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ABSTRACT 

 

An Experimental Investigation of Chemical Mass Transfer Processes in 

Crystallizing, Hydrous Silicate Magmas: The Genesis of Ore Deposits 

 and Metasomatic Fluids 

 

by 

 

Aaron S. Bell 

 

Dr. Adam Simon, Examination Committee Chair 

Assistant Professor of Geology 

University of Nevada, Las Vegas 

     This dissertation is comprised of three broadly related experimental petrology 

projects on phase equilibria and noble metal solubility in hydrous silicate melts. 

Chapters two and three combine experimental petrology with high precision laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of 

experimental run products in order to quantitatively constrain the behavior of the 

investigated metals. Chapter four presents experimental evidence detailing a novel 

oxidation mechanism for degassing silicate liquids as well as exploring the geochemical 

consequences of the proposed mechanism. 

     Chapter two presents the results of an experimental study on Au, Pt, and Pd behavior 

in coexisting silicate melt-sulfide-oxide phase assemblages. Data from this study 

suggest the combined effect of oxygen and sulfur fugacity dictates the identity of stable 

magmatic sulfide phase assemblages, as well as dictating the concentration of Pt and Pd 

in monosulfide solid solution; both of these factors are critical components that 

determine metal tenor and the ore-deposit forming potential of a given magma.  

      Chapter three presents an experimental study of Au solubility in hydrous, chloride 

rich basaltic liquids as a function of oxygen fugacity (fO2). LA-ICP-MS determined Au 



 

 

iv 

 

concentrations in the quenched melt do not strictly adhere to the relationship between 

fO2 and Au solubility predicted for a monovalent Au oxide species. The observed 

relationship between Au and fO2 suggests the existence of alternative, non-oxide species 

in the melt. The solubility data presented in this chapter constrain the maximum Au 

concentration of natural hydrous basaltic liquids to values less than 2 µg g
-1

. 

    Chapter four presents experimental evidence suggesting a new mechanism for 

chloride degassing induced auto-oxidation of silicate liquids. The chemical exchange 

between silicate melts and chloride bearing fluids preferentially removes ferrous iron 

from the melt relative to ferric iron. The net effect of this preferential scavenging effect 

is to enrich the residual melt in ferric iron, increasing the melt’s intrinsic fO2. 

Dynamically changing magmatic oxygen fugacities profoundly affect the stability 

liquidus silicate phases in addition to potential sulfide phases involved in ore forming 

processes.  
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CHAPTER ONE 

DISSERTATION OVERVIEW 

Fundamental Dissertation Objectives 

     The formation of magmatic-hydrothermal ore deposits is intimately related to 

fundamental magmatic differentiation processes such as crystal fractionation of oxide, 

sulfide, and silicate phases or the exsolution of magmatic volatile phase(s), and auto-

oxidation processes. The collective effects of magmatic oxygen fugacity (fO2), sulfur 

fugacity (fS2), melt alkalinity, and the chemical identity of dissolved volatile phases 

ultimately define the volatility of a given metal species dissolved in a silicate liquid. As 

such, the ore forming potential of a given magmatic systems is fundamentally related to 

all of these variables. Despite these generalizations, many aspects of the distillation 

process that amplifies (often by orders of magnitude) the naturally diffuse ore-metal 

concentrations remain controversial and poorly understood.  

     Detailed experimental investigations of the solubility and partitioning behavior of 

ore metals are required in order to construct quantitative models that will ultimately 

predict the behavior and evolution of ore metal concentration in natural magmas. In the 

spirit of producing experimental data to be applied to this end, this study broadly 

examines the effects of fO2, fS2, variable magmatic phase assemblages, and chloride 

bearing aqueous fluids on ore-metal behavior in synthetic magmatic systems.  

  

The Application of Novel Analytical Techniques 

 To Established Problems 

     Much of the novelty and utility of this experimental work lies in the application of  
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state of the art laser ablation inductively coupled plasma mass spectrometry (LA-ICP-

MS) in quantifying the extremely low noble metal content of the quenched experimental 

melts and crystalline material. This analytical method provides distinct advantages over 

the bulk and micro-analytical methods employed in previous studies of the behavior of 

noble metals in silicate liquids. The high degree of spatial resolution and low limits of 

detection inherent to the technique offer unique insight to subtle variation in noble 

metal concentration as a function of the depth of the ablation crater as well as allowing 

the analyst to discriminate between equilibrium metallic alloy or sulfide phases and 

pristine quenched melt. 

     With application of this technique, the origin and consequences of the widely 

recognized ―nano-nugget‖ problem have been explored. The nanonugget effect has 

significantly hampered the interpretations noble metal solubility and speciation in 

previous experimental studies. Chapter three of this study specifically addresses the 

long standing controversy revolving around cryptic nanonugget-bearing LA-ICP-MS 

signals. A detailed examination of the LA-ICP-MS signals from the basaltic melts in 

chapter three reveals that subtly heterogeneous LA-ICP-MS count rates may be related 

to the application of the analytical technique, and as such do not represent nano-scale, 

zero valence metal particles.  

 

Summary of Salient Results 

   The sum of the experimental metal solubility results indicate that Au concentrations 

do not exceed 2 µg g-1
 
for hydrous basaltic liquids and 0.65 µg g

-1 
for haplogranitic 

liquids. Pt solubility does not exceed 1.2 µg g
-1

 in haplogranite melts, and appears to be 
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a function of the activity of Pt in the experimental system. Maximum Pd solubility in 

the haplogranite liquid was 0.33 µg g
-1

; these low values reflect the low Pd activity in 

the in the sulfide phase assemblages. All Au solubility values reported in this work 

represent Au behavior in systems where Au activity is fixed at unity. Thus, these values 

represent the maximum attainable Au concentrations in natural silicate liquids at similar 

P-T-X conditions. Viewing these solubility values as a limiting case, the noble metal 

budgets of silicate melts in equilibrium with low activity values of these metals in 

common magmatic sulfides should be vanishingly small.  

     Experimental results detailed in chapter three call into question some long standing 

assumptions about the speciation of Au in basaltic melts. Potential Au species other 

than AuO0.5 may nullify increasing Au concentrations as a function increased fO2 values 

in the manner indicated by simple silicate melt-metallic Au equilibria. Further 

spectroscopic work is required to unequivocally demonstrate the specific speciation of 

Au in volatile bearing melts. This future work remains difficult, if not impossible, with 

current spectroscopic techniques considering the meager Au concentrations (< 2.0 µg g
-

1
) in the experimental melts.  

     The redox and phase equilibria consequences and ferrous iron solubility in chloride-

bearing magmatic volatile phase(s) is addressed in chapter four. Evolving olivine 

compositions and phase assemblages in experiments equilibrated with supercritical 

NaCl-KCl-HCl fluids indicate that FeO activity in the melt is buffered by the aqueous 

phase. The preferential leaching of FeO alters the Fe
3+

/∑Fe of the residual as well as the 

fO2 defined by the homogeneous ferric-ferrous equilibria of the melt. Chloride 
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degassing may be an alternative, albeit non-mutually exclusive, mechanism by which 

magmatic fO2 is altered.  

 

Submission of Individual Chapters As  

Manuscripts for Publication 

     Each individual chapter of this document was written as a manuscript intended for 

publication in a scientific journal. Brief summaries and descriptions of the original 

manuscripts serving as chapters are detailed in following sections along with the co-

authors and the submission/publication dates.  

 

Chapter Two Synopsis 

     Chapter Two presents the results of an experimental study of Au, Pt, and Pd 

partitioning in a water-saturated haplogranite, sulfide, and oxide phase assemblage. This 

chapter examines the effect of sulfur fugacity on the fractionation of Au, Pt, and Pd in a 

haplogranite melt, sulfide, oxide, aqueous fluid phase assemblage. This chapter 

comprises a manuscript that was submitted and published in Geochimica et 

Cosmochimica Acta in October 2009. Experiments and all electron microprobe analyses 

in this study were performed at UNLV. LA-ICP-MS data was collected at the Institute 

for Isotope Geology at ETH in Zurich Switzerland in the laboratory of Dr. Christoph 

Heinrich. Collection and reduction of the data was assisted by Dr. Marcel Guillong of 

ETH;  Dr. Adam Simon assisted with equipment in the experimental laboratory as well 

as the interpretation of the LA-ICP-MS data for the sulfides and quenched melts. Both 

contributors appear as co-authors on the final publication.  
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     Data from this chapter indicate that increasing sulfur fugacity does not enhance Au, 

Pt, or Pd solubility in the melt; however high sulfur fugacity values do significantly 

influence Pt and Pd compatibility as lattice bound constituents of monosulfide solid 

solution. Working in concert, magmatic sulfur and oxygen fugacity values determine 

the stable sulfide phase assemblage. In this way, the Au, Pt, and Pd contents of the 

residual silicate melt in equilibrium with a sulfide phase assemblage are critically 

dependent upon the identity and abundance of the stable sulfide phases. The 

fractionation effect of magmatic sulfides ascertained from these experiments appears 

produce a fractionation trend inverse to the Pt-Pd ratios observed in PGE rich porphyry 

ore deposits.  

 

Chapter Three Synopsis 

     The source of chapter three comprises a manuscript submitted to Geochemica et 

Cosmochimica Acta in March 2010. This manuscript outlines the experimental 

determination of Au solubility in hydrous, chlorine bearing basaltic melts and olivine at 

variable oxygen fugacity. Experimental work presented in this chapter was performed 

was primarily performed at UNLV with some exploratory experiments performed at the 

California Institute of Technology. LA-ICP-MS analyses of the experiments were 

performed at the Institute for Isotope Geology at ETH in Zurich, Switzerland in the 

laboratory of Dr. Christoph Heinrich. Dr. Marcel Guillong of ETH assisted with the 

LA-ICP-MS analyses and interpretation of the resultant data. Dr. Adam Simon assisted 

in the preparation of the experiments as well as the interpretation of the resultant EPMA 
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and LA-ICP-MS data. For these contributions, both appear as co-authors on the 

submitted manuscript.  

    Results from this chapter indicate that fO2 may not be the sole variable dictating the 

absolute magnitude of noble metal solubility in silicate liquids containing appreciable 

quantities of dissolved chlorine and sulfur. As such the metallic Au precipitation is a 

subtle function of fO2, although not in the manner expected if Au were dissolved solely 

as an oxide species. Thus, the data from this chapter suggest that the assumption of 

AuO0.5 as the preeminent Au species may not be warranted for volatile bearing silicate 

melts at low oxygen fugacity. Data from the study also suggest that Au behaves as an 

incompatible element with respect to olivine and clinopyroxene. Noble metal solubility 

values for the basaltic liquids examined in this study place an upper constraint on the 

metal budgets of natural magmas. As no natural silicate magmas have been reported to 

be saturated with metallic Au, Pt, or Pd phase(s), experimental data from these studies 

place a strict upper limit on the range of possible Au concentrations in natural silicate 

magmas. These data also impose a limit on the maximum possible proliferation of Au 

concentration in silicate liquids of no more than a 2 µg g
-1

 during the fractionation of 

common silicate and oxide phases.  

 

Chapter Four Synopsis 

    The material contained in Chapter Four comprises a manuscript submitted to the 

Journal of Geology for publication in March, 2010. This final chapter of the dissertation 

presents experimental work regarding the preferential scavenging of ferrous iron from 

silicate liquids by chloride bearing aqueous fluids. Experiments from this chapter were 
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performed at UNLV, as well as three that were performed at the American Museum of 

Natural History. All electron microprobe analyses were performed at UNLV. Dr. Adam 

Simon assisted in the preparation of the experiments. LA-ICP-MS analyses were 

performed at Institute for Isotope Geology at ETH in Zurich Switzerland in the 

laboratory of Dr. Christoph Heinrich. Dr. Marcel Guillong of ETH assisted with the 

LA-ICP-MS analyses as well as the interpretation and reduction of the data. Both 

contributors appear as co-authors on the manuscript.  

     Data from this chapter suggest the oxidizing effects of HCl bearing fluids may act in 

an auxiliary capacity with degassing H2S to dynamically change magmatic fO2 values. 

The oxidizing effects of these fluids have potentially important implications for the 

stability of redox sensitive phase assemblages (e.g., magmatic sulfides) in degassing 

magmas.  
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CHAPTER TWO 

EXPERIMENTAL  CONSTRAINTS ON Pt, Pd AND Au  PARTITIONING AND 

FRACTIONATION IN SILICATE MELT–SULFIDE–OXIDE–AQUEOUS FLUID 

SYSTEMS AT 800°C, 150 MPa AND VARIABLE SULFUR FUGACITY 

Abstract 

We have performed experiments to constrain the effect of sulfur fugacity (fS2) and 

sulfide saturation on the fractionation and partitioning behavior of Pt, Pd and Au in a 

silicate melt–sulfide crystal/melt–oxide–supercritical aqueous fluid phase–Pt–Pd–Au 

system. Experiments were performed at 800° C, 150 MPa, with oxygen fugacity (fO2) 

fixed at approximately the nickel–nickel oxide buffer (NNO). Sulfur fugacity in the 

experiments was varied five orders of magnitude from approximately log fS2 = 0 to log 

fS2 = -5 by using two different sulfide phase assemblages. Assemblage one consisted 

initially of chalcopyrite plus pyrrhotite and assemblage two was loaded with 

chalcopyrite plus bornite. At run conditions pyrrhotite transformed compositionally to 

monosulfide solid solution (mss), chalcopyrite to intermediate solid solution (iss) and in 

assemblage two, chalcopyrite and bornite formed a sulfide melt. Run-product silicate 

glass (i.e., quenched silicate melt) and crystalline materials were analyzed by using both 

electron probe microanalysis and laser ablation inductively coupled plasma mass 

spectrometry. The measured concentrations of Pt, Pd and Au in quenched silicate melt 

in runs with log fS2 values ranging from approximately 0.0 to -5.0 do not exhibit any 

apparent dependence on fS2. The measured Pt, Pd and Au concentrations in mss do vary 

as a function of fS2. The measured Pt, Pd and Au concentrations in iss do not appear 

dependent on fS2. The data suggest that fS2, working in concert with fO2, via the 
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determinant role that these variables play in controlling the magmatic sulfide phase 

assemblage and the solubility of Pt, Pd and Au as lattice bound components in 

magmatic sulfide phases, is a controlling factor on the budgets of Pt, Pd and Au during 

the evolution of magmatic systems.  

 

Introduction 

     Quantitative constraints on the geochemical behavior of precious and base metals in 

silicate melt–aqueous volatile phase(s) systems are intrinsically valuable in elucidating 

the redistribution of metallic, siderophile and chalcophile elements during the evolution 

of ore-forming magmatic systems. Metallically fertile magmas are a necessary, albeit 

not sufficient, condition for the formation of magmatic ore deposits. Magmatic 

differentiation processes play the critically instrumental role in amplifying, by orders of 

magnitude, the low abundance of most ore metals in crustal reservoirs (cf., Rudnick and 

Gao, 2003) to ore-grade concentrations. Understanding the character of these processes 

is critical to the development of predictive models for ore deposit formation. The 

partitioning of the platinum group elements (PGE) and base metals has been 

investigated in natural and experimental assemblages in broadly mafic systems, defined 

as silicate melt coexisting with immiscible Fe–Ni–sulfide melt and/or crystals. Such 

studies have yielded both empirically estimated and experimentally determined partition 

coefficient values for the PGE and other metals between co-existing sulfide crystals 

and/or liquid and silicate liquid, defined as silsul

PGED / . Published silsul

PGED /  values for the 

entire group of platinoids range from 10
3
 to 10

5
 (Fleet et al., 1991, Peach et al., 

1990 and Stone et al., 1990; Peach et al., 1994; Fleet et al., 1999), consistent with the 
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long recognized enrichment and association of the PGE with sulfide phases in layered-

mafic-intrusion-hosted PGE–Ni–Cu deposits. Significant effort, and concomitant 

controversy, has been aimed at quantifying the solubility and oxidation state of many 

noble and base metals in silicate melts. Experimental studies aimed at elucidating noble 

metal solubilities in Fe-free, mafic-analog silicate melts have demonstrated consistently 

that PGE concentrations at metal saturation vary proportionally with the oxygen 

fugacity (fO2) imposed upon the system (Ertel et al., 1999). Laboratory studies have 

demonstrated that Pt solubility in melts ranging from basalt to rhyolite, excluding high 

Ca melts, is less than 1 μg g
-1

 at redox conditions (log fO2  NNO) approximating those 

present in most natural magmatic systems (Borisov and Palme, 1997, Farges et al., 

1999, Ertel et al., 1999 and Blaine et al., 2005). In addition to the dependence of PGE 

solubility on fO2, it is likely that PGE solubilities are dependent on sulfur fugacity (fS2). 

Jugo et al. (1999) hypothesized that fS2 is important in controlling the solubility of Cu 

and Au in sulfide phases during the evolution of magmatic systems. While their 

experimental study was performed at a single fO2 (NNO + 0.5) and fS2 (log fS2 = −1) 

condition, they hypothesized that fS2 may control the partitioning of Au between silicate 

melt and sulfide, in this case pyrrhotite (po), by one possible equilibrium such as 

Eq. 1                     
432220.5 OFe

sys

O4
1po

AuFeS

sys

S2
1po

FeS

melt

AuO μμμμμμ   

where j

i  is the chemical potential of component i in phase j. Equation 1 suggests that 

variation in fS2 and fO2, owing to processes such assimilation of country rock (i.e. 

introduction of reduced and/or oxidized sulfur) and degassing, and associated auto-

oxidation of the magma (cf., Candela, 1991), may play a determining role in the metal 

enrichment process of the evolving magmatic system. For example, assimilation of 
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reduced country rock will drive the magma toward lower fS2; hence favoring the mass 

transfer of ore metals from the silicate melt into sulfide (e.g., Au into sulfide as written 

in Eq. 1). Fractionation and subsequent removal of sulfide phases at depth during ascent 

of the magma will reduce the potential for metals to be later scavenged and redistributed 

by magma-evolved aqueous fluids. In this study we investigated the role of fS2 on the 

solubilities of Pt, Pd, Au and Cu in an H2O-saturated rhyolite silicate melt, sulfide and 

oxide phase system at 800 °C and 150 MPa. Sulfur fugacity was controlled by using 

different sulfide phase assemblages to impose fS2 that span the range of fS2 values 

found in many natural systems. The results demonstrate that changes in fS2 of an 

evolving sulfide-saturated magma shift the stable phase assemblage to an assemblage 

with a different capacity to sequester metals. Such chemical changes affect the 

inherently finite metal budget of the system and have important consequences for the 

metals available for transport during sulfide fractionation and/or magmatic degassing at 

the level of ore deposit formation.  

