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ABSTRACT 

Evaluating Recharge and Dynamics of Flow in the Lower Virgin River Basin, USA: 

Interpretation of Hydrochemical and Stable Isotopic Data 

 

By 

 

Joseph Asante 

 

Dr. David Kreamer, Examination Committee Chair 

Professor of Hydrology 

University of Nevada, Las Vegas 

 

Because of the complex geologic setting of the Basin and Range province, 

groundwater flow systems of the Intermountain basins of the southwestern United States 

are complex and remain poorly understood. Understanding these flow systems is 

important for water budgeting on a regional and local scale, and development of robust 

numerical groundwater models for sustainable water use and protection of water-

dependent ecosystems. Although for decades hydrochemistry and isotopes have been 

used to characterize and trace subsurface water and surface water, effectively interpreting 

these data are still challenging, which can be attributed to existing subjective grouping of 

these data and the lack of methodological framework for analyzing and interpreting the 

data. 

In this dissertation, new analytic approaches to analyze hydrochemical and stable 

isotopic data are described and used to trace the sources and movement of groundwater, 

and better quantify Virgin River interactions with groundwater in the lower Virgin River 

Basin in Nevada, Arizona, and Utah. In the new approach, data analytical techniques and 

data interpretations are combined in a sequential and mutually supportive way to test the 

hypotheses of potential interbasin groundwater flow, and Virgin River interaction with 
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groundwater in the lower Virgin River Basin. To achieve these goals of the dissertation, 

three studies were conducted. 

The objective of the first study was to optimize the multivariate statistical 

grouping of hydrochemical data of groundwater. The results indicated that repeated stable 

cluster solutions (robust hydrochemical facies) are obtained when cluster analysis is 

combined with Discriminant Function Analysis and agreement measures to group 

hydrochemical data. Also, this integrative approach allows for a quantification of the 

effect of analytical errors, outliers, and data transformation on the clustering of 

hydrochemical data. Using this approach, an optimal number of six robust hydrochemical 

facies were delineated for groundwater in the lower Virgin Valley. The results indicate 

that inappropriate data transformation can significantly impact the delineation of robust 

hydrochemical facies (Cramer’s V < 0.8). In addition, the results indicate that analytical 

errors </= 19% and outliers </=7% can be ignored (Cramer’s V > 0.8) in clustering. 

The objective of the second study was to precisely define the sources of 

groundwater and Virgin River interactions with groundwater in the lower Virgin River 

Basin through a new approach for analyzing hydrochemical data of groundwater and 

surface water that allows for the precise definition of sources and discharge end-

members, and overlay of interpretations. The methodology developed in the first 

objective above was used to delineate 6 robust hydrochemical facies for all waters in the 

basin. Subsequently, hydrochemical end-members were identified using the Schoeller 

diagram and discriminant functions plot. Flowpaths were tested, based on geographic 

coherence and patterns of the characteristic facies. Additionally, the PHREEQC inverse 

modeling code was used, beyond the contemporary application for identifying processes 
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of hydrochemical evolution, to diagnose the significance of potential recharge sources to 

the lower Virgin River Basin. Mineral phases and constraints selected were based on 

compositional plots, saturation indices calculations, and the available geologic 

information. PHREEQC inverse modeling indicates that at least 80% of the groundwater 

in the lower Virgin River Basin is derived from interbasin flow. In addition, based on the 

hydrochemical data, the floodplain aquifer interacts highly with the Virgin River, but 

both are unlikely to be hydraulically connected to the underlying Muddy Creek 

Formation aquifer.  

Finally in the third study, linear regression, Spearman correlation tests, 

scatterplot, box-and-whiskers plot, and Wilcoxon Rank Sum test are unconventionally 

applied to glean information from δD and δ
18

O, and Na, K, SO4, and Cl data of the 

hydrochemical facies delineated in Chapter 3.  The δD values of the recharge end-

members from adjacent basins and within the lower Virgin River Basin are high and 

significantly different from the low δD values of the discharge end members.  Box-and-

whiskers plot of δ
18

O values, comparing to box-and-whiskers plot of δD values, indicate 

possible oxygen isotopic exchange between the discharge groundwater and the aquifer 

minerals.  The isotopic exchange implies a long residence time of the groundwater which 

discharges in the basin.  Correlation tests of δD and δ
18

O versus Cl, and box-and-

whiskers plots of δD, δ
18

O, and solute data indicate the Virgin River and floodplain 

aquifer are more homogeneous and evaporated than samples of the source/recharge and 

discharge end-members.  Regionally transported deep carbonate water is invoked as 

possible explanation of the low δD values of the discharge waters in the lower Virgin 

River Basin. Mixing calculations for stable isotopes indicate that at least 50% of the 
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groundwater discharging in the lower Virgin River Basin derives from interbasin 

groundwater sources. Although this estimate is different from the estimates presented in 

Chapter 3, both results reinforce the significance of interbasin groundwater to the lower 

River Virgin Basin. 
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CHAPTER 1  

 

DISSERTATION OVERVIEW 

1.1 Overview 

 Since the flow systems theory was formalized (Tóth, 1963; Freeze and 

Witherspoon, 1967) , basin scale hydrologic studies have been increasing, with the 

general objective to provide the needed scientific information for sustainable 

management of regional water resources and water dependent ecosystems (Eakin, 1966; 

Winograd and Friedman, 1972; Winograd and Thordarson, 1975; Mifflin and Hess, 1979; 

Johannesson et al., 1997; Davisson et al., 1999b; Thyne et al., 1999; Genereux, 2005; 

Hibbs and Darling, 2005; Anderson et al., 2006; Guler and Thyne, 2006; Belcher et al., 

2009; Bushman et al., 2010; Hershey et al., 2010). In the Basin and Range province in the 

Great Basin Region of the southwestern United States, the complex geology created by 

Mesozoic compression and Cenozoic extensional tectonics (Page et al., 2006) 

complicates the flow systems of the intermountain basins. From the perspective of water 

supply, two aquifers are considered the most important and these are the Tertiary Muddy 

Creek Formation (semi-consolidated basin-fill sediment) and Paleozoic carbonate rocks. 

As the drilling depth of the carbonate aquifer is considerably deep (Johnson et al., 2002), 

the basin-fill deposits are the most important water supply source (Heath, 1984; Johnson 

et al., 2002). Conceptually, groundwater of the basin-fill of the intermountain basins can 

be replenished by infiltration of precipitation in the high topographic boundaries or in the 

alluvial fans of the basins, by infiltration of stream discharge on the basin floor, or by 

interbasin flow through the deep carbonate aquifer or permeable intervening mountains. 
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However, in practice, flow systems of intermountain basins remain poorly understood 

and controversial (Davisson et al., 1999a; Davisson et al., 1999b; Thomas, 1999; 

Winograd, 2001; Nelson et al., 2004; Nelson et al., 2005; Winograd et al., 2005). For 

example, the sources of water to the intermountain basins remain unclear. 

 Previous studies have examined interbasin flow on the basis of groundwater 

budget analysis, numerical modeling, potentiometric surface analysis, geochemical, and 

isotopic studies (Eakin, 1966; Winograd and Friedman, 1972; Winograd and Thordarson, 

1975; Mifflin and Hess, 1979; Johannesson et al., 1997; Davisson et al., 1999b; Thyne et 

al., 1999; Nelson et al., 2004; Genereux, 2005; Hibbs and Darling, 2005; Anderson et al., 

2006; Guler and Thyne, 2006; Belcher et al., 2009; Bushman et al., 2010; Hershey et al., 

2010). The investigations are diverse due to the complexity of the problem, issues of 

analytical uncertainty, and quest for techniques that accurately identify flow systems of 

the intermountain basins. The uncertainty in quantifying precipitation, 

evapotranspiration, and recharge amount causes great uncertainty in the conclusions from 

groundwater budget and numerical modeling studies of interbasin flow.  Also 

potentiometric surface analysis is uncertain because of lack of a sufficient number of 

evenly distributed wells in the deep carbonate aquifer to constrain regional flow patterns. 

In view of these challenges, many researchers use geochemical and isotopic data to study 

flow systems of the intermountain basins. Using hydrochemical data has an advantage 

because the groundwater quality is a manifestation of the groundwater flow patterns. 

Also, stable isotopes systematically vary in space or time. Because stable isotopic values 

of groundwater are generally conservative, they are used as tracers for sources and 

movement of subsurface water. 
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 The applications of hydrochemistry and isotopes to solving hydrologic problems 

are myriad. Groundwater hydrochemical data have been used to define or refine 

conceptual models (Panno et al., 1994; Bassett et al., 2008)  and to infer geological 

structures (Lloyd and Heathcote, 1985).  Also, hydrochemical and isotopic data have 

been combined or used separately to trace the sources of recharge (Carrillo-Rivera et al., 

1992; Ingraham et al., 2001; Kohfahl et al., 2008), evolution of water chemistry 

(Schwartz et al., 1981; Thomas et al., 1989; Kreamer et al., 1996), and subsurface 

movement and hydraulic connections (Williams, 1982; Johannesson et al., 1997; 

Stetzenbach et al., 2001). Hydrochemical and isotopic studies are numerous and diverse; 

therefore, a complete review of the hydrochemical and isotopic studies is considered 

unwieldy (Lloyd, 1986).  The numerous studies are due to the dependence of 

hydrochemical and isotopic studies on research questions, geologic and hydrogeologic 

settings, physiographic areas, and regional or local hydrology. Although advances have 

been made in chemical and isotope basin hydrology, future advancement of basin 

hydrology research, using hydrochemistry and isotopes, demands a thorough review of 

past studies. In this chapter, attempt is made to review and organize the literature on the 

applications of hydrochemistry and isotope to flow systems using the flow system 

definition as a framework. Groundwater flow system is defined by the recharge (or 

sources), discharge, and linking flowpath (Tóth, 1963). 

 The first important step in effectively using hydrochemical data to characterize 

sources and movement of water in basins is classification of the hydrochemical data into 

chemically homogenous and distinct groups known as hydrochemical facies. Methods of 

classification are broadly classified in this research as graphical techniques (Guler et al., 
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2002), and multivariate statistical techniques (Ashley and Lloyd, 1978; Kreamer et al., 

1996). Also, geologic, physiographic, and hydrologic characteristics have been used to 

classify hydrochemical and isotopic data, for example stratigraphy units, basin units, 

water type (thermal, groundwater, surface water/lake and spring), and depths of wells 

(Clark et al., 1982; Panno et al., 1994; Acheampong and Hess, 2000; Matter et al., 2006; 

Zhu et al., 2007; Kohfahl et al., 2008; Mahlknecht et al., 2008; Hershey et al., 2010). 

Graphical techniques, for example Schoeller, Piper, and Stiff diagrams of major ionic 

data and compositional plots of water quality parameters, are used to group 

hydrochemical data into hydrochemical facies. However, graphical techniques are 

ineffective for analyzing large datasets and limitless parameters. Also, in complex 

hydrogeologic settings such as the basin and range province where cross-formational 

flow and fracture-directed flow are important, well depth and stratigraphy alone are 

inappropriate for classification.   

 With the advent of high speed computers and statistical programs, many studies 

use Factor Analysis (FA), cluster analysis, and Principal Component Analysis (PCA) to 

group large hydrochemical datasets (Ashley and Lloyd, 1978; Dalton and Upchurch, 

1978; Lawrence and Upchurch, 1982; Steinhorst and Williams, 1985; Kreamer et al., 

1996; Thyne et al., 2004; Guler and Thyne, 2006; Woocay and Walton, 2008). According 

to a previous study (Guler et al., 2002), cluster analysis is the most efficient classification 

technique; however, cluster analysis as reported by previous studies is subjective. 

Considering that cluster analysis can produce clusters even when there are no substantive 

groups in the data, the need for an objective approach cannot be overstated. Also, PCA is 

subjective and as an ordination method sometimes groups cannot be discerned on PCA 
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scores plots. Furthermore, hydrochemical data have been characterized using transect 

survey of water quality parameters along an intuitively predefined flowpath (Edmunds et 

al., 2002). This method, referred to as direct ordination (Shaw, 2003), is subjective, as the 

researcher defines the flowpath in advance. In addition, direct ordination does not allow 

direct overlay of future investigations. 

 The characterization of clusters (groups of hydrochemical data) as source and 

discharge end-members, based on the defining characteristics of the hydrochemical 

facies, is another important area of research; however, less attention has been focused in 

this area. End-members of small datasets have been defined using graphical techniques, 

compositional diagrams, and direct ordination (Panno et al., 1994; Clark et al., 2000; 

Matter et al., 2006; Zhu et al., 2007; Kohfahl et al., 2008; Mahlknecht et al., 2008; 

Hershey et al., 2010). As already mentioned, these approaches are subjective and cannot 

handle limitless parameters.  Although cluster analysis is considered the most efficient 

method for classification of large datasets, it does not provide direct information on the 

chemistry of the statistical groups for defining end-members (Guler et al., 2002). To 

circumvent the problem, the class memberships of the clustering results are superimposed 

on the results of graphical techniques or PCA. The graphical plots are used to analyze the 

average of the parameters of the groups (Rosenthal et al., 1990; Thyne et al., 1999; 

McNeil et al., 2005; Helstrup et al., 2007; Cloutier et al., 2008). This procedure 

maximizes tendency for misinterpretation of end-members. As an alternative approach, 

the clusters can be superimposed on the results of the PCA to identify the end-members 

(Thyne et al., 2004; Woocay and Walton, 2008). Although this procedure has the 

advantage of using all cases of the dataset, cluster analysis and PCA can produce 
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different grouping order, and that can be problematic for the interpretation of end-

members. Among the commonly used graphical techniques (Piper, Stiff, and Schoeller 

diagrams), the Schoeller diagram is considered the most useful interpretation technique 

(Charron, 1969). Also end-members have been characterized using transect survey of 

water quality parameters along an intuitively predefined flowpath.  

 The end-members defined are linked by inferring flowpaths. Flowpaths are 

inferred by correlating end-members on the basis of their chemical characteristics. In 

some cases the identification of potential flowpaths has been optimized by 

simultaneously considering the chemical characteristics of the clusters and their areal 

distribution using Geographic Information Systems (GIS). To this point, I have not 

mentioned interpolation and geostatistical analysis of hydrochemical and isotopic data to 

trace flow systems. This is because interpolation and geostatistical techniques are applied 

to infer all the components of the flow system; therefore, it is proper to mention it at this 

stage. Using spatial techniques successfully is dependent on data availability and 

distribution. Also, flowpaths can be tested using analysis of isotopic values (Winograd 

and Friedman, 1972; Mifflin and Hess, 1979; Kirk and Campana, 1990; Davisson et al., 

1999b; Leontiadis and Nikolaou, 1999; Ingraham et al., 2001; Smith et al., 2002; Nelson 

et al., 2004) and aqueous geochemical modeling techniques (Plummer and Back, 1980; 

Plummer et al., 1983; Plummer et al., 1990). But overlay of these additional 

investigations involving conservative solutes, isotopes, and aqueous geochemical 

modeling is efficient for unambiguously defined hydrochemical facies. The advantage of 

the overlay is that it will allow the synthesis of different kinds of evidence. As noted, the 
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isotopes are most efficient when the hydrologic problem is clearly defined (Gat and 

Gonfiantini, 1981). 

 For this dissertation, a methodology of objectively classifying hydrochemical data 

and overlaying independent hydrochemical and isotopic evidence is presented. The goal 

is to precisely delineate the flow system of a basin. Herein, three independent, though 

related, studies are conducted to determine the sources and movement of groundwater 

and interactions between groundwater and surface water in the lower Virgin River Basin 

located in the Basin and Range province. The basin receives, at the highest elevations of 

its’ flanking mountains, precipitation of about 600 mm. The precipitation decreases with 

decreasing altitude reaching a value of about 150 mm at the basin floor. Therefore, 

precipitation in the mountains is considered the major source of recharge to the 

groundwater in the basin. However, it has also been hypothesized that much of the 

groundwater in the basin is derived from interbasin flow through the deep carbonate 

rocks (Dixon and Katzer, 2002) or volcaniclastics and tuff ash rocks forming the Clover 

mountains at the northwest-north-northeast boundaries of the basin (CH2M HILL, 2002). 

In addition, faults are believed be to the main conduit of groundwater flow in the basin 

(Page et al., 2006). 

 In the first study, I innovatively combined cluster analysis, multiple discriminant 

analysis, and measures of association/agreement to objectively find the optimum 

hydrochemical groupings (or hydrochemical facies). The study results compare well with 

the results with test statistics, (Test statistics are a more complicated and limited 

approach). This study tested the hypothesis that cluster analysis combined with Multiple 

Discriminant Function Analysis and measures of association/agreement can be used to 
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determine the optimum hydrochemical facies for a hydrochemical dataset. The prediction 

or demarcation for this hypothesis is that the optimum hydrochemical facies is stable and 

has the largest number of clusters (hydrochemical facies). The new approach allows for 

quantitative decisions to be made about the clustering technique to use for a 

hydrochemical dataset, number of hydrochemical facies that are significant, and effect of 

hydrochemical data transformation, analytical errors, and outliers on a clustering 

technique. In the second study, an integrated and sequential approach is used to analyze 

the hydrochemical facies to test the hypothesis that interbasin groundwater does not 

contribute to groundwater in the basin-fill aquifer of the lower Virgin River Basin and 

also the hypothesis that the Virgin River is hydraulically interconnected with the 

floodplain aquifer. The prediction is that the chemically evolved groundwaters in the 

lower Virgin River Basin are not linked to the interbasin groundwater hydrochemistry. 

Also the interconnected surface water - groundwaters are expected to have statistically 

the same chemistry. Firstly, the Schoeller diagram and discriminant functions plot are 

applied to the hydrochemical facies delineated to define source and discharge end-

members. Second, the existing hydrologic and geologic information and areal distribution 

of the facies are used to define potential flowpaths. Third, geologic data, saturation 

indices, compositional diagrams are used to deduce the reactive mineral phases in the 

hydrogeologic environment. Finally, aqueous geochemical modeling is used to examine 

the hypothesis of flowpaths and mixing scenarios. In the third study, regression analysis, 

box-and-whisker plots, bivariate plots, Spearman correlation tests, and Wilcoxon Rank 

Sum Tests are used to analyze stable isotopic data to test the hypothesis that interbasin 

groundwater does not contribute to groundwater in the basin-fill aquifer of the lower 
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Virgin River Basin and also the hypothesis that the Virgin River is hydraulically 

interconnected with the floodplain aquifer. It was predicted that the stable isotopic values 

of the discharging groundwaters in the lower Virgin River Basin is statistically similar to 

the source groundwaters (intrabasin recharge waters). Also the interconnected surface 

water - groundwaters are expected to have statistically the same stable isotopic values. 

 The results of the hydrochemical and stable isotopic data analyzed support that at 

least 50% of the groundwater in the lower Virgin River Basin is derived from interbasin 

groundwater. The current lack of a consistent, methodological framework to guide 

studies makes it difficult to advance the science of basin chemical and isotope hydrology, 

and this review and novel methodology provides that framework. The methodology 

presented in this study is objective and allows overlay and synthesis of independent 

investigations. This review is by no means an exhaustive review of the literature on 

hydrochemical and isotopic studies. Nevertheless, the review provides representative 

studies on the trends in the research area and serves as framework for future research. 
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CHAPTER 2  

 

OPTIMIZING MULTIVARIATE STATISTICAL CHARACTERIZATION OF 

HYDROCHEMICAL GROUNDWATER DATA: A COMPARATIVE ANALYSIS OF 

CLUSTERING METHODS 

Abstract 

Many studies have grouped hydrochemical datasets into hydrochemical facies 

using graphical and multivariate statistical methods. Compared to graphical methods, 

cluster analysis and Principal Component Analysis (PCA) can handle large datasets and 

limitless parameters, so are widely used by researchers. However, cluster analysis and 

PCA can be subjective, raising questions about the significance and confidence of the 

groupings. In this study, cluster analysis is combined with Multiple Discriminant 

Function Analysis (MDFA) and measure of association to objectively find the optimum 

clustering technique, number of clusters for a hydrochemical dataset, and stable clusters, 

and to assess the effect of hydrochemical data transformation, analytical errors, and 

outliers on a clustering. Using MDFA and Cohen’s Kappa measure, the hydrochemical 

dataset is mathematically modeled into robust hydrochemical facies (or stable clusters). 

