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ABSTRACT 

SOLAR ENERGY STORAGE IN MOLTEN SALT SHELL STRUCTURES 

By Nathan Loyd 

An M.S. Thesis Prepared Under the Direction of 
Dr. Samaan G. Ladkany, PE 

Professor of Civil Engineering 
 
 Molten salts (MS) in the 580°C range could be used to store excess energy from solar power 

stations and possibly from nuclear or coal.  The energy can be stored up to a week in large 

containers at elevated temperature to generate eight hours of electricity to be used at night or during 

peak demand hours.  This helps to reduce the fluctuation experienced at thermal solar power 

stations due to weather conditions.  Our research supported by Office of Naval Research (ONR), 

presents a survey of salts to be used in molten salt technology and the design of large steel and 

hybrid molten salt storage shells.  The physical characteristics of these salts such as density, 

melting temperature, viscosity, electric conductivity, surface tension, thermal capacity and cost are 

discussed.  Cost is extremely important given the large volumes of salt required for energy storage 

at a commercial power station.  Formulas are presented showing the amount of salt needed per 

required megawatts of stored energy depending on the type of salt.  The estimated cost and the 

size of tanks required and the operating temperatures are presented.  Recommendations are made 

regarding the most efficient type of molten salt to use.  Commercial thermal solar power stations 

have been constructed in the US and overseas mainly in Spain for which molten salt is being 

considered.  A field of flat mirrors together with collection towers are presently used in some 

designs and parabolic troughs used in others to produce electricity commercially. 

Two designs of tanks for the storage of excess energy from thermal solar power plants 

using molten salts (MS) at 580°C is presented.  Energy can be stored up to a week in large 
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containers to generate eight hours of electricity for use at night or to reduce weather related 

fluctuation at solar thermal energy plants.  The research presented in this thesis shows detailed 

designs of cylindrical shells for the storage of high temperature molten salts.  One storage shell 

consists of an inner stainless steel layer designed to resist corrosion and an external steel structural 

layer to contain the large pressures resulting from the molten salt with a steel bottom.  The other 

storage shell consists of an inner stainless steel layer and an external reinforced concrete structural 

layer with a steel bottom.  Both cylindrical tanks are 54 feet high and has an 80 foot diameter, with 

the salt level at a height of 42 feet.  Given the heat of the molten salt and the size of the tank, 

designs include a flat shell cover supported on stainless steel columns and a semispherical utility 

access dome at the center.  Considerations are made for the reduction of strength of steel at elevated 

temperatures.  Layers of external insulation materials are used to reduce heat loss in the storage 

shells.  Designs also present a 120 foot diameter posttensioned concrete foundation with 20 feet 

high steel side walls for the storage tank for the containment of molten salts in case of an accident.  

The tanks sit on a layer of sand to allow for thermal expansion. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 BACKGROUND 

 Current energy sources are posing a major problem to society at large.  Many of these 

sources, such as oil and natural gas, exist in only finite quantities and pose major problems to the 

environment.  However, with energy demand at all-time highs, something must be done to break 

the dependence on these fossil fuels that are fulfilling the bulk of the demand worldwide.  

Alternative energy is the way to continue to meet Earth’s energy demands while minimizing the 

risk to the environment. 

 The purpose of this project is to examine the use of molten solar salts to be used for large 

scale energy storage.  The project is being funded by the Office of Naval Research (ONR) with 

the intent that these molten solar salt systems will be used by the United States Navy to increase 

their energy independence on military bases and ships. 

 

1.2 PROJECT SUMMARY 

 The project is divided into three main tasks.  Tasks I and II are the primary focus of this 

thesis as UNLV is responsible for the completion of these two tasks.  Task III is being performed 

by the College of William and Mary in Virginia. 

 Task I focuses on the examination of the thermophysical properties of molten salts.  This 

task focuses on surveying a variety of molten salt compounds and investigation of their various 

properties, including density, heat capacity and conductance, and cost.  The ideal molten salt mix 



2 

is one that has a low melting temperature, a low cost and high availability, a heat capacity, a high 

thermal conductivity, a high temperature limit, and a low corrosion rate. 

 Task II focuses on the examination of various structural shapes for molten salt storage 

tanks.  This task is determined with investigating the current structural shape, cylindrical shells, 

with other structural alternatives such as spherical shells and drop shells. 

 Task III focuses on the corrosion effects of molten salts.  This task is focused on 

investigating the corrosion rates of various molten salts through literature review and laboratory 

testing. 

 

1.3 MOLTEN SALT STORAGE 

 In this paper, “Overview of Molten Salt Storage Systems and Material Development for 

Solar Thermal Power Plants”, the authors outline the various systems and methods available for 

using molten salts for storing solar energy and converting it into electricity (Bauer et al. 2012).  

Bauer et al. (2012) explains that solar thermal plants are an important technology as an alternative 

energy source.  The use of molten salts allows for the use of detachable power from these sources 

(Bauer et al. 2012).  This is based on the fact that the benefits of molten salts include high heat 

capacity, a relatively high thermal stability, low vapor pressure, and a relatively low cost (Bauer 

et al. 2012).  Now when considering this process, the big question that needs to be considered is 

how can this strategy be improved upon to make molten salt use more feasible for storing solar 

energy? 

 First of all, molten salts are salts that exists in a liquid state and have high thermal 

capacities.  Most of these salts are the result of mixing nitrites and nitrates derived from four alkali 

elements:  calcium, sodium, potassium and lithium (Bauer et al. 2012).  
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 In showing the main point about the benefits of molten salts, Bauer et al. (2012) provides 

the results of various experiments examining the thermodynamic properties of solar salt, which is 

a salt mixture consisting of a mixture of 60 percent (by weight) sodium nitrate and 40 percent 

potassium nitrate.  The data provided shows that solar salt has a high thermal capacity and thermal 

conductivity, which supports the premise that solar salts have some benefit in storing solar energy.  

Bauer et al. (2012) also shows that molten salts have high decomposition temperature, supporting 

the claim that molten salts have a high thermal stability.  In addition, Bauer et al. (2012) shows 

that consistent heating can increase the decomposition temperature of solar salt. 

 In discussing the current state of molten salt technology, Bauer et al. (2012) states the only 

commercially available molten salt system is the two tank system, which is a method that uses two 

steel cylindrical tanks of salt with the tanks at different temperatures and fill levels.  However, 

there is extensive research being performed in developing a single tank system in order to reduce 

the costs of molten salt storage.  The institute responsible for this paper, the DLR, has constructed 

a single tank system test loop for study.  In addition, Bauer et al. (2012) explains that using 

parabolic troughs to collect solar energy can reduce the costs of molten salt storage systems.  

Lastly, Bauer et al. (2012) presents phase diagrams showing how the melting temperatures of 

molten salt mixtures can be lowered. 

 Ultimately, it is feasible to produce molten salt mixtures that have a low melting 

temperature, but more work has to be done in order to determine the various thermodynamic 

properties of these mixtures (Bauer et al. 2012).  Also, research shows that it might be possible to 

produce a single tank storage system (Bauer et al. 2012).  As a result, the next step in this area of 

research is to determine a better salt mixture that has both a low melting temperature and high 

thermal stability, or higher decomposition temperature.  This is being done right now, but the 
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thermodynamic properties of these salts must be determined.  In addition, another aspect of the 

current research is to determine how to reduce the molten salt storage concept into a single tank 

system.  Current research at DLR is examining a single tank test loop with a thermocline system. 

 

1.4 MOLTEN SALT PROPERTIES 

 In “Thermodynamic Properties of Molten Nitrate Salts” by Cordaro et al. (2011), the paper 

seeks to determine the validity of the assumption that binary molten salts, which are salt mixtures 

of consisting of two single salts, observe ideal mixing behavior.  This is done by examining the 

thermodynamic properties of single salts and determining the properties of binary mixtures.  In 

ideal mixing behavior, the apparent heat of melting and heat capacity of a binary mixture is 

proportional to the molar fraction of the two components of the mixture and their respective 

thermodynamic properties. 

 Based on the various test results presented in the paper, the graphs of the heats of fusion 

and heat capacities versus the molar composition of each of the presented binary salts do not have 

a linear relationship (Cordaro et al. 2011).  In addition, the comparison of the thermodynamic 

properties of single salts show that the tests performed at Sandia produce similar results to other 

referenced data (Cordaro et al. 2011). 

 The main inference made in this paper is that the heats of fusion and heat capacities of 

various binary salts do not exhibit a linear relationship relative to the molar percentages of the 

mixtures.  The paper explains that this means that the referenced binary salts do not exhibit ideal 

mixing behavior because the thermodynamic properties of these salts are not proportional to the 

properties of their component salts (Cordaro et al. 2011).  In addition, the tests performed at Sandia 

of thermodynamic properties of single salts are similar to the results produced by various other 
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tests, which leads to the conclusion that tests performed at Sandia and their results are accurate, 

which only strengthens the conclusions of the paper (Cordaro et al. 2011). 

 The paper concludes that many molten salt mixtures do not follow ideal mixing behavior, 

which would prove the main thesis and assumption as false (Cordaro et al. 2011).  Instead, the new 

data presented relating the thermodynamic properties to their molar percentages can be used to 

provide more accurate modeling of molten salt storage systems than the previous assumption 

(Cordaro et al. 2011).  Until such point, the properties of specific mixes must be determined 

through laboratory testing.  The various test results of these are explored in further detail in Chapter 

2. 

 

REFERENCES 
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Cordaro, Joseph, Alan Kruizenga, Rachel Altmaier, Matthew Sampson, and April Nissen. 

“Thermodynamic Properties of Molten Nitrate Salts”. Sandia National Laboratories, 2011. 



6 

CHAPTER 2 

MOLTEN SALTS 

2.1 INTRODUCTION 

 Molten solar salts are a great and effective way to store excess solar energy for future use 

due to the vast heat storage capacities of solar salts.  In order for the solar salts to effectively store 

heat, the salts must be contained.  This is done by storing the solar salts in large insulated tanks in 

order to keep the molten salts in a closed system. 

 

2.2 TYPES OF MOLTEN SALTS 

 There are various kinds of salts, all of which can be melted for use as a molten salt.  This 

report will mostly focus on five salts:  sodium nitrate, lithium nitrate, potassium nitrate, sodium 

chloride, and a mixture of 60% sodium nitrate and 40% potassium nitrate.  These salts have been 

most prominently mentioned in the literature and are being used in experimental thermal sun 

storage facilities since they are cost effective (Janz 1967).  Other salts that can be used in these 

applications, both alone and in mixture form, include calcium nitrate, potassium chloride, and 

lithium chloride (Janz 1967). 

 

2.3 PHYSICAL PROPERTIES OF MOLTEN SALTS 

 The first aspect of solar salts that must be considered are there physical properties, 

including melting point, density, viscosity, surface tension, heat capacity and electrical 

conductance.  The density of these solar salts directly affect the loading exhibited by the storage 

tanks and any piping used.  The melting point reflects an approximation of the temperatures these 
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storage tanks will experience, which can be used to determine thermal expansion, ultimate strength 

and thickness along with heat shielding requirements of the tanks.  The viscosity determines the 

resistance of the molten salt while flowing through any pipes used.  Surface tension is the measure 

of force a liquid exerts on a surface by interacting with the surface.  Lastly, the electrical 

conductance determines the salt’s ability to conduct electricity.  Table 2.1 compares the densities 

and melting points of these various salts. 