 

Procedures 

Starting Materials 

Starting materials utilized in this study were a synthetic Corning haplogranite glass 

(provided by Dr. David London, University of Oklahoma), natural hexagonal pyrrhotite 

(po), bornite (bn), and chalcopyrite (ccp; provided by Dr. George Harlow, American 

Museum of Natural History), Calumet magnetite (mt; Calumet Skarn, Colorado), and 

10 wt.% NaCl eq. NaCl–KCl ± HCl aqueous solutions. The composition of the starting 

rhyolite glass is provided in Table 1. The starting sulfide phases and mt were 
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characterized by using electron probe microanalysis (EPMA) for major and most of the 

minor elements and laser ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS) for Pt, Pd and Au. The concentration of these elements is less than 1 μg g
-1

 in 

all phases. Small aliquots of Pt and Pd metal foil were added to serve as the Pt and Pd 

metal sources. Phase relations for the NaCl–KCl–H2O system indicate that the aqueous 

fluid at run conditions exists as a one-phase supercritical aqueous fluid (Bodnar et al., 

1985 and Chou et al., 1992).  

Experimental Design 

Experiments were performed at 800 °C and 150 MPa in René-41 cold seal pressure 

vessels. Rhyolite glass, sulfide phases, mt and aqueous solution were loaded (Table 2) 

into Au capsules (5 mm OD × 2.5 cm length with a 0.2 mm wall thickness) and sealed 

with a carbon electrode arc welder. Three different assemblages were loaded as follows: 

Assemblage 1 initially contained cp + po + mt + glass + aqueous fluid, the latter had an 

initial ratio of NaCl–KCl–HCl of unity. Assemblage 2 contained 

cp + po + mt + glass + aqueous fluid, the latter had an initial NaCl–KCl ratio of unity 

and no HCl. Assemblage 3 contained cp + bn + mt + glass + aqueous fluid, the latter 

had an initial ratio of NaCl–KCl–HCl of unity. At run conditions cp and po in 

assemblages 1 and 2 transformed to iss and mss; assemblage 3 is interpreted to have 

contained a sulfide liquid formed from the reaction of bn and cp. Table 2 provides the 

details of each assemblage. Water was used as the pressure medium. The fO2 of each 

experiment was buffered at approximately Ni–NiO by relying on the intrinsic buffering 

capacity of the René-41 pressure vessels (cf., Chou, 1987). The fO2 buffering capacity 

of the vessel has been evaluated by using external Au capsules loaded with Ni and NiO 
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to verify the stability of both phases over run times exceeding 1000 h. Temperature was 

monitored with factory-calibrated Omega type K (Chromel–Alumel) thermocouples. 

Run pressure was monitored with a bourdon tube pressure gauge which was calibrated 

against a factory-calibrated Heise gauge. Thermal gradients in the pressure vessels are 

5–7 °C over the length of the experimental capsule. Experimental run duration was 

varied from 67 to 672 hrs; run times are provided in Table 3. Experiments were 

terminated by a nearly isobaric quench in a stream of compressed air from 800 to 

200 °C and then immersed in an ambient temperature water bath. Capsules were 

removed from the vessels, cleaned with lab-grade H2O, examined optically and weighed 

to determine if the capsules remained sealed during the experiment. Only capsules that 

exhibited mechanical integrity, evinced a mass change of 0.3 mg, and yielded a 

strong hiss when pierced with a hypodermic syringe, evincing high internal capsule 

pressure, were processed for analysis.  

Sulfur and Oxygen Fugacity 

Two different starting sulfide phase assemblages were used in an attempt to 

control fS2 at a fixed fO2. The starting sulfide assemblages were po plus cp in 

assemblages 1 and 2, and cp + bn in assemblage 3. Despite the interdependent nature of 

the equilibria controlling fO2 and fS2, it is routinely assumed that the vastly greater 

buffering capacity of the Ni-rich pressure vessel fixes the fO2 (cf. Chou, 1987) of the 

experimental assemblage via the equilibrium, in the case of po and mt, 

Eq. 2                                    mvp

2

mt

43

sys

2

po 3SO2Fe4O6FeS   

In the absence of large quantities of sulfide, the fO2 imposed by the vessel in 

conjunction with the water pressure medium will fix the fH2 imposed on the 
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experimental system, thus the vessel-controlled fH2 imposed on the experimental 

system controls fS2 via the equilibrium in Eq. (2). As a consequence of 

fixing fH2 and fS2, the fH2S of the experimental system must also be fixed by the 

equilibrium: 

Eq. 3 
                                                

SHSH 222
1

2   

We hypothesize that the progressive sulfidation of the Pt metal chip, added as the Pt 

source, dynamically removed sulfur from the magmatic volatile phase (mvp) over the 

course of the run via the equilibrium: 

Eq. 4                                               PtSSPt mvp

22
1o   

EPMA-analysis of the Pt chips recovered from runs of different durations indicates that 

a sulfidation front propagated toward the center of the Pt chip. The sulfidation front was 

observed as a rind of PtS which thickens progressively with increasing run time. The 

subtly changing experimental fS2 conditions are reflected compositionally in the 

dissolved sulfur content of the quenched silicate melt and also the metal content of the 

recovered mss. In light of the relatively small range in fS2 values for a given 

assemblage, with respect to the long experimental run durations (a maximum difference 

of 1.0 log unit for run durations in excess of 600 hours is observed), we postulate that 

the composition of the experimental run products represents a steady state (on the time 

scale of 2–3 days) or perhaps an equilibrium state, reflective of the 

―instantaneous‖ fS2 of the system. Thus, the quenched-in compositions of the 

experimental run products represent a snapshot of a system continuously evolving 

toward its final equilibrium fS2 condition defined by the Pt–PtS buffer. The sluggish 

decline in fS2values (approximately 0.04 log units day
−1

) coupled with the relatively 
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high reactivity of the sulfide and silicate melt phases as observed in other studies at 

similar P–T conditions (e.g.,Ballhaus and Ulmer, 1995; Clemente et al., 2004) suggests 

that the fS2 of the system at the time of the termination of the run, is accurately reflected 

in the run products (i.e., the run products closely maintained an equilibrium relationship 

with system fS2 as this parameter slowly changed). While the experiments did not reach 

a final ―equilibrium‖ sulfidation state, the relative differences in the experimental 

partitioning behavior for Pt, Pd, Cu and Au place important constraints on the 

geochemical behavior of these metals in magmatic-hydrothermal systems.  

 

Analytical Procedures 

EPMA Analysis 

Recovered glass (i.e., quenched melt) and sulfides were analyzed by using wavelength 

dispersive spectrometry (WDS) with a JEOL
®
 JXA-8900 SuperProbe at the University 

of Nevada, Las Vegas. Glasses were analyzed for major elements using a 15 kV 

accelerating voltage and a 5 nA Faraday cage current. A 10 μm de-focused beam was 

used in conjunction with the low beam current in order to minimize current–flux–

density-induced alkali diffusion (cf., Morgan and London, 1996). The concentration 

of S in the quenched glasses was quantified by using a 10 μm diameter beam and a 

50 nA Faraday cage current with counting times of 90 s on peak and 90 s on the 

background. The position of the S Kα peak was determined with a PET spectrometer for 

individual aliquots of experimental glass by using a statistical, automated peak search 

function in the JEOL
®
 software. Natural ZnS was used as a standard for the S analysis. 

The applied ZAF matrix correction procedure for the S analyses employed the averaged 
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major element composition of the glass as determined by the previously described 

analytical conditions. Calculated analysis-specific 3σ limits of detection (LOD) for S in 

the glasses range from 60 to 70 μg g
-1

 for the entire suite of analyses. The low 

concentration of S in the experimental glasses prevented us from using the peak shift in 

the S Kα radiation, determined by EPMA, to estimate the proportion of sulfide to sulfate 

species dissolved in the glass. However, considering the relatively low oxidation state 

of the runs ( NNO), we estimate that greater than 95% of the sulfur present in the melt 

is dissolved as the reduced species S
2−

 (Carroll and Rutherford, 1988). Secondary 

standards VG-A99 and VG-2 were analyzed to evaluate the performance of 

the S analytical routine. Using our analytical routine, the concentration of S in standard 

glasses VG-2 and VG-A99 were quantified at 1300 ± 44 and 155 ± 9 μg g
-1

, 

respectively. Previous studies that used EPMA to quantify the S content of VG-2 report 

1403 ± 44 μg g
-1

 (O’Neill and Mavrogenes, 2002) and 1340 ± 80 μg g
-1

 (Dixon et al., 

1991). The concentration of S in VG-2 has been reported as 1320 ± 50 μg g
-1

 ,when 

quantified by wet chemical methods (Wallace and Carmichael, 1992). The S content of 

VG-A99 as determined by EPMA has been reported as 138 ± 13 μg g
-1

 (Witter et al., 

2005) and 170 ± 80 μg g
-1

 (Dixon et al., 1991). The agreement between our EPMA-

determined S values and extant literature values suggests that the S concentrations 

reported herein are accurate. Recovered Cu–Fe sulfide crystals were analyzed by using 

a 30 kV accelerating voltage and a 30 nA beam current. Iron, S, Ni and Cu were 

quantified by using Kα X-ray emission lines, whereas Pt, Pd and Au were quantified by 

using Lα X-ray emission lines in order to mitigate spectral interferences observed in the 

M series lines for these latter elements. A beam diameter of 15 μm was used in order to 
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reintegrate the composition (presumably at run conditions) of the fine scale (<1 μm) 

exsolution features of the recovered sulfide material. Quenched sulfide melts were 

analyzed with a broad 40 μm beam to obtain the average composition of the sulfide melt 

at run conditions.  

LA-ICP-MS-Analysis 

LA-ICP-MS analyses were performed at the Institute for Isotopengeologie and Mineral 

Rohstoffe at ETH in Zürich, Switzerland by using a homogenized prototype Excimer 

ArF laser (λ = 193 nm) system, similar to the Geolas System, coupled with a Perkin-

Elmer Elan 6100 DRC quadrupole ICP mass spectrometer. To improve the limits of 

detection for Pt, Pd and Au, a carrier gas mixture comprised of a helium (1.15 L/min) 

and hydrogen (6 ml/min) mixture was utilized (Guillong and Heinrich, 2007). The 

diameter of the ablation crater was varied from 90 μm for quenched glasses and mt to 

30 μm for sulfide run products; ablations were carried out at an energy density of 

25 J cm
−1

 and a repetition rate of 10 Hz for silicate glasses and mt. To improve the 

transient signal from the sulfides, the energy density was decreased to 10 J cm
2
 and 

3 Hz repetition rate. NBS-610 was utilized as a standard reference material for all 

investigated phases. Additionally, a synthetic PGE-doped Cu–Fe sulfide standard 

(Wohlgemuth-Ueberwasser et al., 2007) was utilized for Pt and Pd in some sulfide 

phases. The polyatomic interference from 
65

Cu
40

Ar
+
 produced in the plasma on the 

isotope 
105

Pd is problematic for the analysis of Pd in Cu rich phases (i.e., iss). 

The 
65

Cu
40

Ar
+
 species production rate was quantified by ablating 99.999% Cu and 

measuring the resultant count rates on mass 65 and 105; CuAr
+
 interference was 

measured to be 0.05% of the counts measured on mass 65. Based on this, the raw counts 
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from 
105

Pd can be corrected for interfering 
65

Cu
40

Ar
+
 species if necessary. The data 

indicate that the use of NBS-610 and the synthetic PGE sulfide standards to reduce and 

calculate Pd and Pt concentrations in sulfide phases yield statistically similar, albeit 

slightly different results. As discussed below, both the EPMA- and LA-ICP-MS-

determined concentrations of Pd and Pt are presented to allow a comparison of the use 

of the silicate glass standard (i.e., NBS-610) vs. the synthetic PGE-doped standard to 

quantify Pd, Pt and Au concentrations. Data processing and reduction of the raw LA-

ICP-MS data were performed by using SILLS (Guillong et al., 2008) using EPMA-

determined element concentrations as the internal standard. Aluminum was used as the 

internal standard for the silicate glass analyses. Iron was utilized as the internal standard 

for mt, mss and iss.  

 

Results 

Major Element and Chlorine Concentrations in the Silicate Glass 

     The silicate glass recovered from all runs is crystal free and homogenous within a 

given experiment with respect to the concentrations of Si, K, Na, Al and Cl (Table 3). 

The concentration of Fe exhibits slight variability; however, the range of Fe 

concentrations in silicate glass is consistent with that reported in previous experimental 

studies at similar conditions (e.g., Simon et al., 2008). The concentration of S in some 

recovered glasses exhibits slight heterogeneity; these values are attributed to uncertainty 

associated with analyzing low sulfur concentrations that are near the detection limit. 

EPMA data indicate that all glasses are slightly peralkaline to peraluminous; the 

aluminum saturation index (ASI), the ratio of Al/Na + K, ranges from 0.97 to 1.14. The 
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solubility of water in the melt, estimated by using the EPMA difference method, ranges 

from 7 to 8.5 wt.%. This estimate is consistent with the expected water solubility of 6–

8 wt.% in rhyolite melt at 800 °C and 150 MPa (McMillan and Holloway, 1987).  

Cu, Au, Pt and Pd Concentrations in the Silicate Glass 

     The major and trace element concentrations including Cu, Au, Pt and Pd in the 

recovered silicate glasses are provided in Table 3. The concentration of Cu in silicate 

glass ranges from 5 to 22 μg g
-1

 and is homogeneously distributed within glass beads 

recovered from all runs. These values are consistent with the published Cu 

concentrations of 4 μg g
-1

 (Lynton et al., 1993), 26 μg g
-1

 (Jugo et al., 1999) and 1 μg g
-1

 

(Simon et al., 2006) for similar bulk assemblages at similar experimental conditions. In 

this study, melts reacted with low sulfidation Cu-rich phase assemblages have the 

highest Cu concentrations, whereas high sulfidation Cu-poor phase assemblages 

generally yield lower Cu concentrations in rhyolite melt. The quantification of the 

concentrations of Au, Pt and Pd in recovered silicate glass is complicated owing to the 

observed heterogeneous distribution of these metals in glass (Fig. 1a and b). Several 

previous studies have discussed the inherent difficulty in quantifying the solubility of 

noble metals in quenched silicate melts with oxidation states lower than the mt–

hematite buffer. The LA-ICP-MS spectra from ablation of silicate glasses are routinely 

complicated by the presence of spatially heterogeneous distributions of some metals 

(e.g., Ag; Simon et al., 2008). This so called ―nano-nugget effect‖ (cf., Borisov and 

Palme, 1997, Simon et al., 2007 and Ertel et al., 1999), as observed in LA-ICP-MS 

spectra has been interpreted previously as either a quench-exsolution phenomenon 

(e.g., Cottrell and Walker, 2006) or as a product of redox reactions within the charge 
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(e.g., Ertel et al., 1999). Stable PtO species within the melt structure are reduced to 

elemental Pt in colloidal suspension within the melt (Ertel et al., 1999) as a function of 

the reduction of the experiment oxidation state during run up. Simon et al. 

(2008) suggest that initial noble metal solubilities in the melt are relatively high, 

approaching the 10 μg g
-1

 range, over the first 12–24 h of a run before the experimental 

charge comes to equilibrium with the intrinsic redox state of the pressure vessel; hence, 

an excess of Pt is initially dissolved in the melt. As the charge approaches osmotic 

redox equilibrium, the fO2 of the metal-oversaturated melt decreases. During the period 

of reduction the melt gradually exsolves excess Pt, Pd and Au, forming nano-nuggets, 

until the melt fO2 reaches the buffered value of NNO. Ertel et al. (1999) demonstrated 

that during a period of fO2 reduction, Pt and Rh solubilities decrease in the melt, 

causing the melt to exsolve the excess metals and forming nano-nuggets until the 

melt fO2 reaches its final state. We specifically note the congruency of the Pd, Au and to 

a much lesser extent Cu in LA-ICP-MS signals from the nugget bearing analyses (Fig. 

1a). Such signals have the appearance that the nugget-forming metals are either alloyed 

or enjoy an intimate, mechanical association. Only nugget free analyses of silicate 

glasses (Fig. 1b) have been considered in this study, as these LA-ICP-MS signals are 

assumed to approximate best the equilibrium solubility of the noble metals in the melt. 

The measured solubility of Au in silicate glass from individual runs and among runs in 

the present study is variable (Table 3). The data in the present study indicate that the 

best estimate for Au solubility in S-bearing rhyolite melt is on the order of a few tens to 

a few hundreds of ng/g (Table 3). Frank et al. (2002) reported that Au solubility at 

800 °C and 100 MPa in a S-free Au-saturated rhyolite melt is 1 μg g
-1

. As discussed 
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by Frank et al. (2002), it is possible that the quenched silicate glasses produced in their 

experiments contained submicroscopic gold particles or regions of increased Au 

concentration within the glass that formed during quenching. Frank et al. 

(2002) discussed the nugget effect, with specific reference to Instrumental Neutron 

Activation Analysis (INAA) and Secondary Ion Mass Spectrometry (SIMS), and 

concluded that the best estimate of Au solubility in S-free rhyolite melt was on the order 

of 1 μg g
-1

. Simon et al. (2005) used nugget-free LA-ICP-MS analyses to quantify that 

the solubility of Au in S-free rhyolite is on the order of 500 ng/g. Jugo et al. 

