0.05m with the minimum value of 0.05m in this study. Thus, the maximum vertical 

correlation scale (c value) is set to 2.55 m in this study. The prior probability distribution 

of vertical correlation scale is determined as a triangular distribution with a = 0.05 m, b = 

1.50 m, and c = 2.55 m. 

The horizontal correlation scale of the initial moisture content is greater than the 

domain's horizontal dimension since the horizontal variogram cannot reach a sill within 
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the maximum lag distance of sampling domain (Ye et al., 2005b). However, the 

likelihood function is based on the field measurements, and extreme large horizontal 

correlation scales may lead to unreliable updated results. Thus, the mostly like horizontal 

correlation scale (b value) is set to 7.0 m at half of largest distance among the six 

boreholes. The maximum horizontal scale (c value) is assumed to be 25.5 m because the 

simulation domain has a size of 18m xl8mxl5m. The smallest distance between the 

boreholes shown in Figure 5.3 is 0.85 m. Therefore, it is reasonable to set a small value 

of 0.5 m as the minimum horizontal correlation scale. The prior probability distribution 

of the horizontal correlation scale is then described as a triangular distribution with a = 

0.5 m, b = 7.0 m, and c = 25.5 m. 

The prior probability distributions of horizontal and vertical correlation scales are 

assumed to be the same for all soil hydraulic parameters in this study. The 50 realizations 

of horizontal and vertical correlation scales are generated for all parameters with a 

50 

limitation of ^df(Ai) = 1.0. The PDFs of prior triangular distributions are plotted in 

;=i 

Figure 5.5 in solid line. Figure 5.5 shows the maximum probability of 0.04 for the most 

likely values of correlation scales and zero probability for the minimum and maximum 

correlation scales. 

5.4.3 Spatial Correlation Scale Updating 

The procedures of spatial correlation scale updating for each parameter could be 

described as follows: 

(1) Generate 50 realizations of horizontal correlation scales in Section 5.4.2 and a 

fixed vertical correlation scale at most likely value 1.5 m as the inputs of the 

exponential model in cross validation; 
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(2) Estimate the likelihood functions using Eq. (5.9) based on 50-realization cross-

validation results; 

(3) Obtain the posterior probability for 50-realizaiotn horizontal correlation scales; 

(4) Estimate the mean of the posterior probability of multiple-realization horizontal 

correlation scales as the updated horizontal correlation scale for subsequent 

heterogeneous field generation; 

(5) Generate 50-realization vertical correlation scales in Section 5.4.2 and a fixed 

horizontal correlation scale estimated in Step 4; 

(6) Repeat steps 2, 3, and 4 to obtain the updated vertical correlation scale. 

Figure 5.5 shows the prior probability, posterior probability, and NLL values of 

horizontal and vertical correlation scales for the soil hydraulic parameters. The posterior 

probability distributions for the correlation scales have inversely proportional 

relationships with the NLL values shown in Figure 5.5. One can also see from Figure 5.5 

that the shapes of posterior probability distributions for the correlation scales look 

normally distributed and are significantly different from the prior triangular distributions, 

indicating that the updated posterior probability depends largely on the likelihood 

function estimation based on field measurements. The vertical correlation scales for the 

soil hydraulic parameters have their maximum posterior probability around 1.0 m or 

smaller than 1.0 m. Table 5.3 lists the means of updated posterior probability 

distributions for the vertical and horizontal correlations scales. The mean updated vertical 

correlation scales for the saturated hydraulic conductivity, van Genuchten a and n, 

saturated and residual water content are 1.1m, 0.6m, 0.5m, 1.0m, and 0.4m, respectively. 

They are smaller than the vertical correlation scales of soil texture parameters of around 
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1.5 m and the initial moisture content of 1.72 m using sample variogram fitting in Ye et 

al. (2007a). The updated vertical correlation scales in this study are reasonable because 

the layer thickness of this study site is around 2-3 m and the sampling interval in 

boreholes S-l, S-2, and S-3 is very small (0.305 m). 

The updated posterior horizontal correlation scales at maximum posterior 

probability are around 5.0 m for van Genuchten n, and residual water content; 3-4 m for 

saturated hydraulic conductivity and saturated water content; 12.8 m for van Genuchten 

a, indicating the significant different horizontal correlation scales among the soil 

hydraulic parameters. Figure 5.5 shows that the sharp posterior probability distributions 

have the smaller horizontal scales at maximum posterior probability. The shapes of 

posterior probability distributions are largely related to the ones of likelihood functions. 

