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ABSTRACT 
 

Determining the Motion and Location of the Frenchman Mountain Fault, Las 
Vegas, Nevada: A Paired Basin Analysis and Structural Analysis 

 
by 
 

Laura Margaret Eaton 
 

Dr. Andrew Hanson, Examination Committee Chair 
Associate Professor of Geology 

University of Nevada, Las Vegas 
 

 Understanding the evolution of large-scale fault systems remains a challenge to 

geologists and is of critical importance in understanding the dynamics of larger plate 

tectonic interactions.  I mapped the southwestern Frenchman Mountain Fault (FMF), 

conducted a basin analysis of units in the footwall of the fault, and measured kinematic 

indicators along the fault zone in order to constrain fault offset, magnitude, and timing in 

an attempt to further our understanding of these systems.  

My findings include: 1) the presence of vertical and sub-vertical slickenlines on 

southwest dipping fault surfaces indicative of normal sense offset; 2) relatively little 

lateral variation in stratigraphy within the adjacent basin indicating basin-fill being shed 

directly across the fault, supported by paleocurrent data; and 3) no kinematic evidence 

indicative of strike-slip motion. I conclude that normal sense displacement on the fault 

ceased prior to deposition of the Red Sandstone.  In addition, I hypothesize that the 

southwestern FMF is not the Frenchman Mountain block-bounding fault; instead it is 

buried beneath younger sediments farther to the southwest.   
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CHAPTER 1 

INTRODUCTION 

Understanding the behavior and evolution of large-scale fault systems within 

extensional terrains is a critical component in understanding the dynamic geologic 

processes of plate tectonics.  The Basin and Range province of western North America is 

a world-class example of an extensional system but is still not completely understood 

because it is highly variable and geologically complex.  The province is relatively young 

and geographically extensive.  Numerous studies focus on the geology of the Basin and 

Range, and many state that much still remains to be understood and recognize the need 

for further investigation.  The Lake Mead region is of particular importance because of its 

location within the Central Basin and Range (CBR) (Fig. 1): the transition between the 

northern Basin and Range and the southern Basin and Range.  The CBR is the youngest, 

most complex, and arguably the least understood sub-province within the Basin and 

Range.  For this reason, the Lake Mead region is an ideal laboratory for understanding 

how fault systems evolve.  It is also ideal in that the pre-extensional geology of the Lake 

Mead region is relatively straight forward, and excellent exposures allow geologic 

reconstructions more easily than in other areas of the region (Wernicke et al., 1988; 

Duebendorfer and Simpson, 1994).  Therefore, studying structures and basins within the 

Lake Mead region is integral to understanding how the region itself has evolved over 

time, allowing for extrapolation about the evolution of the CBR and greater Basin and 

Range. 

Various authors have proposed differing hypotheses on the extensional direction, 

magnitude, and timing of Miocene extension in the Lake Mead region.  Most notably 
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Anderson (1971), Longwell (1974), Bohannon (1979), Angelier and others (1985), 

Wernicke and others (1988), and Fryxell and Duebendorfer (1990) have all interpreted 

the extensional genesis of the Miocene Lake Mead region.  For this reason, it is 

especially important to find structural blocks that act as markers to constrain offset and 

understand the extensional development of the region.  The Frenchman Mountain Block 

(FMB) (Fig. 2) has been used by numerous researchers as such a marker to estimate the 

magnitude and orientation of extension (Longwell, 1974; Bohannon, 1979, 1984; 

Wernicke et al., 1988; Fryxell and Duebendorfer, 1990, 2005; Rowland et al., 1990).   

Previous researchers concluded that the FMB is bound on its west and southwest 

sides by the Frenchman Mountain Fault (FMF).  While much attention has been paid to 

understanding the translation of the FMB, a detailed study of the FMF has not been done 

and could potentially change how researchers interpret the most recent movement of the 

FMB as well as extensional geologic reconstructions of the Lake Mead region. Previous 

researchers have cited and mapped the FMF as having contradictory senses of offset: 

some researchers classify the fault solely as a normal fault (Langenheim et al., 2001) and 

others maintain that the fault experienced both strike-slip and normal displacement 

(Castor et al., 2000).  Located on the eastern edge of the Las Vegas Valley, the FMF 

consists of two main portions: a roughly N-S fault system along the western edge of 

Frenchman Mountain and a NW-SE trending fault system along the western edge of the 

FMB.  This study dealt with the later of these two faults systems near the intersection of 

two major strike-slip systems in southeastern Nevada, the Las Vegas Valley shear zone 

and the Lake Mead fault system, and lies in a zone of extremely complex geology (Fig. 

2).  For clarity sake, I herein refer to the portion of the FMF within the map area as the 
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southwestern FMF (SW FMF) in order to distinguish it from the portion of the FMF that 

is exposed at the western base of Frenchman Mountain, which I refer to as the western 

FMF (WFMF). Castor et al. (2000) have completed the most detailed work on the fault to 

date, but acknowledge that no systematic studies have dealt specifically with the fault and 

that further research needs to be completed.     

This study uses the approach of integrating basin and structural analysis techniques in 

order to determine fault evolution.  I completed detailed geologic mapping along the 

previously mapped SW FMF (Bell and Smith, 1980; Castor et al., 2000) and paired it 

with a stratigraphic basin analysis study of the basin that lies to the southwest of the SW 

FMF.  If offset on the SW FMF impacted how the basin adjacent to it filled, 

documentation of provenance and basin evolution of the basin fill, as well as kinematic 

analysis and mapping, allows for extrapolation of fault offset sense, magnitude, and 

timing.   

My goal was to test two competing hypotheses: 1) the SW FMF is a strike-slip fault, 

and, 2) the SW FMF is the result of oblique normal faulting.  Any determination of the 

sense of offset and its significance clarifies the role of the FMF within the Lake Mead 

region, thus allowing for refined interpretations about the CBR and our understanding of 

how large-scale extensional fault systems evolve through time.  
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CHAPTER 2 

GEOLOGIC HISTORY 

Western North America 

Understanding the geologic development of western North America is necessary 

for appreciating the complexity of the Lake Mead region for understanding the evolution 

of the SW FMF.  Precambrian western North America consisted of various major 

sedimentary packages that overlay accreted crystalline basement.  Varying structural 

grains of the basement units are a result of deformation prior to the Late Proterozoic, and 

the relationships between the basement and overlying sedimentary rocks record several 

deformation events within the continent (Burchfiel et al., 1992).  In the Late Paleozoic a 

rift developed along the entire western margin of North America, resulting in the 

inception of a passive margin and the deposition of a westward thickening succession of 

sedimentary rocks (Burchfiel et al., 1992).  From the Late Devonian to the Late Jurassic 

western North America experienced several successive deformational events resulting 

from the accretion and thrusting of numerous terrains in the Antler, Sonoma, and Nevada 

orogenies (Schweickert et al., 1984; Trexler et al., 1991; Burchfiel et al., 1992).  The 

Permian to Jurassic marks the beginning of the development of both the Central Nevada 

fold and thrust belt, and the Sevier thrust belt, both composed of a series of dominantly 

east-vergent folds and thrust faults (Taylor and Switzer, 2001).  In addition to these two 

major features, the Sevier orogeny is marked by westward underthrusting, the 

development of an elevated hinterland, and a foreland basin (Burchfiel et al., 1992; 

Druschke et al., 2008).  Initiating after, and partially overlapping the Sevier, the Laramide 

orogeny occurred and involved flat slab subduction, perhaps due to the buoyancy of the 
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down going slab, making the subducting slab come in direct contact with the overlying 

continental crust (Humphreys et al., 2003).  This long history of orogenic and 

deformational events left the lithosphere of western North America dehydrated, 

weakened, and thickened; particularly susceptible to extension. 

During the late Mesozoic and early Cenozoic the western margin of North 

America was a convergent plate boundary between the subducting Farallon plate and the 

overriding North American plate (Sonder and Jones, 1999).  At about 52 Ma the Farallon 

plate broke into the Vancouver (future Juan de Fuca) and Farallon plates, with the 

Farallon plate to the east and the Vancouver to the west.  The Vancouver plate converged 

with the North American plate at an oblique angle, and some researchers have 

hypothesized that the associated shearing could have caused extension before 30 Ma 

(Sonder and Jones, 1999).  Around 27-16 Ma the Farallon plate further fragmented and 

experienced a combination of subduction and strike-slip motion, and the plate margin 

became a transform fault bounded by the Mendocino triple junction on the north, which 

moved north with time (Sonder and Jones, 1999).  Accordingly, models that suggest that 

extension before 30 Ma was driven by oblique convergence further hypothesize that post 

30 Ma right-lateral motion of the transform boundary resulted in shearing that caused 

extension (Sonder and Jones, 1999).   

 

Basin and Range Extension: Central Basin and Range 

The pre-Eocene to recent extension of western North America caused the 

lithosphere to have extreme differences in composition, rheology, strain, and structural 

grains (Humphreys et al., 2003).  Beginning sometime in the Eocene to Oligocene the 
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Basin and Range province developed and is characterized by sweeping magmatism, 

complex tectonic patterns, and extreme extension (Sonder and Jones, 1999) (Fig. 1).  The 

Basin and Range region is divided into three provinces, the Northern Basin and Range 

(NBR), the Central Basin and Range (CBR), and the Southern Basin and Range (SBR) as 

shown in Figure 1.  The FMF is located within the CBR province and Wernicke et al. 

(1988) estimated that from the Miocene to present day it has experienced approximately 

250 km of extension, a factor of 3-4, the most dramatic extension in all three provinces.  

