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ABSTRACT 

Ozonation in Water Reuse: Formation and Mitigation of N-Nitrosodimethylamine 

 

 

by 

 

Erica Jean Marti 

 

Dr. Jacimaria Ramos Batista, Examination Committee Chair 

Professor, Department of Civil and Environmental Engineering and Construction 

University of Nevada, Las Vegas 

 

 

 Formation of N-nitrosodimethylamine (NDMA) is a substantial concern for drinking water 

and water reuse. NDMA, a probable human carcinogen, is formed when water is disinfected with 

chloramines and ozone. This research focused on three issues regarding NDMA formation and 

mitigation. The first issue involved understanding the compounds (i.e., precursors) present in 

water and wastewater that react with ozone to form NDMA. Model precursors were identified 

and molar yields for NDMA formation were determined. The model precursors form high 

amounts of NDMA with ozone, but form very little NDMA with chloramines, which means there 

are two distinct groups of NDMA precursors: ozone-reactive and chloramine-reactive. An 

investigation into factors that affect NDMA formation resulted in understanding that bromide 

enhances NDMA formation for some precursors and elimination of hydroxyl radicals, which are 

produced during ozonation, leads to higher NDMA formation. Comparison of three oxidants, 

molecular ozone, hydroxyl radicals and dissolved oxygen, revealed that molecular ozone is the 

agent responsible for NDMA formation.  

 The second issue addressed the strategic use of disinfection oxidants, alone and in 

combination, to minimize disinfection byproduct (DBP) formation. This study compared the 
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formation and reduction of NDMA and two groups of regulated drinking water DBPs 

(trihalomethanes (THMs) and haloacetic acids (HAAs)) in treated wastewaters using seven 

disinfection treatment schemes. The top two treatment schemes resulting in the lowest total DBP 

formation, after converting concentrations to an equivalent unit based on drinking water risk, 

were ozonation and ozonation-chloramination. Both treatment schemes also exhibit several 

advantages for application in water reuse situations. It was demonstrated that pre-chlorination 

can reduce NDMA formation by inactivating ozone-reactive NDMA precursors, but DBP trade-

offs must always be addressed because chlorination causes THM and HAA formation. 

 The third issue investigated non-optimized biofiltration to mitigate NDMA formation by 

removing NDMA precursors prior to disinfection with ozone or chloramines. NDMA precursor 

removal (ranitidine (RAN), daminozide (DMZD), 2-furaldehyde dimethylhydrazone (2-F-DMH) 

and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide (TMDS)) and DBP 

formation potential (NDMA, THMs, HAAs) in treated wastewater were assessed before and after 

biofiltration using three anthracite-containing columns with different contact times. Precursor 

removal varied (RAN: 6-7%; DMZD: 73-85%; 2-F-DMH: 15-27%; TMDS: 11-24%) and was 

correlated to dissolved oxygen concentration or correlated to contact time for some precursors. 

The investigated wastewater was phosphorus-limited and had low dissolved oxygen. NDMA, 

THM, and HAA precursor removal may be increased through optimization of the biofilter media 

and the nutrients available for bacteria growth. 
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CHAPTER 1  

INTRODUCTION 

As potable water demands rise and water shortages occur, more communities are considering 

reuse of wastewater as an option for increasing their overall water supply. Ozone is effective for 

treating pathogens and trace organic contaminants and, therefore, is a promising treatment 

technology for potable water reuse applications (Gerrity and Snyder 2011). However, the 

formation of ozone byproducts, such as N-Nitrosodimethylamine or NDMA (Figure 1.1), is an 

issue that could limit the use of ozone for potable water reuse. 

 

 

Figure 1.1: Structure of NDMA. 

 

NDMA has received substantial attention as a contaminant of concern in water and 

wastewater. It is classified as a B2 probable human carcinogen by the United States 

Environmental Protection Agency (USEPA) (USEPA 2014c). NDMA is on the Third US EPA 

Contaminant Candidate List (USEPA 2014a) and it was part of the second Unregulated 

Contaminant Monitoring Rule (UCMR2) (USEPA 2013), which are steps leading to contaminant 

regulation in drinking water. The E-6 (1 in 1,000,000) cancer risk level for NDMA in drinking 

water is 0.7 ng/L (USEPA 2016). The State Water Resources Control Board in California has set 

a drinking water notification level of 10 ng/L (CEPA 2014), while Health Canada has a 

maximum acceptable concentration of 40 ng/L (Health Canada 2011) and the World Health 
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Organization has a guideline of 100 ng/L for drinking water (WHO 2008). In comparison, the 

levels of disinfection byproducts currently regulated by the USEPA are 80 ppb for total 

trihalomethanes (THMs) and 60 ppb for total haloacetic acids (HAAs). At 10 ng/L or 10 ppt, 

NDMA might be regulated at a 1000-fold lower level due to its high toxicity. 

There are two main routes by which NDMA ends up in water and wastewater: direct 

anthropogenic sources of NDMA and formation due to disinfection. The latter is a greater 

concern because disinfection is a standard process used in water treatment and formation of this 

carcinogen is a widespread issue in the U.S. with NDMA detected above 2 ng/L at 25% of the 

1,162 utilities that participated in the UCMR2 study (Woods and Dickenson 2015). Direct 

sources of NDMA may be found in wastewater due to rubber and circuit board manufacturing or 

rocket fuel production (ATSDR 1989; Mitch et al. 2003b); however, this is a localized issue 

related to particular industries. NDMA formation due to disinfection is widespread and affects 

both drinking water and wastewater. NDMA is formed by disinfection with ozone and 

chloramines, either by addition of chloramines directly or by chlorination of wastewater with 

ammonia present (Nawrocki and Andrzejewski 2011). While the majority of the research has 

focused on NDMA formation with chloramines, this dissertation investigates NDMA formation 

due to ozonation. 

The motivation for this work is to fill research gaps about the formation of NDMA due to 

ozonation of wastewater and to examine mitigation strategies to reduce NDMA formation with 

ozone. Research gaps include limited knowledge of ozone-reactive NDMA precursors, a lack of 

understanding of the mechanisms for NDMA formation with ozone, and techniques to prevent 

NDMA formation with ozone. Understanding the precursors and the reactions that lead to 

NDMA formation may help with water reuse source control (i.e., selecting wastewaters which do 
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not contain the precursors), pretreatment for precursor removal, and optimizing ozonation 

processes to avoid NDMA formation. Once NDMA is formed, the technologies for removal, 

such as reverse osmosis or ultraviolet irradiation, are costly and energy intensive (Plumlee et al. 

2014). Preventing NDMA formation with mitigation strategies, like pre-chlorination and 

biofiltration, could save time and money. Pre-chlorination may be a simple and effective method 

to minimize NDMA formation during ozonation. Research has already shown that free chlorine 

contact substantially reduces NDMA formation caused by chloramination (Charrois and Hrudey 

2007), but similar evidence for NDMA formation with ozone is lacking. On the other hand, since 

chlorination may also result in disinfection byproducts (DBPs), it is necessary to evaluate the 

trade-offs in DBP formation between these two disinfection methods. Additionally, biofiltration 

of wastewater prior to disinfection may reduce NDMA by eliminating NDMA precursors before 

ozonation and without an increase in regulated DBPs. Ultimately, this research will provide a 

strong foundation for understanding NDMA formation by ozonation, which is essential for 

furthering ozone as an effective water reuse treatment technology. 

This research addresses three important issues related to NDMA formation in water reuse 

applications: 

1.1 Issue One: Determining Ozone-reactive NDMA Precursors 

While NDMA formation due to ozonation of wastewater, groundwater, and surface water has 

been established (Gerrity et al. 2015; Hollender et al. 2009; Kosaka et al. 2014; Schmidt and 

Brauch 2008; Sgroi et al. 2014; von Gunten et al. 2010), only a handful of ozone-reactive 

precursors have been identified in source waters (Table 1.1). These compounds include 

hydrazines, semicarbazides, sulfamides, and dimethylamines. In particular, compounds with 

dimethylamine bonded directly to a nitrogen atom or compounds with dimethylamine separated 
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from a second nitrogen by a good leaving group (e.g., SO2) form NDMA with significant molar 

conversion yields (i.e., 10-80%) (Kosaka et al. 2009; Schmidt and Brauch 2008). The chemical 

structures can be symbolized as (CH3)2N-N-R for the dimethylamine bonded to a nitrogen atom 

or (CH3)2N-L-N-R for the dimethylamine with a good leaving group between the nitrogens.  

Other classes of compounds may also exhibit high NDMA formation upon ozonation. It is 

hypothesized that hydrazones and carbamates with two methyl groups are ozone-reactive 

precursors (Figure 1.2). These compounds fit the (CH3)2N-N-R and (CH3)2N-L-N-R 

arrangements, respectively. Hydrazones may have a similar mechanism to hydrazines for 

NDMA formation, but the double bond may be more reactive. As described in more detail in 

Chapter Two of this dissertation, the nitrogen atoms in dimethylsulfamide (Table 1.1) are 

separated by sulfur dioxide (SO2), which leaves as a gas during the ozonation reaction. Similarly, 

the nitrogen atoms in carbamates are separated by carbon dioxide (CO2). The carbamate 

compounds may undergo decarboxylation and lose CO2 in order to form a nitrogen-nitrogen 

bond for NDMA. 

It is important to distinguish between chloramine-reactive and ozone-reactive NDMA 

precursors. Chloramine-reactive NDMA precursors react strongly with chloramines to form 

NDMA and have a general structure of (CH3)2N-R, where R is a carbon atom in, for example, an 

alkane chain, cyclic ring or benzene ring. These compounds have very low molar yields for 

NDMA formation with ozone, usually less than 0.01% (Oya et al. 2008; Padhye et al. 2013). On 

the other hand, ozone-reactive NDMA precursors, such as those shown in Table 1.1, react 

strongly with ozone to form NDMA. Likewise, these compounds have much lower molar yields 

for NDMA formation with chloramines as compared to ozone. Because these compounds react 
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differently with ozone and chloramines, it is beneficial to treat them as distinct groups of NDMA 

precursors. More details are provided in Chapter Two.  

A goal in this research is to identify model compounds that are ozone-reactive NDMA 

precursors. These compounds will represent various chemical classes that include different 

structural moieties to determine the influence of chemical structure on NDMA formation. 

Furthermore, experimental work to address Issue One will investigate other parameters that 

affect NDMA formation, such as ozone dose, oxidant type (i.e., molecular ozone, hydroxyl 

radical and dissolved oxygen), and matrix components (e.g., presence of bromide, wastewater 

effluent organic matter, and natural organic matter). The information gained from these 

experiments will fill research gaps on the limited knowledge of ozone-reactive NDMA 

precursors and factors affecting NDMA formation. 

 

 

 

 

 

 

      hydrazone            carbamate  

 

Figure 1.2: General structures of dimethylhydrazone and dimethylcarbamate compounds that 

could be NDMA precursors. 
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Table 1.1: Structures and molar yield formations of ozone-reactive NDMA precursors that have 

been identified in wastewater, ground water or surface water. 

Compound Name  

[Molar Yield] 

Structure Description Reference 

Dimethylsulfamide (DMS) 

[52%] 

sulfamide 

 

Decomposition 

product of fungicide 

tolylfluanid 

Schmidt and 

Brauch 2008 

Daminozide 

 

[55%] 

hydrazine 

 

Plant growth regulator Schmidt and 

Brauch 2008 

1,1-dimethylhydrazine 

(UDMH) 

[80%] 

hydrazine 

 

Rocket fuel, 

decomposition product 

of daminozide 

Schmidt and 

Brauch 2008 

1,1,1′,1′-tetramethyl-4,4′-

(methylene-di-p-phenylene) 

disemicarbazide (TMDS) 

[27%] 

semicarbazide Yellow inhibitor and 

light stabilizer for 

polyamide resins 

Kosaka et 

al. 2009 

4,4'-hexamethylenebis(1,1-

dimethylsemicarbazide) 

(HDMS)     [10%] 

semicarbazide 

 

 

Yellow inhibitor and 

light stabilizer for 

polyamide resins 

Kosaka et 

al. 2009 

polyDADMAC 

 

[Not available] 

dimethylamine 

 

 

 

Coagulant Padhye et al. 

2011 

Zinc 

dimethyldithiocarbamate 

(DMDTC) or Ziram 

[0.008%] 

dimethylamine 

 

 

Root-control 

fungicide, metal 

precipitation 

Padhye et al. 

2013 

1,1,5,5-

tetramethylcarbohydrazide 

(TMCH) 

[146%] 

hydrazine Used to prevent 

deterioration of paper 

Kosaka et 

al. 2014 
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1.2 Issue Two: Investigating Pre-chlorination as a Mitigation Strategy for NDMA 

Formation 

Chloramine-reactive NDMA precursors can be deactivated with pre-oxidation by 

disinfectants such as chlorine, chlorine dioxide, and ozone (Charrois and Hrudey 2007; Shah et 

al. 2012). A similar investigation for ozone-reactive NDMA precursors would be valuable, 

but has not been performed to date. A bench-scale study for nitrosamine formation and 

mitigation investigated eleven different treatment trains, but pre-chlorination and ozonation was 

not reported (Zhao et al. 2008). Recently, Selbes et al. (2014), examined pre-oxidation of various 

chloramine-reactive and ozone-reactive NDMA precursors by chlorine, chlorine dioxide and 

ozone prior to chloramine disinfection (e.g., chlorine-chloramine, ozone-chloramine). However, 

additional oxidant combinations (e.g., chlorine-ozone and chlorine-ozone-chloramine) were 

not studied and, to the author’s knowledge, have not been investigated for ozone-reactive 

precursors. 

Chlorine is a strong, non-selective oxidant that reacts with a wide variety of organics. It is 

hypothesized that chlorine will react with ozone-reactive NDMA precursors and that 

subsequent ozonation will result in reduced NDMA formation. Table 1.2 lists the options that 

will be investigated to reveal the differences in NDMA formation due to single and combined 

oxidants. Certain combinations (e.g., ozone-chlorine, ozone-chlorine-chloramine, ozone-

chloramine-chlorine) will not be examined because it is known that NDMA formation will be 

high if ozone-reactive precursors are not pre-treated.  

Since chlorination results in the formation of regulated DBPs, such as trihalomethanes 

(THMs) and haloacetic acids (HAAs), it is important to look at the overall DBPs formed by each 

treatment. Along with NDMA analysis, THMs and HAAs will be quantified for the parallel tests. 
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It is hypothesized that concentrations of THMs and HAAs will be increased with pre-

chlorination of wastewater, while NDMA concentrations will be decreased due to reaction 

of the precursors with chlorine prior to ozonation.  

It is expected that there will be increases and decreases in the DBPs formed by the different 

treatments. For example, chlorination may increase THMs while reducing NDMA formation. 

THMs, HAAs, and NDMA vary in toxicity. Therefore, the DBP concentrations will not be 

summed directly, but rather normalized to a common unit based on toxicity. This approach will 

allow for an examination of the trade-offs in DBP formation as a result of the different 

treatments. 

 

Table 1.2: Single and combined oxidation treatments for investigating NDMA formation with 

ozone-reactive NDMA precursors. 

Cl2 Cl2-O3 Cl2-O3-CLM 

O3 O3-CLM  

CLM Cl2-CLM  

Cl2 = chlorination; CLM = chloramination; O3 = ozonation 

 

1.3 Issue Three: Investigating Anthracite Biofiltration for NDMA Precursor Removal 

Biodegradation is effective for removing a variety of compounds (van Agteren et al. 1998). 

Full-scale biological activated carbon filters have been shown to reduce NDMA formation 

potential (NDMA-FP) by 80% (Farre et al. 2011a), where NDMA-FP is a test to establish the 

maximum level of NDMA formed by chloramines over ten days. The NDMA-FP test also 

provides a general sense of the amount of chloramine-reactive NDMA precursors present in the 
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water. Biodegradation of several chloramine-reactive precursors (dimethylamine, ranitidine, 

trimethylamine, dimethylformamide, N-dimethyldithiocarbamate, dimethylaminobenzene, 

doxylamine) in activated sludge systems has been studied (Jelic et al. 2011; Radjenovic et al. 

2007; Wang and Li 2015), along with change in NDMA-FP during activated sludge treatment 

(Krauss et al. 2010). Other studies have also shown a decrease in NDMA in wastewater as a 

result of biological sand filtration (Hollender et al. 2009; Zimmermann et al. 2011). While 

several biofiltration studies have targeted chloramine-reactive NDMA precursors (Bond et al. 

2012; Krasner et al. 2013), no studies have specifically focused on removal of ozone-reactive 

NDMA precursors by biofiltration. 

Like pre-chlorination, biofiltration has the potential to remove NDMA precursors prior to 

ozonation or chloramination. This mitigation strategy would reduce NDMA formation in the first 

place, rather than destroy it after it has already been formed. There are limited studies on NDMA 

precursor removal by biofiltration where specific compounds are monitored, as compared to 

studies investigating bulk NDMA precursors with NDMA-FP. Dimethylamine (DMA) was well 

removed (> 90%) in a microcosm study utilizing a mixed culture from a drinking water biofilter 

(Liao et al. 2015). Pilot-scale biological activated carbon successfully removed several 

chloramine-reactive NDMA precursors (doxylamine, roxithromycin, tramadol and venlafaxine) 

by more than 98% (Farre et al. 2011b). A comparative study with ozone-reactive NDMA 

precursors has not been completed. 

While biofiltration has been shown to remove some chloramine-reactive NDMA precursors, 

knowledge gaps remain, including: the process responsible for precursor removal (e.g., sorption 

to media, sorption to biofilm, biodegradation) and the extent of removal for specific NDMA 

precursors. This research task will focus on using biofiltration to remove both chloramine-
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reactive (ranitidine, DMA) and ozone-reactive (daminozide, TMDS, 2-furaldehyde 

dimethylhydrazone) NDMA precursors. Based on previous studies involving biodegradation in 

wastewater and soil, it is hypothesized that DMA and daminozide will be removed to a high 

extent by biofiltration (Liao et al. 2015; Carlsen et al. 2008), while ranitidine will have 

moderate to low removal (Vasiliadou et al. 2013). There is no prior information on TMDS or 2-

furaldehyde dimethylhydrazone (2-F-DMH). TMDS is a semicarbazide and an anti-yellowing 

agent. It is hypothesized that this compound will be poorly removed by biofiltration since it 

persists after wastewater treatment and is found in wastewater-impacted surface waters in 

Japan (Kosaka et al. 2009). Although there is no information on 2-F-DMH degradation, 2-

furaldehyde undergoes anaerobic biodegradation (Rivard and Grohmann 1991) and 

dimethylamine is biodegraded easily (Rappert and Müller 2005). Therefore, since the 

components that form 2-F-DMH are biodegradable, it is hypothesized that 2-F-DMH will 

be removed by biofiltration. 

Several factors affect compound removal by biofiltration, including contact time, media type, 

and temperature. To gain a better understanding of the precursor removal, two parameters will be 

considered: biofilter empty bed contact time (i.e., average time the compounds remain in the 

biofilter) and sorption to filter media. Three empty bed contact times (EBCTs) will be examined 

to see if there is a substantial difference in removal of the precursors. Anthracite will be the 

media used in the biofilters. Unlike activated carbon, sorption of organics to this media is 

relatively low, which means biodegradation or sorption to the biofilm will be the key removal 

mechanisms. Other factors involved in optimizing biofiltration (e.g., dissolved oxygen 

concentration, temperature, nutrients) are not addressed in this research due to time constraints 

and the already established biofiltration column set-up.  
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Several analyses will be conducted to identify removal by biofiltration. Concentration change 

will be monitored before and after biofiltration for the specific precursors, NDMA formation 

potential (ozone and chloramine), and THM/HAA formation potential. Ultimately, results will 

show the extent of removal for the specific precursors, as well as the opportunity for combined 

precursor removal (i.e., NDMA, THMs/HAAs) during biofiltration. 

1.4 Objectives 

Overall, the research encompassed in this dissertation involves understanding the formation 

of NDMA due to ozonation and how to prevent the formation from occurring (i.e., mitigation 

strategies). The specific objectives of this research are to: 

1. Identify compounds that form NDMA upon ozonation. 

2. Determine the influence of ozone dose, oxidant type (molecular ozone, hydroxyl radical, 

dissolved oxygen), and matrix components on NDMA formation with ozone. 

3. Evaluate pre-chlorination as a mitigation strategy to reduce NDMA formation with 

ozone. 

4. Determine trade-offs in disinfection byproduct formation resulting from various 

combinations of disinfectants. 

5. Evaluate the removal of NDMA precursors during non-optimized biofiltration at various 

empty bed contact times.  
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CHAPTER 2       

STATE OF THE KNOWLEDGE 

2.1 Disinfection Byproducts 

Water and wastewater are disinfected in order to destroy or inactivate pathogens. When 

chemical oxidants are used for disinfection, they can react with organic and inorganic matter in 

the water. These unintentional reactions form disinfection byproducts (DBPs). The first DBPs 

were discovered in the 1970s as a result of chlorine disinfection or chlorination (Bellar et al. 

1974). The two classes of organic DBPs regulated in U.S. drinking water are trihalomethanes 

(THMs) and haloacetic acids (HAAs), and they are formed through chlorination (USEPA 

2014b). THMs and HAAs are carcinogenic and regulated in drinking water at total 

concentrations of 80 μg/L and 60 μg/L, respectively. Many water treatment plants switched to 

chloramines as an alternative disinfectant to reduce THM and HAA formation. However, other 

DBPs are formed with chloramines, including N-Nitrosodimethyalmine (NDMA) and other 

nitrogeneous DBPs. Another alternative disinfectant, ozone, forms bromate and NDMA as DBPs 

(Karanfil et al. 2008; Richardson 2003). Changing disinfectants has only led to the formation of 

different DBPs, rather than eliminating DBPs. 

 

2.2 NDMA Occurrence 

2.2.1 Drinking Water 

The national Unregulated Contaminant Monitoring Rule (UCMR2) study provides 

comprehensive data about NDMA and other nitrosamines in U.S. drinking water. As shown by 

UCMR2 data, NDMA is more associated with chloramination than chlorination and was detected 

in 34% of treatment plants using chloramines (Russell et al. 2012). Overall, 25% of the treatment 
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plants in the UCMR2 study had detectable NDMA with an average of 9.0 ng/L and reaching a 

maximum of 630 ng/L. NDMA was detected at treatment plants in all but six states and with 

higher frequency for small and medium utilities. Surface water sources resulted in higher NDMA 

formation as compared to groundwater sources (Woods and Dickenson 2015). NDMA 

concentrations are often higher within the distribution system compared to effluent leaving the 

drinking water treatment plant because of longer chloramine exposure time (Boyd et al. 2011). 

2.2.2 Wastewater 

Chlorination of wastewater containing ammonia and chloramination of wastewater can form 

high NDMA concentrations. In one occurrence survey with 23 wastewaters, NDMA 

concentrations as high as 3,165 ng/L were found in chloraminated systems and the median 

concentration was 11 ng/L (Krasner et al. 2009a). Another study of 12 wastewaters found 

NDMA concentrations from <10 to 80 ng/L in influents and formation increase (relative to 

influent concentration) up to 298% after ozonation (Yoon et al. 2011). A recent study focusing 

on wastewater treatment plants (WWTPs) utilizing ozone found NDMA formation at seven out 

of eight WWTPs, with final concentrations ranging from 5.2 ng/L to 143 ng/L (Gerrity et al. 

2015).  

 

2.3 NDMA Formation 

Many different reactions are responsible for nitrosamine formation during drinking water and 

wastewater treatment. Several formation mechanisms have been identified, but many others 

require more investigation. The three main formation pathways include chloramination, 

nitrosation and ozonation. 
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2.3.1 Formation Pathways 

Chloramination 

Previous research has focused on chloramination as the main disinfection process that forms 

NDMA. This process can be direct chloramination or chlorination of wastewater containing 

ammonia. Originally, the reaction was thought to be nucleophilic substitution between 

monochloramine and a secondary amine (Figure 2.1a). This reaction resulted in unsymmetrical 

dimethylhydrazine (UDMH), which was subsequently oxidized by chloramines to form NDMA 

(Choi and Valentine 2002; Mitch and Sedlak 2002). Subsequent research into the pathway 

provided evidence on reaction rates and intermediates, which caused the mechanism to be 

revised (Figure 2.1b). The modified pathway involves the reaction of dichloramine and a model 

secondary amine, dimethylamine (DMA), which forms chlorinated unsymmetrical 

dimethylhydrazine (Cl-UDMH) as an intermediate. Dissolved oxygen oxidizes Cl-UDMH to 

NDMA (Schreiber and Mitch 2006). Consequently, NDMA formation may be greater in aerated 

processes for water and wastewater treatment. The conversion yield of DMA to NDMA varies in 

the literature, but it is < 3% molar yield when controlling the order of ammonia and chlorine 

addition (Mitch et al. 2005). Although DMA appears to be an intermediate for precursors such as 

polyDADMAC (Padhye et al. 2011), the high molar yields for other tertiary amines (i.e., 90% for 

ranitidine) indicate there may be other mechanisms leading to NDMA formation that do not have 

a DMA intermediate. 

Nitrosation 

Nitrosation involves the reaction of nitrite and chlorine. At a low pH, hypochlorous acid and 

nitrite form one of two dinitrogen tetroxide (N2O4) tautomers (Figure 2.1c), which are isomers 

that interconvert into one another easily. One tautomer reacts with DMA to form NDMA, while 
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the other tautomer results in the nitrated-amine. The impact of the nitrosation reaction is minor 

due to the very low molar yield (< 0.0007%) and this formation pathway is more likely to occur 

in wastewater than in drinking water due to the availability of nitrite (Shah and Mitch 2012).  

 

 

 

Figure 2.1: Proposed mechanisms for NDMA formation via a) chloramination of dimethylamine, 

b) revised chloramination of dimethylamine, c) nitrosation of dimethylamine, and d) ozonation 

of dimethylsulfamide (Shah and Mitch 2012). 
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Ozonation 

More recently, oxidation by ozone has been shown to directly form NDMA when precursors 

are present (Hollender et al. 2009; Kosaka et al. 2009; Kosaka et al. 2014; Marti et al. 2015; Oya 

et al. 2008; Schmidt and Brauch 2008; Zimmermann et al. 2011;). Very little is known about the 

formation pathway and any intermediates that are formed; however, it is unlikely that DMA is an 

intermediate since the molar yield for DMA with ozone is < 0.4% (Andrzejewski et al. 2008) and 

some of the known precursors (i.e., UDMH, daminozide and dimethylsulfamide) have molar 

yields above 50%. Also, ozonation of tertiary amines mainly results in the formation of 

aldehydes (Munoz and von Sonntag 2000). Von Gunten et al. (2010) proposed a mechanism for 

NDMA formation from dimethylsulfamide (DMS) (Figure 2.1d). The mechanism is bromide-

catalyzed and results in the loss of –SO2 as a leaving group, after which the two nitrogen atoms 

are joined. Recent quantum chemical calculations suggest a pathway involving two brominated 

intermediates and rule out pathways involving Br-UDMH or ozonide complexes as intermediates 

(Trogolo et al. 2015). UDMH conversion to NDMA is likely simple oxidation, but formation 

mechanisms for other precursors have not been identified. 

2.3.2 Precursors and Molar Yields 

Chloramine-reactive and ozone-reactive NDMA precursors differ in structure. Chloramine-

reactive precursors, such as diuron and ranitidine, have a tertiary dimethylamine moiety. Some of 

the most frequently studied chloramine-reactive precursors are shown in Table 2.1. One research 

group looked at 20 pharmaceutical compounds and found eight with > 1% NDMA molar yield 

(Shen and Andrews 2011). Some quaternary amines are also chloramination precursors for 

NDMA, such as the coagulant polymer poly(diallyldimethylammonium chloride) or 
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polyDADMAC and benzalkonium chloride, which is a compound used as a surfactant in 

detergents and as a biocide in personal care products (Kemper et al. 2010). 

 

Table 2.1: Examples of chloramine-reactive NDMA precursors. 

Compound Name Structure Description Reference 

Dimethylamine 

 

NH

CH3

CH3 
 

Commonly found in 

wastewater, feces, urine, 

algae and plants; can be 

found in herbicides 

Mitch et al. 

2003b 

Ranitidine  

 

 
 

Stomach acid inhibitor; 

pharmaceutical 

Shen and 

Andrews 2011 

Trimethylamine N

CH3

CH3CH3  

Commonly found in 

wastewater, feces and urine 

Mitch et al. 

2003b 

Diuron 

 

 

Herbicide 
Chen and 

Young 2008 

Benzalkonium 

chloride 

 

N
+

CH3

CH3

C12H25

Cl
-

 
 

Quaternary amine used in 

personal and consumer 

products 

Kemper et al. 

2010 

PolyDADMAC N
+

CH3
CH3

  

Cl
-

n 

Coagulation polymer 
Park et al. 

2009 

Dimethyl-

dithiocarbamate 

(DMDTC) 

 

N

CH3

CH3

S

S
- Na

+

 
 

Used in manufacturing to 

remove metals and for root-

control in sewers 

Padhye et al. 

2013 
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A commonly used method to determine the amount of chloramine-reactive precursors is the 

NDMA formation potential (NDMA-FP) test. It involves adding a high concentration of 

chloramine to the sample and allowing it to react at room temperature for ten days (Mitch et al. 

2003a). This simulates the potential NDMA formation that could occur in a water distribution 

system with long retention times. In a similar manner, the amount of ozone-reactive NDMA 

precursors can be assessed through a formation potential test (O3-FP) by reacting the sample with 

a high concentration of ozone. Since ozone-reactive NDMA precursors have not been researched 

as much, this FP test is not frequently applied and a consistent protocol has not been 

implemented. 

Natural organic matter (NOM) includes nitrogen-containing compounds which may form 

NDMA. Chen & Valentine (2007) concentrated NOM and analyzed various fractions to 

determine NDMA-FP. The hydrophilic and basic fractions showed the strongest NDMA-FP per 

unit mass, but the hydrophobic acidic fraction had a much greater total mass and contributed the 

largest portion (71%) of the NDMA-FP. Neutral compounds provided only 1.6% of the total 

NDMA-FP, which indicates that the chloramine-reactive precursors tend to be charged 

compounds (Chen and Valentine 2007). In another fractionation experiment, researchers found 

that half of the NDMA precursors in wastewater influent were sorbed to particles, suggesting 

that many precursors are hydrophobic and sorb readily (Krauss et al. 2010). A study on dissolved 

organic nitrogen (DON) in wastewater indicated that NDMA precursors are low-molecular 

weight compounds (< 1 kDa), but not amino acids (Pehlivanoglu-Mantas and Sedlak 2008). 

High molar yield ozone-reactive precursors contain the dimethylamine attached to an 

additional nitrogen (e.g. R-N-N(CH3)2 rather than R-N(CH3)2). An exception is DMS, which has 

the dimethylamine separated from the nitrogen by SO2. Compounds with a dimethylamine 



19 

 

moiety only and no additional nitrogen are not significant precursors for NDMA with ozonation, 

which differs from chloramination precursors. For example, various organic dyes with tertiary 

dimethylamines were shown to have NDMA molar yields < 0.001% (Oya et al. 2008). Dimethyl-

dithiocarbamate (DMDTC) has been shown to form NDMA through oxidation with 

monochloramine and ozone at the same low molar yield, 0.008% (Padhye et al. 2013). 

Much less is known about the precursors forming NDMA through ozonation (Table 2.2) than 

chloramine-reactive NDMA precursors. There are no published fractionation studies that 

identified precursor characteristics (e.g., hydrophobic or hydrophilic) as it relates to NDMA 

formation. Chemical structure (i.e., presence of dimethylamine and additional nitrogen) appears 

to be the most relevant characteristic in predicting NDMA formation. Details for the NDMA 

precursors, including structures and molar yields, are provided in Appendix A. 

2.3.3 Factors Affecting NDMA Formation for Ozone-reactive Precursors 

Certain factors have been shown to impact NDMA formation with ozone, including the 

presence of dissolved ions, ozone dose and, the presence of hydroxyl radicals (•OH). For 

example, bromide has been shown to catalyze the reaction of DMS with ozone (von Gunten et al. 

2010) and bromide can enhance or inhibit NDMA formation with chloramine at different pH 

(Luh and Mariñas 2012). NDMA formation is also dependent on ozone dose. In a model 

compound study, two precursors were individually reacted with ozone at doses ranging from 0.1 

to 1.5 mM O3 in buffered ultrapure water. One precursor showed increased NDMA formation 

from 0.1 to 0.5 mM O3 and then NDMA concentration leveled off. Another precursor showed a 

linear correlation (R
2
 = 0.98) between NDMA formation and ozone dose in the tested range. 

However, it appears that a maximum molar conversion yield was not reached for this compound 

(Marti et al. 2015).  
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Table 2.2: Known ozone-reactive NDMA precursors. 

Compound Name Structure Description Reference 

Unsymmetrical 

dimethylhydrazine 

(UDMH) 

 

N N

CH3

CH3

H

H  

Rocket fuel 

component; 

intermediate in 

NDMA formation 

Schmidt and 

Brauch 2008 

Tolylfluanid 

 

 

Fungicide 
Schmidt and 

Brauch 2008 

Dimethylsulfamide 

(DMS) 

 

NNH2 S

O

O
CH3

CH3

 

Decomposition 

product of 

tolylfluanid 

Schmidt and 

Brauch 2008; 

von Gunten et 

al. 2010 

N,N-dimethyl-N’-(4-

methylphenyl)- 

sulfamide (DMST) 

 

 

NNH S

O

O
CH3

CH3

CH3

 

Tolylfluanid 

metabolite 

Schmidt and 

Brauch 2008 

Daminozide 

 

 

Plant growth 

additive 

Schmidt and 

Brauch 2008 

1,1,1′,1′-tetramethyl-

4,4′-(methylene-di-

pphenylene) 

disemicarbazide  

(TMDS) 
  

Anti-yellowing 

agent 

Kosaka et al. 

2009 
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The presence or absence of hydroxyl radicals affects NDMA formation. Hydroxyl radical 

quenching with tert-butyl alcohol (tBA) was shown to increase NDMA formation from DMS. It 

was presumed that the presence of •OH can 1) result in reactions that form products other than 

NDMA or 2) enhance bromate formation, which limits the catalytic bromide pathway for NDMA 

formation with DMS. Therefore, •OH scavenging with tBA diminishes two pathways that hinder 

NDMA formation (von Gunten et al. 2010). Similarly, Marti et al. (2015) performed parallel 

ozonation tests for ozone-reactive NDMA precursors in buffered ultrapure water with and 

without tBA and found that higher molar yields were obtained when •OH were scavenged. 

Hydroxyl radical quenching could also explain why NDMA molar conversion yields for several 

model compounds were significantly greater in a wastewater matrix compared to ultrapure water 

(Marti et al. 2015). Effluent organic matter in wastewater is known to scavenge •OH (McKay et 

al. 2011). 

 

2.4 NDMA and NDMA Precursor Mitigation Strategies 

Several techniques have been attempted to remove NDMA or prevent its formation. 

Strategies include biodegradation, UV irradiation and photolysis, chemical oxidation and 

advanced oxidation processes (AOP), membranes and reverse osmosis, and adsorption. Since 

NDMA and NDMA precursors vary in size and polarity, mitigation strategies may be effective 

for some compounds, but not for all. 