The cluster groupings are used as a training/test dataset for MDFA. The results indicate 

that within-groups linkage with squared Euclidean distance clustering method is the best 

method for the hydrochemical data, yielding six robust hydrochemical facies. The six 

stable cluster solution (optimum hydrochemical facies) is independently supported by the 

test statistics: explained variance, proportional reduction of error, F-Max, and Beale’s ‘F 

test’. Cramer’s V coefficient between the hydrochemical facies for the log-10 and 
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squared-root transformed datasets shows that choosing an appropriate data transformation 

is a key step in delineating significant hydrochemical facies (Cramer’s V < 0.8). It is 

demonstrated that the effect of outliers and analytical errors on clustering is insignificant 

(Cramer’s V > 0.8) when the dataset contains outliers </= 7% or analytical error /= 19%.  

 

2.1. Introduction 

 Determining groundwater flow systems of hydrologic basins is an important and 

challenging research topic. The understanding of flow systems is important for accurately 

analyzing water budgets, developing robust numerical groundwater models, and 

protecting water quality. Flow systems are often inferred from numerical modeling and 

studying hydraulic, hydrologic, hydrochemical, lithologic, and structural data.  

 Because spatial groundwater quality has a causal relationship with gravity-driven 

groundwater flow (Tóth, 2009), hydrochemical data are used for studying and mapping 

basinal groundwater movement and flow rates. The goal of this study is to optimize the 

multivariate statistical grouping of hydrochemical data into hydrochemical facies using 

an approach that combines multivariate statistical techniques in a mutually supportive 

way, allowing for quantitative decisions in the grouping process. Hydrochemical data 

have been used, often together with environmental isotopes, to define or refine 

conceptual models (Panno et al., 1994; Bassett et al., 2008). In hydrochemical studies, 

data collected from hydrologic basins are used to trace sources of recharge (Carrillo-

Rivera et al., 1992; Ingraham et al., 2001; Kohfahl et al., 2008), evolution of water 

chemistry (Schwartz et al., 1981; Thomas et al., 1989; Kreamer et al., 1996), and 

subsurface movement and hydraulic connections (Williams, 1982; Johannesson et al., 
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1997; Stetzenbach et al., 2001). Generally, hydrochemical interpretations from these 

studies are based on spatial mapping of hydrochemical data and temporal mapping of 

radioisotopic data like tritium. Identifying hydrochemical facies (Back, 1961) plays a 

central role in decoding the history of groundwater and in testing hypotheses about 

groundwater sources, movement, hydraulic connectivity, and water quality evolution.  

 The fundamental theory underlying the use of hydrochemistry as tracer for basin 

groundwater flow is the principle of groundwater chemistry evolution from rock and 

water interactions (Garrels and Mackenzie, 1967) and the systematic spatial and temporal 

variations of the chemical compositions (Chapelle, 2005). Although the theory is simple, 

in practice it is very difficult to map out important hydrochemical types that characterize 

groundwater flow in basins. Basin hydrochemical patterns are often complicated by 

heterogeneity and anisotropy of geological materials and the complexity of geochemical 

reactions. The methods for mapping hydrochemical patterns (graphical and multivariate 

statistics) to characterize hydrochemical data have varying weaknesses (Guler et al., 

2002), which can limit their effectiveness. In general, graphical methods use restricted 

hydrochemical data and group samples subjectively. In some cases, hydrochemical data 

plotted on these diagrams cannot be visually separated, making clear demarcations of the 

hydrochemical facies impractical. To overcome these disadvantages, many researchers 

(Ashley and Lloyd, 1978; Dalton and Upchurch, 1978; Lawrence and Upchurch, 1982; 

Steinhorst and Williams, 1985) use multivariate statistical methods, commonly clustering 

techniques and Principal Component Analysis (PCA), to characterize hydrochemical 

data. Graphical and multivariate statistical techniques have been compared side by side 

and the results showed that, compared to graphical techniques, multivariate clustering 
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techniques and PCA more effectively use large datasets and limitless parameters and are 

better at classifying data in the Q and R modes to determine similarities between samples 

and similarities between variables respectively (Ashley and Lloyd, 1978; Guler et al., 

2002). 

 Along with the increasingly popular use of clustering techniques to characterize 

hydrochemical data come several challenges, including cluster analysis (i.e., choices of 

clustering algorithm, similarity measure, and linkage) and data preprocessing. Also, in 

any given multivariate technique, the number of hydrochemical facies can be considered 

an unresolved nuisance parameter toward the goal of using facies for hydrological 

interpretation. In practical applications, cluster analysis has been applied to 

hydrochemical data subjectively. For instance, the appeal of the cluster patterns displayed 

(Steinhorst and Williams, 1985) seems to be one commonly used approach for deciding 

about the optimum clustering solution. Also by semi-quantitatively comparing cluster 

analysis to graphical techniques, Guler et al. (2002) reported that Hierarchical Clustering, 

using Ward linkage and Euclidean distance, produce the optimum number of 

hydrochemical facies. This subjectivity (choice of clustering technique, no of clusters, 

and data preprocessing) can cause ambiguous or misleading grouping of hydrochemical 

data and hence incorrect interpretations of groundwater history. Evidently a need exists to 

optimize the cluster analysis of hydrochemical dataset using an objective approach, 

which can measure the stability of hydrochemical facies and quantify the effects of data 

preprocessing. 

The proper preprocessing of data is important for recovering the ‘true’ 

hydrochemical facies (optimum hydrochemical facies). Data preprocessing can affect 
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how a clustering technique groups data (Milligan, 1996) and hence recover the ‘true’ 

cluster structure. Recovery of this underlying cluster structure can be affected by 

analytical errors in data. For example, although the charge balance error of a reliable 

major ion analytical dataset is within ±5% (Deutsch, 1997), for practical purposes many 

studies have included samples with charge balance errors outside this range (Guler et al., 

2002; Thyne et al., 2004). Furthermore, hydrochemical data often contain outliers, 

requiring a decision for data inclusion or exclusion. Also, hydrochemical data are 

generally positively skewed (Howarth and Earle, 1976); therefore, appropriately 

transforming data is often necessary before applying multivariate statistical analysis.  

 The basic idea underlying this study is that bias in the clustering of hydrochemical 

data can be reduced when stable hydrochemical facies are sought, a condition for true 

cluster solutions. In this study, clustering hydrochemical data is considered a modeling 

problem. Studies have shown that the underlying ‘true’ structure of a given dataset yields 

the significant number of clusters or ‘best’ clustering technique when the cluster solution 

is stable (Gross, 1972; McIntyre and Blashfield, 1980; Tibshirani and Walther, 2005). 

This process, called validation, ensures that inappropriate cluster structures are not 

imposed on the dataset. Also, many test statistics approaches, or ‘stopping rules’, are 

available for estimating the number of clusters to validate clustering solutions (Milligan 

and Cooper, 1985).  

 The objectives of this study are to innovatively combine clustering techniques 

with Multiple Discriminant Function Analysis (MDFA) and measures of association to 

find the optimum cluster solution (clustering technique and number of clusters) and to 

assess the effects of hydrochemical data transformation, analytical errors, and outliers on 
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a clustering technique. The evaluative criteria are that the optimum clustering solution is 

a stable cluster solution (significant hydrochemical facies), has Cohen’s Kappa 

coefficient (which measures the agreement between any cluster solution and MDFA 

solution) ≥ 0.8 and has the largest number of clusters (or hydrochemical facies). The n-1 

cluster solution is stable if the MDFA predicted rate from jackknife classification for 

groups in the n-1 cluster solution (containing n-1 clusters)  equals or exceeds a threshold 

value of 80% and the jackknife classification predicted rate for groups in the  n cluster 

solution (containing n clusters) is less than 80%. Also cluster solutions for any two 

datasets (transformed data, data with analytical errors, and data with hydrochemical 

outliers) are considered regionally similar if Cramer’s V is > 0.8. Cramer’s V is a chi-

square based measure of association between two independent nominal variable sets. 

 

2.2. Study Area 

 The hydrochemical data for this study are collected from the lower Virgin River 

Basin (including Tule Desert Basin) and adjacent basin areas located in parts of Nevada, 

Utah, and Arizona (Figure 2. 1), hereafter called the study area. The study area has a 

complex stratigraphy and structure, with rocks and basin-fill sediments spatially variable 

and discontinuous (Maxey, 1968; Naff et al., 1974). The study area is located within the 

Basin and Range physiographic province of the western United States and forms part of 

the Colorado Basin flow system. In general, this province is comprised of valleys filled 

with thick alluvial sediments and mountain ranges separating the valleys (Heath, 1984). 

The lower Virgin River Basin has an area of about 4,463 km
2
 and is bordered to the north 

and northeast by the Clover, Beaver Dam, and Bull Valley Mountains; to the east and 



 

16 
 

south by the Virgin Mountains; and to the west and northwest by the Mormon Mesa, 

Mormon Mountains, and East Mormon Mountains (Dixon and Katzer, 2002). The Tule 

Desert basin is considered a part of the lower Virgin River Basin (though mountains 

separate it from the other basin areas), given that they may be hydraulically connected 

(Katzer et al., 2002).  

 Precipitation in the study area is controlled by elevation and seasons, ranging 

from about 609 mm/yr at the highest (2,438 m) to about 152 mm/yr on the basin floor 

(Dixon and Katzer, 2002). Winter precipitation dominates the study area, conversely with 

short duration and localized activity in the summer (Glancy and Van Denburgh, 1969; 

Winograd et al., 1998). Additionally, temperatures range in the summertime from highs 

near 40 °C, to wintertime lows below freezing. Annual potential evapotranspiration in the 

basin is much greater than precipitation. On the lower Virgin River Basin floor, the 

annual reference evapotranspiration is about 11 times greater than the annual 

precipitation (CEMP, 2011). Consequently, winter precipitation is considered the more 

important source of recharge. The lower Virgin River Basin is drained perennially by the 

Virgin River and Beaver Dam Wash and ephemerally by numerous washes that follow 

heavy precipitation. The most significant source of direct recharge to the lower Virgin 

River Basin is believed to be precipitation falling above the elevation of 914 m (Dixon 

and Katzer, 2002) of the mountains surrounding the basin. 

 Besides the elevation and seasons that control the amount and location of 

precipitation, the geology controls the location of recharge and groundwater movement. 

Several investigators have studied the geology of the lower Virgin River Basin 

(Bohannon et al., 1993; Williams, 1996; Langenheim et al., 2000; Dixon and Katzer, 
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2002; Page et al., 2005; Page et al., 2006). Geologic units in the lower Virgin River basin 

range in age from Proterozoic to Quaternary. The two major hydrostratigraphic aquifer 

units of water supply importance are the Paleozoic carbonate (2000 to ~4000 m thick) 

and the overlying Tertiary Muddy Creek Formation (~ 600 to 1,640 m thick). Much of 

the groundwater recharge to the lower Virgin River Basin is reported to move through the 

carbonate rock to the Muddy Creek Formation by upward flow (Johnson et al., 2002).  

  

2.3. Materials and Methods 

2.3.1. Sources of Data 

Hydrochemical data from groundwater (wells and springs) samples collected from 

the study area were used in this study. The sources of the data comprised governmental 

and institutional reports (Glancy and Van Denburgh, 1969; Bateman, 1976; Brothers et 

al., 1993; Enright, 1996; Thomas et al., 2001; CH2M HILL, 2002); graduate student 

theses (Metcalf, 1995; Yelken, 1996), the United States Environmental Protection 

Agency (U.S. EPA) STORET database (U.S EPA, 2009); the United States Geological 

Survey (USGS) NWISWeb database (U.S Geological Survey, 2009); and sampling 

activities conducted during this study by the Virgin Valley Water District (VVWD), 

Mesquite and the University of Nevada Las Vegas (UNLV).  

The database compiled contains 328 water samples and 40 attributes including 

water chemistry and geographic location coordinates/the U.S Public Lands Survey 

System. However, only 198 groundwater samples have complete data 

(measured/calculated and converted to consistent units) for the compositions of Ca, Mg, 

Na, K, HCO3, Cl, and SO4, total dissolved solids (TDS), and geographic location 
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coordinates. For alkalinity values, field measurements were recorded in the database; but 

where unavailable, the laboratory value was used (Guler et al., 2002). Values for Si were 

not available for all groundwater samples in the study area; therefore, TDS was used as a 

surrogate variable in the multivariate analyses. Although TDS can correlate with 

individual ions or the major ions may be correlated with each other (Suk and Lee, 1999; 

Cloutier et al., 2008; Hershey et al., 2010), correlated variables in the cluster analysis 

violate no assumptions (Milligan, 1996). In several hydrochemical studies  clustering 

techniques applied to TDS or electrical conductivity data in concert with major ion data 

have yielded useful results (Ashley and Lloyd, 1978; Williams, 1982; Seyhan et al., 1985; 

Riley et al., 1990; Rosenthal et al., 1990; Güler and Thyne, 2004; Thyne et al., 2004; Demlie et 

al., 2007; Helstrup et al., 2007). The hydrochemical data used is accessible at 

https://spreadsheets.google.com/pub?key=0AkihMREl9PhWdEVDMnIyakRFRUhlYmN

iblJKMXZwUWc&hl=en&single=true&gid=0&output=html.  

The final 198 samples were collected from 162 discrete sampling sites. A total of 

16 sites had repeated analytical chemical data allowing for temporal variations to be 

assessed. Sample coordinates recorded in the U.S Public Land Survey System were 

converted to longitude and latitude coordinates using the Earth Point program (Earth 

Point, 2009) and Google Earth®.  

 

2.3.2. Quality Assurance and Preprocessing of Hydrochemical Data 

 Although historical hydrochemical data have been shown to be useful in studying 

groundwater flow (Guler et al., 2002; Bushman et al., 2010), the analytical accuracy and 

time invariant assumption of the hydrochemical data (i.e. chemical steady state) can often 

be questioned. In this study the quality of all the analytical major ion composition 

https://spreadsheets.google.com/pub?key=0AkihMREl9PhWdEVDMnIyakRFRUhlYmNiblJKMXZwUWc&hl=en&single=true&gid=0&output=html
https://spreadsheets.google.com/pub?key=0AkihMREl9PhWdEVDMnIyakRFRUhlYmNiblJKMXZwUWc&hl=en&single=true&gid=0&output=html
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datasets was checked using charge balance error (CBE) calculations (Feuerstein and 

Grimm-Strele, 1989; Hem, 1989). With the charge balance approach, analytical errors in 

individual cationic and anionic concentrations can compensate, but this consideration is 

unable to be quantified in our data (and in most field studies) and is assumed to be 

negligible. Also, temporal variation in the analytical data was checked using multiple 

samples collected at 16 discrete sampling points. 

 Standard methods based on chemical relationships were used to estimate missing 

data and to fill in data gaps. Alkalinities recorded as CaCO3 were converted to 

bicarbonate (HCO3
-
) concentrations (Deutsch, 1997). Total dissolved solids were either 

laboratory measured (residue on evaporation at 180°C) or estimated (equivalent to 

residue on evaporation at 180°C) by summing all major ions (mg/L) plus silica (mg/L) 

and subtracting half the concentration of bicarbonate (mg/L) from the total sum (Hem, 

1989; Hounslow, 1995). 

 Hydrochemical data are usually positively skewed (Howarth and Earle, 1976) and 

so is often normalized for effective multivariate analysis. Thus the data were transformed 

before the multivariate statistical analysis. Box-Cox analysis and box-and-whiskers plot, 

(R Development Core Team, 2010), were used to search for the appropriate normalizing 

power transformations for the variables. The goal was to choose the power, from the 

range of power, which minimizes the number of outliers and normalizes the data. 

Skewness and kurtosis were calculated (SPSS, version 19) for transformed and 

untransformed datasets to assess effectiveness of normalization. Two datasets were 

prepared to evaluate how transformation can affect cluster grouping of hydrochemical 

data or delineation of hydrochemical facies. For data set one, the original major ions and 
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TDS data were square-root transformed. For data set two, major ions and TDS were 

subjected to a Box-Cox analysis to find the appropriate power transformation. The 

transformed datasets were then standardized (z-score): 

    
   

 
 (1) 

where x is the value of the variable, µ is the mean, and σ is the standard deviation. 

Furthermore, two other datasets were prepared to evaluate effects of outliers and CBE on 

classification results. The Box-Cox analysis power transformed variables were examined 

for outliers defined as data points exceeding + 1.5 inter-quartile ranges (IQRs) from the 

1st and 3rd quartiles. Based on these tests, 14 outlier samples (7 % of the 198 

hydrochemical data) were removed from the dataset and the remaining 184 samples were 

saved as a new, separate dataset for further evaluation. Similarly, 19 % samples with 

CBE outside the range of ± 5 % were removed from the 198 hydrochemical data (Box-

Cox power transformed) and the remaining data (160 samples) were saved as a new 

dataset.  

  

2.3.3. Multivariate Statistical Analysis of Hydrochemical Data 

 For the new methodology, cluster groupings were used as training dataset/test set 

for MDFA to mathematically group the hydrochemical data into robust hydrochemical 

facies. Agglomerative hierarchical cluster techniques (linkage and variance methods) or 

non-hierarchical K-Means clustering method were combined in a mutually supportive 

way with MDFA and agreement measures to find stable cluster solutions and to infer the 

optimal number of clusters and clustering technique for a dataset (SPSS version 19). 

Because clustering techniques are many, considering all of them is beyond the scope of 
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this study; therefore, this study considered only the methods commonly used in the 

geophysical sciences (Gong and Richman, 1995). The clustering techniques selected for 

this study are the single linkage, complete linkage, between groups (average linage), 

within group linkage, Ward method, and K-Means method. These methods have certain 

characteristic tendencies that can be problematic in recovering a ‘true’ cluster solution. 

For example, single linkage may produce chaining clusters especially in large datasets 

and Ward’s method may produce small size, spherical clusters (Everitt et al., 2011). 

Among these techniques Ward, K-Means, and average linkage are the most commonly 

used (Gong and Richman, 1995). However, the other techniques not commonly used 

were added for performance comparison and re-evaluation using the new approach in this 

study. Similarly, this study considered only similarity/dissimilarity measures commonly 

applied in the geophysical sciences (Gong and Richman, 1995). Thus, the squared 

Euclidean distance, Euclidean distance, Pearson correlation, and cosine were used in this 

study. However, the Euclidean distance appears to be favored by researchers (Gong and 

Richman, 1995).  

 The raw datasets in n × p multivariate data matrix, X, were preprocessed and 

analyzed as described earlier:  

     

       
   

       
   (2) 

where the rows are the water samples analyzed, and the columns are the analytical 

hydrochemical data. Therefore xnp represents the pth
 
variable in the nth water sample. 

The clustering using a distance measure was performed by converting the transformed 
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and standardized X matrix data into n x n matrix of inter-sample dissimilarity. The 

Euclidean distance is expressed mathematically as (Everitt et al., 2011): 

                 
  

    
   

   (3)      

where dij is the distance between i and j individual samples or clusters and xik and xjk are 

the kth analytical variable in the p variables of the multivariate data matrix. The squared 

Euclidean distance is simply derived by squaring the Euclidean distance in Equation 3. 

However, the clustering using a similarity measure was performed by converting the raw 

data X into n x n matrix of inter-sample similarity. This is because cosine and Pearson 

correlation measures are by themselves standardizing measures and are also scale 

independent (Le Maitre, 1982; Romesburg, 1984). The cosine similarity measure is the 

cosine of the angle between ith and jth samples or clusters, which is subtended by vectors 

of their p-dimensional variables, and is expressed mathematically (Everitt et al., 2011): 

                        
  

   
    

   
   

 
      (4) 

The Pearson correlation similarity is the correlation between the p-dimensional variables 

of the ith and jth samples or clusters and is expressed mathematically as (Everitt et al., 

2011): 

                                                   
 
   

 
   

 
       (5) 

where     and     are the means of the variables of the ith and jth sample or cluster. Both 

Pearson correlation and cosine coefficients have limits -1 and 1; therefore values of the 

coefficients were transformed into the limits 0 and 1. Subsequently, clusters were formed 

by pairing each of the linkages with each of the similarity/dissimilarity measures. The 
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clustering techniques and similarity measures are described in detailed in many statistical 

literature sources (Le Maitre, 1982; Romesburg, 1984; Everitt et al., 2011).  

