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ABSTRACT 

by 

Mayra Alejandra Sarria Cortes 

Dr. Daniel Gerrity, Examination Committee Chair 

Assistant Professor, Department of Civil and Environmental and 

Construction 

University of Nevada, Las Vegas 

 

In the United States, perchlorate contamination has been widely reported, including in 

Las Vegas, Nevada, where perchlorate has been detected at concentrations of 34.7 mg/kg in 

vadose zone soil and 0.18-3.7 g/L in groundwater. Once this groundwater reaches the Las Vegas 

Wash, there is potential for widespread contamination of drinking water sources throughout the 

Southwest, including in Nevada, Arizona, and California. This issue is becoming increasingly 

important because even at low perchlorate concentrations, sensitive populations such as infants 

and pregnant women can be potentially impacted due to perchlorate’s ability to hinder iodine 

uptake into the thyroid glands, which leads to inhibition of hormone production. Biodegradation 

is generally recognized as the most cost effective treatment strategy for perchlorate mitigation. 

The use of in situ bioremediation is common in vadose zone soils, while ex situ bioremediation 

has been employed in groundwater and saturated soil applications. For remediation of vadose 

zone soils, organic or inorganic electron donors can be added to stimulate the native microbial 

community, specifically perchlorate reducing bacteria, to reduce perchlorate to chloride through 

a series of redox reactions. However, co-occurring electron acceptors, particularly nitrate, may 

compete with perchlorate and hinder the bioremediation process.  
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This study evaluated the efficacy of four electron donors, specifically two emulsified 

soybean oils (EOS-100 and EOS-Pro), glycerol, and a compost/mulch extract, for biological 

reduction of nitrate and perchlorate using batch microcosm testing. These electron donors were 

evaluated in two different test matrices: (1) vadose zone soil mixed with surface water from Lake 

Mead and (2) saturated soil mixed with groundwater. Samples were analyzed to evaluate nitrate 

and perchlorate removal kinetics, the effects of phosphate addition, and the effects of varying 

soil to water ratios. Results indicated that EOS-100 and glycerol achieved similar overall 

reduction of nitrate and perchlorate in the vadose zone soil application, although EOS-100 

exhibited faster kinetics. In the saturated soil experiments, EOS-Pro was superior to EOS-100. 

The evaluation of soil to water ratios demonstrated that the most significant variable limiting 

nitrate and perchlorate reduction was the availability of electron donor rather than water volume. 

Finally, phosphate addition indirectly improved perchlorate reduction by increasing the rate of 

nitrate biodegradation, particularly for samples with a mass-based nitrogen to phosphorus ratios 

higher than 0.22:1. The results from this study can be used to better inform bioremediation 

efforts at perchlorate-contaminated sites, thereby improving treatment efficacy and decreasing 

risks to downstream drinking water sources  
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CHAPTER 1. INTRODUCTION  

Perchlorate (ClO4
-) can be generated through anthropogenic or natural processes, and it is 

considered a contaminant of concern due to its potential human health effects. Perchlorate 

interferes with iodine uptake into the thyroid gland, leading to inhibition of thyroid hormone 

production in the body (Motzer, 2001). In 2005, The United States Environmental Protection 

Agency (USEPA) included perchlorate on the Contaminant Candidate List (CCL) and identified 

a chronic oral reference dose (RFD) of 0.7 μg/kg-day. This RFD corresponds with a drinking 

water equivalent level (DWEL) of 24.5 μg/L, assuming drinking water is the only source of 

perchlorate consumption (USEPA, 2014). The USEPA then identified a more stringent 15-μg/L 

threshold for adverse noncarcinogenic effects after a lifetime exposure. This new interim health 

advisory level accounted for additional exposure to perchlorate from contaminated food. In 2011, 

the USEPA declared its intent to regulate perchlorate in drinking water, but by 2016, no 

regulation had been established. Meanwhile, some states have adopted safety advisory levels 

(e.g., Nevada at 18 μg/L and Arizona at 14 μg/L) until a national standard is established (Water 

Research Foundation, 2014). 

The biophysicochemical properties of perchlorate facilitate its accumulation and transport 

in soil and groundwater. Perchlorate is a persistent contaminant in water because it is highly 

soluble, non-volatile, and kinetically inert (X. Xu et al., 2015). The high solubility and mobility 

of perchlorate contribute to its spreading from the source of contamination to other distant 

locations (Karimi & Rezaee, 2014a). The stability of perchlorate due to its high activation energy 

(120 kJ/mol) contributes to its accumulation, and because of its low adsorption onto soil, 

infiltration mobilizes perchlorate present in the vadose zone, thereby generating a constant 
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source of perchlorate contamination in groundwater sources (Evans & Trute, 2006). As a result, 

contamination of soils, groundwater, and surface water has been widely reported in the last 

decade (Motzer, 2001). 

Southern Nevada is the site of one of the most severe examples of perchlorate 

contamination in the environment. Concentrations in the vadose zone soil of the Las Vegas Wash 

have been reported at 34,700 μg/kg of soil (Batista et al., 2005), and this contamination has been 

linked to detection of perchlorate in local drinking water source, Lake Mead, —ranging from 18 

to 280 μg/L. In fact, Las Vegas groundwater have even reached concentrations of 180 to 3,700 

mg/L in heavily contaminated areas and 8 to 21 μg/L in less contaminated areas (Motzer, 2001;)   

Because perchlorate mitigation is challenging, diverse technologies have been developed 

and tested for their efficacy in cleaning soil, surface water, and groundwater. Physical/chemical 

technologies for contaminated surface water and groundwater include ion exchange, membrane 

filtration technologies, adsorption with granular activated carbon (GAC), and chemical and 

electrochemical reduction (ITRC, 2008). Biological reduction has also been implemented for in-

situ and ex situ bioremediation. Soil treatment includes in situ bioremediation with bioventing, 

phytoremediation, and soil flushing, while ex situ bioremediation generally relies on thermal or 

excavation treatment technology. These technologies have proven to be efficient on cleaning 

perchlorate contaminations in vadose zone soils, and many studies in the literature agree that one 

of the most economically viable and environmentally friendly treatment options is in-situ 

biodegradation treatments.  

In-situ bioremediation has been specially applied in contaminated vadose zone soils, for 

example to clean contaminated-perchlorate soils. This technique has been applied to overcome 

bioremediation limitations such as the insufficient nutrients, electron donors, and water contain 
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in the soil that inhibit the natural biological reduction of contaminants (i.e., nitrate and 

perchlorate). Therefore, in-situ bioremediation is a technique applied to stimulate the microbial 

activity in soils and provide high contamination removals.  Two different techniques can be 

implemented during in-situ perchlorate bioremediation treatments: (1) water is injected to flush 

the perchlorate into saturated zones in which the high availability of water (groundwater) 

facilitate subsequent treatments and (2) a mix of an enhanced water with an organic or inorganic 

electron donor is applied into the vadose zone soil to treat the contaminated zone while flushing 

the perchlorate into the saturated zone (groundwater). During in-situ biodegradation of 

contaminated-perchlorate vadose zone soils, the native microbial communities use perchlorate as 

the electron acceptor and the organic or inorganic electron donors to catalyze the reactions in 

contaminated zones. 

Perchlorate reducing bacteria (PRB) are ubiquitous in the environment, and under 

anaerobic conditions and sufficient electron donor concentrations, PRB can degrade perchlorate. 

Laboratory research is often required to characterize the efficacy of a particular treatment 

approach before it is implemented at full-scale. Using microcosms, previous studies have 

evaluated different sources of carbon as potential electron donors, and these studies have also 

assessed potential interferences between perchlorate and co-contaminants. Further examination 

of alternative electron donors may improve perchlorate bioremediation. For example, electron 

donors capable of improving perchlorate removal kinetics, reducing operational costs and 

complexity. More specifically, there is a need to identify a suitable, cost-effective, slow-release 

electron donor for soil and groundwater remediation applications.  

Furthermore, the use of microcosm batch tests can determine crucial parameters to 

increase the efficiency of in-situ perchlorate bioremediation in contaminated vadose zone soils 
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through (1) the identification of the adequate water content to warranty complete mobilization of 

perchlorate into saturated soils (groundwater), (2) the identification of competitive electron 

acceptors that could delay perchlorate reduction, and (3) an adequate contact time to ensure 

complete perchlorate biodegradation.  

The objective of this research was to evaluate the potential use of diverse electron donors 

and the associated degradation kinetics for perchlorate and nitrate biodegradation in vadose and 

saturated soils from a contaminated site.  Specifically, the electron donor glycerol, commercially 

available emulsified oils (EOS®-100 and EOS-PRO), and a compost/mulch extract were 

evaluated. The characterization of the nitrate and perchlorate biodegradation in both of the zones 

is an innovative approach due to the chemical and physical properties of the soils and the 

application of specific aforementioned electron donors. This research would provide new 

perspectives to improve the application of different electron donor/carbon sources to perchlorate 

and nitrate biodegradation treatments. The kinetics of perchlorate reduction were characterized 

through the use of laboratory microcosms in two phases: (1) use of surface water and vadose 

zone soil to simulate in-situ bioremediation treatment (i.e., adding Lake Mead water to evaluate 

the maximum perchlorate releases or mobilization from the soil into the source of water) and (2) 

use of groundwater and saturated soil to evaluate the efficiency of the applied electron donors in 

the contaminated groundwater. Thus, a comparison of perchlorate biodegradation in the vadose 

zone vs. the saturated zone is warranted. 

The first phase of this research (Chapter 3) involved the use of surface water and vadose 

zone soil samples, and experiments were performed to quantify the release and subsequent 

reduction of nitrate and perchlorate. Specific tasks included the following: 

 Evaluate perchlorate reduction kinetics with electron donors in vadose zone soils 
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 Evaluate perchlorate attenuation in abiotic controls 

 Evaluate competitive reduction of nitrate 

 Investigate the effect of phosphate addition 

 Evaluate different soil/water ratios to evaluate the amount of water needed to 

mobilize perchlorate contamination into saturated soils.  

The second phase of this research (Chapter 4) involved the use of contaminated 

groundwater and saturated soil. The experimental objectives of this phase are provided below: 

 Evaluate perchlorate reduction kinetics with electron donors in saturated zone soils 

 Evaluate perchlorate reduction in abiotic controls 

 Evaluate competitive reduction of nitrate 

 Investigate the effect of phosphate addition 

 Determine the impact of soil moisture content on kinetics  

Both phases assessed nitrate interference and the potential benefits of phosphate 

augmentation. All microcosms were tested for additional contaminants such as phosphate, 

sulfate, and sulfide, as well as pH, hardness, and conductivity. 

The primary hypothesis of this research is that proving an adequate electron donor will 

catalyze the natural microbial degradation of nitrate and perchlorate in contaminated soils by 

simulating in-situ biodegradation treatments using microcosms batch test. The evaluation of 

nitrate and perchlorate biodegradation in both vadose zone and saturated soils is an innovative 

approach due to the chemical and physical variabilities of the soils (i.e., water, carbon, nutrients, 

pH, and temperature) that can lower the efficacy of the selected electron donor during in-situ 

biodegradation treatments.  Considering the chemical and physical conditions of the soil at the 
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site of the study, this research will determine the most effective electron donor evaluating 

suitable conditions such as moisture content, soil to water ratios, and nutrient availability. As a 

result of this research, stakeholders interested in remediating perchlorate-contaminated soils can 

have a wider selection of electron donors that adapting to different conditions can lead to 

mitigate perchlorate plumes into groundwater sources.  
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CHAPTER 2. LITERATURE REVIEW 

 Perchlorate Biodegradation 

Perchlorate (ClO4
-) is an inorganic contaminant resulting from the dilution of various ion 

salts such as perchloric acid, ammonium perchlorate, potassium perchlorate, and sodium 

perchlorate in water. The most important sources of perchlorate contamination include sites 

manufacturing solid rocket fuel propellants, pyrotechnics, fertilizers, munitions, and car air bags 

(Gullick et al., 2001), as well as releases from medical and chemical laboratory facilities 

(Motzer, 2001). Additionally, natural sources of perchlorate contamination have been reported. 

These natural sources have been associated with photochemical atmospheric reactions. It has 

been suggested that perchlorate can be generated naturally from the reaction between sodium 

chloride present on land and sea surfaces with ozone found in the atmosphere. The sodium 

chloride is blown into the atmosphere where it reacts with ozone, thereby resulting in the 

generation of perchlorate salts. Consequently, the natural accumulation of perchlorate in soils 

and water results from precipitation (Karimi & Rezaee, 2014a).  

Perchlorate salts produce adverse effects on human health, particularly interference of 

iodine uptake into the thyroid gland leading to an inhibition of hormone production. The 

production of thyroid hormones is important because they assist and regulate the metabolism and 

normal growth in the human body (Motzer, 2001). In fact, perchlorate exposure can inhibit the 

development of fetuses, the central nervous system, and the skeletal system of infants (USEPA, 

2014). After perchlorate was linked to these adverse public health outcomes, evaluating potential 

exposure to perchlorate in water sources became critically important. 
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To date, the most used perchlorate detection method is ion chromatography (IC) with 

conductivity detection (Federal Facilities Forum, 2005). Standard IC was initially capable of 

detecting perchlorate at concentrations above 100 μg/L, but in 1997, the California Department 

of Health Services improved the method and achieved a detection limit of 4 μg/L. This method is 

now recognized as United States Environmental Protection Agency (USEPA) Method 314.0 and 

is applicable to perchlorate detection in drinking water, groundwater, and surface water (USEPA, 

2014). More recently, the USEPA developed an alternative method for perchlorate that relies on 

detection by a more sensitive mass spectrometer. These new methods (i.e., 314.1, 314.2, 331.0, 

and 332.0) can achieve perchlorate detection down to 30 ng/L, 12-18 ng/L, 8 ng/L, and 20 ng/L, 

respectively (Karimi & Rezaee, 2014a). 

In 2005, the USEPA identified a chronic oral reference dose (RfD) for perchlorate of 0.7 

μg/kg-d and included perchlorate on the Contaminant Candidate List (CCL) (USEPA, 2014). 

Based on the reported RfD, the USEPA identified a corresponding drinking water equivalent 

level (DWEL) of 24.5 μg/L, which assumed that water was the only source of perchlorate 

consumption. The USEPA then identified 15 μg/L as the no observed adverse effects level 

(NOAEL) for noncarcinogenic effects over a lifetime of exposure. The reduction in the interim 

health advisory level (i.e., 24.5 μg/L down to 15 μg/L) was intended to account for additional 

exposure to perchlorate from contaminated food. Subsequently, in 2006, Massachusetts set a 

Maximum Contaminant Level (MCL) of 2 μg/L, and then California set an MCL of 6 μg/L in 

2007 (Water Research Foundation, 2014). In 2011, the USEPA decided to regulate perchlorate in 

drinking water at the federal level, but by early 2016 (the time of this research), no regulation 

had been established yet. Some states decided to adopt safety advisory levels (e.g., Nevada at 18 

μg/L and Arizona at 14 μg/L) until a federal standard was established (USEPA, 2014). 
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Contamination of soils, groundwater, and surface water has been widely reported in the 

last decade. Perchlorate concentrations have even been detected in edible products in different 

locations around the world. Perchlorate concentrations were reported in fruits, vegetables, milk 

(Karimi & Rezaee, 2014a), and bottled and tap water, among other products in the United States, 

Canada, Japan, China, and India (Kumarathilaka et al., 2016). Perchlorate concentrations in soils 

in Texas, New Mexico, Nevada, and Utah have been reported at relatively low concentrations 

ranging from 1.6 to 13 μg/kg of soil. On the other hand, soil concentrations vary from 290 to 

2,565 μg/kg of soil in the Atacama Desert in northern Chile, although this is considered a natural 

occurrence of perchlorate (Kumarathilaka et al., 2016). 

In northern and central New Mexico, aqueous perchlorate has been documented from 

0.12 μg/L to 1.8 μg/L in groundwater (Plummer et al., 2006). In the United States, high 

perchlorate contamination was detected in the Southwest in 2005. Accordingly, the sources of 

this contamination were investigated, and the results showed that different companies were 

responsible, particularly the former Kerr-McGee Chemical Corporation (Tronox), Pacific 

Engineering & Production Company of Nevada (PEPCON), the American Potash and Chemical 

Corporation (AP & CC), the Western Electrochemical Company, and the U.S. Navy (Batista et 

al., 2005; Gullick et al, 2001; Nevada Division of Environmental Protection, 2011; Zhu., 2016). 

In response, these companies developed projects to reduce the perchlorate contamination to 

levels as low as 18 μg/L in their discharges. The technique most frequently used has been in-situ 

biodegradation (Nevada Division of Environmental Protection, 2011). 

Henderson, Nevada is the site of one of the most severe examples of anthropogenic 

perchlorate contamination in the environment (Nevada Division of Environmental Protection, 

2011). Concentrations in the vadose zone soil of the Las Vegas Wash have been reported at 
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34,700 μg/kg of soil (Smith et al., 2004), and perchlorate has been detected in drinking water in 

Las Vegas. The Southern Nevada Water Authority reported perchlorate concentrations ranging 

from 18 to 280 μg/L (Nzengung et al., 1999). Concentrations in Las Vegas groundwater have 

even been reported to range between 1.8×105 to 3.7×106 μg/L in highly contaminated areas and 8 

μg/L to 21 μg/L in less contaminated areas (Motzer, 2001).  

The biophysicochemical properties of perchlorate facilitate its accumulation and transport 

in soil and groundwater. Perchlorate is a persistent contaminant in water due to its high 

solubility, low volatility, and kinetically inert properties (X. Xu et al., 2015). The high solubility 

(e.g., ammonium perchlorate, 200 g/L; perchloric acid, 100 g/L) and mobility of perchlorate 

contribute to its rapid spreading from the source of contamination to other distant locations 

(Karimi & Rezaee, 2014b). The Gibbs free energy of formation of perchlorate in aqueous 

solution is -8.5 kJ/mol, which indicates that perchlorate has a low association with cations and 

high solubility in aqueous and nonaqueous media (Urbansky, 1998). The stability of perchlorate 

due to its high activation energy (120 kJ/mol) contributes to its accumulation, and because of its 

low adsorption onto soil, infiltration mobilizes any perchlorate present in the vadose zone (Evans 

& Trute, 2006). 

 Perchlorate Bioremediation in Surface and Groundwater 

Because perchlorate mitigation is so challenging, diverse technologies have been 

developed and tested for their efficacy in cleaning surface water and groundwater. 

Physical/chemical technologies include ion exchange, membrane filtration, adsorption with 

granular activated carbon (GAC), and chemical and electrochemical reduction. Biological 

reduction has also been implemented for in situ and ex situ bioremediation (ITRC, 2008). 



11 

 

Ion exchange technology is one of the most effective processes to remove perchlorate 

from water. Treatment by ion exchange occurs through the adsorption of dissolved perchlorate 

anions onto engineered resins or natural zeolites. The efficiency of perchlorate removal through 

ion exchange is affected by the presence of co-contaminants such as nitrate, sulfate, bicarbonate, 

carbonate, and bromide, which are competing anions usually present in contaminated perchlorate 

groundwater. Ideal resins are highly specific for a target contaminant, and they can generally be 

regenerated and used repeatedly. Ion exchange is not effective for the removal of high 

concentrations of perchlorate due to saturation limitations of the resins. Therefore, perchlorate 

remediation applications require continuous monitoring to quickly identify and respond to 

perchlorate breakthrough (ITRC, 2008).  

