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ABSTRACT 

Effect of Void Geometry on Strength, Stiffness, and Failure Modes of Rock-like 

Materials 

 

By 

Omed Yousif 

Dr. Moses Karakouzian, Examination Committee Chair 

Professor of Civil and Environmental Engineering and Construction 

University of Nevada, Las Vegas 

 

The host rock of portion of the first proposed high-level nuclear waste repository 

in the United States of America (Yucca Mountain, Nevada) is tuff rock that contains 

voids (lithophysae) with different shapes, sizes, and distributions. The existence of these 

voids can cause a dramatic change in the rock’s mechanical properties such as uniaxial 

compressive strength, UCS, and Young’s modulus, E. Accordingly, in an experimental 

program, the effects of void existence on the engineering properties of the tuff rocks was 

explored in a work of US Department of Energy conducted in the Department of Civil 

and Environmental Engineering and Construction of the University of Nevada at Las 

Vegas (UNLV); Project Activity Task ORD-FY04-013. Since it was difficult to test 

actual rock specimens, due to heterogeneity, break down during coring and sampling, and 

impossibility of controlling shape, size and distribution of voids in actual specimens of 

tuff rock, rock-like material (Hydro-StoneTB
®

), instead, was used in the experimental 

program. The experimental works consisted of laboratory testing on rock-like material 

(Hydro-StoneTB
®

) cubes under uniaxial compression. To obtain porous cubes with 

different void geometries, cubes with open ended longitudinal openings having different 

cross sections (circular, square, and diamond), different sizes (uniform large, medium, 



iv 
 

and small, and mixed voids), and different distributions (patterns A, B, and C) were made 

and tested under uniaxial compression. Fifty two porous specimens were made. Each 

porous specimen, porous cube, was produced in triplicate. Ten solid cubes were also cast 

to represent analog material with zero void porosity. The total number of experiments, 

including the ten solid cubes, was one hundred sixty six, 166, cubes. 

This study attempted to characterize the effects of void porosity on compressive 

strength and elastic modulus more definitively through considering the other factors in 

data analysis and sought for more effective relationships between them using the 

experimental results of Project Activity Task ORD-FY04-013. In addition, the 

experimental results were used to validate a numerical analysis carried out using a 

discontinuous computer program; Universal Distinct Element Codes - UDEC. 

Furthermore, another numerical analysis was performed to study the effect of void 

geometry on mechanical properties more systematically.  

The results showed that not-only the porosity but also the void geometry can 

affect the strength and deformability of rock-like materials. Void shape, void orientation, 

and void spatial distribution are partially responsible for the scattering in the mechanical 

property values as a function of void porosity. In addition, the results of the numerical 

simulations using UDEC software displayed consistent trends in Hydro-StoneTB® 

uniaxial strength and deformation as a function of void porosity. Furthermore, the two-

dimensional numerical results can be transferred to three-dimensional experimental 

results through a power correlation. 
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CHAPTER ONE INTRODUCTION 

 

1.1 General  

Existence of voids and cavities, specific type of discontinuities in rocks, can cause 

a dramatic change in mechanical properties of the rock. For instance, an increase in void 

porosity, ratio of volume of voids and cavities to the total volume of the rock, leads to a 

reduction in rock uniaxial compressive strength, UCS, and Young’s modulus, E, (Dunn et 

al., 1973; Price 1983; Price et al., 1985; Logan 1987; Vernik et al., 1993; Avar 2002; 

BSC 2003; Price 2004; Hudyma et al., 2004; Costin et al., 2009). Since the pores and 

cavities are appearing in different sizes, the porosity is generally classified into two types; 

microporosity and macroporosity (Avar et al., 2003; Hudmya et al., 2004; Jespersen et 

al., 2010). The microporosity is created by micropores between rock minerals, or grains. 

The macroporosity, also void porosity, on the other hand, is created by larger pores 

(macropores) that are visible to the unaided eye such as large cavities, vugs and vesicles.  

In rock mechanics, the effects of microporosity on the mechanical properties of 

rocks is usually ignored; it is assumed that microscopic porosity is uniformly distributed 

within the rock matrix, or laboratory specimens, and therefore, the rocks can be classified 

as intact rocks (Avar 2002). On the contrary, macroporosity has important roles on the 

rock’s engineering behavior, and accordingly, its effects have been studied in different 

types of rocks such as basalt (Al-Harthi et al., 1999), chalk (Palchik and Hatzor 2004), 

and tuff (Price 1983; Tillerson, and Nimick 1984; Price et al., 1985 & 1994; Schultz and 

Li 1995; Avar 2002; BSC 2003; Price 2004; Hudyma et al., 2004; Costin et al., 2009). 

However, due to Yucca Mountain in Nevada, USA, which is the nation’s first proposed 
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high-level nuclear waste repository, more attention has been given to tuff rock (BSC 

2003; Rigby 2004). 

 

1.2 Tuff Rock at Yucca Mountain 

The host rock of portions of the first proposed high-level nuclear waste repository 

in the United States of America (Yucca Mountain, Nevada) is tuff rock; both lithophysal 

and nonlithophysal tuff (BSC 2003). Lithophysal tuff rock is pyroclastic volcanic rock 

(igneous rock) formed by welding of falling volcanic ash and has composition of high-

silica rhyolite, contains wide range of lithophysae in sizes and shapes as shown in Figure 

(1.1) (Avar 2002; BSC 2003; Hudyma et al., 2004).  Lithophysae are hollow, bubble like 

cavities formed by trapped pockets of gas within the volcanic ash (Avar 2002; BSC 

2003). Their sizes are typically ranging from millimeters to decameter. The largest 

measured Lithophyse at Yucca Mountain, however, is 1.8 m across (BSC 2003). In many 

tuff rocks, a thin layer of vapor-phase minerals is coating the inner faces of the 

lithophysae. The coating layers are called rims and/or spots, and their thickness is less 

than few millimeters (BSC 2003). Accordingly, lithostratigraphic features in the tuff 

rocks of the Yucca Mountain are matrix-groundmass, the phase altered material around 

the lithophysal cavities (rims or spots), and the cavities (lithophysae) themselves (Price et 

al., 1985; BSC 2003). The matrix-groundmass consists of solid minerals that contain 

intergranular spaces (pores).  

Non-lihophysal tuff rock, on the other hand, is fine-grained, densely welded, low 

porosity, strong volcanic rock that contains limited numbers of lithophyse, rims, and 

spots (BSC 2003).  
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In the reports and studies related to Yucca Mountain, the tuff porosity of Yucca 

Mountain is generally divided into four types; groundmass matrix porosity, rim and spot 

porosity, lithophysal porosity, and total porosity (Price 1983; Price et al., 1985; Avar 

2002; BSC 2003). However, according to BSC (2003), it is the total porosity that plays an 

important role in assessing the mechanical properties of lithophysal tuff rocks.  

The porosity of matrix groundmass consists of pores smaller than 2 micrometer, 

and its value for the Topopah Spring Tuff is about 10 percent; ranging from 8 to 13 

percent (BSC 2003). The porosity of the rim and spot is typically ranging from 20 to 40 

percent with 30 percent average (BSC 2003; Rigby 2004). The lithophysal porosity 

consists of pores vary in size from one millimeter to larger than a meter, and its value 

varies from 3 to 35 percent with 15 percent average (Rigby 2004). The summation of the 

above porosities is called total porosity. The total porosities can be calculated by several 

ways as follows: 

1- Drying the tuff samples to determine the dry unit weight and then pulverizing 

them to find the specific gravity and using them in this equation n(%) = [(1-

(γd/Gsγw)] (Avar 2002). The specific gravity, Gs, is found from the ratio of weight 

of a particular volume of pulverized tuff to the weight of an equal volume of 

distilled water in accordance to ASTM D854. The dry unit weight, γd, is 

determined by using total volume of a specimen and its weight. 

2- By saturating the specimen and the determining the volume of water that occupies 

the pores (BSC 2003). 

3- By an approximation method using point counting and planimetric analysis (Price 

et al., 1985). 
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Figure (1.1) Photographs of Lithophase-rich Tuff from Yucca Mountain  

(Rigby 2004: Nott 2009) 

 

1.3 Rock-like Materials  

Due to heterogeneity, breaking down during coring and sampling, and 

impossibility of controlling shape, size and distribution of voids, it is difficult to sample 

and test actual specimens; especially lithophysae-rich tuff (Rigby 2004; Erfourth 2006; 

Rigby 2007). Therefore, rock like material, instead, has been used to explore the effects 

of void porosity on the engineering properties of the rocks. It is quick, easy, and 

controllable. The majority of the specimens of the rock-like, analog, material specimens 

have been made of either plaster of Paris (gypsum plaster), or Hydro-StoneTB
®

 (Avar 

2002; Hudyma et al., 2004; Erfourth 2006; Rigby 2007). The Hydro-StoneTB
®

 is a 

powdered mixture of plaster of Paris (more than 90% by weight), Portland cement (less 

than 5%), and sand (less than 5%) (Chawla 2007; Nott 2009).  

However, the Hydro-StoneTB
®

 is better analog material compared to the plaster 

of Paris regarding the lithophysal tuffs from Topopah Spring formation (Rigby 2007). 
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The average values of Young’s modulus (E) and the uniaxial compressive strength (UCS) 

of plaster of Paris are about 3.1 GPa (Avar et al., 2003) and 11 MPa (Hydyma et al., 

2004) respectively. These average values are very far from those of the lithophysal tuffs 

from Topopah Spring formation at Yucca Mountain; the average values of Young’s 

Modulus and the uniaxial compressive strength of the lithophysal tuffs, from Topopah 

Spring formation at Yucca Mountain, are about 20 GPa and 60 MPa respectively (Rigby 

2004). Therefore, in an attempt, Rigby (2007) adopted the Hydro-StoneTB
®

 as a new 

rock like material to simulate the lithophysal tuffs from Topopah Spring formation at 

Yucca Mountain. From uniaxial compression tests carried out on cubical specimens (152 

mm on a side), made of Hydro-StoneTB
®

, Rigby (2007) obtained an average Young’s 

modulus of 16 GPa and a strength of 55 MPa. It was also found that the brittle behavior 

of Hydro-StoneTB® was similar to those estimated for solid Yucca Mountain lithophysal 

tuff. 

  

1.4 Study Objectives 

The previous studies show that the higher void porosity leads to lower strength 

and stiffness of rock-like materials. However, the correlations between the mechanical 

properties of the rock-like materials with void porosity are not very clear and well-

established. It is believed that, besides the void porosity, other geometric factors, such as 

void shape, void size, and void spatial distributions can affect the relationships between 

the engineering properties and void porosity. Identifying the significance of those factors 

will enhance insight into the effects of void geometry on engineering properties. 
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This study attempts to characterize the effects of void porosity on compressive 

strength and elastic models more definitively through considering the other factors in data 

analysis and seeks for more effective relationships between them. In addition, new 

numerical models generating to study the effects of void geometry on engineering 

properties of rock-like materials more thoroughly. The methodology of this study 

composed of three main parts. The first part comprises presenting and analyzing data 

obtained from the work conducted under Cooperative Agreement No. DEFC28- 

04RW12232 between the U. S. Department of Energy and the Nevada System of Higher 

Education (NSHE). For the second part, the experimental test data in the first part are 

used to validate numerical models of rock-like material using a discontinuum computer 

program; Universal Distinct Element Codes - UDEC. In the third phase, another 

numerical analysis will be performed to study the effect of void geometry on mechanical 

properties more systematically.    

 

1.5 Dissertation Outline 

The outline of this dissertation is as follows  

 Chapter 2 reviews the experimental and numerical studies those carried out on 

both actual rocks and rock-like material specimens to investigate the effects of 

void porosity on strength and deformation properties and crack patterns.  

 Chapter 3 presents a general description on the mechanical characterization of 

brittle materials generally and rocks particularly; it is concerning with the 

mechanical characterization of brittle, homogenous, and isotropic materials, 

including rocks, under static load.  
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 In Chapter 4, the results of experimental tests carried out on cubes made of rock-

like material containing voids with different shape, size, and distribution are 

analyzed in order to obtain mathematical models describing the variation of 

strength and deformation properties with porosity. In addition, the effects of 

porosity on failure crack patterns of the cubic specimens are addressed.  

 Chapter 5 represents numerical analysis to simulate the experimental tests in 

Chapter 4.   

 Chapter 6 represents a new set of numerical models in order to study the 

mechanical behavior of the analog material under compression considering new 

void shapes, void orientations, and voids distribution.  

 Finally, the conclusions and recommendations are given in Chapter 7.  
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CHAPTER TWO LITERATURE RIVIEW 

 

2.1 Introduction 

To quantify the effects of void porosity, macroporosity, on rock engineering 

behaviors, several studies have been carried out on both actual rock samples and rock-

like materials. However, in general, the studies are very few in number and so far limited 

to three rock types; basalt (Al-Harthi et al., 1999), chalk (Palchik and Hatzor 2004), and 

tuff (Price 1983; Tillerson and Nimick 1984; Price et al., 1985 & 1994; Schultz and Li 

1995; Avar 2002; BSC 2003; Price 2004; Rigby 2004; Hudyma et al., 2004; Costin et al., 

2009). For the reasons mentioned in the previous chapter, it is difficult to sample and test 

actual rock specimens. Therefore, rock like material, instead, has been used to explore the 

effects of void porosity on the engineering properties of the rocks. The majority of the 

specimens were made of either plaster of Paris (Gypsum plaster) or Hydro-StoneTB® 

(Avar 2002; Hudyma et al., 2004; Erfourth 2006; Rigby 2007; Nott 2009; Jespersen et al. 

2010).  

 

2.2 Actual Rock Samples 

2.2.1 Tuff Rock 

To assess mineability and stability of underground openings in the Yucca 

Mountain, and to explore the effects of lithophysae presence, the mechanical properties 

of tuff rock was intensively studied in the Yucca Mountain Project. Therefore, adequate 

experimental data are available on tuff rock obtained from several studies carried out by 

Sandia National Laboratories, in association with the Yucca Mountain project. However, 
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the sizes of the tested samples in the above researches were mainly 50.8 mm or smaller in 

diameter with length to diameter ratio of approximately 2.0. The experimental data on the 

small diameter samples (25 mm to 50 mm) are described in the BSC (2003), and 

additional analysis is presented in Rigby (2004). The results showed a sharp decline in 

both elastic modulus and compressive strength with increasing porosity, see Figures (2.1) 

and (2.2). However, the data showed a very large scattering in both tuff’s compressive 

strength and elastic modulus. Part of the scatterings might be due to the specimen size 

(Rigby 2004). According to Rigby (2004), due to small specimen size, the total porosity 

of these samples, typically ranged from 8 to 19 percent, captures only small amounts of 

lithophysae; the total porosity of the small samples was primarily composed of matrix 

porosity, with additional porosity, of course, contributed by small amounts of rims, spots, 

and lithophysae. Therefore, the results may not precisely represent the actual strength or 

elastic properties of the lithophysal tuff rock; the results may biased and not indicative. 

Accordingly, this section is only considering the studies in which tuff specimens with 

diameter (or side dimension) greater than 50.8mm have been tested. 

In an experimental program to study the mechanical properties of Yucca 

Mountain’s tuff, Price et al. (1985) tested ten large-diameter cores of lithophysal tuff rock 

(266.7 mm in diameter and 533.4 mm in length) recovered from outcrops of Busted Butte 

(Nevada Test Site at Yucca Mountain). The tuff specimens were first water saturated, 

shown in Figure (2.3), and then tested under unaxial compression at room temperature 

(23˚ C). The specimens had total porosities ranging from 30.9% to 40% with an average 

of 35.2%. The total porosities, summations of large lithophysal cavities (under several 

centimeter), small pores (under 0.2 mm), and intergranular pores (1-2 micrometer) in 



10 
 

vapor-phase-altered zones around lithophysae, and submicoscopic intergranular pores in 

the devitrified matrix, were measured using point counting and planimetric analysis. 

From the results, since the specimen’s porosities were distributed in a narrow range, a 

conclusive relationship between mechanical properties (uniaxial compressive strength 

and Young’s modulus) and the total porosity was not obtained.  However, when the 

results were supplemented by previous testing by Price (1983) on saturated small 

specimens of tuff (25.4 mm in diameter and 50.8 mm in length), the results showed that, 

for the corresponding porosities, the strength of the large lithophysal specimens were 

lower and Young’s moduli were higher than those of small size specimens as shown in 

Figures (2.4) and (2.5). They contributed these findings, lower strength and higher 

Young’s modulus, to the existing of large pores in the large samples; smaller pores in the 

small size samples led to stiffer system, smaller short-term built-up of pore pressure, and 

more homogeneity compared to the large samples. 

In 2002, to study the mechanical properties of lihtophysal tuff rocks using large 

size samples, thirteen large-diameter core specimens having 290 mm diameter with a 

length to diameter of 1.7 or greater (a length of at least 304 mm) were recovered from 

repository host horizon at Yucca Mountain. All thirteen specimens, four saturated and 

nine room dried, were tested under unaxial compression at room temperature (24˚ C) 

(discussed in Price 2004 and Rigby 2004). The lithophysal porosities, ranging from 

11.9% to 30.3%, were found by conducting four vertical line surveys down the length of 

each specimen. The total porosities, ranging from 25.6% to 51.7%. were estimated by 

summing: (1) matrix porosity), (2) rims and spots porosity, and (3) lithophysal porosity. 

The results were supplemented by previous testing by Price et al. (1985) on ten saturated 
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large-diameter specimens of tuff (266.7 mm in diameter and 533.4 mm in length). From 

the high scatter results, it can be seen that the uniaxial compressive strength and Young’s 

modulus (E) decrease exponentially with increasing void porosity for both room dry and 

saturated sample conditions as shown in Figures (2.6) and (2.7). However, the saturated 

sample conditions showed lower strength compared to the room dry sample conditions. 

The result yielded the following best fit-regressions: 

 

                                                                               

                                                                             

                                                                                   

                                                                                 

 

In addition, the results showed an increase in uniaxial compressive strength with an 

increase in the Young’s modulus following a linear law, see Figures (2.8), as follows: 

  

                                                                     

                                                                      

 

Furthermore, in an numerical analysis, Christianson et al. (2006) used the aforementioned 

experimental results (results of experimental tests on large-diameter core specimens 

having either 267 mm diameter or 290 mm diameter) to verify their numerical 

simulations. In the numerical analysis, universal distinct element code (UDEC) software 

was used to general 1 m x 1 m plain strain models. The material in the models was 
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described by randomized Voronoi tessellation technique. In this technique, Voronoi 

tessellation, the model material is represented by an assemblage of small discrete blocks 

(or sub-blocks or grains – having average dimension of 17 mm) by which the realistic 

crack initiation and propagation can be achieved. To generate lithophysal cavities in the 

numerical models, 90-mm diameter holes were cut into the solid models with three 

different hole configurations. By the three different hole configurations, three different 

porosity, 10, 17, and 24%, were obtained. The numerical results were consistent with the 

experimental results in both strength and deformation as shown in Figures (2.9) and 

(2.10); both compressive strengths and Young’s modulus of the numerical models 

decreased exponentially with increasing porosity in the same trend of the experimental 

tests. The best fit regressions are: 

 

                                                                             

                                                                                 

 

In an experimental program to study the effects of porosity on the mechanical 

properties of tuff for his dissertation, Avar (2002), tested ten cubes (approximately 150 

mm per side) of lithophysae-rich tuff cut from blocks recovery from Busted Butte, Fran 

Ridge and Sandia Quarry near Yucca Mountain on the Nevada Test Site. Several plaster 

samples were also tested in the same experimental program. The ten tuff specimens, had 

total (bulk) porosities ranging from 12.2 to 32.9%, and were tested dry at room 

temperature under uniaxail compression. The tuff specimen total porosities, %, were 

calculated using this equation: 
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where Gs is specific gravity, γd is dry unit weight, and γw is water unit weight. The 

specific gravity, Gs, was found from the ratio of weight of a particular volume of 

pulverized tuff to the weight of an equal volume of distilled water in accordance to 

ASTM D854. The dry unit weight of the tuff, γd, was determined by using total volume 

of a specimen and its weight. Figure (2.11) shows same of the tuff specimens used in this 

study. The results showed that both compressive strengths and deformation decreased 

with increasing porosity, see Figures (2.12a & b), giving linear relationship as shown 

below: 

 

                                                                         

                                                                          

 

Hudyma et al. (2004) tested several cubic specimens of tuff to explore the effects 

of lithophysae on compressive strength. The tuff samples, cut from outcrops of Topopah 

Spring Tuff at Yucca Mountain, had approximately 100 mm per side (as shown in Figure 

(2.13)) and total porosities ranging from 17 to 49%. The tuff specimen total porosities 

were calculated using the same method as Avar (2002); using this equation [(1-(γd/Gsγw)] 

in accordance with ASTM D854 (2002). Similarly, the specific gravity, Gs, was found 

from the ratio of weight of a particular volume of pulverized tuff to the weight of an 

equal volume of distilled water. The dry unit weight, γd, was determined by using total 
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volume of a specimen and its weight. By incorporating this data with previous tests 

carried out by Price et al. (1985), Martin et al. (1994, 1995), and Avar (2002), a wide 

range of porosities, from approximately 12 to 49%, were covered. The very scattering 

results gave a logarithmic relationship between uniaxial compression strength and 

porosity, see Figure (2.14), as follows: 

 

                                                                          

 

In a more recent study, to characterize mechanical behaviors of the, Costin et al. 

(2009) tested several large cores of lithophysal tuff recovered from outcrops at Yucca 

Mountain nearby Busted Butte lithophysal rock units. To achieve the goals of the study, 

and considering the compatibility between size distribution of lithophysae (25-75 mm) 

with core sizes, and adopting the length to diameter ratio of ≥ 2, tuff specimens having 

approximately 300 mm diameter to 600 mm in length were cored and tested under 

uniaxial compression, see Figure (2.15a & b). The samples were tested either at room 

temperature, for both saturated and room dry conditions, or at 200 ˚C (room dry only). 

The total porosity, which includes the porosity of the matrix material, the phase altered 

material around the lithophysal cavities, and the cavities themselves, were found to be 

between 35 to about 50 percents for samples tested at room temperature; both room dried 

and saturated. The result showed that uniaxial compressive strength of the high 

lithophysal tuff was inversely proportional to the porosity and directly proportional to the 

elastic modulus as can be seen from Figures (2.16) and (2.17)). However, no relationship 

was given. 



15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.1) Uniaxial Compressive Strength for Saturated Specimens of Topopah 

Spring Tuff (samples with 50.8 mm or smaller in diameter) (Rigby 2004) 

Figure (2.2) Young’s Modulus for Saturated Specimens of Topopah Spring Tuff 

(samples with 50.8 mm or smaller in diameter) (Rigby 2004) 
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Figure (2.3) Photograph of the Large (267 mm) Diameter Cores fromBusted Butte 

Samples (Rigby 2004) 

Figure (2.4) Correlation between Uniaxial Compressive Strength of Tuff and the 

Porosity (Small and Large-Diameter Cores of Topopah Spring Tuff) (Rigby 2004) 
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Figure (2.5) Correlation between Young’s Modulus of Tuff and the Porosity (Small 

and Large-Diameter Cores of Topopah Spring Tuff) (Rigby 2004) 

Figure (2.6) Correlation between Uniaxial Compressive Strength of Tuff and the 

Porosity (Large-Diameter Cores of Topopah Spring Tuff) (Rigby 2004) 
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Figure (2.7) Correlation between Young’s Modulus of Tuff and the Porosity 

(Large-Diameter Cores of Topopah Spring Tuff) (Rigby 2004) 

Figure (2.8) Correlation between Uniaxial Compressive Strength and the Young’s 

Modulus Large-Diameter Cores of Topopah Spring Tuff (Rigby 2004) 
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Figure (2.9) Comparison of UDEC Numerical Models to Experimental 

Tests on Lithophysal Tuff Regarding Uniaxial Compressive Strength (UCS) 

(Christianson et al., 2006) 

Figure (2.10) Comparison of UDEC Numerical Models to Experimental Tests 

on Lithophysal Tuff Regarding Young’s Modulus (E) (Christianson et al., 2006) 
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Figure (2.12) Correlation between Mechanical Properties of Tuff and the Total Porosity 

(Avar 2002) 

 

 

Figure (2.11) Photograph of Some Tuff Specimens Tested by Avar 

(2002) 
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Figure(2.13) Photograph Some Tuff Specimens Tested by 

Hudyma et al. (2004) 

Figure (2.14) Correlation between UCS versus the total Porosity (Hudyma et al., 2004) 
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Figure (2.15) Photograph of Large-Diameter Cores of Tuff; (a) Samples before testing, 

and (b) Samples during testing (Costin et al., 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.16) Correlation between Uniaxial Compressive Strength and the 

approximate (total) Porosity (Costin et al., 2009) 
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2.2.2 Basalt 

The variations of mechanical properties of vascular basalt due to porosity 

changing were investigated experimentally by Al-Harthi et al. (1999).The vesicles in the 

basalt were non-connected pores, spherical to irregular in shapes, with sporadic to 

densely spatial distribution (Fig. 2.18a). Their sizes (diameter) range from a fraction of a 

millimeter to few centimeters (Fig. 2.18b & c). The vesicle porosities (from about 0 to 

about 65%) were found using two methods; image analysis technique (on thin cross-

section of basalts) and weight and volume correlations. Both dynamic and static 

properties of vesicular basalt were explored. For the dynamic properties, the effects of 

vesicle porosity on both dynamic modulus of elasticity and dynamic Poisson’s ration 

were explored using non-destructive technique of sonic pulse velocity measurement for 

the specimens. Regarding the static properties (uniaxial compression, static modulus of 

Figure (2.17) Correlation between Uniaxial Compressive Strength and Young’s 

Modulus (Costin et al., 2009) 
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elasticity, and static Poisson’s ratio), the same basalt specimens used in the dynamic 

properties study were tested under uniaxial compression to find the variation of strength 

and deformation of the basalt with vesicle porosity. It was found that the static property 

estimations can be done with higher confidence compared to dynamic property 

estimation. According to the results, proposed in two part correlations as shown in Figure 

(2.19), a sharp reduction in both UCS and modulus of elasticity was observed until a 

porosity value of 20% reached. For the porosity > 20%, a relatively mild reduction was 

obtained. The correlations between both UCS and modulus of elasticity with vesicle 

porosity were good. For the UCS, the two-part correlations were linear, and the 

correlations were as follows 

 

                                                                    

                                                                         

 

For the modulus of elasticity, Young’s Modulus (E), the correlations was initially 

logarithmic and then linear, see Figure (2.20). The best-fit regression equations were as 

follows 
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Regarding the Poisson’s ratio, it increased as the porosity increased linearly until a 

porosity value of 20%, and became more or less constant for porosity values > 20%. The 

best-fit regression equations are: 

 

                                                                                 

                                                                                                            

 

Although supported by several previous researchers such as Kelsall et al. (1986) and 

Tugrul and Gurpinar (1997), the results, except the second part of Poisson’s ratio, showed 

good relationships (see the correlation coefficients) and well defined which are rare in 

researches in rock mechanics field. No explanations are given by the researches. In 

addition, the effects of vesicle shapes and vesicle spatial distributions have not been 

addressed. 