Table 2.1:  Physical Properties of Solar Salts (Haynes 2012a) (Janz et. al. 1972) 
 

Compound or Mixture 
Melting Point 

(°C) 
Density at MP 

(g/cm3) 

Sodium Nitrate – NaNO3 306.5 1.900 

Lithium Nitrate – LiNO3 253.0 1.781 

Potassium Nitrate – KNO3 334.0 1.865 

Sodium Chloride – NaCl 800.7 1.556 

60 % NaNO3 / 40 % KNO3 225 (approximate) 1.870 (at 625 K) 

 
 Comparing the melting points, the 60% sodium nitrate and 40% potassium nitrate mixture 

has the lowest melting point with an approximate melting point of 225°C (Janz et. al. 1972).  The 

next lowest melting point is lithium nitrate at 253°C (Haynes 2012a).  On the other side of the 

spectrum, sodium chloride (basic table salt) has the highest melting point considered at 800.7°C 

(Haynes 2012a).  The melting point of a salt is an important consideration for solar salt 

applications, which means that based on melting point, the best salt, for our applications is the 

60% sodium nitrate and 40% potassium nitrate mixture since it has the lowest melting point 

considered while sodium chloride is the worst salt considered since it has the highest melting point. 

 Comparing the densities of these salts, the salt with the lowest density considered is sodium 

chloride with a density of 1.556 g/cm3 (Haynes 2012a).  The salt with the next lowest density is 

lithium nitrate with a density of 1.781 g/cm3 (Haynes 2012a).  At the other end, the salt with the 

highest density considered is sodium nitrate with a density of 1.900 g/cm3 (Haynes 2012a).  Unlike 

melting point, density is not as important of a consideration, especially since the relative difference 
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in densities between these salts is small.  Table 2.2 compares the viscosities, surface tensions, and 

electrical conductance of various molten salts. 

Table 2.2:  Physical Properties of Solar Salts at Melting Point (Janz 1967) (Janz et. al. 1972) 
 

Compound or Mixture 
Viscosity 
(mPa-s) 

Surface Tension 
(mN/m) 

Electrical Conductance 
(S/cm) 

Sodium Nitrate – NaNO3 3.038 116.35 0.9713 

Lithium Nitrate – LiNO3 7.469 115.51 0.3958 

Potassium Nitrate – KNO3 2.965 109.63 0.6324 

Sodium Chloride – NaCl 1.459 116.36 0.8709 

60 % NaNO3 / 40 % KNO3 3.172* 121.80 (at 510 K) 0.7448* 

Note:  Values with a single asterisk (*) have been extrapolated for the 60% NaNO3 mix at 580 K 

 
 Comparing the viscosities, the salt with the lowest viscosity is sodium chloride with 1.459 

mPa-s (Janz 1967).  The next lowest salt is potassium nitrate with 2.965 mPa-s (Janz 1967).  

Conversely, the salt with the highest viscosity is lithium nitrate with 7.469 mPa-s (Janz 1967).  In 

comparison with other physical properties considered, viscosity is not the most important property 

to consider in comparing molten salts.  However, it is a property of some importance as the 

viscosity compares the resistance exerted against the molten salts while flowing through a pipe, 

which is something the molten salts will have to do in the containment units. 

 Comparing the surface tension, the salt with the lowest surface tension is potassium nitrate 

with 109.63 mN/m (Janz 1967).  The next lowest salt is lithium nitrate with 115.51 mN/m (Janz 

1967).  On the other side, the salt with the highest surface tension is the 60% sodium nitrate and 

40% potassium nitrate mixture with 121.80 mN/m (Janz et. al. 1972).  In comparison with other 

properties considered, surface tension is also not one of the most important properties to consider 

in comparing molten salts to be used in our applications.  However, it is a property of some 

importance because it affects the tanks and piping of the containment units 

 Comparing the electrical conductance, the salt with the highest electrical conductance is 

sodium nitrate with 0.9713 S/cm (Janz 1967).  The next highest salt is sodium chloride with 0.8709 

S/cm (Janz 1967).  On the other side, the salt with the lowest electrical conductance is lithium 
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nitrate with 0.3958 S/cm (Janz 1967).  Compared to the other physical and thermodynamic 

properties considered, electrical conductance is a minor consideration when comparing solar salts 

for energy storage applications. 

 

2.4 THERMODYNAMIC PROPERTIES OF MOLTEN SALTS 

 Solar salts are known for their ability to store heat for long periods of time.  The heat of 

fusion measures the required amount of heat needed to convert a substance from a solid state to a 

liquid state, or simply the amount of heat needed to melt a substance.  The specific heat capacity 

measures a substance’s ability to store heat.  Lastly, thermal conductivity measures a substance’s 

ability to conduct heat through said substance.  All three properties considered are of major 

importance since these properties compare how the salts conduct and store heat.  Table 2.3 

compares the thermodynamic properties of solar salts. 

Table 2.3:  Thermodynamic Properties of Solar Salts 
(Janz 1967) (Cornwell 1970) (Haynes 2012b) (Janz et. al. 1979) 

 

Compound or Mixture 

Specific Heat 
Capacity 
(J/mol/K) 

Thermal 
Conductivity 
(kW/mol/K) 

Heat of Fusion 
(kJ/mol) 

Sodium Nitrate – NaNO3 131.8 5.66 15.50 

Lithium Nitrate – LiNO3 99.6 5.82 26.70 

Potassium Nitrate – KNO3 115.9 4.31 9.60 

Sodium Chloride – NaCl 48.5 8.80 28.16 

60 % NaNO3 / 40 % KNO3 167.4 (at 510 K) 3.80 13.77 

Note:  Since some values were given in calories in some sources, they were converted into 
joules for this table (1 cal = 4.184 J or 1 kcal = 4.184 kJ) (IUPAC). 

 
 Comparing the specific heat capacity, the salt with the highest specific heat capacity is the 

60% sodium nitrate and 40% potassium nitrate mixture with 167.4 J/mol/K (Janz et. al. 1979).  

The next highest salt is sodium nitrate with 131.8 J/mol/K (Janz 1967).  On the other side, the salt 

with the lowest specific heat capacity is sodium chloride with 48.5 J/mol/K (Janz 1967).  Based 

on this comparison, the best salt to use for energy storage is the 60% sodium nitrate and 40% 
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potassium nitrate mixture since it has the highest heat capacity considered while sodium chloride 

is the worst salt considered since it has the lowest heat capacity. 

 Comparing the thermal conductivity, the salt with the highest thermal conductivity is 

sodium chloride with 8.80 kW/mol/K (Cornwell 1970).  The next highest salt is lithium nitrate 

with 5.82 kW/mol/K (Cornwell 1970).  The salt with the lowest thermal conductivity is the 60% 

sodium nitrate and 40% potassium nitrate mixture with 3.80 kW/mol/K (Cornwell 1970). 

 Comparing the heat of fusion, the salt with the lowest heat of fusion is potassium nitrate 

with 9.60 kJ/mol (Haynes 2012b).  The next lowest salt is the 60% sodium nitrate and 40% 

potassium nitrate mixture with 13.77 kJ/mol (Janz et. al. 1979).  On the other side, the salt with 

the highest heat of fusion is sodium chloride with 28.16 kJ/mol (Haynes 2012b).  Based on the 

comparison of salt characteristics presented in Table 1.3, the 60%/40% sodium/potassium nitrates 

present, for now the most interesting option for molten salt energy storage.  However other options 

will be considered, such as, the addition of Nano silica to the salt mix in order to improve its 

specific heat capacity by 30% or more. 

 

2.5 COST OF SOLAR SALTS 

 Ultimately, compared to the other considered salts, the most promising solar salt to use, so 

far, in molten salt energy storage, is the 60% Sodium Nitrate and 40% Potassium Nitrate mixture 

since it compares favorably against other salts in terms of thermodynamic and heating properties, 

which are the primary factors to consider for use as a solar salt. 

 However, when considering the use of solar salts, one must consider the costs of various 

types of salts.  Table 2.4 compares the 60% sodium nitrate and 40% potassium nitrate mixture to 

various other solar salt substitutes that are available in the marketplace. 
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Table 2.4:  Costs of Solar Salts (Kearney & Associates 2001) 
 

Compound or Mixture 
∆T 

(°C) 
Cost of Salts 

($/kg) 
Cost of Power 

($/kWH) 

Hitec XL in 59% Water (42:15:43 Ca:Na:K) 200 
200 

1.43 
3.49 (w/o H2O) 

18.20 
18.20 

Hitec (7:53 Na:K: Nitrate, 40 Na Nitrate) 200 0.93 10.70 

Solar Salt (60:40 Na:K Nitrate) 200 0.49 5.80 

Calcium Nitrate Mixture Dewatered 
(42:15:43 Ca:Na:K Mixture) 

200 
150 
100 

1.19 
1.19 
1.19 

15.20 
20.10 
30.00 

Therminol VP-1 (Diphenyl Biphenyl Oxide) 3.96 100.00 57.50 

 
 The solar salt mixture (60% NaNO3 – 40% KNO3) is both the least expensive in terms of 

cost to purchase, which is 49 cents per kilogram, and the costs per kilowatt-hour of power 

generated, which is $5.80 per kilowatt-hour (Kearney & Associates 2001).  The next best priced 

mixture in both aspects is the Hitec mixture, which costs 93 cents per kilogram to purchase and 

has a power cost of kilowatt-hour of $10.70 (Kearney & Associates 2001).  In addition, the mixture 

that is the most expensive in both aspects is the Therminol VP-1, which costs $100 per kilogram 

to purchase and has a power cost of $57.50 per kilowatt-hour (Kearney & Associates 2001). 

 

2.6 CORROSION FROM MOLTEN SALTS 

 In addition to being able to hold large quantities of heat, molten salts can be corrosive.  

Table 2.5 examines the corrosion properties of stainless steel exposed to various molten salts. 

Table 2.5:  Corrosion Properties of Stainless Steel Using Molten Salts (Sohal et. al. 2010) (Bradshaw and 
Goods 2001) 

 

Compound or Mixture 
Temp 
(°C) 

Corrosion Rate (mm/y) 

SS 304 SS 316 

60 % NaNO3 / 40 % KNO3 580 ------ 0.5 

Sodium Chloride – NaCl 845 7.2 7.2 

Hitec Salt 538 
430 
505 
550 

0.21 
------ 
------ 
------ 

<0.03 
0.007 
0.008 
0.074 

 

 The solar salt mixture at a temperature of 580°C corrodes the SS 316 stainless steel at 0.5 

millimeters per year (Bradshaw and Goods 2001).  The sodium chloride at a temperature of 845°C 



12 

corrodes both types of stainless steel at 7.2 millimeters per year (Sohal et. al. 2010).  At 538°C, 

the Hitec Salt corrodes through SS 304 steel at 0.21 millimeters per year, and through the SS 316 

steel at less than 0.03 millimeters per year (Sohal et. al. 2010).  In addition, the Hitec Salt corrodes 

through SS 316 steel 0.007 millimeters per year at 430°C, 0.008 millimeters per year at 505°C, 

and 0.074 millimeters per year at 550°C (Sohal et. al. 2010). 

 

2.7 CONCLUSION 

 A survey of molten solar salts for use in energy storage shells is presented, to provide 

electric generation stations with power for eight hours.  Tables are shown providing the 

characteristics of various molten salts to be used in thermal solar energy stations.  

Recommendations for the selection of an economical molten salt compound is made using various 

characteristics, including thermal capacity, availability, melting temperature, and the cost of salts. 
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CHAPTER 3 

STEEL CYLINDRICAL SHELLS 

3.1 INTRODUCTION 

 Molten solar salts are a great and effective way to store excess solar energy for future use 

due to the vast heat storage capacities of solar salts.  These solar salts are contained in large 

insulated tanks in order to keep the molten salts in a closed system.  This project examines the 

current method of using insulated hybrid steel cylindrical shells to store molten salt and presents a 

preliminary design of real life examples. 