If the NLL values decrease or increase dramatically, the posterior probability 

distributions are much narrower. On the other hand, the wide posterior probability 

distribution is a result of slow change in the NLL values. This illustrates that the 

contributions to the posterior probability distributions are largely from the likelihood 

functions. The means of posterior probability for the horizontal correlation scales listed in 

Table 5.3 are 4.3, 12.8, 4.9, 3.0, and 5.0 for the five soil hydraulic parameters. The small 

horizontal correlation scales may be caused by the close boreholes (S-l, S-2, and S-3) 

shown in Figure 5.3. The updated horizontal and vertical correlation scales can then be 

investigated by the comparing the field measurements with the estimated data using 

kriging based on the results of spatial correlation scale updating. 
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Figure 5.5 Prior probability distribution (solid), posterior probability distribution 
(dashed), and negative natural log likelihood (NLL, dashdotted) values for the 
soil hydraulic parameters. 
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Table 5.3 The means of posterior probability distributions for horizontal and vertical 
correlation scales of soil hydraulic parameters. 

Hydraulic Mean of posterior 
Parameters probability for horizontal 

correlation scale 

Mean of posterior 
probability for vertical 

correlation scale 
Ks (m/d) 

van Genuchten 
a (1/cm) 

van Genuchten 
n 

0s (%) 

0r (%) 

4.3 

12.8 

4.9 

3.0 

5.0 

1.1 

0.6 

0.5 

1.0 

0.4 
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5.4.4 Heterogeneous Field Generation of Soil Hydraulic Parameters 

The simulation domain of the S&L injection site is 18m xl8mxl5m with a grid 

size of 0.25 m x 0.25 m x 0.3048 m. The 3-D heterogeneous parameter fields are 

generated by kriging based on the estimated horizontal and vertical correlation scales and 

the site measurements. 

Figure 5.6 shows the spatial variability of the hydraulic parameters and the kriged 

estimation at borehole S-1. The comparison of field measurements and kriged results in 

Figure 5.6 shows that kriged estimation data of the hydraulic parameters agree well with 

the field measurements, indicating the kriging results are reliable to represent the S&L 

site heterogeneity. Therefore, the updated spatial correlation scales by the coupled 

method may improve the estimation of spatial correlation scales and the simulations of 

heterogeneous fields for the soil hydraulic parameters via kriging. 

Figure 5.7 shows the 3-D heterogeneous fields of the five soil hydraulic 

parameters via kriging. The S&L site heterogeneity is apparent due to the significant 

differences of hydraulic parameters in the different locations and layers. The imperfectly 

stratified layering structure can be found for the soil hydraulic parameters in Figure 5.7, 

especially for saturated hydraulic conductivity. The simulated saturated hydraulic 

conductivity is less than 10 m/d in most area of the model domain and is around 25 m/d 

in the area with depth between 5 m and 10 m and width between 0 m and 10 m. The 

layering structure is not apparent in the heterogeneous fields of the soil hydraulic 

parameters, especially saturated hydraulic conductivity, indicating that the interpolated 

parameter fields do not represent well the real parameter fields. The interpolated 

heterogeneous field of saturated water content also has the imperfectly stratified layering 
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structure similar to the saturated hydraulic conductivity. The reasons could be that the 

most site measurements are clustered in three close boreholes, and small horizontal 

correlation scales are used in kriging. The generated fields of van Genuchten a and n, and 

residual water content have better results than the saturated hydraulic conductivity and 

saturated water content and the layering structure can be found due to the relatively large 

horizontal correlation scales. However, the results still could be improved due to the 

sparse clustered sampling data for the soil hydraulic parameters in the study site. This 

could be achieved by incorporating the secondary information (e.g., initial moisture 

content) with a large set of samples into the heterogeneous field interpolation by 

cokriging approaches. 

5.5 Conclusions 

This study presented a method to couple the Bayesian updating with ASMLCV to 

estimate the spatial correlation structures of the soil hydraulic parameters. The prior 

probability of the correlation scales for the hydraulic parameters was updated to yield the 

corresponding posterior probability distributions through the likelihood function 

estimated by ASMLCV approach based on site measurements. The heterogeneous fields 

of the soil hydraulic parameters can then be interpolated by kriging based on the 

estimated mean values of the horizontal and vertical correlation scales from the updated 

posterior probability. 