2.4.1 Biodegradation 

Biodegradation will eliminate NDMA (Sharp et al. 2005) and some of its polar or charged 

chloramine-reactive precursors (Krauss et al. 2010). In biological secondary level wastewater 

treatment, NDMA removal is highly variable (0-75%) and there is no clear relationship between 
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NDMA-FP and wastewater characteristics (i.e., BOD, COD, SS, nitrate, NH4
+
, total N) (Krasner 

et al. 2009b; Sedlak et al. 2005; Yoon et al. 2011). Groundwater contaminated with NDMA from 

rocket fuel production was remediated with an intercept-and-treat system. In 30 days, up to 60% 

was biodegraded with facultative bacteria, but only after the groundwater was treated with 

granular activated carbon (GAC) (Gunnison et al. 2000). NDMA biodegradation is a co-

metabolic process and no microorganisms have been identified that can use NDMA as their sole 

carbon source (Krauss et al. 2010). Initial NDMA concentration is an important factor. If the 

concentration is very low, removal does not occur (Gunnison et al. 2000). 

Biofiltration is an application of biodegradation and may be used in drinking water or 

wastewater treatment. Biofiltration, whether intentional or unintentional, occurs when 

disinfection is not applied directly before filtration and microorganisms grow on the media. 

Contaminant removal may occur through biodegradation, sorption to the media or sorption to the 

biofilm attached to the media. Biofiltration is possible with many media types, including sand, 

anthracite, and activated carbon. An advantage of biological activated carbon (BAC), compared 

to normal GAC operation, is the possibility of bioregeneration, where adsorbed contaminants are 

biodegraded and the sorption capacity of the activated carbon is restored (Aktaş and Çeçen 

2007). 

Biofiltration is effective at decreasing chloramine-reactive NDMA precursors, as well as 

NDMA. In a study that compared different treatment steps using the same influent (i.e., post 

dissolved air flotation and sand filtration), biofiltration alone reduced NDMA-FP by 80% while 

ozonation alone reduced NDMA-FP by 66%. Consequently, biofiltration may be more effective 

at eliminating chloramine-reactive NDMA precursors than ozonation (Farre et al. 2011a). 

Another biofiltration study used activated carbon and immobilized bacteria species, Arthrobacter 
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and Paracoccus, to remove several amines (i.e., dimethylamine, trimethylamine, methylamine) 

from an air stream (Ho et al. 2008). These bacteria species could be useful for eliminating 

NDMA precursors. Other studies showed a decrease in NDMA in wastewater as a result of 

biodegradation through biological sand filtration (Hollender et al. 2009; Zimmermann et al. 

2011). 

2.4.2 Ultraviolet Irradiation and Photolysis 

Ultraviolet (UV) photolysis is effective at eliminating NDMA (Sharpless and Linden 2005). 

NDMA has a strong UV absorption band at 230 nm and a weaker band at 330 nm (Plumlee 

2008). UV irradiation at 254 nm will degrade NDMA, but only at around 10-fold the dose to 

inactivate viruses (Mitch et al. 2003b). A pilot-plant study determined that a UV dose of 540 

mJ/cm
2
 was needed to reduce organic contaminants, including NDMA, by 80%. This was five 

times greater than the disinfection dose needed to inactivate spores (Kruithof et al. 2007). A 

higher UV dose makes this type of treatment costly. Natural photochemical attenuation by 

sunlight is possible due to the NDMA’s weak absorption band at 330 nm. In a previous study, 

NDMA was degraded by 42% in 83 minutes under solar light exposure. Photolysis was hindered 

by dissolved organic matter (DOM) due to light screening (Plumlee 2008). 

Although UV irradiation reduces NDMA effectively, there are a few issues in implementing 

this treatment. A potential problem with UV treatment is that NDMA is degraded to DMA and 

subsequent chloramination, for disinfection purposes, could reform NDMA (Zhao et al. 2008), 

albeit at low concentrations. The UV dose needed to treat NDMA and its associated cost is 

influenced by water quality. Pretreatment with ultrafiltration (UF) and ion-exchange to remove 

hydroxyl scavengers, such as nitrate and NOM, may be needed to reduce energy costs and to 

eliminate NDMA precursors as well (Martijn et al. 2010). Additionally, the presence of 
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hypochlorite, chloramines, aqueous ferric iron, and ozone decrease UV transmittance, which 

negatively impacts the UV dose delivered (Cushing et al. 2001).  

Xu et al. (2009a) investigated factors affecting UV destruction of NDMA. Complete 

degradation occurred at any initial concentration, but the reaction rate decreased with increasing 

initial concentration. Lower pH resulted in greater photodegradation, which was attributed to 

higher quantum yields. NDMA destruction was greater for solutions saturated with oxygen as 

compared to nitrogen and hindered by humic acid, which may be the result of decreased UV 

transmittance (Xu et al. 2009).      

2.4.3 Chemical Oxidation 

Typical oxidants used in water and wastewater treatment are chlorine, ozone, hydrogen 

peroxide and hydroxyl radicals. Fenton reagent (Fe(II)/H2O2) and electrochemical oxidation are 

other possibilities, but these are not employed at full-scale treatment plants. Chlorination above 

breakpoint is known to reduce NDMA formation with respect to chloramine-reactive NDMA 

precursors, but this oxidation process can also result in the formation of regulated chlorination 

DBPs (Charrois et al. 2007; Chen and Valentine 2008). An equivalent study has not been 

completed for ozone-reactive NDMA precursors.  

Rate constants for NDMA destruction with ozone and hydroxyl radical are 1.0 x 10
1
 and 3.3 

x 10
8
 M

-1
s

-1
, respectively (Suthersan and Payne 2004). While ozone is not effective for 

destroying NDMA already formed, it can reduce NDMA-FP (Lee et al. 2007a; Pisarenko et al. 

2012; Shah et al. 2012), which again is with respect to chloramine-reactive NDMA precursors. 

Depending on the types of precursors in the water, ozone can result in direct NDMA formation 

or mitigate NDMA formation, which makes it difficult to predict the net effect. Hydroxyl 

radicals are far more efficient at destroying NDMA; however, constituents in the water (e.g., 
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bicarbonate, effluent organic matter, natural organic matter) may quench hydroxyl radicals and 

in real water matrices the reaction intermediate can transfer its electron and regenerate NDMA. 

This means that actual NDMA destruction by hydroxyl radicals will be lower than expected 

(Mezyk et al. 2004). 

2.4.4 Advanced Oxidation Processes 

Advanced oxidation processes (AOPs) include ozone, ozone with hydrogen peroxide 

(O3/H2O2), UV with hydrogen peroxide (UV/H2O2) and UV with ozone (UV/O3). Most of these 

treatments hinge on the hydroxyl radical as a non-selective oxidant that will react with more 

constituents than UV or ozone alone. 

Adding hydrogen peroxide with ozone does not appear to improve NDMA removal. In a 

pilot-scale study by Pisarenko et al., (2012) O3/H2O2 had little effect on direct NDMA formation 

or NDMA-FP compared to ozone alone. Another study also showed no significant difference 

between ozone and O3/H2O2 for NDMA oxidation (Lee et al. 2007b). On the other hand, Yang et 

al. (2009) observed a large decrease (88%) in NDMA formation potential with chloramines after 

treating DMA in deionized water with O3/H2O2 (Yang et al. 2009). While there is no benefit in 

preventing ozone-derived NDMA, increased •OH from hydrogen peroxide may be useful in 

reducing NDMA-FP by destroying DMA.  

AOPs are influenced by operational factors, such as initial concentration and pH. For 

example, in UV/O3 and UV/H2O2 systems, it was shown that reaction rates were negatively 

affected by increasing the initial concentration (De et al. 1999; Xu et al. 2010). Another 

operational factor, pH, affects AOP performance because species may be protonated or 

deprotonated depending on the pH and hydroxyl radical reactions are pH dependent (Hoigne and 
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Bader 1976). In a study on the destruction of NDEA, UV alone showed high removal with acidic 

and neutral pH, while UV/O3 worked well at any pH (Xu et al. 2010).   

Degradation products may differ with AOP treatments. Increasing the ozone dose resulted in 

higher concentrations of nitrate and lower DMA, but it did not affect the reaction rate. Hydroxyl 

radical reactions favored methylamine (MA) formation over DMA, which is useful in preventing 

regeneration of NDMA (Xu et al. 2009). Adding 1 mM H2O2 to ozone increased DMA removal 

by 30% and decreased NDMA-FP by 88% (Yang et al. 2009). The authors hypothesize that the 

drop in NDMA-FP is because the hydroxyl radical eliminates hydroxylamine, which inhibits an 

NDMA formation pathway. A comparison of UV and UV/ H2O2 revealed that hydrogen peroxide 

does not enhance NDMA degradation due to light screening (Sharpless and Linden 2003); 

however, there was a difference in the transformation products formed. Even though NDMA 

destruction isn’t improved through this particular process, UV/ H2O2 may still have advantages 

in removing other micropollutants while simultaneously removing NDMA (Swaim et al. 2008). 

Chen et al. (2011) investigated DMA formation and NDMA-FP with UV and UV/ H2O2. The 

authors found that increasing the H2O2 dosage and increasing the contact time resulted in less 

DMA formation and consequently lower NDMA-FP (Chen et al. 2011). 

The water quality prior to AOP treatment will influence NDMA formation. Zhao et al. (2008) 

investigated 11 parallel disinfection treatment trains with seven surface waters. NDMA 

formation varied for waters subjected to the same treatment and this was attributed to a 

difference in precursors (Zhao et al. 2008). In comparing secondary effluents after activated 

sludge and membrane bioreactor (MBR) treatments, the ozonated MBR effluent had a much 

lower NDMA concentration (Pisarenko et al. 2012). This suggests that more extensive secondary 
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wastewater treatment, such as membrane bioreactors, may increase the removal of NDMA 

precursors. 

2.4.5 Membrane Filtration and Reverse Osmosis 

Membranes will effectively remove some nitrosamines and precursors. Microfiltration (MF) 

and UF do not remove NDMA precursors (Farre et al. 2011a). In fact, NDMA may increase in 

wastewater treated with microfiltration-reverse osmosis because chloramination is used to 

prevent membrane biofouling (Plumlee et al. 2008). The need to use chloramines for biofouling 

prevention may limit the overall effectiveness of NDMA removal in wastewater by membranes. 

Reverse osmosis (RO) will remove many NDMA precursors (Farre et al. 2011a), but only about 

50% of NDMA due to its small size (Plumlee et al. 2008). 

Many factors affect membrane performance. In one study, ionic strength and pH did not 

influence RO rejection, but artificial fouling with alginate significantly decreased rejection 

(Steinle-Darling et al. 2007). Changes in the feed water may cause fouling, and this will, in turn, 

affect RO rejection (Plumlee et al. 2008). Rejection of NDMA by reverse osmosis and 

nanofiltration is challenging due to NDMA’s low molecular weight and hydrophilic properties; 

thus, other treatment strategies have to be considered for NDMA removal (Yangali-Quintanilla 

et al. 2010). 

2.4.6 Adsorption 

Activated carbon is moderately beneficial for removing NDMA precursors, but not NDMA 

itself. NDMA does not adsorb as strongly as other organic compounds, which is seen by its 

Freundlich isotherm constants (K = 1.07-9.08 µg/g and 1/n = 0.744-1.11) (Kommineni et al. 

2003). Groundwater at Rocky Mountain Arsenal, a rocket fuel production site, was remediated 

with GAC, carbonaceous resins (synthetic carbon adsorbent, e.g., Ambersorb), zeolite, silica, 
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acidic hydrolysis, and metal complexation. GAC and the carbonaceous resins removed 99% of 

NDMA after equilibrium was achieved, while zeolite and silica removed 15-20%. Metal 

complexation and hydrolysis were not effective (Fleming et al. 1996). At the same site, another 

study found that NDMA adsorbed to the soil very little and was quickly desorbed in the presence 

of water (Gunnison et al. 2000). GAC was shown to remove chloramine-reactive NDMA 

precursors 60-90% even after dissolved organic carbon breakthrough. (Hanigan et al. 2012). 

However, one group reported that activated carbon can act as a catalyst to form trace levels of 

NDMA from secondary amines (Padhye et al. 2010). This is important to consider because many 

analytical methods use activated carbon cartridges during solid phase extraction. 

A typical problem with activated carbon after breakthrough (i.e., no more capacity to remove 

the targeted contaminant) is its replacement or regeneration. If GAC is not regenerated, it must 

be replaced and this increases the treatment cost. On the other hand, regeneration may lead to 

deterioration of the carbon. Kommineni et al. (2003) used Fenton’s reagent to destroy adsorbed 

NDMA (99% destruction) and regenerate GAC at pH 2-3. The regeneration cost was low 

($0.10/lb GAC) and very little capacity was lost (< 3.8%). Unfortunately, NDMA precursors 

vary greatly, and not all precursors will sorb strongly to activated carbon (Hanigan et al. 2012), 

which means other mitigation strategies are needed to prevent or reduce NDMA formation. 

 

 

  



29 

 

CHAPTER 3  

METHODOLOGY 

3.1 Experimental Approach Overview 

This chapter covers the methods used in investigating each of the three issues comprising this 

research. Issue one deals with the identification of model precursors that can potentially lead to 

the formation of NDMA upon ozonation. The hypothesis is that hydrazones and carbamates with 

two methyl groups are ozone-reactive precursors. Secondarily, it is hypothesized that other 

factors (i.e., ozone dose, oxidant type, and wastewater matrix components) affect NDMA 

formation and that ozone-reactive precursors are less reactive with chloramine than ozone. To 

investigate the initial hypothesis, model precursors were spiked into an aqueous matrix and 

ozonated at a consistent dose through the addition of ozone-saturated water. Samples were 

analyzed for NDMA and molar yields for NDMA formation were calculated based on the initial 

concentration of the precursors spiked into the aqueous matrix. The second hypothesis was 

investigated by varying the experimental design to control ozone dose, the type of oxidant 

available (e.g., molecular ozone, hydroxyl radical, dissolved oxygen), and dissolved constituents 

(e.g., bromide, effluent organic matter, natural organic matter). Samples were analyzed for 

NDMA and results were compared to determine the impacts of ozone dose, oxidant type, and 

dissolved constituents on NDMA formation.  

Issue two involves investigating combinations of chlorine, ozone and chloramine to minimize 

NDMA formation. The hypothesis is that chlorination ahead of ozonation and chloramination 

will reduce NDMA formation. Several treated wastewaters, collected from actual wastewater 

plants, were chlorinated, ozonated, and chloraminated individually and in series in the 

laboratory. In one situation, parallel tests were completed where the wastewater was spiked with 
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model precursors to further ascertain the impact of pre-chlorination on ozone-reactive NDMA 

precursors. Chlorine, ozone and chloramine concentrations were measured and overall oxidant 

exposure was calculated based on contact time and concentration. Samples were analyzed for 

NDMA, ammonia (to determine breakpoint chlorination), total organic carbon (to determine an 

appropriate ozone dose), and chlorination disinfection byproducts (i.e., trihalomethanes, 

haloacetic acids). 

Issue three looks at removal of NDMA precursors via biofiltration using treated wastewater 

effluent. Varying degrees of precursor removal were hypothesized based on known information 

about biodegradability and sorption of the compounds (i.e., daminozide, 2-F-DMH, TMDS, 

ranitidine, DMA). Three biofiltration columns containing anthracite and with different empty 

bed contact times (5, 10, and 20 minutes) were acclimated to tertiary-treated wastewater effluent. 

Next, the biofiltration columns were subjected to precursor-infused wastewater to examine if 

biofiltration was able to remove NDMA precursors. The performance of the system was 

monitored by total organic carbon (TOC), chemical oxygen demand (COD), and dissolved 

oxygen (DO). Adenosine triphosphate (ATP) was measured at the start and end of the test period 

as a means to determine general microbial activity for biofilm attached to the media. Influent and 

column effluent samples were analyzed for individual precursors, total nitrogen (TN), NDMA, 

THMs and HAAs. In a separate test, sorption of the precursors to anthracite was determined in 

order to establish which mechanisms (i.e., sorption to media, sorption to biofilm, biodegradation) 

were responsible for precursor removal. 
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3.2 Experimental Methods for Issue One 

3.2.1  Model Precursors 

A variety of chemicals were chosen as model compounds for ozone-reactive NDMA 

precursors (Table 3.1). The term “model” is used because these compounds represent different 

functional groups (i.e., moieties) and will serve as models in understanding the relationship 

between NDMA formation and that functional group. The full names, CAS registry numbers, 

and compound uses are shown in Table 4.2. The list consists of already established ozone-

reactive NDMA precursors and previously untested compounds, which were chosen based on 

chemical structure. Chloramine-reactive NDMA precursors were included for confirmation that 

tertiary amines without an additional nitrogen, R-N(CH3)2 vs. R-N-N(CH3)2, do not form NDMA 

in high yields during ozonation. 

 

Table 3.1: List of model precursors selected to be tested for NDMA formation with ozone. 

Established ozone-reactive 

NDMA precursors 

Untested compounds Established chloramine-

reactive NDMA precursors 

UDMH Acetone-DMH Ranitidine 

TMDS 2-F-DMH DMA 

Daminozide DMC-phenyl Ziram 

DMS DMTC-phenyl  

 DMC-dithio  

 DMSC  

 Dacarbazine  

 Atazanavir  

 Streptozocin  

 N-Nitrososarcosine  
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3.2.2  Experimental Plans 

Table 3.2 shows the experimental plan to test if the selected compounds are ozone-reactive 

NDMA precursors. Briefly, an aqueous matrix containing the compounds was subjected to 

ozonation and then analyzed for NDMA. Phosphate-buffered (1 mM) ultrapure water (18.2 

MΩ·cm) at pH 7 was used as the baseline aqueous matrix. Several matrix components were 

varied to determine their impact on NDMA formation. The investigated matrix components 

included: bromide, effluent organic matter (in wastewater), and natural organic matter (NOM). 

Bromide was added at two doses (50 and 1250 ppb) in phosphate-buffered ultrapure water and 

compared against the condition where no bromide was present. NOM was added at 3 mg/L as 

organic carbon by dissolving Suwannee River fulvic acid into phosphate-buffered ultrapure 

water. Wastewater effluent from a membrane bioreactor was used in replacement of the 

phosphate-buffered ultrapure water for the wastewater matrix.  

 

Table 3.2: Experimental plan to investigate potential NDMA precursors in several matrices 

(Issue One). 

 
Precursor 

Conc. 

(mM) 

Ozone 

Conc. 

(mM) 

Matrices 

Buffered Ultrapure Water Wastewater 

0 ppb 

Br
-
 

50 ppb 

Br
-
 

1250 

ppb Br
-
 

3 mg/L 

NOM 

0 ppb 

Br
-
 

Example 

Precursor 
0.10 1.0 - - - - - 

Note: Br
-
 = bromide; NOM = natural organic matter. 

 

Additional tests were performed on selected compounds that formed NDMA (Table 3.3). 

These tests included ozone dose and oxidant type. Ozone dose was tested at four concentrations 

(0.1-1.5 mM) in phosphate-buffered ultrapure water with a constant precursor concentration. 
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Oxidant type was tested by isolating each oxidant. Samples were exposed to dissolved oxygen 

(O2) by adding an aliquot of oxygen-saturated water in replacement of ozone-saturated water. 

Molecular ozone (O3) was isolated through the addition of 100 mM tert-butyl alcohol (tBA), 

which reacts quickly with hydroxyl radicals, but has no effect on molecular ozone (Anipsitakis 

and Dionysiou 2004). Hydrogen peroxide (H2O2) was added at two doses (0.35, 0.70 mM) to test 

the impact of increased hydroxyl radical concentration (•OH) on NDMA formation. Hydroxyl 

radicals were produced without ozone via gamma radiolysis (Peller et al. 2003).  

Parachlorobenzoic acid (pCBA) was used as a probe to determine what level of gamma 

irradiation was needed to produce a similar concentration of •OH for radiolysis as found during 

ozonation. Also, to verify •OH quenching by tBA, pCBA samples with and without 100 mM 

tBA were ozonated. Quenching was confirmed since pCBA concentration decreased without tBA 

(i.e., pCBA was destroyed by •OH), but it remained constant in the presence of tBA. Analysis of 

pCBA is described in section 3.5.12. 

 

Table 3.3: Experimental plan to investigate ozone dose and oxidant type for selected ozone-

reactive NDMA precursors (Issue One). 

 
Precursor 

Conc. 

(mM) 

O3 and •OH O3 only •OH only O2 

Ozone Dose (mM) 

H2O2 Dose 

(mM) 

[1.0 mM ozone] 

Ozone 

(mM) 

and 100 

mM tBA 

Radiolysis 

(Gy) 

Dissolved 

Oxygen 

(mg/L) 

0.1 0.5 1.0 1.5 0.35 0.70 1.0 38.6 8 

2-F-DMH 0.10 - - - - - - - - - 

TMDS 0.10 - - - - - - - - - 

Note: O3 = molecular ozone; •OH = hydroxyl radicals; O2 = oxygen; tBA = tert-butyl alcohol; H2O2 = 

hydrogen peroxide; Gy = gray (unit for radiation). 
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Finally, NDMA formation was compared for ozonation and chloramination. Precursors were 

added to phosphate-buffered ultrapure water, as before, and then spiked with a high chloramine 

dose. A parallel test was completed where the precursors were first ozonated and then 

chloraminated (Table 3.4). The chloramination step occurred 24 hours after ozonation to ensure 

that there was no ozone residual remaining. 

The precursor concentration (0.1 mM) used in these tests is higher than anticipated in treated 

wastewater effluents. The purpose of the high concentration was to eliminate the need for sample 

extraction and therefore reduce the time and materials needed for analysis.  

 

Table 3.4: Experimental plan to compare NDMA formation from ozonation and chloramination 

of model precursors (Issue One). 

 Precursor 

Conc. 

(mM) 

Ozone 

Conc. 

(mM) 

Chloramine 

Conc. 

(mg/L) 

Tests 

Ozone 

only 

Chloramine 

only 

Ozone +  

Chloramine 

Example 

Precursor 
0.10 1.0 140 - - - 

 

 

3.2.3  Generation of Ozone Stock Solution 

Ozonation was performed by generating a stock solution of ozone-saturated water and adding 

an aliquot to the aqueous matrix containing the precursors. The ozone set-up (Figure 3.1) 

included an ozone generator (model CFS-1A, Ozonia North America, Inc., Elmwood Park, NJ, 

USA) where ozone is produced from oxygen gas and bubbled into cold, ultrapure water. An 

aliquot of the ozone-saturated water (typically 70 mg O3/L) was removed via a stopcock and 

immediately added to the precursor solution, as described in the next paragraph, and allowed to 

react until all ozone residual was dissipated. At the ozone doses used in these experiments (up to 
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1.5 mM), a zero ozone residual was observed in less than one hour for wastewater and less than 

six hours for ultrapure water; however, a 24 hour reaction time was allowed as a precaution 

against opening a container and being exposed to ozone. For safety, ozone gas escaping from the 

system (i.e. exhaust flow) was quenched with a potassium iodide solution (20 g/L), and ozone 

generation was performed in a fume hood. Ozone concentration was measured as described in 

section 3.5.7.  

 

 

Figure 3.1: Diagram illustrating how ozone-saturated water is prepared for ozonation 

experiments. 

 

3.2.4  Ozonation Procedure 

Bench-scale ozonation was performed to identify compounds as ozone-reactive precursors 

and to evaluate impacts of other factors on NDMA formation. To start, the precursors were 

spiked into the aqueous matrix along with additional chemicals (bromide or tBA) and ozonated 

with a tenfold molar excess of ozone (Figure 3.2) via addition of ozone-saturated water. The ten-
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fold molar excess of ozone was used to achieve a high level of NDMA formation. Although this 

may not give the maximum NDMA molar yield for each compound, it did show whether or not 

the compound was an ozone-reactive precursor and the consistent ratio (0.1 mM precursor: 1 

mM O3) provided a way to compare NDMA formation among the precursors.  

 

 

 

Figure 3.2: Experimental procedure for ozonation tests to identify ozone-reactive NDMA 

precursors. 

 

 

3.2.5  Chloramination – Formation Potential 

Chloramination was performed at 140 mg/L as Cl2 for ten days according to a frequently 

used NDMA formation potential test (Mitch et al. 2003a). The sample was spiked with a 

monochloramine solution (14 g/L as Cl2) that was freshly prepared from a cold ammonium 

chloride solution adjusted to pH 9 with sodium hydroxide and the slow addition of sodium 

hypochlorite at a Cl:N mass ratio of 3.3 to 1. Chloramine concentration was measured as 

described in sections 3.5.5 and 3.5.6. After ten days at room temperature, sodium thiosulfate was 

added to the samples to quench the chloramine residual. Figure 3.3a illustrates the procedure for 

chloramination only, while Figure 3.3b illustrates the procedure for ozonation followed by 

chloramination. 
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Figure 3.3: Experimental procedures for chloramination of ozone-reactive NDMA precursors. 

 

 

3.3 Experimental Methods for Issue Two 

3.3.1  Experimental Plans 

Issue Two deals with mitigation of NDMA by precursor removal with different oxidant 

combinations. Briefly, chlorination, ozonation and chloramination alone and in combination with 

each other were performed with different water matrices. Chlorination was based on the chlorine 

breakpoint of the wastewater, while ozonation was conducted at an ozone to total organic carbon 

(O3:TOC) ratio of 0.8 based on the TOC present in the wastewater. The goals were to 

demonstrate pre-chlorination as a NDMA mitigation strategy for ozone-reactive precursors and 

to determine trade-offs between NDMA mitigation and chlorination byproduct formation. 

Samples were analyzed for trihalomethanes (THMs) and haloacetic acids (HAAs), as well as 

NDMA. Details of the analyses are described in sections 3.5.3, 3.5.4, and 3.5.2, respectively. 

Details for each test procedure are shown in Figure 3.4. 

The process was repeated for several wastewaters with and without ammonia (Table 3.5) in 

order to identify trends in NDMA mitigation. Ammonia was an important factor since free 

a 

 

 

 

b 
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chlorine combines with ammonia to produce chloramine, which can form NDMA. To minimize 

the presence of chloramine, free chlorine was added beyond the chlorine breakpoint, above 

which chloramines are destroyed. 

Another concern was the presence of free chlorine during ozonation. Ozone reacts with free 

chlorine, which makes ozone less effective for reacting with the NDMA precursors. In addition, 

free chlorine interferes with the analytical method used to measure ozone. To abate this problem, 

ozonation was delayed until the free chlorine residual had reached zero.  

For greater confirmation of NDMA mitigation, one of the wastewaters was spiked with 

NDMA precursors. This provided a much higher change in NDMA formation potential because 

the precursor concentrations were several times greater than those typically found in the 

wastewater. For example, it was possible to see a change in NDMA formation of several hundred 

ng/L in the precursor-spiked wastewater as compared to less than 100 ng/L at precursor 

concentrations typically found in treated wastewater effluent. 

 

Table 3.5: Experimental plan for parallel tests with single and combined disinfection processes to 

investigate NDMA mitigation and THM/HAA formation (Issue Two). 

Tests 
O3:TOC 

ratio (mg/L) 

Wastewater 

WW1 with 

ammonia 

WW2 without 

ammonia 

WW3 without 

ammonia  

WW3 spiked 

with precursors 

Cl2 N/A - - - - 

O3 0.8 - - - - 

CLM N/A - - - - 

Cl2-O3 0.8 - - - - 

O3-CLM 0.8 - - - - 

Cl2-CLM  N/A - - - - 

Cl2-O3-CLM
 

0.8 - - - - 

Note: Cl2 = pre-chlorination; O3 = ozonation; CLM = chloramination; TOC = total organic carbon; WW = 

wastewater; N/A = not applicable. 
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Figure 3.4: Experimental procedures for parallel tests with chlorination (Cl2), ozonation, and 

chloramination (CLM) to investigate NDMA mitigation. 
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3.3.2 Pre-chlorination 

An important component of this experiment was having similar free chlorine exposures 

among the different wastewaters in order to directly compare the results. Therefore, it was 

necessary to determine a suitable chlorine dose before actual experiments began. A chlorine 

demand curve (Figure 3.5) was developed for each wastewater in order to identify the chlorine 

breakpoint, after which a free chlorine residual is present. Then, a 24-hour chlorine decay test 

was performed for each wastewater in order to estimate free chlorine exposure at three chlorine 

doses above the breakpoint (Table 3.6). The final dose was selected so that free chlorine 

exposure (i.e., Ct) was similar for all wastewaters (e.g., 130 mg·min/L). Free chlorine exposure 

was determined during the actual experiment rather than relying on the estimated chlorine 

exposure from the original decay test. Free and total chlorine were measured as described in 

section 3.5.5. 

  

 

Figure 3.5: Example of a chlorine demand curve for determining the chlorine breakpoint. 
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Table 3.6: Sampling schedule for 24-hour chlorine decay tests to determine free chlorine 

exposure. 

Chlorine 

(mg/L as 

Cl2) 

Time (min) 

1 3 5 7 10 15 20 30 45 60 120 180 300 480 1200 1440
a
 

Dose 1                 

Dose 2                 

Dose 3                 
a
Sampling continued until the free chlorine residual was zero. 

 

 

3.3.3 Ozonation 

Ozonation was conducted at a common O3:TOC ratio (0.8) for all wastewaters. O3:TOC 

ratios were based on the TOC of the original sample (e.g., non-chlorinated wastewater) and took 

into account sample dilution through the addition of ozone-saturated water. Ozone exposure was 

determined by completing an ozone decay curve for both the non-chlorinated and chlorinated 

samples (Table 3.7). Ozone concentration and TOC were measured as described in sections 3.5.7 

and 3.5.10, respectively. 

 

Table 3.7: Sampling schedule for ozone decay tests to determine ozone exposure for chlorinated 

and non-chlorinated wastewater samples. 

Ozone 

(mg O3/L) 
Sample 

Time (min) 

0.5 0.75 1 1.5 2 3 5 7 10
a
 

O3:TOC = 0.8 

Non-

chlorinated 
         

Chlorinated          
a
Sampling continued until the ozone residual was zero. 
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3.3.4 Chloramination – Uniform Formation Conditions 

In contrast to the formation potential (FP) test, which expresses a maximum level of 

disinfection byproduct (DBP) that might be reached, the uniform formation conditions test is 

meant to represent DBP formation under realistic conditions in a distribution system. The 

chloramine uniform formation conditions (CLM-UFC) test involves spiking chloramine in a 0.4 

mM borate-buffered sample to achieve at least a 2.5 mg/L as Cl2 residual after three days (Shah 

et al. 2012). Each sample was spiked with a monochloramine solution (1 g/L as Cl2) prepared as 

described in section 3.2.5. Typically, an initial concentration of 5 mg/L as Cl2 was high enough 

to achieve the desired residual. After three days at room temperature, sodium thiosulfate was 

added to the samples to quench the chloramine residual. Chloramine concentration was measured 

as described in section 3.5.5. 

 

3.4 Experimental Methods for Issue Three 

3.4.1 Pilot Plant set up and Operation of the Biofiltration Columns 

Biofiltration columns, located at a wastewater treatment facility, were used for investigating 

NDMA precursor removal using actual tertiary-treated effluent from the plant. The three 

columns were operated at the same flow rate and contained different amounts of anthracite 

media, which corresponded to empty bed contact times (EBCTs) of 5, 10, and 20 minutes. EBCT 

is the average time the water stays in contact with the media and was calculated by dividing the 

volume of the media in the column by the wastewater flow rate through the column. Hydraulic 

loading rate was calculated as flow rate divided by the area of the column. Column design 

parameters are shown in Tables 3.8 and 3.9. Figure 3.6 shows the experimental setup for the 

biofiltration columns.  Prior to starting the NDMA removal experiments, the columns were 
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acclimated to tertiary-treated wastewater in alternating cycles of recirculating batch mode and 

flow-through mode for 11 weeks as part of a related experiment. Before commencing the NDMA 

precursor removal test, the columns were run in flow-through mode for 10 days, which 

corresponds to a minimum of 720 EBCTs. Biofilm growth was visible on the anthracite and 

confirmed through solid-phase measurement of adenosine triphosphate (ATP), which indicates 

general microbial activity for biofilm attached to the media. 

Columns were in operation continually during the preparation phase and test period, with the 

exception of one day during the preparation phase when the feedwater tank ran dry. No 

backwashing occurred. Instead, between the 10-day preparation phase and test period, the 

columns were shaken to fluidize the media and unattached particulates were flushed off the top 

layer of the media. During the 14-day test period, the feedwater (tertiary-treated wastewater) was 

spiked with a mixture of NDMA precursors. The wastewater and NDMA precursor mixture were 

pumped into a tank for blending. Complete mixing was not established; therefore, sampling ports 

were added to each feed line instead of assuming a homogeneous mixture and sampling directly 

from the tank. Peristaltic pumps (Cole Palmer, Masterflex with Easy Load Pump Head) were 

used to maintain a constant flow of 100 mL/min to the columns. The performance of the system 

was monitored by measuring total organic carbon (TOC), chemical oxygen demand (COD), and 

dissolved oxygen (DO) in the influent and effluent of the columns. DO was not regulated and 

varied depending on the feedwater. ATP was measured at the start and end of the test period. 

Feedwater and column effluent samples, collected at sampling ports before and after each 

column, were analyzed for individual precursors, total nitrogen (TN), NDMA, THMs and HAAs, 

as described in sections 3.5.15, 3.5.13, 3.5.1, 3.5.3, and 3.5.4, respectively.  
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All connecting tubing was periodically replaced due to biofilm growth. New ¼ inch inner 

diameter Tygon tubing was used for the feedwater lines at the start of the test period and these 

were replaced on day 11 of the test period because biofilm was sloughing off the tubing interior 

and accumulating at the top of the columns. Biofilm also clogged the waste lines and those were 

replaced during the test period, but this had no impact on precursor removal. Biofilm in the 

feedwater lines may have increased precursor removal; however, the tubing lengths were similar 

for the columns, so all columns should have been affected equally. 

 

 

 

Figure 3.6: Schematic of the anthracite biofiltration columns set-up used to investigate Issue 

Three. 
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Table 3.8: Parameters used in the design of the biofiltration columns. 

Parameter Value Value 

Column Diameter 5 cm 0.164 ft 

Column Area 19.63 cm
2 

0.021 ft
2 

Hydraulic Loading Rate 5.0 mL/min·cm
2 

1.2 gpm/ft
2 

Flow Rate 100 mL/min 0.026 gpm 

 

 

Table 3.9: Empty bed contact times (EBCTs) and media parameters for the biofiltration columns. 

Column EBCT Media Height Media Volume 

1 5 min 25 cm 0.49 L 

2 10 min 50 cm
 

0.98 L 

3 20 min 100 cm
 

1.96 L 

 

 

3.4.2 Preparation of NDMA Precursors Mixture 

Individual stock solutions of five NDMA precursors were prepared from neat standards. 

Amounts were weighed out to make 500 mL of 1 or 10 mM solution (Table 3.10). 2-F-DMH was 

diluted from the neat liquid (75.414 mM). TMDS was prepared in 50/50 acetonitrile/water 

because of its low solubility in water. All other precursor stock solutions were made with 

ultrapure water. 

Batches of the NDMA precursor mixture were generated daily. First, equal aliquots of the 

stock solutions were mixed together and diluted by approximately 300-fold with tap water. This 

diluted mixture was then pumped into a 125 gallon high density polyethylene (HDPE) tank and 

mixed with the tertiary wastewater by approximately 30-fold. A precursor concentration of 0.1 

μM (1 μM for DMA) was targeted in the feedwater in order to have an initial concentration 

within the LC-MS/MS analytical range and without the need to concentrate the sample. 
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Table 3.10: Specifications for the NDMA precursor stock solutions for biofiltration. 

Precursor 
Molecular 

Weight (g/mol) 

Mass weighed 

out (g) 

Stock Solution 

Concentration 

(mM) 

TMDS 368.48 184 mg 1 

Daminozide 160.17 80 mg 1 

2-F-DMH 138.17 N/A 1 

Ranitidine 314.4 175 mg 1 

DMA 45.08 407 mg 10 

 

 

3.4.3 Sample Collection, Preservation, and Analysis 

Samples were collected throughout the 10-day preparation phase and the 14-day test period 

according to Table 3.11.  