 

3.2 DESIGN METHODS FOR STEEL MS STORAGE TANKS 

 Currently, molten salt (MS) storage shells are usually cylindrical tanks made of stainless 

steel.  The MS steel tanks have a hybrid design of A588 Carbon Steel and an inner layer of 316 

Stainless Steel to protect against corrosion, varying in thickness from one inch (25 mm) for a fifty 

year plant life span to 0.6 in (15 mm) for a thirty year plant life span. 

 

3.3 TANK REQUIREMENTS 

 For this stage of the project research, the tanks need to store enough molten solar salt, 

which is a 60:40 sodium nitrate (NaNO3) and potassium nitrate (KNO3) mix, to provide power for 

a 300 megawatt power plant for eight hours each night.  Calculations determined that in order to 

satisfy these requirements, the two tanks need to be able to store 12,048 cubic meters of salt or 

425.5 x 103 cubic feet. 
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 In order to determine the total mass of salt required to operate the power plant, one must 

start with the basic energy equation, which is shown in Equation 3.1 (Holman 1986). 

  � = ��	
��
� ∗ ∆�����
�
 = � ∗ �� ∗ ∆� (3.1) 

 In Equation 3.1 above, � represents the total energy in the system.  The power generated 

by the power plant is ��	
��
�, which as stated earlier is 300 megawatts.  The required time of 

storage is ∆�����
�
, which is 8 hours or 28,800 seconds.  The required amount of solar salt needed 

for the power plant is represented by �.  The specific heat capacity of the salt is ��, which is 1540 

joules per kilogram of salt per degree kelvin.  The temperature range of the salt in the system is 

∆�, which is calculated using Equation 3.2 below. 

  ∆� = ��
��,�
� − (��
� − 20 �) (3.2) 

 In Equation 3.2 above, the maximum temperature of salt in the system, or ��
��,�
�, is 

853.15 degrees kelvin.  The temperature of the Rankine cycle, or ��
�, is 620.55 degrees kelvin.  

Equation 3.2 determined that the temperature range for the salt is 252.6 degrees kelvin. 

 In order to determine the required mass of salt, Equation 3.1 is rearranged into Equation 

3.3 as shown. 

  � = !"#$%&'(∗∆�)"*%'+$
,-∗∆.  (3.3) 

 This determined that the power plant requires 22.88 x 106 kilograms of salt, or 50.44 x 106 

pounds (25,220 tons). 

 Equation 3.4 is used to determine the volume of solid salt required. 

  /�
�� = �
0)'("

 (3.4) 

 Equation 3.4 determined that the volume of solid salt required is 12,048 cubic meters of 

salt, or 425.5 x 106 cubic feet (12,048 cubic meters).  This volume will be divided over two tanks, 
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requiring 212.7 x 106 cubic feet (6,024 cubic meters) for each tank.  However, a third and fourth 

tanks, all of carbon steel, are recommended for the storage of cooled MS after power generation 

and for safety and continued operations during maintenance of the other tanks. 

 All structural steel used is A588 Grade 50 steel.  The cylindrical tank designed with a 40 

feet (12.192 meters) radius at the base.  This results in a height of salt of 42 feet (12.802 meters) 

and a height of 54 feet (16.594 meters) for the cylindrical tank. 

 

3.4 STEEL CYLINDRICAL TANKS 

 The steel structural design was divided into five elements for individual analysis and 

design, which are the shell wall, the top cover with a central 10 feet (3.048 meters) diameter steel 

access dome, support columns, a steel bottom, and the concrete slab below a layer of sand.  All of 

these structural elements are made of structural and stainless steel except the concrete slab.  Shell 

theory was used to perform the structural analysis of the cylindrical tank and central access dome. 

 
 

Figure 3.1:  Steel Cylindrical Shell Wall 12 Bending Moment 
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Figure 3.2:  Steel Cylindrical Shell Wall 34 Forces 
The red curve is based on Bending Theory while the blue curve is based on Shell Theory 

 

 
 

Figure 3.3:  Stresses at the Bottom of the Steel Shell Wall 
The red curve is the Circumferential Stress and the blue curve is the Axial Stress 

 
 The first design performed was for the shell wall.  Based on shell theory, axial bending in 

a cylindrical shell occurs mainly at the base of the wall, at the junction with the ring and base plate, 

before dissipating further up the wall (Urugal 2009).  Further analysis determined that axial 

bending dissipates nine feet above ground.  The first step was to determine the bending in the shell 

wall as shown in Figure 3.1.  The maximum positive axial bending moment is 4.085 kip-foot/foot 



19 

(18.17 kN-m/m) at the bottom of the shell, and the maximum negative bending moment is 886.2 

pound-foot/foot (3.942 kN-m/m) at a height 2.7 feet (826 mm) above the bottom of the shell.  

Circumferential moments are equal to the Poisson ratio multiplied by the axial moments.  The 

bottom of the wall contains the maximum circumferential tensile force, which is 177.6 kips per 

linear foot (klf), which is 2,593 kN/m.  Tensile membrane force is determined by Equation 3.6 and 

Figure 3.2 (Urugal 2009).  While maximum axial compressive force, ��, in the wall at the bottom 

of the shell is equal to the total dead weight of the shell, top slab, live load and service dome, which 

is the total weight (5), divided by the circumference of the shell.  Equations 3.7 through 3.12 are 

used to determine the bending in the shell wall (Urugal 2009). 

  6 = 78 (3.5) 

  �� = 69 (3.6) 

  : = ;�
<=(<>?) (3.7) 

  @ = A√<>?C
��  (3.8) 

  D< = E	�C
;�  (3.9) 

  D= = E�C
;� Fℎ − <

HI (3.10) 

  J = K>H�(D< cos @O + D= sin @O) + E(	>�)�C
;�  (3.11) 

  �� = : SCT
S�C  (3.12) 

  �� = U�� (3.13) 

  �� = VW
X  (3.14) 

 In determining the applied pressure on the tank from Equation 3.5, it is the product of the 

salt unit weight (7) and the depth of salt (8) at the specified point.  In Equation 3.6, 6 is the applied 
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pressure on the wall and r is the radius of the wall (Urugal 2009).  In Equations 3.7 through 3.12, 

:, @, D<, and D= are coefficients, � is the Young’s Modulus of the shell material, � is thickness of 

the shell wall, U is the Poisson’s ratio of the shell material, ℎ is the total height of molten salt, J 

is shell wall deflection at a height of O above ground, and the second derivative of J is used to 

determine the moment at that point (Urugal 2009).  �� is the axial moment at a height of O above 

ground, 5� is the weight of the shell including dead and live loads on its top at level above 

O (Urugal 2009).  Figure 3.3 details the design of the cylindrical shell and the top dome. 

 
 
Figure 3.4:  Steel Cylindrical Shell Model Including Top Dome, Supporting Rows of Columns, 2’ Sand Layer, 

50” Posttension Slab, and Safety Steel Walls at the Edge 

 
 The shell was designed in sections of varying thickness based on the loading.  The bottom 

nine feet of the shell wall was designed to accommodate excess bending, require 1.5 inches of 



21 

structural steel thickness due to the combined axial membrane and bending stresses.  The next 

section of the wall, from 9 to 15 feet (2.734 to 4.572 meters) above ground, requires 0.625 inches 

(15.9 mm) of steel thickness.  Starting from 15 feet above ground, the thickness of the shell wall 

is decreased by 0.125 inches (3.2 mm) every seven feet until a thickness of 0.125 inches (3.2 mm) 

remain.  This results in the wall being 0.5 inches (12.7 mm) thick between 15 and 22 feet (4.572 

to 6.706 meters), 0.375 inches (9.5 mm) between 22 and 29 feet (6.706 to 8.839 meters), 0.25 

inches (6.4 mm) between 29 and 36 feet (8.839 to 10.973 meters) above ground, and 0.125 inches 

(3.2 mm) for the remaining portion of the wall above 36 feet (10.973 meters).  Due to corrosion 

effects, a one inch liner of 316 Stainless Steel covers the steel wall. 

 The next design was for both the top steel plate and the columns supporting it in the 

cylindrical tank.  The top plate is 0.625 inches (15.9 mm) thick and is supported by three circular 

rows of columns.  One row of columns is located ten feet (3.048 meters) away from the center of 

the tank, at the tip of the opening and the 0.625 inches (15.9 mm) thick service dome. It contains 

eight equally spaced columns.  The second row of columns is located 22 feet (6.706 meters) away 

from the center of the tank and contains eight equally spaced columns.  Lastly, the third row of 

columns is located 32 feet (9.754 meters) away from center and contains 16 equally spaced 

columns.  These columns are made of carbon steel covered with a layer of stainless steel because 

of the heat and corrosion from MS.  When designing the columns and shell walls, an extra factor 

of safety is used due to the expected heat of the molten salt.  At 580 degrees Celsius, steel is 

expected to only maintain 60% of its nominal yield strength (Salmon 2009).  As a result, the final 

design load for the first row of columns is 6.5 kips (28.9 kN), 19.6 kips (87.2 kN) for the second 

row, and 11.7 kips (52.0 kN) for the third row.  Ultimately, it is determined that the first row of 

columns be designed as HSS 4½ x 4½ x 1/8” columns, the second row as HSS 4½ x 4½ x ¼” 
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columns, and the third row as HSS 4½ x 4½ x 1/8” columns (Steel Construction Manual 2012).  

Due to corrosion effects, a one inch (25.4 mm) liner of 316 Stainless Steel covers the steel column.  

In addition, the column will be connected to the top steel shell with a 14 inch by 14 inch (356 mm) 

plate that is two inches thick (50.8 mm). 

 In order to design for bending in the top steel flat slab, Timoshenko’s method was used to 

design the top plate as a continuous simply supported plate over the edge of the shell and supported 

by rows of columns as discussed earlier. Moments at the supporting columns are found from the 

column pattern of annular arrays normalized as rectangular arrays.  Based on Timoshenko’s (1959) 

theory, the maximum negative bending moment in each direction is located at the column.  The 

maximum positive moments, being the radial moments, occur at the center of the normalized 

annulus, and the maximum circumferential moment occur directly halfway between columns.  For 

this shell, the maximum negative moment is 1.785 kip-foot/foot (7.940 kN-m/m) and the 

maximum positive radial moment is 1.040 kip-foot/foot (4.626 kN-m/m). 

 In addition, an opening with a 10 feet (3.048 meters) radius is carved out of the top shell 

so that a removable steel dome with the same radius can be placed on top of the steel plate.  This 

opening is to allow pipes into the shell and service access into the tank.  

