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ABSTRACT 

 

THE BEHAVIOR OF ZIRCON DURING PARTIAL MELTING IN ANATECTIC MIGMATITES:  

INSIGHTS TO METAMORPHISM, DEFORMATION AND TECTONISM IN THE  

CENTRAL SANTA FE RANGE NORTHERN NEW MEXICO 

By 

Michelle Renee Stropky 

 

Dr. Rodney V. Metcalf, Examination Committee Chair 

Professor of Geology 

University of Nevada, Las Vegas 

 

Three lithologic assemblages exposed in the central Santa Fe Range, northern New 

Mexico include (1) a septum of Proterozoic low temperature (~700oC, 5.5 kbars), semi-pelitic 

anatectic migmatites surrounded by (2) deformed megacrystic biotite granite that is intruded by 

(3) discrete plutons of largely undeformed hornblende biotite tonalite.  Metamorphic fabrics in the 

migmatite record three deformation events (D1 – D3); a composite S1/S2 fabric (D1 and D2) that 

formed contemporaneous with anatexis and is folded about a southwest plunging map-scale (D3) 

antiform.  The megacrystic granite exhibits a pervasive S1 subsolidus foliation that parallels the 

S1/S2 fabric in the migmatite and is cut by discordant leucosomes.  The hornblende tonalite cross-

cuts both the S1 foliation of the megacrystic granite and the S1/S2 foliation of the migmatite.  New 

U-Pb SIMS ages were collected on zircon from the two plutonic units and from a stromatic 

metasedimentary migmatite (leucosome-melanosome-paleosome).  Megacrystic granite yielded a 

concordant U-Pb age of 1633 ± 12 Ma (2σ) and hornblende tonalite yielded a concordant U-Pb 

age of 1395 ± 7 Ma (2σ); both plutonic units have Th/U >0.1.  The evaluation of migmatite zircon 

from leucosome-melanosome-paleosome have highly variable Th/U values (>0.1 to <0.01) and 

uranium concentrations (200 – 9,000ppm).  Migmatite zircon with Th/U >0.1 yielded two age 
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populations: protolith cores with a Pb-Pb age = 1634 ± 16 Ma and new growth with a Pb-Pb age 

of 1398 ± 17 Ma.  Three zircon analyses yield older Pb-Pb ages of 1791 ± 25 Ma.  Migmatite 

zircon with Th/U values <0.1 yield mixed Pb-Pb ages between 1.6 – 1.4 Ga that have elevated 

Ca, Fe, and Al concentrations, suggesting zircon recrystallization from fluids and/or melts; such 

zircon is primarily found in leucosome and may represent fluid released during melt 

crystallization.  Older migmatite zircon ages are interpreted as being inherited from a 

metasedimentary protolith and younger migmatite zircon ages at 1399 Ma represents the age of 

anatexis and deformation (this includes deformation of the 1633 Ma megacrystic biotite granite).  

Statistical correlation of both the migmatite and tonalite ages suggests mafic magmatism 

enhanced regional metamorphism and supports studies documenting metamorphism, 

deformation and tectonism across the Laurentian margin at ~1.4 Ga. 
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CHAPTER 1: INTRODUCTION 
 

Zircon studies in anatectic migmatites can provide chronological constraints of protoliths 

and document crustal melting, as well as constrain ages for structures, deformation and high 

grade metamorphism related to orogenesis.  Understanding zircon behavior in anatectic 

migmatites is important for correct interpretation of ages that document timing of metamorphism, 

deformation and anatexis.  The importance in recognizing zircon alteration by hydrothermal fluids 

and subsequently understanding of zircon behavior during high-grade metamorphism to correctly 

interpret the U-Pb isotopic system is widely recognized (Geisler et al., 2007; Hoskin and Black, 

2000).   

Anatectic migmatites are found in the central Santa Fe Range of northern New Mexico 

where the most critical aspect of northern New Mexico tectonic history concerns the age of 

tectonism and metamorphism.  Regional metamorphism and deformation of the southwestern US 

is primarily defined by three Precambrian provinces, the (1) Mojave (2.0 to 1.8 Ga volcanic arcs 

built on older crust), (2) Yavapai (1.8 to 1.7 Ga juvenile arc crust) and (3) Mazatzal (1.7 to 1.6 Ga 

juvenile crust) (Karlstrom et al., 2001; Karlstrom et al., 2004; Williams et al., 1999; Daniel et al., 

1995).  These provinces, that were located in southwestern Laurentia, span more than nine 

states, including Utah, Arizona, Wyoming, Colorado, and New Mexico.  Proterozoic rocks within 

the New Mexico region record lithospheric continental evolution of southwestern Laurentia and 

have been used to provide important insights to tectonics and geodynamics that include how 

deformation, metamorphism, and plutonism interact with each other during orogenic events and  

causes of 1.4 Ga intracratonic A-type magmatism and tectonism (Karlstrom et al., 2004).  

However, deformation fabrics vary by style and intensity across the region and a major problem 

for creating a regional tectonic model is correlating fabrics, fold generations, and deformational 

events between study areas (Williams et al., 1999).   

This paper addresses the timing of metamorphism, deformation and tectonism in the 

Santa Fe Range, northern New Mexico and relates observations and conclusions to the local and 

regional Proterozoic history of the southwest.  Three lithologic assemblages are exposed in the 

central Santa Fe Range, northern New Mexico: (1) a septum of Proterozoic low temperature 
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(~700oC, 5.5 kbars), semi-pelitic anatectic migmatites surrounded by (2) deformed megacrystic 

biotite granite that is intruded by (3) discrete plutons of largely undeformed hornblende biotite 

tonalite.  This study used SIMS U-Pb isotopic dating of zircon to constrain ages for the two 

plutonic units and migmatite, providing additional insights to the local and regional metamorphic 

and tectonic history of the central Santa Fe Range of northern New Mexico.  In addition this study 

addressed the behavior of zircon during partial melting in anatectic migmatites to understand how 

anatexis and migmatization affected the U-Pb isotopic system.   
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CHAPTER 2: GEOLOGIC SETTING 

Paleoproterozoic rocks of northern New Mexico are part of a 1,200-km-wide series of 

northeast-trending orogenic belts (Karlstrom et al., 2004; Williams et al., 1999).  Tectonic and 

petrologic studies suggest accretion of predominantly juvenile continental material in volcanic 

arcs along with assembly and stabilization of diverse terrains onto North America from 1.8 Ga to 

1.6 Ga.  Three major crustal provinces (Figure 1) are defined and bounded by generally sub-

vertical regional shear zones, where the provinces include metavolcanic, metasedimentary, and 

plutonic rocks; these provinces are the (1) 2.0 Ga to 1.8 Ga Mojave province, (2) 1.8 Ga to 1.7 

Ga Yavapai province, and (3) 1.7 Ga to 1.6 Ga Mazatzal province (Karlstrom et al., 2004).  

Karlstrom et al. (2004) uses the terms Yavapai and Mazatzal orogeny to describe orogenic 

events associated with the Yavapai and Mazatzal crustal provinces as follows: (1) the Yavapai 

orogeny describes the accretion of arc crust from 1.8 Ga to 1.7 Ga, and includes 1.78 Ga to 1.72 

Ga arc development and collisions and an orogenic peak at ~1.7 Ga that resulted in 

amalgamation of Yavapai crust to Laurentia, and (2) the Mazatzal orogeny describes accretion of 

1.67 Ga to 1.65 Ga crust to southern Laurentia with peak deformation occurring at ~1.65 Ga that 

affected both Yavapai and Mazatzal crust.  During this time of crustal amalgamation and orogenic 

progression, several pulses of deformation and metamorphism took place.  The most clearly 

recorded evidence of deformation and metamorphism in the Yavapai province occurs in northern 

Colorado and in the Upper Granite Gorge in the Grand Canyon of Arizona (Shaw & Karlstrom, 

1999; Whitmeyer & Karlstrom, 2007).  Mazatzal deformation and metamorphism is most clearly 

recorded in southeastern Arizona and south of the Santa Fe Range in southern New Mexico.  A 

broad transition zone between the Yavapai and Mazatzal provinces is recognized in southern 

Colorado and northern New Mexico (Figure 1) where it has been difficult to clearly differentiate 

between Yavapai age and Mazatzal age metamorphism and deformation.   