Darracq et al. (2014) compared anion removal with five different commercial resins 

(A532E, A520E, A400E, PWA-5, and PSR-2) through kinetics and isotherm batch tests with 

synthetic water. Results showed that these resins were highly effective for the target anions, but 

that removal efficiencies, including for perchlorate, decreased in the presence of competing 

anions, such as nitrate, sulfate, and chloride. The study noted that PSR-2 and A532E had the 

highest specificity for perchlorate with first and second order sorption models with removal rate 

constants of 1.52×10-2 min-1 for PSR-2 and 2.3×10-3 g mg-1min-1 for A532E. Although these 

resins proved to be efficient in removing perchlorate, they are not regenerable. Although ion 

exchange is a promising method for perchlorate removal, resin replacement is potentially cost-

prohibitive, and the regeneration of the resin, when feasible, results in a highly contaminated 

brine requiring disposal (Ye et al., 2012) 

Membrane filtration using reverse osmosis (RO) has also been shown to be effective for 

perchlorate removal (Kumarathilaka et al., 2016). This technology is considered a physical 
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separation method in which the perchlorate-contaminated water passes through a semipermeable 

membrane under pressure (ITRC, 2008). However, RO systems continuously generate a 

concentrated brine solution that requires further treatment or disposal (Srinivasan & Sorial, 

2009). Broad implementation of RO for perchlorate remediation is hindered by its exceptionally 

high capital and operational costs as well as the costs and effort associated with brine disposal 

(ITRC, 2008).   

Electrochemical reduction has also been demonstrated for perchlorate removal without 

the generation of significant byproducts (e.g., perchlorate brines) (Rusanova et al., 2006; D. M. 

Wanget al., 2009). However, Kumarathilaka et al. (2016) suggested that further study is needed 

in order to extend laboratory research to field applications.  

Many studies in the literature agree that one of the most economically viable and 

environmentally friendly treatment options is biodegradation or biological reduction (Srinivasan 

& Sorial, 2009). Because biological reduction is an energy intensive process for bacteria, they 

require enzymes capable of lowering the activation energy of the reactions (Bardiya & Bae, 

2011). The principal cell-bound enzymes responsible for biological reduction of perchlorate are 

perchlorate reductase and chloride dismutase. Figure 1 shows the perchlorate reduction pathway 

and the field of action of each enzyme (Frankenberge, 2003).  

 
Figure 1. Perchlorate Reduction Pathway  
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Perchlorate reducing bacteria (PRB) are ubiquitous in natural environments (Bruce & 

Coates, 1999). PRB are facultative anaerobes which have been classified as Gram-negative and 

of the Proteobacteria class. Relevant genera include Dechloromonas and Azospira (formerly 

Dechlorosoma), which are able to reduce perchlorate and chlorate. Enzymatic competition 

between perchlorate and other electron acceptors decreases the efficiency of biological reduction. 

It has been demonstrated that in the presence of oxygen and nitrate, PRB have an affinity to 

reduce oxygen and nitrate before perchlorate due to the thermodynamic favorability of the 

competing electron acceptors (Bardiya & Bae, 2011). In addition, perchlorate reduction can also 

be hindered by sulfate and carbon dioxide. Figure 2 shows the preferred utilization of electron 

acceptors for PRB based on their redox potentials. Perchlorate reduction generally occurs 

between 0 and -110 mV, while oxygen and nitrate reduction occurs at higher redox potentials. In 

addition, PRB can be limited by high salinity (conductivity) environments, low perchlorate 

concentrations, and a lack of electron donors (Batista et al., 2005; Nozawa-Inoue et al., 2011). 

Therefore, understanding the enzymatic reactions and potential competition by other species 

within the target matrix are important factors in improving the efficiency of this treatment 

approach (Srinivasan & Sorial, 2009). 

 
Figure 2. Sequence of Utilization of Electron Acceptors (ITRC, 2008)  
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 Perchlorate Biodegradation in Vadose Zone Soil 

The depth of the soil formation where the pores are not saturated with water is name the 

vadose zone.  The depth of a formation where the pores are permanently saturated with water is 

called the saturated zone.  Because perchlorate contamination generally occurred by discharge of 

perchlorate containing wastes into the ground, these wastes percolated through the vadose zone 

and reached the saturated zone, where groundwater resides.  Therefore, in many areas, both the 

vadose zone and the groundwater are contaminated with perchlorate (Holden, Patricia A, 2005). 

Due to the presence of bacteria in the vadose zone, bioremediation technologies are capable of 

enhance the conditions of the vadose zone soil through the injection of water/moisture, electron 

donors, and nutrients into the soil to promote perchlorate degradations. Based on this principle, 

new research has been performed to improve treatment in the vadose zone and reduce 

groundwater contamination during infiltration and mobilization of adsorbed perchlorate. Soil 

treatment includes in situ bioremediation with bioventing, phytoremediation, and soil flushing, 

while ex situ bioremediation generally relies on thermal or excavation treatment technology 

(ITRC, 2008). 

Bioventing typically involves the injection of oxygen to stimulate natural in situ 

biodegradation within native microbial communities (Evans & Trute, 2006), but this is 

ineffective for the remediation of highly oxidized contaminants such as perchlorate (ITRC, 

2008). However, bioventing, which involves either gas injection or soil vapor extraction (SVE), 

can be adapted to target reduced or oxidized contaminants. For example, during gas injection, 

nitrogen gas can be amended with a gaseous electron donor and then injected into the vadose 

zone. The electron donor serves as the electron source for biological reduction, and the gaseous 

nitrogen displaces some of the dissolved oxygen present in the contaminated soil, thereby 
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enhancing perchlorate reduction kinetics. With SVE, soil vapor is extracted from the 

contaminated site, amended with a gaseous electron donor, and the mixture is then injected back 

into the contaminated vadose zone (Khan et al., 2004). Bioventing is applicable for sites with 

perchlorate contamination at depths greater than 1.5 m because of its easy installation and 

operation ( ITRC, 2008), but it can be hindered by soils with low permeability (high water 

content) or high clay composition due to the inability of the air to pass through these zones 

(Khan et al., 2004). 

Bioventing has been widely used for petroleum contamination (Höhener & Ponsin, 2014; 

Khan et al., 2004), and it has also been used for nitrate and perchlorate removal in microcosm 

and column studies (Evans et al., 2011; Evans & Trute, 2006). Cai et al. (2010) used microcosm 

experiments to demonstrate the effectiveness of various gaseous electron donors in supporting 

perchlorate bioremediation. The microcosms were amended with hydrogen, 1-hexene, ethyl 

acetate, and liquefied petroleum gas (propane) as the electron donors. Different concentrations of 

the electron donors and two different soil moisture contents (high soil moisture = 16% w/w and 

low soil moisture = 13% w/w) were analyzed. Results indicated that with high soil moisture 

content, hydrogen achieved complete perchlorate degradation, liquefied petroleum gas (LPG) 

and 1-hexene achieve partial perchlorate degradation, and ethyl acetate did not achieve any 

perchlorate degradation. In addition, the experiments indicated first order kinetics with rate 

constants ranging from 0.13 d-1 to 0.20 d-1 for hydrogen, 0.005 d-1 for LPG, and 0.11 d-1 for 1-

hexene.  

Phytoremediation of perchlorate and nitrate in soil and groundwater involves the use of 

plants. A variety of terrestrial plants have been demonstrated to be effective for perchlorate 

removal, including black willow (Salix nigraand, Salix caroliniana), eastern cottonwood 
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(Populus deltoides), eucalyptus (Eucalyptus cinerea), loblolly pine (Pinus taeda), French 

tarragon (Artemisia dracunculus), and spinach (Spinacia oleracea). Likewise, a variety of 

wetland species, such as Typha latifolia (cattail), Spirodela polyrhiza, Shield (duck weed), 

microbial mats, and Myriophyllum aquaticum (parrot feather), have also been shown to be 

effective (ITRC, 2008). Phytoremediation involves three different mechanisms: uptake and 

phytodegradation, uptake and phytoaccumulation, and rapid rhizodegradation. These 

mechanisms differ according to the action zone in the plant (i.e., leaves, stem, or roots). 

Phytodegradation takes place in the leaves of the plants. This process takes longer than the 

uptake process, so phytoaccumulation (above the surface zone of the plant) is likely to occur 

simultaneously. Rhizodegradation takes place in the root zone of the plant. This process utilizes 

anaerobic microbes and exudates (ethanol, acetate, glucose) present in the roots and in the soil to 

reduce perchlorate to chloride. Nitrogen and oxygen have been reported to inhibit perchlorate 

biodegradation in phytoremediation applications but can be overcome by applying high 

concentrations of electron donors in the root zone. This technology is cost effective, ecofriendly, 

and it garners significant public support. However, climate conditions limit plant growth in some 

areas, thereby hindering perchlorate removal (Khan et al., 2004). In addition, this mechanism can 

take long periods of time, sometimes requiring several growing seasons to reach perchlorate 

removal standards, and the process has limited applicability for contaminated soil and 

groundwater at depth (Khan et al., 2004).  

Soil flushing is another alternative that consists of passing fluid through a soil to mobilize 

target contaminants. The fluid is then captured, treated (potentially with electron donor addition 

and bioremediation) according to design or regulatory criteria, and discharged. Similar to 
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bioventing, this approach can be hindered if the soil contains high amounts of clay, which 

restricts fluid flow (Khan et al., 2004).  

Finally, thermal excavation is one of the most invasive remediation options because it 

involves the excavation of contaminated soil followed by heating to 500-1100°F. Although this 

approach achieves complete destruction of perchlorate, it is generally infeasible because of the 

high cost, energy consumption, and logistical difficulties (ITRC, 2008). 

 Applied Electron donors (Microcosm Studies) 

Laboratory research is often required to characterize the efficacy of a particular treatment 

approach before it is implemented at full-scale. Using microcosms or columns, previous studies 

have evaluated different sources of electron donors, and they have also evaluated potential 

interferences between perchlorate and co-contaminants. Evans & Trute (2006) used gaseous 

electron donor injection in a microcosm configuration to evaluate the effectiveness of hydrogen 

and ethanol for nitrate and perchlorate removal. Results showed that under adequate soil 

moisture content, the electron donors would be able to induce reduction of nitrate and 

perchlorate in the vadose zone. Gal et al. (2008) examined the potential for native soil microbes 

recovered from different vadose zone depths to reduce perchlorate and nitrate. The results 

showed that perchlorate can be completely removed after 134 days of incubation without 

external sources of carbon due to ambient electron donor (i.e., natural organic matter) availability 

in the soil, although the kinetics are hindered by low concentrations of natural organic matter. 

The natural organic matter demonstrated a perchlorate reduction rate of 0.45 mg day-1, whereas 

acetate demonstrated 7.2 mg day-1 of perchlorate reduction. In addition, the limitations of 

perchlorate reducing bacteria were also evaluated during the research. Results showed that high 
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concentrations of perchlorate (10,000 – 20,000 mg/L) did not affect perchlorate reducing 

bacteria, presumably due to long periods of adaptation to high concentrations prior to the 

experiments. However, when higher water content (e.g., close to the water table) and nutrients 

were available, perchlorate reducing bacteria exhibited higher efficiencies. Likewise, Shrout & 

Parkin (2006) studied the biodegradation of perchlorate at different molar ratios of lactate (as the 

electron donor) to perchlorate (i.e., 1:1, 2:1, and 4:1) with batch microcosm testing. These ratios 

were based on the stoichiometric electron equivalent basis in which 8 electrons per mole of 

perchlorate are required for biodegradation. Results showed that perchlorate reduction rates were 

0.038 mgClO4
-/mgVSS-h for the 1:1 ratio and 0.045 mgClO-4/mgVSS-h for the 2:1 and 4:1 ratio, 

which were reported as 25 times the initial rate of perchlorate degradation in the absence of 

spiked lactate as the electron donor. 

Nozawa-Inoue et al. (2005) evaluated the efficiency of two electron donors—acetate and 

hydrogen—for perchlorate contaminated vadose zone soil samples (110,000 g of perchlorate per 

kg of soil) in microcosm batch tests. Results showed that acetate was faster than hydrogen for 

perchlorate degradation with lag periods of 14 days and 41 days, respectively. The maximum 

perchlorate degradation rates for acetate and hydrogen were 2.7 mg/kg dry soil per day and 1.68 

mg/kg dry soil per day, respectively. Wang et al. (2013) evaluated the potential use of emulsified 

oil substrate (EOS®598), EHC® (patented combination of controlled-release, integrated carbon 

and zero valent iron), and a compost/mulch mixture for perchlorate-contaminated groundwater 

(500 μg/L) and soil (26 μg/kg) with microcosm batch tests. Microcosms were supplemented with 

diammonium phosphate ((NH4)2 HPO4) to enhance perchlorate biodegradation. Results showed 

that EHC achieved a reduction rate of 314 μg/L-d, EOS achieved 142 μg/L-d, and the 

compost/mulch mixture yielded 40 μg/L-d without nutrient addition. Nutrient addition yielded 
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greater reduction in perchlorate for the EOS and compost/mulch electron donors (250 μg/L-d and 

90 μg/L-d, respectively), but no benefits were observed for EHC, which actually dropped to 263 

μg/L-d. 

 Knowledge Gaps in the Literature Related to Groundwater and Soil Perchlorate 

Bioremediation 

To date, different potential remediation technologies have been developed to cleanup 

nitrate and perchlorate contaminated surface and groundwater. These technologies include ion 

exchange, membrane filtration, adsorption with granular activated carbon (GAC), chemical and 

electrochemical reduction, and ex-situ biological reduction. Similar technologies for nitrate and 

perchlorate contaminated soils have also been implemented (ITRC, 2008). These technologies 

mainly include in-situ biological treatment reduction due to their high efficacy and low 

operational cost compared with ex-situ bioremediation treatments in which post-treatment of the 

extracted soils resulted in higher operational costs ( ITRC, 2008).  

Commonly, biological reduction of perchlorate has been applied in contaminated vadose 

zone soils, especially in-situ bioremediation reduction (ITRC, 2008). One of the most used 

perchlorate in-situ bioremediation treatments in soils is recognized as “soil flushing”. Soil 

flushing involves the addition of water into the vadose zone soils to flush or mobilize the 

perchlorate into deeper soils or into the saturated zone. Once the perchlorate reaches the 

saturated zone is mixed with the groundwater present in this zone, and then the contaminated 

water is pumped to the surface for subsequent treatments. Other application during soil flushing 

involves the addition of enhanced water with electron donor addition to mobilize and treat the 

perchlorate in the saturated zone. 
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In bioremediation treatments, native microbial communities are stimulated with electron 

donors and nutrients to breakdown contaminants. During in-situ biodegradation of perchlorate, 

perchlorate reducing bacteria ubiquitous in natural environments (e.g., vadose zone soil) utilize 

perchlorate as the electron acceptor and organic or inorganic compounds as electron donors to 

catalyze the reactions in contaminated zones. Therefore, the identification of a suitable electron 

donor benefits the implementation and operation of bioremediation treatments.   

The vadose zone has been widely studied because the contaminants contained in this 

zone are directly related with groundwater contamination (e.g., perchlorate). The vadose zone is 

an aerated zone (i.e., the spaces between the soil particles are occupied by air), characterized by 

lower water/moisture content. While in the saturated zone, the water/moisture content is 

considerable higher due to the present of groundwater occupying the spaces between the soil 

particles. The characteristics of these two zones limit full-scale bioremediation applications. For 

example, high oxygen content, low amount of water, variability of pH and temperature, high 

salinity, and low nutrient and electron donor contents are the main limiting factors in perchlorate 

biodegradation. 

To improve biological reduction of nitrate and perchlorate, laboratory research has also 

been performed to assess different sources of carbon in microcosm and column testing. For 

example, acetate (Batista et al., 2005), hydrogen (Evans & Trute, 2006), glycerol (X. Xu et al., 

2015), ethanol (Evans & Trute, 2006) succinate, glucose, and benzoate (X. Xu et al., 2015) are 

some of the electron donors previously studied. These electron donors proved to be effective for 

nitrate and perchlorate reduction, but the lag time to achieve perchlorate reduction and/or the 

rapid consumption/mobilization of the electron donors may be limiting factors in some full-scale 

applications.  
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More sophisticated electron donors have been investigated for various test matrices (e.g., 

vadose zone vs. saturated soil) and water sources (e.g., surface water, groundwater, or synthetic 

water) as shown in Table 1, but there are few studies that directly compare bioremediation 

efficacy across a wide range of variables, including (1) nitrate vs. perchlorate reduction efficacy 

and kinetics, (2) standard vs. slow-release electron donors, (3) surface water vs. groundwater 

matrices, and (4) vadose zone soil vs. saturated soil environments. This study evaluates 

competitive reduction of nitrate and perchlorate using four different electron donors: (1) EOS-

100 (a slow-release emulsified oil with large droplet size), (2) EOS-Pro (a slow-release, nutrient-

amended emulsified oil with small droplet size), (3) glycerol (a standard, highly soluble electron 

donor), and (4) compost/mulch extract (a low cost alternative that repurposes used materials). 

This study also evaluates the efficacy of these electron donors in both vadose zone and saturated 

soil applications and surface water and groundwater matrices simulating in-situ bioremediation 

of nitrate and perchlorate in two test matrices (i.e., vadose zone soil and saturated 

soil/groundwater). Ultimately, this expanded knowledge base will further reduce risks associated 

with the consumption of perchlorate-contaminated drinking waters by improving the efficacy of 

bioremediation efforts.  
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Table 1. Summary of Studies of Electron Donors Used in Bioremediation of Perchlorate  

Electron 

Donor 

Bioremediati

on 

Technology 

Source of 

Perchlorat

e 

Initial 

perchlorate 

Concentratio

n 

Final 

Perchlorate 

Concentratio

ns 

Contact 

Time 

Performan

ce 
Reference 

Acetate 
Laboratory 
batch test, 

microcosms 

Synthetic 
water 

1300 mg/L (< 4μg/L)* 60 hours 
62.72 

mg/L/h 

Zhu, 
Yanping, 

2016 

EOS 5982 -Di 
ammonium 
phosphate 

Laboratory 
batch test, 
microcosms 

Groundwat
er 

 

Soil 

0.5 mg/L  

 

0.026 mg/ 
kg-soil 

(< 4μg/L)* 7 days 0.25 mg/L/d 

Y. Wang et 

al., 2013 

EHC3 -Di 
ammonium 
phosphate 

Laboratory 
batch test, 
microcosms 

Groundwat
er 

 

Soil 

0.5 mg/L 

 

0.026 mg/kg-
soil 

(< 4μg/L)* 5 days 
0.263 

mg/L/d 

Compost/mul
ch mixture4-
Di ammonium 
phosphate 

Laboratory 
batch test, 
microcosms 

Groundwat
er 

 

Soil 

0.5 mg/L 

 

0.026 mg/ 
kg-soil  

(< 4 μg/L)* 8 days 0.09 mg/L/d 

Acetate 

Hydrogen 

Laboratory 
batch test, 
microcosms 

Vadose 
zone soil 

20 mg/kg-soil --- 

43 days 

(acetate) 

7 days 
(hydroge

n) 

~22% 
(acetate) 

>90% 
(hydrogen) 

Nozawa-
Inoue,Mami

e, 2011 

Glycerin-Di 

ammonium 
phosphate 

Ex-situ 

Bioremediatio
n 

Soil 0.04-10 mg/L --- 15 days 0.2 mg/L/d 

Evans, 

Patrick J. 
2008 

EOS1 Field pilot test 
Groundwat

er 
3.1-20 mg/L  (< 4 μg/L)* 5 days --- 

Borden, 
Robert. C, 

2007 

EOS1 
 Laboratory 
batch test, 

microcosms 

Groundwat
er 

50 mg/L 8 mg/L 14 days 
~3 

mg/L/day** 
Solution-
IES, 2006 

Acetate 
Laboratory 
batch test, 
microcosms 

Soil 
5x10-4 

mg/kg-soil 
--- 

> 4 
months 

>0.2 
mg/day 

Batista et 
al., 2005 

1Emulsified Soybean Oil 
2Emulsified Soybean Oil EOS-Pro previously call EOS 598 
3Mix of integrated carbon and zero valent iron electron donor 
4100% wood mulch electron donor 
* Below detection limit 
** Determined based on the data provided in the journal paper  
---Data no reported 
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CHAPTER 3. PERCHLORATE BIOREMEDIATION IN SURFACE WATER AND 

VADOSE ZONE SOIL: MICROCOSMS STUDY 

 Introduction 

Perchlorate (ClO4
-) is an inorganic contaminant resulting from the dilution of various ion 

salts such as perchloric acid, ammonium perchlorate, potassium perchlorate, and sodium 

perchlorate in water. Perchlorate interferes with iodine uptake into the thyroid gland, leading to 

inhibition of hormone production (Motzer, 2001). As a result of the potential adverse human 

health effects, a drinking water equivalent level of 15 μg/L has been identified, and the USEPA 

has decided to regulate perchlorate at the federal level, although a maximum contaminant level 

(MCL) has not yet been established. 