3.4.4 Experimental Procedures 

Collected influent and effluent samples underwent ozonation, chloramination UFC, and 

THM/HAA formation potential (THM/HAA-FP) testing. Ozonation and chloramination UFC 

procedures are explained in sections 3.3.3 and 3.3.4, respectively.  

THM/HAA-FP testing involved determining an initial chlorine demand, spiking multiple 

samples with chlorine, and then choosing the sample with an appropriate residual. First, 60 mL 

was dosed at 100 mg/L as Cl2 and 10 mM phosphate buffer at pH 7. The sample was kept at 

room temperature and in the dark. After 24 hours, the chlorine residual was measured using the 

DPD method (section 3.5.5) and the chlorine demand was calculated as the difference between 

the original concentration (100 mg/L) and the chlorine residual. Next, a series of samples (n = 6) 

were dosed with chlorine (ranging from 15-60 mg/L as Cl2 depending on the chlorine demand) 

and kept in the dark at room temperature. After 7 days, the chlorine residual was measured and 

the sample that fell in the range of 3-5 mg/L as Cl2 was used for analysis of THMs and HAAs. 
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Table 3.11: Sample schedule for the biofiltration columns during the (a) 10-day preparation 

phase and (b) 14-day test period. An 'x' indicates samples were collected for that test. 

(a)           Analysis 
Preparation Phase - Day 

1 2 3 4 5 6 7 8 9 10
** 

*
NDMA: ambient      x     

*
NDMA: O3-FP      x     

*
NDMA: CLM-UFC      x     

TOC x x x x x x x x x x 

COD x x x x x x x x x x 

DO x x x x x x x x x x 

Precursors           

THM/HAA-FP      x     

ATP          x 

 

(b)            Analysis 
Test Period - Day 

1
** 

2 3 4 5 6 7 8 9 10 11 12 13 14 
*
NDMA: ambient    x       x   x 

*
NDMA: O3-FP    x       x   x 

*
NDMA: CLM-UFC    x       x   x 

TOC x x x x x x x x x x x x x x 

COD x x x x x x x x x x x x x x 

DO x x x x x x x x x x x x x x 

Precursors x x x x x x x x x x x x x x 

THM/HAA-FP    x       x   x 

ATP              x 
*
NDMA tests: ambient = NDMA present in the sample without any additional treatment; O3-FP = NDMA 

analysis after ozonation; CLM-UFC = NDMA analysis after chloramination at uniform formation 

conditions. 
**

Same calendar date. 

 

 

3.4.5 Testing for Adsorption of the NDMA Precursors to Anthracite 

Sorption of the precursors to anthracite was determined in order to establish which 

mechanisms (i.e., sorption to media, sorption to biofilm, biodegradation) were responsible for 



48 

 

precursor removal. Batch adsorption tests were performed using 125 mL borosilicate glass serum 

bottles and fresh anthracite media. The anthracite and bottles were sterilized by autoclaving (20 

min at 250 C). Anthracite was weighed and added to the glass bottles, along with the aqueous 

matrix, as indicated in Table 3.12. The bottles were sealed with a rubber septum and crimped 

closed with an aluminum ring (Wheaton, Vernon Hills, IL). Next, the bottles were attached to a 

rotating shaker and mixed constantly at 20 rpm for 24 or 48 hours. The following control 

samples were included: blank (deionized water with 2.0 g anthracite), control (precursor-spiked 

wastewater and no anthracite), and negative control (wastewater without precursors and 2.0 g 

anthracite). After the desired contact time, bottles were opened and samples were filtered 

through a pre-rinsed syringe filter (Whatman 0.7 μM GF/F with GMF) to remove suspended 

anthracite particles. The filtrate was analyzed for the individual precursors. 

 

Table 3.12: Experimental plan for anthracite sorption test with NDMA precursors used in 

biofiltration columns. 

Sample ID Time Aqueous Matrix Anthracite (g) 

Blank 48 hr 100 mL deionized water 2.0 

Control 48 hr 100 mL WW + precursors 0 

Negative Control 48 hr 100 mL WW 2.0 

A1 24 hr 100 mL WW + precursors 0.10 

A2 24 hr 100 mL WW + precursors 0.20 

A3 24 hr 100 mL WW + precursors 0.30 

A4 24 hr 100 mL WW + precursors 0.40 

A5 24 hr 100 mL WW + precursors 0.50 

A6 24 hr 100 mL WW + precursors 2.0 

B1 48 hr 100 mL WW + precursors 0.10 

B2 48 hr 100 mL WW + precursors 0.20 

B3 48 hr 100 mL WW + precursors 0.30 

B4 48 hr 100 mL WW + precursors 0.40 

B5 48 hr 100 mL WW + precursors 0.50 

B6 48 hr 100 mL WW + precursors 2.0 

WW = wastewater 
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3.5 Analytical Procedures 

3.5.1  NDMA Analysis – High Level 

Aqueous samples were analyzed by direct injection (20 μL) with liquid chromatography 

tandem mass spectrometry (LC-MS/MS) using isotope dilution with d6-NDMA (Cambridge 

Isotope Laboratories, Tewksbury, MA). A Luna C18(2) column (Phenomenex, Torrance, CA) 

was used for separation with the LC system (Agilent 1100 LC with binary pump and CTC PAL 

autosampler). The mobile phases 5 mM ammonium acetate in water (A) and methanol (B) were 

run at 0.8 mL/min on a gradient starting at 10% B, stepped to 65% B at 0.5 min, increased 

linearly to 100% B until 7 min and returned to 10% B over 3 min. The mass spectrometer (API 

4000 triple quad, Applied Biosystems) was operated via multiple reaction-monitoring in 

positive-ion electrospray ionization (ESI+) mode with a source temperature of 375 °C. Two 

transitions were monitored for NDMA (75/43 and 75/58) and d6-NDMA (81/46 and 81/64). The 

reporting limit (0.34 µM or 25 µg/L) was set at five times the signal to noise ratio and based on 

the instrument detection limit (n = 12). 

3.5.2  NDMA Analysis – Low Level with Extraction 

One liter samples underwent automated solid phase extraction with a Dionex Autotrace 280 

workstation (Thermo Scientific) by the Southern Nevada Water Authority Laboratory (Holady et 

al. 2012). Conditioned activated charcoal cartridges were used and extracts were eluted with 

dichloromethane and dried under nitrogen to 0.5 mL. Water was removed with sodium sulfate 

DryDisks, and the final concentration factor was 1:2000. Extracts were injected (2 µL) in 

splitless mode through a 30 m x 0.32 mm ID x 1.4 µm DB624 column with helium flow and into 

the GC-MS (Agilent 7000C). Parent (m/z = 75) and product ions (m/z = 47, 44, 58) were 
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monitored, and the reporting limit (2.5 µg/L) was set at three to five times the calculated method 

detection limit. 

3.5.3  Total Trihalomethanes (THMs) 

THMs were quantified using EPA method 524.3 by the Southern Nevada Water Authority 

Water Quality Chemistry Laboratory. Four THMs (bromoform, bromodichloromethane, 

chloroform, chlorodibromomethane) were measured. A Stratum PTC purge and trap concentrator 

with AQUATek 100 autosampler (Teledyne Tekmar) were used for THM extraction of a 40 mL 

sample. THM analysis used a Thermo Scientific TRACE gas chromatograph with Electronic 

Pressure Control and a Split/Splitless injection port coupled to a Thermo Scientific ISQ mass 

spectrometer. Samples were separated on a RTX-VMS GC column (Restek). 

3.5.4  Total Haloacetic acids (HAAs) 

HAAs were quantified using EPA method 552.2 by the Southern Nevada Water Authority 

Water Quality Chemistry Laboratory. Five haloacetic acids (bromoacetic acid, dibromoacetic 

acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid) were measured from a 60 mL 

sample. HAA analysis used a Varian CP-3800 gas chromatograph with dual Electron Capture 

Detectors and a CTC Analytics CombiPal Autosampler. Samples were separated with a J&W 

DB-1701 GC column (Agilent) and spectra were quantified with Dionex/Thermo Chromeleon 

version 6.8 software. 

3.5.5 Free and Total Chlorine and Monochloramine – Low Concentration 

Free and total chlorine were measured by the DPD method using a Hach kit with a handheld 

colorimeter (Hach Pocket Colorimeter II – Chlorine). 10 mL of sample was added to the vial to 

provide a zero absorbance reference. A pillow containing DPD (N,N-diethyl-

pphenylenediamine) for free chlorine test or DPD and iodide for the total chlorine test was added 
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and the sample was mixed. Color change was measured by absorbance and color intensity was 

proportional to the chlorine concentration. The analysis range was 0.1 to 2.2 mg/L as Cl2.  

Chloramine was measured using a Hach kit and a spectrophotometer (Hach DR 5000). A 

pillow containing Monochlor F was added to 10 mL of sample and absorbance was measured 

after a 5 min reaction time. The analysis range was 0.04 to 4.50 mg/L as Cl2. 

3.5.6  Total Chlorine – High Concentration 

Total chlorine above 10 mg/L as Cl2 was measured by iodometric titration. A 0.2 M sodium 

thiosulfate solution was standardized using a known concentration of potassium iodate solution. 

A known volume of the sample containing chlorine was added to a flask with 3 mL aliquots of 3 

M HCl and 10 g/L KI. The sodium thiosulfate titrant was added dropwise with a burette while 

swirling the flask until the solution became clear (i.e., yellow color disappeared). Stoichiometric 

calculations were used to determine the chlorine concentration based on the amount of titrant 

added to the solution. 

3.5.7  Ozone Concentration 

Ozone concentration was measured using the indigo method, Standard Method 4500-O3 

(Rice et al. 2012), with modifications that used sample weight (Rakness et al. 2010). Empty flask 

masses and the initial absorbance of the indigo solution were determined. Then, a 0.5 mL aliquot 

of the ozone stock solution was added to a flask containing indigo solution. The total mass and 

absorbance were input into a spreadsheet that accounts for sample dilution (by mass) and the 

ozone residual was determined as mg/L ozone. 

3.5.8 Dissolved Oxygen (DO) 

Dissolved oxygen was measured by luminescence using a portable probe (Hach sensION+ 

DO6). The probe was calibrated once with water-saturated air at the start of the biofiltration 
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study. The probe reading was confirmed (0.5 mg O2/L) on one occasion with the Hach dissolved 

oxygen method (Method 8166) that utilizes the indigo carmine method, AccuVac ampules, and 

DR 6000 spectrophotometer. 

3.5.9 Ammonium (NH4
+
) 

Ammonium was measured using the AmVer
TM

 Salicylate Test ‘N Tube
TM

 Method (Hach 

Method 10031). A 0.1 mL aliquot of the sample was added to the reagent vial containing 

chlorine. One pillow each containing ammonia salicylate reagent powder and ammonia 

cyanurate reagent powder were added to the vial. After mixing, the sample was allowed to sit 

and analyzed after twenty minutes using a spectrophotometer (Hach DR 5000) with a pre-

programmed method at 655 nm. The analysis range was 0.4-50.0 mg/L as NH4
+
-N. 

3.5.10 Total Organic Carbon (TOC) Analysis 

A 40 mL sample was collected in an amber glass vial and acidified to pH less than 3 with 

hydrochloric acid (HCl) for TOC analysis with a Shimadzu TOC-V analyzer (Shimadzu 

Scientific Instruments, Carlsbad, CA). Samples were acidified within a few hours of collection 

and stored at 4 C for up to 48 hours before analysis. Calibration standards (0-20 mg C/L) were 

prepared from a 1000 mg C/L glucose stock solution and a 100 mg C/L working stock solution. 

The stock solution was replaced every two months and calibration standards were prepared fresh 

for every analysis. Blanks were prepared by acidifying deionized water with HCl to pH < 3. One 

standard was analyzed every 6-8 samples as a calibration check.  

3.5.11 Chemical Oxygen Demand (COD) 

Chemical oxygen demand was measured using Hach low range (3-150 mg/L) COD digestion 

vials by the reactor digestion method (Method 8000) with dichromate. A 2 mL sample was added 

the vial and digested in a DRB 200 reactor for 120 minutes at 150 C. Absorbance was measured 
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at 420 nm for the cooled sampled using a Hach DR 5000 spectrophotometer. The instrument was 

zeroed for each analysis with a blank prepared from deionized water. 

3.5.12 Parachlorobenzoic Acid (pCBA) 

Analysis of pCBA followed a previously published method (Vanderford et al. 2007) using an 

LC-MS/MS system (Agilent 1100 LC binary pump, CTC PAL autosampler, Applied Biosystems 

API 4000 triple quadrupole MS) equipped with a 10 µL sample loop. Gradient separation at 0.8 

mL/min flowrate using a Phenomenex Luna C18(2) 150 x 4.60 mm, 5 µm column was 

performed with mobile phases 5 mM ammonium acetate in water (A) and methanol (B). The 

gradient started at 10% B, stepped up at 0.5 min to 60% B, increased linearly to 100% B until 5 

min, and was held at 100% B for 2 min to finish the run. The mass spectrometer parameters were 

ESI negative-ion (ESI-) mode, a flow rate of 5 µL/s, and a source temperature of 550 °C. Three 

transitions were monitored (155/111, 155/35 and 157/37) and the analytical range was 1.0 µg/L 

to 100 µg/L. 

3.5.13 Total Nitrogen (TN) 

Total nitrogen was measured using the low range Persulfate Digestion Test ‘N Tube
TM

 

Method (Hach Method 10071). A 2 mL aliquot of the sample was added to the Total Nitrogen 

Hydroxide Digestion reagent vial along with a pillow containing persulfate reagent and mixed. 

The sample was digested in a DRB 200 reactor for 30 minutes at 105 C. After cooling, a Total 

Nitrogen reagent pillow A was added and allowed to react for three minutes, followed by Total 

Nitrogen reagent pillow B and a two minute reaction time. Then 2 mL of the treated, digested 

sample was transferred to a Total Nitrogen reagent C vial. After mixing, the sample was allowed 

to sit and was analyzed after five minutes using a spectrophotometer (DR 5000, Hach) with a 

pre-programmed method at 410 nm. The analysis range was 0.5-25.0 mg/L as N. The instrument 
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was zeroed with a blank prepared from deionized water and treated in the same manner as the 

sample. 

3.5.14 Adenosine Triphosphate (ATP) 

ATP was analyzed using a Deposit and Surface Analysis test kit (LuminUltra Technologies 

Ltd), which is designed for measuring ATP in biofilm and on biological filter media. The test 

uses firefly luciferase enzyme to produce light in the presence of ATP and the light is measured 

in a luminometer as Relative Light Units (RLU). Calibration was performed with 100 μL of 

UltraCheck 1. Luminase enzyme was rehydrated and tested to ensure a reading of >5,000 RLU. 

Media samples were gently rinsed with ultrapure water to remove unattached growth and dried 

with vacuum filtration. 1 g of media was transferred to 5 mL of UltraLyse 7 for extraction. After 

vigorous mixing and at least five minutes for extraction, the sample was diluted by transferring 1 

mL to a 9 mL UltraLute Dilution Tube. Then 100 μL of the diluted sample was mixed with 100 

μL of rehydrated luminase enzyme in an assay tube, swirled, and measured in the luminometer 

(PhotonMaster
TM

 Luminometer, LuminUltra, New Brunswick, Canada). LuminCalc software 

was used to calculate the total ATP (pg tATP/g sample) from the measured RLU value. 

3.5.15 NDMA Precursors  

Individual precursors were analyzed by direct injection with LC-MS/MS and monitored for 

the one or two mass transitions (Table 3.13). Except for UDMH and DMA, precursors were 

analyzed using a method similar to the NDMA analysis (ESI positive, Luna C18(2) column) with 

the following exceptions: 10 µL sample loop, source temperature of 500 °C, and the mobile 

phases consisted of 0.1% formic acid (A) and methanol (B). The gradient was 10% B for 5 

minutes, increased linearly to 90% B until 10 minutes and held until 15 minutes. An external 

calibration with 7 points for each precursor was used. R
2
 values of 0.995 or better were observed 
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for all compounds. Reporting limits were set at greater than five times the signal to noise ratio 

and were based on the instrument detection limit (n = 12) for individual precursors. There was no 

matrix suppression for the phosphate buffer. 

UDMH and DMA were analyzed by direct injection LC-MS/MS using a separate method 

with a 10 µL sample loop and 5 µL/s injection flow rate. The mobile phases were 5 mM 

ammonium formate adjusted to pH 3 with formic acid (A) and acetonitrile (B) at a flow rate of 

0.400 µL/min. The gradient was as follows: 10% A held for 2 minutes, linearly increased to 90% 

A until 12 minutes, and held at 90% A until 16 minutes. A 4 minute equilibration step at 10% A 

at the start of each run resulted in a 20 minute total run time. A SeQuant ZIC-HILIC 150 x 2.1 

mm, 5 µm column (EMD Millipore, Billerica, MA) was used for separation. 

 

Table 3.13: Parameters for LC-MS/MS analysis of NDMA precursors. 

Precursor Analytical 

Range (µM) 
Transitions Column 

Retention 

Time (min) 

TMDS 0.0025 – 0.125 371.2 / 285.2 Luna C18(2) 12.6 

Daminozide 0.0075 – 0.20 161.0 / 143.1 Luna C18(2) 2.84 

DMS 0.010 – 0.50 124.9 / 107.9 Luna C18(2) 3.78 

2-F-DMH 0.005 – 0.25 139.0 / 96.1 Luna C18(2) 11.68 

DMC-phenyl 0.005 – 0.25 223.1 / 105 Luna C18(2) 11.64 

DMTC-phenyl 0.005 – 0.25 210.1 / 108.0 Luna C18(2) 12.51 

DMC-dithio 0.005 – 0.25 312.0 / 223.1 Luna C18(2) 12.28 

Ranitidine 0.0005 – 0.10 315.3 / 176.2 Luna C18(2) 8.75 

UDMH 0.010 – 1.5 60.9 / 45.0 ZIC HILIC 7.59 

DMA 0.100 – 5.0 46.0 / 31.1 ZIC HILIC 7.46 
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3.6 Sample Collection and Preservation 

The three research issues required collection and preservation of various wastewaters, stock 

solutions and samples pending analysis. Table 3.14 summarizes the information for bulk 

wastewaters, stock solutions and experimental procedures. Table 3.15 summarizes the 

information for sample preservation and analytical holding times.  

 

Table 3.14: Summary of bulk water collection and storage, stock solution storage, and conditions 

for samples during experimental procedures. 

Item Preservation Technique 

Wastewater collected from local 

municipal wastewater treatment facility 

Wastewater was transported in a cooler 

on ice and stored at 4 °C until used 

Wastewater collected from non-local 

municipal wastewater treatment facility  

Wastewater was shipped overnight on 

ice and stored at 4 °C until used 

Wastewater with ammonia collected 

from municipal wastewater treatment 

facility  

Wastewater was stored at 4 °C and 

used within two days while ammonia 

was still present 

Chlorinated, chloraminated, and ozonated 

wastewater samples (NDMA) 

Kept at room temperature during 

reaction time, then 4 °C until analysis  

Chlorinated wastewater samples 

(THM/HAA-FP) 

Kept at room temperature during 

reaction time, then 4 °C until analysis  

Stock solutions in ultrapure water Stored at 4 °C 

Stock solutions in methanol (d6-NDMA) Stored at -20 °C 
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Table 3.15: Techniques for sample preservation and holding times for analyses. 

Test Preservation Holding Time 

*
NDMA: ambient 

80 mg/L Sodium thiosulfate  

1 g/L Sodium azide 

Store at 4 C 

Extraction within 7 days 

*
NDMA: O3-FP 

80 mg/L Sodium thiosulfate  

Store at 4 C 
Extraction within 7 days 

*
NDMA: CLM-UFC 

80 mg/L Sodium thiosulfate  

Store at 4 C 
Extraction within 7 days 

TOC 
Adjust sample pH to < 3 with HCl 

Store at 4 C 
Analysis within 48 hours 

COD Store at 4 C Analysis within 48 hours 

DO None Immediate analysis 

Precursors Store at 4 C Analysis within 7 days 

THM/HAA-FP 

Ammonium chloride  

Sodium thiosulfate 

No headspace and store at 4 C 

Analysis within 14 days 

ATP None Immediate analysis 

TN Store at 4 C Analysis within 20 days 

pCBA Store at 4 C Analysis within 7 days 

Free/Total Chlorine None Immediate analysis 

Monochloramine None Immediate analysis 

Ozone None Immediate analysis 

Ammonia/Ammonium None Immediate analysis 
*
NDMA tests: ambient = NDMA present in the sample without any additional treatment; O3-FP = 

NDMA analysis after ozonation; CLM-UFC = NDMA analysis after chloramination at uniform 

formation conditions. 
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3.7 Data Analysis and Interpretation 

3.7.1 Issue One – Molar Yields 

Molar yield (%) of NDMA formed was based on the assumed concentration (100 μM) of the 

precursor (Equation 1). Individual precursor concentrations were not determined and molar 

yields do not take into account compounds with structures that may lead to formation of more 

than one molecule of NDMA.  

 

Equation 1: Calculation of NDMA molar yield per mole of precursor. 

𝑀𝑜𝑙𝑎𝑟 𝑌𝑖𝑒𝑙𝑑 (%) =  
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑁𝐷𝑀𝐴 𝑓𝑜𝑟𝑚𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟
 𝑥 100 

 

Molar yields were plotted on bar graphs to determine trends in NDMA formation for each 

precursor based on bromide concentration (0, 50, or 1250 ppb), aqueous matrix constituents 

(ultrapure water, effluent organic matter or natural organic matter), ozone dose (0.5-1.5 mM), 

and hydroxyl radical scavenging (tBA or no tBA).  

3.7.2 Issue Two – Oxidant Exposure, Significance and DBP Trade-offs 

Oxidant exposure was calculated in Excel using the trapezoidal rule (Equation 2) to 

determine the area under the chlorination curve or ozone decay curve. Time steps were based on 

sample collection (Table 3.6 and Table 3.7).  

 

Equation 2: Trapezoidal rule used to calculate oxidant exposure from concentration and contact 

time. 

𝐴𝑟𝑒𝑎 = ∫ 𝑓𝑥𝑑𝑥 = (𝑏 − 𝑎)
𝑓(𝑎) + 𝑓(𝑏)

2

𝑏

𝑎
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NDMA concentrations were plotted on bar graphs and compared among the parallel tests. 

Significant differences were based on Student’s t-test calculations if duplicate values were 

available.  

NDMA mitigation and THM/HAA formation were discussed together (qualitatively) in order 

to examine trade-offs in DBP formation. A quantitative comparison for mitigation/formation was 

made based on the available USEPA drinking water unit risks (Table 3.16). 

 

Table 3.16: Drinking water unit risk values for NDMA, THMs, and HAAs. 

Compound Drinking water 

unit risk (μg/L)
* 

Average drinking 

water unit risk (μg/L) 

NDMA 
 

1.4 E-3 1.4 E-3 

THMs Chloroform 1.7 E-7 

1.15 E-6 

Bromodichloromethane 1.8 E-6 

Dibromochloromethane 2.4 E-6 

Bromoform 2.3 E-7 

HAAs Dichloroacetic acid 1.4 E-6 

1.7 E-6 

Trichloroacetic acid 2.0 E-6 

Monochloroacetic acid N/A 

Bromoacetic acid N/A 

Dibromoacetic acid N/A 

*
Sources: USEPA 2016b; Office of Environmental Health Hazard Assessment (OEHHA) 2007 

Note: THMs = trihalomethanes; HAAs = haloacetic acids; N/A = not available 

 

 

3.7.3 Issue Three – Precursor Removal by Biofiltration 

Precursor, TOC, COD, and DO concentrations were plotted on bar graphs and compared for 

the different columns (i.e., EBCTs). Significant differences for TOC, COD, and precursor 

removal among columns were determined using one-way analysis of variance (ANOVA). 
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Correlation between precursor removal and DO was examined by linear regression and checked 

for significant differences among EBCTs using a two-sample Student’s t-test. For all statistical 

analyses, a 95% confidence level was used (α = 0.05). 

 

3.8 Quality Assurance / Quality Control 

3.8.1 Quality Assurance 

The potential sources of error in the experimental procedures include: unclean glassware, 

improper LC-MS/MS and GC-MS calibration, operator error, deterioration of samples or stock 

solutions, incorrect starting concentrations for stock solutions, and incorrect volume 

measurements for spikes. To ensure the quality of the data, the following precautions were taken: 

 Clean, pre-silanized amber glass bottles were used for samples whenever possible. 

Reused glassware was cleaned as follows: soaked at least 24 hours in a solution of Micro-

90® solution, rinsed with tap water, rinsed with deionized water, air-dried, and heated for 

one hour at 450 C. 

 NDMA analytical methods used isotopic dilution for accurate quantitation. Multiple 

product ion transitions were monitored for LC-MS/MS and GC-MS. Calibration was 

performed prior to each batch of samples to be analyzed. Sample injection was performed 

with an autosampler for consistency. 

 Multiple product ion transitions were monitored for pCBA by LC-MS/MS. 

 Indigo stock solutions for measuring ozone concentration met a minimum absorbance 

threshold, as recommended by the method. 

 Duplicates samples were included at a minimum of 10% of samples. 

 Equipment, such as pipettes, DO meters and spectrophotometers, was calibrated. 
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 Samples were preserved and stock solutions refrigerated. Thermometers were in each 

refrigerator and checked daily to verify constant temperature. 

 Sodium hypochlorite, used for chlorination and chloramination, was standardized with 

each use since its concentration changes as it ages.  

 Calculations were carefully checked for errors leading to incorrect concentrations of 

stock solutions, spike volumes, or dilution factors. 

 

3.8.2 Quality Control 

LC-MS/MS and GC-MS Analysis 

A set of standards (minimum: n = 7) was used to calibrate the LC-MS/MS and GC-MS for 

NDMA, precursor and pCBA analysis. Linearity of the calibration curves was based on least 

squares and R
2
 values always exceeded 0.995. Method reporting limits were set at 3-5 times the 

method detection limit (n = 12). Precision was evaluated based on duplicate samples (see Quality 

Assurance) and occasional duplicate analysis of a sample (5% of analyses). A sequence of blank-

standard-blank was inserted every 6-8 analyses to ensure calibration was maintained over time. 

Analysis included a matrix spike for all matrices other than ultrapure water (e.g., wastewater) in 

order to evaluation matrix suppression or interference.  

TOC Analysis 

A set of freshly prepared standards (n = 6) was used for TOC calibration. Linearity of the 

calibration curves was based on least squares and R
2
 values always exceeded 0.991. Precision 

was evaluated based on duplicate samples during each run and < 10% variation was verified. A 

sequence of blank-standard-blank was inserted every 6-8 analyses to ensure calibration was 

maintained over time. 



62 

 

TN, COD, and NH4
+
 Analysis 

Hach test kits were used for TN, COD and NH4
+
 analysis. Blanks were prepared with 

deionized water and test tubes were wiped clean prior to measuring absorbance. Precision was 

verified by < 10% variation for duplicate samples. 

Control samples 

Controls (no treatment) and blanks (ultrapure water) were included with all experimental 

plans. In addition, all precursor stock solutions were analyzed for NDMA to ensure it was not 

present prior to experimental procedures. 
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CHAPTER 4  

IDENTIFICATION OF OZONE-REACTIVE NDMA PRECURSORS 

4.1 Abstract 

 Nitrosamines are a class of toxic disinfection byproducts commonly associated with 

chloramination, of which several were included on the most recent U.S. EPA Contaminant 

Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse 

applications, particularly for direct or indirect potable reuse, since recent studies show direct 

formation during ozonation of natural water and treated wastewaters. Only a few studies have 

identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this 

study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, 

were subjected to a 10 molar excess of ozone. In parallel experiments, the precursor solutions in 

ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct 

of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA 

precursor compounds that have not been previously reported in the literature, including 

compounds with hydrazone and carbamate moieties. Molar yields in ultrapure water were 61-

78% for 3 precursors, 12-23% for 5 precursors and < 4% for 2 precursors. The presence of 

bromide was important for three compounds (1,1-dimethylhydrazine, acetone dimethylhydrazone 

and dimethylsulfamide), but it did not enhance NDMA formation for the other precursors. 

NDMA formation due to chloramination was minimal compared to formation due to ozonation, 

suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical 

reactions with the precursors will produce NDMA, but formation is much greater in the presence 

of molecular ozone. Also, hydroxyl radical scavenging during ozonation led to increased NDMA 

formation. Molar conversion yields were higher for several precursors in wastewater as 
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compared to ultrapure water, which could be due to catalyzed reactions with constituents found 

in wastewater or hydroxyl radical scavenging.  

 

4.2 Introduction 

Nitrosamines, particularly N-Nitrosodimethylamine (NDMA), have received a great deal of 

attention as emerging water contaminants of concern. NDMA is classified as a B2 carcinogen by 

the U.S. Environmental Protection Agency, it is listed on the third Contaminant Candidate List 

(USEPA 2014a), and it was part of the Unregulated Contaminant Monitoring Rule 2 (USEPA 

2013). Although no federal regulations have been established for NDMA, the California 

Department of Public Health has set a drinking water notification level of 10 ng/L (CEPA 2014). 

The E-6 (1 in 1,000,000) cancer risk level for drinking water is 0.7 ng/L (USEPA 2016). In 

addition to many direct anthropogenic sources (e.g., rubber manufacturing, circuit board 

manufacturing and rocket fuel production), NDMA is formed as a disinfection byproduct (DBP) 

in drinking water and wastewater treatment (Mitch et al. 2003).  

As potable water demands and shortages rise, more communities are considering reuse of 

wastewater as an option for increasing the overall water supply. Ozone is effective for treating 

pathogens and trace organic contaminants (Gerrity and Snyder 2011; Ikehata et al. 2008; Sonntag 

and von Gunten 2012) and, therefore, is a promising treatment technology for potable water 

reuse applications. Other advantages of ozone use include: treatment versatility for pre- and post-

disinfection, decolorization, taste and odor removal, coagulation assistance, and zero residual 

generation. However, the formation of ozone byproducts, such as NDMA, could be a barrier to 

the use of ozone in potable water reuse applications. 
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NDMA formation is commonly associated with chloramination (Choi and Valentine 2002; 

Mitch et al. 2003), but recent studies indicate that direct formation during ozonation also occurs 

(Gerrity et al. 2015; Hollender et al. 2009; Kosaka et al. 2009; Nawrocki and Andrzejewski 

2011; Oya et al. 2008; Padhye et al. 2013; Pisarenko et al. 2012; Schmidt and Brauch 2008; von 

Gunten et al. 2010; Yoon et al. 2011). Initially, the chloramination pathway was thought to 

involve nucleophilic substitution between monochloramine and a secondary amine (Choi and 

Valentine 2002; Mitch and Sedlak 2002). This reaction resulted in unsymmetrical 

dimethylhydrazine (UDMH), which was subsequently oxidized by chloramines to form NDMA. 

The modified pathway involves the reaction of dichloramine and a model secondary amine, 

dimethylamine (DMA), which forms chlorinated unsymmetrical dimethylhydrazine (Cl-UDMH) 

as an intermediate. Dissolved oxygen oxidizes Cl-UDMH to NDMA (Schreiber and Mitch 

2006). On the other hand, very little is known about the NDMA formation pathway and any 

intermediates that are formed with ozonation. Von Gunten et al. (2010) proposed a mechanism 

for NDMA formation from dimethylsulfamide (DMS), which is a degradation product of the 

fungicide tolylfluanid. The mechanism is bromide-catalyzed and results in the loss of –SO2 as a 

leaving group and N-N bond formation. While UDMH conversion to NDMA is likely a basic 

oxidation reaction, additional pathways for other precursors’ reactions with ozone have not been 

identified. 

In order for NDMA to form as a disinfection byproduct from ozonation, certain compounds 

must be present in the water. Besides DMS and other metabolites of tolylfluanid, a few other 

precursors have been identified, including: daminozide; UDMH; 1,1,1’,1’-Tetramethyl-4,4’-

(methylenedi-p-phenylene)disemicarbazide (TMDS); dimethyldithiocarbamate (DMDTC); 

poly(diallyldimethylammoniumchloride) (polyDADMAC); N,N-Dimethyl-p-phenilenediamine 
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(DMPD); methylene blue; 4,4′-hexamethylenebis(1,1-dimethylsemicarbazide) (HDMS); and. 

1,1,5,5-tetramethylcarbohydrazide (TMCH) (Kosaka et al. 2009; Kosaka et al. 2014; Mitch and 

Sedlak 2004; Oya et al. 2008; Schmidt and Brauch 2008; Padhye et al. 2011; Padhye et al. 2013; 

von Gunten et al. 2010). The chemical structures of these compounds include hydrazines, 

semicarbazides, sulfamides, and dimethylamines. In particular, compounds with dimethylamine 

bonded directly to a nitrogen atom or separated from another nitrogen by a good leaving group 

(e.g., –SO2) form NDMA with significant molar conversion yields (i.e., 10-80%) (Kosaka et al. 

2009; Schmidt and Brauch 2008; von Gunten et al. 2010). Precursors with the dimethylamine 

and no additional nitrogen may also form NDMA upon ozonation, but the yields are < 0.01% 

(Oya et al. 2008; Padhye et al. 2011; Padhye et al. 2013). 

In more complex water matrices, certain factors have been shown to impact NDMA 

formation with ozone, including dissolved ions, pH, and hydroxyl radicals. For example, 

bromide ions catalyze the reaction of DMS with ozone (von Gunten et al. 2010). Oya et al. 

(2008) found that NDMA formation by ozonation of dimethylamine dyes increased in river 

water compared to ultrapure water. They also noticed increased NDMA formation with increased 

pH; however, this was attributed to changes in the reaction mechanism at different pH values. 

Dissolved molecular ozone and hydroxyl radicals can be involved in both formation 

(Andrzejewski et al. 2008, Schmidt and Brauch 2008) and destruction of NDMA (Lee et al. 

2007b; Mezyk et al. 2004). However, the extent of each oxidant’s role is not well understood.  

The goal of this study was to identify specific organic structures that may contribute to the 

direct formation of NDMA by ozonation. Only a few precursors have been identified in 

literature, and there is much to gain in understanding which compounds lead to NDMA 
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formation. If model precursors can be identified, then specific strategies can be utilized to 

remove them prior to ozonation, thereby limiting the production of NDMA. 

 

4.3 Materials and Methods 

4.3.1 Tested Waters and Equipment 

The tested water matrices included ultrapure water and wastewater effluent from a pilot-scale 

membrane bioreactor (0.032 MGD). The ultrapure water was buffered at neutral pH with 

phosphate buffer (1 mM or 5 mM final concentration). The wastewater came from a municipal 

source with treatment consisting of primary sedimentation with ferric chloride addition, 

biological secondary treatment with partial nitrification, and tertiary membrane microfiltration 

(0.40 µm nominal pore size). Table 4.1 contains water quality information and key treatment 

parameters for the wastewater effluent. No additional filtration was performed, and wastewater 

was stored at 4 °C for preservation prior to bench-scale work. 

Ozonated water was generated using an oxygen-fed generator (model CFS-1A, Ozonia North 

America, Inc., Elmwood Park, NJ, USA) to diffuse ozone into cold, ultrapure water as described 

previously (Wert et al. 2009). Oxygenated water was produced when the ozone generator was 

switched off. The ozone stock solution was typically between 65 and 85 mg/L as O3 and the 

oxygenated water was 8 mg/L as O2. Aliquots of the ozonated or oxygenated water were 

measured in a graduated cylinder and quickly poured into the amber glass bottle (125 mL) with 

the test water. The containers were capped and inverted to mix the sample. Dilution factors based 

on addition of the ozone or dissolved oxygen stock aliquots were accounted for in all 

measurements. 
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Table 4.1: Water quality for membrane bioreactor effluent. Analysis occurred during the week in 

which the wastewater was collected for bench-scale tests. 

