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ABSTRACT
PAIRED 6Ccars, 6°Cors, AND 620 STUDY ACROSS THE LOWER

MISSISSIPPIAN POSITIVE CARBON ISOTOPE EXCURSION,
SOUTHEASTERN NEVADA, USA

by
Robert Alan Henry
Dr. Ganqging Jiang, Examination Committee Chair
Associate Professor of Geoscience
University of Nevada, Las Vegas

A prominent positive carbonate carbon isotope (5°*Cean) excursion of Early
Mississippian age (ca 351 Ma) has been documented by previous studies from numerous
sites globally. This 8**Cean, excursion has been interpreted as resulting from enhanced
organic carbon burial that removed **C-depleted carbon from the ocean and atmosphere.
Anticipated outcomes from enhanced organic carbon burial would include a similar
positive excursion in organic carbon isotopes (813C0rg) and a global cooling event
resulting from reduced CO, in the atmosphere and ocean. These predictions, however,
were not tested sufficiently in previous studies. This research has tested these predictions
through an integrated study of carbonate, and organic carbon, and oxygen isotopes in two
Lower Mississippian stratigraphic sections in southeastern Nevada: the Alamo section
and the Tungsten Gap section.

Paired 3"°Corg and 8'°Cea, analyses and brachiopod oxygen isotope analysis across the
positive 813Cearh excursion show that (1) 83Cearp and 613C0rg values are coupled in the
Alamo section, but considerable variations in both 8**Cear, and 8**Corg values are present

in the Tungsten Gap section; (2) 5 %0 values of limestone matrix and brachiopods show

an overall increase across the 8'°C excursion, but increase in 5'°0 predates the 8*°C



maximum. A significant negative shift in 820 from -5%o to -21%o is observed before the
8*3C peak; and (3) carbonate and organic carbon isotope fractionation, approximated by
the isotope difference (A5'*C) between §**Cear and 813C0|’g (AS"C = 6"*Cean — 613C0rg)
increases from 26%o to 31%o before the 8°C peak, but remains about 31%o for the
remainder of the excursion interval.

Overall, the data support enhanced organic production and burial as the origin of the
8*3C excursion, but the cooling event occurred earlier than the peak of the carbon isotope
excursion. The lack of change in both 520 and A§™*C across the later half of §*C
excursion suggests that, after the initial cooling at the beginning of the 813C excursion,
seawater temperature and aqueous CO, concentration did not change significantly.
Unresolved is the cause of isotopic difference between the Alamo and Tungsten Gap
sections. More scattered and lower values in 813Ccarb, 813C0rg, and 680 from the Tungsten
Gap section may imply a significant influence from terrestrial sediment sources or
freshwater input, but considering the paleogeographic location of section, the later is
more likely. Further elucidating the isotope difference between sections requires higher
sampling resolution from the Tungsten Gap section and from other sections further

eastward in proximal environments of the early Mississippian carbonate platform.
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CHAPTER 1
INTRODUCTION
Throughout the Phanerozoic, major perturbations of the global carbon cycle are
recorded by both positive and negative inorganic carbon isotope (5**Cear) excursions in
stratigraphic successions of North America, Europe, and Asia. Positive §*Cear
excursions have been interpreted as resulting from an increase in organic carbon burial
while negative 5*Cean excursions are usually thought to be the result of reduced primary
organic production (Kump and Arthur, 1999; Hoefs, 2009). If positive §**Cear, excursions
are a direct result of enhanced organic carbon burial, then it is expected that a similar
positive excursion in organic carbon isotope (813C0rg) is associated with each §*Cear
excursion (e.g., Kump and Arthur, 1999). Unlike the §**Cea that records the isotope
signature of dissolved inorganic carbon (DIC) in the ocean, 813C0rg records the isotope
signature of organic matter produced by primary or secondary producers that use
dissolved CO; in seawater as their carbon source (Hayes et al., 1999). Thus, the 81300rg
values record information on both the 8*>C of the oceanic DIC and isotopic fractionation
during carbon fixation. While the latter may cause significant changes in 513C0rg at local
to regional scales (e.g., Kump and Arthur, 1999; Hayes et al., 1999; Cramer and
Saltzman, 2007; Young et al., 2008), most Phanerozoic 8*3Ce, excursions are
accompanied with comparable excursions in 613C0rg. Typical examples include the
Permian-Triassic boundary (Magaritz et al., 1992; Wang et al., 1994; Ward et al., 2005),
the Early Jurassic Toarcian anomaly (Hesselbo et al., 2000; 2007; Kemp et al., 2005;
Cohen et al., 2007), the Cretaceous ocean anoxic events (Jenkyns, 2003), and the

Paleocene-Eocene Thermal Maximum (Pagani et al., 2006; Sluijs et al., 2006; Cohen et



al., 2007). This phenomenon suggests that, at a broader scale, the 8*3C of DIC has first-
order control on the secular 613Corg changes (Hayes et al., 1999) and 613C0arb_613C0rg
covariance is expected in stratigraphic successions.

If positive 8*3Cearp excursions are accompanied by similar positive 813C0rg excursions
and they were formed by enhanced organic carbon burial, then atmospheric CO, level
would drop during or after the carbon cycle perturbation. This drop occurs because for
each mole of organic carbon buried, one mole of CO is removed from seawater, and
consequently from atmosphere because aqueous CO, in surface ocean seawater is in
equilibrium with atmospheric CO,. Thus an anticipated outcome from enhanced organic
carbon burial would be a global cooling event across each positive 813C excursion. Such
cooling events should be recorded by oxygen isotope (5'%0) values because global
cooling leads to the expansion of polar ice sheets that have low &0 values (-30%o to -
50%o), resulting in high & **0 values in seawater (Alley and Cuffey, 2001). Also
anticipated is the change in photosynthetic isotope fractionation that should be recorded
in A8"C (A8*C=8"Cearv-8"Corg) because lower seawater (atmosphere) CO,
concentration commonly results in lower carbon isotope fractionation (Hayes et al., 1999;
Cramer and Saltzman, 2007).

These predictions, however, have not been adequately tested across the major
Phanerozoic 8*3C excursions. In this research, an integrated 813Ccarb, 613C0rg, and §*80
analysis across the Tournaisian (Early Mississippian) &"*Cear» excursion is conducted to
test the relationship between isotope changes, organic carbon burial, and seawater
temperature change. The Tournaisian 8">Ceqb excursion is one of the most prominent

Paleozoic 8"*Cea excursions (Saltzman et al., 2005) that has been documented in



numerous areas around the globe (Saltzman et al., 2000; Saltzman, 2002; Mii et al., 1999;
Buggisch et al., 2008; Bruckshen and Veizer, 1997), but no detailed investigation on the
coupling of 8"3Cearn, 8"*Corg, and '°0 has been published, particularly for the sections
well-exposed in southeastern Nevada. The objectives of this study are to test (1) whether
the 613Corg shows a similar positive excursion as has been documented in S13Ccarb, (2)
whether seawater temperature changes across the S13Car, €XCUrSION, S potentially
recorded in oxygen isotopes of well-preserved brachiopods, and (3) whether there is
temperature-dependent carbonate and organic carbon isotope fractionation is recorded

across the excursion.



CHAPTER 2

GEOLOGIC BACKGROUND
2.1 Location of field areas

Two Lower Mississippian sections were chosen for this study (Figure 1). Both of
them are well exposed, and have documented a positive 8**Cearp, excursion. The first
section is located in the Pahranagat Range near Alamo, Nevada, from which previous
studies have reported a Tournaisian positive §13Cary €XCUrSION (Saltzman et al., 2000;
Saltzman, 2002; Buggisch et al., 2008). The second section is in the Tungsten Gap of the
Arrow Canyon Range, southeastern Nevada. Carbonate carbon isotope analyses from this
section (Saltzman, 2003a) demonstrated a positive 5°*Cear, excursion similar to that of the
Alamo section. Guided by the results from previous studies, sampling was conducted to
cover the entire 5*Cear, excursion at a higher sample resolution, particularly through

intervals with large data gaps in previous studies.