In 1997, high perchlorate contamination was detected in the southwestern United States 

(Zhu et al., 2016), and it has been reported that more than 15 million people within the region 

consume some level of perchlorate-contaminated water (Nevada Division of Environmental 

Protection, 2011). Specifically, Las Vegas is the site of one of the most severe examples of 

perchlorate contamination in the environment. Concentrations in the vadose zone soil of the Las 

Vegas Wash have been reported at 34,700 μg/kg of soil (Smith et al., 2004), and perchlorate has 

been detected in drinking water in Las Vegas. In fact, the Southern Nevada Water Authority 

reported perchlorate concentrations ranging from 18 to 280 μg/L (Nzengung et al., 1999). 

Concentrations in Las Vegas groundwater have even been reported to range between 180 and 

3,700 mg/L in heavily contaminated areas and between 8 and 21 μg/L in less contaminated areas  

(Motzer, 2001). 
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The accumulation and transport of perchlorate in soils have been widely reported (Tipton 

et al., 2003). Perchlorate-contaminated soils are one of the most significant sources of 

groundwater contamination (Gal et al., 2009). As a result, remediation technologies have been 

developed to improve treatment in the vadose zone, groundwater, and surface water. 

Physicochemical technologies to clean groundwater and surface water include ion exchange, 

membrane filtration technologies, adsorption with granular activated carbon (GAC), and 

chemical and electrochemical reduction. Biological reduction has also been implemented for in 

situ and ex situ bioremediation (Bardiya & Bae, 2011). Soil treatment includes in situ 

bioremediation with bioventing, phytoremediation, and soil flushing, while ex situ 

bioremediation generally relies on thermal or excavation treatment technology (Caliman et al., 

2011). 

Many studies in the literature agree that one of the most economically viable and 

environmentally friendly treatment options is biodegradation, specifically biological reduction 

(Srinivasan & Sorial, 2009) . Because biological reduction requires bacterial enzymes capable of 

lowering the activation energy of the reactions. The principal cell-bound enzymes responsible for 

biological reduction of perchlorate are perchlorate reductase, which degrades perchlorate (𝐶𝑙𝑂4
−) 

to chlorate (𝐶𝑙𝑂3
−) and then to chlorite (𝐶𝑙𝑂2

−), and chloride dismutase, which degrades chlorite 

(𝐶𝑙𝑂2
−) to chloride (𝐶𝑙−) and oxygen (𝑂2) (Frankenberge, 2003). Perchlorate reducing bacteria 

(PRB) are ubiquitous in natural environments (Bruce et al., 1999). PRB are capable of reducing 

perchlorate and chlorate under anaerobic conditions using perchlorate as the electron acceptor 

and diverse organic (e.g., acetate, lactate, methanol, ethanol, and vegetable oils) or inorganic 

(e.g., hydrogen, reduced iron, and hydrogen sulfide) substrates as electron donors. 
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Biological reduction of perchlorate has been applied in contaminated vadose zone soils, 

especially in-situ bioremediation reduction (ITRC, 2008). In situ bioremediation in contaminated 

vadose zone soils involves the injection of water into the vadose zone soils to mobilize the 

perchlorate into the saturated zone or groundwater zone. After the perchlorate is concentrated in 

the saturated zone, the groundwater is then pumped to the surface for subsequent treatments. 

Other application during soil flushing involves the addition of enhanced water with electron 

donor to mobilize and treat the perchlorate in the saturated zone. 

The vadose zone is a zone characterized by the high oxygen and lower water/moisture 

content. These characteristics are factors that limited bioremediation treatments. However, the 

injection of water, nutrients, and electron donors into the vadose zone soil promotes the 

efficiency of biological reduction treatments by increasing the natural bacteria activity in the 

contaminated soil. Therefore, there is a need for identification and further investigation of 

electron donors that persist in the contamination zone, exhibit more rapid kinetics, and can 

compete with low-cost electron donors.  

To date, there are a variety of electron donors that have previously been evaluated for the 

reduction of perchlorate salts in different water or soil matrices. Zhu, Yanping (2016) used 

acetate to reduce perchlorate from a contaminated synthetic water through microcosms batch 

test. Results indicated that acetate reduces perchlorate to levels lower than the detection limit of 

4 μg/L within 28 to 60 hours of incubation at a rate of reduction of 62.72 mg/L/h. In a separated 

research, acetate demonstrated lower perchlorate reduction rates in a contaminated soil (~ 0.2 

mg/day). Results indicated that the rate constants may have resulted due to lower perchlorate 

contamination present in site of study (5x10-4 mg/kg-dry soil) (Batista et al., 2005). More 

sophisticated electron donors have been also investigated for perchlorate and chlorinated 
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solvents. For example, EOS was employed in a permeable reactive barrier to treat groundwater 

contaminated with perchlorate and 1,1,1-trichloroethane (1,1,1-TCA). Microcosm batch tests 

were performed before field implementation. Microcosm results showed that within 14 days of 

incubation, perchlorate was reduced from 50 mg/L to ~8 mg/L, and 1,1,1-TCA was reduced from 

2.5 mg/L to 0.3 mg/L within 140 days (Solution-IES, 2006). In a field pilot test, perchlorate and 

1,1,1-TCA concentrations were observed at different distances from the permeable reactive 

barrier. Perchlorate was ~100% and 99% removed at 10 and 20 feet, respectively, from the 

permeable reactive barrier within 5 days of installation (Borden, Robert. C, 2007). Glycerol 

(Evans et al., 2008) and a variety of compost/mulch extracts have also been utilized as electron 

donors for perchlorate biodegradation  (Fox et al., 2014; Y. Wang et al., 2013).  

In the past decade, several electron donors have been identified for perchlorate 

bioremediations, but a few research has involved the evaluation of nitrate and perchlorate 

reductions with standard vs. slow-release electron donors. The objective of this phase of the 

research was to evaluate the potential efficacy and kinetics of diverse electron donors for nitrate 

and perchlorate biodegradation in a contaminated vadose zone soil. Emulsified oil, EOS-100 (a 

slow-release emulsified oil), glycerol (a standard, highly soluble electron donor), and 

compost/mulch extract (a low cost alternative that repurposes used materials) were used as the 

experimental electron donors. The microcosm batch test was designed to simulate in-situ 

bioremediation of perchlorate in a contaminated vadose zone soil. Microcosms were augmented 

with the aforementioned electron donors to stimulate the ubiquitous microbial communities 

present in the soil at the site of study and to decrease the contact time during full-scale 

applications (i.e., faster nitrate and perchlorate reduction rates). Additionally, Lake Mead water 
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was used to simulate the moisture/water content in the vadose zone soil and the mobilization of 

perchlorate from the vadose soil to the Lake Mead water.    

Alternative, the study also evaluates the impact of soil to water ratios on perchlorate 

kinetics, co-contaminant interference, and the effects of macronutrient augmentation. This 

expanded knowledge base will further reduce risks associated with the consumption of 

perchlorate-contaminated drinking waters by improving the efficacy of bioremediation efforts 

and reducing the operational cost related with long-lasting electron donors. 

 Materials and Methods 

Microcosm batch tests were performed to achieve the objectives of this research. 

Microcosms were built with vadose zone soil from a perchlorate-contaminated site and surface 

water from Lake Mead. Glycerol, EOS-100, and a compost/mulch extract were used as the 

electron donors for perchlorate biodegradation, and native bacteria from the vadose zone soil 

were used as the source of perchlorate reducing bacteria. Additionally, the effects of 

macronutrient augmentation, the impact of soil to water rations on perchlorate mobilization and 

kinetics were evaluated.  

 Perchlorate Reducing Bacteria (PRB) 

Using a standard plate count technique, Batista et al. (2003) reported that the 

concentration of PRB in Lake Mead fluctuated from <1 to 1000 CFU/mL. The bacterial counts 

were specific to the genera Shewanella spp. and Rahnella aquatilus. Therefore, it was assumed 

that PRB were present in the surface water from Lake Mead and in the vadose zone soil used in 

this microcosm batch test. Thus, no additional bacteria were spiked into the microcosms.  
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 Electron Donors Source for Vadose Zone Soil and Surface Water Microcosms 

Microcosms were augmented with three different electron donors to stimulate nitrate and 

perchlorate reductions in the vadose zone soil and Lake Mead water. Glycerol, EOS-100, and a 

compost/mulch extract were used as the electron donors for perchlorate biodegradation. 

EOS-100 is a mixture of organic carbon in the form of refined and bleached U.S. soybean 

oil (85% by weight), intended to enhance perchlorate biodegradation (EOS Remediation LLC, 

Raleigh, NC., 2016; Zawtocki et al., 2004). Anaerobic conditions result in the hydrolysis of 

EOS-100, which releases glycerol and long chain fatty acids (LCFAs). For in situ biodegradation 

applications, LCFAs are adsorbed onto soil sediments due to their lower solubility in water and 

are then converted to acetate and hydrogen (electron donors) via fermentation. Because hydrogen 

production generally exceeds acetate production, contaminant reduction (e.g., perchlorate and 

nitrate) is generally attributed to hydrogen release (R. C. Borden, 2007). EOS-100 can 

theoretically generate 156 moles of hydrogen, as shown in Eq. 1 (Solutions-IES, 2010). 

However, inefficiencies in the fermentation process (i.e., conversion to less desirable products) 

limits the actual hydrogen yield (Rittmann & McCarty, 2001).  

𝐶56𝐻100𝑂6(𝑜𝑖𝑙) + 106𝐻2𝑂
𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑖𝑛𝑔 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎
→                56𝐶𝑂2 + 156𝐻2 (1) 

Glycerol and the compost/mulch extract were also derived from commercially available 

products. The compost/mulch extract was a mixture of biocomponents (i.e., recycled branches, 

logs and trees) obtained from a local composting company. The compost/mulch extract solution 

was obtained by washing 1 lb of soil compost/mulch with recirculated deionized water at a flow 

rate of 150 mL/min. Glycerol was obtained from Sigma Aldrich Corporation. Glycerol is a stable 
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and low cost nontoxic alcohol. The reductive pathway of glycerol always results in the 

production of 1,3-propanediol (1,3-PDO) assisted by the enzymatic action of 1,3-propanediol 

dehydrogenase. The oxidative pathway of glycerol starts with dehydration of dihydroxyacetone 

and ends in the production of succinate. Both processes occur by the action of two enzymes, 

glycerol dehydrogenase and dihydroxyacetone kinase, respectively. The succinate is then 

converted to propionate or to pyruvate. Finally, depending on which reducing bacteria are 

present and the environmental conditions, the pyruvate is converted to additional subproducts 

(i.e., acetate, butyric acid, CO2, n-butanol, ethanol, lactic acid) and hydrogen (da Silva et al., 

2009; Viana et al., 2012). Table 2 summarizes the chemical and physical properties of 

commercially available EOS-100 and glycerol, as described by the manufacturers.  

Table 2. Chemical and Physical Properties of EOS-100, Glycerol and Compost/mulch Electron 

Donors  

Parameter EOS-100 Glycerol Compost/mulch*  

Chemical Oxygen Demand (mg/L) 2.07×106  1.21×106 mg 250 

Organic Carbon (% by Weight) 100 N/A N/A 

Refined and Bleached U.S. Soybean Oil (% by 

Weight) 
85 N/A N/A 

Slow Release Organics (% by Weight) 15 N/A 

 

N/A 

 
Mass of Hydrogen Produced (lb H2 / lb EOS-100) 0.40 N/A N/A 

Solubility in water Miscible with 

water 

Miscible with 

water 
N/A 

Melting point (°C) N/A 20 N/A 

Flash Point (°C) N/A 199 N/A 

 
Viscosity (% by Weight) Low N/A N/A 

Relative Density 0.92-0.93 1.26 N/A 

(N/A: no data available) 

*Measured in the Water and Environmental Laboratory, University of Nevada Las Vegas (UNLV) 

 

 Vadose Soil and Surface Water Samples  

Soil samples were collected from the vadose zone in four different locations and two 

different profile depths (0-12 feet and 14-26 feet) at a perchlorate-contaminated site. The 
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samples were mixed in equal volumes (3 L) in serial partitions to obtain a homogeneous mixture. 

The soil mixture was preserved in a refrigerator at 4°C before experiments.  

Initial contaminant concentrations in the vadose soil were determined through a 

sequential extraction process (described below), and the concentrations were calculated on a dry 

weight basis. The moisture content of the soil was determined by weighing 20 g of soil before 

and after drying in an oven at 105°C for 12 hours. The analysis was performed in duplicate, and 

the average moisture content was 7.7%.  

The extraction process was performed in duplicate across multiple stages. For each stage, 

two 50-mL centrifuge tubes, each containing 20 g of wet soil and 20 mL of nanopure water, were 

centrifuged at 9,000×g and 4°C (Solvall Legent-GT) for 10 min. This procedure was repeated 

nine times until perchlorate and nitrate were not detected in the resulting extract (i.e., the 

contaminants had been completely transferred from the soil to the extraction water). The final 

extracts were aggregated (final volume of ~68 mL per duplicate) and analyzed for perchlorate, 

nitrate, and other water quality parameters, as shown in Table 3. On average, the perchlorate and 

nitrate concentrations in the combined extracts were 48.1 and 91.2 mg/L (as NO3), respectively. 

Based on the measured moisture content of 7.7%, the adsorbed perchlorate and nitrate 

concentrations on the soil were determined to be 0.18 and 0.34 mg/g-dry weight soil, 

respectively. Therefore, the soil-bound nitrate concentration was almost twice the concentration 

of perchlorate. This is significant because nitrate competes with perchlorate as an electron 

acceptor in bioremediation applications. In fact, nitrate is the thermodynamically preferred 

electron acceptor, which means its presence adversely impacts the kinetics of perchlorate 

bioremediation. 
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Table 3. Vadose Zone Soil and Lake Mead Water Initial Quality Parameters 

Parameter Extract (mg/L)1 Soil (mg/g)2 Lake Mead Water (mg/L) 

Perchlorate 48.1 0.18 0.0106 

Nitrate (as NO3) 91.2 0.34 2.04 

Nitrate (as N) 20.9 0.76 0.45 

Hardness (as CaCO3) --- --- 294 

Total Dissolved Solids 377 --- 619 

Chlorate 48.1 0.18 ND 

Chloride 150 0.55 81.6 

 
Phosphate (as PO4

-3) 0.4 0.0015 --- 

Iron  1.9  0.010 ND 

Sulfate 105 0.39 238 

 

pH (unitless) 7.3 --- 7.7 
1Concentrations in the aggregated extract (total volume of ~68 mL) 
2Calculated based on 20 g of wet soil with a moisture content of 7.7% 

---: Not analyzed 

ND: non-detect 

 

 Microcosms Experimental Setup 

The microcosm experiments were conducted in 150-mL borosilicate glass bottles. The 

microcosms contained contaminated soils, water, electron donor, and nutrients. For the EOS-100 

and glycerol microcosms, soil and surface water from Lake Mead were added to each bottle at a 

ratio of 30 g of vadose zone soil to 100 mL of water (i.e.,1:3 soil to water ratio). The microcosms 

were then augmented with 0.5 mL of EOS-100 or 7 mL of 10-fold diluted glycerol. For the 

compost/mulch extract samples, 40 mL of compost extract was combined with 60 mL of surface 

water and 30 g of soil. The dosages of the electron donors were based on two parameters: (1) the 

hydrogen generated during the fermentation process and (2) the chemical oxygen demand (COD) 

of each donor. Both parameters impact the amount of donor needed to remediate the observed 

concentrations of the target electron acceptor (i.e., perchlorate) and other competing acceptors 

(e.g., oxygen, nitrate, and iron). The additional electron acceptors must be included when 
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calculating the amount of electron donor required because of the preferred redox state of some of 

these competing acceptors, as shown in the aforementioned redox tower (Figure 2). 

 Electron Donor Dose 

As explained in section 3. 2. 2, EOS-100 and glycerol generate sub-products as part of 

their degradation pathways. EOS-100 releases glycerol and long chain fatty acids (LCFAs). 

LCFAs are then converted to acetate and hydrogen (electron donors) via fermentation. Likewise, 

glycerol releases propionate or pyruvate, and depending on which reducing bacteria are present 

and the environmental conditions, the pyruvate is converted to additional subproducts, including 

acetate and hydrogen. Given that 0.4 lb of H2 is generated per lb of EOS-100 (Table 1), it is 

possible to estimate the amount of EOS-100 required to reduce the various electron acceptors 

typically found at perchlorate-contaminated sites, as summarized in Table 4. 

Table 4. EOS-100 demand considering the Stoichiometric Reaction of the Electron Donors and 

Hydrogen 

Electron 

Acceptor 

Reduction Equation Moles 

H2 / 

Moles 

Acceptor 

lb Acceptor 

/ lb H2  

lb Acceptor / 

lb EOS-1001 

lb EOS-100 / 

lb Acceptor 

Oxygen O2 + 2 H2  2 H2O 2.0 7.9 3.2 0.31 

Nitrate 2 NO3
- + 2 H+ + 5 H2  N2 +6 

H2O 

2.5 12 4.9 0.20 

Perchlorate ClO4
- + 4 H2  Cl- + 4 H2O 4.0 13 5.0 0.21 

Chlorate ClO3
- + 3H2  Cl- + 3 H2O 3.0 14 5.6 0.10 

Iron III 2 Fe+3  +  H2 --- 2 Fe+2 + 2 H+ 0.5 55 22 0.05 
1Assumes 0.4 lb H2 per lb EOS-100 (Table 1) 

 

Based on the concentrations of the electron acceptors present in the vadose zone soil 

(Table 3) and the amount of EOS-100 per electron acceptor required (Table 5), the estimated 

amount of EOS-100 required for the experimental testing can be determined (Table 6). 
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Table 5. EOS-100 Demand 

Electron 

Acceptor 

lb EOS-100/ lb 

Acceptor 

Electron acceptor in 

vadose zone soil, mg/g soil 

EOS Demand g 

oil/g soil 

EOS-100 Demand for 

30 g of wet soil, mg 

Oxygen 0.31 0.017 5.2x10-6 0.16 

Nitrate 0.20 0.340 6.9x10-5 2.06 

Iron III 0.21 0.010 4.5x10-7 0.01 

Chlorate 0.10 0.180 3.2x10-5 0.97 

Perchlorate 0.05 0.180 3.6x10-5 1.09 

Total --- --- 1.4x10-4 4.28 

 

The total EOS-100 demand is ~4.28 mg per microcosm (i.e., per 30 g of wet soil and 100 

mL of Lake Mead water). Given the relative density of the EOS-100 of 0.93, the total 

stoichiometric oil demand (i.e., 1X) for each microcosm would be 0.0045 mL. To achieve a 100x 

stoichiometric excess, 0.5 mL of EOS-100 was used in each microcosm.  The stoichiometric 

excess is used to account for all the electron donors use for the bacteria present in the 

contaminated zone and due to the soil constituents that could limit the electron donor 

availability. 