Parameter Unit Value 

pH - 6.7-7.1 

Ammonium mg-N/L 2 

Total organic carbon mg-C/L 5-8
* 

Total nitrogen mg-N/L 4-8
*
 

Bromide mg/L 0.157 

Alkalinity mg/L as CaCO3 125 

Nitrite mg-N/L 0.064 
*
Range of measured values for monthly tests. 

 

 

4.3.2 Analytical Methods and Reagents 

The following chemicals were purchased as potential NDMA precursors: 2-Furaldehyde 2,2-

dimethylhydrazone (2-F-DMH) from Alfa Aesar (Heysham, Lancashire, United Kingdom); 

acetone dimethylhydrazone (acetone-DMH), N,N-dimethylsulfamide (DMS), and Dacarbazine 

from TCI (Toyko, Japan); TMDS from TCI America (Portland, OR); Streptozocin  and 

Ranitidine hydrochloride (RNTD) from Sigma (St. Louis, MO); UDMH and Dimethylamine 

hydrochloride (DMA) from Aldrich (St. Louis, MO); Ziram from Sigma-Aldrich (St. Louis, 

MO); N-Nitrososarcosine and Atazanavir from Toronto Research Chemicals (Ontario, Canada); 

Daminozide from Fluka (Steinheim, Germany); N-{[(dimethylamino)carbonyl]oxy}-2-

phenylacetamide (DMC-phenyl), N-1-(4-methylphenyl)-2,2-dimethylhydrazine-1-

carbothioamide (DMTC-phenyl), N'-{[(dimethylamino)carbonyl]oxy}-4-(1,3-dithiolan-2-

yl)benzenecarboximidamide (DMC-dithio), and N-1-(3-{[(2,2-dimethylhydrazino)carbonyl] 

amino}-4-methylphenyl)-2,2-dimethylhydrazine-1-carboxamide (DMSC) from Maybridge 

(Cornwall, United Kingdom). Chemical structures are shown in Table A.1. 
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Neat standards of the precursors were individually dissolved in ultrapure water and/or 

acetonitrile (for solubility) at 10 mM, except for DMC-phenyl, DMSC, DMC-dithio, DMTC-

phenyl and Atazanavir which were dissolved at 3.2-4.8 mM (1000 mg/L) due to a limited supply. 

These solutions were kept at 4 °C in amber vials to limit the potential for hydrolysis or 

photolysis. Phosphate buffer solution (1 M) was prepared from equal molar amounts of KH2PO4 

and Na2HPO4 and adjusted to pH 7. Bromide solution (4.18 x 10
-4

 M or 33.4 mg/L as Br
-
) was 

prepared from sodium bromide. A concentrated (34 wt%) hydrogen peroxide solution was 

diluted to 0.1 wt% (1000 mg/L) for use as a spike solution. Parachlorobenzoic acid (pCBA) 

solution was prepared from sodium parachlorobenzoate (500 mg/L as pCBA). Tert-butyl alcohol 

(tBA) was diluted slightly to make a 10.04 M solution that would remain liquid at room 

temperature. All solutions were prepared using ultrapure water (18.2 MΩ·cm). The phosphate 

salts were obtained from Fisher Scientific (Fair Lawn, NJ), sodium bromide was from Sigma-

Aldrich (St. Louis, MO), pCBA was from Pfaltz & Bauer (Waterbury, CT), tBA was from Acros 

Organics (Fair Lawn, NJ), and the hydrogen peroxide solution was from EnviroTech Chemical 

Services (Modesto, CA). 

Precursors were individually spiked into the test water (30 mL) at 100 µM in amber glass 

bottles. Bromide, hydrogen peroxide, parachlorobenzoic acid (pCBA) or tert-butyl alcohol (tBA) 

spikes were added to the samples next, as appropriate. Ozone-saturated water was added to give 

a final concentration of approximately 1 mM (48 mg O3/L), which is at least a 10-fold molar 

excess (compared to the precursor concentration) to ensure the reaction is not limited by ozone. 

Oxygen-saturated water was added to give a final concentration of approximately 0.25 mM (8 

mg O2/L), which was the maximum concentration possible for the given equipment. Samples 

were capped and mixed by inverting after addition of ozonated or oxygenated water and left 
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undisturbed at room temperature (23 °C) overnight in the dark. Based on an ozone decay curve 

for ultrapure water, the ozone residual (1.52 mM initially) was less than 1.67 x 10
-2

 mM after 

three hours. Therefore, leaving the bottles to sit overnight was sufficient to eliminate the ozone 

residual. Ozone concentration was measured using the indigo method (Rakness et al. 2010).  

Chloramine NDMA formation potential (CLM-FP) was evaluated based on a previously 

published method (Mitch and Sedlak 2002). Prior research uses the abbreviation NDMA-FP; 

however, this does not distinguish between chloramine and ozone-reactive NDMA precursors. 

Therefore, CLM-FP is used instead. Samples were spiked with preformed monochloramine at 2 

mM (140 mg/L) as Cl2 and stored at room temperature (23 °C) in the dark. Ozonated samples 

were allowed to sit overnight to ensure there was no ozone residual prior to chloramination. 

Samples were quenched after ten days with 150 µL of 0.2 M sodium thiosulfate from EMD 

Chemicals, Inc (Gibbstown, NJ), and absence of chlorine residual was verified using a Hach 

DPD test kit. The preformed monochloramine stock solution was prepared by adding sodium 

hypochlorite to a rapidly stirring solution of ammonium chloride with a few drops of 5 N sodium 

hydroxide to maintain pH above 8 and prevent monochloramine decomposition during initial 

mixing (Mitch and Sedlak 2002). Sodium hypochlorite from Sigma-Aldrich (St. Louis, MO), 10-

14 wt% free available chlorine, was standardized using iodometric titration prior to use. 

Ammonium chloride was obtained from Sigma-Aldrich (St. Louis, MO) and sodium hydroxide 

from Fisher Scientific (Fair Lawn, NJ). 

Radiolysis tests were conducted to isolate the impact of hydroxyl radicals on NDMA 

formation. Phosphate buffered (1 mM) ultrapure water was saturated with nitrous oxide (N2O 

gas) for one hour. Aqueous electrons and •OH are formed by direct gamma radiolysis of the 

water (Peller et al. 2003). Aqueous electrons are scavenged by N2O to form N2O
–
, which 
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decomposes to N2 and O
•–

. The O
•–

 is subsequently protonated by water to form •OH. Samples 

were shipped overnight on ice in amber glass containers to the Radiation Laboratory at the 

University of Notre Dame. The samples were subjected to gamma irradiation at 1.93 Gy/min (Gy 

= Gray = Joule of radiation absorbed per kilogram of matter) with a Shepherd 109 
60

Co source 

for specific time lengths (2-20 min) corresponding to different hydroxyl radical concentrations 

(Peller et al. 2003).  

NDMA analysis was performed by liquid chromatography tandem mass spectrometry (LC-

MS/MS) using isotope dilution with d6-NDMA purchased from Cambridge Isotope Laboratories 

(Andover, MA, USA). An Agilent 1100 LC binary pump and a CTC PAL autosampler equipped 

with a 20 µL sample loop were used for all analyses. A 30 µL sample was injected at a flow rate 

of 5 µL/s. The mobile phase consisted of a binary gradient of 5 mM ammonium acetate from J.T. 

Baker (Philipsburg, NJ) in water (A) and 100% methanol (B) from Honeywell Burdick & 

Jackson (Muskegon, MI) at a flow rate of 800 µL/min. The gradient was as follows: 10% B held 

for 0.50 minutes, stepped to 65% B at 0.51 minutes and increased linearly to 100% B until 7 

minutes. A 3 minute equilibration step at 10% B at the start of each run resulted in a 10 minute 

total run time. A Luna C18(2) 150 x 4.60 mm, 5 µm column (Phenomenex, Torrance, CA) was 

used for separation. The mass spectrometer was operated via multiple reaction-monitoring in 

positive-ion mode with a source temperature of 375 °C. Two transitions were monitored for 

NDMA (75/43 and 75/58) and d6-NDMA (81/46 and 81/64). NDMA standards were purchased 

from Ultra Scientific (Kingstown, RI, USA). An eight point calibration curve for NDMA (25-

3000 ppb or 0.34-40.5 µM) was prepared in ultrapure water and linear regression for the 

calibration curve always exceeded 0.995. Calibration standards were kept at 4 °C in amber vials. 

The reporting limit (0.34 µM or 25 µg/L) was set at greater than five times the signal to noise 
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ratio and was based on the instrument detection limit (n = 12, concentration = 25 µg/L). There 

was no matrix suppression for the phosphate buffer.  Recovery for the wastewater matrix spike 

was 102% and NDMA in the ozonated wastewater was below the reporting limit. 

Individual precursors were analyzed by with LC-MS/MS and monitoring corresponding mass 

transitions for: TMDS (371.17/285.2), Daminozide (161/143.1), DMS (124.9/107.9), 2-F-DMH 

(139/96.1), DMC-phenyl (223.1/105), DMTC-phenyl (210.1/108), DMC-dithio (312/223.1), 

Ranitidine (315.3/176.2; 315.3/130.1), UDMH (60.9/45) and DMA (46/31.1). Except for UDMH 

and DMA, precursors were analyzed using a method similar to the NDMA analysis with the 

following exceptions: 10 µL sample loop, source temperature of 500 °C, and the mobile phases 

consisted of 0.1% formic acid (A) and methanol (B). The gradient was 10% B for 5 minutes, 

linearly increased to 90% B until 10 minutes and held until 15 minutes. UDMH and DMA were 

analyzed by LC-MS/MS using a separate method with a 10 µL sample loop and 5 µL/s injection 

flow rate. The mobile phases were 5 mM ammonium formate adjusted to pH 3 with formic acid 

(A) and acetonitrile (B) at a flow rate of 0.400 µL/min. The gradient was as follows: 10% A held 

for 2 minutes, linearly increased to 90% A until 12 minutes, and held at 90% A until 16 minutes. 

A 4 minute equilibration step at 10% A at the start of each run resulted in a 20 minute total run 

time. A SeQuant ZIC-HILIC 150 x 2.1 mm, 5 µm column (EMD Millipore, Billerica, MA) was 

used for separation. An external calibration with 7 points for each precursor (0.005 to 0.25 µM) 

was used. R
2
 values of 0.995 or better were observed for all compounds. Reporting limits were 

set at greater than five times the signal to noise ratio and were based on the instrument detection 

limit (n = 12) for individual precursors. There was no matrix suppression for the phosphate 

buffer.   
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4.3.3 Selection of Model NDMA Precursors 

The literature suggests that certain structures are more likely to form NDMA by ozonation, 

as mentioned in the introduction. Therefore, the search for model precursors was based on 

structural moieties, such as a dimethylamine group, hydrazine, sulfamide, hydrazone and 

carbamate. The selected compounds contain the dimethylamine group and at least one other 

nitrogen, which forms the building block for NDMA. In some compounds, the building block is 

located on the end of the structure (e.g., DMSC) and for other compounds it is more centrally 

located (e.g., Atazanavir). In most compounds, the dimethylamine is bonded to an additional 

nitrogen; however, the carbamates have a –CO2 group separating the nitrogens. N-

nitrososarcosine already is a nitrosamine and would form NDMA with the loss of –CO2. The 

precursors were identified using online structure search tools (e.g., eMolecules, Sigma-Aldrich 

and Ryan Scientific substructure search, ChemSpider structure search and DrugBank 

ChemQuery) for compounds available for purchase, which is not necessarily an indication of 

commercial or industrial use or their potential presence in treated wastewater effluents. Table 4.2 

lists the abbreviations and characteristics of the precursors selected in this study. Appendix A 

contains a detailed list of precursors found in the literature, their structures and molar yields of 

NDMA formation. 

 

4.4 Results and Discussion 

4.4.1 Molar Yields in Buffered Ultrapure Water 

Each of the selected precursor compounds were individually reacted with a 10-fold molar 

excess of ozone in 5 mM phosphate buffered ultrapure water. Figure 4.1 shows the molar yields 

of NDMA formed with ozonation. In parallel tests with dissolved oxygen (8 mg O2/L), NDMA 
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was detected for UMDH, RNTD, and daminozide, but concentrations were well below the MRL. 

Molar yields (mole NDMA / mole calculated precursor amount) varied widely, from 0-78%. 

There was no NDMA formation observed for N-nitrososarcosine, atazanavir, dacarbazine and 

streptozocin. Ozone may react with these compounds, but not in a manner that results in NDMA. 

As expected, DMS and DMA did not result in NDMA formation. The reaction between ozone 

and DMS is catalyzed by bromide (von Gunten et al. 2010), which was not present in the 

ultrapure water matrix. DMA reacts with dichloramine to form NDMA, but ozonation of amines 

mainly results in the formation of aldehydes (Munoz and von Sonntag 2000). Very low molar 

yields (< 0.4%) for ozonation of DMA have been reported (Andrzejewski et al. 2008; Yang et al. 

2009), but the reaction may be due to nitrosation rather than ozonation. Ziram and RNTD formed 

NDMA, but at low molar yields (< 0.03%) and below the MRL. These results were expected 

based on another study with Ziram (Padhye et al. 2013) and because the compounds have a 

similar structure to dyes containing a DMA group, but no additional nitrogen (Oya et al. 2008). 
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Table 4.2: Compounds in this study tested as NDMA precursors. 

Compound Name Abbreviation CAS # Moieties Notes 
Additional 

References 

Acetone Dimethylhydrazone Acetone DMH 13483-31-3 Hydrazone + DMA Synthesis building block  

2-Furaldehyde 2,2-Dimethylhydrazone  2-F-DMH 14064-21-2 Hydrazone + DMA Synthesis building block  

N-1-(3-{[(2,2-dimethyl hydrazino) 

carbonyl]amino}-4-methylphenyl)-2,2-

dimethylhydrazine-1-carboxamide  

DMSC unavailable Urea + DMA No known uses  

N-1-(4-methylphenyl)-2,2-

dimethylhydrazine-1-carbothioamide  
DMTC-phenyl unavailable Thiourea + DMA No known uses  

N'-{[(dimethylamino) carbonyl]oxy}-4-

(1,3-dithiolan-2-yl) 

benzenecarboximidamide  

DMC-dithio unavailable Carbamate + DMA No known uses  

N-{[(dimethylamino)carbonyl]oxy}-2-

phenylacetamide  
DMC-phenyl unavailable Carbamate + DMA No known uses  

Atazanavir  198904-31-3 
Hydrazine 

(centrally located) 
Antiretroviral drug for HIV  

Dacarbazine  4342-03-4 Hydrazone + DMA Antineoplastic agent for melanoma a 

N-nitrososarcosine  13256-22-9 NDMA 

Probable carcinogen found in tobacco 

products and in cooked foods with 

sodium nitrite 

b, c 

Streptozocin  18883-66-4 NDMA 
Antibiotic produced by Streptomyces 

achromogenes 
 

Dimethylsulfamide DMS 3984-14-3 Sulfamide + DMA 
Decomposition product of fungicide 

tolylfluanid 
a, d 

Daminozide  1596-84-5 Hydrazine + DMA Plant growth regulator a 

1,1-Dimethylhydrazine UDMH 57-14-7 Hydrazine + DMA 
Rocket fuel component, decomposition 

product of daminozide 
a 

1,1,1′,1′-tetramethyl-4,4′-(methylene-di-

p-phenylene) disemicarbazide 
TMDS 85095-61-0 Urea + DMA 

Yellow inhibitor and light stabilizer for 

polyamide resins 
e 

Ranitidine Hydrochloride RNTD 66357-59-3 DMA 
Histamine-2 blocker for treating and 

preventing stomach ulcers 
f, g, h 

Dimethylamine Hydrochloride DMA 506-59-2 DMA Present in wastewater i, j, k, l 
a
Schmidt and Brauch 2008; 

b
Wu et al. 2012; 

c
Wu et al. 2014; 

d
von Gunten et al. 2010; 

e
Kosaka et al. 2009; 

f
Shen and Andrews 2011; 

g
Shen and Andrews 2013;      

h
Le Roux et al. 2012; 

i
Mitch and Sedlak 2002; 

j
Andrzejewski et al. 2008; 

k
Yang et al. 2009; 

l
Bond and Templeton 2011 

 



 

76 

 

 

Figure 4.1: Molar yield of NDMA formed by ozonation (O3 = 1 mM) of precursors in buffered 

ultrapure water at pH 7 with and without bromide (Br) addition (0, 50, 1250 ppb), by ozonation 

in wastewater, and by chloramination (140 mg/L or 2 mM as Cl2) in buffered ultrapure water. 

 

Several of the model compounds formed NDMA upon ozonation. The hydrazones, acetone-

DMH and 2-F-DMH, are similar to the known precursor UDMH. However, these compounds 

have a double bond which makes them potentially more reactive with ozone (e.g., ozonolysis 

reaction). DMSC and DMTC-phenyl are similar to the known precursor TMDS. DMC-phenyl 

and DMC-dithio are related to DMS in that the nitrogen atoms are separated by a good leaving 

group (e.g., –SO2, –CO2). These carbamate compounds differ from DMDTC, which was 

previously reported to form NDMA (Padhye et al. 2013; Sedlak et al. 2005). Although the 

mechanism for NDMA formation with ozone is not fully understood, it seems rearrangement 
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with the loss of a small molecule, CO2, results in the nitrogen-nitrogen bond. Consequently, 

other dimethylcarbamate compounds may potentially be precursors. 

Acetone-DMH was found to be unstable in water. Through LC-MS/MS analysis, it was 

confirmed that acetone-DMH degraded rapidly to UDMH, which explains the very similar 

results between these two compounds. In addition, UDMH slowly degraded in water, so 

calibration standards were prepared fresh every two weeks. No other compounds showed short-

term instability in water; however, NDMA was detected in old stock solutions (> 1 yr) for 2-F-

DMH, UMDH, and TMDS. NDMA was present in fresh solutions of 2-F-DMH and Ziram, 

which suggests there may be residual NDMA from synthesis. DMA was detected in old stock 

solutions for 2-F-DMH, UMDH, DMC-dithio, DMC-phenyl and DMS, which may be due to 

slow hydrolysis of these precursors. 

4.4.2 Influence of Bromide on Molar Yields 

The ozonation bench-scale experiments in 5 mM phosphate buffered ultrapure water were 

repeated with two different bromide spikes. Molar yields for some compounds are enhanced by 

bromide, while others remain constant (Figure 4.1). Although there is a slight decrease in molar 

yield for 2-F-DMH, daminozide, and TMDS, this is probably the effect of an increased ozone 

demand caused by the bromide spike at 1250 ppb. A greater ozone demand could result in lower 

NDMA formation. 

In agreement with work by von Gunten et al. (2010), there was considerably more NDMA 

formed in solutions of DMS containing bromide. Bromide concentration was also significant for 

NDMA formation in solutions of UDMH and acetone-DMH. DMC-phenyl and DMC-dithio, 

which have the –CO2 leaving group, did not show increased formation with bromide. This 

suggests that the reaction pathway for these compounds is different than the bromide-catalyzed, 
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–SO2 leaving reaction for DMS. It appears that there are multiple reaction pathways for NDMA 

precursors that react with ozone which need further investigation. 

4.4.3 Effect of Hydrogen Peroxide Addition and Ozone Dose  

The effects of hydrogen peroxide and ozone dose on NDMA formation were investigated for 

two compounds (TMDS and 2-F-DMH) in 5 mM phosphate buffered ultrapure water at pH 7. 

Hydrogen peroxide was added at O3:H2O2 mg/L ratios of 1:0.25 and 1:0.50 (or mM ratios 1:0.35 

and 1:0.70). As seen in Figure 4.2, the addition of hydrogen peroxide had minimal impact on 

NDMA level. This was also reported by Oya et al. (2008).  

The two precursor compounds were individually reacted with ozone at doses ranging from 

0.1 to 1.5 mM O3 in buffered ultrapure water. Initial ozone dose affected the extent of NDMA 

formation. For 2-F-DMH, NDMA formation increased from 0.1 to 0.5 mM O3 and then leveled 

off (Figure 4.3). The maximum molar conversion yield was 70%. Likely, increasing the ozone 

dose above 0.5 mM did not cause more NDMA formation because the precursor had reacted 

completely to form NDMA and other transformation products. In the case of TMDS, there was a 

linear correlation (R
2
 = 0.98) between NDMA formation and ozone dose in the tested range. No 

maximum molar conversion yield was achieved at these ozone doses.  
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Figure 4.2: Effect of hydrogen peroxide (H2O2) on NDMA formation by ozonation (O3 = 1 mM) 

in buffered ultrapure water at pH 7. Error bars represent one standard deviation (n = 2). 

 

 

 

Figure 4.3: Effect of ozone (O3) dose on NDMA formation by ozonation in buffered ultrapure 

water at pH 7. Error bars represent one standard deviation (n = 2). 
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4.4.4 NDMA Formation Potential with Chloramination 

Chloramine NDMA formation potential is a test to quantify precursors that react with 

chloramine to form NDMA. At a high chloramine dose, the test serves as a way to determine the 

maximum formation potential for NDMA. In this study, CLM-FP for the targeted precursors was 

investigated through 10-day tests in 5 mM phosphate buffered ultrapure water before and after 

ozonation. Experimental parameters were kept the same for comparison to previous tests. One 

set of samples was spiked with preformed monochloramine (140 mg/L as Cl2). The other set of 

samples was ozonated and allowed to react for 24 hours before spiking with preformed 

monochloramine.  

A comparison of NDMA formation in buffered ultrapure water after ozonation only and 

ozonation followed by chloramination can be seen in Figure 4.4. The NDMA molar conversion 

yields are summarized in Table A.2. With the exception of DMA, all yields for chloramination 

were below 3% and most were below 1.5%. The precursors have a much higher NDMA 

formation with ozone as compared to chloramines, making these precursors distinctly different 

from other dimethylamine-containing compounds. As expected, DMA had the highest molar 

conversion yield with chloramines (7.5%). CLM-FP decreased 30% after ozonation for DMA, 

which agrees with previous research that ozonation can reduce CLM-FP associated with 

chloramination (Pisarenko et al. 2012).   

Molar yields for UDMH and acetone-DMH increased slightly for chloramination following 

ozonation (Figure 4.4). This suggests that transformation products from the ozonation reaction 

may be NDMA chloramination precursors. Ozonation of tertiary amines can result in DMA 

formation (Lee et al. 2007a), which would result in NDMA formation with subsequent 

chloramination. 
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Figure 4.4: Comparison of NDMA formation with ozonation only (O3 = 1 mM) and ozonation-

chloramination (O3 = 1 mM; 140 mg/L as Cl2) in buffered ultrapure water at pH 7. Error bars 

represent one standard deviation (n = 2). 

 

4.4.5 Comparison of Molecular Ozone and •OH as Oxidants for NDMA Formation 

Gamma radiolysis of three precursors (DMTC-phenyl, 2-F-DMH, and TMDS) was 

performed in 1 mM phosphate buffered ultrapure water in order to isolate the effect of •OH 

reactions on NDMA formation. As a control test, buffered ultrapure water spiked with NDMA 

was irradiated in parallel with the precursor-containing solutions, and slight NDMA destruction 

due to •OH was measured. Therefore, results for the gamma radiation experiments are a 
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NDMA was formed by all three precursors (Figure 4.5) at low molar yields (0.2-4.3%), 

which were calculated based on the amount of precursor that degraded after 20 min (38.6 Gy). 
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Due to low NDMA concentration, samples underwent solid phase extraction and GC-MS/MS 

analysis (Holady et al. 2012). DMTC-phenyl was spiked at 1 µM and reacted entirely within 6 

minutes (11.6 Gy). 2-F-DMH and TMDS were spiked at 100 µM and showed different degrees 

of degradation by •OH reactions (Figure 4.6).  

Parachlorobenzoic acid (pCBA) was used as a •OH probe and tert-butyl alcohol (tBA) was 

used to scavenge •OH. Based on pCBA concentrations before and after radiolysis, [•OH] from 

gamma irradiation was similar to what was produced during ozonation. Since radiolysis resulted 

in low NDMA formation, molecular ozone is the main oxidant responsible, whereas the •OH 

may play a minor role in NDMA formation for these model precursors. While a 100 mM tBA 

spike was able to scavenge •OH effectively for pCBA (data not shown) and TMDS, the same 

spike was not effective for DMTC-phenyl and 2-F-DMH (Table 4.3). This suggests that DMTC-

phenyl and 2-F-DMH react faster with •OH than tBA. Overall, the low molar yields indicate that 

•OH reacts with the precursor to form products other than NDMA.  

The presence of hydroxyl radicals may be more likely to hinder NDMA formation than to 

increase it because of side reactions and increased ozone decay. For example, hydroxyl radical 

quenching with tBA was shown to increase NDMA formation from DMS by reducing •OH 

reactions that either formed products other than NDMA or resulted in bromate formation, which 

limited bromide catalysis (von Gunten et al. 2010). Similarly, parallel ozonation tests for the 

precursors in buffered ultrapure water with and without tBA resulted in greater molar yields 

when •OH were scavenged (Figure 4.7). 
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Figure 4.5: Formation of NDMA in buffered ultrapure water during radiolysis. 

 

Figure 4.6: Degradation of NDMA precursors during radiolysis. 
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Table 4.3: Degradation of NDMA precursors and molar yields during radiolysis with and without 

tBA. 

Precursor Sample Description Dose 

(Gy) 

Conc. (µM) % 

Degradation 

Molar 

Yield (%) 

DMTC-

phenyl 

No radiolysis 0 1.38 ± 0.020 N/A  

Radiolysis Dose 1 3.9 0.55 61%  

Radiolysis Dose 2 11.6 0.009 99%  

Radiolysis Dose 3 19.3 < 0.005 > 99.6%  

Radiolysis Dose 4 38.6 < 0.005 > 99.6% 3.0% 

No radiolysis + 100 mM tBA 0 1.24 ± 0.007 N/A  

Radiolysis Dose 4 + 100 mM tBA 38.6 0.89 ± 0.023 35%  

2-F-DMH No radiolysis 0 154 ± 1.7 N/A  

Radiolysis Dose 1 3.9 149 3%  

Radiolysis Dose 2 11.6 140 9%  

Radiolysis Dose 3 19.3 131 15%  

Radiolysis Dose 4 38.6 117 ± 2.1 24% 0.2% 

No radiolysis + 100 mM tBA 0 151 ± 2.1 N/A  

Radiolysis Dose 4 + 100 mM tBA 38.6 114 ± 1.4 26%  

TMDS No radiolysis 0 114 ± 1.7 N/A  

Radiolysis Dose 1 3.9 114 ± 0.6 0.3%  

Radiolysis Dose 2 11.6 110 3.5%  

Radiolysis Dose 3 19.3 111 2.6%  

Radiolysis Dose 4 38.6 109 4.4% 4.3% 

No radiolysis + 100 mM tBA 0 114 ± 1.4 N/A  

Radiolysis Dose 4 + 100 mM tBA 38.6 114 ± 0.7 0.4%  
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Figure 4.7: Comparison of NDMA formation after ozonation (O3 = 1 mM) in buffered ultrapure 

water at pH 7 with and without tert-butyl alcohol (tBA) for scavenging hydroxyl radicals and 

buffered ultrapure water with 3 mg/L (organic carbon) Suwannee River fulvic acid as a source of 

natural organic matter (NOM). 

 

4.4.6 Molar Yields in an Actual Secondary Wastewater Matrix 

NDMA formation was examined in wastewater by dissolving each precursor compound 

individually in tertiary-treated wastewater effluent and reacting with a 10-fold molar excess of 

ozone using the same procedure as the buffered ultrapure water. The concentration of NDMA in 

the ozonated wastewater effluent (without any precursors added) was below the method 

reporting limit. NDMA formation was affected by the water matrix for a few compounds. It was 

anticipated that the ozone demand presented by the wastewater would decrease the ozone 

concentration available for reaction with the precursor compounds, and, therefore, lower NDMA 

molar conversion yields were expected. However, the opposite was observed. For four 
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compounds (UDMH, acetone-DMH, TMDS and DMSC), the NDMA molar conversion yield 

was significantly greater in the wastewater matrix compared to phosphate buffered ultrapure 

water (Figure 4.1). This trend was also seen by a group of researchers comparing NDMA 

formation by ozonation of two dyes in river water and ultrapure water matrices at pH 7 (Oya et 

al. 2008). They measured higher NDMA formation in the river water matrix that contained 

bromide and nitrite, but at a concentration too low to account for this increase. At this time, 

specific constituents in the wastewater responsible for the increased formation have not been 

determined. The presence of natural organic matter alone does not increase NDMA formation 

(Figure 4.7); however, metal ions, such as Cu
2+

, may affect NDMA formation. It was 

demonstrated that Cu
2+

 ions, in the presence of dissolved oxygen, catalyzed the transformation of 

daminozide to succinic acid and UDMH (Huang and Stone 2003). The effect was increased in 

the presence of halide ions. Another explanation for the increased molar yields in wastewater is 

through •OH scavenging. Effluent organic matter in wastewater can scavenge •OH. As 

demonstrated in the previous section, •OH scavenging is associated with increased NDMA 

formation. 

4.4.7  Practical Implications of the Research 

As shown in this research, compounds with a general structure of (H3C)2N-N-R or (H3C)2N-

L-N-R, where L is a good leaving group like –SO2 or –CO2, have a high likelihood of forming 

NDMA with ozonation. While previously reported NDMA precursors UDMH, DMS, TMDS and 

daminozide have been reported to occur in groundwater or are known products in use, the new 

precursors reported in this study were selected by structure only and have not been quantified in 

wastewater, surface water or groundwater.  
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According to the results of this study, the ozone dose for treating wastewater may strongly 

affect NDMA formation. Treatment plants operating at high ozone doses for color removal or 

chemical contaminant removal could experience much greater NDMA formation compared to 

treatment plants using low ozone doses for final disinfection. Alternatively, NDMA precursors 

may be removed through treatment steps, such as reverse osmosis, biological treatment, and 

oxidation, leading to less NDMA formation when ozonation is applied at the end of a treatment 

train. Consequently, one should consider both the dose and placement within the treatment train 

when determining an appropriate ozone application. 

Bench-scale ozonation testing with ultrapure water may not demonstrate the full potential of 

the precursors to form NDMA. Wastewater constituents can increase NDMA formation, such as 

by bromide catalysis or hydroxyl radical quenching (von Gunten et al. 2010). Therefore, further 

study is needed to understand the influence of aqueous matrix components on NDMA formation 

and to develop possible mitigation strategies. 

Chloramination may follow ozonation when a chlorine residual is necessary. The combined 

disinfection scheme could have varying results. If the source water contains mostly NDMA 

precursors that react with chloramine, then pre-ozonation may reduce NDMA formation 

potential (Pisarenko et al. 2012). However, if the source water contains NDMA precursors that 

react with ozone, then initial ozonation may form NDMA, as well as additional chloramination 

precursors via degradation products (i.e., from UDMH). Without an analytical method to 

quantify NDMA precursors for either oxidant, it is necessary to experimentally determine 

NDMA formation potential for each water matrix in order to determine the optimal disinfection 

strategy. 
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4.4 Conclusion 

Experiments with known and potential NDMA precursors resulted in the following findings 

on NDMA formation by ozonation: 

 Out of 9 compounds selected based on structural characteristics, six new compounds 

were identified as NDMA precursors. Two are hydrazones, two are semicarbazides, and 

two are carbamates.  

 Bromide concentration was significant for NDMA formation in solutions of 

dimethylsulfamide (DMS), unsymmetrical dimethylhydrazine (UDMH) and acetone 

dimethylhydrazone. Other compounds showed no enhancing effect of bromide on 

NDMA formation. 

 Although all the precursors tested contain a dimethylamine that reacts with chloramine to 

form NDMA, the reaction with ozone results in significantly higher NDMA formation. 

This group of precursors (with structures (H3C)2N-N-R or (H3C)2N-L-N-R) is distinctly 

different than other dimethylamine-containing compounds. 

 Transformation products from the ozonation of UDMH may be NDMA chloramination 

precursors. 

 Molecular ozone was confirmed as the main oxidant responsible for NDMA formation 

for the model precursors. 

 Higher NDMA formation was observed in wastewater than ultrapure water for several 

precursors. Wastewater may contain constituents that promote NDMA formation. 

 Hydroxyl radical scavenging and a greater ozone dose lead to increased NDMA 

formation for the model precursors, while the addition of hydrogen peroxide had no 

significant effect on NDMA formation. 
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CHAPTER 5  

THE EFFECT OF PRE-CHLORINATION ON OZONE-REACTIVE NDMA 

PRECURSORS AND DISINFECTION BYPRODUCT FORMATION TRADE-OFFS 

5.1 Abstract 

Disinfection byproducts (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs) 

and N-nitrosodimethylamine (NDMA), are formed by oxidant disinfectants such as chlorine, 

chloramine, and ozone. However, these same oxidants may be used to control formation of 

particular DBPs either separately or in combination. This study compared the formation and 

reduction of NDMA, THMs, and HAAs in treated wastewaters using seven disinfection 

treatment schemes. By investigating multiple combinations, including one not previously 

investigated (chlorination-ozonation-chloramination), NDMA formation by chloramination and 

ozonation was isolated and the effects on both chloramine- and ozone-reactive NDMA 

precursors were assessed. The top two treatment schemes for secondary wastewater effluent 

resulting in the lowest total DBP formation, after converting concentrations to an equivalent unit 

based on drinking water risk, were ozonation and ozonation-chloramination. Both treatment 

schemes exhibit several advantages for application in water reuse. Using secondary wastewater 

effluent spiked with model precursors, it was demonstrated that pre-chlorination can inactivate 

ozone-reactive NDMA precursors; this finding has not been previously reported. More research 

is needed to understand the oxidation products from this reaction, as well as to determine the 

minimum chlorine exposure needed to destroy these precursors. 
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5.2 Introduction 

Limiting the formation of disinfection products (DBPs) is a constant challenge for water 

treatment utilities. Trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated at 80 

μg/L and 60 μg/L (USEPA 2014), respectively, and are mainly the result of chlorination, though 

they are also formed by chloramination, especially iodinated THMs (Krasner 2009; USEPA 

2016a). As cities turn to alternative water supplies or explore water reuse options, there is an 

increased concern about DBP formation. N-nitrosodimethylamine (NDMA) is formed by 

chloramination and ozonation (Krasner et al. 2013). In general, the precursors are anthropogenic 

and associated with wastewater components not removed during treatment (Mitch et al. 2009), 

which makes NDMA a prime issue for water reuse. Examples of NDMA precursors in 

wastewater include pharmaceuticals (Shen and Andrews 2011), coagulation polymers, (Padhye 

et al. 2011), industrial chemicals (Kosaka et al. 2014b; Sedlak et al. 2005), dyes (Oya et al. 

2008), and agricultural products (Schmidt and Brauch 2008). 