 Determining the ‘true’ number of clusters in a dataset remains a difficult problem 

(Everitt et al., 2011); to circumvent this problem, this study innovatively used 

discriminant function analysis to find the highest number of stable clusters for 

corresponding clustering techniques and similarity/dissimilarity measure. The 

discriminant analysis was used to predict stable cluster membership using discriminant 

prediction equations derived from predictors (or the training dataset) (Tabachnick and 

Fidell, 2007). The jackknife or Leave-one-out classification, a robust cross-validation 

method was used to predict the stable cluster membership. The basic theory of MDFA is 

extraction of eigenvalues and eigenvectors and calculation of discriminant functions (Le 

Maitre, 1982). The predictor variables used were the log10 transformed and standardized 

Ca, Mg, Na, K, HCO3, SO4, Cl, and TDS.   

The sequence of the procedures developed for this research is:  

(1) cluster memberships are assigned to the hydrochemical samples using cluster 

analysis;  

(2) stable MDFA model is fitted to the cluster solution by reclassifying the 

samples through cross-validation and measuring agreement between cluster 

groupings and MDFA modeled groups; each hydrochemical sample (datum) in 

the cross-validation process is reclassified using the MDFA functions derived 

from all other hydrochemical samples, excluding the datum under consideration 

(i.e. the “Leave-one-out” classification);  
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(3) Cohen's Kappa (Cohen, 1960) agreement of modeled MDFA groups, 

measured between the clustering technique’s assigned membership and the 

MDFA predicted membership are used to compare performance of independent 

clustering techniques predicting the same number of clusters;  

(4) the similarity of one modeled MDFA groups to that of another is determined 

from a Cramer’s V agreement value  measured between the two  MDFA models 

having the same number of clusters.  

 Both Cohen’s Kappa and Cramer’s V equal 1 for a perfect agreement and zero for 

agreement no better than chance alone. Steps (1-2) were done for all four datasets (all 

data square-root transformed, all data log10 transformed, log10 without outliers, log10 

excluding samples with analytical errors). Finally, the effect of outlier samples, before 

and after removal from the dataset, and the effect of samples containing analytical errors, 

before and after removal from the dataset, was also measured using step (4). Accordingly, 

agreement was only measured between datasets that have equal total sample sizes. 

 To explain the steps further, determining stable number of clusters (robust 

hydrochemical facies) is initiated by preselecting the number of clusters; in this case, the 

selected number of clusters is large, with the intent of producing an unstable cluster 

structure. MDFA is then used to assess the stability of the cluster structure. The n-1 

cluster solution is  stable if the MDFA jackknife classification predicted rate for groups in 

the n-1 cluster solution (containing n-1 clusters)  equals or exceeds a threshold value of 

80% and the jackknife classification predicted rate for groups in the  n cluster solution 

(containing n clusters) is less than 80%. A cluster structure is declared stable if MDFA 

successfully predicted at least 80 % of the members in each cluster groupings. When this 
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stability is not achieved, the number of clusters is reduced by 1 and the cluster is 

reassessed until stability is achieved.  

 

2.3.4. Test Statistical Methods for Evaluating the Number of Clusters 

 In this study, a new approach for finding a stable cluster solution has been 

described. The stability idea was used to logically deduce the number of clusters fitting 

the dataset. A semi-check on the new approach was done using selected test statistics 

(‘stopping rules’) (Milligan and Cooper, 1985) to calculate the number of clusters 

(Milligan and Cooper, 1985; Bacher, 2001; Kahya et al., 2008). Since a single test 

statistic method cannot be depended upon, four methods were used (Gordon, 1999) to 

check the fit of the number of stable clusters to the hydrochemical data. The test statistics 

used are the explained variance (ETA
2

K) or R-squared (RSQ), proportional reduction of 

error (PRE
2

K), and F-Max statistics (Bacher, 2001), and Beale’s ‘F test’ (Everitt et al., 

2011): 
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where SSb(K), SSw(K), and SSt are between K clusters-, within K clusters-, and  total- 

sum of square variance respectively,  K is the number of clusters, n is the number of 

water samples, and p is the number of variables. The test statistics, ETAK
2
, F-MAX, and 

F-test are among the 5 best test statistics found in a simulation study (Milligan and 
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Cooper, 1985). The Beale’s ‘F test’ is used to test if a division into K2 clusters is 

significantly better than a division into K1 clusters (K2 > K1). All test statistics were 

calculated using Oneway Anova (SPSS) to find the sum of squares (between groups, 

within groups, and total) and Excel spreadsheet to program the equations.  

 Certain rules were used to determine the optimal number of clusters. For F-MAX, 

the optimal K coincides with the maximum F-MAX value; for ETAK
2
, and PREK

2
, K is 

an optimal solution when the test value of K+1 sharply decline or makes no relative 

substantial gain (Bacher, 2001). Beales F test is compared with an F distribution, with the 

degrees of freedom p(K2 - K1) and p(n - K2) at 0.05 significant level (p < 0.05).  A 

partition into K2 is optimal if the Beale’s F test value for is significant K2/K1 and not 

significant for K3/K2. Furthermore, the stable clusters were evaluated by analyzing 

coherence of their areal distribution and chemical character using ArcGIS and Schoeller, 

scatter matrix, and compositional diagrams. 

 

2.4. Results 

2.4.1. Classification Based on Cluster Stability 

 Examined in this study are the stability of cluster structure of corresponding 

clustering techniques and effect of inappropriate data transformation, outliers, and 

analytical errors on clustering. Of the 198 samples, 160 samples had CBE equal to or 

within ± 5 %, 184 samples had -10 % </= CBE </= 10 %, 14 samples had 5 % < CBE 

</= 12.5 %, 13 samples showed -12.5 % </= CBE < -5 %, only 1 sample had CBE > 

12.5 % and 10 samples indicated CBE < -12.5 %. For a CBE above or below ± 5 %, the 

analytical result of that hydrochemical sample is prone to error. The sources of error may 
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be analytical or an indication that an important ion(s) is not analyzed (Deutsch, 1997). 

The Box-Cox powers estimated were closer to zero; therefore log10- transformation was 

used as an approximation. Standardized values of skewness and kurtosis were used to 

evaluate normality of the untransformed, log10-transformed, and the square-root 

transformed Ca, Mg, Na, K, Cl, HCO3, SO4, and TDS. The results showed that the 

skewness and kurtosis values of the log-transformed variables are closest to zero (Table 

2. 1).  

 As anticipated, the results of the Hierarchical Agglomerative Clustering 

techniques and Non-Hierarchical/K-Means clustering method are wide-ranging (Table 2. 

2). Several results showed no robust hydrochemical facies. In all MDFA modeled 

solutions, the number of samples in the smallest MDFA facies exceeded the number of 

variable set. Remarkably, no stable clusters (robust hydrochemical facies) were found 

using nearest neighbor linkage with all the similarity/dissimilarity measures (Table 2. 2). 

Also, no stable clusters were found using between-groups linkage with EUCLID, 

SEUCLID.  

 However, other combinations of Hierarchical Clustering linkages and distance 

measures produced stable clusters and high cross-validation measures (Table 2. 2). With 

one exception (i.e., within-groups with cosine which produced five stable clusters), 

cluster analysis with cosine and Pearson correlation produced the smallest numbers of 

stable clusters (Table 2. 2). Four clusters were delineated using furthest neighbor linkage 

with EUCLID and SEUCLID, and Ward linkage with EUCLID. Also, Ward linkage with 

SEUCLID, within-group linkage with EUCLID or with cosine, and K-Means clustering 

each delineated five significant hydrochemical facies. The five hydrochemical facies 
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delineated using the Ward linkage with SEUCLID had a higher predictability (Kappa = 

0.894) than the within-groups linkage with EUCLID (Kappa=0.861). However, the five 

hydrochemical facies delineated using the K-Means method had the highest predictability 

(Kappa = 0.923). Six hydrochemical facies were delineated using within-groups linkage 

with SEUCLID, though Kappa was lower (0.903) than for the K-means method. 
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Table 2. 1. Comparing different data transformations’ departures from normality 
 Log10-Transformed Data  Square-root Transformed Data  Raw untransformed data 

   

 Mean (SD) Skewness Kurtosis  Mean (SD) Skewness Kurtosis   Mean (SD)  Skewness Kurtosis 

Ca 1.953 (0.392) 0.543 -0.720  10.546  (5.260) 1.078 -.114   138.76   (142.41)  1.507 1.210 

Mg 1.412 (0.553) -1.175 3.057  6.009  (3.334) 1.353 4.056   47.17     (59.38)  4.865 40.360 

Na 1.904 (0.475) -0.212 0.606  10.362  (6.247) 3.241 22.319   146.20   (291.76)  10.232 126.011 

K 0.874 (0.391) 0.264 0.986  3.044  (1.662) 3.709 27.084   12.02     (22.87)  10.411 128.957 

HCO3 2.349 (0.188) -0.160 1.333  15.304  (3.329) .624 .233   245.23   (109.73)  1.154 1.089 

Cl 1.765 (0.553) 0.246 -0.834  9.375  (6.425) 1.594 4.201   128.96   (201.24)  5.287 46.098 

SO4 2.273 (0.686) -0.416 -0.403  18.009 (12.994) 1.519 4.767   492.30   (802.69)  6.094 57.935 

TDS 2.878 (0.376) 0.550 -0.352  30.356 (15.098) 1.941 7.538   1148.29 (1457.68)  6.066 58.268 

Table 2. 2. Stable cluster solutions of the corresponding clustering methods and similarity/dissimilarity measures and K-Means 

method 

Similarity/ 

Dissimilarity 

Measure 

Linkage Methods 

Ward Furthest Neighbor 

Stable Clusters Cohen’s Kappa % XV
a 

Stable clusters Cohen’s Kappa % XV
a 

Euclidean 4 0.933 92.4 4 0.860 90.9 

Squared  

Euclidean 5 0.894 90.4 4 0.860 90.9 

Cosine 3 0.847 89.4 3 0.921 94.4 

Pearson  

Correlation 3 0.847
 

89.4 3 0.847 88.4 

K-Means method produced 5 stable clusters (Kappa = 0.923) 

a. %XV is the percent cross-validated grouped samples correctly classified 

X denotes not applicable 
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Table 2. 2. Stable cluster solutions of the corresponding clustering methods and similarity/dissimilarity measures and K-Means 

method (continued) 

Similarity/ 

Dissimilarity 

Measure 

Linkage Methods 

Nearest Neighbor Between-Groups  Within-Groups  

Stable clusters 
Cohen’s 

Kappa 
% XV

a 
Stable clusters 

Cohen’s 

 Kappa 
% XV

a 
Stable clusters 

Cohen’s 

Kappa 
% XV

a 

Euclidean X X X 1 X X 5 0.861 87.9 

Squared  

Euclidean X X X 1 X X 6 0.903 90.4 

Cosine X X X 3 0.932 92.9 5 0.888 88.9 

Pearson  

Correlation X X X 2 0.949 96.5 3 0.886 91.9 

K-Means method produced 5 stable clusters (Kappa = 0.923) 

b. %XV is the percent cross-validated grouped samples correctly classified 

X denotes not applicable 
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 Same stable cluster solutions were compared and contrasted using Cramer’s V 

statistic. Cramer’s V value indicated that the four cluster solution given by furthest 

neighbor with EUCLID and furthest neighbor with SEUCLID are identical (Cramer’s 

V=1.0, p < 0.001). However, the agreement between the furthest neighbor with EUCLID 

and with SEUCLID solutions and the Ward with EUCLID solution was low, though still 

statistically significant (Cramer’s V=0.614, p<0.001). A five cluster solution given by the 

three clustering techniques were also examined for agreement. Only the strength of the 

agreement between K-Means and Ward with SEUCLID exceeded a Cramer’s V > 0.8 

(Table 2. 3). In the final analysis, the largest number of clusters (hydrochemical facies), 

stable and significant, delineated for the hydrochemical dataset was six (the within-

groups linkage with SEUCLID). Also, the agreement between hydrochemical facies with 

and without outliers was significant and high (Cramer’s V=0.838, p <0.001), as was the 

agreement between facies with and without samples containing analytical errors 

(Cramer’s V=0.830, p<0.001). In contrast, the agreement between log10-transformed and 

square-root transformed data was significant but low (Cramer’s V=0.655, p<0.001). 

 

2.4.2. Classification Based on Test Statistical 

 In this study, the cluster stability approach was used to deduce an optimal six 

stable clusters. The fit of the six stable cluster solution to the dataset is independently 

evaluated using test statistics results (Table 2. 4). Evaluation includes consideration of 

ETA
2

K values, PRE
2

K values, a Beale’s test, and maximum F-Max values. Interestingly, 

three of the four test statistics results showed that the six cluster solution ‘best fit’ the 

dataset. From the ETA
2

K values, a one cluster solution explained 0 % of the variance in 
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the dataset; a 2 cluster solution explained about 48 % and so on. The increment in the 

ETA
2

K remarkably dropped from cluster 3 to cluster 4 and also from cluster 6 to cluster 7.  

In addition, the PRE
2

K values sharply decreased from cluster 3 to cluster 4 and cluster 6 

to cluster 7. The Beale’s test value of a 3 cluster solution is significant over a 2 cluster 

solution but the preceding 4 cluster solution is not significant (p < 0.05). Also, the 

Beale’s test value of a 6 cluster solution is significant over a 5 cluster solution but the 

preceding 7 cluster solution is not significant (p < 0.05). The maximum F-Max value 

matched a 2 cluster solution.  

Table 2. 3. Comparison of the five stable cluster solutions 

Clustering Techniques Cramer’s V Approximate 

Significance 

K-Means versus Ward with SEUCLID 0.836 0.00 

K-Means versus within-group with EUCLID 0.761 0.00 

Ward with SEUCLID versus within-group with 

EUCLID 

0.769 0.00 

K-Means versus within-group with cosine 0.592 0.00 

Ward with SEUCLID versus within-group with 

cosine 

0.599 0.00 

Within-group with EUCLID versus within-group 

with cosine 

0.573 0.00 
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Table 2. 4. Test statistics results for estimating number of clusters 

No. clusters ETA
2

K F-MAX PRE
2

K 

value 

Beale's F test p-values 

1 0.0000 0.000 ** ** 

2 0.4768 178.635 0.476866 0.000 

3 0.5882 139.265 0.212825 0.014 

4 0.6220 106.420 0.082233 0.347 

5 0.6651 95.808 0.113776 0.038 

6 0.7051 91.810 0.119515 0.008 

7 0.7261 84.419 0.071299 0.090 

8 0.7453 79.428 0.070052 0.054 

9 0.7572 73.666 0.046567 0.199 

10 0.7689 69.509 0.048383 0.125 

** denotes not defined 

p-value denotes the value of the significant test at p < 0.05 

 

2.4.3. Classification Based on Spatial Coherence and Chemical Character of Six 

Stable Clusters   

 Although, the focus of this research is on developing methodological procedures 

to optimize classification of hydrochemical datasets, the areal distribution as well as 

chemical character and  evolution of the six stable clusters are also examined, which 

provide further support to the methodology. The results show that in the geographic space 

samples having similar cluster membership are coherent and the clusters formed patterns 

in the basin (Figure 2. 2B). Also, temporal data from the same well or spring grouped 

together providing evidence for time invariant water chemistry. Additionally, in 

comparing the 6 stable cluster solution to the 5 stable cluster solution, it is observed that 

the cluster 4 of the 5 cluster solution (Figure 2. 2A) is equivalent to clusters 1 and cluster 

4 of the 6 cluster solution (Figure 2. 2B). This partitioning is justified looking at the 
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distinct chemical character of cluster 1 and cluster 4 (Figure 2. 3 and Figure 2. 5). Cluster 

4 tended to have much higher Ca, Cl, and TDS compared to cluster 1 (Figure 2. 3 and 

Figure 2. 5). The six stable cluster solution superimposed on scatter matrices for the 

variables (Ca, Mg, Na, K, HCO3, Cl, SO4, and TDS) showed that the robust 

hydrochemical facies are controlled by field hydrogeological processes (Figure 2. 4). The 

chemical characters of the six water types are distinct and are described as follows 

(Figure 2. 5). Cluster 1: Na/Ca-HCO3, cluster 2: Ca-Mg-HCO3, cluster 3: Ca-Na-SO4, 

cluster 4:  Na/Ca-SO4, cluster 5: Ca-Mg-SO4, cluster 6: Na-Ca-SO4. The TDS and many 

major ions consecutively increased from cluster 2 → cluster 1 → cluster 4→ cluster 5→ 

cluster 3. Cluster 6 has the lowest Mg concentration. 

  

2.5. Discussion 

 The study results demonstrate the effectiveness of the new methodology to 

quantify the effects of outliers, charge balance errors, and inappropriate data 

transformation and to compare clustering techniques. A field hydrochemical dataset is 

scarcely normally distributed and nearly always includes outliers. The study results show 

that stable cluster groupings are sensitive to the type of data transformation. Both MDFA 

and cluster analysis (using distance measures) performances can improve by normalizing 

and standardizing the data as well by minimizing impact of outliers. The log10-

transformed variables are closest to normality comparing to the squared-root transformed 

and untransformed variables. A more normalized variable set reduces the impact of 

outliers on the performance of the clustering technique. Similarly, the discriminant 

function analysis, although robust to skewness, is highly sensitive to outliers (Tabachnick 
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and Fidell, 2007). Thus the log10 transformation is the most appropriate normalizing 

transformation to normalize variables in this study. Choosing log10-transformation 

(critically determined from Box-Cox analysis) over the unstandardized or square-root 

transformation depended on the skewness and kurtosis values of the variables. The Box-

Cox power estimates for the variables are near zero, and therefore choosing the log10-

transformation is a reasonable approximation. Kutner et al. (2005) write that such an 

approximation does not change the effectiveness of the transformation. However, a study 

by Reimann (2002) indicates that a difference in normality can result between the 

estimated and the approximated. How this subtle difference in normality affects the 

cluster groupings is not the focus of the present study. Removing multivariate outliers is a 

difficult process; therefore transformation may be a better way to deal with outliers. 

According to Dreher (2003), log transformation can result in the loss of information the 

outliers are carrying. Although this may be a valid argument, it is believed that 

transforming the data maximizes the performance of the clustering techniques and this 

benefit far outweighs the risk of losing information (Güler and Thyne, 2003).  

 The transformed variable set is standardized by the mean and the standard 

deviation prior to clustering (using distance measures). However, controversies exist 

regarding the choice of a method or use of standardization (Dreher, 2003; Dreher, 2003). 

According to Güler and Thyne (2003), when data are transformed and standardized, the 

effectiveness of the parametric method (e.g. clustering and multiple discriminant function 

analysis) is maximized and misclassification arising from inappropriate weighting of 

parameters is avoided. Reimann (2002) made a similar conclusion in factor analysis of a 

geochemical dataset. It has been observed that clustering of a gauged streamflow dataset 
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standardized by range was superior to standardization by mean and standard deviation 

(Milligan, 1996; Kahya et al., 2008). In contrast, Reimann et  al. (2008) recommend that 

because range transformation is vulnerable to outliers it should not be applied to 

standardize geochemical and environmental data.   In this study, within-group linkage 

with SEUCLID applied to two same datasets that are differently transformed but 

standardized by the same method (equation 1) result in two statistically different stable 

cluster solutions.  

 The data support that the six robust hydrochemical facies solution is the optimum 

for the dataset. In effect within-groups with SEUCLID technique producing the largest 

number of stable clusters is the optimum clustering method. The six robust 

hydrochemical facies display spatial coherence and have distinct chemical characters as 

indicated by the results. In addition, three of the four test statistics results support that the 

six stable cluster solution fit best the dataset. Thus splitting the five cluster solution into a 

six cluster solution improves the classification. It was more difficult finding stable 

clusters when the number of clusters is large; therefore clustering techniques able to find 

large numbers of stable clusters are superior. In practice, choosing a stable cluster 

solution containing the largest number of clusters provides an opportunity to generate and 

test additional hypotheses that otherwise will be missed selecting the cluster solution 

containing the fewer number of clusters. As stated by Everitt (2011), the largest number 

of stable clusters is preferred unless a researcher has enough background information to 

know apriori the number of clusters. Clustering with Pearson correlation produced 

smaller numbers of stable solution because Pearson correlation ignores size displacement 

as is supported in the literature (Romesburg, 1984). In conclusion, Pearson correlation is 
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an ineffective measure for clustering hydrochemical dataset for which discriminating 

shift in displacement is important. However, the cosine measure can be useful in 

clustering hydrochemical dataset as it was able to produce five stable clusters. The cosine 

measure’s higher number of stable clusters, compared to Pearson correlation’s lower 

number of stable clusters, is due to sensitivity of the cosine measure to additive 

translation (Romesburg, 1984). The distance measures are able to delineate higher 

numbers of clusters and this is explained by their scale dependence property (Le Maitre, 

1982).   