The amount of glycerol added was based on achieving a chemical oxygen demand (COD) 

equivalent to the aforementioned EOS-100 addition. The average COD concentrations of the 

pure EOS-100 and glycerol were 2.07×106 mg/L and 1.21×106 mg/L, respectively. Therefore, the 

COD of EOS-100 is about 1.7 times higher than glycerol. Therefore, the volume of glycerol 

required for each microcosm was assumed to be 1.7 times the EOS-100 volume (i.e., 0.0045 mL 

of EOS-100 × 1.7 = 0.0077 mL of pure glycerol). To achieve a 100x stoichiometric excess, 0.77 

mL of glycerol needed to be dose. However, the glycerol stock was diluted ten-fold because 

glycerol is a highly viscous compound. Therefore, to facilitate the dosing or pipetting of the 

glycerol, the actual glycerol addition was 7 mL of 10-fold diluted glycerol in 100 mL of Lake 

Mead water.  
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The equivalent COD required for a complete reduction of the electron acceptors present 

in the contaminated vadose zone soil (i.e., 1X) would theoretically be ~103.50 and ~84.70 mg/L 

for EOS-100 and glycerol, respectively. Based on the equivalent COD requirements for EOS-

100, to account for a 100x stoichiometric excess approximately 10,350 mg/L would be assumed. 

Therefore, based on the COD concentrations of the electron donors, the aforementioned volumes 

of EOS-100 and 10-fold diluted glycerol resulted in ~100X stoichiometric excess, while the 40 

mL of compost extract resulted in ~1.0X stoichiometric excess. Nutrient requirements, 

specifically phosphorus, were calculated assuming a typical bacterial composition 

(𝐶5𝐻7𝑂2𝑁𝑃0.1). 

Initially, the microcosms were divided into four groups: (1) microcosms amended with 

EOS-100, (2) microcosms amended with glycerol, (3) microcosms amended with compost 

extract, and (4) control microcosms (i.e., 6.5 mg-P/L of phosphate addition, blanks (no electron 

donor added), and abiotic controls (autoclaved soil mixture)). After preparing the microcosms, 

the bottles were closed with a butyl rubber cap, crimped sealed with aluminum rings, and 

incubated at 21oC and 70 rpm for up to 25 days in the dark. At the time of analysis (i.e., after the 

specified incubation periods), the microcosms were opened, and the liquid and soil mixtures 

were transferred to 250 mL centrifuge bottles. The samples were then centrifuged at 4000×G for 

20 minutes until the soil mixture was completely separated from the solution. The supernatants 

were transferred into different vials and then analyzed for perchlorate, nitrate, COD, sulfate, 

phosphate, sulfide, and pH. All microcosms were analyzed in duplicate at predetermined time 

intervals. The experimental matrix is summarized in Table 6 .  
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Table 6. Experimental Design Matrix for Preliminary Microcosms Experiments 

Microcosm Sets 
Days of Incubation 

2 6 8 12 16 20 24 25 

EOS (E) 
E2 E6 E8 E12 E16 E20 E24 -- 

E2-D E6-D E8-D E12-D E16-D E20-D E24-D -- 

Glycerol (G) 
G2 G6 G8 G12 G16 G20 G24 -- 

G2-D G6-D G8-D G12-D G16-D G20-D G24-D -- 

Compost Extract (C) 
C2 C6 C8 C12 C16 C20 -- -- 

C2-D C6-D C8-D C12-D C16-D C20-D -- -- 

Nutrient Buffer (NB) 

-- E6-NB E8-NB -- -- C20-NB E24-NB C25-NB 

-- C6-NB C8-NB -- -- C20-NB-D E24-NB-D C25-NB-D 

-- -- -- -- -- -- G24-NB -- 

-- -- -- -- -- -- G24-NB-D -- 

Blanks (BK) 
-- -- -- -- -- BK20 -- BK25 

-- -- -- -- -- BK20-D -- BK25-D 

Abiotic Controls (AC) 

-- -- -- -- -- -- E24-AC C25-AC 

-- -- -- -- -- -- E24-AC-D C25-AC-D 

-- -- -- -- -- -- G24-AC -- 

-- -- -- -- -- -- G24-AC-D -- 

 EOS-100: 0.5 mL of EOS (COD equivalent of about 10,350 mg/L), 100 mL Lake Mead water, 30 g wet soil 
 Glycerol: 7 mL of 10-fold diluted glycerol (COD equivalent of 8,470 mg/L), 100 mL Lake Mead Water, 30 g wet soil. 
 Compost: 40 mL compost extract (COD equivalent of 101 mg/L), 60 mL Lake Mead water, 30 g of wet soil 
 Wet soil = 7.7% moisture content 

Notation: 

Electron Donors: E = EOS-100 oil, G = Glycerol, C = Compost 
AC = Abiotic Control (autoclaved soil and water mixture with electron acceptor) 
BK = Blank (No electron donor nor phosphate added) 
D = Duplicate 
NB = nutrient buffer (addition of nutrient at 6.5 mg P/L) 
--: No sample  

 

 Nitrate and Perchlorate Biodegradation in Microcosms with Varied Soil to Water Ratios 

In a separate set of experiments, microcosms were prepared with only glycerol as the 

electron donor. These experiments were intended to evaluate the kinetics of two different doses 

of glycerol and two different soil to water ratios. Two different soil to water ratios were 

evaluated (i.e., 30g of soil to 100 mL of water (1:3) and 30g of soil to 60 mL of water (1:2)) to 

identify the adequate amount of water needed to mobilize the nitrate and perchlorate from the 

contaminated vadose soil into the aqueous phase.  

The selection of the electron donor (glycerol) was based on acceptable kinetic rates 

observed during the initial testing and the fact that standard chemical properties are known for 
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this electron donor. In contrast, the full chemical properties of EOS-100 are unknown because 

they are proprietary. In this second set of experiments, the microcosms were prepared with either 

0.35 mL or 0.70 mL of 100-fold diluted glycerol. These doses resulted in 0.5X and 1X 

stoichiometric COD (i.e., ~42.4 mg/L and ~84.7 mg/L, respectively). Recall that the initial 

experiments were performed with 100X stoichiometric COD (i.e., 10,350 mg/L). As shown in 

Table 7, these samples were incubated under similar conditions as the initial experiments but for 

up to 40 days. 

Table 7. Experimental Design Matrix for Secondary Microcosm Experiments 

Microcosm Sets 
Days of Incubation 

5 13 18 24A 24B 35 40 

0.5X Glycerol – Water 
100mL 

0.5X-W100 0.5X-W100 0.5X-W100 0.5X-W100 0.5X-W100 0.5X-W100 0.5X-W100 

0.5X-W100-

D 

0.5X-W100-

D 

0.5X-W100-

D 

0.5X-W100-

D 

0.5X-W100-

D 

0.5X-W100-

D 

0.5X-W100-

D 

0.5X Glycerol – Water 60 
mL 

0.5X-W60 0.5X-W60 0.5X-W60 0.5X-W60 0.5X-W60 0.5X-W60 0.5X-W60 

0.5X-W60-

D 

0.5X-W60-

D 

0.5X-W60-

D 

0.5X-W60-

D 

0.5X-W60-

D 

0.5X-W60-

D 

0.5X-W60-

D 

1X Glycerol – Water 100 
mL 

1X-W100 1X-W100 1X-W100 1X-W100 1X-W100 1X-W100 1X-W100 

1X-W100-D 1X-W100-D 1X-W100-D 1X-W100-D 1X-W100-D 1X-W100-D 1X-W100-D 

1X Glycerol – Water 60 
mL 

1X-W60 1X-W60 1X-W60 1X-W60 1X-W60 1X-W60 1X-W60 

1X-W60-D 1X-W60-D 1X-W60-D 1X-W60-D 1X-W60-D 1X-W60-D 1X-W60-D 

Blanks (NC) 
-- W-60 NC W-60 NC W-60 NC -- -- W-60 NC 

-- W-100 NC -- -- W-100 NC W-100 NC -- 

 All microcosms contain 30 g of soil and either 100 mL or 60 mL of water (1:3 and 1:2 soil to water ratios, respectively) 

Notation: 
0.5X = 0.5X stoichiometric COD = 0.35 mL glycerol 100-fold diluted glycerol  

1X = 1X stoichiometric COD = 0.70 mL of 100-fold diluted glycerol  
W100 = 100 mL of surface water from Lake Mead 
W60 = 60 mL of surface water from Lake Mead 
NC = No carbon source added (i.e., no glycerol added) 
D = Duplicate 
--: No sample  

 

 Analytical Methods 

Perchlorate concentrations were determined with ion chromatography (IC) using US EPA 

Method 314. Other analyses were performed according to EPA-approved methods, as 

summarized in Table 8.  
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Table 8. Analytical Methods 

Analysis EPA Method 

Nitrate Hach EPA 10206 and EPA 352.1 

COD Hach 8000 

Sulfate IC and Hach EPA 8051 
Phosphate EPA 365.1 

Iron Hach 8008 and 8147-ferrover 

Chloride Hach 8225 

pH Hach EPA 8156 

 

 Results and Discussion 

 Chemical Oxygen Demand in Vadose Zone Soil and Surface Water Microcosms 

The chemical oxygen demand (COD) originating from the vadose zone soil and the water 

from Lake Mead was assumed to be the same as the blank control since no nutrients or substrates 

were added to these microcosms. Thus, the initial COD originating from the vadose zone soil 

and Lake Mead was approximately 16 mg/L. Based on the stoichiometry of nitrate and 

perchlorate reduction, this COD concentration is insufficient to achieve complete removal of 

these contaminants, thereby warranting amendment with electron donors.   

For samples amended with the experimental electron donors (i.e., EOS-100, glycerol, and 

compost/mulch), the COD was used as an indirect measurement of the electron donor 

concentrations. As indicated earlier, the average COD concentrations of neat solutions of EOS-

100, glycerol, and compost extract were 2.07×106 mg/L, 1.21×106 mg/L, and 253 mg/L, 

respectively. With the exception of the compost/mulch extract, which had a significantly lower 

stock concentration, the electron donors were added to the microcosms to achieve 100-fold 

stoichiometric excess for the preliminary experiments. 
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During the incubation period, the COD concentrations exhibited interesting patterns, 

presumably due to differing biophysicochemical properties. Although a sufficient quantity of 

EOS-100 was added to achieve an initial COD concentration of approximately 10,350 mg/L, 

COD decreased rapidly to ~270 mg/L. It is assumed that a majority of the EOS-100 adsorbed 

onto the soil in the microcosm and that the ~270 mg/L was the amount remaining dissolved in 

solution early in the incubation period. This highlights the potential use of EOS-100 as a slow-

release electron donor in long-term soil remediation applications. Aqueous glycerol 

concentrations remained relatively constant at ~10,000 mg/L (slightly above the expected value 

of 8,470 mg/L) during the entire incubation period. The COD concentrations for the 

compost/mulch extract also remained relatively constant at the spiking level of ~100 mg/L. 

Therefore, there was minimal adsorption of the glycerol or compost/mulch extract compounds 

onto the soil, thereby indicating these alternatives may not be appropriate for long-term 

remediation applications requiring slow release substrates. The minimal decrease in COD 

concentration over the incubation period suggests that the spiked quantities were in fact in 

stoichiometric excess, or that there was minimal reduction of the electron acceptors (discussed 

later).  
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Figure 3. Chemical Oxygen Demand Concentrations in Microcosms Augmented with EOS-100, 

glycerol and Compost/mulch Electron Donors. The error bars indicate the standard deviation of the measurements. 

(Samples were tested in duplicates). 

 

 Biodegradation of Nitrate in Vadose Zone Soil and Lake Mead Water Microcosms 

The initial nitrate contributions from the soil and surface water were 20.9 mg-N/L and 

0.46 mg-N/L, respectively. Nitrate is a more favorable electron acceptor compared to perchlorate 

in perchlorate bioremediation systems. As shown earlier in  

Figure 2, the sequence of electron acceptors indicates the relative preferences of PRB. 

Specifically, the redox potentials indicate that oxygen and nitrate are preferred over perchlorate 

as a terminal electron acceptor. Therefore, perchlorate bioremediation is hindered by the 

presence of these competing species.  
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Figure 4 shows nitrate reduction in the presence of the three electron donors. EOS-100 

and glycerol demonstrated rapid nitrate reduction over the first 6-8 days of incubation. In fact, 

this reduction matches the lag in perchlorate reduction observed between days 2 and 8 (described 

later in Figure 5). Again, this supports the statement that nitrate is preferred over perchlorate as 

an electron acceptor. These results are consistent with previous research (Coates & Achenbach, 

2004; Gal et al., 2008; ITRC, 2008; Zhu et al., 2016). After day 8 of incubation EOS-100 and 

glycerol achieved concentrations closed to the detection limit of the Hach assay (< 0.2 mg/L). 

Nevertheless, EOS-100 demonstrated higher maximum nitrate degradation rates than glycerol 

with maximum degradation rates of 3.42 mg-N/L/d and 2.75 mg-N/L/d, respectively between the 

period of predominant nitrate reduction activity (i.e., days 0 to day 6 of incubation).    

 

Figure 4. Nitrate Reduction in Microcosms Augmented with EOS-100, Glycerol, and 

Compost/mulch Electron Donors. The error bars indicate the standard deviation of the measurements. (Samples were 

tested in duplicates). 
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In contrast with EOS-100 and glycerol, the microcosms amended with compost/mulch 

did not demonstrate any nitrate reduction; instead, nitrate actually increased in concentration 

over time, perhaps due to further decomposition of the extract. Considering that compost/mulch 

often contains varying concentrations of nitrate, ammonium, and other nitrogen-containing 

compounds (Kazuto et al., 2013; USDA, 2010), it is possible that the inorganic or organic 

nitrogen was converted to nitrate over time. This is particularly problematic considering that 

nitrate inhibits perchlorate reduction in bioremediation applications. 

 Biodegradation of Perchlorate in Vadose Zone Soil and Lake Mead Water Microcosms  

As determined by the sequential extractions described earlier, the initial perchlorate 

concentrations in the vadose zone soil and in the surface water from Lake Mead were 48.1 mg/L 

and 0.012 mg/L, respectively. The extraction process was assumed to yield the maximum 

aqueous concentration, but the true initial perchlorate concentration in the microcosms (i.e., day 

2; >50 mg/L) was higher than the concentrations found during the soil extraction. This 

unexpected increase in perchlorate concentration may have resulted from the extended contact 

time (i.e., 2 days of incubation), heterogeneity in the soil samples, or simply experimental error. 

Nevertheless, the two concentrations were relatively similar, and the difference did not pose any 

significant issues for data interpretation.  

Perchlorate reduction in the microcosms amended with different electron donors is shown 

in Figure 5. EOS-100 and glycerol demonstrated a lag period during the first 6 days of 

incubation. Between day 6 and 12, however, EOS-100 demonstrated ~87% perchlorate removal, 

while glycerol achieved just ~74% removal for the same period of incubation. By day 20, EOS-

100 and glycerol achieved similar reductions in perchlorate concentration. In contrast, the 
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compost/mulch solution demonstrated minimal perchlorate removal, even after 25 days of 

incubation, presumably because of the significantly lower initial COD concentration, the 

inability for the compost/mulch extract to reduce nitrate, and the fact that the compost/mulch 

extract actually released additional nitrate into solution.  

Furthermore, based on the initial perchlorate concentration in the blank control 

microcosms (i.e., no electron donor added) of 52 mg/L, the maximum perchlorate degradation 

rates were calculated as 3.21 mg/L/d and 2.85 mg/L/d for EOS-100 and glycerol, respectively. 

The degradation rates obtained in this study are similar to than the degradation rates reported by 

Solution-IES (2006) and Evans, Patrick J (2008) of ~3 mg/L/d and 0.2 mg/L/d for EOS-100 and 

glycerol, respectively. But compared with perchlorate biodegradation rates reported by Batista et 

al., (2005) and Nozawa-Inoue, Mamie (2011) when using acetate as the source of electron donor 

(Table 1), EOS-100 and glycerol demonstrated higher perchlorate degradation rates.  
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Figure 5. Perchlorate Reduction in Microcosms Augmented with EOS-100, Glycerol, and 

Compost/mulch Electron Donors. The error bars indicate the standard deviation of the measurements. (Samples were 

tested in duplicates). 

 

The blank microcosms (i.e., no electron donor added) achieved minimal perchlorate 

reduction. The limited removal observed may have been due to the presence of natural electron 

donors (e.g., natural organic matter) present in the vadose zone soil, but clearly the lack of 

sufficient electron donor limits degradation This result is similar to that of Gal et al. (2008), 

which found that natural organic matter was able to induce perchlorate reduction but at 

significantly slower rates than other carbon sources (or higher concentrations of carbon). 

Therefore, with a longer period of incubation, blank microcosms may have achieved greater 

perchlorate reduction but not at an acceptable rate or extent compared to engineered 

bioremediation applications.  
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 Nitrate and Perchlorate Reduction Kinetics in Vadose Zone Soil and Lake Mead Water 

Microcosms 

Using the aforementioned data for EOS-100 and glycerol, pseudo first order rate 

constants describing the reduction of nitrate and perchlorate were determined based on linear 

regression over defined incubation periods. More specifically, nitrate reduction was evaluated 

over the first 6 and 8 days of incubation for microcosms amended with EOS-100 and glycerol, 

respectively. These periods were chosen based on the observed nitrate reduction during 

experimentation (Figure 4). Similarly, perchlorate reduction was generally characterized after 

nitrate had been completely removed (i.e., between 6 and 20 days of incubation). The reduction 

kinetics for the compost/mulch were not determined since no perchlorate or nitrate reduction was 

observed with that electron donor.  

The nitrate rate constants were determined based on data in which nitrate reduction was 

prominent (i.e., from days 6 and 8 days for microcosms amended with EOS-100 and glycerol, 

respectively). By day 12, the nitrate had essentially reached the detection limit of the Hach assay. 

Figure 6 shows the linear regression of nitrate reduction over the defined incubation period. The 

rate constants for EOS-100 and glycerol were 0.60 d-1 and 0.42 d-1, respectively, at 21±2°C. 

Because of the limited data collected during the nitrate reduction period, the rate constants 

should be used with caution, as they may include significant experimental error. Nevertheless, 

the rate constants confirm the observation from Figure 5 that EOS-100 achieves more rapid 

reduction of nitrate.  
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Figure 6. Nitrate Reduction Kinetics in Vadose Zone Soil and Lake Mead Water Microcosms at 

21±2°C  

 

The rate constants for perchlorate reduction were also calculated. But in contrast to 

nitrate, perchlorate reduction was characterized between days 6 and 20 of incubation (i.e., after 

nitrate had been removed), thereby resulting in more data points to calculate more reliable rate 

constants, as shown in Figure 7. Perchlorate reduction also followed a pseudo first order reaction 

when the microcosms were amended with EOS-100 or glycerol at ~100X stoichiometric COD. 

The slopes of the linear regressions represent the first order rate constants describing the 

biological reduction of perchlorate in the absence of nitrate for EOS-100 (0.36 day-1) and 

glycerol (0.31 day-1) at 21±2°C. These results are consistent with the perchlorate biodegradation 

observed during experimentation (Figure 5). Therefore, EOS-100 is also slightly faster than 

glycerol for perchlorate biodegradation. 
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Figure 7. Perchlorate Reduction Kinetics in Vadose Zone Soil and Lake Mead Water Microcosms 

at 21±2°C 

 

The objective of the first part of this research was to evaluate the potential use of diverse 

electron donors, specifically EOS-100, glycerol, and a compost/mulch extract, for perchlorate 

biodegradation in vadose zone soil and surface water from Lake Mead. Based on the 

aforementioned data, EOS-100 appears to be the best electron donor because it exhibited the 

fastest kinetics for nitrate and perchlorate reduction as shown in Table 9, and did not contribute 

significant quantities of competing species (e.g., nitrate release from the compost/mulch extract).  