(1999)reported Au solubility in S-bearing Au-saturated rhyolite melt, saturated with iss 

and po at 850 °C and 100 MPa, to be on the order of 2–4 μg g
-1

. Simon et al. 

(2007) report that the solubility of Au in S-bearing rhyolite, equilibrated with 

arsenopyrite (FeAsS), is 0.6 μg g
-1

. All of these experimental studies were conducted at 

broadly similar fS2, fO2, pressure and temperature conditions. We suggest that the 

higher reported Au solubility values may reflect the nature of the analytical technique. 

Jugo et al. (1999) and Frank et al. (2002) used the bulk analytical technique INAA 

which would incorporate Au nuggets and include them in the analytical totals. The 

solubilities of Au in assemblages 1, 2 and 3 are 0.26 ± 0.34, 0.11 ± 0.13 and 

0.16 ± 0.03 μg g
-1

, respectively; the average solubility is 0.18 ± 0.07 μg g
-1

. As stated 

above, the uncertainties do not reflect the presence of nuggets in the integrated portion 

of the signal. In light of the aforementioned issues, we suggest that the data in the 

current study constrain the solubility of Au in S-bearing rhyolite melt, at the PTX 

conditions in this study, to no more than a few 100 ng/g, consistent with previous 

studies. 
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     The concentrations of Pt and Pd in silicate glass are reported in Table 3. A 

systematic decrease in the abundances of Pt and Pd in the quenched melt occurs as a 

function of increasing run duration for each experimental assemblage (Fig. 2). 

Decreasing metal concentrations may be a function of the temporal evolution of the 

redox state of the system (initially) and/or by the additional possibility of decreasing the 

activities of the soluble metals or metal alloys in the experimental system via sulfidation 

and progressive alloying of elemental metallic species (i.e., the Pt and Pd metal chips 

used as the source of Pt and Pd). Platinum dissolution into the silicate melt structure 

may occur via the reaction proposed by Borisov and Palme (1997) 

Eq. 5                                          
meltsystem

22
1metallic PtOOPt   

with the corresponding equilibrium constant written as: 

Eq. 6                                          2
1

2meltmelt

metallicmetallic

3 O
γPtOxPtO

γPtxPt
K


 f  

where x and γ are the mol fraction and activity coefficient, respectively. The numerator 

of the expression may be written as: 

Eq. 7                                                 PtγPtxPt a  

where a is the activity of Pt in Eq. (5). The solubility of Pt, as expressed in Eq. (4), is a 

function of the activity of Pt in the source phase, source

Pta , (i.e., native metal, metallic 

alloy, or sulfide) and the fO2 imposed on the system. The choice of PtO as the stable Pt 

species in the melt is based on the strong positive correlation observed between Pt 

solubility and fO2 reported by Ertel et al. (1999). Eq. (4) governs the solubility of Pt as a 

divalent oxide species within the silicate melt structure. The observed decrease in the 

measured abundances of Pt and Pd in the quenched glasses (Fig. 2) with increasing run 
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duration may reflect the decreasing activity of Pt and Pd in the experimental system as 

governed by the interaction of sulfur in the aqueous phase with alloys of the Pt and Pd 

foils via the following sulfidation reaction: 

Eq. 8                              )SPd(PtSx)Pd(1xPt x1x

vapor

22
1sourcesource

  

The activity of Pt in the system may be further decreased via the addition of Pd and Fe 

in solid solution on the PtS lattice. A similar relationship was also noted by Li et al. 

(2003) for Ni inS bearing magmas. The source

Pta  is defined by the equilibrium expression 

in Eq. 9 where: 

Eq. 9                            
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     Substitution of the expression for Pt activity derived in Eq. (7) into the numerator of 

the equation governing Pt solubility as an oxide species (Eq. (4)) clearly shows that Pt 

solubility in the silicate melt phase in the investigated system is not only proportional to 

the oxygen fugacity of the system, but a complex function of the fS2 imposed on the 

experimental system and the composition of the phase acting as the Pt source to the 

melt. The source

Pta , as defined in Eq. (7), via progressive reaction of elemental Pt with 

Pd, S and Fe, will decrease until the composition of the Pt–Pd–Fe–S overgrowths on the 

Pt metal come to equilibrium with the system,  only then will the sys

Pta  be fixed. Thus, it 

is predicted that Pt solubility in the melt in sulfide–oxide–silicate melt systems should 

vary with changes in the fO2, fS2 and the source

Pta of the experimental system. Platinum 

solubility in the experimental system is thusly controlled by the variables fS2 and fO2  

where metal

Pta  of the source is a function of the fS2 imposed on the experimental system.  
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Monosulfide Solid Solution Composition 

     Recovered mss varies remarkably little in the S to Σ Fe–Pd–t–Au–Cu ratio within a 

set of analyses for multiple grains from individual experiments. Mss from nearly all 

runs contains measurable quantities of Ni, an element which is not present at 

measurable concentrations in any of the starting materials. Nickel may be introduced 

via the diffusion of Ni through the Au capsule from the pressure vessel via the water 

pressure medium and direct mechanical contact of po with the Au metal capsule as 

observed in previous experimental studies (Scaillet and MacDonald, 2001). The 

composition of mss is provided in Table 4. The solubility of Au in mss in the current 

study is of 170 ± 71 μg g
-1

, similar to the value of 470 μg g
-1

 for Au solubility in mss 

reported by Jugo et al. (1999) at similar pressure–temperature-composition (PTX) 

conditions; log fS2 values overlap statistically in both studies.  

     Ubiquitous exsolution features (Fig. 3) less than 1 μm in width were observed in 

most of the recovered mss crystals. Although the exsolution features were too small to 

be individually resolved quantitatively with EMPA-WDS or LA-ICP-MS, the 

exsolution features have been qualitatively characterized chemically by using energy 

dispersive X-ray spectrometry (EDS) and identified as predominately Pd–Cu–Ni-rich-

sulfide relative to the host mss. Exsolution features observed in mss are likely the 

product of a relatively slow quench rate; i.e., 2 min. The solubilities of Pt and Pd in mss 

have been demonstrated to be a strong function of temperature (Ballhaus and Ulmer, 

1995). The presence of quench-exsolution texture in our experimental mss is consistent 

with the down temperature decrease in Pt and Pd solubility observed by Ballhaus and 

Ulmer (1995). Mss at run conditions is expected to take on the hexagonal structure with 
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a fully disordered Fe sublattice; however, upon termination of the run, ordering of the 

vacancies on the Fe sublattice and eventual conversion or partial conversion to a 

monoclinic form, is speculatively responsible for the pervasive exsolution textures.  

     Integration of the composition of the exsolution features with the composition of the 

matrix mss is required to accurately quantify the concentration of these elements at run 

conditions. We used a 30 μm beam diameter for both EPMA and LA-ICP-MS analyses 

of mss. The data reported in Table 4 indicate that both methods effectively reintegrate 

the mss and exsolution lamellae and yield similar metal concentrations. The reported 

EPMA-determined concentrations of Fe and Cu suggest that both metals are 

homogenously distributed in the mss.  

Intermediate Solid Solution Composition 

     Intermediate solid solution was observed in all run products; however, the iss 

observed in runs 32, 33 and 34 is inter-grown with bn and is thought to have exsolved 

from the sulfide melt, discussed below, during quench. Iss from these three runs is thus 

not reported as it was reintegrated into the sulfide melt composition. The measured 

compositions of iss reported in Table 5, is similar in all experiments. The composition 

of run product iss deviates significantly from the stoichiometry of the starting 

chalcopyrite. Total S content of recovered iss appears to vary little from the average 

value of ~35.0 wt.%. Platinum and Pd concentrations in iss were generally near or 

below the EPMA limit of detection, whereas Au concentrations within individual iss 

crystals in a given experiment exhibited variability. We hypothesize that the observed 

heterogeneity of Au within recovered iss is a quench phenomenon; i.e., the presence of 

Au lamellae in iss, observed by using back scattered electron (BSE) imaging, indicate 
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exsolution of Au during quench as reported by Jugo et al. (1999). The concentration of 

Au in run-product iss in the current study ranges from 0.37 to 0.72 wt.%, with an 

average on the order of 0.5 wt.%. This is similar, albeit lower than the experimentally 

determined value (±1σ) of 1.9 ± 0.4 wt.% for Au solubility in mss reported by Jugo et 

al. (1999).  

Sulfide Melt Composition 

     The run products from charges loaded initially with cp and bn contain a single 

sulfide entity that we interpret to be a quenched sulfide liquid (Fig. 4). The sulfide 

entity encapsulates entire mt crystals and the boundary between the two appears to be a 

wetting surface. The EPMA-determined composition of the sulfide melt phase is 

provided in Table 6. This phase exhibits a complex intergrowth texture between Cu-rich 

and Fe-rich sulfide phases. The average composition provided in Table 6 reflects the 

inherent difficulty in reintegrating such a complex quench phase. Sulfide quench 

textures in our runs are consistent with the observed sulfide quench textures from other 

studies of sulfide melts (cf., Ripley et al., 2002). Recently revised phase relations for the 

Cu–Fe–S–O system from Tsujimura and Kitakaze (2004) place the melting temperature 

for the dry iss-bornite system at less than 800 °C, the temperature of experiments in the 

current study. Experiments in this study were performed at water-saturated conditions 

and the effect of fH2O on sulfide melt–solid phase relations is unknown. We did not 

attempt to quantify the oxygen content of the sulfide melt phases owing to the relatively 

slow quench rate which likely promoted the extensive crystallization of the sulfide melt 

phase which renders it unlikely that the original oxygen content of the sulfide liquid was 

preserved.  
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Magnetite Composition 

     Magnetite was recovered in all successful experimental runs. The concentrations of 

all analyzed metals (Au, Cu, Pd and Pt) in mt are on the order of a few ng/g. EPMA 

analyses of run-product mt indicate that the final composition is near stiochiometric 

end-member mt.  

 

Evaluation of Experimental Sulfur Fugacity 

     Sulfur fugacity was calculated by using the measured S solubilities of the recovered 

experimental glasses following Toulmin and Barton (1964) and the empirical model 

of Clemente et al. (2004). In the Clemente et al. (2004) model, fS2 values are calculated 

relative to the metallic Fe-troilite sulfidation (FFS) buffer, utilizing an internally 

consistent fO2 corresponding to NNO + 0 for all of the experimental runs. Eq. 10 was 

used to calculate fS2 values: 

Eq. 10                        
NNO)(0034.01713.0

 NNO).2567(00.001T-ppm)(Slog
FFS




  

where Δ FFS is the log fS2 value defined relative to the FFS buffer. Sulfur fugacity was 

also calculated by using the Fe(1−x)S indicator method, formulated by Toulmin and 

Barton (1964) as: 

Eq. 11      91.119989.130.39)1/1000)(83.8503.70(Slog 210  xTxf  

where x represents the mole fraction of the FeS component of mss. Palladium, Pt, Au, 

Cu and Ni have been assumed to substitute ideally for Fe in the mss lattice on a one to 

one basis (cf., Jugo et al., 1999). The effect of these metals on the mss solution behavior 

is assumed to be ideal given the low measured concentrations of these metals in mss. 
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Values for fS2 calculated by both methods are reported in Table 7. The fS2 values from 

experimental runs have been plotted relative to the liquid sulfur condensation curve, Pt–

PtS buffer, and the metallic FFS buffer curve in Fig. 5. We suggest that the observed 

discrepancies between fS2 values calculated from the two methods may reflect the 

kinetically sluggish nature of S dissolution into the melt (i.e., minor disequilibrium with 

respect to S solubility in the melt phase). Additionally, in runs 33 and 34, some 

individual EPMA analyses of S in the glass were at or below the detection limit. The 

average sulfur concentration for these runs included only values that were above the 

EPMA limit of detection; thus, it is likely that fS2 values calculated from the EPMA 

averages for these runs are systematically biased toward higher values. We suggest that 

using the mss composition to calculate the fS2 of a system is a more robust method than 

using the sulfur content of the silicate melt owing to the much higher degree of 

complexity in the solution behavior of the latter. Additionally the mss composition 

appears to be temporally more responsive to changing fS2 conditions.  

     Sulfur fugacity values calculated from both methods appear to converge in 

experimental runs of intermediate duration. This reflects the attainment of a steady state 

with respect to both S solubility in the silicate melt and the metal composition of the 

recovered mss. We interpret this decrease in calculated fS2 values to be a function of the 

progressive sulfidation of the Pt and Pd metal loaded initially as a metal source for the 

experiments. The reaction of the finite reservoir of sulfur within the experimental 

charge with the metal sources (i.e., the Pt and Pd foil chips) should result in depletion of 

the sulfur within the supercritical aqueous fluid phase with increasing progress of 

favorable Pt and Pd sulfidation reactions. Evidence for the progressive removal 
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of S from the supercritical aqueous fluid phase was observed in the form of the 

development of a PtS ―rind‖ on the recovered pieces of Pt metal foil. Evidence for the 

removal of S from the supercritical aqueous fluid phase is also observed in the 

systematic decrease of the calculated fS2 values for the runs. Analogous Cu–sulfide 

overgrowths have been observed encapsulating molten Cu metal blebs in a study of Cu 

solubility in mafic silicate melts (Holzheid and Lodders, 2001). The advancing 

sulfidation front (Fig. 6 and Fig. 7) is truncated at the interface with elemental Pt. This 

elemental Pt forms the core of the recovered foil chip. No elemental Pd was recovered 

in any of the runs indicating that all Pd present was either lattice bound in mss and Cu–

Fe sulfide phases, alloyed with Au and Pt, or bound in separate, ubiquitous PdS phases.  

 

Discussion 

Fractionation of Pt, Pd and Au in Nature: The Effect of fO2 and fS2 

      The new data place constraints on the relative fractionation effects induced by the 

precipitation of mss, iss and sulfide–oxide melts on the abundances of Pt, Pd and Au in 

silicate magma. Silicate melts can reach sulfide saturation owing to magmatic 

fractionation or the addition of S sourced from outside of the magma (e.g., assimilation 

of biogenic pyrite from a sedimentary sequence). Both processes result in an increase in 

the aS2 in the melt, hence promoting the saturation of the silicate melt with a sulfide 

phase. It is the fO2–fS2 condition at which sulfide saturation occurs that ultimately 

controls which sulfide phase will be stable (cf., Jugo et al., 1999), and how it will affect 

the Pd–Pt–Au budget of the evolving magmatic system prior to the exsolution of an 
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aqueous magmatic volatile phase. Here we discuss the effects of mss, iss and sulfide 

melt on modifying the metal budget of magmatic systems.  

The Effect of mss Saturation 

     The data in this study suggest that saturation of a magmatic system with mss should 

strongly fractionate Pd from Pt, and both of these PGE from Au. In addition to 

fractionation effects, the ability for mss to scavenge Pt and Pd from a silicate melt is 

dependent upon the fS2 of the system; i.e., higher fS2 yields higher Pt and Pd solubilities 

in mss. This relationship is consistent with the results of Ballhaus and Ulmer (1995); 

however, the absolute concentrations of both Pt and Pd in mss in this study are lower 

than the values reported by Ballhaus and Ulmer (1994) for experiments performed at 

identical temperatures similar fS2 values. Discrepancies between the solubility data in 

the two studies may be attributed to the more complex nature of the solid solutions 

utilized in the current study. Ballhaus and Ulmer (1994) equilibrated mss with either Pt 

or Pd, but never both simultaneously; additionally, their study did not include additional 

competing metals. The current study has utilized assemblages containing a more 

complex metal assemblage, thus, we hypothesize that more complex assemblages may 

be the cause of the variability in measured solubility values. The presence of Cu at 

several wt.% and Ni at slightly less than 1 wt.% may inhibit the solubility of Pt and Pd 

on the Fe sublattice of the mss lattice. Future work is planned to quantify the 

crystallographic residency of metals in mss solid solutions.  

     To calculate Nernst-type partition coefficients for Pt, Pd and Au between rhyolite 

melt and mss, taking into consideration the variation in values determined in this study, 

we used lower and upper values for each metal as a limiting case. Using a lower and 
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upper solubility value of 0.1 and 0.5 μg g
-1

 for Pt, Pd and Au in the rhyolite melt yields 

apparent Nernst-type partition coefficients that range from a low of 
meltmss

PdD /

 = 4.4 × 10
4
 to a high of  = 2.2 × 10

5
. Similarly for Pt, 

meltmss

PdD /
ranges from a low of 

6 × 10
3
 to a high of 3 × 10

4
. These calculated 

meltmss

PtD /
 values indicate that 

crystallization of mss leads to significant fractionation of Pt from Pd during silicate melt 

solidification. Thus, during mss fractionation, the absolute concentration of Pd in the 

silicate melt may decrease by a factor 10 relative to the concentration of Pt in the 

silicate melt. Gold is the most refractory of the three metals with measured 

concentrations in the silicate melt ranging from 0.35 to 0.01 μg g
-1

 with an average on 

the order of 0.1 μg g
-1

. These Au solubility values yield a minimum 
meltmss

AuD /

 = 2.3 × 10
3
and a maximum 

meltmss

AuD /
 = 1 × 10

4
. A comparison of these new results with 

those of Ballhaus and Ulmer (1994) suggests that the calculated partition coefficient 

values may increase with decreasing Cu content of the mss and additionally, increase 

with increasing fS2 of the system.  

     The absolute magnitude of the depletion of Pt and Pd from the silicate melt phase 

ultimately depends on the fS2 of the magmatic system, as the stability field for mss at 

magmatic conditions spans nearly 10 orders of magnitude. Thus, it is conceivable that a 

silicate melt could precipitate mss, yet retain significantly less Pt and Pd than are 

soluble in mss at much higher fS2, significantly lowering the apparent partition 

coefficient values. Similarly, mss saturation may be inhibited entirely given the 

appropriate fO2, fS2, and fH2O conditions. Hydrous silicate melts containing 

dissolved S at a fixed fO2 and fH2O posses a defined and fixed fH2S, given the 
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appropriate low magmatic fO2. Sulfidation reactions involving ferrous iron dissolved in 

the silicate melt or the transformation of mt to mss may be described by the following 

equilibria: 

Eq. 13                                       OHFeSSHFeO 2

mss

2

melt   

Eq. 14                                 
26

1
2

mss

2433
1 OOHFeSSHOFe   

     Assuming the mss in Eqs. (8) and (9) and mt in Eq. (9) are pure phases, these 

reactions work in concert with the iron activity in the melt, fS2 and fO2 to buffer the 

fugacity of the gaseous species H2S and H2O in the melt.  