This province is also unique in that its onset of extension significantly post-dates the 

onset of extension and magmatism of both the NBR and the SBR (Fig. 1).   Initiation of 

extension and magmatic activity in the CBR is late Oligocene-Miocene in age, while the 

NBR and SBR experienced extension in the Eocene-Oligocene (Fig. 1) (Beard, 1996; 

Sonder and Jones, 1999).  New evidence from Druschke et al. (2009) suggests that 

extension occurred in the NBR as early as the Late Cretaceous based on the presence of 

major syndepositional normal faults, megabreccia deposition, and fanning of dips within 

the Sheep Pass Formation.  The CBR has the greatest local relief; displays large north-

south gradients in topography, heat flow and gravity; and is tectonically and volcanically 

active (Sonder and Jones, 1999).   

The Lake Mead region at the latitude of Las Vegas within the CBR is an ideal 

place to study extensional geometries because its pre-extension geology is relatively 

straightforward as Cordilleran passive margin sequence rocks are exposed across the 

entire province (Wernicke et al., 1988).  It is also of unique importance because its 

location represents the transition from the Northern Basin and Range (NBR) to the 

Southern Basin and Range (SBR) and is the narrowest section of the Basin and Range; 
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both characteristics make this area the most complicated and least understood portion of 

the province.  Wernicke et al. (1988) focused on the relatively low-lying geology at the 

latitude of Las Vegas, from the Sierra Nevada to the Colorado Plateau as a type example 

of the structural patterns observed within the CBR.  The geology is divided into two 

major extensional domains; the Las Vegas Valley and Death Valley, which are separated 

by a relatively unextended block.  These domains are deformed by generally east-vergent 

Mesozoic thrust faults that are ideal for geologic reconstructions and both fault systems 

are reactivated faults within the older thrust systems (Wernicke et al., 1988).  

Examination of structural relationships in the field have allowed for a better 

understanding of the timing of Basin and Range extension, revealing that extension in the 

CBR slowed with time perhaps recording a significant tectonic event or response of the 

lithosphere.  Fault geometries evolved from early low-angle normal faults to the 

development of widespread high-angle normal faults, which has been hypothesized to 

have aided in slowing extension (Wernicke et al., 1988).  The movement of both systems 

has resulted in approximately 250 km of extension between the Las Vegas and Death 

Valley fault systems and constrain the majority of extension to have occurred during 15 

Ma to present time, while approximately 100 km of extension occurred before 15 Ma 

(Wernicke et al., 1988).  Wernicke et al. (1988) documented movement of the Sierra 

Nevada away from the Colorado Plateau at an approximate rate of 20-30 mm/year 

between 15-10 Ma.  From 10 Ma to present time extension slowed to its current rate of 10 

mm/year (Wernicke et al., 1988).  

Wernicke et al. (1982) suggest that widespread imbricate normal fault blocks and 

subadjacent large low-angle normal faults can account for a large amount of extension, 



8 
 

reflected in “chaos structures” and field relationships documented in the Basin and 

Range.  Basin and Range large scale extension was accommodated by large displacement 

on low-angle normal faults without rotation, as well as rotation of faults and fault blocks 

through listric and planar geometries (Wernicke et al., 1982).  Vector analysis and field 

observations reveal strike-slip faulting to be an important component in the extending 

system and absorbed approximately 40-50 km of north-south shortening in the region 

(Wernicke et al., 1988).  Observation of this strike-slip motion might reflect the 

constriction of the CBR, as well as its transitional position relative to the NBR and SBR; 

the entire length of the FMF is one such structure that has been interpreted as a strike-slip 

fault (Wernicke et al., 1988).   

 

Lake Mead Regional Geology 

The FMF is located near the three most significant structural features in the Lake 

Mead region; the northwest striking Las Vegas Valley shear zone (LVVSZ), the northeast 

striking Lake Mead fault system (LMFS), and the Saddle Island detachment fault (SIDF), 

a west-dipping low-angle detachment fault (Fig. 2) (Fryxell and Duebendorfer, 2005).  

All three fault systems initiated during Cenozoic extension and their intersection has 

created a zone of extremely complex geology, specifically the LVVSZ and the LMFS 

(Campagna and Aydin, 1994).  The LVVSZ is composed of a series of right-lateral faults 

that have accommodated approximately 48 ± 7 km of displacement, the majority of this 

occurring after 13 Ma (Duebendorfer and Simpson, 1994).  The exact location, geometry, 

and sense of offset of this fault system is contentious due in large part to the poor 

exposure attributed to burial beneath alluvial deposits that fill the Las Vegas Valley 
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(Langenheim et al., 2001).  Longwell (1974) approximated that the LVVSZ strikes N 60 

W, while Campagna and Aydin (1994) say it is closer to a strike of N 45 W.  The LMFS 

is a major fault system composed of a series of faults with apparent left-lateral 

displacement.  Timing of movement on the fault system has been loosely constrained to 

17 and 10 Ma, and has accounted for approximately 20 to 65 km of displacement 

(Duebendorfer and Simpson, 1994).  

Within the Lake Mead region there are three main structural blocks that are 

distinct based upon their structural and depositional (stratigraphic) characteristics: the 

Frenchman Mountain block (FMB), the Muddy Mountains block (MMB), and the 

Boulder Basin block (BBB) (Fig. 2).  The stratigraphic variations and correlation between 

the three blocks have been described in detail by previous researchers (i.e., Duebendorfer 

and Simpson, 1994), thus will not be discussed in full detail here. I focused on the FMB 

in light of its relevance to the history of the SW FMF, and its detailed stratigraphy is 

discussed in a later section.  The FMB is an allochthonous homocline that dips to the east 

at 45°-55°, and has been hypothesized to have been translated 60-70 km to the west, 

originating in the Gold Butte area (Fig. 2) (Rowland et al., 1990; Fryxell and 

Duebendorfer, 2005).  This hypothesis is based on correlation of basal Cenozoic sections, 

and debris-flow and megabreccia deposits within the Thumb Member of the Horse Spring 

Formation that could have only originated adjacent to the Gold Butte block (Rowland et 

al., 1990).  That study further concluded that orientations of eolian cross-bedding within 

the Aztec Sandstone in the FMB are identical to those found in the Gold Butte block, 

suggesting that the FMB did not experience significant rotation during its translation 

(Rowland et al., 1990).  While the geographic origin of the FMB is nearing acceptance by 
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the main workers in the area, identifying the structure or structures that accomplished this 

translation has proven difficult.  Researchers have proposed various methods of 

translation of the FMB including via both the LVVSZ (Longwell, 1971, 1974), and the 

LMFS (Bohannon, 1979, 1984), but subsequent studies have disagreed with both of these 

hypotheses as well as others (Fryxell and Duebendorfer, 2005). 

 Larger questions concerning the sense of offset and location of the LMFS and the 

LVVSZ still remain and serve as examples of large-scale fault systems in the area that are 

not fully understood.  Previous mapping shows the WFMF offsets Quaternary units along 

the west side of the FMB which indicates that the region has remained tectonically active 

post translation from its original position 60-70 km to the east from the Gold Butte block 

(Rowland et al., 1990). 

Weber and Smith (1987) proposed that the River Mountains and the FMB were 

structurally adjacent to each other by 13 Ma because of dated lavas that interfinger with 

the Bitter Ridge Limestone Member of the Horse Spring Formation in the FMB.  The 

FMF has been cited as having multiple strands (Castor et al., 2000) and has also been 

suggested to be related to both the Boulevard fault (BF) and Munitions fault (MF) zones 

(Fig. 3), perhaps having transferred some of its motion to these fault systems (Castor et 

al., 2000).  These suggestions further underscore the importance of determining the sense 

of motion of this fault, as it will lead to interpretations about the MF and BF as well and 

in turn about the genesis of extension in the Lake Mead region. 
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CHAPTER 3 

PREVIOUS WORK 

As mentioned above, general consensus exists that the FMB originated 

approximately 60 km to the east near the Gold Butte block, based on detailed studies 

done by numerous authors, most notably and recently by Rowland et al. (1990).  

However, at least eight hypotheses existed previous to this one.  These hypotheses have 

been described in detail and published by Fryxell and Duebendorfer (2005), which is the 

most recent to highlight the complexity and contentious nature of the debate of the 

previous location of the FMB.  Inherently, if the origin of the FMB is still debated, the 

method of translation must also be unclear.   

 

Previous Models 

  Numerous studies have been done in an attempt to determine the principle 

direction of Miocene extension within the Lake Mead region.  Various authors support an 

extensional direction to the southwest (Anderson, 1971; Bohannon, 1979; Weber and 

Smith, 1987), some principally to the west (Wernicke et al., 1988; Rowland et al., 1990, 

Fryxell and Duebendorfer, 1990), west-northwest (Longwell, 1974), and others favor a 

dynamic extensional model that invokes changes in extensional directions through time 

(Angelier et al., 1985).  Determining the direction of extension is integral in backing out 

what structures played significant roles in this extension and what sense of motion these 

structures experienced.  Duebendorfer and Simpson (1994) state that the downfall of 

many of the previous studies has been that they focus only on one or two main structures 

to determine the extensional direction of the entire Lake Mead region.  For this reason, it 



12 
 

is important to first understand the kinematic evolution of all of the main structures in the 

region and then synthesize the findings to extrapolate extensional direction on the larger 

scale.  If it is possible to determine the most recent motion of the FMF by doing a 

detailed study, it is then possible to integrate its recent motion into previous models to see 

which are plausible.  While many previous studies have dealt with the method of 

translation of the FMB, none have dealt specifically with the FMF itself.   