 

Figure (2.18a, b, & c) Photograph Samples of Vesicular Basalt Tested by  

Al-Harthi et al. (1999). 
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Figure (2.19) Correlation between Uniaxial Compressive Strength of 

Vesicular Basalt and the actual Porosity (Al-Harthi et al., 1999). 

Figure (2.20) Correlation between Young’s Modulus, E, of Vesicular 

Basalt and the actual Porosity (Al-Harthi et al., 1999). 



27 
 

2.2.3 Chalks 

To study the effect of porosity on strength of very porous chalks, Palchik and 

Hatzor (2004) tested twelve cylindrical specimens under uniaxial compression. The 

specimens, 52mm in diameter with length to diameter ratio of approximately 2.0, were 

taken from Adulam formation in Israel having total porosity ranging from 19% to 32%. 

The chalk specimen total porosities were calculated using the same method as Avar 

(2002); using this equation n = [(1-(γd/Gsγw)]. However, the specific gravity, Gs, was fist 

assumed to be 2.7 and then validated by using Helium porosimeter. In the porosity 

validation, a very good linear correlation (R
2
 = 0.99) between the calculated (assuming Gs 

= 2.7) and measured porosity values was obtained. No information about pore size and 

distribution is given. Returning to the previous discussion regarding tuff samples, test 

results with small size samples are not indicative, however, the unaxial compression test 

results showed a decrease in compressive strength (uniaxial compressive strength - UCS) 

with an increase in the porosity following an exponential law. Figure (2.21) shows the 

result of the twelve tested samples. The best fit-regression equation is: 

 

                                                                   

 

The effect of porosity on the Young’s modulus is not addressed. 
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2.3 Rock-like Materials 

Until nowadays, few studies have been carried out to explore the effects of void 

porosity on the engineering properties of the rocks using rock-like materials. In this 

section, most of them will be reviewed.  

Avar (2002) studied the influence of void porosity on the mechanical behavior of 

rock-like materials (gypsum plaster and urethane) both experimentally and numerically. 

The plaster cubes, 150 mm on side and contained either open ended cylindrical tubes or 

spherical Styrofoam inclusions were tested under uniaxial compression loads. The open 

ended cylindrical tubes, with diameters ranging from 6.4 mm to 108.7 mm giving 

porosities ranging from 4.9 to 44.2%, were distributed either uniformly or randomly 

throughout the cubes. While the spherical cavities, ranging from 25.4 mm to 101.6 mm in 

diameter giving porosities ranging from 8 to 40%, were distributed randomly only.  The 

Figure (2.21) Correlation between Uniaxial Compressive Strength 

of Chalk and Porosity (Palchik and Hatzor 2004) 
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urethane cubes (with 150 mm per side) contained open ended cylindrical tubes distributed 

uniformly only, and tested under biaxial compression loads. The urethane is a rubber type 

material produced under a controlled environment and used in this study in order to 

explore the effects of porosity on the elastic properties of elastic materials. Regarding the 

numerical analysis, two-dimensional finite difference FLAC software was used to 

simulate both the urethane cubes and the plaster cubes containing open ended cylindrical 

tubes.  Both numerical analysis and experimental testing showed a very good correlation; 

the numerical normalized Young’s modulus decreased exponentially with increasing 

porosity like those of the experimental tests on the urethane cube as shown in Figure 

(2.22) and the following two equations 

 
 

  
                                                                                     

 
 

  
                                                                                    

For the plaster cubes contained open ended tubes, the numerical results overestimated the 

Young’s modulus as shown in Figure (2.23). This was attributed to either modeling a 

three-dimensional material in two dimensions, or ignoring the effect of friction between 

the steel platen and the plaster cubes, or both. Regarding the experimental tests on the 

plaster cubes contained open ended tubes, the results showed that the plaster cubes 

contained uniformly distributed open ended tubes had higher compressive strength and 

Young’s modulus compared to those plaster cubes contained randomly distributed open 

ended tubes. This was attributed to existing larger plaster columns between the uniformly 

distributed holes; larger bridge distances between the holes. Figures (2.24) and (2.25) 

show the experimental results for plaster cubes. It was also concluded that, since its 
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mechanical properties closer to the ones of lithophysal tuffs, the gypsum plaster was 

better analog material to simulate lithophysal tuff rocks compared with urethane. 

However, the Hydro-StoneTB® is better analog material than both (Rigby 2007). 

Regarding the experimental tests on the plaster cubes contained spherical Styrofoam 

inclusions, the results gave higher strength and stiffness compared to those contained 

open ended cylindrical tubes, see Figures (2.26) and (2.27). This was attributed to the 

effect of hole shape; spherical Styrofoam inclusions are localized inside the cube and 

don’t cross them from one side to the other like the open ended tubes. This will leave a 

solid zone which in turn leads to stronger and stiffer material. Regardless of distribution 

of voids in the cubes, the following correlation were obtained from the data in Tables 

(6.2) and (7.6) in the author’s dissertation. 

 

                                                                              

                                                                                    

                                                                                

                                                                                   

 

In an experimental study carried out by Hudyma et al. (2004), thirty four plaster 

specimens, both cubical and cylindrical, were tested under uniaxial compression loading 

to mimic tests on lithophysal tuff rocks. The cubic plaster specimens tested in this study, 

fourteen cubes, contained spherical Styrofoam inclusions ranging from 25.4 to 102 mm in 

diameter, and having void porosity (macroporosity) starting from 5 to 35%. The twenty 

cylindrical specimens (50.8 x 101.6 mm) contained either spherical Styrofoam inclusions 
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(ranging from 6 to 8 mm diameter and having porosity from 7.4% to 37.6%) or 

ellipsoidal air injected bubble (having narrow porosity range from 4% to 7.8%). 

Regardless of specimen shape, the wide spreading results displayed non-linear 

(exponential) reduction in UCS data with increasing porosity giving the following 

equation:  

                                                                               

 

No clear effects of void shapes on the mechanical behavior of the analog materials were 

adopted. However, as can be seen from Figure (2.28), the specimens containing regular 

voids, specimens contain Styrofoam inclusions, are more uniformly distributed around 

the regression curve comparing to the specimens containing irregular air injected bubbles.    

Erfourth (2006) studied the mechanical behaviors of rock-like material under 

uniaxial compression both experimentally and numerically. In the experimental tests, 

different size cylinders of plaster of Paris (95 samples) containing spherical Styrofoam 

inclusions (3, 12.7, and 25.4 mm in diameter, and having porosity from 0 to 30%) were 

cast and tested under compression. Regarding the spherical Styrofoam inclusions of 3 and 

12.7 mm in diameter, the cylinder size was 50.8x101.6 mm. While, for the spherical 

Styrofoam inclusions of 25.4 mm in diameter, two different sizes of cylinder were used; 

76.2x152.4 mm and 101.6x203.2 mm. For the numerical analysis, the experimental 

specimens were modeled in Itasca’s FLAC3D (finite different method) using linear-

elastic material model to investigate the stiffness and Mohr-Coulomb material model to 

investigate the strength. The results had high scattering for both strength and elastic 

modulus with average correlation coefficients. The results of normalized uniaxial 
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compressive strength displayed a mediocre (exponential) relationship, see Figure (2.29), 

giving the following equation: 

 

                                                                                 

 

In addition, from Figure (2.30), it can be seen that the specimens containing small 

spherical Styrofoam inclusions, 3 mm in diameter, gave higher strength but lower 

correlation coefficients compared to the specimens containing larger spherical Styrofoam 

inclusions, 12.7 mm or 25.4 mm in diameter. This attributed partly to sample preparing 

deficiency; specimens containing uniformly distributed small voids (3 mm) was 

problematic. For the elastic properties, the data showed that the Young’s modulus 

decreased linearly with porosity increasing as shown in Figure (2.31). However, void size 

had less effect on Young’s modulus, see Figure (2.32); therefore, they did not give a very 

good relationship as shown below: 

 

                                                                         

 

This was attributed to the sensitivity of the Young’s modulus with respect to the 

variations of void size and distribution. This attribution was supported by the numerical 

analysis; since the void size and distribution can be controlled in the numerical analysis 

more effectively than in the experimental tests, the numerical Young’s modulus data 

showed less scattering, see Figure (2.33). In general, the numerical results for both elastic 

modulus and strength followed trends similar to those of the experimental results; see 
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Figures (2.33) and (2.34). However, the scattering was higher for the uniaxial 

compressive strength, UCS. 

In an attempt to study the influence of void geometry on engineering properties of 

lithophysal tuff using rock-like material, Rigby (2007) tested fifty two Hydro-StoneTB
®

 

cubes contained open ended longitudinal openings (voids) with different sizes, shapes, 

and distributions. The research was a part of the Cooperative Agreement No. DEFC28- 

04RW12232 between the U. S. Department of Energy and the Nevada System of Higher 

Education (NSHE). Cubes (15 cm per side) contained three different shapes of voids 

(circular, square, and diamond) arranged in different void pattern types, three patterns  for 

circular voids (A, B, and C)and two void patterns for each of the square and diamond 

voids(A and B), were tested under uniaxial compression. Different patterns represented 

different randomly generated void geometries. Regarding the void sizes, the circulars 

openings had three different diameter, 12.7 mm, 21.8 mm, and 31.1 mm, while both 

square and diamond voids had two different sizes; large (15.6 mm on side) and small (22 

mm on side). In addition to the cubes contained unisize circular voids, cubes contained 

mixed circular voids were also tested. The void porosities were ranging from 5% to 20%. 

The high scatter results displayed that the uniaxial compressive strength and Young’s 

modulus decreased linearly with increasing void porosity as shown in Figures (2.35) and 

(2.36). The results are also discussed in Chawla (2007). The best fit-regression equations 

for normalized values are 
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The results did not show any dependency of Young’s modulus on void size shape (at 

similar values of porosity), but a slight to moderate correlation between strength and void 

shape and size. However, diamond and large size voids led to the highest reduction in the 

uniaxial compressive strength. This was attributed to the likeliness of shape and size 

dependency on both orientation of the voids and average bridge length (distances 

between voids). The three different void patters did not show significant differences in 

the Hydro-StoneTB
®

 properties; the Young’s modulus and strength values for each of the 

three patterns yielded similar results. No explanation has been mentioned regarding 

ineffectual of the void patterns on the mechanical properties of Hydro-StoneTB
®

. 

In a more recent attempt, Nott (2009) studied the effects of void porosity on 

tensile strength of rock-like material, Hydro-StoneTB
®

, both experimentally and 

numerically. In the experimental part, both direct and indirect methods were used to find 

the rock-like material tensile strength. Since the direct method (Dog Bone specimens 

with 100 by 100 mm cross section) was not successful in evaluating the tensile strength, 

only indirect method, Brazilian tests, were used to find the tensile strength of the rock-

like material and its variation with regard to void porosity changes. For the Brazilian 

tests, twenty porous discs (101.6 mm in diameter and 50.8 mm long specimens) 

contained holes (open ended tubes) were tested under compression; indirect method. 

Holes with different sizes (17.9 mm and 25.4 mm) and number (2, 4, and 8 holes to 

provide different porosities ranging from 6.2 to 18.7%) were distributed throughout the 

disks. In the numerical analysis, discs in the Brazilian tests were modeled in UDEC 

software using plain strain assumption. The results showed that the tensile strength 
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decreased with increasing porosity, and the numerical results were consistent with the 

experimental results as shown in Figure (2.37); both numerical analysis and experimental 

results followed power law: 

 

                                                                           

                                                                                

 

In addition, it was found that that the UDEC software can successfully predict the 

cracking patterns of the experimental test specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.22) Normalized Young’s Modulus versus Total Porosity for Urethane 

Cubes for both Experimental Tests and Numerical Models (Avar 2002). 
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Figure (2.23) Normalized Young’s Modulus versus Total Porosity for 

Plaster Specimens Containing Cylindrical Tubes for both Experimental 

Tests and Numerical Models (Avar 2002). 

Figure (2.24)Uniaxial Compressive Strength (σc) versus Total Porosity for 

Plaster Cubes Containing either Randomly Distributed Cylindrical Tubes or 

Uniform Distributed Cylindrical Tubes (Avar 2002). 
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Figure (2.25) Young’s Modulus versus Total Porosity for Plaster Cubes 

Containing either Randomly Distributed Cylindrical Tubes or Uniform 

Distributed Cylindrical Tubes (Avar 2002). 

Figure (2.26) Uniaxial Compressive Strength (σc) versus Total Porosity for 

Plaster Cubes Containing either Cylindrical Tubes or Styrofoam Inclusions 

(Avar 2002). 
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Figure (2.27) Young’s Modulus versus Total Porosity for Plaster Cubes 

Containing either Cylindrical Tubes or Styrofoam Inclusions (Avar 2002). 

Figure (2.28) Correlation between Uniaxial Compressive 

Strength and Porosity (Hudyma et al., 2004). 
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Figure (2.29) Correlation between Normalized Uniaxial Compressive 

Strength and Porosity (Erfourth 2006). 

Figure (2.30) Correlation between Normalized Uniaxial Compressive 

Strength and Porosity (Erfourth 2006). 
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Figure (2.31) Correlation between Elastic Modulus with Porosity 

(Erfourth 2006). 

Figure (2.32)  Correlation between Young’s Modulus and Porosity 

(Erfourth 2006). 
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Figure (2.33) Correlation between Normalized Uniaxial Compressive Strength with 

Porosity for both Numerical Models and Experimental Tests (Erfourth 2006). 

Figure (2.34) Correlation between Young’s Modulus with Porosity for both 

Numerical Models and Experimental Tests (Erfourth 2006). 
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Figure (2.35) Correlation between Normalized Uniaxial Compressive 

Strength and Porosity (Rigby 2007). 

Figure (2.36) Correlation between Normalized Young’s Modulus and 

Porosity (Rigby 2007). 
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2.4 Relationship between Voids and Failure Modes     

Depending on the expected in-situ stress-state conditions such as uniaxial and 

triaxial compressive loading, failure modes of materials are necessary and helpful to 

evaluate the behaviors of geo-structures or/and their foundations under different loading 

conditions. Regarding geo-engineering materials containing substantial volume of 

cavities, studying failure modes are even more important due to the detrimental effects of 

the voids on the geo- materials’ mechanical behavior. Uniaxial compression testing of 

rock-like materials with varying porosity may provide useful information regarding the 

effects of porosity on the rock failure modes. Previous studies indicate that failure modes 

Figure (2.37) Correlation between Ultimate Tensile Strength and Porosity 

for both Numerical Models and Experimental Tests (Nott 2009). 
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of rock-like materials are influenced by void porosity and void geometry (bridge 

distances exclusively).  

Hudyma et al. (2004) identified four failure modes for the cylindrical plaster 

specimens as shown in Figure (2.38); spalling for void porosity range 0 – 5%, axial 

splitting for void porosity range 5 – 10%, shear failure for void porosity range 10 – 20%, 

and web failure for void porosity ≥ 20%. However, they did not find a strong relationship 

between failure modes and porosity for the cubic specimens; the specimens failed via a 

combination of the four failure modes occurred in the cylindrical specimens.  

Jespersen et al. (2010) concluded that, as bridge distance increases from 0.5 to 1.5 

void diameters, the dominant failure mode is tensile failure (vertical to sub-vertical 

tension fractures oriented approximately parallel to the applied axial load), see Figure 

(2.39a). At a bridge distance of 1.5 void diameters, the dominant failure mode is shear 

failure as shown in Figure (2.39b). At bridge distances greater than 1.5 void diameters, 

the dominant failure mode returns to tensile failure as shown in Figure (2.39c). In sum, 

according to previous research, the failure modes depend primarily on porosity and 

bridge distance.  

 

 

 

 

 

 

 

Figure (2.38) Failure Modes-Cylindrical Plaster Specimens (Hudyma et al. 2004). 
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More details on the influences of voids on crack patterns and failure modes in 

rocks and rock-like materials are discussed in Chapter 3 (sections 3.8 and 3.9) and 

Chapter 4 (section 4.5). 

 

2.5 Summary of the Literature Review 

From the literature review, although the results show that the uniaxial 

compressive strength and elastic modulus of rocks and rock-like materials decrease while 

Figure (2.39a, b, & c) Failure Modes Cubic Plaster Specimens - Jespersen et al. (2010) 
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void porosity increases, the general relationships between them are poorly defined and 

unclear, and the data have high scatter (low to moderate coefficient of determination). 

The effects of void size, void shapes, void orientation, and void spatial distributions have 

not been explored clearly. In addition, almost all the correlations regarding the effects of 

void porosity on the mechanical behaviors of rocks and rock-like materials are solely 

drawn between the mechanical properties, mostly UCS and E, and the void porosity. In 

other words, the effects of void size, void shape, void orientation, and void spatial 

distributions have not been addressed in the correlations. It is believed that, besides the 

porosity, those factors (void size, void shapes, and void orientation, and void spatial 

distributions) are important as well.  

This study aims to address the void size, void shapes, and void orientation, and 

void spatial distributions and weigh there effects on the mechanical properties of roc-like 

materials. It intends to find a better correlation between the mechanical properties, UCS 

and E, of rock-like materials and void porosity considering the aforementioned factors; it 

searches to see if the aforementioned factors can reduce the data scattering, in other 

words increase the coefficients of determination of the correlations. In addition, since the 

influences of void porosity and geometry on failure modes of rock-like material have 

been addressed by very few researchers (only two researches so far), more attention about 

the subject will be helpful in evaluating the geo-structures or/and their foundations under 

different loading conditions. Accordingly this study also aims to explore the effects of 

void existences on the crack pattern and failure modes in rock-like materials.  
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CHAPTER THREE MECHANICAL CHARACTERIZATION OF BRITTLE 

MATERIALS 

 

3.1 Introduction  

Matter, any physical substance surrounds us, becomes material if used or/and 

processed by humans (Meyers and Chawla 2009). For instance, rock naturally is a matter, 

but it becomes a material when used by humans as a construction material such as stones 

in masonry or aggregate in concrete. Materials have different properties such as physical 

properties, chemical properties, and mechanical properties. Hence, they exhibit different 

behaviors under given condition. However, in engineering, it is the mechanical properties 

which are essentially important for design purposes (Singh and Dwivedi 2009).  

Mechanical properties of materials are those which describe the material behavior 

under external loads such as strength, elasticity, rigidity (stiffness) plasticity, ductility, 

brittleness, impact strength, hardness, and toughness (Meyers and Chawla 2009). They 

depend on the bond forces between the materials’ crystal structure and flaws 

(imperfections) within the crystal and among the crystals (Singh and Dwivedi 2009). 

Mechanical properties are corner stone of mechanical characterization of materials.  

The mechanical characterization of materials means studying the deformation and 

cracking of materials under external loads which is vital for preventing failure of 

materials in service (Meyers and Chawla 2009). Since rocks, including lithophysal tuff, 

are typically considered as brittle material, this chapter is concerned with the mechanical 

characterization of brittle materials under static load. 
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3.2 Failure in Materials 

Failure in term of material behaviors has various definitions such as (1) the 

process by which the behavior of material changes from one state to another ((Bieniawski 

et al., 1961; Andreev 1995), and (2) an irreversible alteration in the microstructure of the 

material responding to excessive loads or deformations which leads to a change in the 

normal material constitutive behavior (Kelly 2013). According to the most of failure 

theories, failure occurs when some physical variable such as stress, strain, or energy 

reaches a critical value. Regarding the stresses, the critical value might be the maximum 

principal stress, the maximum shear stress or some more complicated function of the 

stress components (Kelly 2013). Basing on various factors such as composition, aging, 

and temperature, the mechanisms of failure of materials can generally be classified into 

two main failure fashions, ductile and brittle (Runesson 2006; Pytel and Kiusalaas 2012; 

Ugural and Fenster 2012). However, the differentiation between the two mechanisms is 

not an easy process; to view a material as being either ductile or brittle (Christensen 

2005).   

  

3.3 Brittle Materials 

Brittle materials, also called non-ductile materials, are typically those materials 

which can not undergo considerable permenant deformation prior to failure (ε < 0.05) and 

do not exhibit an identifiable yielding (Norton 1997; Kelly 2013). Some examples of 

brittle materials are concrete, rock, cast iron, and glass. Ductile materials are those can 

undergo a considerable of permanent deformation (ε ≥ 0.05) before failure occurs and 

exhibit identifiable yielding (yield strength) before failing (Kelly 2013). Examples of 
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these materials are mild steel, aluminum, copper, and lead. Figure (3.1) show typical 

stress-strain curves (σ-ε curve) for both brittle and ductile materials.  

 

 

 

 

 

 

 

 

 

 

3.4 Strength and Failure of Brittle Materials 

Brittle materials should not be considered as weak materials. The just have little 

or no plasticity; the stain is mainly elastic strain as shown in Figure (3.1a). The stress at 

which failure occurs is called failure stress (fracture stress) and is usually symbolize by 

σF, see Figure (3.1a). However, if the yield point is required in brittle materials, offset 

method is typically used (Pytel and Kiusalaas 2012). In this method, a line at a prescribed 

offset strain, usually 0.2% (ε = 0.002) of the stress-strain curve, is drawn parallel to the 

initial tangent. The intersecting point between this line and the stress-strain curve is 

considered as the yield point; see Figure (3.1a). Regarding the ductile materials, the stress 

at which the stress-strain curve becomes almost horizontal is considered as the yield 

point, and is usually symbolize by σY as shown in Figure (3.1b). In addition, the strain in 

Figure (3.1a &b) Typical stress-strain curves for (a) brittle material and, (b) 

ductile material 
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ductile materials has two parts; elastic strain (εe) and plastic strain (εp), Figure (3.1b). The 

failure stress in ductile material is called ultimate stress (rupture stress) and is usually 

symbolize by σF, see Figure (3.1a). 

Depending on their compressive, tensile, and shear strengths, brittle materials can 

be divided into two types; even and uneven materials (Norton 1997). The even brittle 

materials are those have equal compressive and tensile strength. The uneven brittle 

materials are those have different strength for both compressive and tensile stresses; 

compressive strength is higher that tensile strength. In addition, uneven brittle materials 

are those which have greater shear strength compared to their tensile strength; their shear 

strength is falling between their compressive and tensile strength (Norton 1997). 

Accordingly, concrete, soil, and rock, are uneven brittle materials. 

Regarding failure, brittle materials are usaually fractured with clean brakes at 

failure (Norton 1997; Kelly 2013). According to Ugural and Fenster (2012), fracture 

means creating new surfaces within the material under stress; separating into two or more 

parts. Fractures are commonly occurring through the grains and termed as transcrystalline 

failure (Ugural and Fenster 2012). They will be created due to normal tensile stress alone 

if the materials are under tension forces, while in the materials under compression stress, 

the fractures will be created due to some combination of normal compressive stress and 

shear stress (Norton 1998).  