Table 9. Summary Rate Constants for Nitrate and Perchlorate Reduction with EOS-100 and 

Glycerol at 21±2°C 

Electron 

Donor 

Electron 

Acceptor 

First Order 

Rate Constant 

EOS-100 Nitrate 0.60 d-1 

Glycerol Nitrate 0.42 d-1 

EOS-100 Perchlorate 0.36 d-1 

Glycerol Perchlorate 0.31 d-1 
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 Changes in pH and Reduction of Sulfate in Vadose Zone Soil and Lake Mead Water 

Microcosms  

The initial pH of the microcosms was ~7.7, which was consistent with the pH of the Lake 

Mead water, and during the incubation period, the pH in the microcosms decreased to ~7.3 

(Figure 8). This is contrary to the increase in pH expected when sulfate is reduced to sulfite and 

then sulfide. The reduction of sulfate to sulfide is summarized in Table 10 and Figure 8b. 

Interestingly, the compost extract resulted in the highest sulfide concentration, but this was most 

likely due to the higher sulfate content of the compost extract.  

The maximum degradation rates of sulfate were evaluated during the period of high 

sulfate reduction (i.e., between day 2 and day 12). As mention before, the compost/mulch 

solution demonstrated the higher sulfate reduction with a degradation rate of 34mg/L/d compared 

with EOS-100 and glycerol, which demonstrated lower sulfate reduction with degradation rates 

of 1 mg/L/d and 3 mg/L/d, respectively. This high sulfate reduction in the compost/mulch 

extract, as described earlier, may have resulted due to lower efficiencies of the compost extract 

in reducing nitrate and perchlorate, and this may have been caused—at least in part—by the fact 

that the compost/mulch extract contributed a significant quantity of competing electron acceptors 

(i.e., nitrate and sulfate). 

Sulfate depletion occurs in the redox range of -120 mV and -180 mV, while perchlorate 

occurs in the range from 0 mV to -100 mV. However, the concentrations of the various 

competitors also impact the thermodynamic favorability of the various reactions. Nevertheless, 

high sulfate concentrations are undesirable because of the adverse effects of competitive 

reduction and the potential for odor formation as sulfate is reduced to sulfide. The pka of 

H2S/HS- is 6.99 so at the experimental pH value of ~7.3, the distribution of the species would be 
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33% as H2S and 67% as HS-. This suggests a portion of the sulfide will volatilize and generate 

noxious odors during the bioremediation process.  

Table 10. Sulfate Concentrations in the Microcosms Augmented with EOS-100, Glycerol, and 

Compost/mulch Electron Donors 

Electron Donor 
Sulfate, mg/L 

Day 2 Day 12 

EOS-100 390 360 

Glycerol 350 340 

Compost 670 300 

 

  
Figure 8. pH and Sulfide Comparison for Microcosms Augmented with EOS-100, Glycerol, and 

Compost/mulch Electron Donors. The error bars indicate the standard deviation of the measurements. (Samples were 

tested in duplicates). 

 

 Abiotic Controls in Vadose Zone Soil and Lake Mead Water Microcosms 

The abiotic controls also achieved decreases in nitrate and, to a lesser extent, perchlorate. 

These results were not expected because the vadose zone soil samples and water from Lake 

Mead had been autoclaved to inactivate any native PRB. Nitrate concentrations were reduced to 

the detection limit of the Hach assay in the abiotic controls amended with EOS-100 and glycerol, 

but perchlorate concentrations exhibited only slight decreases (Table 11).  
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Table 11. Results from Abiotic Control Microcosms for Microcosms Augmented with EOS-100, 

Glycerol, and Compost/mulch Electron Donors 

Electron 

Donor 

Nitrate  Perchlorate  

Day 0 Day 24 Day 25 Day 0 Day 24 Day 25 

EOS-100 20.9 mg-N/L 0.5 mg-N/L  --- 48.1 mg/L 47.1 mg/L  --- 

Glycerol 20.9 mg-N/L 0.3 mg-N/L  --- 48.1 mg/L 46.1 mg/L  --- 

Compost 20.9 mg-N/L --- 17.2 mg-N/L 48.1 mg/L --- 51.1 mg/L 

--- Not analyzed 

 

It is possible that the autoclaving procedure was unable to inactivate the entire microbial 

community, particularly spore-forming microorganisms, thereby allowing for some degree of 

biological reduction during the batch tests (Su & Puls, 2007). The duration of the autoclave cycle 

was 30 minutes at the standard temperature of 250°F (121°C). Previous studies suggested that 

autoclaving soil may not be as effective as alternative sterilization techniques, including 

exposure to dilute formaldehyde or mercuric chloride, but these procedures are less common 

(Trevors, 1996; Wolf et al., 1989). On the other hand, physicochemical methods of nitrate 

reduction may also contribute to nitrate removal, particularly as a result of the autoclaving 

process (Trevors, 1996). For example, Dail et al. (2001) investigated the abiotic and biotic 

reduction of nitrate and nitrite in sterile and non-sterile forest soils. Their results demonstrated 

that abiotic reduction of nitrate and nitrite can occur during autoclaving.  

The actual cause of the nitrate reduction in the abiotic controls is still unclear for the 

current study because further testing was not performed to assess whether nitrogen compounds 

were generated or if any bacteria survived the autoclaving process. Based on the literature 

review, longer autoclave cycles or repeated autoclaving might be warranted to achieve complete 

sterilization of soils. Regardless, minimal perchlorate reduction was observed in the abiotic 
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controls so the perchlorate reduction observed in the other experimental samples can be 

attributed to biodegradation. 

 Phosphate Amendment in Vadose Zone Soil and Lake Mead Water Microcosms 

Because bacteria need essential macronutrients to grow (e.g., phosphorus, carbon, 

nitrogen), higher concentrations or manual augmentation of these nutrients should presumably 

lead to more efficient biodegradation. For the samples containing EOS-100 or glycerol, the 

phosphate concentrations ranged from 0.3-2.4 mg/L and 0.2-0.5 mg/L as phosphate, respectively, 

during the incubation period. The phosphate concentration in the blank control (i.e., soil and 

water only; no electron donor or nutrient addition) was similar to that of glycerol, which 

indicates that the higher phosphate concentrations in the EOS-100 samples were likely 

originating from the emulsified oil solution. This additional phosphate could be a contributing 

factor to the faster nitrate and perchlorate degradation kinetics for EOS-100. Figure 9 illustrates 

the phosphate concentrations over time for the various microcosms.  
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Figure 9. Phosphate as PO4

-3
 Concentrations-No Additional Phosphate Added for Microcosms 

Augmented with EOS-100, Glycerol, and Compost/mulch Electron Donors. The error bars indicate the 

standard deviation of the measurements. (Samples were tested in duplicates). 

 

To test the relationship between phosphate and biodegradation kinetics, the experimental 

microcosms were amended with ~6.5 mg-P/L of phosphate and incubated for up to 25 days. 

Table 12 summarizes the residual phosphate concentrations over time during this experiment. 

The data indicate that phosphate removal (i.e., uptake) was more apparent in the microcosms 

containing EOS-100 or glycerol, which were also the samples with faster nitrate and perchlorate 

reduction kinetics.  
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Table 12. Phosphate Concentrations in Nutrient Controls 

Days Electron Donor 

EOS-100 Glycerol Compost/mulch 

6 --- 0.4 mg- PO4
-3/L --- 

8 1.4 mg- PO4
-3/L --- --- 

20 --- --- 7.7 mg- PO4
-3/L 

24 1.6 mg- PO4
-3/L 0.6 mg- PO4

-3/L --- 

25 2.3 mg- PO4
-3/L 1.8 mg- PO4

-3/L 8.4 mg- PO4
-3/L 

--- No Sample 

 

However, perchlorate and nitrate reductions in the nutrient-amended microcosms were 

similar to those achieved without nutrient amendment, as shown in Table 13. These results are 

similar to those reported in the literature, which indicated the addition of phosphate did not 

enhance perchlorate removal rates. Evans & Trute (2006) stated that nutrient addition is not 

necessary to enhance perchlorate removal. The authors found that the use of ethanol and 

hydrogen as electron donors did not achieve total perchlorate removal with nutrient addition (i.e., 

amendment with (NH4)2HPO4), but changes in moisture content did have a significant effect on 

perchlorate reduction. Conversely, Wang et al. (2013) demonstrated that nutrient addition 

enhanced perchlorate removal when using emulsified vegetable oil (EOS-598) and a 

compost/mulch substrate, which contradicts the results from the current study. However, the 

nutrient amendment in Wang et al. (2013) consisted of 1,000 mg/L of (NH4)2HPO4, which was 

50 times higher than the concentration added during the current study (i.e., 20 mg-PO4
-3/L). The 

concentration of phosphate used in the current study was based on the typical bacterial 

composition (𝐶5𝐻7𝑂2𝑁𝑃0.1) in which the mass ratio of nitrogen to phosphorus (N:P) should be 

4.5:1. Therefore, with an initial nitrate concentration of ~20.9 mg-N/L, the minimum amount of 

phosphorus needed in the microcosms for an effectively biological reduction would 

approximately be 4.6 mg-P/L. However, to improve perchlorate biological reductions during the 

batch test 6.5 mg-P/L of phosphate was provided.  
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Table 13. Perchlorate and Nitrate Reduction in Nutrient-Amended in Vadose Zone Soil and Lake 

Mead Water Microcosms 

Electron Donor Day 
Perchlorate (mg/L) Nitrate (mg-N/L) 

Nutrient Added No Nutrient  Nutrient Added No Nutrient  

EOS-100 8 10.0 1.0 ** ** 

4 0.1 0.1 1.4 1 

25 ** --- 1.1 --- 

Glycerol 6 53.7 53.0 2.1 5.0 

24 0.1 0.1 7.5 0.9 

25 ** --- 0.7 --- 

Compost 20 50.1 49.7 48.2 48.6 

25 49.6 49.0 47.2 51.8 
Initial concentrations: nitrate = 20.9 mg-N/L and perchlorate = 48.2 mg/L 

** below detection limit  

--- No Sample 

 

 Soil to Water Ratios Second Set of Microcosms in Vadose Zone Soil and Lake Mead 

Water Microcosms with Glycerol as Electron Donor 

The objective of this component of the study was to evaluate the impact of varying soil to 

water ratios on nitrate and perchlorate. For these experiments, only a single electron donor 

(glycerol) was used, but the concentration was decreased to 0.5X and 1.0X stoichiometric COD, 

as compared with the ~100X stoichiometric COD in the previous experiments. The amount of 

glycerol used in this phase was lower than that of phase I because excessive quantities of 

glycerol were still present at the end of the initial batch experiments. Although the excess 

electron donor presumably improved perchlorate reduction kinetics, the excess glycerol might be 

viewed as a waste and an unnecessary cost in full-scale applications. Therefore, this phase of the 

research also evaluated the impact of reduced electron donor addition. 

The soil quantities were held constant at 30 grams, but the amount of water added to each 

microcosm varied between 60 and 100 mL, giving to different soil to water ratios to evaluate 

(i.e., 1:3 and 1:2, respectively). This allowed for an analysis of varying soil to water ratios, which 

could impact mobilization of perchlorate from the contaminated vadose zone soil. In a full-scale 
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‘soil flushing’ application, water is injected into the contaminated vadose zone to mobilize 

perchlorate and make it available for downstream treatment in a permeable reactive barrier. In 

one scenario, perchlorate mobilization might be hindered if less water is injected into the ground, 

thereby slowing remediation efforts. Alternatively, the reduced water volumes might mobilize 

the same amount of perchlorate, thereby resulting in a higher effective perchlorate concentration. 

This could potentially improve biodegradation kinetics. 

In summary, these experiments were intended to evaluate the impacts of lower electron 

donor concentrations and varying soil to water ratios (i.e., varying soil-flushing volumes). In 

addition to the primary experimental samples, control microcosms were prepared to evaluate the 

impacts of electron donor blanks (i.e., no glycerol added). The experimental matrix was 

summarized previously in Table 7.  

The initial nitrate and perchlorate concentrations in the microcosms were affected by the 

different volume of water utilized (60 mL and 100 mL) (i.e., soil to water ratios 1:2 and 1:3, 

respectively). When using 100 mL of water, the initial nitrate and perchlorate concentrations 

were the same as in the first phase of the research: ~20.9 mg-N/L and ~48.1 mg/L, respectively. 

But when using 60 mL of water, the concentrations of nitrate and perchlorate increased due to 

lower dilution ratios (i.e., ~49.1 mg-N/L and ~85.8 mg/L, respectively, based on the 

concentrations observed in the blank control microcosms). This indicates that the reduced ‘soil 

flushing’ volume would still be adequate to mobilize the same amount adsorbed perchlorate. 

In addition to the increase in nitrate and perchlorate concentrations, other effects can be 

generated in lower dilution ratios such as high salinity or high total dissolve soils contents. These 

increments could affect the microbial community present in the contaminated vadose soil and 

Lake Mead water by reducing the number of bacteria or decreasing their activity.    
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During the first three weeks of batch testing (i.e., day 0 to day 14), there was no 

consistent reduction in perchlorate concentration, as shown in Figure 13. To expedite the 

reaction, the amount of glycerol was increased to target ~2.5X and ~11X stoichiometric COD. 

Figure 10 shows the COD observed during experimentation. During the first few days of 

incubation, the COD concentration remained relatively constant at a spiking level of ~17 mg/L, 

which correlates with the lower initial spiking level of glycerol. 

Interestingly, after spiking the additional glycerol, the COD concentration in the ~2.5X 

stoichiometric COD samples remained at ~20 mg/L, this is unexpected because these 

microcosms were designed to achieve an initial COD concentration of ~212 mg/L and ~ 424 

mg/L when using 100 mL and 60 mL of Lake Mead water, respectively. This low COD 

stoichiometric excess is presumable due to absorption of the glycerol into the soil during the 

incubation period. Similarly, the COD concentration in the 11X stoichiometric COD samples 

were designed to achieve an initial COD concentration of ~932 mg/L and ~1,864 mg/L when 

using 100 mL and 60 mL of Lake Mead water, respectively. However, the stoichiometric COD 

excess in these samples remained at ~1,000 mg/L. The COD stoichiometric excess in these 

samples is more evident due to the saturation of the soil by the absorption of the glycerol and the 

higher dosing in these microcosms. These effects are more noticeable in the samples with lower 

water content (i.e., 60 mL). 
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Figure 10. Chemical Oxygen Demand as a Function of Soil to Water Ratios. The red line indicates the 

glycerol dosage increment in the microcosms. Until day 14, stoichiometric COD were 0.5X and 1X. After glycerol addition (day 
14), the stoichiometric COD were 2.5X and 11X. The error bars indicate the standard deviation of the measurements. (Samples 

were tested in duplicates). 

 

3. 3. 8. 1  Biodegradation of Nitrate as a Function of Soil to Water Ratios 

After the additional injection of glycerol, most of the microcosms demonstrated 

significant nitrate reduction, except microcosms with 2.5X stoichiometric COD in 60 mL of 

water (i.e., 0.5X-W60 designation previous to glycerol addition), as shown in Figure 11. In other 

words, microcosms with 2.5X stoichiometric COD and 1:3 soil to water ratio (30g soil/100 mL 

water) or both soil to water ratios at 11X stoichiometric COD demonstrated comparable nitrate 

reductions (~98%) with comparable degradation rates as shown in Figure 12 .  
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Figure 11. Nitrate Reduction Soil to Water Ratios. The red line indicates the glycerol dosage increment in the 

microcosms. Until day 14, stoichiometric COD were 0.5X and 1X. After glycerol addition (day 14), the stoichiometric COD 
were 2.5X and 11X. The error bars indicate the standard deviation of the measurements. (Samples were tested in duplicates). 

 

Based on these results, stoichiometric equivalent concentrations (i.e., ~1X) are 

inadequate for reliable nitrate reduction, and the efficacy of nitrate reduction with limited excess 

COD (i.e., ~2.5X) appears to vary based on soil flushing volume. When the electron donor 

addition reaches ~11X stoichiometric COD, reliable and complete nitrate reduction can be 

achieved with the soil to water ratios tested in this research, with comparable nitrate degradation 

rates of 0.091 mg-N/d for 1:3 soil to water ratio and 0.080 mg-N/d for 1:2 soil to water ratio. 

This potentially represents a significant cost savings compared to donor addition at ~100X 

stoichiometric COD, although perchlorate reduction must be verified under the modified 

conditions. 
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Figure 12. Maximum Nitrate Biodegradation Rates as a Function of Soil to Water Ratios. 1:3 (30g of 

soil/100 mL of water), 1:2 (30g of soil/60 mL of water). The degradation rates are calculated based on the degradation observe after the 

additional injection of glycerol (period of incubation of ~27 days) 

 

3. 3. 8. 2  Biodegradation of Perchlorate as a Function of Soil to Water Ratios 

Although significant nitrate reduction was achieved during the incubation period, 

perchlorate reduction was significantly inhibited compared to the first set of microcosms (Figure 

12). The lack of perchlorate reduction was most likely due to a combination of the lower glycerol 

concentration (up to ~11X instead of 100X) and the apparently insufficient incubation period 

after the additional glycerol injection (~27 days). In addition, the low initial glycerol 

concentration prevented nitrate reduction, which extended the lag period during which 

perchlorate reduction was thermodynamically unfavorable.  
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As shown in Figure 13, microcosms with 2.5X stoichiometric COD achieved ~2% 

perchlorate reduction with 60 mL of water (1:2 soil to water ratio) and ~8% perchlorate 

reduction with 100 mL of water (1:3 soil to water ratio). The microcosms with 11X 

stoichiometric COD achieved perchlorate reductions of ~5 % for 60 mL and ~18 % for 100 mL. 

The 2.5X-W100 and 11X-W60 microcosms exhibited an increase in perchlorate concentration at 

the end of the incubation period (i.e., day 40). These increases were attributed to experiment 

error, as each day represents a different microcosm, and no additional analyses were performed 

to investigate this anomaly.   

  
Figure 13. Perchlorate Reduction as a Function of Soil to Water Ratio. The red line indicates the glycerol 

dosage increment in the microcosms. Until day 14, stoichiometric COD were 0.5X and 1X. After glycerol addition (day 14), the 
stoichiometric COD were 2.5X and 11X. The error bars indicate the standard deviation of the measurements. (Samples were 

tested in duplicates). 

 

The perchlorate percentage reductions are comparable with the maximum perchlorate 

degradation rates calculated after the additional injection of glycerol as shown in Figure 14. For 
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both 11X and 2.5X stoichiometric COD, the 1:3 ratio demonstrated higher perchlorate 

biodegradation rates of 0.034 mg/d and 0.014 mg/d, respectively compared with the 1:2 soil to 

water ratios of 0.004 mg/d for 2.5X stoichiometric excess and 0.007 mg/d for 11X stoichiometric 

excess. Additional perchlorate reduction could likely have been achieved with longer incubation 

periods considering the samples contained sufficient COD concentrations to drive the biological 

reactions. However, it is clear that the lower COD concentrations in the second set of 

microcosms severely inhibited the kinetics of nitrate and perchlorate reduction. In summary, 

nitrate and perchlorate reduction were similar for 11X stoichiometric COD in 60-mL and 100-

mL water volumes, while the 2.5X stoichiometric COD microcosms appeared to be inhibited by 

the lower water volume of 60 mL. The 11X stoichiometric COD was adequate for nitrate 

reduction, but perchlorate reduction required significantly longer incubation times. 