NDMA is not yet regulated in drinking water by the United States Environmental Protection 

Agency (USEPA), but some U.S. states have declared thresholds (California: 10 ng/L 

notification level; Massachusetts: 10 ng/L regulatory limit) and other countries have set limits in 

drinking water (Canada: 40 ng/L, Australia: 100 ng/L) and recycled water (Australia: 10 ng/L) 

(CEPA 2014; Health Canada 2011; Massachusetts Energy and Environmental Affairs 2016; 

Water Research Australia 2013). NDMA has a higher toxicity than THMs or HAAs, as 

evidenced by a drinking water unit risk that is 1000 times greater (USEPA 2016b). One strategy 

to minimize NDMA formation is through oxidation of the precursors. Previous research has 

demonstrated that chlorine, ozone, chlorine dioxide, ferrate and permanganate deactivate NDMA 

precursors (Charrois and Hrudey 2007; Lee et al. 2007b; McCurry et al. 2015; Shah et al. 2012). 
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However, these studies have all focused on NDMA formation by chloramination, which means 

the outcomes are only known to apply to chloramine-reactive NDMA precursors. Ozone-reactive 

NDMA precursors, distinctly different from the other group, form NDMA in high yields upon 

ozonation, but form minimal NDMA upon chloramination, even at high concentrations of 140 

mg/L as Cl2 (Marti et al. 2015). Different disinfection treatment schemes may be needed to target 

ozone-reactive NDMA precursors. However, adjusting disinfection to control for one 

contaminant or group of precursors is ill-advised. Inactivation of pathogens and the formation of 

multiple DBPs should be considered in order to determine an optimal disinfection scheme. 

This study investigates multiple disinfection treatment schemes for control of NDMA, THMs 

and HAAs. Many other DBPs exist, but these ones are of substantial concern for water reuse. A 

particular goal of this investigation was to determine if pre-chlorination was an effective strategy 

for mitigating ozone-derived NDMA formation. A second goal was to examine trade-offs in 

DBP formation quantitatively by converting the different DBP concentrations to an equivalent 

unit based on their drinking water risk factors. 

 

5.3 Materials and Methods 

5.3.1 Sample Collection 

Secondary and tertiary effluent samples were collected prior to any oxidant addition from 

seven wastewater treatment plants in the U.S. and Australia. Grab samples were collected in pre-

cleaned glass jugs or HDPE containers and transported to the lab in coolers with ice or shipped 

overnight with ice packs. Samples were held at 4 C until use and processed in-country. Table 

5.1 contains details on the wastewater treatment processes and water quality information for the 

treated wastewaters. Research was performed in the U.S. and in Australia. 
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5.3.2 Chemicals 

Reagents were ACS grade or higher and all solutions were prepared using ultrapure water. 

Sodium hypochlorite (10-14 wt% free available chlorine; Sigma-Aldrich, St. Louis, MO) 

solutions were standardized each time using iodometric titration as described in section 3.5.6. 

Phosphate buffer solution (1 M) was prepared from equal molar amounts of KH2PO4 and 

Na2HPO4 (Fisher Scientific, Fair Lawn, NJ) and adjusted to pH 7. Borate buffer solution (0.4 M) 

was prepared by dissolving 24.732 g boric acid into 500 mL DI water and adjusting the pH to 6.6 

using sodium hydroxide. Neat standards of seven NDMA precursors (daminozide, TMDS, 2-F-

DMH, DMC-dithio, DMC-phenyl, DMTC-phenyl, DMSC) were individually dissolved in 

ultrapure water and/or acetonitrile (for solubility) as described in section 4.3.2 and then 

combined as a mixture (1 mM each). 

 

Table 5.1: Wastewater treatment processes and water quality for tested wastewater effluents. 

Sites 
Secondary 

Treatment 

Tertiary 

Treatment 
TOC pH 

Bromide 

(μg/L) 

NH4
+
-N 

(mg/L) 

TN 

(mg/L) 

NDMA 

(ng/L) 

A 

Nitrif. & partial 

Denitrif., 

AS (AE/AX) 

N/A 7.63 7.2 311 DND DND 5.9  0.55 

B 

Nitrif. & 

Denitrif., 

Oxidation 

Ditches 

N/A 6.37 7.6 138 1.9 3.9 < 3.0 

C 

Nitrif., 

Sequencing 

Batch Reactors 

N/A 8.15 7.7 161 4.6 11 17.9 

D Nitrif., CAS N/A 23 DND DND 0.66 DND 220 

E Nitrif., CAS 
Media 

filtration 
5.5 DND DND 0.03 DND 2.8 

F 
Nitrif., BNR 

(AE/AN) 
N/A 9.5 DND DND 0.05 DND < 3.0 

TOC = Total organic carbon; TN = Total nitrogen; Nitrif. = Nitrification; Dentrif. = Denitrification; AS = 

Activated Sludge; CAS = Conventional Activated Sludge; BNR = Biological Nutrient Removal; AE = 

Aerobic; AN = Anaerobic; AX = Anoxic; N/A = not applicable; DND = Did not determine 
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5.3.3 Disinfection Treatment Schemes 

The seven treatment schemes tested in this study comprise individual and consecutive 

applications of chlorine, ozone and chloramine (Table 5.2). Free chlorine and ozone residuals 

were allowed to decay prior to chloramination, except for Sites A-C as discussed later.  

 

Table 5.2: Disinfection treatment schemes used in DBP formation investigation. 

Single Double Triple 

Oxidant Abbrev. Oxidants Abbrev. Oxidants Abbrev. 

Chlorine Cl2 Chlorine-

Ozone 

Cl2-O3 Chlorine-Ozone-

Chloramine 
Cl2-O3-CLM 

Ozone O3 Ozone-

Chloramine 

O3-CLM   

Chloramine CLM Chlorine-

Chloramine 

Cl2-CLM   

  

 

5.3.4 Experimental Procedures 

Chlorination 

Samples were chlorinated (Cl2) at room temperature (22-25 C) above the breakpoint to 

achieve a free chlorine residual. The initial chlorine spike concentration was different for each 

wastewater and depended on the chlorine demand, which was mainly caused by ammonia. The 

free chlorine concentration was monitored for 24 hours or until no residual remained in order to 

generate a chlorine decay curve. Chlorine demand and decay curves are shown in Appendix B. 

Ozonation 

Bench-scale ozonation (O3) was performed through the addition of ozone-saturated water to 

the sample. Ozonated water was generated using an oxygen-fed generator (model CFS-1A, 

Ozonia North America, Inc., Elmwood Park, NJ, USA) to diffuse ozone into cold ultrapure water 
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as described elsewhere (Wert et al. 2009). The concentration of the ozone stock solution was 

measured on a Hach DR5000 UV/Vis spectrophotometer at 600 nm using the indigo method 

(Rakness et al. 2010). The ozone stock solution was typically between 65 and 85 mg/L as O3. An 

appropriate volume was dosed into samples to achieve the desired ozone to TOC ratio (O3:TOC), 

taking dilution into account. Samples were sealed, mixed by inverting, and left at room 

temperature for one day to ensure ozone residual was zero before analyzing for NDMA. 

Ozone exposure was determined through ozone decay curves, which were performed for the 

unaltered and pre-chlorinated wastewater. A one liter sample was spiked with ozone and the 

ozone concentration was measured periodically until no ozone residual remained. Concentrations 

were adjusted for dilution and plotted against time to generate the decay curve. 

Chloramination 

Chloramination (CLM) was performed using formation potential conditions (FP) for the 

preliminary experiments and uniform formation conditions (UFC) for the second set of 

experiments. Chloramine NDMA-FP was performed as described in section 4.3.2. Briefly, 

samples were spiked with preformed monochloramine at 2 mM (140 mg/L) as Cl2 and stored at 

room temperature (22-25 °C) in the dark for ten days. UFC testing was completed following a 

procedure from Shah et al. (2012). A fresh monochloramine solution was prepared each time 

from sodium hypochlorite and ammonium chloride (Sigma-Aldrich, St. Louis, MO), as described 

in section 3.2.5. Samples were buffered (4 mM borate, pH 8), spiked at 5 mg/L as Cl2, and kept 

at room temperature in the dark for three days. At the conclusion of the procedure, samples were 

checked for a minimum residual (1 mg/L as Cl2) and then quenched with sodium thiosulfate.  

5.3.5 Analytical Methods 

General water quality parameters  
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Total organic carbon (as non-purgeable organic carbon or NPOC) was measured by 680°C 

combustion catalytic oxidation, and total nitrogen was measured by 720°C catalytic thermal 

decomposition with chemiluminescence detection (Shimadzu TOC-L with TN unit). Ammonium 

was measured using the salicylate method (Hach Method 10031, AmVer™ Salicylate Test 'N 

Tube™) and bromide by ion chromatography using a Dionex ICS3000. Free and total chlorine 

were measured using the DPD method and a handheld colorimeter (Hach Pocket Colorimeter
TM

 

II, Hach Methods 8021 and 8167). 

NDMA analysis 

NDMA quantification differed depending on the expected concentration and lab (U.S. or 

Australia). Australian samples used liquid-liquid extraction (LLE) and gas chromatography mass 

spectrometry (GC-MS) analysis with isotopic dilution (Linge et al. 2015). For LLE, a 50 mL 

sample spiked with d6-NDMA was adjusted to pH 8 with sodium hydrogen carbonate. Oven-

dried (450 C) sodium chloride (15 g) was added and the sample was mixed until all salt 

dissolved. The sample was extracted with 5 mL dichloromethane and dried through anhydrous 

magnesium sulfate. The extract was concentrated to ~200 μL in a heating block (40 C) under a 

nitrogen stream and transferred to a GC microvial containing 50 µg/L of diphenylamine-d10 as 

the internal standard. NDMA was analyzed by GC-MS using an Agilent Technologies 7890A 

gas chromatograph coupled with a 5975C inert mass spectrometer operated in positive chemical 

ionization mode with ammonia as the reagent gas (flow = 0.5 mL/min). The limit of detection 

was 4 ng/L. 

U.S. samples used solid phase extraction (SPE) and GC-MS analysis with isotopic dilution 

(Holady et al. 2012) for low concentrations (range: 2.5-1000 ng/L NDMA) and direct injection 

liquid chromatography tandem mass spectrometry (LC-MS/MS) for high concentrations (range: 
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25-3000 μg/L NDMA) (Marti et al. 2015). SPE was performed with 1 L samples using an 

AutoTrace workstation (Dionex Corporation). Samples were loaded at 15 mL/min onto 

prepacked coconut charcoal cartridges (Resprep 521, Restek) conditioned with dichloromethane, 

methanol and water. Cartridges were rinsed with water and dried with nitrogen gas prior to 

elution with dichloromethane. Residual water was removed with sodium sulfate cartridges (Sep-

Pak Dry, Waters Corporation). Extracts were concentrated to 500 μL for a concentration factor 

of 1:2000. 2 μL of the final extract was injected into a CP-3800 gas chromatograph with 

autosampler (Varian) after column separation (DB 624, Agilent) under helium flow. The injector 

(Varian 1177) was operated splitless mode with a Siltek™ deactivated glass liner (Restek). The 

temperature gradually increased from 35 to 250 °C. Analysis was performed using a Varian 2200 

ion trap mass spectrometer and multiple reaction monitoring in positive chemical ionization 

mode using methanol. The precursor and product ion pairs were: 75/47, 75/58, and 75/44. The 

method reporting limit (2.5 μg/L) was set at three times the method detection limit. LC-MS 

analysis for high NDMA concentrations was performed as described in section 4.3.2. Two 

transitions were monitored for NDMA (75/43 and 75/58) and d6-NDMA (81/46 and 81/64). The 

method reporting limit was 25 µg/L (0.34 µM).  

THM and HAA analysis 

Four trihalomethanes (bromodichloromethane, bromoform, chlorodibromomethane, 

chloroform) and five haloacetic acids (bromoacetic acid, dibromoacetic acid, chloroacetic acid, 

dichloroacetic acid, trichloroacetic acid) were measured using EPA methods 524.3 and 552.2, 

respectively. A Stratum PTC purge and trap concentrator with AQUATek 100 autosampler 

(Teledyne Tekmar) were used for THM extraction. THM analysis used a Thermo Scientific 

TRACE gas chromatograph with Electronic Pressure Control and a Split/Splitless injection port 
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coupled to a Thermo Scientific ISQ mass spectrometer. Samples were separated on a RTX-VMS 

GC column (Restek). HAA analysis used a Varian CP-3800 gas chromatograph with dual 

Electron Capture Detectors and a CTC Analytics CombiPal Autosampler. Samples were 

separated with a J&W DB-1701 GC column (Agilent) and spectra were quantified with 

Dionex/Thermo Chromeleon version 6.8 software. Results are reported for individual 

compounds and as total THMs and total HAAs. 

5.3.6 Calculations 

Oxidant exposure (Ct) for chlorine and ozone was determined by integrating concentration 

versus time for decay curves. The trapezoidal rule (Equation 3) was applied to the data in an 

Excel spreadsheet. The manually calculated values for each pair of points were summed to get 

the total exposure. Since the decay is initially fast and then slows, more measurements were 

taken in the first few minutes. Typical measurement times were 1, 2, 3, 5, 7, 10, 12, 15, 20, 30, 

45, 60, 90, and 120 min for chlorine and 0.5, 0.75, 1, 1.5, 2, 3, 5, and 7 min for ozone. Data and 

calculations are shown in Appendix C. 

 

Equation 3: Trapezoidal rule for calculating oxidant exposure from concentration and contact 

time. 

𝐴𝑟𝑒𝑎 = ∫ 𝑓𝑥𝑑𝑥 = (𝑏 − 𝑎)
𝑓(𝑎) + 𝑓(𝑏)

2

𝑏

𝑎

 

a = time at point 1   f(a) = concentration at point 1 

b = time at point 2   f(b) = concentration at point 2 
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NDMA, THM, and HAA concentrations were converted to an equivalent unit based on 

drinking water unit risk, which, to the author’s knowledge, is a new approach for quantitative 

comparison. USEPA conducts carcinogen risk assessments to estimate a chemical’s cancer 

potency for exposure in food, water and air (USEPA 1992). The drinking water unit risk is the 

risk associated with a drinking water concentration of 1 μg/L (e.g., 1 μg/L NDMA) and based on 

an average-sized adult (70 kg) who drinks 2 L of water per day. First, the drinking water unit risk 

values were averaged for THMs (n = 4) and HAAs (n = 2). Although there are five HAAs 

regulated under total haloacetic acids, only two have established drinking water unit risk values 

(Table 5.3). A risk ratio was calculated using NDMA as the reference since it has the highest 

toxicity. NDMA, THM and HAA concentrations were converted to ng/L and multiplied by this 

ratio. 

 

Table 5.3: Drinking water unit risk values for NDMA, THMs, and HAAs and ratio used to 

convert values. 

Compound Drinking 

water unit risk 

(μg/L)
* 

Average drinking 

water unit risk 

(μg/L) 

Ratio 

NDMA 
 

1.4 E-3 1.4 E-3 1.0 

THMs 

Chloroform 1.7 E-7 

1.15 E-6 0.00082 
Bromodichloromethane 1.8 E-6 

Dibromochloromethane 2.4 E-6 

Bromoform 2.3 E-7 

HAAs 

Dichloroacetic acid 1.4 E-6 

1.7 E-6 0.0012 

Trichloroacetic acid 2.0 E-6 

Monochloroacetic acid N/A 

Bromoacetic acid N/A 

Dibromoacetic acid N/A 
*
Sources: USEPA 2016b; Office of Environmental Health Hazard Assessment (OEHHA) 2007 
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5.4 Results and Discussion 

5.4.1 Preliminary Results and Free Chlorine Complications 

Preliminary testing was completed for sites A-C in Australia. The chosen sites differed in 

secondary treatment type and level of treatment. NDMA ranged from < 4 to 17.9 ng/L in the 

unaltered wastewater (i.e., not oxidized), with the lowest concentration for site B (nitrification 

and denitrification) and the highest concentration for site C (nitrification only). Although studies 

have examined NDMA and NDMA precursor removal after various levels of secondary 

treatment, there is no clear correlation between the amount of NDMA formed and level of 

nitrification or denitrification (Krauss et al. 2009; Yoon et al. 2011). If a minimum level of 

treatment is met, NDMA and NDMA precursors may be removed through biodegradation, even 

in non-nitrifying wastewater treatment plants (Krauss et al. 2009). In some cases, more intense 

secondary treatment has resulted in lower NDMA formation. For example, a pilot plant with a 

membrane bioreactor was operated at two different sludge retention times (SRTs). NDMA 

formation with ozone (O3:TOC = 0.2) was significantly lower at SRT = 18.8 days (< 5 mg/L 

NDMA) as compared to SRT = 2.4 days (25 mg/L NDMA) (Gerrity et al. 2015). NDMA 

precursor removal, as measured by chloramination formation potential, also does not differ 

among biological treatment process types (Sedlak et al. 2005; Yoon et al. 2011), but specific 

precursors do show greater removal at higher SRT (Wang et al. 2014). It would seem that 

individual NDMA precursors are affected by treatment conditions, but this is not generalizable to 

the mixture of precursors found in wastewater. In this research, since NDMA formation could 

not be correlated to secondary treatment level, quantitative comparisons were restricted to 

changes in NDMA formation observed for wastewaters individually and not compared among 

the different wastewaters. 
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All three sites showed the same general trends for NDMA formation after oxidant addition. 

These experiments involved six oxidation treatment schemes (Cl2, O3, CLM, Cl2-O3, O3-CLM, 

Cl2-O3-CLM) at two O3:TOC ratios (0.1, 0.5) and only NDMA was quantified. Chlorination did 

not increase NDMA above the concentration in the unaltered wastewater; however, NDMA did 

increase with ozonation, and the formation was greater at the higher ozone dose (Figure 5.1). 

Significant concentrations of chloramine-reactive precursors were present in all three locations 

based on the formation potential results (298-703 ng/L NDMA). Implementing ozonation or 

chlorination before chloramination led to a substantial reduction in chloramine NDMA formation 

potential (NDMA-FP) (Figure 5.2). The greatest reduction was for chlorination-ozonation-

chloramination at O3:TOC = 0.5, which corresponded to decreases in NDMA of 95%, 98% and 

94% for sites A, B and C, respectively. Many other studies have shown that pre-oxidation with 

ozone, chlorine, and chlorine dioxide decreases NDMA-FP in drinking waters and wastewaters ( 

Lee et al. 2007a; McCurry et al. 2015; Pisarenko et al. 2012; Shah et al. 2012; Sharif et al. 2012; 

Selbes et al. 2014). However, no other studies have examined combined pre-oxidation with 

chlorine and ozone before post-chloramination. This option may be a valuable strategy for 

wastewaters containing both chloramine- and ozone-reactive NDMA precursors, as discussed 

later.  

Further analysis of the results obtained in this preliminary experiment is not advised because 

of complications with free chlorine. Samples were chlorinated to achieve a free chlorine 

exposure of 113-166 mg·min/L, which is a sufficient dose for 3-log removal of Giardia lamblia 

at pH 6.5-7.5 and 10 C at 3 mg/L as Cl2 (USEPA 1999) and comparable to another study (Shah 

et al. 2011). The treated wastewaters had varying concentrations of ammonia and enough 

chlorine (20-45 mg/L as Cl2) was added to exceed the breakpoint and achieve a free chlorine 
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residual (2-4 mg/L as Cl2 at one minute after dosing). A free chlorine residual was present when 

the sample was ozonated, which caused two problems. First, ozone reacts with free chlorine 

(Haag and Hoigné 1984). Even 2 mg/L as Cl2 is enough to substantially increase ozone decay 

(Wert and Lew 2008), and this reduces the expected ozone exposure (Ct). On the other hand, 

chlorination changes the water quality and can reduce ozone demand, which would increase the 

impact of ozonation. There is no clear way to isolate the effects; therefore, results for ozonation 

and chlorination-ozonation at the same O3:TOC ratios cannot be directly compared for any given 

wastewater. The second issue is that free chlorine interferes with the indigo method used to 

measure ozone concentration (Bader and Hoigné 1982). Free chlorine has the same effect as 

ozone on the indigo dye, which makes it appear that the ozone residual is higher and lasts longer. 

Consequently, ozone decay curves will overestimate the ozone concentration over time and the 

calculated ozone exposure will not be accurate. Due to the problems associated with the free 

chlorine residual, subsequent experiments were conducted by allowing the free chlorine residual 

to decay completely. 

 

 

Figure 5.1: NDMA concentration for site C after chlorination and ozonation at two O3:TOC 

ratios. Similar results were obtained for sites A and B (Appendix B). 
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5.4.2 Effect of Pre-chlorination on Chloramine-derived NDMA Formation 

Wastewaters were chlorinated at free chlorine exposures of 102, 70 and 275 mg·min/L for 

Sites D, E, and F, respectively (Appendix C). As expected, pre-chlorination reduced NDMA 

formation for post-chloramination, as seen by the low NDMA concentrations for Cl2-CLM 

compared to CLM (Figure 5.3). Note that the high NDMA concentrations for Site D (Figure 

5.3a) are mainly the result of NDMA in the unaltered wastewater rather than NDMA formed by 

disinfection. The maximum NDMA formation for Site D was a 20% increase over the unaltered 

wastewater and not far above analytical variability, making interpretation on NDMA formation 

difficult for this location. NDMA decreased by 30 ng/L (71%) and 176 ng/L (73%) with pre-

chlorination at Sites E and F, respectively. This matches results from previous studies, as 

mentioned earlier. 

Although NDMA formation decreased with pre-chlorination, THMs and HAAs were formed. 

Chlorination increased THMs by 200 μg/L for Site D, 60 μg/L for Site E, and 59 μg/L for Site F. 

In comparison, post-chloramination (5 mg/L as Cl2 for three days) only increased THMs slightly 

(D: 4-25 μg/L; E: 2-20 μg/L; F: 0-6 μg/L). Multiple factors affect THM formation with 

Figure 5.2: Reduction in NDMA formation potential for site A with a) O3:TOC = 0.1 and b) 

O3:TOC = 0.5. Similar results were obtained for sites B and C (Appendix B). 

a) b) 
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chlorination in water or wastewater, such as fast- or slow-reacting precursors, pH, temperature, 

chlorine dose and other ions exhibiting a chlorine demand (Gallard and von Gunten 2002). 

Therefore, the variation in THM formation at Sites D-F cannot simply be explained by the 

different chlorine exposures. Chlorination also increased HAA concentrations by 38 μg/L for 

Site D, 23 μg/L for Site E, and 32 μg/L for Site F. Post-chloramination resulted in a similar 

increase in HAA formation (D: 12-13 μg/L; E: 9-18 μg/L; F: 13-29 μg/L) compared to 

chlorination.  

 5.4.3 Effect of Ozonation on Chloramine-derived NDMA Formation 

Wastewaters were ozonated at a consistent ozone to TOC ratio in order to achieve similar 

treatment efficacy across different samples (Gerrity et al. 2014; Lee et al. 2013). The chosen 

ratio (0.8) represents an ozone dose that is typical for trace organic contaminant removal (Zeng 

and Mitch 2015). Ozone exposures were 0.2, 1.7, and 3.0 mg·min/L for non-chlorinated samples 

and 0.4, 6.5, and 11.4 mg·min/L for chlorinated samples at Sites D, E, and F, respectively 

(Appendix C). 

As expected, ozonation reduced NDMA formation for post-chloramination. NDMA 

decreased by 27 ng/L (64%) and 165 ng/L (69%) with ozonation at Sites E and F, respectively. 

The decrease in NDMA formation was essentially the same for chlorination and ozonation. 

Although higher ozone doses generally lead to greater NDMA precursor removal, the 

relationship is not linear (Lee et al. 2007a; Pisarenko et al. 2012; Shah et al. 2012). It is possible 

that a lower ozone dose could have achieved a similar reduction in NDMA formation for post-

chloramination. 

While ozonation alone did not cause THM formation or affect THM formation with post-

chloramination, it did result in direct NDMA formation above the concentration in the unaltered 
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wastewater. NDMA increased by ~10 ng/L (~5-fold) and ~60 ng/L (~20-fold) with ozonation at 

Sites E and F, respectively. NDMA concentrations for O3 and O3-CLM were very similar with 

slightly higher levels for O3-CLM. The percent differences were D: 4% (10 ng/L); E: 12%      

(1.5 ng/L) and F: 21% (13 ng/L). This suggests that ozone destroyed nearly all the chloramine-

reactive NDMA precursors, and the resulting NDMA concentration can be attributed mainly to 

ozone-reactive NDMA precursors.  

As with THMs, ozone did not directly form HAAs above the levels in the unaltered 

wastewater. However, it seemed to promote HAA formation with post-chloramination (D: 1-10 

μg/L; E: 4-8 μg/L; F: 3-22 μg/L). While a trend is apparent, these values represent single trials 

for only three wastewaters and may not be statistically significant. An increase in chlorinated 

HAAs after ozonation was also observed for Cyclotella algae, though this study involved HAA 

formation potential with chlorine and not chloramines (Plummer and Edzwald 2001). Most 

studies report decreased HAAs for chlorination or chloramination with pre-ozonation (Hua and 

Hoigné and Bader 1988; Jacangelo et al. 1989; Miltner et al. 1992; Reckhow 2007), but HAA 

formation may also occur (Hartmann 2002; Singer 1999). 
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Figure 5.3: Measured NDMA and adjusted THM, HAA concentrations after disinfection 

treatment schemes for a) Site D, b) Site E and c) Site F. Error bars are standard deviations for 

duplicate samples. 
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5.4.4 Effect of Pre-chlorination on Ozone-derived NDMA Formation 

This study provides evidence that pre-chlorination resulted in decreased NDMA formation 

with post-ozonation of treated wastewaters. Compared to ozonation alone (O3), chlorination-

ozonation (Cl2-O3) led to NDMA concentration reductions of 8 ng/L (75%) and 52 ng/L (84%) 

for Sites E and F, respectively. However, caution is needed when evaluating these results. 

Although the samples received the same ozone dose, the ozone exposure was not equal. As a 

nonselective oxidant, chlorine reacts with a wide variety of organic and inorganic compounds 

(Faust and Aly 1998). This means that pre-chlorination alters the water quality and reduces 

ozone demand. Consequently, the ozone exposure was higher for the pre-chlorinated samples 

(see previous section). Assuming that the ozone-reactive NDMA precursors were unchanged by 

chlorination, then higher NDMA formation would be expected due to the higher ozone Ct. The 

decreased NDMA formation signals that chlorination rendered the ozone-reactive precursors 

inactive, at least to the extent that they no longer form NDMA upon ozonation. The 75% and 

84% reductions in NDMA concentration may actually underestimate the effect of pre-

chlorination. Matching ozone exposures for the O3 and Cl2-O3 treatments would be needed to 

determine this. To the author’s knowledge, this is the first study that demonstrates pre-

chlorination as a method for destroying ozone-reactive NDMA precursors. 

In contrast to NDMA reduction, chlorination-ozonation increased THM and HAA 

concentrations. Compared to ozonation alone, chlorination-ozonation caused increases of 210 

ng/L, 62 ng/L, and 58 ng/L for THMs and 60 ng/L, 35 ng/L, and 40 ng/L for HAAs at Sites D, E, 

and F, respectively. Since concentrations of THMs and HAAs were the same for the ozonated 

sample as the unaltered wastewater, these increases are entirely due to chlorination.  
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5.4.5 Effect of Pre-chlorination on Ozone-reactive NDMA Precursors and Insight on 

the Oxidation Products Formed 

For additional confirmation that chlorination destroys ozone-reactive NDMA precursors, a 

parallel test was completed where a mixture of known ozone-reactive NDMA precursors was 

spiked into a batch of wastewater from Site F. Precursors (daminozide, TMDS, DMC-phenyl, 

DMTC-phenyl, 2-F-DMH) with an average NDMA molar yield of 38% were spiked at high 

concentrations (mixture = 500 μg/L) for ease in analyzing the results by direct injection LC-

MS/MS (i.e., no concentration step). Only ozonation (O3) and ozonation-chloramination (O3-

CLM) treatments resulted in NDMA formation above the method reporting limit (MRL), and the 

concentrations were nearly the same at 172  5.7 and 178 μg/L (Figure 5.4). This was very close 

to the expected concentration (190 μg/L) based on the average NDMA molar yield for the 

mixture. No detectable formation with chloramination was expected since the precursors are 

known to have very low molar yields (< 2.5%) with chloramines (Marti et al. 2015). 

Accordingly, the observed NDMA formation for the two samples can be attributed to ozonation 

alone. Pre-chlorination was extremely effective; NDMA formation for ozone-reactive precursors 

was reduced by over 150 μg/L (> 86%) to below the MRL (25 μg/L). 

Information on the oxidation products of NDMA precursors is limited, especially for ozone-

reactive NDMA precursors. A recent study by Wang et al. (2015) looked at oxidation products of 

doxylamine and ranitidine, which are chloramine-reactive NDMA precursors. Oxidation 

products were determined for chlorine, chlorine dioxide, ozone, and potassium permanganate 

using LC-MS/MS. Oxygen transfer to the dimethylamine under ozonation and N-dealkylation of 

the dimethylamine under chlorination explains why doxylamine oxidation products do not form 

NDMA upon subsequent chloramination (Wang et al. 2015). Similar reactions formed oxidation 
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products for ranitidine, which result in decreased NDMA formation with chloramination. It is 

possible that chlorination causes dealkylation for ozone-reactive NDMA precursors, too. In 

general, ozone-reactive NDMA precursors differ from chloramine-reactive NDMA precursors in 

that the tertiary amine is bonded to another nitrogen atom, rather than a carbon atom. One recent 

study investigated a variety of amine compounds, including UDMH and DMS, as formaldehyde 

precursors during chlorination. Although mechanisms were not offered, these two precursors had 

90% and 24% formation molar yields for formaldehyde, and it was hypothesized that the 

chlorine attacked the primary amine sites (Kosaka et al. 2014a). It is possible that formaldehyde 

is one of the chlorination products for ozone-reactive NDMA precursors, but many of these 

compounds have secondary and tertiary amines rather than primary amines. Further investigation 

is warranted in order to understand the chlorination products of ozone-reactive NDMA 

precursors.  

 

 

Figure 5.4: NDMA formation after disinfection treatment schemes for Site F wastewater spiked 

with ozone-reactive NDMA precursors. Error bar is the standard deviation (n = 2). The 

horizontal line is the method reporting limit (MRL). 
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5.4.6 Trade-offs in Disinfection Byproduct Formation 

Although Site D has unusual results (i.e., high NDMA concentrations in the unaltered 

wastewater effluent), there were clear trends at all three sites in DBP formation and reduction by 

the different oxidants. Chlorination increased both THMs and HAAs, while chloramination 

increased HAAs and caused a slight increase in THMs. Ozonation had no impact on formation or 

reduction of THMs or HAAs. Ozonation and chloramination formed NDMA, but pre-

chlorination reduced NDMA formation for both oxidants. Although ozonation caused direct 

NDMA formation, it also reduced NDMA formation in the case of post-chloramination. Based 

on the regulated maximum contaminant levels (MCLs) for THMs and HAAs in the U.S.           

(80 μg/L, 60 μg/L), chlorination resulted in THM and HAA exceedances in all cases for Site D 

and with Cl2-CLM for Site E. When ozone or chloramines were used as the initial oxidants, 

neither MCL was exceeded for all three sites. For various NDMA guidelines (10, 40, and 100 

ng/L), Site D was above the highest level in all cases because of the background concentration in 

the wastewater. Site E was always below the 40 ng/L Canadian guideline and below the 10 ng/L 

U.S. guidelines with Cl2, Cl2-O3 and Cl2-O3-CLM treatments. Cl2 and Cl2-O3 treatments at Site F 

met the 10 ng/L NDMA guideline, while Cl2-O3-CLM treatment achieved the 40 ng/L guideline. 

Only CLM formed NDMA above the 100 ng/L guideline at Site F.  

In order to understand the combined effects and the overall outcomes, the tested disinfection 

treatment schemes were analyzed for trade-offs in DBP formation. First, concentrations were 

converted to a common unit (ng/L). Then, using NDMA as the reference, THM and HAA 

concentrations were multiplied by the calculated risk ratio (Table 5.3). Measured and converted 

values for the DBPs are shown in Table 5.4. For Site D, there was a shift in DBP composition 

from > 90% NDMA in the unaltered and ozonated wastewater to 52-54% NDMA when 
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chlorination was involved. Sites E and F had a very low sum of DBPs in the unaltered 

wastewater, but the shifts were the same: NDMA was a larger fraction when the first treatment 

step was ozonation or chloramination, and the composition was mainly THMs and HAAs when 

chlorination was used.  

For all three sites, ozonation alone resulted in the lowest sum of DBPs compared to the 

unaltered wastewater. Previous studies comparing disinfection treatments also determined that 

ozone was more effective than chlorine, chlorine dioxide, or ultraviolet light (McCurry et al. 

2015; Shah et al. 2011). Other disinfection combinations that resulted in low total DBP 

formation were O3-CLM and CLM, although CLM without pre-oxidation resulted in high 

NDMA formation at Site F. While Cl2-O3 was very effective in reducing NDMA formation, 

increased THM and HAA formation lead to poorer performance at Sites D and E. At Site F,   

Cl2-O3 and Cl2 performed at the same level as O3-CLM. This site appears to have lower THM 

and HAA precursors than the other locations, which brings to attention that optimal disinfection 

treatment schemes depend on the characteristics of the particular wastewater being treated. A 

single treatment scheme will not be superior in all situations. In general, Cl2-CLM and Cl2-O3-

CLM formed the highest total of DBPs in this study. O3-CLM provides the same benefit as Cl2-

CLM (i.e., pre-oxidation of chloramine-reactive NDMA precursors), but without additional 

THM and HAA formation.  

Despite the poor performance for the three-step disinfection scheme (Cl2-O3-CLM), certain 

water reuse situations may benefit from this process. First, if a treated wastewater contains a high 

concentration of ozone-reactive NDMA precursors, which were not removed by upstream 

treatment processes, pre-chlorination would destroy those precursors. Optimization would be 

needed to balance the destruction of ozone-reactive NDMA precursors and limit the formation of 
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THMs and HAAs. Other methods for precursor removal, such as adsorption, membranes or 

reverse osmosis, would have a much higher cost. Second, ozonation would destroy any 

remaining chloramine-reactive NDMA precursors, as well as providing the added advantages of 

(1) an advanced oxidation process (i.e., formation of hydroxyl radicals) for oxidation of a wide 

variety of trace organic contaminants, even at a Ct < 1 mg·min/L (Dickenson et al. 2009; Gerrity 

and Snyder 2011; Wert et al. 2009) and (2) additional disinfection against chlorine-resistant 

pathogens. The third step, chloramination, would provide the necessary disinfectant residual with 

a low likelihood for NDMA formation and lower THM/HAA formation than chlorination. 
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Table 5.4: Comparison of NDMA, THM and HAA concentrations due to different disinfection treatments. 

