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ABSTRACT 

A Business Intelligence Framework for Network-level Traffic Safety Analyses 

by 

Naveen Kumar Veeramisti 

Dr. Alexander Paz, Examination Committee Chair 

Associate Professor, Civil and Environmental Engineering 

University of Nevada, Las Vegas 

 

Currently, there are both methodological and practical barriers that together preclude a 

substantial use of theoretically sound approaches, such as the ones recommended by the 

Highway Safety Manual (HSM), for traffic safety management. Although the state-of-the-art 

provides theoretically sound approaches such as the Empirical Bayes method, there are still 

various important capabilities missing. Methodological barriers include among others (i) lack of 

a theoretically sound approach for corridor-level network screening, (ii) lack of a comprehensive 

approach for estimation of Safety Performance Functions based on a simultaneous consideration 

of both crash patterns and associated explanatory variables, and (iii) lack of theoretically sound 

methods to forecast crash patterns at the regional level. In addition, the use of existing 

theoretically sound approaches such as the ones recommended by the HSM are associated with 

important practical barriers including 1) significant data integration requirements, 2) a special 

schema is needed to enable analysis using specialized software, 3) time-consuming and intensive 

processes are involved, 4) substantial technical knowledge is needed, 5) visualization capabilities 

are limited, and 6) coordination across various data owners is required. 

Considering the above barriers, most practitioners use theoretically unsound 

methodologies to perform traffic safety analyses for highway safety improvement programs. This 
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research proposes a single comprehensive framework to address all the above barriers to enable 

the use of theoretically sound methodologies for network wide traffic safety analyses. The 

proposed framework provides access through a single platform, Business Intelligence (BI), to 

theoretically sound methods and associated algorithms, data management and integration tools, 

and visualization capabilities. That is, the proposed BI framework provides methods and 

mechanisms to integrate and process data, generate advanced and theoretically sound analytics, 

and visualize results through intuitive and interactive web-based dashboards and maps. 

The proposed BI framework integrates data using Extract-Load-Transform process and 

creates a traffic safety data warehouse. Algorithms are implemented to use the data warehouse 

for network screening analysis of roadway segments, intersections, ramps, and corridors. The 

methodology proposed and implemented here for corridor-level network screening represents an 

important expansion to the existing methods recommended by the HSM. Corridor-level network 

screening is important for decision makers because it enables to rank corridors rather than sites 

so as to provide homogenous infrastructure to minimize changes within relatively short 

distances. Improvements are recommended for long sections of roadways that could include 

multiple sites with the potential for safety improvements. Existing corridor screening 

methodologies use observed crash frequency as a performance measure which does not consider 

regression-to-the-mean bias. The proposed methodology uses expected crash frequency as a 

performance measure and searches corridors using a sliding window mechanism which addresses 

crash location reporting errors by considering the same section of roadway multiple times using 

overlapping windows. 

The proposed BI framework includes a comprehensive methodology for the estimation of 

SPFs considering simultaneously local crash patterns and site characteristics. The current state-



v 

of-the-art uses predefined crash site types to create single clusters of data to generate regression 

models, SPFs, for the estimation of predicted crash frequency. It is highly unlikely for all crash 

sites within a single predefined cluster/type to have similar crash patterns and associated 

explanatory characteristics. That is, there could be sites within a cluster/type with different crash 

patterns and explanatory characteristics. Hence, assigning a single predefined SPF to all sites 

within a type is not necessarily the best approach to minimize the estimation error. To address 

this issue, a mathematical program was formulated to determine simultaneously cluster 

memberships for crash sites and the corresponding SPFs. Cluster memberships are determined 

using both crash patterns and associated explanatory variables. A solution algorithm coupling 

simulation annealing and maximum log likely estimation was implemented and tested. Results 

indicated that multiple SPFs for a crash and/or facility type can maximize the probability of 

observing the available data to increase accuracy and reliability. The estimated SPFs using the 

proposed approach were implemented within the BI framework for network screening. The 

results illustrate that the gain in predicted crashes provided by the SPFs translates into superior 

rankings for sites and corridors with the potential for safety improvements. 

A performance-based safety program requires the forecasting, at the regional level, of 

safety performance measures and establish targets to reduce fatalities and serious injuries. This is 

in contrast to the analysis required for traffic safety management where forecasts are required at 

the site or corridor level. For regional level forecasting, historically, theoretically unsound 

methods such as extrapolation or simple moving-average models have been used. To address this 

issue, this study proposed deterministic and stochastic time series models to forecast 

performance measures for performance-based safety programs. Results indicated that stochastic 
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time series, a seasonal autoregressive integrated moving average model, provides the required 

statistically sound forecasts. 

In summary, the fundamental contributions of this research include: (i) a theoretically 

sound methodology for corridor level network screening, (ii) a comprehensive methodology for 

the estimation of local SPFs considering simultaneously crash patterns and associated 

explanatory variables, and (iii) a theoretically sound methodology to forecast performance 

measures to set realistic targets for performance-based safety programs. In addition, this study 

implemented and tested the above contributions along with existing algorithms for traffic safety 

network screening within a single BI platform. The result is a single web-based BI framework to 

enable integration and management of source data, generation of theoretically sound analyses, 

and visualization capabilities through intuitive dashboards, drilldown menus, and interactive 

maps. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Significant resources invested on roadway safety management have not translated yet into less 

traffic crashes in the United States (NHTSA, 2013). Such legislation as the Safe Accountable 

Flexible Efficient Transportation Equity Act – A Legacy for Users (SAFETEA-LU) and the 

Moving Ahead for Progress in the 21st Century (MAP-21) mandate states to develop 

comprehensive Highway Safety Improvement Plans (HSIPs) for improving transportation safety 

(FHWA, 2013; SAFETEA-LU, 2005).  

Two critical programs that are part of HSIP are: 1) an annual report of highway locations 

with the most severe traffic safety needs and 2) an annual report of a performance-based safety 

program (HSIP, 2015). The purpose of the first program is to identify the most hazardous site 

locations that can be improved effectively by implementing countermeasures. This process – 

termed as a roadway safety management process by Part B of the Highway Safety Manual (HSM) 

– includes four steps: network screening, diagnosis and countermeasure selection, economic 

appraisal and priority ranking, and countermeasure evaluation (AASHTO, 2010). Network 

screening involves the systematic identification and raking of site locations with potential for 

safety improvements. The top ranked sites are investigated through the other three steps listed 

above (AASHTO, 2010; AASHTO, 2011).  

The purpose of the second program is to reduce statewide fatalities and serious injuries 

by setting a target every year and achieving it for four safety performance measures: 1) number 
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of fatalities, 2) number of serious injuries, 3) rate of fatalities, and 4) rate of serious injuries 

(FHWA, 2015). 

The existing literature reveals that practitioners continue using theoretically unsound 

methods to conduct traffic safety analysis to develop HSIPs (FHWA, 2015). Methods such as 

crash rates, crash frequency, equivalent property damage only, crash severity index have 

limitations including the bias associated with the volume, segment length, and regression-to-the-

mean as well as incorrect model forms and lack of reliability measures (AASHTO, 2010). For 

annual reporting of highway locations exhibiting the most severe traffic safety needs, in FY 

2014, only four states in the U.S. used theoretically sound methodologies for network screening 

such as the Empirical-Bayes (EB) methodology provided in the HSM (FHWA, 2015). The EB 

methodology, involves the use of safety performance functions (SPFs) to estimate the number of 

crashes that would be expected in the analysis period at locations with traffic volumes and other 

characteristics similar to the one being analyzed (Montella, 2010). The predicted crash estimates 

obtained using SPFs are then combined, using weights, with the observed count of crashes to 

obtain a better estimate of the expected number of crashes. The weighted adjustment accounts 

for the reliability of the safety performance function that is applied. Crash estimates produced 

using safety performance functions with over-dispersion parameters that are low (which 

indicates higher reliability) have a larger weighted adjustment. Larger weighting factors place a 

heavier reliance on the SPF to predict the long-term predicted average crash frequency per site 

(AASHTO, 2010). 

For the performance-based safety program, states use such aspirational targets as 

promoting zero fatalities/deaths, the American Association of State Highway and Transportation 

Officials (AASHTO) target to halve fatalities by 2030, or aim for a gradual (e.g., 3%) decrease in 
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fatalities every year (NCHRP, 2010). In addition, these targets are instituted based on discussions 

of focus groups in state agencies. Few states use trends to forecast performance measures and set 

targets. 

Both methodological and practical barriers together preclude a substantial use of 

theoretically sound approaches for traffic safety analysis and management. Although the state-of-

the-art provides theoretically sound approaches, there are still various important capabilities 

missing. Methodological barriers include among others (i) lack of a theoretically sound approach 

for corridor-level network screening, (ii) lack of a comprehensive approach for estimation of 

Safety Performance Functions based on a simultaneous consideration of both crash patterns and 

associated explanatory variables, and (iii) lack of theoretically sound methods to forecast crash 

patterns at the regional level. In addition, the use of existing theoretically sound approaches are 

associated with important practical barriers including 1) significant data integration requirements, 

2) a special schema is needed to enable analysis using specialized software, 3) time-consuming 

and intensive processes are involved, 4) substantial technical knowledge is needed, 5) 

visualization capabilities are limited, and 6) coordination across various data owners is required 

(Alluri, & Ogle, 2012; Tarko et al., 2014; Paz et al., 2015c). 

As a consequence of these barriers, there is a significant gap between state-of-the-art and 

the state-of-the-practice methodologies at federal, state, and local level. The ability to adopt and 

use theoretically sound methodologies by practitioners for traffic safety analysis is key for 

improving traffic safety. Tools and methods from informatics and computer science, such as data 

warehousing and business intelligence (BI), provide opportunities to develop a data warehouse 

connected to the source data as well as to the required analytical models (Chen et al., 2012; 

Rittman, 2013).  
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In order to facilitate the development of annual reporting of highway locations exhibiting 

the most severe traffic safety needs, this research seeks to address the barriers listed above to 

enable practitioners to use theoretically sound methodologies for traffic safety management. 

Mechanisms were investigated and developed to deploy, enhance, and facilitate the use of 

theoretically sound algorithms for the development of HSIPs.  

1.2 Objectives of the Dissertation 

The primary objectives of this dissertation include the development of: (i) a theoretically 

sound approach for corridor-level network screening, (ii) a comprehensive approach for 

estimation of SPFs based on a simultaneous consideration of both crash patterns and associated 

explanatory variables, and (iii) a theoretically sound method to forecast crash patterns at the 

regional level. In addition, existing algorithms for network screening from the HSM and the 

above developments are together implemented within a single BI framework to enable: 1) access, 

integration and management of data, 2) analyses, and 3) visualization of results. 

Addressing the above objectives required reimplementation and expansion of the 

network-screening process discussed in Part B of the HSM (AASHTO, 2010) to provide a single 

framework for data processing, integration, analysis and visualization. Algorithms were coded 

for network screening analysis of roadway segments, intersections, ramps, and corridors. The 

algorithm proposed and implemented here for corridor level network screening represents an 

important expansion to the existing methods recommended by the HSM. In practice, screening 

and analysis/ranking at the corridor level for the entire network is required for various reasons 

including the need to provide as homogeneous as possible conditions across the roadway 

network. Homogeneous conditions are associated with less driving distractions, surprises, or 

confusion. 
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As described above, appropriate SPFs are essential to determine reliable estimates of 

predicted crash frequency for network screening (AASHTO, 2010; Hauer, 2015). SPFs are 

crash prediction models represented by mathematical equations that relate the number of crashes 

to site characteristics. In the context of traffic safety, typically, analysis sites are grouped into 

site subtypes based on predefined characteristics. SPFs for crash severity within these subtypes 

are available (AASHTO, 2010; Lu et al., 2013). However, in reality, it is unlikely for all the 

sites in a single site subtype (single cluster) to have a similar crash pattern as a function of pre-

defined explanatory characteristics. Hence, it is possible to have different clusters in terms of 

crash patterns within pre-defined site subtypes. To address this issue and estimate superior local 

SPFs, a clusterwise regression approach (Lau et al., 1999) was developed and implemented as 

part of the proposed BI framework. A mathematical program was formulated to estimate 

simultaneously parameters of SPFs and assign sites to appropriate cluster (SPF) based on crash 

patterns and associated explanatory characteristics. 

To facilitate annual reporting of a performance-based safety program, a time- series 

methodology was developed and implemented within the proposed framework to forecast 

statewide traffic safety performance measures and set targets. With actual crash data from a 

source database and a sound statistical approach, forecasts using time-series models are likely 

to lead to reasonable targets for the performance measures. These targets can be used to 

determine future statewide safety improvement programs and policies. From the perspective of 

state agencies, predicting the number of fatalities and serious injuries is significantly important 

to meet the requirements of MAP-21 (FHWA, 2013).  

Business Intelligence provides methods and mechanisms to process data and generate 

advanced analytics as well as interactive and intuitive visuals. The proposed BI framework 
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integrates data using Extract-Load-Transform process and creates a traffic safety data warehouse. 

A Business Intelligence approach is adopted to automate data integration and management and 

to connect analysis to the source data. The proposed approach for implementation involved an 

Oracle Data Integrator (ODI) (Dupupet et al., 2013), Oracle R Enterprise (McDermid & Taft, 

2014), and Oracle Business Intelligence Enterprise Edition (OBIEE) (Rittman, 2013). Each year 

when new data gets loaded into the source database, the data warehouse is updated automatically 

by means of an extract-load-transform (ELT) process for further analysis. Oracle R accesses the 

data for analytical modeling and OBIEE provides results with intuitive visual graphics and maps 

using BI dashboards. By using this framework, the analyst can perform customized analyses. 

Dashboards can be used to trigger special-purpose analyses and tasks based on input parameters. 

With minimal effort, practitioners can analyze and view results using an interactive web-based 

interface powered with drill downs. Figure 1.1 provides a conceptual illustration of the proposed 

framework. 

 

Figure 1.1 A Framework for Traffic Safety Analysis. 
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Specific aspects required to address the objectives of this research include: 

1) The development of a comprehensive database system that enables the use and 

development of theoretically sound methodologies for traffic safety analysis. The 

database is developed to take advantage of existing tools such as Safety Analyst, a state-

of-the-art software for Traffic Safety Management. The main tasks required to develop 

the database system include: i) identify the data sources, ii)  develop the systems and 

tools to integrate them, iii) develop the databases consistent with the Safety Analyst 

format, iv) use Safety Analyst for analysis, and v) develop systems for visualizing the 

results. The results from Network Screening analysis using Safety Analyst are used for 

quality control of the proposed concept in Figure 1.1. Safety Analyst represents a 

traditional approach which involves multiple individual steps and such components as 

customized data management and visualization tools a, making the process complicated 

and time consuming.  Figure 1.2 illustrates this traditional approach for traffic safety 

analysis. 

 

Figure 1.2 Traditional Approach for Traffic Safety Analysis. 
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2) Reimplement network screening algorithms from the Highway Safety Manual within the 

proposed BI framework to provide a single platform for data integration, management, 

analysis, and visualization. For illustration purposes, this reimplementation is performed 

using Oracle R Enterprise, within Oracle Business Intelligence Enterprise Edition. With 

this framework, as illustrated in Figure 1.3, network screening can be performed on a 

web-based interface with a data warehouse directly connected to the source. This 

proposed approach represents a paradigm shift where theoretically sounds methodologies 

are available to practitioners through a platform that addresses all existing barriers which 

have prevented their use. 

 

Figure 1.3 Business Intelligence Approach for Traffic Safety Analysis. 

 

3) Develop and implement, within the proposed BI framework, a methodology for corridor 

level network screening for potential safety improvements using an expected crash 

frequency as the performance measure. This is important for incorporating safety measures 

into corridor planning studies. Corridor-level network screening provides the capability 
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to compare the safety performance of extended corridors rather than comparing the safety 

performance of individual sites. A corridor may consist of multiple roadway segments, 

intersections, and/or ramps, which are aggregated together and analyzed as a single entity. 

In this study, two types of corridor-level network screening methods are considered: 1) 

Fixed Corridor screening, and 2) Corridor Search. 

4) Formulate a mathematical program in the context of clusterwise regression to estimate 

simultaneously parameters of SPFs and assign crash sites to appropriate clusters used for 

this estimation. Develop a solution algorithm to obtain appropriate cluster memberships of 

sites associated with SPF and its parameters. Multiple SPFs would maximize the probability 

of observing the available data to increase accuracy and reliability. In existing safety 

literature, the proposed clusterwise regression approach is first of its kind to estimate 

SPFs. Crash sites in the entire data are clustered to estimate SPFs by maximizing the log-

likelihood of a Negative Multinomial distribution function. The decision variables are the 

number of SPFs, the parameters of Negative Multinomial SPFs, and the cluster 

memberships.    

5) Develop and implement a methodology for forecasting traffic safety performance 

measures as required by MAP-21. This methodology could be used by transportation 

agencies to set and achieve realistic targets for performance- based traffic safety programs. 

By using the methodology, agencies can forecast and report targets easily every year. 

Deterministic and stochastic time series models were tested using four independent and 

univariate time series from the crash data collected by the Nevada Department of 

Transportation. Baseline forecasts from the time series models can further be used to 

estimate the reduction of fatalities and serious injuries to set realistic targets.  
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1.3 Organization of the Dissertation 

This dissertation is divided into six chapters and follows a manuscript format with this 

chapter as introduction. In Chapter 2, “Development of a Comprehensive Database System for 

Safety Analyst”, a comprehensive database system and tools to provide data to multiple traffic 

safety applications, was developed (Paz et al., 2015c). A number of data management tools were 

developed to extract, collect, transform, integrate, and load the data. The system includes 

consistency-checking capabilities to ensure the adequate insertion and update of data into the 

database. This system focused on data from roadways, ramps, intersections, and traffic 

characteristics for Safety Analyst. To test the proposed system and tools, data from Clark 

County, which is the largest county in Nevada and includes the cities of Las Vegas, Henderson, 

Boulder City, and North Las Vegas, was used. The database and Safety Analyst together helped 

to identify the sites with the potential for safety improvements. 

Chapter 3, “A Business Intelligence Framework for Traffic Safety Network Screening”, 

includes a new methodology for corridor level network screening as well as the implementation 

of existing algorithms to provide a single site analysis framework. The results obtained using 

proposed methodology were compared with the state-of-the-art for corridor screening. 

Similarly, results from the reimplemented algorithms were compared with those obtained using 

Safety Analyst (AASHTO, 2010).  

Chapter 4, “Estimation of safety performance functions using clusterwise regression”, 

proposes a mathematical program to assign c r a s h  sites to clusters and simultaneously seek 

sets of parameter values for the corresponding SPFs so as to maximize the probability of 

observing the available data. A simulated annealing coupled with maximum likelihood 

estimation was used to solve the mathematical program. Results were analyzed for two site 
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subtypes 1) roadway segments for urban multi-lane divided arterials, and 2) urban 4-leg 

signalized intersections. The proposed approach improved the predicted number of crashes with 

multiple SPFs within the same site subtype. In addition, network screening results using the 

proposed SPFs illustrate substantial differences compared to those obtained from predefined 

cluster of crash sites.  

In Chapter 5, “Forecasting Traffic Safety Performance Measures with Deterministic and 

Stochastic Time Series Models”, traffic safety performance measures were forecasted to 

facilitate the reduction of fatalities and serious injuries. Given the lack of exposure data (e.g., 

traffic counts), time series were used to conduct the forecasting. Deterministic and stochastic 

models were developed using four independent and univariate time series from the crash data 

collected by the Nevada Department of Transportation. Results indicated that the seasonal 

autoregressive integrated moving average (SARIMA) model provided the best forecast 

measures for the data. 

Chapter 6 summarizes the conclusions gained from this research, identifies significant 

contributions, and recommends potential future research directions. 
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CHAPTER 2 

DEVELOPMENT OF A COMPREHENSIVE DATABASE SYSTEM FOR 

SAFETY ANALYST 

2.1 Introduction 

 The NHTSA’s Highway Traffic Safety Grants for Fiscal Year (FY) 2013 were estimated 

to be $643 million (NHTSA, 2013). In spite of enormous resources spent on highway traffic 

safety, motor vehicle crashes are of critical concern in the United States. Based on statistical 

projections from NHTSA’s Fatality Analysis Reporting System (FARS), traffic fatalities 

increased from 32,367 in 2011 to 34,080 in 2012, a 5.3% increase. In fact, 2012 was the first 

year since 2005 to have a year-to-year increase in fatalities, which indicates that considerable 

work is needed to improve highway safety (NHTSA, 2012).  

 FHWA’s Highway Safety Improvement Program (HSIP) is a critical component of the 

safety provisions in Moving Ahead for Progress in the 21st Century Act (MAP–21, P.L. 112-141) 

(FHWA, 2013). As a part of HSIP, state Departments of Transportation (DOTs) developed a 

Strategic Highway Safety Plan (SHSP) to identify, analyze, and address traffic safety problems. 

State-of-the-art tools have been created to support the development of SHSP and generate better 

traffic solutions for existing and emerging safety problems. Some of these tools include the 

Interactive Highway Safety Design Model (IHSDM, 2010), the Highway Safety Manual (HSM), 

and the software tool, Safety Analyst. These tools can be used by DOTs to satisfy MAP-21’s 

performance-based federal program, which mandates that state DOTs to establish safety 
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performance targets and achieve them within two years (FHWA, 2013). This requires a program 

for highway safety management that should include: 

1) Identifying hazardous locations, 

2) Diagnosing identified hazardous locations and countermeasure selections, 

3) Estimating the cost of the countermeasures, and 

4) Estimating the benefits of the countermeasures. 