 

3.5 Failure Criteria of Brittle Materials  

The main objective of computing and understanding of stresses is to predict if a 

given material will fail under a given external load; to predict strength value of the 
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material. In some cases the stress conditions are very complex and the aforementioned 

objective difficult to obtain. Therefore, failure data obtained from simple experimental 

tests, uniaxial tensile or compressive tests, are used instead to predict strength of the 

material under complex stress system; to check if it is fail or not. By this, a formula or an 

equation is obtained to predict the failure, strength value, of the material under all 

combination of stresses which is called material failure criteria or theories of failure. 

These theories, failure criteria of materials, are classified into two main groups; one for 

those materials fail by fracturing (brittle materials), and the other for those materials 

yielding (ductile materials) (Pytel and Kiusalaas 2012). 

Although, there are no universal failure criteria to correlate failure in a simple test 

with failure due to complex stress condition, there are several theories that work well 

enough for certain materials (Pytel and Kiusalaas 2012).  Regarding brittle materials, the 

most accepted theories of failure, failure criteria, are Maximum Principle Stress theory, 

Mohr’s theory, Coulomb-Mohr theory, and Griffith’s theory (Sandhu 1972; Hertzberg 

1996; Norton 1997; Gordon 2003; Meyers and Chawla 2009; Pytel and Kiusalaas 2012; 

Ugural and Fenster 2012; Kelly 2013). 

 

3.5.1 Maximum Principle Stress Theory (Rankine, Lame ׳, Clapeyron - 1858) 

The oldest, simplest too, but least accurate theory of failure of brittle materials is 

the maximum principle stress theory which credited to W. J. M. Rankine (1820–1872). It 

assumes that an element of a stressed body fails by fracture when the largest tensile 

principle stress exceeds the elastic limit in a simple tension test like uniaxial tension test 

(Sandhu 1972; Hearn 2001; Pytel and Kiusalaas 2012; Ugural and Fenster 2012).  
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In other words, according to the maximum principle stress theory any one of the 

principle stresses reaches the ultimate strength of the brittle material (σ1 = σu, or σ2 = σu, 

or σ3 = σu) failure should be occurred. Thus  

   
    

      
    

      
    

                                                         

where σ1, σ2, σ3 are principle stresses and σu is the ultimate (failure) stress in a simple 

tension or compression test. Accordingly, the failure criterion according to the maximum 

principle stress theory is: 

  

  
                 

  

  
                

  

  
                                                

Graphical representation for Eq. (3.2), in three-dimensional stress, will be a cubic 

surface spaced symmetrically about the origin of coordinates for even brittle materials 

(Sandhu 1972). For uneven brittle materials, the cubic surface will be spaced 

asymmetrically about the origin of coordinates. For two-dimensional stress (σ3 = 0), 

plane stress condition, the failure criterion for even materials is:  

  

  
                 

  

  
                                                                    ) 

For uneven brittle material, since the ultimate stress (σu) is not the same in both 

tension and compression, the failure criterion for uneven materials will be:  

  

   
                 

  

   
                 

  

   
                  

  

   
                        

where σut is the materials’ ultimate tensile strength, and σuc is the materials’ ultimate 

compressive strength.  

Graphical representation for Eq. (3.4) is shown in Figure (3.2). The failure 

criterion is represented by the outline of the shaded squares and rectangles. Any point, 

which corresponds to the principal stresses in the materials, lying on or extending the 
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shaded area represent failure. However, if it falls inside the shaded area, the material will 

be in fail condition (Pytel and Kiusalaas 2012; Ugural and Fenster 2012).  

When the maximum principle stress theory is using to predict the failure in brittle 

materials, the following notes should be borne in mind (Sandhu 1972; Hearn 2001): 

1- For a case in which σ3 is compression and both σ1 and σ2 are tension stresses, 

according to the maximum principle stress theory, failure can occur when the 

minimum principle stress σ3 reaches the value of the elastic limit stress in 

compression, σuc, even if the elastic limit stress in tension, σut, has not been 

reached (Hearn 2001).  Therefore, one criterion will be:  

  

   
                                                                                

2- For a case in which σ1 = σ2 = σ3 = σu, failure should not be expected; it rather 

causes a volume change only (Sandhu 1972).  

 

 

 

 

 

 

 

 

 

 

 Figure (3.2) Maximum Principle Stress failure criterion. 
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sut 

 

3.5.2 Mohr’s Theory (1900) 

To predict fractures in uneven brittle materials, the Mohr’s theory of failure is 

considered as an accepted failure criterion (Norton 1998; Pytel and Kiusalaas 2012; 

Ugural and Fenster 2012). The theory can be applied using well-known Mohr’s circles of 

stress incorporating with the results of simple tests such as uniaxial loading tests (Norton 

1997; Pytel and Kiusalaas 2012; Ugural and Fenster 2012). Two Mohr’s circles can be 

drawn using the ultimate tensile stress, as the maximum principle stress in tension, (σult)t, 

and the ultimate compressive stress, as the maximum principle stress in compression 

(σult)c. And then by drawing two lines that are tangent to the circles, the failure envelope 

for Mohr’s theory can be obtained, see Figure (3.3). The Mohr’s theory predicts failure if 

the Mohr’s circle of any state of stress in the material tangent to, or extends beyond the 

failure envelop (Pytel and Kiusalaas 2012).  

From Figure (3.3a), between points A and B, the maximum and minimum principal 

stresses, there are unlimited vertical lines like PC line which represent the states of stress 

on planes with the same normal stress but different shear stress. According to Mohr’s 

theory, the weakest plane of all planes carrying the same normal stress in the material is 

the plane which has maximum shear stress; point P in Figure (3.3a) (Sandhu 1972; Pytel 

and Kiusalaas 2012; Ugural and Fenster 2012). In this theory the effect of the 

intermediate principle stress, due to its negligible effects on the failure stress, is not 

considered. 

 From Figure (3.3b), if besides ultimate tensile stress (simple tension) and ultimate 

compressive stress (simple compression), the ultimate shear stress obtained from torsion 

is too used to construct the failure envelope for Mohr’s theory, a new failure envelope 
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will be constructed, and the theory becomes modified Mohr’s theory (Pytel and Kiusalaas 

2012; Ugural and Fenster 2012). The tangent lines to the three circles, AB and A΄B΄, are 

now the failure envelopes; Mohr’s envelopes.  

 

 

 

 

 

 

 

 

3.5.3 Coulomb-Mohr Theory 

The Coulomb-Mohr theory, also called internal friction theory and established in 

1900, assumes that fracture occurs in materials when the ultimate normal stress, tensile or 

compressive, reaches a corresponding critical value; strength of the material in tension or 

compression. It is a modification of the maximum principle stress theory with 

considering that the maximum shearing stress in frictional materials is depending on 

internal friction of the material (Ugural and Fenster 2012). In addition, the effect of the 

intermediate principle stress is not considered in this theory too. 

Coulomb, in 1773, hypothesized that failure occurs on a plane within a material 

when the shearing stress is equal to the sum of the cohesive strength and frictional 

strength (Sandhu 1972). This can be written as follow 

                                                                                         

Figure (3.3) Mohr’s Theory (a) Mohr’s circles of stress; (b) Mohr’s envelopes 

(Ugural and Fenster 2012) 
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where τ is shear stress along the plane, σ is normal stress on the plane, c is cohesive 

strength of the plane, and μ is coefficient of friction of the plane. The plane is also called 

failure plane. 

Ugural and Fenster (2012) rewrote Eq. (3.6) as follow 

                                                                                  

Note that a and b are corresponding to cohesive strength, c, and coefficient of friction, μ, 

respectively; material properties. Bearing in mind the assumption that the failure is not 

affected by the intermediate principle stress, the maximum shear stress and the 

corresponding normal stress can be written in terms of the principle stress as follows 

(Ugural and Fenster 2012): 

                             

 
     

                             

 
       

To obtain Coulomb-Mohr criterion in plane stress condition, four combinations of 

stresses (cases) should be considered (Ugural and Fenster 2012); Case I (both σ1 and σ2 

are tensile – first quadrant), Case II (σ1 is compressive and σ2 is tensile - second 

quadrant), Case III (both σ1 and σ2 are compressive – third quadrant), and Case IV (σ1 is 

tensile and σ2 is compressive - fourth quadrant). 

Case I (both σ1 and σ2 are tensile – first quadrant): In this case of biaxial tension, both 

σ1 and σ2 have the same sign on σ1, σ2 plane (σ1 > 0, σ2 > 0), the σ3, becomes the minor 

principle stress (σ3 = 0). Therefore, Eq. (3.8) becomes:   
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Furthermore, since neither σ1 nor σ2 can be higher than the material’s ultimate tensile 

strength (σut), hence, the failure criterion for Case I will be (Ugural and Fenster 2012) 

  

   
                 

  

   
                                                              

Case II (σ1 is compressive and σ2 is tensile - second quadrant): When σ1 and σ2 are of 

opposite sign on σ1, σ2 plane (σ1 < 0, σ2 > 0), instead of σ3 (σ3 = 0), the σ1 becomes the 

minor principle stress. Therefore, Eq. (3.8) becomes:   

      

 
       

      

 
                                                            

In addition, to find the values of a and b, the following conditions should be considered: 

                                                                                        

                                                                                          

Combining Eqs. (3.12a&b) with Eqs (3.11), we obtain 

  
       

       
               

       

       
                                                     

Substitute Eq. (3.13) into Eq. (3.11), the following failure criterion is obtained for Case 

II: 

  

   
 

  

   
                                                                      

Case III (both σ1 and σ2 are compressive – third quadrant): In this biaxial compression 

case, like Case I, both σ1 and σ2 have the same sign on σ1, σ2 plane (σ1 < 0, σ2 < 0). 

However, here the σ3 (σ3 = 0) becomes the major principle stress. Therefore, Eq. (3.8) 

becomes:   
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Again, noting that σ1 and σ2 cannot be higher than the material’s ultimate tensile strength 

(σuc).  Hence, for Case III (σ1 > σ2 and σ2 > σ1), the failure criterion is (Ugural and 

Fenster 2012) 

  

   
                  

  

   
                                                              

Case IV (σ1 is tensile and σ2 is compressive - fourth quadrant): When σ1 and σ2 are of 

opposite sign on σ1, σ2 plane (σ1 > 0, σ2 < 0), instead of σ3 (σ3 = 0), the σ2 becomes the 

minor principle stress. Therefore, Eq. (3.8) becomes:   

      

 
       

      

 
                                                            

In addition, to find the values of a and b, the following conditions should be concerned: 

                                                                                        

                                                                                         

Combining Eqs. (3.18a & b) with Eqs (3.8), we obtain 

  
       

       
               

       

       
                                                        

Substitute Eq. (3.19) into Eq. (3.17), the following failure criterion is obtained: 

  

   
 

  

   
                                                                                 

The graphical representation of the Coulomb–Mohr theory can be obtained 

through plotting the expressions in Eqs. (3.10), (3.14), (3.16), and (3.20) for the all four 

cases as shown in Figure (3.4). The Coulomb-Mohr theory predicts failure if any state of 

stress in the material lay on, or extends beyond the shaded area in Figure (3.4). Regarding 

pure shear, point a in Figure (3.4) represents the boundary point. 
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3.5.4 Griffith’s Criterion of Tensile Failure (1921) 

Theoretically, strength of any substance comes from the bonds between the 

substance’s molecules (cohesive forces between atoms of the substance) (Jumikis 1983; 

Franklin and Dusseault 1989), and it is about ten percent of the Young’s modulus, 0.1 E 

(Anderson 1995; Meyers and Chawla 2009). However, in reality, due to existence of 

natural flaws (microfractures) in almost all materials, it is well known that the true 

strength is usually lower than the theoretical strength. This observation led Griffith to 

adopt a new criterion to predict failure rupture in brittle materials that has later become 

s2 

Figure (3.4) Coulomb–Mohr criterion 
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one of the most famous theories in materials science (Jumikis 1983; Franklin and 

Dusseault 1989; Roylance 2001).  

Griffith elucidated that the difference between the theoretical and the actual 

strength is due to the natural defects (thin flat, narrow, elliptical uniform microcracks, 

also called Griffith’s cracks) in brittle materials which act as stress riser which in turn act 

as strength reducer; stress concentrations at the crack tips lead to lower the fracture 

strength of the materials (Jumikis 1983; Franklin and Dusseault 1989; Roylance 2001). 

According to Griffith theory, using the Minimum Strain Energy theorem, crack 

propagation occurs when the released elastic strain energy is at least equal to the energy 

required to generate new crack surfaces.  

Consider an infinite plate with t thickness containing a crack with length of 2a 

(Figure (3.5a)). When the crack is introduced into the unstressed plate, an increase in the 

surface energy is produced due to creating two new crack surfaces. Accordingly, the 

increased surface energy equals (Meyers and Chawla 2009): 

                                                                                  

where γs is the specific surface energy, i.e., the energy per unit area.  

When the plate is subjected to a tensile stress, σ, through the remote ends as 

shown in Figure (3.5b), the crack opens up and the stored elastic energy is released. 

According to Meyers and Chawla (2009), for an infinite plate with t thickness containing 

a crack (Figure (3.5b)), the released elastic energy is approximately equal to the shaded 

are in Figures (3.5b & c). Recalling that the elastic energy per unit volume for a stressed 

solid body is equal to half of the area under the linear part of a stress-strain curve, σ
2
/2E, 

the released total strain energy can be found from multiplying the elastic energy per unit 
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volume by the volume over which elastic energy is released (or 2 πa
2
 t - the volume of the 

shaded ellipse in Figures (3.5b & c)). Thus 

                                
      

 
                                                  

The difference between the total strain energy released due to the stress and the increased 

surface energy due to the crack introduction into the plate is equal to the change in 

potential energy of the plate, U, and can be found by subtracting Eq. (3.22) from Eq. 

(3.21), or  

              
      

 
                                                      

The maximum stress at which the crack is still stable and does not propagate (equilibrium 

condition) can be found by equating to zero the first derivative of Eq. (3.23) with respect 

to the crack length. Thus 

        
    
  

                                                    

Accordingly, Griffith obtained his failure criterion from Eq. (3.24) by assuming 

that the maximum stress is the stress required for crack propagation (failure stress) as 

follows 

                                               
    
  

                                                 

                                            
    

        
                                        

where σf  is the applied stress, a is half the crack length, E is the modulus of elasticity of 

the material, γs is the specific surface energy, υ is the Poisson’s ratio. 
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Griffith failure criterion was originally adopted for ideally brittle material (glass 

rods - very brittle material) (Jumikis 1983; Franklin and Dusseault 1989; Roylance 2001). 

However, there are some brittle materials which not ideally brittle and normally undergo 

plastic deformation prior to failure (fracture); plastic deformation in the material near the 

crack tip (blunting of the crack tip) causes energy dissipation which in turn leads to an 

increase in the fracture stress; relaxing stress concentration by increasing the radius of 

curvature of the crack at its tip (Roylance 2001; Meyers and Chawla 2009). Accordingly, 

the Griffith’s equation was modified by Irwin and Orowan to be suitable for no-ideal 

brittle materials by including the plastic work, γp, into the total elastic surface energy 

necessary for extending the crack wall. The Griffith’s equation can then be rewritten as 

follows (Roylance 2001; Meyers and Chawla 2009) 

                                               
         

  
                                      

                                            
         

        
                                        

where γp is plastic work. Since the γs is relatively small compared to plastic work γp (γs = 

0.1γp) (Meyers and Chawla 2009), the Eqs. (3.27) and (3.28) can be rewritten as follows: 

                                                  
      

  
                                           

                                             
      

        
                                    

 

 



63 
 

 

 

 

 

 

 

 

 

 

 

 

3.6 Fracture Mechanics 

An existing crack within a material may stay intact under a given condition of 

loading and environment (Roesler et al., 2007). These types of crack are called stationary 

cracks (or non-propagating cracks). If the loading and environment conditions are 

changed, the crack size may change too; the crack may extend and propagate. The branch 

of mechanics which deals with the conditions of loading and environments which causes 

an existing crack to extend to a critical size at which an instant fracture occurs is called 

fracture mechanics (Roesler et al., 2007; Ugural and Fenster 2012). Regarding brittle 

materials, fracture mechanics deals with the conditions of loading and environments 

under which the existing crack extends rapidly to a critical value at which an instant 

failure appears (Ugural 2004; Roesler et al., 2007; Ugural and Fenster 2012).  

 

Figure(3.5) A plate of thickness t containing a crack of length 2a. (a) Unloaded 

condition, (b) and (c) Loaded conditions (Meyers and Chawla 2009). 
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3.6.1 Stress Concentration in Brittle Materials 

It is well known that the fracture in brittle materials is connected to high local 

stresses and strains over a very small area in the immediate vicinity of geometrical 

irregularities (defects) such as cracks, sharp corners, fillets, notches and holes (Roylance 

2001; Gordon 2003; Meyers and Chawla 2009; Pytel and Kiusalaas 2012; Ugural and 

Fenster 2012). These defects, both natural and artificial, may raise the stresses around 

their immediate surrounding area to a level much higher that the material capacity even 

when the stresses in the parts away from the defects are low and safe (Gordon 2003; 

Meyers and Chawla 2009). The condition which produces the high local stresses is called 

stress concentration, and it is the primary cause of failure in brittle material (Ugural 

2004). Hence, knowing the amount and distribution of these stresses and strains around 

the geometrical irregularities in brittle materials is vital for design engineers. 

Consider a thin plate contains a notch or a sharp crack, Fig. (3.6a & b), subjected 

to tensile stress through the remote ends; ends far away from the notch or the crack.  As 

shown in the figure, the black lines, lines of forces which represent the in-plane stresses 

produced by the uniform tensile stress, are distributed uniformly at the ends of the plate 

and clustering near the tip of the notch, or the crack. This leads to concentrating more 

force lines in a smaller area near the crack or notch tip which in turns leads to produce 

high local stresses; stress. 

In fracture mechanics, this high localized stress, stress concentration, is connected 

to the nominal stress by a geometric (or theoretical) factor that called stress concentration 

factor (Ugural 2004). The stress concentration factor, typically denoted by Kt, is the ratio 

of the maximum stress at the flaw immediate vicinity to the nominal stress (Ugural 
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2004). The nominal stress is the stress that would occur in the same material if it was free 

from flaws (ideal material), of course under the same loading condition; stress σ. 

 

 

 

 

 

 

 

 

 

 

Inglis (1913) was the first who provided a formula to describe the stress 

concentration due to flaws through analyzing a flat plate containing an elliptical hole (2a 

long by 2b wide) subjected to uniform stresses (σ) as shown in Figure (3.7) (Anderson 

1995). Inglis found that, when the ratio a/b increases (elliptical hole changes to a sharp 

crack), the stress at the leading edge of the hole becomes extremely large (Anderson 

1995; Meyers and Chawla 2009). Accordingly, the maximum stress occurs at the ends of 

the leading edge of the elliptical hole, point A in Figure (3.7), and its value is given in the 

following formula.   

               
 

 
                                                              

where ρ is the radius of curvature of the leading edge of the elliptical hole.  

 

Figure (3.6) “Lines of force” in a bar with (a) a sharp crack and, (b) a side 

notch. (Meyers and Chawla 2009). 
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5.6.2 The Stress Field near a Crack Tip 

From Eq. (3.31), when the radius of curvature (ρ) approaches zero (such as in a 

sharp crack), the stress at the ends of the leading edge of the crack, crack tips, approaches 

infinity. This is called stress singularity, and always exists in isotropic, linearly elastic 

materials under condition of plane strain or plane stress (Hutchinson 1983; Roesler et al., 

2007). Basing on this, stress singularity existing near the crack tip which is one of the 

basic hypotheses of linear elastic fracture mechanics as well, the general form of stress 

singularity can be represented as follow (Hutchinson 1983; Anderson 1995): 

     
 

    
     

                                                          

Figure (3.7) Elliptical hole in a flat plate (Anderson 1995). 



67 
 

where K is the amplitude of singularity and called stress intensity factor, fij are 

dimensionless functions, or θ-variation (Hutchinson 1983), r is polar coordinate and 

should be smaller than the crack size, or crack length (Meyers and Chawla 2009). Both K 

and fij are describing the stress distribution around the crack tip, and they depend on the 

types of loading which the crack can experience; crack deformations (Hutchinson 1983; 

Anderson 1995; Meyers and Chawla 2009).  Although the stress singularity in Eq. (3.32) 

is for two dimensional elastic materials, the K and fij are the same for all cracks in two- or 

three-dimensional elastic materials (Meyers and Chawla 2009).      

In fracture mechanics, three different modes in which a crack in a solid can be 

stressed have been distinguished as illustrated in Figure (3.8); Mode I, Mode II, and 

Mode III (Broek 1986; Anderson 1995; Ugural and Fenster 2012; Meyers and Chawla 

2009). The first mode, Mode I (see Figure (3.8a)), has tensile stress normal to the crack 

plane tends to open the crack and called opening mode. The Mode II (see Figure (3.8b)) 

has in-plane shear stress tends to slide one face of the crack on the other face and called 

sliding mode. The third mode, Mode III (see Figure (3.8c)), has out-of-plane shear tends 

to tear the crack, through sliding it transversely, and called tearing mode or transverse 

shear mode. A crack can be stressed in any one of these modes (Anderson 1995). 

However, a combination of two or three modes can also occur (Anderson 1995; Roesler 

et al., 2007).  
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The stress components, their derivations are attributed to Westergaard 1939, 

corresponding to the crack modes are given below (see Figure (3.9)) (Meyers and Chawla 

2009): 

MODE I: 

 

   

   

   

  
  

    
    

 

 
 

 
 
 
 
 
                

 

 
             

  

 

                  
 

 
             

  

 

                    
 

 
             

  

  
 
 
 
 
 

                                                        

                                                                  

MODE II: 

 

    

    

    

  
   

    
 

 
 
 
 
 
            

 

 
                            

 

 
    

  

 
    

        
 

 
                   

 

 
                     

  

 

         
 

 
                          

 

 
    

  

 
    

 
 
 
 
 

                                     

                                                                  

Figure (3.8) The three modes of fracture. (a) Mode I: opening mode. (b) Mode II: 

sliding mode. (c) Mode III: tearing mode (Meyers and Chawla 2009). 
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MODE III: 

 
    

    
  

    

   
  

    
 

 

      
 

 

                                                                                                           

                     

For anisotropic materials, the above expressions must be modified to permit the 

asymmetry of stress at the crack tip (Meyers and Chawla 2009).  

The stress intensity factor, K, has a critical value, designated as Kc, and known as 

fracture toughness. The critical (or maximum) stress intensity factor, Kc, is the force 

necessary to extend a crack; when the K reaches Kc, the existing cracks will start to 

propagate and therefore, Kc, is called fracture toughness (Hutchinson 1983; Ugural and 

Fenster 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.9) Infinite, homogeneous, elastic plate containing a through-

the-thickness central crack of length 2a, subjected to a tensile stress σ 

(Meyers and Chawla 2009). 
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3.6.3 Stress Concentration in a Plate containing a Circular Hole 

The tangential and radial stresses in a large plate containing a circular hole at the 

center and subjected to uniaxial load, Figure (3.10), can be expressed in polar coordinate 

as follows (Timoshenko and Goodier 1951): 

  

     
 

 
   

  

  
  

 

 
    

  

  
  

  

  
                                                       

 

     
 

 
   

  

  
  

 

 
    

  

  
                                                                   

  

      
 

 
    

  

  
  

  

  
                                                                           

  

where σ is the uniform stress applied at the ends of the plate, a is the radius of the hole, 

and r is the radial coordinate (distance from the center of the hole).  

According to the above equations, the maximum tangential stress, σθθ, occurs at a 

point where r = a and θ = π/2 (and θ = 3π/2), point A in Figure (3.3), and equals threefold 

of the applied uniaxial stress, σ. Accordingly the stress concentration factor, Kt, is equal 

to 3; σθθ/σ = 3. However, the stress concentration factor, Kt, depending on the plate 

thickness, plate lateral dimension, D, as well as the ratio of the hole diameter (2a) to the 

plate lateral dimension (D) which changes from about zero to close to unity, the stress 

concentration factor decreases from 3 to 2.2 (Meyers and Chawla 2009). Note that the 

radial and shear stress at any point on the periphery of the hole are equal to zero; σrr = σrθ 
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= 0 for all points located on the hole’s circumference.  Furthermore, at the points where r 

= a and θ = 0 (and θ = π), north and south poles, an opposite stress to the applied stress at 

the ends of the plate will be produced; if the applied stress at the ends of the plate is 

compression, the produced stresses at the north and south poles will be tension.  Thus 

                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7 Failure Criteria for Rocks 

 Rocks are actually quasibrittle materials (Anderson 1995). Under high confining 

pressures and temperatures, rocks may exhibit ductile behavior; yielding and deforming 

Figure (3.10) Stress distribution in a large plate containing a circular hole 

(Meyers and Chawla 2009). 
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plastically before failure, while, under normal temperature and pressure, they are 

considered as brittle materials, and fracture at or very near to the proportional limit of 

elasticity; their plastic deformation, if any, is relatively very small (Jumikis 1983; 

Franklin and Dusseault 1989).  