  
NDMA Total THMs Total HAAs Σ DBPs Breakdown of DBPs *DBP formation  

  
Measured Measured Converted  Measured Converted  

 

 NDMA THMs HAAs NDMA THMs HAAs 

Site Treatment ng/L μg/L ng/L μg/L ng/L ng/L Rank % % % ng/L ng/L ng/L 

D 

WW 220 < 0.5 < 0.4 < 1 < 1 222  99.1% 0.2% 0.5% 

   Cl2 250 200 164 38 46 460 4 54.3% 35.7% 10.0% 30 163 45 

Cl2-O3 225 (3.1%) 210 (0.0%) 173 60 (1.2%) 73 471 5 47.7% 36.7% 15.5% 5 172 72 

Cl2-CLM 280 (0.0%) 225 (3.1%) 185 50 (0.0%) 61 526 7 53.2% 35.2% 11.6% 60 184 60 

Cl2-O3-CLM 260 200 164 60 73 497 6 52.3% 33.0% 14.7% 40 163 72 

CLM 250 4 3 13 16 269 3 92.9% 1.1% 5.9% 30 2 15 

O3-CLM 240 1 0.8 14 17 258 2 93.0% 0.3% 6.6% 20 0 16 

O3 230 < 0.5 < 0.4 < 1 < 1 232 1 99.1% 0.2% 0.4% 10 0 0 

E 

WW < 2.8 1 1 < 1 < 1 5  N/A N/A N/A        

Cl2 < 2.8 60 49 23 28 80 4 3.8% 61.3% 35.0% 0 48 27 

Cl2-O3 4 63 52 36 44 100 5 4.0% 52.0% 44.0% 1 51 43 

Cl2-CLM 15 80 66 41 50 131 7 11.5% 50.4% 38.2% 12 65 49 

Cl2-O3-CLM 5.0 (1.4%) 65 (0.0%) 53 49 (0.0%) 60 118 6 4.2% 44.9% 50.8% 2 52 59 

CLM 42 2 2 9 11 55 3 76.3% 3.6% 20.0% 19 1 10 

O3-CLM 15 (4.8%) 2 (0.0%) 2 14 (0.0%) 16 33 2 45.5% 6.1% 48.5% 12 1 15 

O3 12 1 0.8 < 1 < 1 14 1 85.7% 5.7% 7.1% 9 0 0 

F 

WW < 3.0 1 1 8 10 14  21.4% 7.1% 71.4%       

Cl2 < 3.0 59 48 40 49 100 2 3.0% 48.0% 49.0% 0 48 39 

Cl2-O3 10 59 48 50 61 119 3 8.4% 40.3% 51.3% 7 48 51 

Cl2-CLM 64 59 48 53 64 176 6 36.4% 27.3% 36.4% 61 48 55 

Cl2-O3-CLM 18 59 48 75 91 157 5 11.5% 30.6% 58.0% 15 48 81 

CLM 240 6 5 29 35 280 7 85.7% 1.8% 12.5% 237 4 26 

O3-CLM 75 (3.7%) 6 (0.0%) 5 32 (0.0%) 39 119 3 63.0% 4.2% 32.8% 72 4 29 

O3 62 (2.3%) 1 (0.0%) 1 10 (0.0%) 12 75 1 82.7% 1.3% 16.0% 59 0 2 
*
Formation is relative to concentration in unaltered wastewater  

N/A = not applicable (concentrations too low); CV% is shown in parentheses for duplicate samples
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5.4.7 Implications for Water Reuse 

Each disinfectant, chlorine, ozone and chloramine, forms specific DBPs, but also provides 

control against other DBPs. These points are summarized in Table 5.5. Additionally, the table 

indicates what challenges, as well as advantages, the treatment schemes pose for water reuse 

situations, which are discussed below.  

Membranes and reverse osmosis are frequently used in advanced water treatment, especially 

if wastewater reuse is intended. Membrane biofouling is a major operational issue and frequently 

managed by chemical oxidants (Guo et al. 2012). Chlorine can be very damaging for polyamide 

and other membranes (Lau et al. 2012; Simon et al. 2009). Membrane degradation may still 

occur with chloramines, but they are much more resistant to chloramines than chlorine (Cran et 

al. 2011; da Silva et al. 2006). Ozone has been shown to decrease membrane fouling (Stanford et 

al. 2011; Van Geluwe et al. 2011). Therefore, ozone, and to a lesser extent chloramines, would 

be preferential pre-treatments for membranes. 

A disinfectant residual is necessary during distribution. While ozone provides substantial 

trace organic oxidation and generates hydroxyl radicals, as mentioned previously, it has no 

benefit in terms of residual disinfection in distribution systems. Long chlorination contact times 

lead to increased THMs and HAAs (Hrudey and Charrois 2012). Chloramines are preferable 

since THM formation is low and it is more stable in distribution systems than chlorine (Valentine 

1998). Pre-oxidation with ozone would minimize NDMA formation with chloramine-reactive 

precursors. Advanced water treatment plants frequently receive treated wastewater from another 

facility and that facility may use a chemical oxidant prior to releasing the treated wastewater. In 

this case, the agencies may need to collaborate and reevaluate the disinfection treatment scheme 
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used by the wastewater treatment facility in order to integrate the treatment processes and meet 

both parties’ needs.  

The advantages of ozone clearly stand out for water reuse and DBP control. A special water 

reuse situation, where the treated water contains a significant concentration of ozone-reactive 

NDMA precursors, could be controlled with pre-chlorination and careful optimization to limit 

THM and HAA formation or removal of THMs and HAAs with activated carbon. Further 

research is required to determine the lowest possible chlorine exposure needed to reduce NDMA 

formation from ozone-reactive precursors. In addition, it would be sensible to conduct toxicity 

testing to get a better picture of total DBPs for the disinfection treatment schemes. 
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Table 5.5: Summary of disinfection byproduct formation and control and advantages for water 

reuse situations with different treatment schemes 

Treatment 

scheme 

DBP Formation DBP Control 

Water Reuse Scenario NDMA THM HAA NDMA THM HAA 

Cl2  – – +   – Harmful to membranes 

+ Reduces membrane 

biofouling 

O3 –   + + + + TOrC oxidation, AOP 

+ Reduces organic 

membrane fouling 

+ Bulk organic 

transformation 

CLM –  –  +  + Reduces membrane 

biofouling  

Cl2-O3  – – +   + TOrC oxidation, AOP 

+ Reduces organic 

membrane fouling 

O3-CLM –   + +  + TOrC oxidation, AOP 

+ Reduces organic 

membrane fouling 

+ CLM residual without 

NDMA formation 

Cl2-CLM  – – +   + Reduces membrane 

biofouling 

+ CLM residual without 

NDMA formation 

Cl2-O3-CLM  – – +   + Additional disinfection 

credits 

+ TOrC oxidation, AOP 

+ Reduces organic 

membrane fouling  

+ Reduces membrane 

biofouling 

+ CLM residual without 

NDMA formation 
– (negative sign) = disadvantage / DBP formation; + (positive sign) = advantage / DBP control; TOrC = 

trace organic contaminant; AOP = advanced oxidation process; MF = microfiltration; RO = reverse 

osmosis 
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5.5 Conclusion 

This study examined the formation and reduction of NDMA, THMs, and HAAs, with seven 

disinfection treatment schemes. As seen in previous work, ozone was very effective at 

minimizing formation of the targeted DBPs. The top two treatment schemes resulting in the 

lowest total DBP formation were ozonation and ozonation-chloramination. Both of these 

treatment schemes also provide several advantages for application in water reuse situations. 

Evidence from this work indicates that pre-chlorination destroys ozone-reactive NDMA 

precursors, though the mechanism is not yet known. More research is needed to understand the 

oxidation products from this reaction, as well as the minimum chlorine exposure needed to 

destroy these precursors. 
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CHAPTER 6  

THE IMPACTS OF BIOFILTRATION ON NDMA PRECURSOR REMOVAL AND 

DISINFECTION BYPRODUCT FORMATION 

6.1 Abstract 

Removal of N-Nitrosodimethylamine (NDMA) precursors during non-optimized biofiltration 

of tertiary-treated wastewater was investigated. NDMA precursor removal for four compounds 

(ranitidine, daminozide, 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide 

(TMDS) and 2-furaldehyde dimethylhydrazone (2-F-DMH)) and disinfection byproduct (DBP) 

formation potentials (trihalomethanes, haloacetic acids) were assessed before and after 

biofiltration in a pilot biofiltration unit with three anthracite-containing columns operated at 

different contact times (5, 10, 20 minutes). Precursor removal varied (ranitidine: 6-7%; 

daminozide: 74-85%; 2-F-DMH: 15-26%; TMDS: 11-24%) and was correlated to dissolved 

oxygen concentration for 2-F-DMH and TMDS. Contact time significantly affected removal for 

TMDS. Although some sorption to the media occurred, biodegradation and sorption to biofilm 

are likely the main mechanisms for precursor removal. Trihalomethane and haloacetic acid 

formation potentials were marginally decreased with non-optimized biofiltration.  

 

6.2 Introduction 

Reducing the formation of disinfection byproducts (DBPs) is a continual challenge for 

drinking water treatment. The US Environmental Protection Agency regulates two groups of 

DBPs, trihalomethanes (THMs) and haloacetic acids (HAAs), and allows for maximum 

concentrations of 80 μg/L and 60 μg/L, respectively (USEPA 2014b). THMs and HAAs are 

principally formed when water is disinfected with chlorine (Singer 1999).                                   
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N-Nitrosodimethylamine (NDMA), a DBP and probable human carcinogen, is one of many 

substances under review for regulation under the Safe Drinking Water Act and may be regulated 

in drinking water in the near future (USEPA 2014a; USEPA 2014c). NDMA formation is a 

concern not only in drinking water, but also in water reuse applications (Fujioka et al. 2012; 

Gerrity and Snyder 2011; Joss et al. 2011; Sonntag and von Gunten 2012).  

Biofiltration is an option for eliminating DBP precursors, such as those that result in NDMA, 

THM and HAA formation. Compared to chemical oxidation processes, biodegradation typically 

leads to greater mineralization of compounds (van Agteren et al. 1998). Full-scale biological 

activated carbon (BAC) filters have been shown to reduce NDMA chloramine formation 

potential (NDMA-FP) by more than 80% (Farre et al. 2011). Biofiltration media type impacts 

removal and BAC generally results in greater removal compared to sand or anthracite (Reaume 

et al. 2015; Reungoat et al. 2011). Because many organic compounds are adsorbed to activated 

carbon within the filter, the bacteria have more time to biodegrade the compounds, resulting in 

greater removal when activated carbon is used as the media instead of sand or anthracite. As 

alluded to earlier, the amount of time that the contaminant interacts with the media and the 

biofilm, known as empty bed contact time (EBCT), is another important parameter and can 

significantly affect removal in biofilters (Halle et al. 2015). 

Biodegradation of several chloramine-reactive NDMA precursors (dimethylamine, ranitidine, 

trimethylamine, dimethylformamide, N-dimethyldithiocarbamate, dimethylaminobenzene, 

doxylamine) in activated sludge systems has been studied (Jelic et al. 2011; Radjenovic et al. 

2007; Wang and Li 2015), but there is limited information on removal during biofiltration of 

treated wastewater effluent. Reungoat and collaborators tracked removal of doxylamine, 

erythromycin, roxithromycin, tramadol, and ranitidine from wastewater after BAC treatment. 
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Removal was variable and attributed to both biodegradation and sorption (Reungoat et al. 2010; 

Reungoat et al. 2011). To the best of the author’s knowledge, no studies have specifically 

focused on removal of ozone-reactive NDMA precursors by biofiltration.  

The goal of this research was to investigate the removal of specific NDMA precursors from 

treated wastewater effluent during biofiltration. Several knowledge gaps exist, including: the 

process responsible for precursor removal (e.g. sorption to media, sorption to biofilm, 

biodegradation), the impact of EBCT, and the extent of removal for specific NDMA precursors 

in a non-optimized biofilter. Additionally, THM and HAA formation potential was measured in 

order to determine if biofiltration could provide simultaneous removal of NDMA, THM, and 

HAA precursors. 

 

6.3 Materials and Methods 

6.3.1 Biofiltration Unit Design and Operation 

Biofiltration columns, located at a wastewater treatment facility, were constructed with glass 

columns (Ace Glass, Vineland, NJ) of different lengths (45, 60, 120 cm) with threaded nylon 

adapters at each end and glass beads and packing support at the outlet. Columns were filled with 

ANSI/NSF 61 certified anthracite (effective size 1.35-1.45 mm; uniformity coefficient < 1.40) 

and covered with aluminum foil to block out light. The three columns had the same flow rate 

(100 mL/min) and different amounts of media, which corresponded to empty bed contact times 

(EBCTs) of 5, 10, and 20 minutes. EBCT is the average time the water stays in contact with the 

media and was calculated by dividing the volume of the media in the column by the wastewater 

flow rate through the column. Hydraulic loading rate was calculated as flow rate divided by the 

surface area of the column. Biofiltration column design parameters are shown in Tables 6.1 and 
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6.2. Figure 6.1 shows the experimental setup for the biofiltration columns. Prior to starting the 

NDMA removal experiments, the columns were acclimated to tertiary-treated wastewater in 

alternating cycles of recirculating batch mode and flow-through mode for 11 weeks as part of a 

related experiment. Before commencing the NDMA precursor removal test (i.e., preparation 

phase), the columns were run in flow-through mode for 10 days, which corresponds to about 720 

EBCTs. Biofilm growth was visible on the anthracite and confirmed through solid-phase 

measurement of adenosine triphosphate (ATP). 

Columns were operated continually during the preparation phase and test period, with the 

exception of one day during the preparation phase when the feedwater tank ran dry. No 

backwashing occurred. Instead, between the 10-day preparation phase and 14-day test period, the 

columns were shaken to fluidize the media and detached particulates were flushed off the top 

layer of the media. During the preparation phase, columns received the same feedwater and a 

single influent sample was collected for all columns from the feedwater tank. During the test 

period, the feedwater (tertiary-treated wastewater) was spiked with a mixture of NDMA 

precursors. The wastewater and NDMA precursor mixture were pumped into a 125 gallon high 

density polyethylene (HDPE) tank for blending. Sampling ports were added to each feed line 

instead of assuming a homogeneous mixture in the tank. Peristaltic pumps (Cole Palmer, 

Masterflex with Easy Load Pump Head) were used to maintain a constant flow of 100 mL/min to 

the columns. The residence time in the feed lines was less than five minutes, and the residence 

time in the tank was 18-24 hours. Biodegradation or sorption may have occurred in the feed lines 

or tank; however, the residence time between the sample ports and the columns was short 

(influent: < 20 s; effluent: < 5 s). As a result, measured removals were the result of the 

biofiltration rather than any biodegradation or sorption occurring within the feedwater system. 



 

121 

 

The performance of the system was monitored daily by total organic carbon (TOC), chemical 

oxygen demand (COD), and dissolved oxygen (DO). DO was not regulated and varied 

depending on the concentration in the feedwater. ATP was measured at the start and end of the 

test period. Ambient temperature within the pilot plant likely varied, but the wastewater 

temperature remained reasonably consistent in the range of 22-25 C. Column influent and 

effluent samples were analyzed daily for individual precursors and total nitrogen (TN). NDMA, 

THMs and HAAs were analyzed on three days (4, 11, 14) during the test period and once during 

the preparation phase. 

All connecting tubing was periodically replaced due to biofilm growth. New ¼ inch inner 

diameter Tygon tubing was used for the feedwater lines at the start of the test period and these 

were replaced on day 11 of the test period because biofilm was sloughing off the tubing interior 

and accumulating at the top of the columns. Biofilm also clogged the waste lines and those were 

replaced during the test period, but this had no impact on precursor removal. Biofilm in the 

feedwater lines may have increased precursor removal; however, the tubing lengths were similar 

for the columns, so all columns should have been affected equally. 

 

 

Table 6.1: Parameters used in the design of the biofiltration columns. 

Parameter Value Value 

Column Inner Diameter 5 cm 0.164 ft 

Column Area 09.63 cm
2 

0.021 ft
2 

Hydraulic Loading Rate 5.0 mL/min·cm
2 

1.2 gpm/ft
2 

D/d ratio (Column diameter to 

media diameter) 
34-37 34-37 

Flow Rate 100 mL/min 0.026 gpm 
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Table 6.2: Empty bed contact times and media parameters for the biofiltration columns. 

Column EBCT Media Height Media Volume 

1 5 min 25 cm 0.49 L 

2 10 min 50 cm
 

0.98 L 

3 20 min 100 cm
 

1.96 L 

 

 

 

 

 

Figure 6.1: Schematic of the biofiltration columns setup used to investigate disinfection 

byproduct precursor removal. 
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6.3.2 Preparation of NDMA Precursors Mixture 

Compounds to be added to the treated wastewater effluent were selected based on known 

potential to form NDMA with ozone or chloramines, purchase availability, and capability for 

liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Only one of the 

selected compounds, ranitidine, has been detected in U.S. wastewaters (Kolpin et al. 2002) and 

was present in the feedwater (0.0065 μM or 2.0 μg/L). Individual stock solutions of four NDMA 

precursors were prepared from neat standards (
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Table 6.3): 2-furaldehyde 2,2-dimethylhydrazone (2-F-DMH) (Alfa Aesar, Lancashire, 

United Kingdom); ranitidine hydrochloride (Sigma, St. Louis, MO); 1,1,1’,1’-tetramethyl-4,4’-

(methylenedi-p-phenylene)disemicarbazide (TMDS) (TCI America, Portland, OR); and 

daminozide (Fluka, Steinheim, Germany). Stock solutions were prepared at 1 mM. TMDS was 

prepared in 50/50 acetonitrile/water because of its low solubility in water. After dilution in the 

wastewater, acetonitrile concentration was < 42 mg/L, which is well below the toxicity that 

would inhibit the growth of aerobic heterotrophs, methanogens and other bacteria (Blum and 

Speece 1991; Kahru et al. 1996). All other precursor stock solutions were made with ultrapure 

water. 

Batches of the NDMA precursor mixture were generated daily. First, equal aliquots of the 

stock solutions were mixed together and diluted by approximately 300-fold with tap water. This 

diluted mixture was then pumped into the 125 gallon HDPE tank and mixed with the tertiary 

wastewater at a ratio of about 30:1. A precursor concentration of 0.1 μM was targeted in the 

feedwater in order to have an initial concentration within the LC-MS/MS analytical range and 

without the need to concentrate the sample. 
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Table 6.3: Molecular weights, pKa, charge and sorption, partition and soil coefficients for the tested NDMA precursors. 

Precursor Structure Use 

Molecular 

Weight 

(g/mol) 

Sorption 

coefficient, 

Kd (L/kg) 

Partition 

coefficient, 

Log Kow, 

pH 7 

Soil 

Sorption 

coefficient, 

Log Koc 

pKa 

Charge of 

compound 

at pH 7 

 

 

TMDS 

 
Yellow inhibitor 

and light stabilizer 

for polyamide 

resins 

368.48 N/A 1.61
b 

N/A 1.6
a 

Neutral 

 

Ranitidine 

 Histamine-2 

blocker for 

treating and 

preventing 

stomach ulcers 

314.4 
420

d  

50
g 

-1.2
b 

0.27
e 3.13

g 7.9
a 

8.2
e Positive 

Daminozide 

 
Plant growth 

regulator 
160.17 N/A 

-3.81
b 

-1.50
f 0.903

c 1.50
a 

4.68
f Neutral 

2-F-DMH 

 

Synthesis building 

block 
138.17 N/A 0.63

b
 N/A 1.11

a 
Neutral 

a
 Predicted with MarvinSketch (ChemAxon 2016b); 

b
 Predicted with MarvinJS (ChemAxon 2016a); 

c
 Calculated from Kenaga 1980;    

d
 Vasiliadou et al. 2013; 

e
 Hernando et al. 2007; 

f 
Tomlin 1997; 

g
 Predicted from Barron et al. 2009; N/A = not available 
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6.3.3 Sample Collection, Preservation and Storage 

Influent and effluent samples were collected from sampling ports before and after the 

biofilter columns. To nullify any issue with feedwater non-homogeneity, effluent samples were 

collected after influent samples at times corresponding to the EBCT. Sampling lines were purged 

for several minutes into a waste vessel prior to filling sample containers. Collection occurred at 

different times on sampling dates and some of the change in daily TOC and COD may be 

attributed to diurnal variation in the feedwater. 

Samples were brought to the lab, stored at 4 C until analyses were performed within the 

time frames given below. Ozonation and chloramination testing, described in the next section, 

occurred on the same day as sample collection. All samples for NDMA analysis were preserved 

with sodium thiosulfate (80 mg/L) and sodium azide (1 g/L). The 7-day THM/HAA formation 

potential (THM/HAA-FP) procedure was initiated the day after collection. After the test was 

complete, THM and HAA samples were preserved with 30 μL of 10% sodium thiosulfate and     

6 mg of ammonium chloride, respectively. NDMA, THM and HAA analysis occurred within    

14 days. NDMA precursors were analyzed within 7 days.  

6.3.4 Experimental Procedures 

Collected samples underwent ozonation formation potential (O3-FP), chloramination at 

uniform formation conditions (CLM-UFC), and THM/HAA-FP testing. O3-FP was performed 

through the addition of ozone-saturated water to the sample. Ozonated water was generated using 

an oxygen-fed generator (model CFS-1A, Ozonia North America, Inc., Elmwood Park, NJ, 

USA) to diffuse ozone into cold ultrapure water as described elsewhere (Wert et al. 2009). The 

concentration of the ozone stock solution was measured with a Hach DR5000 UV/Vis 

spectrophotometer at 600 nm using a modified indigo method (Rakness et al. 2010). The ozone 
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stock solution was typically between 65 and 85 mg O3/L. An appropriate volume was dosed into 

samples to achieve the desired ozone to TOC ratio (O3:TOC = 0.8), taking dilution into account. 

Samples were capped, mixed by inverting, and left at room temperature for one day to ensure 

ozone residual was zero before opening the bottles.  

CLM-UFC testing was completed following an established procedure (Shah et al. 2012). A 

fresh monochloramine solution was prepared for each analysis from sodium hypochlorite and 

ammonium chloride (Sigma-Aldrich, St. Louis, MO). Samples were buffered (4 mM borate,     

pH 8), spiked at 5 mg/L as Cl2, and kept at room temperature in the dark for three days. At the 

conclusion of the procedure, samples were checked for a minimum residual (1 mg/L as Cl2) and 

then quenched with sodium thiosulfate. 

THM/HAA-FP testing involved determining an initial chlorine demand, spiking multiple 

samples with chlorine, and choosing the sample with an appropriate residual. First, a 60 mL 

sample was dosed at 100 mg/L as Cl2 with 10 mM phosphate buffer at pH 7. After leaving the 

sample for 24 hours at room temperature and in the dark, the chlorine residual was measured 

using the DPD method and the chlorine demand was calculated as the difference between the 

original concentration (100 mg/L as Cl2) and the chlorine residual. Next, a series of samples      

(n = 6) were buffered and dosed with chlorine (ranging from 15-60 mg/L as Cl2 depending on the 

chlorine demand) and kept in the dark at room temperature. After 7 days, the chlorine residual 

was measured and the sample that fell in the range of 3-5 mg/L as Cl2 was used for analysis.  

6.3.5 Testing for Adsorption of the Precursors to Anthracite 

Sorption of the precursors to anthracite was determined in order to establish which 

mechanisms (i.e., sorption to media, sorption to biofilm, biodegradation) were responsible for 

precursor removal. Batch adsorption tests were performed using 125 mL borosilicate glass serum 
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bottles and fresh anthracite media. The anthracite and bottles were sterilized by autoclaving     

(20 min at 250 C). Anthracite was weighed (0.1, 0.2, 0.3, 0.4, 0.5, and 2.0 g) and added to the 

glass bottles, along with 100 mL of the precursor-spiked wastewater. The bottles were sealed 

with a rubber septum and crimped closed with an aluminum ring (Wheaton, Vernon Hills, IL) 

before being attached to a rotating shaker and mixed constantly at 20 rpm for 24 or 48 hours. The 

following control samples were included: blank (deionized water with 2.0 g anthracite), control 

(precursor-spiked wastewater and no anthracite), and negative control (wastewater without 

precursors and 2.0 g anthracite). After the desired contact time, bottles were opened and samples 

were filtered through a pre-rinsed syringe filter (Whatman 0.7 μM GF/F with GMF) to remove 

suspended anthracite particles. The filtrate was analyzed for the individual precursors. 

6.3.6 Analytical Methods 

Biofiltration performance parameters 

 DO, TOC and COD were measured daily, and TN was measured twice weekly. DO was 

measured by luminescence using a portable probe (Hach sensION+ DO6). The probe was 

calibrated once with water-saturated air at the start of the biofiltration study. The probe reading 

was confirmed (0.5 mg O2/L) on one occasion with the Hach dissolved oxygen method (Method 

8166) that utilizes the Indigo Carmine method, AccuVac ampules, and a Hach DR 6000 

spectrophotometer. TOC samples were acidified to pH < 3 with hydrochloric acid and analyzed 

using a Shimadzu TOC-V (Shimadzu Scientific Instruments, Carlsbad, CA). Samples were 

acidified within a few hours of collection and stored at 4 C for up to 48 hours before analysis. 

Calibration standards (0-20 mg C/L) were prepared from a 1000 mg C/L glucose stock solution 

and a 100 mg C/L working stock solution. The stock solution was replaced every two months, 

and calibration standards were prepared fresh for every analysis. Blanks were prepared by 
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acidifying deionized water with HCl to pH < 3. One standard was analyzed after every 6-8 

samples as a calibration check. COD was measured using Hach low range (3-150 mg/L) COD 

digestion vials by the reactor digestion method (Method 8000) with dichromate. A 2 mL sample 

was added the vial and digested in a DRB 200 reactor for 120 minutes at 150 C. Absorbance 

was measured at 420 nm for the cooled samples using a Hach DR 5000 spectrophotometer. The 

instrument was zeroed for each analysis with a blank prepared from deionized water. TN was 

measured using the low range Persulfate Digestion Test ‘N Tube
TM

 Method (Hach Method 

10071) and analyzed using a Hach DR 5000 spectrophotometer. The instrument was zeroed with 

a blank prepared from deionized water and treated (i.e., digested) in the same manner as the 

sample. 

N-Nitrosodimethylamine 

Samples were preserved with sodium thiosulfate (80 mg/L) and sodium azide (1 g/L) upon 

collection. One liter samples underwent automated solid phase extraction with a Dionex 

Autotrace 280 workstation (Thermo Scientific) by the Southern Nevada Water Authority 

Laboratory (Holady et al. 2012). Conditioned activated charcoal cartridges were used and 

extracts were eluted with dichloromethane and dried under nitrogen to 1 mL. Water was 

removed with sodium sulfate DryDisks and the final concentration factor was 1:1000. Extracts 

were injected (2 µL) in splitless mode through a 30 m x 0.32 mm ID x 1.4 µm DB624 column 

with helium flow and into the GC-MS (Agilent 7000C). Parent (m/z = 75) and product ions   

(m/z = 47, 44, 58) were monitored, and the reporting limit (2.5 µg/L) was set at three to five 

times the calculated method detection limit. 
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Trihalomethanes 

THMs were quantified using EPA method 524.3 by the Southern Nevada Water Authority 

Water Quality Chemistry Laboratory. Four THMs (bromoform, bromodichloromethane, 

chloroform, chlorodibromomethane) were measured. A Stratum PTC purge and trap concentrator 

with an AQUATek 100 autosampler (Teledyne Tekmar) was used for THM extraction of a 

headspace-free 40 mL sample. THM analysis used a Thermo Scientific TRACE gas 

chromatograph with Electronic Pressure Control and a Split/Splitless injection port coupled to a 

Thermo Scientific ISQ mass spectrometer. Samples were separated on a RTX-VMS GC column 

(Restek). 

Haloacetic acids 

HAAs were quantified using EPA method 552.2 by the Southern Nevada Water Authority 

Water Quality Chemistry Laboratory. Five haloacetic acids (bromoacetic acid, dibromoacetic 

acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid) were measured from a 

headspace-free 60 mL sample. HAA analysis used a Varian CP-3800 gas chromatograph with 

dual Electron Capture Detectors and a CTC Analytics CombiPal Autosampler. Samples were 

separated with a J&W DB-1701 GC column (Agilent), and spectra were quantified with 

Dionex/Thermo Chromeleon version 6.8 software. 

Adenosine Triphosphate 

ATP was analyzed using a Deposit and Surface Analysis test kit (LuminUltra Technologies 

Ltd), which is designed for measuring ATP in biofilm and on biological filter media. The test 

uses firefly luciferase enzyme to produce light in the presence of ATP, and the light is measured 

in a luminometer as Relative Light Units (RLU). Calibration was performed with 100 μL of 

UltraCheck 1. Luminase enzyme was rehydrated and tested to ensure a reading of > 5,000 RLU. 
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Media samples were gently rinsed with ultrapure water to remove unattached growth and dried 

by vacuum filtration. 1 g of media was transferred to 5 mL of UltraLyse 7 for extraction. After 

vigorous mixing for 30 seconds and at least five minutes sitting in the extraction solution, the 

sample was diluted by transferring 1 mL to a 9 mL UltraLute Dilution Tube. Then 100 μL of the 

diluted sample was mixed with 100 μL of rehydrated luminase enzyme in an assay tube, swirled, 

and measured in the luminometer (PhotonMaster
TM

 Luminometer, LuminUltra). LuminCalc 

software was used to calculate the total ATP (pg tATP/g sample) from the measured RLU value. 

NDMA Precursors 

Individual precursors were analyzed by direct injection (10 μL) with LC-MS/MS. Precursors 

were monitored for one or two mass transitions (Table 6.4). A Luna C18(2) column 

(Phenomenex) was used for separation with the LC system (Agilent 1100 LC with binary pump 

and CTC PAL autosampler). The mobile phases 0.1% formic acid (A) and methanol (B) were 

run at 0.8 mL/min on a gradient starting at 10% B for 5 min, increased linearly over 5 min to 

90% B at 10 min, held until 15 minutes, and returned to 10% B over 3 min. The mass 

spectrometer (API 4000 triple quad, Applied Biosystems) was operated via multiple reaction-

monitoring in positive-ion electrospray ionization (ESI+) mode with a source temperature of  

500 °C. An external calibration with 7 points for each precursor was used. R
2
 values of 0.995 or 

better were observed for all compounds. One standard was analyzed every 6-8 samples as a 

calibration check. Reporting limits were set at greater than five times the signal to noise ratio and 

were based on the instrument detection limit (n = 12) for individual precursors.  
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Table 6.4: Parameters for LC-MS/MS analysis of NDMA precursors. 

Precursor Analytical 

Range (µM) 
Transition 

Confirmation 

Transition 

Retention 

Time 

TMDS 0.0025 – 0.125 371.2 / 285.2  12.6 

Daminozide 0.0075 – 0.20 161.0 / 143.1  2.84 

2-F-DMH 0.005 – 0.25 139.0 / 96.1  11.68 

Ranitidine 0.0005 – 0.10 315.3 / 176.2 315.3 / 130.1 8.75 

 

 

6.3.7 Calculations and Statistical Analyses 

NDMA precursor removal was calculated based on the concentrations in the influent and 

effluent according to Equation 4. In this regard, removal represents the loss of the parent 

compound and does not indicate complete mineralization. 

 

Equation 4: Calculation of NDMA precursor removal during biofiltration using precursor 

concentrations in column influent (Cinf) and effluent (Ceff). 

𝐶𝑖𝑛𝑓 − 𝐶𝑒𝑓𝑓

𝐶inf
𝑥 100 = % 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 

 

Statistical analyses were completed in Excel using the Analysis Toolpak add-in. Significant 

removal was determined through a one-tailed paired t-test for column influent and column 

effluent concentrations. ATP measurements at the start and end of the test period were analyzed 

with a t-test to determine if the means were significantly different. One-way analysis of variance 

(ANOVA) was used to determine statistically significant differences (α = 0.05) among the three 

columns for TOC, COD and precursor removal. Correlation between precursor removal and DO 

was examined by regression.  
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6.4 Results and Discussion 

6.4.1 Biofiltration Performance 

Water quality data for the tertiary-treated wastewater are presented in Table 6.5. The 

carbon:nitrogen:phosphorus (C:N:P) ratio is substantially important to interpreting the results of 

this research. A generally accepted chemical formula for biomass is C5H7O2NP0·074 (Droste 

1997), which corresponds to a C:N:P mass ratio of 100:23:4. The tertiary-treated wastewater had 

a C:N:P mass ratio of 100:165:1.3. Clearly, nitrogen is in excess and this is due to the presence 

of a significant amount of nitrate because the wastewater treatment plant does not have a 

denitrification process step. Phosphorus was one-third of the recommended ratio, which indicates 

it is a limiting element for bacterial growth. This wastewater treatment facility is required to 

achieve very low phosphorus concentrations and applies biological phosphorus removal (BPR) 

for this purpose. The low phosphorus concentration likely limited biofilm growth, which, in turn, 

affected organic carbon and DBP removal. 

Performance was monitored daily by TOC, COD and DO. During the preparation phase, 

TOC removal was more consistent and at a higher percentage than COD removal across all 

EBCTs (Table 6.6). Among the columns, TOC and COD removal were highest for column 2, but 

the removals were not significantly different from columns 1 and 3, as determined by one-way 

ANOVA (TOC: p = 0.099; COD: p = 0.227). Notably, column 2 had the lowest observed ATP 

concentration, but it is not possible to determine the statistical significance of this measurement 

because only a single analysis was performed. Notwithstanding, previous studies have observed 

that the amount of biomass does not accurately predict organic carbon and DBP removal, 

especially when biomass is only measured at the top of a biofilter (Urfer et al. 1997). 

Biofiltration performance was more variable during the 14-day test period (Table 6.7). The 
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increase in TOC and COD concentrations in the test period compared to the preparation phase 

(Figure 6.2) can be attributed to the acetonitrile used to dissolve one of the NDMA precursors, 

rather than the carbon contribution of the precursors themselves (~0.08 mg C/L). The 

inconsistent TOC and COD concentrations in the influent are most likely due to uneven mixing 

of the precursor mixture and wastewater within the feedwater tank. Increased biofilm growth 

over time in the feedwater lines may also affect influent TOC and COD by providing extra 

removal ahead of the sample collection ports. Average COD removal increased linearly with 

greater contact time (R
2
 = 1.000) while average TOC removal was relatively unchanged for the 

three columns; however, in neither case were the removals for the three columns statistically 

significantly different as determined by one-way ANOVA (TOC: p = 0.739; COD: p = 0.117). 

TOC and COD removals were also not significantly different between the preparation phase and 

test period for any column (Student’s t-test, p > 0.08) 

TOC removal was low compared to other biofiltration studies involving treated wastewater 

where removal was > 40% (Farre et al. 2011; Reaume et al. 2015; Reungoat et al. 2011). 

However, TOC removal in this study, under the limiting phosphorus condition, is comparable to 

biofiltration for drinking water where TOC removals were 6-26% for sand and mixed-media 

(anthracite, sand, garnet) biofilters (LeChevallier et al. 1992; Zearley and Summers 2012).  

Dissolved oxygen concentration was lower during the test period (0.54  0.20 mg/L) 

compared to the preparation phase (1.62  0.63 mg/L), except for two days when the wastewater 

was aerated due to another pilot plant experiment. DO decreased ~0.6 mg/L across each column 

during the preparation phase, but only ~0.1 mg/L across each column during the test period, 

indicating there was limited aerobic activity during the test period. At the end, all columns had 

similar ATP concentrations for biofilm removed from the top of the column, and the mean ATP 
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concentrations at the start and end of the test period were not significantly different (Student’s   

t-test, p = 0.595). Although the microbial community composition was not determined, there was 

likely a mixture of aerobic and anaerobic bacteria in the biofilter as a result of varying DO 

concentration and the likely presence of pockets of aerobic and anaerobic micro-environments 

(Hu and Wang 2005). Micro-environments can be the result of a DO gradient stemming from 

DO loss across the height of the media or caused by extracellular polymeric substances produced 

by microorganisms (Chenu 1993; Wingender et al. 2012).  

It is probable that higher phosphorus concentration in the effluent would promote greater 

TOC and COD removal by biofiltration. Phosphorus addition was shown to increase biofilter 

performance and bacteria growth for drinking water, groundwater and surface water systems 

(Lauderdale et al. 2012; Lehtola et al. 2002; Li et al. 2010; Nishijima et al. 1997; Sang et al. 

2003), and the wastewater used in this research has a phosphorus concentration comparable to 

those waters. If biofiltration were to be added to this facility, phosphorus removal could be 

reduced during secondary BPR treatment to allow for sufficient phosphorus concentration in the 

effluent, which would facilitate bacteria growth and promote biofiltration. 
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Table 6.5: Water quality data and formation potential concentrations for the tertiary-treated 

wastewater during the preparation phase. 