These new tools address many limitations of traditional safety analysis tools, including 

bias associated with volume, segment length, and regression-to-the-mean as well as incorrect 

model forms and lack of reliability measures (HSM, 2010; American Association of State 

Highway and Transportation Officials.; Montella, 2010; Alluri, 2010; Hauer, 1997; iTRANS, 

2003). In order to address these limitations, state-of-the-art tools, including Safety Analyst, use 

analytical methods that require comprehensive datasets in order to provide sufficient information 

and to capture intricate spatio-temporal characteristics and interactions in the traffic system.  

 In their FY 2013 budget estimate, NHTSA determined that data-driven, self-sustaining 

highway safety programs needed to be developed and implemented to reduce highway injuries 

and fatalities (NHTSA, 2013). The federal government has spent considerable resources to build 

accurate and timely safety datasets at the national and state levels (Alluri, 2008). Key safety data 

include information about crashes, roadways, traffic flow, driver history, citation/adjudication, 

and construction projects (HSM, 2010; Ogle, 2007). This data is required by a number of other 

safety programs, such as the Highway Rail Grade Crossing Program and the High Risk Rural 

Road Program. Currently, various divisions at many state DOTs collect and maintain datasets 
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based on their data needs; some of this data is shared across divisions. However, this approach 

may not be the best for a number of following reasons:  

a. Not all interested groups are aware of the availability of data at each division. 

b. There is no consistency in terms of how the information is stored and the data 

normalized.  

c. Typically, the datasets are developed without explicitly considering the needs of the 

various applications used by different divisions.  

d. New emerging tools, such as Safety Analyst, require data to be collected from multiple 

divisions; additionally, these tools need data that typically is not available.  

e. The training of traffic safety engineers and professionals on the use of new applications, 

such as Safety Analyst, requires the corresponding applications to be ready for use with 

all the necessary data available. 

f. Coordination with other statewide public safety agencies requires a comprehensive 

approach to integrate and enable access to the data as well as to provide maintenance 

capabilities. 

 A comprehensive approach using state-of-the-art tools is required to collect data and 

manage existing data needs, which are significant, as well as to develop better solutions. The 

literature indicates data collection and integration methods for transportation applications have 

been developed, including frameworks for geographic information systems (GIS) 

(Ziliaskopoulos & Waller, 2000; Khan et al, 2010; DIP, 2001; Dueker & Butler, 1998; Devogele, 

1998; Vonderohe, 1998; Pendyala, 2008), database/data-warehouse systems (O’Packi et al., 

2000; Ming & Lei 2010; Pack et al., 2008; Hall et al., 2005), and visualization tools (Gan et al., 

2012; Qin et al., 2011; Wu, Wang & Qian, 2007). However, most DOTs do not have access to a 
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comprehensive database system that enables them to take full advantage of existing tools, 

including Safety Analyst. With such a database system, agencies would be able to develop safety 

performance functions (SPFs) that are jurisdiction-specific to better estimate performance 

measures. Previous studies show that methodologies to develop such systems were relatively 

limited.  

 Many state DOTs are rich in data. However, it is a herculean task to identify the data 

sources, develop the systems to integrate them, and develop the databases. This study developed 

a database and visualization system for traffic safety engineering, designed to provide data to 

multiple transportation applications. Recently, the development focused on providing data and 

visualization capabilities for Safety Analyst. However, a recent nationwide survey revealed 

major deterrents in using Safety Analyst (Xiao Qin, 2011), including the unavailability of 

comprehensive data sources and tedious methods for data importing and processing. This study 

developed a database system tailored to Safety Analyst specifically for traffic safety analysis in 

Clark County, Nevada. However, all the tools developed to create the database system could be 

used to create similar databases for other locations and/or to expand existing databases.  

 Figure 2.1 illustrates the conceptual framework for this database and visualization 

system. Raw data was processed using data management tools to create a comprehensive, 

normalized, and optimized database. View tools were used to provide the data required by each 

application, in the corresponding format and level of resolution. Visualization tools were used to 

provide multiple graphical representations of the inputs and outputs for each application. Many 

analysis tools exist, including Safety Analyst that do not provide visualization capabilities. This 

was a significant limitation, considering the spatial nature of the problem. 
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2.2 Safety Analyst 

Safety Analyst provides a suite of analytical tools to identify and manage system-wide safety 

improvements (AASHTO, 2011). Safety Analyst uses an empirical Bayes (EB) method as an 

alternative to traditional safety analysis methods, such as frequency, rate, critical rate, or crash 

index. The EB approach provides a mechanism to address issues associated with bias, incorrect 

model form, and lack of a reliability measure that cannot be addressed using traditional methods 

(HSM, 2010; AASHTO, 2010; Montella, 2010; Alluri, 2010; Hauer, 1997; iTrans, 2003; Alluri, 

2008). Safety Analyst consists of four tools: administration, data management, analysis, and 

countermeasure implementation. The administration tool includes federal, agency, and system 

components (Wu, Wang, Qian, 2007). The federal component provides access to the default site 

subtype definitions, countermeasure management, and national default SPFs. The agency 

component provides access to various operations, including adding, changing, and removing data 

attributes, with the exception of mandatory data attributes. Further, this component enables the 

modification of national SPFs with agency-specific SPFs. The system component maintains local 

or remote databases, and combines the database with the federal and agency components. 

Local or remote databases can be imported using the data management tool (Wu, Wang, Qian, 

2007). Currently, Safety Analyst supports two basic mechanisms for data import, a file import 

and database-to-database mapping. For DOTs that maintain a complete data inventory in a 

database management system (DBMS) compliant with structured query language (SQL), the 

database-to-database mapping mechanism is the best alternative to load data into Safety Analyst. 

The view tools developed in this study provides this feature. For DOTs that do not maintain a 

database with all the required data for Safety Analyst, the data management tools developed in 

this study can be used to generate a DBMS with all the required data. 
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Figure 2.1 Conceptual Framework for the Comprehensive Database and Visualization System 

Developed in this Study. 

 

The file import is a less desirable mechanism because it does not provide all the 

capabilities of having the data in a DBMS. Safety Analyst supports data inventory files in 

extensive mark-up language (xml) and comma-separated value (csv) formats. However, the 

inventory files have to satisfy a particular format. It is unlikely that DOTs have readily available 

xml or csv datasets that satisfy the required format. Hence, developing a DBMS for Safety 

Analyst is recommended. 

The analysis tool, used to perform various analyses (Wu et al., 2007), has a set of four 

modules, including (HSM, 2010; Wu et al., 2007): 
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a. Network Screening Module: identifies and ranks sites using the EB method for potential safety 

improvements. 

b. Diagnosis and Countermeasure Selection Module: helps to diagnose safety problems at 

specific sites using answers provided by the user for a set of built-in questions. Based on the 

diagnosis, the user can select countermeasures to reduce crash frequency and severity at specific 

sites. 

c. Economic Appraisal and Priority Ranking Module: provides economic evaluation of a specific 

countermeasure for a specific site or several alternative countermeasures for multiple sites. 

Further, it provides priority ranking of sites and proposed improvement projects based on benefit 

and cost estimates. 

d. Implemented Countermeasure Module: provides before/after evaluation of implemented safety 

improvements. Data for construction projects and implemented countermeasures are required. 

This data can be imported using the countermeasure implementation tool. 

2.2.1 Data 

Critical data to perform traffic safety studies include crash, roadway, control, and traffic flow. A 

comprehensive plan for data collection was developed to obtain available data from various state 

agencies in Nevada, based on the Model Minimum Uniform Crash Criteria (MMUCC) and the 

Model Inventory of Roadway Elements (MIRE) (Alluri, & Ogle, 2011; Paz et al., 2015c). Based 

on these guidelines, approximately 150 data attributes were necessary for the development of a 

comprehensive safety database. Not all the data was required by Safety Analyst, however in this 

study, a data dictionary was developed to explicitly identify the mandatory data for Safety 

Analyst (HSM, 2010; Wu et al., 2007), as shown in Figure 2.2. 
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Figure 2.2 Mandatory Data Elements Required by Safety Analyst. 

 

Most of the data in Figure 2.2 is available from various DOT sources, including FHWA’s 

Highway Performance Monitoring System (HPMS); linear referencing systems (LRS) of road 

networks; travel demand models (TDM); and intersection, traffic volume, and crash datasets 

(Xiao Qin, 2011). For this study, data for roadway segments and ramps were obtained from the 

LRS, HPMS and TDMs. Crash data was obtained from the Nevada Accident and Citation 

Tracking System (NCATS). Annual average daily traffic (AADT) was collected from NDOT’s 

Traffic Records Information Access (TRINA). 

2.2.2 Road Network 

A road network is the centerline map of routes in a GIS LRS. Most of the state DOTs have two 

levels of road networks, a state-level dataset (SDS) and a county-level dataset (CDS). The SDS 

can be used for federal aid and national highway system roads in Safety Analyst, and the CDS 

can be used for county-level minor arterial roads as well as for major and minor collector roads. 

Typically, an SDS road network is similar to an HPMS routes layer. When both SDS and CDS 
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road networks are unavailable, the HPMS routes layer in LRS (HPMS, 2010) can be used with 

some modifications.  

 For this study, the CDS road network in LRS was used, which included an additional 

system, Route Master identification (RMID), which is a unique identifier for referencing the 

route in the road network. The RMID improves the ability to reference the other data sources to 

the road network. Road network data includes the segment ID, RMID, type of road, county, 

begin and end milepost of the segment, cardinal direction, and length of the segment. The 

cardinal direction reflects the direction in which the road begins and ends. 

2.2.3 HPMS data 

The HPMS is a FHWA-maintained national-level system that includes data on the extent, 

condition, performance, use, and operating characteristics of the state-owned and some non-

state-owned highways (SAUM, 2011). The HPMS data model by FHWA, which is in a GIS 

framework, provides the spatial relationships among data elements. FHWA mandates the state 

DOTs to submit complete, timely, and accurate HPMS data every year (SAUM, 2011). Hence, 

this data – integrated with other data sources – can be available to state DOTs for database 

development required for Safety Analyst.  

 For this study, Nevada HPMS data layers were used, including access control, facility 

type, functional classification, speed limit, through lanes, AADT, and urban code. 

2.2.4 Travel Demand Model 

Usually, urban metropolitan planning organizations (MPOs) have a GIS-based TDM for 

transportation planning and transportation improvement programs. The data from this model – 

such as number of lanes, speed limit, access control, functional classification, area code, travel 
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direction, one-way or two-way, and ramp configuration – can be used when HPMS data is not 

available. If a distinct county-level road network is not available, a TDM road network can be 

used for data on road segments, ramp segments, lengths, and mileposts.  

 For this study, the TDM of the Regional Transportation Commission of Southern Nevada 

(RTC-SN) was used to obtain data not available in the HPMS layers.  

2.2.5 Crash Data 

Every year, NHTSA spends much of its budget on their highway safety grants for the Crash Data 

Collection Program (NHTSA, 2013). The collection of crash data from states must be based on 

MMUCC guidelines. The crash data required by Safety Analyst is based on MMUCC guidelines 

as well. This study used located crashes (crashes with coordinates) and crash characteristics, for 

the years 2007 to 2011, from NCATS. 

2.2.6 AADT Data 

Safety Analyst requires AADT for all the segments to be used in a network-level analysis. 

Frequently, however, they are not available for all roadway classes. Typically, DOTs collect data 

to estimate AADTs for high functional classes of roads, such as freeways and state roads. 

Collecting similar data for arterials and local roads is an extensive and expensive process. This 

study used a simulation-based dynamic traffic assignment model, DynusT (DTA Primer, 2010; 

DynusT, 2008), to estimate AADT for locations with missing AADT for the latest year. These 

AADTs were projected for five years, using temporal factors developed from long-term counts. 

2.2.7 Intersection Data 

Typically, county agencies or metropolitan planning organizations (MPOs) have data for 

signalized intersections, including the location and type of control information. However, data 
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for stop-controlled intersections is not common, and needs to be collected. In this study, a 

methodology and a tool was developed to collect stop-control data efficiently. Signalized 

intersection data was obtained from the Freeway and Arterial System of Transportation (FAST), 

a division of RTC-SN. 

Table 2.1 shows the source files typically available in state DOTs and/or MPOs as well as 

data in those files that are required by Safety Analyst. With this information, agencies can start 

collecting these files to develop a Safety Analyst database. Agencies can choose either HPMS 

files having data for road networks and crashes for roads maintained by state DOTs or HPMS 

files with data for road networks, TDMs, crashes, and intersections for county-level roads. 

Table 2.1 Source Files and Their Data Elements to Build a Safety Database 

Road Network HPMS Files TDM Model Crash Data Intersection 

Segment ID Routes Travel Direction Accident ID Intersection 

ID 

Ramp ID Functional Classification Functional 

Classification 

Crash Location Intersection 

Location 

Segment Length Access Control Operation Way (1 

or 2 Way) 

Cash Date Type of 

Control 

Begin Milepost Speed Limit Speed Limit Collision Type Number of 

Legs 

End Milepost Through Lanes Number of Lanes Severity   

Route ID Lanes_Left County Relationship 

To Junction 

  

County Lanes_Right Area Code Direction of 

Involved 

Vehicle 

  

Increasing 

Milepost 

Direction 

AADT Ramp 

Configuration 

(sometimes 

available) 

Maneuvers by 

Involved 

Vehicle 

  

  Urban Ramp Type 

(sometimes 

available) 

    

  County Segment ID     

    Ramp ID     

    Segment Length     

 



23 

The road networks – along with HPMS files, including AADT and crash data – form an 

integrated database covering all state-owned roadways and ramp segments, at least. However, 

this study required data on county-level roads as well. Therefore, data from the CDS road 

network was integrated with data from HPMS layers, TDM, intersections, AADT, and crashes. 

During integration, some of the issues found among these datasets are as follows.   

a. A spatial shift/gap exists among GIS shape files of various datasets, such as HPMS, 

CDS road network, and TDM layers.  

b. No common ID exists among the HPMS, CDS road network, and TDM layers. 

c. Segmentation lengths differ in HPMS layers and the CDS road network. 

d. There is no unique RMID among the datasets. 

e. Some data are incorrectly represented, such as ramp configurations and the number of 

lanes. 

Certain issues in datasets are common because there is no consistency in data formatting 

and storage among divisions or departments. Furthermore, the collected data may or may not 

have been stored in the same geographical format, such as cardinal measurements, coordinate 

systems, and geometry. ArcGIS ModelBuilder (ArcGIS Geoprocessing, 2013) was used to 

develop the automated tools to solve these issues as discussed in the following section. 

2.3 Data Management Tools 

2.3.1 Data Collection Tools 

Even though multiple data sources exist that provide a vast amount of the required data for 

Safety Analyst, various data attributes were missing or incomplete, including ramp type, ramp 
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configuration, and the type of control at intersections. Most of the missing data were collected 

using Google Earth, and the missing information was observed and coded in Google Earth as 

well. A data collection tool was developed to extract data as well as create ArcGIS shape files 

with all the information. This capability facilitated the development and integration of the 

database.  

 Safety Analyst requires that all collected data be integrated using either 1) a route and 

milepost; 2) a route, county and milepost; 3) a route, section, and distance; or 4) a section and 

distance. This study used a route and milepost index to integrate all the data because some of the 

datasets had this information. Although various commercial methods and tools are available 

(Ziliaskopoulos et al, 2000; Khan et al., 2010; DIP, 2001; Dueker & Butler, 1998; Devogele et 

al., 1998; Vonderobe et al., 1998; Pendyala et al., 2008) to integrate the data, integration tools 

using ArcGIS ModelBuilder were developed in this study to gain total control of the process and 

provide greater automation. 

2.3.2 ArcGIS ModelBuilder Tool 

ModelBuilder (ArcGIS Geoprocessing, 2010) is an application existing inside ArcGIS by which 

models can be created, edited, and managed. A model is built with a sequence of processes and 

data chained together. Once built, a model can be saved as a tool and embedded in an ArcMap 

toolbar. The two primary uses of ModelBuilder are to execute a process sequence that was 

created and to create additional tools with new capabilities. These tools can be launched from the 

tool dialog box or from Python scripts. Using the ModelBuilder tool, the following operations 

can be performed: 

a. Change parameter values, such as buffer radius or tolerance limits, and re-run models; 
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b. Add more processes, such as components for a buffer or intersect, as well as data; 

c. Delete processes and intermediate data; and 

d. Visualize and explore the results in ArcMap.  

ModelBuilder tools were developed to overcome all the data issues encountered with HPMS, 

road networks, TDM, and AADT. The three primary tools used are:  

a. A mapping tool that maps road network segments spatially to data elements in HPMS, 

when there is geometry shift and no common field between them.  

b. A linear referencing tool that creates a milepost index for each crash with respect to 

roadway segment, ramp, or intersection mileposts.  

c. A dynamic segmentation tool that breaks/joins the segments at required locations.  

2.3.3 Interface for Data Attribute Mapping 

An interface for data attribute mapping was developed to populate the database, using data from 

existing sources. The interface established mapping for every attribute, and data source from 

user-file data attributes to corresponding database attributes in the database tables. This interface 

enables using existing data files without any modifications.  The interface uses a Microsoft Excel 

spreadsheet (.xlsx), which is a metadata file with four columns. The first and second columns 

include the database table name and the attributes name, respectively. These names are fixed, 

and do not need to be changed. The third and fourth columns include the user’s (agency) file 

name and attribute name, respectively.  

 Table 2.2 illustrates the metadata file. Only the user file name and user file attribute name 

have to be filled out by the user. Different DOTs store their data in various files, and common 
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unique IDs relate those files and attributes. For example, Nevada has roadway attributes in 

different files, such as CDS_Network, Las Vegas Median, HPMS_Access, and 

HPMS_SpeedLimit. Once a metadata file is filled in, the data-attribute mapping interface is used 

to insert and store data from the user file into the corresponding database tables and attributes. 

Table 2.2 Sample of the Metadata File for Data Mapping 

Database Table 

Name (Fixed) 

Database 

Attribute Name  

(Fixed) 

User File Name  

(to be filled by User) 

User File Attribute Name 

(to be filled by User) 

RoadwaySegment agencySegmentID CDS_Network ID1 

RoadwaySegment beginLocation CDS_Network Beg_Route_ 

RoadwaySegment endLocation CDS_Network End_Route_ 

RoadwaySegment routeName CDS_Network Route_MAST 

RoadwaySegment routeType CDS_Network Route 

RoadwaySegment county CDS_Network County_code 

RoadwaySegment length CDS_Network Datum_Seg2 

RoadwaySegment terrain HPMS_terrain Terrain 

RoadwaySegment roadwayClass CDS_Network F08_FType1 

RoadwaySegment medianType LasVegas_Median MedianType 

RoadwaySegment accessControl HPMS_Access Value_name 

RoadwaySegment medianWidth LasVegas_Median MedianWidth 

RoadwaySegment postedSpeed HPMS_SpeedLimit PostedSpeed 

 

2.3.4 Data Installation and Insertion 

Inputs to an existing database can be either new or an update of previously inserted data. A data 

instantiation and insertion tool was developed to input data into the database, taking into 

consideration the interdependencies of the data. Input files were streamed and parsed with a 

Simple application programming interface (API) for an XML parser, also known as SAX, is used 

to store the data in a matrix.  

 When a row is read in the matrix, a ‘select’ query is performed on the database to 

determine existence of the object. If the object exists, an update is performed: a java object is 
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instantiated and its fields are updated with the values in the input file. Then, the update method 

of this java object is processed to update the database. If there is no matching object, a new 

object is instantiated and inserted into an ‘EntityManager’ class. Once all files are parsed and all 

the objects instantiated, the data can be inserted into the database. The ‘EntityManager’ class 

handles the priorities of the tables automatically in order to satisfy interdependencies between 

tables. Inputting data without using ‘EntityManager’ might lead to either data insertion failure or 

database corruption due to violation of table interdependencies. For example, accident vehicle 

data is dependent on accident data, and a mechanism is required to account for this dependency. 

2.4 Database Schema 

The database schema provides the structure of a DBMS, which is described in a formal modeling 

language. Current database-modeling languages include the entity-relationship (ER) model and 

the unified modeling language (UML). The ER is a conceptual data model that views the real 

world as entities and relationships. The basic constructs in an ER model are the entities, 

attributes, and relationships that are in an ER diagram. The ER model focuses on the conceptual 

and logical design phase of the database. It can be used to develop SQL-compliant database 

systems, which are convenient for users unfamiliar with database operations (Primer, 2010). 

The UML is an object-oriented visual modeling language used to specify, visualize, 

analyze, and control the objects of a software system. It is used to understand, design, browse, 

configure, maintain, and control information about software systems (Primer, 2010). This study 

used the ER model for three important reasons. First, Safety Analyst only supports SQL-

compliant databases. Second, ER diagrams, revealing the design of the database, are easier to 

understand compared to UML diagrams. Third, most applications similar to Safety Analyst are 

likely to be compatible with an ER model.  
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The physical data model for the database was built using the ER model, which indicates 

how data should be represented and stored by a DBMS, such as Oracle, MySQL, SQLServer, or 

Derby (DynusT, 2008). In this study, the user had the option to choose either MySQL or Derby 

as a comprehensive database system. However, for the Safety Analyst View, only Derby was 

enabled because MySQL is not compatible with Safety Analyst. Both databases are open-source, 

SQL-compliant DBMS, and provide all the required capabilities of a reliable, flexible, and robust 

DBMS. SQL scripts were developed to generate database tables and the relationships among 

them in MySQL and Derby.  