Strength of rocks is regarded as the stress needed to cause failure at a given 

environmental condition; in another word, it is regarded as the resistance of rocks to 

external applied loads, (Jumikis 1983). The most two important types of failure in rocks 

are fracture (brittle fracture) and rupture ((Bieniawski et al., 1961)). Fracture is regarded 

as a process by which creating new crack surfaces or/and extending the existing cracks 

((Bieniawski et al., 1961)). It means a complete loss of cohesion across the surface of 

failure which is well connected to the initiation and propagation of cracks caused by 

stresses (tensile stresses) (Andreev 1995). Very good definition for the two failure 

mechanisms can be found in Bieniawski et al. (1961) as follow:  

“…..Fracture is the failure process by which new surfaces in the form of cracks are 

formed in a material or existing crack surfaces are extended. Various stages of fracture 

may be visualized, namely, fracture initiation, fracture propagation (stable and unstable) 

and strength failure. Rupture is the failure process by which a structure (e.g. a rock 

specimen) disintegrates into two or more pieces”  

Rock failure criterion is an equation, or formula, that used to predict the strength 

value of rock under all combination of multiaxial stresses ((Bieniawski et al., 1961; 

Jumikis 1983; Franklin and Dusseault 1989; Andreev 1995). This is usually done through 

comparing the produced stresses with a critical (strength) value obtained from a simple 
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test such as the uniaxial tensile or compressive test; if the stresses reached that critical 

value, the failure should be occurred (Bieniawski et al., 1961).  

Although earlier attempts to find the failure criteria of rocks, brittle materials in 

general, were mainly theoretical and evolved from Griffith’s crack theory (Franklin and 

Dusseault 1989), the most used failure criteria in practice are empirical criteria such as  

Fairhurst criterion (1964), Hobb's criterion (1970), Franklin's criterion (1971), 

Bieniawski criterion (1974), Yudhbir criterion (1983), Johnston criterion (1985), Sheorey 

criterion (1989), Yoshida criterion (1990), Ramamurthy criterion (1993), Hoek and 

Brown criterion (2002), and  Mogi criterion (2007). This is due to the fact that the 

theoretical attempts were not fit the experimental data particularly well. The theoretical 

criteria are Griffith and Mohr-coulomb criteria (Franklin and Dusseault 1989). However, 

the most accepted and widely used theoretical and empirical strength criteria for both 

intact rock and rock masses are Mohr-Coulomb criterion and Hoek-Brown criterion 

(Franklin 1989: Hoek and Brown 2002).  

 

3.7.1 Griffith criterion (1921). 

Basing on the energy instability concept mentioned in his criterion of tensile 

failure (1921), Griffith (1924) extended his theory and stated that fracture of brittle, 

isotropic, and elastic material, initiated due to presence of micro-cracks and flaws, can 

propagate and lead to tensile failure through producing stress concentration around the 

tips of the defects even under compressive stress conditions (Norton 1997). Griffith 

criterion was originally adopted for purely brittle material, glass, and then later expanded 
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to other brittle materials such as rock (Norton 1997; Brady and Brown 2006). It can be 

expressed in terms of principle stress as follow    

       
                                                                                                       

                                                                                                                   

where T is the uniaxial tensile strength of intact rock.  

Griffith theory does not provide a very good model with regarding to the 

experimental tests of rocks under multiaxial compression (Brady and Brown 2006). 

Therefore, it has been modified by several researchers. One of them is Murrel (1966) 

(Brady and Brown 2006).   In terms of shear stress, τ, and the normal stress, σn, acting on 

the plane containing the major axis of the crack, Murrell (1966) modified Griffith 

criterion and expressed as follow (Brady and Brown 2006) 

                                                                                   

However, the Murrel’s modification is only valid for the condition in which the uniaxial 

compressive strength is eight times the uniaxial tensile strength. Note that, Murrel 

equation is the same as Mohr’s envelop equation. 

 

3.7.2 Mohr-Coulomb criterion. 

This criterion was based on the assumption that there will be a plane in rock and 

soil, called critical plane, on which the material shear strength will be first reached as the 

peak stress, σ1, is increased, see Figure (3.11a) (Brady and Brown 2006).  The critical 

plane, β, can found through constructing the Mohr circle as shown in Figure (3.11b). 

Accordingly, in principle stress coordinate, assuming that the intermediate stresses has 
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not effects on the failure criteria, the Mohr-Coulomb criterion for rocks can be expressed 

by the following equation:  

   
                 

      
                                                           

where c = cohesion and Ø = angle of internal friction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

For σ3 = 0, uniaxial compressive strength can be related to c and Ø as follows 

                                  
      

      
                                     

 For σ1 = 0, uniaxial tensile strength can be related to c and Ø as follows  

                                  
      

      
                                 

Figure (3.11) Mohr_Coulomb criterion (a) Shear failure on plane ab, (b) Strength 

envelope in terms of shear and normal stresses (Brady and Brown 2006). 
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The determination of a satisfied value of the uniaxial tensile strength of rock, σt, is 

full of difficulty because the results from Eq. (3.44) are generally higher than the 

measured values from the experimental tests (Brady and Brown 2006). Therefore, a 

selected value of uniaxial tensile stress, called tensile cutoff and designated by To, is 

usually applied as shown in Figure (3.12). However, for practical purpose, it is better to 

put tensile cutoff to zero.  

 

 

 

 

 

 

  

 

 

According to Brady and Brown (2006), the Mohr-Coulomb criterion is not 

preferred for intact rock to obtain the peak strength. However, it is very helpful in 

obtaining the residual shear strength of materials and the shear strength of discontinuities 

in rocks.  

 

3.7.3 Hoek-Brown criterion (2002) 

A widely accepted failure criterion, applied in a large number of projects around 

the world, was derived by Hoek and Brown (1980) to describe the characterizations for 

Figure (3.12) Coulomb strength envelopes with a tensile cut-off To 

(Brady and Brown 2006). 



77 
 

both intact rocks and rock masses. It is considered as the most important criterion which 

has a high capability of describing both intact rock and rock masses behaviors. The 

criterion was first developed for intact rocks and then modified to describe the 

characteristics of joints in rock masses (Hoek and Brown 2002). Its generalized form is 

expressed as: 

  
    

        

  
 

   
                                                         

       
 
       
                                                                           

    
       
                                                                                 

  
 

 
 

 

 
  

    
    

   
                                                           

where σci is unaxial compressive strength of intact rock, m
i
, s, and a are material 

constants; m
i
 is a intact rock and s and a are for the rock mass. D is disturbance factor; 

disturbances come from blast damage and stress relaxation. The values of D are changes 

from zero for undisturbed in situ rock masses to 1 for very disturbed rock masses. And 

GSI is the Geological Strength Index which describes both rock mass’s structure and 

surface condition (Hoek and Brown 2002). 

 

3.8 Failure Modes of Brittle Materials in General 

The mechanical behaviors of brittle materials, such as rock and concrete, are 

mainly affected by pressure (confining stress), strain rate, temperature, and pore fluid 

pressure (Horri and Nemat-Nasser 1986). However, under a certain temperature (low 

temperature) and above a certain strain rate, the confining pressure is the main controlling 

factor for dry materials. Regarding failure under compression, solids made of brittle 
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materials fail by a process of progressive microfracture (Sammis and Ashby 1986). Flaws 

or stress concentrations within the solids, such as pores, inclusions, and small cracks 

(often grain-sized cracks left by its earlier thermal or mechanical history), initiate 

individual microcracks. These microcracks within the solids propagate in a direction 

approximately parallel to the largest principal compressive stress until they coalesce to 

form one of several types of failure modes. Basing on a long list of previous works, Horri 

and Nemat-Nasser (1986) identified three main failure modes for brittle materials under 

compression with low temperature and rate-independent process (loading) as follows:  

1- Axial splitting at zero lateral confining pressure, or uniaxial compression test. 

Under uniaxial compression loading, microscopic cracks initiate at the vicinity of 

the flaws. Accordingly macrocracks may extend in the direction of axial 

compression which in turn leads to the axial splitting. 

2- Faulting or macroscopic shear failure at low to moderate confining pressure. For 

low to moderate confining pressure, a narrow region of high microcrack density 

will be formed. At the axial stress close to the ultimate strength, the region is 

finally forming a fault plane. 

3- Ductile flow or cataclastic flow at large confining pressure. For this failure mode, 

the formation of the narrow region of high microcrack density is suppressed by 

the high confining pressure. Accordingly, depending on the material (types of 

rocks) and the temperature and pressure level, either ductile flow or cataclastic 

flow will be formed. The ductile flow is produced by plastic deformation 

throughout the sample, while the cataclastic flow is characterized by distributed 

microcracking. 
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Since the compressive strength of brittle materials increases with confining pressure 

increasing, the uniaxial compressive strength can be taken as a good measure of 

minimum strength of brittle materials under compression. Accordingly the failure modes 

of brittle material under uniaxial compression can be helpful in designing engineering 

structures safely and economically (Maji 2011). 

 

3.9 Failure Modes of Brittle Porous Solids under Compression Stress 

For porous solids made of brittle materials, when they are loaded in compression, 

the individual microcracks initiate at the pore peripheries. These microcracks propagate 

and coalesce to form a failure mode depending on the confining stress. Sammis and 

Ashby (1986) identified three main types of failure modes under compression for brittle 

porous solids as shown in Figure (3.13): 

1- Axial splitting or vertical slabbing:  Under uniaxial compression loading, 

microcracks initiate, propagate and finally coalesce to form contiguous 

vertical failure planes as shown in Figure (3.13a).  

2- At low to intermediate confining pressures, failure appears as a shear fault, or 

as a shear band as shown in Figure (3.13b). The inclination of the shear band 

changes with the confining pressure. It is often following a simple Coulomb 

failure criterion.  

3- At high confining pressures, the sample deforms in a pseudo-ductile mode; 

many, short, homogenously distributed, microfractures will be formed at 

large-scale deformation as shown in Figure (3.13c). 

 



80 
 

 

 

 

 

 

 

 

 

 

 

From the stress- strain curves, for porous solids with zero confining pressure, the axial-

stress-axial-strain curve will be composed of a peak stress followed by a very sharp 

descending portion. They show a zero hardening beyond the peak stress, see the stress-

strain curve shown in Figure (3.13e). The hardening beyond the peak stress increases 

with increasing confining pressure as shown in Figures (3.13f & g). Eventually, at high 

confining pressure, the portion of the axial-stress-axial-strain curve, after peak stress, 

starts to ascend and transits gradually from brittle to ductile stress-strain curve; see the 

stress-strain curve in Figure (3.13g). At this stage several short, homogenously 

distributed, microfractures will be formed throughout the sample.  

In addition, according to Hudyma et al. (2004) and Jespersen et al. (2010), for 

porous solids under uniaxail compression, the failure modes are mainly depending on 

void porosity and bridge distances. Accordingly, they identified three main failure 

modes; axial splitting (or tensile failure), shear failure, and web failure. For void porosity 

(b) (a) (c) 

(f) (e) (g) 

Figure (3.13) Failure Modes and Stress- Strain Curves for Porous Solids (Sammis 

and Ashby 1986) 
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≤ 10%, and for bridge distances from 0.5 to 1.5 void diameters, the dominant failure 

mode was axial splitting (vertical to sub-vertical tension fractures oriented approximately 

parallel to the applied axial load), see Figures (2.38) and (2.39a) in Chapter Two. For 

void porosity range 10 – 20%, and for bridge distance of 1.5 void diameters, the 

dominant failure mode was shear failure as shown in Figures (2.38) and (2.39b). Finally, 

according to Hudyma et al. (2004), the dominant failure mode was web failure for void 

porosity ≥ 20%, see Figure (2.38). However, at bridge distances greater than 1.5 void 

diameters, the dominant failure mode returns to tensile failure as shown in Figure (2.39c). 
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CHAPER FOUR ANALYSIS OF THE EXPERIMENTAL RESULTS 

 

4.1 Introduction 

In this chapter, the data from the work of Project Activity Task ORD-FY04-013, 

conducted under Cooperative Agreement No. DEFC28-04RW12232 between the U.S. 

Department of Energy and the Nevada System of Higher Education (NSHE), are 

analyzed to explore the effects of void geometry, besides porosity, on the mechanical 

properties of rock-like material (analog material). The main purpose of the work of 

Project Activity Task ORD-FY04-013 was to study the effects of void porosity and void 

geometry on the mechanical behavior of lithophysal-rich tuff from the Topopah Spring 

formation at Yucca Mountain using rock-like material (analog material). 

Since until nowadays, the effects of void size, void shape, void orientation, and 

void spatial distributions on the mechanical properties of rock-like materials have not 

been addressed in the correlations between the mechanical behaviors of rock-like 

materials (UCS and E) and void porosity, this chapter aims to find a hypothesis, or 

hypotheses, that can consider the effects of those factors using the data obtained from the 

experimental tests carried out in the work mentioned above. In addition, the influences of 

void existence on failure modes of Hydro-StoneTB
®

 cubes are explored to obtain a better 

insight into the influences of void existences on the crack patterns and failure modes for 

rocks and rock-like materials. 
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4.2 Material and Specimens 

Due to the reasons mentioned in Chapter One, it is impracticable to obtain actual 

specimens to quantify the mechanical behaviors of the Topopah Spring formation at 

Yucca Mountain under uniaxial compression. Therefore, Hydro-StoneTB
®

, instead, was 

used as the rock-like material in the Project Activity Task ORD-FY04-013. To achieve 

the goals of the Project Activity Task ORD-FY04-013, the Hydro-StoneTB
®

 was cast 

into 152.4x152.4x152.4 mm cubes to produce porous and solid specimens. Fifty two 

porous specimens were made. Each porous specimen, porous cube, was produced in 

triplicate. Ten solid cubes were also cast to represent rock-like material with zero void 

porosity. The total number of experiments, including the ten solid cubes, was one 

hundred sixty six, 166, cubes.   

Due to its easy reproductive ability, cubical shape was selected for the 

experimental specimens in the Project Activity Task ORD-FY04-013. Furthermore, to 

compare the experimental results with those of two-dimensional plane strain numerical 

models, open ended longitudinal openings were used to represent the voids in the porous 

cubes.   However, cubes with longitudinal openings cannot be considered as an exact 

two-dimensional plane strain models; they lie somewhere between plane strain (infinite 

length holes) and plane stress (thin plate) assumptions (Rigby 2007). To obtain porous 

cubes with different void geometries, cubes with open ended longitudinal openings 

having different cross sectional shape (circular, square, and diamond), different sizes 

(unisize large, medium, and small), and different void distributions (patterns A, B, and C) 

were made and tested under uniaxial compression. Tables (4.1) to (4.3) show void 

porosities and characterizations of void geometry for the porous cubes.  
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The diameters of the unisize circular openings were 31.14 mm (large), 22.1 mm 

(medium), and 12.78 mm (small) as shown in Table (4.1). For the samples with mixed 

voids, the three diameters (large, medium, and small) were mixed in each specimen, see 

Table (4.2). For the samples with non-circular voids, square and diamond voids, the side 

lengths of both square and diamond openings were 15.6 mm (small voids) and 22 mm 

(large void) as shown in Table (4.3). The three void patterns (A, B, and C) were 

generated depending on the location of the first void. Putting the origin of x-y axis at the 

center of the cubes, the locations of the first void for the patterns A, B, and C were 

selected to be at (0, 0), (-38.1, -38.1), and (-53.98, -53.98) respectively as shown in 

Figure (4.1).  The locations of the remained voids in each cube were randomly generated 

by Itasca Consulting Group, Inc. personnel, in 2004, basing on the following two 

conditions (1) Void overlapping should not be allowed and (2) The number of voids 

should not exceed thirty three voids. 
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Table (4.1) Porous and Solid Cubes - Specimens with Unisize Circular Voids 

Description of Voids 
Number 

of Voids 

Void Porosity 

(n),  % 

Sample 

Pattern 

Number of 

Samples 

Tested 
U

n
is

iz
e 

C
ir

cu
la

r 
V

o
id

s 
Void Size 

Large (L) 

31.14 mm 2 6.56 

A 3 

B 3 

C 3 

31.14 mm 4 13.12 

A 3 

B 3 

C 3 

31.14 mm 6 19.68 

A 3 

B 3 

C 3 

Medium (M) 

22.1 mm 4 6.61 

A 3 

B 3 

C 3 

22.1 mm 8 13.21 

A 3 

B 3 

C 3 

22.1 mm 12 19.82 

A 3 

B 3 

C 3 

Small (S) 

12.78 mm 11 6.07 

A 3 

B 3 

C 3 

12.78 mm 22 12.14 

A 3 

B 3 

C 3 

12.78 mm 33 18.22 

A 3 

B 3 

C 3 

Total Number of Cubes 81 
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Table (4.2) Porous and Solid Cubes - Specimens with Mixed Circular Voids 

Description of 

Voids 

Size of Voids, 

mm 

Number 

of Voids 

Void 

Porosity, n,  

% 

Sample 

Pattern 

Number of 

Cubes 

Tested 

Mixed Circular 

Voids 

12.78 – 31.14 

(1L, 1M, 3S)  
5  6.59  

A 3 
B 3 

C 3 

12.8 – 31.14 

(2L, 3M, 6S) 
11  14.83  

A 3 

B 3 

C 3 

12.78 – 31.14 

(2L, 5M, 8S) 
15  19.24  

A 3 
B 3 

C 3 

Total Number of Cubes 27 

 

Table (4.3) Specimens with Square and Diamond Voids 

Description of 

Voids 

Side Length of 

Voids, mm 

Number 

of Voids 

Void Porosity, 

n,  % 

Sample 

Pattern 

Number of 

Cubes 

Tested 

Large Diamond 

Voids (L) 

22.05 3 6.28 
A 3 

B 3 

22.05 6 12.56 
A 3 

B 3 

Small Diamond 

Voids (S) 

15.65 6 6.32 
A 3 

B 3 

15.65 12 12.65 
A 3 

B 3 

Large Square 

Voids (L) 

22.05 3 6.28 
A 3 

B 3 

22.05 6 12.56 
A 3 

B 3 

Small Square 

Voids (S) 

15.65 6 6.32 
A 3 

B 3 

15.65 12 12.65 
A 3 

B 3 

Total Number of Cubes 48 
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4.3 Laboratory Experiments  

The cubical specimens, both solid and porous cubes, were tested in a large Instron 

600RD load frame, hydraulically driven, with a load capacity of 3000 kN (600 kips) and 

the strain rate of about 3 x 10
-5

 at the Nevada Department of Transportation (NDOT) 

Figure (4.1) Location of First Void; Patterns A, B, and C for Circular Voids, and 

Patterns A and B for Non-circular Voids 

Pattern A Pattern B Pattern C 

Pattern A Pattern B 

Pattern A Pattern B 
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materials lab facility in Las Vegas. The Instron load cell force measurement accuracy is ± 

0.2 % of its full-scale output. The axial and lateral displacement transducers (LVDTs) 

were Daytronic ± 0.1 inches full-scale LVDTs and each had accuracy within ± 0.5%. The 

uniaxial compressive strength (UCS) and Young’s Modulus (E) were calculated for each 

specimen from the stress-strain curve of uniaxial compression test as follows:  

1- The peak load divided by the original cube surface area (152.4x152.4 mm) 

was taken as the ultimate strength; the uniaxial compressive strength: 

 

                                    
         

                 
                

 

2- The modulus of elasticity of the cubes, Secant Young’s Modulus, was found 

from the stress-strain curve plotted for each specimen by taking the ratio of 

the difference between 50% of the uniaxial compressive strength and 25% of 

the uniaxial compressive strength to the difference of their corresponding 

strains as shown in the following equation:  

 

                    
                     

                                  
                   

 

4.4 Analysis of Experimental Results 

In order to obtain high-quality data analysis, the data should be cleansed 

searching for anomalies (incomplete, or incorrect, data) and checking the data precision 

(accuracy). Searching for anomalies was done through comparing the existing data to the 
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data in the original documents which were kept in Soil Mechanics Laboratory at UNLV. 

Regarding the data accuracy, British Standards (BS 1881: 1983) was used to check the 

precision data. According to the British Standards (BS 1881: Part 116: 1983), the 

precision data for measurements of the compressive strength of hardened concrete can be 

expressed as percentage of the mean of the cube strengths whose differences are not 

higher that 9%. Since the specimens in Project Activity Task ORD-FY04-013 were tested 

in triplicate, any cube strength value differs from the mean value by more than 9% is not 

considered in this analysis. The average values of the experimental results are shown in 

Tables (4.4) to (4.6). All laboratory test results and the photographs of all tested cubes are 

shown in Appendix (I). The codes used to name the specimens are in according with their 

void pattern name, void type, void size, and number of voids as follows:  

1- PA, PB, and PC are patterns A, B, and C respectively (Figure 4.1). 

2- U = Unisize (all voids have the same size), UX = Mixed (different size voids). 

3- C = Circular, Sq = Square, and Dm = Diamond. 

4- L = Large, M = Medium, and S = Small. 

5- The numbers affixed to the end (2, 3, 4, 6, 8, 11, 12, 22, and 33) indicate the 

number of voids. and 

6-  The letters affixed to the end of the specimen name (A, B, and C) indicate the 

number of specimen in the three specimens of the same sample pattern. 

The experimental test results in the Project Activity Task ORD-FY04-013 are 

used to explore the effects of voids on uniaxial compressive strength, elastic modulus, 

and failure modes of rock-like material. The normalized values are used to generalize the 

results. The normalization is accomplished by dividing the values of the porous cube’s 
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mechanical properties by the average value of the solid specimen’s mechanical 

properties. Tables (4.7) to (4.9) show the normalized results of the experimental results. 