 This study has shown that extrapolating cluster techniques to other field sites, as 

is commonly done (Thyne et al., 2004) need to be critically examined. The finding that 

within-groups linkage with SEUCLID best groups our dataset contrasts with a previous 

study showing that the Ward linkage with EUCLID is the optimum (Guler et al., 2002). 

The difference in the results indicates that a clustering technique appropriate for grouping 

a hydrochemical dataset at one study site may be inappropriate for grouping 

hydrochemical data at a different study site. Therefore, each dataset must be treated as 

unique and the procedures outlined in this study can be followed to find the optimum 

stable cluster solution. Similar to numerical modeling of flow, classification of 

hydrochemical data needs to be updated as more data becomes available.  

 For the hydrochemical data used in this study, the presence of outliers, analyzed 

after the variables set has been log10-transformed and standardized, have no significant 

effect on the cluster solution. Thus, there does not appear to be a need to identify and 

filter for outliers, when the number of outliers is relatively small (7% in this case). 

Similarly, we find no statistically significant difference between the cluster solution for 
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dataset containing analytical error and the cluster solution for dataset containing no 

analytical errors, indicating also that these steps may not be needed for datasets 

containing a relatively low number of questionable samples (19 % in this case). In fact, 

the error percentage is even smaller (7%) if the range -10% </= CB </= 10% considered 

practical in hydrochemical studies (Plummer et al., 2004), is applied to this study.  

 

2.6. Conclusions 

 This study demonstrates that, by using the modeling approach and the idea of 

stability, quantitative estimates can be made about the effects of data transformation, 

analytical errors, and outliers and about robustness of delineated hydrochemical facies. 

Cluster analysis combine with discriminant function analysis and measures of association 

in a mutually supportive way effectively group hydrochemical data into robust 

hydrochemical facies and assess the effect of outliers and charge balance errors in 

grouping the hydrochemical data.  

 The study is a significant contribution to partitioning hydrochemical dataset into 

robust hydrochemical facies, a critical step for using hydrochemical data to characterize 

basins groundwater flow and groundwater surface-water interactions. The approach in 

this study can be used to analyze hydrochemical data of intermountain basins to trace 

groundwater sources and movement and groundwater interactions with rivers. In 

addition, the study results show that some techniques cannot successfully generate certain 

numbers of clusters with respect to data being analyzed; therefore the new methodology 

is also a useful guide for selecting the most appropriate clustering method and 

similarity/dissimilarity measure assuming the number of clusters is known a priori. Also, 
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data transformation and standardization is considered critical for the finding the ‘true’ 

cluster structure; further research in this area is recommended. Finally, clustering 

techniques need to be tailored to characterize different field hydrochemical datasets. We 

caution that, although stability is necessary for accuracy, a stable hydrochemical facies 

solution is not necessarily accurate. Nevertheless, stability provides a good estimate of 

the accuracy of cluster solutions. 
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Figure 2. 1. The study area: the lower Virgin River Basin (Tule Desert Basin included) 

and basin adjacent areas. 
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Figure 2. 2. Showing in geographic space on the background DEM are (A) the 5 Hydrochemical facies delineated using K-Means and 

(B) the 6 hydrochemical facies delineated using within-groups with SEUCLID. 
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Figure 2. 3. Ca-Cl-TDS composition 3D-diagram comparing the hydrochemical facies 1 

and 4 in the within-group hydrochemical facies. 

  

 
Figure 2. 4. Hydrochemical facies superimposed on scatter matrix of the hydrochemical 

variable. 
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Figure 2. 5. Characteristics groundwater types of the median compositions of the clusters. 
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CHAPTER 3  

 

BASIN HYDROCHEMISTRY AND RELATED FLOW SYSTEMS OF 

INTERMOUNTAIN BASINS: INTEGRATED AND SEQUENTIAL DATA 

ANALYTIC APPROACH 

Abstract 

 Interbasin and intrabasin recharge sources and surface water interactions with 

groundwater are examined in the lower Virgin River Basin (Nevada, Arizona and Utah) 

using hydrochemical data.  In this study a new approach that uses mutually supportive 

methods and applies them in sequence to the hydrochemical data is demonstrated. Using 

this approach the characteristics of the flow systems are more precisely defined to 

evaluate the significance of interbasin and intrabasin recharge to the basin’s water budget 

and of the interactions among the floodplain aquifer, the Muddy Creek Formation 

aquifer, and the Virgin River.  

 Six robust hydrochemical facies were defined using cluster analysis, Discriminant 

Function Analysis, and measures of association (Cohen’s Kappa and Kramer’s V), which 

allows for repeatable facies definition.  Two source and four discharge end-members of 

the hydrochemical evolution are defined using Schoeller diagram and discriminant 

functions plot. Interbasin and intrabasin flowpaths are inferred based on the geographic 

coherence of the end-members, characteristic facies, and available information on 

geology and hydrology.  In addition, PHREEQC inverse modeling code was used beyond 

the contemporary application for identifying processes of hydrochemical evolution to 

further evaluate the inferred flowpaths.  Mineral phases and constraints are selected based 
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on compositional plots, saturation indices calculations, and the available geologic 

information.  Modeling results indicate that at least 80% of the groundwater in the lower 

Virgin River Basin is derived from interbasin flow.  In addition, the floodplain aquifer 

was shown to interact highly with the Virgin River, but both are unlikely to be 

hydraulically connected to the underlying Muddy Creek Formation aquifer. 

 

3.1. Introduction 

 Understanding basin scale groundwater flow dynamics is critical for water 

resources modeling and budget calculations and effective groundwater monitoring, all of 

which are necessary for a sustainable water management (Panno et al., 1994; Stuyfzand, 

1999; Bassett et al., 2008).  Groundwater hydrochemical data have been used to define or 

refine conceptual models (Panno et al., 1994; Bassett et al., 2008)  and to infer geological 

structures (Lloyd and Heathcote, 1985).  Also hydrochemical and stable isotopic data 

have been combined or used separately  to trace the sources of recharge (Carrillo-Rivera 

et al., 1992; Ingraham et al., 2001; Kohfahl et al., 2008), evolution of water chemistry 

(Schwartz et al., 1981; Thomas et al., 1989; Kreamer et al., 1996), and subsurface 

movement and hydraulic connections (Williams, 1982; Johannesson et al., 1997; 

Stetzenbach et al., 2001). In addition, many studies have used aqueous geochemical 

modeling codes to explain the chemical processes of hydrochemical evolution (Thomas 

et al., 1989; Acheampong and Hess, 1998; Thyne et al., 2004; Helstrup et al., 2007). 

 Groundwater quality is one of a myriad of phenomena generated by gravity-

driven groundwater flow (Tóth, 2009).  The quality of groundwater is controlled by rock-

water interactions and geochemical processes (Feth et al., 1964; Garrels and Mackenzie, 
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1967) and transport and distribution of dissolved minerals by moving groundwater, which 

groundwater creates a dynamic equilibrium sustaining many geochemical processes that 

are normally self-limiting (Tóth, 2009). The combined processes create hydrochemical 

patterns that can reflect groundwater flow patterns and groundwater-surface water 

interactions.   

 Analyzing hydrochemical data of the desert intermountain basins can be 

challenging due in part to the complex geology of the basins.  This difficulty has 

encouraged the use of stable isotopes and radioisotopes independently or combined with 

major ion geochemistry to trace the hydrogeology of the intermountain basins. However, 

compared to water quality parameters (major ionic chemistry, temperature, and pH), 

isotopes are more expensive to collect and analyze. Also isotopes require detailed 

understanding of the background hydrochemistry and chemical behavior of the tracer for 

correctly interpreting the data (Guler and Thyne, 2006).  In contrast, major ions, 

temperature, and pH data are routinely analyzed, and offer a less expensive approach to 

interpreting hydrologic systems. The analysis of hydrochemical data into hydrochemical 

facies can guide an isotopic research study. Clearly, the methods for interpreting 

hydrochemical data are a critical research area. 

 Using hydrochemical data effectively to trace sources and movement of 

subsurface water requires objectively classifying the data into chemically homogenous 

and distinct groups known as hydrochemical facies (Back, 1961) and more accurately 

defining end-members and linking flowpaths.  Broadly, hydrochemical data can be 

characterized using graphical methods and multivariate statistical analysis.  For large 

datasets and limitless parameters, graphical methods are less effective than multivariate 



 

47 
 

techniques. Graphical methods used commonly are Piper, Schoeller, Stiff, and 

compositional diagrams, and direct ordination where compositions are plotted along a 

transect survey. Also multivariate statistical methods used commonly are Principal 

Component Analysis (PCA), Factor Analysis, and Cluster Analysis (Ashley and Lloyd, 

1978; Dalton and Upchurch, 1978; Lawrence and Upchurch, 1982; Steinhorst and 

Williams, 1985; Kreamer et al., 1996; Thyne et al., 2004; Guler and Thyne, 2006; 

Woocay and Walton, 2008).  Although cluster analysis is considered the most effective 

technique for classification of hydrochemical data (Guler et al., 2002), the method is 

fraught with subjectivity. The fact that clustering will produce clusters even when no 

substantive clusters exist is worrisome. Therefore a new approach, which allows for 

repeat delineation of hydrochemical facies, was demonstrated in Chapter 2 and the 

approach is used in the present study. Contemporary, to define end-members, the 

memberships of the clusters are superimposed on the graphical (Rosenthal et al., 1990; 

Thyne et al., 1999; McNeil et al., 2005; Helstrup et al., 2007; Cloutier et al., 2008) or 

PCA analysis (Thyne et al., 2004; Woocay and Walton, 2008). However, end-members 

defined using graphical methods are subjective and do not use the whole dataset. 

Although PCA can use the whole dataset, overlaying results from cluster analysis on 

PCA analysis can be problematic because the two results can differ. 

 Sequentially combining mutually supportive methods to analyze hydrochemical 

data can be a very powerful tool to study basin hydrochemistry and flow systems.  This 

idea of formalizing the analysis of hydrochemical data to enhance interpretation has been 

expressed also by Thyne et al. (2004).  By formalizing the analysis, a reduction can be 

achieved in ambiguous interpretations.  In this study, major ions, temperature, silica, and 
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pH data are analyzed, integrating and sequentially applying multivariate statistical 

techniques, Geographic Information Systems (GIS), Schoeller and major ion 

compositional diagrams, and PHREEQC geochemical code. Robust clusters are 

delineated by combining cluster analysis, discriminant function analysis, and measures of 

association, an approach described in Chapter 2. The end-members are defined using the 

Schoeller diagram and a discriminant functions plot, and the flowpaths are inferred with 

physiographic, geologic, and hydrogeologic information, and chemical characteristics 

and areal distribution of the facies. Further evaluations of the flowpaths are conducted 

using PHREEQC aqueous geochemical modeling. This sequential approach is used to test 

the hypotheses that groundwater of the lower Virgin River basin and the surrounding 

basins are hydraulically continuous, and that the lower Virgin River interacts with the 

Muddy Creek formation aquifer.  Specifically, I test the hypothesis that interbasin 

groundwater does not contribute to groundwater in the basin-fill aquifer of the lower 

Virgin River Basin and also the hypothesis that the Virgin River is hydraulically 

interconnected with the floodplain aquifer. The prediction is that the chemically evolved 

groundwaters in the lower Virgin River Basin are not linked to the interbasin 

groundwater hydrochemistry. Also the interconnected surface water - groundwaters are 

expected to have statistically the same chemistry. Also the hypotheses are tested using the 

basic principles that the direction of groundwater flow is the direction of hydrochemical 

evolution and plausible geochemical reactions. 

 

3.2. Geology and Hydrology of the Study Area 
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 The lower Virgin River Basin (Figure 3.1.B) has an area of about 4,463 km
2
 and 

is separated from the neighboring basins by the Clover Mountains, Bull Valley 

Mountains, Beaver Dam Mountains, Virgin Mountains, and Mormon Mountains (Figure 

3.1.A ).  The lower Virgin River Basin is a tri-state basin located in parts of Utah, 

Nevada, and Arizona (Figure 3.1.B).  The highest elevations of the Virgin Mountains and 

Beaver Dam Mountains exceed 2438 m.  The highest elevations of the Clover Mountains 

and Mormon Mountains are about 2134 m and 1829 m respectively.  The highest 

elevations in the Tule Spring hills and the East Mormon Mountains elevations are about 

1219 m.  The lowest elevation in the basin is about 366 m at the Lake Mead area, which 

is the outlet for the Virgin River.   

 Precipitation in the study area is controlled by elevation and seasons. In the lower 

Virgin River Basin precipitation ranges from about 609 mm/yr at the highest elevation 

(2,438 m) to about 152 mm/yr on the basin floor (Dixon and Katzer, 2002).  Winter and 

summer are the two major rainfall seasons. Winter precipitation dominates the study area, 

with short duration and localized convective activity in the summer (Glancy and Van 

Denburgh, 1969; Winograd et al., 1998); winter precipitation is considered the more 

important source of recharge to the groundwater in the study area (Winograd and 

Friedman, 1972).  The most significant source of direct recharge is believed to be 

precipitation in the mountains, above an elevation of 914 m (Dixon and Katzer, 2002).  

The lower Virgin River Basin is drained by two perennial rivers, the Virgin River, 

flowing northeast to southwest, and the Beaver Dam Wash, flowing nearly southwards, 

and by numerous ephemerally washes that follow heavy precipitation.  Temperatures 

range in the summertime from highs near 40 °C, to wintertime lows below freezing.  On 
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the lower Virgin River Basin floor, the annual reference evapotranspiration is about 11 

times greater than the annual precipitation (CEMP, 2011).   

 Due to Mesozoic compression and Cenozoic extensional orogenic activities, the 

geology of the study area is complex.  A simplified geology (GBCGE, 2005) of the study 

area is shown in Figure 3. 2C.  Details of the stratigraphy, lithology, structure, and 

aquifer potential have been reported by several investigators (Bohannon et al., 1993; 

Williams, 1996; Langenheim et al., 2000; Dixon and Katzer, 2002; Page et al., 2005; 

Page et al., 2006).  Rocks of the mountain ranges are mainly consolidated metamorphic 

gneisses and schist, sedimentary clastics and carbonate, and volcanic ash flow tuffs.  The 

Clover Mountain rocks are highly deformed and can transmit groundwater from its north 

to the south (CH2M HILL, 2002).  The basin-fill sediment is thick and consists of 

deposits and sediments of limestone, conglomerates, sandstone, gypsum, ash flow tuffs, 

alluvium, colluviums, playa, and eolian.  The Paleozoic carbonate rock and the Tertiary 

sedimentary rock (Muddy Creek Formation) are the most prolific aquifers of 

intermountain basins.  As shown in Figure 3. 2, the rock units are cut through by 

numerous Cenozoic faulting.  Therefore it is believed that groundwater transmits through 

fractures formed by solution cavities and Cenozoic faulting (Page et al., 2006).   

 

3.3. Methodology 

 The hydrochemical data (spring, well, and surface water samples) used is 

accessible at 

https://spreadsheets.google.com/spreadsheet/ccc?key=0AkihMREl9PhWdER3aGxKc3lr

RElacWZ5LXNiS0hoaHc&hl=en_US.  The database comprised data from governmental 

https://spreadsheets.google.com/spreadsheet/ccc?key=0AkihMREl9PhWdER3aGxKc3lrRElacWZ5LXNiS0hoaHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AkihMREl9PhWdER3aGxKc3lrRElacWZ5LXNiS0hoaHc&hl=en_US
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and institutional reports (Glancy and Van Denburgh, 1969; Bateman, 1976; Brothers et 

al., 1993; Enright, 1996; Thomas et al., 2001; CH2M HILL, 2002); graduate student 

theses (Metcalf, 1995; Yelken, 1996); the U.S. EPA STORET database (U.S EPA, 2009); 

the U.S. Geological Survey NWISWeb database (U.S Geological Survey, 2009); and 

sampling activities conducted during this study by the Virgin Valley Water District 

(VVWD), Mesquite and the University of Nevada Las Vegas (UNLV).  Although the 

database contained 328 samples and 40 variables, only 222 samples and 11 variables (Ca, 

Mg, Na, K, Cl, HCO3, SO4, total dissolved solids (TDS), Silica (SiO2), temperature, and 

pH) were used in the study. The variables, Ca, Mg, Na, K, Cl, HCO3, SO4, and TDS were 

complete for the 222 samples, but results for SiO2, temperature, and pH were incomplete.  

The 222 samples were distributed between 198 groundwater samples (162 discrete 

sampling sites and repeated data) and 24 surface water samples (21 lower Virgin River 

and 3 Beaver Dam Wash).  To evaluate groundwater flow from the carbonate aquifer to 

the lower Virgin River Basin, the water quality parameters (hydrochemical and field 

parameters) from a USAF TEST WELL (730 m) tapping the deep carbonate aquifer was 

used (Bunch and Harrill, 1984).  The well is located in the Dry Lake Valley north of 

lower Virgin River Basin, which is a possible upgradient regional groundwater flow to 

the lower Virgin River Basin. The major ions, temperature, silica, and pH data were 

analyzed applying integrative and sequentially using multivariate statistics, GIS, 

Schoeller and major ion compositional diagrams, and the PHREEQC geochemical 

modeling code. 

 

3.3.1. Multivariate Statistical Classification of Hydrochemical data 
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 Preceding the statistical analysis, Box-Cox analysis and box-and-whiskers plots 

were used to select the most appropriate normalizing transformation for each of the 

complete variables. Proper transformations are vital to improving cluster analysis results 

(Chapter 2); therefore in this study Box-Cox estimated power or rounded power was used 

(Fox et al., 2011) depending on the best normalization and reduced outliers as revealed 

by box-and-whiskers plots. The transformed variables were standardized by their mean 

and standard deviation.  Hydrochemical facies were optimally defined by combining 

clustering techniques with Multiple Discriminant Function Analysis (MDFA) and 

measures of associations.  The techniques and procedures used to delineate the optimal 

hydrochemical facies are extensively described in Chapter 2.  The clustering technique 

producing the largest number of clusters and significant Cohen’s Kappa value measured 

between cluster assigned membership and MDFA predicted membership is the optimum 

technique.   The MDFA modeled cluster groups is the optimum hydrochemical facies.  

 As described in Chapter 2, the robustness of the optimum clustering technique to 

the effects of outliers and analytical errors were assessed by independently removing the 

outliers and analytical errors from the data and then cluster analyzing the resultant data.  

The hydrochemical facies defined using the data without outliers were compared with the 

hydrochemical facies defined using the data with outliers. The comparison was done 

using Cramer’s V coefficient that measures the agreement between two nominal variable 

sets.  The outliers were defined as those data points exceeding ±1.5 inter-quartile ranges 

(IQRs) from the 1st and 3rd quartiles.  Based on these tests, 4 outlier samples (1.8% of 

the 222 hydrochemical data) were found and removed from the dataset to determine their 

effect on the cluster analysis results.  Also, only 18% of the samples (41 out of 222 
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samples) had charge balance errors (CBE) outside the range of ± 5 % and were removed 

from the dataset to determine their effect on the cluster analysis results.  

 

3.3.2. Discriminant Functions Plot and Schoeller Diagram 

 For the hydrochemical facies delineated, the chemical characteristics and 

chemical evolution of end-members were defined using discriminant functions plot and 

Schoeller diagram.  The means (back transformed of mean of transformed data) of the 

major ionic values of the facies were plotted on the Schoeller diagram and together with 

the class memberships plotted on the discriminant functions plot, the end-members were 

defined.  Because the major ionic data have been transformed, the mean values and 

standard deviations of the major ions were calculated from the transformed variables and 

then back transformed. Mean calculated from transformed data and then back 

transformed is similar to the Median because by this approach the leverage of maximum 

values is less. Median values were calculated for the pH, Temperature, and silica 

concentrations.  Only subsets of the facies were used where data analyses involved 

incomplete variables.  

 

3.3.3. Geographic Information Systems, Compositional Plots, Saturation Indices, and 

Aqueous Geochemical Modeling 

   Based on the chemical character and areal distribution of the end-members and 

the available geology and hydrology information, interbasin and intrabasin flowpaths and 

groundwater-surface water interactions were inferred.  The mineralogical phases 

interacting with the water were deduced using compositional plots, saturation indices 
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calculations, and the available geologic information. In addition, aqueous geochemical 

modeling was used to determine whether the flowpaths inferred are consistent with 

designated source and discharge end-members and selected minerals phases and 

constraints. 