 Once the physical data model for the database was created, the database was ready to be 

populated with data. Data insertion is a process that can happen once, periodically, or 

sporadically. The methodology to populate the database was designed to account for most 

potential scenarios that could arise. For example, various empty tables were designed and created 

for future data that may become available and/or desirable. 

2.4.1 View Tool for Safety Analyst 

Such analysis tools as Safety Analyst require data in a particular format. For example, Safety 

Analyst requires crash severity type in the form of ‘K’ for fatal, ‘A’ for severe injury, ‘P’ for 

property damage. However, it is unlikely that the data sources use the same formatting. Having 

the requirement to follow a particular formatting is one of the primary barriers for DOTs to use 

Safety Analyst (Xiao Qin, 2011). The database developed in this study stores crash severity type 

in the form of fatal, injury, or property damage.  

A view tool for Safety Analyst was developed to provide a database view consistent with 

the requirements of Safety Analyst. Table 2.3 illustrates a portion of an MS Excel sheet used to 
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establish mapping between the general database view and the Safety Analyst view. Database 

Table Name, Attribute Name, and Attribute Values are mapped between the two views. For 

example, in Table 2.3, the Database Table Name is ‘accident,’ the Attribute Name is ‘severity,’ 

and Attribute Values are ‘fatal injury,’ ‘severe injury,’ and ‘property damage only.’ The 

corresponding Safety Analyst values are Accident; accidentSeverity1; and K, A, or P.  

Table 2.3 Mapping between a General View and the Safety Analyst View 

Database Table 

Name 

Attribute 

Name 
Attribute Values 

Safety 

Analyst 

View  

Table 

Name 

Safety Analyst 

View  

Attribute /name 

Safety 

Analyst 

View  

Attribute 

Value 

Accident severity Fatal injury Accident accidentSeverity1 K 

Accident severity Severe injury Accident accidentSeverity1 A 

Accident severity Property damage 

only 

Accident accidentSeverity1 P 

RoadwaySegment routeType State Route Roadway

Segment 

routeType SR 

RoadwaySegment routeType Interstate Roadway

Segment 

routeType I 

RoadwaySegment routeType US Route Roadway

Segment 

routeType US 

RoadwaySegment roadwayClass Principal arterial -

other 

Roadway

Segment 

routeType 3 

RoadwaySegment roadwayClass Minor arterial Roadway

Segment 

roadwayClass 4 

RoadwaySegment roadwayClass Local Roadway

Segment 

roadwayClass 7 

RoadwaySegment roadwayClass Major Collector Roadway

Segment 

roadwayClass 5 

RoadwaySegment roadwayClass Principal arterial -

other freeway or 

expressway 

Roadway

Segment 

roadwayClass 2 

RoadwaySegment roadwayClass Principal arterial –

interstate 

Roadway

Segment 

roadwayClass 1 

RoadwaySegment roadwayClass Minor Collector Roadway

Segment 

roadwayClass 6 

RoadwaySegment roadwayClass Other Roadway

Segment 

roadwayClass 0 

RoadwaySegment roadwayClass Unknown Roadway

Segment 

roadwayClass 99 
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  The back-end of the view tool for Safety Analyst has a MS Excel parser that streams the 

data, provides mapping, and stores the data in a matrix. HashMaps are created, and a relationship 

is established between the database and the Safety Analyst view. 

2.5. Analysis and Results 

The comprehensive database as well as the database view of Safety Analyst for Clark County, 

Nevada, was developed with the proposed data management tools, and populated using the data 

sources described earlier. Using the data management tools, the database view was mapped, 

imported, and post-processed. Calibration factors for various site subtypes were 1) urban freeway 

segments with four and six lanes; 2) urban freeway segments in interchange areas with four and 

six lanes; 3) urban signalized four-leg and three-leg intersections; 4) urban stop-controlled with 

four-leg and three-leg intersections; and 5) arterial segments with two, four, and six lanes. These 

factors were obtained by calibrating the federal default SPFs, using Nevada data.  

Network screening analysis was performed using the analytical tool in Safety Analyst to 

determine sites with the most potential for safety improvements. Network screening analysis can 

be performed using multiple combinations of screening types, safety performance measures, 

severity, and screening attributes. Results can be reported using two types of reports, 1) 

conventional, with all the site results; and 2) a percentage type, specifying the percent (e.g., the 

top 5% sites). Three basic screening types are available that can report 1) the expected and 

excess crash frequencies, with peak searching on roadway segments using limits for the 

coefficient of variation (CV) (Hauer, 1997; Wu et al., 2007; ESRI ArcGIS); and 2) a sliding 

window on roadway segments, and (3) corridor screening (Hauer, 1997; Wu et al., 2007; ESRI 

ArcGIS). Other screening types analyze a high proportion of specific crash types, a sudden and 

steady increase in mean frequency, and corridor screening (Wu et al., 2007; ESRI ArcGIS). 
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Safety performance measures, expected and excess crash frequencies for different severities and 

various screening attributes can be computed (Hauer, 1997; Wu et al., 2007; ESRI ArcGIS). 

Using the Clark County database, various analyses using different network screening methods 

with default SPF (calibration factor =1) and calibrated SPF were conducted for: 

• Analysis of roadway and ramp segments and intersections,  

• Analysis of roadway segments based on functional classifications,  

• Analysis of signalized and stop-controlled intersections, and 

• Analysis of ramp segments. 

To illustrate the results, this paper reports two case studies that used excess crash 

frequency as a safety performance measure to see if crashes were reduced if a safety 

improvement was implemented (Wu et al., 2007). The first case study identified the top 5% sites, 

including roadway and ramp segments as well as signalized and stops controlled intersections, 

which have the potential for safety improvements. Two analyses, with default and calibrated 

SPFs, were performed. Excess crash frequency was calculated for fatal and all injury crashes, 

with peak searching on roadway segments having coefficient-of-variation (CV) limits for the 

entire network. The peak-searching screening type was used because it had CV-limit statistics 

and a minimum window length of a 0.1-mi segment. Hence, the exact section/window of the site 

that had the potential for safety improvement could be determined to deploy a countermeasure. 

Seven out of 10 sites were different in the top ranks.  

Table 2.4 shows the results of the first case study, including the top 10 sites (the first 10 

ranks) having the potential for safety improvements. These sites consisted of two site subtypes, 
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urban freeway four-lane segments in the interchange area (Site Subtype 158) and urban arterial 

multi-lane divided segments (Site Subtype 153). Site Subtype 158 had a lower calibration factor, 

0.17; implying that these roadways, on average, experienced fewer crashes than roadways used 

to develop federal SPFs of Safety Analyst. Conversely, Site Subtype 153 had a higher calibration 

factor, 4.27, implying that these roadways, on average, experienced higher crashes than 

roadways used to develop federal SPFs. Hence, yearly calibration of SPFs plays a significant role 

in screening sites that have a higher potential for safety improvements.   

Using default and calibrated SPFs, the second case study identified intersection sites with 

the potential for improvements in both fatal and all injuries. The excess crash frequency for fatal 

and all injury crashes was calculated. Figures 2.3(a) and 2.3(b) illustrate top 10 intersection sites 

(the first 10 ranks) having a potential for safety improvements. Two sites (circled in red) with 

Ranks 4 and 5 vary between analyses with default and calibrated SPFs. This difference is 

because the sites with ranks three and four have different site subtypes. Hence, different 

calibration factors were used.  

The top 10 sites consisted of two different site subtypes: urban four-leg signalized 

intersection (Site Subtype 253) and urban three-leg intersection (Site Subtype 254). Site Subtype 

253 had a slightly higher calibration factor, 1.08, experiencing higher crashes than the 

intersections used for developing federal SPFs. Site Subtype 254 had a lower calibration factor, 

0.64, implying that urban three-leg signalized intersections experienced less crashes than the 

intersections used for developing federal SPFs of such sites. 

In the results, the predicted crash frequency was much less when compared to the 

observed crash frequency due to the default SPF in the Safety Analyst. The predicted crash 
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frequency was one of the important measures for calculating the expected or excess crash 

frequency by the EB method. Because of the urban nature of the study area, higher levels of 

AADT (100,000s) worsened these results. 

Currently, Safety Analyst calibrates the default coefficients estimated based on national-

level data for various site subtypes, such as two-lane freeways, four-lane freeways, using agency 

AADT data. This issue can be solved in two of the following ways: 

a. Create agency-specified site subtypes with different AADT ranges in the 

administration tool, and recalibrate the coefficients; or 

b. Based on the data, develop separate count-regression models for site subtypes, and 

input the coefficients in the administration tool. 

In this study, many case studies were experimented to infer the Safety Analyst results as 

there are minimum guidelines about a screening type or performance measure to choose for 

specific analysis. From the inference of results, the following conclusions are obtained: 

1) Peak searching screening type was not a good parameter for segments less than 0.1 mi. It 

proportionated expected/excess crash frequencies for 0.1 mile when the length was less 

than 0.1 mi. In this case, a sliding window was a better choice because it aggregated and 

moved the window on contiguous segments for a calculation; further, it proportionated 

expected/excess crash frequencies for 0.3 mi, the minimum length used to calculate 

performance measure, when the length of site was less than the window length. 

2) In Safety Analyst, peak searching was better as it had the coefficient-of-variation limit, 

whereas sliding window did not. 
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Table 2.4 Results of Basic Network Screening with Peak Searching on Roadway Segments and CV tests from Safety Analyst for Fatal 

and All Injury Crashes on Roadway and Ramp Segments as well as Intersections, using Default and Calibrated SPFs 

Analyses 

Type 
Rank 

Site 

Subtype 
Route 

Location with Highest Potential for Safety Improvement 

Start 

Location 

End 

Location 

Average 

Observed Crashes 

* 

Predicted 

Crash 

Frequency * 

Excess Crash Frequency 

Excess 

Frequency * 

Variance 

** 

No. of 

Fatalities 

No. of 

Injuries 

D
ef

au
lt

 S
P

F
 

C
al

ib
ra

ti
o
n

 F
ac

to
r 

(C
F

) 
=

 1
.0

 

1 158 IR15 40.223 40.323 267.05 21.49 219.41 408.32 2.04 312.21 

2 153 SR589 3.311 3.411 154.14 4.63 139.86 149.66 1.51 211.41 

3 158 IR15 41.386 41.486 173.08 27.10 133.70 609.28 1.24 190.24 

4 158 IR15 35.112 35.768 142.14 23.27 107.04 451.76 0.99 152.32 

5 153 SR612 4.605 5.124 114.01 5.28 102.18 182.06 1.10 154.46 

6 153 SR593 0.889 1.574 103.06 9.51 90.25 544.53 0.97 136.42 

7 153 SR159 29.664 30.193 101.96 8.06 90.19 396.04 0.97 136.33 

8 153 SR612 5.124 5.633 98.84 2.63 86.57 53.97 0.93 130.86 

9 153 SR593 3.784 6.361 94.92 3.99 84.30 107.53 0.91 127.42 

10 153 
Las Vegas 

Blvd 
26.032 26.112 87.10 6.22 75.67 239.96 0.82 114.37 

C
al

ib
ra

te
d

 S
P

F
 

S
it

e 
S

u
b

ty
p

e 
1
5

8
 C

F
 =

 0
.1

7
 

S
it

e 
S

u
b

ty
p

e 
1
5

3
 C

F
 =

 4
.2

7
 

 

1 158 IR15 40.223 40.323 291.56 20.43 238.49 379.89 2.21 339.36 

2 158 IR15 41.386 41.486 189.06 25.76 147.70 558.06 1.37 210.18 

3 153 SR589 3.311 3.411 156.48 19.18 135.02 2165.74 1.46 204.09 

4 158 IR15 35.668 35.768 155.78 22.12 118.56 414.43 1.10 168.71 

5 153 SR612 5.324 5.424 100.37 10.91 87.08 707.86 0.94 131.63 

6 158 IR15 41.567 41.667 118.14 24.19 84.46 483.08 0.78 120.18 

7 153 
Decatur 

Blvd 
4.624 4.64 106.95 8.99 77.99 483.52 0.84 117.89 

8 158 IR15 41.667 41.767 105.53 22.24 74.20 409.34 0.69 105.58 

9 153 SR596 5.293 5.393 82.73 7.85 72.04 371.99 0.78 108.89 

10 153 
Maryland 

Pkwy 
9.794 9.894 82.69 11.22 69.51 745.94 0.75 105.07 
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Figure 2.3(a) Results of Basic Network Screening for Fatal and all Injury Crashes at 

Intersections, using Default SPF. 

 

Figure 2.3(b) Results of Basic Network Screening for Fatal and all Injury Crashes at 

Intersections, using Calibrated SPF. 

3) Peak searching was not a good parameter for longer segments. Peak searching provided 

one rank per site, with a window length of 0.1 mi; other windows with the second highest 

expected/excess crash frequencies will be provided in additional windows of interest. 
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Longer segments will have multiple additional windows of interest. However, the sliding 

window provided consecutive ranks for the same site with various windows. 

4) For sites with a higher number of crashes and a large variance, analysts can use either 

expected or excess crash frequencies. 

5) No particular screening type was preferred for the entire analysis. Analysts are 

recommended to evaluate a given site list using multiple combinations of network 

screening to find common sites from the output. When the same site is identified using 

several screening methods, this reinforces that the site deserves further investigation (Wu 

et al., 2007). 

2.6 Visualization Tool for Safety Analyst 

The output capabilities provided by Safety Analyst are limited to tables that report the results in 

HTML, PDF, RTF, and CSV formats. Analysts have to infer the results from these voluminous 

tables without having an image of the site. Hence, a visualization tool was developed (Song et 

al., 2007) to provide a better meaning to the output, with expanded capabilities for spatial, 

graphical, and editable reports. To visualize the results using the visualization tool, the user can 

choose between two alternative display methods: Google Maps and ArcGIS. The advantage of 

using Google Maps is its simplicity and availability; the advantage of ArcGIS is its modeling and 

computing capabilities.  

For the Google Map interface, the visualization tool has a web-based front-end; for the 

ArcGIS interface, the visualization tool is a standalone application based on ArcPy scripts. Both 

applications provide easy access to multiple tabs. The tabular results and a map with spatial 

locations are displayed in the first two tabs. In addition, the user can interact with the graphical 

display to perform such basic operations as zoom-in, zoom-out, and select sites. In the second 
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tab, the user can choose the bar chart for the safety performance measures, such as observed, 

predicted, and expected/excess crash frequencies for several sites.  

Interpreting the results by means of graphs is easier than by tables. The user can include 

site spatial locations and performance measure bar charts in the editable Safety Analyst report in 

the third tab. The tabular results of network screening provided in Table 4 are difficult to use 

without the visualization tool. However, Figures 2.3 (a) and (b) illustrate the spatial locations of 

intersections by using the developed visualization tool (Song et al., 2007), determined through 

network screening. 

2.7 Conclusions 

The benefits of developing and using a comprehensive database system for traffic safety studies 

are significant. This study developed a comprehensive database system that can provide data to 

multiple applications for traffic safety engineering and other potential needs. Furthermore, it 

provided the methodology and guidance to develop a database from the existing, readily 

available data sources at the state DOTs and/or MPOs. In addition, the tools developed to build 

the comprehensive database and view for Safety Analyst can be used by other agencies, as they 

use non-commercial software. This system allows the use of state-of-the-art traffic safety tools to 

support the development of federal requirements as well as develop better traffic safety solutions 

for existing and emerging problems. These tools offer significant savings in terms of time, 

money, and lives.  

In particular, the proposed database system has the capability to provide data to Safety 

Analyst, the state-of-the-art highway safety management software. Although Safety Analyst 

provides tremendous analysis capabilities, few agencies take advantage of these capabilities 
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because the software requires significant data needs, complex development of the required 

inputs, and lack of experience and knowledge in creating the inputs as well as using the software 

(Xiao Qin, 2011). The proposed database system, along with its data management and 

visualization tools, provides significant support to circumvent these barriers. This database 

system can be used to develop jurisdiction-specific SPFs for better estimation of performance 

measures.  

This study can be expanded to develop tools that create different site subtypes based on 

the data in the Safety Analyst view. SPFs can be developed for those site subtypes, and the 

coefficients can be inputted into the administration tool to obtain better predictions for crash 

frequency. Predictive methods in Part C of the Highway Safety Manual (Alluri, 2008) can be 

used for SPF development. In this case, the developers of Safety Analyst should expand the 

capabilities of an administration tool to accommodate the agency-specific multi-parameter SPFs 

and their coefficients.
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CHAPTER 3 

 A BUSINESS INTELLIGENCE FRAMEWORK FOR TRAFFIC SAFETY 

NETWORK SCREENING 

3.1 Introduction 

The significance of ensuring traffic safety is the focus of such federal legislation as the 

Transportation Equity Act for the 21st Century (TEA-21), the Safe Accountable Flexible and 

Efficient Transportation Equity Act - A Legacy for Users (SAFETEA-LU), and the Moving 

Ahead for Progress in the 21st Century (MAP-21). SAFETEA-LU and MAP-21 both require that 

states develop comprehensive Highway Safety Improvement Plans (HSIPs) (FHWA, 2013). One 

of the critical programs of HSIPs is the traffic safety management process, which involves 

annual reporting of the highway locations that exhibit the most severe traffic safety needs. By 

identifying the most hazardous roadway site locations, specific countermeasures can be 

implemented that would improve safety conditions. In a traffic safety management process, 

identifying locations with the potential for safety improvements is known as network screening, 

as described in Part B of the Highway Safety Manual (HSM) (AASHTO, 2010).   

 Despite the availability of sound methodologies as expected/excess crash frequency by an 

empirical Bayes (EB) method (recommended by the HSM), practitioners continue using 

theoretically unsound methodologies which rely only on observed crash frequency or crash rates 

for network screening. For HSIP reports submitted to the Federal Highway Administration in 

fiscal year 2014, only four states used theoretically sound methods for network screening as 

described in the HSM (FHWA, 2015). Barriers that prevent the use of theoretically sound 

methods include: 1) significant data needs and integration are required, 2) a special schema is 
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required to enable analysis using specialized software, 3) time-consuming and intensive 

processes are required, 4) relevant technical knowledge is lacking, 5) visualization capabilities 

are lacking, and 6) coordination across various data owners is required. 

 Alluri and Oogle (2012) documented the current safety-analysis practices related to 

engineering as used by various states; in addition, they described perspectives in adopting and 

implementing the methods provided in the HSM. They indicated that barriers faced by traffic safety 

engineers include requirements for comprehensive data sets, data integration, and management. 

Tarko et al. (2014) and Paz et al. (2015c) discussed the complexities of data integration and 

management for network-level traffic safety analysis, specifically for the traffic safety 

management process.  

 This paper proposes a framework to address the above listed barriers to enable practitioners 

to use theoretically sound methodologies for network screening. The framework was developed 

using a Business Intelligence (BI) approach, which provides methods and mechanisms to integrate 

and process data, generate advanced analytics, and visualize results. The proposed framework 

facilitates traffic safety engineering and enhances the outcomes of an HSIP. 

 In transportation engineering and traffic safety, several approaches have been developed. 

GIS methodologies developed by ESRI® have been widely used for data processing, analysis, 

reporting, and visualization (Pulugurtha et al., 2007; Wellner Qin, 2011; Aylo 2010). The Critical 

Analysis Reporting Environment (CARE), developed by the University of Alabama (CAPS, 

2009a), sorts, analyzes, and compares crash data using functions that allow statistical analyses with 

charts and graphical displays (Paz et al., 2014, Khanal, 2014). For comprehensive traffic safety 

management, Safety Analyst is a state-of-the-art software (AASHTOWare) that was 

developed using network screening methods from the HCM (AASHTO, 2011). Although Safety 
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Analyst provides significant capabilities, the software has several limitations. For example, data 

integration and processing capabilities are lacking, the data needs to be in a specific schema, and 

it has marginal visualization capabilities. Tjandra (2014) developed a BI system for traffic data 

integration by linking roadway, crash, and traffic flow data to improve traffic safety. This system 

provides descriptive performance indices for traffic safety.  

 As yet, no single framework exists that provides capabilities for 1) data process, integration 

and management, 2) advanced analysis, and 3) visualization. Key characteristics of the BI 

framework proposed in this paper include: 1) an extract-load-transform (ELT) process; 2) tools for 

integration of data from a wide variety of data sources; 3) algorithms for theoretically sound 

analysis, as recommended by the HSM; 4) a methodology for effective corridor-level network 

screening; and 4) visualization tools for network-wide site-specific and corridor-level analysis. 

These characteristics provide an effective platform for generating theoretically sound analysis and 

information for various types of decision makers. Furthermore, as new source data is provided to 

the proposed framework,  all analyses, reports, and visuals are updated. 

 Currently, for network screening for individual sites (roadway segments, ramps, and 

intersections), the HSM recommeds using expected/excess crash frequency by an EB method. 

Corridor-level network screening is important for decision makers because i t enables to rank 

corridors rather than sites so as to provide homogenous infrastructure to minimize changes within 

relatively short distances. Improvements are recommended for long sections of roadways that 

could include multiple sites with the potential for safety improvements. Few agencies have 

corridor-wide safety programs. Some program that are in place include Nevada’s Kietzke Lane 

Safety Management Plan; the Safe Corridor Programs of both New Jersey and Wisconsin; and 
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Integrated Corridor Management plans that develop safety plans/programs for cities and 

municipalities (Shimko, & Walbaum, 2010; Qin et al., 2013).  