 

3.5 STEEL TANK DESIGN CALCULATIONS 

 Figures 3.4 and 3.5 detail the calculations used to determine the tank volume.  Figures 3.6 

through 3.7 show how the steel shell wall was calculated.  Figures 3.8 through 3.12 show how the 

steel top plate and steel columns were calculated.  Lastly, Figure 3.13 shows how the steel top 

dome was calculated. 
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Figure 3.5:  Volume Calculations for the Cylindrical Steel Tank (Chapter 3) and Concrete Tank (Chapter 4) (1) 
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Figure 3.6:  Volume Calculations for the Cylindrical Steel Tank (Chapter 3) and Concrete Tank (Chapter 4) (2) 
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Figure 3.7:  Steel Shell Wall Bending and Membrane Force Calculations (1) 
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Figure 3.8:  Steel Shell Wall Bending and Membrane Force Calculations (2) 
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Figure 3.9:  Top Steel Plate and Column Calculations (1) 

  



28 

 
 

Figure 3.10:  Top Steel Plate and Column Calculations (2) 
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Figure 3.11:  Top Steel Plate and Column Calculations (3) 
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Figure 3.12:  Top Steel Plate and Column Calculations (4) 
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Figure 3.13:  Top Steel Plate and Column Calculations (5) 
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Figure 3.14:  Top Steel Dome Calculations 
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3.6 CONCLUSION 

 The design of a cylindrical A588 Grade 50 steel shell, having a diameter of 80 feet (24.384 

meters), for the storage of molten salts is presented.  The shell is 54 feet (16.459 meters) high, has 

a height of salt of 42 feet (12.802 meters), and has a top access dome with a radius of 10 feet (3.048 

meters).  The two tank system is designed to store enough molten salt to provide 300 megawatts 

of power for eight hours.  The shell has a one inch (25.4 mm) stainless steel liner to protect against 

corrosion for a 50 year design life.  In addition, two foundation designs are provided for the steel 

cylindrical tank.  Further details about the foundation design are presented in Chapter 5. 

 

REFERENCES 

Flugge, W. Stresses in Shells. Springer Verlag Publishing.Co, Berlin, 1960. 

Holman, J.P. Heat Transfer, Sixth Edition. McGraw-Hill. New York, NY, 1986. 

Salmon, C.G., Johnson, J.E., and Malhas, F.A. Steel Structures: Design and Behavior.  5th Ed. 

Pearson Prentice Hall, Upper Saddle River, NJ, 2009. 

Steel Construction Manual. 14th Ed. American Institute of Steel Construction, 2012. 

Timoshenko, S. Theory of Plates and Shells.  McGraw-Hill, New York, 1959. 

Urugal, A. C. Theory of Beams, Plates, and Shells. 4th Ed. CRC Press, Boca Raton, FL, 2009. 



34 

CHAPTER 4 

CONCRETE CYLINDRICAL SHELLS 

4.1 INTRODUCTION 

 Molten solar salts are a great and effective way to store excess solar energy for future use 

due to the vast heat storage capacities of solar salts.  These solar salts are contained in large 

insulated tanks in order to keep the molten salts in a closed system.  This chapter examines an 

alternative method of using insulated reinforced concrete cylindrical shells to store molten salt and 

presents a preliminary design of real life examples. 

 

4.2 DESIGN METHOD FOR CONCRETE MS STORAGE TANKS 

 Currently, molten salt (MS) storage shells are usually cylindrical tanks made of stainless 

steel.  This chapter presents an alternative cylindrical shell design using reinforced concrete instead 

of carbon steel.  Like the carbon steel shell design, there will be an inner layer of 316 Stainless 

Steel to protect against corrosion, varying in thickness from one inch (25 mm) for a fifty year plant 

life span to 0.6 in (15 mm) for a thirty year plant life span. 

 

4.3 TANK REQUIREMENTS 

 As with the steel cylindrical tanks, the reinforced concrete cylindrical tanks need to store 

enough molten solar salt, which is a 60:40 sodium nitrate (NaNO3) and potassium nitrate (KNO3) 

mix, to provide power for a 300 megawatt power plant for eight hours each night.  Calculations 

determined that in order to satisfy these requirements, the two tanks need to be able to store 12,048 

cubic meters of salt or 425.5 x 103 cubic feet.  This requires 212.7 x 106 cubic feet (6,024 cubic 
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meters) for each tank.  The concrete cylindrical tank will have a 40 feet (12.192 meters) radius at 

the base, which is the same as the steel cylindrical tank.  This results in a height of salt of 54 feet 

(16.459 meters) and a salt height of 42 feet (12.802 meters) for the concrete cylindrical tank.  Like 

the steel cylindrical tanks, a third and fourth tanks, all of reinforced concrete, are recommended 

for the storage of cooled MS after power generation and for safety and continued operations during 

maintenance of the other tanks. 

 

4.4 CONCRETE CYLINDRICAL TANKS 

 The structural design was divided into five elements for individual analysis and design, 

which are the concrete shell wall, the concrete top cover with a central 10 feet (3.048 meters) 

diameter steel access dome, steel support columns, a steel bottom, and the concrete slab below a 

layer of sand.  Shell theory was used to perform the structural analysis of the cylindrical tank and 

central access dome. 

 
 

Figure 4.1:  Concrete Cylindrical Shell Wall 12 Bending Moment 
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Figure 4.2:  Concrete Cylindrical Shell Wall 34 Forces 
The red curve is based on Bending Theory while the blue curve is based on Shell Theory 

 

 
 

Figure 4.3:  Stresses at the Bottom of the Concrete Shell Wall 
The red curve is the Circumferential Stress and the blue curve is the Axial Stress 

 
 The first design performed was for the shell wall.  Based on shell theory, axial bending in 

a cylindrical shell occurs mainly at the base of the wall, at the junction with the ring and base plate, 

before dissipating further up the wall (Urugal 2009).  Further analysis determined that axial 

bending dissipates 25 feet (7.620 meters) above ground.  The first step was to determine the 

bending in the shell wall.  As shown in Figure 4.1, the maximum positive axial bending moment 
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is 22.256 kip-foot/foot (99.00 kN-m/m) at the bottom of the shell, and the maximum negative 

bending moment is 5.347 kip-foot/foot (23.78 kN-m/m) at a height 8.305 feet (2.531 meters) above 

the bottom of the shell.  Circumferential moments are equal to the Poisson ratio multiplied by the 

axial moments.  The bottom of the wall contains the maximum circumferential tensile force, which 

is 140.4 kips per linear foot (klf), which is 2,053 kN/m.  This results in a shell wall thickness of 9 

inches (229 mm).  Tensile membrane force is determined by Equation 4.2 and Figure 4.2 (Urugal 

2009).  While maximum axial compressive force, ��, in the wall at the bottom of the shell is equal 

to the total dead weight of the shell, top slab, live load and service dome, which is the total weight 

(5), divided by the circumference of the shell.  Equations 4.3 through 4.8 are used to determine 

the bending in the shell wall (Urugal 2009). 

  6 = 78 (4.1) 

  �� = 69 (4.2) 

  : = ;�
<=(<>?) (4.3) 

  @ = A√<>?C
��  (4.4) 

  D< = E	�C
;�  (4.5) 

  D= = E�C
;� Fℎ − <

HI (4.6) 

  J = K>H�(D< cos @O + D= sin @O) + E(	>�)�C
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 In determining the applied pressure on the tank from Equation 4.1, it is the product of the 

salt unit weight (7) and the depth of salt (8) at the specified point.  In Equation 4.2, 6 is the applied 

pressure on the wall and r is the radius of the wall (Urugal 2009).  In Equations 4.3 through 4.8, 

:, @, D<, and D= are coefficients, � is the Young’s Modulus of the shell material, � is thickness of 

the shell wall, U is the Poisson’s ratio of the shell material, ℎ is the total height of molten salt, J 

is shell wall deflection at a height of O above ground, and the second derivative of J is used to 

determine the moment at that point (Urugal 2009).  �� is the axial moment at a height of O above 

ground, 5� is the weight of the shell including dead and live loads on its top at level above 

O (Urugal 2009).  Figure 4.3 details the design of the cylindrical shell and the top dome. 

 
 

Figure 4.4:  Concrete Cylindrical Shell Model Including Top Dome, Supporting Rows of Columns, 2’ Sand 
Layer, 50” Posttension Slab, and Safety Steel Walls at the Edge 
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 The shell was designed in sections of varying reinforcement based on the loading.  The 

bottom 20 feet (6.048 meters) of the shell wall was designed to accommodate high circumferential 

tension and excess bending, requiring extra reinforcement.  The bottom section of the tank requires 

layer of circumferential tensile reinforcement placed two inches (50.8 mm) deep from the outside 

of the tank with five #8 bars per linear foot.  In addition, the bottom section require two vertical 

layers of bending reinforcement, each containing four #6 bars per linear foot, with the first layer 

5.375  inches (137 mm) deep from the outside of the tank and the second layer 7.125 inches deep 

(181 mm).  The vertical #6 bars are cut off at 20 feet (6.048 meters) above ground since the axial 

bending moment, ��, dissipates around 25 feet (7.620 meters).  The remaining sections only 

require a single layer of circumferential reinforcement, which is placed at the center of the shell 

wall.  The next section exists from 20 to 25 feet (6.048 to 7.620 meters) above ground and requires 

four #8 bars per linear foot.  The following section exists from 25 to 31 feet (7.620 to 9.449 meters) 

above ground and requires three #8 bars per linear foot.  The next section exists from 31 to 37 feet 

(9.449 to 11.278 meters) above ground and requires two #8 bars per linear foot.  The last section 

of the wall exists from 37 feet (11.278 meters) above ground and onward, with this section 

requiring only a single #8 bar per foot.  Due to corrosion effects, a one inch (25.4 mm) liner of 316 

Stainless Steel covers the steel wall.  In addition, the bottom 3 feet (914 mm) of the concrete shell 

wall will have an inside and outside layer of 1.5 inch (38.1 mm) thick carbon steel surrounding the 

shell wall.  This is to provide a connection to the 1.5 inch (38.1 mm) thick steel plate at the bottom 

of the tank. 

 The next design was for both the top concrete plate and the columns supporting it.  The top 

concrete plate is 4 inches thick and being supported by three circular rows of columns.  One row 

of columns is located ten feet (3.048 meters) away from the center of the tank and contains eight 
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equally spaced columns.  The second row of columns is located 22 feet (6.706 meters) away from 

the center of the tank and contains eight equally spaced columns.  Lastly, the third row of columns 

is located 32 feet (9.754 meters) away from center and contains 16 equally spaced columns.  These 

columns are made of steel because of high heat and corrosion.  When designing the columns, an 

extra factor of safety due to the expected heat of the molten salt.  At 580 degrees Celsius, steel is 

expected to only maintain 60% of its nominal yield strength (Salmon 2009).  As a result, the final 

design load for the first row of columns is 9.4 kips (41.8 kN), 28.5 kips (126.8 kN) for the second 

row, and 17.1 kips (75.9 kN) for the third row.  Ultimately, it is determined that the first row of 

columns be designed as HSS 4½ x 4½ x 1/8” columns, the second row as HSS 4½ x 4½ x 5/16” 

columns, and the third row as HSS 4½ x 4½ x 3/16” columns (Steel Construction Manual 2012).  

Due to corrosion effects, a one inch (25.4 mm) coating of SS 304 stainless steel will cover the steel 

column.  In addition, the column will be connected to the top concrete shell with a 14 inch by 14 

inch (356 mm) plate that is two inches thick (50.8 mm). 

 In order to design for bending in the top plate, Timoshenko’s method was used to design 

the shell as a continuous slab due to the support columns and normalize the column pattern as a 

square array.  Based on Timoshenko (1959), the maximum negative bending moment in each 

direction is located at the column.  The maximum positive moments, being the radial moments, 

occur at the center of the normalized annulus, and the maximum circumferential moment occur 

directly halfway between columns.  For this shell, the maximum negative moment is 2.945 kip-

foot/foot (13.10 kN-m/m) and the maximum positive radial moment is 1.512 kip-foot/foot (6.726 

kN-m/m).  This results in the top concrete plate requiring a thickness of four inches (102 mm).  