2.2 Depositional Setting, Biostratigraphy and Stratigraphic Nomenclature

From Late Devonian (Frasnian) to Early Mississippian (Tournaisian or
Kinderhookian-Osagean), the Antler Orogeny, which is in part represented by the
thrusting and emplacement of the Roberts Mountain Allochthon, formed the Antler
Highlands in western North America (Figure 2; Dickinson, 2006; Giles and Dickinson,
1995; Speed and Sleep, 1982). Within what is now southeastern Nevada, Late Devonian
to Early Mississippian shales and carbonates (Figure 3), including the Pilot Shale, Joana

Limestone, Limestone X, and Monte Cristo Group, were deposited in a migratory



backbulge-forebulge system of the Antler Foreland Basin (Dickinson, 2006; Goebel,
1991; Giles and Dickinson, 1995; Giles, 1996).

Near Alamo, Nevada in the Pahranagat Range, Reso (1963) described the Devonian
Pilot Shale as black shale with limestone concretions. The Mississippian Joana Limestone
and overlying Limestone X alternately have been assigned either to two separate units
(Singler, 1987) or a single formation (Reso, 1963). This study uses the stratigraphic
nomenclature of Singler (1987) (Figure 3). The Joana Limestone was described as a
grainstone to packstone facies that was deposited during sea-level transgression, and
Limestone X was interpreted as a deep-water (100-200 m water depth) deposit with
interbeds of sediment that was transported from adjacent shallow-water platforms
(Singler, 1987). Evidence for deep-water deposition was mainly from the conodonts that
are reported to be deep-water forms (Singler, 1987). Two conodont zones were reported
from Limestone X: Siphonodella isosticha of Late Kinderhookian age from the lower 64
meters of Limestone X, and Gnathodus typicus of Early Osagean age from the upper 102
meters. The lack of diagnostic conodonts from the middle 36 meters of Limestone X
leaves the Kinderhookian—Osagean boundary undetermined in this section.

The Joana Limestone and Limestone X are stratigraphically correlated to the Monte
Cristo Group in the Arrow Canyon Range of southeastern Nevada. The group includes, in
ascending order, the Crystal Pass Formation, Dawn Limestone, Anchor Limestone and
Bullion Limestone (Fig. 3; Pierce, 1969; Hansen and Carozzi, 1974; Pierce and
Langenheim, 1974). Conodont forms Polygnathus communis communis and
Pseudopolygnathus dentilineatus in the Dawn Limestone and the lower Anchor

Limestone indicate their Kinderhookian—Osagean age (Pierce and Langenheim, 1974).



The Kinderhookian—Osagean boundary was placed at the first appearance of Polygnathus
communis carinus in the Anchor Limestone. Overall, the Monte Cristo Group represents
deposition in shallow, open-marine environments with intermittent quiet, deep-water
channels (Hansen and Carozzi, 1974). The Dawn Limestone was interpreted as consisting
of wackestone-to-packstone facies deposited during a transgression, and the Anchor and
Bullion limestones are composed predominantly of crinoidal packstone-to-grainstone
facies, and interpreted to have been deposited during a regression (Hansen and Carozzi,

1974).



CHAPTER 3
PREVIOUS WORK ON THE TOURNAISIAN CARBON ISOTOPE EXCURSION

The Tournaisian positive *Cea, excursion has been reported from numerous Upper
Devonian to Lower Carboniferous sections in North America, Europe, and Asia (Figure
4). The global correlation of this §*Cean excursion is constrained by the presence of the
Siphondella isosticha and Gnathodus typicus conodont zones of Tournaisian
(International term) or Kinderhookian—Osagean (North American terms) age (Figure 3).

Budai et al. (1987) first reported 8*3Cearp values up to +7%o within the S. isosticha
conodont zone of the Madison Group in Wyoming and Utah of the western U.S.
Bruckshen and Veizer (1997) documented this 513Cear €XCUrSion with peak values of
+6%o from time-equivalent strata in the Dinant Basin of western Europe. Soon thereafter,
Mii et al. (1999) documented 613C and 6180 of nearly 600 brachiopod samples from the
Central United States, including multiple sites in Texas, Oklahoma, Kansas, Illinois,
lowa, Missouri, and single sites in Nebraska and Canada. The results revealed a positive
83C excursion with maximal values >+6%. of late Kinderhookian to early Osagean age.
They also found a 3%o to 5% increase in 8180 across the 8*Cear, xcursion. Saltzman et
al. (2000) and Saltzman (2002) reported the excursion with peak 8**Cear, Values up to
+7.1%o from the Pahranagat Range and Arrow Canyon Range in southern Nevada. In
addition, similar 8*3C values and trend have been reported from the Samaria Mountain in
southeast Idaho (Saltzman, 2002), East Tintic Range and the Uinta Mountains in Utah,

and Beartooth Range and Salt River Range in Wyoming (Saltzman, 2003b).



A more comprehensive review of the Early Mississippian carbon and oxygen isotope
record is provided by Buggisch et al. (2008). In numerous sites in North America and
Europe, Early Mississippian 613Ccarb records show two prominent positive 613Ccarb
excursion at the late Tournaisian (ca. 351 Ma) and late Serpukhovian (Ca. 322 Ma),
respectively. Oxygen isotope values obtained from apatites (conodonts) show a positive
shift of +2%o across the Tournaisian positive 513Carn €xcursion, which has an average
amplitude of +6.5%o. They interpret the +2%o shift in 520 to represent a seawater
temperature decrease of 8-10°C across the Tournaisian 8>Cearp excursion. However, the
exact stratigraphic level of temperature decrease and its relationship with the 8**Cearp
excursion is still debatable because of the scatter of data points and translation of data
from multiple sections into a composite curve. Buggisch et al. (2008) also conducted a
limited number of organic carbon isotope analyses, but the organic carbon isotopes show
much larger variations compared with the carbonate carbon isotopes. Thus high-
resolution, integrated 8" Cearb, 5720, and §'*Cyrq analyses from representative sections are
still needed to better understand the coupling of the carbon cycle and seawater

temperature change.



CHAPTER 4
METHODS

A total of 237 limestone samples were collected from two stratigraphically correlated
sections, among which 182 samples came from the section near Alamo in the southern
Pahranagat Range and 55 came from Tungsten Gap in Arrow Canyon. In each section,
samples cover the Tournaisian positive S13Cearp €XCUrSION, AS guided by existing data in
the literature (Saltzman et al., 2000; Saltzman, 2002, 2003a). In addition, brachiopod
samples were collected wherever they were observed in the Alamo section.

All samples were microdrilled from clean, fresh surfaces in the finely-crystalline,
darkest portions of the limestone samples to minimize influences from secondary
recrystallization, tectonic fractures, and surficial organic matter contamination.
Brachiopod samples were separated and microdrilled by Dr. Uwe Brand at Brock
University following his methodology for brachiopod preparation. Brachiopod samples
were analyzed for both 813Ccarb, and 6*80, but not 813C0rg because the volume of
individual samples recovered was too small for reproducible 5'°*Cory. Brachiopod trace
element analysis was conducted by Dr. Brand at Brock University following his
methodology.

Samples for each set of 5°Cearn, '°0, and 8"*Cory analyses were extracted from the
same sample powders. For carbonate carbon and oxygen isotope analysis, 50-200 pg of
carbonate powder were reacted with orthophosphoric acid for 10 minutes at 70°C in a
Kiel-Device automatically connected to a Finnigan dual-inlet Delta Plus, mass
spectrometer. The results are reported in the standard 6-notation as per mil (%o)

deviations from Vienna-Pee Dee belemnite (VPDB). Precision of analysis was



determined by multiple measurements of National Bureau of Standards (NBS)-19 and by
an internal standard repeated every 8 samples. The precision is better than 0.05%o for
both §"*Cear, and 3'°0.