Parameter Avg. Value Unit Parameter Conc. Unit 

 
Column 3 

Influent 

Column 3 

Effluent 
 

TOC 6.91  0.43 mg C/L THM-FP 0.34 0.28 mg/L 

COD 20.8  2.9 mg/L HAA-FP 0.37 0.29 mg/L 

DO 1.62  0.63 mg O2/L NDMA < 2.5 < 2.5 ng/L 

pH 6.93  0.04  CLM-UFC 280 290 
ng/L 

NDMA 

Ammonium < 0.05 
mg/L as 

N 
O3-FP 20.5  0.71 15 

ng/L 

NDMA 

Total 

Nitrogen 
11.4  1.1 

mg/L as 

N 
    

Temp. 23.7  0.7  C     

Total 

Phosphorus 
0.087  

0.008 

mg PO4
3-

/L 
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Table 6.6: Average TOC and COD influent and effluent concentrations and removal for 

biofiltration columns during the preparation phase. 

 Column 1 Column 2 Column 3 All Columns 

 EBCT = 5 min EBCT = 10 min EBCT = 20 min Avg. all EBCTs 

tATP (pg/g) 5.17x10
6
 2.61x10

6
 3.52x10

6
 3.77x10

6
 

Avg. TOC influent 

(mg C/L) 
- - - 

6.89  0.41 

CV = 5.9% 

Avg. TOC effluent 

(mg C/L) 
6.44  0.43 

CV = 6.6% 

6.08  0.23 

CV = 3.8% 

7.03  2.53 

CV = 36.0% 

6.52  1.49 

CV = 22.8% 

Avg. TOC removal 

(%) 
6.3%  0.065 

CV = 104% 

11.6%  0.039 

CV = 33.4% 

9.3%  0.042 

CV = 45.4% 

9.1%  0.053 

CV = 58.9% 

Avg. COD influent 

(mg O2/L) 
- - - 

20.8  2.9  

CV = 14.4% 

Avg. COD effluent 

(mg O2/L) 
19.3  2.7 

CV = 13.7% 

18.5  2.9 

CV = 15.5% 

20.2  4.0 

CV = 20.0% 

19.4  3.2 

CV = 16.6% 

Avg. COD removal 

(%) 
5.6%  0.055 

CV = 98.0% 

10.9%  0.046 

CV = 42.1% 

5.8%  0.100 

CV = 172% 

7.6%  0.072 

CV = 94.6% 

- = not measured; CV = coefficient of variation; TOC = total organic carbon; COD = chemical oxygen 

demand; EBCT = empty bed contact time; tATP = total adenosine triphosphate 

  

 

Table 6.7: Average TOC and COD influent and effluent concentrations and removal for 

biofiltration columns during the test period. 

 Column 1 Column 2 Column 3 All Columns 

 EBCT = 5 

min 
EBCT = 10 min EBCT = 20 min Avg. all EBCTs 

Final tATP (pg/g) 3.32x10
6
 3.48x10

6
 3.08x10

6
 3.29x10

6
 

Avg. TOC influent 

(mg C/L) 
12.4  4.7 

CV = 37.7% 

12.7  5.0 

CV = 39.1% 

12.3  4.9 

CV = 39.8% 

12.7  4.7 

CV = 36.8% 

Avg. TOC effluent 

(mg C/L) 
12.1  4.4 

CV = 35.8% 

12.1  4.5 

CV = 36.8% 

11.9  4.8 

CV = 40.4% 

12.0  4.4 

CV = 36.7% 

Avg. TOC removal 

(%) 
7.3%  0.053 

CV = 72.1% 

9.5%  0.043 

CV = 45.6% 

8.5%  0.105 

CV = 124% 

8.4%  0.071 

CV = 84% 

Avg. COD influent 

(mg O2/L) 
32.3  11.9 

CV = 36.9% 

34.1  12.1 

CV = 35.4% 

33.6  10.9 

CV = 32.6% 

34.3  11.8 

CV = 34.4% 

Avg. COD effluent 

(mg O2/L) 
33.0  11.6 

CV = 35.0% 

33.6  10.7 

CV = 31.7% 

31.2  12.9 

CV = 41.1% 

32.6  11.5 

CV = 35.2 % 

Avg. COD removal 

(%) 
3.5%  0.160 

CV = 461% 

7.3%  0.079 

CV = 108% 

14.8%  0.160 

CV = 108% 

8.5%  0.143 

CV = 167% 

CV = coefficient of variation; TOC = total organic carbon; COD = chemical oxygen demand;  

EBCT = empty bed contact time; tATP = total adenosine triphosphate 
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Figure 6.2: Daily TOC, COD and DO measurements for biofiltration column influent (average) 

and effluent. The vertical line denotes the change from the preparation phase to the test period. 

Error bars are one standard deviation (n = 2). 

Influent (averaged) 

Effluent, EBCT = 5 min 

Effluent, EBCT = 10 min 

Effluent, EBCT = 20 min 
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6.4.2 Sorption of Precursors to Media 

Although anthracite is considered a non-adsorptive media for organics (Urfer et al. 1997), 

some adsorption can occur. A batch test for adsorption was completed using sterile, fresh 

anthracite and the same precursor-spiked wastewater as the biofiltration columns. Based on the 

hydraulic loading rate for the columns and the column area, the amount of wastewater passing 

through the media in 24 and 48 hours was calculated (48 hours shown): 

 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑊𝑊 = ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (
𝑔𝑝𝑚

𝑓𝑡2
) 𝑥 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑒𝑎 (𝑓𝑡2) 𝑥 𝑡𝑖𝑚𝑒 (min) 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑊𝑊 =
1.2 𝑔𝑝𝑚

𝑓𝑡2
𝑥 0.021 𝑓𝑡2 𝑥 2880 min = 72.57 gal WW 

 

Next, the media volume for each column was converted to mass using density (column 3 shown): 

 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎 = 𝑉𝑜𝑙𝑢𝑚𝑒 (𝐿) 𝑥 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑘𝑔

𝐿
)  

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎 = 1.963 𝐿 𝑥 1.4
𝑘𝑔

𝐿
=  2.75 𝑘𝑔  

 

Finally, the ratio of wastewater to media was determined: 

 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑊𝑊

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎
=

𝑔𝑎𝑙 𝑊𝑊

𝑘𝑔 𝑚𝑒𝑑𝑖𝑎
 𝑥 

3.785 𝐿

𝑔𝑎𝑙
 𝑥

1000 𝑚𝐿

𝐿
 𝑥 

𝑘𝑔

1000 𝑔
=

𝑚𝐿 𝑊𝑊

𝑔 𝑚𝑒𝑑𝑖𝑎
 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑊𝑊

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎
=

72.57 𝑔𝑎𝑙

2.75 𝑘𝑔
 𝑥 

3.785 𝐿

𝑔𝑎𝑙
 𝑥

1000 𝑚𝐿

𝐿
 𝑥 

𝑘𝑔

1000 𝑔
=

99.88 𝑚𝐿

1 𝑔
~

100 𝑚𝐿

1 𝑔
 

 



 

140 

 

A constant volume of 100 mL wastewater was used for the batch sorption test, and the 

amount of anthracite varied from 0.1 to 2.0 g. Given the possible combinations of time (24, 48 h) 

and media volumes (0.491, 0.982, 1.963 L), the range for the wastewater:media ratio was        

100 mL:0.25 g and 100 mL:2.0 g. Therefore, the batch test can approximate maximum sorption 

in any column for 48 hours.  

TMDS, 2-F-DMH and ranitidine all had a negative linear correlation with good fit                (R
2
 

> 0.90) (Figure 6.3). Daminozide was below the method reporting limit (MRL) in all samples, 

including the control, which suggests it was degraded within the feedwater tank. The slopes for 

TMDS and ranitidine were nearly the same, indicating similar adsorption rate, although TMDS 

was below the MRL for 2.0 g anthracite. Very little change in concentration was observed for   

2-F-DMH, meaning it does not adsorb strongly to the media. Partition coefficients (Kow) at pH 7 

were estimated (
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Table 6.3) using MarvinSketch, which correlates Kow with atomic hydrophobicities 

(Viswanadhan et al. 1989). Of the studied precursors, daminozide has the lowest Kow and would 

be expected to remain in the aqueous phase as opposed to adsorbing to the media. The predicted 

Kow for TMDS suggests some preference for adsorption; this matches the observed results. 

However, the similar adsorption observed for ranitidine does not fit well with the predicted and 

measured Kow values, which indicate lower adsorption than TMDS. Anthracite typically has a 

negative charge in near-neutral water due to an isoelectric point in the range of 4.5 to 6 (Wen and 

Sun 1977). At pH 6.9, which is the pH of the tertiary-treated wastewater used in the study, 

ranitidine can have a positive charge (pKa = 7.9-8.2), and this could account for additional 

attraction to the media. Another point of consideration is that the batch test was performed with 

fresh anthracite and maximum adsorption capacity. The columns were in operation for more than 

10 weeks before the test period and may have lost some adsorption capacity during that time. 

Overall, adsorption to the media is predicted to result in only partial removal of TMDS and 

ranitidine.  
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Figure 6.3: Batch sorption results and linear regressions for NDMA precursors in tertiary-treated 

wastewater at pH 6.9 after 24 hours in contact with fresh anthracite. 

 

 

6.4.3 Precursor Removal 

Removal varied depending on the precursor (Table 6.8). The average removals (all columns) 

during the test period were: TMDS 16.2%, 2-F-DMH 20.8%, daminozide 80.2%, and ranitidine 

6.7%. Removal could be attributed to one or more of the following: biodegradation (not 

necessarily complete mineralization), adsorption to the media, and sorption to biofilm. 

Daminozide exhibited high removal. In soil, daminozide has a half-life of three to four days 

(Dannals et al. 1974). Since adsorption is unlikely based on its Kow, biodegradation is deemed to 

be the main removal mechanism for this compound and this conclusion correlates well with the 

fast biodegradation reported by Dannals et al. The EAWAG-BBD predicted biodegradation 

pathway shows transformation to succinic acid as a possible reaction (EAWAG 2016). Although 

daminozide is not expected to be found in wastewater effluent, owing to its restricted use on 
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ornamental plants in greenhouses, there may be unknown NDMA precursors that share a similar 

structure to daminozide (i.e., hydrazide coupled to carbonyl). Therefore, the findings for 

daminozide removal are still applicable for predicting NDMA precursor removal with 

biofiltration.  

TMDS and 2-F-DMH both exhibited low removal. TMDS is a semicarbazide, a class of 

compounds which frequently appear in patents for use as stabilizers and anti-yellowing agents 

(Hennessy and Selling 1993; Kawaguchi 1991). Although no biodegradation studies for TMDS 

exist to the author’s knowledge, this compound and similar semicarbazides are poorly removed 

during conventional wastewater treatment and are found in wastewater-impacted surface waters 

(Kosaka et al. 2014). As a result, the low removal during biofiltration was anticipated, especially 

in light of the phosphorus-limited wastewater. Other unknown semicarbazide NDMA precursors 

would be expected to share a similar fate under the same biofiltration conditions. 2-F-DMH is a 

dimethylhydrazone coupled to furan and sold as a building block for chemical synthesis. There 

are no biodegradation studies available for this compound. As with TMDS, 2-F-DMH removal 

may have been restricted by the low phosphorus concentration.  

Ranitidine exhibited very low removal during biofiltration. Ranitidine is poorly removed 

during activated sludge treatment, and its concentrations in wastewater sludge are low (Khan and 

Ongerth 2002; Radjenovic et al. 2007). Some wastewater treatment plants demonstrate high 

removal (60-80%) for ranitidine (Jelic et al. 2011), but this is due to chlorination or ozonation, 

which are both effective at destroying the compound (Reungoat et al. 2010; Wang et al. 2015). 

Biological treatments, such as activated sludge, dissolved air flotation or biological activated 

carbon, typically have < 40% removals (Radjenovic et al. 2007; Reungoat et al. 2010). Bergheim 

and colleagues examined ranitidine biodegradation and determined that it is not readily 
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biodegradable except in aerobic conditions with high nutrient availability (Bergheim et al. 2012). 

Vasiliadou et al. (2013) investigated ranitidine removal in a suspended growth bioreactor. 

Significant removal of ranitidine was observed for sorption (Kd = 420 L/kg) to living or dead 

biomass, and there was negligible biodegradation. When ranitidine was mixed with other 

pharamaceuticals in the bioreactor, there was a significant decrease in sorption (Kd = 150 L/kg). 

This suggests that ranitidine removal by sorption may be much lower in real scenarios as 

compared to laboratory tests (Vasiliadou et al. 2013). The low ranitidine removal observed in 

this biofiltration study cannot be attributed to a specific mechanism, and many factors may be 

involved, including: low DO, low phosphorus, and acclimation.  

High coefficients of variation for removal (76-147%) were obtained, except for daminozide 

(17%). This could be due to variability in DO (discussed later), the lack of an acclimation period 

or operation parameters like temperature and initial concentration. Temperature is known to have 

a considerable impact on removal (Halle et al. 2015), but there was little variation in temperature 

over the 14-day test period. Initial concentration has been shown to affect removal, with greater 

removal for higher initial concentrations (Halle et al. 2015). However, this difference in removal 

was observed at a ten-fold increase for high and low initial concentrations, which is much higher 

than the difference in initial concentration found in this study (CV = 41-73%). No statistical 

correlation between removal and influent concentration was observed (R
2
 < 0.10). On the other 

hand, all of the precursors were spiked at low μg/L levels (13-36 μg/L); this is a high 

concentration compared to many trace organics. It is possible that removal would decrease if the 

precursors were present at sub-μg/L concentrations, which are more typical of trace organics in 

wastewater. 
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Although not specifically investigated, all tested precursors were removed by chlorination. 

Effluent from the biofiltration columns, as well as a precursor-spiked feedwater flow 

equalization line that bypassed the columns, were collected in a 200 gallon HDPE container and 

sodium hypochlorite was added to achieve > 2 mg/L as Cl2. Samples from the HDPE container 

were collected (Days 4, 14) and analyzed for NDMA precursors. On both occasions, daminozide, 

2-F-DMH, TMDS, and ranitidine were all below the reporting limit.  
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Figure 6.4: Precursor removal after biofiltration during the 14-day test period for (a) TMDS, (b) 

2-F-DMH, (c) daminozide and (d) ranitidine. Missing data are for results that were below the 

reporting limit. 
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6.4.4 Effect of Contact Time on Precursor Removal 

Statistical analyses were performed to determine if removal across the column and if the 

effect of EBCT on removal were significant. The change in concentration between the column 

influent and effluent (i.e., removal) was statistically significant for daminozide, TMDS, and       

2-F-DMH, but not ranitidine (Table 6.9). This is in agreement with the low removal observed for 

ranitidine. Removal increased as EBCT increased for TMDS and 2-F-DMH, but only TMDS was 

statistically significant as determined by one-way ANOVA. It should be noted that the high 

variability in the data makes it more challenging to achieve statistical significance. Different 

results might be found if biofiltration were performed for a longer period of time and more data 

were collected, leading to less variability and higher statistical power.  

Contact time is known to heavily influence dissolved organic removal (Reungoat et al. 2011; 

Halle et al. 2015), but the relationship is not directly proportional (Urfer et al. 1997). As 

observed in this study, contact time influenced the removal of TMDS and 2-F-DMH, and both 

precursors have a good linear correlation (R
2
 > 0.95). However, more than three data points are 

needed to verify if the fit is actually linear or better matched to a curve. TMDS and 2-F-DMH 

are not readily biodegradable, yet their removals are affected by contact time. Daminozide is 

highly biodegradable, even to the extent that it was periodically removed within the feedwater 

tank and feedwater lines before reaching the column influent sampling port. It is possible that the 

effect of EBCT was not observed for daminozide because the EBCTs were too long, resulting in 

high removal at all tested contact times. 
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Table 6.8: Average precursor influent and effluent concentrations and removal for biofiltration 

columns during the test period. 

  Column 1 Column 2 Column 3 All Columns 

  EBCT = 5 min EBCT = 10 min EBCT = 20 min Avg. all EBCTs 

T
M

D
S

 

Influent Avg. 

(μM) 
0.0561  0.0377 

CV = 67.4% 

0.0558  0.0363 

CV = 65.1% 

0.0540  0.0343 

CV = 63.5% 

0.0486  0.0347 

CV = 71.5%  

Effluent Avg. 

(μM) 
0.0501  0.0361 

CV = 71.9% 

0.0492  0.0362 

CV = 73.5% 

0.0431  0.0334 

CV = 77.5% 

0.0475  0.0345 

CV = 72.7% 

Avg. 

Removal (%) 
11.5%  0.122 

CV = 106% 
13.3%  0.118 

CV = 88.4% 
24.3%  0.100 

CV = 41.0% 
16.2%  0.124 

76.7% 

2
-F

-D
M

H
 

Influent Avg. 

(μM) 
0.0534  0.0394 

CV = 73.7% 

0.0538  0.0384 

CV = 71.4% 

0.0522  0.0358 

CV = 68.6% 

0.0450  0.0345 

CV = 76.6%  

Effluent Avg. 

(μM) 
0.0469  0.0388 

CV = 82.7% 

0.0438  0.0358 

CV = 81.8% 

0.0436  0.0361 

CV = 82.8% 

0.0448  0.0360 

CV = 80.4% 

Avg. 

Removal (%) 
15.7%  0.195 

CV = 124% 
21.0%  0.224 

CV = 107% 
26.1%  0.206 

CV = 79.1% 
20.8%  0.208 

CV = 99.9% 

D
a
m

in
o
zi

d
e 

Influent Avg. 

(μM) 
0.0582  0.0376 

CV = 64.5% 

0.0635  0.0260 

CV = 41.0% 

0.0598  0.0309 

CV = 51.6% 

0.0516  0.0331 

CV = 64.2% 

Effluent Avg. 

(μM) 
0.0287  0.0205 

CV = 71.3% 

0.0157  0.0135 

CV = 86.2% 

0.0111  0.0067 

CV = 60.8% 

0.0195  0.0165 

CV = 84.9% 

Avg. 

Removal (%) 
74.7%  0.156 

CV = 20.8% 
85.7%  0.060 

CV = 7.0% 
80.8%  0.162 

CV = 20.1% 
80.2%  0.138 

CV = 17.3% 

R
a
n

it
id

in
e 

Influent Avg. 

(μM) 
0.0996  0.0589 

CV = 59.1% 

0.0997  0.0573 

CV = 57.4% 

0.0971  0.0561 

CV = 57.8% 

0.0988  0.0575 

CV = 58.2% 

Effluent Avg. 

(μM) 
0.0936  0.0581 

CV = 62.0% 

0.0931  0.0592 

CV = 63.5% 

0.0917  0.0586  

CV = 63.9% 

0.0928  0.0571 

CV = 61.5% 

Avg. 

Removal (%) 
7.45%  0.097 

CV = 130% 
6.53%  0.093 

143% 
6.06%  0.111 

184% 
6.70%  0.098 

CV = 147% 

CV = coefficient of variation; EBCT = empty bed contact time  
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Table 6.9: Correlation and p values to determine statistical significance for the effect of empty 

bed contact time on removal, change in influent and effluent concentration, and the effect of 

dissolved oxygen (DO) on removal. 
 ANOVA: 

EBCT 
 

Paired t-test 

(one-tailed): 

Influent / 

Effluent 

Correlation: 

DO and 

Removal 

T
M

D
S

 p = 0.013 

Sig. 

F(2,39) = 4.89 

EBCT = 5 min 

EBCT = 10 min 

EBCT = 20 min 

Sig. p = 0.008 

Sig. p = 0.008 

Sig. p < 0.001 

R
2
 = 0.483 

R
2
 = 0.666 

R
2
 = 0.077 

2
-F

-D
M

H
 

p = 0.441 

NS 

F(2,39) = 0.836 

EBCT = 5 min 

EBCT = 10 min 

EBCT = 20 min 

Sig. p = 0.010 

Sig. p = 0.001 

Sig. p < 0.001 

R
2
 = 0.667 

R
2
 = 0.792 

R
2
 = 0.410 

D
a
m

in
o
zi

d
e 

p = 0.193 

NS 

F(2,30) = 1.74 

EBCT = 5 min 

EBCT = 10 min 

EBCT = 20 min 

Sig. p < 0.001 

Sig. p < 0.001 

Sig. p < 0.001 

R
2
 = 0.001 

R
2
 = 0.002 

R
2
 = 0.155 

R
a
n

it
id

in
e 

p = 0.936 

NS 

F(2,39) = 0.066 

EBCT = 5 min 

EBCT = 10 min 

EBCT = 20 min 

Sig. p = 0.038 

NS p = 0.320 

NS p = 0.295 

R
2
 = 0.242 

R
2
 = 0.061 

R
2
 = 0.033 

Sig. = significant; NS = not significant 

Bold text indicates significant results and strong correlations (R
2
 > 0.6) 

 

 

6.4.5 Correlation Between Precursor Removal and Dissolved Oxygen Concentration 

The influence of initial dissolved oxygen concentration on removal was examined by 

regression analysis. An example correlation is shown in Figure 6.5. Other figures appear in 

Appendix D. There was a strong positive correlation for 2-F-DMH at EBCTs of 5 and 10 min 

and TMDS at 10 min, as well as a moderate positive correlation for 2-F-DMH at 20 min and 

TMDS at 5 min (Table 6.9). This suggests that 2-F-DMH and TMDS removal could increase if 
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DO were present at a higher concentration; however, this cannot be confirmed because 

information on biodegradability (aerobic or anaerobic) of the compounds is unavailable. 

There was no apparent correlation between initial DO concentration and removal for 

daminozide and ranitidine. Daminozide may be highly biodegradable by bacteria that survive at 

low DO concentrations or daminozide may undergo anaerobic biodegradation. The limited 

ranitidine removal observed in this study may be due to sorption alone, which could explain why 

removal is not influenced by EBCT or DO concentration. It is also possible that no effects of 

EBCT or DO were noticed for ranitidine because the removal was too low (not significant at 

EBCT = 10, 20 min) to detect any effects. 

 

 

 

Figure 6.5: Correlation between initial dissolved oxygen concentration and removal at three 

empty bed contact times (EBCTs) for 2-F-DMH. Graphs for other precursors are found in 

Appendix D. 
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6.4.6 NDMA, THM and HAA Formation Potentials 

Formation potentials for NDMA, THMs, and HAAs were measured in the column influent 

and effluent during the preparation phase and test period. In the preparation phase, NDMA was 

below the detection limit; however, formation potential tests revealed the presence of NDMA 

precursors (Table 6.5). Chloramine-reactive precursors generated an NDMA concentration that 

was 10-fold higher than ozone-reactive precursors. There was no removal of chloramine-reactive 

precursors across column 3, but there was a slight removal (26.8%) of ozone-reactive precursors. 

Results for the THM/HAA-FP test indicated the presence of a significant amount of precursors, 

though the reported values are not indicative of the concentrations that would form by 

application of a typical chlorine disinfection dose. The acclimated biofilters demonstrated some 

removal of THM and HAA precursors as shown by 21.6% and 17.6% decreases in THM-FP and 

HAA-FP, respectively. It should be noted that NDMA, THM and HAA formation potential 

results are for a single sample on one column during the preparation phase and variability during 

the ten days is unknown. Biomass growth, and accordingly removal, was likely inhibited by the 

low phosphorus concentration in the wastewater. 

Ranitidine was measured in the tertiary-treated wastewater (0.0065 μM). Using a molar yield 

of 90% (Shen and Andrews 2011), it could account for 433 ng/L NDMA or > 100% of the CLM-

UFC concentration, meaning this single precursor might account for all of the chloramine-

derived NDMA formation potential. However, it is important to consider that molar yields are 

established during laboratory tests in a clean matrix and without interfering constituents. In the 

presence of other organics, the effective molar yield is probably lower, but ranitidine may be the 

main precursor responsible for NDMA formation with chloramines in the unspiked tertiary-

treated wastewater. 
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Slight removal of the DBPs and their precursors was observed during the test period for 

column 3. Total THM formation potential across the column was unchanged on Day 4 and 

decreased by 5% on Day 11 (Figure 6.6). Total HAA formation potential showed similarly low 

removal of precursors; removal decreased by 3% and 4% on Day 4 and Day 11, respectively 

(Figure 6.7). Compared to the preparation phase, THM and HAA formation potential removal 

was lower. This can be attributed at least partially to lower initial DO during the test period 

(correlations: HAA-FP R
2
 = 0.751; THM-FP R

2
 = 0.743). NDMA was marginally removed 

during the test period (Day 4: 4 ng/L increase; Day 11: 11 ng/L decrease or 34%; Day 14:         

3.5 ng/L decrease or 27%). NDMA was not detected in the feedwater prior to adding the 

precursors. This indicates that the precursor stock solutions have trace NDMA contamination, 

which has been observed previously (Marti et al. 2015), or that precursors were transformed 

within the feedwater tank. If transformation did occur, the yield was very low (maximum 

0.006% assuming NDMA derived from a single precursor). Combined NDMA precursor 

removal was unsuccessfully measured through ozone and chloramine formation potential tests. 

The concentrations did not fall within the calibration ranges, and sample volumes were not 

sufficient for further extraction and analysis. Values were not determined for all samples (Table 

6.10); nonetheless, it was observed that significant chloramine- and ozone-reactive NDMA 

precursors were present in the effluent after biofiltration. This agrees with the results for 

incomplete precursor removal. 

Removal of NDMA, THM and HAA precursors through biofiltration has been shown 

previously. Farré et al. (2011) found that BAC reduced NDMA chloramine formation potential 

by > 85%, and several chloramine-reactive NDMA precursors (doxylamine, roxithromycin, 

tramadol, venlafaxine) were removed by more than 95% from a secondary wastewater effluent. 
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Removal was much lower in both cases for biological sand filtration, which indicates that 

sorption to activated carbon (especially for the positively charged compounds in question) may 

be a key removal mechanism. THM and HAA precursors were similarly removed at high levels 

(Farre et al. 2011). Another study using GAC-sand and anthracite-sand biofilters with raw 

drinking water demonstrated 6-17% and 12-19% reductions in THM and HAA precursors, 

respectively (Chaiket et al. 2002). These removals are similar to those observed in this study, and 

this is understandable given that this phosphorus-deficient wastewater is more comparable to the 

drinking water than a typical wastewater. Another key difference between the current research 

and reported biofiltration studies with wastewater was that ozone preceded biofiltration, so 

substantial dissolved oxygen and readily biodegradable soluble organics were present. 

Optimization of certain parameters, such as dissolved oxygen and phosphorus, could lead to 

increased removal for DBP precursors. 
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Figure 6.6: Trihalomethane formation potential results for column 3 influent and effluent during 

the preparation phase and test period. Results are shown for bromodichloromethane (BDCM), 

chlorodibromomethane (CDBM), chloroform (CLFM), and bromoform (BRFM). 

 

  

Figure 6.7: Haloacetic acid formation potential results for column 3 influent and effluent during 

the preparation phase and test period. Results are shown for bromoacetic acid (BAA), 

chloroacetic acid (CAA), dibromoacetic acid (DBAA), dichloroacetic acid (DCAA), and 

trichloroacetic acid (TCAA). 
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Table 6.10: Concentrations for NDMA and NDMA formation potential tests in column 3 influent 

and effluent on three days during the test period. 

 
Concentration (ng/L as NDMA) 

 Day 4 Day 11 Day 14 

Analysis Influent Effluent Influent Effluent Influent Effluent 

NDMA 43 47 32 21 13 9.45  0.07 

O3-FP < 25,000 > 2,500 < 25,000 > 2,500 < 25,000 > 2,500 

CLM-UFC < 25,000 860  57 < 25,000 770 < 25,000 1100 

Analyses: NDMA = NDMA present in the sample without any additional treatment; O3-FP = 

NDMA analysis after ozonation; CLM-UFC = NDMA analysis after chloramination at uniform 

formation conditions.   

 

 

6.4.7 Implications for Water Reuse 

Biofiltration can be a useful treatment process for water reuse. In combination with pre-

ozonation, biofiltration can remove substantial organic carbon and reduce many trace organics to 

below detection levels (Farre et al. 2011; Gerrity et al. 2011; Gerrity et al. 2014; Reaume et al. 

2015; Reungoat et al. 2011; Reungoat et al. 2012). Ozone-BAC (O3-BAC) is a promising 

treatment strategy for reducing NDMA formation and has been shown to remove more than 50% 

of precursors contributing to NDMA chloramine formation potential (Gerrity et al. 2014; Liao et 

al. 2015). One caveat for O3-BAC is the presence of ozone-reactive NDMA precursors. In this 

case, an alternative option is pre-ozonation at a low ozone dose, followed by BAC and a second 

ozonation at a high ozone dose. An Australian water reclamation plant with this configuration 

has demonstrated minimal NDMA formation with pre-ozonation and high NDMA precursor 

removal (Farre et al. 2011). Another alternative would be to reverse the order to BAC-O3 in 

order to remove the ozone-reactive precursors with biofiltration prior to ozonation. However, 

some of the benefits of the O3-BAC would be lost. Ozonation increases the amount of 
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assimilable organic carbon, which is removed by BAC, and ozonation provides “free” dissolved 

oxygen for biofiltration. Bench-scale or pilot-scale testing would be necessary to determine if 

BAC-O3 is more favorable despite the loss in benefits. 

Optimization is necessary to removed targeted compounds. As discussed already, media, pH, 

nutrient availability, initial concentration of the contaminant, temperature, and dissolved oxygen 

all affect removal. For treatment plants that exhibit large seasonal changes (e.g., hot/cold 

temperatures, nutrient loads caused by fertilizer runoff), biofilters may require constant fine-

tuning. Once parameters are optimized, then the challenge becomes maintaining the 

performance. Biofiltration appears to be reliable (i.e., performs well during normal operation) 

and robust (i.e., low likelihood of failure), but may be deficient in terms of resiliency (i.e., ability 

to recover from problems). Biofilters should be in operation continuously and cannot easily be 

stopped and restarted after prolonged shutdown (Jang et al. 2006).   

 

6.5 Conclusion 

This study provides information on NDMA precursor removal during non-optimized 

biofiltration with tertiary-treated wastewater. The compounds were chosen as model NDMA 

precursors in predicting removal during biofiltration and include three ozone-reactive NDMA 

precursors (daminozide – hydrazine, TMDS – semicarbazide, 2-F-DMH – hydrazone) and one 

chloramine-reactive precursor (ranitidine – dimethylamine). Aerobic biodegradation was 

restricted by low dissolved oxygen and phosphorus concentrations, which resulted in low TOC 

and COD removal and biofiltration performance was more comparable to drinking water 

biofilters than treated wastewater biofilters. The investigation resulted in the following findings:  
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 Precursor biodegradability varied and decreased in the order of daminozide >> 2-F-DMH 

~ TMDS > ranitidine. 

 A batch sorption test revealed no adsorption to fresh anthracite for 2-F-DMH and 

moderate adsorption for TMDS and ranitidine.  

 Removal by biofiltration was correlated to initial dissolved oxygen concentration for 2-F-

DMH and TMDS.  

 TMDS removal increased with greater EBCT, but there was no significant difference 

with EBCT for the other precursors. The effects of contact time could not be observed 

because daminozide removal was too fast and ranitidine removal was too slow within the 

EBCTs investigated. 

 Daminozide was highly biodegradable even in conditions with limited dissolved oxygen 

and phosphorus concentrations. 

 2-F-DMH may be removed by biodegradation and sorption to biofilm, since it did not 

adsorb to the anthracite.  

 TMDS removal may be a combination of sorption to the media, biodegradation, and 

sorption to biofilm; however, the removal mechanisms cannot be confirmed. 

 Ranitidine is poorly removed with anthracite biofiltration, but can be mitigated by other 

means (e.g., ozonation, photolysis). 

 All four precursors were removed by chlorination above 2 mg/L as Cl2. 

 Biofiltration could likely provide simultaneous removal of NDMA, THM and HAA 

precursors; however, optimization is necessary to improve removal. 
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CHAPTER 7  

CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS 

7.1 Conclusions 

Three issues regarding N-nitrosodimethylamine (NDMA) formation and mitigation were 

addressed in this research. All three issues are relevant to the further treatment of wastewater 

effluents for reuse applications. In Issue One, model precursors for NDMA formation with ozone 

were identified and parameters affecting NDMA formation were investigated. It was 

hypothesized that hydrazones and carbamates with a dimethylamine component would react with 

ozone to form NDMA in the same manner as known NDMA precursors with hydrazine, 

semicarbazide and sulfamide moieties. The following findings and conclusions can be reported 

for the research in investigating Issue One: 

1a)  Hydrazones and carbamates were confirmed as ozone-reactive NDMA precursors. Two 

of each class were identified as model precursors. 

1b) Bromide enhanced NDMA formation for three NDMA precursors: dimethylsulfamide 

(DMS), unsymmetrical dimethylhydrazine (UDMH) and acetone dimethylhydrazone. 

Other compounds were not affected by the presence of bromide. 

1c)  Ozone-reactive NDMA precursors are distinctly different from chloramine-reactive 

NDMA precursors. Ozone-reactive NDMA precursors have structures resembling 

(H3C)2N-N-R or (H3C)2N-L-N-R, where L is a good leaving group (e.g., –SO2, –CO2), 

and they have low molar yields (< 3%) for NDMA formation with chloramines. 

Chloramine-reactive precursors have a tertiary or quaternary dimethylamine moiety and 

have low molar yields (< 0.1 %) for NDMA formation with ozone. 
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1d) Transformation products from the ozonation of UDMH and acetone dimethylhydrazone 

may be chloramine-reactive NDMA precursors. 

1e) Molecular ozone was confirmed as the main oxidant species responsible for NDMA 

formation for the model precursors.  

1f) Hydroxyl radical scavenging and a greater ozone dose led to increased NDMA 

formation for the model precursors. 

1g) Higher NDMA formation was observed in treated wastewater compared to ultrapure 

water for several precursors. Treated wastewater may contain constituents that are not 

removed during treatment and can promote NDMA formation. 

Overall, the results from this research add to the general understanding of how NDMA is 

formed. The investigation identified compounds that are ozone-reactive NDMA precursors and 

the results confirm that molecular ozone is necessary for NDMA formation for all the model 

precursors identified. However, the formation mechanisms are not necessarily the same because 

some precursors exhibit enhanced NDMA formation when bromide is present or hydroxyl 

radicals are removed.   

Issue Two examined pre-chlorination as a mitigation strategy for NDMA formation. It was 

hypothesized that chlorine would react with ozone-reactive NDMA precursors and inactivate 

them so that subsequent ozonation will result in reduced NDMA formation. The following 

conclusions were drawn from the results obtained in investigating Issue Two: 

2a) Out of the seven tested disinfection schemes for secondary wastewater effluent, the top 

two treatment schemes resulting in the lowest total disinfection byproduct (DBP) 

formation were ozonation and ozonation-chloramination. Treated wastewaters are 

highly variable and some wastewater characteristics (e.g. high ammonia, high ozone-
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reactive NDMA precursor concentration) could result in a different optimal treatment 

scheme in order to achieve the lowest total amount of DBPs. 

2b) Although the mechanism was not identified, there is strong evidence that pre-

chlorination inactivates ozone-reactive NDMA precursors. 

2c) Pre-chlorination was very effective in reducing NDMA formation for both chloramine- 

and ozone-reactive NDMA precursors, but it caused formation of trihalomethanes 

(THMs) and haloacetic acids (HAAs), resulting in concentrations that exceeded 

drinking water regulations. THM and HAA precursors can be reduced via pretreatment 

(i.e., enhanced coagulation), which would make pre-chlorination a more favorable 

option for inactivating NDMA precursors. 

2d) Ozonation had no impact on the formation or reduction of THMs or HAAs.  

2e) Ozonation caused direct NDMA formation, but it also reduced NDMA formation in the 

case of post-chloramination. 