 The PHREEQC geochemical code (Parkhurst and Appelo, 1999) was used to 

perform inverse geochemical modeling.  Inverse geochemical modeling uses the mass 

balance concept (Garrels and Mackenzie, 1967) to identify and to quantify net 

geochemical reactions accounting for the evolution of groundwater along flowpaths.  

PHREEQC solves the mass balance equations for element or element valence state, 

electrons, alkalinity, charges, and water (Parkhurst, 1997). The general and simplest form 

of the equations is (Plummer and Back, 1980): 

     
 
            (10) 

where j = the number of phases, p = reactants and phases used in the mass balance model, 

αp = mass transfer coefficient of any phase p in moles, βp,i = stoichiometric coefficient of 

element i in phase p, and mi = change in concentration of element i  between the initial 

and final water along groundwater flowpaths.  Besides solving for the unknown mole 

transfers of the phases αp, the program was used to calculate mixing fractions for two 

waters.  An inherent weakness of the modeling code is that mole balance models 

calculated using an inverse geochemical modeling are non-unique. Therefore data on 

mineral phases, thermodynamic feasibility of reactions, and saturation indices were used 

to constrain the PHREEQC models calculated.   

 The saturation index (SI) of the rock minerals is calculated using the speciation 

code of PHREEQC.  Mathematically the saturation index is expressed as: 
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  SI  log  
IAP

Ksp
  (11) 

where IAP = ion-activity product and Ksp = solubility product constant at equilibrium.  If 

the solution is at equilibrium with the phase SI = 0; when the solution is undersaturated 

with the phase SI < 0; for conditions of supersaturation, SI >0.  The saturation indices 

calculated were used to infer plausible mineral phases for the inverse modeling and to 

evaluate thermodynamic feasibility of precipitation or dissolution of minerals.  The 

phases were optimally selected by combining inferences from the saturation indices plots, 

geologic information, and compositional plots of the major ionic data, TDS, and silica.   

 The conceptualized groundwater flowpaths were evaluated using the inverse 

geochemical modeling code.  The model input data were hydrochemical data for the 

source and discharge end-members along inferred flowpaths, mineral phases and phase 

constraints in the aquifer.  For hydraulically connected end-members, the PHREEQC 

code produces models consistent with the given set of phases, constraints for the phases, 

and reaction thermodynamic feasibility of the phases.  No models are produced for 

hydraulically disconnected end-members.  Between any two models the one with the 

smallest sum of residual is considered the best since it is the model most consistent (“best 

fit model”) with the modeling data.  In this study the mean (back transformed) Ca, Mg, 

Na, K, SO4, Cl, HCO3 and the median pH, temperature, and SiO2 data of the 

hydrochemical facies inferred to be connected along flowpaths are used in the inverse 

modeling calculations to test the hypotheses about interbasin and intrabasin flowpaths for 

the lower Virgin River Basin.  To account for spatial uncertainty, 5% uncertainty was 

assigned to all analytical data used in modeling calculations (Parkhurst, 1997). Also for 
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each of the conceptualized flowpaths "minimal" models (Parkhurst, 1997) were 

determined. 

 

3.4. Results 

3.4.1. Hydrochemical Facies 

 Based on Box-Cox analysis and box-and-whiskers plots, the ions Ca, Na, Cl, 

HCO3, and TDS are log10-transformed, Mg is square root transformed, and K and SO4 

are transformed by the powers 0.1285 and 0.1473 respectively.  The transformation 

normalized the variables as well as reduced the number of outliers (Figure 3. 3 and Figure 

3. 4).  Among all the clustering techniques applied to the hydrochemical datasets, the 

Ward linkage with Euclid produced the optimum cluster solution consisting of six stable 

clusters (Table 3.1.). Outliers’ effects on the optimal clustering method and the grouping 

of the hydrochemical data was acceptable (Cramer’s V= 0.887, p<0.000).  Similarly, the 

effect of data containing analytical errors (CBE</>±5) on the optimal method and the 

groupings was acceptable (Cramer’s V=0.809, p<0.000).  Thus the six hydrochemical 

groups as modeled by MDFA are the best possible hydrochemical facies for the study 

area.   
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Table 3. 1. Stable cluster solutions obtained using the Hierarchical clustering techniques and K-Means method 

Similarity/ Linkage Methods 

Dissimilarity 

Measure Ward Furthest Neighbor Nearest Neighbor 

  
Stable Clusters 

Cohen’s 
% XV Stable clusters 

Cohen’s 
% XV 

Stable Cohen’s 
% XV 

  Kappa Kappa clusters Kappa 

Euclidean 6 0.91 89.6 X X X X X X 

Squared 

3 0.903 92.3 X X X X X X Euclidean 

Cosine 2 0.881 93.2 3 0.946 96.4 X X X 

Pearson 

2 0.881 93.2 2 0.881 93.2 X X X Correlation 

 

Similarity/ Linkage Methods 

Dissimilarity Measure Between-Groups  Within-Groups  

  Stable Cohen’s 
% XV 

Stable Cohen’s 

% XV   clusters Kappa clusters Kappa 

Euclidean X X X 5 0.906 89.2 

Squared 

X X X 5 0.9 89.6 Euclidean 

Cosine 3 0.947 94.6 3 0.868 90.5 

Pearson 

2 0.963 97.7 2 0.881 93.2 Correlation 

 

%XV denotes the percent cross-validated grouped samples correctly classified. 

X denotes 1 cluster solution or no cluster solution found. 

The K-Means method produced 3 stable clusters (Kappa = 0.966, %XV=97.3%) 
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3.4.2. Areal Distribution and Chemical Characteristics of Clusters, End-Members and 

Flowpaths 

 The clusters have distinct chemical and spatial character.  These are revealed 

by a spatial GIS map, Schoeller diagram and discriminant functions plot. The 

hydrochemical facies displayed geo-spatial coherence and patterns (Figure 3. 5). It is 

observed that the lateral variation of the clusters is more important than the temporal 

and vertical variations.  Cluster 1 is located in the north basin-fill of the Virgin River 

Basin, near the Clover Mountain fronts.  Cluster 2 is found in the Clover Valley and 

the Escalante Desert Valley areas.  Cluster 3 plotted in the floodplain aquifer and 

along the Virgin River in the lower Virgin River Basin.  Cluster 4 and cluster 5 is 

southward of clusters 1 and 2.  The clusters form a sequence pattern from cluster 2 to 

cluster 1, then to clusters 4 or cluster 5 or cluster 6.  Cluster 6 samples are localized at 

the Tenneco Gold Mine Wells located around the Bull Valley Mountains in Utah. 

 From the discriminant functions loadings (eigenvector loadings), important 

trends are extracted (Figure 3. 6).  The groundwater clusters ordered 2, 5, 4, and 3 are 

distinguished by a successively increasing Cl concentration (Figure 3. 6).  The 

clusters 2, 3, 4, and 5 have higher  Na and K  and lower HCO3 and TDS compared to 

that of the clusters 1 and 6 (Figure 3. 6).  These distinguishing features are also 

observed on the Schoeller diagram (Figure 3. 7).  In clusters 2, 3, 4, and 5, the TDS 

sequentially is increased from cluster 2 → cluster 5→ cluster 4 → cluster 3 (Figure 3. 

7). Groups 4 and 5 have the same characteristic pattern (same water type) but the 

chemical composition ions of the former are systematically higher than the latter.  

Unless specifically stated cluster 3 consist of floodplain groundwater and Virgin 

River samples. Cluster 3 (only the groundwater samples) and samples collected from 

the Virgin River (VR) have similar pattern and nearly the same composition (Figure 
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3. 7).  The major water types (Figure 3. 7) are Ca-Mg-HCO3 (clusters 1), Ca-Na-Mg-

HCO3 (cluster 2), Na-Ca-SO4-HCO3 (clusters 4 and 5), Ca-Na-Mg-SO4-Cl (cluster 3 

and Virgin River), and Ca-Mg-SO4-HCO3 (cluster 6).  A groundwater sample 

collected from the deep carbonate aquifer in the Dry Lake Valley, located about north 

of the lower Virgin River Basin, is also plotted on the Schoeller diagram to compare 

with the groundwater clusters and to be used in searching for sources of groundwater 

in the lower Virgin River Basin. The deep carbonate aquifer is Ca-Mg-HCO3 in 

chemical character and has a chemical pattern similar to the pattern of clusters 1. 

 

3.4.3. Comparing Discriminant Functions Plot to Principal Component Analysis Plot 

 PCA is an ordination method used for data reduction through a linear 

combination of variables. The theory and procedures of PCA can be found elsewhere 

(Le Maitre, 1982; Kreamer et al., 1996) and are not described here. Although a PCA 

plot, similar to a discriminant functions plot, has the capability for extracting trends 

and explaining geochemical evolution, the ordered samples by PCA may differ from 

the cluster grouping. To demonstrate this shortcoming, the hydrochemical data has 

been analyzed using PCA with correlation matrix and Varimax rotation.  The 

Principal Component (PC) scores of the first and second PC coordinates are plotted 

and the cluster groups are superimposed on the PCA ordered samples. The results 

show groups that are well separated on the discriminant functions plot compared to 

the PCA plot (Figure 3. 6 and Figure 3. 8).  

 

3.4.4. Deduction of Rock and Water Interactions 

 The history of rock-water interactions in the study area is gleaned from 

scattergrams of composition of the major ions and SiO2.  Na/Na+Cl ratios of clusters 
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2, 4, 5 exceeded the halite dissolution line (gradient = 0.5), and that of Virgin River 

and cluster 3 (only groundwater samples) almost equaled the halite dissolution line. 

Clusters 1 and 6 plotted below the dissolution line (Figure 3. 9). Clusters 1and 2 

plotted above Ca/Ca+SO4 ratio line (gradient =0.5), clusters 3 and 4 plotted below the 

line, cluster 5 bisected the line and cluster 6 plotted nearly on the line (Figure 3. 10). 

HCO3/SiO2 ratios of clusters 2 and some of cluster 5 were <5 meq/mmol, and that of 

clusters 1, 3, and 4 were >5 meq/mmol (Figure 3. 11). The HCO3/SiO2 ratios for 

cluster 6 are not calculated due to the lack of SiO2 measurements. Mg/Mg+Ca ratios 

of all the clusters were <0.5 (Figure 3. 12). 

 The saturation indices of calcite, dolomite, gypsum, anhydrite, and halite for 

the clusters are plotted as a function of log10(Cl) ions (Figure 3. 13). An uncertainty 

of ±0.5 is assumed for the SI calculations (Deutsch, 1997).  Within this uncertainty, 

most of the groundwater and surface water are saturated and a few are oversaturated 

with calcite and dolomite (Figure 3. 13). All the groundwaters and surface waters are 

undersaturated with the minerals gypsum, halite, and anhydrite. The undersaturation 

increased towards saturation progressively from cluster2→ cluster5→ cluster4→ 

clusters3 and 6 (Figure 3. 13). 

 

3.4.5. Hydrochemical Evolution Modeling 

 Three flowpaths are formulated and evaluated using the PHREEQC inverse 

geochemical modeling code: (1) interbasin groundwater flow from the deep carbonate 

aquifer to the basin-fill aquifer—groundwaters of cluster 4 and 5; (2) interbasin 

groundwater flow from Clover Valley/Escalante Desert Basin—cluster 2 to the basin-

fill aquifer; (3) intrabasin groundwater (cluster 1) flow to cluster 4 or 5.  In addition to 

the three inferred flowpaths stated, the sources of water to cluster 3 (located in the 
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floodplain of the Virgin River) are investigated.  Model calculations are performed 

using representative chemical values of the hydrochemical facies (Table 3.2). 
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Table 3. 2. Mean chemical values (unless otherwise stated) of the clusters (water types) in mg/l used in inverse modeling and saturation indices 

calculations 
Facies Ca Mg Na K Cl SO4 HCO3 SiO2

*
 pH

*
 Temp

* 

cluster1 84.87 26.50 18.59 2.43 23.33 62.65 288.56 36.00 7.55 18.70 

cluster2 39.64 8.06 20.94 4.01 17.63 13.84 170.03 49.00 7.77 21.60 

cluster3 311.74 118.93 318.77 26.94 324.01 1258.97 243.82 19.80 7.20 23.00 

cluster4 67.40 23.59 115.08 8.49 76.44 264.84 204.35 27.50 7.81 24.30 

cluster5 42.61 17.52 62.15 5.84 19.11 119.54 182.77 31.00 7.81 26.18 

VR 268.62 99.93 298.90 27.71 411.02 925.57 283.44 18.65 7.94 23.25 

Carbonate 76.00 30.00 18.00 6.50 5.00 20.00 404.00 24.00 7.30 27.00 

Temp denotes temperature (°C). 

VR denotes the Virgin River samples. 

Cluster 3 is groundwater samples only and does not include the Virgin River samples 

Carbonate is the carbonate rock well sample (station name USAF TEST WELL) collected from the carbonate aquifer (730 m deep) underlying Dry Lake Valley located north 

of lower Virgin River Basin (Bunch and Harrill, 1984).  

* denotes the median value.  
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Mineral saturation indices are calculated using the representative chemical values of 

the hydrochemical facies (clusters) in Table 3.2.  Results show that all the 

hydrochemical facies and the carbonate group are saturated to supersaturated with 

calcite, aragonite, chalcedony, dolomite, and quartz (Table 3.3).  However, all the 

clusters are undersaturated with anhydrite, gypsum, halite, magnesite, and sepiolite.  

The partial pressure of CO2 (g) in the carbonate and cluster 1 appears to be higher 

than the atmospheric value of 10
-3.5

 atm.  Mineral phases and constraints are selected 

and used in the inverse modeling calculations (Table 3.4). 

 

 

 

Table 3. 3. Selected saturation indices of mineral phases with respect to the 

representative chemistry of the clusters 
Phases cluster1 cluster2 cluster3 cluster4 cluster5 VR Carbonate 

Anhydrite -2.0 -2.8 -0.6 -1.5 -2.0 -0.7 -2.5 

Aragonite 0.2 0.0 0.1 0.2 0.1 0.9 0.2 

 Calcite 0.3 0.1 0.2 0.3 0.2 1.0 0.3 

Chalcedony 0.4 0.5 0.1 0.2 0.2 0.1 0.1 

 CO2(g) -2.1 -2.6 -1.9 -2.5 -2.6 -2.6 -1.7 

 Gypsum -1.8 -2.6 -0.4 -1.3 -1.7 -0.5 -2.3 

 Halite -7.9 -8.0 -5.7 -6.7 -7.5 -5.6 -8.6 

Magnesite -0.5 -0.8 -0.5 -0.4 -0.4 0.3 -0.3 

 Quartz 0.9 0.9 0.5 0.6 0.7 0.5 0.6 

Sepiolite -1.8 -1.3 -3.1 -1.2 -1.1 -0.2 -2.9 

 Dolomite 0.4 -0.1 0.3 0.6 0.4 1.9 0.6 

VR represents the Virgin River samples. 

Carbonate is the well water sample (station name USAF TEST WELL) collected from the carbonate 

aquifer (730 m deep) underlying Dry Lake Valley located north of lower Virgin River Basin (Bunch 

and Harrill, 1984). 
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Table 3. 4. Selected phases for inverse geochemical modeling calculations 
Phase Composition Constraint 

Dolomite CaMg(CO3)2 none 

Calcite CaCO3 none 

Halite NaCl dissolve 

Gypsum CaSO4:2H2O dissolve 

Albite NaAlSi3O8 dissolve 

Aragonite CaCO3 dissolve 

Quartz SiO2 precipitate 

Anhydrite CaSO4 none 

K-feldspar KAlSi3O8 dissolve 

Kaolinite Al2Si2O5(OH)4 none 

NaX NaX none 

CaX2 CaX2 none 

 

 The potential sources of recharge to the basin-fill aquifer (cluster 4 and 5) are 

cluster 1, cluster 2, and the carbonate aquifer designated cluster 7.  The mole balance 

calculations for the flowpaths inferred to link the source and discharge end-members 

are shown in Table 3.5.  Considering 100% of a source flowing to the basin-fill 

groundwater of cluster 4, the flow from the carbonate aquifer groundwater of cluster 7 

to the basin-fill groundwater of cluster 4 had the smallest sum of residual.  Also 

considering that mixed groundwater sources recharge the basin-fill aquifer 

groundwater of cluster 4, 87% Clover Valley groundwater of cluster 2 mixed with 

13% carbonate aquifer groundwater had the smallest sum of residuals.  No models are 

found for 100% of cluster 2 flowing to cluster 4.  Among the models calculated when 

considering a single recharge source, the model for groundwater of cluster 1 flowing 

to groundwater of cluster 4 had the largest sum of residual. 

 Similarly, considering 100% of a source flowing to the basin-fill groundwater 

of cluster 5, the flow from cluster 2 to cluster 5 produced the only model and with a 

large sum of residual.  The modeling showed that neither the carbonate groundwater 

nor groundwater of cluster 1 recharges the groundwater of cluster 5.  Also, 

considering mixed groundwater sources to recharge the basin-fill groundwater of 
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cluster 5, 84% carbonate aquifer groundwater and 16% groundwater of cluster 1 

flowing to cluster 5 had the smallest sum of residuals. No models are found when 

mixtures of cluster 7 and cluster 2 and mixtures of cluster 1 and 2 are considered to 

flow to the basin-fill groundwater of cluster 5.  Interestingly, considering groundwater 

of cluster 2 or groundwater of carbonate aquifer flow to groundwater of cluster 1 

yielded no models.  Only consistent models that had calcite, dolomite and quartz are 

selected; this is because these minerals are highly reactive phases (Table 3.3). Finally 

sources of water to cluster 3, groundwater collected from wells located on the 

floodplain, were also considered.  No models were found when cluster 4 and 5 were 

considered as sources recharging cluster 3.  However, a consistent model was found 

between cluster 3 and VR (Virgin River water) for cluster 3 flow to the Virgin River 

and not vice versa. 
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Table 3. 5.  Models calculated using the PHREEQC inverse geochemical modeling code for the conceptualized groundwater flowpaths in the 

study area. Units are in moles per liter (mol/l). 
Phase mole  

transfers 

cluster 7 to  

cluster 4 

cluster 1 to  

cluster 4 

40% cluster7 +  

60% cluster1 to 

cluster4 

13% cluster7 +  

87% cluster2 to 

cluster4 

26% cluster1 +  

74% cluster2 to 

cluster4 

cluster 2 to  

clsuter 5 

84% cluster7 +  

16% cluster1 to 

cluster5 

Dolomite -2.64E-04 -6.50E-05 -1.38E-04 5.20E-04 4.58E-04 3.53E-04 -4.82E-04 

Calcite -3.29E-03 -1.70E-03 -2.28E-03 -1.07E-03 -9.77E-04 -6.99E-04 -2.86E-03 

Halite 2.02E-03 1.50E-03 1.69E-03 1.71E-03 1.62E-03  3.15E-04 

Albite 4.32E-03 1.89E-03 2.77E-03    4.32E-03 

Quartz -8.68E-03 -4.22E-03 -5.85E-03 -5.16E-04 -5.52E-04 -3.83E-04 -8.56E-03 

Gypsum 2.41E-03 1.95E-03 2.14E-03 2.47E-03 2.34E-03 1.16E-03 1.02E-03 

K-feldspar 5.09E-05 1.55E-04 1.17E-04 1.06E-04 1.25E-04 4.18E-05  

Kaolinite -2.18E-03 -1.02E-03 -1.45E-03 -5.32E-05 -6.26E-05 -2.09E-05 -2.16E-03 

NaX -1.89E-03 1.03E-03  2.62E-03 2.72E-03 1.66E-03 -2.85E-03 

CaX2 9.45E-04 -5.16E-04  -1.31E-03 -1.36E-03 -8.29E-04 1.43E-03 

Sum of Residuals 3.0 6.4 4.8 2.6 3.7 11.0 4.3 

A negative sign denotes precipitation and a positive sign denotes dissolution. 

Carbonate denotes carbonate aquifer groundwater. 