Several seminal publications on the geology of the Lake Mead region have 

emphasized the need to further study strike-slip features and to view them as major 

structures that can have significant impact on the deformational development of a region, 

specifically in the Basin and Range province.  Many researchers have interpreted and 

mapped the FMF as having exclusively strike-slip motion (Longwell, 1974; Bohannon, 

1979, 1984; Ron et al., 1986; Anderson et al., 1994; Campagna and Aydin, 1994; 

Langenheim et al., 2001).  The concept of the FMF being a strike-slip fault was originally 

proposed in Longwell’s work (1974) on the LVVSZ.  Later, Bohannon (1984) 

hypothesized that the FMB was translated westward along strands of the LMFS, based on 

the “piercing line” offset marker of the base of the unconformity.  One of the more recent 

studies that interpreted the FMF as having solely strike-slip motion was done by 

Campagna and Aydin (1994), who further extrapolate that the FMF is part of a larger pull 

apart basin that formed the Las Vegas Valley.  Basin geometries and the geometry of the 

LVVSZ based on geophysical surveys have resulted in their tentative mapping of the 

FMF as a right-lateral strike slip fault (Campagna and Aydin, 1994).  Their study places 

the main strand of the LVVSZ on the northeast side of the FMB. Conversely, in the most 

recent publication dealing specifically with the FMF, done by Langenheim et al. (2001), a 
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major strand of the LVVSZ is mapped just west of where the FMF is located.  

Langenheim et al. (2001) mapped the northwestern FMB bounding fault as a normal 

fault, but interpret it as part of a larger pull-apart basin system.    

Conversely, many other researchers have cited the importance of interaction 

between normal and strike-slip faults in the Lake Mead region.  Both Anderson (1971) 

and Bohannon (1984) considered normal faults in the Lake Mead region to be genetically 

related to strike-slip faults.  Additionally, Duebendorfer and Simpson (1994) suggested 

that the interaction between normal and strike-slip faults is the key to understanding how 

major fault systems evolve.  Many researchers maintain that the offset of the FMF is a 

result of both strike-slip and normal fault motion (Guth, 1981; Wernicke et al., 1982; 

Weber and Smith, 1987; Rowland et al., 1990; Duebendorfer and Wallin, 1991; 

Duebendorfer et al., 1998; Fryxell and Duebendorfer, 2005).  Most recently¸ Fryxell and 

Duebendorfer (2005) compiled all of the previous methods of translation and paleo 

position of the FMB and concluded that the FMB was once in the hanging wall of the 

Gold Butte block as part of the hanging wall of the Lakeside Mine fault.  This is based on 

previously discussed correlations made by Rowland et al. (1990) as well as on 

thermochronology exhumation ages of the Gold Butte block (Fryxell and Duebendorfer, 

2005). 

 

My Approach 

I completed a combination of fieldwork and laboratory analysis in order to gain 

an in-depth understanding of both the fault kinematics and basin composition, in order to 

test two hypotheses.  By studying basin stratigraphy and provenance, and by 
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documenting fault kinematics, I tested the two stated hypotheses and helped constrain the 

timing of displacement.   

The link between structure and stratigraphy is imperative, in that the relationships 

between them can be distinctly different depending on whether the SW FMF experienced 

normal or strike-slip motion.  If the hypothesis that the SW FMF experienced solely 

normal-fault movement is supported, then the basin fill from west to east should be fairly 

compartmentalized stratigraphically, and slickenlines along the fault would be nearly 

vertically oriented (Fig. 4a).  In this case, the sediment from the footwall source would be 

linked to discrete areas in the basin within the footwall.  This would be constant through 

time resulting in the relative position of basin fill closely imitating the lithologies in its 

correlative sediment source area.  The physical evidence of this relationship would be 

supported by relatively uniform stratigraphic sections which vary laterally but are 

relatively uniform vertically, and paleocurrent indicators within the basin fill that indicate 

a sediment source directly across the fault.   

Conversely, if the SW FMF experienced solely strike-slip motion, stratigraphic 

and provenance relationships would be markedly different.  These relationships will be 

much more complicated, and slickenlines would be horizontal or sub-horizontally 

oriented (Fig. 4b). In this case, the sediment from the footwall source would also shed 

into the basin, but because the basin would be moving relative to the source areas, the 

vertically stacked stratigraphy would reflect multiple, evolving sediment source areas 

through time.  As opposed to the sediment sources being linked to the same discrete 

portion of the basin, it would be dynamic with time resulting in a more complex basin 

stratigraphy.  Physical evidence supporting the strike-slip hypothesis would be found in 
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complex stratigraphic column relationships, as well as provenance sources being 

displaced across the fault plane.   

 

Local Stratigraphy 

The stratigraphy of this study area has been well defined by previous researchers, 

most notably: Bell and Smith (1980), Rowland et al. (1990), Duebendorfer and Simpson 

(1994), Castor et al. (2000), and Fryxell and Duebendorfer (2005).  The stratigraphy 

encountered in the Mobil Oil Virgin 1A test well is representative of the general regional 

stratigraphy and is shown in Figure 5. The stratigraphy in the Lake Mead region is mainly 

Cenozoic sedimentary and volcanic units that are deposited in angular discordance on 

Triassic to Cretaceous rocks of the area, with the main exception of the Kingman Arch in 

which Cenozoic strata directly sits on Precambrian to Paleozoic basement (Duebendorfer 

and Simpson, 1994; Faulds et al., 2001).  Stratigraphic units within my study area range 

from Permian to Quaternary in age.  The Permian units are limited and typically occur 

within basin fill units as clasts, however some outcrops of the Kaibab and Toroweap 

Formations are present on the northeast side of the FMF.  The Mesozoic units consist 

mainly of the various members of the Moenkopi Formation and outcrops are mainly 

limited to the footwall of the SW FMF in the map area, with the exception of one outcrop 

of the upper red member of the Moenkopi Formation which sits south of the SW FMF 

near the Sunrise Landfill. Neogene units are the most widespread units throughout the 

field area and are dominated by the Rainbow Gardens and Thumb Members of the Horse 

Spring Formation, but also include limited outcrops of the Bitter Ridge Limestone and 

the volcanic rocks of Rainbow Gardens.  These units are exposed on both the southwest 
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and northeast sides of the FMF.  A unit previously mapped as a member of the Muddy 

Creek Formation by Bell and Smith (1980) is reinterpreted here based of the findings of 

Rittase (2007) as being Red Sandstone (Tr), as defined by Bohannon (1984). The Red 

Sandstone mainly crops out on the southwest side of the FMF but in places overlaps the 

SW FMF. The gypsiferous member of the Muddy Creek Formation lies in angular 

unconformity over the underlying Cenozoic deposits and is only exposed within the 

hanging wall of the FMF.   
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CHAPTER 4 

METHODS 

Geologic Mapping 

Central to this study is understanding geologic relationships proximal to the SW 

FMF; accordingly geologic mapping using standard geologic mapping techniques at a 

scale of 1:12,000 was done along the SW FMF and within the adjacent basin in order to 

refine work previously done in the area.  The United States Geological Survey Henderson 

quadrangle mapped by Bell and Smith (1980), and Frenchman Mountain mapped by 

Castor et al. (2000), as well as the Beard et al. (2007) preliminary geologic map of the 

Lake Mead 30 x 60 quadrangle were used as reference maps during mapping in order to 

assure consistency in unit nomenclature as well as a field reference. The map area 

comprises 12.1 km2 on the east side of the Las Vegas Valley (Fig. 2).  The mapped area 

consists of an approximately 5.8 km long SW trending swath along the SW FMF, as well 

as the basin adjacent to the fault which extends outward to the southwest about 2.4 km.  

The field area was picked based on its location within the Lake Mead region, inclusion of 

the SW FMF, its relatively well-exposed units, and fairly well defined stratigraphy. 

During geologic mapping, I used the nomenclature employed by Bell and Smith 

(1980) for the Henderson Quadrangle and by Castor et al. (2000) for the Frenchman 

Mountain Quadrangle.  However these authors used different nomenclature for some 

units and therefore it was necessary to address these differences and determine what unit 

nomenclature would be used in this study.  For the Thumb Member, I followed the unit 

nomenclature used by Castor et al. (2000).  I initially followed the lead of Bell and Smith 

(1980) with regards to the main basin fill south of the fault and mapped these units as the 
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Muddy Creek Formation (Tmc) and Quaternary units.  Based on reasoning explained 

later in this thesis, I concluded that what had been mapped as Tmc is actually Tr, so I 

mapped these units as Tr. 

A Brunton compass was used to measure strike and dip of bedding as well as 

orientations of fault planes and kinematic indicators.  Slickenlines were measured on 

fault planes and were recorded as trend and plunge data.  Kinematic data were recorded 

throughout the field area, with particular attention being paid along the SW FMF, in order 

to identify any indicators that would signify fault motion.  Following field collection of 

data, the techniques of Marrett and Allmendinger (1990) were used for graphical 

kinematic analysis using the Stereonet software developed by Allmendinger (2002).  

Standard kinematic analysis assumptions used are similar to those employed by 

Duebendorfer and Simpson (1994) as well as Marrett and Allmendinger (1990).  

Kinematic analysis was done both in the field and subsequently using the Allmendinger 

software to identify conjugate fault sets and patterns, as well as to determine the 

dominant strain patterns within the field area.  A new geophysical technique using 

collection of passive low-frequency seismic data was done within the field area to try and 

determine fault location within the subsurface (Saenger et al., 2009).  The results were 

inconclusive, but are included in Appendix VI.   