The concrete plate will include four layers of reinforcement and all four layers will each contain 

four #3 bars per linear foot.  The reinforcement for the top layer will travel in the circumferential 
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direction, and will be placed at a depth of 0.6875 inches (17.5 mm).  The reinforcement for the 

second layer will travel in the radial direction, and will be placed at a depth of 1.4375 inches (36.5 

mm).  The reinforcement for the third layer will travel in the radial direction, and will be placed at 

a depth of 2.5625 inches (65.1 mm).  The reinforcement for the fourth layer will travel in the 

circumferential direction, and will be placed at a depth of 3.3125 inches (84.1 mm). 

 As with the steel cylindrical shell, an opening with a 10 foot (3.048 meters) radius is carved 

out of the top shell so that a removable steel shell with the same radius can be placed on top of the 

steel shell.  This opening is to allow pipes into the shell and allow for service access into the tank. 

 

4.5 CONCRETE TANK DESIGN CALCULATIONS 

 Figures 4.4 through 4.6 show how the concrete shell wall was calculated.  In addition, 

Figures 4.7 through 4.13 show how the concrete top plate and steel columns were calculated. 
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Figure 4.5:  Concrete Shell Wall Bending and Membrane Force Calculations (1) 
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Figure 4.6:  Concrete Shell Wall Bending and Membrane Force Calculations (2) 
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Figure 4.7:  Concrete Shell Wall Bending and Membrane Force Calculations (3) 
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Figure 4.8:  Top Concrete Plate and Column Calculations (1) 
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Figure 4.9:  Top Concrete Plate and Column Calculations (2) 
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Figure 4.10:  Top Concrete Plate and Column Calculations (3) 
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Figure 4.11:  Top Concrete Plate and Column Calculations (4) 
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Figure 4.12:  Top Concrete Plate and Column Calculations (5) 
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Figure 4.13:  Top Concrete Plate and Column Calculations (6) 
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Figure 4.14:  Top Concrete Plate and Column Calculations (7) 
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4.6 CONCLUSION 

 The design of a reinforced cylindrical shell, having a diameter of 80 feet (24.384 meters), 

for the storage of molten salts is presented.  The shell is 54 feet (16.459 meters) high, has a height 

of salt of 42 feet (12.802 meters), and has a top access dome with a radius of 10 feet (3.048 meters).  

The two tank system is designed to store enough molten salt to provide 300 megawatts of power 

for eight hours.  The shell has a one inch (25.4 mm) stainless steel liner to protect against corrosion 

for a 50 year design life.  As with the steel cylindrical shell, two foundation designs for the concrete 

cylindrical tank are explored in further detail in Chapter 5. 
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CHAPTER 5 

FOUNDATION DESIGN 

5.1 FOUNDATION DESIGN 

 
 
Figure 5.1:  Posttensioning Cable and Circumferential Reinforcement Layout for the Circular Concrete Slab 

Including Inner Steel Ring 

 
 Included for the cylindrical tanks is two foundation designs, a circular foundation and a 

square foundation.  A complete design was performed on the concrete slab sitting over dense sand.  

Included in the foundation design is a 2 foot (610 mm) layer of sand between the tank and the 
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concrete slab to allow for thermal expansion of the shell.  The required slab thickness for the 

circular slab is 50 inches (1.270 meters) while the square slab requires 63 inches (1.600 meters). 

 Figure 5.1 details the radial posttensioning cable layout, the steel ring, and circumferential 

reinforcement in the circular slab concrete slab.  The steel ring is necessary because the 

posttensioning cables cannot intersect with each at the center of the circular concrete slab. 

 

5.2 CIRCULAR FOUNDATION RADIAL PRE-STRESSING 

 The first element to the slab structural design was the radial pre-stressing of the slab.  

Equations 5.1 through 5.5 are used to determine the required pre-stressing for the slab. 

  ��� = YZ
C
[\  (5.1) 

  ]�^_ = A `%&
a- bcd e<>f.ha-i (5.2) 

  j�� = j�ke1 − 0.5n�i (5.3) 

  o�� = =p
`%&
b-) S (<>f.ha-) (5.4) 

 Based on Timoshenko (1959), ��� is the maximum radial moment at the edge of the tank, 

which is 1,688.653 kip-foot/foot (7,512 kN-m/m).  Also, q is a factor based on the support 

condition, which is 0.410 for this structure, and r is the design load, which is 6,178 psf (295.8 

kPa).  Lastly, s is the slab radius of 60 feet (18.288 meters), and t is the bending factor of 0.9 as 

specified in ACI 318-14.  Equation 5.2 is used to determine the minimum depth (]�^_) using the 

maximum radial moment, the compressive strength of the concrete (j,u), which is 6,000 psi (41.4 

MPa), and the amount of steel (n�).  Based on ACI 318-14, the maximum n� for 6,000 psi concrete 

is 0.27.  However, for this design, a n� of 0.21 is used.  The required pre-stressing depth at the 

edge of the tank is 38.697 inches (983 mm) with a depth of 38.75 inches (984 mm) being used.  
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Equation 5.3 is used to determine the maximum pre-stressing for the Grade 270 cables, which 

determined that the maximum initial pre-stressing is 241.65 ksi (1,666.1 MPa).  Equation 5.4 is 

used to determine the combined required cross-sectional area of all pre-stressing cables, which is 

911.5 square inches (0.588 square meters).  

 
 

Figure 5.2:  Inverted Eccentricity for the Circular Slab 
A negative value corresponds to a positive eccentricity and vice versa.  This is done to show the cable path. 

 
 Ultimately, this meant that the slab requires 96 radial posttensioning 55/0.5 WG cables that 

connect to the inner steel ring are required as shown in Figure 5.1.  This pre-stressing provides a 

combined 221,760 kips (986,438 kN) of pre-stressing force, or 2,310 kips (10,275 kN) per cable, 

which results in a pre-stressing stress of 241.379 ksi (1,664.3 MPa) in each cable.  In addition, the 

minimum radial posttensioning cables depth is 12.75 inches (324 mm) and the maximum radial 

posttensioning cables depth is 38.75 inches (984 mm), with the cables following a parabolic path 

between the edge of the slab and the edge of the tank as shown in Figure 5.2. 
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5.3 CIRCULAR FOUNDATION CIRCUMFERENTIAL REINFORCEMENT 

 
 

Figure 5.3:  Circumferential Reinforcement Layout per Foot (Six #14 Reinforcement Bars per Foot) 

 
 The next element to the slab structural design was the circumferential reinforcement of the 

slab as shown in Figure 5.3.  Equations 5.5 through 5.8 are used to determine the required pre-

stressing for the slab. 

  �,� = ��� F(v>wc)
C>(<xvwc)�C
(v>wc)
C>(v>wc)�C I (5.5) 

  � = S yc
y)xyc (5.6) 

  s = 0.8� (5.7) 

  o� = f.{hbcd 

b|  (5.8) 

 In these equations, �,� is the maximum circumferential moment located at the edge of the 

tank, ��� is the maximum radial moment at the edge of the tank and }, is the Poisson’s ratio of 

concrete, which is 0.2.  In addition, s is the radius of the slab, which is 60 feet (18.288 meters), 
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and 9 is the radius of the tank, which is 40 feet (12.192 meters).  This results in a required moment 

of 2,364.1 kip-foot/foot (10,516 kN-m/m) at the edge of the tank.  The required reinforcement 

depth at the edge of the tank is 42.636 inches (1.083 meters).  As a result, the circumferential 

reinforcement depth being used 44.125 inches (1.121 meters) for all reinforcement.  Equation 5.6 

is used to determine the depth of the neutral axis (�) in which the maximum strain of concrete (~,) 

is 0.003 and the maximum steel strain (~�) is 0.005.  The depth of the neutral axis is 16.547 inches 

(420 mm).  Equation 5.7 is used to determine the depth of the compression block (s) which is 

13.238 inches (336 mm).  Equation 5.8 is used to determine the cross-sectional area of steel per 

foot, which is 13.502 square inches (0.009 square meters).  This area results six #14 Grade 60 

reinforcement bars. 

 

5.4 STEEL RING FOR THE CIRCULAR FOUNDATION 

 
 

Figure 5.4:  Layout of the Cable and Steel Ring Connection 

 
 The last element to the slab structural design was the steel ring connected to the pre-

stressing cables.  The steel cable as shown in Figure 5.4 will have a radius of 8 feet (2.438 meters), 

which is 9� in Equations 3a and 3b.  Equations 5.9 through 5.11 are used to determine the required 

pre-stressing for the slab (Urugal 2009). 
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  r� = !
=p�% (5.9) 

  � = r�9� (5.10) 

  o = .
b' (5.11) 

 In these equations, r� is the uniform loading on the ring due to pre-stressing and � is the 

combined loading from all pre-stressing, which is 221,760 kips (986,438 kN).  The uniform 

applied load from the pre-stressing cables on the steel ring is 4,411.8 kips/foot (64,385 kN/m).  As 

a result, the steel ring has a tensile force (�) of 35,294 kips (156,996 kN).  Using Grade 60 carbon 

steel, the allowable stress (j
) in the ring is 36 ksi (248.211 MPa), meaning the steel ring requires 

a cross sectional area (o) of 980.4 square inches (0.633 square meters).  The actual cross section 

of the steel ring is a square of 31.5 inches (800 mm) on each side, which has a cross sectional area 

of 992.25 square inches (0.640 square meters). 

 

5.5 SQUARE FOUNDATION PRE-STRESSING DESIGN 

 In addition to a circular foundation design, there is also a square foundation design for the 

cylindrical tanks as shown is Figure 5.5.  For this foundation design, it was determined that there 

would be two layers of pre-stressing cables, one in the x-direction and one in the y-direction, with 

constant eccentricity.  Equations 5.2 through 5.4 from earlier were used to determine the depth and 

number of 55/WG 0.5 pre-stressing cables for each layer of the 63 inch (1.600 meters) square 

foundation.  The top layer, which has cables running in the x-direction, has a depth of 45.25 inches 

(1.149 meters), and contains 17 cables spaced 7 feet (2.134 meters) apart.  The bottom layer, which 

has cables running in the y-direction, has a depth of 50.5 inches (1.283 meters), and contains 15 

cables spaced 8 feet (2.438 meters) apart. 
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Figure 5.5:  Layout of the Pre-Stressing Cable Path for the Square Foundation 

 

5.6 FOUNDATION DESIGN CALCULATIONS 

 Figures 5.6 through 5.9 show the calculations for determining the radial post-tensioning of 

the circular slab and the cable ring.  Figure 5.10 shows the calculations for determining the 

circumferential reinforcement for the circular slab.  Lastly, Figures 5.11 through 5.16 show the 

calculations for the post-tensioning in both directions for the square slab. 

 



60 

 
 

Figure 5.6:  Circular Slab Pre-Stressing and Cable Ring Calculations (1) 
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Figure 5.7:  Circular Slab Pre-Stressing and Cable Ring Calculations (2) 
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Figure 5.8:  Circular Slab Pre-Stressing and Cable Ring Calculations (3) 
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Figure 5.9:  Circular Slab Pre-Stressing and Cable Ring Calculations (4) 

  



64 

 
 

Figure 5.10:  Circular Slab Circumferential Reinforcement Calculations 
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Figure 5.11:  Square Slab Pre-Stressing and Shear Calculations (1) 
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Figure 5.12:  Square Slab Pre-Stressing and Shear Calculations (2) 
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Figure 5.13:  Square Slab Pre-Stressing Calculations (X-Direction) (1) 

  



68 

 
 

Figure 5.14:  Square Slab Pre-Stressing Calculations (X-Direction) (2) 
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Figure 5.15:  Square Slab Pre-Stressing Calculations (Y-Direction) (1) 
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Figure 5.16:  Square Slab Pre-Stressing Calculations (Y-Direction) (2) 
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5.7 CONCLUSION 

 For both the steel and concrete cylindrical shells, there are two foundation designs 

presented, which are a circular foundation and square foundation.  The circular foundation has a 

120 feet (36.576 meters) diameter concrete foundation with posttensioning, a 50 inch (1.270 

meters) thickness, and steel side walls that are 20 feet (6.048 meters) high for safety in case of an 

accident.  The circular slab has 96 radial posttensioning 55/0.5 WG cables connect to a steel ring.  