 

Table (4.4) Experimental Results for Cubes Containing Unisize Circular Voids 

Sample Name 
Porosity (n) 

Uniaxial Compressive 

Strength, UCS  

Young’s Modulus,  

E (25-50%) 

% MPa GPa 

PA-UCL2-A&B 6.56 19.31 9.36 
PA-UCL2-C 6.56 16.62 8.65 

PB-UCL2 6.56 17.31 11.74 

PC-UCL2 6.56 24.61 9.86 

PA-UCL4-A 13.12 18.20 9.66 

PA-UCL4-B 13.12 14.27 8.56 

PA-UCL4-C 13.12 13.51 8.55 

PB-UCL4 13.12 11.55 8.68 

PC-UCL4 13.12 16.27 11.27 

PA-UCL6 19.68 9.84 6.69 

PB-UCL6 19.68 9.63 7.47 

PC-UCL6 19.68 9.65 7.54 

PA-UCM4 6.61 22.57 12.08 

PB-UCM4 6.61 21.48 10.91 

PC-UCM4 6.61 24.55 13.42 

PA-UCM8 13.21 18.66 7.92 

PB-UCM8 13.21 17.34 10.07 

PC-UCM8 13.21 13.24 11.85 

PA-UCM12 19.82 12.53 8.61 

PB-UCM12 19.82 9.41 9.03 

PC-UCM12 19.82 5.55 7.57 

PA-UCS11 6.07 26.27 11.58 

PB-UCS11 6.07 26.74 10.67 

PC-UCS11 6.07 21.65 11.38 

PA-UCS22 12.14 15.72 9.49 

PB-UCS22 12.14 17.56 8.72 

PC-UCS22 12.14 16.75 12.09 

PA-UCS33 18.22 11.35 8.19 

PB-UCS33 18.22 13.27 9.19 

PC-UCS33 18.22 10.09 7.44 
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Table (4.5) Experimental Results for Cubes Containing Mixed Circular Voids 

 

 

Table (4.6) Experimental Results for Cubes Containing Square or Diamond  

Voids 

Sample Name 

Porosity 

(n) 

Uniaxial Compressive 

Strength, UCS  

Young’s Modulus, 

E (25-50%) 

% MPa GPa 

PA-USqL3 6.28 20.98 10.19 
PB-USqL3 6.28 28.27 11.34 

PA-USqL6 12.56 16.2 10.98 

PB-USqL6 12.56 20.02 8.18 

PA-USqM6 6.32 26.20 11.11 

PB-USqM6 6.32 26.52 10.36 

PA-USqM12 12.65 17.37 10.56 

PB-USqM12 12.65 16.18 7.73 

PA-UDmL3 6.28 16.06 10.32 

PB-UDmL3 6.28 22.80 11.50 

PA-UDmL6 12.56 11.88 8.95 

PB-UDmL6 12.56 10.55 10.02 

PA-UDmM6 6.32 19.21 11.71 

PB-UDmM6 6.32 22.58 11.22 

PA-UDmM12 12.65 11.01 9.26 

PB-UDmM12 12.65 16.93 10.72 

 

Sample Name 

Porosity 

(n) 

Uniaxial Compressive 

Strength, UCS  

Young’s Modulus, 

E   (25-50%) 

% MPa GPa 

PA-UXCL1M1S3 6.59 23.44 11.08 

PB-UXCL1M1S3 6.59 23.96 10.85 

PC-UXCL1M1S3 6.59 21.19 9.88 

PA-UXCL2M3S6 14.83 13.93 7.99 

PB-UXCL2M3S6 14.83 13.79 8.18 

PC-UXCL2M3S6 14.83 14.69 9.47 

PA-UXCL2M5S8 19.24 11.79 7.10 

PB-UXCL2M5S8 19.24 10.43 8.30 

PC-UXCL2M5S8 19.24 8.20 7.24 
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Table (4.7) Normalized Results for Cubes Containing Unisize Circular Voids 

 

 

Sample Name 

Porosity 

(n) Normalized UCS  
Normalized E  

(25-50%) 
% 

PA-UCL2-A&B 6.56 0.351 0.585 

PA-UCL2-C 6.56 0.302 0.541 

PB-UCL2 6.56 0.315 0.734 

PC-UCL2 6.56 0.447 0.616 

PA-UCL4-A 13.12 0.331 0.604 

PA-UCL4-B 13.12 0.259 0.535 

PA-UCL4-C 13.12 0.246 0.534 

PB-UCL4 13.12 0.210 0.543 

PC-UCL4 13.12 0.296 0.704 

PA-UCL6 19.68 0.179 0.418 

PB-UCL6 19.68 0.175 0.467 

PC-UCL6 19.68 0.175 0.471 

PA-UCM4 6.61 0.410 0.755 

PB-UCM4 6.61 0.391 0.682 

PC-UCM4 6.61 0.446 0.839 

PA-UCM8 13.21 0.339 0.495 

PB-UCM8 13.21 0.315 0.629 

PC-UCM8 13.21 0.241 0.741 

PA-UCM12 19.82 0.228 0.538 

PB-UCM12 19.82 0.171 0.564 

PC-UCM12 19.82 0.101 0.473 

PA-UCS11 6.07 0.478 0.724 

PB-UCS11 6.07 0.486 0.667 

PC-UCS11 6.07 0.394 0.711 

PA-UCS22 12.14 0.286 0.593 

PB-UCS22 12.14 0.319 0.545 

PC-UCS22 12.14 0.305 0.756 

PA-UCS33 18.22 0.206 0.512 

PB-UCS33 18.22 0.241 0.574 

PC-UCS33 18.22 0.183 0.465 
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Table (4.8) Normalized Results for Cubes Containing Mixed Circular Voids 

 

 

Table (4.9) Normalized Results for Cubes Containing Square or Diamond Voids 

Sample Name 

Porosity 

(n) Normalized 

Experimental UCS 

Normalized 

Experimental E 

(25-50%) % 

PA-USqL3 6.28 0.381 0.637 
PB-USqL3 6.28 0.514 0.709 

PA-USqL6 12.56 0.294 0.686 

PB-USqL6 12.56 0.364 0.511 

PA-USqM6 6.32 0.476 0.694 

PB-USqM6 6.32 0.482 0.648 

PA-USqM12 12.65 0.316 0.660 

PB-USqM12 12.65 0.294 0.483 

PA-UDmL3 6.28 0.292 0.645 

PB-UDmL3 6.28 0.414 0.719 

PA-UDmL6 12.56 0.216 0.559 

PB-UDmL6 12.56 0.192 0.626 

PA-UDmM6 6.32 0.349 0.732 

PB-UDmM6 6.32 0.410 0.701 

PA-UDmM12 12.65 0.200 0.579 

PB-UDmM12 12.65 0.308 0.670 

 

 

Sample Name 

Porosity 

(n) Normalized UCS  
Normalized E  

(25-50%) 
% 

PA-UXCL1M1S3 6.59 0.426 0.693 

B-UXCL1M1S3 6.59 0.436 0.678 

PC-UXCL1M1S3 6.59 0.385 0.618 

PA-UXCL2M3S6 14.83 0.253 0.499 

PB-UXCL2M3S6 14.83 0.251 0.511 

PC-UXCL2M3S6 14.83 0.267 0.592 

PA-UXCL2M5S8 19.24 0.214 0.444 

PB-UXCL2M5S8 19.24 0.190 0.519 

PC-UXCL2M5S8 19.24 0.149 0.453 
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4.4.1 Effects of Void Porosity 

The results of uniaxial compressive strength and Young’s modulus for 

experimental results are plotted as a function of void porosity in Figures (4.2) and (4.3). 

According to the results, for the void porosity ranging between 6.28% and 19.82%, 

regardless of the void size, void distribution, and void uniformity, the normalized 

experimental results showed increases in both normalized UCS and E with decreasing 

porosity. However, the coefficient of determination for uniaxial compressive strength (R
2
 

= 0.729) is higher than that for the Young’s modulus (R
2
 = 0.5364). The results showed 

power trend with increasing porosity for both uniaxial compressive strength and Young’s 

Modulus. The relationships can be represented best by the following equations: 

                                                                             

                                                                                

From Figures (4.2) and (4.3) and Tables (4.4) to (4.6), for similar void porosity, 

the results showed different values for both UCS and E. However, the differences for 

UCS are smaller than those for E. For similar void porosities, 6.5%, 12.6%, and 19.6%, 

some cubes had very low uniaxial strength (16.06 MPa, 10.55 MPa, and 5.55 MPa for 

void porosities of 6.5%, 12.6% and 19.6% respectively), while the others had very high 

uniaxial strength (28.27 MPa, 20.02 MPa, and 12.53 MPa for void porosities of 6.5%, 

12.6% and 19.6% respectively). Accordingly, the percentages of the maximum 

differences in UCS values were 76%, 89.6%, and 126% for void porosities 6.5%, 12.6% 

and 19.6% respectively. There are also several cubes that their strength values are located 

between the lowest and the highest strengths.  
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Similarly, some cubes gave smaller Young’s Modulus (8.65 GPa, 7.73 GPa, and 

6.69 GPa for void porosities of 6.5%, 12.6% and 19.6% respectively) compared to some 

other cubes which gave larger Young’s Modulus (13.42 GPa, 10.56 GPa, and 8.61 GPa 

for void porosities of 6.5%, 12.6% and 19.6% respectively). Accordingly, the percentages 

of the maximum differences in E values were 55.6%, 36.6%, and 28.6% for void 

porosities 6.5%, 12.6% and 19.6% respectively. Of course, there are also several cubes 

that their Young’s Modulus values are located between the lowest and the highest values. 

These differences can be partly attributed to the experimental uncertainties, while, the 

other part of the differences might be due to the effects of void geometry. In the next 

sections, the contributions of void geometry in the differences in both UCS and E are 

explored.  

 

 

Figure (4.2) Normalized Uniaxial Strength versus Void Porosity for Cubes with Voids 

Having Different Size, Shape and Distribution 
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Figure (4.3) Normalized Deformation versus Void Porosity for Cubes with Voids Having 

Different Size, Shape and Distribution 
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The experimental results from the work in Project Activity Task ORD-FY04-013 

are used to check the effects of void geometry on the mechanical properties the rock-like 

material. 
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4.4.2.1 Effects of Void Size 

 The results of uniaxial compressive strength and Young’s modulus for cubes 

containing unisize circular voids are plotted as a function of void porosity in Figures (4.4) 

to (4.9). The three different sizes of circular voids (large size - 31.14 mm, medium size – 

22.1 mm, and small size - 12.78 mm) showed similar changes in values of both 

normalized UCS and E with void porosity changing as shown in Figures (4.4) and (4.5). 

Figures (4.6) to (4.9) show the experimental results for cubes containing unisize square 

voids or unisize diamond voids. Similarly, the two different sizes of voids (large size - 

22.05x22.05 mm, and small size - 15.65x15.65 mm) gave similar changes in both 

normalized UCS and E with void porosity changing. Accordingly, the different void sizes 

studied in this experimental program did not show discernible effects on the mechanical 

properties of the Hydro-StoneTB
®

.  

 

 

Figure (4.4) Normalized Uniaxial Compression versus Void Porosity for Cubes 

Containing Unisize Circular Voids 
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Figure (4.5) Normalized Deformation versus Void Porosity for Cubes  

Containing Unisize Circular Voids 
 

 

Figure (4.6) Normalized Uniaxial Compression versus Void Porosity for Cubes  

Containing Unisize Square Voids 
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Figure (4.0.7) Normalized Deformation versus Void Porosity for Cubes  

Containing Unisize Square Voids 
 

 

 

Figure (4.0.8) Normalized Uniaxial Compression versus Void Porosity for Cubes  

Containing Unisize Diamond Voids  
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Figure (4.9) Normalized Deformation versus Void Porosity for Cubes  

Containing Unisize Diamond Voids 
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orientation on the mechanical properties of the rock like material. Accordingly, the 

results of uniaxial compressive strength and Young’s modulus for cubes containing either 

unisize square or unisize  diamond voids are plotted as a function of void porosity in 

Figures (4.10) and (4.11). According to the results, the following observations can be 

discussed: 

1- The experimental results showed increases in both UCS and E of Hydro-

StoneTB
®

 cubes with decreasing void porosity following power trends. 

2- From Figures (4.10), regardless of the void size (large and small size voids), and 

void distribution (patterns A and B), the cubes containing square voids showed 

slightly higher UCS compared to the cubes containing diamond voids (square 

voids rotated by 45 degree). On average, the cubes containing square voids gave 

higher strength by 9% compared to the cubes containing square voids rotated by 

45 degree; the differences ranging between -1.36% to 17.2%.   

3- From Figure (4.11), the results for models having similar porosity showed similar 

changes in E regardless of the void size (large and small size voids), void 

distribution (patterns A and B) and void orientations.   

Accordingly, rotating square voids by 45 degree led to a reduction in the uniaxail 

compressive strength by 9% on average.  This might due to larger void width for 

diamond shapes compared to square voids; the void dimension perpendicular to the 

maximum compression stress is larger for diamond square which in turn may lead to 

lesser strength. However, the effect of void orientation on Young’s modulus was 

insignificant.  
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Figure (4.10) Normalized Uniaxial Compression versus Void Porosity for Cubes  

Containing Non-circular Voids 
 

 

 

Figure (4.11) Normalized Deformation versus Void Porosity for Cubes  

Containing Non-circular Voids 
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4.4.2.3 Effects of Void Spatial Distributions 

 For cubic porous specimens containing open-ended longitudinal openings, the 

spatial distributions of voids are specified by choosing the distances between the voids 

and the cube edges (edge distances). The edge distance is usually composed of two parts; 

side distance (shortest distance between the void periphery and the vertical sides of the 

cube) and top (or bottom) distance (shortest distance between the void periphery and 

either top or bottom edge of the cube). For the same porosity, different spatial 

distributions of voids can be obtained by different combination of side distances and top 

distances. This can lead to porous cubes having the same void porosity, number of voids, 

and void sizes but different bridge distances. The bridge distance is the shortest distance 

between two adjacent voids. Therefore, the void spatial distribution can be defined as the 

combination of side distances, top distances and bridge distance. Figure (4.12) shows an 

example on how to measure the side distances, top distances and bridge distances for 

voids within porous cubes.  

The experimental results from the work in Project Activity Task ORD-FY04-013 

showed different values for both UCS and E at almost the same void porosity; see Figures 

(4.2) and (4.3). These differences can be partly due to the effects of void geometry. Since 

the different void sizes and void shapes did not show distinct effects on the mechanical 

properties of Hydro-StoneTB
®

, see Figures (4.4) to (4.11), the remained factor in the void 

geometry characterizations is the void spatial distribution. In addition, although the 

results were are not very conclusive, Jespersen et al. (2010) found that the mechanical 

properties of rock-like material changes with bridge distances changing. One reason of 



104 
 

obtaining inconclusive results by Jespersen et al. (2010) might be due to not considering 

the effects of side distances and top distances when the bridge distances changed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accordingly, it can be assumed that the mechanical properties of rock-like material 

containing voids is a function of void porosity, n, (or void size, D, and the number of 

Figure (4.12) Bridge distances, Br, Side distances, S, and Top distances, T, for 

Hydro-StoneTB
®

 cubes 
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voids) and bridge distance, br (or side distance, s, and top distances, t).  This can be 

written mathematically as follows: 

                                                                          

                                                                                     

The experimental results from the work in Project Activity Task ORD-FY04-013 are 

used to check the validation of the above mathematic expressions; Eqs. (4.5) and (4.6). 

 

4.4.2.4 Effects of Bridge, Side and Top distances 

The sketches of the cubes tested in Project Activity Task ORD-FY04-013 were 

redrawn in AutoCAD program, and from them the void bridge distances, br, side 

distances, s, and top distances, t, for each cube were measured. Tables (4.10) to (4.12) 

show the measured distances for all specimens. However, the bridge distances larger than 

the void diameter, D, (or side length for the square voids or diagonal length for the 

diamond voids - see Figure (4.12) were not considered. According to Timoshenko and 

Goodier (1951), when a large plate containing a circular hole at the center is subjected to 

uniaxial compression stress, the maximum compression stress produced on the periphery 

of the hole and equals to threefold of the applied uniaxial stress reduces to the normal 

value of the applied compression stress (1.074 of the applied uniaxial compression stress) 

at a distance equals to one hole’s diameter. Accordingly, based on Timoshenko and 

Goodier (1951), the bridge distances larger than the D were disregarded. Finally, the 

average values of bridge distances, Br, side distances, S, and top distances, T, for each 

cube were obtained as shown in Figure (4.12). 
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The results of uniaxial compressive strength and Young’s modulus for 

experimental results are plotted as a function of the distances (bridge, side and top) as 

shown in Figures (4.13) to (4.18). The normalized values of the distances were also used 

to generalize the results. The normalized bridge distances were obtained by dividing 

average values of bridge distances between every two adjacent voids by the void 

diameter for circular voids, or side length for the square voids, or diagonal length for the 

diamond voids. Regarding both top and side distances, the normalized distances were 

obtained by dividing the average value of the shortest top (or the shortest side) distances 

by the half of the specimen size (152.4/2 = 76.2 mm). Since the specimens were tested by 

loading them from both sides (top and bottom), the effective specimen size should be 

measured from the middle of the specimen to the top, or the bottom. Therefore, the 

effective size of the specimens is the actual size of the specimens divided by two; 152.4/2 

= 76.2 mm. Similarly, for the side distances, the effective specimen size should be 

measured from a vertical line passes through the middle of the specimens. Accordingly, 

the maximum top and side distances should be less than or equal to half of the actual 

specimen size minus the void diameter (or side length for the square voids or diagonal 

length for the diamond voids) as shown in Figure (4.12). 

From the results, as can be seen in Figures (4.13) to (4.18), the normalized 

average values of bridge, side, and top distances show weak correlations with the 

mechanical properties of Hydro-StoneTB® cubes. From Figures (4.13) to (4.16), both 

bridge distances and side distances showed poor correlations with the mechanical 

properties; for the bridge distances the values of R
2
 are 0.42 and 0.1636 for UCS and E 

respectively; while for the side distances the values of R
2
 are 0.2794 and 0.1 for UCS and 
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E respectively. The top distances did not show any correlation with the mechanical 

properties of the Hydro-StoneTB® cubes; the values of R
2
 are zero, see Figures (4.17) 

and (4.18). The correlations for all of them followed linear trend.  

 

Table (4.10) Bridge, Side distances, and Top Distances of Unisize Circular Voids 

Sample Name 

Average Bridge 

Distances (Br) 

Average Top 

Distances (T) 

Average Side 

Distances (S) 

mm mm Mm 

PA-UCL2-A&B 31.14 30.31 37.08 

PA-UCL2-C 31.14 30.32 37.09 

PB-UCL2 9.42 28.33 41.38 

PC-UCL2 31.14 12.45 33.03 

PA-UCL4-A 12.18 30.63 38.33 

PA-UCL4-B 12.18 38.33 30.63 

PA-UCL4-C 12.18 38.33 30.63 

PB-UCL4 8.69 34.75 31.38 

PC-UCL4 16.72 17.93 31.70 

PA-UCL6 17.81 22.55 29.71 

PB-UCL6 12.63 31.33 33.03 

PC-UCL6 13.18 31.48 25.61 

PA-UCM4 18.22 42.85 35.15 

PB-UCM4 17.79 39.27 35.90 

PC-UCM4 20.50 24.12 35.53 

PA-UCM8 16.77 39.76 37.71 

PB-UCM8 16.55 35.78 36.53 

PC-UCM8 11.09 31.82 34.38 

PA-UCM12 13.50 31.70 32.82 

PB-UCM12 12.28 36.06 31.02 

PC-UCM12 9.55 34.69 28.53 

PA-UCS11 12.78 38.43 39.29 

PB-UCS11 12.78 41.10 37.70 

PC-UCS11 12.78 36.79 35.68 

PA-UCS22 9.08 38.89 38.66 

PB-UCS22 8.23 29.65 37.29 

PC-UCS22 8.81 37.63 37.68 

PA-UCS33 8.49 34.70 34.51 

PB-UCS33 9.01 35.30 36.49 

PC-UCS33 8.79 36.03 36.13 
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Table (4.11) Bridge, Side distances, and Top Distances of Mixed Circular Voids 

Sample Name 

Average Bridge 

Distances (Br) 

Average Top 

Distances (T) 

Average Side 

Distances (S) 

mm mm Mm 

PA-UXCL1M1S3 21.36 71.82 32.59 
PB-UXCL1M1S3 17.79 74.84 37.86 

PC-UXCL1M1S3 28.02 67.00 35.25 

PA-UXCL2M3S6 18.07 62.41 35.49 

PB-UXCL2M3S6 18.91 69.38 38.16 

PC-UXCL2M3S6 18.91 63.23 34.27 

PA-UXCL2M5S8 16.63 52.65 34.80 

PB-UXCL2M5S8 15.90 70.61 37.48 

PC-UXCL2M5S8 16.27 69.67 38.23 

 

 

Table (4.12) Bridge, Side distances, and Top Distances of Unisize Non-Circular Voids – 

Square and Diamond Voids 

Sample Name 

Average Bridge 

Distances (Br) 

Average Top 

Distances (T) 

Average Side 

Distances (S) 

mm mm Mm 

PA-USqL3 22.05 35.29 44.70 
PB-USqL3 22.05 26.31 39.51 

PA-USqL6 20.55 39.91 34.27 

PB-USqL6 22.05 35.88 37.58 

PA-USqM6 16.01 43.11 37.47 

PB-USqM6 17.22 39.08 40.78 

PA-USqM12 10.58 34.93 36.05 

PB-USqM12 13.02 39.28 34.25 

PA-UDmL3 21.24 39.75 30.73 

PB-UDmL3 19.67 21.75 34.94 

PA-UDmL6 20.95 35.35 29.70 

PB-UDmL6 31.18 31.31 33.41 

PA-UDmM6 21.37 39.88 34.23 

PB-UDmM6 16.46 35.84 37.53 

PA-UDmM12 15.49 32.81 32.20 

PB-UDmM12 15.56 31.01 36.04 
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Figure (4.13) Normalized Uniaxial Compression versus Normalized Bridge Distance  

for Cubes with Voids Having Different Size, Shape and Distribution  

 

 

Figure (4.14) Normalized Deformation versus Normalized Bridge Distance  

for Cubes with Voids Having Different Size, Shape and Distribution   
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Figure (4.15) Normalized Uniaxial Compression versus Normalized Side Distance  

for Cubes with Voids Having Different Size, Shape and Distribution  

  

 

Figure (4.16) Normalized Deformation versus Normalized Side Distance  

for Cubes with Voids Having Different Size, Shape and Distribution  
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Figure (4.17) Normalized Uniaxial Compression versus Normalized Top Distance  

for Cubes with Voids Having Different Size, Shape and Distribution  

  

 

Figure (4.18) Normalized Deformation versus Normalized Top Distance  

for Cubes with Voids Having Different Size, Shape and Distribution     
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4.4.5 Alternative Methods to Explore the Effects of Void Geometry 

According to Sammis and Ashby (1986), the brittle porous solids under uniaxial 

compression fail due to microcracks initiated at the void peripheries and propagated and 

finally coalesced to form contiguous vertical failure planes ( see Figure (3.13)). In 

addition, according to Timoshenko and Goodier (1951), when a large plate containing a 

circular hole at the center is subjected to uniaxial compression stress, the maximum 

compression stress occurs at a point on the periphery of the hole and equals threefold of 

the applied uniaxial stress. At a distance equals to one hole’s diameter from the hole 

periphery, the maximum compression stress reduces to the normal value (1.074 of the 

applied uniaxial stress); from Eq. (3.37) in Chapter Three. Accordingly, it can be 

concluded that when a porous specimen is subjected to uniaxial stress, the produced 

stresses within the sample are concentrated at the immediate vicinities of the voids in the 

porous specimens. Therefore, those zones next to the voids are critical parts in the porous 

materials. Basing on the aforementioned paragraphs, the porous cubes can be assumed to 

be composed of two types of vertical columns; porous columns those solid parts of the 

cubes containing voids and solid columns immediately next to the porous columns as 

shown in Figure (4.19). Furthermore, it can be assumed that the total strength of the 

porous comes from the summation of the strength of the individual columns.  

Since the vertical columns in the porous cubes are two types, porous columns and 

solid columns as shown in Figure (4.19), shaded part and colored part, the ultimate 

strength of the porous specimens should come largely from the solid columns. Basing on 

the assumption, the porous specimens having larger solid parts (W = w1 + w2 + w3 + ….) 

should give higher ultimate strength. In other words, for the same void porosity of a 
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porous specimen, the void geometry that gives larger solid parts, wider solid columns, 

should give higher ultimate strength compared to that gives smaller solid parts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (4.19) Total Width of Solid Columns for Porous Specimens 
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Accordingly, the Eqs. (4.5) and (4.6) can be rewritten mathematically as follows: 

                                                                    

                                                           

The above expressions can be rewritten as follows: 

           

          
  

 

   
                                                             

         

        
  

 

   
                                                              

Where  

(UCS)Porous = uniaxial compressive strength of porous cubes,  

(UCS)Soild = uniaxial compressive strength of solid cubes, 

(E)Porous = Young’s modulus of porous cubes,  

(E)Soild = Young’s modulus of solid cubes.. 

n = void porosity, and 

W = total width of solid columns  

One problem in the above expressions is that for the porous specimens having 

zero W, the strength and Young’s modulus reduce to zero which is physically incorrect. 

This can be solved by normalizing the total width of solid columns (W) through replacing 

it by [(W+ (0.01*D)/ (0.01*D)]. The D is void diameter for circular voids, side length for 

square voids, and diagonal length for the diamond voids, see Figure (4.19). Accordingly, 

the above expression can be rewritten as follows: 
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To validate the above expressions, Eqs. (4.11) and (4.12), the experimental results from 

the work in Project Activity Task ORD-FY04-013 were used. Accordingly, the total 

width of solid columns (W) for each cube was measured as shown in Tables (4.13) to 

(4.15). Finally, the results of uniaxial compressive strength and Young’s modulus for 

experimental results are plotted as a function of void porosity, total width of solid 

columns (W), and void size as shown in Figures (4.20) to (4.27). From the results, the 

following observations can be discussed: 

1- From Figure (4.20), the relationship of normalized UCS with the total width of 

solid columns (W) showed a good agreement, and followed a moderate power 

trend with R
2
 = 0.5. The value of UCS increased when the value of W 

increasing, and accordingly, this can be considered as a response of the 

hypothesis of using the total width of solid columns to represent the effects of 

void geometry on the strength of the Hydro-StoneTB
®

 cubes. Regarding the 

deformation, however, the relationship of normalized E with the total width of 

solid columns (W) did not show a good correlation; showed a weak power 

correlation with R
2
 = 0.26, see Figure (4.21). This may be due to the fact that 

the used methods to measure the strains in the experimental tests on porous 

cubes (unaixail compression tests) are not adequate; especially in measuring 

the lateral displacements. This opinion is supported by the numerical analysis 

in Chapter 5; the numerical results gave a very decent correlation between E 
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and void porosity (R
2
 = 0.9292), see Figure (5.61). It is also supported by the 

numerical results in Christianson et al. (2006) and Erfourth (2006).    

2- From Figures (4.22) to (4.25), the relationships of normalized UCS and E with 

normalized total width of solid columns (W) using D (void diameter or side 

length) showed better correlations, and followed good power trends. The 

value of R
2
 increased from 0.5 to 0.79 for UCS, and from 0.26 to 0.41 for E. 

3- From Figures (4.26) and (4.27), the mathematical expressions in Eqs. (4.11) 

and (4.12) showed very good agreements. Regarding the strength, UCS, using 

the expressions in Eqs. (4.11), the relationship gave a very good correlation 

following a very decent power trend and the value of R
2
 increased from 0.5 to 

0.84. For the deformation, E, using the expressions in Eqs. (4.12), the 

relationship gave better correlation following a moderate power trend and the 

value of R
2
 increased from 0.41 to 0.51. The mathematical expressions in 

equations Eqs. (4.11) and (4.12) can be represented best by the following 

equations: 

 

           

          
         

        

        
 
      

                             

         

        
         

        

        
 
      

                                

 

4- From Figure (4.26), using the mathematical expression in Eq. (4.11), the 

hypothesis of using the total width of solid columns (W) to express the effects 

of void geometry on mechanical properties improved the correlations between 
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the uniaxial compressive strength of Hydro-StoneTB
®

 and void geometry. The 

percentage of the maximum difference in UCS value, 126% - see Figure (4.2), 

reduced to 57%; reduced to less than half. In addition, the coefficient of 

determination for uniaxial compressive strength increased from R
2
 = 0.729 to 

R
2
 = 0.8412.  