 
Figure 14. Perchlorate Degradation Rates as Function of Soil to Water Ratios. 1:3 (30g of soil/100 mL of 

water), 1:2 (30g of soil/60 mL of water). The degradation rates are calculated based on the degradation observe after the additional injection 

of glycerol (period of incubation of ~27 days) 
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 Summary 

For the initial comparison of electron donors, EOS-100 and glycerol achieved nitrate 

concentrations close to the detection limit (<0.2 mg-N/L), while the microcosms amended with 

compost/mulch did not demonstrate any significant nitrate reduction. In fact, the nitrate 

concentrations in the compost/mulch extract microcosms actually increased over time, 

presumably due to decomposition and release of nitrogen-containing compounds. Although 

EOS-100 and glycerol achieved similar overall nitrate reductions, the maximum nitrate 

degradation rates for EOS-100 were higher than for glycerol with corresponding values of 3.42 

mg-N/L/d and 2.75 mg-N/L/d, respectively. These degradation rates describe similar trends than 

the determined first order rate constants of 0.60 d-1 and 0.42 d-1 for EOS-100 and glycerol, 

respectively. 

Perchlorate reduction followed similar trends to those observed for nitrate, although there 

was a lag period of approximately 6 days corresponding with the preceding nitrate reduction 

period. This was expected because nitrate is the preferred electron acceptor for biological 

reduction. EOS-100 and glycerol achieved similar overall perchlorate reduction, but EOS-100 

demonstrated more rapid kinetics. In the absence of nitrate (i.e., after the initial lag period), the 

pseudo first order rate constants for perchlorate reduction were determined to be 0.36 d-1 for 

EOS-100 and 0.31 d-1 for glycerol. Furthermore, the maximum perchlorate biodegradation rates 

confirm that EOS-100 degrades perchlorate faster than glycerol with degradation rates of 3.21 

mg/L/d and 2.85 mg/L/d, respectively.  

The compost/mulch extract was ineffective for perchlorate removal over the 25-day 

incubation period. This is partially due to the fact that the compost/mulch extract was unable to 

reduce nitrate, which is thermodynamically preferred over perchlorate. Although less favorable 
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than both nitrate and perchlorate based on the redox tower, the microcosms appeared to achieve 

some sulfate reduction to sulfide, although there were still significant sulfate concentrations 

present at the end of the incubation period. Lastly, the nutrient-amended microcosms achieved 

similar levels of treatment as the microcosms without phosphate addition. Thereby, the amount 

of phosphate added (6.5 mg-P/L) did not generated improvements for nitrate or perchlorate 

removals. As a result, higher phosphate dosages are recommended   

For the evaluation of soil to water ratios, the most significant variable proved to be 

glycerol concentration rather than water volume. Both soil to water ratios were effective in 

mobilizing nitrate and perchlorate, but there were minor impacts on bioremediation. The two soil 

to water ratios achieved similar reduction of nitrate and perchlorate for 11X stoichiometric COD 

with maximum nitrate degradation rates of 0.091 mg-N/d and 0.080 mg-N/d for 1:3 and 1:2 soil 

to water ratios, and maximum perchlorate degradation rates of 0.034 mg/d for 1:3 soil to water 

ratio and 0.007 mg/d for 1:2 soil to water ratio. But, the lower water volume (i.e., 60-mL) 

hindered nitrate and perchlorate reduction for 2.5X stoichiometric COD. The 11X stoichiometric 

COD was adequate for nitrate reduction, but perchlorate reduction required significantly longer 

incubation times based on the observed kinetics. Furthermore, the preliminary glycerol dosing 

with 0.5X and 1.0X stoichiometric COD was entirely inadequate to initiate biological reduction. 

Therefore, more comprehensive cost analyses are warranted to determine if higher electron 

donor concentrations (e.g., 100X) are justifiable when considering the more rapid kinetics of 

nitrate and perchlorate reduction.  
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CHAPTER 4. NITRATE AND PERCHLORATE BIOREMEDIATION IN 

GROUNDWATER AND SATURATED SOIL: MICROCOSMS STUDY 

4. 1. Introduction 

Perchlorate has been detected in groundwater, surface water, and drinking water in the 

United States and abroad (Batista et al., 2005; Karimi & Rezaee, 2014a; Karimi & Rezaee, 

2014b; Kumarathilaka et al., 2016). Perchlorate is a particularly persistent contaminant because 

it is highly stable, mobile, and soluble, and standard drinking water treatment technologies are 

generally ineffective (Logan, 2002). Perchlorate exposure is a concern for public health because 

it interferes with iodide uptake into the thyroid, which hinders hormone production, fetal 

development, skeletal growth, and may even cause mental retardation in infants (Motzer, 2001). 

Currently, there are no federal drinking water standards for perchlorate, but in 2005, the United 

States Environmental Protection Agency (USEPA) set an interim health advisory level of 15 

μg/L, and some states have adopted safety advisory levels ranging from 1 to 18 μg/L (Srinivasan 

& Sorial, 2009)  

Groundwater contamination often results from mobilization of perchlorate in 

contaminated soil (Tipton et al., 2003). In the United States, perchlorate contamination is 

particularly prevalent in the Southwest ( Zhu et al., 2016). In Las Vegas, perchlorate 

concentrations range from 1.8×105 to 3.7×106 μg/L in contaminated groundwater and up to 

34,700 μg/kg in contaminated vadose zone soil (Smith et al., 2004). ). Without remediation 

efforts, the perchlorate is transported to Lake Mead via the Las Vegas Wash and ultimately 

contaminates drinking water sources in Arizona, California, and Mexico (Batista et al., 2005). 
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In situ bioremediation of perchlorate-contaminated sites generally involves the injection 

of a carbon source into the saturated or vadose zone soil to enhance bioremediation by 

perchlorate reducing bacteria (PRB) (Hatzinger & Diebold, 2009). PRB use the carbon source as 

an electron donor, and the perchlorate (and chlorate or chlorite) serves as the electron acceptor, 

ultimately leading to the production of chloride and water (ITRC, 2008). Biological perchlorate 

reduction demonstrates high efficiency at low cost compared to other technologies such as ion 

exchange, reverse osmosis, adsorption with granular activated carbon (GAC), and chemical and 

electrochemical reduction. The efficacy of biological reduction is dependent on the geochemical 

conditions of the soil and the amount of water and electron donor available (Konopka & Turco, 

1991). Furthermore, the presence of competitive electron acceptors such as oxygen and nitrate, 

which are frequently present in perchlorate-contaminated environments, hinder perchlorate 

reduction (Bardiya & Bae, 2011). 

Bioremediation of perchlorate in soils is challenging due to the diverse physicochemical 

properties of the soil. The soil horizon is compound of three major zones, namely, vadose zone, 

capillary fringe, and saturated zone. The vadose and saturated zones are hydrologically separate 

by the capillary fringe. These zones are characterized for the abundance variability of oxygen, 

nutrients, carbon, and water contents, likewise variability of pH and temperature (Holden & 

Fierer, 2005; Konopka & Turco, 1991). The saturated zone is characterized by the high water 

content occupying the spaces between the pores of the soil. Although the amount of water in the 

saturated zone is considerable high compared with subsurface soils (Vadose soils), 

biodegradation treatments can be hindered by low electron donor and nutrient contents. 

Biodegradation in the saturated zone has been applied through ex-situ bioremediation processes, 

mainly by extracting the contaminated groundwater to the surface for posterior treatments. In 
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general, after the water is extracted, electron donor and nutrients are added to stimulate bacteria 

activity. Biological reduction of perchlorate is carryout by perchlorate reducing bacteria (PRB) 

which are found ubiquitous in natural environments (Bruce & Coates, 1999). During perchlorate 

biodegradation, perchlorate is used as the electron acceptor during the enzymatic reaction. 

Therefore, using electron donors in perchlorate-contaminated environments (i.e., groundwater) 

increases the nourishment of the bacteria benefiting the efficiency of biological reductions. 

The objective of this part of the research was to evaluate the potential use and kinetics of 

two slow release electron donors, specifically the commercially available emulsified oil EOS-

100 and EOS-Pro in perchlorate-contaminated groundwater and saturated soil. To achieve the 

objective of research microcosm batch tests were implemented to simulate the conditions of the 

saturated zone at the site of study and provided innovative electron donor that will improve 

biological remediation of perchlorate in full-scale applications. The microcosms were augmented 

with the aforementioned slow release emulsified oils which provides particular benefits to 

stimulate the microbial community present in the perchlorate-contaminated groundwater. 

Moreover, this research identified optimum ratios of the emulsified oils to the contaminated 

groundwater and saturated soil (e.g., grams electron donor/gram of soil) that stimulate higher and 

faster nitrate and perchlorate biodegradation.  

4. 2. Material and Methods 

To achieve the objective of this phase of the research microcosm batch tests were 

implemented to simulate the conditions of a perchlorate-contaminated saturated zone. 

Microcosms were built with groundwater and saturated soil from a site of study. The microcosms 

were augmented with the two slow release emulsified oils; EOS-100 and EOS-Pro. Each of the 
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slow release emulsified oils provides particular benefits to stimulate the microbial community 

present in the perchlorate-contaminated groundwater as describe later in this section.  

4. 2. 1. Groundwater and Saturated Soil Samples  

Microcosms were prepared with a mixture of soil and groundwater from the saturated 

zone of a contaminates site. samples were drilled and collected in 5-foot increments of depth (20-

25, 25-30, 30-35, and 35-40). Soil samples from the four layers were mixed in equal volumes to 

obtain a homogeneous mixture. The soil samples were transferred aseptically to previously 

disinfected plastic containers. The containers and instruments were rinsed with a 5% sodium 

hypochlorite solution and then rinsed 8 times with deionized autoclaved water and allowed to air 

dry.  

The initial contaminant concentrations in the saturated soil were determined through a 

sequential extraction process in which two 50-mL centrifuges tubes, each containing 40 g of wet 

soil and 20 mL of nanopure water, were centrifuged at 9,000×g and 4°C (Solvall Legent-GT-

fixed angle rotor) for 15 min. This procedure was repeated nine times until perchlorate and 

nitrate were not detected in the resulting extract. The final extracts were aggregated (final 

volume of ~81 mL) and analyzed for perchlorate, nitrate, and other quality parameters, as shown 

in Table 14. The concentrations of the contaminants were determined on a dry weight basis.  The 

moisture content of the soil was determined by weighing 40 g of soil before and after drying in 

an oven at 105oC for 12 hours. This analysis was performed in duplicate, and the average 

moisture content was 15.9 %. On average, the perchlorate and nitrate concentrations in the 

combined extracts were 1.7 mg/L and 1.6 mg-N/L, respectively. 
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Table 14. Saturated Soil and Groundwater Initial Quality Parameters 

Parameter Extract (mg/L)1 Soil (mg/g)2 Groundwater (mg/L) 

Perchlorate 1.7 0.0041 

 

22.25 

Nitrate (as N) 1.6 0.0039 16 

Nitrate (as NO3) 7.1 0.072 70.86 

Hardness (as CaCO3) --- --- 1,800 

Total Dissolved Solids 439 --- 4,925 

 
Chemical Oxygen Demand  83 0.20 26.5 

Chloride 440 1.06 48.34 

 
Phosphate 2.6 0.01 0.95 

Chromium --- --- 0.2 

Iron  ND ND 0.3 

Sulfate 140 0.34 1,520 

pH (unitless) 7.4 --- 7.9 
1Concentrations in the aggregated extract (total volume of ~81 mL) 
2Calculated based on 40 g of wet soil with a moisture content of 15.9% 

---: Not analyzed 

ND: non-detect 

 

4. 2. 2. Electron donors Source in Groundwater and Saturated Soil Microcosms 

This bench-scale biodegradation test, two different emulsified oils, EOS-100 and EOS-

Pro, were tested as potential electron donors. The emulsified vegetable oils EOS-100 and EOS-

Pro were supplied by EOS Remediation, Inc. (Raleigh, NC). EOS-100 is a soluble emulsified 

vegetable oil used to enhance anaerobic perchlorate biodegradation. EOS-100 is a proprietary 

mixture of refined and bleached U.S. soybean oil (85% by weight). EOS-100 is considered a 

slow-release electron donor intended to promote biodegradation over extended time periods. 

EOS-Pro is also a proprietary mixture of refined and bleached U.S. soybean oil (~60% by 

weight), nutrients, and vitamins, but EOS-Pro specifically contains diammonium phosphate 

(DAP), which is used to enhance the growth of microbial communities. Under anaerobic 

conditions, these emulsified oils hydrolyze into glycerol and long chain fatty acids (LCFAs) 

(Viana et al., 2012). These compounds are further decomposed into hydrogen (H2), which can be 

used by bacteria as a direct electron donor for the reduction of perchlorate and nitrate  (da Silva 
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et al., 2009). Table 15 summarizes the properties of EOS-100 and EOS-Pro, including their H2 

yields of 0.40 and 0.25 pounds of H2 per pound of oil, respectively.  

Table 15. EOS-100 and EOS-Pro Properties 

Parameter EOS-100 EOS-Pro 

Organic Carbon (% by Weight) 100 74 

Refined and Bleached U.S. Soybean Oil (% by Weight) 85 60 

Slow Release Organics (% by Weight) 15 10 

Other Organics (emulsifiers, food additives) (% by Weight) ---- 10 

Mass of Hydrogen Produced (lb H2 / lb EOS) 0.40 0.25 

pH (Standard Units) ---- 6-7 

Viscosity (% by Weight)  Low Low  

Specific Gravity 0.92-0.93 0.96-0.98 

(----: no data available) 

__---- 

  

 

4. 2. 3. Groundwater and Saturated Soil Microcosm Setup 

The microcosms batch tests were performed in 150-mL borosilicate glass bottles. 

Saturated soil and groundwater were added to each bottle at a ratio of 100 mL of groundwater to 

40 grams of saturated wet soil. The microcosms were then augmented with different oil 

concentrations, as shown in Table 16. These concentrations equate to 0.02 grams of oil per gram 

of saturated soil, 0.01 g of oil per g of saturated soil, and 0.002 g of oil per gram of saturated soil, 

as noted in the sample labeling scheme. The average COD concentration of the neat EOS-100 

was previously determined to be 2.07×106 mg/L. Based on nitrate and perchlorate stoichiometric 

reduction in the previous set of microcosms (chapter 3), the samples were designed to account 

for different stoichiometric excess to reduce nitrate and perchlorate concentrations in the 

groundwater and saturated soil. In which, E-0.002 for ~14 stoichiometric excess, E-0.01 for ~70 

stoichiometric excess, and E-0.02 microcosms were designed to account for ~140 stoichiometric 

excess.  In addition, control microcosms [i.e., blank controls (BLK; no electron donor added), 
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abiotic control (E-ABIO; autoclaved soil mixture), and phosphate addition (E-Phos; 6.5 mg-

PO4
−3/L of phosphate).  

Table 16. Microcosms Electron Donor Volumes EOS-100/EOS-Pro 

Microcosm Sample 

Label 
Detail* 

Volume of EOS-

100 (mL)**  

Phosphate Concentration (mg-PO4-

3 /L) 

E-0.02  0.02 g of oil/g soil 0.70 ---- 

E-0.01 0.01 g oil/g soil 0.35 ---- 

E-0.002 0.002 g oil/g soil 0.070 ---- 

E-ABIO  0.02 g of oil/g soil 0.70 ---- 

BLK  ---- ---- ---- 

E-Phos 0.02 g of oil/g soil 0.70 6.5 

---: No phosphate added 

*Grams of EOS-100 per gram of soil 

**Volume of EOS-100 used in 40 g of saturated soil. 

 

After preparing the microcosms, the glass bottles were sealed with a butyl rubber cap and 

crimped closed with an aluminum ring to ensure anaerobic conditions. The bottles were wrapped 

in black felt and placed horizontally in a shaker at 70 rpm and room temperature. At the time of 

analysis, the microcosms were opened, and the liquid and soil mixtures were transferred to 500-

mL centrifuge bottles and centrifuged at 9,000 rpm for 15 minutes at 4°C. The supernatant was 

decanted into a 250-mL bottle. 

The experimental matrix and microcosm incubation periods are summarized in Table 17. 

Each sample was analyzed for perchlorate, nitrate, COD, sulfate, and phosphate. 
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Table 17. Experimental Design Matrix for the Preliminary Experiments with EOS-100 

Microcosm Sets 
Days of Incubation 

5 8 12 16 21 28 41 48 62 

E-0.02 
E-0.02 E-0.02 E-0.02 E-0.02 E-0.02 E-0.02 -- E-0.02 E-0.02 

E-0.02-D E-0.02-D E-0.02-D E-0.02-D E-0.02-D E-0.02-D -- E-0.02-D E-0.02-D 

E-0.01 
E-0.01 E-0.01 E-0.01 E-0.01 E-0.01 E-0.01 E-0.01 -- E-0.01 

E-0.01-D E-0.01-D E-0.01-D E-0.01-D E-0.01-D E-0.01-D -- E-0.01-D E-0.01-D 

E-0.002 

E-0.002 E-0.002 E-0.002 E-0.002 E-0.002 E-0.002 E-

0.002 

-- E-0.002 

E-0.002-

D 

E-0.002-

D 

E-0.002-

D 

E-0.002-

D 

E-0.002-

D 

E-0.002-

D 

-- E-0.002-

D 

E-0.002-

D 

E-Phos 
E-Phos -- -- E-Phos E-Phos -- -- -- -- 

E-Phos-D -- -- 
E-Phos-

D 

E-Phos-

D 

-- -- -- -- 

Blanks (BLK) 
BLK -- -- -- -- -- -- BLK -- 

BLK-D -- -- -- -- -- -- -- BLK-D 

Abiotic Controls   (E-
ABIO) 

E-ABIO -- E-ABIO -- -- -- -- E-ABIO -- 

E-ABIO-

D 
-- 

E-ABIO-

D 

-- -- -- -- -- E-ABIO-

D 

 E-0.02 (0.02 g of oil/g soil): 0.7 mL of EOS-100, 100 mL groundwater, 40 g saturated wet soil 
 E-0.01 (0.01 g oil/g soil): 0.35 mL of EOS-100, 100 mL groundwater, 40 g saturated wet soil. 
 E-0.002(0.002 g oil/ g soil): 0.07 mL of EOS-100, 100 mL groundwater, 40 g saturated wet soil 

Notation: 
Electron Donors: E = EOS-100 oil 
E-ABIO = Abiotic Control (autoclaved soil and water mixture with electron acceptor-0.7 mL) 

BLK = Blank (No electron donor nor phosphate added) 
D = Duplicate 
E-Phos = nutrient buffer (addition of nutrient at 6.5 mg P/L) 

--: No sample  

 

In a separate set of microcosms, the emulsified oil EOS-Pro was used as the electron 

donor in the microcosms to evaluate commercially available alternatives to EOS-100. The H2 

yield of EOS-Pro is approximately 38% lower than EOS-100 (i.e., 0.25 lb H2/lb oil vs. 0.40 lb 

H2/lb oil), but EOS-Pro contains extra components such as vitamin B-12 and phosphate that 

accelerate the bacterial growth in substrates (e.g., saturated soil). In addition, EOS-Pro has lower 

organic releases than EOS-100, ensuring longer periods of biological activity (i.e., 10 % and 15 

% by weight, respectively). EOS-Pro dosing was based on the results of the EOS-100 

microcosms. As will be described later in relation to the EOS-100 data, the highest reductions in 

perchlorate and nitrate concentrations were achieved with the higher dosing rates of 0.01 g oil/g 

soil and 0.02 g oil/g soil (i.e., ~ 70X and ~140X stoichiometric COD). Therefore, the 

microcosms were amended with 0.2 or 0.4 mL of EOS-Pro (0.005 g oil/g soil and 0.01 g oil/g 
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soil, respectivelly). A blank sample consisting of saturated zone soil and groundwater without 

electron donor amendment was used to characterize the level of remediation achieved with 

ambient conditions. The groundwater to soil ratio was held constant at 100 mL of groundwater to 

40 g of saturated soil, as shown in Table 18. Perchlorate, nitrate, and COD were analyzed in each 

sample, starting with samples collected after three days of incubation, and a subset of the 

samples were also tested for sulfate and phosphate. 