 Corridor-level network screening is important for such programs to identify corridors that 

have safety needs. Several studies have used observed crash frequency, crash rates, or a crash 

severity index for corridor screening (AASHTO, 2011; Hamidi et al., 2010; Qin et al., 2013). Using 

observed crash frequencies result in a volume bias, while using crash rates result in a segment 

length bias; in addition, using observed crashes result in a regression-to-the-mean bias. For 

corridor screening, Hamidi et al. (2015) used crashes that occurred only on major roads at 

intersections. Ignoring interactions of major and minor road characteristics at intersections affects 

predicted crash frequency, leading to incorrect estimation of expected crash frequency. Other 

studies did not search corridors that had potential for safety improvements, but instead estimated 

the crash frequency on pre-aggregated sites. (AASHTO, 2011; Zhao et al., 2014). As an alternative 

for defining corridors for implementing safety improvements based on pre-aggregated sites or 

lenghts, determining them using a sliding window mechanism based on characteristics and crash 

data provides a superior approach. A sliding window mechanism addresses crash location errors 

by evaluating the same section of roadway multiple times, using overlapping windows. 

 The contributions of this research include a comprehensive framework for network 

screening, using concepts in data warehousing and Business Intelligence as well as a 

methodology for corridor-level network screening. Required data sources include those 

commonly used by state agencies.  

3.2 Methodology 

To illustrate the advantages of the proposed framework, network screening algorithms from the 

Highway Safety Manual were reimplemented and expanded using the Oracle® Business 
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Intelligence Enterprise Edition (OBIEE) (Rittman, 2013). Oracle Data Integrator (ODI) (Dupupet 

et al., 2013) was used to develop a safety data warehouse, which was accessed by OBIEE to 

facilitate the development of advanced analytics, dashboards, and maps. The connection to the 

database was created by the Repository Design Model (RPD), which contains physical models, 

business mapping models, and presentation models for use by OBIEE (Rittman, 2013). Oracle R 

Enterprise (McDermid & Taft, 2014) scripts were developed to implement network screening 

algorithms. These scripts were executed in the physical layer (Rittman, 2013) of the RPD.  

The output of the Oracle R Enterprise scripts was saved in datastores, which allowed 

other queries to access the results for network screening. These queries were used in the RPD to 

enable OBIEE to perform on-the-fly computation and retrieval of the network screening results 

in the dashboards. The JavaScript application program interface (API) (ArcGIS Web API, 2015) 

for Esri® maps was used in the dashboards along with analytics to display network screening 

results and associated site locations spatially. 

3.2.1 Data Warehouse Design with ODI 

Silos of source data from various sources can be integrated with ODI to create a safety data 

warehouse. Source data includes the road network, traffic volumes, and the Highway Performance 

Management System (HPMS) as well as crash data and their associated characteristics. The data 

warehouse was developed using an ELT process. ODI interfaces extract data from the source, and 

loads the information, using a Loading Knowledge Module (LKM), into the OBIEE target database 

(Rittman, 2013). In this study, the data was transformed into a star schema for use in OBIEE. 

Data across systems were integrated using a location reference system, 

County/Route/Milepost. In this study, crashes and their characteristics were mapped to the 
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segments, intersections, and ramps. Similarly, traffic stations were mapped to road segments in 

order to obtain the average annual daily traffic (AADT) on respective road segments. Physical 

characteristics of road segments – including the number of lanes, median type, median width, 

speed limit, operation-way, area type, and access control – were obtained from HPMS.  

Data from signalized intersections can be obtained from such sources as the Freeway and 

Arterial System of Transportation (FAST) (Xie & Hoeft, 2014) of the Regional Transportation 

Commission of Southern Nevada (RTC-SN). Data from stop-controlled intersections can be 

collected using Google Earth. ODI can be used to integrate the data from intersections with data 

from the road network as well as with crash data. Figure 3.1 illustrates an ELT process for crash-

related information from various tables of crash data to a target database table, SA_ACCIDENT. 

Similarly, three target database tables were created, SA_ROADWAYSEGMENT, 

SA_INTERSECTION, and SA_RAMP. 

 

Figure 3.1 ELT Process of Crash Information to SA_ACCIDENT Target Table. 
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Contiguous sites with similar physical characteristics needed to be aggregated in order to 

create homogeneous segments. Procedures were developed using Oracle Procedural 

Language/Structured Query Language (Pl/SQL), and were connected to a web-based interface for 

homogeneous segmentation. As a result, analysts and engineers could use a Choice List in the 

interface to choose parameters that can be used for homogeneous segmentation. These include 

such parameters as a district, county, or route; the number of through lanes in one direction or a 

combined direction; median type; median width; and the percentage of the AADT threshold. By 

using this interface, as shown in Figure 3.2, the segments can be aggregated, and the new site list 

created and stored in the target database for further analysis. 

 

Figure 3.2 Dashboard interface for post processing and calibration. 
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Once the site list is created, the sites with characteristics for area code, functional class, 

number of lanes, access control, and median type can be used to group sites into site subtypes. 

This operation easily can be performed using a single SQL statement. Sites with the same site 

subtypes are used to estimate predicted crash frequency. Predicted crash frequency is estimated 

using a calibration factor multiplied with the safety performance function (SPF), as documented 

in the HSM (AASHTO, 2010). National default values for safety performance functions can be 

obtained from the HSM for all site subtypes. Calibration factors can be calculated as the ratio of 

the sum of observed crash counts from the target database to the sum of the predicted crash counts 

from the safety performance function. 

All the procedures mentioned above were implemented in ODI, and tables were created to 

store results in the target database. 

3.2.2 Network Screening Using Oracle R in RPD 

Network screening is a systematic review process that identifies and ranks roadway sites for 

potential safety improvements. This process is critical because a detailed engineering study for all 

network sites is expensive. The purpose of network screening is to review the entire roadway 

network, or portions of the roadway network, and identify and prioritize sites with promise for 

safety improvements. These identified sites are recommended for further investigation and a 

detailed engineering study. 

 The three network screening algorithms used in this study were 1) Peak Search, 2) Sliding 

Window, and 3) Simple Ranking. The first two were used for roadway segments, and the third one 

was used for intersections and ramps; the second one was used for corridor-level network screening 

as well. The HSM and other literature (AASHTO, 2010; Paz et al., 2014) identified Peak Search 
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and Sliding Window as the two recommended algorithms for performing network screening along 

roadway segments. 

 To use the Peak Search algorithm, the roadway segment of interest is divided into windows 

of equivalent length that do not overlap; then, a performance measure of interest is calculated. A 

small window length of 0.1 mi is evaluated first, and is adjusted gradually for greater lengths. The 

coefficient of variation (CV) is calculated for each segment, which is the ratio of the standard 

deviation to the mean of the expected value. If the standard deviation is less than the mean of the 

expected or excess crash frequency (i.e., a small CV value), this indicates a high level of precision 

in the estimate. Thus, a smaller CV increases the user confidence level regarding the results, and 

vice versa (AASHTO, 2010).  

 In the Sliding Window algorithm, the user selects a pre-defined window length. The 

algorithm estimates the performance measure for the window, and then slides the window by 

incremental lengths to estimate the performance measures of the subsequent windows. All the 

windows are ranked with regard to the estimated performance measure. 

 In contrast to the Peak Search and Sliding Window methods, the Simple Ranking approach 

is used when considering roadway components, such as intersections or ramps, as a single entity. 

These components are ranked using the estimated performance measures. Details of the algorithms 

for all network-screening methods can be obtained from Part B of the HSM (AASHTO, 2010).  

 In this study, network-screening algorithms were developed using Oracle R scripts. OBIEE 

use Oracle R scripts to execute the network screening algorithms. These R scripts were saved to the 

database by using Oracle R Enterprise libraries, and can be executed with the ‘rqTableEval’ stored 

procedure (McDermid & Taft, 2014). An R script that has a final data frame to return will output a 

standard Oracle database table when executed.  
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 Two sets of R functions are saved in the Oracle database. One set of R scripts responsible 

for performing the network screening, getting results, and saving the results as a data frame to a 

datastore, which is a table accessible with the Oracle R Enterprise libraries that allows R variables 

to be saved to the database. The second set of scripts is responsible for loading the data frame 

(McDermid & Taft, 2014) from the datastore and returning the data frame. An Oracle SQL select 

statement can be used to execute these R scripts. By saving the SQL select statement as a view and 

loading the view into the physical layer of the RPD, OBIEE is able to execute network screening 

and load the results (Rittman, 2013).  

 The data required for network screening algorithms are accessed from the target database 

mentioned in Section 3.2.1. The view with the results is called a fact table and the target database 

tables are called dimension tables (Rittman, 2013). The star schema (Rittman, 2013) created in 

the physical layer of the RPD is illustrated in Figure 3.3. These layers are brought into the 

business layer and the presentation layer for further analytics. The business layer performed 

joins, which helps mapping site locations in Fact table as well as crash, roadway, ramp and 

intersection characteristics in their respective dimension tables (Rittman, 2013). 

3.2.3 Corridor Screening 

Corridor-level network screening provides the capability to compare the safety performance across 

extended corridors rather than comparing the safety performance of individual sites (AASHTO, 

2010). A corridor may consist of multiple such sites as roadway segments, intersections, and/or 

ramps, which are combined together to analyze as a single entity. 
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Figure 3.3 STAR Schema for the Peak Search Network Screening. 

 

In this study, two types of corridor-level network screening algorithms are proposed: 1) 

Fixed Corridor screening, and 2) Corridor Search. Fixed Corridor screening can be used for pre-

defined corridors. When a user specifies the predefined corridors, the expected crash frequency of 

these corridors is estimated by aggregating the expected crash frequencies of individual roadway 

elements. These predefined corridors are ranked from the highest to the lowest with regard to 

expected crash frequencies. This method is useful when engineers are evaluating known corridors 

in the network. Sites are assigned by the engineer/analyst to a specific corridor in a specific table 

at the data management level. If sites assigned to the corridor need to be modified or more corridors 

need to be added, the analyst is required to perform this operation at the data management level.   

Corridor Search reviews a road network in a systematic manner to identify the corridors, 

using a corridor length and an incremental length. The user selects a predefined length to estimate 



  

50 

the expected crash frequency of the corridor and also selects a predefined incremental length that 

slides the corridor to evaluate next corridor. For each corridor, the expected crash frequency is 

estimated by aggregating the expected crash frequencies of individual roadway elements, such as 

roadway segments, intersections, and/or ramps. Then, corridors in the network are ranked from 

highest to lowest with regard to expected crash frequencies. Moving the corridor by a small 

incremental length is used to compensate for sites being falsely selected that had randomly high 

crash counts. 

 The methodology for estimating the performance measure Expected Crash Frequency for 

corridors, considering total crashes, is provided in the following steps, based on the HCM 

(AASHTO, 2010). Notations and their descriptions used in the equations are: 

𝑃𝐹𝑦𝑖  Predicted crash frequency of site i in year y 

𝑆𝑃𝐹𝑦𝑖  Safety performance function of site i with data corresponding to year y 

α, β1 and β2 Estimated model parameters using safety performance function 

𝑐𝑦𝑖   Calibration factor for site i in year y  

𝐶𝑦𝑖  Yearly correction factor for year y relative to year 1 at site i 

𝑂𝑦𝑖  Number of observed crashes for year y at site i 

𝑤𝑖  Weights calculated for EB method 

𝑏𝑖 Over-dispersion parameter obtained from SPF regression for site i belonging to 

corresponding site subtype 

Li Length of site i 

EFi  Expected crash frequency using EB method of site i 

EFc  Expected crash frequency of the considered corridor 
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Step 1: Calculate the predicted crash frequency per mile for roadway segments and intersections 

and ramps in a corridor for each year using Equations 3.1 and 3.2, respectively. Usually, the data 

contains various site subtypes of roadway elements. Hence, appropriate safety performance 

function (SPF) model parameters, α and β, for associated site subtype needs to be used. A SPF 

for site subtypes estimated using local data is preferred over one available in the literature. SPFs 

estimated using data from other regions need to be calibrated using local information. A 

calibration factor multiplies the SPFs. 

𝑃𝐹𝑦𝑖 = 𝑆𝑃𝐹𝑦𝑖 = 𝑐𝑦𝑖 ∗ 𝑒𝛼 ∗ 𝐴𝐴𝐷𝑇𝑦𝑖
𝛽

                      (3.1) 

  

𝑃𝐹𝑦𝑖 = 𝑆𝑃𝐹𝑦𝑖 = 𝑐𝑦𝑖 ∗ 𝑒𝛼 ∗ 𝐴𝐴𝐷𝑇𝑦𝑖
𝛽1

∗ 𝐴𝐴𝐷𝑇𝑦𝑖
𝛽2

         (3.2) 

 

Step 2: Compute yearly correction factors for number of years considered in the data using 

Equation 3.3. 

      

𝐶𝑦𝑖 =
𝑃𝐹𝑦𝑖

𝑃𝐹1𝑖
              (3.3) 

 

Step 3: Compute weights, w, to be used in empirical-bayes method to provide weightage for 

observed and predicted crashes using Equation 3.4. 

 

𝑤𝑖 =
1

1+𝑏𝑖 ∑ 𝑃𝐹𝑦𝑖∗𝐿𝑖
𝑌
𝑦=1

              (3.4) 

 

Step 4: Calculate expected crash frequency for the first year of data for the site i using Equation 

3.5. The unit of expected crash frequency is crashes per mile per year. In the case of intersections 

and ramps, the length is ‘1’ and the units are crashes per year. 

 

𝐸𝐹1𝑖 =  𝑤𝑖𝑃𝐹𝑦𝑖 +
(1−𝑤𝑖) ∑ 𝑂𝑦𝑖

𝑌
𝑦=1

𝐿 ∑ 𝐶𝑦𝑖
𝑌
𝑦=1

            (3.5) 
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Step 5: Calculate expected crash frequency for the final year of data for site i using Equation 3.6. 

The unit of expected crash frequency is crashes per mile per year. As in Equation 3.4, in the case 

of intersections and ramps, the length is ‘1’ and the units are crashes per year. 

 

𝐸𝐹𝑌𝑖 = 𝐸𝐹1𝑖 ∗ 𝐶𝑌𝑖              (3.6) 
 

Step 6: Calculate expected crash frequency for the entire corridor using Equation 3.7. 
 

𝐸𝐹𝐶 = ∑ 𝐸𝐹𝑌𝑖
𝐼
𝑖=1                     (3.7) 

 

Note: Note: For corridor search using the sliding corridor mechanism, starting and ending sites in 

the corridor could be a fraction of a site. For these cases, the length of the site, L, is the length of 

a fraction of the site considered in the corridor. Similarly, for observed number of crashes, the 

number of crashes on the corresponding fraction of site should be used. 

Both Fixed Corridor and Corridor Search algorithms, including ELT process and star 

schemas, were implemented in the proposed BI framework. 

3.3 Results and Discussion 

3.3.1 Results of Data Management 

An interface was created using an OBIEE dashboard to execute the developed procedures for 

homogeneous segmentation of roadway segments. In Figure 3.2, as shown in Section 2.1, an 

input section for parameters used for homogeneous segment aggregation was shown, by which 

the user could enter aggregation data elements and threshold values for median width, posted 

speed, and AADT. Based on the parameters entered, the aggregation of roadway segments is 

performed. In addition, the user could perform calibration and crash distribution using the same 

post processing interface.  
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Minimum segment length for calibration and threshold inputs for crash distribution were 

provided in order to execute the post processing, using the link, Execute Post Processing, as 

shown earlier in Figure 3.2. In this study, homogeneous segment aggregation was performed 

using following parameters 1) number of through lanes, 2) median type, 3) 20% AADT 

threshold, 4) five ft. median width threshold, and 5) five mph posted speed limit threshold. 

Minimum segment length of 0.1 mi was used for calibration. Once the post processing was 

performed, the results were saved as database tables. Various post processed tables were created, 

including 1) homogeneously segmented datasets for roadway segments, 2) intersection and ramp 

dataset tables with associated site subtypes, 3) tables with calibrated factors for site subtypes, and 

4) tables with crash distribution values for all crash types. Later, these tables were accessed by R 

scripts to perform network screening. 

3.3.2 Results of Network Screening for Peak Search and Sliding Window 

A web interface was designed and implemented to run network screening on the fly, using 

OBIEE Presentation Services (Rittman, 2013). This included a dashboard prompt for parameter 

inputs, analytics for the presentation of performance measures and other related information as 

well as filters for specific values to activate dashboard prompts.  

A dashboard with the dashboard prompt was created using the presentation variables for 

input parameters, as shown in Figure 3.4. As a first step, a user has to select the network 

screening algorithm. Then, a section would be expanded with the dashboard prompt that has 

radio buttons to input crash severity variables (CSV), screening performance measures (SPM), 

type of screening (Type), CV threshold, and the limiting performance measure (XY threshold) for 

flagging sites. With this user input, the analyst can screen the network for various crash 

(collision) types or can select particular days of week or months. In addition, the name of the 
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analysis can be provided, which enables multi-user analyses. With this functionality, various 

users can perform analyses and display results on the dashboard, based on the analysis name. 

Once the input parameters are entered, user has to click ‘Apply’ to set a platform for the type of 

the analysis. The ‘Run Network Screening’ link enables running the analysis. The ‘View 

Network Screening Results’ link provides a view of the results.  

 

Figure 3.4 Dashboard Illustrating the User Input Interface for Network Screening. 

 

Analytics were created using columns from two tables, Fact-Peak Search and Dim-

Roadway Segment. The columns used in this study to present the results were Route Name, 

Agency ID, Site ID, Window Begin, Window End, Expected Crash Frequency, Excess Crash 
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Frequency, and Variance. Filters were created to filter ranks, and the name of the analysis. The 

dashboard was created using the various analysis objects, including tables, graphs, and maps.  

Users have an option of selecting an analysis name with a drop-down menu as well as ranks, 

using the analysis prompt in the analysis section. An Esri map was created in the dashboard to 

present the spatial location of roadway segments, which are color-coded based on their ranks. 

Selecting the ranks in the analysis would filter the segments in the map. Figure 3.5 shows a 

snapshot of a Peak Search analysis using data from Nevada.  

Users can drill down further on the segment to diagnose a high-crash location for detailed 

characteristics of crashes and roadway segments. These characteristics provide the crash pattern 

in the site location, such as a high number of night-time rear-end crashes. In addition, the user can 

turn on a Google Earth satellite image for further site information. This information may provide 

insights to the user to determine countermeasures that could mitigate crashes.  

A snapshot of a drill-down analysis is shown in Figure 3.6. The figure shows a 

description of crash severity and crash (collision) types for a top-ranked roadway segment from a 

screening analysis. Distributions for light conditions, crash time of day, day of week, number of 

vehicles, vehicle types involved, and weather condition can be created and displayed in the same 

drill-down analysis. These distributions provide a clear picture in order to select the type of 

countermeasure to mitigate future crashes. The user can export the analysis to a portable 

document format, Microsoft Excel, or PowerPoint by using the export or print tools inherent in 

OBIEE. This information can be disseminated to decision makers by means of email. 
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Figure 3.5 Dashboard Illustrating Results and Visualization of Peak Search Network Screening. 

 

Figure 3.6 Dashboard Illustrating Drill Down Results of a Roadway Segment Results. 
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Similar to Peak Search, the Sliding Window dashboard was designed and implemented to 

run analyses and display results; the only difference is the input parameters. The results of the 

analysis are stored in the View, as discussed in Section 3.2.2. Analytics created using the table, 

Sliding Window View, display the results for expected and excess crash frequencies in the 

dashboard, using tables and maps. The drill-down analysis was created to diagnose 

characteristics for crashes, roadways, and traffic at high-crash locations. 

3.3.3 Results from Corridor Screening 

Both the Fixed Corridor and Corridor Search algorithms were implemented for network-wide 

corridor screening. Dashboards were prepared using the same concept to screen or search the 

corridors. 

3.3.4 Results from Fixed Corridor Screening 

For Fixed Corridor screening, corridors were predefined in the roadway segment dataset. For 

illustration purposes, approximately five miles of corridors were predefined and analyzed. An Esri 

map was created in the dashboard to display the spatial locations of fixed corridor results. Based 

on route, begin and end mile of predefined corridors, the geometry of segments within a corridor 

is displayed in the ESRI map. The results of top 10 fixed corridors that are displayed on the 

dashboard are shown Figure 3.7. Results include the corridor ID, sites in the corridor, route, begin 

mile, end mile, the expected crash frequency, and the ranks of the corridor. In the results, the 

column ‘Sites in the Corridor’ includes sites that contain roadway segments, intersections and 

ramps in the corridor. Ranks of the fixed corridors are based on the expected crash frequency of 

the corridor. 

 The results obtained in this study were compared with the results using AASHTOWare 

Safety Analyst. The current literature for fixed-corridor screening uses crash frequency and rate 
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methods, which also are used by this software. The literature states that when considering extended 

corridors for analyses, there is less variability or randomness in the crash data. Hence, frequency 

and rate methods provide accurate corridors for safety improvements. Fixed Corridor screening 

was analyzed using Safety Analyst for the same corridors used in this study.  

Table 3.1 shows the top 15 ranked corridors obtained in this study, using the EB adjusted 

expected crash frequency, and the corresponding corridor ranks using the observed crash 

frequency and crash rate methods from Safety Analyst. The ranks obtained using all the three 

methods were different due to the use of safety performance functions and the advantages of EB-

adjusted expected crash frequency that were incorporated in this approach.  