Eq. 15                                        
1melt

FeO

2

melt

FeO

2
8 )(γ

SHX

OH
K 




f

f
 

where melt

FeOX  is the mole fraction of dissolved FeO in the silicate melt, fH2O is the 

fugacity of water, fH2S is the fugacity of H2S, and 
melt

FeO  is the activity of FeO in the 

melt. The fH2O is related to fO2 and fH2S via the equilibrium: 

Eq. 16                                          
SH

OOH
K

2

6
1

22
9

f

ff 
  

     If the intrinsic values of fH2O and fH2S fixed by the water content, sulfur content and 

oxidation state of the melt are out of equilibrium with the buffered values required by 

Eqs. (8) and (9), mss will be either resorbed and consumed until it is exhausted, or 

crystallize until the ratio of fH2S and fH2O of the silicate melt reach the equilibrium 

buffered values. Alternatively in sulfide unsaturated systems, high fH2O values may 

impede entirely the crystallization of a sulfide phase given that the melt is sufficiently 

oxidized (i.e., at oxidation states where H2S formation is limited, as reduced melts with 

high fH2O will have a high propensity to crystallize an oxide phase). The 
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―instantaneous‖ water fugacity of the melt at any point during magmatic evolution 

(prior to vapor saturation by second boiling) exerts a first order control on the stability 

and modal abundance of crystalline mss present in the system. The reduction in mss

FeSa  by 

the incorporation of additional metal components (i.e., Cu, Ni and Co) into the mss 

lattice will shift the pure end member equilibrium dictated by Eqs. 8 and 9 in a direction 

that represses mt crystallization.  

     The model equilibria discussed above indicate that early saturation of a silicate melt 

with mss (given an appropriately high fS2), provided that the mss is removed from the 

system via a Rayleigh type fraction process, may effectively reduce the PGE budget of 

the system levels that preclude the development of a PGE rich porphyry system. 

However, mss saturation at lowfS2 values may be possible given a high melt

FeOa  and 

appropriate fO2, fH2O and fH2S. Under such low fS2 conditions, the ability of mss to 

deplete the melt of Pt and Pd should be drastically reduced relative to 

high fS2 conditions. Additionally, at low fS2 conditions conducive to the saturation of a 

magmatic sulfide phase the modal abundance of crystalline mss should be extremely 

low due to the low concentrations of S acting as a limiting reagent.  

The Effect of iss Saturation 

     Crystallization of iss also appears to fractionate Pt, Pd and Au in the silicate melt. 

The effect of iss crystallization is to fractionate Au and Pd from Pt in the silicate melt 

with Pt being retained most strongly in the melt phase. Gold and Pd concentrations in 

iss range from 1000 to 5000 μg g
-1

, whereas the concentration of Pt in iss is consistently 

below the EPMA limit of detection. It is interesting to note the similarity of the 

geochemical behavior of Pd and Au in iss when contrasted with the distinctly, dissimilar 
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behavior of these metals in recovered mss. There appears to be no systematic variation 

of the Pt, Pd or Au solubility in iss with variation in either fS2 or the Fe/Cu ratio of the 

recovered iss. Gold concentrations reported in this study are similar to, albeit larger, 

than those reported in Simon et al. (2000). The fractionation trend of Pt and Pd, induced 

by the stability of magmatic iss, mirrors the mss fractionation trend where the 

concentration of Pt in the silicate melt exceeds that of Pd. The relatively compatible 

behavior of Au in iss differs distinctly from that observed in mss at the same 

experimental conditions. The compatible behavior of Au in the iss lattice should result 

in an inverse fractionation effect with respect to the ratio of Au to Pt and Pd in the 

residual silicate melt. Such a situation should strip Au from the melt relative to Pd and 

Pt.  

 

Applications to Natural Systems 

     The observed fractionation trends induced by the crystallization of mss with respect 

to the metal content of the residual melt are not in agreement with the high Pt/Pd ratios 

observed in some porphyry ore systems (Auge et al., 2005). The discord between Pt/Pd 

ratios observed in PGE-rich porphyry ore deposits (Werle et al., 1984, Mutschler et al., 

1985 and Hulbert et al., 1988, Mulja and Mitchell, 1991, Cassidy et al., 1996  

and Ohnenstetter and Watkinson, 1998) and the Pt/Pd ratios caused by sulfide 

saturation, as constrained in this study, suggest that magma oxidation and subsequent 

sulfide resorption and/or chemical exchange of metallic species between crystalline 

magmatic sulfide material and an evolved aqueous magmatic fluid play dominant roles 

in the determination of the final Pt/Pd ratio of the ore system. Furthermore, sulfide 
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saturation early in the evolution of a rhyolite silicate magma and the subsequent 

removal of the sulfide phase via Rayleigh fractionation may reduce the concentrations 

of Pt and Pd in the silicate melt to levels too low for the PGE to be effectively 

scavenged and concentrated by a magmatic volatile phase in porphyry ore-forming 

systems.  

 

Concluding Remarks 

Our experimental results constrain fractionation trends amongst Pd, Pt and Au in 

rhyolite magmatic systems. The data suggest that the timing of sulfide saturation and 

the nature of magmatic sulfide phase stability may control the ultimate abundances and 

ratios of Pd, Pt and Au transported by magmatic hydrothermal fluids to porphyry-type 

ore forming systems. Early crystallization of a magmatic sulfide phase in an evolving 

rhyolite melt system (and the removal of this phase from further chemical interaction 

with the rest of the magmatic system) may effectively stifle volatile-phase transport of 

the PGE and their enrichment in the magmatic-hydrothermal environment with metal 

ratios consistent with those observed in nature. Magmatic sulfide phases may, however, 

play an important temporal role in liberating sequestered Pt and Pd via oxidation and 

resorbtion into the melt or via direct sulfide–aqueous fluid chemical interaction late in 

the magmatic-hydrothermal transition phase.  
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Table 1. Haplogranite Glass Composition;  

analyzed by ICP,EPMA and LA-ICP-MS. 

Oxide Constituent Wt %
1 

SiO2 77.68 

TiO2 0.01 

Al2O3 12.7 

Fe2O3 0.28 

Na2O 4.49 

K2O 4.5 

Total 99.66 
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Table 2. Summary of all experimental assemblages at run conditions. All starting solutions had a NaCl/KCl ratio of unity 

 

        1. This is the starting NaCl/HCl ratio of the aqueous fluid. 

        2. Nominal sulfur fugacity values are reported as averages calculated with the Toulmin and Barton (1964) algorithm with 1σ    

            errors and should be considered estimates for a given set of experimental runs. See text in section 2.3 Sulfur and Oxygen  

            fugacities for a discussion of calculation and interpretation of the experimental  meaning of these values. 

 

 

 

 

 

 

 

 

Assemblage 

 

Run 

Numbers 

 

Phases At Run Conditions 

 

NaCl/HCl1 
 

P (MPa) 

 

T (°C) 

 

log10 fO2 

 

log10 fS2
2 

One 12, 13, 15 iss + mss + mt + rhyolite melt  

+ aqueous supercritical fluid + Pt + Pd + Au 

1 150 800 ~NNO -0.19  (0.29) 

Two 46, 47, 48, 

49, 50 

iss + mss + mt + rhyolite melt  

+ aqueous supercritical fluid + Pt + Pd + Au 

0 150 800 ~NNO -0.73 (0.11) 

Three 32, 33, 34 Intergrown bn and iss + mt + rhyolite melt  

+ aqueous supercritical fluid + Pt + Pd + Au 

1 150 800 ~NNO -5.16 (NA) 

 



 

 

 

 

3
8

 

 

 

 

 

 

 

 

                             

Table 3. The mean EPMA determined major element composition of quenched silicate melts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All values reported are in Wt. % and the 1σ standard deviation is given in parentheses.

Run  Duration  SiO2      FeO       K2O       Na2O      Al2O3     Cl     

Iss + po + magnetite + rhyolite melt + aqueous supercritical fluid + Pt + Pd + Au; no HCl added to starting solution 

12 69 71.11 (0.75) 0.67 (0.10) 5.26 (0.21) 3.04 (0.19) 11.71 (0.21) 0.2 (0.02) 

13 167 70.87 (0.49) 0.55 (0.05) 4.96 (0.17) 2.99 (0.10) 11.69 (0.17) 0.15 (0.15) 

15 360 71.89 (0.75) 0.73 (0.03) 5.32 (0.21) 3.13 (0.06) 11.65 (0.28) 0.2 (0.01) 

Iss + po + magnetite + rhyolite melt + aqueous supercritical fluid + Pt + Pd + Au; Na/K/H of starting solution equals one 

46 160 70.45 (0.52) 0.90 (0.43) 5.90 (0.10) 3.17 (0.09) 11.54 (0.22) 0.18 (0.04) 

47 336 71.55 (0.60) 0.94 (0.05) 5.83 (0.11) 2.99 (0.09) 11.29 (0.18) 0.18 (0.02) 

48 483 70.78 (0.41) 0.96 (0.05) 5.9 (0.10) 3.06 (0.08) 11.67 (0.21) 0.21 (0.03) 

49 607 72.68 (0.30) 0.59 (0.07) 5.42 (0.17) 2.85 (0.09) 11.10 (0.21) 0.13 (0.01) 

50 672 72.34 (0.26) 0.71 (0.04) 5.63 (0.11) 2.92 (0.08) 11.28 (0.27) 0.15 (0.01) 

Iss + bn + magnetite + rhyolite melt + aqueous supercritical fluid + Pt + Pd + Au 

32 140 71.08 (0.4) 0.52 (0.2) 5.89 (0.2) 2.93 (0.34) 11.51 (0.18) 0.14 (0.03) 

33 231 72.46 (0.7) 0.34 (0.04) 5.68 (0.14) 2.57 (0.32) 11.26 (0.20) 0.09 (0.02) 

34 281 71.09 (0.5) 1.91 (0.2) 5.49 (0.3) 2.99 (0.15) 10.55 (0.6) 0.18 (0.10) 
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                            Table 4. Summay of the trace element concentrations, EPMA analytical total and calculated ASI values 

                          from the quenched silicate melts (continued from Table 3).  

Run  Duration S (µg/g) Cu (µg/g) Pt (µg/g) Pd (µg/g) Au (µg/g) Total ASI 

Iss + po + magnetite + rhyolite melt + aqueous supercritical fluid + Pt + Pd + Au; no HCl added to starting solution 

12 69 152 (39) 8 (2) 1.2 (0.17) 0.34 (.31) 0.65 (0.49) 91.64 1.09 

13 167 233 (48) 6 (1.4) 0.893 (0.03) 0.16 (.09) 0.038 (0.01) 91.53 1.14 

15 360 245 (44) 13.6 (4) 0.266 (0.37) 0.21 (.22) 0.086 (0.04) 92.72 1.07 

Iss + po + magnetite + rhyolite melt + aqueous supercritical fluid + Pt + Pd + Au; Na/K/H of starting solution equals one 

46 160 152 (49) 4.8 (0.89) 1.03 (0.15) 0.074 (0.05) 0.043 (0.02)  91.97 0.99 

47 336 227 (49) 9.6 (2) 0.046 (0.03) NA 0.35 (0.30) 91.88 1.01 

48 483 184 (34) 6.7 (1) 0.17 (0.11) 0.046 (0.046)  0.100 (0.02) 91.98 1.02 

49 607 153 (14) 4.8 (1.9) 0.01 (0.01) 0.033 (0.027) 0.06 (0.03) 92.69 1.05 

50 672 143 (9) 5.2 (1.4) 0.027 (0.02)  0.010 (0.01)  0.019 (0.01)  92.83 1.05 

Iss + bn + magnetite + rhyolite melt + aqueous supercritical fluid + Pt + Pd + Au 

32 140 151 (19) 13 (1.4) 1.1 (0.11) 0.02 (0.01) 0.14 (0.11) 91.77 1.03 

33 231 83 (27) NA NA NA NA 91.52 1.09 

34 281 74 (17) 22 (21) 0.6 (0.04) 0.027 (0.01) 0.18 (0.13) 91.62 0.97 

1σ standard deviation is given in parentheses. 
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Figure 1  Nano-nugget bearing LA-ICP-MS signal from quenched silicate melt. Note the congruency of Cu, 

Au and Pd signals; additionally note the homogenous Fe signal. The homogenous nature of the Fe signal 

suggests that the nano- nuggets observed in the signal are not an artifact induced by small scale crystalline 

sulfide inclusions, but are in fact nano-nuggets analogous to those observed in other experimental studies. 
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Figure 2 Nano-nugget ―free‖ LA-ICP-MS signal from quenched silicate melt. All metal signals 

display some small degree of heterogeneity, however these signals are comparatively homogenous 

with respect to the signal in Figure 1. 
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Figure 3. The concentration of Pt, Pd and Au in the silicate melt as a function of run 

duration. The uncertainties on each datum are smaller than the symbol size. Note the 

general decrease in metal solubility as experimental run duration increases. 
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Table 5.The mean EPMA determined composition of the recovered monosulfide solid solution.  

 

 

 

 

 

 

 

 

 

 

 

 

Run # Fe  S Cu Ni Pd Pt Au Total 

12 55.08 (0.87) 40.18 (0.38) 2.16 (0.71) 0.05 (0.007) 2.38 (0.50) < DL < DL 100.69 (0.3) 

13 53.17 (0.23) 38.9 (0.51) 4.83 (0.77) 0.05 (0.004) 2.44 (1.73) < DL < DL 99.54 (0.7) 

15 49.71 (1.6) 39.69 (0.36) 2.77 (NA)  5.3 (0.36) 2.33 (0.69) 0.33 (0.18) < DL 100.07 (0.7) 

46 55.08 (1.2) 38.9 (0.22) 4.14 (1.09) 0.14 (0.05) 0.90 (0.42) < DL < DL 100.28 (0.5) 

47 53.5 (1.1) 38.91 (0.55) 5.01 (2.62) 0.43 (0.17) 1.31 (0.26) 0.06 < DL 100.35 (0.3) 

48 53.42 (1.9) 38.63 (0.7) 5.41 (2.67) 0.51 (0.07) 1.18 (0.56) 0.18 (0.04) < DL 100.31 (0.5) 

50 53.31 (1.4) 38.98 (0.48) 5.10 (2.06) 0.32 (0.02) 1.79 (0.25) 0.22 (0.02) < DL 100.53 (0.5) 

34 58.78 (0.46) 37.32 (0.23) 4.10 (0.61) < DL < DL < DL < DL 100.37 (0.2) 

All values are defined as wt. %; the 1σ standard deviation is reported in parentheses. 
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Table 6. The mean LA-ICP-MS determined Pd, Pt and Au concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           The LA-ICP-MS spectra  for Pd and Pt were reduced using  both a synthetic Pt-Pd-bearing  

                                           sulfide standard and also NBS-610; the different reduction methods are denoted as sulfide  

                                           and NBS-610, respectively. 1σ standard deviations are reported in parentheses. 

 

 

 

 

 

 

 

 

 

 

Run # Pd Pd Pt Pt Au 

 
(Sulfide) (NBS-610) (Sulfide) (NBS-610) (NBS-610) 

12 2.87 (0.15) 3.3 (0.18) 24 (1.3) 13 (.79) 131 (79) 

13 NA NA NA NA NA 

15 2.31 (0.06) 2.54 (0.1) 470 (40) 1789 (170) 230 

46 NA 0.5 (0.13) NA 108 (52) 108 

47 NA 1.2 (0.1) NA 236 (40) 136 

48 NA 1.41 (0.02) NA 561 (24) 286 (68) 

50 NA 1.9 (0.08) NA 910 (195) 134 (24) 

34 NA NA NA NA 9.1 (5.3) 
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Table 7. The mean EPMA quantified compositions of recovered intermediate solid solution.  

 

 

 

 

 

 

 

All values are given as wt. % with 1σ standard deviations reported in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

Run # Fe S Cu Ni Pd  Pt Au Total 

12 37.23 (0.91) 35.28 (0.28) 27.24 (1.01) <DL <DL <DL 2100 (2500) 100.17 (0.4) 

13 38.54 (0.19) 34.98 (0.25) 26.43 (0.04) <DL <DL <DL 3080 (490) 100.29 (0.4) 

15 38.03 (0.11) 34.74 (0.15) 27.64 (0.07) <DL <DL <DL <DL 100.51 (0.1) 

46 35.48 (1.3) 35.13 (0.38) 28.19 (0.71) <DL <DL <DL <DL 99.14 (0.7) 

47 37.85 (0.15) 34.82 (0.35) 26.96 (0.40) <DL <DL <DL <DL 99.76 (0.1) 

48 38.75 (0.15) 34.83 (0.13) 25.82 (0.17) 0.12 (0.01) <DL <DL NA 99.73 (0.2) 

49 37.39 (0.35) 35.45 (0.15) 26.78 (0.38) 0.08 (0.01) <DL <DL 1400 (1400) 100.24 (0.2) 

50 37.62 (0.44) 35.2 (0.22) 26.97 (0.33) <DL <DL <DL 1100 (2400) 100.02 (0.4) 
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Table 7. EPMA quantified compositions of recovered intermediate solid . All values are 

given as Wt. % with 1σ standard deviations reported in parentheses. 

Table 8. The mean LA-ICP-MS quantified concentrations of Au, Pt, and Pd. The LA-

ICP-MS spectra for Pd and Ptwere reduced using both a synthetic Pt-, Pd-bearing 

sulfide standard and also NBS-610; denoted as EPMA and LA-ICP-MS, respectively. 