Deformation and metamorphism occurred between 1.72 Ga and 1.65 Ga within the 

Yavapai-Mazatzal transition zone in New Mexico.  According to Williams et al. (1999) the oldest 

lithotectonic sequence in New Mexico consists of 1.76 Ga to 1.72 Ga metamorphosed mafic 
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volcanic rocks and suites of diverse metaplutonic rocks (Figure 2); the second sequence contains 

both metasedimentary and felsic metavolcanic rocks of the 1.72 Ga to 1.69 Ga Vadito Group 

which overlies the mafic sequences and locally contain moderately to strongly deformed 

granitoids (1.7 Ga to 1.65 Ga).  The 1.7 Ga to 1.69 Ga quartzites and pelitic schists of the Hondo 

Group overlies the Vadito Group and is the youngest sequence in the transition zone.  An 

“anorogenic granite suite” of mildly deformed 1.48 Ga to 1.35 Ga granitoids (Anderson, 1989) and 

pegmatites are widely exposed throughout several New Mexico ranges.  Excluding the ca. 1.4 Ga 

granitoids, all of the Proterozoic rocks have experienced multiple deformation events where at 

least three deformation phases are interpreted in most exposed areas (Williams et al., 1999).  

Several studies have concluded primary regional deformation and metamorphism in the New 

Mexico transition zone occurred primarily during the 1.65 Ga Mazatzal orogeny (Williams, 1990; 

Bauer and Williams, 1994).  However, more recent research by Bauer et al. (1993), Bishop 

(1997) and Wingsted (1997) support evidence of intense metamorphism and deformation at 1.4 

Ga.   

Figure 3 illustrates an age-probability plot of U-Pb zircon ages for the New Mexico region 

(Karlstrom et al., 2004) where 1.8 Ga to 1.6 Ga assembly associated with the Yavapai and 

Mazatzal crust and regional 1.48 Ga to 1.35 Ga intracratonic magmatism and tectonism is 

separated by a tectonic lull from 1.6 Ga to 1.48 Ga.  During this period there is a nearly complete 

absence of recorded isotopic ages, including a lack of documented magmatism and/or 

metamorphism within the region.  This tectonic lull has been interpreted as being a time of crustal 

stability of the North American craton.  The 1.55 Ga to 1.35 Ga Granite-Rhyolite province, located 

to the southeast of the Mazatzal province (Figure 1), records reactivated tectonism with accretion 

of juvenile arc crust where a protracted interval of Mesoproterozoic (1.48 Ga to 1.35 Ga) 

plutonism affected portions of both the Yavapai and Mazatzal crustal provinces (Karlstrom et al., 

2004).  The 1.48 Ga to 1.35 Ga plutons are dominated by K-feldspar megacrystic granites with 

metaluminous A-type compositions, and have been referred to as “anorogenic” due to a 

perceived lack of 1.4 Ga deformation (Anderson, 1983; Anderson and Bender, 1989). 
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Williams et al. (1999) designates three fabric forming deformation stages designated D1 – 

D3 that are preserved in Yavapai-age supracrustal rocks, where evidence is observed in 

structures (thrust shear zones and F2 – F3 folds) and in metamorphic fabrics (S1 – S3).  The D1 

event is recorded in S1 layer parallel foliations.  The D2 event is recorded in outcrop to map scale 

F2 folds that are defined by folded layering and S1 and by an axial planar S2 foliation evident in 

fold hinges but parallel to S1 in fold limbs.  Many of the map scale F2 folds are also bounded by 

thrust shear zones.  The dominant regional foliation is S2 and is present in Yavapai-age (1.68 to 

1.65 Ga) granitic rocks as a gneissic deformation fabric.  The D3 event is recorded in open upright 

folds and in a weak sub-vertical S3 crenulation cleavage.  The ~1.43 Ga granite plutons are 

largely undeformed and 1.43 Ga pegmatite dikes cut D3 folds and fabrics.  Most direct attempts to 

date metamorphism come from D3 porphyroblasts and yield ages of about 1.4 Ga (U-Pb) to 1.2 

Ga (40Ar/39Ar, Williams et al. 1999) which has raised questions about the role of 1.4 Ga tectonism 

in the crustal evolution of the southwest.   

Aspen Basin study area:  The Aspen Basin study suite in the central Santa Fe Range 

contains Proterozoic rocks that occur within the southern transition zone between the Yavapai 

and Mazatzal crustal provinces.  The study suite lies within the Santa Fe Baldy batholith and is 

bounded by the Pecos-Picuris fault to the east and the Borrego fault to the west (Figure 2).  

Proterozoic supracrustal rocks within the batholith include metagreywacke and metavolcanic 

rocks (Metcalf 1990).  As shown in Figure 4, Metcalf (1990) mapped plutonic rocks into five 

separate map units but grouped them into (1) an older, pre-kinematic felsic group containing the 

megacrystic biotite granite and megacrystic granite units with gradational contacts, and (2) a 

younger, post-kinematic (undeformed) mafic group mapped as discrete plutonic bodies of 

hornblende quartz diorite, hornblende biotite tonalite, and biotite tonalite.  Metcalf (1990) also 

mapped a suite of migmatitic supracrustal rocks that include the amphibolite gneiss, felsic gneiss 

and biotite gneiss units, and are anatectic in origin.  The biotite gneiss includes two types of 

migmatite, a schlieren type with granitic leucosomes and a stromatic (layered) type with 

trondhjemitic leucosomes.  The research focuses on the stromatic type migmatites as this suite 

most closely approximates in situ neosomes (newly formed material).  The Aspen Basin 
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migmatites formed under peak metamorphic conditions of 604 – 680 oC and 5.2 – 5.5 kbars 

(Metcalf, 1990), where there was syn-kinematic localized partial melting and leucosome-

melanosome segregation.  Metcalf (1990) recognized metamorphic fabrics in the migmatites that 

record D1 – D3 events similar to that discussed by Williams et al. (1999) across much of New 

Mexico.  The D1 and D2 events are recorded by a composite S1/S2 fabric and this fabric is folded 

about a map-scale (F3 – D3) antiform (Figure 4).     

The Santa Fe Range lies within and at the southern extent of the Yavapai-Mazatzal 

transition zone.  While the Proterozoic age of rocks of the central Santa Fe Range has been 

recognized, geochronological data for the plutonic and migmatitic rocks are lacking.  Dating of the 

migmatitic biotite gneiss, megacrystic biotite granite and hornblende biotite tonalite units have 

provided ages that constrain the timing of deformation, metamorphism, and plutonism within the 

region, and has provided additional evidence of 1.6 Ga and 1.4 Ga deformation, metamorphism 

and tectonism associated with the Proterozoic history of northern New Mexico.  This study 

addresses the age of crystallization of the (1) pre-kinematic megacrystic biotite granite, (2) post-

kinematic hornblende biotite tonalite, (3) migmatite protolith, and (4) the age of migmatization and 

by inference the age of deformation.  Finally, these age were related to how the chronology of the 

central Santa Fe Range relates to the Proterozoic orogenic history of the southwest.
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CHAPTER 3: MIGMATITES 

3.1: Terminology 

Current migmatite definitions and terminology has been revised by Sawyer (2008) from 

previous and outdated migmatite terminology (Mehnert, 1968; Ashworth, 1985; Johannes, 1985).  

As defined by Sawyer (2008), migmatites are medium to high grade metamorphic rocks that have 

undergone some degree of partial melting (anatexis).  Anatectic migmatites are derived from a 

protolith (pre-existing parent rock) and consist of three basic lithologies: the paleosome, the 

melanosome and the leucosome (Figure 5).  During anatexis the protolith is converted to (1) 

newly formed material of leucosome and melanosome that are collectively referred to as the 

neosome, and (2) relatively unchanged material termed paleosome.  The paleosome is part of a 

migmatite that was either not affected, or only slightly affected, by anatexis where pre-anatectic 

structures (e.g. folds, foliations, and layering) are preserved and microstructures are either left 

unchanged or only slightly coarsened (Sawyer, 2008).  The leucosome is the light-colored portion 

of neosome that is rich in felsic minerals (e.g. quartz and feldspar) and is associated with the melt 

(silicate liquid) fraction formed from partial melting.  The melanosome is the dark-colored portion 

of neosome that is rich in mafic minerals (e.g. biotite, hornblende, or pyroxene) and is associated 

with the solid, residual fraction (residuum) of newly formed material that has been extracted from 

either all, or part of, the melt.  It is generally accepted that the solid fraction (residuum) of the 

melanosome is left in place (in-situ) while the melt fraction of the leucosome is potentially mobile.  