 

Digital Data Entry 

Digital data entry, mapping, and creation of three-dimensional images were 

completed using ArcGIS and Adobe Illustrator software suite. Following field data 

collection and mapping, geological positions and relationships observed were digitized 
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over base maps including digital orthographic quadrangles (DOQ), topographic maps 

from the United States Geological Survey, Quickbird imagery and various aerial 

photographs.   

 

Stratigraphic Analysis 

Understanding how the basin adjacent to the SW FMF has evolved is equally 

important as understanding the structural genesis because it potentially recorded response 

to fault movement. It was integral to understand stratigraphic relationships and how 

stratigraphy compared and contrasted with structural patterns to see if the two were 

somehow linked.  Within the basin it was important to examine unit distribution, 

continuity, lateral variations in thickness or composition, as well as any structure that 

disrupted the expected depositional sequence.  Standard provenance techniques were 

used in order to determine the source area as well as lateral variation throughout the 

basin. Conglomerate clast counts were conducted within the Tr in the field area along 

transects that are roughly perpendicular to the FMF, in order to determine whether 

deposits vary in composition or texture (clast size range) due to proximity to the fault.  

Transects are approximately 300 m in length, and along each transect three to five 

conglomerate clast counts with 100 clasts each were taken.  Paleocurrent directions were 

also measured within the Tr along the same transects in order to tie the provenance and 

the transport directions in the unit.  Paleocurrent data derived from imbricated clasts in 

the Tr were taken at two to three locations along each transect with ten measurements at 

each location.  Two schematic cross sections were constructed to show structural and 

stratigraphic relationships within the field study area.  Numerous ash samples were 
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collected within the field area in order to constrain timing of deposition or faulting, but 

none were deemed suitable for analysis; this will be discussed in further detail later on. 
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CHAPTER 5 

DATA, RESULTS AND DISCUSSION 

Geologic Mapping Data and Results 

 Detailed (~1:12,000) geologic mapping was done in the area where the SW FMF 

had been mapped by previous researchers (Bell and Smith, 1980; Castor et al., 2000), as 

well as in the basin adjacent to it and the results of mapping are shown in Plate 1.  The 

SW FMF dips steeply to the SW in the field area so the footwall is to the northeast of the 

fault, while the hanging wall is on the southwest side of the fault.  All of the field data 

including bedding orientations (Appendix III), and their location within the field area are 

shown in Plate 1.  Although the main results of the mapping can be seen in Plate 1, it is 

necessary to further report major findings discovered while mapping. 

Paleozoic, and most Mesozoic, units are found only in the footwall of the FMF in 

the map area (Plate 1). The only Mesozoic unit to crop out south of the FMF is the upper 

red mudstone member of the Moenkopi, which crops out in the hanging wall in the far 

western portion of the map adjacent to the Sunrise Landfill. Most Cenozoic units crop out 

in both the footwall and hanging wall of the FMF. Outcrops of the Bitter Ridge 

Limestone Member (Tbr) and the Muddy Creek gypsiferous member (Tmg) were only 

mapped in the hanging wall. The Tbr was only recently identified and mapped by Beard 

et al. (2007), as is shown in Plate 1.  Large blocks of Cenozoic volcanic rocks (Tvr) are 

prominent in both the footwall and hanging wall and are intercalated within these units 

(Plate 1.) 

Geologic mapping showed which units the SW FMF cuts or displaces in the field 

study area.  There are few exposures of the SW FMF in which the units are well exposed 
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on both sides of the fault.  Much of the inferred position of the SW FMF that was mapped 

was based on stratigraphic locations, major topographic changes, or is expressed as a 

series of faults. 

 Based on observations in the field and comparison with rocks mapped as the 

Muddy Creek Formation, I concluded that some of what had been previously mapped as 

the Tmc could in fact be Red Sandstone (Tr).  This conclusion is based on previous work 

done in close proximity to this study area by Rittase (2007), which demonstrated that 

units that had previously been mapped as Tmc were in fact Tr based on tephrochronology 

dating.   The unit previously mapped as Tmc in the field study area matches the 

description of Tr described by Rittase (2007) and is an unsorted to poorly sorted 

conglomerate that ranges from matrix supported to clast supported in some areas, with a 

matrix that consists of coarse to fine-grained angular sandstone and siltstone.  Clasts can 

range in size from one centimeter to three meters in diameter.  Bedding typically ranges 

from approximately 5-50 cm but in places can be meters thick.  Clasts are composed of 

predominantly igneous material including basalt, megacrystic plagioclase (rapakivi) and 

granite, as well as quartzite.  The unit also contains significant amounts of sedimentary 

clasts of sandstone and carbonate, as well as gneiss clasts.  The description of the Tr, 

which was previously identified as Tmc, in the Rittase (2007) study is very similar to the 

unit previously mapped as the Tmc in this field study area. The Muddy Creek Formation 

is highly variable in southern Nevada (Bohannon, 1984; Langenheim et al., 2000; Hanson 

et al., 2005; Forrester, 2009). Although I attempted to find datable materials in the Tr, no 

radiometric dating was completed in this study. The assumptions I made to suggest that 

the unit in the field study area is Tr are: 1) low dip angles of bedding within the unit 
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indicative of little deformation and tilting (Bohannon, 1984), 2) interbedded 

conglomerate that includes volcanic and plutonic clasts (Scott, 1988), and 3) age 

constraints based on relative stratigraphic relationships.  These assumptions do not 

conclusively identify this unit as Tr and it is possible that it is Tmc as previously 

suggested. The Tmc was previously proposed to be post Cenozoic deformation basin fill, 

but recently other authors have documented syntectonic deposition within the Tmc. The 

most current absolute age of the Tmc is based on tuffs and basalt flows and is 

approximately 8.5-4.1 Ma (Metcalf, 1982; Bohannon, 1984; Williams, 1996; Hanson et 

al., 2005).  The Tmc in the FMB area was previously divided into two units: the 

traditional Tmc, as well as a more gypsiferous unit, the Tmg.  Based on the assumptions 

listed above and the similarity of this unit to those that were documented by Rittase 

(2007) I chose to map the unit as Tr, not Tmc. Quaternary deposits in the field area were 

divided into active alluvium in modern washes (Qa); Quaternary deposits with significant 

petrocalcic development (Qp); and disturbed landfill deposits (Qd).  Detailed unit 

descriptions are included in Plate 1.  The implications of this interpretation will be 

discussed further in the conclusions and interpretations section of this report.   

  

Geologic Mapping Discussion 

Rowland et al. (1990) asserted that the Thumb and Bitter Ridge Limestone 

members were deposited in close proximity to the Gold Butte block prior to translation of 

the FMB. The interpretation of Rowland et al. (1990) is supported by the results of this 

study, which found large landslide blocks of Gold Butte affinity on top of, and in some 

cases, encased within the Thumb and Bitter Ridge units in both the hanging wall and the 
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footwall. Therefore, the main fault mapped in this project along the southwestern side of 

the FMB (called the FMF by previous workers) cannot be the main FMB-bounding fault 

for the entire history of motion of the fault because rocks on both sides of it have been 

transported from the Gold Butte area. The true FMB bounding fault must be located 

farther to the southwest (most likely buried) based on the presence of Gold Butte derived 

blocks in both the hanging wall and footwall (Fig. 6).  

My mapping also places constraints on the timing of the FMF based on the 

relationship between units along the fault. The Thumb Member of the Horse Springs is 

cut by the FMF, therefore displacement on the FMF must have occurred post-deposition 

of the Thumb. The age of the Thumb Member is 13.9-16.2 Ma based on 40Ar/39Ar data 

from Beard (1996) and an upper age taken from a biotite of 13.9 Ma (Castor et al., 2000).  

The Bitter Ridge Limestone mapped in the hanging wall of the FMF, which is 

approximately 13.1 Ma (Castor et al., 2000), though not directly cut by the FMF in the 

study area is obviously offset from other outcrops of the Bitter Ridge Limestone that are 

mapped further to the northeast.  Therefore, the SW FMF must have slipped sometime 

after 13.1 Ma.  The Tr sits depositionally on all of the older units that it is in contact with 

and it overlaps the SW FMF is several places. Therefore, motion on the SW FMF ceased 

prior to deposition of the Tr, i.e., sometime prior to 8.5Ma (initiation of Muddy Creek 

deposition) and possibly as early as 12-10.6 Ma (the age of the Red Sandstone according 

to Rittase (2007)).  

There are large angular clasts within the Tr all along the fault. Their presence 

indicates that the Tr was deposited close to significant relief and I infer that the Tr was 

deposited soon after the last displacement occurred on the fault. I also infer that the last 
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motion on the fault had normal sense offset and that it down-dropped the hanging wall to 

the southwest, thus creating proximal accommodation that became the site of Tr 

deposition. Although the Tr sits depositionally on top of the SW FMF and constrains the 

timing of motion on the fault, the Tr is cut by roughly N-S faults in at least two locations. 

The relationship between the N-S faults that cut the Tr and the older SW FMF are not 

clear although it is clear that they are younger than the SW FMF. 

The Tmg unit of the Muddy Creek Formation in the map area is comprised of 

fine-grained homogenous gypsiferous sediments and was most likely deposited in an 

evaporative setting such as a playa.  Due to the nearly flay-lying, fine-grained nature of 

the unit, the Tmg is interpreted as post-tectonic sedimentation.  This provides additional 

support for the idea that tectonic activity along the SW portion of the FMF had stopped 

prior to Muddy Creek time. As previously mentioned the Tr unit differs from the Tmg in 

that it is far coarser and is comprised of angular clasts up to three meters in diameter 

proximal to the FMF; average clast size increases with proximity to the fault.  

Accordingly the Tr was potentially deposited soon after the last motion on the SW FMF 

due to the large clast size proximal to the fault and the angular nature of the clasts.  The 

Thumb Member consists of siliciclastics, sandstones, siltstones, conglomerates and 

evaporates.   