Table 3.1 Comparison of Ranks of Top 15 Fixed Corridors using EB Expected Crash Frequency, 

Observed Crash Frequency and Crash Rate Methods 

Corridor 

Route 

Corridor 

Begin Mile 

Corridor End 

Mile 

Rank - EB  Expected 

Crash Frequency 

Rank - Observed 

Crash Frequency 

Rank - 

Crash Rate 

122385 7.715 12.73 1 14 4 

189603 25.402 30.259 2 21 24 

111773 5.049 10.04 3 10 13 

110219 5.399 10.414 4 12 11 

122331 0.000 5.399 5 19 18 

111773 10.04 15.657 6 9 7 

111773 0.000 5.049 7 16 22 

110219 10.414 15.56 8 11 11 

134712 5.045 7.621 9 8 14 

110608 9.98 14.698 10 20 23 

128 0.000 3.784 11 2 19 

137611 5.067 7.924 12 4 8 

129234 5.324 10.34 13 17 9 

119961 0.472 5.569 14 15 3 

113550 5.016 8.416 15 7 15 



59 

 

Figure 3.7 Dashboard Illustrating Top 10 Fixed Corridor Results.
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3.3.5 Results from Corridor Search 

For Corridor Search, a 5-mi corridor length and 0.1-mi increment lengths to move the corridors 

were provided as input, along with other input parameters discussed in Section 3.3.2. The results 

were stored in the respective View tables, and analytics were presented using a dashboard. The 

results of corridor search are presented in table and map format. Similar to the peak searching 

method, drill-down analysis can be performed on corridors to diagnose the crash patterns on the 

corridor. Unlike screening by using peak searching, sliding window, and fixed corridor algorithms, 

the geometry creations for Esri maps when using corridor search algorithm required Dynamic 

Segmentation (Cadkin, 2002) A PL/SQL script was developed to segment the geometry 

dynamically based on the results of corridor search. The script joined sections of roadway 

segments, based on routes. From the results of corridor search, corridors geometry were created 

based on information regarding the route as well as the begin mile and end mile of corridors. For 

purposes of illustration, results for corridor search screening on a dashboard are shown in Figure 

3.8. 

Similar to fixed corridor results, the results of the corridor search were compared to 

results computed using observed crash frequency and crash rate methods. To the best of the 

authors’ knowledge, the current literature does not provide methods for corridor search; in 

addition, Safety Analyst does not have capability to perform corridor search as part of network 

screening. To be able to access the results, observed crash frequency and rates were computed 

for the same corridors used in this study. Table 3.2 shows the top 15 ranked corridors obtained in 

this study for the proposed EB-adjusted expected crash frequency and the corresponding corridor 

ranks, using the observed crash frequency and crash rate methods. As before, the ranks obtained 
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using all the three methods were different due to the use of safety performance functions and the 

advantages of EB-adjusted expected crash frequency.  

Table 3.2 Comparison of Ranks of Top 15 Corridor Search using EB Expected Crash Frequency, 

Observed Crash Frequency and Crash Rate Methods 

Corridor 

Route 

Corridor 

Begin Mile 

Corridor 

End Mile 

Rank - EB  Expected 

Crash Frequency 

Rank - Observed 

Crash Frequency 

Rank - 

Crash Rate 

111773 3.339 8.339 1 9 18 

111773 2.339 7.339 2 10 19 

111773 6.339 11.339 3 14 13 

111773 5.339 10.339 4 17 12 

111773 7.339 12.339 5 18 17 

111773 8.339 13.339 6 19 16 

134712 3.525 7.621 7 4 8 

110219 4.322 8.974 8 11 23 

111773 9.339 14.339 9 19 20 

111773 1.339 6.339 10 13 21 

134712 2.525 7.525 11 8 11 

137611 3.000 7.924 12 5 4 

110219 9.213 13.364 13 12 3 

110608 8.976 13.016 14 20 9 

122385 7.715 11.627 15 3 6 

3.4 Conclusions 

This research aimed to develop a framework to enable practitioners to use theoretically 

sound methodologies for network screening for traffic safety analysis. From the perspective of 

traffic safety engineers, network screening is of significant importance to meet the requirements 

of a HSIP. Traditionally, separate tools are used 1) to integrate, process, and manage the data; 2) 

for modeling analysis; and 3) to visualize the results. This traditional approach may result in data 

replication, and it requires substantial technical knowledge as well as being time consuming. 

Hence, analysts choose easy-to-implement legacy methodologies, which may lead to identifying 

incorrectly those sites with safety needs, thus resulting in inefficient roadway-safety 

management.
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Figure 3.8 Dashboard Illustrating Corridor Search Results.
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In this research, a BI framework is proposed to address barriers associated with data 

integration, management, and visualization for the implementation of theoretically sound 

methodologies similar to those in the HSM. The outcome is a single framework that accesses the 

data from the source, integrates and manages the data, processes analytical models, and provides 

the results by means of a web-based interface. To illustrate the advantages of the proposed 

framework, network screening algorithms from the HSM were implemented and expanded. Results 

were presented by using dashboards that included maps, filters, and drill downs. Results of network 

screening produced by this framework were verified by using Safety Analyst and from outcomes 

by Paz et al. (2015c).  

Corridor-level Network Screening was implemented using Fixed Corridor and Corridor Search 

algorithms. Expected crash frequencies were used instead of observed crash frequencies or rates 

in order to address regression-to-the-mean bias for selecting corridors with the potential for safety 

improvements. Top-ranked corridors obtained using the proposed methodology for corridor-level 

network screening were compared with ranked corridors using rate and frequency methods. The 

order of ranks of the corridors are completely different as a consequence of using a theoretically 

sound approach. The advantages of using the proposed framework include the following benefits. 

1) It has the capability to perform corridor-level network screening, using a theoretically 

sound approach. 

2) It provides data integration, analysis, and visualization.  

3) When new data is loaded into the source, it is automatically loaded into the warehouse, 

using an ELT process.  

4) It has better visualization capabilities than existing methods (Tarko et al., 2014; AASHTO, 

2014; Paz et al., 2014).  
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5) Development cost and time are minimized. 

6) Required training and maintenance are minimized.  

7) It uses a web-based approach for development and use. 

Future work includes automation of dynamic geometry generation for Esri maps for 

corridor-level network screening. The other three steps of a roadway safety management process 

also need to be incorporated, which are diagnosis and countermeasure selection, economic 

analysis and priority ranking, and countermeasure evaluation. Desirable additional capabilities 

within the proposed framework include methods and tools to 1) estimate SPFs using local data; 

2) analyze for diagnosis, countermeasure selection, economic analysis and priority ranking, and 

countermeasure evaluation to complete safety management process; and 3) perform regional-

level forecasting of crash trends. The proposed framework relies on the availability of SPFs. In 

addition to the outcomes from a standard safety management process, decision makers are 

required to provide system-wide forecasts and associated targets for long-term planning. 
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CHAPTER 4 

ESTIMATION OF SAFETY PERFORMANCE FUNCTIONS USING 

CLUSTERWISE REGRESSION 

4.1 Introduction 

Network screening for sites with the potential for safety improvements is a critical first step in a 

roadway safety management (RSM) process (Hauer et al., 2002; Montella, 2010; AASHTO, 

2010). Network screening could be performed either using 1) traditional methods, such as crash 

frequencies, rates, and proportions; 2) the state-of-the-art empirical Bayes (EB) method; or 3) the 

continuous risk profiling (CRP) method. Traditional methods have limitations, including bias 

associated with traffic volume, segment length, and regression-to-the-mean (Montella, 2010; 

AASHTO, 2010).  

In the EB method, first, a safety performance function (SPF) is used to predict the 

number of crashes for site types with corresponding traffic volumes and other similar site 

characteristics. The predicted crash estimates then are combined with the observed crashes to 

obtain a better estimate of the expected number of crashes. SPFs are crash prediction models that 

provide estimates of the number of crashes and the associated severity as a function of site 

characteristics. The EB method addresses the limitations of traditional methods by combining 

estimates from SPFs, including various site characteristics, and observed crashes. A comparative 

study by Montella (2010) recommends the EB method as the best for network screening among 

other existing alternatives.  

The CRP method uses a weighted moving average technique (Karlaftis & Tarko, 1998; 

Depairo et al., 2008) to continuously plot the collision risk profile. The predicted crash 
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frequency, based on the annual average daily traffic (AADT) for the segment, is obtained from 

the corresponding SPFs. The SPF value then is transferred to the CRP profile on the same plot. 

The advantage of the CRP method is that the size of the site is not influenced by the endpoints of 

the segments. However, this method is not well tested and accepted by researchers.  

Appropriate SPFs are essential to determine reliable estimates and avoid bias. In addition, 

SPFs play a key role in economic analysis as well as the priority-ranking as part of the RSM 

process (AASHTO, 2010). It is intuitive that a single SPF cannot be used for the entire region or 

jurisdiction or for all crash types and severities. Similarly, developing SPFs for each possible 

combination of crash severity, crash type, facility type, and range of explanatory characteristics 

would require large amounts of data to obtain statistical significant/reliability. It is impractical to 

take into consideration potential explanatory characteristics because some of them could be 

expensive to collect, unobservable, or difficult to quantify.  

The existing literature classifies sites into several predefined groups as well as site 

subtypes with measurable and available homogeneous characteristics, such as area type, number 

of lanes, access control, and median type (e.g., rural two-lane, or urban principal arterial 4-lanes 

divided.) (AASHTO, 2010). Hence, SPFs for each crash severity and site subtypes are estimated. 

The assumption is that sites within each subtype experience similar crash patterns as a function 

of pre-specified explanatory characteristics. That is, the observed pattern of the dependent 

variable, observed crashes, is not considered explicitly to create site subtypes. For the 

development of the SPFs, all data points are clustered only as a function of the associated site 

characteristics.  

The consequence could be SPFs with parameters estimated using very different crash 

patterns. That is, a single function is estimated to represent various distinct trends that could be 
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captured more accurately by using multiple functions. There could be a number of scenarios; for 

example, crashes trends for low-volume roads may be different than those for high-volume 

roads. Similarly, crash trends for low-volume high-speed-limit roads could be different than 

those for high-volume low-speed-limit roads. Hence, there is potential to create clusters of sites 

within each predefined site subtype, based on the observed crash trends so as to develop superior 

SPFs compared to those developed using all data together as a single site subtype. This may lead 

to an optimal number of SPFs, thus further classifying site subtypes into various sub-groups 

(clusters) to provide better crash estimates that minimize the overall estimation error.  

With advances in data warehousing technology, multiple years of crash data along with 

associated traffic and roadway characteristics are readily available. The yearly crash and AADT 

data along with other roadway characteristics constitute panel count data. Karlaftis and Tarko 

(1998) used a clustering technique on panel crash datasets to account for heterogeneity. Clusters 

were developed to identify the homogeneous data, and then separate Negative Binomial models 

were applied to each cluster. Separate models of each cluster provided better results than a joint 

model. Data was segmented for each of the clusters-based analyses conducted by the authors. 

However, this technique may not guarantee that each cluster consists of homogeneous sites in 

terms of crash trends. Many previous studies used clustering analysis to segment the crash data 

into various clusters so that it could reveal hidden variables that influence crash severity (Depaire 

et al., 2008; Mohamed et al., 2013; Sasidharan et al., 2015). These studies used latent-class 

cluster analysis to identify clusters, and then used various types of logit models for modeling 

crash severity outcomes. 

A few studies have estimated the frequency of total crashes using count regression 

models. The proportion of observed crashes was used to estimate the severity of the crashes, 
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crash types, light conditions, or vehicles involved in crashes (Geedipally &Lord, 2010; Milton et 

al., 2008). Wang (2011) used two-stage regression models, first to estimate the crash frequency 

and then to estimate the crash severity. The advantage of this approach is that traffic and road 

characteristics data first are used to identify crash frequency based on a full Bayesian approach. 

Then, more detailed data for individual crashes are used to find the proportion of crashes at 

various severity levels based on a mixed-logit model. It is clear that clustering was performed for 

SPFs using either 1) clustering analysis or 2) regression analysis, or 3) stage-wise models, first to 

perform clustering; then, regression models of crash frequencies were estimated for each cluster.  

Most often, segmentation of crash data and classification of SPFs are based on expert 

knowledge, modeling needs, or the desire to study a specific problem (AASHTO, 2010, Depaire, 

2008; Srinivasan, 2013). The selection of a group of sites affects the estimation and reliability of 

an SPF (Hauer, 2015). Clusterwise regression analysis to simultaneously perform clustering and 

the generation of the corresponding SPFs so as to minimize the estimation error is lacking in 

existing traffic-safety literature. Clusterwise regression, introduced by Spath (1979) and 

extended by Lau et al. (1999), has been used in modeling pavement performance, business, and 

environment performance (Luo & Chou, 2006; Lu et al., 2014; Poggi & Portier, 2011). This 

study proposes clusterwise regression to assign sites to clusters and simultaneously seek sets of 

parameter values for corresponding SPFs so as to maximize the probability of observing the 

available data. Site membership to clusters and regression parameters are estimated 

simultaneously to improve the predictive capability of the SPFs. A mathematical programming 

model is described in detail in Section 4.3 to describe the proposed approach. 
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4.2 Background of Count Regression Models 

Various count data models are available for SPF development and estimation. The most common 

models are either Poisson or Negative Binomial (NB). If the appropriate data count model is not 

considered, the statistical validity of the analysis is compromised (Lord & Mannering, 2011). 

Recent literature has described other models, including Poisson-lognormal, Zero-inflated, 

Conway-Maxwell-Poisson, Negative Multinomial and Random Parameters (Lord & Mannering, 

2011).  

Poisson regression models are estimated by specifying the expected number of crashes 

per time period as a function of explanatory variables. The Poisson model assumes an equal 

mean and the variance of the crash counts, which often is not correct. In such cases where 

variance exceeds the mean, referred to as overdispersion, NB models are expected to provide 

better parameter estimates. The NB model assumes that the expected number of crashes per 

period follows a gamma probability distribution, and an associated error term is gamma-

distributed. In Poisson-lognormal models, the error term is assumed as lognormal. Poisson-

lognormal models often are influenced by small sample sizes, and do not have a closed form 

solution (Miaou et al., 2003). Zero-inflated Poisson or NB models are used when the data is 

characterized by a substantial number of zeros. Segments having zero numbers of observed 

crashes are assumed to have long-term mean equal to zero, which is not correct; that is, there 

may be a crash in the process generating crash data over the long term (Lord & Mannering, 

2011). 

Conway-Maxwell-Poisson model was proposed to handle over- and under dispersion 

(mean exceeds variance) characteristics of the crash data. A comparative study by Lord et al. 

(2008) found that the results obtained by using NB and Conway-Maxwell-Poisson models were 
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similar. Although Conway-Maxwell-Poisson models can handle under-dispersion data, the 

results are influenced by low sample means and small sample bias (Lord & Mannering, 2011). In 

fixed-parameter models, parameter estimates are fixed across observations. If some parameters 

vary across observations, then a random parameter model can be used to estimate parameters that 

vary across observations, based on a prespecified distribution. These models provide the better 

statistical fit than above mentioned models; however, a more complex model estimation is 

required. A few previous studies have illustrated that this type of model may not improve 

predictive capability (Lord & Mannering, 2011; Shugan, 2006; Washington et al., 2010).  

When data is associated with multiple time periods, the regression models mentioned 

above cannot be used. For example, crash and AADT data available for five years are aggregated 

over time. The SPFs developed using aggregated data could underestimate the overdispersion 

parameter (Kweon & Lim, 2012). With the use of Negative Multinomial (NM) model, yearly 

crash data and AADT data can be used as multiple time period data (panel data). This prevents 

the loss of information by not smoothing the AADT over a certain time period (Hauer, 2015). 

Ulfarsson et al (2003) compared NM models with NB models for predictive modeling and 

reported that NM models converge with significant higher log-likelihood, provides better fit in 

terms of log-likelihood ratio and outperforms NB models. In terms of overdispersion, NB models 

provide better behavior than NM models. The reason could be some of the overdispersion may 

be captured by the NM’s model’s temporal seriel correlation.  

For further details and applications about these models in SPF development, readers are 

referred to the study by Lord and Mannering (2010). Considering the multi-year data being used 

in this research, the Negative Multinomial model specification is proposed for the estimation of 

SPFs.  
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Ulfarsson et al, and Hauer (Ulfarsson & Shankar, 2003; Hauer, 2004; Hauer, 2015) 

explained in detail the theory about NM models, and suggested a log-likelihood distribution 

function, as shown in Equation 4.1 (Hauer, 2015). Consider a panel data with i sites and m time 

periods with Poisson distributed observed crash counts N. Assuming the distribution as Gamma, 

extension of the NB can be applied to panel data, which is the NM distribution. The contribution 

of site i to the log-likelihood is: 

ln[𝐿𝑖
∗(𝛼, 𝛽1, … , 𝑏)] = 𝑏𝑙𝑖 ln(𝑏𝑙𝑖) + ∑ 𝑁𝑖,𝑡

𝑚𝑖
𝑡=1 ln(𝐸̂{𝜇𝑖,𝑡}) + 𝑙𝑛Γ(∑ 𝑁𝑖,𝑡

𝑚𝑖
𝑡=1 + 𝑏l𝑖) −

                                                     𝑙𝑛Γ(𝑏l𝑖) − (∑ 𝑁𝑖,𝑡
𝑚𝑖
𝑡=1 + 𝑏𝑙𝑖)ln [(∑ 𝐸̂{𝜇𝑖,𝑡}

𝑚𝑖
𝑡=1 ) + 𝑏l𝑖]     (4.1) 

where, 

i = number of sites 

m = number of time periods starting t =1 

N = observed crash counts for site i with m time periods 

μ = mean of Poisson distributed crash counts 

𝐸̂{𝜇𝑖,𝑡} = predicted number of crashes at site i for time period t 

l = site length 

b = shape parameter 

4.3 Methodology 

4.3.1 Mathematical Program – Problem Formulation 

Notation and Definitions: 

The following notations and definitions are used in describing the proposed problem formulation: 

i  Subscript for a site 
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I Set of roadway sites (segments, intersections or ramps) to be clustered for a safety 

performance function, indexed 1 ≤ i ≤ I 

j  Subscript for an explanatory variable 

J Set of explanatory variables of a safety performance function, indexed 1 ≤ j ≤ J 

X An I x J matrix with elements 𝑥𝑖𝑗, which are the measurements of explanatory variables 

for site i ∀ i ∈ I, j ∈ J 

k  Subscript for a cluster of sites  

K Number of safety performance functions of sites, indexed 1 ≤ k ≤ K 

𝑝𝑖𝑘 Membership assignment of a site i to a cluster k 

P An I x K binary matrix with elements 𝑝𝑖𝑘  ∀ i ∈ I, k ∈ K 

αk Intercept for SPF in a cluster k, ∀ k ∈ K  

βjk Coefficient for explanatory variable j of a SPF in a cluster k , ∀ j ∈ J, k ∈ K 

Nik       Observed number of crashes for site i assigned to cluster k ∀ i ∈ I, k ∈ K 

𝐸̂{𝜇𝑖𝑘} Predicted number of crashes of a site i using a SPF in a cluster k ∀ i ∈ I, k ∈ K 

bk Shape parameter or inverse over-dispersion parameter of underlying gamma pdf of a SPF 

in a cluster k, ∀ k ∈ K 

Objective function 

Max.  ln (𝐿∗)  =  ∑ ∑ ln [𝐿𝑖𝑘
∗

𝑖|𝑝𝑖𝑘=1 𝑘 (𝛼𝑘, 𝛽𝑗𝑘 , … . , 𝑏𝑘)] ∗ 𝑝𝑖𝑘     (4.2) 

Subject to 

Constraints 

Log-Likelihood Function 

∑ ∑ 𝑓(𝑁𝑖𝑘,𝑖|𝑝𝑖𝑘=1 𝐸̂{𝜇𝑖𝑘}, 𝑏𝑘) 𝑘 = ∑ ∑ ln [𝐿𝑖𝑘
∗

𝑖|𝑝𝑖𝑘=1𝑘 (𝛼𝑘, 𝛽𝑗𝑘, … . , 𝑏𝑘)]    (4.3) 

ln (𝐸̂{𝜇𝑖𝑘})  =  𝛼𝑘 + ∑ 𝛽𝑗𝑘ln (𝑥𝑖𝑗)𝐽
𝑗=1         (4.4) 
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Membership constraints 

𝑝𝑖𝑘= {
1,          𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑎𝑓𝑒𝑡𝑦 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑘;
0,                                                                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

        

(4.5) 

∑ 𝑝𝑖𝑘𝑘 = 1 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾          (4.6) 

𝑝𝑖𝑘 ≥ 0  ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾         (4.7)  

For this mathematical program, the sites in the entire data are clustered into K safety 

performance functions by maximizing the log-likelihood of a NM distribution function. The 

decision variables are the number of SPFs, K, the parameters of NM models, 𝛼𝑘, 𝛽𝑗𝑘, … . , 𝑏𝑘, and 

the cluster membership, 𝑝𝑖𝑘. 

Maximization of log-likelihood is used as the objective function, as shown in Equation 

4.2. The objective function finds the set of parameter values that maximizes the probability to 

observe the available data. The constraint, Equation 4.3 provides the log-likelihood distribution 

function of the count regression model. The constraint, Equation 4.4, provides the count 

regression model. In this research, the NM log-likelihood distribution function, as shown in 

Equation 4.1, is used for the reasons explained in Section 4.2. In order to find the parameter 

values that maximize the log-likelihood function, the predicted number of crashes are estimated 

by fitting the distribution function of the model to the data using Equation 4.4. This is performed 

for the identified number of safety performance functions K. The constraints, Equations 4.5, 4.6, 

and 4.7, ensure that each site is assigned exactly to one cluster (or safety performance function). 

Membership 𝑝𝑖𝑘 takes value of ‘1’ if and only if a site i belongs to safety performance function k. 