Segregated melt that remains at the site where the melt has formed is termed in-situ leucosome 

(Sawyer, 2008).  A leucocratic vein or dike describes melt that has migrated from its source and 

has been injected into another rock that is still within the region affected by anatexis (Sawyer, 

2008).  The many syn-kinematic structures that are associated with the development of 

migmatites are discussed below. 

 

3.2: Syn-kinematic Structures and Morphologies 

Syn-kinematic anatectic structures recognized in the Aspen Basin migmatite include in-

situ compositional layering, folds, foliations, boudinage features, and leucocratic veins and dikes 
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(Figure 6).  In addition, Metcalf (1990) documented the Aspen Basin migmatite as having a 

dominant structure which consists of (1) a compositional layering composed of interlayered 

neosomes and paleosomes (S1); (2) mica-grainshape foliations (S1 mica orientation) in 

paleosomes; and (3) mica-grainshape foliations (biotite orientation) in melanosome selvages (S2).  

During this study examples of syn-kinematic anatectic structures were observed in the Aspen 

Basin migmatite and documented in field photographs.  These structures include melt migration 

features such as  (1) in-situ leucosome (Figure 6a), (2) thickened leucosomes in fold noses 

(Figure 6b, c & d), (3) leucosomes at boudin necks in boudinage features (Figure 6e & f), and (4) 

leucocratic veins and dikes (Figure 6g & h).  Figure 6a illustrates in-situ leucosome or the 

compositional layering of neosome and paleosome that is the dominant S1 fabric observed.  Most 

elements in Aspen Basin migmatite outcrops are coplanar and folds exhibited within the 

compositional layering range from being tight to isoclinal, intrafolial folds, where parasitic folds are 

also documented as well (Figure 6b, c & d); all of which are prominent throughout the Aspen 

Basin migmatite unit.  Metcalf (1990) also observes mica foliations (S2) in paleosomes and 

melanosomes that wrap around fold hinges, and foliations that are coplanar with the axial surface 

of intrafolial folds that are coplanar with F2 axial surfaces in refolded folds (where present).  

Based on these relationships, a composite S1/S2 fabric seen at the outcrop scale is considered to 

be the dominant planar fabric (Metcalf, 1990). Other structural features are boudinage features, 

commonly referred to as boudins and boudin necks (Figure 6e & f).  Discordant leucosomes, or 

leucocratic veins and dikes, (Figure 6g & h) are also present where anatectic melt has migrated 

into extensional fractures opened during deformation and crosscut the S1/S2 foliation. Metcalf 

(1990) recognized that the composite S1/S2 fabric (D1 – D2) defines a map scale F3 (D3) fold 

(Figure 4). 
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CHAPTER 4: SAMPLE DESCRIPTIONS 

4.1: Pre-Kinematic Megacrystic Biotite Granite 

The pre-kinematic megacrystic biotite granite unit is medium- to coarse-grained (1 

millimeter to 3 centimeters) with hypidiomorphic, inequigranular porphyritic textures (Figure 7a).  

This unit has isolated mats of aligned mica and co-planar shear bands (≤1 millimeter thick) that 

define a foliation, and which exhibit dynamic recrystallization textures.  The mineral assemblage 

of the pre-kinematic granite is composed primarily of microcline, plagioclase and quartz with 

accessory + biotite, + apatite, + magnetite, + zircon, and ± muscovite.  Biotite in this unit is 

estimated to range between 10-15 percent, and alkali feldspar megacrysts are comprised 

primarily of plagioclase and microcline.  The pre-kinematic granite unit exhibits a pervasive S1 

subsolidus foliation that is defined by the alignment of biotite mats, the orientation of plagioclase 

and microcline megacrysts, and by millimeter-thick ductile shear bands (Metcalf, 1995; Metcalf, 

1990).   

The megacrystic biotite granite is exposed at both the southeastern and northeastern 

portions of the Aspen Basin septum.  The contact between the megacrystic biotite granite is 

gradational to the megacrystic granite; however this unit is interlayered with the migmatite unit on 

a scale of 0.5 to 5 meters (Metcalf, 1995).  Field relationships and observations indicate the S1 

foliation in the pre-kinematic megacrystic biotite granite is coplanar with a S1/S2 foliation seen in 

the Aspen Basin migmatites (Figure 7b) (Metcalf, 1990).  Discordant leucosomes observed also 

cross-cut both the S1/S2 syn-anatectic fabrics of the migmatites and the S1 foliation of the pre-

kinematic granite (Figure 7b). 

 

4.2: Post-Kinematic Hornblende Biotite Tonalite 

The post-kinematic hornblende biotite tonalite unit is medium-grained (1 to 5 millimeters) 

with hypidiomorphic, inequigranular seriate textures (Figure 7c) and where present, foliations can 

be defined by the weak alignment of isolated mats of biotite (Metcalf, 1990).  The mineral 

assemblage is primarily comprised of plagioclase, quartz and biotite, with accessory + microcline, 

+ zircon, + hornblende, + sphene, + apatite, ± oxides, and ± chlorite.  Plagioclase grains exhibit 
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some coarse and patchy pericline twinning with an antiperthite texture (Metcalf, 1995).  

Plagioclase and biotite are generally randomly oriented and therefore the hornblende biotite 

tonalite unit generally has no internal foliation or mineral alignment; only in narrow centimeter- to 

meter-scale planar zones does an internal foliation become apparent by a weak alignment of 

biotite grains (Metcalf, 1995).  The hornblende biotite tonalite unit crops out at the southern 

portion of the Aspen Basin septum and exhibits a sharp contact between the megacrystic biotite 

granite and migmatitic supracrustal rock units (Figure 7d).  The hornblende biotite tonalite unit 

cross-cuts both the S1 foliation of the megacrystic biotite granite and the S1/S2 foliation of the 

migmatite units. 

 

4.3: Aspen Basin Migmatite 

Aspen Basin migmatite samples exhibit a variance of mineral assemblages and textures 

between corresponding layers of leucosome, melanosome and paleosome.  Paleosome samples 

are generally fine-grained (0.2 to 1.0 millimeters) with granoblastic-polygonal textures and internal 

grainshape foliations defined by mica alignment (Metcalf, 1990).  Paleosomes are primarily 

comprised of quartz, biotite and plagioclase, + magnetite, + zircon, + muscovite, ± garnet, ± 

oxides, and ± chlorite.  Leucosome samples are coarse-grained (2 to 20 millimeters) and lack 

granoblastic-polygonal textures or internal foliations (Figure 7e).  Leucosomes are primarily 

comprised of quartz, plagioclase and muscovite, ± biotite, ± oxides, ± microcline, ± zircon, ± 

apatite, ± sillimanite, and ± chlorite.  Melanosome samples are coarse-grained (1 to 10 

millimeters) and display a strong grain shape foliation defined by the alignment of micas and 

oxides (Figure 7f) (Metcalf, 1990).  Melanosomes are primarily comprised of biotite, muscovite 

and oxides, + zircon, ± garnet, ± sillimanite, ± quartz, ± plagioclase, and ± chlorite.  All migmatite 

samples include chlorite and epidote as secondary alteration products. 

Located in the central portion of the Aspen Basin septum, the biotite gneiss unit has a 

sharp contact between the felsic gneiss unit on the west and east portion of the Aspen Basin 

septum, that forms the limbs to a large map scale F3 antiform located at the center of the biotite 

gneiss unit (Figure 4).  As previously stated, dominant textures include a compositional S1 
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foliation defined by compositional interlayering of neosomes and paleosomes, and a mica-

grainshape foliation that is observed in paleosome and melanosome selvages (Metcalf, 1990).  