Samples for 613Corg analysis were prepared following an expanded version of the acid
fumigation method presented by Harris et al. (2001) to ensure complete removal of all
carbonate material within the samples. Prior to preparation, sample powders were dried in
an oven at 105°C for 12 hours. After drying, 30-45 mg sample powders were weighed
and placed in open-ended Costech (9 by 5 mm) silver capsules. The silver capsules were
then placed in a quartz sample tray. Deionized (DI1) water was added to each capsule to
moisten the sample powders to approximately the field capacity (Harris et al., 2001). The
sample tray and a 150 milliliter beaker filled with 100 milliliters of concentrated 12 M
HCL were placed in a 5 liter vacuum desiccator for acid fumigation and carbonate
removal for 12 hours (Hedges and Stern, 1984; Harris et al., 2001). The samples were
then removed from the desiccator and placed directly into an oven at 70°C to dry for 4
hours. One drop of 1 M HCL was added into each silver capsule to ensure complete
carbonate removal. If samples had not achieved complete carbonate removal, several
drops of 1 M HCL were added to each capsule as needed to react with remaining
carbonate and returned to the 70°C oven for another 4 hours. Samples were tested again
until all carbonate was removed. Once complete carbonate removal was achieved,
samples were placed in 20 ML plastic hexagonal weigh dishes filled with DI water to
wash the remaining acid in the silver capsules and sample residues. Before transferring
samples from the quartz tray to the weigh dishes, the silver capsules were filled with DI

water to avoid tilting and loss of sample residue during the transfer process. The samples

10



stayed in the DI water for 8-12 hours and then were placed back into the 70°C oven to
dry for 4 hours. This washing and drying process was repeated between 3-6 times until
pH tests of the water gave neutral values (>6).

The samples, free of carbonate and acid, were then placed back into the 70°C oven
for 12 hours to ensure complete removal of all moisture from the capsules and sample
residues. The silver capsules were then wrapped up into tin capsules and stored in the
70°C oven until analysis. The carbon and nitrogen contents along with organic carbon
isotope analysis were analyzed using an elemental analyzer (EA) coupled with a conflow
interface that automatically transfers carbon dioxide gas into a Finnigan Delta Plus mass
spectrometer. Isotopic values are reported in per mil (%o) vs. VPDB. USGS-24 (graphite),
IAEA-600 (caffeine), and Costech Analytical Technologies acetanilide standards were
used to monitor internal and external uncertainties that were better than 0.2%o for 813C0rg
and 0.1% for total organic carbon content (TOC). To ensure reproducibility of both
organic-rich and organic-poor samples, duplicates were placed in every 5 samples, and
the resultant reproducibility in 813Corg, and TOC was better than 0.15%o and 0.2%,
respectively. All the carbonate carbon, oxygen, and organic carbon isotope analyses
were conducted in the Las Vegas Isotope Science (LVIS) lab at the Department of

Geoscience, University of Nevada, Las Vegas.
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CHAPTER 5
RESULTS

5.1 Stratigraphy of Measured Sections
5.1.1 The Alamo Section in the Pahranagat Range

The Upper Devonian to Lower Mississippian strata in the Pahranagat Range near
Alamo include the uppermost Pilot Shale, Joana Limestone, and Members A-D of
Limestone X (Singler, 1987). Stratigraphic analyses and sample collection are correlated
with the conodont biozones (Singler, 1987), which are the primary geochronological
constraints in this section (Figures 5 and 6; Appendix 3).

The first 9 meters of this section are within the Devonian Pilot Shale, and are
composed of dark-gray to black shale with lime mudstone and grainstone interbeds.
Brachiopods are sparse in the black shale and lime mudstone. Toward the top of the Pilot
Shale the lithology grades into gray to dark-gray, thin-bedded (1-5 cm thick) wackestone
and grainstone with chert nodules, brachiopods, and crinoids. The 25-m-thick Joana
Limestone marks the beginning of Mississippian age strata, and is mainly composed of
gray to dark-gray grainstone with crinoids, brachiopods, rugose corals, and sparse chert
nodules. Interbedded within the grainstone beds are dark gray wackestone to packstone
beds with crinoids, brachiopods, and chert nodules.

Overlying the Joana Limestone is Limestone X, which was divided into four
members (Members A-D) by Singler (1987). Member A is about 70 meters thick, and
entirely within the S. isosticha conodont zone of Kinderhookian Stage. It is composed

predominantly of gray to dark-gray, interbedded grainstone, packstone and wackestone

12



with brachiopods, crinoids, corals (both rugose and tabulate corals), and rare chert
nodules. The thickness of the wackestone, packstone, and grainstone layers varies from a
few centimeters to decimeters, forming a cyclic pattern. The middle to upper 25-30
meters (61-93m) of Member A, however, is wackestone-to-packstone dominated,
fractured, and virtually devoid of fossils. Member B is 60 meters thick and is within the
S. isosticha conodont biozone. Its top appears to be coincident with the end of the
Kinderhookian Stage. The lower 30 meters of Member B (110-140m) are mainly dark to
dark-gray, bioturbated wackestone interbedded with thin (1-5 cm thick), laterally
discontinuous grainstone. Shale partings (< 2 cm thick) are common at the wackestone-
grainstone contact and within the grainstone beds. Visible fossils include crinoids,
brachiopods, corals (both tabulate and rugose) and trace fossil Zoophycos. Strata from
140-147m is composed of alternating, dark-gray, medium-bedded (10-25 cm thick)
grainstone and wackestone with rare chert nodules, crinoids, brachiopods, and rugose
corals. The overlying 5 meters (147-152m) is dark-gray packstone to wackestone that
grade into dark-gray, fossil-rich grainstone. The uppermost 12 meters of Member B (152-
164m) is composed of medium-bedded (10-20 cm thick), dark-gray wackestone with rare
small chert nodules, with abundant fossils including brachiopods, bryozoans, crinoids,
corals, and weak to moderate bioturbation.

Member C is 58 meters thick and locally marks the beginning of the Osagean Stage
and the G. typicus conodont zone. It begins with 5 meters (167-172m) of dark-gray to-
gray wackestone with shaly partings and sparse chert nodules. Abundant visible fossils in
this interval include brachiopods, crinoids, and rugose and tabulate corals that form

bioherms approximately 1 meter thick. The overlying 5 meters of Member C (172-177m)
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are composed of alternating dark gray, 10 to 30-cm-thick wackestone and 1 to 5-cm-thick
floatstone. Both facies contain crinoids, brachiopods, solitary rugose corals, and small
bioherms of tabulate colonial coral. The overlying 20 meters of Member C (177-199m)
are comprised of dark-gray to gray, medium to thick-bedded (15-40 cm) wackestone with
increasingly common chert nodules. Fossils observed within this interval include
brachiopods, crinoids, bryozoans, and tabulate and rugose corals. The next 6 meters (199-
205m) consist of dark to gray, thin-to-medium-bedded (10-30 cm) wackestone with 3 to
5-cm-thick grainstone interbeds and less than 2 cm-thick shaly partings. Member C
continues with 18 meters (205-222m) of dark-gray, thin-to-medium-bedded (10-30 cm
thick) wackestone with common thin (1-2 cm) shaly layers, grainstone, and packstone.
The top 4 meters (222-226m) of Member C are composed of dark-gray wackestone with
rare shaly partings, and rare to common brachiopods, crinoids, gastropods, and solitary
rugose corals.

Member D of Limestone X is 56 meters thick and is within the G. typicus conodont
zone of the Osagean stage. The basal 8 meters (226-234m) is medium-gray-to-dark-gray
wackestone with thin (1-5 cm thick), laterally discontinuous, lime-mudstone to grainstone
beds. Brachiopods, gastropods, and corals are common, along with chert nodules and
weak to moderate bioturbation. The overlying 38 meters (234-272m) are comprised of
dark gray, thin-to-medium-bedded wackestone with interbedded, 1 to 10 cm thick dark-
gray grainstone. Brachiopods, corals, crinoids, bioturbation, and chert nodules were
common throughout this interval. Chert abundance increases from rare nodules in the
lowest 20 meters to more abundant and large (>2 cm in diameter) chert nodules in the

upper 18 meters of this interval. This interval is overlain by 2 m thick (272-274m), dark-
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gray wackestone with thin (<5 cm), lenticular grainstone layers that contain abundant
solitary rugose corals, brachiopods, crinoids, and the trace fossil Zoophycos. The final 8
meters (274-282m) of Member D are composed of dark-gray grainstone with rare to

common chert nodules, brachiopods, and crinoids, rugose and tabulate corals.