Otherwise, it takes value ‘0’. 
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4.3.2 Solution Algorithm to the Mathematical Program 

In order to solve the above mathematical program, a simulated annealing (SA) combined with 

the maximum likelihood estimation (MLE) algorithm was implemented in R programming 

language. SA was used for clustering the data to estimate membership of clusters, 𝑝𝑖𝑘. For each 

accepted neighborhood clusters, the MLE was employed to estimate the parameters of the safety 

performance functions, 𝛼𝑘, 𝛽𝑗𝑘  and bk. The ‘mle2’ function available in the statistical software R 

was used to estimate these parameters (Bolker, 2016). Román-Román et al. (2012) successfully 

implemented a SA algorithm for the MLE of the parameters of a Gompertz-type process, which 

assessed the behavior patterns in several fields of application. DeSarbo et al. (1989) applied such 

an algorithm to solve the clusterwise linear regression problem. 

The algorithm developed to solve the clusterwise regression for this study is illustrated in 

Figure 4.1, and is described as follows: 

Step 1. Initialization  

Step 1.1 For a given number of clusters (K), randomly assign cluster memberships to sites. 

Step 1.2 Set values of initial temperature (T0), final minimum temperature (Tmin), cooling 

rate (ϕ), and the maximum number of neighbors to be generated (Nmax) at each 

temperature level. Set iterator to N = 0. 

Step 1.3 Count the number of observations of all sites assigned to each cluster. If all the 

clusters have at least the minimum number of sites, then set 𝛼𝑘,  𝛽𝑗𝑘, and 𝑏𝑘 = 1, 

and go to step 2; otherwise, reassign the cluster memberships until all clusters have 

at least the minimum number of sites. Let 𝐶𝑁 be the valid initial clusters. Set 

𝛼𝑘,  𝛽𝑗𝑘 and bk = 1. 

Step 2. Objective function evaluation and initial parameters estimation  
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Step 2.1 Estimate the predicted number of crashes with default 𝛼𝑘  and 𝛽𝑗𝑘 

Step 2.2 Estimate the log-likelihood function using the observed number of crashes, 

predicted number of crashes, and parameter bk. 

Step 2.3 Evaluate the objective function; maximize ln[𝐿𝑖
∗(𝛼𝑘, 𝛽𝑗𝑘, … , 𝑏𝑘)] using MLEm and 

set this value as MLEN 

Step 2.4 For 𝐶𝑁, obtain 𝛼𝑘, 𝛽𝑗𝑘, and bk for all K clusters from MLE. 

Step 3. Set of neighborhood clusters generation 

Create a set of neighborhood clusters randomly near to the previous cluster, using the following 

steps: 

Step 3.1 Randomly select a prespecified number of sites to change their memberships. 

Step 3.2 For each of the site selected, assign a new membership by generating a random 

number 𝑟~𝑅(1, 𝐾). If the new membership is the same as the previous one, 

regenerate a random number 𝑟′~𝑅(1, 𝐾) until it is different. Repeat this process 

until the memberships of all selected sites are different than previously assigned.  

Step 3.3 Count the total number of sites assigned to each cluster.  

Step 3.4 If all clusters have at least the minimum number of sites, go to Step 5; otherwise, 

repeat steps 3.1., 3.2., and 3.3. until all clusters have at least the minimum number 

of sites. Let 𝐶𝑁+1 be the new set of valid neighborhood clusters. 

Step 4. Solution search 

Step 4.1 Estimate the predicted number of crashes with default 𝛼𝑘, and 𝛽𝑗𝑘 

Step 4.2 Estimate the log-likelihood function using the observed number of crashes, 

predicted number of crashes, and parameter bk. 
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Step 4.3 Evaluate the objective function; maximize ln[𝐿𝑖
∗(𝛼𝑘, 𝛽𝑗𝑘, … , 𝑏𝑘)] using MLE, and 

set this value as MLEN 

Step 4.4 For 𝐶𝑁+1, obtain new 𝛼𝑘 and 𝛽𝑗𝑘 for all K clusters from MLE.  

Step 4.5 Calculate ∆𝑀𝐿𝐸 = 𝑀𝐿𝐸𝑁+1 − 𝑀𝐿𝐸𝑁 

Step 4.6 Check the following two conditions: 

a. If ∆𝑀𝐿𝐸 > 0 , accept the current solution, 𝐶𝑁+1 and the corresponding 𝛼𝑘, 

𝛽𝑗𝑘, and bk ; go to Step 5; otherwise, go to Step 4.6b. 

b. Generate a random number 𝑟"~𝑅(0,1). Calculate the acceptance probability, 

𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = 𝑒𝑥𝑝 (
−∆𝑀𝐿𝐸

𝐵∗𝑇
), where B is a Boltzmann’s constant. If 𝑟" > 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 , 

accept the current solution, 𝐶𝑁+1, and corresponding 𝛼𝑘, 𝛽𝑗𝑘 , and bk ; go to 

Step 6; otherwise, return to Step 3 to generate a set of new neighborhood 

clusters. 

Step 5. Stopping Criteria  

Step 5.1 Repeat Steps 3 and 4 for 𝑁𝑚𝑎𝑥 times.  

Step 5.2 If 𝑇 < 𝑇𝑚𝑖𝑛, stop the algorithm. Otherwise, multiplying the current temperature by 

the prespecified cooling rate, ϕ, set N =1, and go to Step 2.  

The SA algorithm seeks an optimum solution using a probabilistic approach for a given 

function. Annealing corresponds to progressing a material to its equilibrium state, a process that 

causes the diffusion of atoms by heating followed by cooling; SA works using a similar 

technique. Initially, at a high temperature, T, the probability of accepting a worse solution is 

high. This enables the solution to escape from local maxima, moving downhill as it explores the 

solution search space vertically as well as horizontally with big step lengths. As temperature 

cools down, T drops; at this stage, the algorithm uses small step lengths to search heuristically 
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for an optimum solution on the most promising search space. Román-Román et al. (2012) 

illustrated that the algorithm converges to a global minimum with a substantially slow cooling 

rate. 

4.4 Experiment and Results 

4.4.1 Data Resources and Preparation 

Development of safety performance functions requires key data, including information about 

crashes, traffic flow, traffic control, and roadway characteristics. The data used in this study were 

extracted from the Nevada Citation and Accident Tracking System (NCATS) database, the 

Highway Performance Monitoring System (HPMS), and Traffic Records and Information Access 

(TRINA) of the Nevada Department of Transportation (NDOT) (NDOT, 2016). In addition, the 

Travel Demand Model (TDM) and Intersections database from Regional Transportation 

Commission of Southern Nevada (RTC-SN) were accessed. The data consisted of roadway, 

traffic, intersection, and crash characteristics collected in the Clark County, largest region of the 

State of Nevada. 

A comprehensive database was developed by integrating all the data sources listed above. 

Various issues were encountered during the development of database, including the availability 

of data, requirement of data from multiple agencies, and the consistency of the collected data. It 

was a substantial task to identify data, integrate them, and develop the database.  

Various tools were used to integrate the data. Some of data were integrated using location 

reference system, such as county, route, and milepost. For example, a site was represented as a 

roadway segment in Clark County on the Route 123 from Milepost 1.300 to 2.500. Crashes were 

mapped onto this site with the same county and route information for mileposts between 1.300  
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Figure 4.1 Algorithm for Clusterwise Regression to Estimate SPF Parameters. 
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and 2.500. Other sources where such information was not available were integrated using spatial 

integration with the help of ArcGIS (ESRI®). For example, crashes mapped onto the intersection 

specifically required such GIS operations as buffering the signal-control intersection with a 200-

ft radius, and mapping crashes within that buffer as intersection-related crashes. The details 

about the development of this comprehensive database are provided by Paz et al. (2015c). 

The database that was developed contains five years of data from 2007 to 2011; it 

contains 10,287 roadway segments, 973 signal and stop-control intersections, and 973 ramp 

segments. Few of the consecutive roadway segments indicated homogeneous characteristics. As 

a result, the data was post-processed to combine the roadway segments with homogeneous 

characteristics. The characteristics considered were functional class, number of lanes, median 

type, median width with 5-ft thresholds, speed limits with 5-mph thresholds, and Annual 

Average Daily Traffic (AADT) with 20% thresholds. The data were classified based on site 

subtypes that were regularly used in the literature (Hauer 2002; AASHTO, 2010; Hauer, 2015; 

Paz et al., 2015c).  

For this study, site subtypes with a minimum of 70 sites were chosen. Explanatory 

variables considered in the analysis were segment length, AADT, number of lanes, access 

control, functional class, median width, median type, posted speed, and terrain type. Variables 

related with crashes that were considered in this study were the number of crashes and crash 

severity. Site subtypes identified in the data, based on the literature, are shown in Table 4.1. The 

post-processing of data and the identification of site subtypes were generated systematically by R 

code. 
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Table 4.1 Site Subtypes for Safety Performance Functions 

No. Site Subtype Description 

1 Rural 2-lane Segments on rural 2 lane road 

2 Rural multilane undivided Segments on rural 4+ lanes with no median  

3 Rural freeway 4 lane Segments on rural 4+ lane with no access control 

4 Rural freeway in interchange 

area 

Segments on rural 4+ lane with no access control and in 

interchange influence area 

5 Urban 2-lane arterial Segments on urban 2 lane arterial 

6 Urban multilane undivided Segments on urban 4+ lanes with no median  

7 Urban multilane divided Segments on urban 4+ lanes with median 

8 Urban One-way arterial Segments on urban one-way arterial 

9 Urban freeway 4 lane Segments on urban 4+ lane with no access control 

10 Urban freeway in interchange 

area 

Segments on urban 4+ lane with no access control and in 

interchange influence area 

11 Urban 3-leg signalized Urban 3-leg Intersections with signal control 

12 Urban 4-leg signalized Urban 4-leg Intersections with signal control 

13 Urban 3-leg minor road stop Urban 3-leg Intersections with stop control on minor roads 

14 Urban 4-leg minor road stop Urban 4-leg Intersections with stop control on minor roads 

15 Urban 4-leg all-way stop Urban 4-leg Intersections with stop control on all roads 

16 Urban Diamond off-ramp Diamond off-ramps in urban area 

17 Urban Diamond on-ramp Diamond on-ramps in urban area 

 

4.4.2. Parameters of the algorithm 

Performance of an SA algorithm is affected by the optimization parameters used to solve a 

specific problem. Selecting an appropriate strategy to generate the neighborhood solution and an 

appropriate annealing parameters to attain the optimal solution is critical (AASHTO, 2011; 

Roshan et al., 2013).  The literature indicated various methods to determine annealing 

parameters, including sensitivity analysis (Park et al., 1998; Kirkpatrick et al., 1983; Collins et 

al., 1988; Rose et al., 1990; Selim & Alsultan 1991; Guo & Zheng, 2005). Previous experience 

by this research team was drawn up to solve relevant problems in determining the optimization 

parameters (Paz et al., 2015a; Paz et al., 2015b). In addition, a sensitivity analysis was performed 

to select the appropriate annealing parameters, taking into consideration a reasonable amount of 

computation time to reach the optimum solution (Park & Kim 1998). SA parameter values used 

in this study are shown in Table 4.2. 
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Table 4.2 Parameters used for optimization in Simulated Annealing 

Parameter Value Description 

T0 10 Initial temperature 

Tmin 0.0001 Minimum temperature 

B 4 Boltzmann constant 

Φ 0.99 Cooling rate 

Nmax 10 Maximum number of neighborhood solutions to 

be generated at each temperature level 

 

4.4.3 Results and Discussion 

The results of the two site subtypes were analyzed, urban multilane divided arterial segments 

(SS1) and urban 4-leg signalized intersections (SS2). These site subtypes were classified into 

various subgroups (clusters), using clusterwise regression to determine the SPF parameters (total 

number of crashes) that could provide better crash estimates. Preliminary investigation of crash 

data – along with explanatory variables of AADT, speed limit, and median type – determined the 

three clusters that could provide the optimal number of clusters hypothesized for urban multilane 

divided arterial, SS1. For urban 4-leg signalized intersections, SS2, based on AADT, median 

type, and speed limit, four clusters could be the hypothesized as the optimal number of clusters. 

However, the number of clusters hypothesized were confirmed based on the sensitivity analysis. 

The algorithm partitioned the data and provided the memberships for sites in these 

clusters. Figures 4.2a and b indicate the trajectory of the objective function (MLE) when the 

clusterwise regression models were used for SS1 and SS2, respectively. Figures 4.2c and d show 

results from the sensitivity analyses for determining the optimum number of clusters for SS1 and 

SS2, respectively. For SS1, the initial value of maximum likelihood was 65329. After 1,146 

iterations, the final value increased to 65628. In the case of SS2, the initial value of maximum 

likelihood was 54672; the final value increased to 54781. 



  

82 

The optimal number of clusters were further verified using the Bayesian information 

criteria (BIC), which penalizes the inclusion of additional parameters. Results with BIC values 

close to negative infinity are categorized as optimal in terms of the number of clusters (Schwarz, 

1978; R-Language, 2011). Table 4.3 shows the number of clusters and the corresponding BIC 

values. The lowest BIC values determine the same optimum number of clusters as identified 

using sensitivity analysis in Figure 4.2(c) and (d) for SS1 and SS2, respectively. 

 
(a) MLE during optimization for SS1          (b) MLE during optimization for SS2 

 
(c) Sensitivity Analysis for SS1                    (d) Sensitivity Analysis for SS2 

Figure 4.2 (a and b) Evolution of MLE during Optimization for a Clusterwise Regression Model 

and (c and d) Sensitivity Analyses for the Number of Clusters. 
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In both SS1 and SS2, there is substantial difference in coefficients of parameters of the 

sites assigned to clusters. In the case of SS1, the coefficients of AADT across clusters are 

significantly different in magnitude. In the case of SS2, Major Rd AADT and Minor Rd AADT 

show difference in magnitude across clusters. In addition, other parameters also contribute in 

clustering the sites with minor difference in magnitude across clusters. The significance level for 

the parameters was set as 5%. From Table 4.4, it can be observed that not all the parameters were 

significant, i.e., with p-values less than 0.05. However, for SS1, segment length, AADT, speed 

limit, and functional class were significant variables in all clusters. A divided median type was 

not significant in all clusters. This could be due to the collinearity of median width with median 

type. Functional Class 7 (local road) is not significant, which could due to the very few local 

road segments in the data. All the parameters in a single cluster model are significant. In the case 

of SS2, few parameters associated with major road speed and minor road speed had p-values 

larger than 0.05. 

Table 4.3 Results of BIC for Clusters 

SS1 SS2 

Clusters BIC Clusters BIC 

1 -130542 1 -221951 

2 -131046 2 -222309 

3 -131053 3 -222423 

4 -130792 4 -222573 

5 -130745 5 -222488 

6 -130598     

 

The cluster information and related sites were geo-coded in a map, as shown in Figure 

4.3, to investigate any associated geographic pattern among the clusters of sites. However, from 

Figure 4.3, it was found that there is no specific geographic pattern across the clusters of sites. In 
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Table 4.4 Estimated Parameters Using the Proposed Clusterwise Regression and the Single-Cluster Method 

Urban Multilane Divided Segments (SS1) Urban 4-leg Signalized Intersections (SS2) 

  

Clusters from Clusterwise 

Regression Method 

Single 

Cluster   

Clusters from Clusterwise Regression 

Method 

Single 

Cluster 

Parameters 

Cluster 

1 

Cluster 

2 

Cluster 

3   Parameters  

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4   

  η = 620 η=638 η=633 η = 1891   η = 82 η = 86 η = 82 η = 90 η = 340 

Intercept (Scale) 774.770 853.640 24.400 618.439 Intercept (Scale) 110.950 26.762 6.465 28.907 51.261 

length 0.970 0.928 0.824 0.913 Major Rd AADT 0.494 1.247 0.091 0.340 0.538 

AADT 1.959 1.219 0.372 1.095 Minor Rd AADT 1.004 0.092 0.152 0.189 0.429 

Road Type – State Rd 0.850 0.848 0.565 0.671 Major Rd Lanes = 3-4 1.088 1.253 1.057 1.239 1.225 

Functional Class 4 1.092 0.880 0.741 0.891 Minor Rd Lanes > 4 1.252 1.005 2.418 1.571 1.463 

Functional Class 6 1.266 0.836 0.543 0.796 Minor Rd Lanes = 3-4 0.709 1.261 1.244 1.589 0.979 

Functional Class 7 1.000 0.374‡ 0.332‡ 0.420 Minor Rd Lanes > 4 0.562 2.059 0.495 2.522 1.020 

Number of Lanes 5 0.670 0.449 2.266 1.173 Major Rd Median-Divided 0.477 1.372 0.540 1.829 0.903 

Number of Lanes 6 0.774 1.437 1.505 1.173 Minor Rd Median-Divided 1.574 0.741 0.893 0.345 0.818 

Number of Lanes 7 0.607 1.247 2.312 1.378 Major Rd Speed 26 to 35 1.187 1.636 0.716‡ 0.472 0.803 

Number of Lanes 8 0.398 0.119 0.666 0.589 Major Rd Speed 36 to 45 1.249 1.166 1.077‡ 0.674 0.810 

Median–Flush Paved 2.201 1.510‡ 0.817‡ 0.972 Major Rd Speed 46 to 55 1.429‡ 1.000 0.979‡ 0.362‡ 1.089 

Median–Other Divided 1.000 1.000 0.298‡ 0.199 Major Rd Speed > 55 1.000 1.000 1.382‡ 1.000 1.062 

Median Width 4 – 14 ft 0.938 0.563 0.918 0.775 Minor Rd Speed 26 to 35 1.358 0.924 2.103 0.867 1.172 

Median Width > 14 ft 1.219 0.499 0.948 0.864 Minor Rd Speed 36 to 45 0.903 1.163 2.728 0.538 1.163 

Speed Limit <= 25 1.218 0.427 2.932 0.898 Minor Rd Speed 46 to 55 1.257‡ 0.278 0.788‡ 1.201‡ 0.922 

Speed Limit <= 45 1.239 0.310 2.199 0.750 Minor Rd Speed > 55 1.000 0.656 4.800 1.000 1.256 

Speed Limit <= 55 0.609 0.114 2.706 0.503          

Speed Limit > 55 1.490 1.000 1.929 0.869             

Log Likelihood 29675.2 22874.2 13079.1 65304  18367.1 13921.0 10116.5 12377.1 54628 

Freeman-Tukey R2 

(R2
FT) 

0.91 0.85 0.87 0.85  0.93 0.98 0.94 0.93 0.86 



  

85 

addition, histogram of each explanatory variable, for the sites in clusters, was plotted to 

understand the influence of any specific variable towards the cluster creation. Results indicated 

no single variable influenced the creation of clusters. However, the coefficients of explanatory 

variables across clusters in Table 4.4 illustrates combination of explanatory variables were 

involved in the creation the clusters. 

 

Figure 4.3 Map with color-coded clusters of sites for SS1, 

Urban Multilane Divided Arterials. 
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 To investigate the performance of the proposed method, the accuracy of the clusterwise 

models were compared to models developed (single cluster) using the traditional cluster method. 

All the sites in the SS1 modeled as single cluster were used in the regression analysis to estimate 

the parameters of the safety performance function. Results obtained from the single cluster are 

presented in Table 4.4. 

The number of sites (samples) in each cluster should be sufficient to obtain statistically 

reliable estimate of parameters. Larger number of samples in a cluster leads to increased 

precision during the estimation of parameters using regression. Sample size is estimated using 

Equation 4.8 (Berenson, 2014). For SS1 and SS2, the minimum number of samples required with 

95% confidence interval and 0.1 significance level, are 91 and 75, respectively. The number of 

sites assigned to each cluster for both SS1 and SS2 are higher than the minimum number of 

samples required. 

𝑛 =
𝑍2𝑁

(𝑍2𝑃(1−𝑃)/𝜀2)+(𝑁−1)
          (4.8) 

where, 

n = the number of samples, 

Z = the Z value for confidence interval, 

P = the true parameter, the maximum variance of distribution, 0.5 

ε = the significance level, 

N = the population size 
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Model fit for the SPFs were assessed with Goodness-of-Fit (GOF) statistic, Freeman-

Tukey R2 coefficient of determination (R2FT) using Equation 4.9. Freeman and Tukey 

(Freeman, & Tukey, 1950) developed the variance stabilizing transformation for the Poisson 

distribution as shown in Equations 4.10, 4.11, 4.12 and 4.13.  Fridstrøm et al. (1995) applied this 

transformation when developing generalized regression models for crash data by using Equation 

4.9. For the assessment of GOF for models associated with crash data, this statistic is being used 

by previous studies (AASHTO, 2011; Hamidi, 2010). 

𝑅𝐹𝑇
2 = 1 −  

∑ 𝑒̂𝑛
𝑖 𝑖

2

∑ (𝑓𝑖
𝑛
𝑖=1 −𝑓)2                          (4.9) 

𝑓𝑖 =  √𝑌𝑖 +  √𝑌𝑖 + 1            (4.10) 

𝑓 =  
√𝑌𝑖+ √𝑌𝑖+1

𝜂
             (4.11) 

𝑓𝑖 = √4𝑌̂𝑖 + 1            (4.12) 

𝑒̂𝑖 =  𝑓𝑖 − 𝑓 = √𝑌𝑖 +  √𝑌𝑖 + 1 −  √4𝑌̂𝑖 + 1        (4.13) 

where,  

𝑌𝑖  = the observed crashes of site i in a cluster, 

𝑌̂𝑖  = the predicted crashes of site i in a cluster, and 

𝜂   = the number of sites in a cluster. 