Mica-grainshape foliations are generally observed as wrapping around fold hinges and in the 

axial surface of fold noses where biotite becomes reoriented and are co-planar with the axial 

surface of intrafolial folds (Metcalf, 1990).  Although rare, there are parasitic folds that have been 

refolded where biotite grains are coplanar with F2 axial surfaces.  In some outcrops, the 

compositional S1 foliation is refolded into tight and isoclinal folds, displaying a composite S1/S2 

fabric.  This composite S1/S2 fabric is the dominant planar fabric observed in most outcrops of the 

biotite gneiss unit. 
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CHAPTER 5: ANALYTICAL METHODS 

Zircon mineral separates were produced from six samples that include a pre-kinematic 

megacrystic biotite granite (sample 8510-7), a post-kinematic hornblende biotite tonalite (sample 

04-01) and four migmatite samples; one set from a contiguous leucosome-melanosome-

paleosome triplet (samples 01-02L, 01-02M, 01-02P) and a few additional zircon crystals are from 

a second melanosome unit (sample 079-3M).  Migmatite samples were initially separated using 

rock saws to cut out and separate paleosome, melanosome and leucosome.  Both plutonic units 

and migmatite samples were crushed using the Chipmunk rock crusher and Bico disc mill 

pulverizer then sieved to <106μm in preparation for heavy liquid density separation.  Magmatic 

fractions (e.g. magnetite) were removed from each sample with hand magnet.  Zircon crystals 

were obtained from each sample by the method of heavy liquid density separation using 

methylene iodide (specific gravity of 3.32); where the dense fraction obtained from separation 

was finally run through a magnetic Frantz separator.  Zircon crystals were then hand-picked 

under a binocular microscope.   

Zircon crystals were mounted in epoxy and polished to expose grain interiors then were 

gold coated and spot analyzed for U-Pb isotopes and Th-U trace element concentrations using 

standard methods (Ireland and Williams, 2003) on the high-spatial resolution Secondary Ion Mass 

Spectrometer (SIMS) located at the University of California, Los Angeles (UCLA).  Trace element 

compositions (Th and U) were measured using the UCLA CAMECA ims 1270 ion probe (Schmitt 

et al., 2003).  Geochronologic evaluation of U-Pb isotopic data and Th-U concentrations were 

carried out using Isoplot 3.6 software (Ludwig, 2008) that runs in Microsoft Excel.  Isotopic age 

calculations were obtained from concordant data sets with statistical data point errors that are 

given in a 95% confidence interval (2-σ).   

Quantitative wavelength dispersive chemical analyses where also collected on Aspen 

Basin migmatite zircon using the JEOL 8900 Electron Probe Microanalyzer (EPMA) at the 

University of Nevada, Las Vegas (UNLV) with an analytical spot size of 1μm and a beam current 

of 20 nanoamps.  Natural silicate minerals were used as standards.  The study primarily focused 

on the FeO, CaO, and Al2O3 oxides, as these have been interpreted as providing evidence for 
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hydrothermal alteration in zircon by the interaction between late-stage fluids/melts (Geisler et al, 

2007).  Standard oxides for Cr2O3, FeO, MoO3, ZrO2, TiO2, CaO, Al2O3, HfO2, and SiO2 were 

analyzed for leucosome, melanosome and paleosome zircon. The EMPA analytical spots were 

selected to correspond to previously analyzed SIMS spots. 
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CHAPTER 6: ZIRCON OCCURRENCE AND MORPHOLOGY 

6.1: Plutonic Zircon 

 Zircon crystals of both the pre-kinematic megacrystic biotite granite and post-kinematic 

hornblende biotite tonalite units were examined in thin section for crystal habit, location in the 

sample and general descriptions.  Zircon grains in the pre-kinematic megacrystic biotite granite 

are primarily found as inclusions in both biotite grains and alkali feldspar megacrysts.  Some 

zircon grains are also found at grain boundaries between plagioclase crystals and biotite mats.  

Megacrystic biotite granite zircons range from small- to medium-sized and are generally 

subhedral to anhedral, where smaller grains become progressively more stubby and prismatic 

with rounded edges.  Megacrystic biotite granite zircon are light brown in plane polarized light that 

display high third to fourth order colors in cross polarized light, and most zircon grains in this unit 

are moderately to highly fractured.  Pleochroic halos are commonly found around zircon grains 

that are included in biotite crystals; however, they are not as distinctive in the megacrystic biotite 

granite as they are in the migmatitic supracrustal rocks. 

 Zircon grains in the post-kinematic hornblende biotite tonalite unit are primarily included 

in biotite grains but are also found as inclusions in some chlorite grains as well.  Grains are small-

sized and are mostly euhedral, elongate grains with rounded edges.  Zircon grains are light tan in 

plane polarized light and exhibit high second to third order colors in cross polarized light.  Zircon 

exhibit little to no visible fractures and there is no visible evidence of pleochroic halos surrounding 

grains that are included in biotite or chlorite crystals. 

 

6.2: Migmatite Zircon 

Migmatite zircon crystals were examined by (1) cathodoluminescent imagery in grain 

mounts and (2) optically in thin section for habit, general descriptions and their location within 

each sample of the Aspen Basin migmatite unit.   

Thin section analysis:  Leucosome zircon crystals are found within muscovite crystals 

with some altered halos surrounding zircons, included in quartz and located along muscovite and 

quartz grain boundaries.  The altered halos are often referred to as pleochroic halos, most often 
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found in biotite, and are thought to be caused by radiation damage.  Leucosome zircon is 

euhedral to subhedral and varies from very elongate (~4:1; length to width) with prismatic habit to 

shorter (~2:1) crystals with rounded edges.  Leucosome zircon grains range from 50-150 

micrometers (μm) in size where moderate fractures are observed in larger (≥75μm) crystals.  

Colors range from clear to light tan in plane-polarized light, and exhibit strong second to third 

order colors in cross-polarized light.  Melanosome zircon is included in quartz, muscovite and 

biotite crystals, where sharp pleochroic halo boundaries are only noted around zircons located 

within biotite crystals.  Melanosome zircon is euhedral to primarily subhedral and slightly elongate 

(~3:1) with some prismatic crystals, to less elongate (~2:1) with rounded edges.  Melanosome 

zircon grains range from 50-100μm in size with the primary population being ≤75μm, and are 

moderately fractured in larger (≥75μm) crystals.  Colors range from clear to light tan in plane-

polarized light, and exhibit low through high second order to low through moderate third order 

colors in cross-polarized light.  Fractures are not readily apparent in small (≤50μm) crystals from 

either the leucosome or melanosome samples.  Paleosome zircon are located within quartz 

crystals and are found between biotite-quartz-iron oxide grain boundaries.  Paleosome zircon are 

subhedral to anhedral, generally are not prismatic and less elongate (~2:1) with rounded edges.  

The majority of the paleosome zircon population is <75μm in size, exhibit high positive relief with 

no visible fractures, and colors range from clear to light-tan in plane-polarized light, with moderate 

to high second order colors in cross-polarized light. 

Cathodoluminescent analysis:  Internal textures of leucosome and melanosome zircon 

from sample were analyzed in grain mount by cathodoluminescent (CL) surface microscopy to 

distinguish inherited cores and new growth rims to select spots for Secondary Ion Mass 

Spectrometry (SIMS) analysis (Figure 8).  Leucosome (sample 079-3L, Figure 8a) and 

melanosome (sample 079-3M, Figure 8b) zircon luminescence is very low, such that inherited 

cores from new growth could not be distinguished.  As seen in Figure 8, images exhibit low 

luminescence that is interpreted to be a result of high uranium content, paired with radiation 

damage due to radioactive decay of uranium and thorium series elements leading to severe 

damage to the crystal structure (metamictization) (Geisler et al., 2007).  Featureless grey-
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cathodoluminescent images may also be explained by transgressive recrystallization fronts of 

protolith zircon, such as those observed by Hoskin and Black (2000) (see their Figure 2).  

Recrystallization fronts are proposed to occur in the solid state, without the need for a fluid-phase 

interaction between the zircon crystal and melt (Hoskin & Black, 2000; Geisler et al., 2007).  

Lacking CL imaging as a guide, SIMS analytical spots were selected from zircon centers and rims 

(tips). 
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CHAPTER 7: RESULTS 

7.1: Secondary Ion Mass Spectrometer (SIMS) Analysis of Zircon 

SIMS analytical data and calculated ages are presented in Tables 1 through 3 and 

Figures 9 through 14.  In the tables uncertainties are reported at 1σ but all age uncertainties in 

the figures and discussed in the text below are given at 2σ.  

Plutonic Samples:  A total of fourteen spots were analyzed on nine individual zircon 

grains from the megacrystic biotite granite, sample 8510-7.  Results include 206Pb/238U ages 

ranging from 1.346 Ga to 1.705 Ga, 207Pb/235U ages ranging from 1.435 Ga to 1.657 Ga and 

207Pb/206Pb ages ranging from 1.570 Ga to 1.650 Ga (Table 1).  A subset of the U-Pb ages plot as 

concordant (6 of 14) on the concordia diagram and the remainder are only slightly discordant 

(Figure 10).  Uranium concentrations in sample 8510-7 zircon range from 260 ppm to 1,400 ppm; 

thorium concentrations range from 112 ppm to 594 ppm (Table 1, Figure 9a).  Th/U ratios for the 

pre-kinematic granite range from 0.291 to 0.846 and are within typical ranges for igneous rocks 

(>0.5) (Hoskin & Schaltegger, 2003).  As discussed below, a straight forward age interpretation 

for the age of the megacrystic biotite granite (sample 8510-7) is ~1.63 Ga.  