5.1.2 The Tungsten Gap Section in Arrow Canyon

The Tungsten Gap section in Arrow Canyon includes Late Devonian to Early
Mississippian strata (Figure 7; Appendix 3) that have been biostratigraphically correlated
with other sections in the U.S. and globally (Langenheim, 1969; Hansen and Carozzi,
1974). The base of the Tungsten Gap section is within the Devonian Crystal Pass
Limestone. The lowest 12 meters (0-12m) of this unit are composed of medium- to thick-
bedded (20-40 cm thick), light-gray to gray packstone devoid of visible fossils. The
overlying 5 meters (12-17m) consist of thinly laminated (1-3 cm), dark-gray wackestone
with rare fossil fragments. The overlying 7 meters (17-24m) is light-gray to buff-colored,
thick-bedded (30-60 cm) lime-mudstone with rare brachiopod fragments and chert
nodules.

Overlying the Crystal Pass Limestone is the 63-meter-thick Dawn Limestone of Early
Mississippian age. The lowest 22 meters (24-46m) of the Dawn Limestone are composed
of alternating layers of massively-bedded packstone and wackestone with rare tabulate
coral bioherms, brachiopods and unidentified shell fragments. The overlying 5-m-thick
(46-51m), cross-bedded grainstone layer contains small tabulate coral bioherms. This unit
is overlain by 5 meters (51-56m) of alternating, gray-to-dark-gray grainstone and
packstone with no visible fossils. The overlying 7 meters (56-63m) are medium-bedded

(10-20 cm), gray-to-dark-gray grainstone with small tabulate coral bioherms overlain by
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3 meters (63-66) of thin-bedded (~10 cm), dark-gray wackestone with thin (1-3 cm thick)
lime-mudstone layers. The uppermost 21 meters (66-87) of the Dawn Limestone are
composed of alternating, gray-to-dark-gray, thick-bedded (15-40 cm) grainstone and
medium-to-thick-bedded (15-40 cm) packstone with rare crinoids, brachiopods, and chert
nodules. Overall, the Dawn Limestone at Tungsten Gap has rare visible fossils and very
rare chert nodules that distinguish it from the overlying Anchor Limestone.

Only the lower 27 meters of the Anchor Limestone were measured in this section.
The lower 11 meters (87-98m) are gray wackestone with interbedded cherts that are 10-
20 cm thick. The overlying 10 meters (98-108m) is light-gray to gray, thin-to-medium-
bedded (10-25 cm) wackestone with 10 to 20cm thick interbedded chert, and rare to
common crinoids and corals. The uppermost unit measured is the overlying 6 meters
(108-114m) of gray, medium to thick-bedded (20-40 cm) grainstone with an increase in
abundance of solitary rugose and tabulate corals, brachiopods, crinoids, and chert nodules

from rare to common.

5.2 Isotope Results
5.2.1 Isotope results from the Alamo Section

The 8**Cear, values from the upper part of the Devonian Pilot Shale are between -1%o
and 0%o and increase to between +2%o to +3%o in the Mississippian Joana Limestone
(Figure 5, Appendix 1). Within Member A of Limestone X, 8"*Ccan values increase from
near +2%o at the base to around +6%o at the top of Member A. Peak &"Cean, values of
+7.1%o occur at the base of Member B and remain between +6%o to +7%o for the next 12
meters. The 8"*Cearp Values show a small negative shift from +7%o to +4%o in the middle

of Member B and then increase to more positive values from +4%o to +7.4%o near the top
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of Member B. For the majority of Member C, 8"*Cearp values remain stable between +6%o
and +7%o. A decrease in §*Cea from +7%o to +1.8%o occurs in the last 46 meters of the
section that covers the uppermost part of Member C and Member D.

The 880 values in this section increase from -6.7%o in the Pilot Shale to -4.1%o at the

top of the Joana Limestone. A large negative shift from -4.4%o to a minimum down to
-21%o occurs in the lower part of Member A, which is followed by a positive shift from
-21%o to -4%o near the top of Member A (Figures 5 and 6). The majority of 880 values
from the top of Member A to Member D are within -4%e. to -3%., except for a few data
points in the upper part of Member B that go down to -5%o to -6.5%o, and another few in
the lower Member B and upper Member C that reach higher values of about -2%o.

The §'*Cyrq values increase from -29.5%o in the Pilot Shale to -23% in the lower part
of the Joana Limestone. From the upper Joana Limestone to the lower 50 meters of
Member A, §'*Corq values are fairly stable between -26%o and -24%o. An increase in
813Co,g from -27%o to -23%o is observed in the upper part of Member A through lower
part of Member B. A negative shift in 613C0|’g from -23%o to -27%o occurs at the middle
part of Member B, coincident with the negative shift in 813Ccarb from +7%o to +4%o
(Figure 5). From the uppermost Member B to Member C, most of the §*°Cqry values fall
in the range of -24%. to -25%o. A negative shift in 81SCorg from -24%o to -28%o occurs
within Member D, similar to the trend recorded in S13Cean. It should be noted that a few
8"°Corg data points, including values of -20.4%o at 47.9 m (lower Member A), -21.8%o at
183.8 m (lower member C), -22.4%o and -22.6%o at 240.9 m and 246 m (lower Member
D), and -21.6%o at 282 m (Member D), are questionable because of their departure from

adjacent samples and inconsistence with corresponding 8'*Ceap, values. This
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inconsistence is likely due to incomplete removal of carbonates during sample
preparation. Thus, these points need to be reanalyzed in the future, but are not used in the
trend analysis of this study.

The AS"*C (A8"C=58"Cearr-6"*Corg) values from the Pilot Shale, Joana Limestone, and
Member A are quite variable between 29%o0 and 25%o, but overall they show an increase
from an average of 28%o in the Pilot Shale and Joana Limestone to an average of 31%o in
uppermost Member A. Most of the A§™*C values of Member B through lower Member D
are stable, with an average close to 31%o.. A minor decrease from 31%o to 30%eo is present
in upper Member D. Again, the few data points with uncertain 8"*Cqry values show an

obvious departure in A**C from the average values of adjacent samples (Figure 5).

5.2.2 Carbonate Carbon and Oxygen Isotopes from Brachiopods

Brachiopod samples were chosen from 13 horizons across the 8*3C excursion in the
Alamo section to test if they preserve better oxygen isotope values than their hosting
micritic matrix (Figure 6, Appendix 2). Brachiopods from two stratigraphic horizons in
the Pilot Shale record higher §*3Cearp and lower 520 values than their hosting matrix.
Within the Joana Limestone and lower part of Member A, brachiopod 813Ccarb and §*80
values are identical to those of their hosting matrix. Brachiopods from the two
stratigraphic horizons across the maximum of the 8*3Ca, excursion produce 8*Cear, and
880 values that compare favorably to those of the matrix, with the exception of two
samples that show 613Ccarb values 1-2%o lower than those of the matrix. Brachiopods from
the other six stratigraphic horizons of Member C and D have §'®0 values similar to those
of their corresponding host matrix, but they have relatively lower §"Cea, values. Overall,

for the entire section, brachiopod samples have 8"*Cear, and 520 values in the range that
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encompasses 5"°Cean, and 3'°0 values of their hosting matrix, except for the cases of the
Pilot Shale, from which brachiopods have somewhat higher §**Cear, and lower 820

values compared to their host micritic matrix.

5.2.3 Isotope Results from the Tungsten Gap Section

In the Tungsten Gap section, 8> Cearp Values from the uppermost Crystal Pass
Limestone are between 0%o and -1.3%o (Figure 7, Appendix 1). The first 10 meters of the
Dawn Limestone has 813Ccarb values near +1.0%o, followed by an increase to peak values
up to +4.7%o within a 15-m-thick interval. The 8"3Cearp values from the middle part of the
Dawn Limestone (44 to 78 m of the section) show frequent changes between +1.1%o and
4.3%o. The uppermost part of the Dawn Limestone (78 to 86 m) and the lower Anchor
Limestone (86 to 108 m) show a negative anomaly from +3.2%o to +1.3%o and then back
to +3.0%o. The last 6 meters of the Anchor Limestone measured show another negative
shift from +3.0%o to +1.7%eo.

Oxygen isotopes from the Crystal Pass Limestone are between -7%o and -8.2%e.
Samples from the Dawn Limestone have quite variable 5'°0 values, mostly between -8%o
and -4%o, with two minimum values down to -10.6%o at 50 m and -8.8%o at 82 m (Figure
7). A positive peak with §'°0 value of -2.9%o is present in the lower Anchor Limestone
(98 m), followed by a negative shift down to values between -6.5%o and -4.5%o for the
rest of the section.