The 1σ standard deviations are reported in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run # Pd  Pd  Pt  Pt  Au  

 
(Sulfide) (NBS-610) (Sulfide) (NBS-610) (NBS-610) 

12 NA 311 (387) NA 0.62 (0.5) 5585 (14) 

13 NA 64 (76) NA 7.1 (1.9) 7220 (1256) 

15 NA 1541 (94) NA 862 (16) 107 (55) 

46 NA 93 (46) NA 4.3 (0.8) 3706 (1483) 

47 NA 114 (49) NA 19 (29) 4404 (1153) 

48 NA NA NA NA NA 

49 NA 172 (196) NA 1.99 (0.4) 6771 (1895) 

50 NA 276 (183) NA 62 (117) 5693 (1739) 
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  Fe S Ni Pd Pt Au Cu Total 

        Run 32 quenched sulfide   

 
20.6 30.21 0.09 <DL <DL 0.04 49.3 100.31 

 
18.4 29.05 0.08 0.04 <DL 1.5 51.38 100.5 

 
22.27 30.95 0.13 0.12 <DL 6.41 41.63 101.54 

 
18.62 29.28 0.05 <DL <DL 0.07 53.02 101.06 

 
21.76 30.63 0.1 <DL <DL 1.33 45.81 99.64 

 
20.97 30.24 0.06 <DL <DL 0.15 48.63 100.09 

 
22.44 31.1 0.12 0.13 <DL 4.71 42.77 101.28 

 
19.87 29.7 0.15 0.02 <DL 0.92 48.52 99.2 

 
23.53 30.81 0.11 0.02 <DL 1.49 42.98 98.97 

 
18.92 28.64 0.07 0.05 <DL 2.44 50.53 100.67 

Mean 20.74 30.06 0.10 0.06 NA 1.91 47.46 100.33 

1 σ  1.77 0.86 0.03 0.05 NA 2.11 3.95 0.86 

    

Run 33 quenched sulfide  

 

 
26.96 30.8 <DL <DL <DL <DL 41.81 99.6 

 
26.44 30.29 <DL 0.05 <DL <DL 43.2 100.01 

 
26.61 30.25 <DL <DL <DL 0.02 43.13 100.05 

 
27.59 31.86 <DL 0.02 <DL 0.16 41.12 100.78 

 
26.44 30.85 <DL <DL <DL 0.03 42.83 100.19 

 
26.91 30.93 <DL 0.04 <DL 0.57 42.24 100.72 

 
26.43 29.83 <DL 0.05 <DL 0.09 44.41 100.85 

 
26.58 30.09 <DL 0.04 <DL 0.1 44.34 101.18 

Mean 26.75 30.61 NA 0.04 NA 0.16 42.89 100.42 

1 σ 0.40 0.64 NA 0.01 NA 0.21 1.15 0.54 

    

 

 

 

   

 

 

 

 

 

 

 

Table 9. Individual EPMA point analyses of quenched sulfide liquid for Run 32, 33, and 34. Note the heterogeneous 

distribution of Au. Each point analysis was performed using a broad, 40 micron beam in an attempt to re-integrate the 

composition of the sulfide liquid to that of run conditions. 
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Run 34 quenched sulfide  

 
23.56 28.65 <DL 0.02 <DL 0.17 47.84 100.26 

 
33.03 30.73 <DL 0.3 <DL 0.41 35.13 99.62 

 
35.87 31.46 <DL 0.24 <DL 0.19 30.72 98.51 

 
19.44 27.41 <DL <DL <DL 0.07 52.02 98.96 

 
18.33 26.57 <DL 0.1 <DL <DL 53.48 98.5 

 
17.95 26.66 <DL <DL <DL 0.14 54.3 99.05 

 
28.75 29.63 <DL <DL <DL 0.06 42.27 100.72 

 
32.33 30.41 <DL 0.38 <DL 0.05 37.95 101.13 

 
19.81 27.34 <DL 0.02 <DL <DL 53.08 100.26 

 
22.64 28.22 <DL <DL <DL 0.17 49.67 100.73 

 
18.17 26.99 <DL <DL <DL 0.11 54.31 99.59 

Mean 24.53 28.55 NA 0.18 NA 0.15 46.43 99.76 

1 σ 6.74 1.75 NA 0.15 NA 0.11 8.52 0.93 
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Run # Duration (Hrs) 
S in glass  

(μg/g) 

log fS2
1  

(bar) 

log fS2
2  

(bar) 

12 69 152  (39) -1.05 0.07 

13 167 233  (48) 0.02 -0.52 

15 360 245  (24) 0.15 -0.14 

46 160 152  (49) -1.05 -0.92 

47 336 227  (49) -0.03 -0.87 

48 483 185  (34) -0.56 -0.86 

49 607 153  (14) -1.02 -0.90 

50 672 143  (10) -1.19 -0.76 

32 140 151  (19) -1.06   NR* 

33 231 87  (20) -3.21   NR* 

34 281.5 73  (17) -3.64 -5.16 

 

* NR  indicates that mss was not recovered from the 

charge  

1. Sulfur fugacity calculated by using the Clemente et 

al. (2004) empirical algorithm. 

2. Sulfur fugacity calculated by using the Toulmin and 

Barton (1964) algorithm 

                                                                  **The 1σ standard deviation for EPMA sulfur analysis  

                                                                  is reported in parentheses. 

 

 

 

 Table 10. Calculated sulfur fugacity for all experimental runs.  
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Figure 4. BSE image of fine scale exsolution textures in mss; 

exsolution features are a Pd-Ni-Cu rich sulfide. The high Z# 

phase in the lower left hand corner is metallic Au. The scale 

bar is 20 μm. 
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Figure 5. BSE image of a sulfide entity interpreted to be a re-

crystallized sulfide liquid. Dark and light grey intergrowths are 

iss and bn. The scale bar is 100 μm. The dark grey crystal at 

lower left is magnetite which coexisted with the sulfide liquid 

at run conditions. 
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Figure 6. Plot of fS2 buffer curves relevant to calculated experimental sulfur fugacity values. 

Experimental fS2 values are schematically represented by the stippled ellipse. Buffer curves 

modified after Fleet et al. 1999. 
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Figure 7. An advancing sulfidation front in Pt foil chip in run of 

360 hours. Outer rim becomes (Pt,Pd,Fe)S in composition, where 

as the inner portion of the sulfidation front is nearly pure PtS 

grading into metallic Pt. 
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Figure 8. Thin sulfidation  rim (dark gray rimming the light 

grey) on a Pt foil chip in run of 67 hours. 
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CHAPTER THREE 

Au SOLUBILITY IN Cl-BEARING, HYDROUS BASALTIC MELTS 

AT VARIABLE fO2 

Abstract 

     We have performed experiments to evaluate Au solubility in natural, Cl- and S-

bearing basaltic melts. Experiments were carried out 1000ºC and 200 MPa, and oxygen 

fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer 

and FMQ + 4.5. All experiments were saturated with a metal-chloride aqueous solution, 

loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists 

of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The 

stable phase assemblage at FMQ + 4.5 consists of basalt melt, clinopyroxene, magnetite-

spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., 

quenched melt) and their contained crystalline material were analyzed by using both 

electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma 

mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt 

range from 4.8 µg g
-1

 to 0.68 µg g
-1

 at FMQ + 4.5 and 0.54 µg g
-1

 to 0.1 µg g
-1

 at FMQ. 

The measured solubility of Au in olivine and clinopyroxene was consistently below the 

LA-ICP-MS limit of detection (i.e., 0.1 µg g
-1

). The melt solubility data place limitations 

on the maximum dissolved Au content of hydrous basaltic liquids at geologically relevant 

fO2 values, and are consistent with the behavior of Au being not entirely controlled by 

fO2 in Cl- and S- bearing silicate liquid at low oxidation states below ~ QFM + 1.  
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Introduction 

     The geochemical behavior of Au as a trace component dissolved in silicate liquids, 

common magmatic silicate minerals, and oxide minerals has implications for processes 

ranging from the genesis of magmatic-hydrothermal ore deposits (i.e., porphyry-, high-

sulfidation epithermal-, and layered-mafic intrusion-hosted deposits) (Audétat et al., 

1998; Bell et al., 2009; Hedenquist and Lowenstern, 1994; Naldrett and Duke, 1980; 

Frank et al., 2002; Simon et al., 2005) to core formation and the chemical differentiation 

of the early bulk earth (Cottrell and Walker, 2006; O'Neill et al., 1995; Righter et al., 

2008; Ringwood, 1966). Two possible origins for metallically-fertile, siderophile-

element-enriched silicate melt are:  1) the low degree partial melting of oxidized, sulfide-

free asthenospheric mantle (Mungall, 2002); and, 2) the non-mutually exclusive process 

of siderophile element enrichment in residual liquids, driven by the crystallization and 

differentiation of sulfide-free basaltic magmas (Mustard et al., 2006). Mantle derived 

silicate liquids are widely accepted as the primary agent of chemical mass transfer for Au 

and other siderophile elements from mantle to crustal reservoirs. Therefore, it is essential 

to understand the thermodynamic and compositional variables that exert influence on the 

capacity of mantle derived basaltic liquids to dissolve and potentially fractionate Au and 

other siderophile elements. Solubility data defining the maximum Au capacity of silicate 

liquids in equilibrium with metallic alloys or sulfide phases are essential for the purpose 

of modeling Au delivery into crustal magmatic systems that source ore-forming 

magmatic-hydrothermal systems.  

     Extant experimental studies have demonstrated the importance of oxygen fugacity 

(fO2) and to a more limited extent, the effects of pressure and bulk composition, on the 
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solubility of many siderophile elements in silicate liquid. Several experimental studies 

have concluded that the variation of the fO2 imposed on select silicate liquids alters, by 

orders of magnitude, the solubility of many siderophile elements in the silicate liquid 

(Blaine et al., 2005; Borisov and Palme, 1996, 2000; Brenan et al., 2005; Ertel et al., 

1999). Experiments with anorthite-diopside eutectic liquids demonstrate that the 

solubility of most siderophile elements decreases linearly with the decreasing oxidation 

state of the liquid, following a slope defined by the oxidation state of the stable metallic 

oxide species in the melt. Additionally, the small, yet variable, effect of pressure on the 

measured solubility of Ni, Pt, and Pd in silicate melt is also an important factor (Ertel et 

al., 2006; Righter et al., 2008). Most recently, Botcharnikov et al. (2010) quantified the 

effects of dissolved Cl and S on Au solubility in andesitic and dacitic liquids at fO2 ~ 

NNO. Their data indicate that the presence of both Cl and S in the silicate melt are 

correlated with an increase in the solubility of Au in the melt.  

     The aforementioned studies have advanced significantly our understanding of the 

solubility behavior of select siderophile metals in silicate melt. However, there are few 

experimental data that constrain the solubility behavior of siderophile metals in natural 

H2O-, Cl-, and S-bearing basaltic liquids and crystalline silicate and oxide phases. In this 

study, we performed experiments to elucidate the influence of fO2 on Au solubility in 

H2O-saturated, Cl-, and S-bearing basaltic silicate liquids. Further, the experimental runs 

were designed to quantify the solubility of Au in clinopyroxene and olivine in 

equilibrium with the experimental melt to better understand the effects of simple crystal 

fractionation on the Au content of basaltic melts during crystallization along liquid lines 

of decent.  
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Experimental Design and Rationale 

Experimental Techniques 

     Experiments were performed in near-horizontal (i.e., the vessel and furnace are both at 

a positive angle of 10º relative to the horizontal lab bench), rapid quench titanium-

zirconium-molybdenum (TZM) pressure vessels at the University of Nevada, Las Vegas. 

Additional experiments were performed in a Shaw-membrane-equipped, internally heated 

gas pressure vessel (IHPV) at the American Museum of Natural History. All experiments 

were carried out in either Ar ± H2 or Ar-CH4-H2 mixed gas pressure media at 1000°C and 

nominal pressures ranging from 190 to 200 MPa. Measured temperature gradients imply 

that the temperature uncertainty in the TZM runs at any position within the charge is ± 

12°C from the reported run temperature. Temperatures in the IHPV experiments, 

including the effect of thermal gradient, are constrained to ± 5°C from the reported run 

temperatures. Pressure was monitored by using a bourdon tube strain gauge with a 

precision of ± 5 MPa in both the IHPV and TZM experiments.  

Starting Materials 

     Starting materials consisted of a tungsten carbide milled (<5 µm final grain size) 

dolerite powder from the lower chilled margin of the Ferrar Dolerite, McMurdo Dry 

Valleys, Antarctica, and a NaCl-KCl-HCl aqueous solution. The mineralogy of the 

starting dolerite consisted primarily of orthopyroxene, plagioclase, augite, and minor 

oxide phases (Boudreau and Simon, 2007); this phase assemblage was confirmed with 

the SEM and EDS analysis. The chemical composition of the starting dolerite was 

determined by using inductively coupled plasma mass spectrometry and is presented in 

Table 11. The starting aqueous solution was prepared to a total salinity of 10 wt. % NaCl 
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eq. The molar ratios of NaCl:HCl and NaCl:KCl in the aqueous solution were set to unity 

with a ∑Cl concentration of 0.17 molar. All experiments were contained in Au capsules, 

fixing the Au activity of the experimental system at unity. Starting assemblages, run 

durations, P, T and fO2 values are listed in Table 12. Some experiments also contained a 

pre-fractured cylindrical (2 mm OD x 5 mm length), inclusion-free chip of quartz in an 

unsuccessful attempt to trap the aqueous phase as synthetic fluid inclusions.  

Capsule Configuration 

     The experimental capsule configuration (Figure 9) consisted of a small length of Au 

tubing (1 mm ID, 1.2 mm OD x 10 mm length) welded at the base  and loaded with 

approximately 10-13 mg of powdered dolerite which was compressed into the bottom of 

the tube. The top of this capsule was mechanically crimped, but not welded. This smaller 

capsule containing the dolerite was then loaded into a larger Au capsule (4.8 mm ID with 

a 5 mm OD x 20 mm length) along with 30 µL of starting aqueous solution that was 

pipetted into the base of the outer capsule. This capsule configuration was designed to 

allow us to recover the silicate melt as a cylindrical aliquot of glass (i.e., quenched melt) 

+ crystalline material that preserves the geometry of the fluid-melt interface. The outer 

capsule was triple crimped and welded shut. Masses of the capsules were monitored both 

before and after welding to ensure that the solution was not lost during welding. The 

volume of solution loaded was carefully selected to ensure that the calculated volume of 

the aqueous phase at the P-T conditions of the experiment (approximated using the 

density predicted by the EOS of Driesner and Heinrich, 2007) would not exceed the total 

available volume of the experimental capsules. Based on the analog phase relations for 
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the NaCl-H2O system (Driesner and Heinrich, 2007), the aqueous fluid in the 

experiments is a single phase supercritical aqueous fluid at run conditions.  

Control and Estimation of Experimental fO2 values 

     Oxygen fugacity of the experiments was fixed at either  ~FMQ + 4.5 or ~FMQ. Low 

fO2 values were achieved through the addition of CH4 and H2 to the Ar pressure medium 

in the TZM and IHPV experiments, respectively. Oxidizing experiments were run at the 

intrinsic fO2 of the TZM and IHPV pressure vessels. Several experimental studies have 

utilized pure-Ar as a pressure medium in TZM and IHPV apparatuses along with Ni-Pd 

or hydrogen redox sensors to measure fO2 (Berndt et al., 2005; Matthews et al., 2003; 

Popp et al., 1984). These studies demonstrate that relatively oxidizing conditions ranging 

from FMQ + 4 to FMQ + 4.5 prevail as ―intrinsic‖ fO2 values. Based on these studies, we 

assumed an oxidation state of approximately FMQ + 4.5 for all experiments performed at 

the intrinsic oxidation state of the TZM pressure vessels. Reducing experiments in the 

TZM vessels were performed with a fixed partial pressure of 6.5 bars of CH4 that was 

pre-charged into the pressure vessel at ambient conditions. Using the equilibrium 

constant for the CH4 dissociation reaction and tabulated hydrogen and methane fugacity 

coefficients, it is possible to estimate the fH2 of the pressure medium allowing us to 

calculate the approximate fO2 of the experiment at run conditions. Calculated fO2 values 

of the reducing experiments are approximately FMQ ± 0.5 log units. Additionally, in all 

reducing TZM runs, sealed Pt capsules containing Ni-NiO powder mixtures and H2O 

were run behind the experimental charges (Figure 1). In all of these low fO2 experiments, 

the NiO was reduced and recovered entirely as metallic Ni. Hydrogen fugacity in the 
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IHPV experiments was fixed by using a Shaw membrane and continuously monitored 

with a pressure transducer. 

     All experimental charges were saturated with a supercritical aqueous phase in the 

MeCln-H2O (where n is proportional to the charge of the metal) system. Reduction of 

water activity in the experimental charge was calculated for the H2O-NaCl system by 

using the equation of Aranovich and Newton (1996). Calculated aH2O values are 0.96 for 

the aqueous phase at experimental P-T conditions. The effect of aH2O values less than 

unity on the calculated fO2 values of an experiment is shown in Figure 10. Reduction of 

the aH2O in the loaded aqueous solution at our experimental P-T conditions did not 

significantly decrease the estimated fO2 values.  

 

Analytical Methods 

Electron Microprobe Analysis 

     The glass cylinders and glass-hosted crystals (i.e., cpx and ol at FMQ, and cpx and mt-

sp at FMQ+4.5) recovered from each run were mounted in epoxy and polished for 

electron probe microanalysis (EPMA). Phase identification and textural relationships 

were documented by using energy dispersive spectrometry (EDS) and back-scattered 

electron (BSE) imaging. Silicate glass, clinopyroxene, and olivine were analyzed for 

major elements by using a four spectrometer JEOL 8900 SuperProbe at the University of 

Nevada, Las Vegas to perform wavelength dispersive spectrometry (WDS). Analysis of 

the silicate glasses employed a 15 kV accelerating potential and a 3 nA beam current 

used in conjunction with a de-focused 10 μm beam in order to minimize alkali diffusion 

(Morgan and London, 2005). Analysis of pyroxene and olivine utilized a 10 nA beam 
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current with a 2 μm beam diameter. A ZAF matrix correction algorithm was applied to 

calculate element concentrations. Natural glass and crystal standards were used for all 

analyzed elements. Standards for glass analyses included: VG568 rhyolite glass for Si, 

Na, and K; sillimanite for Al; hornblende for Ca; VG-A99 basaltic glass for Fe and Ti; 

kaersutite for Mg; scapolite for Cl; and rhodonite for Mn. The basaltic glass standards 

VG-A99 and VG-2 were analyzed periodically as blind standards to monitor the accuracy 

of the glass analytical routine. The concentration of H2O in the glass was determined by 

EPMA difference and should be considered semi-quantitative.  