Memberships of the sites determined by the algorithm for clusterwise models as well as 

the associated parameters of the SPF were used to estimate the predicted number of crashes for a 

clusterwise model. Parameters of the SPF from a single cluster model were used to estimate the 

predicted number of crashes for a single cluster model. Freeman-Tukey R2 (R2FT) are provided 
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in Table 4.4. For both SS1 and SS2, R2FT of clusterwise regression SPFs are higher than that of 

single cluster SPFs. 

4.4.3.1 Discussion on Model Overfitting Issue 

In addition to the GOF statistic, potential overfitting needs to be investigated. In clusterwise 

regression modeling, overfitting is a potential issue, which was first highlighted and analyzed by 

Brusco et al (Brusco, 2008). The study analyzed the effect of the use of explanatory variables to 

explain variation in the response variable.  

This research adopted the approach developed by Brusco et al. (2008) to investigate the 

presence of overfitting. The total sum of squares (TSS), which is the variation of the response 

variable about its mean should be equal to between-clusters sum of squares (BCSS) and within-

clusters sum of squares (WCSS). The WCSS is equal to the sum of, regression sum of squares 

(SSR) and sum of squared error of prediction (SSE). The SSR is within-cluster variation 

explained by regression models and the SSE is the residual error in the clusters. As this study 

used count data, the TSS, BCSS, SSR and SSE were calculated using Equations 4.10, 4.11 and 

4.12. Based on these transformations, the TSS, BCSS, WCSS, SSR and SSE are given by 

Equations 4.14, 4.15, 4.16, 4.17 and 4.18 respectively. 

𝑇𝑆𝑆 = ∑ (𝑓𝑖
𝑛
𝑖=1 − 𝑓)2                 (4.14) 

𝐵𝐶𝑆𝑆 = ∑ 𝜂𝑘(𝑓𝑘̅
𝐾
𝑘=1 − 𝑓)2                (4.15) 

𝑊𝐶𝑆𝑆 = ∑ ∑ (𝑓𝑖 − 𝑓
𝑘

)
2

𝑖∈𝑘
𝐾
𝑘=1                (4.16) 

𝑆𝑆𝑅 = ∑ ∑ (𝑓𝑘̅ − 𝑓𝑘)
2

𝑖∈𝑘
𝐾
𝑘=1                 (4.17) 

𝑆𝑆𝐸 = ∑ ∑ (𝑓𝑖 − 𝑓𝑘)
2

𝑖∈𝑘
𝐾
𝑘=1                 (4.18) 
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 The TSS, BCSS, WCSS, SSR, and SSE components were calculated for the optimum 

number of clusters for SS1 and SS2 as shown in Table 4.5. The results illustrated that, for SS1, 

BCSS is equal to 0.05% of TSS and SSR is equal to 79.19% of WCSS. For SS2, BCSS is equal 

to 2.11% of TSS and SSR is equal to 68.96% of WCSS. The BCSS accounts only for variation in 

the response variable by clustering and the SSR accounts for variation in the response variable 

due to explanatory variables. Obtaining lower percentage for the BCSS and higher percentage for 

SSR in WCSS indicates that there is no overfitting as most of the variation in the response 

variable is explained by clustering of response variable with the use of explanatory variables. 

Table 4.5 Measures of Overfitting Components Associated with Clusterwise Regression 

Measure 
Clusterwise  

Regression - SS1 
Clusterwise  

Regression - SS2 

Total sum of squares (TSS) 77,629 (100%) 18,573 (100%) 

Between-clusters sum of squares (BCSS) 39 (0.05% of TSS) 392 (2.11% of TSS) 

Within-clusters sum of squares (WCSS) 77,590 (99.95% of TSS) 18,181 (97.89% of TSS) 

Sum of squares due to regression (SSR) 61,482 (79.19% of WCSS) 12,809 (68.96% of WCSS) 

Sum of squared error of prediction (SSE) 16,108 (20.76% of WCSS) 5,372 (28.93% of WCSS) 

 

4.4.3.2 Discussion on prediction accuracy 

Predicted crashes then were compared with the observed crashes, and the RMSE for predictions 

were calculated for both the models (Figures 4.4 and 4.5). The proposed clusterwise regression 

method was found to perform better than the single cluster method. SPFs in clusters of the 

clusterwise method had a lower value of RMSE in prediction compared to that of the single 

cluster method for both SS1 and SS2. In addition, the results showed that using the proposed 

clusterwise method, the predicted crashes were closer to the 45-degree line, compared with the 

corresponding prediction using the single cluster method. This indicates that predicted crashes 
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were closer to observed crashes using the proposed method. This trend is clearly seen for higher 

numbers of observed crashes. 

Figure 4.4 Comparison of the Predicted and Observed Number of Crashes, using the Proposed 

Methods for SS1. 

 

For further validation of the methodology, the dataset is divided into: 1) a test dataset 

with four years of observations and 2) a validation dataset with one year of observations. Using 

the proposed methodology, a clusterwise negative multinomial model was developed with the 

test dataset. Memberships of sites were assigned by mapping sites with memberships determined 

by clusterwise models. Associated clusterwise models were applied on the validation dataset to 

estimate the predicted number of crashes. The RMSE values were calculated to compare the 

prediction accuracy of clusterwise and single cluster models for both the site subtypes, SS1 and  
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Figure 4.5 Comparison of the Predicted and Observed Number of Crashes, using the Proposed 

Methods for SS2. 
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SS2. For SS1, the RMSE values are 5.18 and 5.26 for clusterwise and single cluster models 

respectively. For SS2, the RMSE values are 10.97 and 11.38 for clusterwise and single cluster 

models respectively. The lower RMSE values for the clusterwise models indicates the better 

prediction accuracy in compare to the single cluster model. 

4.4.4. Network Screening 

The estimated SPFs, using a single cluster model and clusterwise models, were used to estimate 

predicted crash frequency. The predicted crash frequency of sites were combined with the 

observed crash frequency to obtain a better estimate of the expected and excess crash frequency 

using the empirical Bayes method (Montella, 2010). To identify the sites with potential for safety 

improvements, network screening analyses for arterial roadway segments and intersections were 

performed using excess crash frequency. It provides a measure of crash frequency at sites where 

crashes were reduced if a safety improvement was implemented (AASHTO, 2010; AASHTO, 

2011). Excess crash frequency was estimated for total crashes, with peak searching on roadway 

segments having coefficient-of-variation limits for the entire network. With peak searching 

screening type, a minimum window length of a 0.1 mi segment of the site that had the potential 

for safety improvement could be determined to deploy a countermeasure. Table 4.6 shows the 

results of the top 15 sites (the first 15 ranks) having the potential for safety improvements for the 

estimated SPFs using single cluster and clusterwise regression. It is clearly evident that the sites 

were ranked in different order when using SPFs from clusterwise regression and SPFs from a 

single cluster method. In addition, three roadway segment sites (S6570, S8070, and S6043), in 

Table 4.6, are not ranked by the single cluster method within top 15 sites as was the case with 

clusterwise regression ranking. Similarly, eight intersection sites (I411, I759, I452, I519, I839, 

I377, and I580), in Table 4.6, are not ranked by the single cluster method within top 15 sites as 
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was the case with clusterwise regression. Considering budget constraints, these results could 

make significant difference for choosing sites with potential for safety improvements. 

Table 4.6 Network Screening Results using the Proposed Clusterwise Regression and the Single-

Cluster Method for Arterial Roadway Segments and Intersections 

Clusterwise Regression Single Cluster Regression 

Segment/ 

Intersecti

on ID 

Observed 

Crash 

Frequenc

y */** 

Predicted 

Crash 

Frequenc

y */** 

Excess 

Crash 

Frequenc

y */** 

Segment/ 

Intersecti

on ID 

Observed 

Crash 

Frequenc

y*/ ** 

Predicted 

Crash 

Frequenc

y*/ ** 

Excess 

Crash 

Frequenc

y*/ ** 

Roadway Segments* 

S3346 256.00 40.78 213.45 S3346 256.00 35.34 218.57 

S9695 270.00 59.50 209.31 S5700a 276.00 56.98 217.73 

S4459 240.00 30.43 207.26 S9695 270.00 65.56 203.39 

S3521a 234.00 46.12 186.52 S4459 240.00 35.78 202.30 

S5700a 276.00 94.59 180.77 S7758 240.00 43.85 194.65 

S3129a 204.00 32.96 169.31 S6570 242.00 50.59 190.14 

S5658 202.00 35.46 164.97 S3521a 234.00 44.17 188.39 

S7736a 210.00 46.15 162.66 S8070 272.13 85.74 185.47 

S2374 213.50 32.90 159.91 S7736a 210.00 27.36 180.41 

S1775 212.00 56.78 154.30 S5658 202.00 29.10 170.91 

S7736a 200.00 46.15 152.73 S7736a 200.00 27.36 170.54 

S7693a 192.00 40.83 149.93 S3129a 204.00 32.64 169.60 

S2941 172.00 21.77 147.93 S6043 252.00 8.94 167.91 

S4843 180.00 32.41 146.07 S7693a 192.00 24.07 165.60 

S4648a 176.00 29.00 145.31 S2374 213.50 24.14 160.97 

Intersections** 

I900 51.60 23.26 27.60 I703 66.6 24.116 41.41 

I905 37.40 11.16 24.34 I411 91.4 52.84 38.11 

I703 66.60 45.81 20.51 I759 92.2 55.81 35.99 

I139 50.40 30.95 19.07 I452 51.8 23.548 27.25 

I65 35.20 16.80 17.74 I900 51.6 28.38 22.72 

I551 64.80 48.48 16.12 I135 58.4 36.697 21.34 

I634 40.20 23.68 16.09 I248 37.4 18.168 18.59 

I135 58.40 42.20 15.96 I86 31.6 14.552 16.35 

I643 39.40 23.23 15.75 I519 64.2 47.679 16.31 

I779 39.00 23.65 14.96 I839 49.6 33.535 15.77 

I816 40.00 25.14 14.50 I377 28.8 12.110 15.57 
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Clusterwise Regression Single Cluster Regression 

Segment/ 

Intersecti

on ID 

Observed 

Crash 

Frequenc

y */** 

Predicted 

Crash 

Frequenc

y */** 

Excess 

Crash 

Frequenc

y */** 

Segment/ 

Intersecti

on ID 

Observed 

Crash 

Frequenc

y*/ ** 

Predicted 

Crash 

Frequenc

y*/ ** 

Excess 

Crash 

Frequenc

y*/ ** 

I808 39.20 24.64 14.20 I83 38.4 22.433 15.53 

I433 33.80 21.20 12.24 I580 30.8 15.325 14.87 

I86 31.60 19.03 12.17 I958 35.4 20.887 14.09 

I83 38.40 25.95 12.16 I551 64.8 51.187 13.45 

*Segments – units of crash frequency are crashes/mile/year 

**Intersections – units of crash frequency are crashes/year 

4.5 Conclusions 

This study proposed and implemented a clusterwise regression to develop safety performance 

functions. The objective was to minimize the estimation error by considering multiple SPFs 

rather than a single SPF for a sample of similar sites. A combinatorial nonlinear mathematical 

program was formulated. The clusterwise method simultaneously segmented the roadway sites 

into a number of clusters, and estimated the parameters of the SPF for each cluster. A simulated 

annealing coupled with maximum likelihood was used to solve the mathematical program. 

Considering the data characteristics, a Negative Multinomial count model was used for 

regression, which took into account temporal factors by not aggregating traffic and crashes over 

the period. The algorithm was tested for number of clusters, and sensitivity analysis was 

performed to validate that it was an optimum solution for a provided dataset.  

The results obtained from the proposed clusterwise models were compared with the 

results obtained using a single cluster method. The comparison showed that the proposed 

clusterwise regression method performed slightly better than a single cluster method in 

predicting crash estimates. With network screening using clusterwise regression, DOTs can use 

their resources in an efficient manner. The gain in predicting crashes could translate into 

significant savings in terms of lives and societal costs. 
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The clusterwise model could be improved by determining the optimum number of clusters as one 

of the decision variables. The significance of explanatory variables needs to be determined 

before assigning cluster memberships to roadway sites. This would exclude insignificant 

variables and reassign the cluster memberships, which may result in an improved estimate of 

SPFs. Correlation of explanatory variables should be investigated, and some should be removed 

during the optimization process. 
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CHAPTER 5 

FORECASTING PERFORMANCE MEASURES FOR TRAFFIC SAFETY 

USING DETERMINISTIC AND STOCHASTIC MODELS 

5.1 Introduction 

The Federal Highway Administration (FHWA) requires state Departments of Transportation 

(DOTs) to develop Highway Safety Plans (SHSPs) to obtain funding as part of the two 

legislative acts, the earlier Safe, Accountable, Flexible, Efficient Transportation Equity Act – A 

Legacy Users (SAFETEA-LU) and the new act, Moving Ahead Progress in 21st Century (MAP-

21) (FHWA, 2015). Performance-based highway safety is one of the ten performance provisions 

that MAP-21 seeks to use in order to strengthen the U.S. Surface Transportation Program. 

The FHWA is seeking criteria to assess traffic safety regarding 1) fatalities per Vehicle 

Miles Traveled (VMT), 2) serious injuries per VMT, 3) the number of fatalities, and 4) the 

number of serious injuries. State DOTs and Metropolitan Planning Organizations (MPOs) are 

required to use these four measures to conduct federal-aid highway programs and assess 

performance. Each state DOT should set and report targets based on these performance measures 

for each year, and they should set a goal of achieving these targets within two years. If the targets 

are not met, or significant progress has not been achieved, DOTs could face funding issues by 

the obligation authority (FHWA, 2015).  

 As a primary step to meet these FHWA requirements, state DOTs could focus on three 

areas: 1) the means to ensure quality data, 2) forecasting capabilities, and 3) methods and tools to 

automate the management, processing, and easy use of data including the forecasting 
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capabilities. In addition, DOTs will be required to implement traffic-safety improvement projects 

based on these three areas.  

Regarding acquiring quality data, most DOTs already have committed resources for data 

collection, processes, and storage. Standards and policies to collect crash data have been based 

on the U.S. DOT’s Model Minimum Uniform Crash Criteria (MMUCC) Guideline (MMUCC, 

2012). The Nevada Department of Transportation (NDOT) has a crash database, the Nevada 

Citation and Tracking System (NCATS). In a joint effort by the Office of Traffic Safety and 

NDOT’s Safety Engineering Division, data collected by police officers have been loaded into 

this database.  

For many state DOTs, the development of forecasting methods is in an early stage of 

research. DOTs’ Strategic Highway Safety Plans need to establish statewide performance 

measures, targets, and strategies to improve traffic safety across critical emphasis areas (Park & 

Young, 2012). However, few DOTs have developed robust methodologies for forecasting 

performance measures that help set appropriate targets for the reduction of fatalities and serious 

injuries (Park & Young, 2012). In various DOTs, traffic safety analysts use extrapolation or 

simple moving-average models to establish targets (FHWA, 2013).  

In many instances, these targets have been set as ideal (aspirational) goals rather than 

based on approaches using evidence or models (Kweon, 2010). For example, many DOTs have 

adopted zero-fatality targets to emphasize the importance of traffic safety to the public. The 

SHSPs of most states have ideal goals, with easily achievable targets set over a five-year period 

(FHWA, 2013). Considering that crashes are random events, forecasting of traffic-safety 

performance measures, which are used to set safety goals, should be model-based or evidence-

based.  



  

98 

For a traffic safety policy, a model-based approach generally is avoided for forecasting 

and setting targets. This is because the required data collection is extensive and expensive; in 

addition, establishing a relationship between the performance measures and influencing factors is 

difficult (Kweon, 2010). For example, in order to use a model-based approach, the Average 

Annual Daily Traffic (AADT) is one of the exposure variables that is required for all public 

roads. Most DOTs only collect the corresponding data for a sample of their facilities.  

Although the evidence-based approach also requires data, the demands are fewer 

compared to the model-based approach. Typically, forecasting models using time-series data are 

used for the evidence-based approach (Kweon, 2010; Yannis et al., 2011; Zhang et al., 2015; 

Sukhai et. al, 2011).  When quality data is combined with sound forecasting models, DOTs can 

use the results to deploy strategies that reduce the number of traffic fatalities and injuries. In 

addition, methods and technologies to automate the management and use of data, such as data 

warehousing coupled with Business Intelligence, can accelerate and improve the deployment of 

traffic safety solutions. 

Crash information can be characterized as count data. Poisson and negative binomial 

regression models are used typically to study this type of data. Lord and Mannering (2010) 

provided a review of several approaches – the generalized estimating equation (GEE), random 

effects, random parameters, finite mixture, and Markov switching – to model dispersed count 

data. Given that crash data are repeatedly collected across time, there is a possibility of 

correlated error terms from adjacent time periods, or serial correlation. Quddus (2008) noted that 

the count models listed above do not consider the effect of serial correlation found frequently in 

time-series count data. In order to handle the underlying serial correlation effects of crash count 
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data, deterministic exponential smoothing models (Brown, 1963; Holt, 1957) and stochastic 

autoregressive moving average models (Box et al., 2008) can be used. 

This study focusses on forecasting models for traffic-safety performance measures by 

using time-series data from the Nevada Department of Transportation. Specifically, this study 

proposes a data-driven deterministic and stochastic time-series methodology to forecast traffic-

safety performance measures required by MAP-21. The models used in this research are among 

those commonly applied for time-series crash data. Potentially, other DOTs and MPOs could 

apply this approach, provided the required data is available. 

5.2 Methodology 

This study considered four independent and univariate time-series of crash datasets –– that were 

used to forecast several performance measures required by MAP-21: the number of fatalities, the 

number of serious injuries, fatalities per 100 million VMT, and serious injuries per 100 million 

VMT. Two datasets were time-series crash counts that were aggregated monthly from 1994 to 

2012 (seasonal data). The first one corresponds to the number of fatalities. The second one 

corresponds to the number of serious injuries. The other two datasets from years 1995 and 2013 

aggregated over the exposure variable, VMT, are the annual fatalities per 100 million VMT and 

serious injuries per 100 million VMT. These datasets are non-seasonal. Because monthly data for 

statewide VMT was unavailable, seasonal data was not used for fatalities or serious injuries.  

An exploratory analysis of all the datasets was conducted to determine the characteristics of 

each series. To forecast each time series, deterministic and stochastic models were used to examine 

which was appropriate to use for these datasets. To select the best forecast model, results were 

compared using as goodness-of-fit the root-mean-square error (RMSE), and the mean absolute 
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percentage error (MAPE). The model with less MAPE and RMSE values was considered to be 

optimal. 

5.2.1 Deterministic Forecasting 

Various models for deterministic exponential smoothing were used in this study, and include 1) 

Simple Deterministic, 2) Holt, 3) Brown, 4) Damped-trend, 5) Seasonal, 6) Winter-additive, and 7) 

Winter-multiplicative. The first four models were used in this study to forecast the number of 

fatalities and the number of serious injuries per 100 million VMT in Nevada for five years from 

2013 to 2017. However, because seasonal data was unavailable, the last three models were not used 

for these forecasts.  

The Simple Deterministic model is appropriate for a series that have no trends or 

seasonality. The Holt and Brown models are appropriate for series with a linear trend and no 

seasonality. The smoothing parameters for the Holt model are level and trend, which are not 

constrained; the parameters for the Brown model are level and trend, which are assumed to be equal. 

The Damped-trend model is appropriate for a series with a linear trend that is dying out without 

seasonality; its smoothing parameters are level and with a damping trend (Gardner, 1985). 

With a Simple Moving Average, observations are weighted equally. Relative to older 

observations, an Exponential Smoothing model assigns more weight to more recent data. 

Exponential Smoothing was first suggested by Brown (Brown, 1963) and expanded by Holt (Holt, 

1957). Brown’s simple exponential smoothing (Brown, 1963) is expressed in Equation (5.1). 

Simple Exponential Smoothing does not provide adequate estimates when there is a trend in 

the data. To handle trends in the data, Double Exponential Smoothing models, such as the Holt and 

Brown models in Equations (5.2) and (5.3), respectively, have been proposed. Double Exponential 

Smoothing introduces a term to capture the trend in the forecasting data (Gardner, 1985). 

http://en.wikipedia.org/wiki/Trend_estimation
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Forecasts by Double Exponential Smoothing models use a constant trend, which may result 

in over-forecasting for long horizons. A parameter that ‘dampens’ the trend to a flat line in the 

future was introduced by Gardner (Gardner, 1985), as illustrated in Equation (5.4). 

Yt+1 = Xt + (1-)Yt      

(5.1) 

 

 

                                       

(5.2) 

 

 

  

 

 

 

 

where: 

Yt+1  = forecasted value for time period t+1 

Xt  = observed value at time period t 

Yt      = forecasted Level value which represents the smoothed value up to time period t 

Tt      = trend estimate at time period t (slope of the trend line that we are fitting at time period t) 

α, β,= smoothing parameters (should be between 0 and 1) 

θ     = damping parameter 

When a time series contain a seasonal factor, the appropriate models could include a 

Seasonal, Winter additive, and Winter multiplicative component. The Winter-additive model is 

illustrated by Equation (5.5).  
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(5.5) 

 

where: 

Yt+1  = forecasted value for the time period t+1 

Yt      = forecasted Level value which represents the smoothed value up to time period t 

Tt      = trend estimate at time period t (slope of the trend line that we are fitting at time period t) 

Xt    = observed value at time period t 

α, β,   = smoothing parameters 

St        = seasonal parameter estimate 

If the series lack a trend, Equation 5.5 without Tt describes the Seasonal model. The Winter-

multiplicative model is appropriate if time series has a trend and the smoothing parameters are level, 

trend, and assumed to be equal.  