 

Fault Kinematic Data and Results 

Major Fault Sets 

 Detailed geologic mapping paired with collection of kinematic data allowed for a 

more complete understanding of structural relationships in the field area.  Following field 
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observation and recording of fault position and orientation, analysis of these data was 

done using the Stereowin 1.2 Stereonet program (Allmendinger, 2002) and three main 

fault sets were identified.  The fault sets were classified based on: 1) location within the 

field area relative to what stratigraphic units were in the footwall and hanging wall of the 

fault, 2) the strike and dip of the fault, 3) cross-cutting relationships relative to other 

structural features.  Two schematic cross sections were constructed to provide a pictorial 

representation of the stratigraphic and structural relationships, their location and 

orientation is shown in Figure 7, and the cross sections are shown in Figures 8a-b.  

Structural, stratigraphic and kinematic data from the field area are reported in Appendices 

I-II, and their location within the field area are labeled and shown in Plate 1.  For the 

purposes of this paper, the fault sets are referred to as A, B, and C and their respective 

orientations can be seen in Figure 9. 

 The structural features that were consistent with previously mapped orientations 

of the SW FMF are represented by fault set A (Fig. 10).  This fault set consists of five 

faults, has an average strike of 128°, and an average dip of 63° to the southwest.  The 

faults were identified as being part of this fault set because of their respective orientations 

and location within the field along where the SW FMF had previously been mapped.  

Exposure of these faults is relatively poor due to burial and erosion.  The faults are 

exposed within the Moenkopi Formation, Rainbow Gardens and Thumb Members of the 

Horse Spring Formation, volcanic rocks of Rainbow Garden, and the Red Sandstone. 

 Fault set B consists of 12 faults that have an average strike of 179° and an average 

dip of 67° to the west (Fig. 11).  The faults strike north-south and are exposed within the 
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Kaibab Formation, Moenkopi Formation, Thumb and Rainbow Garden Members of the 

Horse Spring Formation, volcanic rocks of Rainbow Garden, and the Red Sandstone. 

  Fault set C is conjugate to fault set B, and is represented by three structures (Fig. 

12).  These faults have an average strike of 341° with an average dip of 73° to the east.  

The faults strike northeast-southwest and are exposed within the Thumb and Rainbow 

Garden Members of the Horse Spring Formation as well as the Red Sandstone. 

Slickenlines and Mullions 

 Slickenline data were collected during fieldwork on seven separate fault surfaces.  

The slickenline data were plotted and analyzed using the Stereowin 1.2 stereonet 

program.  Within the seven fault surfaces with slickenlines, two sets of conjugate faults 

were identified providing further information about relationships between fault sets 

regarding their age and relative sense of offset.  All of the slickenline data and correlating 

fault orientations are in Appendix III. 

Conjugate fault set one is exposed within the Rainbow Gardens conglomerate 

(Trc) and is shown in Figure 13.  One fault is from group C, has an orientation of 349°, 

79° E and has four slickenline measurements which indicate primarily normal sense slip 

with a minor component of oblique motion to the northeast.  The conjugate fault is from 

group B, strikes 179°, dips 67° W and has six slickenline measurements associated with it 

that also indicate normal sense motion with minor oblique motion to the southwest.  

A second set of conjugate faults is exposed within Trc conglomerate and is shown 

in Figure 14. One fault is from group C, has an orientation of 350°, 76° E and has three 

slickenline measurements which indicate primarily normal displacement with minor 

oblique fault motion to the east-southeast.  The conjugate fault is from group B, strikes 
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186°, dips 70° W and has two slickenline measurements associated with it that also 

indicate fault motion was primarily normal with a minor component of oblique motion to 

the west.  

Additional faults crop out that have slickenlines on the exposed surface including 

slickenlines on the SW FMF from fault set A, as well as slickenlines on faults within set 

B.  Slickenlines measured on the SW FMF fault were located on a surface that strikes 

162° and dips 80° to the southwest and is exposed between Trc and Rainbow Gardens red 

sandstone (Trr).  On Figure 15a the strike of the fault plane is taken from aerial images 

because the field exposures were limited.  This fault surface has eight slickenlines as well 

as mullions exposed and they indicate primarily normal sense displacement with minor 

oblique motion to the southwest (Fig. 15b).  Two additional minor faults have 

slickenlines on the exposed fault surface.  An additional fault from set B strikes 184°, 

dips 51° W (Fig. 16) and juxtaposes the Thumb Gypsum-rich sequence (Ttg) and the 

Thumb Conglomerate (Ttc).  This fault has three slickenlines associated with it that 

indicate oblique fault motion directed to the northwest.  The final fault with slickenlines 

is from group B, and strikes 2° and dips 86° to the west (Fig. 17).  There is only one 

slickenline on this fault surface and it indicates oblique motion to the southeast. 

 

Fault Kinematic Discussion 

 I identified three main fault sets and determined their temporal relationship 

relative to each other and the results bear on the structural evaluation of the area.  The 

dominant extensional direction is west-southwest, with some component of a conjugate 

motion directed to the east-southeast. 
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Fault set A represents the main FMF and data from slickenlines on the surface of 

the faults indicate extension was oriented along a SW-NE axis.   Slickenlines taken from 

fault surfaces in fault set B indicate dominantly oblique motion to the west.  Out of 12 

slickenlines measured, 11 indicate westward motion, while only one indicates motion to 

the east.  Of the slickenlines that indicate motion to the west, motion to the southwest 

occur most frequently (n=six) followed by northwest directed slickenlines (n=three), and 

strictly west-directed motion (n=two).  Fault set C represents a conjugate fault set, and 

slickenlines record fault movement directed generally to the east, with some slickenlines 

indicating northeast as well as southeast directed movement.  None of the fault sets cross-

cut each other which allows for the possibility that all fault motion was synchronous.  

Based on kinematic data and analysis, the primary extensional axis is NNE-SSW, with a 

minor axis oriented WNW-ESE (Fig. 18). In summary, the vast majority of kinematic 

data record normal sense offset. 

 

Volcanic and Igneous Rocks Data and Results 

Basaltic Intrusions 

 As previously mentioned in the geologic mapping portion of the results section, 

volcanic units are exposed on both the hanging wall and footwall sides of the SW FMF.  

In the southeastern part of the field area within the footwall (northeast side of the fault) 

the intrusive porphyry member (Tvr) of the volcanic rocks of Rainbow Garden are 

demonstrably intrusive in some locations and are surficial basaltic bodies in other places.  

These basaltic units lie stratigraphically above, below, and within the Thumb Member of 

the Horse Spring Formation.  The units are sometimes individual flows that are 
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intercalated within Thumb beds, while others crosscut bedding in the Thumb Member.  

Farther north in the field area, similar deposits are mapped within the Thumb Member in 

the wash on the north side of the road into Rainbow Gardens (Plate 1).  These basaltic 

bodies are intrusive, as they cross cut bedding and have clasts of the Thumb Member 

sandstone, siltstone and conglomerate unit (Tht) as xenoliths.  Unusually discolored rocks 

were mapped in close proximity to igneous rocks and I have interpreted them to be 

thermally altered.   

Numerous volcanic ashes are exposed within the field area, most of them within 

the Tr and Thumb Members.  These exposures consist of altered, green to white beds of 

volcanic ash that had been reworked and are gypsiferous.  Six thin sections were made 

and upon subsequent petrographic analysis, unaltered biotites were found within several 

samples.  Very small sanidines were also found, but ultimately the ashes were determined 

to be unsuitable for further analysis using 40Ar/39Ar geochronology because the 

phenocrysts were too small.  Original volcanic glass had converted to clay minerals 

making them unsuitable for tephrochronology. 

 

Volcanic and Igneous Rocks Discussion 

 The volcanic and igneous rocks within the field area are within both the hanging 

wall and foot wall, and are mostly located within the Thumb Member.  These units are 

most likely coeval with the River Mountains Volcanic rocks based on their location 

within the Thumb stratigraphy.  Castor et al. (2000) dated this unit at 13.8-12.0 Ma by 

40K/39Ar ages on biotite and hornblende.  This geochronological evidence supports the 

assumption that the FMB was adjacent to the River Mountains by approximately 13 Ma, 
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however, they are geochemically different (personal communication E.I. Smith, 2010). 

These basaltic dikes are coeval with other exposures within the Thumb Member which 

are exposed along Lake Shore Drive (personal communication E.I. Smith, 2010). 

 

Provenance Data and Results 

Conglomerate Clast Counts 

 Conglomerate clast counts were conducted along three transects that generally run 

perpendicular to the SW FMF.  The location of transects and the clast counts (Fig. 19), 

were chosen to represent the lateral variation within the field area.  Multiple clast counts 

were taken along each transect to accurately represent the proximal to distal variation in 

conglomerates adjacent to the fault.  All of the clast counts were taken within the Red 

Sandstone (Tr) to ensure continuity in the clast count data as well as to determine the 

compositional differences.  All of the clast count data are presented in Appendix IV. 