VR denotes Virgin River water 

Cluster 3 is the groundwater samples only and does not include the Virgin River samples 
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3.5. Discussion and Conclusions 

 In this study, groundwater sources and movement in an intermountain basin is 

examined using an integrated and sequential approach to analyze the hydrochemistry of 

groundwater and surface water. A methodology of objective classification and 

sequencing of mutually supportive methods applied to the hydrochemical data of the 

lower Virgin River Basin allows overlay of evidences, which helps to precisely diagnose 

groundwater sources, movement, connectivity, and discharge in complex intermountain 

basins. Results of this study show the importance of objectively identifying 

hydrochemical facies as an essential step in the hydrochemical study of a basin 

hydrology. Additionally, this study confirms the conclusion in a previous study that 

hydrochemical data is objectively classified by combining cluster analysis with 

discriminant function analysis, and association measures.  

 The results show that the chemical character of the groundwater facies of 

the lower Virgin River Basin progressively evolves from Ca-HCO3 type in the Clover 

Mountain front areas of the lower Virgin River Basin or in the outside basin areas north 

of the lower Virgin River basin to Na/Ca-SO4 types in the middle and south basin-fill 

sediments of the lower Virgin River Basin, and along the Virgin River.  The TDS of 

Na/Ca-SO4 waters, which is higher than the TDS of Ca-HCO3 type supports this 

interpretation.  Again the TDS of the Na/Ca-SO4 groundwaters supports that there are 3 

groundwater sub-classes: the poorest water quality, localized and found in Bull Valley 

Mountains in Utah (cluster 6); the medium water quality, the commonest and wide spread 

water in the basin (cluster 4), and the best water quality found mostly along the Virgin 

River (cluster 5).  Considering all the groundwater types and the Virgin River, the 
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groundwater of cluster 3 and Virgin River have the poorest water quality with highest 

major ions and TDS.  The progressive change in chloride or sodium ionic concentrations 

distinguishes and shows evolution of the hydrochemical facies. Results of Schoeller and 

discriminant functions plot indicate the groundwaters of clusters 1, 2, and carbonate 

aquifer are youngest, but the groundwaters of clusters 4, 5, and 6 are oldest.  These 

conclusions are supported by the lower TDS, chloride and major ionic concentrations of 

clusters 1, 2, and the carbonate aquifer, and the higher TDS, chloride, and most major 

ions of clusters 4 and 5. In addition, the spatial pattern of the clusters reflects the 

variation in precipitation. In conclusion the Schoeller diagram and a discriminant 

functions (discriminant scores) plot are effective for defining source and discharge end-

members. 

The approach used to collect data on mineral phases interacting with groundwater 

and surface water is rapid and cost effective and is can be useful in studies where the 

mineralogy of the aquifer is not fully accessible. Synthesizing geologic information, 

saturation indices calculations, and major ion compositional plots permit gleaning of the 

mineral phases in the groundwater environment interacting with the groundwater.  This 

approach is particularly important in the study area considering the complexity of the 

hydrogeology of the Basin and Range Province. To infer reactive minerals, all major ions 

used in compositional plots are in meq/l.  Using meq/l provides clearer evidence of the 

relationship of the composition of water to the composition of solid minerals (Hem, 

1989).  Carbonate dissolution is dominant when HCO3/SiO2 ratio is >5, and for values <5 

silicate weathering dominate is dominant. Therefore groundwater of cluster 2 and some 

of cluster 5 indicate strong silicate weathering, and the remaining clusters indicate strong 
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carbonate weathering.  Because of the low Mg/Mg+Ca ratios (<0.5) of groundwater of 

cluster 2 and 5, granitic weathering is possible. The Tertiary ashflow and volcaniclastic 

rocks predominant in the groundwater zone in the Clover Mountains and Escalante 

Desert Areas corroborate this inference. The high Na/Na+Cl ratios of groundwater of 

cluster 2 and some of 5 further suggest albite mineral phase reacting in addition to halite.  

Expectedly, some carbonate dissolves as Gypsum dissolution alone cannot account for 

the amount of Ca for the groundwater of cluster 2 and some of cluster 5. The water 

chemistry of cluster 3 (groundwater and Virgin River water) and cluster 6 (Figure 3. 9 to 

Figure 3. 12) indicate the dissolution of halite, gypsum, and limestone-dolomite or 

precipitation of calcite. The groundwater quality of cluster 1 potentially evolves from 

dissolution of halite, gypsum, and carbonate-dolomite or precipitation of calcite. Possible 

evolutions of the groundwater of cluster 4 are reaction with halite and gypsum, 

dissolution/precipitation of carbonate, and ion exchange. In addition to evidence of 

phases from the compositional plots and geologic information, saturation indices data 

also provide evidence that calcite, dolomite, and quartz are reactive phases in the 

groundwater and surface water environments. 

Models calculated using an inverse geochemical code strongly supports interbasin 

groundwater flow from the Clover Valley Basin or the deep carbonate aquifer to the 

basin-fill aquifer of the lower Virgin River Basin.  Considering a single replenishing 

source to the basin-fill aquifer, the inverse geochemical calculations indicate that the 

deep carbonate or the Clover Mountains groundwaters are more probable sources than the 

intrabasin groundwater of cluster 1.  Considering mixing of 2 sources, the inverse 

modeling calculations indicates that at least 80% of the groundwaters in the basin-fill 
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aquifer (clusters 4 or 5) are from interbasin groundwater flow.  Thus mixing 13% cluster 

7 and 87% cluster 2 and mixing 84% cluster 7 and 16% cluster 1 explain the groundwater 

of the basin-fill aquifer.  Although the models do not provide conclusive answers, 

undeniably greater insights have been gained about the significance of the potential 

recharge sources to the lower Virgin River Basin. 

Also the evolution of groundwater quality in the lower Virgin River Basin is 

explainable using the two best fit models found with the mole balance calculation.  In the 

first model, 13% cluster 7 mixes with 87% cluster 2, and with dissolution of dolomite, 

halite, gypsum, and K-feldspar, and Na/Ca ion exchange.  The net result of this reaction 

is the loss of Ca ions from the solution by ion exchange, addition of Na ions in solution 

by ion exchange, and the precipitation of calcite, quartz, and kaolinite.  The dissolution of 

gypsum and dolomite while calcite precipitates suggests a dedolomitization process.  In 

the second model, 87% cluster 7 mixes with 16% cluster 1, and with dissolves halite, 

albite, and gypsum, and Ca/Na ions exchange.  The net result of this reaction is the loss 

of Na ions from the solution, addition of Ca ions to the solution, and the precipitation of 

dolomite, calcite, quartz, and kaolinite.  Regarding groundwater interactions with the 

Virgin River, the model calculation of groundwater of cluster 3 (only groundwater 

samples in the floodplain aquifer), flow to the Virgin River indicates the dissolution of 

calcite and halite, precipitation of dolomite and anhydrite, and the loss of Na from 

solution through Na/Ca ion exchange.  The precipitation of dolomite and the 

corresponding increase in the Mg/Ca ratio of the solution suggest a dolomitization. 

In conclusion a new approach for analyzing hydrochemical data to test hypotheses 

about sources and movement of water in basins has been presented. In this approach, 
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discriminant function analysis was used to model hydrochemical data, using cluster 

delineated groups as a training dataset. This approach is objective, allowing groups to be 

repeatedly defined. Furthermore the discriminant functions scores were plotted and used 

to identify hydrochemical end-members. This approach removes the problem of 

incongruence that can arise when PCA is used to identify end-members for cluster 

delineated groups. In addition, this methodology allows additional independent 

investigations to be overlaid for a more precisely testing of hypotheses. For example an 

aqueous geochemical modeling was applied to the hydrochemical facies datasets. We 

observed that using Box-Cox and box-and-whiskers plots help in finding the best power 

transformation values for normalizing data and minimizing the outliers in data for a better 

classification result.  From the analysis of the current data collected we conclude that 

interbasin groundwater significant source of recharge to the lower Virgin River Basin 

accounting for at least 80% of the basin’s water budget. The methodology described can 

be applied to study flow systems in other intermountain basins.  
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Figure 3. 1.Physiography (A), Location (B), and simplified geology map (C) of the lower 

Virgin River Basin and the adjacent basin areas. The geologic map is modified after 

GBCGE (2005)
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Figure 3. 2. Geologic cross-section along the line A—A' on the geology map.  Modified after Page et al. (2006)
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Figure 3. 3. Statistical distribution of the raw and transformed variables in mg/L 
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Figure 3. 4. Statistical distribution of the raw and transformed variables (mg/L) 
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Figure 3. 5. Spatially distributed hydrochemical facies of the lower Virgin River 

Basin and adjacent basins. The lines running roughly north-south are fault lines 

(Dixon and Katzer 2002; Page et al., 2005). Also Virgin River (VR) and Beaver Dam 

Wash (BDW) shown on the map.  
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Figure 3. 6. Discriminant functions plot of the discriminant function analysis modeled 

hydrochemical facies 
 

 
Figure 3. 7. Schoeller diagram of mean (back transformed mean of transformed data) 

major ionic values of the hydrochemical facies modeled. Cluster 3 is only the 

groundwater samples. Carbonate is the carbonate rock well sample (station name 

USAF TEST WELL) collected from the carbonate aquifer (730 m deep) underlying 

Dry Lake Valley located north of lower Virgin River Basin (Bunch and Harrill, 1984).  
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Figure 3. 8.  Principal Components plot with superimposed cluster groups 

 

 
Figure 3. 9.  Na/Na+ Cl ratio compositional diagram of clusters.  
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Figure 3. 10. Ca/Ca+SO4 ratio compositional diagram of clusters. Gradient of the line 

=0.5 
 

 
Figure 3. 11.   HCO3/SiO2 ratio compositional diagram of clusters 
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Figure 3. 12.  Mg/Ca ratio compositional diagram of clusters 
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Figure 3. 13. Comparison of saturation indices (SI) of calcite, dolomite, gypsum, anhydrite, and halite, and comparison of clusters 

based on saturation index versus log chloride concentration. 
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CHAPTER 4  

 

EVALUATING INTERBASIN FLOW AND GROUNDWATER-SURFACE WATER 

INTERACTIONS: UNUSUAL STATISTICAL AND GRAPHICAL ANALYSIS OF 

STABLE ISOTOPIC AND SOLUTES DATA 

Abstract 

 Rocks and basin-fill sediments of the intermountain basins in the Great Basin 

region are complexly folded and faulted and, as a result, understanding the flow systems 

is challenging. In this study, stable isotopic (δD and δ
18

O) and selected chemical solutes 

(Na, K, SO4, and Cl) data from waters in the lower Virgin River Basin and adjacent basin 

areas are used to test the hypotheses of interbasin groundwater flow and the Virgin River 

interactions with groundwater. Unconventionally, linear regression, Spearman correlation 

test, scatterplot, box-and-whisker plot, and Wilcoxon Rank Sum test are applied to glean 

hydrogeologic information from the stable isotopic and solutes data of the hydrochemical 

facies for the study area. For the hydrochemical facies, δD is regressed over δ
18

O, the 

correlation of δD and δ
18

O versus Cl is tested, and the distribution of stable isotopic and 

solutes data is analyzed using box-and-whiskers plots and Wilcoxon Rank Sum Test. The 

results indicate the Virgin River with floodplain aquifer is more homogeneous and 

evaporated than groundwater samples designated source and discharge end-members. 

Regional springs representative of the regional carbonate groundwater, a potential 

replenishing source to the basin-fill aquifer of the lower Virgin River Basin, have a 

median δD of -109.0‰. Possible sources besides the carbonate water are intrabasin and 

adjacent extra-basin waters with median δD of -87.0‰ and -93.0‰ respectively. The 
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Virgin River with floodplain aquifer has median δD of -93.0‰, and of the discharging 

groundwaters have median δD of -98.25‰ and -101.50‰. Mixing calculations show that 

mixing of 51-66% carbonate aquifer groundwater and 34-49% intrabasin recharge 

account for the discharging waters. Again mixing calculations show that mixing of 33-

53% carbonate groundwater and 47-67% interbasin groundwater from the Clover or 

Escalante Desert Valley account for the discharging waters. In conclusion, at least 50% 

of the groundwater in the basin-fill of the lower Virgin River Basin is from interbasin 

sources. 

 

4.1. Introduction 

 Parts of the southwestern United States of America have limited surface water 

resources; therefore groundwater is a vital resource. A large part of the Southwest is 

within the Great Basin region. The general physiographic features of the Great Basin are 

basin-fill sediments and intervening mountain ranges. Generally, the basin-fill deposits 

are the most important water supply source (Heath, 1984; Johnson et al., 2002). The 

approximate area of the Alluvial Basins region is 1,025,000 km
2
, stretching from the 

Puget Sound-Williamette Valley, Washington and Oregon, to West Texas (Heath, 1984). 

The climate in parts of the Great Basin ranges from semi-arid to arid (Heath, 1984) and 

the natural recharge is low (U.S. Geological Survey, 2000). Understanding the flow 

systems of these basins is critical for sustainably managing these vital groundwater and 

surface water resources.  

 Interbasin flow is an important potential source of recharge to the basin-fill 

aquifers of the intermontane basins. This is a concept by which groundwater from one 
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basin moves through permeable intervening mountains to another basin, or by which 

regional water in the deep underlying Paleozoic carbonate rock moves to the basin-fill 

aquifers. Additional sources of recharge are local infiltrating precipitation in the 

mountain blocks or mountain front adjacent to the alluvial valleys and infiltrating 

streams/rivers originating in the adjacent mountains. Studying the sources, movement, 

and quantity of recharge to the basin-fill aquifers is a prolific research area (Eakin, 1966; 

Winograd and Friedman, 1972; Winograd and Thordarson, 1975; Mifflin and Hess, 1979; 

Johannesson et al., 1997; Davisson et al., 1999b; Thyne et al., 1999; Genereux, 2005; 

Hibbs and Darling, 2005; Anderson et al., 2006; Guler and Thyne, 2006; Belcher et al., 

2009; Bushman et al., 2010; Hershey et al., 2010). The abundant research has been 

propelled by the need to sustainably manage groundwater of the Great Basin region to 

prevent causing unacceptable environmental, economic, and social consequences (Alley 

et al., 1999).  

 Testing the hypothesis of interbasin flow is a challenge for hydrologists (Davisson 

et al., 1999a; Davisson et al., 1999b; Thomas, 1999; Winograd, 2001). Interbasin flow 

has been tested in many ways, including using hydrochemical, isotopic, and 

hydrogeologic data, and water budget analysis. Basins hydrologic budgets and spring 

discharge rates higher than can be supported by local recharge alone have also been used 

to support the idea of interbasin groundwater flow occurring (Eakin, 1966). However, in 

arid regions, the water budget approach is useful only for preliminary studies because the 

empirical approaches for calculating recharge are uncertain, and as a result, recharge 

calculations become questionable.  
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 Using limited water level data, hydraulic gradients of potentiometric surface of 

the deep carbonate groundwater have been used to interpret regional movement of 

groundwater in the Paleozoic carbonate aquifer in the southern Great Basin (Winograd 

and Thordarson, 1975). Additionally, the regional carbonate groundwater has been 

characterized using physical and chemical quality and radio-isotopic compositions of 

water discharged by major springs (Mifflin and Hess, 1979; Hershey et al., 2010). 

Previous studies reported that for the Great Basin region, groundwater concentrations of 

Na, K, SO4, and Cl increase with groundwater travel distance (Mifflin and Hess, 1979; 

Hershey et al., 2010). This conclusion forms part of the reason for selecting these solutes 

for the current study. Mifflin (1979) used bomb-pulse tritium to draw the conclusion; 

however, because of the short half-life for tritium, concentrations in the field are now 

very low for hydrological studies. Conventionally, stable isotopic testing of interbasin 

flow has been performed by comparing the stable isotopic values (δD, δ
18

O) of 

precipitation in a basin to the stable isotopic values of groundwater in the basin, 

correlating contours of stable isotopic values of groundwater, or comparing the position 

of water groups and their relationships to the global meteoric waterline (GMWL) on a 

δD-δ
18

O plot (Davisson et al., 1999b; Smith et al., 2002; Anderson et al., 2006; Guler and 

Thyne, 2006; Belcher et al., 2009; Bushman et al., 2010; Hershey et al., 2010). Less 

commonly, for a more preliminary approach, deuterium has been used to calibrate 

conceptual groundwater flow model covering 13 topographic basins of the White River 

Flow Systems (Thomas et al., 2001). Also correlation of the distribution of deuterium in 

geographic areas and mixing calculations have been to support the hypothesis that the 
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Ash Meadow springs are fed by recharge from the Spring Mountains-Sheep Range and 

underflow from Pahranagat Valley (Winograd and Friedman, 1972). 

 Watersheds in the Great Basin have diverse characteristic flow systems, which 

demand evaluating individual basins. In the Moapa Valley in southern Nevada, the 

Muddy River Springs discharge through the basin-fill aquifer has been interpreted as 

interbasin groundwater from the lower Meadow Valley (Kirk and Campana, 1990) or the 

Spring Mountains (Winograd and Friedman, 1972). Also, the Smith Creek Valley in 

central Nevada is believed to be a closed basin (Thomas et al., 1989). Conversely, for the 

Ash Meadows Valley in southern Nevada, the alluvial aquifer is believed to be 

hydraulically connected to the carbonate aquifer (Mifflin and Hess, 1979; Bushman et al., 

2010).  

 Similar to other intermountain basins, a number of sources of recharge have been 

proposed for the basin-fill aquifer in the lower Virgin River Basin. Firstly, groundwater 

flow conditions at the boundaries north of the lower Virgin River Basin are considered as 

no flow, Neumann’s-type boundary condition (Glancy and Van Denburgh, 1969; Baron, 

2007). Consequently, significant groundwater recharge to the basin-fill aquifer of the 

lower Virgin River Basin is assumed to be supplied only from precipitation in the 

adjacent mountains, which percolates the mountain block or the mountain front. Second, 

it is posited that groundwater transmits through the Clover, Beaver Dam, and Bull Valley 

Mountains bordering north and northeast of the lower Virgin River Basin to the lower 

Virgin River Basin (CH2M HILL, 2002). The interbasin transfer of water may be 

facilitated by faults and fractures in the volcanic rock of the Clover Mountains and 

permeability of the carbonate rocks lying deeply beneath. Much of the groundwater in the 
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basin-fill aquifer of the lower Virgin River Basin is believed to be supplied from the deep 

carbonate aquifer beneath or the adjacent basins north (Dixon and Katzer, 2002; Johnson 

et al., 2002). 

 Although stable isotopic data can provide good evidence of flow systems, due to 

intermingling of the hydrochemical facies in the Euclidean (metric) space at times, it is 

difficult to extract flow dynamics information using the conventional approach of 

analyzing these data. For this study, an unusual and robust approach is used to evaluate 

the interbasin flow and groundwater-surface water interactions in the lower Virgin River 

Basin. Interbasin flow and groundwater-surface water interactions are tested by analyzing 

and interpreting the stable isotopic and solutes data (δD, δ
18

O, Na, K, Cl, and SO4).  

Specifically I tested the hypothesis that interbasin groundwater does not contribute to 

groundwater in the basin-fill aquifer of the lower Virgin River Basin and also the 

hypothesis that the Virgin River is hydraulically interconnected with the floodplain 

aquifer. It was predicted that the stable isotopic values of the discharging groundwaters in 

the lower Virgin River Basin is statistically similar to the source groundwaters (intrabasin 

recharge waters). Also, I predicted that the Virgin River and the floodplain aquifer have 

statistically the same stable isotopic values. Unconventionally, pieces of information of 

hydrologic processes were gleaned from the data using linear regression, scatterplot, box-

and-whiskers plot, Spearman correlation test, and non-parametric Wilcoxon Rank Sum 

test. We assume the stable isotopic compositions are conservative and chemical reactions 

that can sink Na, K, Cl, and SO4 are insignificant. The interpretations were enhanced by 

the available hydrologic and geologic information. 
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4.2. Description of the Study Area 

 The lower Virgin River Basin (Figure 4. 1B), covering an area of about 

4,463 km
2
, is located in the Basin and Range physiographic province of the southwestern 

United States. As typical of the intermountain basins, mountains created by east-west 

extension during the Cenozoic (Page et al., 2006) separate the lower Virgin River Basin 

(Figure 4. 1A) from the adjacent basins. 