LA-ICP-MS Analysis 

     Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses 

were performed on the glass and crystalline silicate phases at the Institute for 

Isotopengeologie and Mineral Rohstoffe at the ETH in Zurich, Switzerland. All analyses 

utilized a homogenized Eximer ArF laser (λ=193 nm) coupled with a Perkin-Elmer 6100 

DRC quadrupole ICP mass spectrometer. A carrier gas mixture consisting of He (1.15 L 

min
-1

) and H2 (5 ml min
-1

) was employed to increase sensitivity and lower the limits of 

detection for all elements analyzed (Guillong and Heinrich, 2007). Ablation crater size 

was varied from 40 μm for glass to 20 μm for clinopyroxene crystals. The repetition rate 

for the ablation was fixed at 10 Hz with energy densities ranging from 10-14 J cm
-1

. The 

SILLS software package (Guillong et al., 2008) and NBS-610 glass standard were 

utilized for all data processing and reduction. Internal standards of Al and Si (quantified 

by using EPMA as described above) were utilized in data reduction for homogenous 

glasses (i.e., long duration experiments). Compositionally, inhomogeneous short-duration 

experiments were reduced via normalization of the oxide components. Data reduction by 
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both methods yields statistically identical concentrations of Au and other trace 

components. The basaltic glass standard VG-A99 was analyzed intermittently as a 

monitor of analytical accuracy. Additionally, the Au/Ca count-rate ratios for NIST-610 

were carefully evaluated for each standard analysis in order to ensure that a potentially 

inhomogeneous distribution of Au in the NIST-610 glass standard did not manifest as 

variability in the calculated Au concentrations of the experimental glasses. No systematic 

error due to a potentially inhomogeneous Au distribution in the NIST 610 standard was 

found in any of the analytical blocks; thus, the apparent variability in the analyzed Au 

concentrations, discussed in detail below, represents accurately the actual, subtle 

variability in the Au content of the experimental glasses.  

 

Results and Data 

Spatial Relationships: Analytical Transects and Phase Distributions 

     Recovered cylinders of glass, and the glass-hosted crystalline material, were mounted 

horizontally in epoxy wafers such that the full length of the of the glass cylinder exposed 

and available for analysis. This orientation preserved the original fluid melt interface 

geometry and allowed us to perform EPMA and LA-ICP-MS analytical transects along 

the full height of the original melt column. Crystalline material was homogenously 

distributed throughout the volume of quenched melt in the short duration experiments. 

The majority of crystalline material in some longer duration runs was confined to the 

portion of the liquid column opposite the fluid melt interface. Figure 14 is a back-

scattered electron (BSE) image of a recovered glass (i.e., quenched melt) cylinder and 

illustrates differences in the spatial distribution of crystalline material. We interpret the 
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observed texture to represent density-driven crystal settling in long duration runs. 

Clinopyroxene and olivine crystals were analyzed throughout the entire volume of melt 

when possible. 

Stable Phase Assemblages 

     The stable phase assemblage varied with the fO2 imposed on the run. Phase 

assemblages from experiments performed at FMQ+4.5 contained silicate liquid, 

clinopyroxene, magnetite-spinel solid solution, and supercritical aqueous fluid. Phase 

assemblages recovered from experiments performed at FMQ contained silicate liquid, 

clinopyroxene, olivine, and supercritical aqueous fluid. The modal abundance of 

crystalline material was estimated visually to be 30-35%, with clinopyroxene being the 

most abundant crystalline phase at both oxidizing and reducing conditions. Olivine 

abundance in reducing experiments is low relative to the total abundance of 

clinopyroxene with ratios of clinopyroxene/olivine that are approximately 20:1. The grain 

size of the crystalline material was observed to coarsen with increasing run duration.  

Major Element Compositions of the Quenched Melt 

     Table 13 presents the average melt composition for all EPMA analytical transects 

from a given experiment. The glasses recovered from the long-duration runs are 

chemically homogeneous. EPMA data from an analytical transect of the compositionally 

homogenous melt from IHPV1-2 are presented in Table 14. We observe some variability 

in the chemical composition of the silicate liquid in short duration experiments. The 

observed compositional variability of the melt in short-duration runs is manifested in the 

following elements: Na, K, Cl, Si, Al, Fe, and Mg. Compositional data from an EPMA 

analytical transect, set orthogonal to the fluid-melt interface in short-duration run TZM 
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11, are presented in Table 15. These data illustrate the tenor and magnitude of the 

observed compositional variability in the short duration experiments. Concentrations of 

Na, K and Cl generally increase monotonically approaching the exchange interface from 

the base of the melt column. The SiO2 content of the melt also increases approaching the 

fluid melt interface, however this increase is generally more restricted and confined to the 

100-200 microns of melt immediately adjacent to the fluid-melt interface. The increasing 

concentrations of Na, K, Cl, and Si in the melt are interpreted to reflect the diffusion of 

Na, K, Cl, and Si into the portions of the liquid that are under-saturated (i.e., reflective of 

disequilibrium with the aqueous phase) with respect to these components. The volumetric 

extent to which these fluid components have interacted with the melt is controlled by the 

relative differences in the diffusivities of each component; thus, we observed that the 

network modifying cations Na
1+

 and K
1+

 have diffused into the melt to a much greater 

volumetric extent than has the network forming cation 
IV

Si
4+

.  

     The measured concentrations of Al, Mg, Ca, and Fe generally decrease from the base 

of the melt column to the fluid melt interface only in the short duration runs. The 

measured elemental concentration gradients in these runs may reflect simple dilution of 

the melt from the addition of 5-8 wt% SiO2 via introduction as a soluble component from 

the aqueous phase. The depletion of Al, Mg, Ca, and Fe near the fluid melt interface may 

alternatively reflect the leaching of these components into the chloride bearing aqueous 

solution. The exact nature and origin of the compositional gradient in the melt are not 

specifically relevant to Au solubility and will be discussed in detail in a separate 

publication. We highlight here that the measured Au concentrations along the entire 
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height of the melt column remain relatively consistent except for two short-durations 

which are discussed below.  

Solubility of Au in Quenched Basalt Melt 

    The measured Au concentrations in silicate glass are presented in Table 12 and plotted 

as a function of fO2 and experimental run duration in Figures 12 and 13, respectively. 

Table 12 also contains calculated analytical error, number of analyses, and the range of 

Au concentrations observed within each experiment. The measured concentrations of Au 

in the silicate liquid are consistent between runs of the same oxidation state. The 

concentrations of Au in the melt from experiments at ~FMQ + 4.5 range from a high of 

4.8 µg g
-1

 to a low of 0.68 µg g
-1

, with a mean (±1σ) of 1.98 µg g
-1

 ± 1.45 µg g
-1

. The 

concentrations of Au in the melt from experiments at ~FMQ have a much more restricted 

range from 0.54 µg g
-1

 to 0.1 µg g
-1

, with a mean (±1σ) of 0.35 µg g
-1

 ± 0.18 µg g
-1

. The 

reported solubility values represent between 7 and 13 separate LA-ICP-MS analyses 

along the entire length and width of the recovered glass cylinder. The Au solubility data 

will be discussed in detail below.  

Solubility of Au in Clinopyroxene and Olivine 

    Quantifying the concentration of Au, by using LA-ICP-MS, in the equilibrium 

crystalline phases proved to be extremely difficult owing to the relatively small size (i.e., 

5µm-35µm) of clinopyroxene and olivine crystals recovered from most experiments. 

Furthermore, analyses of small diameter crystalline material would inadvertently include 

some volume of quenched liquid, yielding a mixed LA-ICP-MS signal that required 

deconvolution of the contribution from the crystal and the quenched melt. An additional 

analytical complication was that clinopyroxene and olivine crystals were often 
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intergrown with Au particles, as displayed in Figure 14, rendering an analysis 

contaminated with a large mass of metallic Au. Utilizing the fact that the Sc 

concentration in the clinopyroxene was a factor of 4-5 greater than that of the melt, the 

count rate of 
45

Sc was monitored in order to delimit the ―crystal only‖ portion of the 

signal from the mixed crystal-melt portions of the signals. The study of Brenan et al. 

(2005) indicates that crystalline olivine may be incredibly sluggish, even at high 

temperatures, to equilibrate with the siderophile element content of silicate melts. In light 

of this observation, the Au concentrations that we measured in crystalline material from 

the short duration runs may be out of equilibrium with the Au content of the early silicate 

liquids. Despite our best attempts to reduce the LA-ICP-MS limits of detection for Au by 

employing H2 in the carrier gas (cf., Guillong and Heinrich, 2007) and utilizing the 

largest possible beam diameter for analyzing the crystalline material, the measured Au 

concentrations were consistently below the limit of detection. The limits of detection for 

the analyses of both olivine and clinopyroxene ranged from 0.1 to 0.05 µg g
-1

. We 

suggest that these data constrain the Au solubility of both clinopyroxene and olivine to 

<0.1 µg g
-1

.  

 

Discussion 

Insights from LA-ICP-MS Signal Processing  

snd Equilibrium Metallic Micronuggets 

     LA-ICP-MS analysis of quenched silicate melt affords unique insights into the spatial 

distribution of Au in the melt, beyond facilitating the simple exclusion of Au particles 

and micronuggests from signals. The presence, and treatment during signal processing, of 
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metal micronuggets in silicate glass has been discussed in a number of studies (e.g., 

Cottrell and Walker, 2006, Simon et al., 2008) with no consensus on whether the 

observed micronuggets should be included or filtered (i.e., removed) from LA-ICP-MS 

transient signals during signal processing. In the current study, we observed the presence 

of both large gold nuggets, visible in BSE (Figure 14), and small nuggets which were 

unresolveable with BSE. We interpret the BSE-observable Au nuggets as equilibrium 

metallic phases that coexisted with the melt and not as metal nuggets which nucleated 

and grew during quench. These observed large Au particles, often associated with 

vesicles, were generally visible and easily avoided during LA-ICP-MS analysis.  

A second type of nugget was identified only during LA-ICP-MS signal processing 

of experimental silicate glasses with low Au concentrations that generally displayed 

inhomogeneous Au count rates even in the areas of melt where we observed no metal 

nuggets. The results from previous studies of the solubility of metals in silicate melts 

suggest that similar heterogeneities observed in nominally nugget-free portions of LA-

ICP-MS signals may represent micronuggets that cannot be spatially resolved and, thus, 

cannot be removed during signal processing (Ertel et al., 1999). Such cryptic nano-

particles would contaminate the signal with excess metallic Au, yielding concentrations 

that are not representative of the dissolved metal content of the quenched liquid. To 

explore whether or not the small-scale Au perturbations in the transient signal are in fact 

nuggets that require filtering during signal processing, we compared the transient signal 

for Au to other elements which should exist only as fully dissolved components in the 

melt.  
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     Comparisons of the raw count-rate of 
197

Au with the raw count-rates of 
173

Yb, 
238

U, 

and 
208

Pb for an individual LA-ICP-MS signal reveal a striking similarity with respect to 

the lack of count-rate homogeneity. The measured isotopes 
173

Yb, 
238

U, 
232

Th were 

chosen for the comparison because the measured concentrations of these elements 

overlap with that of the measured Au concentrations. For example, the mean count rate 

for 
197

Au from one analysis of glass in experiment IHPV1-1 is 339 counts*sec
-1

, with a 

1σ standard deviation of 111 counts*sec
-1

 (32%). Mean count rates and standard 

deviations at the 1σ level for the same analysis for 
173

Yb, 
238

U, and 
232

Th
 
are 392 ± 240 

(59%), 971 ± 359 (22%), and 3417 ± 1012 (29%) respectively. Based on the comparison 

of the standard deviations from the mean count rates, Au concentrations appear no less 

inhomogeneous than the concentrations of other trace elements endemic to the 

composition of the starting material. Figure 15 contains the raw LA-ICP-MS signal used 

for the comparison. The origin of the heterogeneous nature of the signals is unclear; 

however, invoking a cause and effect relationship between the signal and Au particles is 

inconsistent with the observation of similar variability in the signals of elements with no 

such known ―nuggetting‖ behavior. The exact interpretation of the link between LA-ICP-

MS signals and the physical state of the analaytes remains speculative at best. We suggest 

that the small-scale inhomogeneous nature of the Au signals may be related in some 

capacity to the application of the LA-ICP-MS analytical technique and that the observed 

small-scale perturbations in the Au transient signal should be included during signal 

processing. To filter these perturbations results in an artificially lower metal solubility in 

the silicate liquid.  

 



 

70 

 

Au Solubility in Basaltic Melts 

     Previous studies of Au solubility in hydrous and dry basaltic liquids over a range of 

pressures and temperatures have reported Au solubility values ranging from <1 µg g
-1

 to 

60 µg g
-1 

(Bell et al., 2009; Borisov and Palme, 1996; Brenan et al., 2005; Frank et al., 

2002; Jugo et al., 1999; Simon et al., 2005; Simon et al., 2003) The general conclusion 

from these studies is that Au solubility displays a first order dependence on oxygen 

fugacity values greater than fO2 = 10
-6

 bar and, therefore, must be present in the melt as 

an oxide species. Dissolution of Au into silicate liquids as a monovalent oxide species 

was proposed by Borisov and Palme (1996) in following the form:  

Eq. 17                                               Au+
n

4
O2=AuOn/2

melt 

Rearranging the equilibrium constant for the above reaction in logarithmic form yields: 

Eq. 18                                       log10AuO0.5 = ¼log10 fO2 +K17 

The Au concentrations measured in the experimental melts in this study do not strictly 

adhere to the anticipated slope predicted by the linear relationship between Au solubility 

as a monovalent oxide species and the imposed experimental fO2 value. Despite the 

scatter in the data and the difference in slope, the measured Au concentrations from 

experiments at ~FMQ are consistently lower than the measured Au concentrations from 

the experiments at FMQ+4.5. The deviation of the Au concentrations in the reducing 

experiments from the values predicted by the relationship in Equation 2 may reflect the 

changing speciation of Au in silicate liquids with decreasing fO2. For example, we 

calculate a predicted Au solubility value of 0.18 µg g
-1

 at FMQ for Au as an oxide 

species. This value is a factor of two lower than the measured value of 0.35 µg g
-1

. We 

speculate that the elevated Au concentrations at low fO2 values are caused by the 
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formation and increasing abundance of either Au-Cl or Au-S, or both, complexes in the 

melt. Furthermore, the possibility of a stable Au-silicide species, as suggested by Borisov 

and Palme (1996), cannot be excluded from consideration. The exclusion of the high Au 

solubility values in the 24 hour TZM runs, perhaps caused by fO2 values higher than 

FMQ+4.5 during attainment of the imposed fO2 during (see below for explanation), 

further decreases the slope of the observed Au-fO2 relationship, strengthening the 

evidence for alternative Au species. The potential existence of a chloride species, 

however, seems most plausible given the high chlorine activity in the experimental melt. 

The probability of the existence of an Au-sulfide species is limited in melts at FMQ+4.5 

because of the very low abundance of dissolved sulfide in the melt at this redox condition 

(Jugo et al., 2005; Mavrogenes and O'Neill, 1999). Botcharnikov et al. (2010) observed a 

linear correlation between Au concentration and Cl activity in andesitic melts at fO2 

values of approximately NNO and proposed the existence of a Au-Cl species in the melt. 

We suggest that AuO0.5 is the most prominent Au species in chloride bearing silicate 

melts at the high oxidation states prevalent in the initial hours of the experiments over the 

first several hours at run temperature. Thus, fO2 is the primary variable controlling Au 

solubility in the early experimental liquids. As fO2 values inside the charge adjust to the 

imposed fO2, the dominant Au speciation may shift to either Au-Cl or Au-S complexes, 

muting the effect of fO2 while emphasizing the effects of the chlorine and sulfur activities 

of the melt. This finding is consistent with the results from Botcharnikov et al. (2010).  

     Interestingly, no consistent relationship between the composition of the melt and Au 

content is observed. In experiments TZM 20 and TZM 21 the concentration of Au 

increases subtly by a factor of 1.5- 2.0 (e.g., an absolute increase of 1 µg g
-1

 to 1.8 µg g
-1

) 
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in the volume of melt adjacent the fluid-melt interface. The origin of this Au 

concentration gradient appears to be correlated with the total alkali, Cl, and Si content of 

the liquid such that portions of the melt richer in alkalis, Cl, and Si contain higher 

concentrations of Au. This relationship is not observed in all experiments and awaits 

future study.  

     The apparent temporal evolution of the Au contents of the melts is significant for the 

experiments run at FMQ+4.5. The temporal variation of Au solubility in the melt is 

plotted in Figure 13. The highest measured Au concentrations in silicate glass are for the 

experiments of 24 hours duration. The measured concentrations of Au in silicate glass 

subsequently decrease with increasing run time. We suggest that the temporally 

increasing Au concentrations are caused by the initially highly oxidizing conditions of the 

charge present before internal redox equilibrium is attained. In contrast, experiments at 

reducing conditions have high fH2 values such that the osmotic equilibrium of H2 

between the pressure vessel and the charge attains redox equilibrium more quickly 

relative to the experiments at intrinsic oxygen fugacity values (cf., Gaillard et al., 2002). 

Temporal variability in Au content is not observed in the experiments at ~FMQ. 