A total of thirteen spots were analyzed on six individual zircon grains from the hornblende 

biotite tonalite, sample 04-01.  Results include 206Pb/238U ages ranging from 1.174 Ga to 1.475 

Ga, 207Pb/235U ages ranging from 1.222 Ga to 1.446 Ga and 207Pb/206Pb ages ranging from 1.261 

Ga to 1.428 Ga for the post-kinematic tonalite (Table 2).  All but two of the U-Pb ages plot as a 

single concordant age on the concordia diagram with the remainder being only slightly discordant 

(Figure 11). Uranium concentrations in sample 04-01 zircon range from 210 ppm to 1,600 ppm; 

thorium concentrations range from 82 ppm to 469 ppm (Table 2, Figure 9b).  With the exception 

of one outlier, Th/U ratios for the post-kinematic tonalite range from 0.053 to 0.505 and also lie 

within typical ranges for igneous rocks.  As discussed below, a straight forward age interpretation 

for hornblende biotite tonalite (sample 04-01) is ~1.4 Ga. 

Migmatite Samples: Zircon from the four migmatite samples (01-02L, 01-02M, 01-02P, 

and 079-3M) were analyzed in three groups separated by leucosome, melanosome and 

paleosome as follows: leucosome (12 from 01-02L), melanosome (7 from 01-02M, 3 from 079-
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3M) and paleosome (7 from 01-02P) with a total of forty-four analytical spots on twenty-nine 

individual zircon grains.  Total analyses include twenty-four spots on twelve individual leucosome 

zircon grains (Table 3a), thirteen spots on ten individual melanosome zircon grains (Table 3b) 

and seven spots on seven individual paleosome zircon grains (Table 3c).   

Leucosome zircon 206Pb/238U ages range from 515 Ma to 1.498 Ga, 207Pb/235U ages 

range from 677 Ma to 1.545 Ga and 207Pb/206Pb ages range from 1.326 Ga to 1.641 Ga (Table 

3a).  Leucosome zircon U varies widely from 240 ppm to 9,300 ppm; Th concentrations vary from 

3 ppm to 276 ppm.  Th/U ratios for leucosome zircon range from 0.004 to 0.110 (Table 3a, Figure 

9c).  Melanosome zircon 206Pb/238U ages range from 1.005 Ga to 1.639 Ga, 207Pb/235U ages 

range from 1.199 Ga to 1.664 Ga and 207Pb/206Pb ages range from 1.392 Ga to 1.794 Ga (Table 

3b).  Melanosome zircon uranium varies from 370 ppm to 2,400 ppm; thorium concentrations vary 

from 22 ppm to 1,788 ppm.  Th/U ratios range from 0.014 to 0.745 (Table 3b, Figure 9c).  

Paleosome zircon 206Pb/238U ages range from 815 Ma to 2.131 Ga, 207Pb/235U ages range from 

1.002 Ga to 2.075 Ga and 1.410 Ga to 2.020 Ga (207Pb/206Pb) (Table 3c).  Paleosome zircon 

uranium range from 230 ppm to 2,900 ppm; thorium concentrations range from 48 ppm to 667 

ppm.  Th/U ratios range from 0.032 to 0.638 (Table 3c, Figure 9c).  In general, migmatite zircon 

age ranges and Th/U ratios shown have a much greater variation than that seen in zircons from 

the two plutonic rocks. 

 

7.2: Electron Probe Microanalysis (EPMA) of Migmatite Zircon 

Electron microprobe results for migmatite zircon are shown in Table 4 and Figure 15.  All 

EPMA spots that were selected for analysis were chosen from a subset of the SIMS analytical 

points that yielded a mix of U-Pb isotopic ages and low Th/U values in order to test and document 

hydrothermal alteration in migmatite zircon.  Fourteen spots were analyzed on seven zircon 

crystals in the leucosome where FeO values range from 0 to 1.05-weight percent (wt%), Al2O3 

values range from 0 to 1.32 wt% and CaO values range from 0.01 to 1.82 wt%.  Three spot 

counts were analyzed on three zircon crystals in the melanosome where FeO values range from 

0.02 to 0.12 wt%, Al2O3 values range from 0 to 0.05 wt% and CaO values range from 0.002 to 
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0.01 wt%.  Lastly, five spot counts were analyzed on five zircon crystals in the paleosome, where 

FeO values range from 0 to 0.1202 wt%, Al2O3 values range from 0 to 0.0805 wt% and CaO 

values range from 0.01 to 0.25 wt%.   
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CHAPTER 8: INTERPRETATION OF AGES 

8.1: Plutonic Ages 

The 207Pb/206Pb weighted average age of all zircon analyses for the pre-kinematic granite 

is 1622 ± 12 Ma with a mean standard weighted deviation (MSWD) of 1.6 (Figure 10a).  A U-Pb 

concordia plot of all zircon analyses, some of which are slightly discordant, yielded an upper 

intercept age of 1631 ± 13 Ma (MSWD = 0.97, Figure 10b).  Removal of discordant analyses 

yielded a concordant age of 1633 ± 12Ma (MSWD = 1.04, Figure 10c).  The Th/U ratios (0.291 – 

0.846) (Table 1) for pre-kinematic granite zircon plot within normal ranges for igneous rocks 

which is typically ≥0.5 (Hoskin & Schaltegger, 2003).  An age of 1633 ± 12 Ma is accepted for 

crystallization of pre-kinematic megacrystic biotite granite.  

The 207Pb/206Pb weighted average age of all zircon analyses for the post-kinematic 

tonalite yielded a mean age of 1382 ± 21 Ma (MSWD = 2.4, Figure 11a).  All but two zircon 

analyses cluster on the U-Pb concordia (Figure 11b), removal of those two analyses yielded a 

concordant age of 1395 ± 7 Ma (MSWD = 0.73, Figure 11c).  The post-kinematic hornblende 

biotite tonalite zircon yielded Th/U ratios in the range normal for igneous rocks (0.362 – 0.505) 

with the exception of one outlier (0.053) (Table 2).  An age of 1395 ± 7 Ma is accepted for 

crystallization of the post-kinematic hornblende biotite tonalite. 

 

8.2: Migmatite Ages 

 The evaluation of migmatite ages begins with the combined leucosome-melanosome-

paleosome data set.  The 207Pb/206Pb relative probability (Figure 12a) and weighted average 

(Figure 12b) of ages for the combined migmatite data set shows a broad continuum of ages from 

2.1 Ga to 1.3 Ga; three clear peaks are seen on the relative probability plot at about 1.8 Ga, 1.6 

Ga and 1.4 Ga (Figure 12a); these peaks correlate with ages common to Proterozoic crust of the 

southwest (Figure 2).  However, ages that fall between peaks at 1.6 Ga and 1.4 Ga are suspect 

because the interval between 1.6 Ga and 1.5 Ga is thought to represent a time of crustal stability 

with few magmatic or metamorphic ages reported from North America (Figure 2; Karlstrom et al 

2004).  Hoskin and Black (2000) reported similar ‘mixed’ U-Pb isotope zircon ages in 
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Paleoproterozoic high-grade metagranitoids from Queensland, Australia.  Using zircon trace 

element chemistry, including highly variable Th/U ratios, Hoskin and Black (2000) attributed 

these mixed ages to a process of solid-state recrystallization during high-grade metamorphism.  

Following Hoskin and Black (2000), Th/U ratios were used to ‘screen’ the Aspen Basin migmatite 

zircon data set.  