The posterior probability distributions for the correlation scales have inversely 

proportional relationships with the NLL values and are significant different from the prior 

triangular distributions, indicating the updated posterior probability depends largely on 
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Figure 5.6 Comparison of kriged and measured soil hydraulic data at borehole S-1 shown 
in Figure 5.1. 
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Figure 5.7 Generated heterogeneous fields of soil hydraulic parameters using kriging. 
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the likelihood function estimated based on field measurements. The means of posterior 

probability distributions for vertical correlations scales of the parameters are around or 

smaller than 1.0 m. The estimates are reasonable because the layer thickness of this study 

site is around 2-3 m and the sampling interval in boreholes S-l, S-2, and S-3 is very 

small (0.305 m). The means of posterior probability distributions for horizontal 

correlation scales of the parameters vary from 3 m ~ 12.5 m, indicating the significant 

different horizontal correlation scales among the soil hydraulic parameters. 

The good agreement of field measurements and kriged parameter fields at 

borehole S-l indicate that the kriging results are reliable to represent the S&L site 

heterogeneity. Therefore, the updated spatial correlation scales may improve the 

estimation of spatial correlation scales and the simulations of heterogeneous fields for the 

soil hydraulic parameters. The imperfectly stratified layering structure is apparent in the 

interpolated 3-D heterogeneous fields of the soil hydraulic parameters. The results could 

be further improved by incorporating the secondary information (e.g., initial moisture 

content) with a large set of samples into the heterogeneous field generation using 

cokriging approaches. 
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CHAPTER 6 

CONCLUSIONS 

Four research topics were presented in this dissertation related to 

characterizations of heterogeneous hydraulic properties, predictive uncertainty and 

sensitivity analysis of flow and contaminant transport in the unsaturated zone. In general, 

this study addressed the problems of characterizing the layer- and local-scale 

heterogeneities in hydraulic parameters using geostatistical methods when the core 

samples are sparse, evaluating the predictive uncertainties in flow and tracer transport 

due to layer- and local-scale heterogeneities in hydraulic parameters in the UZ, 

investigating the contributions of individual parameter uncertainties to the flow and 

transport uncertainties, and estimating the spatial correlation structures of hydraulic 

parameters using a coupled method of Bayesian updating and ASMLCV in 

heterogeneous media. 

More specifically, the first study (Chapter 2) addressed two problems in 

numerical simulations of unsaturated flow and contaminant transport. The first is how to 

estimate the PDFs of the water retention parameters when measurements of the 

parameters are sparse and the prior PDFs are unknown; the other is how to evaluate the 

effects of the uncertainties in water retention parameters on the predictive uncertainties in 

unsaturated flow and contaminant transport. The first problem was resolved using the 

non-conventional ML approach, which approximates the PDFs as multivariate Gaussian 
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without requiring the prior PDFs and large number of parameter measurements. This 

study provided a method of estimating the mean and covariance of PDFs based on the 

least-square fitting results, which can be easily estimated from existing software such as 

RETC. This study also evaluated the relative effects of the uncertainties in the water 

retention parameters (to those in permeability and porosity) on the predictive 

uncertainties of flow and transport using the Monte Carlo method. Predictive variance of 

the percolation flux increases if the random water retention parameters are taken into 

account, while the uncertain water retention parameters have limited effects on the mean 

predictions of percolation fluxes. The similar conclusion is also true for the magnitude 

and spatial pattern of the simulated plume of both conservative and reactive tracers. The 

travel time of the two types of tracers also becomes more uncertain after incorporating 

the uncertain water retention parameters. 

The second study (Chapter 3) incorporated the layer- and local-scale 

heterogeneities of hydraulic parameters and investigated the relative effects of the two 

types of heterogeneities on predictive uncertainties of flow and tracer transport in the UZ. 

The layer-scale uncertainty is more important than local-scale heterogeneity in simulating 

the field observed flow patterns and trends. While the local-scale heterogeneity only 

slightly affects the mean predictions of percolation fluxes and tracer plumes, it 

significantly increases predictive uncertainties in these quantities, implying that more 

random and complicated flow paths are created by the local-scale heterogeneity. This is 

also true for the spatial distribution of the normalized cumulative mass arrival. The local-

scale heterogeneity increases the mean travel time of the reactive and conservative tracers 

at early stage, but the effects gradually decrease over time. The layer-scale uncertainty is 
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also more important than local-scale heterogeneity in simulating the travel time of 

cumulative mass to the water table. If one wants to reduce overall predictive uncertainty 

in tracer travel time, an effort should be made to reduce the uncertainty in layer-scale 

values by improving the 3-D model calibration, recalling that layer-scale values were 

obtained from inverse modeling. 