Inadvertent, subtle variations in the ratio of atmospheric gas to aqueous solution loaded 

into the charges may also affect the initial oxidation state of the charge, causing Au to 

dissolve readily into the melt as an oxide species during the initial hours of the 

experiment.  

Au concentration in Clinopyroxene and Olivine 

    Data from the long duration experiments for Au solubility in olivine are consistent 

with data from Brenan et al. (2005). They report maximum Au concentrations in olivine 
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ranging from 0.1-µg g
-1

 to 0.005 µg g
-1

. The highly incompatible nature of Au in the 

lattice of both clinopyroxene and olivine phases is not unexpected considering the 

relatively large ionic radius and the probable 1
+
 oxidation state of Au. As a monovalent 

cation, the diadochy of Au in the olivine lattice appears to be extremely limited. Data 

from the current study suggest that Au compatibility on the clinopyroxene lattice appears 

similar in magnitude to that of olivine, but the relatively high LA-ICP-MS limits of 

detection prohibit making more than semi-quantitative comparisons. 

     Potential coupled substitution mechanisms involving Au
1+

 in the M2 site accompanied 

by Fe
3+

 or Al in the M1 site, or alternatively the presence of 
IV

Al may enhance Au 

compatibility in clinopyroxene. It seems unlikely that coupled substitutions involving 

Au
1+

 would greatly enhance the capacity of clinopyroxene to sequester significant 

quantities of Au. The extremely low activities of Au in the melt are likely the dominant 

factor dictating the Au content of the crystalline material, even considering potential 

coupled substitution mechanisms. However, compositionally controlled enhancement of 

partition coefficient values for Au between pyroxenes and melt warrants further 

experimental investigation.  

 

Conclusions 

     The new experimentally determined Au solubility data place important constraints on 

the maximum Au capacity of hydrous, Cl-, and S-bearing basalt liquid. The sum of the 

available data for Au solubility in silicate melts, including data from this study and other 

published data, is summarized as follows: 
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1. The precise nature of siderophile element speciation in silicate liquids at low fO2 

values remains enigmatic. Magmatic volatiles such as Cl and S may act as 

complexing anions that enhance the overall Au solubility in the melt, as well as 

altering Au speciation at low, geologically relevant oxygen fugacity values. From 

comparisons of Au solubility data in both hydrous and anhydrous studies, water 

seems to have little effect on the Au content of silicate melts. The existence of 

prominent Au species in silicate melts other than simple oxides has not yet been 

confirmed by spectroscopic techniques. Evidence for the existence of such species 

relies on a limited amount of experimental data that merely imply the existence of 

such species. The relative abundances of Au species in silicate melts where Cl, S, 

and O are all present remain unconstrained. The effect of pressure on the Au 

capacity of Cl and S bearing melts is not yet explored; high pressures may further 

promote the formation of Au-chloride and/or Au-sulfide species in the melt. 

Oxygen fugacity may not be the dominant factor controlling the behavior of Au in 

volatile bearing silicate magmas at geologically relevant redox conditions. The 

studies of Au (and other metal) solubility in mafic silicate liquids indicate that Au 

speciation and solubility mechanisms require significant future study.  

2. The effects of bulk composition on the Au capacity of silicate melts remain fully 

unconstrained. Direct comparison of Au solubility values from studies in 

haplogranite systems to values from studies in basaltic and haplobasaltic systems 

cannot isolate the effects of bulk composition because of the large range of 

temperatures at which the studies were performed. Two experiments from this 

study indicate that increasing melt alkalinity and Cl content may enhance Au 
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solubility in the melt. Future studies are planned to explore the effect of melt 

composition at unique PT conditions. 

3. Au solubilities in clinopyroxene and olivine, common silicate phases present in 

basaltic magmatic systems and their upper mantle sources, are likely very low 

(<0.1 µg g
-1

). If coupled substitution mechanisms affect Au compatibility on the 

pyroxene lattice, static partition coefficients may not accurately reflect the 

partitioning behavior of Au in pyroxene fractionating magmatic systems. In light 

of this study, Au should be strongly enriched in liquids fractionating both 

clinopyroxene and olivine. 

     Au solubility in silicate liquids is a complex function of oxygen fugacity, the 

fugacities of other volatile components of the melt, and perhaps even the bulk 

composition of the liquid. These complexities challenge our ability to model siderophile 

element behavior in naturally fractionating, volatile bearing basaltic liquids. More 

experimental work is required before a quantitative model of the Au capacity of silicate 

melts can be fully developed. Specifically, the nature and effects of Au speciation in 

volatile bearing melts at low oxygen fugacity is required to fully predict the behavior of 

Au in magmatic systems. Finally, simple fractionation models utilizing static partition 

coefficient values for Au between common silicate phases and liquid will be complicated 

by the evolving bulk composition and volatile contents of the residual liquids as well as 

the potentially compositionally controlled Au contents of the pyroxenes crystallized from 

the melt.  
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SiO2 53.61 

Al2O3 14.55 

FeOtotal 9.1 

MgO 6.55 

CaO 10.59 

Na2O 1.77 

K2O 0.79 

TiO2 0.63 

P2O5 0.1 

MnO 0.18 

Total 98.72 

Table 11. Major element composition of starting dolerite powder 
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    *Range is reported as the difference between the minimum and maximum values obtained for a given experiment. 

 

 

 

 

 

   

Table 12. Run conditions for all experiments.  

Run Duration (Hrs) fO2 Pressure Temperature Au ± 1σ (µg g-1) 2σ analytical error Range* (µg g-1) 

Au 

Gradient 

TZM 11 7 FMQ + 4.5 ± 0.5 1.95 Kb ± 0.1 990 ± 12 1.46 ± 0.11 0.22 0.64 (n=12) N 

TZM 12 24 FMQ + 4.5 ± 0.5 1.95 Kb ± 0.1 990 ± 12 4.90 ± 0.21 0.36 1.2 (n=8) N 

TZM 20 18.5 FMQ + 4.5 ± 0.5 1.95 Kb ± 0.1 990 ± 12 1.10 ± 0.35 0.12 1.19 (n=13) Y 

TZM 21 25 FMQ + 4.5 ± 0.5 1.95 Kb ± 0.1 990 ± 12 2.90 ± 0.69 0.24 1.39 (n=12) Y 

 IHPV 1-1 172 FMQ + 4.5 ± 0.5 2.00 Kb ± 0.05 1000 ± 5 0.64 ± .03 0.1 0.08 (n=9) N 

IHPV 1-2 144 FMQ + 4.5 ± 0.5 2.00 Kb ± 0.05 1000 ± 5 1.05 ± 0.03 0.16 0.07 (n=8) N 

TZM 23 6 FMQ ± 0.5 1.95 Kb ± 0.1 990 ± 12 0.35  ± 0.12  0.1 0.3 (n=12) N 

TZM 30 12 FMQ ± 0.5 1.95 Kb ± 0.1 990 ± 12 0.09 ± 0.01 0.04 0.06 (n=7) N 

TZM 31 24 FMQ ± 0.5 1.95 Kb ± 0.1 990 ± 12 0.26 ± 0.10 0.08 0.23 (n=10) N 

IHPV 1 192 FMQ ± 0.1 2.00 Kb ± 0.05 1000 ± 5 0.55 ± 0.05 0.12 0.15 (n=10) N 



 

 

 

7
8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Schematic diagram of the experimental capsule configuration 



 

 

 

7
9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The displacement of the FMQ buffer at reduced water activities. Actual experimental 

water activities and oxygen fugacity values are marked with the heavy black rectangle. 
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Table 13. Average composition of the quenched melt. The 1σ standard deviation for the average is contained within parentheses to the 

right of the average value. The # Analyses indicates the total number of replicate analyses per glass. 

Run ID    SiO2      FeO       K2O       Na2O      Al2O3     Cl        MgO       TiO2      CaO      Total   # Analyses 

TZM 11 55.4 (2.07) 4.28 (0.59) 2.16 (0.70) 2.45 (0.14) 15.82 (0.72) 1.50 (0.17) 3.74 (0.49) 0.65 (0.08) 7.53 (1.0) 92.88 (0.29) 14 

TZM 12 53.88 (0.80) 3.61 (0.22) 2.50 (0.21) 2.20 (0.10) 15.30 (1.10) 1.78 (0.08) 3.70 (0.24) 0.49 (0.08) 7.63 (0.71) 91.90 (0.64) 10 

TZM 20 53.85 (2.24) 5.25 (1.04) 2.32 (0.48) 2.56 (0.21) 15.57 (0.67) 1.20 (0.09) 4.03 (0.43) 0.64 (0.10) 7.38 (0.86) 92.65 (0.30) 13 

TZM 21 54.65 (0.68) 4.12 (0.09) 2.01 (0.35) 2.47 (0.13) 15.80 (0.56) 1.33 (0.18) 3.94 (0.16) 0.64 (0.08) 7.90 (0.56) 92.76 (0.42) 19 

TZM 23 54.95 (3.70) 5.70 (2.39) 2.19 (0.98) 2.42 (0.26) 14.77 (0.77) 1.27 (0.15) 3.93 (0.57) 0.62 (0.09) 7.59 (1.59) 93.32 (0.60) 13 

TZM 30 54.13 (0.61) 5.32 (0.50) 2.50 (0.18) 2.34 (0.08) 16.54 (0.17) 1.29 (0.09) 3.16 (0.11) 0.77 (0.11) 7.10 (0.26) 92.98 (0.48) 14 

TZM 31 55.30 (4.33) 5.16 (2.36) 2.34 (0.89) 2.34 (0.33) 14.65 (0.99) 1.24 (0.24) 3.70 (0.71) 0.65 (0.13) 7.35 (1.73) 92.71 (0.53) 13 

IHPV 1 51.64 (0.33) 3.70 (0.12) 2.66 (0.08) 2.86 (0.12) 17.36 (0.13) 1.93 (0.07) 3.91 (0.10) 0.68 (0.05) 8.32 (0.11) 92.81 (0.51) 16 

IHPV 1-1 51.10 (0.27) 4.41 (0.11) 2.64 (0.05) 2.65 (0.09) 17.30 (0.15) 2.12 (0.10) 3.99 (0.12) 0.67 (0.08) 8.44 (0.08) 93.58 (0.39) 14 

IHPV 1-2 51.52 (0.22) 4.27 (0.11) 2.55 (0.05) 2.51 (0.10) 17.04 (0.10) 1.98 (0.09) 4.10 (0.09) 0.66 (0.11) 8.50 (0.13) 92.92 (0.30) 15 
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Figure 11. Backscattered electron image of experimental glass 

cylinder recovered from IHPV1-1. The arrow represents the 

typical EPMA transect from the base of the melt column to the 

fluid-melt interface, the latter is not visible in this 

photomicrograph. The bright spots represent the large metallic 

nuggets discussed in the text. 
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Table 14. EPMA analytical transect for IHPV1-2. The run time was 142 hours.  

   SiO2   

   

FeO       K2O    

   

Na2O      Al2O3     Cl     

   

MgO       TiO2      CaO      Total   

51.64 4.40 2.68 2.73 17.08 1.93 3.96 0.77 8.52 93.33 

51.48 4.40 2.60 2.80 17.10 1.93 4.13 0.85 8.41 93.35 

51.86 4.42 2.68 2.59 17.25 1.81 4.13 0.59 8.23 93.38 

51.27 4.44 2.67 2.85 17.03 2.02 4.23 0.64 8.32 93.13 

51.34 4.25 2.66 2.63 17.03 2.02 4.29 0.66 8.58 93.16 

51.61 4.25 2.57 2.59 16.99 1.96 4.14 0.71 8.55 93.14 

51.14 4.25 2.60 2.56 16.88 1.88 4.15 0.77 8.78 92.63 

51.48 4.06 2.56 2.64 17.12 2.12 4.05 0.65 8.41 92.76 

51.73 4.23 2.53 2.57 17.10 2.03 3.94 0.65 8.61 93.03 

51.43 4.09 2.52 2.70 17.11 2.04 4.10 0.61 8.60 92.90 

51.40 4.27 2.64 2.49 16.93 1.97 4.16 0.66 8.51 92.74 

51.49 4.28 2.61 2.65 17.06 1.97 4.12 0.69 8.50 93.05 

0.21 0.13 0.06 0.11 0.10 0.09 0.10 0.08 0.15 0.26 
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SiO2   

   

FeO       K2O    

   

Na2O   

   

Al2O3     Cl     

   

MgO    

   

TiO2      CaO    

  

Total   

53.62 4.65 1.58 2.44 16.01 1.49 4.03 0.75 8.16 92.54 

54.02 4.41 1.73 2.39 16.23 1.48 4.08 0.55 8.07 92.85 

53.40 4.73 1.60 2.26 16.56 1.41 4.13 0.49 8.43 92.89 

53.86 4.58 2.14 2.40 16.29 1.59 4.11 0.61 7.72 93.11 

53.36 4.67 1.67 2.47 16.45 1.58 4.02 0.57 8.19 92.76 

53.32 4.53 1.70 2.30 16.64 1.57 3.93 0.75 8.31 92.87 

56.31 4.21 2.63 2.56 15.03 1.15 3.39 0.67 6.76 92.60 

57.22 3.66 3.00 2.52 15.42 1.32 3.24 0.61 6.47 93.26 

57.59 3.68 3.04 2.43 15.17 1.49 3.20 0.69 6.19 93.15 

58.51 2.76 3.53 2.62 14.57 1.45 2.78 0.62 5.65 92.20 

59.32 2.45 3.58 2.74 14.19 1.47 2.91 0.59 5.39 92.37 

55.50 4.03 2.38 2.47 15.69 1.45 3.62 0.63 7.21 92.78 

2.32 0.80 0.80 0.14 0.85 0.13 0.52 0.08 1.14 0.33 

Table 15. EPMA analytical transect for TZM 21. The run time was 25 hours. 
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Figure 12. Au concentration as a function of oxygen fugacity. Heavy dashed line represents the 

theoretical Au solubility slope of 0.25; solid line is the linear regression (m = 0.17) from all of the 

data in the current study; the light dashed line is the linear regression of the three long duration 

experiments (m=0.12) The filled circles are all of the Au solubility data from Botcharnikov et al. 

(in press) who report that the increasing Au concentration  in their study corresponds to increasing 

chlorine and sulfur activities in the melt. 
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Figure 13. Au concentration as a function of run duration. High Au concentrations in the short 

duration experiments may reflect the higher Au solubility in relatively oxidizing conditions in the 

first few hours of the experiments run at the intrinsic oxidation state (i.e., FMQ +4.5). The ―x’s‖ 

represent reducing runs and the ―circles‖ represent oxidizing runs. 
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Figure 14. Backscattered electron image of a LA-ICP-MS crater 

which contains a large metallic Au particle and a second glass-hosted 

gold nugget at the interface between melt and cpx. 
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Figure 15. LA-ICP-MS signal from IHPV1-1. Note the similarity in the one-  sigma 

standard deviations for the count rates of Au, Th, Pb, and U. 
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CHAPTER FOUR 

EXPERIMENTAL EVIDENCE FOR THE ALTERATION OF 

THE Fe
3+

/∑Fe OF MAFIC MASMAS BY THE DEGASSING OF 

CHLORIDE RICH VOLATILES 

Abstract 

     The temporal evolution of the redox conditions experienced by degassing magmas in 

the shallow subsurface has important petrologic implications for magmatic phase 

equilibria. We present new experimental data that suggest that a chloride-bearing 

magmatic aqueous volatile phase may affect the concentration and activity of ferrous iron 

in silicate liquids via the preferential dissolution of ferrous iron into an aqueous fluid. 

The data are consistent with a model wherein the exsolution of a chlorine-bearing, 

aqueous  fluid from the melt may be expected to modify the MgO to FeO ratio of the 

residual degassed melt. Degassing-induced alteration of the melt composition may 

cryptically affect the identity and compositions of late crystallizing silicate and oxide 

phases. The overall magnitude of the reduction in the ferrous iron content of the residual 

melt is controlled by the fluid to melt ratio. As such, passive degassing over geologically 

plausible, protracted periods of time has the potential to extract significant quantities of 

divalent iron, hence resulting in a residual melt depleted in FeO relative to Fe2O3. 

Evidence for increased Fe
3
+/∑Fe ratios in chloride-degassed magmas should be 

manifested in the compositions of phases sensitive to the FeO content and fO2 of the melt. 

Additionally, the experimentally determined aqueous fluid-melt partition coefficients for 

the bulk iron content of the melt (expressed as Fe
total

)
 
range from D = 0.54 to D = 0.39.  

 



 

 

89 

 

 

Introduction 

     The oxidation states of most natural basaltic and andesitic liquids range from ΔFMQ-1 

to ΔFMQ+4 (Carmichael, 1991). Prevailing redox conditions in magmatic systems exert 

a strong influence on magmatic phase equilibria, liquid lines of decent, and the speciation 

of redox sensitive volatiles (Berndt et al., 2005; Gaillard and Scaillet, 2009; Mavrogenes 

and O'Neill, 1999; Scaillet and Evans, 1999; Scaillet and Macdonald, 2006; Scaillet and 

Pichavant, 2004). Additionally, the relative proportion of ferric and ferrous iron and their 

respective coordination states profoundly affect melt density and viscosity (Dingwell and 

Virgo, 1988; Lange and Carmichael, 1987). Recent numerical modeling efforts suggest 

that the oxygen fugacity (fO2) of silicate magmas is not static, but rather may evolve 

rapidly in shallow-level degassing volcanic systems (Burgisser and Scaillet, 2007). 

Dynamic changes in magma redox conditions have important implications for modeling 

volcanic processes, as well as the correct petrologic interpretation of iron bearing phases 

crystallizing during volatile exsolution.  