 The Rainbow Gardens wash transect (RG wash) is located in a wash with 

excellent exposure of Tr just north of the RG wash (Fig. 19).  Five clast counts were 

taken and a visual representation of the averages taken from these clast counts is shown 

in Figure 20.  The percentage of igneous clasts generally increased with distance away 

from the SW FMF, and ranged from 52-69% of the clasts.   The igneous component was 

dominantly plutonic, intermediate-composition clasts, and megacrystic plagioclase 

intrusive clasts (rapakivi granite).  The volcanic component of the RG Wash was higher 

than in the other transects and comprised 29% of the total clasts. These volcanic clasts are 

vesicular basalt clasts.  The sedimentary clasts within the RG wash were highly variable 

and did not have an overall trend, ranging from approximately 19-42% of the clasts.  
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Sedimentary clasts were dominated by red sandstone and red brecciated conglomerate 

clasts, and had the least amount of carbonate clasts of all three transects.  The 

metamorphic clasts within the RG wash represent the smallest percentage of clasts, and 

also do not represent any kind of trend, ranging from 3-11 % of the total clasts.  The 

metamorphic clast types were all gneissic in composition. 

 The second transect of conglomerate clast counts is located within the middle 

wash of the field area, and its position and the distribution of the clast counts are shown 

in Figure 21.  Four clast counts were taken to represent this transect as the Tmc is less 

well exposed than in RG wash (Fig. 19).  The igneous component of the clast counts were 

relatively consistent along this transect, with average compositional percentages ranging 

from 38-42%.  These clasts were dominantly plutonic, intermediate-composition clasts 

with a small portion of megacrystic plagioclase intrusive clasts.  The sedimentary clasts 

within the middle wash comprised 39-48% of the clasts within the clast counts.  This 

transect had the greatest percentages of red sandstone clasts (25%) as well as the greatest 

amount of carbonate clasts (12%) of all three transects and has a relatively large 

component of red brecciated conglomerate.  The metamorphic clasts within the middle 

wash represent 11-21% of clasts and are gneissic in composition. 

 The transect in the farthest southeastern part of the field area is the southern wash 

transect and only three clast counts were taken within it as the exposure of the Tmc is 

relatively poor (Fig. 19, Fig. 22).  The percentage of igneous clasts decreased as the 

position moved farther away from the SW FMF, ranging from 42-51%.  The igneous 

clasts were almost all plutonic, intermediate-composition clasts, which represented 42% 

of all of the clast types.  The sedimentary clasts within the southern wash transect 
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consisted of red sandstone and significant amounts of carbonate and ranged from 25-32% 

of the overall clast compositions.  The metamorphic component of the clast counts in the 

southeastern wash was the highest of all three transects, ranging from 19-25%, and were 

gneissic in composition. 

 The conglomerate clast counts from all three transects were directly compared to 

each other in order to allow for interpretation of the differences in composition (Figs. 20-

22).  These three sections vary laterally along the SW FMF, but are internally consistent 

within each transect. 

Paleocurrent Data 

 Paleocurrent indicators that record paleoflow directions were measured at eight 

locations in the field area (Fig. 23).  Paleocurrent indicators were measured in the three 

washes that conglomerate clast counts data were taken from.  Indicators were taken in the 

Red Sandstone from imbricated clasts within interbedded conglomerates and were plotted 

on rose diagrams using the Allmendinger 1.2 Stereonet program.  Overall, the 

paleocurrent indicators have a mean vector of 202°, indicating paleoflow was directed to 

the south-southwest (Fig. 24).  

 

Provenance Discussion 

 The combination of conglomerate clast counts and paleocurrent data supports a 

derivation from sediment source areas that are directly across the SW FMF. The data are 

consistent with detritus being derived from the footwall and being shed directly (south-

southwest) across the SW FMF into the basin.  Conglomerate clast count data are highly 

variable laterally, but are internally consistent within each wash and overall, all three 
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transects had clasts compositions that represented provenance source areas adjacent to 

them, to the north-northeast. The RG transect contained the highest amount of volcanic 

clasts.  This makes sense given that there are large outcrops of both Tvr and Ttb, the two 

main volcanic components of the field study area just to the northeast of the clast count 

site (Figure 25).  Within the middle wash, red sandstone and carbonate clasts had the 

highest compositional percentages.  This coincides with an area north of the fault that 

contains abundant Trl (Figure 25).  All three washes have a significant amount of 

metamorphic gneissic clasts with Gold Butte affinity.  The nearest Gold Butte source 

areas are to the north-northeast within the Frenchman Mountain block. An interpreted 

northeast to southwest transport direction inferred from the clast count data are supported 

by the paleocurrent data which indicates south-southwestern directed paleoflow.    

 If I had found that the SW FMF cuts the Tr, then the relatively compartmentalized 

basin stratigraphy recorded in this project and the determination that lithologies in the Tr 

correlate with source area directly across the FMF as determined by paleoflow indicators 

and the clast composition data would suggest normal fault offset along the FMF.  In that 

scenario, detritus from the north-northeast was linked through time to the same part of the 

adjacent basin, without the basin fill experiencing any lateral movement (Fig. 25).  

However, because the Tr was found to be post-tectonic, the provenance and paleocurrent 

data documented here do not inform us as to the sense of motion on the SW FMF. Rather, 

they simply reflect direct transport of sediment from the elevated footwall of the SW 

FMF across the now-inactive SW FMF into the topographically lower hanging wall on 

the southwestern side of the fault. The fact that the hanging wall was lower than the foot 

wall does suggest that the SW FMF experienced normal sense, down to the SW motion. 
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CHAPTER 6 

INTERPRETATIONS 

Geologic mapping of field relationships, structural, stratigraphic, kinematic and 

provenance data have allowed for further interpretation of the motion, relative timing, 

and the significance of the SW FMF as well as potential identification of the FMB-

bounding fault.  Based on the new data, I speculate and offer additional hypotheses to 

explain the geology of the field study area.  While these ideas are highly speculative, 

discussion of potential hypotheses may stimulate interest in future research and offer 

perspectives on the Lake Mead region geology:    

1) Cenozoic units are exposed and have been mapped in both the hanging wall 

and the footwall blocks of the SW FMF.  It is well-established that a portion 

of these units were deposited in close proximity to Gold Butte prior to the 

FMB being translated to its current position (Rowland et al., 1990).  

Therefore, based on the fact that these units (Ttb, Tht, Thb) occur within the 

hanging wall and the footwall of the FMF, I conclude that the SW FMF is not 

the FMB-bounding fault.  In addition to this, the Tr overlaps the SW FMF and 

is not cut by the fault and thus the SW FMF ceased moving prior to deposition 

of the Tr. It does appear that the Tr was deposited soon after the last motion 

on the FMF. This is supported by the coarse-grained proximal alluvial 

characteristics of the Tr and the presence of large angular clasts proximal to 

the SW FMF. Given that the fault that was previously mapped as the FMF is 

not the block-bounding fault, I hypothesize that the actual FMB block-
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bounding fault is located farther out into the basin towards the southwest, as is 

shown in Figure 6. 

2) Based on fieldwork and subsequent analysis I have concluded that the FMF is 

mostly likely a series of normal faults that can be divided into three groups: 

the “main” fault group which is northwest-southeast striking and southwest 

dipping (A), a secondary set of faults striking nearly north-south and dipping 

to the west (B), and a third set conjugate to set B which is striking northeast-

southwest and dips to the east (C) (Fig. 9).  In map view, a NW-SE striking 

feature separates higher topography from lower topography, and this has been 

identified in the past as the FMF.  However, instead of this being one major 

structure, I propose that the combination of normal fault motion of these 

conjugate fault sets and subsequent erosion has caused it to appear as if there 

has been major strike-slip offset.  In my hypothesized scenario, post-faulting 

erosion of the paleosurface material has created an apparent strike-slip offset 

sense in map view, but in fact is a normal fault (Fig. 26). However, these 

observations are not conclusive and I cannot rule out an overall strike-slip 

sense of motion for the FMF. 

3) Structural and kinematic relationships in the field imply normal fault motion 

as indicated by: 1) the presence of vertical and sub-vertical slickenlines on 

fault surfaces; and 2) a lack of both structural and stratigraphic evidence that 

would suggest strike-slip motion. Although the slickenline and mullion data 

predominantly point towards normal sense offsets, these types of data always 
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indicate the last sense of motion on faults and thus earlier offsets that had a 

different sense can be overprinted by the last features. 

4) Structural orientation and identification of the fault sets indicate that fault 

motion of all three fault sets occurred synchronously, as no field observations 

indicate any cross-cutting relationships of the fault sets.  My data support the 

proposed extensional directions suggested by previous authors, and ultimately 

indicate the principle extensional axis oriented NNE-SSW and a minor axis 

oriented WNW-ESE shown in Figure 18. 

5) My mapping of the Red Sandstone has possible implications for how 

researchers view the Tr. Further research and comparison of the Tr within the 

field study area to other nearby Tr exposures indicate that what has previously 

been mapped as the Muddy Creek Formation could in fact be the Red 

Sandstone (Rittase, 2007). 

6) All previous researchers have referred to the fault that bounds the NW, W, 

and SW margins of the FMB as the FMF. My data clearly show that offset 

along the SW portion of this fault had ceased prior to deposition of the Tr. 

Given that the western portion of the FMF (at the western base of Frenchman 

Mountain) offsets Quaternary units, it is clear that if these two fault segments 

were linked in the past that they no longer are not linked and have not been 

linked for the past 8-12 million years. This has important implications for 

calculated magnitude estimates for the western FMF given that magnitudes 

are linked to fault length.   
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 Based on the data generated in this study, it is possible to determine which 

previously discussed models proposed by other workers these data are most consistent 

with.  My data are mostly consistent with models that propose extension oriented 

principally to the SSW-NNE, such as Anderson (1971), Bohannon (1979), as well as 

Weber and Smith (1987).  Because parts of the FMF are located along the basin edge of 

the Las Vegas Valley, as previously discussed, there are various models for how the FMF 

fits into the larger picture of the development of the Las Vegas Valley.  Langenheim et al. 