Table 18. Experimental Design Matrix for the Secondary Experiments with EOS-Pro 

Microcosm Sets 
Days of Incubation 

3 4 6 9 11 13 15 16 18 

E-0.4 
E 0.4 E 0.4 E 0.4 E 0.4 E 0.4 E 0.4 E 0.4 E 0.4 E 0.4 

E-0.4-D E-0.4-D E-0.4-D E-0.4-D E-0.4-D E-0.4-D E-0.4-D E-0.4-D E-0.4-D 

E-0.2 
E-0.2 E-0.2 E-0.2 E-0.2 E-0.2 E-0.2 E-0.2 E-0.2 E-0.2 

E-0.2-D E-0.2-D E-0.2-D E-0.2-D E-0.2-D E-0.2-D E-0.2-D E-0.2-D E-0.2-D 

Blanks (BLK) 
BLK BLK BLK BLK BLK BLK BLK BLK BLK 

BLK-D BLK-D BLK-D BLK-D BLK-D BLK-D BLK-D BLK-D BLK-D 

 E-0.4 (0.01 g oil/g soil): 0.4 mL of EOS-Pro, 100 mL groundwater, 40 g saturated wet soil 
 E-0.002 (0.005 g oil/g soil): 0.007 mL of EOS-Pro, 100 mL groundwater, 40 g saturated wet soil 

Notation: 
Electron Donors: E = EOS-Pro oil 

BLK = Blank (No electron donor nor phosphate added) 
D = Duplicate 
--: No sample  

 

4. 2. 4. Analytical Methods 

Perchlorate concentrations were determined with ion chromatography (Dionex ICS 2000 

IC) using US EPA Method 314. Other analyses were performed according to EPA-approved 

methods, as summarized in Table 19. 
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Table 19. Analytical Methods 

Analysis EPA Method 

Nitrate Hach EPA 10206 and EPA 352.1 

Hexavalent Chromium Hach EPA 8023 

COD Hach 8000 
Sulfate IC and Hach EPA 8051 

Phosphate EPA 365.1 

Iron Hach 8008 and 8147-ferrover 

Chloride Hach 8225 

pH Hach EPA 8156 

 

4. 3. Results and Discussion 

4. 3. 1. Chemical Oxygen Demand in Groundwater and Saturated Soil Microcosms Augmented 

with EOS-100 

The ambient COD concentration in the saturated soil was ~83 mg/L which is surprisingly 

higher than the COD measured in the vadose zone soil samples of ~16 mg/L (Chapter 3). These 

results differ with previous research in which higher organic carbon contents have been reported 

in superficial soil profiles due to plant rooting cycles that provides carbon and other nutrients to 

the soil (Konopka & Turco, 1991). However, some other research suggested that due to higher 

water content in depth soils the abundance of organic carbon could increase (Hickman & Novak, 

1989; Holden & Fierer, 2005). Thus, the high COD concentration in the saturated soil may have 

resulted by soil adsorptions from the groundwater characteristic of this zone. 

The chemical oxygen demand (COD) was used as an indirect measure of the aqueous 

EOS-100 concentrations. Figure 15 compares the COD originating from the saturated soil and 

groundwater with the COD originating from the EOS-100. The blank controls (i.e., no EOS-100 

or nutrient added) demonstrated a relatively low COD concentrations of ~85 mg/L compared 

with the microcosms augmented with the electron donor (EOS-100). During the first day of 
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incubation a COD reduction was observed. This reduction could be due to the consumption of 

the electron donor by the microbial community present in the microcosms. The reduction was 

observed until day 40 of incubation. After, the COD concentration increased due to oil releases 

from the saturated soil, which corroborate the slow release properties proper of the electron 

donor. Therefore, EOS-100 is considered a suitable electron donor for long-term saturated soil 

and groundwater applications providing long-term application, which may provide a cost-

effective field application.  

 
Figure 15. Chemical Oxygen Demand in Groundwater and Saturated Soil Microcosms-EOS-100. 

The error bars indicate the standard deviation of the measurements. (Samples were tested in duplicates). 

 

4. 3. 2. Biodegradation of Nitrate in Groundwater and Saturated Soil Microcosms-EOS-100 

Nitrate contamination in perchlorate-contaminated environments has been attributed to 

the nitrification of the ammonium present in one of the most predominant sources of perchlorate 
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as is the ammonium perchlorate used in air bags, rocket fuel propellants, and in general industrial 

applications (Urbansky, E. T., 1998). Nitrate is a crucial contaminant that limits perchlorate 

biodegradation technologies due to bacterial preference for electron acceptors with higher redox 

potential (e.g., 280~220 mV for nitrate vs. 0~-110 mV for perchlorate). However, these 

limitations can be overcome by increasing the electron donor concentrations generating faster 

nitrate degradations in nitrate and perchlorate contaminated environments (Achtnich et al., 

1995). Therefore, in this set of microcosms different concentrations of EOS-100 were spiked to 

evaluate the impact of different electron donor concentrations for nitrate and perchlorate 

biodegradations.  

Based on the soil extractions performed at the beginning of the experiments (Table 14), 

the nitrate concentrations in the saturated soil and the groundwater used in this set of 

experiments were ~ 1.6 mg-N/L and ~16 mg-N/L, respectively. Recall the initial nitrate 

concentration in the vadose zone soil and the presented in chapter 3 were ~20.9 mg-N/L and 0.46 

mg-N/L, respectively. The high nitrate concentration in the groundwater can be attributed to 

nitrate contaminated plumes from superficial contaminated soil horizons (i.e., vadose zone soils) 

or due to nitrification of ammonium, present in ammonium perchlorate contaminations, into 

nitrite and its posterior oxidation to nitrate. These concentrations evidenced the variability of the 

contaminants in the soils and the importance of the evaluation of the enzymatic reactions in in-

situ and ex-situ bioremediation technologies in contaminated soils and groundwater, 

respectively. 

The initial nitrate concentration in the saturated soil was found by sequential extractions 

as described earlier. This concentration was assumed to yield the maximum aqueous nitrate 

concentration, but the initial concentrations in the microcosms at day 5 of incubation were higher 
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(E-0.002: 16.75 mg-N/L; E-0.01: 13.45 mg-N/L; and E-0.02: 10.15 mg-N/L) than in the 

aggregated extract. This higher nitrate concentration may have resulted from heterogeneity in the 

soil samples, higher nitrate contributions from the groundwater used in the microcosm, or simply 

experimental error. Nerveless, the nitrate concentrations found in the blank controls microcosms 

(i.e., no electron donor or phosphate added) of ~19 mg-N/L correlates better with the initial 

nitrate concentrations at day 5 of incubation. Therefore, for this set of microcosms the initial 

concentration will be assumed as the concentration found in the blank controls. 

Figure 16 illustrates the change in nitrate concentration in the various microcosms as a 

function of EOS-100 addition and nitrate concentration in the blank control microcosms. Nitrate 

reduction were observed within the first five days of incubation, microcosms amended with 14X, 

70X, and 140X stoichiometric excess (i.e., 0.002 g oil/g soil, 0.01 g oil/g soil, and 0.02 g oil/g 

soil, respectively) achieved ~12%, ~ 29 %, and 47 % nitrate removals, respectively. In contrast, 

with the EOS-100 experiments presented in Chapter 3 (vadose zone soil and Lake Mead 

microcosms), nitrate reduction in the groundwater and saturated soil continued for 28-48 days, 

depending on the EOS-100 dose. These results are confirmed by the degradation rates calculated 

during the first 5 days of incubation in the vadose zone soil microcosms (i.e., 100X 

stoichiometric COD) of 3.42 mg-N/L/d compared with the degradation rates in this set of 

microcosms shown in Table 20. The degradation rate in microcosms augmented with 140X 

stoichiometric COD of 1.77 mg-N/L/d is lower than the degradation rate in the previous set of 

microcosms with 100X stoichiometric COD. These low degradation rates resulted in a longer 

perchlorate reduction lag period than the first set of EOS-100 experiments, which required 8 

days to reach the detection limit of the nitrate assay with similar microcosm conditions. The 

longer remediation periods (low degradation rates) in the saturated soil may have resulted by the 
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lower concentrations of nitrate in the saturated soil (0.0039mg-N/g soil) compared with the 

higher nitrate contents in the vadose zone soil (~0.76 mg-N/g soil). In addition, some research 

reported that sodium and chlorine concentrations increase in deeper soils (Holden & Fierer, 

2005), thereby delating the remediation process.  

Table 20. Nitrate Biodegradation Rates in Saturated Soil and Groundwater Microcosms-EOS-100  

Stoichiometric COD Maximum Nitrate Degradation Rate* Overall Nitrate Degradation Rate** 

14X (0.002 g oil/ g soil) 0.45 mg-N/L/day 0.41 mg-N/L/day 

70X (0.01 g oil/g soil) 1.11 mg-N/L/day 0.46 mg-N/L/day 

140X (0.02 g oil/g soil) 1.77 mg-N/L/day 0.46 mg-N/L/day 
*Degradation rate calculated between day 0 and 5 of incubation 

**Degradation rate calculated between day 0 and 41 of incubation  

 

  
Figure 16. Nitrate Reduction in the Groundwater and Saturated Soil Microcosms - EOS-100. The 

error bars indicate the standard deviation of the measurements. (Samples were tested in duplicates). 
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4. 3. 3. Biodegradation of Perchlorate in Groundwater and Saturated Soil Microcosms-EOS-100 

Figure 17 summarizes the perchlorate concentrations in the microcosms over time as a 

function of electron donor concentrations. The microcosms with 70X and 140X stoichiometric 

COD exhibited a 28-day lag period, which was consistent with the amount of time required for 

complete nitrate reduction (Figure 16). Interestingly, the microcosm with 70X stoichiometric 

COD achieved the perchlorate method detection limit on day 40, while the microcosm with 

140X required ~60 days to achieve the same level of treatment. It is unclear why the microcosm 

with twice as much electron donor required a longer incubation period, particularly considering 

that the dissolved COD concentration in that microcosm was also higher. However, there was 

only one microcosm with 140X stoichiometric COD sampled between days 28 and 62 so the 

longer treatment time may have simply been attributable to experimental variability. The 

microcosm with 14X stoichiometric COD did not achieve significant perchlorate reduction. This 

is attributable to the low COD concentrations and slower kinetics compared with the microcosms 

with 70X and 140X stoichiometric COD.  

In addition, the maximum perchlorate degradation rates (i.e., between day 28 and 62 of 

incubation) for this set of microcosms are were calculated as 0.10 mg/L/d, 0.95 mg/L/d, and 0.84 

mg/L/d for 14X, 70X, and 140X stoichiometric COD, respectively. The degradation rates 

obtained in this study are considerable lower than the calculated previously in chapter 3 (100X 

stoichiometric COD) of 3.21 mg/L/d. These low biodegradation rates may have resulted by the 

low nitrate biodegradation rates reported in the same set of microcosms (Table 20). Furthermore, 

the 100X stoichiometric COD experiments presented in chapter 3 demonstrated faster 

perchlorate biodegradation achieving lower detection concentrations by day 8 of incubation. In 

contrast, saturated soil and groundwater microcosms needed longer periods of incubation with 
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both 70X and 140X stoichiometric COD excess. This results are attributable to higher 

perchlorate concentrations in the vadose zone soil than in the saturated soil (0.18 mg/g soil vs 

0.0041mg/g soil) resulting in lower availability of the electron acceptor in the enzymatic 

reactions, thereby delaying the perchlorate biodegradation in the saturated soil. 

  
Figure 17. Perchlorate Reduction in the Groundwater and Saturated Soil Microcosms - EOS-100. 

The error bars indicate the standard deviation of the measurements. (Samples were tested in duplicates). 

 

The perchlorate concentration in blank microcosms (BLK) were relatively consistent with 

values between ~33-34 mg/L. Recall that the initial perchlorate concentrations in the 

groundwater and saturated soil were 22.3 mg/L and 1.7 mg/L, respectively (Table 14). The 
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4. 3. 4. Biodegradation of Sulfate in Groundwater and Saturated Soil Microcosms-EOS-100 

Biodegradation of sulfate was demonstrated for all EOS-100 dosing conditions, but 

higher sulfate degradations were achieved in microcosms with higher doses of EOS-100 (i.e., 

140X and 70X stoichiometric excess), as shown in Figure 18a. During the first days of 

incubation (i.e., day 5 to day 15), sulfate concentrations were closed to the blank control 

concentrations (~2,300 mg/L). After day 15, predominant sulfate reductions were observed up to 

day 28. During this period of incubation sulfate reductions increased producing high 

concentrations of sulfide in the microcosms, as show in Figure 18b. The highest sulfide 

concentrations were also demonstrated in microcosms with 140X and 70X stoichiometric COD. 

Interestingly, the concentration of sulfate increased after day 28 of incubation, this increase may 

have resulted from soil releases during the extended incubation period. Contrary, sulfide 

concentration decreased by the end of the incubation period due to the lower sulfate reductions 

and volatilization of sulfide.  

Biodegradation of sulfate in the saturated zone were considerable higher than in the 

vadose zone soil experiments presented in chapter 3, in which the maximum degradation rate of 

sulfate in microcosms with 100X stoichiometric COD was 3 mg/L/day. This degradation rate is 

considerable lower than the calculated in this batch experiments with maximum sulfate 

degradation rates of 45.7 mg/L/d, 36.9 mg/L/d, and 21.7 mg/L/d for microcosms with 14X, 70X, 

and 140X stoichiometric COD, respectively. This high sulfate reduction may have resulted by 

the faster kinetics of the reactions due to the high initial sulfate contribution from the 

groundwater and saturated soil (i.e., 1,520 mg/L and 140 mg/L, respectively) compared with the 

initial sulfate concentrations in the Lake Mead water and vadose zone soil (i.e., 238 mg/L and 
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105 mg/L, respectively) and the stoichiometric COD used in the microcosms study (e.g., 140X 

vs. 100X stoichiometric excess). 

  
 

Figure 18. Sulfate Reduction in the Groundwater and Saturated Soil Microcosms - EOS-

100 

 

4. 3. 5. Abiotic Controls in Groundwater and Saturated Soil Microcosms-EOS-100 

Perchlorate reduction was not observed in the abiotic controls. This result was expected 

since no native bacteria were expected to survive the autoclaving process. However, similar to 

the experiments described in Chapter 3, nitrate reduction was still observed during the incubation 

period as shown in Figure 19. Again, this reduction was likely attributable to incomplete 

sterilization of the soil, which allowed for the survival and subsequent metabolic activity of 

nitrate-reducing microorganisms. Indeed, based on the literature review performed during this 

research, there are no studies that demonstrated that perchlorate reducing bacteria are capable of 

supporting temperatures higher than 80 oC, thus perchlorate reducing bacteria are unable of 

forming spores (Thrash, 2009; Thrash et al., 2010). Conversely, there are studies that 

demonstrated the existence of nitrate reducing spore-forming bacteria (L’Haridon et al., 2006; 

Vekhoeven, 1954). Other research has documented abiotic reduction of nitrate and nitrite during 
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autoclaving (Dail et al., 2001). However, based on the results of the two different microcosms 

experiments (i.e., vadose zone and saturated soil) and the fact that no perchlorate reductions were 

observed in either of the experiments, it can be assumed that nitrate reductions may have resulted 

by the formation of spores that survive to the autoclaving process. 

Table 21. Nitrate Reduction in Abiotic vs. Biotic Microcosms - EOS-100  

Electron 

Donor 

Nitrate Abiotic Control Microcosms1 Nitrate Biotic Microcosms2 

Day 5 Day 62 Day 5 Day 62 

EOS-100 12.8 mg-N/L 2.9 mg-N/L 10.15 mg/L 0.2 mg/L 

1Nitrate Concentration in autoclaved microcosms with 0.7 mL of EOS-100 
2Nitrate Concentration in 140X (0.02 g oil/ g soil or 0.7 mL) microcosms  

 

 Based on the results shown in Table 21, the biodegradation rates of nitrate for both biotic 

and abiotic microcosms were determined. Surprisingly both experiment resulted with same rate 

of reduction of ~0.17 mg/L/d. However, comparing the rate of nitrate reductions in the abiotic 

controls presented in chapter 3 (Table 11), the nitrate biodegradation rate was higher in the 

vadose zone soil than in the saturated soil (i.e., ~0.85 mg/L/d). This faster rate is most likely due 

to the higher initial nitrate concentration in the vadose zone soil.  
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Figure 19. Nitrate and Perchlorate Concentrations in Abiotic Control Microcosms with EOS-100 at 

140X Stoichiometric COD.  

 

4. 3. 6. Nitrate Reduction Kinetics in Groundwater and Saturated Soil Microcosms-EOS-100 

The rate constants describing the reduction of nitrate and perchlorate were determined 

based on linear regression over defined incubation periods. The rate constants for nitrate 

reduction were evaluated between days 0 and 28, at which point nitrate had been reduced to the 

method detection limit of the assay. Recall the initial nitrate concentration (i.e., nitrate 

concentration at day 0) was assumed as the same found in the blank controls microcosms (~19 

mg-N/L). Perchlorate reduction kinetics were not characterized for these experiments due to 

insufficient data. The linearized data for pseudo first order degradation of nitrate with EOS-100 

are shown in Figure 20. The corresponding rate constants were determined to be 0.06 d-1, 0.10 d-

1, and 0.14 d-1 for EOS-100 doses of 14X, 70X, and 140X stoichiometric COD. Compared with 
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the experiments presented in chapter 3, the nitrate biodegradation rate constants in the saturated 

soil were considerably lower than in the vadose zone soil (i.e., 0.60 d-1, for microcosms with 

100X stoichiometric COD). As mention earlier, these results are likely due to lower nitrate 

concentrations in the in the saturated soil (0.0039mg-N/g soil) as compared with the higher 

nitrate contents in the vadose zone soil (~0.76 mg-N/g soil) or to lower activity of nitrate 

reducing bacteria due to high salinity contests characteristic of saturated soils (Holden & Fierer, 

2005) or just to the limited data collected during the nitrate reduction period in the vadose zone 

soil and Lake Mead water microcosms. 

   

Figure 20. Nitrate Reaction Kinetics in Saturated Soil and Groundwater 

Microcosms - EOS-100 at 21±2°C. a) Rate constant of nitrate for microcosms amended with 0.070 mL of 

EOS-100 (E-0.002). b) Rate constant of nitrate for microcosms amended with 0.35 mL of EOS-100 (E-0.01). c) Rate 
constant of nitrate for microcosms amended with 0.7 mL of EOS-100 (E-0.02). 
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4. 3. 7. Phosphate Amendment in Groundwater and Saturated Soil Microcosms-EOS-100 

To evaluate the effect of phosphate on the biodegradation kinetics of nitrate and 

perchlorate, microcosms were amended with ~21 mg-P/L of phosphate and EOS-100 (140X 

stoichiometric COD) and incubated for up to 21 days. Recall that the initial nitrate and 

perchlorate concentration were previously determined to be ~19 mg-N/L and ~35 mg/L, 

respectively (based on blank samples). By the first sampling day (i.e., day 5), nitrate had already 

been reduced by 90%, but perchlorate reduction had not yet started (Figure 21b). As shown 

earlier, the addition of EOS-100 at 140X stoichiometric COD without phosphate addition only 

achieved ~47% nitrate reduction over the same incubation period (Figure 16).  