 The mountain ranges and basement rocks consist of pre-Tertiary rocks and are 

overlain with Tertiary and Quaternary rocks. Figure 4. 1C is a simplified geology map 

(GBCGE, 2005) showing the spatial distribution of rocks in the study area. In cross-

section, Figure 4. 2 illustrates the lithologic units of the study area, ranging from Early 

Proterozoic to Quaternary. The following discussion of the lithologic units and their 

hydrogeological importance are a summary from Page et al. (2005) and Dixon and Katzer 

(2002). Early Proterozoic crystalline basement rocks consisting of gneiss, schist, and 

granite have low permeability and are considered a groundwater no flow boundary. Late 

Cambrian and Late Proterozoic rocks are mostly low permeability quartzite, 

conglomerate, sandstone, siltstone, and shale. Middle Cambrian to lower Permian rocks 

consisting mostly of limestone and dolostone, are considered a regional aquifer. 

Mesozoic rocks, mostly consisting of low permeable conglomerate, sandstone, siltstone, 

mudstone, shale, and gypsum, are considered as confining units. Quaternary to Tertiary 

rocks are alluvium and colluvium sediments, and semi-consolidated to consolidated 

sedimentary rocks. Tertiary volcanic rocks are ash-flow tuffs from the Caliente caldera in 

the north-west area of the lower Virgin River Basin. The Tertiary rocks of water resource 
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importance are named the Muddy Creek Formation. The Muddy Creek Formation is 

mostly conglomerate, tuffaceous sandstone, gypsum, halite, and mudstone. 

 The climate in the study area is semi-arid to arid. The topography, seasons, and 

geology of the study area influence the distribution of precipitation and recharge in the 

lower Virgin River Basin. Rainfall distribution is highly orographic - the highest 

elevations in the basin at about 2438 m receive annual precipitation of about 609 mm; in 

contrast the basin floor receives precipitation of about 152 mm (Dixon and Katzer, 2002). 

The annual reference evapotranspiration on the basin floor is about 11 times greater than 

the annual precipitation (CEMP, 2011). Winter precipitation dominates the study area; in 

contrast, summer precipitation is short duration and localized (Glancy and Van 

Denburgh, 1969; Winograd et al., 1998). Additionally, temperatures range in the 

summertime from highs near 40 °C, to wintertime lows below freezing. Therefore winter 

precipitation is considered the most important source of recharge (Friedman et al., 2002). 

Two perennial rivers, the Beaver Dam Wash and the Virgin River, drain the lower Virgin 

River Basin. Potential groundwater recharge sources in the lower Virgin River Basin are 

precipitation in the higher elevations surrounding the basin, interbasin groundwater, and 

stream/river infiltration (Dixon and Katzer, 2002). As shown in Figure 4. 2, the rock units 

are cut through by abundant Cenozoic faulting. Cenozoic faults are believed to be the 

main conduit for movement of groundwater in the study area (Page et al., 2006).  

  

4.3. Materials and Methods 

 This study examined interbasin flow and groundwater-surface water interactions 

by analyzing the chemical solutes (Na, K, SO4, and Cl) and stable isotopic values (δD, 
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and δ
18

O) for six hydrochemical facies of the lower Virgin River Basin (Chapter 3).  The 

chemical solutes and stable isotopic data used in this study are accessible at 

https://spreadsheets.google.com/pub?key=0AkihMREl9PhWdEVDMnIyakRFRUhlYmN

iblJKMXZwUWc&hl=en&single=true&gid=0&output=html. The database comprised 

data from governmental and institutional reports (Glancy and Van Denburgh, 1969; 

Bateman, 1976; Brothers et al., 1993; Enright, 1996; Thomas et al., 2001; CH2M HILL, 

2002); graduate student theses (Metcalf, 1995; Yelken, 1996); the U.S. EPA database 

STORET (U.S EPA, 2009); the U.S. Geological Survey database NWISWeb (U.S 

Geological Survey, 2009); and sampling activities conducted during this study by the 

Virgin Valley Water District (VVWD), Mesquite and the University of Nevada Las 

Vegas (UNLV). The database details including the sources of data and evaluation of the 

analytical data are described in Chapter 2. The database contains 328 samples and 40 

variables. The standard methods for collecting the water samples and analyzing the 

hydrochemical and stable isotopic compositions in the water are described in several 

sources in the hydrochemistry literature (Clark and Fritz, 1997; American Public Health 

Association, 2005) and are not described here.  

 Six hydrochemical facies (clusters) are analyzed in this study. The details of the 

procedures on how the six hydrochemical facies are delineated are found in Chapter 2. 

The class sizes of the clusters 1 through 6 are 25, 26, 59, 53, 45, and 14 respectively. Two 

hundred and twenty two groundwater (wells and springs) and surface water samples were 

partitioned into the six hydrochemical facies. There were 198 groundwater samples and 

24 surface water samples. All 222 samples have measurements for the chemical solutes 

(Na, K, SO4, and Cl), but only 123 samples have measurements for δD and δ
18

O pair. 

https://spreadsheets.google.com/pub?key=0AkihMREl9PhWdEVDMnIyakRFRUhlYmNiblJKMXZwUWc&hl=en&single=true&gid=0&output=html
https://spreadsheets.google.com/pub?key=0AkihMREl9PhWdEVDMnIyakRFRUhlYmNiblJKMXZwUWc&hl=en&single=true&gid=0&output=html


 

91 
 

The spatial distribution and the chemical characteristics of the hydrochemical facies, and 

geology and hydrology information were used to help in interpreting the stable isotopic 

values of the facies.  

The chemical solutes were selected for tracing interbasin flow and interactions 

between groundwater and surface water because, as mentioned previously, in the Great 

Basin region, the concentrations of these solutes increase with longer flowpath and 

residence time (Mifflin and Hess, 1979; Hershey et al., 2010). In this study, it is assumed 

chemical reactions that can sink Na, K, Cl, and SO4 are insignificant. Generally, chloride 

accumulates and remains in solution, as it is not affected by many of the chemical and 

biological reactions that affect other major ions. But sulfate reduction can reduce the 

concentration of sulfate with corresponding increase in the concentration of bicarbonate. 

This reaction is not yet known to occur in the study area. Similarly, potassium may be 

taken up by plants but for this study it is assumed that is insignificant.  

 The stable isotopic value measured is the enrichment composition of the isotopic 

ratios (
2
H/

1
H and O

18
/O

16
) in water relative to the composition of the isotopic ratio in the 

Vienna Standard Mean Ocean Water (VSMOW). The stable isotopic value is expressed 

by the δ notation and in unit of permil (‰) (Clark and Fritz, 1997): 

 1001
tan













dards

sample

R

R
  (1) 

where Rsample  and  Rstandard  are the isotopic ratios of the water sample and VSMOW 

respectively.  

 The stable isotopic values in the hydrological cycle exhibit distinctive spatial and 

temporal variation, which account for their use is tracing the hydrological cycle. The 

variation of the isotopic values in precipitation is due to fractionation accompanying the 
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phase changes in the water cycle (Gibson et al., 2005).  Fractionation occurs in all 

condensation processes and in the evaporation of well mixed liquid water in the 

hydrological cycle because the volatility of the lighter isotopes (
1
H and 

16
O) is much 

higher than that of the heavy isotopes (
18

O and 
2
H) (Dansgaard, 1964). In general, 

fractionation of the isotopic composition of precipitation is controlled by a number of 

processes including temperature (altitude, latitude), seasonal variation, distance from 

vapor source and evaporation (Dansgaard, 1964). But in the groundwater saturated zone 

fractionation of the stable isotopes of water generally does not occur. Therefore δ
18

O and 

δD of groundwater commonly behave conservatively in the saturated zone. In rare cases 

the stable isotopes of oxygen and hydrogen may exchange with rocks (particularly 

carbonate) and gases (H2S, CO2) in the saturated zone and the isotopic exchange rate 

increases in geothermal environments. Also in shallow groundwater conditions, 

evaporation can fractionate the stable isotopes of water.  In the study area, the desert 

region of the southwestern United States, high stable isotope values empirically correlates 

with warmer lower elevation precipitation, but low stable isotopic values empirically 

correlates with cooler high elevation precipitation (Blasch and Bryson, 2007).  In this 

study, the stable isotopic values of δD and δ
18

O of are used to trace interbasin 

groundwater flow to the lower Virgin River Basin and interactions between groundwater 

and the Virgin River. 

 

4.3.1. Statistical and graphical analyses of stable isotopic and solutes data 

 The stable isotopic data of the hydrochemical facies (six clusters) are analyzed 

using histograms, bivariate and linear/non-linear regression analysis, Spearman 
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correlation coefficient, box-and-whisker plots, and Wilcoxon Rank Sum test. The solutes 

(Na, K, SO4 and Cl) are analyzed using box-and-whisker plot. Using these analytical 

techniques the hydrogeologic environment and the recharge, mixing, and residence time 

information are extracted from the hydrochemical facies. The results are interpreted to 

support or reject the hypotheses of interbasin groundwater flow and the interactions 

between the groundwater and surface water.  

 All the statistical analyses are performed using the statistical program R (R 

Development Core Team, 2010). A histogram is used to analyze the distribution of the 

δD and δ
18

O data to study the hydrogeologic conditions in the study area. For each 

cluster, the δD is plotted against δ
18

O, and δD regressed over δ
18

O to characterize the 

recharge and mixing conditions of the distinct clusters.  The method of least-squares is 

used to fit the best regression line to the sub-datasets and to test the hypotheses about the 

parameters of the linear regression model fitted. The hypotheses of the parameters are 

tested at the 95% confidence level. Because of the sensitivity of the regression model to 

outliers, outliers and outlying points influencing the regression were checked using 

leverage (hat) and Cook’s distance values. A point with hat values greater than 2 * p / n 

(p = 2 (number of variables) and n = number of samples/cases) was considered a potential 

outlier and removed if Cook’s distance value is greater than or equal 1 (Logan and 

Logan, 2010). The gradient and the intercept parameters of the regression equation are 

estimated such that the sum of residuals is the minimum. The box-and-whiskers plots of 

the solutes (Na, K, SO4, and Cl) and the stable isotopic values (δ
18

O and δD) are used to 

trace the movement of subsurface water to and within the lower Virgin River Basin. The 

Wilcoxon Rank Sum test (also called Mann-Whitney test) is used to test whether two 
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hydrochemical facies proposed to be hydraulically connected are statistically ‘truly’ 

connected by flowpath.  

 The Wilcoxon Rank Sum test is non-parametric and so does not require the data 

of the two hydrochemical facies to be normally distributed. The Wilcoxon test examines 

whether the two hydrochemical facies come from the same population. Two 

hydrochemical facies are from different population if the resulting p-value for the 

Wilcoxon test is less than 0.05 (Reimann et al., 2008). Alternatively, the two 

hydrochemical facies are from the same population if the resulting p-value for the 

Wilcoxon test is equal to or greater than 0.05 (Reimann et al., 2008). 

 

4.4. Results 

4.4.1. Hydrochemical facies 

 As shown in Figure 4. 3, the study area is characterized, on the basis of the major 

ion chemistry, into six hydrochemical facies (Chapter 3). The hydrochemical facies 

superimposed on a digital elevation model (DEM) reveal that the facies are coherent in 

the geographic space. On the basis of the chemical character and spatial distribution of 

the hydrochemical facies (clusters) as well as the information about the distribution and 

amount of rainfall received in the study area, the facies are characterized as source or 

discharge end member waters (Chapter 3). Facies 1 and 2 are characterized as source 

end-member, facies 4, 5, and 6 are characterized as discharge end member, and facies 3 

consist of the floodplain groundwater discharge and the Virgin River water. The chemical 

character of the major groundwater types are described as Ca-Mg-HCO3 (clusters 1), Ca-
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Na-Mg-HCO3 (cluster 2), Ca-Na-Mg-SO4-Cl (cluster 3 and Virgin River), Na-Ca-SO4-

HCO3 (clusters 4 and 5), and Ca-Mg-SO4-HCO3 (cluster6). 

 

4.4.2. Stable Isotopic Data 

 Distribution of isotopic values of the study area is non-normal, unimodal, and has 

a large range. For the pairs of δD and δ
18

O data of the groundwater and surface water (n 

=123), the δD values range from -109‰ to -70‰ and the δ
18

O values range from -14.6‰ 

to -6.7‰ (Figure 4. 4). The wide variation of the stable isotopic values suggests fracture 

controlled groundwater flow with limited mixing. Also the mean δD distribution is 

influenced by a few very low δD values (median = -94.00, mean = -94.49) and mean δ
18

O 

distribution is influenced a few very high δ
18

O values (median = -12.80, mean = -12.49).  

 The bivariate δD - δ
18

O plot (Figure 4. 5) shows that generally groundwaters of 

clusters 1 and 2 plot along the Craig’s meteoric waterline (Craig, 1961) commonly called 

the global meteoric waterline (GMWL); however, groundwaters of clusters 3, 4, 5, and 6 

plot to the right of the meteoric line (Figure 4. 5). On the δD - δ
18

O plot, the clusters are 

intermingled so that it becomes difficult to differentiate the clusters. However, differing 

patterns emerge when the δD is regressed on δ
18

O for each cluster (Figure 4. 5). Note that 

in cluster 6, only one sample had stable isotopic values; therefore cluster 6 has no 

regression line. The regression coefficients with their respective errors and statistically 

significant values for the individual hydrochemical groups are shown in Table 4.1 . 

Coefficients estimated for the models are reliable as the sub-datasets of the clusters 

contain no influential data points (Cook’s distances < 1). The gradients of the regressions 

of all the clusters are lower than the gradient of the meteoric water line (mathematically: 
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δD = δ
18

O + 10). Clusters 2 and 3 have the largest and the lowest gradients respectively. 

Statistically the gradients of groundwaters of clusters 4 and 5 are the same, but different 

from the gradients of groundwaters of clusters 1, 2, and 3. Clusters 2, 4, and 5 appear 

diverging from a common point on the GMWL. The regression lines cross the GMWL at 

different points and in studies elsewhere the δD and δ
18

O values of the intersection point 

has been interpreted as the average of the isotopic values of the precipitation recharging 

the groundwater (Clark et al., 2000). Cluster 1 and the GMWL meet at δD = -91.63 ‰ 

and δ
18

O = -12.70 ‰. Cluster 2 intersects the GMWL at δD = - 108.67 ‰ and δ
18

O = -

14.83 ‰. Cluster 3 crossed the GMWL at δD = -99.13 ‰ and δ
18

O = -13.64 ‰ and 

cluster 4 crossed the GMWL at δD = -108.86‰ and δ
18

O = -14.86 ‰. The cluster 5 

intersects the GMWL at δD = -110‰ and δ
18

O = -15‰. The point where the cluster 1 

intersects the GMWL has the most enriched stable isotopic values. Progressively, the 

isotopic values of the intersected points decrease in the order of cluster 1, cluster 3, 

cluster 2, cluster 4, and cluster 5. Thus the intersection point of cluster 5 has the most 

depleted isotopic values.  

 The relationships between δD versus Cl and δ
18

O versus Cl for the clusters were 

analyzed using the scatterplot function in the ‘car’ package and the Spearman rho (ρ) 

correlation test function (significant level p < 0.05). From Figure 4. 6, there is no 

significant trend between δD and Cl for cluster 1 (ρ = 0.245, p = 0.379), clusters 2 (ρ = -

0.069, p = 0.778), cluster 4 (ρ = -0.076, p = 0.67), and cluster 5 (ρ = 0.380, p = 0.081). 

However for cluster 3, increasing concentration of Cl is weakly but significantly related 

with increasing δD values (ρ = 0.408, p = 0.020). Also, Figure 4. 6 shows three 

groundwater groups: low salinity and high δD water (cluster 1 and 2); low-medium 
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salinity and low δD water (cluster 4 and 5); high salinity and high δD water (cluster 3). In 

contrast to the δD values, the δ
18

O values do not differentiate the clusters (Figure 4. 7). 

As shown in Figure 4. 7, no significant trends is observed for the plot δ
18

O versus Cl for 

the clusters except for cluster 5 where a significant but a weak relationship is found (ρ = 

0.580, p = 0.005) and cluster 3 (ρ = 0.578, p = 0.000). The δ
18

O versus Cl correlation for 

cluster 5 is accidental as will be explained later. Remarkably for cluster 3, both δD versus 

Cl and δ
18

O versus Cl are significantly related.  

 Figure 4. 8 shows remarkable differences in the δD values of the clusters. 

Comparing the median δD values among the hydrochemical facies, clusters 4 and 5 have 

contrastingly low δD values. With the exception of cluster 6, the median values of cluster 

1, 2, and 3 are above the upper quartile (75th   percentile) of clusters 4 and 5 signaling 

that the δD values of clusters 4 and 5 may be significantly different from clusters 1, 2, 

and 3 (Figure 4. 8). The δD value of cluster 6 lies within the Interquartile Range (IQR) of 

the boxes for clusters 4 and 5. Wilcoxon Rank Sum test shows significant difference 

between the median δD value of the discharge end member waters (clusters 4 and 5) and 

the recharge end member waters—cluster1 (p = 0.00) and cluster 2 (p = 0.01). Also 

Wilcoxon test shows significant difference between the median δD value of the 

floodplain-Virgin River group (cluster 3) and cluster 4 and 5 with which cluster 3 likely 

interact with (p = 0.00). No significant difference is found between the median δD values 

of the two recharge end member waters (p = 0.18). 
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Table 4. 1. Linear regression coefficients of stable isotopic values characteristic of 

clusters 

Clusters Slope ± error  Intercept ± error  Linear model R-

Squared 

Correlation 

1 5.3 ± 0.5  -24.3 ± 6.6  0.881 

2 7.4 ± 0.8      1.1 ± 10.5 *  0.999  

3 4.1 ± 0.3  -43.2 ± 3.4  0.880  

4 5.9 ± 0.4  -21.2 ± 5.7 0.848 

5 6.2 ± 0.4  -17.0 ± 5.4  0.919 
Coefficients are significant at P<0.05. 

Coefficient marked * is not significant 

The linear model R-squared correlation is interpreted as the variance of δD explained by δ
18

O  

 

4.4.3. Hydrochemical solutes (Na, K, SO4, and Cl) 

 Box-and-whiskers plot and Wilcoxon Rank Sum Test are used to compare the 

clusters characterized as recharge and discharge end member waters and the surface 

water-floodplain group (cluster 3). Median concentrations of the solutes Na, K, SO4, and 

Cl are relatively larger for the discharge end member waters than concentrations for the 

recharge end member waters. Recharge end member waters have similar concentrations 

of Na (p = 0.96), but significantly different concentrations of K (p = 0.00), SO4 (p = 

0.00) and Cl (p = 0.01). Groundwater of cluster 1 has relatively higher SO4 and Cl 

concentrations than groundwater of cluster 2. Cluster 2 has higher K concentrations than 

the concentrations of cluster 1. Among the designated discharge end-member, cluster 6 

has the largest concentrations of all the selected ions except for potassium. Also 

concentrations of the solutes of cluster 4 are relatively larger than and significantly 

different (p = 0.00) from the concentrations of cluster 5. For the selected ion 

concentrations, cluster 3 have the lowest variance comparing to the other clusters. The 

relatively wide variation of concentration for the groundwater groups is evidence of 

fracture controlled groundwater flow. 
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4.5. Discussion  

 Generally, modern precipitation data plot on the global meteoric water line 

(Craig, 1961). However in arid regions, the stable isotopic compositions of precipitation 

often plot to the right of the global meteoric water line (GMWL) as a result of a 

modification of the stable isotopic compositions by local climatic conditions (Gat, 1971). 

Furthermore, recharge processes can modify the stable isotopic composition of 

precipitation so that the isotopic compositions of groundwater become different from 

those of the source precipitation. The results of this study indicate that partially 

evaporated precipitation recharges groundwater in the lower Virgin River Basin. 

Evaporation prior to recharge is inferred from the plotting of most of the hydrochemical 

samples to the right of the GMWL. However, other processes and conditions including 

rock and water interactions and subsurface high temperature can affect the stable isotopic 

compositions of the groundwater as are discussed below. The use of the GMWL in this 

study is justified because winter precipitation, the dominant source of recharge 

(Winograd et al., 1998; Lachniet et al., 2011) in the Great Basin (southern Nevada), plot 

close to the GMWL (Friedman et al., 2002). Also remarkably stable isotopic values of 

nine drip water of Pinnacle Cave in southern Nevada fall on the GMWL (Lachniet et al., 

2011). 