These cables will follow a parabolic path between the edge of the slab and the edge of the tank.  

Along this path, the minimum radial posttensioning cables depth is 12.75 inches (324 mm) and the 

maximum radial posttensioning cables depth is 38.75 inches (984 mm).  The circumferential 

reinforcement will have a depth of 44.125 inches (1.121 meters).  Lastly, the Grade 60 carbon steel 

ring connecting the pre-stressing will have a radius of 8 feet (2.438 meters) and have a square cross 

section of 31.5 inches (800 mm) on each side.  The square foundation has a 120 feet (36.576 

meters) side length concrete foundation with posttensioning, a 63 inch (1.600 meters) thickness, 

and steel side walls that are 20 feet (6.048 meters) high for safety in case of an accident.  The 

square slab has two layers of pre-stressing, one layer for each direction. 

 

REFERENCES 

ACI 318-14. American Concrete Institute, 2014. 

Timoshenko, S. Theory of Plates and Shells.  McGraw-Hill, New York, 1959. 

Urugal, A. C. Theory of Beams, Plates, and Shells. 4th Ed. CRC Press, Boca Raton, FL, 2009. 



72 

CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 CONCLUSIONS 

 After performing a survey of various molten salts, it has been determined that the most 

suitable molten salt is a mixture commonly referred to as Solar Salt.  This mixture contains in 

proportion 60% sodium nitrate and 40% potassium nitrate.  A survey of molten salt storage tanks 

reveal that current methods for storing molten salt involve using steel cylindrical tanks. 

 A sample design of a steel cylindrical tank is explored.  The design of a cylindrical A588 

Grade 50 steel shell, having a diameter of 80 feet (24.384 meters), for the storage of molten salts 

is presented.  The shell is 54 feet (16.459 meters) high, has a height of salt of 42 feet (12.802 

meters), and has a top access dome with a radius of 10 feet (3.048 meters).  The two tank system 

is designed to store enough molten salt to provide 300 megawatts of power for eight hours.  The 

steel shell has a one inch (25.4 mm) stainless steel liner to protect against corrosion for a 50 year 

design life. 

 In addition, a concrete cylindrical tank design is presented.  The design of a reinforced 

cylindrical shell, having a diameter of 80 feet (24.384 meters), for the storage of molten salts is 

presented.  The shell is 54 feet (16.459 meters) high, has a height of salt of 42 feet (12.802 meters), 

and has a top access dome with a radius of 10 feet (3.048 meters).  The concrete shell also has a 

one inch (25.4 mm) stainless steel liner to protect against corrosion for a 50 year design life. 

 Lastly, two foundation designs are performed for both the steel and concrete cylindrical 

tanks, a circular foundation design and a square foundation design.  The circular foundation have 

a 120 feet (36.576 meters) diameter concrete foundation with posttensioning, which has a 50 inch 
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(1.270 meters) thickness and steel side walls that are 20 feet (6.048 meters) high for safety in case 

of an accident.  This slab will have 96 radial posttensioning 55/0.5 WG cables connect to a steel 

ring following parabolic path between the edge of the slab and the edge of the tank.  Along this 

path, the minimum radial posttensioning cables depth is 12.75 inches (324 mm) and the maximum 

radial posttensioning cables depth is 38.75 inches (984 mm).  The circumferential reinforcement 

will have a depth of 44.125 inches (1.121 meters).  Lastly, the Grade 60 carbon steel ring 

connecting the pre-stressing will have a radius of 8 feet (2.438 meters) and have a square cross 

section of 31.5 inches (800 mm) on each side.  The square foundation has a 120 feet (36.576 

meters) side length concrete foundation with posttensioning, a 63 inch (1.600 meters) thickness, 

and steel side walls that are 20 feet (6.048 meters) high for safety in case of an accident.  The 

square slab has two layers of pre-stressing, one layer for each direction. 

 

6.2 FUTURE RESEARCH 

 The main purpose of the future research in this field is to determine if there are better ways 

to store molten salt.  In particular, two alternatives are being considered as a possible replacement 

for cylindrical shells.  These alternatives are drop shell tanks and spherical shell tanks.  With both 

of these types of shells, steel and reinforced concrete designs will be examined. 

 Drop shell tanks have lower MS pressures than their cylindrical shell counterparts, thus 

much thinner walls and better surface area to volume ratio, this a decrease in heat loss from MS 

and great saving in the volume of steel.  The concept is a modified constant stress liquid storage 

tank shell designs, using two smoothly joined toroidal shells of two different radii, instead of a 

variable meridional radius, as in the nonlinear theory of liquid tanks of constant stress (Flugge 

1960).  Figure 6.1 depicts the drop shell and its dimensions. 
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Figure 6.1:  Drop Shell Model 

 
 One of the unique features of an egg drop shell is that the stress in the shell at any point is 

directly proportional to the product of both the radius of curvature and the vertical depth of salt at 

that point.  In order to properly use this effect while providing for constructability, this tank is 

designed by combining two circular arcs into a continuous curve.  The top curve maintains a larger 

radius than the bottom curve.  The radii are designed such that the ratio between these radii is 

approximately inversely related to the ratio of maximum depths for the corresponding curves, 

which is outlined in Equation 6.1. 

  
��
�C ≈ �C

�� (6.1) 

 The other structural alternative is to explore the design of spherical shells, which is shown 

in Figure 6.2.  In this structure, a spherical shell filled with molten salt and rests on a cylindrical 

ring support (Urugal 2009).  Ideally, the cylindrical ring support should intersect the spherical shell 

at the same point that the radial tensile stress is zero. 
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Figure 6.2:  Spherical Shell Model 

 
 Lastly, one other design alternative that will be explored is whether reinforced concrete 

designs will use masonry cements in the concrete instead of Portland cement.  Based on Kodur 

(2014), Portland cement concrete disintegrates between 500°C and 600°C.  Refractory cements 

have the ability to withstand temperatures up to 800°C.  This would ensure that the concrete tanks 

would be able to withstand the effects of some molten salts that can reach 700°C. 
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STATIONS 
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Molten salts (MS) in the 580°C range could be used to store excess energy from solar 
power stations and possibly from nuclear or coal.  The energy can be stored up to a week 
in large containers at elevated temperature to generate eight hours of electricity to be used 
at night or during peak demand hours.  This helps to reduce the fluctuation experienced 
at thermal solar power stations due to weather conditions.  Our research supported by 
Office of Naval Research (ONR), presents a survey of salts to be used in molten salt 
technology.  The physical characteristics of these salts such as density, melting 
temperature, viscosity, electric conductivity, surface tension, thermal capacity and cost 
are discussed.  Cost is extremely important given the large volumes of salt required for 
energy storage at a commercial power station.  Formulas are presented showing the 
amount of salt needed per required megawatts of stored energy depending on the type of 
salt.  The estimated cost and the size of tanks required and the operating temperatures are 
presented.  Recommendations are made regarding the most efficient type of molten salt 
to use.  Commercial thermal solar power stations have been constructed in the US and 
overseas mainly in Spain for which molten salt is being considered.  A field of flat mirrors 
together with collection towers are used in some designs and parabolic troughs used in 
others. 

 
Keywords:  Commercial electric station, energy storage, energy production, molten salt 
technology, solar salts, thermal solar power. 

 
1    INTRODUCTION 
 

Molten solar salts are a great and effective way to store excess solar energy for future use 
due to the vast heat storage capacities of solar salts.  In order for the solar salts to 
effectively store heat, the salts must be contained.  This is done by storing the solar salts 
in large insulated tanks in order to keep the molten salts in a closed system. 
 This project examines the current method of using insulated stainless steel cylindrical 
shells to store molten salt and presents a preliminary design of real life examples.  In 
addition, this design solution is compared to alternative shell designs that are expected to 
be more efficient in reducing shell thicknesses and stainless steel using hybrid shell 
design and shapes other than cylindrical shells. 
 
2    TYPES OF MOLTEN SALTS 
 

There are various kinds of salts, all of which can be melted for use as a molten salt.  This 
report will mostly focus on five salts:  sodium nitrate, lithium nitrate, potassium nitrate, 
sodium chloride, and a mixture of 60% sodium nitrate and 40% potassium nitrate.  These 
salts have been most prominently mentioned in the literature and are being used in 
experimental thermal sun storage facilities since they are cost effective (Janz 1967). Other 
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salts that can be used in these applications, both alone and in mixture form, include 
calcium nitrate, potassium chloride, and lithium chloride (Janz 1967). 
 
3    PHYSICAL PROPERTIES OF MOLTEN SALTS 
 

The first aspect of solar salts that must be considered are there physical properties, 
including melting point, density, viscosity, surface tension, heat capacity and electrical 
conductance.  The density of these solar salts directly affect the loading exhibited by the 
storage tanks and any piping used.   The melting point reflects an approximation of the 
temperatures these storage tanks will experience, which can be used to determine thermal 
expansion, ultimate strength and thickness along with heat shielding requirements of the 
tanks.  The viscosity determines the resistance of the molten salt while flowing through 
any pipes used.  Surface tension is the measure of force a liquid exerts on a surface by 
interacting with the surface.  Lastly, the electrical conductance determines the salt’s 
ability to conduct electricity.  Table 1 compares the densities and melting points of these 
various salts. 

 
Table 1:  Physical Properties of Solar Salts (Haynes 2012a) (Janz et. al. 1972) 

 

Compound or Mixture 
Melting Point 

(°C) 
Density at MP 

(g/cm3) 

Sodium Nitrate – NaNO3 306.5 1.900 

Lithium Nitrate – LiNO3 253.0 1.781 

Potassium Nitrate – KNO3 334.0 1.865 

Sodium Chloride – NaCl 800.7 1.556 

60 % NaNO3 / 40 % KNO3 225 (approximate) 1.870 (at 625 K) 

 
 Comparing the melting points, the 60% sodium nitrate and 40% potassium nitrate 
mixture has the lowest melting point with an approximate melting point of 225°C (Janz 
et. al. 1972).  The next lowest melting point is lithium nitrate at 253°C (Haynes 2012a).  
On the other side of the spectrum, sodium chloride (basic table salt) has the highest 
melting point considered at 800.7°C (Haynes 2012a).  The melting point of a salt is an 
important consideration for solar salt applications, which means that based on melting 
point, the best salt, for our applications is the 60% sodium nitrate and 40% potassium 
nitrate mixture since it has the lowest melting point considered while sodium chloride is 
the worst salt considered since it has the highest melting point. 
 Comparing the densities of these salts, the salt with the lowest density considered is 
sodium chloride with a density of 1.556 g/cm3 (Haynes 2012a).  The salt with the next 
lowest density is lithium nitrate with a density of 1.781 g/cm3 (Haynes 2012a).  At the 
other end, the salt with the highest density considered is sodium nitrate with a density of 
1.900 g/cm3 (Haynes 2012a).  Unlike melting point, density is not as important of a 
consideration, especially since the relative difference in densities between these salts is 
small. 
 Table 2 compares the viscosities, surface tensions, and electrical conductance of 
various solar salts. 
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Table 2:  Physical Properties of Solar Salts at Melting Point (Janz 1967) (Janz et. al. 1972) 
 

Compound or Mixture 
Viscosity 
(mPa-s) 