The 8'°Corq values show a positive shift, from -31%o in the Crystal Pass Limestone to
-21.5%o in the lower Dawn Limestone (0-32 m). The middle part of the Dawn Limestone,
from 32m to 62 m, has stable 813Corg values around -25%o. A minor negative excursion

with minimum 613Corg values down to -26.8%o occurs in the upper part of the Dawn
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Limestone and lower Anchor Limestone (62-100 m). The uppermost 14 meters of the
section has 8"*Corq Values back to between -24%o to -25%o.

From the Crystal Pass Limestone to the lower Dawn Limestone (0-44 m), the
AS"3C values show a negative excursion that starts with values around 30%o, down to a
nadir of 23.6%o, and back to 30.2%o (Figure 7). In the middle part of the Dawn
Limestone, from 44 m to 74 m, the A5'3C values are variable between 25%o and 29.4%o,
but they do not reveal a clear trend. From the upper Dawn Limestone through the Anchor

Limestone (74-114 m), A5"*C values decrease from 29.4%o to 26.7%o.
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CHAPTER 6
DISCUSSION

The original hypothesis of this study was that 83Cear, and 813C0rg values, as recorded
in the Alamo and Tungsten Gap sections, would covary if the positive 8"*Cap, €xcursion
was formed through increased organic burial. At the same time, one would expect to see
a global cooling because increased organic burial would lower atmospheric CO2, which
should be recorded as a positive shift in 50 values across the §"*Car, €xcursion. In
addition, lower atmospheric CO, may lead to a decrease in photosynthetic carbon isotope
fractionation (Hayes et al., 1999; Kump and Arthur, 1999), which should be reflected by
decreasing AS3C values across the 613Ccarb excursion.

Overall, this study demonstrates positive shifts in both §"*Ceary and 8*3Corg, Which
implies that carbon isotopes of the surface ocean DIC (recorded by 8**Cean) exercised a
first-order control on the carbon isotopes of organic matter (613C0rg). The 8**Cearp profile
from the Alamo section mirrors that of Saltzman (2002). Globally, sections from the
United States, Canada, Russia, and Belgium record a fairly consistent 813Ccarb excursion
with a peak of +5%o to +7.1%o (Bruckshen and Veizer, 1997; Mii et al., 1999; Saltzman et
al., 2000; Saltzman, 2002; Saltzman, 2003; Saltzman et al., 2004; Buggisch et al., 2008).
Thus the results from this study confirm that the Tournaisian (Early Mississippian)
8"Can €Xxcursion records a major perturbation in the global carbon cycle.

However, the data from the two sections also have variations that are not consistent
with the hypothesized predictions. First, the magnitude of the §"*Corq excursion is smaller
than that of the 8**Ceary excursion, and there are more 813C0rg variations than 8**Cerp in

some intervals. Second, there are significant differences in 5'°C and §'0 between the

21



two measured sections. Third, 8*°0 values increase before the 8**Cear, and 5™*Corg peaks,
but do not have significant changes at and after the 5**C peaks. The origin of these

discrepancies is discussed below.

6.1 Possible Origins of Larger Variations in 8"*Corg

Carbon isotopes of sedimentary carbonates record 8*>C of oceanic DIC, which is
presumably homogeneous in open-marine seawater, while 8*>C of organic matter is
controlled by various environmental factors (Figure 8), such as differential fractionation
of organisms (ecosystems) during carbon fixation, CO, concentration in seawater, and
growth rate (production rate). In general, higher CO(,q), Smaller organisms, and lower
growth rate lead to higher photosynthetic carbon isotope fractionation and lower 813C0rg
values (e.g., Hayes et al., 1999; Raven et al., 2002). Thus, even if the total organic carbon
is from photosynthetic carbon fixation, the environmental variance in 813C0rg is twice that
of 8"3Cearp (Derry et al., 2010). Furthermore, in some cases the total organic matter in
sediments is not merely from primary production; contributions may come from
secondary production, including detrital fossil organic carbon and dissolved organic
carbon (DOC) in seawater (Figure 8), that is isotopically different from primary
production. Secondary producers including heterotrophic, chemoautotrophic, and
methanotrophic organisms that are common in anoxic environments may change the
isotopic composition of organic matter. While heterotrophic organisms tend to produce
organic carbon that has higher 813Corg values than co-existing photosynthetic organisms
(e.g., Hayes et al., 1989), chemoautotrophic and methanotrophic organisms produce
organic carbon that has much lower 3"*Cory values because they use **C-depleted CO,

(from organic matter decay) or methane as the carbon source during carbon fixation (e.g.,
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Conway et al., 1994; Summons et al., 1994). Detrital fossil organic carbon contribution to
total organic matter is more common in proximal areas of continental shelves or in areas
close to riverine inputs. Dissolved organic carbon (DOC) in seawater, which may have
been important in certain times of the geological history (e.g., Neoproterozoic; Rothman
et al., 2003), constitutes only a small portion of the carbon reservoir in the modern ocean
and perhaps in most of the Phanerozoic oceans because DOC has a low survival rate in
oxygenated seawater at geological time scales.

Diagenesis, mainly methanogenesis and metamorphism, would release isotopically
depleted CH,/CO, from sediments, leaving **C-enriched organic matter in residual
sediments and sedimentary rocks. These processes would lead to higher 613C0rg values in
bulk organic matter. However, Hayes et al. (1983) showed that diagenesis and
metamorphism typically shift 813Corg towards higher values on the order of 2—3%o for
rocks metamorphically lower than greenschist facies. Hydrocarbon contamination is
commonly controlled by fluid pathways and should be lithologically distinct. No such
contamination was observed in either section of this study.

Data from the Alamo section show overall coupled §"*Cearp and 8"*Corg, implying that
the organic matter was mainly from primary production. In this case, 8"*Cory Was mainly
controlled by 5"°C of seawater DIC (DIC = COyq) + HCO3™ + CO5%), from which
photosynthetic organisms used COx(,q) as the carbon source during carbon fixation.
Second-order variations in 813Corg may have originated from environmental changes
through time, in which organisms and/or their production rates changed over time scales

shorter than that of DIC.
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The temporal variations in 613Corg (Figure 7) and lack of 813C(;arb_613C0rg covariation
(Figure 9B) from the Tungsten Gap section, however, cannot be explained with
confidence. In this section, the §"*Cearp Values also show large temporal variations
suggestive of diagenetic modification (see next section). Therefore the lack of covariation
of 82Cea and 613Corg may be due to diagenetic modification of 3Cearb. Temporal
variations over time scales shorter than "*Ccs, may be influenced by the detrital organic
carbon contribution or meteoric water inputs that changed the isotope values of local

seawater DIC, assuming that the organic matter was from primary production.

6.2 Isotope Variations between Alamo and Tungsten Gap Sections

The absolute "*Cean—8"Corg values and trends differ between the two measured
sections. These differences may be caused by local environmental changes or diagenesis.
Diagenesis, including meteoric and burial, involves isotopically distinct fluids that
commonly have more negative 8*Cear, and 520 values than marine carbonates. As a
result, diagenetic modification commonly shifts both 53Cearb and 520 of carbonates
towards more negative values. However, diagenetic alteration commonly changes §'%0
more significantly than §'°*Cear, because meteoric or formation fluids contain much less
carbon than oxygen (which is from water) (Banner and Hanson, 1990). Therefore, one of
the criteria used to evaluate the degree of diagenetic alteration is to look at the 613Ccarb—
5180 covariation: covariation indicates that diagenesis has altered both 813Ccarb and §*20.
If there is no covariation, 8*%0 values may have been altered, while §"*Cca, are unaltered
(Banner and Hanson, 1990; Kaufman and Knoll, 1995). The S13C 520 cross-plot
from the Alamo section (Figure 10A) shows a moderate covariation with R? = 0.43

(Figure 10A), while the §"*Cca—8"°0 cross-plot from the Tungsten Gap section (Figure
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10B) shows no covariation. Does that mean that the 8**C and §'®0 values from the Alamo
section are more severely altered by diagenesis?