(2001) and Campagna and Aydin (1994) both evoke a pull-apart model for the formation 

of the Las Vegas Valley, but neither dealt definitively with the sense of offset of the SW 

FMF.  The geometries of the fault sets in the Langenheim et al. (2001) model closely 

resemble the fault sets identified in this study: the fault planes strike NNW-SSE and 

SSW-NNE.  Based on the data generated in this study, I hypothesize that the SW FMF 

and the FMB-bounding fault are part of a system of normal faults whose interaction has 

resulted in the formation of the Las Vegas Valley.   Furthermore, my hypothesized 

location of the FMB-bounding fault proposed in this study is consistent with the 

geophysically inferred strand of the LVVSZ imaged by Langenheim et al. (2001). 

This study has shown that the method of using basin structural and stratigraphic 

mapping techniques, paired with kinematic and provenance analyses can be a powerful 

tool in constraining the motion and timing of a fault.  While my results and 

interpretations show that the actual FMB-bounding fault is likely buried in the Las Vegas 

Valley and are not absolutely conclusive regarding the movement of the master fault, the 

exposed structures give some insight into the possible location and significance of the 

fault.  If the structures exposed on the surface are any indication of the FMF’s movement, 
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I propose that the SW FMF is a normal fault that possibly has a component of oblique 

motion.  
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APPENDIX I 

 

Figures 

Figure 1. Map of western North America, Basin and Range province within the United 
States, labeling the Northern Basin and Range, Central Basin and Range and Southern 
Basin and Range.  The field area is located within the red box (modified from Faulds et 
al., 2001). 
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Figure 2. Lake Mead Regional geology, features shown are: Las Vegas Valley Shear 
Zone (LVVSZ), Lake Mead Fault System (LMFS), Saddle Island Detachment Fault 
(SIDF), Frenchman Mountain Block (FMB), Muddy Mountains Block (MMB), Boulder 
Basin Block (BBB), Gold Butte Block (GBB) (modified from Lamb et al., 2010). 

 

 

 

 



 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Location map of Frenchman Mountain field study area outlined by the red box 
in Figure 2, outside of Las Vegas, NV.  Features shown are: Las Vegas Valley Shear 
Zone (LVVSZ), Frenchman Mountain Fault (FMF), Munitions Fault (MF), Boulevard 
Fault (BF), and Dry Wash Fault (DWF). 
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Figures 4a and b. Schematic slickenline diagram showing hypothetical slickenlines in the 
case of normal versus strike-slip scenarios.  In the case of a normal fault (a), slickenlines 
would be vertical or sub-vertical (shown in top figure), conversely if the fault is a strike-
slip fault (b) the fault surfaces would have horizontal or sub-horizontal. 
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Figure 5. Stratigraphic column from the Mobil Oil Virgin 1A test well at Mormon Mesa, 
stratigraphy is the same as that exposed in the field area. Stratigraphic section shows 
stratigraphy based on well data (modified from Bohannon et al., 1993). 
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Figure 6.  Interpretive figure showing the possible location of the proposed “master” fault 
shown in red, located to the southwest of the current FMF.  Features shown are: Las Vegas 
Valley Shear Zone (LVVSZ), Frenchman Mountain Fault (FMF), Munitions Fault (MF), 
Boulevard Fault (BF), and Dry Wash Fault (DWF). 
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Figure 7. 

 

 

 

 

 

 

 

 

 

Figure 8a and b. 

 

 

 

 

 

 

 

 

 

 

 

Figures 7 and 8a-b. 6) Location of schematic cross sections within field study area, 
location of black box is shown in Figure 6.  7a) Cross section A-A’, cross section is 
schematic and not to scale, 7b) Cross section B-B’, cross section is schematic and not to 
scale, dashed lines indicate schematic conjugate fault sets.  See Plate 1 for units key. 

 



 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Stereograph showing the main fault sets, each fault set is represented by a 
single fault plane that averages all of the faults within the set. The “main” fault set (A) 
that represents the FMF is shown in the thick dashed line.  Stereowin by Allmendinger 
(2002) was used to generate this and all following stereographs. 
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Figure 10.  Stereograph of fault set “A”.  Faults strike northwest-southeast and dip to the 
southwest. 
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Figure 11. Stereograph of fault set “B”.  Faults strike north-northwest to south-southeast 
and dips are to the west. 
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Figure 12.  Stereograph of fault set “C”.  Faults strike north-northwest to south-southeast 
and dip to the NE. 
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Figure 13. Stereograph of conjugate fault set one, plotted with corresponding 
slickenlines. 
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Figure 14. Stereograph of conjugate fault set two, plotted with corresponding 
slickenlines. 
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Figure 15a.  Stereograph plot of main FMF fault surface with slickenlines.  Fault plane 
orientation is an estimated approximation based on hypothesized fault location and 
orientation.  The mismatch between the slickenline data and the fault plane suggests that 
the fault dip may be less steep than what was estimated. 
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Figure 15b.  Stereograph of main FMF fault surface with slickenlines and mullions. 
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Figure 16.  Stereograph with fault oriented 184°, dipping 51° and slickenlines from fault 
set B. 
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Figure 17. Stereograph with fault striking 2°, dipping 86° and slickenlines from fault set 
B. 
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Figure 18.  Schematic representation of primary extensional axis based on structural 
analysis.  Dashed lines represent extensional axes determined from this study: NNE-SSW 
and WNW-ESE.  Red arrows are the average of both NNE-SSW and WNW-ESE 
extensional axes and represent approximate extensional direction. 
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Figure 19.  Topographic map of the field area in the northern section of the Henderson 
Quadrangle.  Conglomerate clast counts were taken along three transects: RG = Rainbow 
Gardens wash, SR = southern road wash.  Frenchman Mountain fault (FMF). 
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Figure 20. One pie chart showing provenance of conglomerate clasts from the Rainbow 
Gardens wash, representing the average of five clast counts taken along a transect within 
the Red Sandstone unit.  Blue indicates igneous clasts (59 %), green indicates 
sedimentary clasts (33 %), and red indicates metamorphic clasts (8 %).   

 

Figure 21. One pie chart showing provenance of conglomerate clasts from the middle 
wash, representing the average of four clast counts taken along a transect within the Red 
Sandstone unit.  Blue indicates igneous clasts (40 %), green indicates sedimentary clasts 
(44 %) , and red indicates metamorphic clasts (16 %).   
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Figure 22. One pie chart showing provenance of conglomerate clasts from the southern 
road wash, representing the average of four clast counts taken along a transect within the 
Red Sandstone unit.  Blue indicates igneous clasts (48 %), green indicates sedimentary 
clasts (29 %) , and red indicates metamorphic clasts (23 %).   
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Figure 23. Topographic map of the field study area with locations of rose diagrams from 
paleocurrent taken within the Red Sandstone unit from imbricated clasts within 
interbedded conglomerate.    
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Figure 24.  Paleocurrent diagram representing all paleocurrent data taken.  Paleocurrent 
data were taken from imbricated clasts within interbedded conglomerate from within the 
basin fill of the field study area.  All paleocurrent data were taken within the Red 
Sandstone unit. 
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Figure 25.  Schematic diagram showing hypothesized method of transport of detritus 
from the footwall onto the hanging wall, directly across the FMF with no lateral 
movement.   
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Figure 26.  Schematic diagram showing the previously proposed apparent strike-slip 
offset as we interpret as normal faulting. 1) Pre-faulting geology, resistant marker bed is 
shown as a guide. 2) Post normal faulting, pre-erosive stage. Paleosurface and level of 
future erosion are shown. 3) Post-faulting, post-erosion, paleo surface and modern day 
surface are shown.  Result is apparent strike-slip offset. 
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APPENDIX II 

 

STRUCTURAL AND STRATIGRAPHIC DATA 

 Structural and kinematic data are listed in the tables below.  All bedding 

orientations were taken using right hand rule:  Pk = Kaibab limestone. Pkh = Harrisburg 

Member. Q = all Quaternary units. Tht = Thumb sandstone, siltstone, and conglomerate. 

Tr = Red Sandstone undifferentiated.  Trr =  Rainbow Gardens sandstone, conglomerate, 

and limestone. Trc = Rainbow Gardens resistant basal conglomerate. Trms = Moenkopi 

Schnabkaib Member. Trmu = Moenkopi Upper redbed unit. Trmv = Moenkopi Virgin 

Member. Trl = Rainbow Gardens reistant limestone unit. Ttb = Thumb Breccia with 

Proterozoic detritus. Ttc = Thumb Conglomerate. Ttg = Thumb Gypsum-rich sequence. 

Tvr = Volcanic Rocks of Rainbow Gardens nondifferentiated. 