Surface Tension 
(mN/m) 

Electrical Conductance 
(S/cm) 

Sodium Nitrate – NaNO3 3.038 116.35 0.9713 

Lithium Nitrate – LiNO3 7.469 115.51 0.3958 

Potassium Nitrate – KNO3 2.965 109.63 0.6324 

Sodium Chloride – NaCl 1.459 116.36 0.8709 

60 % NaNO3 / 40 % KNO3 3.172* 121.80 (at 510 K) 0.7448* 

Note:  Values with a single asterisk (*) have been extrapolated for the 60% NaNO3 mix at 580 K 

 
 Comparing the viscosities, the salt with the lowest viscosity is sodium chloride with 
1.459 mPa-s (Janz 1967).  The next lowest salt is potassium nitrate with 2.965 mPa-s 
(Janz 1967).  Conversely, the salt with the highest viscosity is lithium nitrate with 7.469 
mPa-s (Janz 1967).  In comparison with other physical properties considered, viscosity is 
not the most important property to consider in comparing molten salts.  However, it is a 
property of some importance as the viscosity compares the resistance exerted against the 
molten salts while flowing through a pipe, which is something the molten salts will have 
to do in the containment units. 
 Comparing the surface tension, the salt with the lowest surface tension is potassium 
nitrate with 109.63 mN/m (Janz 1967).  The next lowest salt is lithium nitrate with 115.51 
mN/m (Janz 1967).  On the other side, the salt with the highest surface tension is the 60% 
sodium nitrate and 40% potassium nitrate mixture with 121.80 mN/m (Janz et. al. 1972).  
In comparison with other properties considered, surface tension is also not one of the 
most important properties to consider in comparing molten salts to be used in our 
applications.  However, it is a property of some importance because it affects the tanks 
and piping of the containment units 
 Comparing the electrical conductance, the salt with the highest electrical conductance 
is sodium nitrate with 0.9713 S/cm (Janz 1967).  The next highest salt is sodium chloride 
with 0.8709 S/cm (Janz 1967).  On the other side, the salt with the lowest electrical 
conductance is lithium nitrate with 0.3958 S/cm (Janz 1967).  Compared to the other 
physical and thermodynamic properties considered, electrical conductance is a minor 
consideration when comparing solar salts for energy storage applications. 
 
4    THERMODYNAMIC PROPERTIES OF MOLTEN SALTS 
 

Solar salts are known for their ability to store heat for long periods of time.  The heat of 
fusion measures the required amount of heat needed to convert a substance from a solid 
state to a liquid state, or simply the amount of heat needed to melt a substance.  The 
specific heat capacity measures a substance’s ability to store heat.  Lastly, thermal 
conductivity measures a substance’s ability to conduct heat through said substance.  All 
three properties considered are of major importance since these properties compare how 
the salts conduct and store heat.  Table 3 compares the thermodynamic properties of solar 
salts. 
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Table 3:  Thermodynamic Properties of Solar Salts (Janz 1967) (Cornwell 1970) (Haynes 
2012b) (Janz et. al. 1979) 

 

Compound or Mixture 

Specific Heat 
Capacity 
(J/mol/K) 

Thermal 
Conductivity 
(kW/mol/K) 

Heat of Fusion 
(kJ/mol) 

Sodium Nitrate – NaNO3 131.8 5.66 15.50 

Lithium Nitrate – LiNO3 99.6 5.82 26.70 

Potassium Nitrate – KNO3 115.9 4.31 9.60 

Sodium Chloride – NaCl 48.5 8.80 28.16 

60 % NaNO3 / 40 % KNO3 167.4 (at 510 K) 3.80 13.77 

Note:  Since some values were given in calories in some sources, they were converted into 
joules for this table (1 cal = 4.184 J or 1 kcal = 4.184 kJ) (IUPAC). 

 
 Comparing the specific heat capacity, the salt with the highest specific heat capacity 
is the 60% sodium nitrate and 40% potassium nitrate mixture with 167.4 J/mol/K (Janz 
et. al. 1979).  The next highest salt is sodium nitrate with 131.8 J/mol/K (Janz 1967).  On 
the other side, the salt with the lowest specific heat capacity is sodium chloride with 48.5 
J/mol/K (Janz 1967).  Based on this comparison, the best salt to use for energy storage is 
the 60% sodium nitrate and 40% potassium nitrate mixture since it has the highest heat 
capacity considered while sodium chloride is the worst salt considered since it has the 
lowest heat capacity. 
 Comparing the thermal conductivity, the salt with the highest thermal conductivity is 
sodium chloride with 8.80 kW/mol/K (Cornwell 1970).  The next highest salt is lithium 
nitrate with 5.82 kW/mol/K (Cornwell 1970).  On the other side, the salt with the lowest 
thermal conductivity is the 60% sodium nitrate and 40% potassium nitrate mixture with 
3.80 kW/mol/K (Cornwell 1970). 
 Comparing the heat of fusion, the salt with the lowest heat of fusion is potassium 
nitrate with 9.60 kJ/mol (Haynes 2012b).  The next lowest salt is the 60% sodium nitrate 
and 40% potassium nitrate mixture with 13.77 kJ/mol (Janz et. al. 1979).  On the other 
side, the salt with the highest heat of fusion is sodium chloride with 28.16 kJ/mol (Haynes 
2012b).  Based on the comparison of salt characteristics presented in Table 1.3, the 
60%/40% sodium/potassium nitrates present, for now the most interesting option for 
molten salt energy storage. However other options will be considered, such as, the 
addition of Nano silica to the salt mix in order to improve its specific heat capacity by 
30% or more. 
 
5    COST OF SOLAR SALTS 
 

Ultimately, compared to the other considered salts, the most promising solar salt to use, 
so far, in molten salt energy storage, is the 60% Sodium Nitrate and 40% Potassium 
Nitrate mixture since it compares favorably against other salts in terms of thermodynamic 
and heating properties, which are the primary factors to consider for use as a solar salt. 
 However, when considering the use of solar salts, one must consider the costs of 
various types of salts.  Table 4 compares the 60% sodium nitrate and 40% potassium 
nitrate mixture to various other solar salt substitutes that are available in the marketplace. 
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Table 4:  Costs of Solar Salts (Kearney & Associates 2001) 
 

Compound or Mixture 
∆T 

(°C) 
Cost of Salts 

($/kg) 
Cost of Power 

($/kWH) 

Hitec XL in 59% Water (42:15:43 Ca:Na:K) 200 
200 

1.43 
3.49 (w/o H2O) 

18.20 
18.20 

Hitec (7:53 Na:K: Nitrate, 40 Na Nitrate) 200 0.93 10.70 

Solar Salt (60:40 Na:K Nitrate) 200 0.49 5.80 

Calcium Nitrate Mixture Dewatered 
(42:15:43 Ca:Na:K Mixture) 

200 
150 
100 

1.19 
1.19 
1.19 

15.20 
20.10 
30.00 

Therminol VP-1 (Diphenyl Biphenyl Oxide) 3.96 100.00 57.50 

 
 The solar salt mixture (60% NaNO3 – 40% KNO3) is both the least expensive in 
terms of cost to purchase, which is 49 cents per kilogram, and the costs per kilowatt-hour 
of power generated, which is $5.80 per kilowatt-hour (Kearney & Associates 2001).  The 
next best priced mixture in both aspects is the Hitec mixture, which costs 93 cents per 
kilogram to purchase and has a power cost of kilowatt-hour of $10.70 (Kearney & 
Associates 2001).  In addition, the mixture that is the most expensive in both aspects is 
the Therminol VP-1, which costs $100 per kilogram to purchase and has a power cost of 
$57.50 per kilowatt-hour (Kearney & Associates 2001). 
 
6    CORROSION FROM MOLTEN SALTS 
 

In addition to being able to hold large quantities of heat, molten salts can be corrosive.  
Table 5 examines the corrosion properties of stainless steel exposed to various molten 
salts. 

 
Table 5:  Corrosion Properties of Stainless Steel Using Molten Salts (Sohal et. al. 2010) 

(Bradshaw and Goods 2001) 
 

Compound or Mixture 
Temp 
(°C) 

Corrosion Rate (mm/y) 

SS 304 SS 316 

60 % NaNO3 / 40 % KNO3 580 ------ 0.5 

Sodium Chloride – NaCl 845 7.2 7.2 

Hitec Salt 538 
430 
505 
550 

0.21 
------ 
------ 
------ 

<0.03 
0.007 
0.008 
0.074 

 
 The solar salt mixture at a temperature of 580°C corrodes both the SS 316 stainless 
steel at 0.5 millimeters per year (Bradshaw and Goods 2001).  The sodium chloride at a 
temperature of 845°C corrodes both types of stainless steel at 7.2 millimeters per year 
(Sohal et. al. 2010).  At 538°C, the Hitec Salt corrodes through SS 304 steel at 0.21 
millimeters per year, and through the SS 316 steel at less than 0.03 millimeters per year 
(Sohal et. al. 2010).  In addition, the Hitec Salt corrodes through SS 316 steel 0.007 
millimeters per year at 430°C, 0.008 millimeters per year at 505°C, and 0.074 millimeters 
per year at 550°C (Sohal et. al. 2010). 
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7    CONCLUSION 
 

A survey of molten solar salts for use in energy storage shells is presented, to provide 
electric generation stations with power for eight hours.  Tables are shown providing the 
characteristics of various molten salts to be used in thermal solar energy stations.  
Recommendations for the selection of an economical molten salt compound is made 
using various characteristics, including thermal capacity, availability, melting 
temperature, and the cost of salts. 
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Design of a steel tank for the storage of excess energy from thermal solar power plants 
using molten salts (MS) at 580°C is presented.  Energy can be stored up to a week in large 
containers to generate eight hours of electricity for use at night or to reduce weather 
related fluctuation at solar thermal energy plants.  Our research supported by Office of 
Naval Research (ONR) presents a detailed design of a cylindrical shell for the storage of 
high temperature molten salts.  The storage shell consists of an inner stainless steel layer 
designed to resist corrosion and an external steel structural layer to contain the large 
pressures resulting from the molten salt.  The cylindrical tank is 54 feet (16.459 meters) 
high and has an 80 feet (48.768 meters) diameter, with the salt level at a height of 42 feet 
(12.802 meters).  Given the heat of the molten salt and the size of the tank, the design 
includes a flat shell cover supported on stainless steel columns and a semispherical utility 
access dome at the center.  Considerations are made for the reduction of strength of steel 
at elevated temperatures.  Layers of external insulation materials are used to reduce heat 
loss in the storage shell.  The design presents a posttensioned concrete foundation 
analysis for the storage tank, which sits on a layer of sand to allow for thermal expansion. 

 
Keywords:  Commercial electric station, energy production, molten salt tanks, 
posttensioned concrete slabs, solar salts, steel cylindrical shells 

 
1    INTRODUCTION 
 

Molten solar salts are a great and effective way to store excess solar energy for future use 
due to the vast heat storage capacities of solar salts.  These solar salts are contained in 
large insulated tanks in order to keep the molten salts in a closed system.  This project 
examines the current method of using insulated hybrid steel cylindrical shells to store 
molten salt and presents a preliminary design of real life examples. 
 
2    DESIGN METHODS FOR MS STORAGE TANKS 
 

Currently, molten salt (MS) storage shells are usually cylindrical tanks made of stainless 
steel.  The MS steel tanks have a hybrid design of A588 Carbon Steel and an inner layer 
of 316 Stainless Steel to protect against corrosion, varying in thickness from one inch (25 
mm) for a fifty year plant life span to 0.6 in (15 mm) for a thirty year plant life span. 
 