Evidence has shown that using 8"*Cc,—8"20 covariation to evaluate the degree of
diagenetic alteration may be invalid in many cases when diagenesis has completely reset
the 520 values of carbonates (e.g., Allan and Matthews, 1982; Kanuth and Kennedy,
2009). A more reliable criterion is the covariation of §*Cearp, and 8"*Corg. Because no
known diagenetic process can shift both §"*Cea and 8"3Cory toward the same direction at
a similar magnitude, covarying 8"*Cear and 8"*Corq indicates no significant diagenetic
alteration (Knoll et al., 1986). Using this criterion, the isotope data obtained from the
Alamo section are much more reliable than those from the Tungsten Gap section. The
Alamo section data are consistent with the global correlation that shows a **Cear
excursion with comparable magnitude (Buggisch et al., 2008). Therefore, one of the
possibilities for the large 813Ccarb variation, lower 580 values, and lack of 813Ccarb and
813Co,g covariation in the Tungsten Gap section is significant diagenetic alteration.

Another possibility for the isotope differences in the Tungsten Gap section is an
environmental control that may have influenced the 8**C of local seawater DIC.
Paleogeographically, the Tungsten Gap section was closer (proximal) to the shoreline of
the carbonate platform (Figure 2). Meteoric water input from land may have changed the
carbon and oxygen isotopes of local seawater, leading to changes in 613Ccarb and 820
values of carbonates. As mentioned in the previous section, this process may have also
caused changes in 8"3C of organic matter. If this were the case, more significant
influences from meteoric water would be expected in sections toward more proximal

shelf regions to the east (e.g., sections in western Utah), which remains to be tested.
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Detrital organic carbon input could be another possible cause of variable 613C0rg values in
the Tungsten Gap section. However, paleogeographical reconstruction indicates that the
Tungsten Gap section was located up to 200 miles from the shoreline (Figure 2). It is
difficult, if possible, for detrital organic carbon to bypass the 200-mile wide carbonate
platform to exert significant influence on the 8'3Cory values in the Tungsten Gap section.
Considering that 5**Cean, and 520 values from the Tungsten Gap section may have
been significantly altered by diagenesis, and the 813C0rg values may have been influenced
by local environmental factors, the Alamo section is better suited to record temperature

changes across the 8*3C excursion.

6.3 Seawater Temperature Changes across the 83C Excursion

If increasing organic carbon burial was the cause of the 813Ccarb excursion, then a
simple mass balance calculation indicates that a +4%o to +5%o shift in 8"*Car, requires a
burial of 1.5 x 10%° g of carbon (Kump and Arthur, 1999; Saltzman et al., 2000). The
overall covariance of §*Cearp and §™*Corg from the Alamo section (Figure 5) indicate that
the organic carbon was derived from primary production. Because primary
(photosynthetic) producers uses COa,q) in seawater (which is in equilibrium with
atmospheric CO,) as the carbon source, the large amount of organic carbon burial would
significantly lower the atmospheric CO, level. A global cooling event, which should be
recorded by sea-level fall and ice sheet advance, is thus expected under this scenario. A
comprehensive review by Buggisch et al. (2008) on the oxygen isotope record indicates
that there was indeed global cooling following the Early Mississippian 8"*Cea, excursion.
However, the timing of the cooling event was apparently variable across the globe and

physical evidence of glaciation across the §13Cary €Xcursion has not yet been discovered.
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Caputo (1985) documented Late Devonian (Famennian) glacial deposits in Brazil. He
postulated that the glaciation began in the Late Devonian in central South America and
continued through the entire Carboniferous to early Late Permian, with the ice centers
migrating across South America and Africa toward Antarctica. Buggisch et al. (2008)
pointed out that the first glacial deposits are recorded in the Amazon Basin in Brazil,
Bolivia, and Peru at the Devonian-Carboniferous transition, based on the work of Caputo
(1985) and Streel et al. (2000). However, Buggisch et al. (2008) noted that no glacial
deposits are known from the time interval of the positive §13Ceary EXCUrSiON. Garzanti and
Sciunnach (1997) presented data supporting the occurrence of a minimum of four phases
of glacial erosion and sedimentation in Gondwana by the mid-Mississippian. They further
pointed out that glacial events may have occurred 30 m.y. earlier than the recorded, large-
scale, late Carboniferous to early Permian glaciations. Gonzalez-Bonorino (1990)
examined the evidence for middle Carboniferous glaciation in Argentina, and he
speculated that ice centers developed on the Patagonia highlands, possibly beginning in
the Early Carboniferous.

The data from the Alamo section indicate that there is a 3%o increase in 820, from -6%o
in the Devonian Pilot Shale to -3%. higher in the section. Brachiopods from the Alamo
section that were determined by trace element geochemistry to be unaltered (Figure 11;
Brand, 2004) produce the same 520 trend. If the increase in 5'°0 records seawater
temperature change, a 12-15°C cooling (4.1-4.5°C drop with each 1%o increase in 8*°0;
Hoefs, 2009) may have happened during the Early Tournaisian (before the end of
Member A; see Figure 6). A very strong negative shift in 820, down to -21%o, occurs

before the 8"*Ceary peak. Negative 8'°0 values as low as -21%o are most likely glacially
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related (Ruddiman, 2001), but the spatial distribution and global representativeness

requires further investigation. It may record the advance of ice sheets to the low-latitude
ocean (e.g., Soreghan et al., 2008), or it could be influenced by Alpine-type ice from the
Antler highlands. Burial diagenesis can be another process that could lower 3*°0 values
down to -21%o, but it is unlikely to be the cause of the large negative 'O shift because
diagenesis should have reset the 820 of the entire Alamo section rather than a negative
8*80 excursion in the middle of the section. The potential global cooling event recorded
by the oxygen isotopes in the Alamo section predates the peak of §**Ceap, €xcursion, but

its global synchrony needs to be confirmed in other successions around the globe.
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CHAPTER 7
CONCLUSION

Carbonate and organic carbon isotope analyses in Alamo and Tungsten Gap sections
confirm that the previously recognized Tournaisian (Early Mississippian) positive 8**Cearp
excursion records a major perturbation in the global carbon cycle. Coupled §*3Cearp and
813Corg values in the Alamo section supports the interpretation that enhanced organic
carbon burial was the driver of this large positive carbon isotope excursion. The
variability in both §"*Cear and 8"*Cory in the Tungsten Gap section implies significant
diagenetic overprint or local environmental influences on carbon isotope values. Oxygen
isotope values of brachiopods and limestone matrix from the Alamo section record a 12-
15°C decrease in temperature that predates the 813Ccarb maximum. A strong negative shift
in 880 down to -21%o prior to the 5"3C peak suggests the advance of ice sheets to the low
latitude ocean or local ice sheet expansion in the Antler highlands. Carbonate and
organic carbon isotope fractionation, approximated by A§**C, increased prior to the
8"Cearr peak and remained fairly static for the remainder of the measured and sampled
Alamo section. The A8**C change is consistent with the temperature changes, which
suggests that the coldest climate occurred before the '°C peak, and remained static for
the remainder of the excursion interval.