The third study (Chapter 4) was the global sensitivity analysis to investigate the 

contributions of individual parameter uncertainties to the flow and transport uncertainties 

in the UZ. The relative effects of parameter correlations on the sensitivity analysis were 

also investigated by comparing the sensitivity results with and without considering the 

parameter correlations. The obtained insights provided meaningful information on how to 

reduce the uncertainties in unsaturated flow and contaminant transport predictions 

through targeted layer- and local-scale characterizations. When the input parameters are 

independent, the uncertainty in permeability has the largest contributions to the 

uncertainties in percolation flux and the normalized cumulative mass arrival at each block 

of the water table. The sorption coefficient of the reactive tracer is the second important 

parameter in the layers of devitrified and zeolitic tuffs and has the smallest contributions 

in the layers of vitric tuff. For the overall tracer transport uncertainty, the uncertainties in 

the permeability and van Genuchten a have more contributions to the uncertainties in 

total cumulative mass arrival at the water table at the early stage. As time evolves, the 

uncertainty in porosity becomes more important. As the transport progresses further, the 

sorption coefficient of the reactive tracer becomes the dominant parameter in contributing 

to the uncertainties in overall tracer transport. When the input parameters are correlated, 

the uncertainty in van Genuchten n becomes important to the percolation flux 
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uncertainty, mainly due to its high correlation with the van Genuchten a. The importance 

of sorption coefficient to the tracer transport uncertainty has not changed when the 

parameter correlations are considered, due to the assumption of zero correlations between 

the sorption coefficient and other hydraulic parameters. The rankings of parameter 

importance also change if the parameter correlations are taken into account, indicating 

that the significant effects of parameter correlations on the sensitivity of unsaturated flow 

and contaminant transport. 

The fourth study (Chapter 5) addressed the problem of how to improve the 

heterogeneity characterizations of hydraulic parameters through incorporation of prior 

information and available sparse field data using geostatistical approaches. This study 

presented a method to couple the Bayesian updating with ASMLCV approach to estimate 

the spatial correlation structures of the soil hydraulic parameters. The posterior 

probability distributions for the correlation scales have the inverse proportional 

relationships with the NLL values and are significantly different from the prior triangular 

distributions, indicating the updated posterior probability depends largely on the 

likelihood function estimated based on the available field measurements. The good 

agreement of field measurements and kriged parameter fields at borehole S-l indicate 

that the kriging results are reliable to represent the S&L site heterogeneity. Therefore, the 

updated spatial correlation scales may improve the heterogeneity characterizations of 

hydraulic parameters representing the spatial variability of the parameters in the study 

site. The results could be improved by incorporating secondary information (e.g., initial 

moisture content) with a large data set of samples into the heterogeneous parameter field 

generation using cokriging approaches. 
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In summary, the four research topics presented in this dissertation incorporated 

the geostatistical methods and numerical simulations to characterize the heterogeneities 

of hydraulic parameters and evaluate the uncertainty and sensitivity of flow and 

contaminant transport in heterogeneous UZ. The non-conventional ML approach 

provided an effective way of estimating the parameter PDFs of the hydraulic parameters 

when the site measurements are sparse and the prior parameter PDFs are unknown. The 

findings of relative importance of layer- and local-scale heterogeneities and individual 

hydraulic parameters to flow and tracer transport uncertainties can point to the most 

influential locations and parameters in directing possible future field characterizations in 

order to reduce the overall and/or spatial predictive uncertainties of flow and contaminant 

transport modeling. The coupled method of Bayesian updating and ASMLCV can 

improve the spatial correlation structure estimation with the incorporation of available 

site measurements and prior information. 

Based on the results of this dissertation work, future efforts can focus on the 

improvement of heterogeneity characterizations in hydraulic parameters by incorporating 

the available information related to the parameters such as soil texture properties, 

lithologic and topographical data etc. The future work can also be extended to 

uncertainty assessments in flow and contaminant transport due to conceptual model 

uncertainty in order to better understand the physical processes of unsaturated flow and 

contaminant transport. 
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APPENDIX A 

MATHEMATICAL MODEL OF THE UZ FLOW AND TRACER TRANSPORT 

A.l Flow Governing Equations 

The dual-continuum approach is applied to separate the physical processes of 

flow and transport into fracture and matrix systems and to handle the fracture-matrix 

interaction in a fractured porous media (Wu et al., 1999; Wu and Pruess, 2000). The 

physical processes of unsaturated flow in fracture and matrix are governed by Richard's 

equation, conservation of mass, and Darcy's law (BSC, 2004a, Wu and Pruess, 2000). 

The basic mass and energy equations for fracture or matrix in the dual-continuum system 

are (BSC, 2004a): 

j - \MkdVn = \FkndTn+\qkdVn (A.l) 
ill y Y y 

where: Mk is mass or energy per volume; F* is mass or heat flux; qK is sinks and 

sources; K"is the mass components (air, water, and tracer etc.); Tnis the closed surface; 

and Vn is an arbitrary subdomain. 