Migmatite Th/U ratios vary significantly from igneous-like values to both very low Th and 

to elevated U concentrations (Figure 9c).  Re-plotting the 207Pb/206Pb ages using only the fourteen 

zircon analyses with Th/U ratios >0.1 yielded two distinct populations (Figure 13), population 1 

with a weighted average at 1634 ± 16 Ma (MSWD = 0.41, n = 6) and population 2 with a weighted 

average at 1398 ± 17 Ma (MSWD = 0.88, n = 5); three additional analyses have 207Pb/206Pb ages 

of 1791 ± 25 Ma.  A U-Pb concordia plot of population 1 (Figure 14a) yielded an upper intercept 

age of 1635 ± 17 Ma (MSWD = 1.18), very close to the 207Pb/206Pb age.  The U-Pb concordia plot 

for population 2 (Figure 14b) is concordant and yielded an age of 1386 ± 28 Ma (MSWD = 0.022), 

also very close to the 207Pb/206Pb age.   Both older ages of 1791 ± 25 Ma and 1636 ± 16 Ma are 

accepted as geologically meaningful ages for zircon inheritance in the migmatite protolith.  The 

younger age of 1398 ± 15 Ma is accepted as the age of migmatization and specifically the 

crystallization of anatectic melts, and dates a portion of the metamorphic and retrograde P-T-time 

path. 
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CHAPTER 9: EVIDENCE OF ZIRCON RECRYSTALLIZATION IN ASPEN BASIN MIGMATITE 

Background:  A lack of internal textures is a common feature seen in zircon that has 

been modified by recrystallization of protolith zircon (Hoskin & Black, 2000); recrystallization may 

not always proceed to completion and often leaves zircon crystals that display areas where 

primary textures (zoning) has been destroyed.  As seen in cathodoluminescence imagery, Hoskin 

and Black (2000) document either modification or a complete loss of primary igneous zoning and 

internal textures, where areas of recrystallization and preservation yield contrasting luminescence 

from low to high respectively.  Hoskin and Black (2000) attributed such areas of low 

luminescence to transgressive recrystallization fronts that provide evidence for solid-state 

recrystallization.  Observations of dark-grey areas in cathodoluminescence images are seen 

adjacent to recrystallized areas and are hypothesized as being trace element-enriched selvedges 

that precede transgressive recrystallization that are termed recrystallization fronts.  Hoskin and 

Black (2000) also documented a large spread in apparent ages (‘mixed’ ages) of U-Pb isotopic 

data from these recrystallized areas.  The age spread is interpreted as being an incomplete re-

setting of U-Pb isotopic compositions due to varying degrees of partial recrystallization.  As 

recrystallization proceeds through the zircon crystal, there is also a differential expulsion of Th 

and U that results in a progressive change to the Th/U ratio (Hoskin & Black, 2000), where it is 

observed that uranium is most abundant in areas affected by recrystallization.  The change in 

Th/U ratio to less than 0.1 is noted for recrystallized, metamorphic zircon.  Trace elements (e.g. 

Th and U) in protolith zircon become purged during recrystallization; becoming enriched in the 

area of the recrystallization front but depleted in the areas of complete recrystallization (Hoskin 

and Black, 2000).  It is important to note that recrystallization is not always efficient and often will 

leave a ‘memory’ of the protolith trace element and isotopic composition (Hoskin & Black, 2000) 

and therefore establishes a correlation between the apparent age and Th/U ratio preserved in the 

zircon crystals.  Because trace elements become mobile during such processes, Th/U ratios with 

very low values have been documented as being indicative of recrystallization and hydrothermal 

alteration.   
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It was concluded that Hoskin and Black’s (2000) zircon samples recrystallized in the 

solid-state as trace element compositions are generally lower in recrystallized areas compared to 

their protolith counterparts.  However, in most crystals from one sample (95836597, Junction 

Creek) Hoskin and Black (2000) do observe an enrichment of trace elements that are retained in 

secondary structures and are associated with trace element-enriched recrystallization fronts that 

are sites for migration of trace elements and a defect-rich boundary that precedes 

recrystallization through the crystal.  Hoskin and Black (2000) noted that even low concentrations 

of ‘impurity’ elements in the zircon lattice will generate large amounts of structural stress to the 

crystal, and recrystallization is thermoactivated where stress can be reduced by the expulsion of 

large-radius trace elements that are bound in the lattice.  Therefore, Hoskin and Black (2000) 

propose recrystallization operates through a mechanism of grain-boundary and defect migration 

(and not through diffusion) that is initiated in areas of high lattice strain where a trace 

element/defect-enriched recrystallization front migrates through the crystal.  They attribute this 

thermoactivation of zircon recrystallization and trace element re-ordering to the presence of inter-

granular fluids that are deemed ‘kinetically’ crucial in providing a considerably larger thermal 

conductivity for the expulsion of trace elements that reduces stress to the crystal lattice.   

In another study, Geisler et al. (2007) discussed recrystallization of zircon by a coupled 

dissolution-reprecipitation mechanism that operates in the presence of a fluid or melt.  In this 

process, trace elements are transferred between melt/fluid and solid crystal interfaces.  Geisler et 

al. (2007) reported the importance of self-irradiation damage (metamictization) as representing 

sites where enhanced chemical transport is possible within the zircon crystal.  Experimental 

studies by Geisler et al. (2003a) reported an increase in cathodoluminescence intensity and 

interpreted this to reflect structural recovery of radiation-damaged zircon, where recovery is 

greatly enhanced in the presence of water.  During recrystallization of amorphous zircon, strain is 

released from the crystal by fracturing and by producing a porous structure in the crystal that 

provides pathways allowing for fast chemical exchange between an inward-moving reaction front 

(recrystallization front) and fluid that is in contact with the crystal (Geisler et al., 2007).  This has 

been documented in experimentally altered areas of zircon crystals where high concentrations of 
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solvent cations (e.g. Ca2+, Fe2+, and Al3+) were incorporated into reacted domains (Geisler et al., 

2003a) and where there was a reported loss of minor and trace elements (e.g. Th).  Similar to  

Hoskin and Black (2000), Geisler et al. (2007) reported these experimentally reacted domains 

retain a memory of their U-Pb isotopic compositions that results in discordant ages, interpreted as 

being the result of a moving recrystallization front throughout the crystal structure.  The driving 

force for the coupled dissolution-reprecipitation process is the solubility difference exhibited 

between a solid solution-aqueous solution system; this is maintained by the formation of porosity 

that allows for chemical exchange between the zircon crystal and fluid/melt (Geisler et al., 2007).   

Both Hoskin and Black (2000) and Geisler et al. (2007) underscore the importance of 

recognizing recrystallization processes in altered zircon for correct interpretation of apparent ages 

attained from the U-Pb isotopic system.  Their studies attribute observed zircon recrystallization 

to the presence of a fluid/melt and can document recrystallized zircon by the presence of low 

Th/U ratios.  Other studies by Harley et al. (2007), Carson et al. (2002a), Harley et al.   (2001), 

and Vavra et al. (1999) also document metamorphic zircon with very low (<0.02) Th/U values as 

being indicative of late-stage melt/fluid interaction and hydrothermal alteration.   

Recrystallization of Aspen Basin zircon: A Th/U plot for the entire Aspen Basin 

migmatite zircon data set is shown in Figure 9c; leucosome, melanosome and paleosome, and 

are color-coded for distinction between lithologies.  Paleosome analyses primarily plot between 

Th/U = 1.0 – 0.1, in and around the typical range for igneous rocks.  A total of seven spots were 

analyzed from paleosome zircon; five spots lie above Th/U = 0.1, the remaining two analyses plot 

between Th/U = 0.1 – 0.01.  A total of thirteen spots were analyzed from melanosome zircon; 

seven spots plot above Th/U = 0.1, six spot analyses plot between Th/U = 0.1 – 0.01.  A total of 

twenty-four spots were analyzed from leucosome zircon; two spots plot above Th/U = 0.1, 

fourteen spots plot between Th/U = 0.1 – 0.01, eight spots plot below Th/U = 0.01.  Many of the 

leucosome zircon analyses have very high U values (>5000 ppm).  Low Th/U values and high 

uranium concentrations are most common in leucosome then melanosome and least in 

paleosome.  It is interpreted that fluid and/or melt interaction is highest in leucosome and 
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becomes progressively less in melanosome and paleosome respectively; perhaps during melt 

crystallization in the leucosome fluid is released and promotes recrystallization of zircon crystals. 