 

  
 

Figure 21. Nitrate and Perchlorate Concentrations in Microcosms with EOS-100 (140X 

Stoichiometric COD) and 65 mg- PO4
-3

/L of Phosphate. E-0.02: microcosms with 0.70 mL of EOS-100-No 

phosphate added; E-Phos: microcosms with 0.70 mL of EOS-100-Phosphate added 

 

Once the nitrate was removed (day 21), the perchlorate concentration decreased for 
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addition (i.e., E-Phos-Perchlorate, Figure 21b). These results are consistent with the nitrate and 

perchlorate biodegradation rates shown in Table 22. Nitrate biodegradation rates increased from 

1.77 mg/L/d to 3.42 mg/L/d during the first five days of incubation in microcosms with and 

without phosphate addition, but as the concentration of nitrate decreased the biodegradation rates 

were also reduced (i.e., 0.33 mg/L/d vs 0.07 mg/L/d, by day 21 of incubation). As mention 

before, perchlorate reductions did not start until the concentration of nitrate was reduced. But, in 

contrast with the biodegradation rates of nitrate, the perchlorate biodegradation rates did not 

decrease by the end of the incubation period in the microcosms with phosphate addition (i.e., 

2.83 mg/L/d). This may have resulted by the highest concentrations of perchlorate present during 

the entire incubation period. 

Table 22. Nitrate and Perchlorate Biodegradation Rates in Microcosms with EOS-100 (140X 

Stoichiometric COD) and 65 mg- PO4
-3

/L of Phosphate. 

Days 
Nitrate Biodegradation Rate (mg/L/d) Perchlorate Biodegradation Rate (mg/L/d) 

E-0.02* E-Phos** E-0.02* E-Phos** 

5 1.77 3.42 1.52 0.90 

16 0.70 0.10 0.12 0.57 

21 0.33 0.07 0.40 2.83 

* Microcosms with 0.70 mL of EOS-100- No phosphate added 

** Microcosm with 0.70 mL of EOS-100- Phosphate added 

 

These results suggest that phosphate amendment increases the biodegradation rates of 

perchlorate and nitrate. Alternatively, phosphate addition increases the biodegradation rate of 

nitrate, thereby, eliminating this competing species allowing perchlorate reduction to commence 

sooner. In addition, comparing these results with the obtained in the vadose zone soil and Lake 

Mead water microcosms (Chapter 3), ~20 mg-P/L of phosphate is an adequate concentration to 

enhance nitrate and perchlorate biodegradations, compare with the ~6.5 mg-P/L of phosphate 

used in the vadose zone soil microcosms, in which any improvement in nitrate and perchlorate 

degradation were observed.  
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4. 3. 8. Nitrate and Perchlorate Biodegradation in Groundwater and Saturated Soil Microcosms-

EOS-Pro 

Additional microcosms were prepared to evaluate nitrate and perchlorate biodegradation 

in groundwater and saturated soil with an alternative slow-release electron donor—EOS-Pro. 

Microcosm preparation was similar to the EOS-100 experiments in that the ratio of saturated soil 

to groundwater was held constant at 40 g to 100 mL, but EOS-Pro was dosed at 0.01 g oil per g 

of soil and 0.005 g oil per gram of soil (i.e., 77X and 39X stoichiometric COD, respectively). 

The experimental matrix was summarized previously in Table 18. 

Based on the EOS-Pro dosing conditions, the theoretical COD concentrations in the 

microcosms were expected as ~8,000 mg/L and ~4,000 mg/L for 77X and 39X stoichiometric 

COD, respectively. But according to Figure 22, the COD was considerably lower with average 

values of ~217 mg/L for 77X stoichiometric COD and ~122 mg/L for 39X stoichiometric COD 

microcosms, thereby suggesting adsorption of the slow-release oil onto the soil.  
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Figure 22. Chemical Oxygen Demand in Groundwater and Saturated Soil - EOS-Pro. E-0.20: 0.005 g 

oil/ g soil; E-0.40: 0.01 g oil/g soil; BLK: no EOS-Pro added. The error bars indicate the standard deviation of the measurements. 
(Samples were tested in duplicates). 

 

As shown earlier in Table 14, the initial nitrate concentration in the saturated soil and 

groundwater were 1.6mg-N/L and 16 mg-N/L, respectively. But, the nitrate concentration in 

these experimental microcosms was unusually low (<1 mg-N/L), even for the first sample 

analyzed on day 3 (Figure 23). The nitrate concentration in the blank microcosm was higher 

(~6.4 mg-N/L) but still considerably lower than the groundwater itself. Coupled with the fact that 

the initial perchlorate concentration was consistent with previous experiments, these data suggest 

rapid nitrate degradation even in the absence of electron donor amendment.  
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Figure 23. Nitrate Reduction in Groundwater and Saturated Soil Microcosms - EOS-Pro. The error 

bars indicate the standard deviation of the measurements. (Samples were tested in duplicates). 

 

Although nitrate had essentially been eliminated prior to day 3 of incubation, with 

maximum nitrate degradation rates of 1.96 mg-N/L/d and 1.88 mg-N/L/d for microcosms 

augmented with 77X and 39X stoichiometric COD, respectively. No significant perchlorate 

degradation was observed for the first 15 days of incubation, but nearly complete perchlorate 

degradation was observed between days 15 and 18 of incubation, with maximum perchlorate 

degradation rates of 4.86 mg/L/d for 77X stoichiometric COD and 6.00 mg/L/d for 39X 

stoichiometric COD microcosms. It is unclear what caused the 15-day perchlorate degradation 

lag period. However, the rapid degradation of nitrate and the fact that perchlorate was nearly 

completely degraded within 20 days—compared to >45 days for EOS-100—indicates that EOS-

Pro might be a superior slow-release electron donor for the groundwater and saturated soil at the 

study site.  
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Comparing the maximum degradation rates of both EOS-100 and EOS-Pro in the 

biodegradation of nitrate and perchlorate, EOS-Pro generates significantly higher nitrate and 

perchlorate biodegradation rates than EOS-100. Although different stoichiometric COD were 

considered during the two microcosms batch test, based on the results of this research, EOS-Pro 

is considered a superior electron donor for nitrate and perchlorate contaminations in groundwater 

and saturated soil. 

Table 23. Nitrate and Perchlorate Biodegradation Rates in Groundwater and Saturated Soil 

Microcosms Augmented with EOS-100 and EOS-Pro 

Microcosms 

Batch Test 

Grams of Oil to Grams 

of Soil Ratio 

Maximum Nitrate 

Biodegradation Rates, mg-

N/L/d 

Maximum Perchlorate 

Biodegradation Rates, mg/L/d 

EOS-100 

0.002 g oil/g soil - 14X 0.45 0.10 

0.01 g oil/g soil - 70X 1.11 0.95 

0.02 g oil/g soil - 140X 1.17 0.84 

EOS-Pro 
0.005 g oil/g soil - 39X 1.88 6.00 

0.01 g oil/g soil - 77X 1.96 4.86 
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Figure 24. Perchlorate Reduction in Groundwater and Saturated Soil Microcosms - EOS-Pro. The 

error bars indicate the standard deviation of the measurements. (Samples were tested in duplicates). 

 

In contrast with previous experiments with EOS-100, EOS-Pro did not achieve sulfate 

degradation, and in fact, the sulfate concentration actually increased slightly in all microcosms 

(i.e., blank controls and those amended with EOS-Pro), as shown in Figure 25. This increase 

likely resulted from sulfate desorption from the saturated soil into the groundwater during the 

incubation period. Based on the initial extraction experiments (Table 14), the initial 

concentrations of sulfate in the aggregated extract obtained during the soil extraction process and 

in the groundwater were 140 and 1,520 mg/L, respectively. Therefore, desorption over the 

experimental period appeared to release additional sulfate that had not been previously 

measured. However, nitrate and perchlorate degradation did not appear to be affected by the high 
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sulfate concentration, presumably because of the thermodynamic favorability of nitrate and 

perchlorate over sulfate. 

 

Figure 25. Sulfate Reduction in Groundwater and Saturated Soil Microcosms - EOS-Pro. The error 

bars indicate the standard deviation of the measurements. (Samples were tested in duplicates).  

 

As mentioned earlier, EOS-Pro is also an additional source of phosphate (i.e., 0.116 % by 

weight of EOS-Pro). Thus, in this set of microcosms, no supplementary phosphate was added 

besides that provided by the oil. The initial phosphate concentrations in the saturated soil and 

groundwater were ~2.6 and 0.95 mg- PO4
-3/L, respectively, but in the microcosms, the phosphate 

concentrations varied but were always less than 2 mg/L (Figure 26). The low concentration of 

phosphate in the microcosms may have resulted by the low phosphate content characteristic of 

saturated zone soils (Holden & Fierer, 2005; Konopka & Turco, 1991) or by phosphate 
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precipitations due to higher calcium content in the groundwater used in the microcosms (~1,800 

mg-CaCO3).  

 
Figure 26. Phosphate Concentrations in Groundwater and Saturated Soil Microcosms - EOS-Pro  

 

4. 4. Summary  

The goal of this part of the research was to evaluate nitrate and perchlorate 

biodegradation in contaminated groundwater and saturated soil when using two different electron 

donors (i.e., EOS-100 and ESO-Pro). Moreover, the analysis was intended to identify optimum 

ratios of the emulsified oils to the contaminated groundwater and saturated soil (e.g., grams 

electron donor/gram of soil) that stimulate higher and faster nitrate and perchlorate 

biodegradation. 
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The oil dosing ratio of 0.02 g of EOS-100 per gram of saturated soil (140X stoichiometric 

COD) demonstrated faster reduction of nitrate and perchlorate compared with ratios of 0.01 or 

0.002 g of EOS-100 per gram of saturated soil (i.e., 70X stoichiometric COD and 40X 

stoichiometric COD, respectively). The 0.02 g of EOS-100 per gram of saturated soil 

demonstrate a nitrate degradation rate of 1.77 mg-N/L/d during the first 5 days of incubation 

(~47% reduction), while the 0.01 and 0.002 ratios achieved demonstrate 1.11 mg-N/L/d (~30% 

reduction) and 0.45 mg-N/L/d (~14% reduction), respectively, during the same incubation 

period. Full nitrate reduction required 28 to 48 days of incubation, at which point perchlorate 

reduction became thermodynamically favorable.  

Perchlorate reduction lag period supports the hypothesis of sequential reduction of 

electron acceptors (i.e., oxygen, nitrate, perchlorate, manganese, iron, sulfate, and carbon 

dioxide) based on redox potentials. After the corresponding lag period, perchlorate reduction was 

very rapid for the higher EOS-100 dosing ratios, but only slight reductions in perchlorate were 

observed over the testing period for a dosing ratio of 0.002 g EOS-100 per g of saturated soil 

(14X stoichiometric COD) with a degradation rate of 0.09mg/L/d compared with 0.84 and 0.95 

mg/L/d demonstrated in 0.02 g oil/g soil and 0.01 g of oil/g of soil, respectively. These results 

were presumably due to slower kinetics at the lower dosing ratio considering that soluble COD 

was available in the microcosm.  

When using EOS-Pro, nitrate and perchlorate degradations were more rapid than with 

EOS-100. Nitrate degradation rates were 4.86 mg-N/L/d and 6.00 mg-N/L/d during the first 3 

days of the incubation period for the two dosing ratios test (77X and 39X stoichiometric COD), 

whereas nitrate reduction required >40 days for EOS-100 with a similar dosing ratio. By day 16, 
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perchlorate had also been reduced by >80% for both dosing conditions. Therefore, EOS-Pro 

appears to be a superior electron donor. 
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CHAPTER 5. CONCLUSIONS  

 Nitrate and perchlorate contamination were found to be higher in the vadose zone soil 

than in the saturated soil. The high nitrate and perchlorate contamination in the vadose 

zone soil pose significant trends to public health since these contaminants can be flushing 

into groundwater sources by precipitations. Once the nitrate and perchlorate contaminants 

reached the groundwater sources, sensitive populations such as infants and pregnant 

women can be potentially incurred from the consumption of nitrate and perchlorate-

contaminated water and food. Nevertheless, higher nitrate and perchlorate concentrations 

in the vadose zone soil are advantageous for treatment purposes because kinetic reactions 

are benefited at higher electron acceptor concentrations increasing the biodegradation 

rates at contaminated zones. 

 Phosphate additions demonstrated variety outlines between the different set of 

microcosms. In the vadose zone soil microcosms, phosphate was added at a concentration 

of 6.5 mg-P/L in microcosms augmented with EOS-100 and glycerol. Results indicated 

that nitrate and perchlorate reductions were not enhanced with phosphate addition. 

However, in the saturated soil the concentration of phosphate was increased to ~21 mg-

P/L and the results demonstrated an improvement in nitrate and perchlorate reductions. In 

fact, nitrate biodegradation rates in microcosms increased from ~1.77 mg/L/d to ~3.42 

mg/L/d during the first 5 days of incubation. This increment allows the elimination of this 

competing specie faster allowing perchlorate reduction to commence sooner with rates of 

biodegradation of 2.83 mg/L/d compare with 0.40 mg/L/d without phosphate addition 

when using the same oil to soil ratio of 0.02 g oil/g soil.  
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 The main intention of evaluating the compost /mulch extract as a source of electron donor 

for nitrate and perchlorate biodegradation was to test an economic and replicable electron 

donor. Unfortunately, the compost/mulch extract generated during this research did not 

demonstrate any effects in nitrate and perchlorate reductions. These results are due to the 

lower chemical oxygen demand (~253 mg/L) that could be obtained in the laboratory. 

 The slow release emulsified oil EOS-100 and the highly soluble glycerol were evaluated 

in the vadose zone soil and Lake Mead water microcosms. Both, electron donors 

achieved similar overall nitrate and perchlorate reductions, but EOS-100 exhibited faster 

kinetic reductions. The nitrate rate constants were estimated to be 0.60 d-1 and 0.42 d-1 for 

EOS-100 and glycerol, respectively. In the absence of nitrate, the pseudo first order rate 

constants for perchlorate reduction were determined to be 0.36 d-1 for EOS-100 and 0.31 

d-1 for glycerol. Based on these results and in the fact that EOS-100 is adsorbed easily 

into the soil, this electron donor is recommended over glycerol because it can provide 

long-term soil remediation in full-scale applications. 

 In the vadose zone soil the maximum degradation rates for nitrate and perchlorate 

reduction were achieved with EOS-100, with maximum degradation rates of 3.42 mg-

N/L/d and 3.21 mg/L/d for nitrate and perchlorate, respectively. Compared with the 

maximum degradation rates of glycerol of 2.75 mg-N/L/d and 2.85 mg/L/d for nitrate and 

perchlorate respectively. In addition, EOS-100 promoted nitrate and perchlorate 

biodegradations to levels below the detection limit of the analytical methods within 6 

days for nitrate and 14 days for perchlorate reductions. 

 The soil to water ratios indicated that the amount of electron donor is a limiting factor in 

nitrate and perchlorate biodegradation rather than water volume. Both soil to water ratios 



97 

 

(i.e., 30 g of soil to 60 mL of water and 30 g of soil to 100 mL water) were effective in 

mobilizing the adsorbed nitrate and perchlorate, but there were minor impacts on 

bioremediation. The two soil to water ratios achieved similar reduction of nitrate and 

perchlorate for 11X stoichiometric COD, but the lower water volume (i.e., 60-mL) 

hindered nitrate and perchlorate reduction for 2.5X stoichiometric COD. The 11X 

stoichiometric COD was adequate for nitrate reduction, but perchlorate reduction 

required significantly longer incubation times based on the observed kinetics. 

Furthermore, the preliminary glycerol dosing with 0.5X and 1.0X stoichiometric COD 

was entirely inadequate to initiate biological reduction. Therefore, more comprehensive 

cost analyses are warranted to determine if higher electron donor concentrations (e.g., 

100X) are justifiable when considering the more rapid kinetics of nitrate and perchlorate 

reduction.   

 Nitrate and perchlorate biodegradation in the saturated soil and groundwater was 

evaluated using two emulsified oils, EOS-100 and EOS-Pro. EOS-Pro contains additional 

nutrients, and vitamins such as phosphate (~1,000 mg-P/L) and vitamin B12, while EOS-

100 does not contain either. Thus, EOS-Pro rapidly improves the availability of microbial 

community, thereby enhancing nitrate and perchlorate biodegradation in contaminated 

zones. Based on the results of this research EOS-Pro is recommended for substrates with 

low nitrate and perchlorate contamination contents, low nutrients availability, and low 

microbial content. 

 Between the three EOS-100 dosing ratios used in the saturated zone soil, 0.01 g oil/g soil 

and 0.02 g oil/g soil resulted in a complete nitrate and perchlorate biodegradation. 

However, 0.02 g oil/g soil demonstrated a slightly maximum degradation rates for nitrate 
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(1.17 mg/L/d) compared with the 0.01 g oil/g soil (1.10 mg-N/L). However, 0.01 g oil/g 

soil ratio demonstrated faster perchlorate degradation rates (0.95 mg/L/d) compare with 

0.02 g oil/g soil ratio (0.84 mg/L/d). Nonetheless, the data in which the maximum 

perchlorate degradation rates were calculated for 0.02 g oil/g soil were low than for 0.01 

g oil/g soil generating uncertainty. Therefore, based on the results of this research the 

highest COD stoichiometric ratio (0.02 g oil/g soil) is recommended for a faster and 

complete perchlorate biodegradation overcoming the presence of other contaminants such 

as oxygen, nitrate, manganese, iron, sulfate, and carbon dioxide. 

 Based on the results observed between the different set of experiments, the abiotic control 

microcosms suggested the presence of nitrate reducing spore-forming bacteria in the 

vadose zone soil and the saturated soil with rates of nitrate biodegradation of ~0.017 

mg/d and ~0.085 mg/d, respectively. However, additional research is needed in order to 

confirm these results. 

5. 1. Implications of Perchlorate Bioremediation 

Using the result of this research and data from other referenced authors, the implication 

of in-situ biodegradation treatments, especially soil flushing techniques are explained as 

reference for full-scale applications.    

 The vadose zone soil samples used in this research were collected from four different 

locations and two different profile depths (0-12 feet and 14-26 feet) at a perchlorate-

contaminated site. Assuming a maximum sample depth collection of 26 ft (~8 m) and a 

hydraulic velocity of an upper layer of soil (vadose zone soil) reported by R. C. Border 

(2007) of 2.1 m/d, the approximate time of flushing the Lake Mead water into the vadose 
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zone soil is determined as 3.2 days. In saturated soil, the typical vertical velocity of the 

groundwater has been reported as 0.04 m/d (Gal et al., 2009), thereby for the total depth 

of saturated soil used in this research of 40 ft (~12.2 m), the time to effectively distribute 

the mixed water and electron donor into de saturated zone is 30.5 days. 

 The total mass of perchlorate in a contaminated vadose zone soil can be calculated by 

using the depth and the area of a contaminated vadose zone soil, the amount of 

perchlorate per unit of soil, and the bulk density of the soil. For example, the total mass 

of perchlorate at the site of study of this research can be determined by using the 

calculated perchlorate concentration (0.18 mg ClO4
-/ g of soil) and the thickness of the 

vadose zone soil (26 ft). Moreover, assuming a contaminated area of 1 ft2 and typical 

vadose zone soil bulk density of 81.1 lb/ft3 (Border, Robert C. 2007), the total mass of 

perchlorate of the contaminated vadose zone at the site of this study is determined as 0.17 

kg of perchlorate.   

 The bulk density of the saturated soils at the site of study has been reported as 135.895 

lb/ft3 (Shrestha, Sichu, 2016). Thereby, the total mass of perchlorate assuming a 1 ft2 area 

and using the calculated perchlorate concentration in the saturated soil of 0.0041 mg 

ClO4
-/ g of soil for a 40 feet thickness saturated soil, can be calculated as 0.010 kg of 

perchlorate.  
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