The new data from this study illuminate unresolved questions that need to be
addressed. One such problem is the cause of the significant isotopic differences between
the Alamo and Tungsten Gap sections. The more scattered and lower values in 8**Cear,
8"°Carg, and 5'°0 from the Tungsten Gap section suggest a significant influence from

meteoric diagenetic alteration. To test this interpretation, increased sample resolution is
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required from the Tungsten Gap section, along with high resolution sampling of other

sections further eastward in more proximal environments of the carbonate platform.
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Figure 1. Location of the two measured sections, the Alamo section in the Pahranagat
Range and the Tungsten Gap section in Arrow Canyon.
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Figure 2. Non-palinspastic paleogeographic reconstruction of the western United States
during Early Mississippian (ca. 340 Ma). Modified from Blakey (2010 website).
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Figure 3. Stratigraphic nomenclature and conodont zones for the Alamo section in
Pahranagat Range and the Tungsten Gap section in Arrow Canyon modified from
Saltzman (2002). Note that because the lowermost conodont zones were not found in the
Alamo section, previous studies suggest a stratigraphic gap (Saltzman et al., 2000;
Saltzman, 2002). However, in the measured section, the change from the Pilot Shale to
the Joana Limestone is transitional with increased limestone layers upward to massive
limestone. The missing conodont zones may be the result of poor fossil preservation.
Conodont zonations for Tungsten Gap section are from Pierce (1969) and Pierce and
Langenheim (1974). Numerical ages are from Buggisch et al. (2008).
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Figure 4. Global paleoreconstruction of the Early Mississippian continents, showing
approximate paleolocalities of existing documentations of the Early Mississippian

8*Cearp excursion. Modified from Scotese and McKerrow (1990).
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Figure 8. Schematic diagram showing the controlling factors that can potentially control
the 8"3C of bulk organic matter. The overall coupled (covarying) 8**Cean, and §™*Corg
trends from the Alamo section indicate that the majority of organic carbon contribution
was from photosynthetic carbon fixation (primary production). However, the decoupled
(variable) §"*Canp and 813Corg from the Tungsten Gap section may not have a unique
origin. It may have resulted from frequent changes in meteoric water input that would
have changed the §'°C value of primary organic matter, detrital organic carbon
contribution in more proximal shelf environments, or diagenetic modification
(methanogenesis) that have changed both 53Cear and 813C0rg values. Diagenetic
alteration is the most valid of these options for the Tungsten Gap section.
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Figure 9. Cross plots of 8"3Cean, and 8"*Corg for the Alamo section (A) and the Tungsten
Gap section (B). Notice that there are a few data points (red triangles) that are
questionable because these values departure abruptly and significantly from their adjacent
samples thus, they are suspected to have been contaminated by incomplete carbonate
removal during analyses and need to be reanalyzed in the future. The better correlation
between 5*Cean, and 813Corg in the Alamo section implies that primary production
contributed to the majority of organic carbon, whereas the lack of 8**Ceany and 8*3Corg
covariation in the Tungsten Gap section suggests detrital organic carbon contribution or
diagenetic modification on 8*3Ceap, 8*3Corg, Or both,

39
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Figure 10. Cross plots of 8"*Cear—5"20 of the Alamo section (A) and Tungsten Gap
section (B).
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APPENDIX [11

Alamo Section in the Pahranagat Range detailed stratigraphic column
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T2467: Mostly medlum oo llaht omy packstomes with thin (2-16 an thick)

_granstones imedium gy, some chart nodules, some sparze brachic-

pods in oross-s2Ciion.

£6-63: Madium to Gght groy arainstone with same thim (=10 cm thick]
warkesione and packsions. some Incraasing chet nodulas recrystallize
tion prasent, brachiopods getting sparse.

63-60: Madium to light oray massively bedded packstone with soma
chert nipdulos, rachiopodsand crinoids:

60-58: Dark to medium gray srainsiors, massivaly bedded, soma chert
nodules and chenification of fossils, oinoids, solitary rugese and tabi-
iate comis, Drachiopods

57-34: Madium to dark iy, massively bedded grainstone with =mall
discontinuous packstons/wickestone layers (510 em thick), bratctio-
pods, crinoids, solitary rugoss coris

58-53 Mad|um to dark gray grvinsione with some small 5-10cm thick
packstones, Increasing brachiopods, crineids. solitary rugose coral, some
tabulsta corzl and sparse chart.

52-45:Tiark to medidm gray, massively bedded grainston with some
small discomiinuous packstores, brachiopods, tabulate corsl, crinoids,
vary infreguant chert.

4542 Tiark to medidm gray, masslvely bedded packstone with brachc-
pods and Trinoios

43-43: Light 1o medivm gray, massively bedded
grainstone brachiopods, Tinoids, ebulate Cormals.

42-38: Dark 1o medium gray grainstons 1o cackstone, miassively beddead
criniodds, brachiopods, sofitary rigo<s corals, tabutats coral

38-35: Madium to lght geay arainstone with some den nodubes, thickly

1o massively beddad, aineids, brachiopods, colmary rugose and tabuinte
colonial cotals.
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109 mis

100 m

28 m

284 m

80 m

7em

72m

108- 126 Dark to meedivm gray wackestones with thin discantinuous beds
af dark gray grainstone 5= 10 om thick, arirnolds, Bloturbation, brachioposds,
Zoophyicas trails in wackestone.

F0S-103: Madium to dark gray wackastons with seme chart, medium to
thickly beddad (H0-30 crm thick beds) Blotuirbated. crinoids, some brackio
s

102-100: Thick cherty layar (5-15 cmn thick) at 1029m, medium gray wacke
stame with sorme brachlopods, microkial bedded chas and cringids

GE_0: Madium 1o light gray warkestone with some baddad chens and
some brachinpads and crimaids

Q-85 Madium to Hght gray packstone thickly-massively bedded with
some increasing brachiopod s since 87 m, some badded chert, minoids

B26-83m: Light to madim gray packstone thickly beddad some chert,
crinoids, some sparse brachiopods,

23-80 Madim gray wackestons with micrebial bedded cherts, nofossils,
some recrystallization

Fa-74: Medium gray thickly bedded wackestone with some dark aray,
Baddad (24 om thick) chiert, no fossils

TA-T 1 Madlum 1o g ht-aray thickly edded wac kastone with sofme chart,
fossil fres, some discortinuous 1-2 om thick packstones and arainstonaes.
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120'm
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128 m
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144-140: Alternating medium to dark gray 5-10 cm thick wackestane
and gramstone with some chert and shaly partings, crmoids
brachiopods, tabulate coral, bioturbation.

140-138: Medium to dark gray wacksstone with 10-20 em thick
bieds, crinoids, brachiopods, solitary rugose corals, some chert beds
-3 .cm thick

138-122: Dark gray 10-30 om thick bedded
wackestone with bioturbation, brachiopods, ainoids, some intar-
beddead 1-10 om thick chert beds,

132-126: Mainly dark to medium gray wackestone with 5-10 cm
thick beds, bioturbation, tabulate and solitary rugose corals,
brachiopods, crinoids, some sparse chert

126-124: Dark gray wackestone with 10-20 am thick beds with
interbedded 5-20 cm thick grainstones, hioturbated, some Zoophy-
cos, brachiopods, crinoids and chert.

124-120: Highly bioturbated dark gray wackestone thinly bedded
(3-10 cm thick beds) some laterally discontinuous grainstons beds
with shaly partings, brachiopeds, crinolds, salitary rugosecorals.

120-116: Dark gray wackestone with 10-20 om thick beds, biotur-
bated, some brachiopods, arinoids. Some dark gray grainstone
Iinterbeds (1-5 om thick) with some shaly partings, crinoids, brachig-
pods, and solitary rugose coral.

114-112: Bark gray wackestone with 5-13 cm thick beds and 3-5 am
thick dark gray grainstones.
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180m

176m

172m
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68 m

Te4m

160 m

148 m

144 m

177-172: Dark gray 10-30 om thick wackestones with 1-5 om thick
fleatstones, rabutate coral bleherms, brachiopods, cringids, solitary
rugose corals, some chert nodulec

171: bioherm of tabulate coral

170-168: Dark to medlum gray wackestaone with 5-20 om thick beds
some sparse chart nodules, brachiopods, tabulate and solitary rugose
caorals, crinoids, some small shaly partings

168-166: Dark gray 15-20 aom thick wackestarie with inconsistent chert
nodules, brachiopods, crinoids, solitary rugose and tabulaie corals,
bryoroans, microbial coral mound, some bioturbation.

164-162: Diark gray wackestone with 10-20 om thick beds, brachiopods,
crinolds, solitary rugose coral, some tabulate coral, some bryczoans,
bioturbation.

160-156: Dark gray wackestone 10-40 cm

thick beds, some smiall chert nodules, abundant fossils including
brachiopods, crinalds, solitary rugose corals, fenestrate bryozoans and
some fabulate coral

156-154: Dark gray wackestone grading Into dark gray grainstone, all
fossils In grainstone, ainedds, corals, bryozoans, rachlopods.