5- From Figure (4.27) using the mathematical expression in Eq. (4.12), the 

Young’s modulus did not show any distinct response; on the contrary, the 

coefficient of determination reduced from R
2
 = 0.5364 to R

2
 = 0.508. 

However, the percentage of the maximum difference in E value, 55.6% - see 

Figure (4.3), reduced to 46%; reduced by about 17%. This might be due to the 

fact of using inadequate method to measure strains in the experimental tests. 
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Table (4.13) Total Width of Solid Columns for Cubes Containing Unisize Circular Voids 

Sample Name 
Total Width of Solid Columns (W), mm  

w1 w2 w3 w4 w5 w6 w7 W 

PA-UCL2-1 13.54 60.63 15.95 
    

90.12 

PA-UCL2-2 13.63 60.63 15.95 
    

90.21 

PB-UCL2 7.37 60.22 22.53 
    

90.12 

PC-UCL2 6.65 59.41 24.05 
    

90.11 

PA-UCL4-1 13.26 34.04 16.23 
    

63.53 

PA-UCL4-2 11.46 30.33 13.54 
    

55.33 

PA-UCL4-3 11.46 30.33 13.54 
    

55.33 

PB-UCL4 6.45 22.63 7.37 20.14 
   

56.59 

PC-UCL4 0.36 24.05 6.65 13.23 
   

44.29 

PA-UCL6 8.33 13.54 11.46 
    

33.33 

PB-UCL6 5.64 20.14 7.37 13.23 
   

46.38 

PC-UCL6 0.36 10.57 6.65 7.04 
   

24.62 

PA-UCM4 8.2 34.85 18.06 20.5 
   

81.61 

PB-UCM4 15.49 27.15 16.41 24.66 
   

83.71 

PC-UCM4 9.4 33.1 11.18 17.75 
   

71.43 

PA-UCM8 10.87 18.15 12.85 
    

41.87 

PB-UCM8 6.86 24.66 11.56 16.41 
   

59.49 

PC-UCM8 11.19 22.76 14.02 
    

47.97 

PA-UCM12 12.85 18.06 
     

30.91 

PB-UCM12 8.15 8.56 
     

16.71 

PC-UCM12 3.56 5.36 
     

8.92 

PA-UCS11 0.43 22.72 1.81 4.52 17.51 5.61 4.32 56.92 

PB-UCS11 1.42 13.22 12.81 1.54 1.93 
  

30.92 

PC-UCS11 1.91 15.84 10.02 3.53 4.7 2.9 2.42 41.32 

PA-UCS22 0.74 11.82 9.61 2.11 
   

24.28 

PB-UCS22 1.12 13.22 12.81 
    

27.15 

PC-UCS22 2.51 10.02 6.52 
    

19.05 

PA-UCS33 2.51 6.82 6.52 
    

15.85 

PB-UCS33 8.22 8.7 
     

16.92 

PC-UCS33 6.41 6.52 
     

12.93 
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Table (4.14) Total Width of Solid Columns for Cubes Containing Mixed Circular Voids 

Sample Name 
Total Width of Solid Columns (W), mm 

w1 w2 w3 w4 w5 w6 w7 W 

PA-UXCL1M1S3 8.34 20.47 9.22 18.06 17.51 
  

73.60 
PB-UXCL1M1S3 5.31 27.42 26.14 22.53 

   
81.40 

PC-UXCL1M1S3 6.65 24.27 22.42 18.72 
   

72.06 

PA-UXCL2M3S6 12.81 16.23 
     

29.04 

PB-UXCL2M3S6 7.37 22.53 16.22 10.97 
   

57.09 

PC-UXCL2M3S6 0.37 18.68 13.22 6.65 
   

38.92 

PA-UXCL2M5S8 11.82 13.6 
     

25.42 

PB-UXCL2M5S8 1.25 11.56 11.32 3.24 
   

27.37 

PC-UXCL2M5S8 5.57 13.22 6.65         25.44 

 

 

Table (4.15) Total Width of Solid Columns for Cubes Containing Unisize 

Non-circular Voids – Square and Diamond Voids 
 

Sample Name 
Total Width of Solid Columns (W), mm 

w1 w2 w3 w4 w5 w6 w7 W 

PA-USqL3 20.82 46.96 22.31 
    

90.09 

PB-USqL3 16.87 40.87 27.08 
    

84.82 

PA-USqL6 12.88 20.55 18.12 
    

51.55 

PB-USqL6 14.73 24.69 16.46 17.78 
   

73.66 

PA-USqM6 1.45 26.95 6.35 16.08 21.32 
  

72.15 

PB-USqM6 20.98 30.28 21.13 22,86 
   

72.39 

PA-USqM12 1.45 21.29 1.65 16.08 2.47 
  

42.94 

PB-USqM12 11.38 11.79 
     

23.17 

PA-UDmL3 11.42 60.61 13.56 
    

85.59 

PB-UDmL3 7.73 36.3 22.51 
    

66.54 

PA-UDmL6 8.31 13.56 11.42 
    

33.29 

PB-UDmL6 5.62 20.12 13.23 7.35 
   

46.32 

PA-UDmM6 12.84 20.47 18.08 
    

51.39 

PB-UDmM6 15.46 24.65 17.74 16.38 
   

74.23 

PA-UDmM12 8.14 8.93 
     

17.07 

PB-UDmM12 2.13 21.04 11.56 9.36 
   

44.09 
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Figure (4.20) Normalized Uniaxial Compression versus Total Width of Solid Columns 

for Cubes with Voids Having Different Size, Shape and Distribution 

 

 

Figure (4.21) Normalized Deformation versus Total Width of Solid Columns for Cubes 

with Voids Having Different Size, Shape and Distribution 
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Figure (4.22) Normalized Uniaxial Compression versus Normalized Total Width of Solid 

Columns for Cubes with Voids Having Different Size, Shape and Distribution 
 

 

 

Figure (4.23) Normalized Deformation versus Normalized Total Width of Solid Columns 

for Cubes with Voids Having Different Size, Shape and Distribution 
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Figure (4.24) Normalized Uniaxial Compression versus Normalized Total Width of Solid 

Columns for Cubes with Voids Having Different Size, Shape and Distribution 
 

 

Figure (4.25) Normalized Deformation versus Normalized Total Width of Solid Columns  

for Cubes with Voids Having Different Size, Shape and Distribution 
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Figure (4.26) Normalized Uniaxial Compression versus Normalized Total Width of Solid 

Columns and Void Porosity for Cubes with Voids Having Different Size, Shape and 

Distribution 

 

 

Figure (4.27) Normalized Deformation versus Normalized Total Width of Solid Columns 

and Void Porosity for Cubes with Voids Having Different Size, Shape and Distribution 
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4.4.6 Correlation between Uniaxial Compression and Young’s Modulus 

According to Palchik (1999) and Chawla (2007), uniaxial compressive strength 

(UCS) of porous rock and rock-like materials is inversely proportional to the porosity (n) 

and directly proportional to the elastic modulus (Young’s Modulus – E). This can be 

mathematically written as follow:  

 

            
 

   
                                                            

Considering Eqs. (4.11), the above expression can be rewritten as follows:  

 

             
   

       
     

 

   
                                           

 

The test data obtained from the work of Project Activity Task ORD-FY04-013 were used 

to validate the above expression, Eqs. (4.16). Accordingly, the results of uniaxial 

compressive strength of the experimental tests are plotted as a function of Young’s 

modulus (E), void porosity (n), total width of solid columns (W), and void size (D) as 

shown in Figures (4.28) to (4.30). According to the figures, for the void porosity ranging 

from 6.28% to 19.82%, the following results were observed:  

1- The uniaxial compressive strength (UCS) of Hydro-StoneTB
®

 is inversely 

proportional to the void porosity (see Figure 4.2)) and directly proportional to E 

(see Figure (4.28)). The correlation is followed decent power trend as shown in 

figure (4.29).  
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2- Considering the total width of solid columns (W) to express the effects of void 

spatial distribution on mechanical properties led to improve the correlations 

between the uniaxial compressive strength of Hydro-StoneTB
®

 with void 

geometry and Young’s Modulus. The relationships can be represented best by the 

following power equation: 

                    
       

   
 
      

                             

 

Accordingly, considering total width of solid columns (W) to express the effects of void 

spatial distribution on mechanical properties led to better correlations between the 

uniaxial compressive strength of Hydro-StoneTB
®

 and Young’s Modulus. The coefficient 

of determination increased from R
2
 = 0.7424 to R

2
 = 0.8525.  

 

 

Figure (4.28) Uniaxial Compression versus Deformation for Cubes with Voids  

Having Different Size, Shape and Distribution 
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Figure (4.29) Uniaxial Compression versus Deformation and Void Porosity for Cubes 

with Voids Having Different Size, Shape and Distribution 

 

 

Figure (4.30) Uniaxial Compression versus Deformation, Void Porosity, and Total Width 

of Solid Columns for Cubes with Voids Having Different Size, Shape and Distribution 
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4.5 Failure Modes of Hydro-StoneTB
®
 Cubes. 

At the end of each experiment in Project Activity Task ORD-FY04-013, the 

tested cube was photographed from both front and back. From the photographs, the 

dominate failure mode is tension (axial) failure mode. However, depending on bridge 

distances, side distances, and alignment of voids with nearby voids, some cubes showed 

shear failure mode as well.  

 

4.5.1 Porous Cubes Containing Circular Voids 

The photographs for porous cubes containing circular voids with different void 

size and distribution are shown in Appendix (I). In general, regardless of void size and 

distribution and void porosity, the majority of the cracks were formed at the peripheries 

of the voids in the direction of vertical to sub-vertical; oriented approximately parallel to 

the applied axial compression. However, there are some horizontal cracks which 

connected the vertical to sub vertical cracks to the pore sides or sample side (surface). 

Furthermore, some cracks (vertical to sub-vertical) were formed in the solid parts of the 

cubes; between voids or/and between voids and the cube sides. Most of the cracks are 

extended to the sample surfaces in the direction of axial compression which in turn led to 

axial splitting; tension fractures.  

From the Figures (4.31) to (4.34), for the porous cubes with circular voids having 

different void size (small, medium, and large), different void porosity (about 6%, about 

13%, and about 20%), and different void distribution (Pattern A, B, and C), the crack 

pattern showed axial splitting (tension fractures or failure) as the dominant failure modes 

regardless of void porosity, void size, void uniformity, and void spatial distribution. 
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However, in some porous cubes there are some shear failure (inclined cracks) depending 

on the void alignments and bridge distances.  

In general, the cracks were formed mainly at the void poles and intended to 

expand approximately parallel to the axial compression load. However, in some cubes 

depending on the distances between one void and the other voids located at the 

immediate vicinity of the void, cracks were formed horizontally or sub-horizontally 

between adjacent voids. In those cubes, when a crack passes vertically (or sub-vertically) 

between two voids, a horizontal crack was formed to connect that crack to the void side 

or the sample side. Finally, the coalescence of those cracks (horizontal (or sub-horizontal) 

and the vertical (or sub-vertical) cracks) formed an inclined crack that gave a failure 

mode similar to the shear failure mode as shown in Figures (4.35) and (4.36).  

 

 

 

 

 

 

 

 

 

Figure (4.31) Photographs of Tested Cubes Containing Large Unisize Circular Voids 
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Figure (4.32) Photographs of Tested Cubes Containing Medium Unisize Circular Voids 

 

 

 

 

 

 

Figure (4.33) Photographs of Tested Cubes Containing Small Unisize Circular Voids 

 

 

 

 

 

 

Figure (4.34) Photographs of Tested Cubes Containing Mixed Circular Voids 
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Figure (4.35) Photographs of Tested Cubes Containing Large Unisize Circular Voids 

 

 

 

 

 

 

Figure (4.36) Photographs of Tested Cubes Containing Circular Voids 

 

 

4.5.2 Porous Cubes Containing Non-circular Voids 

For the porous cubes with either square voids or diamond voids having different 

void size (small and large), different void porosity (about 6% and about 13%), and 

different void distribution (Pattern A and B), the crack pattern showed axial splitting 

(tension fractures or failure) as the dominant failure modes similar to the cubes with 

circular voids as shown in Figures (4.37) to (4.40), see also Figures in Appendix (I). Most 

of the cracks were formed at the tips of the diamond voids in the direction approximately 

parallel to the applied axial compression. Some of these cracks are extended to the 
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sample surfaces, again in the direction of axial compression (vertical to sub-vertical), 

which in turn led to axial splitting; tension fractures. Some cracks (vertical to sub-

vertical) were also formed in the solid parts of the cubes; between voids or/and between 

voids and the cube sides. In addition, there are some horizontal cracks which connected 

the vertical to sub vertical cracks to the void tips (or sides) or sample side (surface).  

However, in each porous cube there are some shear failure (inclined cracks) 

depending on the void alignments and bridge distances. In general, due to stress 

concentration, the cracks were formed mainly at the void tips and intended to expand 

approximately parallel to the axial compression load, however, in some cubes cracks 

were formed between voids horizontally or sub-horizontally depending on the distances 

between one void and the other voids located at the immediate vicinity of the void. In 

those cubes, when a crack passes vertically (or sub-vertically) between two voids, a 

horizontal crack was formed to connect that crack to the void side or the sample side. In 

some cubes, the coalescence of those cracks (horizontal (or sub-horizontal) and the 

vertical (or sub-vertical) cracks) formed an inclined crack that gave a failure mode 

similar to the shear failure mode as shown in Figure (4.41).   

 

 

 

 

 

 

 

Figure (4.37) Photographs of Tested Cubes Containing Large Unisize Square Voids 
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Figure (4.38) Photographs of Tested Cubes Containing Small Unisize Square Voids 

 

 

 

 

 

 

Figure (4.39) Photographs of Tested Cubes Containing Large Unisize Diamond Voids 

 

 

 

 

 

 

Figure (4.40) Photographs of Tested Cubes Containing Small Unisize Diamond Voids 
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Figure (4.41) Photographs of Tested Cubes Containing Unisize Non-circular Voids 

 

From the photographs, it can be concluded that, due to stress concentration at the 

vicinity of the voids, the void existence produced tension stresses at the poles of the 

circular voids (or at the tips of non-circular voids) (Timoshenko and Goodier 1951). 

When the produced tension stresses exceed the material’s tensile strength, cracks initiate 

at the poles (or tips) and then propagate vertically of sub-vertically in the direction 

parallel to the applied uniaxial loads if they are not interrupted or diverted by the other 

voids. These vertical to sub-vertival cracks will finally reach the top and bottom surfaces 

and divide the cubes into two or more vertical to sub-vertical columns. Accordingly, the 

tension failure modes dominate the failure modes in the cubes under uniaxial 

compression as suggested by Sammis and Ashby (1986) 
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CHAPTER FIVE NUMERICAL ANALYSIS TO SIMULATE THE 

EXPERIMENTAL TESTS 

 

5.1 Introduction 

Since the numerical analysis for the Hydro-StoneTB
®

 cubes tested in the work of 

Project Activity Task ORD-FY04-013 (discussed in chapter four) has not been carried 

out, the experimental results can be used to validate numerical method (software). 

Furthermore, the results of the numerical analysis can be helpful in analyzing the 

experimental results. The UDEC program (version 3.1) is the software intended to be 

validated in this study.  The UDEC codes to be used in this analysis are obtained from 

Software Configuration Management (SCM) in according with the AP-SI.1Q procedure. 

The program should be only used within the range of validation, as specified in the 

software qualification documentation (BSC 2003). 

 

5.2 Numerical Analysis  

In engineering, problems are typically solved by using either empirical or 

analytical methods (Scheldt 2002). In the empirical methods, the solution is usually done 

basing on experiment and comparison, while in the analytical methods, the problems are 

solved by either calculation or modeling (Scheldt 2002). In some engineering problems, 

the analytical solutions are represented by differential equations with a set of related 

boundary and initial conditions (Moaveni 2008). These differential equations are 

mathematical models and called governing equations. Due to the complexities embedded 

either in the equations themselves or in the boundary and initial conditions, or both, the 
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exact solutions of these differential equations are not achievable in many engineering 

problems (Moaveni 2008). Alternatively, numerical solutions, or numerical 

approximations, are used to deal with such problems. In general, there are two main 

numerical models in numerical analysis; continuous and discontinuous models (Scheldt 

2002; Jing and Stephenson 2007).  

 

5.2.1 Continuous Numerical Models  

In continuous models, the material in the problem domain is assumed to be 

continuous throughout the physical processes; the material cannot be broken into pieces 

(Jing and Stephenson 2007). In other words, during the simulation process, the points 

which are originally in the vicinity of a certain point in the problem domain will stay in 

the same neighborhood. Regarding the problem domain contains fractures, continuous 

model assumes that the deformations along or across the fractures will be in the same 

order of magnitude as those of the solid matrix near the fractures (Jing and Stephenson 

2007). This means, large-scale slide or opening of fractures is not allowed in the 

continuous models.  Therefore, the continuous models are not suitable for engineering 

problems which contain fractures except those contain a small number of fractures 

experiencing small deformations. They are, however, most effective for problems of 

small deformation (strain) and linear constitutive material behavior (Jing and Stephenson 

2007). The most universally used numerical methods for continuous models are the finite 

difference method (FDM), the finite element method (FEM) and the boundary element 

method (BEM) (Scheldt 2002; Jing and Stephenson 2007; Bobet 2010). 
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5.2.2 Discontinuous Numerical Models 

For discontinuous models, the material in the problem domain is treated as an 

assemblage of independent units; a system of individual blocks interacting along their 

boundaries such as rock blocks, solid particles of granular materials, structural elements 

(Scheldt 2002; Jing and Stephenson 2007; Bobet 2010). The mechanical behavior of the 

discontinuous models is composed of two parts; behavior of the individual blocks and 

behavior of the boundaries (Cundall and Hart 1992). The discontinuous models are very 

effective for problems of large deformation (displacement rotation, slip, and strain) and 

nonlinear constitutive material behavior (Scheldt 2002; Jing and Stephenson 2007; Bobet 

2010). Regarding the discontinuous models, there are several numerical methods; 

however, all of them are covered under a common adopted term called Discrete Element 

Method (DEM) (Cundall and Hart 1992; Jing and Stephenson 2007).  

In addition to the aforementioned numerical methods, there are two other 

numerical methods which cannot be classified based on types of the numerical models. 

They are Meshless Methods (MM) and Artificial Neural Networks (ANN) (Bobet 2010). 

 

5.2.3 Differences between Numerical Models 

One of the essential differences between the numerical methods for continuous 

models (for example, FDM and FEM) and those for discontinuous models (DEM) is the 

unit system topology. The unit system topology, or the unit system identification, is the 

contact (or connectivity) patterns between individual units in the problem domain, or the 

system, which is the central computational issue of the Discrete Element Method (Jing 

and Stephenson 2007). In the numerical methods for continuous models, the topology is 
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assumed to be fixed throughout the simulation process (it is a fixed initial condition), 

while, it evolves with time and deformation process in the numerical methods for 

discontinuous models (Jing and Stephenson 2007). In other words, the Discrete Element 

Method has capability of detecting and updating of changeable contacts between the 

individual units as a result of their movements and deformations. 

Another essential difference between the numerical methods for continuous 

models and those for discontinuous models is the rigid body mode of motion. In 

discontinuous models, the individual block displacements are much larger than the 

individual block continuous deformations when a large displacement occurs. While in the 

continuous models, since they are not producing strains in the elements, the element 

displacements are generally eliminated (Jing and Stephenson 2007). In other words, 

discontinues models reflect more the individual unit displacement of the problem domain 

and continues models reflect more the material deformation of the problem domains. This 

is because the individual blocks in the discontinuous models are free to move according 

to the force (or stress) constraints on their boundary contacts and other external loads 

according to the equations of motion which is contrary to continuous models in which the 

elements are not free to move, but are reserved within the same neighborhood of other 

elements by the displacement compatibility conditions. 

 

5.3 Discrete Element Method (DEM)  

Discrete element method (DEM) can be defined as any numerical method that has 

the following two capabilities (Cundall and Hart 1992): (1) permission of finite 

displacements and rotations of the individual units, including total separation of the units, 
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and (2) automatic recognition of the new formed contacts during simulation. And basing 

on the above definition, they, Cundall and Hart (1992), identified four main codes that 

comply with the above definition: Distinct element programs; Modal methods, 

Discontinuous deformation analysis (DDA), and Momentum-exchange methods. The 

individual units in all four codes can be either rigid or deformable except for the 

Momentum-exchange methods (units are rigid only). The deformable means subdividing 

the individual units into finite difference zones. The contacts, boundaries between the 

individual units, are either rigid (Distinct element programs and Modal methods) or 

deformable (DDA and Momentum-exchange methods). 

In addition, Bobet (2010) identified another method (or code) of DEM called 

Bonded Particle Model (BPM). In this method, BPM, the material in the discontinuous 

model is represented by an agglomerate of cemented grains (as discs in two dimensions 

or spheres in three dimensions). The grains are assumed to be rigid with a non-uniform 

distribution. They interact with each other through their contacts. 

  The numerical program used in the numerical analysis in this study, Universal 

Distinct Element Code (UDEC version 3.1), is described as a Distinct element program 

that uses an explicit time-marching scheme to solve the equations of motion of individual 

units directly (Itasca 2011, UDEC User’s Guide). The explicit time-marching scheme 

means that unknown values of the variables in any individual unit in the problem are 

found from known values in the individual unit itself and the surrounding units as well. 

The individual units can be either rigid or deformable. The deformable means 

subdividing the individual units into finite difference zones.  
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The Distinct element program is based on Newton’s second law, F = ma (Scheldt 

2002; Itasca 2011, UDEC User’s Guide). It has many diverse applications in different 

engineering and science disciplines such as rock mechanics, soil mechanics, structural 

analysis, granular materials, fluid mechanics, ice mechanics, material processing, robot 

simulation, and computer animation (Jing and Stephenson 2007). It was originally 

created for representing a two-dimensional jointed rock mass. The formulation of distinct 

element program was initially presented by Cundall (1971). Its most developed version is 

embodied in a computer program called Three-Dimensional Distinct Element Code 

(3DEC) which has ability to simulate three-dimensional models (Itasca 2011, Theory and 

Background Manual). 

 

5.4 Universal Distinct Element Code (UDEC)  

The Universal Distinct Element Code (UDEC) is a two-dimensional numerical 

program that simulates the behavior of discontinuous geologic materials (such us rock 

mass or similar) under thermal, static, and dynamic loading using the distinct element 

method (Itasca Consulting Group 2002). It is well-suited program to simulate the large 

movements and deformations of a blocky system, using Lagrangian calculation scheme. 

In this program, UDEC, the problem domain is represented as an assemblage of 

individual units, also called discrete blocks, interacting along their boundaries. The 

boundaries are also called discontinuities. They, discontinuities, are treated as boundary 

condition along which large displacements and rotations of blocks are allowed (Itasca 

2011, UDEC User’s Guide). The relative motion of the discontinuities, in both the normal 
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and shear directions, is governed by linear or nonlinear force-displacement relations for 

movement.  

Regarding the discrete blocks, they can be allowed to behave as either rigid or 

deformable blocks. The rigid block assumption is good for a physical system in which 

most of the deformation is accounted for by movement on discontinuities such as an 

unconfined assembly of rock blocks at a low stress level. One practical example is a 

shallow slope in well-jointed rock in which the deformation is mainly come from sliding 

and rotation of blocks, and from opening and interlocking of discontinuities. For the other 

physical systems, such as models in which high stress is expected, deformable block 

assumption is better one. In this assumption, UDEC automatically subdivides the discrete 

blocks into a mesh of finite-difference elements (triangular, constant-strain zones), and 

each element responds according to a prescribed linear or nonlinear stress-strain law 

(Itasca 2011, UDEC User’s Guide). The zones can also follow an arbitrary, nonlinear 

constitutive law.  

Accordingly, several built-in material constitutive models have been embedded in 

UDEC for both the discrete blocks and the discontinuities. The built-in constitutive 

models in UDEC range from linearly elastic models to highly nonlinear plastic models 

(Itasca 2011, UDEC Constitutive Models). They are grouped into two types; time-

independent and time-dependent constitutive material models (creep) (Itasca 2011, 

UDEC Constitutive Models). The time-independent material models are fourteen models 

and arranged into three groups; null (one model), elastic (two models) and plastic model 

(eleven models) groups. The Null model group is used to represent material that is 

removed or excavated (to simulate voids, tunnels, for example). Some of the built-in 
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plastic constitutive models are Drucker-Prager model, Mohr-Coulomb model, Hoek-

Brown model, and modified Hoek-Brown model. Regarding the time-dependent material 

models, eight creep models available in the creep model option for UDEC (Itasca 2011 - 

Creep Material Models). 