Additional tests for hydrothermal alteration in metamorphic zircon was demonstrated by 

Geisler et al. (2007), where coupled dissolution-reprecipitation from late-stage fluid/melt 

interactions incorporated soluble cations (e.g. Fe2+, Al3+, Ca2+) into the structure of recrystallized 

areas of the zircon crystal.  Plots of FeO, Al2O3, and CaO versus U concentrations (ppm) for 

Aspen Basin migmatite zircon (Figure 15) reveal analyses with low Th/U ratios also having higher 

concentrations of these soluble cations.  As illustrated in Figure 15, the primary increase of these 

soluble cations occurs within leucosome zircon.  This analysis supports the notion that Aspen 

Basin migmatite zircon has undergone hydrothermal alteration by late-stage fluid interaction 

during anatexis (~1.4 Ga), and generally is found to correspond to Th/U values that are less than 

0.1.  This provides justification for removing U-Pb analyses that yield Th/U values less than 0.1 in 

migmatite zircon as previously discussed for age interpretations.  Upon removal of such analyses 

207Pb/206Pb weighted averages, relative probability counts, and U-Pb concordia diagrams for 

Aspen Basin zircon now yield interpretable geologic ages.  
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CHAPTER 10: DISCUSSION 

10.1: Zircon Behavior during Anatexis at Aspen Basin 

Experimental studies performed by Harrison & Watson (1983) and Watson & Harrison 

(1983) suggest that the rate and extent of zircon dissolution and growth can be influenced by 

temperature and the composition and water content of the melt.  In typical crustal-derived melts 

(H2O > 2 wt%), Watson & Harrison (1983) demonstrated zirconium (Zr) concentration in the melt 

(CZr(melt)) is a function of both temperature (T) and melt composition (M) which provided the 

experimentally derived equation for zircon saturation, equation (1): CZr(melt) = CZr(zircon) · 

exp[3.80 + 0.85(M-1) – 12900/T], where CZr (zircon) is ~50% for stoichiometric zircon, M is the 

cation ratio (Na + K + 2Ca)/(Al/Si), and T is the absolute temperature (Nemchin et al., 2001).  

Potential complications between zircon-melt interactions were recognized in two chemically 

distinct leucosome types (Watt & Harley, 1993; Watt et al., 1996; Bea & Montero, 1999).  The first 

type is slightly zircon-undersaturated and the second type is zircon-oversaturated, the latter 

representing leucosome with inherited zircon.   

An understanding of the solubility of zircon in silicate melts allows for a discussion of the 

behavior of zircon during 1.4 Ga anatexis.  Harley et al. (2007) presented a schematic diagram of 

a temperature (T)-time (t) path that illustrates the behavior of zircon crystals during a hypothetical 

high-T anatectic event.  A version of this graph has been modified to reconstruct the behavior of 

zircon crystals in the Aspen Basin migmatite during anatexis (Figure 16).   

On the prograde metamorphic path the water-saturated solidus marks the onset of partial 

melting (anatexis) of the migmatite protolith at 1.4 Ga, where dissolution of protolith (inherited) 

zircon begins in newly formed melt ([a] in Figure 16).  At this stage the melt fraction was relatively 

low and zircon undersaturated, but progressively increased as temperatures increased, allowing 

for additional zircon dissolution ([b] in Figure 16).   For a given melt composition and maximum T, 

and with a significant abundance of inherited zircon, the melt can become zircon saturated 

resulting in entrained inherited zircon crystals ([c] in Figure 16). This appears to be the case for 

the Aspen Basin migmatites which preserve 1.63 Ga and older zircon.  In the Aspen Basin 

migmatite, the thermal peak never quite reached temperatures that exceeded those which 
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initiated dehydration reactions, such as those involving biotite (Metcalf, 1990) suggesting these 

were wet melts ([c] in Figure 16).  Upon cooling zircon began to crystallize ([d] in Figure 16) as 

new growth rims (~1.4 Ga) on protolith zircon cores (≥ 1.63 Ga). During the final stages of 

crystallization at or near the solidus, late stage fluid/melt reactions with zircon occurred in the 

solid-state and resulted in hydrothermally altered zircon crystals ([e] in Figure 16), as evidenced 

by reported low Th/U ratios and increased U and soluble cation concentrations.   

Hydrothermal alteration resulted in a chemical re-equilibration of crystalline zircon (both 

1.4 Ga and ≥1.63 Ga zircon), during which aqueous fluid or melt interacted with zircon by a 

coupled dissolution-reprecipitation process similar to that discussed by Geisler et al., (2007). 

During late stage fluid/melt interactions ([e] in Figure 16) Aspen Basin zircon crystals gained 

significant amounts of solvent cations (e.g. Ca2+, Fe2+, Al3+), lost Th and redistributed U.  When 

late stage fluid and melt interactions are coupled with self-irradiation damage, the stability of the 

U-Pb isotopic system in zircon reveals isotopic discordance that often becomes dramatic once a 

threshold for uranium content has been reached (Williams, 1992).  It has been concluded that 

hydrothermal recrystallization of Aspen Basin migmatite zircon was incomplete with inward 

diffusion of soluble cations via a recrystallization front, with zircon crystals retaining high 

concentrations of soluble cations and uranium. These portions of the zircon crystals remained 

open to isotopic exchange since 1.4 Ga, enhanced by accumulated radiation damage in high U 

zones, and resulted in “mixed” ages and U-Pb isotopic discordance (Figure 12).  Finally, poor 

quality CL images are likely a result of incomplete recrystallization and self-irradiation damage. 

 

10.2: Implications for Precambrian Geology 

The most critical concern regarding the Proterozoic tectonic history of the New Mexican 

region is the age and timing of plutonism, metamorphism and deformation.  Uranium-Pb isotopic 

analyses yielded a crystallization age for the megacrystic biotite granite at 1633 ± 12 Ma (Figure 

10).  This correlates with later stages of the Mazatzal orogeny (1.67 Ga to 1.65 Ga) where peak 

deformation was said to occur at approximately 1.65 Ga, affecting both Yavapai and Mazatzal 

crust (Karlstrom et al., 2004; Bauer et al., 1993; Karlstrom & Bowring, 1993).  Petrographic 
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evidence of observed solid-state deformation features (e.g. ductile shear bands and the 

orientation of biotite mats and feldspar megacrysts) in the megacrystic biotite granite suggest 

deformation fabrics are not older than the crystallization age at 1633 ± 12 Ma in the Santa Fe 

Range.  Field relationships (Figure 7b) indicate the S1 deformation fabric in the megacrystic 

biotite granite is parallel to the composite S1/S2 foliations in the Aspen Basin migmatite and 

suggests deformation was syn-kinematic with anatexis and migmatite formation at ~1.4 Ga.   

Zircon inheritance from the Aspen Basin migmatite records 207Pb/206Pb ages at ~2100 

Ma, 1791 ± 25 Ma and 1636 ± 16 Ma (Figures 13 & 14).  Multiple inherited age generations 

suggest the migmatite protolith was most likely metasedimentary in origin rather than from an 

igneous or volcanic source, as sedimentary rocks generally incorporate inherited zircon grains 

during their formation.  Secondly, the migmatite protolith cannot be older than the youngest 

recorded age of zircon inheritance; therefore the age of the migmatite protolith is no older than 

1636 ± 16 Ma.  Statistically the migmatite protolith age is indistinguishable from the age of the 

megacrystic biotite granite; therefore emplacement of the megacrystic biotite granite and 

migmatite protolith was synchronous. Both the megacrystic biotite granite and the Aspen Basin 

migmatite protolith represent Mazatzal age crust (Figures 1 & 3). 

Deformation features observed in Aspen Basin neosome and paleosome (e.g. 

compositional layering and mica-grain shape foliations) suggest anatexis and migmatization was 

contemporaneous with deformation.  The age of new growth zircon formed during syn-kinematic 

anatexis is 1398 ± 15 Ma and thus records the age of migmatization, anatexis and leucosome 

crystallization in the Aspen Basin migmatite.  Thus the Aspen Basin migmatite records both 

metamorphism and deformation at ~1.4 Ga; this provides additional evidence and documentation 

of intense metamorphism and deformation at 1.4 Ga as suggested by Bauer et al. (1993), Bishop 

(1997) and Wingsted (1997) and suggests an orogenic event occurred at ~1.4 Ga. 