154-152: Dark gray-(5-15 om thick beds} packstone with some shaly
partings crinolds, brachiopods, solitary rugose coral

152-15%: Bark gray medium bedded
wackestone, some chert nodules, crinoids, brachiopods, solitary nigose
coral

150146 Mostly dark to medium gray grainstone with some Interbedded
wackestong, 10-25 cm thick beds, brachiopods, cringids, corals, some
chert nodules.
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2i6m

212 mp

Zam

204.m

Z00m

196 m

192m

186 m [

180 m

234-212: Dark gray wackestene 10-30 om thick beds with increas-
ing shaly parungs, brachjopods; crinpids, solitary rugose corals,
some bioturbation and very small chert podules,

210-208: Dark o medium gray wacksstones 10-20cm thick with
somesmall 1-2 cm thick packstones, grainstones and shaly part-
ings, brachiopods, crinpids, solitary rugosée ol

206-202: Uark w medium gray wackestane (10-30 cm thick bedsl
with smally shaly partings and 3-5 om thick grainztone beds,
brachiopods, cringids and zofitary rugoss comals,

Z00-194:Diark gray wacksstone
10-30 om thick bedsand tome 3-5 cm thick grainsione layers,
brachicpods, tabulate and solitary mgesa corls cnnoids

190-186: Dark gray wacksstone Z0-40 on thick, with some chert
nodulss, brachiopods, fenestrate bryoroans, saliary rugoss
conls, tabulate ol

184-178: Diark gray wacksstone 15-40 om thick beds, increasing
chert, some smaller tabulstecoral bicherms, bryormoans, brachio-
pods, =elitary rugose coral, crmoids.
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252-744; Dark gray wackestone thinly to medium bedded (10-30cm
thick beds) with interbedded grainstenes (3-10cm thick), some
more prominent shaley partings and bioturbated layers (1-3cm
thichk).

240-232: Dark gray wackestone 10-30 cm thick with some interbed-
ded 1-10cm thick grainstonss, brachiopods, corals, some crinoids,
solitary rugose corals, same inconsistent chert nodules, bloturba-
tion, and shaley partings.

230-228: Medium to dark gray wackestone with thin (1-5cm) later-
ally discontinuous muddy to grainstone layers, some cheri nodules,
brachiopods, gastropods, solitary rugose and tabulate corals, some
minor bioturbation.

226-274: Dark to medium gray wackestone with some intermittant
shaly partings, brachiopods crinoids, solitary rugose corals and
gastropods.

232-218: Dark gray wackestone 10-20 cm thick with some shaly
partings and 3-5 cm thick grainstones, brachiopods, cninoids; tabu-
late coral bicherms, solitary rugose coral.
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27im
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282-776: Medium gray grainstone to packstone with some chert
nodules, brachiopods, crinoids, solitary rugose and tabulate coral.

276-274: Dark to medium gray wackestone with some intarbed-
dad grainstones not laterally continuous, solitary rugose corals,
brachiopods, Zoophycos bioturbation, crincids

276-284: Dark to medium gray wackestone medium-thinly
bedded (10-30cm) with some 1-5 cm thick grainstones and some
sparse chert nodules; brachiepods, solitary rugose carals, crineids,
bioturbation, foophycos.

264-260: Dark to medium gray wackestone with some thin grain-
stones and shaley partings 1-3 ¢m thick, some chert nodules,
brachiopods, crinoids, salitary rugose corals, bryozoans, gastro-

pods.

258-254: Dark to madium gray wackestone with some 1-3 cm
thick grainstones and shaley partings, brachiopods, solitary
rugose corals, gastropods, crinoids, chert nedules starting &
255m.
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72m

56 m

48 m

40 m

32m

24 m

16m

Bm

Tungsten Gap section in Arrow Canyon detailed stratigraphic column
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80-65: Madium to light gray packstone,
meadium to thinly bedded (15-20 cm), few
fossils and some thinly laminated irregular
wackestone interbads and some cheart

65-62: Dark gray packstone thickly beddad
[30-45 oml

§2-60:Tan to light brewn guartz
@Endstone.

60-38: Dark gray wackestone, with some
chert nodules.,

58-31: Light tan 1o brown well sorted
quartz sandstone.

51-40: Medium to dark gray grainstons,
thickly bedded with some laterally
discontinuous thinly laminated wacke-
stone layers and silicified shell fragments.

40-30: Light to medium gray, massively
badded packstone (50-100 cm) with thin
discontinuous grainstones, chert nedules,
crinoids and silicified shell fragments.

30-26: Madium ta dark gray wackestone
with some thin interbedded packstone

26-22 Medium to dark gray, thickly
badded packstone with some charty shall
fragments,

22-19:Thickly bedded (2040 cm) medium
to dark gray wackestone.

19-18: Thinly bedded {3-20 cm) medium
gray grainstone

18-10: Light to medium gray packstone,
thinly bedded with cninoids and shell
fragments interbedded with madium to
dark gray wackestone, thickly bedded
(3040 cm) with chert nodules, crinoids
and shell fragments.

9.5-9.25: 25 cm thick hght tan quartz
sandstone.

2-6: Madium to light gray, thinly bedded
[15-20 crn) packstone with some chert.
G-4 Mediuim to dark gray wackestone,
thickly to massively bedded, crinoids
4-0: Dark to medium gray packstone with
10-30 cm thick beds and thin discentinu-
ous 1-5 cm thick grainstones, crinoids.



44 m

136m

128 m

120m

134 m

9om

2B m

20 m

T21m

145138 Mediurm o [ighs giay waske-
sone, medlum to thiddy bedded with
tabulate roml bisher= and some small
chart nodules.

128-135: Lighs gray s buf]
limez-mudstone thickhy bedded [30-60
cm) with brachicpod fegment =nd zame

rhem

125-134 Madinm oray wackestone
thinly lamiimated | 1.3 o), peoidy

130120 Medmm o light gray
packstore, medium mw thickly beddad
(Z0-40 conid

118 Bagin Sechion used forisotopac
3ralysiz

120110 Merfjum to light aray
packstonz, mestium 1o thickly bedded
[28-50 omi with no chert and na foslis

11005 Light to medium oy packsons
thickly to medium bedderd (2040 cm)

02-00: Gark gray thickly badduad (3040
om) wackestans

DO-BE Medium o llght army peckstars,
thin to madium bedded (10-30 cm,
poarly fossiliferous with some imegiilar
thinly laminsied wack=stonaintrbeds
and some chert nodules

Ao-A5: Medium to light army peckstores,
madium ta thinly bedded [15-30 o),
few fosiils and soma thinky Eminated
lrrzgulsr warhestone interbeds znd
BOTHE Ehert

EITE;
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21 m

208 m

200m

g4 m

7em

168 m

152 m

144m

W

58

V2206 Medium gray [some dark)
packstone abundant bedd=ad chert {18-20
crmethickl probable top of Gawn limsstane
i 206

206195 Tark to medium gray, madium to
thickhy beddad (15-40 omi gminsons no
chyere, no fossils

1931 B5: Medium to dadk gray ominsans,
thickly beddad (36-40 om) with some
crinoids, rachiopods, chert nodutes

185-1B2: Gark gray wackestone, thinly
bedded {18 cm} with thin 1-3 em thick
miuddy Emyers.

TE2-1 73 Garke te melium gray orainatens
medium beddad (10-20 o) with =blste

cora| hinherma

175170 Dark te medium oray migrbed-
ded graimstorees with dark gy
packstones.

170-168: Oross-bedded tabulste cors!
bicherm

168160 Medium ta dark gray paciatone,
wrrecibany beddad [10-20 o) with ne cher
and no fosstls.

160-153: Medium to dark gray wackestone,
thindy 1o miedium bedded (5-20 anl, some
brachiopods and shell frmgments, no ches
Pazzible top of Crysial Fe Limsstens g
153m.

153-145: Medjum to fight gray packstons,
some darke gray, thick-rrassively bedded
ni chert, same brachsopods and shall
frapments, [iterbedde] with 12buksts corsl
bigherms.
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APPENDIX IV

Location Maps

o

I o

S s ok ot
1 7 v =) = ) = q .

NV take Hwy 93N for about 2 miles then turn left (west) onto Curtis
23.4585°N, 115° 15.985°’W.

Canyon Road (Purple). Continue on Curtis Canyon Road for about 5 miles arriving at the

coordinates: 37°

From Alamo
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Take exit 80 on I-15N and turn left (west) continue on dirt road for about 8 miles. Follow
dirt road (Red) toward right for 3.3 miles coming to the end of the road. Continue on foot
to 36° 38.852°N, 114° 48.514°W.
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