UDEC is considered as a distinguished program due to its capability to address 

three most common difficulties in geomechanics; physical instability, path dependency of 

nonlinear materials, and implementation of extremely nonlinear constitutive models 

(Itasca, 2011, UDEC Constitutive Models). Physical instability can occur when softening 

behavior in the modeled material is expected; when the material fails, part of it 

accelerates and the stored energy is released as kinetic energy. Therefore, the numerical 

solution may fail to converge. For the second difficulty, path dependency of nonlinear 

materials, there are an infinite number of solutions that satisfy the equilibrium, 

compatibility and constitutive relations that describe the system. However, the numerical 

solution scheme should be able to accommodate different loading paths in order to apply 

the constitutive model properly; to find the “correct” solution. For the third difficulty, the 

nonlinearity of the stress-strain response, there are several forms of nonlinearity in geo-

engineering materials which should be accommodated in the numerical program such as 

nonlinear dependence of both the elastic stiffness and the strength envelope on the 

confining stress, and different post-failure response in the tensile, unconfined and 

confined regimes. UDEC has capability to overcome on the aforementioned three 

difficulties by using an explicit, dynamic solution scheme embedded in it (Itasca, 2011, 

UDEC Constitutive Models). In other words, first, since the inertial terms are included 

(kinetic energy is generated and dissipated), the numerical solution is stable (due to the 
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explicit, dynamic solution) even when the simulated geomechanical system is unstable. 

Second, the explicit, dynamic solution scheme has ability to follow the evolution of a 

geomechanical system in a realistic manner; since the full law of motion is embedded in 

it, the explicit, dynamic solution scheme can follow the physical path and evaluate the 

effect of the loading path on the constitutive response. Third, very nonlinear constitutive 

models can be complimented in UDEC because of the explicit, dynamic solution scheme; 

the field quantities at each element in the model, such as forces/stresses and 

velocities/displacements, can be  isolated from one another during one calculation step in 

the general calculation sequence.  

 

5.5 UDEC Model Description  

The UDEC models are more realistic numerical models for studying the effects of 

voids on the mechanical behavior of rocks and rock-like material because of their ability 

to (1) represent physical voids in the material and (2) model complex failure mechanisms, 

such as fracture initiation and propagation between voids (Rigby 2004). The following 

two details can be helpful to explain why the UDEC models are more realistic in studying 

the mechanical behaviors of porous materials.  

First, due to its capability of simulating crack initiation and propagation 

(fracturing) in the material when the stress exceeds strength, Voronoi tessellation joint 

generator embedded in UDEC is powerful tool to represent materials in numerical models 

(Itasca Consulting Group 2002). For numerical models using Voronoi tessellation joint 

generator, the material domain is divided into small elastic blocks (discrete blocks) that 

are attached together across their boundaries as shown in Figure (5.1) (Itasca Consulting 
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Group 2002; BSC 2003). For the plane-strain assumption in UDEC models, the blocks 

are considered to have an infinite depth. Regarding the discontinuities or joints, the 

contacts between the blocks, they are represented as liner interface contacts of finite 

length. The blocks, also called Voronoi blocks, are randomly-sized small polygons that 

can be uniformly distributed throughout the tessellation region by using Voronoi 

algorithm (Itasca 2011, UDEC User’s Guide). In the Voronoi algorithm, movable points 

(also called seeds or interior points) are randomly distributed within the material domain. 

To obtain uniform sized Voronoi blocks, the seeds must be distributed more uniformly. 

Hence, an iteration procedure is used to move the seeds to an arrangement in which the 

distances between the seeds are approximately equal. The interior points (seeds) are then 

connected to create triangles. In the final step, all triangles that share a common side are 

bisected by drawing perpendicular lines to construct the Voronoi polygons (Itasca 2011, 

UDEC User’s Guide). The necessity of having small, uniformly distributed blocks and 

block boundaries is to allow cracks to initiate and propagate (internal fracturing) and 

blocks to loosen and detach as the evolving stress state dictates. In other words, the block 

boundaries act as potential, or incipient, invisible fracture locations and become visible 

when the yielding begins (local failure for a given stress path) (BSC 2003).  

Second, the UDEC has several constitutive models that can control the 

mechanical behaviors of the block boundaries, potential fracture locations (Itasca 2011, 

Theory and Background Manual; BSC 2003). Among them is Coulomb slip model with 

residual strength in which the most realistic behavior of physical joints can be modeled. 

In Coulomb slip model with residual strength one, the elastic behavior of potential 

fractures is controlled by constant normal and shear stiffness, and should be consistent 
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with the blocks elastic properties (Young’s modulus and Poisson’s ratio of the Vorouni 

blocks) (BSC 2003; BSC 2004).  In addition, in this constitute model, it is allowed to the 

potential fracture to sustain a finite tensile stress, and its slip conditions is controlled by 

potential fracture’s cohesion and friction angle prior to fail. If a potential fracture fails, 

either in tension or shear, tensile strength and cohesion are set to zero, whereas the 

friction angle is set to the residual value. 

In sum, the UDEC models has a good ability to simulate the physics of 

deformation and fracture of a bonded granular matrix that contains void space of varying 

shape, size and porosity(Rigby 2004).  

 

 

 

 

 

5.6 UDEC Model Calibration 

In order to represent the actual material used in the experimental tests in the 

UDEC models using Voronoi tessellation, the UDEC must be calibrated (BSC 2003). 

Calibration is usually done by matching the numerical model macro-behavior with the 

Figure (5.1) Material Representation in UDEC Models Using Voronoi 

Tessellation Joint Generator (BSC 2003) 
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one of the experimental test (BSC 2003). This can be done through adjusting the micro-

properties of the numerical models until the macro properties of the two models 

(numerical and experimental obtained from the actual tests) are matched.  

Calibration is a trail-and-error procedure with considering previous experience 

and some understating of the model mechanical behavior (BSC 2003: BSC 2004; Rigby 

2004). Due to the high uncertainty in the material property database, assigning 

appropriate properties to the model material (calibration) is the most difficult part in the 

model generations (Itasca 2011, UDEC User’s Guide). 

 

5.6.1 Calibrated Material Properties  

In the calibration, the loading and boundary conditions in the UDEC models 

should be similar to those in the experimental tests. Accordingly, those requirements 

were achieved by mimicking the idealized conditions assumed in uniaxial compression 

testing (two-dimensional plane strain); vertical translations along both bottom and top of 

the specimen in the y-directions are allowed by freeing gridpoints to move vedrtically. 

Furthermore, the gridpoints along the model’s vertical sides are freed to move 

horizontally. The uniaxial compression test was simulated by applying a fixed velocity of 

5x10
-3

 meter per second along the top and bottom rows of zones of the specimen. 

Stresses, strains and total unbalanced force will be monitored throughout the tests.  

According to BSC (2003), the mechanical behaviors of UDEC models with 

Voronoi tessellation, using Mohr-Coulomb constitutive model for blocks and Coulomb 

slip model with residual strength for joints, are characterized by the followings 

parameters: 
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1- Size ratio between the models and the discrete blocks; numbers of the discrete 

blocks in the model. 

2- Elastic properties of the discrete blocks; properties (E
m
 and ν

m
, from Figure 

(5.1)). 

3- Elastic properties of the discontinuities (normal stiffness, kn, and shear 

stiffness, ks, see Figure (5.1)).  

4- Plastic properties of the discontinuities; strength properties (tensile strength, 

t
m
, cohesion, c

m
, and friction, φ

m
, see Figure (5.1)).  

5- Post failure plastic properties of the discontinuities. The strength properties of 

the discontinuities at the onset of yield are different from the initial, or 

original, values. They usually decrease to smaller value or zero. 

As a result, the following parameters must be calibrated before starting the simulations 

using UDEC program: normal stiffness (kn), shear stiffness (ks), tensile strength (t
m
), 

cohesion (c
m
), and friction (Ø

m
) for the block boundaries (micro- joints between the 

Voronoi blocks), Young’s modulus (E
m
) and Poisson’s ratio (υ

m
) for the Voronoi blocks. 

However, since it is assumed that the material in the Voronoi blocks has isotropic 

behavior in elastic range, bulk modulus (K
m
) and shear modulus (G

m
) were used in UDEC 

rather than Young’s modulus,(E
m
) and Poisson’s ratio (ν

m
) (Itasca 2011, UDEC User’s 

Guide). The elastic constants, K and G, can be obtained from the following equations: 
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According to the previous works in the literature (BSC 2003; Rigby 2004; BSC 

2004), calibration for model deformability and strength can be carried out separately, and 

it is common to start with the model deformability (elastic properties). The model’s 

deformation is controlled by the kn, ks, K
m
 and G

m
, while the model’s strength is 

controlled by c
m
, Ø

m
, and t

m
; the compressive strength is controlled by c

m
 and Ø

m
, and the 

model’s tensile strength is controlled by the t
m

. (BSC 2003; Rigby (2004), 

  

5.6.2 Deformation Calibration 

UDEC’s model elastic properties (E and ν) are functions of Voronoi block size 

and four micro-properties (kn, ks, K
m
, and G

m
) (BSC 2003). The Voronoi block size is 

usually determined based on observed fracture spacing and the condition that the ratio 

between the inclusion size (such as tunnel radius) and the block size is sufficiently large 

(>15, see BSC 2004) (BSC 2003 and 2004; Rigby 2004). In this numerical analysis, since 

the Hydro-StoneTB
®

 cubes tested in the actual tests were free from fractures and the 

smallest radius of the existing void (sizes) were extremely small compared to a actual 

tunnel radius, the first parameter mentioned in BSC (2003), size ratio between the models 

and the discrete blocks, has not been followed. Therefore, the minimum possible block 

size was considered; the model was subdivided into Voronoi blocks with average edge 

length of 3.5 mm (0.0035 m).  

Regarding the micro-properties for the deformation calibration, the values shown 

in Table (5.1) were adopted considering the following:   

1- The macro-elastic properties of the actual material used in the experimental tests 

were selected for the micro-elastic properties of the Voronoi blocks; E
m
 = 16 GPa 
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and ν
m
 = 0.28. Rigby (2007) carried out several tests on the rock-like material, 

Hydro-StonTB
®

 to find the macro-elastic properties. The tests were unaxial 

compression tests on both cylindrical (50.8x101.6 mm) and cubic specimens (150 

mm per side). Accordingly, the values K
m
 = 12.1212 GPa and G

m
 = 6.25 GPa 

were selected. The ratio of K
m
/G

m
 is equal to 1.94.  

2- According to the literature (BSC 2003 and 2004; Rigby 2004), it is desirable, 

from the perspective of convergence of the numerical model, to select a ratio of 

micro-joint stiffnesses (ratio of normal stiffness, kn, to shear stiffness, ks.) similar 

to the ratio of K
m
/G

m
. Accordingly, a value close to the ratio of K

m
/G

m
 (1.94) was 

selected for the ratio of kn/ks (ratio of micro-joint stiffnesses); kn/ks, = 2.  

3- Finally, the appropriate macro deformability for the UDEC model was obtained 

by rescaling the elastic micro-joint stiffnesses; both normal stiffness, kn, and shear 

stiffness, ks.  

 

5.6.3 Strength Calibration 

Once the deformability calibration finished, the strength calibration was started by 

rescaling the plastic properties of the micro-joints (tensile strength, t
m
, cohesion, c

m
, and 

friction, φ
m
) following these considerations:  

1- According to the mechanical properties of materials, the macro tensile strength, t, 

is typically about 10 percent of the macro compressive strength; t = 0.1*55 = 5.5 

MPa. In addition, Nott (2009) carried out several Brazilian tests on (101.6x50.8 

mm) cylinders of Hydro-StoneTB
®

, and found that the tensile strength of the 

Hydro-StoneTB
®

 to be equal to 5.516 MPa (800 psi). Therefore, 5.516 MPa 

(about 10% of 55 MPa) was adopted as the macro tensile strength of the 
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numerical models. The micro-joint tensile strength, t
m
, which gave the macro 

tensile strength, t = 5.516 MPa, was then obtained by rescaling the micro-joints in 

the UDEC models.  

2- Since the micro-joint compressive strength is controlled by two parameters (c
m
, 

and φ
m
), the same macro compressive strength can be obtained by unlimited pairs 

of the compressive strength parameters. Accordingly, as shown in Appendix II, 

six pairs of  the micro-joint compressive strength parameters were tested and one 

of them was selected basing on the failure mode; the micro-joint compressive 

strength parameters (c
m
, and φ

m
), which gave failure mode close to the 

experimental cube’s failure mode was selected.  

3- The common residual values for physical joints were selected for the UDEC 

models. According to Itasca’s Theory and Background Manual (2011), usual 

residual values for tensile strength, t
m
, cohesion, c

m
, are zero for the cracks or 

joints at which failure has been occurred. For the friction angle (φ
m
) of the micro-

joints, the value started from 31° and softened in a brittle fashion to 11° after 

which no effect of residual angles was observed.  

4- The full calibration for zero-porosity model was then achieved after simulating 

more than seventy models.  

The numerical models simulated during the calibration processes to obtain the 

calibrated model are shown in Tables (II-A) and (II-B) in Appendix II. The stress-strain 

curves and failure mode for the calibrated model are also shown in Appendix II; Figure 

(II-A) and (II-B). The material properties for the calibrated model used as UDEC input 

data for Hydro-StoneTB
®

 specimens are shown in Table (5.1).  



150 
 

Table (5.1) UDEC Input Data for Hydro-StoneTB
®

 Specimens 

Type Description Value Units 

Den Density 1.7 x 10
-3

 kg/m
3
 

K
m
 Bulk Modulus 12.1212 x 10

9
 Pa 

G
m
 Shear Modulus 6.25 x 10

9
 Pa 

jten, t
m
 Tensile Strength of Micro-joints 16.072 x 10

6
 Pa 

jfric, Ø
m

 Friction Angle of Micro-joints 31 Degree 

jcoh, C
m
 Cohesion of Micro-joints 26.01735x 10

6
 Pa 

resTen Residual Tensile Strength of Micro-joints 0 Pa 

resFric Residual Friction Angle of Micro-joints 11 Degree 

resCoh Residual Cohesion of Micro-joints 0 Pa 

kn Micro-joint Normal Stiffness 72728 x 10
9
 Pa / m 

ks Micro-joint Shear Stiffness 36364x 10
19

 Pa / m 

 

 

5.6.4 Numerical Simulations for Porous Cubes 

The UDEC model calibrated in the previous section was for solid, zero porosity 

samples at a uniaxial compressive strength of 55 MPa and a Young’s modulus of 16 GPa. 

The porous samples can then be simulated through adding voids to the same calibrated 

solid model and test it under the same load condition as it was in the experimental tests. 

Accordingly, the 152.4 mm cubes tested in the Project Activity Task ORD-FY04-013 

were simulated in UDEC under unaxial compression loading as 152.4 mm squares with 

different void porosity, void shape, void size, and void distribution. The void sizes, void 

shapes, void spatial distributions, and void porosity were corresponding to those in the 

experimental tests.  

 

5.7 Results and Discussions 

Fifty five models, 52 squares with 152.4 mm per side, containing voids with 

different size, shape, distribution and uniformity were simulated in UDEC for this 
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numerical analysis. The simulated models and their corresponding stress-strain curves are 

shown in Appendix III. The peak value, ultimate strength, of the stress-strain curve was 

taken as the uniaxial compressive strength (UCS) each model. From the slope of a 

straight line drawn between 25% and 50% of the uniaxial compressive strength on the 

stress-strain curves, the secant Young’s modulus (E) was obtained for each model. The 

results are also shown in tables and figures in this chapter.  

For numerical models having void porosities ranging from 6% to 20%, regardless 

of the void size, void distribution, and void uniformity, the numerical results like the 

experimental results showed decreases in both UCS and E with increasing void porosity. 

However, there is relatively less scatter or overlap for the numerical results compared to 

the experimental ones. Accordingly, the coefficients of determination, R
2
, for both 

numerical UCS and E are higher than those for the experimental results. 

 

5.7.1 Numerical Simulations for Models Containing Circular Holes  

The results of UCS and E for the numerical models containing circular voids 

(both unisize and mixed) are plotted in Figures (5.2) to (5.18). The results are also shown 

in Tables (5.2) and (5.3). Basing on the numerical results, the following observations can 

be discussed:  

1- For the void porosity ranging between 6% and 20%, regardless of the void size, 

void distribution, and void uniformity, the numerical results showed decreases in 

both UCS and E with increasing porosity. However, the coefficients of 

determination, R
2
, for Young’s modulus are higher than those for the uniaxial 

compressive strength. 
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2- From Figures (5.2) and (5.3), regardless of the void size (large, medium, and 

small size voids), void distribution (patterns A, B, and C), and void uniformity 

(either unisize or mixed voids), the numerical models having similar porosity 

showed similar reduction in both UCS and E. The reductions followed 

exponential trends with higher coefficients of determination, R
2
, for E. The 

numerical results for UCS showed more scatterings than those for E.  

3- Figures (5.4) to (5.11) show the relationships between UCS, and E with void 

porosity for models containing circular voids (either unisize voids or mixed voids) 

with different void distributions (void patterns). According to the figures, the 

numerical results showed similar reduction in both UCS and E with void porosity 

increasing. Accordingly, the different void distributions (patterns A, B, and C), 

did not show discernible effects on the mechanical properties of Hydro-StoneT
B®

. 

4- From Figures (5.12) and (5.13), after merging all the numerical results for the 

models containing circular voids (either unisize voids or mixed voids), the merged 

numerical results also showed exponential reductions with increasing porosity for 

both UCS and E. The relationship between both strength (UCS) and deformation 

(E) and void porosity can be represented best by equations as follows: 

                                                                              

                                                                         

 

5- In order to check the validity of the ratio of void size to specimen size, all the 

numerical results for the models containing circular voids (either unisize voids or 

mixed voids) except the models containing large unisize circular voids are merged 
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and plotted as a function of void porosity in Figures (5.14) and (5.15). The 

merged numerical results similarly showed exponential decreases in both UCS 

and E with increasing void porosity. However, the coefficient of determinations, 

for both UCS and E, are slightly higher than those of all the numerical models 

including models containing large unisize circular voids. The relationship 

between both strength (UCS) and deformation (E) and void porosity can be 

represented best by exponential equations as follows: 

                                                                           

                                                                               

 

This might be due to the ratio of the sample size (core diameter or cube length) to 

the inclusion size (grain or void diameter). According to ASTM D 45 43 (2001) 

and ISRM (1978), the ratio of the sample size (core diameter or cube length) 

should be at least six to ten times that of the inclusion size (grain or void 

diameter). For the Hydro-StoneTB
®

 cubes, the ratio for the large voids (31.14 mm 

in diameter) is less than five (cube length is 15.24 mm). 

6- The relationships between UCS and E are plotted in Figures (5.16) to (5.18). 

According to the figures, the uniaxial compressive strength increased with 

increasing deformation modulus (Young’s modulus) following power trends. The 

merged results of numerical models containing both mixed and unisize voids 

except large unisize voids gave better correlation, and can be represented best by 

power equation as follows: 
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Figure (5.2) Compressive Strength versus Void Porosity for Numerical Models 

Containing Circular Voids – Both Unisize and Mixed Voids 

 

 

Figure (5.3) Deformation versus Void Porosity for Numerical Models Containing 

Circular Voids– Both Unisize and Mixed Voids  
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Figure (5.4) Compressive Strength versus Void Porosity for Numerical Models 

Containing Circular Voids – Large Unisize Voids  

 

Figure (5.5) Compressive Strength versus Void Porosity for Numerical Models 

Containing Circular Voids – Medium Unisize Voids 
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Figure (5.6) Compressive Strength versus Void Porosity for Numerical Models 

Containing Circular Voids – Small Unisize Voids  

 

Figure (5.7) Compressive Strength versus Void Porosity for Numerical Models 

Containing Circular Voids – Mixed Voids  
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Figure (5.8) Deformation versus Void Porosity for Numerical Models Containing 

Circular Voids – Large Unisize Voids  

 

Figure (5.9) Deformation versus Void Porosity for Numerical Models Containing 

Circular Voids – Medium Unisize Voids  
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Figure (5.10) Deformation versus Void Porosity for Numerical Models Containing 

Circular Voids – Small Unisize Voids  

 

Figure (5.11) Deformation versus Void Porosity for Numerical Models Containing 

Circular Voids –Mixed Voids  
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Figure (5.12) Compressive Strength versus Void Porosity for Numerical Models 

Containing Circular Voids – Both Unisize and Mixed Voids  

 

Figure (5.13) Deformation versus Void Porosity for Numerical Models Containing 

Circular Voids– Both Unisize and Mixed Voids  
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Figure (5.14) Compressive Strength versus Void Porosity for Numerical Models 

Containing Circular Voids– Some Unisize and All Mixed Voids 

  

 

Figure (5.15) Deformation versus Void Porosity for Numerical Models Containing 

Circular Voids– Some Unisize and All Mixed Voids 
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Figure (5.16) Compressive Strength versus Deformation for Numerical Models 

Containing Circular Voids  

 

Figure (5.17) Compressive Strength versus Deformation for Numerical Models 

Containing Circular Voids – All Circular Voids  
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Figure (5.18) Compressive Strength versus Deformation for Numerical Models 

Containing Circular Voids – Some Unisize and All Mixed Voids  
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Table (5.2) Numerical Results for the Models Containing Circular Voids – Unisize Voids 

 

 

 

Sample Name 
Porosity (n) Numerical UCS Numerical E (25-50%) 

% MPa Gpa 

PA-UCL2-1 6.56 30.695 13.099 

PA-UCL2-2 6.56 31.934 12.419 

PB-UCL2 6.56 38.537 12.973 

PC-UCL2 6.56 31.852 13.331 

PA-UCL4-1 13.12 23.689 11.215 

PA-UCL4-2 13.12 23.301 10.252 

PA-UCL4-3 13.12 25.765 10.299 

PB-UCL4 13.12 23.623 10.247 

PC-UCL4 13.12 23.583 10.874 

PA-UCL6 19.68 20.406 8.145 

PB-UCL6 19.68 19.638 8.890 

PC-UCL6 19.68 20.323 8.860 

PA-UCM4 6.61 31.792 12.904 

PB-UCM4 6.61 35.185 13.049 

PC-UCM4 6.61 34.512 13.166 

PA-UCM8 13.21 26.791 11.158 

PB-UCM8 13.21 25.354 11.023 

PC-UCM8 13.21 24.024 10.936 

PA-UCM12 19.82 17.409 9.191 

PB-UCM12 19.82 19.287 8.804 

PC-UCM12 19.82 12.533 8.650 

PA-UCS11 6.07 35.969 13.519 

PB-UCS11 6.07 31.017 13.450 

PC-UCS11 6.07 31.552 13.440 

PA-UCS22 12.14 24.724 11.373 

PB-UCS22 12.14 21.823 11.276 

PC-UCS22 12.14 24.205 11.403 

PA-UCS33 18.22 20.033 9.746 

PB-UCS33 18.22 17.555 9.704 

PC-UCS33 18.22 18.335 9.583 
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Table (5.3) Numerical Results for the Models Containing Circular Voids – Mixed Voids 

 

 

5.7.2 Numerical Simulations for Models Containing Non-Circular Holes 

 The relationships between uniaxial strength, UCS, and deformation, E, for the 

numerical models containing non-circular voids (square and diamond voids) are plotted 

in Figures (5.19) to (5.31). The results are also shown in Table (5.4). According to the 

results, the following observations can be discussed: 

1- The numerical results showed decreases in both UCS and E with increasing void 

porosity. The reductions followed exponential trend with high coefficients of 

determination, R
2
, for E.  

2- From Figures (5.19) to (5.22), for models containing either square or diamond 

voids, regardless of the void size (large and medium size voids) and void 

distribution (patterns A and B), the numerical results for models having similar 

porosity showed similar linear reduction in both UCS and E.  Hence, the used 

void size and void distributions did not show distinct effects on the mechanical 

properties of Hydro-StoneTB
®

.  

Sample Name 

Porosity 

(n) 
Numerical UCS Numerical E (25-50%) 

% MPa Gpa 

PA-UXCL1M1S3 6.59 30.721 12.997 

PB-UXCL1M1S3 6.59 30.046 13.412 

PC-UXCL1M1S3 6.59 31.594 13.249 

PA-UXCL2M3S6 14.83 20.706 10.485 

PB-UXCL2M3S6 14.83 23.533 10.715 

PC-UXCL2M3S6 14.83 22.533 10.533 

PA-UXCL2M5S8 19.24 20.840 9.428 

PB-UXCL2M5S8 19.24 19.801 9.299 

PC-UXCL2M5S8 19.24 16.250 9.050 
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3- From Figures (5.23) to (5.28), regardless of the void size (large and medium size 

voids), and void distribution (patterns A and B), the numerical models containing 

square voids showed slightly higher UCS and E compared to the numerical 

models containing diamond voids. This might due to smaller total width of solid 

columns, W, for the models containing diamond voids compared to those 

containing square voids. This may in turn lead to higher strength.  