 The results of this study provide a basis for diagnosing interbasin groundwater 

flow to the lower Virgin River Basin. One interesting finding, based on the gradients of 

the regression lines of the clusters, is that evaporation has affected the different clusters 

to different extents. Comparing the discharge end member waters (cluster 4 and 5) to the 
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recharge end member waters (cluster 1 and 2), cluster 1 is more affected by evaporation 

and cluster 2 is less affected by evaporation prior to infiltration and percolation. This 

finding does not support cluster 1 or 2 as the dominant sources supplying water to 

clusters 4 and 5. The interpretation is based on the assumption that evaporation is the 

only dominant process affecting the stable isotopic compositions and no subsurface 

exchange reactions are occurring. It is noted that other processes may complicate this 

interpretation. Despite the differences in evaporation, the intersection points of the 

regression line of clusters 2 is closest to the intersection points of the clusters 4 and 5, 

indicating the approximate oxygen and hydrogen isotopic compositions of the 

precipitation recharging these three groups are similar.  

 Additional information to diagnose interbasin flow is provided by results from the 

analysis of the chemical solutes data and further analysis of the stable isotopic data. The 

relative differences in the selected ion compositions of the hydrochemical facies indicate 

that the recharge end member waters are younger than the discharge end member waters. 

All other factors being equal, a longer flowpath has relatively higher concentrations of 

the selected major ions than a shorter flowpath. The solute data support groundwater 

movement from cluster 1 or 2 to cluster 4 or 5; however the hydraulic connection 

between these recharge end member waters and the discharge end member waters cannot 

be supported by their stable isotopic data. The box-and-whiskers plot analyses indicate 

clusters 1 and 2 are not the dominant source of water for clusters 4 and 5. The deuterium 

isotopic values of the source waters are high and significantly different from the low 

isotopic values of the discharge waters. This difference indicates that interbasin 

movement of groundwater from Clover Valley or Escalante Valley to the Virgin River 
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Basin, or the intrabasin recharge in the lower Virgin River Basin cannot alone account for 

discharge groundwater in the lower Virgin River Basin. The significant difference 

between the recharge and discharge waters indicate that, even in a mixing case, the 

contribution from the recharge end member waters are smaller.  

 In contrast to the significant differences in deuterium isotopic values observed, 

the oxygen isotopic values of the source waters do not differ from the oxygen isotopic 

values of the discharge waters. This may indicate that the oxygen isotopic values of the 

discharge waters have shifted to more positive values approaching those of the discharge 

end member waters. This observation points to rock and water interactions leading to 

exchange of oxygen isotopic values of the groundwater with the isotopic values of the 

rocks. Groundwater oxygen isotopic values exchanges with the oxygen isotopic values of 

the aquifer media when the temperature in the hydrogeologic environment is higher and/ 

when the residence time of the water is longer (Clayton et al., 1966; Gat, 1971; Pearson 

et al., 1991). This explanation is possible for water flowing though the deep carbonate 

aquifer. Because the deep carbonate aquifer flow is regional, the residence time of the 

groundwater is longer, hence the potential for isotopic exchange reaction exist. Previous 

studies also recognize the possibility of δ
18

O exchange between the groundwater and the 

deep carbonate aquifer (Winograd and Friedman, 1972; Thomas et al., 2001; Smith et al., 

2002). Studies using δ
18

O data alone have to be re-evaluated (Davisson et al., 1999b). An 

alternative explanation for the lack statistically significant difference between the oxygen 

isotopic values of the clusters is that, the variation of oxygen isotopic composition in 

natural water is small and is explained by the small mass difference between 
18

O and 
16

O 

isotopes (Ferronsky and Polyakov, 1982). In contrast, deuterium varies widely in natural 
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water because mass the difference between deuterium and protium is large; therefore in 

natural processes, the separation of deuterium and protium is more effective.  

 A previous study has identified the Ash, Crystal, and Hiko Springs as discharging 

from the deep carbonate aquifer (Thomas et al., 1996). These springs are located in the 

northwest of the lower Virgin River Basin and in the Colorado flow systems, of which 

the lower Virgin River Basin is part. Therefore δD values of these springs (Hershey et al., 

2010) are used in this study to represent the deep carbonate aquifer source to the lower 

Virgin River Basin. The springs have median δD value equal to -109.0‰. The median 

value of cluster 1 is -87.0‰, cluster 2 is -93.0‰, cluster 3 is -93.0‰, cluster 4 is -

98.25‰, and cluster 5 is -101.50‰. It is evident that the discharge in the lower Virgin 

River Basin is mixing between intrabasin and interbasin sources. Mixing calculations 

results show that 51-66% deep carbonate aquifer source mixing with 34-49% intrabasin 

source account for the discharging cluster 4 or 5. Also mixing calculations results show 

that 33-53% deep carbonate aquifer source mixing with 47-67% interbasin source from 

the Clover or Escalante Desert Valley account for the discharging cluster 4 or 5. 

 Information extracted from hydrochemical and stable isotopic data provide 

evidence to support interactions between the floodplain aquifer and the Virgin River. 

However the interaction of the Virgin River and Muddy Creek Formation aquifer is not 

supported. The Virgin River samples group with the groundwater samples located along 

its’ course (floodplain aquifer) and together they formed cluster 3. The groundwater in 

the study area has very diverse stable isotopic values. The variability in stable isotopic 

values is explainable by altitude, latitude, evaporation, isotopic exchange reaction, or 

mixing and fracture controlled groundwater flow. However, cluster 3 consisting of the 
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floodplain water and Virgin River water has a relatively small spread. This means that the 

Virgin River with floodplain aquifer water is well mixed compared to the Muddy Creek 

aquifer groundwater. Also the Virgin River with floodplain aquifer water samples are 

significantly evaporated compared to the groundwater samples. The evaporation of 

surface waters in arid regions is a well known process. However for this study, the 

groundwater chloride concentration increases due to dissolution reactions, hence the lack 

of correlation between isotopic compositions and chloride concentration. When the 

regression lines are extrapolated to the GMWL the average isotopic values of recharge 

water for the different hydrochemical facies are inferred. However, the isotopic values of 

the discharge waters are lower than the actual values due to the oxygen isotopic exchange 

reaction in the groundwater aquifer system. 

 

4.6. Conclusions 

 Data analyzed in this study support that at least 50% of water in the lower Virgin 

River Basin is derived from interbasinal sources. Groundwater in the lower Virgin River 

Basin is a mixture of groundwater of the deep carbonate aquifer or the Clover and 

Escalante Valleys and recharge derived from precipitation in the lower Virgin River 

Basin. Low stable isotopic values and high solutes concentrations of the discharge waters 

indicate contribution of the regional groundwater source. Also, if one has to analyze only 

a single isotopic parameter, δD parameter should be preferred to δ
18

O. 

 This study did not answer the hypothesis that the discharge water is paleowater. 

Also the carbonate-water δ
18

O exchange reaction has been suggested in this study and 

needs to be further investigated. The carbonate-water δ
18

O exchange reaction inferred in 
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this study has a serious implication for studies using δ
18

O to interpret flow systems. We 

conclude that to use δ
18

O data for studying flow systems, δ
18

O values are to be adjusted 

for the carbonate-water δ
18

O exchange reaction. Finally, the procedures described in this 

study can be used to investigate flow systems in other intermountain basins.  
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Figure 4. 1. Physiography (A), Location (B), and simplified geology map (C) of the lower 

Virgin River Basin and the adjacent basin areas. The geologic map is modified after 

GBCGE (2005) 
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Figure 4. 2. Geologic cross-section along the line A—A' on the geology map. Modified after Page et al. (2006). 
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Figure 4. 3. Hydrochemical facies in geographic space (DEM) for the lower Virgin River 

Basin (Chapter 3). Note, there are coinciding sampling points due to the small scale of 

the map. The red lines are faults (Page et al., 2005; Dixon and Katzer, 2002). 
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Figure 4. 4. Distribution the available δD and δ

18
O data in the study area 
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Figure 4. 5. δD and δ

18
O of the hydrochemical facies (clusters 1 to 5). Lines are 

regressions fitted to facies 1 to 5 (dashed, point, point dash, double dash, and two dash 

respectively). The only inverted triangle is stable isotopic values of cluster 6. Black line 

(continuous) is the GMWL (Craig, 1961). 
 



 

 110 

 
Figure 4. 6. δD  and logCl relationship (linear and non-parametric regressions) of the 

hydrochemical facies (clusters) 



 

 111 

 
Figure 4. 7. δ

18
O  and logCl relationship (linear and non-parametric regressions) of the 

hydrochemical facies (clusters) 



 

 112 

 
Figure 4. 8. Box-and whiskers plot of δD values of the hydrochemical facies 
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Figure 4. 9. Box-and whiskers plot of δD values of the hydrochemical facies 
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Figure 4. 10. Relative concentrations of selected solutes in the hydrochemical clusters 
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CHAPTER 5 

 

DISSERTATION SUMMARY 

5.1. Summary 

 The following is a summary of this dissertation. It covers the aspects of describing 

the major accomplishments of each section of the work, and continues on to describe the 

hydrogeologic ramifications of the findings. 

 The first section of this work introduced integrated methodology for establishing 

optimum hydrochemical facies in a groundwater basin, combining clustering techniques 

with Multiple Discriminant Function Analysis and measures of association. The method 

also allows quantitative analysis of the effect of data transformation, analytical error, and 

data outliers. The method was applied to the lower Virgin River Basin, which lies on the 

border of the States of Nevada, Arizona, and Utah in the United States. 

 In the second study, the clusters were characterized as source or discharge end-

members based on their chemical character. Aqueous geochemical modeling was used to 

simulate the progression of chemical evolution in the lower Virgin River Basin. The data 

used for the modeling included the source end-members located near the Clover 

Mountains front, in the deep carbonate aquifer, and in the Clover/Escalante Valley. Also 

mineralogical phases were deduced from geologic information and compositional plots of 

major ions. 

 In the third study regression analysis, histograms, box-and-whisker plots, Pearson 

correlation. and Wilcoxon Rank Sum Test were used to decipher the physical recharge 

processes from stable isotopic values for source and discharge end-members, which were 
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then correlated to test hypotheses of interbasin groundwater flow to the lower Virgin 

River Basin, and interactions between groundwater and the Virgin River.  

 Discernible relationships exist between the hydrochemical facies (clusters 1 

through 6) and the topography, geology, climate, and basin characteristics (Figure 3.1, 

Figure 3.2, and Figure 3.5). An optimal number of six hydrochemical facies were 

identified and a general progression of facies from north to south, from source to 

discharge, were consistent with topographic, basin characteristics (depth of basin-fill 

sediments and length), climatic, stratigraphic, and structural elements of the study area. 

The general trend is that Cluster 1 (Mountain Front – e.g. upper Beaver Dam Wash, 

upper Tule Basin, Meadow Valley basin) and Cluster 2 (silicic ashflow and volcanic 

clastics – e.g. northern uplands) are considered recharge/ source areas, in addition to any 

potential upwelling from the deep carbonate aquifer. Discharge is represented by Clusters 

4, 5, and 6 (basin-fill sediments and/or fault controlled flow – i.e. dominantly central 

Beaver Dam wash, Tule Basin, Muddy river drainage), Detailed geologic structures and 

basin characteristics information available for this study are for only the lower Virgin 

River Basin, the focus of the study. Therefore, interpretation of structural control on 

groundwater flow for other basins is based on extrapolation from that in the lower Virgin 

River Basin. The correlation of the patterns of the hydrochemical facies to the elements 

listed above provides information for selecting suitable sites for water development, 

protection of water resources and ecosystem, and urban/regional planning. The 

hydrochemical facies display spatial coherence which indicates the physical and chemical 

state of the water as influenced by these elements of the hydrogeologic environment.  
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 The lower Virgin River Basin receives different amounts of precipitation, (and 

correspondingly different amounts of potential recharge), which is generally correlated to 

topographic elevation and/ or shows a latitudinal distribution. The north boundary of the 

lower Virgin River Basin and beyond receives more precipitation than the locations 

below this boundary. Generally, in the Great Basin region average annual precipitation in 

the north Valley locations is about 241 mm, but the southern locations receive 

precipitation of about 101 mm (Hershey et al, 2010). These climatic differences influence 

the spatial distribution of the source end-member and discharge end-member waters 

(Figure 3.5). The areas of higher elevation and high latitude receive more precipitation 

than the basin floor and low latitude areas. While this is a general trend, there are 

exceptions. For example, in the lower Virgin River Basin two samples from a source end-

member (cluster 2) are located in the basin floor. The occurrence of these two source end-

member water samples in the basin floor/low latitude of the lower Virgin River Basin, 

can be interpreted as resulting from their location in an area of highly faulted major 

washes (Figure 3.5) (Dixon and Katzer 2002; Page et al., 2005) that can transmit 

groundwater to the water table. In spite of some exceptions, general trends throughout the 

basin, from recharge to outlet, can be recognized. 

 The topography, depth of basin-fill sediments, and length of basin control the 

distribution of the source and discharge end-member waters. Generally, groundwaters at 

the higher elevations north of the lower Virgin River Basin are interpreted as source end-

member waters and that at the lower elevations or basin floors can be considered 

discharge end-member waters. Also, groundwater samples from locations near the lower 

Virgin River and lower Muddy River to the east, show a distinct hydrochemical signal 
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(cluster 3), which is interpreted as part of a floodplain aquifer, and have hydrochemistry 

similar to river water quality.  

 The size and depth of basin fill sediments influences flowpath, water quality and 

consequently the way facies are distributed.  This can be seen in comparing the basin 

characteristics of the large and deep lower Virgin River Basin to other, smaller basins. 

For example, topographic influence on the pattern of hydrochemical facies generated is 

greater in basins with considerable length and basin-fill sediments. Within basins, 

particularly large basins, sub-patterns can exist. In the lower Virgin River Basin, the 

source end-member, intrabasin water (cluster 1) is located at or near the mountain front. 

Basins with considerable basin-fill sediments exhibit the interbasin discharge end-

member water (clusters 4, 5, and 6). This observation is in line with the concept of 

regional groundwater flow (Toth, 2009).  

 The patterns of the hydrochemical facies correlate with the stratigraphy and fault 

systems. On the basis of the stratigraphy, the two source end-members waters (cluster 1 

and 2) can be differentiated. Cluster 1 tends to be located in areas of carbonate rocks or 

alluvium close to mountains, and cluster 2 is located in the silicic ash flow and 

volcaniclastics rocks, as mentioned earlier. The discharge source end-member waters are 

located in the basin-fill sediments and on or closer to fractures (Figure 3.2 and Figure 

3.5). For example in the lower Virgin River Basin four samples of the discharge end-

member water (cluster 4) are located in the vicinity of a major fault known as the 

piedmont fault (Figure 3.2 and Figure 3.5). Similar major faults are observed between the 

East Mormon Mountain and Tule Spring Hills where some samples of the end-member 

discharge waters are located. Also, within major faults and dense fracture zones of 
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smaller faults north of the Virgin River, abundant samples of the discharge end-member 

waters comingle. These observations are supporting evidence that the fractures are the 

main conduit for discharging regional groundwater in the basins.  

 Also these observations underpin the complexity of the flow systems. 

Groundwater in lower Virgin River Basin more likely occurs from mixing lateral flowing 

intrabasin water and upwelling interbasin water of significant proportion > 50%, as 

described in previous chapters. This explains why the same hydrochemical facies are 

located over considerable lateral distance in the basin floor in the lower Virgin River 

Basin. 

 The chemistry of the hydrochemical facies is the result of subsurface water 

interactions with reactive mineral phases of aquifer materials. In the study area, three 

potential sources of water replenishing the groundwater in the lower Virgin River Basin 

have been identified. Two of these have been identified as interbasin source (cluster 2 

and the deep carbonate aquifer) and the other is identified as intrabasin water (cluster 1).  

 The source end-members are bicarbonate waters with relatively low TDS, Cl, and 

Na/Ca ratio. The three potential source waters are described as Ca-Mg-HCO3 water 

(cluster 1), Ca-Na-HCO3 (cluster 2) and Ca-Mg-HCO3 (Carbonate aquifer). The sodic 

and calcic characters are interpreted in terms of geologic formations where infiltration 

and recharge took place. Compositional plots indicate that the intrabasin source (cluster 

1) dissolves halite (sodium chloride), gypsum, calcite, and dolomite. The interbasin 

source in the Clover Valley/Escalante Valley (Cluster 2) dissolves albite in the silicic ash 

flow and volcaniclastics, and sodium chloride and gypsum in the soil cover during 
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infiltration. In the carbonate aquifer, the regional interbasin flow dissolves calcite, 

dolomite, and minor minerals like gypsum and halite.  

 Although four springs in Cluster 2 are located in the lower Virgin River Basin at 

the Clover Mountains, the ensemble group of Cluster 2 wells and springs can still be 

considered an interbasin source.  These four exceptions commonly have small flow rates 

(Hershey et al., 2010) and so are not considered an important source of recharge to the 

lower Virgin River Basin. Therefore, it is logical to label the source end-member water 

(cluster 2) primarily as interbasin source recharged in the silicic ash flow and 

volcaniclastics rocks in the Clover Valley or beyond. 

 The aquifer along the Virgin River, which in this study is designated as the 

floodplain aquifer, is interpreted to be in strong hydraulic interconnection with the Virgin 

River as indicated by the similarity of the chemistry and TDS of the two waters. Based on 

the results of the hydrochemical data analyses no link is recognized between the Virgin 

River/Floodplain aquifer and the Basin-fill Aquifer. 

 The discharge end-members (cluster 4, 5, and 6) have relatively higher TDS and 

Cl concentrations than source waters. The combined higher TDS and Cl are interpreted as 

resulting from a long flowpath through the deep subsurface. Discharge end-members are 

described as Na-Ca-SO4-HCO3 (cluster 4), Na-Ca-HCO
 
3-SO4 (clusters 5), and Ca-SO4 

(cluster 6). The Na/Ca ratio is relatively high (Figure 3.7) for all discharge waters (except 

cluster 6) and is interpreted as resulting from increasing flowpath and subsequent calcite 

saturation. The discharge end-members evolution follows two pathways. In one pathway, 

carbonate groundwater mixes with groundwater in the Clover/Escalante Valley as they 

both flow southwards towards the Virgin River. For the other pathway, carbonate mixes 
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with intrabasin source end-member water (cluster 1). The reactions that occur are 

dissolution of dolomite, halite, gypsum, and k-feldspar, Na/Ca ion exchange, and 

precipitation of calcite, quartz, and kaolinite. Reactions for the second pathway are 

dissolution of halite, albite, and gypsum, Ca/Na ion exchange, and precipitation of 

dolomite, calcite, quartz, and kaolinite.  

 The findings of this study have implications for water resources development, 

planning, and management for the region, including   

1. the study supports the possibility of groundwater upwelling,  

2. the research indicates enhanced flow in faults/fractures,  

3. the findings lend evidence that basin depth is important to regional flow,  

4. this work finds mineral supersaturation of groundwater is prevalent and may 

affect the long term permeability of fractures, and 

5. the results indicate that cluster 6 is different than other discharge waters 

(specifically with regard to TDS concentration and dissolved major ions) and 

perhaps could be influenced by anthropogenic activities. 

This study provides supporting evidence that a significant proportion (over 50%) of the 

groundwater in the basin-fill aquifer of the lower Virgin River Basin is either from 

interbasin water upwelling through the deep carbonate aquifer, and/or from interbasin 

groundwater recharged in the Clover Valley transmitted through faults in the Clover 

Mountains. Two elements tend to control the discharge of deep interbasin groundwater - 

fractures and deep basin depth as clearly observed in the lower Virgin River Basin. 

Groundwater in the basins becomes quickly saturated to supersaturated with calcite and 

dolomite during recharge. A supersaturation state has implications for aquifer 
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permeability because precipitation of calcite or dolomite reduces the fracture space for 

groundwater movement. The discharge water (cluster 6) is chemically unrelated to the 

other discharge groundwaters (clusters 4 and 5). Anthropogenic activities such as mining 

or farming may be influencing this water quality, but presently there is no ground 

verification for this assertion.  

 What is clear is that much of the recharge to the lower Virgin River Basin occurs 

at the lower Virgin River Basin north bordering mountains and Valleys. For the study 

area, groundwater recharge tends to be strongly controlled by climate and topography, 

and groundwater discharge tend to be controlled by the depth of basin-fill sediments and 

fractures.  In future studies, radioisotopic analysis, trace element hydrochemistry, and 

examination of chemicals related to anthropogenic activities can further test 

interpretations made herein. With increasing population and prosperity in the region, and 

a commensurately greater demand for water, an increasing clear understanding of 

groundwater sources and movement will be critical for water planning and management. 
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