The mass accumulation of water and air components {Mk in Eq. (A.l)) for matrix 

or fracture can be written as (BSC, 2004a; Wu and Pruess, 2000): 

Af*=X(#vVrJ) (A.2) 
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where: /?is fluid phase (liquid (L) or gas (G)); (/> is porosity; p^is the density of phase 

P; Sp is the saturation of phase J3; Xk
p is mass fraction of component k in phase /?. 

The mass flux in matrix or fracture (Fk in Eq. (A.l)) can be calculated by Darcy's 

law (BSC, 2004a; Wu and Pruess, 2000): 

P Vp 

where: Fp is mass flux in phase fi; vp is the Darcy velocity; & is absolute permeability; 

krp is relative permeability; / ^ is viscosity; g is gravity acceleration constant; and Pp is 

capillary pressure. 

Equations A.l - A.3 lead to the Richards' equation as (BSC, 2004a): 

— 0p= div [KpV \l/p\ + qp (A.4) 

where: dp = 0Sp is specific volumetric moisture content for fracture or matrix, 

Kp=kkrpPpgljUpis hydraulic conductivity with krp being the relative permeability, 

y/p-z + Pp l{Ppg) is the total water potential with z being elevation, and qp is sinks and 

sources. The van Genuchten model is used to calculated water capillary pressure and 

relative permeability for matrix and fracture continuums. 

A.2 Transport Governing Equations 

The processes of tracer transport in UZ are advection, diffusion, and dispersion in 

heterogeneous porous media, which are governed by Fick's law and conservation of mass 

(BSC, 2004b; Wu and Pruess, 2000). The general term of mass accumulation (Mk in Eq. 
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(A.l)) for tracer transport through matrix or fracture can be descried by (Wu and Pruess, 

2000): 

Mk =^(^pfiSfiX
k
fi) + (}-p)P,PLXk

LKk
d (k being tracer only) (A.5) 

P 

where: ps is the density of rock grains; pL is the density in liquid phase; Xk
L is mass 

fraction of tracer in the liquid phase; Kk
d is the distribution coefficient of tracer between 

the liquid phase and rock solids. 

The mass flux (Fk in Eq. (A.l)) is the summation of mass flux by advection, Fk, 

and mass flux by diffusion and dispersion, Fk, i.e., (Wu and Pruess, 2000) 

Fk=Fk+Fk (A.6) 

and Fk and Fk are calculated via 

p 

F^-YiPp&p-VXl) (A.8) 
P 

where D_p is diffusion-dispersion tensor for both molecular diffusion and hydraulic 

dispersion for component k in phase /?. It can be expressed as (Wu and Pruess, 2000). 

I I VB fV0 f 

In fracture: Dfif = aT f \vp f \Sy + (aL f - aT f) . ' +<pfSfif tf df 8tj (A.9) 
\VPJ\ 

Inmatrix: D^m= a ^ v ^ +(aL,m - a ^ ^ ^ + ̂ S^rJJ, (A.10) 
\VPA 

Between fracture and matrix or inside matrix: D_pifm = u^p A + (f)mSpmTmdm (A.ll) 
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where D_p p is diffusion-dispersion tensors for transport through fractures (/? = / ) , 

matrix (p = m), and between fractures and matrix or inside matrix (p = fin); aT ,aL 

are transverse and longitudinal dispersivities of fractures and matrix respectively; a^ is 

longitudinal dispersivity along fracture-matrix or inner matrix-matrix connections; 2^ is 

the tortuosity of fracture or matrix continuum; dp is the molecular diffusion coefficient in 

phase fi; and dtj is Kroneker delta function. 

When tracer k undergoes radioactive decay, the rate of mass change can be 

described by the first-order decay law: 

dM k =-\Mk (A. 12) 
dt 

where Xk is radioactive decay constant of radionuclide tracer A: defined as 

\=^~ (A.13) 
01,2)* 

(Ty2)k being the half life of tracer k. Therefore, the transport equation of each component 

k within the fracture or matrix continuum can be obtained by substituting Eqs. A.5, A.7, 

A.8, and A. 12 into A.l (Wu and Pruess, 2000): 

^{^pfiS/}X^ + a-^pspLXk
LKk

d} + Ak{^pfiS^Xk
fi) + a-^pspLXk

LKk
d} = 

-Yy-(Ppxkpvp)+Yy-(ppDkp-vxkp)+qk (A.i4) 
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