On the whole, it was shown that each disinfectant (i.e., chlorine, ozone or chloramine) forms 

specific DBPs, but also provides control against other DBP formation. Disinfection treatment 

schemes using ozone are very effective in mitigating NDMA, THM and HAA formation, as long 

as ozone-reactive NDMA precursors are not present. When those precursors are present, pre-

chlorination can successfully reduce NDMA formation. Most importantly, optimal disinfection 

treatment schemes depend on the characteristics of the particular wastewater being treated. A 

single treatment scheme will not be superior in all situations. 

Issue Three examined the removal of specific NDMA precursors through biofiltration using 

treated wastewater effluent as the aqueous matrix. It was hypothesized that daminozide and 2-

furaldehyde dimethylhydrazone (2-F-DMH) would be well removed by biofiltration, while 
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ranitidine and 1,1,1’,1’-Tetramethyl-4,4’-(methylenedi-p-phenylene)disemicarbazide (TMDS) 

would be poorly removed by biofiltration. The following conclusions were drawn from the 

results obtained in investigating Issue Three: 

3a) Precursor biodegradability varied and decreased in the order of daminozide >> 2-F-

DMH ~ TMDS > ranitidine. 

3b) A batch sorption test revealed no adsorption to fresh anthracite for 2-F-DMH and 

moderate adsorption for TMDS and ranitidine.  

3c) Removal by biofiltration was correlated to initial dissolved oxygen concentration for 2-

F-DMH and TMDS. 

3d) TMDS removal increased with greater EBCT, but there was no significant difference 

with EBCT for the other precursors. The effects of contact time could not be observed 

because daminozide removal was too fast and ranitidine removal was too slow within 

the EBCTs investigated. 

3e) Daminozide was highly biodegradable even in conditions with limited dissolved 

oxygen and phosphorus concentrations. 

3f) 2-F-DMH may be removed by biodegradation and sorption to biofilm, since it did not 

adsorb to the anthracite. TMDS removal may be a combination of sorption to the 

media, biodegradation, and sorption to biofilm; however, the removal mechanisms 

cannot be confirmed.  

3g) Ranitidine is poorly removed by anthracite biofiltration, but can be mitigated by other 

means (e.g., ozonation, photolysis). 

3h) All four precursors (daminozide, 2-F-DMH, TMDS, ranitidine) were removed by 

chlorination. 
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3i) Biofiltration could likely provide simultaneous removal of NDMA, THM and HAA 

precursors; however, optimization is necessary to improve removal. 

 

7.2 Implications of Findings to Water Reuse 

The results from this research have implications for water reuse, especially regarding 

advanced water treatment for potable reuse applications: 

I-1) Ozone dose and placement of ozonation within the treatment train can strongly affect 

NDMA formation. Treatment plants operating at high ozone doses for color removal or 

chemical contaminant removal in early stages of treatment could experience much 

greater NDMA formation compared to treatment plants using low ozone doses for final 

disinfection. Source waters, whether surface water, groundwater or treated wastewater 

effluent, contain different amounts of NDMA precursors and the ozone dose needs to 

be optimized for individual treatment plants. Consequently, one should consider both 

the dose and location within the treatment train when determining an appropriate ozone 

application. 

I-2) Ozone provides many benefits for advanced water treatment: (1) an advanced oxidation 

process that destroys a wide variety of trace organics, (2) effective disinfection at low 

exposures, (3) reduced membrane fouling without membrane degradation, (4) color and 

odor removal, and (5) reduced THM and HAA formation compared to chlorine or 

chloramines. When a disinfectant residual is required, chloramination can safely be 

applied after ozonation with minimal NDMA or THM formation. However, when 

substantial ozone-reactive NDMA precursors are present, pre-chlorination can be 

applied to prevent NDMA formation with ozone, as demonstrated in this research. 
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Chlorination will increase THMs and HAAs, but other methods for NDMA precursor 

removal, such as carbon adsorption, photolysis, membranes or reverse osmosis, might 

cost more. Enhanced coagulation prior to chlorination could remove THM and HAA 

precursors, making it possible to minimize THM, HAA, and NDMA formation, while 

attaining all the benefits of ozonation. 

I-3) Advanced water treatment plants frequently receive treated wastewater from another 

facility and that facility may use a chemical oxidant prior to releasing the treated 

wastewater. In this case, the agencies may need to collaborate and reevaluate the 

disinfection treatment scheme used by the wastewater treatment facility in order to 

integrate the treatment processes and prevent NDMA and other DBP formation while 

still meeting both parties’ needs. 

I-4) Non-optimized biofiltration with anthracite provides limited removal of NDMA 

precursors. Optimized biofiltration using activated carbon instead of anthracite could 

provide greater NDMA precursor removal. While it is more common today to place 

ozone ahead of biofiltration, there could be an advantage to reversing the order; 

removal of NDMA precursors by biofiltration prior to ozonation may reduce NDMA 

formation. 

 

7.3 Recommendations for Future Research 

As a result of investigating these three issues for NDMA formation and mitigation, new 

possibilities for research projects and follow-up tasks were identified. The following 

recommendations are made for future research: 
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 Understanding increased NDMA formation in wastewater: Although hydroxyl radical 

quenching may be the cause of increased NDMA formation for precursors in a 

wastewater matrix, there is the potential for other wastewater constituents (besides 

bromide) to catalyze NDMA formation mechanisms. One possibility is the presence of 

metal ions, such as Cu
2+

, which have been shown to assist in degradation of daminozide 

to UDMH (Huang and Stone 2003) and result in NDMA formation from UDMH (Mach 

and Baumgartner 1979). Another potential catalytic agent is iodide, which may act in the 

same manner as bromide. Although iodide concentrations may be low in drinking water 

or treated wastewater, iodide is used for point-of-use (POU) treatment by campers, 

military personnel and in developing countries (Smith et al. 2010); iodide is present at 

significant concentrations with POU and could pose a serious problem if it catalyzes 

NDMA formation. 

 Mitigation of NDMA precursors with persulfate: A more recent advanced oxidation 

approach is the use of sulfate radicals generated from persulfate. Like hydroxyl radicals, 

sulfate radicals react with a wide variety of organic molecules. This advanced oxidation 

process could provide an alternative method for inactivating NDMA precursors and with 

reduced DBP formation compared to pre-chlorination (Xie et al. 2015). 

 Chlorine oxidation products for ozone-reactive NDMA precursors: Pre-chlorination was 

shown to effectively inactivate ozone-reactive NDMA precursors, but the mechanism is 

not yet known. This could be accomplished by identifying oxidation products with liquid 

chromatography tandem mass spectrometry. One study already identified oxidation 

products for two chloramine-reactive NDMA precursors, doxylamine and ranitidine 

(Wang et al. 2015). 
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 Optimal chlorine exposure for eliminating ozone-reactive NDMA precursors: The current 

research used a single chlorine exposure to investigate reduction in NDMA formation. It 

would be valuable to determine the minimum chlorine exposure needed to inactivate 

ozone-reactive NDMA precursors. THM and HAA formation should be measured as well 

to establish if the regulated levels are exceeded. 

 Toxicity of transformation products for NDMA precursors: Transformation products can 

be just as toxic as or more toxic than the parent compound, yet only the parent compound 

is typically measured. Quantifying the toxicity of oxidation products, in single and multi-

step disinfection schemes, would afford a better understanding of whether or not 

inactivating NDMA precursors actually reduces the carcinogenic potential of the water. 

 Optimization of biofiltration to remove NDMA precursors: NDMA precursor removal 

during biofiltration could be improved through optimization. For example, increased 

dissolved oxygen may enhance removal for some precursors. Other alternatives to 

consider are an upflow instead of downflow process and replacing anthracite with 

activated carbon or a mixed-media. 

 Alternative pilot systems for NDMA mitigation: Biofiltration could be implemented 

ahead of ozonation to remove NDMA precursors. Alternatively, biofiltration could be 

inserted between ozonation steps to examine the effect on ozone-reactive NDMA 

precursors. A full-scale system utilizing this approach showed significant reduction in 

chloramine NDMA formation potential and THM/HAA reduction (Farre et al. 2011). 
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APPENDIX A     STRUCTURES AND MOLAR YIELDS FOR NDMA PRECURSORS 

Table A.1: Structures of potential ozone-reactive NDMA precursors investigated in this dissertation (underlined) and other studies. 

 

 

 

dimethylamine          1,1-dimethylamine  acetone dimethylhydrazone           2-Furaldehyde 2,2-dimethylhydrazone 

     (DMA)                                   (UDMH)                                      (Acetone DMH)                                             (2-F-DMH) 

 

 

 

 

            Dacarbazine                           Daminozide                          4,4′-hexamethylenebis         1,1,1’,1’-Tetramethyl-4,4’- 

   (1,1-dimethylsemicarbazide)      (methylenedi-p-phenylene) 

     (HDMS)       disemicarbazide (TMDS) 

 

 

 

 

 

 

 

N-1-(3-{[(2,2-dimethylhydrazino)carbonyl]                    N-1-(4-methylphenyl)-2,2-                                                                

amino}-4-methylphenyl)-2,2-    dimethylhydrazine-1-carbothioamide 

dimethylhydrazine-1-carboxamide         (DMTC-phenyl)    Atazanavir 

                     (DMSC)         
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Cont. Table A.1: Structures of potential ozone-reactive NDMA precursors investigated in this dissertation (underlined) and other 

studies. 

 

 

 

        

 

 

 

          Streptozocin                     N-{[(dimethylamino)carbonyl]oxy}-2-phenylacetamide       N'-{[(dimethylamino)carbonyl]oxy}-4- 

(DMC-phenyl)                       (1,3-dithiolan-2-yl)benzenecarboximidamide 

                                                                          (DMC-dithio) 

 

  

 

  

 

 

 

Dimethylsulfamide                          Tolylfluanid               Dimethyl-N’-(4-methylphenyl)-sulfamide                3-OH-DMST 

        (DMS)         (DMST) 

 

 

 

 

 

 

            OH-methyl-DMST                          COOH-DMST                                2-OH-DMST                                Methylene Blue 

                                 



 

168 

 

Cont. Table A.1: Structures of potential ozone-reactive NDMA precursors investigated in this dissertation (underlined) and other 

studies. 

 

 

     

 

 

 

 

Dimethylaminobenzene          Dimethyl-p-phenilenediamine                   Methyl Orange                                       Methyl Violet B                                                                                             

           (DMAB)      (DMPD)                   

 

 

 

 

 

 

 

 

 

                    Auramine                                                Brilliant Green                     Dimethylformamide              poly(diallyldimethyl- 

        ammoniumchloride)   

polyDADMAC                                                            

                                         

 

 

 

  Zinc dimethyldithiocarbamate                                  Ranitidine                                 N-nitrososarcosine             

         (DMDTC or Ziram)                                                                                          
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Table A.2: NDMA precursors and molar yields for NDMA formation with different oxidants in different water matrices. 

Compound Name or Abbreviation Molar Yield (%) 

Chloramination, 

ultrapure water 

[Br
-
] 

Molar Yield 

(%) 

Ozonation, 

ultrapure water 

Molar Yield (%) 

Ozonation, 

ultrapure water + 

[Br
-
] 

Molar Yield 

(%) 

Ozonation, 

drinking water  

Molar Yield (%) 

Ozonation, 

wastewater [Br
-
] 

Dimethylamine 7.5
a
 

< 1
g  

1.32
l 

< 0.3
a
 

< 0.4
d
 

0.011
h 

< 0.3
a 
[1250 ppb] < 0.05

b 
< 0.3

a
 

UDMH < 0.3
a
 16

a
 34

a 
[1250 ppb] 80

b
 54

a
 

Acetone DMH 0.3
a 

22
a
 35

a
 [1250 ppb] -- 53

a
 

2-F-DMH 2.6
a
 61

a
 55

a
 [1250 ppb] -- 66

a
 

Dacarbazine < 0.3
a
 < 0.3

a
 < 0.3

a 
[1250 ppb] < 0.05

b
 < 0.3

a
 

Daminozide 0.5
a 

78
a
  69

a 
[1250 ppb] 55

b 
83

a
 

4,4-Hexamethylene bis(1,1-dimethyl 

semicarbazide), HDMS 

N/A
c
 10

c 
-- -- -- 

TMDS 0.7
a
 

N/A
c 

23
a
 

27
c 

19
a 
[1250 ppb] -- 47

a
 

DMSC 1.5
a
 64

a
 60

a
 [1250 ppb] -- 90

a
 

DMTC-phenyl 0.8
a
 12

a
 10

a
 [1250 ppb] -- 14

a
 

Atazanavir < 0.3
a
 < 0.3

a
 < 0.3

a 
[1250 ppb] -- < 0.3

a
 

Streptozocin < 0.3
a
 < 0.3

a
 < 0.3

a 
[1250 ppb] -- < 0.3

a 

N-nitrososarcosine < 0.3
a
 < 0.3

a
 < 0.3

a 
[1250 ppb] -- < 0.3

a 

Ranitidine 89.9
n 

5x10
-2 a

 -- 94.2
n 

-- 

DMC-phenyl 1.4
a
 15

a
 13

a
 [1250 ppb] -- 14

a
 

DMC-dithio 0.8
a
 3.8

a
 3

a
 [1250 ppb] -- 2

a
 

DMS < 0.3
a 

< 0.3
a 
[250 ppb] 

< 0.3
a
 

 

20
a 
[1250 ppb] 

54
i
 [15-20 ppb] 

52
b
 < 0.3

a
 

2.5
a
 [250 ppb] 

Tolylfluanid -- -- -- 9
b 

-- 

N,N-dimethyl-N’-p-tolylsulfamide,  DMST -- -- -- 15
b 

-- 

3-OH-DMST -- -- -- 25
b
 -- 

OH-methyl-DMST -- -- -- 22
b 

-- 

COOH-DMST -- -- -- 18
b 

-- 

2-OH-DMST -- -- -- 27
b 

-- 
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Cont. Table A.2: NDMA precursors and molar yields for NDMA formation with different oxidants in different water matrices. 
 

Compound Name or Abbreviation Molar Yield (%) 

Chloramination, 

ultrapure water 

[Br
-
] 

Molar Yield (%) 

Ozonation, 

ultrapure water 

Molar Yield (%) 

Ozonation, 

ultrapure water + 

[Br
-
] 

Molar Yield 

(%) 

Ozonation, 

drinking water  

Molar Yield (%) 

Ozonation, 

wastewater [Br
-
] 

Methylene blue -- 8.3x10
-3 f 

-- -- -- 

N,N-dimethyl aminobenzene, DMAB -- 6.4x10
-3 f

 -- -- -- 

N,N-dimethyl-p-phenylenediamine, DMPD -- 4.3x10
-2 f

 -- -- -- 

Methyl orange -- 7.2x10
-3 f

 -- -- -- 

Methyl violet B -- 1.2x10
-2 f

 -- -- -- 

Auramine -- 1.3x10
-2 f

 -- -- -- 

Brilliant green -- < 1.0x10
-4 f

 -- -- -- 

N,N-dimethylformamide 6.3x10
-2 m

 3.5x10
-4 f

 -- -- -- 

poly(diallyldimethylammoniumchloride), 

polyDADMAC 
N/A

k 
N/A

j 
-- -- -- 

Dimethyldithio-carbamate, DMDTC < 0.03
a
 

0.008
e 0.008

e
 -- -- -- 

a
This dissertation, 

b
Schmidt and Brauch 2008, 

c
Kosaka et al. 2009, 

d
Andrzejewski et al. 2008, 

e
Padhye et al. 2013, 

f
Oya et al. 2008, 

g
Mitch et al. 2002, 

h
Yang et al. 2009, 

i
von Gunten et al. 2010, 

j
Padhye et al. 2011, 

k
Park et al. 2009, 

l
Bond and Templeton 2011, 

m
Mitch and Sedlak 2004; 

n
Shen and Andrews 2011; --: not tested, N/A: molar yield not available 
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APPENDIX B 

RAW DATA FOR NDMA FORMATION AND CHLORINE DEMAND CURVES FOR 

ISSUE TWO 

This appendix contains raw data and graphs not presented in the main text for NDMA 

formation after chlorination, ozonation, and chloramination, as well as and chlorine demand 

curves, for six sites (A-F) featured in Chapter 5. 

B.1. Raw Data 

Table B.1: Nitrosamine concentrations for Site A after various disinfection treatment schemes. 

Test NDMA NMEA NDEA NDPA NDBA NPIP NPYR NMOR NDPhA 

(MRL) (1) (0.2) (2.6) (0.2) (0.2) (0.2) (0.2) (0.2) (0.5) 

Blank 1.4 <MRL <MRL <MRL 0.7 <MRL <MRL 0.2 1.4 

WW 5.0 <MRL <MRL <MRL <MRL <MRL <MRL 4.7 3.0 

WW dup 5.7 <MRL <MRL 2.2 <MRL 0.4 0.3 4.2 5.3 

Cl2 5.3 0.21 <MRL <MRL 9.0 <MRL <MRL <MRL 6.6 

O3 0.1 6.6 0.94 <MRL <MRL <MRL <MRL <MRL 6.0 4.0 

Cl2-O3 0.1 22.7 0.59 <MRL <MRL 13.8 0.74 <MRL <MRL 6.2 

Cl2-O3 0.1 dup  26.6 0.56 <MRL <MRL 11.8 0.44 <MRL <MRL 7.7 

O3 0.5 17.3 3.38 <MRL <MRL <MRL <MRL <MRL <MRL 4.0 

Cl2-O3 0.5 16.9 0.41 <MRL <MRL 18.8 0.47 <MRL 13.8 6.7 

CLM 339.4 1.39 <MRL <MRL 9.2 <MRL 20.2 27.1 19.6 

O3-CLM 0.1 284.3 2.20 <MRL <MRL 14 <MRL 17.6 29.7 21.6 

Cl2-O3-CLM 0.1 19.3 0.52 <MRL <MRL <MRL <MRL <MRL 47.6 13.1 

O3-CLM 0.5 48.5 4.65 <MRL <MRL 13.7 <MRL 7.1 32.1 13 

Cl2-O3-CLM 0.5 16.2 0.45 <MRL <MRL 16.5 <MRL 3.8 <MRL 8.8 

Cl2-O3-CLM 0.5 

dup 

14.5 0.40 <MRL <MRL 15.9 <MRL 3.1 <MRL 9.6 

MRL = method reporting limit; NDMA = N-Nitrosodimethylamine; NDEA = N-Nitrosodiethylamine; 

NDPA = N-Nitrosodipropylamine; NDBA = N-Nitrosodibutylamine; NPIP = N-Nitrosopiperidine; NPYR 

= N-Nitrosopyrrolidine; NMOR = N-Nitrosomorpholine; NDPhA = N-Nitrosodiphenylamine 
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Figure B.1: NDMA concentration for site A after chlorination and ozonation at two O3:TOC 

ratios.  

 

 

 

 

 

Figure B.2: Reduction in NDMA formation potential for site A with a) O3:TOC = 0.1 and b) 

O3:TOC = 0.5. 
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Table B.2: Nitrosamine concentrations for Site B after various disinfection treatment schemes. 

Test NDMA NMEA NDEA NDPA NDBA NPIP NPYR NMOR NDPhA 

(MRL) (1) (0.2) (2.6) (0.2) (0.2) (0.2) (0.2) (0.2) (0.5) 

Blank 1.1 <MRL 2.7 <MRL 0.3 <MRL <MRL <MRL 2.5 

WW 3.4 <MRL <MRL <MRL 9.5 <MRL <MRL <MRL 1.5 

Cl2 5.1 <MRL <MRL <MRL <MRL <MRL <MRL 6.5 1.5 

Cl2 dup 4.1 <MRL <MRL <MRL 6.2 <MRL <MRL 5.8 3.3 

O3 0.1 6.0 <MRL 3.3 <MRL 8.2 <MRL <MRL 2.5 1.6 

Cl2-O3 0.1 19.5 <MRL <MRL <MRL 5.8 0.86 <MRL 5.5 3.4 

O3 0.5  13.1 0.55 4.3 <MRL 5.3 0.42 0.8 12.4 1.7 

Cl2-O3 0.5 29.3 0.26 4.0 <MRL 3.9 1.04 2.4 9.8 2.9 

Cl2-O3 0.5 dup 27.7 0.28 3.2 <MRL 3.3 1.06 2.0 9.7 2.4 

(MRL) (4) (4) (2) (1) (2) (1) (2) (1.6) (0.5) 

CLM 428.9 <MRL 3.1 <MRL <MRL 2.62 12.4 5.3 N/A 

O3-CLM 0.1 394.5 <MRL 5.0 <MRL 2.4 3.21 13.5 5.5 N/A 

O3-CLM 0.1 dup 307.2 <MRL 3.2 <MRL <MRL 3.16 11.4 5.8 N/A 

Cl2-O3-CLM 0.1 24.1 <MRL 2.3 <MRL 2.3 2.18 4.7 8.3 N/A 

O3-CLM 0.5 52.0 <MRL 3.3 <MRL 2.6 <MRL 3.1 6.1 N/A 

Cl2-O3-CLM 0.5 28.2 <MRL 3.0 <MRL 4.5 <MRL 2.4 7.8 N/A 

WW <MRL <MRL <MRL <MRL <MRL <MRL <MRL <MRL N/A 

Blank <MRL <MRL <MRL <MRL <MRL <MRL <MRL <MRL N/A 

N/A = not available; NDPhA degraded in GC and not quantifiable 

MRL = method reporting limit; NDMA = N-Nitrosodimethylamine; NDEA = N-Nitrosodiethylamine; 

NDPA = N-Nitrosodipropylamine; NDBA = N-Nitrosodibutylamine; NPIP = N-Nitrosopiperidine; NPYR 

= N-Nitrosopyrrolidine; NMOR = N-Nitrosomorpholine; NDPhA = N-Nitrosodiphenylamine 

 

Figure B.3: NDMA concentration for site B after chlorination and ozonation at two O3:TOC 

ratios.  
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Figure B.4: Reduction in NDMA formation potential for site B with a) O3:TOC = 0.1 and b) 

O3:TOC = 0.5. 

 

Table B.3: Nitrosamine concentrations for Site C after various disinfection treatment schemes. 

Test NDMA NMEA NDEA NDPA NDBA NPIP NPYR NMOR NDPhA 

(MRL) (4) (4) (2.5) (1) (2) (1) (2) (1.6)  

Blank <MRL <MRL <MRL <MRL <MRL <MRL <MRL <MRL N/A 

WW 16.1 <MRL 4.6 <MRL <MRL <MRL <MRL 143.6 N/A 

Cl2 17.2 <MRL 3.6 <MRL <MRL <MRL <MRL 129.6 N/A 

O3 0.1 17.0 <MRL 3.6 <MRL <MRL <MRL <MRL 129.5 N/A 

O3 0.1 dup 17.0 <MRL 3.7 <MRL <MRL <MRL <MRL 132.8 N/A 

Cl2-O3 0.1 21.8 <MRL 5.8 <MRL 3.7 <MRL <MRL 126.1 N/A 

O3 0.5  25.7 <MRL 2.7 <MRL <MRL <MRL <MRL 109.7 N/A 

Cl2-O3 0.5 21.8 <MRL 9.1 <MRL 3.9 <MRL <MRL 113.5 N/A 

CLM 630.3 5.31 15.1 <MRL <MRL 9.57 58.8 198.2 N/A 

O3-CLM 0.1 499.3 4.90 12.0 <MRL <MRL 7.51 57.2 171.7 N/A 

Cl2-O3-CLM 0.1 41.8 <MRL 4.9 <MRL <MRL <MRL <MRL 177.6 N/A 

Cl2-O3-CLM 0.1 

dup 

36.6 <MRL 5.8 <MRL 2.1 <MRL <MRL 181.2 N/A 

O3-CLM 0.5 232.4 <MRL 8.7 <MRL <MRL 4.02 26.1 164.1 N/A 

O3-CLM 0.5 dup 177.6 <MRL 8.1 <MRL <MRL 5.37 23.1 164.5 N/A 

Cl2-O3-CLM 0.5 35.8 <MRL 4.9 <MRL 4.2 <MRL <MRL 158.4 N/A 

N/A = not available; NDPhA degraded in GC and not quantifiable 

MRL = method reporting limit; NDMA = N-Nitrosodimethylamine; NDEA = N-Nitrosodiethylamine; 

NDPA = N-Nitrosodipropylamine; NDBA = N-Nitrosodibutylamine; NPIP = N-Nitrosopiperidine; NPYR 

= N-Nitrosopyrrolidine; NMOR = N-Nitrosomorpholine; NDPhA = N-Nitrosodiphenylamine 
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Figure B.5: NDMA concentration for site C after chlorination and ozonation at two O3:TOC 

ratios.  

 

 

 

Figure B.6: Reduction in NDMA formation potential for site C with a) O3:TOC = 0.1 and b) 

O3:TOC = 0.5. 
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B.2. Chlorine Demand Data and Graphs 

Table B.4: Free and total chlorine measured during chlorine demand test for Site A. 

Chlorine Spike 

(mL) 

Free Chlorine 

(mg/L as Cl2) 

Total Chlorine 

(mg/L as Cl2) 

Total Chlorine 

Added (mg/L as Cl2) 

0.25 0.15 0.95 5 

0.38 0.34 1.44 7.5 

0.50 0.37 1.80 10 

0.75 1.25 2.20 15 

1.00 2.1 2.40 20 

 

 

Figure B.7: Chlorine demand curve for Site A. 

 

Table B.5: Free and total chlorine measured during chlorine demand test for Site B. 

Chlorine Spike 

(mL) 

Free Chlorine 

(mg/L as Cl2) 

Total Chlorine 

(mg/L as Cl2) 

Total Chlorine 

Added (mg/L as Cl2) 

0.15 0.18 4.14 5 

0.23 0.18 6.50 7.5 

0.30 0.16 8.40 10 

0.45 1.98 8.50 15 

0.60 5.88 9.20 20 

0.75 11.1 12.7 25 

0.90 15.8 17.5 30 
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Figure B.8: Chlorine demand curve for Site B. 

 

Table B.6: Free and total chlorine measured during chlorine demand test for Site C. 

Chlorine Spike 

(mL) 

Free Chlorine 

(mg/L as Cl2) 

Total Chlorine 

(mg/L as Cl2) 

Total Chlorine 

Added (mg/L as Cl2) 

0.025 0.14 4.05 5 

0.038 0.29 6.93 7.5 
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Figure B.9: Chlorine demand curve for Site C. 

Table B.7: Free and total chlorine measured during chlorine demand test for Site D. 

Chlorine Spike 

(mL) 

Free Chlorine 

(mg/L as Cl2) 

Total Chlorine 

(mg/L as Cl2) 

Total Chlorine 

Added (mg/L as Cl2) 

0.12 0.29 1.59 3 

0.16 0.20 1.96 4 

0.20 0.25 2.48 5 
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Figure B.10: Chlorine demand curve for Site D. 
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Figure B.11: Chlorine demand curve for Site E. 

 

 

Table B.9: Free and total chlorine measured during chlorine demand test for Site F. 
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Figure B.12: Chlorine demand curve for Site F. 
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APPENDIX C 

CHLORINE AND OZONE DECAY CURVES AND EXPOSURE CALCULATIONS FOR 

ISSUE TWO 

This appendix contains raw data, graphs of decay curves, and calculations of oxidant 

exposure using the trapezoidal rule for chlorination and ozonation of treated wastewater from six 

sites (A-F) featured in Chapter 5. 

 

C.1. Chlorine Decay Curves and Free Chlorine Exposure 

 

 

  

Figure C.1: Chlorine decay curve and calculation of free chlorine exposure for Site A at an initial 

concentration of 20 mg/L as chlorine. 
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Figure C.2: Chlorine decay curve and calculation of free chlorine exposure for Site B at an initial 

concentration of 15 mg/L as chlorine. 

 

 

Figure C.3: Chlorine decay curve and calculation of free chlorine exposure for Site C at an initial 

concentration of 45 mg/L as chlorine. 
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Total mg·min/L 36.5 

Free Chlorine Exposure 

X Y Trap. 

(min) (mg/L) Rule  

0 45 24.9 

1 4.7 8.90 

3 4.2 8.30 

5 4.1 17.9 

10 3.05 14.8 

15 2.85 12.9 

20 2.3 24.0 

30 2.5 33.0 

45 1.9 23.4 

60 1.22   

Total mg·min/L 168.0 
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Figure C.4: Chlorine decay curve and calculation of free chlorine exposure for Site D at an initial 

concentration of 20 mg/L as chlorine. 

 

 

 

Figure C.5: Chlorine decay curve and calculation of free chlorine exposure for Site E at an initial 

concentration of 4 mg/L as chlorine. 
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Figure C.6: Chlorine decay curve and calculation of free chlorine exposure for Site F at an initial 

concentration of 5 mg/L as chlorine. 
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12 1.58 4.50 
15 1.42 6.75 
20 1.28 9.52 
28 1.1 4.36 
32 1.08 5.30 
37 1.04 8.12 
45 0.99 6.76 
52 0.94 7.36 
60 0.9 12.8 
75 0.81 20.5 

101 0.77 14.7 
121 0.7 30.6 
166 0.66 30.1 
213 0.62 16.7 
240 0.62 35.4 
300 0.56 40.1 
375 0.51 

 Total mg·min/L 275.6 
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C.2. Ozone Decay Curves and Ozone Exposure 

 

 

Figure C.7: Ozone decay curve for Site A at O3:TOC ratios of 1.0 and 0.75. 

 

 

Table C.1: Calculation of ozone exposure for Site A at O3:TOC ratios of 1.0 and 0.75. 

 

 

 

 

 

 

 

 

Note: Ozone exposures for O3:TOC ratios of 0.5 and 0.1 were not calculated  

because the ozone residual was zero before the 30 second measurement. 
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Figure C.8: Ozone decay curve for Site B at O3:TOC ratios of 0.1, 0.5,0.75 and 1.0. 

 

 

 

Table C.2: Calculation of ozone exposure for Site B at O3:TOC ratios of 0.5, 0.75, and 1.0. 
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90 0.46 11.3 90 0.19 3.30 90 0.03  

120 0.29 9.90 120 0.03  120   
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Table C.3: Calculation of ozone exposure for Site B at O3:TOC ratios of 0.1 and 0.5 for pre-

chlorinated wastewater. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.9: Ozone decay curve for Site C at O3:TOC ratios of 0.1, 0.5,0.75 and 1.0. 
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Site C, O3:TOC=1.0

Site B, O3:TOC=0.5 w/Cl2 Site B, O3:TOC=0.1 w/Cl2 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

0 3.872 79.7 0 0.583 8.75 
30 1.44 19.4 30 0  
45 1.15 15.0 45   
60 0.85 21.0 60   
90 0.55 11.0 90   

120 0.18   120   

Total mg*sec/L 146.1 Total mg*sec/L 8.75 
Total mg*min/L 2.4 Total mg*min/L 0.15 
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Table C.4: Calculation of ozone exposure for Site C at O3:TOC ratios of 0.5, 0.75, and 1.0. 

 

 

 

 

 

 

 

Figure C.10: Ozone decay curve for Site D at O3:TOC=0.8 for pre-chlorinated and unaltered 

wastewater. 
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X 
(min) 

Y 
(mg/L) 
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Rule 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

0 7.316 119.6 0 5.491 88.2 0 3.72 55.8 

30 0.66 7.28 30 0.39 0.16 30 0  

45 0.31 3.30 45 0.55 12.9 45   

60 0.13 2.70 60 0.02 0.02 60   

90 0.05 1.50 90 0.02 0.02 90   

120 0.05 2.70 120 0  120   

180 0.04 3.00 180   180   

300 0.01 1.20       

540 0        

Total mg*sec/L 141.3 Total mg*sec/L 101.2 Total mg*sec/L 55.8 

Total mg*min/L 2.35 Total mg*min/L 1.69 Total mg*min/L 0.93 
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Table C.5: Calculation of ozone exposure for Site D at O3:TOC=0.8 for pre-chlorinated and 

unaltered wastewater. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.11: Ozone decay curve for Site E at O3:TOC=0.8 for pre-chlorinated and unaltered 

wastewater. 
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(mg/L) 

Trap. 
Rule 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

0 0 0.90 0 0.000 6.30 
30 0.06 0.90 30 0.42 3.98 
45 0.06 0.90 45 0.11 1.43 
60 0.06 1.65 60 0.08 2.55 
90 0.05 1.50 90 0.09 1.80 

120 0.05 2.70 120 0.03 1.80 
180 0.04 1.80 180 0.03 5.40 
240 0.02 2.40 360 0.03  
360 0.02      

Total mg*sec/L 12.8 Total mg*sec/L 23.2 
Total mg*min/L 0.2 Total mg*min/L 0.39 
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Table C.6: Calculation of ozone exposure for Site E at O3:TOC=0.8 for pre-chlorinated and 

unaltered wastewater. 

 

 

 

 

Figure C.12: Ozone decay curve for Site F at O3:TOC=0.8 for pre-chlorinated and unaltered 

wastewater. 
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Trap. 
Rule 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

0 0.000 15.5 0 0.000 31.5 0 0.000 36.2 

30 1.03 14.5 30 2.1 32.0 30 2.41 35.3 

45 0.9 12.5 45 2.17 30.8 45 2.29 32.9 

60 0.77 19.7 60 1.94 53.4 60 2.09 57.8 

90 0.54 13.7 90 1.62 44.6 90 1.76 47.9 

120 0.37 16.2 120 1.35 67.8 120 1.43 70.2 

180 0.17 6.60 180 0.91 45.6 180 0.91 47.4 

240 0.05 2.25 240 0.61 30.3 240 0.67 32.7 

330 0  300 0.4 31.2 300 0.42 33.6 

   420 0.12 7.20 420 0.14 8.40 

   540 0  540 0  

Total mg*sec/L 100.8 Total mg*sec/L 374.4 Total mg*sec/L 402.2 

Total mg*min/L 1.7 Total mg*min/L 6.2 Total mg*min/L 6.7 
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Table C.7: Calculation of ozone exposure for Site F at O3:TOC=0.8 for pre-chlorinated and 

unaltered wastewater. 

 

  

Site F, O3:TOC=0.8 Site F, O3:TOC=0.8 (Duplicate) Site F, O3:TOC=0.8 w/Cl2 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

X 
(min) 

Y 
(mg/L) 

Trap. 
Rule 

0 0 27.3 0 0 30.0 0 0 54.6 

30 1.82 25.9 30 2 27.4 30 3.64 54.0 

45 1.63 22.4 45 1.65 22.5 45 3.56 50.0 

60 1.35 33.9 60 1.35 35.0 60 3.1 86.1 

90 0.91 22.4 90 0.98 24.3 90 2.64 73.1 

120 0.58 24.3 120 0.64 29.1 120 2.23 114.6 

180 0.23 8.70 180 0.33 14.7 180 1.59 82.8 

240 0.06 3.60 240 0.16 7.65 240 1.17 58.8 

360 0   330 0.01   300 0.79 38.1 

      360 0.48 42.6 
      480 0.23 14.9 
      570 0.1 7.20 
      660 0.06 4.05 
      750 0.03 4.50 
      900 0.03   

Total mg*sec/L 168.4 Total mg*sec/L 190.6 Total mg*sec/L 685.2 

Total mg*min/L 2.8 Total mg*min/L 3.2 Total mg*min/L 11.4 



 

193 

 

APPENDIX D 

CORRELATIONS BETWEEN BIOFILTRATION REMOVAL AND DISSOLVED 

OXYGEN FOR ISSUE THREE 

This appendix contains graphs of correlations between NDMA precursor removal and 

dissolved oxygen concentration during biofiltration. 

 

 

Figure D.1: Correlation regression between dissolved oxygen concentration and daminozide 

removal. 

 

Figure D.2: Correlation regression between dissolved oxygen concentration and ranitidine 

removal. 
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Figure D.3: Correlation regression between dissolved oxygen concentration and TMDS removal. 
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