      The previously proposed mechanisms for degassing-induced magma oxidation rely 

upon the removal of hydrogen from the melt as either H2S or HCl (Burgisser and Scaillet, 

2007; Candela, 1986). In the current study we present a new, geologically plausible 

oxidation mechanism for the late stage degassing of mafic magmas. The exsolution of a 

chloride-rich aqueous fluid from the melt may alter the Fe
3+

/∑Fe ratio of the silicate melt 

by preferentially scavenging divalent iron from the melt. This behavior is expected to 

cause a precipitous decrease in the concentration and activity of FeO in the melt, while 

simultaneously altering the equilibrium composition of Fe-bearing phases (e.g., 

orthopyroxene, clinopyroxene, and olivine) crystallizing from the residual liquid. 
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Moreover, the new data indicate that Cl-bearing magmatic-hydrothermal fluids have the 

capacity to contain and transport significant quantities of dissolved iron sourced from 

silicate melts. This conclusion is consistent with the results from earlier studies of 

chlorine-rich, iron-bearing aqueous-fluid inclusions from natural magmatic hydrothermal 

systems as well as thermodynamic modeling efforts concentrated on silicate-fluid mass 

transfer processes (Dolejš and Wagner, 2007; Koděr et al., 1998; Kodera et al., 2003; 

Whitney et al., 1985). The mechanism of preferential dissolution of ferrous iron into a 

magmatic volatile phase(s) is proposed not as a mutually exclusive alternative to 

hydrogen based auto-oxidation processes, but rather as a complimentary process that may 

enhance the efficiency of magma oxidation as well as decreasing the total iron content of 

the residual silicate melt.  

 

Experimental and Analytical Techniques 

     Experiments were performed at 200 ± 0.05 MPa and 1000 ±10 °C in a titanium-

zirconium-molybdenum (TZM) pressure vessel at the University of Nevada, Las Vegas 

or an H2 membrane equipped internally heated pressure vessel (IHPV) at the American 

Museum of Natural History. Experimental fO2 values were varied at two oxidation states: 

FMQ+0 (±0.5) to FMQ+4.5 (±0.5). Starting materials consisted of a milled dolerite 

powder from the lower chilled margin of the Ferrar Dolerite, McMurdo Dry Valleys, 

Antarctica (Boudreau and Simon, 2007) and an equimolar NaCl-KCl-HCl aqueous 

solution with a total molar chlorine concentration of 0.17. The phase assemblage 

contained in the chilled margin dolerite has been investigated petrographically by 

Hersum et al. (2007) and contains orthopyroxene, clinopyroxene, plagioclase, and a 
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quantity of Fe-Ti oxide phases; the starting material free was of olivine. The mass ratio of 

solution to dolerite powder was fixed at 3:1, in order to impart a maximum compositional 

change in the silicate material. Phase relations predicted from the equations of Driesner 

and Heinrich (2007) for analog H2O-NaCl fluids indicate that a single-phase, supercritical 

fluid is stable at run conditions. Experiments were run in a double-capsule configuration 

where a mechanically open inner capsule was packed with dolerite powder and loaded 

into a larger outer capsule containing the solution. This experimental design limited the 

interaction of the aqueous fluid with the silicate material to the top surface of the melt 

column; i.e., at a single fluid melt interface at the top of the melt column. Thus, 

crystalline material contained in the interior of the melt did not interact directly with the 

fluid phase.  

   Experimental details, including run duration, run fO2, are provided in Table 16 along 

with a list of recovered solid experimental run products which consisted of quenched 

melt (i.e., glass), clinopyroxene, olivine, and magnetite. All glasses and crystalline 

material were analyzed by using wavelength dispersive spectrometry (WDS) with a four 

spectrometer JEOL 8900 electron microprobe at the University of Nevada, Las Vegas. 

Qualitative phase identification and the documentation of textural relationships were 

accomplished by using backscattered electron imaging (BSE) and energy dispersive 

spectrometry (EDS). Laser ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS) analyses were performed on the glass and crystalline silicate phases at the 

Institute for Isotopengeologie and Mineral Rohstoffe at ETH in Zurich, Switzerland.  

     Mass balance calculations utilizing LA-ICP-MS trace element data were employed to 

determine the mass ratios of melt to crystalline material, and to determine the 
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composition of the aqueous phase in the long duration (steady state) experiments. Iron 

loss to Au capsules has been demonstrated to be negligible for basaltic liquids at fO2 

values of FMQ (Botcharnikov et al, 2007).  

 

Stable Phase Assemblages, Phase Compositions and  

Their Temporal Evolution 

     The phase assemblages observed in the quenched run products were observed to 

change as a function of both the experimentally imposed fO2 and the run duration. 

Experiments conducted at ΔFMQ+4.5 contain a phase assemblage consisting of hydrous 

silicate melt, clinopyroxene, ± magnetite, ± olivine, ± plagioclase, and a supercritical 

aqueous fluid. Experiments less than 24 hours in duration contained magnetite in the 

absence of olivine, whereas long duration experiments of 172 and 144 hours contained 

olivine ranging in composition from Fo92 to Fo95, but no magnetite.  

     Experiments conducted at reducing fO2 values of ΔFMQ+0 (±0.5 log units) contained 

a phase assemblage consisting of hydrous silicate melt, clinopyroxene, olivine, and 

supercritical aqueous fluid. The composition of olivine in these experiments evolved 

substantially with increasing run time, from Fo77 at 24 hours to Fo92 at 172 hours. Figure 

16 contains annotated BSE images illustrating the different phase assemblages.  

    The ferrous iron content of the experimental melts was calculated by using the 

algorithm of Kress and Carmichael (1992) in conjunction with the EPMA determined 

bulk iron concentration of the melt. The calculated FeO content was then used to 

calculate the Mg-Fe partition coefficients of olivine-melt pairs. Calculated partition 

coefficient values for olivine-melt pairs from short duration experiments range from Kd = 
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0.29 to 0.32 at fO2 = ΔFMQ+0. The experimentally determined equilibrium Kd value is 

calculated to be 0.30 for our experimental conditions. Thus, the Kd values calculated from 

our experimental data indicate that the composition of the early olivine (Fo77) is in 

equilibrium with respect to the melt composition in these experiments. The slight positive 

deviation of the calculated Kd value in some olivine-melt pairs may arise from small 

errors in the calculated FeO concentrations of the melt. Olivine compositions are 

generally homogenous within a single grain, but display considerable intra-grain 

variability in all long duration of experiments.  

     Clinopyroxene recovered from all runs displays subtle core to rim zoning with respect 

to Mg, Fe, Ca, and Al. Zoning patterns observed in the pyroxenes are defined by Fe- and 

Al-rich cores which are rimmed with Ca- and Mg-rich overgrowths (Figure 17). The 

cores of zoned clinopyroxene crystals in the oxidizing experiments often contain 

magnetite inclusions, even in long duration, high fO2 experiments where magnetite no 

longer exists as a stable liquidus phase. The size of all crystalline material coarsens with 

increasing run time. The euhedral morphology observed in all crystalline material 

indicates that no significant crystallization occurred on quench. 

 

Interpretation and Discussion of Experimental Results 

     Mass balance calculations indicate that a substantial quantity of iron was lost from the 

melt to the fluid during both the both oxidizing and reducing experiments. The mass 

transfer of iron from the melt to the fluid is facilitated by the presence of chlorine and the 

stability of iron-chloride in the aqueous fluid. Iron loss from the melt to the fluid phase is 

manifested in three distinct ways: 1) the time dependent resorption of magnetite into the 
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melt coupled with the stabilization of olivine in experiments at fO2 = QFM+4.5; 2) the 

time dependent MgO enrichment of olivine in experiments at fO2 = QFM+0; and 3) the 

Mg-Fe compositional zoning preserved in the clinopyroxene of long duration 

experiments.  

      The effects of iron loss to the fluid in the oxidizing experiments are twofold:  

magnetite is destabilized as a liquidus phase, and conversely MgO rich olivine is 

stabilized as a liquidus phase. The presence of magnetite in the high fO2 experiments 

initially acts to buffer the activities of FeO and Fe2O3 in the liquid. Progressive removal 

of iron from the melt, via scavenging by the fluid, caused the magnetite to dissolve 

incrementally back into the melt. This process of magnetite resorption fixed the 

composition of the melt on the magnetite saturation curve, until all of the magnetite was 

consumed. Upon the exhaustion of available magnetite, the iron content of the melt was 

no longer buffered by the presence of crystalline Fe3O4 and the total iron content of the 

melt decreased until the aqueous phase fluid became saturated with Fe, as the stable 

FeCl2 species. The fluid modified MgO/FeO ratio of the melt experiments stabilized Mg-

rich olivine as a liquidus phase.  

       The reduction in the FeO content of the melt is also manifested in the shifting 

olivine-melt equilibrium observed in the experiments at fO2 = QFM+0. The composition 

of the olivine recovered from these experiments serves as a useful sensitive indicator of 

the activity of FeO in the melt (Berndt et al., 2005; Mysen, 2006; Roeder and Emslie, 

1970). Differences between the olivine compositions in short vs. long duration runs, e.g., 

Fo77 and Fo92 from runs of 24 and 192 hours, respectively, serve as evidence of the 

temporal variation in the FeO content of the melt. The large increase in the Mg2SiO4 
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content of the olivine implies that the activity of FeO in the melt decreased relative to the 

activities of Fe2O3 and MgO in the melt. The continuous removal of ferrous iron from the 

melt to the fluid forced the equilibrium composition of the stable crystalline material to 

adjust coevally with the evolving melt composition.  

      The preserved zoning profiles in clinopyroxene (Figure 17) offer additional evidence 

for the effect of degassing on both the evolving melt composition and the Fe/Mg ratio of 

ferromagnesian silicates. The relict cores of the clinopyroxene crystals represent an iron-

rich pyroxene that crystallized before the fluid could significantly modify the melt 

composition. The Mg-rich rims overgrowing the Fe-enriched cores chronicle the 

protracted FeO depletion of the melt; we tacitly assume that Fe
3+

 comprises a negligible 

contribution to the total Fe content of the pyroxenes. Magnetite inclusions observed in 

early-nucleated clinopyroxene crystals may continuously supply iron to cores of the 

crystals during growth of the crystal, thus preserving the zoning profiles well past the 

point at which diffusive equilibration should have homogenized pyroxene compositions. 

     We invoke the chloride-bearing fluid as the agent responsible for the decreased FeO 

content of the melt, hence varying melt composition, and the dynamically changing phase 

assemblages, i.e., the compositional zoning in clinopyroxene. We propose the following 

equilibrium to represent the scavenging of ferrous iron by the aqueous fluid from the 

silicate melt:   

Eq. 19                                       2HCl
fluid

 +FeO
melt

 = H2O
melt 

+ FeCl2 

The presence of Fe
2+

 as the only valence state of iron is based upon the conclusions from 

previous studies of iron solubility in chloride-bearing hydrothermal fluids that 

demonstrate that FeCl2 is the stable iron species across a wide range of sub-solidus to 
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magmatic conditions (Chou and Eugster, 1977; Simon et al., 2004; Wykes et al., 2008). 

Mass balance calculations from the new experiments indicate that HCl was the primary 

fluid species involved in the exchange reactions. The compositional trends of the olivine 

and resorption of magnetite observed in this study are consistent with the proposed 

reactions dominantly removing Fe
2+

 from the melt.  

     If the fugacities of HCl and H2O are fixed, Eq.19 may be rearranged to express the 

activity of ferrous iron in the melt as a function of the molality of FeCl2 in the aqueous 

phase and the equilibrium constant of Eq. 19 

Eq. 20                                           aFeO = mFeCl2 * K2
-1 

Magmatic fO2 in the absence of large quantities of other redox sensitive elements is 

defined by the homogeneous equilibrium:  

Eq. 21                                      2FeO
melt

 +0.5O2 = Fe2O3
melt

 

which may be rearranged to the form: 

Eq. 22                                         fO2 =  
aFe2O3

aFeO
 ∗ K−1 

2

 

Following from the relationships above, the fO2 of iron-bearing magmas is intrinsically 

related to the activities of both ferric and ferrous iron in the melt. As such, any reduction 

in the mole fraction or activity of the ferrous component of the silicate liquid will 

increase the fO2 of the magmatic system. Combining Eqns. 20 and 22 yields and 

expression defining the oxygen fugacity of the melt in the presence of an aqueous fluid at 

constant fHCl as follows: 

Eq. 23                                      fO2 =  
aFe2O3 ∙ K2

  mFeCl2
 ∗ K4

−1 
2

 

From this expression we conclude that the fO2 of the melt is dependent upon the fluid 

modified FeO activity of the melt. We calculate iron (as FeCl2) concentration in the 
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aqueous fluids for the long duration experiment at fO2 = QFM+0 to be 3.5 ± 0.2 wt % and 

the long duration experiments at fO2 = QFM+4.5 to be 3.2 ± 0.2 wt %. According to Eq. 

21 the strikingly similar FeCl2 concentrations of both the oxidizing and reducing 

experiments indicate that the activity of FeO in the oxidizing melts displays a significant 

positive deviation from ideality. This observation is consistent the experimentally 

determined FeO activity coefficients of Gaillard et al (2004); activity coefficient values 

from this study intermediate melts at fO2= FMQ+4 are generally γ > 1.0 (estimated value 

of  γ = 1.5). Positive deviations of the aFeO of the melt from ideality suggest that the 

reaction in Eq. 19 will continue to run, despite the relatively low concentrations of FeO in 

oxidized melts. 

     The solubility of Fe in chloride aqueous phases is expected to be a function of fluid 

density as well as total chloride content of the aqueous magmatic volatile phase. 

Therefore, the simple Nernst-type partition coefficient for Fe between coexisting aqueous 

fluid(s) and melt should vary not only as a function of aFeO of the melt, but also as a 

function of fluid density and chloride concentration of the aqueous fluid. More 

experimental data are required to fully model the effects of HCl-bearing fluids on the 

ferrous iron content of silicate melts in P-T space.  

 

Implications for Phase Equilibria in 

Natural Volcanic Systems 

     Anomalously Mg-rich olivine phenocrysts (Fo96) have been documented in the 

basaltic ejecta from Stromboli Volcano, Italy (Cortes et al, 2006). The bulk iron content 

of these magmas is relatively low for basaltic liquids, ranging from 6-8 wt % FeO. We 
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hypothesize that passive open-system degassing of a Cl-rich aqueous volatile phase may 

have contributed to the formation of the Mg-rich olivine by progressively removing 

ferrous iron from the residual melt. Such a scenario should not only lower the bulk iron 

content of the melt, but also increase the Fe
3+

/ ∑Fe ratio of the silicate liquid. Cortes et al 

(2006) concluded that the degassing of reduced sulfur species caused the nearly 

wholesale oxidation of ferrous iron in the melt to the ferric oxidation state. The 

mechanism we propose likely works in concert with H2S degassing to further enhance the 

oxidizing potential of the fluid phase. However, given the relatively low iron scavenging 

efficiency of the fluid phase, the oxidizing effects of fluid metasomatism are likely 

limited to aliquots of magma that encounter large volumes of the oxidizing fluids (i.e., a 

high fluid/rock ratio). Passively degassing lava lakes, magma foams at upper portions of 

volcanic conduits, and distal portions of degassing sills (relative to the center) are prime 

candidates for locations that may experience relatively large fluid to melt ratios. We also 

caution that the equilibrium constant governing the mass transfer of iron form the melt to 

the fluid may vary dynamically with density and composition of the fluid phase; thus, the 

use of a static value of the fluid-melt partition coefficient for the purpose of modeling 

bulk iron mass transfer may yield inaccurate results.  

    Late stage magmatic oxidation has also been suggested to play a major role in the 

evolution of magmatic-hydrothermal ore deposits. Halter et al. (2005) hypothesize that 

late stage magma oxidation is responsible for the destabilization of metal-rich crystalline 

and liquid sulfides, resulting in the availability of ore metals and sulfur to be scavenged 

by magmatic aqueous fluids. Considering the ubiquitous presence, and critical 

importance in terms of metal transport, of a Cl-bearing aqueous phase in all porphyry-
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type and high-sulfidation ore deposits, the modification of the ferrous iron content of the 

melt by a Cl-rich fluid, as observed in the present study, is a geologically plausible 

oxidation mechanism that is likely a salient feature of all magmatic-hydrothermal 

systems. In the case of sulfide saturated magmas, the fluid induced decrease in the 

activity of ferrous iron in the melt will also alter the stable sulfide phase assemblage. The 

composition of stable liquid Cu-Fe sulfide and mono-sulfide solid solutions will be 

driven away from their iron rich end members or destabilized altogether. Late stage 

chloride degassing is a parsimonious explanation for the destabilization of sulfide phases. 

Further, the new experimental data have important implications for the development of 

large-scale, iron-rich ore bodies such as Kiruna-type ore deposits where the nearly 

characteristic presence of the light rare earth element (LREE) enrichment is also 

consistent with aqueous-fluid transport of iron and the LREE (cf. Reed et al., 2000. 

Future experiments are planned to constrain the ability of magmatic-aqueous fluid to 

scavenge and transport the REE and other prominent elements in these types of iron-rich 

deposits.  

 

 



 

 

 

1
0
0 

 

 

 

 

 

 

  

Table 16. Recovered Phase Assemblages by Experiment 

Run Duration (Hrs) fO2 Phase Assemblage 

TZM 12 24 FMQ + 4.5 ± 0.5 Melt; Mt; Cpx; Plg 

TZM 20 18.5 FMQ + 4.5 ± 0.5 Melt, Mt, Cpx, Plg 

 IHPV 1-1 172 FMQ + 4.5 ± 0.5 Melt; Ol(Fo94); Cpx  

IHPV 1-2 144 FMQ + 4.5 ± 0.5 Melt; Ol(Fo92); Cpx 

TZM 23 6 FMQ ± 0.5 Melt; Ol(Fo77); Cpx 

TZM 31 24 FMQ ± 0.5 Melt; Ol(Fo78); Cpx 

IHPV 1 192 FMQ ± 0.1 Melt; Ol(Fo91); Cpx 

    



 

 

 

1
0
1 

 

 

 

 

  

 
   

    

Figure 16. Backscattered electron images of the differing, recovered 

stable phase assemblages. The box  in the lower corner indicates the 

composition of the recovered olivine as well as the run time. 
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 Figure 17. WDS elemental distribution maps of a clinopyroxene 

crystal displaying compositional Zoning with respect to Mg, Fe, 

and Al.  
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