Table of bedding and fault data 
Type Unit Orientation 

Bedding Pk 24,43 

Bedding Pkh 58,29 

Bedding Pkh 30,33 

Bedding Pkh 67,38 

Fault Pkh/Trc 164,61 

Bedding Q 160,4 

Bedding Q 110,7 

Bedding Q 121,19 

Bedding Q 200,12 

Bedding Q 85,32 

Bedding Tht 124,35 

Bedding Tht 120, 26 
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Table of bedding and fault data  
Type Unit Orientation 

Bedding Tht 84,45 
Bedding Tht 98,82 

Bedding Tht/Tr 136,21 

Bedding Tht 93,64 

Bedding Tht 132,44 

Bedding Tht 93,68 

Bedding Tht 87,33 

Bedding Tht 103,72 

Bedding Tht 106,75 

Bedding Tht 101,67 

Bedding Tht 84,67 

Bedding Tht 132,43 

Bedding Tht 104,40 

Bedding Tht 100,74 

Bedding Tht 160,63 

Bedding Tht 125,40 

Fault Tht/Tht 110,45 

Fault Tht/Tr 155,65 

Fault Tht/Trr 134,76 

Bedding Tht/Trr 104,49 

Bedding Tht 104,32 

Bedding Tht 135,39 

Bedding Tht 131,24 

Bedding Tht 70,25 

Bedding Tht 48,32 

Fold Tht 30, 168 
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Table of bedding and fault data (Continue) 
Type Unit Orientation 

Bedding Tr 90,19 

Bedding Tr 136,39 
Bedding Tr 61,32 

Bedding Tr 68, 28 

Bedding Tr 
35, 32 

 
Bedding Tr 27,35 

Bedding Tr/Q 29,6 

Fault Tr/Q 204,75 

Fault Tr/Tht 137,75 

Bedding Trc 60,42 

Bedding Trc 72,38 

Bedding Trc 48,35 

Bedding Trc 66,46 

Bedding Trc 53,20 

Bedding Trc 64,35 

Fault Trc/Trc 174,64 

Fault Trc/Trc 186,70 

Fault Trc/Trc 350,76 

Fault Trc/Trc 349, 79 

Fault Trc/Trc 179,67 

Fault Trc/Trr 162,80 

Bedding Trl 110,49 

Bedding Trl 114,43 

Bedding Trl 77,39 

Bedding Trms 52,24 

Bedding Trms 93,26 

 



 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table of bedding and fault data (Continued) 
Type Unit Orientation 

Bedding Trmu 50,53 

Bedding Trmu 96,24 

Bedding Trmu 40,29 
Bedding Trmv 56,38 

Bedding Trr 68,23 

Bedding Trr 98,22 
Bedding Trr 93,23 

Bedding Trr 119,70 

Bedding Trr 98,30 

Bedding Trr 105,35 

Bedding Trr 98,30 

Bedding Trr 96,50 

Fault Trr/Trc 165,70 

Fault Trr/Trl 188,74 

Fault Trr/Trmv 136,63 

Bedding Ttb 95,36 

Bedding Ttb 143,24 

Fault Ttb/Tr 320,65 

Fault Ttb/Tr 106,55 

Bedding Ttc 110,36 

Bedding Ttc 105,37 

Bedding Ttc 96,85 

Bedding Ttg 67,33 

Bedding Ttg 100,44 

Bedding Ttg 103,69 

Fault Ttg/Ttc 184,51 
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APPENDIX III 

 

KINEMATIC DATA 

 Structural and kinematic data collected in the field.  All bedding orientations were 

taken using right hand rule. Key for abbreviations can be found in Appendix I. 

 

Table of kinematic data 
Type Units Measurements Fault Set 
Fault Trr/Trmv 136,63 A 
Fault Tht/Trr 134,76 A 
Fault Tr/Tht 137,75 A 
Fault Tht/Tht 110,45 A 
Fault Ttb/Tr 106,55 A 
Fault Tvr 2,86 B 
Fault Trr/Trc 165,70 B 
Fault Trms/Trc 160,40 B 
Fault Trr/Trl 188,74 B 
Fault Pkh/Trc 164,61 B 
Fault Tr/Q 204,75 B 
Fault Trc/Trr 162,80 B 
Fault Trc/Trc 174,64 B 
Fault Trc/Trc 186,70 B 
Fault Trc/Trc 179,67 B 
Fault Ttg/Ttc 184,51 B 
Fault Tht/Tr 155,65 B 
Fault Trc/Trc 350,76 C 
Fault Trc/Trc 349, 79 C 
Fault Ttb/Tr 320,65 C 
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Table of paired fault and slicken measurement data 
Type Units Measurements 
Fault Tvr 2,86 

Slickens  55 @ 110 
   

Fault Trc/Trr 162,80 
Slickens  60 @ 176 

  54 @ 230 
  65 @ 229 
  64 @ 253 
  65 @ 253 
  69 @ 231 
  73 @ 250 
  70 @ 246 

Mullions  68 @ 80 
  65 @ 76 
  68 @ 80 
   

Fault Trc/Trc 186,70 
Slickens  74 @ 257 

  69 @ 266 
   

Fault Trc/Trc 350,76 
Slickens  73 @ 110 

  73 @ 112 
  78 @ 168 
   

Fault Trc/Trc 179,67 
Slickens  57 @ 243 

  66 @ 290 
  54 @ 241 
  70 @ 233 
  70 @ 234 
  65 @ 223 
   

Fault Trc/Trc 349,79 
Slickens  80 @ 45 

  72 @ 53 
  78 @ 43 
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Table of paired fault and slicken measurement data  
Type Unit Measurements 

  77 @ 43 
   

Fault Ttg/Ttc 184,51 
Slickens  33 @ 336 

  36 @ 328 
  25 @ 335 
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APPENDIX IV 
 

CONGLOMERATE CLAST COUNT DATA 
 

Conglomerate clast count data taken in the field study area.  Location map showing clast counts is seen in Figure 19. 
 
 

Table of conglomerate clast count data 

Clast Type 
RG 
Wash  

RG 
Wash  

RG 
Wash  

RG 
Wash  

RG 
Wash  

Middle 
Wash  

Middle 
Wash 

Middle 
Wash 

Middle 
Wash 

SR 
Wash 

SR 
Wash 

SR 
Wash 

Clast Count Number 1 2 3 4 5 6 7 8 9 10 11 12 
(I) Vesicular Basalt 14 3 6 4 6 0 2 2 0 2 4 3 
(I) Volcanic (other 
basalt) 29 1 7 9 2 0  2 0 0 1 0 
(I) Felsic plutonic 
(intermediate) 3 40 12 8 6 0 44 42 45 55 56 44 
(I) Green plutonic 0 21 0 0 0 0 0 1 0 2 4 1 
(I) Milky quartz 0 2 2 6 9 6 0 0 0 1 1 0 
(I) Megacrystic 
Igneous (plagioclase) 6 0 37 19 26 35 0 0 0 0 0 0 
(I) Amphibolite 0 2 0 0 0 0 0 0 0 0 0 0 
(I) Subtotal 52 69 64 46 49 41 46 47 45 60 66 48 
% (I) 52.5 69.7 56.1 55 60.5 39 40 42 38.7 51.2 48.8 42.1 
             
(M) Gneiss 5 11 4 9 9 22 13 19 15 23 34 29 
(M) Subtotal 5 11 4 9 9 22 13 19 15 23 34 29 
% (M) 5.1 11.1 3.5 10.7 11.1 20.8 11.3 17 12.9 19.6 25.1 25.4 
             
(S) Sandstone (red) 38 11 29 14 9 29 29 25 31 11 15 16 
(S) Conglomerate 3 4 10 11 11 1 12 8 10 12 11 6 
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Table of conglomerate clast count data  
(S) Carbonate 1 3 7 4 3 13 14 11 15 11 9 15 
(S) Siltstone 0 1 0 0 0 0 0 0 0 0 0 0 
(S) Subtotal 42 19 46 29 23 43 55 44 56 34 35 37 
% (S) 42.4 19.2 40.4 34.5 29.4 40.6 47.8 39.6 48.2 29 25.9 32.4 
             
Unknown 0 0 0 0 1 1 1 1 0 0 0 0 
Total 99 99 114 84 81 106 115 111 116 117 135 114 
             
             
Clast Type             
% (I) 52.5 69.7 56.1 55 60.5 39 40 42 38.7 51.2 48.8 42.1 
% (M) 5.1 11.1 3.5 10.7 11.1 20.8 11.3 17 12.9 19.6 25.1 25.4 
% (S) 42.4 19.2 40.4 34.5 29.4 40.6 47.8 39.6 48.2 29 25.9 32.4 
 
 
 
 
 
 
 
 



 74 

APPENDIX V 

 

PALEOCURRENT DATA 

 Paleocurrent data, taken from a bed within the Red Sandstone Undifferentiated 

unit taken from imbricated clasts within interbedded conglomerate. Paleocurrent clast 

orientations were taken using the right hand rule, bedding orientations are included as 

well as the estimated paleoflow direction taken in the field. 

Table of Paleocurrent data 

Name SW-1 SW-2 SW-3 RG-1 RG-2 RG-3 MW-1 MW-2 

Bedding 
Orientation 180, 36 25, 28 115, 30 95, 35 185, 35 172, 37 189, 36 220, 50 

Estimated  SE SE SE S S SE S? S 

1 263, 45 309, 31 208, 37 335, 38 260, 41 225, 36 245, 47 300, 46 

2 260, 46 311, 48 220, 49 340, 30 250, 43 252, 41 250, 38 303, 36 

3 253, 41 300, 40 210, 54 349, 31 256, 32 218, 44 240, 64 298, 40 

4 256, 48 314, 53 199, 52 5, 29 271, 50 240, 36 253, 50 292, 34 

5 270, 53 309, 36 211, 50 334, 34 275, 35 230, 24 247, 43 295, 51 

6 224, 38 265, 32 215, 40 20, 41 263, 28 240, 31 243, 35 286, 41 

7 247, 40 260, 39 207, 41 338, 39 251, 32 241, 32 272, 46 288, 61 

8 238, 55 305, 36 255, 45 20, 32 266, 30 240, 36 260, 51 298, 28 

9 249, 59 310, 48 227, 29 10, 36 256, 54 225, 32 234, 49 279, 32 

10 229, 62 324, 39 230, 35 10, 41 252, 39 205, 28 235, 55 290, 34 
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APPENDIX VI 

 

PASSIVE SEISMIC DATA 

 Passive seismic low-frequency data is shown below.  The lines were ran using 50 

4.5 Hz 3-C geophones, with lines that were 2500 meters long with 50 meter spacing. 
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