The crystallization age for the hornblende biotite tonalite at 1395 ± 7 Ma is statistically the 

same age as that of new growth zircon in the Aspen Basin migmatite; thus mafic magmatism 

(tonalite crystallization) was broadly synchronous with migmatization.  This suggests mafic 

magmatism could have potentially provided the heat source that drove anatexis at ~1.4 Ga. 
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 Some models (Karlstrom et al., 2004) suggest that crustal underplating of mafic magma was the 

driver for lower crustal partial melting that generated wide-spread 1.4 Ga granitic (A-type) 

magmatism.  Few ~1.4 Ga ages have been reported for mafic rocks in the southwest; the 

recognition of ~1.4 Ga mafic magmatism in the Santa Fe Range provides support for this model.
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CHAPTER 11: SUMMARY AND CONCLUSIONS 

Important conclusions regarding zircon behavior during anatexis, migmatite formation, 

metamorphism, deformation and tectonism in the Santa Fe range, NM and southwest region are 

as follows: 

1) Chemical evidence from migmatite zircon (decrease in Th/U values and increase of 

soluble cation concentrations) suggests interaction of anatectic melt and/or hydrothermal 

fluids that resulted in some degree of chemical alteration during the formation of zircon in 

the neosome; particularly from the release of water during leucosome crystallization.  

This suggests neosome zircon experienced chemical alterations from anatectic melts and 

late-stage hydrothermal fluids in the Aspen Basin migmatite.   

2) Pre-kinematic granite crystallization and emplacement occurred at 1633 ± 12 Ma, being 

broadly synchronous with the late-stage Mazatzal deformation at 1.67 Ga to 1.65 Ga.  

3) Aspen Basin migmatite zircon records multiple ages of inheritance at ~2100 Ma, 1791 ± 

25 Ma and 1636 ± 16 Ma.  Multiple inherited ages suggest migmatite protolith was 

metasedimentary in origin.  Migmatite protolith age is no older than 1636 ± 16 Ma and is 

synchronous with pre-kinematic granite emplacement. 

4) Migmatite new growth zircon in neosome records the age of migmatization, anatexis and 

leucosome crystallization at 1398 ± 15 Ma.  Syn-kinematic structures observed in the 

migmatite also documents deformation at ~1.4 Ga and therefore record an orogenic 

event at ~1.4 Ga. 

5) Post-kinematic tonalite zircon records a crystallization age at 1395 ± 7 Ma, where 

migmatite new growth zircon is synchronous with tonalite emplacement. 

6) Tonalite emplacement could have provided the heat source that drove anatexis and 

migmatite formation, and also documents the importance of mafic magmatism and 

tectonism at ~1.4 Ga. 

Geochronologic and petrographic studies of three lithologic units sampled in the Santa Fe range, 

northern New Mexico, records evidence for metamorphism and deformation associated with the 

Mazatzal orogeny at ~1.6 Ga and provides additional support for synchronous mafic magmatism, 
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metamorphism and deformation at ~1.4 Ga in the southwest region.  This study also underscores 

the importance in understanding zircon behavior during anatexis and migmatite formation, as 

understanding factors and processes of zircon behavior and migmatite formation are necessary 

to distinguish and interpret correct U-Pb isotopic ages in migmatite zircon. 
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FIGURES 

 
 

 
Figure 1.  Proterozoic crustal provinces in southwestern Laurentia include the (1) 2.0 Ga to 1.8 
Ga Mojave province of accretionary arcs on older crust; (2) 1.8 Ga to 1.7 Ga Yavapai province 
comprised primarily of juvenile arc crust; and (3) 1.7 Ga to 1.6 Ga Mazatzal province of juvenile 
crust (Karlstrom et al., 2004; Karlstrom et al., 2001). 
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Figure 2.  General map of Proterozoic geology of the Sangre de Cristo Mountains in northern 
New Mexico (from Karlstrom et al., 2004).  (Aspen Basin study area indicated is shown in more 
detail in figure 4.) 
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Figure 3.  U-Pb probability plot of zircon ages from New Mexico (Karlstrom et al., 2004).  Ages are reported at 
the top of the figure, shown as black data points with error bars at 2σ.  The total number of zircon ages reported 
is 181.  This plot illustrates the timing of deformational, metamorphic, and tectonic events within the New Mexico 
region; 1.80 – 1.60 Ga crustal assembly (green) involving the Yavapai and Mazatzal crustal provinces is 
separated from 1.48 – 1.35 Ga intracratonic tectonism (red) and emplacement of ~1.4 Ga anorogenic granites 
by a tectonic lull (white) from 1.60 – 1.48 Ga. Weak intracratonic tectonism (blue) occurs from approximately 
1.35 – 1.20 Ga and the Grenville orogeny (yellow) occurs from approximately 1.20 – 1.08 Ga.
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Figure 4.  General map of Proterozoic geology of the Santa Fe Range, NM modified from Figure 2 (Metcalf, 1990).  
Lithologic units were mapped, by Metcalf (1990), into three groups; (1) pre- to syn-kinematic felsic plutonic units, (2) 
syn-kinematic supracrustal migmatites and (3) late to post-kinematic mafic plutonic units.  Sample materials used in 
this study include the (1) megacrystic biotite granite (mbg), (2) biotite gneiss (bgn) and (3) hornblende biotite tonalite 
(hbt) units.  

 
 
 



 
40 

 
 

Figure 5.  Image of Aspen Basin migmatite (sample 01-02), illustrating migmatite morphology that 
includes the paleosome (protolith), leucosome (solidified anatectic melt), and melanosome 
(residual solids). 
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Figure 6.  Syn-kinematic structures seen in the Aspen Basin migmatites include: (a) in-situ 
compositional layering, (b & c) tight to isoclinal, intrafolial folds and (d) parasitic folds, (e & f) 
boudinage features, and (g & h) leucocratic veins and dikes. 
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Figure 7.  Thin section and field photographs of sample materials; megacrystic biotite granite 
(mbg; sample 8510-7) (a & b), hornblende biotite tonalite (hbt; sample 04-01)) (c & d), and Aspen 
Basin migmatite (bgn; sample 01-02) (e & f: thin section only, see Figures 5 & 6 for field images) 
from Santa Fe range, northern New Mexico; (a) oriented plagioclase and microcline megacrysts 
and biotite mats (S1) in mbg; (b) S1 fabric in mbg is parallel to composite S1/S2 fabric of bgn 
where discordant leucosomes cross-cut both S1 and S1/S2 fabrics; (c) random orientation of 
plagioclase and biotite grains is common in hbt; (d) outcrop of hbt (crosscuts both mbg and bgn); 
(e) thin section image of leucosome displaying coarse texture and lack of internal foliations and (f) 
melanosome displaying a strong mica grainshape foliation defined by the alignment of micas.
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Figure 8.  Cathodoluminescence (CL) imagery of migmatite zircon from sample 079-3.  (a) 
Leucosome (079-3L) and (b) melanosome (079-3M) zircon yield poor quality images that are 
interpreted to be the result of high uranium contents paired with radiation damage of zircon 
caused by the decay of U- and Th-series elements.  Dark-grey areas of low luminescence are 
also attributed to transgressive recrystallization fronts that formed through hydrothermal alteration 
of zircon by late-stage fluids and/or melts in the solid-state. 
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Figure 9.  Th vs. U plot for (a) pre-kinematic granite, (b) post-kinematic tonalite, and (c) Aspen Basin migmatite.
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Figure 10.  Weighted average (a) and concordia diagram of all zircon analyses (b) and concordia 
diagram of concordant zircon analyses (c) for pre-kinematic megacrystic biotite granite.  All data-point 
error symbols and ellipses are 2-sigma. 
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Figure 11.  Weighted average (a) and concordia diagram of all zircon analyses (b) and concordia 
diagram of concordant zircon analyses (c) for post-kinematic hornblende biotite tonalite.  All data-point 
error symbols and ellipses are 2-sigma. 
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Figure 12.  Relative probablility (a) and weighted average (b) age populations of all migmatite samples for Aspen 
Basin migmatite.  Data point error symbols are 2-sigma.
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Figure 13.  Relative probablility (a) and weighted average (b) age populations of Th/U ratios >0.1 for Aspen 
Basin migmatite zircon.  Data point error symbols are 2-sigma.  Population 1 represents zircon inheritance at 
1634 ± 16 Ma and population 2 represents new growth zircon at 1398 ± 14 Ma.  Three additional analyses yield 
zircon inheritance at 1791 ± 25 Ma. 
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Figure 14.  Concordia plots of (a) population 1 (inherited protolith zircon) and (b) population 2 (new growth 
zircon), with Th/U >0.1 for Aspen Basin migmatite zircon.  Data point error ellipses are 2-sigma.
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Figure 15.  EPMA data plots of FeO, Al2O3, and CaO versus U (ppm) for leucosome (sample 01-02L), 
melanosome (sample 01-02M) and paleosome (sample 01-02P).
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