3    TANK REQUIREMENTS 
 

For this stage of the project research, the tanks need to store enough molten solar salt, 
which is a 60:40 sodium nitrate (NaNO3) and potassium nitrate (KNO3) mix, to provide 
power for a 300 megawatt power plant for eight hours each night.  Calculations 
determined that in order to satisfy these requirements, the two tanks need to be able to 
store 12,048 cubic meters of salt or 425.5 x 103 cubic feet. 
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 In order to determine the total mass of salt required to operate the power plant, one 
must start with the basic energy equation, which is shown in Equation 1 (Holman 1986). 
 

  � = ��	
��
� ∗ ∆�����
�
 = � ∗ �� ∗ ∆� (1) 
 

 In Equation 1 above, � represents the total energy in the system.  The power 
generated by the power plant is ��	
��
�, which as stated earlier is 300 megawatts.  The 

required time of storage is ∆�����
�
, which is 8 hours or 28,800 seconds.  The required 

amount of solar salt needed for the power plant is represented by �.  The specific heat 
capacity of the salt is ��, which is 1540 joules per kilogram of salt per degree kelvin.  The 

temperature range of the salt in the system is ∆�, which is calculated using Equation 2 
below. 
 

  ∆� = ��
��,�
� − (��
� − 20 �) (2) 
 

 In Equation 2 above, the maximum temperature of salt in the system, or ��
��,�
�, is 

853.15 degrees kelvin.  The temperature of the Rankine cycle, or ��
�, is 620.55 degrees 
kelvin.  Equation 2 determined that the temperature range for the salt is 252.6 degrees 
kelvin. 
 
 In order to determine the required mass of salt, Equation 1 is rearranged into 
Equation 3 as shown. 
 

  � = !"#$%&'(∗∆�)"*%'+$
,-∗∆.  (3) 

 

 This determined that the power plant requires 22.88 x 106 kilograms of salt, or 50.44 
x 106 pounds (25,220 tons). 
 
Equation 4 is used to determine the volume of solid salt required. 
 

  /�
�� = �
0)'(" (4) 

 

 Equation 4 determined that the volume of solid salt required is 12,048 cubic meters 
of salt, or 425.5 x 106 cubic feet (12,048 cubic meters).  This volume will be divided over 
two tanks, requiring 212.7 x 106 cubic feet (6,024 cubic meters) for each tank.  However, 
a third and fourth tanks, all of carbon steel, are recommended for the storage of cooled 
MS after power generation and for safety and continued operations during maintenance 
of the other tanks. 
 All structural steel used is A588 Grade 50 steel.  The cylindrical tank designed with 
a 40 feet (12.192 meters) radius at the base.  This results in a height of salt of 42 feet 
(12.802 meters) and a height of 54 feet (16.459 meters) for the cylindrical tank. 
 
4    STEEL CYLINDRICAL TANKS 
 

The steel structural design was divided into five elements for individual analysis and 
design, which are the shell wall, the top cover with a central 10 feet (3.048 meters) 
diameter steel access dome, support columns, a steel bottom, and the concrete slab below 
a layer of sand.  All of these structural elements are made of structural and stainless steel 
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except the concrete slab.  Shell theory was used to perform the structural analysis of the 
cylindrical tank and central access dome. 
 The first design performed was for the shell wall.  Based on shell theory, axial 
bending in a cylindrical shell occurs mainly at the base of the wall, at the junction with 
the ring and base plate, before dissipating further up the wall (Urugal 2009).  Further 
analysis determined that axial bending dissipates nine feet above ground.  The first step 
was to determine the bending in the shell wall.  The maximum positive axial bending 
moment is 4.085 kip-foot/foot (18.17 kN-m/m) at the bottom of the shell, and the 
maximum negative bending moment is 886.2 pound-foot/foot (3.942 kN-m/m) at a height 
2.7 feet (826 mm) above the bottom of the shell.  Circumferential moments are equal to 
the Poisson ratio multiplied by the axial moments.  The bottom of the wall contains the 
maximum circumferential tensile force, which is 177.6 kips per linear foot (klf), which is 
2,593 kN/m.  Tensile membrane force is determined by Equation 5b (Urugal 2009).  
While maximum axial compressive force, ��, in the wall at the bottom of the shell is 
equal to the total dead weight of the shell, top slab, live load and service dome, which is 
the total weight (5), divided by the circumference of the shell.  Equations 5c through 5h 
are used to determine the bending in the shell wall (Urugal 2009). 
 

  6 = 78 (5a) 
 

  �� = 69 (5b) 
 

  : = ;�
<=(<>?) (5c) 

 

  @ = A�<>?C
��  (5d) 

 

  D< = E	�C
;�  (5e) 

 

  D= = E�C
;� Fℎ − <

HI (5f) 

 

  J = K>H�(D< cos @O + D= sin @O) + E(	>�)�C
;�  (5g) 

 

  �� = : SCT
S�C  (5h) 

 

  �� = U�� (5i) 
 

  �� = VW
X  (5j) 

 

 In determining the applied pressure on the tank from Equation 5a, it is the product of 
the salt unit weight (7) and the depth of salt (8) at the specified point.  In Equation 5b, 6 
is the applied pressure on the wall and r is the radius of the wall (Urugal 2009).  In 
Equations 5c through 5h, :, @, D<, and D= are coefficients, � is the Young’s Modulus of 
the shell material, � is thickness of the shell wall, U is the Poisson’s ratio of the shell 
material, ℎ is the total height of molten salt, J is shell wall deflection at a height of O 
above ground, and the second derivative of J is used to determine the moment at that 
point (Urugal 2009).  �� is the axial moment at a height of O above ground, 5� is the 
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weight of the shell including dead and live loads on its top at level above O (Urugal 2009).  
Figure 1 details the design of the cylindrical shell and the top dome. 
 

 
 

Figure 1:  Steel Cylindrical Shell Model Including Top Dome, Supporting Rows of 
Columns, 2’ Sand Layer, 50” Posttension Slab, and Safety Steel Walls at the Edge 

 

 The shell was designed in sections of varying thickness based on the loading.  The 
bottom nine feet of the shell wall was designed to accommodate excess bending, require 
1.5 inches of structural steel thickness due to the combined axial membrane and bending 
stresses.  The next section of the wall, from 9 to 15 feet (2.734 to 4.572 meters) above 
ground, requires 0.625 inches (15.9 mm) of steel thickness.  Starting from 15 feet above 
ground, the thickness of the shell wall is decreased by 0.125 inches (3.2 mm) every seven 
feet until a thickness of 0.125 inches (3.2 mm) remain.  This results in the wall being 0.5 
inches (12.7 mm) thick between 15 and 22 feet (4.572 to 6.706 meters), 0.375 inches (9.5 
mm) between 22 and 29 feet (6.706 to 8.839 meters), 0.25 inches (6.4 mm) between 29 
and 36 feet (8.839 to 10.973 meters) above ground, and 0.125 inches (3.2 mm) for the 
remaining portion of the wall above 36 feet (10.973 meters).  Due to corrosion effects, a 
one inch liner of 316 Stainless Steel covers the steel wall. 
 The next design was for both the top steel plate and the columns supporting it in the 
cylindrical tank.  The top plate is 0.625 inches (15.9 mm) thick and is supported by three 
circular rows of columns.  One row of columns is located ten feet (3.048 meters) away 
from the center of the tank, at the tip of the opening and the 0.625 inches (15.9) thick 
service dome. It contains eight equally spaced columns.  The second row of columns is 
located 22 feet (6.706 meters) away from the center of the tank and contains eight equally 
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spaced columns.  Lastly, the third row of columns is located 32 feet (9.754 meters) away 
from center and contains 16 equally spaced columns.  These columns are made of carbon 
steel covered with a layer of stainless steel because of the heat and corrosion from MS.  
When designing the columns and shell walls, an extra factor of safety is used due to the 
expected heat of the molten salt.  At 580 degrees Celsius, steel is expected to only 
maintain 60% of its nominal yield strength (Salmon 2009).  As a result, the final design 
load for the first row of columns is 6.5 kips (28.9 kN), 19.6 kips (87.2 kN) for the second 
row, and 11.7 kips (52.0 kN) for the third row.  Ultimately, it is determined that the first 
row of columns be designed as HSS 4½ x 4½ x 1/8” columns, the second row as HSS 4½ 
x 4½ x ¼” columns, and the third row as HSS 4½ x 4½ x 1/8” columns (Steel Construction 
Manual 2012).  Due to corrosion effects, a one inch (25.4 mm) liner of 316 Stainless Steel 
covers the steel column.  In addition, the column will be connected to the top steel shell 
with a 14 inch by 14 inch (356 mm) plate that is two inches thick (50.8 mm). 
 In order to design for bending in the top steel flat slab, Timoshenko’s method was 
used to design the top plate as a continuous simply supported plate over the edge of the 
shell and supported by rows of columns as discussed earlier. Moments at the supporting 
columns are found from the column pattern of annular arrays normalized as rectangular 
arrays.  Based on Timoshenko’s (1959) theory, the maximum negative bending moment 
in each direction is located at the column.  The maximum positive moments, being the 
radial moments, occur at the center of the normalized annulus, and the maximum 
circumferential moment occur directly halfway between columns.  For this shell, the 
maximum negative moment is 1.785 kip-foot/foot and the maximum positive radial 
moment is 1.040 kip-foot/foot. 
 In addition, an opening with a 10 feet (3.048 meters) radius is carved out of the top 
shell so that a removable steel dome with the same radius can be placed on top of the 
steel plate.  This opening is to allow pipes into the shell and service access into the tank. 
 
5    FOUNDATION DESIGN 
 

 
 
Figure 2:  Posttensioning Cable and Circumferential Reinforcement Layout for Concrete 

Slab Including Inner Steel Ring 
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A complete design was performed on the concrete slab sitting over dense sand.  Included 
in the foundation design is a 2 feet (610 mm) layer of sand between the tank and the 
concrete slab as shown in Figure 1 to allow for thermal expansion of the shell.  Figure 2 
details the radial posttensioning cable layout, the steel ring, and circumferential 
reinforcement in the concrete slab.  The steel ring is necessary because the posttensioning 
cables cannot intersect with each at the center of the 50 inch concrete slab. 
 For the slab, 96 radial posttensioning 55/0.5 WG cables that connect to the inner steel 
ring are required as shown in Figure 2.  In addition, six #14 circumferential bars per foot 
are required under the MS tank, with number of bars decreasing toward the free edge.  In 
addition, the minimum radial posttensioning cables depth is 12.75 inches (324 mm), the 
maximum radial posttensioning cables depth is 38.75 inches (984 mm), and the 
circumferential reinforcement depth is 44.125 inches (1.121 meters).  This requires a slab 
thickness of 50 inches (1.270 meters) as shown in Figure 1. 
 
6    CONCLUSION 
 

The design of a cylindrical A588 Grade 50 steel shell, having a diameter of 80 feet 
(24.384 meters), for the storage of molten salts is presented.  The shell is 54 feet (16.459 
meters) high, has a height of salt of 42 feet (12.802 meters), and has a top access dome 
with a radius of 10 feet (3.048 meters).  The two tank system is designed to store enough 
molten salt to provide 300 megawatts of power for eight hours.  The shell has a one inch 
(25.4 mm) stainless steel liner to protect against corrosion for a 50 year design life.  Also 
shown is a 120 feet (36.576 meters) diameter concrete foundation with posttensioning, 
which has a 50 inch (1.270 meters) thickness and steel side walls that are 20 feet (6.048 
meters) high for safety in case of an accident. 
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