5.2.2 Stochastic Forecasting 

Two stochastic forecasting models were used in this study including the Autoregressive 

Integrated Moving Average (ARIMA) and Seasonal ARIMA (SARIMA) models. The ARIMA 

model uses past values and past errors to capture trends and predict future values. This model was 

first introduced by Box and Jenkins, and various transformations of this model have been 

developed (Box et al., 2008). An ARIMA (p,d,q) model with a seasonality factor is known as a 

SARIMA (p,d,q)(P,D,Q)s model (Nobre et al., 2001).  
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In this study, an ARIMA model was used to forecast fatalities and serious injuries per 

million VMT. SARIMA was used to forecast the number of fatalities and serious injuries where 

seasonality data was available. Multiple combinations were tested for the autoregressive process, 

moving averages, seasonal factors, and transformations to achieve the stationary condition for each 

dataset. The general equations of ARIMA (p, d, q) and SARIMA (p, d, q) (P, D, Q)s models are 

presented in Equations (5.6) and (5.7), respectively. 

 
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where, 

Yt = observed values 

yt  = differenced (stationarized series) 

t
y  = Forecast of the stationarized  series 

t
Ŷ     = Forecast of the original series 

Φ = autoregressive parameters 

θ  = moving average parameters 

Φ0 = model constant is assumed different from zero 
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εt  = error 

p = the number of autoregressive terms 

d = the number of nonseasonal differences 

q = the number of moving-average terms 

 

t
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t
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where: 

Bs      = seasonal lag operator     Bs(Yt) = Yt-s 

d      = (1-B) difference operator 

S
D    = (1-Bs) seasonal difference operator 

ht       = stationary series 

Yt       = observed series 

B        = lag operator 

(B)   = autoregressive order p (ordinary part of the series) 

(B)   = moving average order q (ordinary part of the series) 

(Bs) = autoregressive order P (seasonal part of the series) 

(Bs) = moving average order Q (seasonal part of the series) 

        = average of stationary series 

et       = model error 

D, d   = times they have applied the seasonal difference and regulate difference for the original 

series 
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5.3 Results and Discussion 

5.3.1 Results for Deterministic Forecasting Models  

For the number of fatalities and serious injuries accumulated every month, 228 data points 

were collected. The mean and standard deviation for fatalities and serious injuries were (27; 200) 

and (7.98; 41.73), respectively. For fatalities and serious injuries per 100 million VMT data, 19 data 

points were collected; the mean and standard deviation were (0.42; 3.87) and (1.74; 12.38), 

respectively. The VMT was obtained from reports prepared by NDOT (Nevada Department of 

Transportation). 

For the number of fatalities and serious injuries, Table 5.1 provides the goodness-of-fit 

measures for the deterministic models. Considering the MAPE and RMSE, the Winter-additive 

model was the best deterministic method to forecast the number of fatalities and serious injuries in 

Nevada. This indicates that the seasonal time-series data had a level and trend, and are constrained 

with each other. 

Table 5.1 Goodness-Of-Fit for the Deterministic Models – Number of fatalities and Serious 

Injuries 

Deterministic Model/ 

Performance Measures 

Number of Fatalities 
Number of Serious 

Injuries 

MAPE RMSE MAPE RMSE 

Simple 25.698 7.361 12.309 29.891 

Holt 25.469 7.374 12.185 29.942 

Brown 25.691 7.419 12.681 30.520 

Damped Trend 25.703 7.393 12.304 30.025 

Simple Seasonal 22.770 6.729 10.724 25.638 

Winter Additive 22.503 6.735 10.476 25.593 

Winter Multiplicative 23.126 6.890 10.644 26.138 

 

Similarly, from Table 5.2, the Damped Trend was the best method to forecast fatalities and 

serious injuries per million VMT in Nevada. This indicates that the data had a time series with a 

linear trend that was dying out. 
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Table 5.2 Goodness-Of-Fit for the Deterministic Models – Rate of Fatalities and Serious Injuries 

Deterministic Model/ 

Performance Measures 

Fatalities/ 100 Million 

VMT 

Serious Injuries/ 100 

Million VMT 

MAPE RMSE MAPE RMSE 

Simple 7.714 0.166 8.987 1.262 

Holt 6.888 0.158 5.916 0.916 

Brown 8.659 0.176 6.300 1.015 

Damped Trend 6.867 0.163 5.291 0.911 

 

5.2.2 Results for Stochastic Forecasting Models  

The time series for the number of fatalities and serious injuries, had 228 points of data, collected 

monthly. Multiple combinations of SARIMA models with various p, q, P, and Q values were 

applied and tested with seasonal and non-seasonal differenced values. The need for differencing the 

monthly crash-count data for the number of fatalities and serious injuries were identified by 

checking stationarity; the autocorrelation function and partial autocorrelation function plots were 

used to identify p, d, q, P, D and Q values.  

Based on the goodness-of-fit measures, low MAPE values, and low RMSE values, SARIMA 

(0,0,5)(0,1,1)12 was selected as the model with the best fit for forecasting the number of fatalities 

and serious injuries. Table 5.3 shows the results of the goodness-of-fit for the various SARIMA 

models for the number of fatalities and serious injuries.  

  Figure 5.1 and 5.2 illustrates the forecast of number of fatalities and serious injuries, of best 

fit SARIMA (0,0,5)(0,1,1)12 model. Figure 5.3 and 5.4 illustrates the autocorrelation function 

(ACF) and partial autocorrelation (PACF) plots of this model. The residuals of autocorrelations and 

partial autocorrelations, near zero, illustrates that it did not significantly differ from a zero-mean. 

This indicates that the model has good statistical fit with the data (Box, 1970). 
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Table 5.3 Goodness-Of-Fit for the SARIMA Models 

Stochastic Model/ Performance 

Measures 

Number of 

Fatalities 

Number of Serious 

Injuries 

MAPE RMSE MAPE RMSE 

SARIMA(0,0,5)(0,1,1)12 25.120 7.756 12.214 30.111 

SARIMA(0,0,4)(0,1,1)12 25.910 7.519 12.303 30.113 

SARIMA(0,0,3)(0,1,1)12 25.665 7.870 12.855 31.489 

SARIMA(0,0,2)(0,1,1)12 25.662 7.892 13.406 32.663 

SARIMA(0,0,1)(0,1,1)12 27.017 7.993 13.676 33.132 

 

 

Figure 5.1 Forecast of the Fatalities using the SARIMA(0,0,5)(0,1,1) model. 

 

Observed 

Upper Confidence Limits (95%) 

Lower Confidence Limits (95%) 

Forecast 
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Figure 5.2 Forecast of the Serious Injuries using the SARIMA(0,0,5)(0,1,1) model. 

 

 

Figure 5.3 Residual ACF and PCAF of the Number of Fatalities. 

Observed 

Upper Confidence Limits (95%) 

Lower Confidence Limits (95%) 

Forecast 
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Figure 5.4 Residual ACF and PCAF of the Number of Serious Injuries. 

 

The two time series datasets for the fatalities and serious injuries per 100 Million VMT, 

had 19 observed points of data (one point per year). Since this is data on an annual level, no 

seasonal factors were observed. Multiple combinations of ARIMA models with various p, and q 

values were applied and tested with non-seasonal differenced values. 

  A need was identified for differencing annual crash-rate data by checking stationarity. The 

plots for the ACF and PACF were used to identify p, d, and q values. Based on the goodness-of-fit 

measures, low MAPE and low RMSE values, the ARIMA (0, 1, 3) model was selected as having 

the best fit for forecasting fatalities and serious injuries, normalized with exposure variable VMT. 

Table 5.4 provides results of the goodness-of-fit for the various ARIMA models for fatalities and 

serious injuries per 100 Million VMT. Figure 5.5 and 5.6 illustrates the best fit ARIMA(0,1,3) 

model to forecast fatalities and serious injuries per VMT. 
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Table 5.4 Goodness-Of-Fit for the ARIMA Models 

Stochastic 

Model/Performance 

Measures 

Fatalities/ 100 Million 

VMT 

Serious Injuries/100 

Million VMT 

MAPE RMSE MAPE RMSE 

ARIMA(0,1,0) 7.254 0.158 5.232 0.984 

ARIMA(0,1,1) 7.105 0.162 5.054 1.009 

ARIMA(0,1,2) 7.209 0.168 4.679 0.907 

ARIMA(0,1,3) 6.587 0.167 4.763 0.928 

 

The SARIMA(0,0,5)(0,1,1)12 model was the optimal choice to forecast the number of 

fatalities and serious injuries for Nevada. The data used for the model showed an excellent number 

of observations. In addition, the validation datasets for the years 2013 and 2014 were checked 

against the forecasted data. In 2013, 268 data points were observed versus 269 forecasted fatalities. 

In 2014, 273 were observed versus 284 forecasted fatalities. 

 

Figure 5.5 Forecast of the Rate of Fatalities using the ARIMA(0,1,3) model. 

Observed 

Forecast 

Upper Confidence Limits (95%) 

Lower Confidence Limits (95%) 
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Figure 5.6 Forecast of the Rate of Serious Injuries using the ARIMA(0,1,2) model. 

 

Similar results were obtained for the number of serious injuries. Based on the statistical 

results, the SARIMA model developed in this study was highly reliable in forecasting the number 

of fatalities and serious injuries in Nevada. 

The developed models were included in the Business Intelligence framework using the 

methodology described in Chapter 3, Section 3.2. The crash data was accessed from the source 

crash database, NCATS. Time series models were coded using Oracle R and embedded in 

OBIEE. Dashboard was created to display the results as shown in Figure 5.7. 

Observed 

Forecast 

Upper Confidence Limits (95%) 

Lower Confidence Limits (95%) 
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Figure 5.7 Dashboard Illustrating the Forecast of the Number of Serious Injuries using Time 

Series Models. 

5.4 Conclusions 

This research aimed to forecast traffic-safety performance measures using actual crash data. These 

forecasts could be used to determine targets for future safety-improvement programs and policies, 

when compared to existing methods currently in practice. From the perspective of a state DOT, 

predicting the number of fatalities and serious injuries is of significant importance to meet the 

requirements of MAP-21.  

Historically, aspirational methods or models based on five years moving average 

projections have been used by public sector agencies. However, these methods and models may 

not be in line with actual data or adequate statistics. In many cases, such projections have led to 

grossly overestimating or underestimating traffic safety, leading to excess expenditures on safety 
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improvement programs or the loss of valuable lives. Decision-makers need to have access to robust 

crash-forecast models that enable them to prioritize and implement realistic and economically 

viable safety policies and programs. In this research, deterministic and stochastic models were 

developed to address this requirement. The best model specification was obtained using RMSE 

and MAPE as the goodness-of-fit.  

In the case of deterministic models, the Winter-additive model for seasonal data and the 

Damped-trend model for non-seasonal data provided adequate forecasts. In the case of stochastic 

models, although the ARIMA model had an acceptable goodness-of-fit for non-seasonal data, the 

sample size (19 data points) is small according to Wei (Wei, 1990) who suggested a sample size 

with a minimum of 50 observations. The absence of large datasets likely will preclude an 

appropriate estimation when using the ARIMA (p, d, q) model (Wei, 1990; Harvey, 1990).  

The SARIMA model was determined to be the best for use with Nevada data. Specifically, 

the stochastic SARIMA(0,0,5)(0,1,1) model seemed to be an improved model with a preferred fit 

for predicting the number of fatalities and serious injuries over a five-year horizon. This SARIMA 

model could be an appropriate statistical tool to predict fatalities and serious injuries, and an 

excellent asset for state DOT requirements of MAP-21. The methodologies used in this study were 

generalized and could be applied to time-series crash datasets in other states. 

Further research that is recommended includes applying additional exposure and safety-

intervention variables to the models in order to capture the effect of those variables on the 

forecasted number of fatalities and serious injuries. 
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CHAPTER 6 

CONCLUSIONS, CONTRIBUTIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

This dissertation proposes a comprehensive business intelligence framework for network-level 

traffic safety analysis. The proposed framework addresses both methodological and practical 

barriers to enable practitioners to use theoretically sound methods. This research focused on 

comprehensive network screening analysis and regional level forecasts of performance measures 

to reduce fatalities and serious injuries for performance based traffic safety.  

To facilitate quality control and benefit from existing resources, results were compared 

with those obtained using Safety Analyst, a state-of-the-art software. Algorithms from the HSM 

were reimplemented and used to perform network screening. A comprehensive database system 

was developed to provide data to multiple applications for traffic safety engineering and other 

potential needs. Furthermore, a methodology and guidelines are provided to develop similar 

databases from the existing, readily available data sources of state DOTs and/or MPOs. In 

particular, the proposed database system has the capability to provide data to Safety Analyst, a 

state-of-the-art highway safety management software. Although Safety Analyst provides 

tremendous analysis capabilities, few agencies take advantage of these capabilities because 

significant data needs, complex development of the required inputs is involved, and lack of 

experience and knowledge in creating the inputs as well as using the software.  

The proposed database system, along with its data management and visualization tools, 

provides significant support to circumvent these barriers. To test the proposed system and tools, 
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data from Clark County was used to develop a database and perform the analyses with Safety 

Analyst. Specifically, this study examined the results from two case studies. The first case study, 

which identified sites having a potential for safety improvements with respect to fatal and all 

injury crashes, included all roadway elements and used default and calibrated Safety Performance 

Functions (SPFs). The second case study identified sites having a potential for safety 

improvements with respect to fatal and all injury crashes, specifically regarding intersections; it 

used default and calibrated SPFs as well. Guidelines were provided about the selection of a 

particular network screening type or performance measure for network screening. The proposed 

system enables the use of state-of-the-art traffic safety tools to support the development of federal 

requirements as well as to develop better traffic safety solutions for existing and emerging 

problems. The results obtained from this analysis are used as bench mark for further tasks.   

Currently, practitioners are choosing easy-to-implement legacy methodologies which may 

lead to identification of incorrect sites with safety needs, thus resulting in inefficient traffic safety 

management. Traditionally, separate tools are used to integrate, process, and manage data; for 

modeling analysis; and to visualize the results. However, this traditional approach may result in 

data processing replication; it requires technical knowledge and consumes significant time. Hence, 

this research aimed to develop a comprehensive BI framework to enable practitioners to use 

existing as well as new, proposed here, theoretically sound methodologies with less effort, 

knowledge and time. The proposed framework was developed to address barriers associated with 

data integration, management, and visualization for the implementation of theoretically sound 

methodologies such as those in the HSM and expansions proposed here. The outcome is a single 

framework that accesses the data from a source, integrates and manages the data, processes 

analytical models, and provides results by means of a web-based interface. With the proposed 
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framework, network screening algorithms from the HSM were implemented. Network screening 

results produced by this framework were verified using results from Safety Analyst. Intuitive 

dashboards created for analysis and results enable to use the proposed framework with little effort.  

A corridor level  network screening approach  based  on  the  Empir ica l  Bayes  

method was  proposed  and  implemented for Fixed Corridor and Corridor Search 

algorithms. In contrast to the existing methods for corridor screening, expected crash 

frequencies were used, instead of observed crash frequencies or rates, to address the regression-

to-the-mean bias for selecting corridors with potential for safety improvements. Top ranked 

corridors obtained using the proposed approach for corridor-level network screening were 

compared with ranked corridors using rate and frequency methods. The order of ranks of the 

corridors are completely different as a consequence of using a theoretically sound approach. 

To improve the estimation of predicted crash frequency, SPFs for crash severity were 

estimated considering simultaneously crash patterns and associated explanatory characteristics. 

The objective was to minimize the estimation error by considering multiple SPFs (or 

clusters) rather than a single SPF for a given site and/or crash type. A mathematical program 

was formulated to assign similar crash  sites i n to clusters and simultaneously seek sets of 

parameter values for the corresponding SPFs that maximize the probability of observing the 

data. A solution algorithm was developed using simulated annealing coupled with maximum 

likelihood estimation. Two site subtypes from Clark County, Nevada, were analyzed: 1) 

roadway segments for urban multi-lane divided arterials, and 2) urban 4-leg signalized 

intersections. The results obtained from the proposed approach were compared with the 

results obtained using a single SPF. Models were validated and results using multiple SPFs 
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improved the predicted number of crashes. In addition, the proposed approach to estimate SPFs 

improved the network screening results. 

For performance based traffic safety analysis, to reduce fatalities and serious 

injuries, this research aimed to forecast traffic-safety performance measures using actual 

crash data. These forecasts could be used to determine targets for future safety- 

improvement programs and policies including MAP-21, when compared to existing 

methods currently in practice. In this research, deterministic and stochastic models were 

developed to address this requirement. The SARIMA model was determined to be the best 

for use with Nevada data. This SARIMA model could be an appropriate statistical tool to 

predict fatalities and serious injuries, and an excellent asset for state DOTs to use to meet 

the requirements from MAP-21. 

6.2 Research Contributions 

The first contribution of this research is a theoretically sound methodology for corridor 

level network screening. The proposed methodology was developed, implemented, and tested 

using actual crash data from the state of Nevada. Subject to a corridor length and step size, the 

proposed methodology estimates expected crash frequency for all roadway elements including 

segments, intersections, and ramps, within the corridor. Corridors are searched and ranked for 

the entire network. The use of expected crash frequency for corridor-level network screening is 

in contrast to existing methods which use observed crashes or associated rates which are subject 

to regression to the mean bias. 

For network screening analysis, predicted crash frequency is a key component in 

estimating the expected crash frequency. The second contribution of this research is a 



  

118 

methodology for the estimation of multiple SPFs for a site or crash subtype based on crash 

patterns and associated explanatory characteristics. Multiple SPFs for a single site or crash 

subtype are able to better capture crash patterns and use explanatory information. Clusters of 

data are created by grouping records based on crash patterns and associated characteristics.  The 

proposed methodology uses clusterwise regression to assign crash sites into clusters and estimate 

the coefficients of the corresponding SPFs simultaneously.  To the best of author’s knowledge, 

no previous study has attempted to utilize clusterwise regression to estimate the regression 

parameters for SPFs. The results of network screening analysis using the proposed methodology 

indicated better results than those obtained from traditionally calibrated SPFs.  

The third contribution of this research involved the investigation of forecasting 

performance measures for traffic safety using deterministic and stochastic time series models. 

Results indicated that the stochastic time series models are best to use with Nevada data. Current 

practice is not based on a statistically sound methodology but rather relies on simplistic 

approaches such as moving averages. With an accurate statistically validated forecast models, 

projections of traffic safety performance measures are not expected to be over or underestimated. 

With access to robust crash-forecast models, decision-makers can prioritize and implement 

realistic and economically viable safety policies and programs. 

Finally, a practical contribution of this research is the development of a single web-based 

BI framework to access and integrate source data, generate theoretically sound traffic safety 

analyses and provide visualization capabilities. The proposed framework reduces the effort and 

advanced technical knowledge required to perform traffic safety analysis using theoretically 

sound methodologies including the ones developed as part of this research as well as those 

recommended by the HSM. The proposed framework was tested using data from Nevada. Most 
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agencies use similar source data to perform traffic safety analysis. Considering that data 

management is automated, each year, development cost and time are minimized to perform 

analysis and visualize the desired results. 

6.3 Future Research Recommendations 

The field of data science is evolving exponentially with new techniques. As this research 

explored BI concepts and frameworks for traffic safety analysis, several future research 

directions arise and could be investigated. These include: 

1) The data management procedures and algorithms were embedded within the proposed BI 

framework. However, no effort was spent on optimizing scripts to save computer resources 

and running time. 

2) To complete the traffic safety management process, along with proposed network 

screening analysis, diagnosis, countermeasure selection, economic 

3) analysis and priority ranking, and countermeasure evaluation algorithms should be 

developed and included within the proposed framework. This will result in a 

comprehensive traffic safety management process. 

4) The mathematical program for the estimation of SPFs utilizing clusterwise regression 

should be expanded to include only significant explanatory variables. This will include 

cluster specific significant explanatory variables which may result in more accurate 

parameters for SPFs than the ones determined using the methodology proposed in this 

research. In addition, the mathematical program can be improved to determine the 

optimum number of clusters as one of the decision variables. 
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5) The mathematical program used for the estimation of SPFs can be tested with various 

alternate objective functions such as t h e  Bayesian Information Criteria, Total Absolute 

Bias and Sum of Absolute Residuals. This could produce better goodness of fit and 

parameter estimates. 

6) Similar to alternate objective functions, various model equations for SPFs can be tested. 

In this research, a multiplicative power model equation was used. Some examples of other 

model equations include polynomial, logistic, Weibull, exponential, Hoerl, Sigma, and 

combinations of Weibull and linear. There is less guidance available on which model 

form to choose on which type of data. For the same data, estimating with different model 

functions may differ in the parameter estimates. 

7) Currently, Negative Multinomial distribution has been chosen based on characteristics 

of the available data. The proposed framework could be expanded to perform 

exploratory data analysis (EDA). Based on the results of EDA, appropriate distribution 

such as Poisson, Negative Binomial, Zero- inflated Poisson, Zero-inflated Negative 

Binomial, hurdle models can be chosen. 

8) For performance based traffic safety program, methods to forecast performance measures 

were provided in this research. Future research can include the development of a 

methodology to set realistic targets to reduce fatalities and serious injuries. Realistic 

targets should be set based on data-driven analysis. Historically, DOTs spent their 

monitory resources on various counter measures to reduce fatalities and serious injuries. 

Budget-to-cost (BC) ratio should be estimated for implemented countermeasures on 

various critical emphasis areas and countermeasure evaluation. With future estimated 

budgets available, selection of countermeasures should be optimized to provide large BC 
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ratios as well as high reduction of fatalities and serious injuries. With the selected 

countermeasures, estimation of reduction in fatalities and serious injuries should be 

accounted during the target setting process.
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