4- From Figures (5.25) and (5.28), after merging all the numerical results for the 

models containing non-circular voids (either square or diamond voids), the 

merged numerical results showed exponential reduction with increasing porosity 

for both UCS and E regardless of void size and void distribution. The relationship 

between both strength (UCS) and deformation (E) and void porosity can be 

represented best by the following equations: 

                                                                            

                                                                           

                                                                                  

                                                                               

5- The relationships between uniaxial compressive strength, UCS, and deformation, 

E, are plotted in Figures (5.29) to (5.31). According to the figures, the uniaxial 

compressive strength increases with increasing deformation modulus (Young’s 

modulus). The relationships followed power trend and can be represented best by 

the following equations, from Figure (5.31): 
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Figure (5.19) Compressive Strength versus Void Porosity for Numerical Models 

Containing Square Voids  

 

 

Figure (5.20) Compressive Strength versus Void Porosity for Numerical Models 

Containing Diamond Voids  
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Figure (5.21) Deformation versus Void Porosity for Numerical Models Containing 

Square Voids  

 

 

Figure (5.22) Deformation versus Void Porosity for Numerical Models Containing 

Diamond Voids  
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Figure (5.23) Compressive Strength versus Void Porosity for Numerical Models 

Containing Large Non-Circular Voids – Both Square and Diamond Voids  

 

 

Figure (5.24) Compressive Strength versus Void Porosity for Numerical Models 

Containing Small Non-Circular Voids – Both Square and Diamond Voids  
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Figure (5.25) Compressive Strength versus Void Porosity for Numerical Models 

Containing Non-Circular Voids – Both Square and Diamond Voids 

  

 

Figure (5.26) Deformation versus Void Porosity for Numerical Models Containing  

Large Non-Circular Voids – Both Square and Diamond Voids  
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Figure (5.27) Deformation versus Void Porosity for Numerical Models Containing  

Small Non-Circular Voids – Both Square and Diamond Voids 
 

 

Figure (5.28) Deformation versus Void Porosity for Numerical Models Containing Non-

Circular Voids – Both Square and Diamond Voids 
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Figure (5.29) Compressive Strength versus Deformation for Numerical Models 

Containing Square Voids  

 

 

Figure (5.30) Compressive Strength versus Deformation for Numerical Models 

Containing Diamond Voids 
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Figure (5.31) Compressive Strength versus Deformation for Numerical Models 

Containing Non-Circular Voids – Both Square and Diamond Voids  

 

Table (5.4) Numerical Results for the Models Containing Non-Circular Voids – Square 

and Diamond Voids 

Sample Name 
Porosity (n) Numerical UCS Numerical E (25-50%) 

% MPa GPa 

PA-USqL3 6.28 33.484 13.361 
PB-USqL3 6.28 32.685 13.449 

PA-USqL6 12.56 25.315 10.536 

PB-USqL6 12.56 27.922 11.047 

PA-USqM6 6.32 34.478 13.390 

PB-USqM6 6.32 35.058 13.230 

PA-USqM12 12.65 22.562 11.182 

PB-USqM12 12.65 23.081 10.602 

PA-UDmL3 6.28 33.683 12.430 

PB-UDmL3 6.28 32.919 12.878 

PA-UDmL6 12.56 20.024 9.593 

PB-UDmL6 12.56 21.713 9.575 

PA-UDmM6 6.32 32.102 12.526 

PB-UDmM6 6.32 30.540 12.679 

PA-UDmM12 12.65 18.338 10.239 

PB-UDmM12 12.65 22.323 10.829 
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5.7.3 Numerical Simulations for All Experimental Tests – All Cubes 

 The numerical results for the models containing voids with different size (large, 

medium, and small), shape (circular, square, and diamond), distributions (pattern A, B, 

and C), and uniformity (unisize and mixed voids) are merged and plotted in Figures 

(5.32) to (5.37). According to the merged results, the following observations can be 

discussed:  

1- From Figures (5.32) and (5.33), the numerical results showed decrease in both 

UCS and E with increasing void porosity. The relationship between both strength 

(UCS) and deformation (E) and void porosity can be represented best by power 

equations as follows: 

                                                                          

                                                                              

2- The relationships between UCS and E are plotted in Figures (5.34) and (5.35). 

According to the figures, the uniaxial compressive strength increased with 

increasing Young’s modulus following power trend. For the merged results of 

numerical models containing both mixed and unisize voids except large unisize 

circular voids, the relationship between UCS and E can be represented best by 

power equation as follows: 

                                                             

3- From Figures (5.2) and (5.32), the numerical strength results (numerical UCS) 

followed the same trends of the experimental strength results. However, the data 

scattering reduced and the coefficients of determination increased; the value of R
2
 

increased from 0.729 to 0.843. In addition, the percentages of the maximum 
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differences in UCS values reduced to 25.4%, 40%, and 62.8% for void porosities 

6.5%, 12.6% and 19.6% respectively; the differences reduced by more than half. 

Accordingly, up to half of the differences in the experimental UCS values can be 

attributed to the uncertainties existing in the experimental uniaxial tests.   

4- Similarly, from Figures (5.3) and (5.33), the numerical deformation results 

(numerical E) followed the same trends of the experimental deformation results. 

However, the data scattering tremendously reduced and the coefficients of 

determination increased very much; the value of R
2
 increased from 0.5364 to 

0.914. In addition, the percentages of the maximum differences in E values 

reduced to 8.1%, 16.7%, and 12.9% for void porosities 6.5%, 12.6% and 19.6% 

respectively; the differences reduced by more than half for void porosity equal to 

and greater than 12.6%, while for void porosities of 6.5%, the differences reduced 

by about 85%. This might be due to the efficiency of the strain measurement in 

the numerical simulation which in turn means that the method used to measure 

strains in the experimental tests were not adequate. Therefore, great care must be 

taken regarding strain measurement for unaixail compression tests. 

5- From the stress- strain curves shown in Appendix (II), the axial-stress-axial-strain 

curve for solid model is composed of a peak stress followed by a very sharp 

descending portion as suggested by Sammis and Ashby (1986), see Figure (II.1). 

However, the sharpness was reduced in the porous models regardless of void 

porosity, void orientation, and void special distribution, see the axial-stress-axial-

strain curve in Appendix (III). Accordingly, the existence of voids could reduce 

the brittleness of rock-like materials. 
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Figure (5.32) Compressive Strength versus Void Porosity for Numerical Models with 

Voids Having Different Size, Shape and Distribution 

 

 

Figure (5.33) Deformation versus Void Porosity for Numerical Models with Voids 

Having Different Size, Shape and Distribution  
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Figure (5.34) Compressive Strength versus Deformation for Numerical Models with 

Voids Having Different Size, Shape and Distribution 

 

 

Figure (5.35) Compressive Strength versus Deformation for Numerical Models with 

Voids Having Different Size, Shape and Distribution 
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5.8 Numerical versus Experimental Results 

In order to provide an understanding of the future usage and accuracy of UDEC as 

a modeling tool for porous materials, it will be helpful and useful to compare the result 

sets from both numerical and experimental analyses. Accordingly, the results of uniaxial 

compressive strength and Young’s modulus for both numerical and experimental 

analyses are plotted as a function of void porosity in Figures (5.36) to (5.66). The results 

are also shown in Tables (5.5) to (5.12). According to the results, the following 

observations can be discussed:  

1- From Figures (5.36) to (5.62), regardless of void geometry, the numerically 

calculated values of both UCS and E showed similar trends (logarithmic 

trend) to those obtained from the experimental compression tests on the 

Hydro-StoneTB
®

 cubes. However, from Figures (5.60) and (5.61), the 

coefficients of determination for numerical results are much higher than those 

of the experimental results; for UCS, the R
2
 increased from = 0.7577 to 

0.8733, and for E, the R
2
 increased from = 0.524 to 0.9292. Accordingly, it 

can be concluded that validation of the UDEC was successful. 

2- In addition, the numerical relationship trend (power trend) between UCS and 

E, as shown in Figure (5.62), shows better correlation compared to the 

experimental relationship trend. From the figures, the coefficient of 

determination (R
2
 = 0.8351) for numerical results is much higher than the one 

of the experimental results (R
2
 = 0.5041). 

3- As seen from the figures and tables, the numerically calculated values of both 

uniaxial compressive strength and Young’s modulus overestimated the values 
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of experimental tests. The differences are attributed to either modeling a three-

dimensional medium in two dimensions plane strain, or  inability to model  

the friction between the steel platen and the Hydro-StoneTB
®

 surfaces (top 

and bottom faces), or both (Avar 2002).  

4- The overestimations are higher for uniaxial compressive strength compared to 

those of the deformation. The ratios of the numerical results to the 

experimental results ranged between 1.16 to 2.26 and 1.004 to 1.44 for 

uniaxial compressive strength and Young’s modulus respectively; see Tables 

(5.6) and (5.8). Furthermore, the average of ratios of experimental values to 

numerical values for uniaxial compressive strength (1.642) is higher than 

those for Young’s modulus (1.192).  

5- As shown in Figures (5.36) to (5.38) and Table (5.11), the overestimations for 

models containing unisize circular voids increase with void size increasing. 

The average of ratios of experimental uniaxial strength to numerical uniaxial 

strength for models containing large voids (1.799) is higher than those of 

models containing medium voids (1.652) or small voids (1.462). However, as 

shown in Figures (5.41) to (5.43) and Table (5.12), the overestimations of 

deformation for models containing unisize circular voids did not show 

discernible differences. The dependence of the deformation overestimations 

on the void size is small. However, the average of ratios of experimental 

uniaxial strength to numerical uniaxial strength for models containing square 

voids (1.216) is higher than those of models containing diamond voids (1.084) 

or small voids (1.20).  
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6- The effect of void size on the overestimation is also true for the models 

containing non-circular voids, see Figures (5.46) to (5.51). For models 

containing square voids, from Table (5.11), the average of ratios of 

experimental uniaxial strength to numerical uniaxial strength for models 

containing large voids (1.428) is higher than those of models containing 

medium voids (1.343). For models containing diamond voids, from Table 

(5.11), the average of ratios of experimental uniaxial strength to numerical 

uniaxial strength for models containing large voids (1.823) is higher than 

those of models containing medium voids (1.503). Similarly, the dependence 

of the deformation overestimations on the void size is small as shown in 

Figures (5.54) to (5.57) and Table (5.12). 

7- As shown in Figures (5.63) to (5.66), the dependency of the overestimations 

(the differences between the experimental and experimental values for both 

strength and deformation) on void porosity is very small. The ratio of the 

numerical deformation to the experimental deformation did not give any 

relationship with void porosity (see Figures (5.65) and (5.66)) while the 

values of the uniaxial compressive strength gave a very poor correlation (see 

Figures (5.63) and (5.64)). 

8- Finally, from the numerical results shown in the figures and tables, it can be 

concluded that the experimental tests have been carried out with great cares 

and attentions; the standard procedures for the cube sampling, cube testing, 

and measuring of stress and strain values were followed with great cares and 

attentions.    
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Figure (5.36) Compressive Strength versus Void Porosity for Specimens Containing  

Unisize Circular Voids – Large Size  
 

 

Figure (5.37) Compressive Strength versus Void Porosity for Specimens Containing  

Unisize Circular Voids – Medium Size  
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Figure (5.38) Compressive Strength versus Void Porosity for Specimens Containing  

Unisize Circular Voids – Small Size  

 

 

Figure (5.39) Compressive Strength versus Void Porosity for Specimens Containing  

Unisize Circular Voids – Mixed Size  
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Figure (5.40) Compressive Strength versus Void Porosity for Specimens Containing  

Unisize Circular Voids – Both Unisize and Mixed Voids  

 

 

Figure (5.41) Deformation versus Void Porosity for Specimens Containing Unisize  

Circular Voids – Large Size  
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Figure (5.42) Deformation versus Void Porosity for Specimens Containing Unisize  

Circular Voids – Medium Size  

 

 

Figure (5.43) Deformation versus Void Porosity for Specimens Containing Unisize  

Circular Voids – Small Size  
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Figure (5.44) Deformation versus Void Porosity for Specimens Containing Unisize  

Circular Voids – Mixed Size  

 

 

Figure (5.45) Deformation versus Void Porosity for Specimens Containing Unisize  

Circular Voids – Both Unisize and Mixed Voids  
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Figure (5.46) Compressive Strength versus Void Porosity for Specimens Containing  

Square Voids – Large Size  
 

 

Figure (5.47) Compressive Strength versus Void Porosity for Specimens Containing  

Square Voids – Small Size  
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Figure (5.48) Compressive Strength versus Void Porosity for Specimens Containing  

Square Voids – Both Large and Small Sizes  

 

 

Figure (5.49) Compressive Strength versus Void Porosity for Specimens Containing  

Diamond Voids – Large Size  
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Figure (5.50) Compressive Strength versus Void Porosity for Specimens Containing  

Diamond Voids – Small Size  

 

 

Figure (5.51) Compressive Strength versus Void Porosity for Specimens Containing  

Diamond Voids – Both Large and Small Sizes  
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Figure (5.52) Deformation versus Void Porosity for Specimens Containing  

Square Voids – Large Size 

 

 

Figure (5.53) Deformation versus Void Porosity for Specimens Containing  

Square Voids – Small Size 
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Figure (5.54) Deformation versus Void Porosity for Specimens Containing  

Square Voids – Both Large and Small Sizes  

 

 

Figure (5.55) Deformation versus Void Porosity for Specimens Containing  

Diamond Voids – Large Size 
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Figure (5.56) Deformation versus Void Porosity for Specimens Containing  

Diamond Voids – Small Size 

  

 

Figure (5.57) Deformation versus Void Porosity for Specimens Containing  

Diamond Voids – Both Large and Small Sizes 
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Figure (5.58) Compressive Strength versus Void Porosity for Specimens Containing  

Non-circular Voids – Both Square and Diamond Voids 

 

 

Figure (5.59) Deformation versus Void Porosity for Specimens Containing  

Non-circular Voids – Both Square and Diamond Voids 
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Figure (5.60) Compressive Strength versus Void Porosity for Specimens with Voids 

Having Different Size, Shape and Spatial Distributions 
 

 

Figure (5.61) Deformation versus Void Porosity for Specimens with Voids Having 

Different Size, Shape and Spatial Distributions 
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Figure (5.62) Compressive Strength versus Deformation for Specimens with Voids 

Having Different Size, Shape and Spatial Distributions 

 

 

Figure (5.63) Ratios of Numerical Strength to Experimental Strength for  

All Numerical Models 
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Figure (5.64) Ratios of Numerical Strength to Experimental Strength for  

All Numerical Models Except Those with Large Unisize Circular Voids 
 

 

  

Figure (5.65) Ratios of Numerical Deformation to Experimental Deformation  

for All Numerical Models 
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Figure (5.66) Ratios of Numerical Deformation to Experimental Deformation  

for All Numerical Models Except Those with Large Unisize Circular Voids 
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Table (5.5) Numerical and Experimental Results for the Models Containing Unisize 

Circular Voids 

Sample 

Name 

Porosity 

(n) 

Experimental 

UCS  

Numerical 

UCS 

Experimental 

E (25-50%) 

Numerical 

E  

(25-50%) 

% MPa MPa GPa GPa 

PA-UCL2-1 6.56 19.31 30.695 9.36 13.099 

PA-UCL2-2 6.56 16.62 31.934 8.65 12.419 

PB-UCL2 6.56 17.31 38.537 11.74 12.973 

PC-UCL2 6.56 24.61 31.852 9.86 13.331 

PA-UCL4-1 13.12 18.20 23.689 9.66 11.215 

PA-UCL4-2 13.12 14.27 23.301 8.56 10.252 

PA-UCL4-3 13.12 13.51 25.765 8.55 10.299 

PB-UCL4 13.12 11.55 23.623 8.68 10.247 

PC-UCL4 13.12 16.27 23.583 11.27 10.874 

PA-UCL6 19.68 9.84 20.406 6.69 8.145 

PB-UCL6 19.68 9.63 19.638 7.47 8.890 

PC-UCL6 19.68 9.65 20.323 7.54 8.860 

PA-UCM4 6.61 22.57 31.792 12.08 12.904 

PB-UCM4 6.61 21.48 35.185 10.91 13.049 

PC-UCM4 6.61 24.55 34.512 13.42 13.166 

PA-UCM8 13.21 18.66 26.791 7.92 11.158 

PB-UCM8 13.21 17.34 25.354 10.07 11.023 

PC-UCM8 13.21 13.24 24.024 11.85 10.936 

PA-UCM12 19.82 12.53 17.409 8.61 9.191 

PB-UCM12 19.82 9.41 19.287 9.03 8.804 

PC-UCM12 19.82 5.55 12.533 7.57 8.650 

PA-UCS11 6.07 26.27 35.969 11.58 13.519 

PB-UCS11 6.07 26.74 31.017 10.67 13.450 

PC-UCS11 6.07 21.65 31.552 11.38 13.440 

PA-UCS22 12.14 15.72 24.724 9.49 11.373 

PB-UCS22 12.14 17.56 21.823 8.72 11.276 

PC-UCS22 12.14 16.75 24.205 12.09 11.403 

PA-UCS33 18.22 11.35 20.033 8.19 9.746 

PB-UCS33 18.22 13.27 17.555 9.19 9.704 

PC-UCS33 18.22 10.09 18.335 7.44 9.583 

 



197 
 

 

Table (5.6) Numerical to Experimental Ratios for Models Containing Unisize Circular 

Voids 

Sample Name 
Porosity (n) Numerical/Experimental Ratio 

% For UCS For E 

PA-UCL2-1 6.56 1.59 1.40 

PA-UCL2-2 6.56 1.92 1.44 

PB-UCL2 6.56 2.23 1.11 

PC-UCL2 6.56 1.29 1.35 

PA-UCL4-1 13.12 1.30 1.16 

PA-UCL4-2 13.12 1.63 1.20 

PA-UCL4-3 13.12 1.91 1.20 

PB-UCL4 13.12 2.05 1.18 

PC-UCL4 13.12 1.45 0.96 

PA-UCL6 19.68 2.07 1.22 

PB-UCL6 19.68 2.04 1.19 

PC-UCL6 19.68 2.11 1.18 

PA-UCM4 6.61 1.41 1.07 

PB-UCM4 6.61 1.64 1.20 

PC-UCM4 6.61 1.41 0.98 

PA-UCM8 13.21 1.44 1.41 

PB-UCM8 13.21 1.46 1.09 

PC-UCM8 13.21 1.81 0.92 

PA-UCM12 19.82 1.39 1.07 

PB-UCM12 19.82 2.05 1.00 

PC-UCM12 19.82 2.26 1.15 

PA-UCS11 6.07 1.37 1.20 

PB-UCS11 6.07 1.16 1.29 

PC-UCS11 6.07 1.46 1.21 

PA-UCS22 12.14 1.57 1.23 

PB-UCS22 12.14 1.24 1.31 

PC-UCS22 12.14 1.45 0.96 

PA-UCS33 18.22 1.77 1.22 

PB-UCS33 18.22 1.32 1.08 

PC-UCS33 18.22 1.82 1.31 
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Table (5.7) Numerical and Experimental Results for Models Containing Models 

Containing Circular Voids with Mixed Sizes 

Sample Name 

Porosity 

(n) 

Experime

n. UCS  

Numerical 

UCS 

Experimen. 

E (25-50%) 

Numerical 

E  

(25-50%) 

% MPa MPa GPa GPa 

PA-UXCL1M1S3 6.59 23.44 30.721 11.08 12.997 

PB-UXCL1M1S3 6.59 23.96 30.046 10.85 13.412 

PC-UXCL1M1S3 6.59 21.19 31.594 9.88 13.249 

PA-UXCL2M3S6 14.83 13.93 20.706 7.99 10.485 

PB-UXCL2M3S6 14.83 13.79 23.533 8.18 10.715 

PC-UXCL2M3S6 14.83 14.69 22.533 9.47 10.533 

PA-UXCL2M5S8 19.24 11.79 20.840 7.10 9.428 

PB-UXCL2M5S8 19.24 10.43 19.801 8.30 9.299 

PC-UXCL2M5S8 19.24 8.20 16.250 7.24 9.050 

 

 

Table (5.8) Numerical to Experimental Ratios for Models Containing Circular Voids 

with Mixed Sizes 

Sample Name 
Porosity (n) Numerical/Experimental Ratio 

% For UCS For E 

PA-UXCL1M1S3 6.59 1.31 1.17 

PB-UXCL1M1S3 6.59 1.25 1.24 

PC-UXCL1M1S3 6.59 1.49 1.34 

PA-UXCL2M3S6 14.83 1.49 1.31 

PB-UXCL2M3S6 14.83 1.71 1.31 

PC-UXCL2M3S6 14.83 1.53 1.11 

PA-UXCL2M5S8 19.24 1.77 1.33 

PB-UXCL2M5S8 19.24 1.90 1.12 

PC-UXCL2M5S8 19.24 1.98 1.25 
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Table (5.9) Numerical and Experimental Results for Models Containing Non-Circular 

Voids (Square and Diamond) 

Sample Name 

Porosity 

(n) 

Experimental 

UCS  

Numerical 

UCS 

Experimental 

E (25-50%) 

 Numerical E 

(25-50%) 

% MPa MPa GPa GPa 

PA-USqL3 6.28 20.98 33.484 10.19 13.361 

PB-USqL3 6.28 28.27 32.685 11.34 13.449 

PA-USqL6 12.56 16.20 25.315 10.98 10.536 

PB-USqL6 12.56 20.02 27.922 8.18 11.047 

PA-USqM6 6.32 26.20 34.478 11.11 13.390 

PB-USqM6 6.32 26.52 35.058 10.36 13.230 

PA-USqM12 12.65 17.37 22.562 10.56 11.182 

PB-USqM12 12.65 16.18 23.081 7.73 10.602 

PA-UDmL3 6.28 16.06 33.683 10.32 12.430 

PB-UDmL3 6.28 22.80 32.919 11.50 12.878 

PA-UDmL6 12.56 11.88 20.024 8.95 9.593 

PB-UDmL6 12.56 10.55 21.713 10.02 9.575 

PA-UDmM6 6.32 19.21 32.102 11.71 12.526 

PB-UDmM6 6.32 22.58 30.540 11.22 12.679 

PA-UDmM12 12.65 11.01 18.338 9.26 10.239 

PB-UDmM12 12.65 16.93 22.323 10.72 10.829 

 

Table (5.10) Numerical to Experimental Ratios for Models Containing Non-Circular 

Voids (Square and Diamond) 

Sample Name 
Porosity Numerical/Experimental Ratio 

% For UCS For E 

PA-USqL3 6.28 1.60 1.31 

PB-USqL3 6.28 1.16 1.19 

PA-USqL6 12.56 1.56 0.96 

PB-USqL6 12.56 1.39 1.35 

PA-USqM6 6.32 1.32 1.21 

PB-USqM6 6.32 1.32 1.28 

PA-USqM12 12.65 1.30 1.06 

PB-USqM12 12.65 1.43 1.37 

PA-UDmL3 6.28 2.10 1.20 

PB-UDmL3 6.28 1.44 1.12 

PA-UDmL6 12.56 1.69 1.07 

PB-UDmL6 12.56 2.06 0.96 

PA-UDmM6 6.32 1.67 1.07 

PB-UDmM6 6.32 1.35 1.13 

PA-UDmM12 12.65 1.67 1.11 

PB-UDmM12 12.65 1.32 1.01 
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Table (5.11) Ratios of Numerical UCS to Experimental UCS for All Numerical 

Models 

Void Types 
Void Size 

Average 
Large Medium Small 

Circular (Unisize) 1.799 1.652 1.462 1.654 

Circular (Mixed) 1.603 1.603 

Square 1.428 1.343 
 

1.385 

Diamond 1.823 1.503 
 

1.663 

All Circular 1.652 

All Voids 1.59 

 

 

Table (5.12) Ratios of Numerical E to Experimental E for All Numerical Models 

Void Types 
Void Size 

Average 
Large Medium Small 

Circular (Unisize) 1.216 1.099 1.201 1.195 

Circular (Mixed) 1.242 1.242 

Square 1.203 1.230   1.216 

Diamond 1.088 1.080   1.084 

All Circular  1.206 

All Voids 1.196 

 

 

5.9 Three-Dimensional versus Two-Dimensional  

As mentioned before, in order to evaluate the numerical analysis, the numerical 

results should be compared to the experimental results obtained from laboratory or/and 

field tests. Since laboratory or/and field tests, experimental tests, are generally done in 

three dimensional system, the two-dimensional plane strain, or plane stress, results should 

be transformed to experimental three-dimensional results. Since the theoretical methods 

to carry out the transformation are typically very complex, an empirical method through 
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establishing a relationship between numerical and experimental results might be useful 

and helpful.  

Accordingly, to carry out the comparison, the two-dimensional plane strain 

mechanical properties given by UDEC should be transformed to three-dimensional 

mechanical properties. Therefore, the relationships between numerical mechanical 

properties (UCS and E) given by UDEC and the experimental mechanical properties 

obtained from the laboratory tests carried out on the Hydro-StoneTB
®

 cubes are plotted 

in Figures (5.67) to (5.76). According to the figures, the following conclusions can be 

drawn: 

1- The numerical results of uniaxial compressive strength given by the UDEC for the 

models containing circular voids with different size, distribution and uniformity 

are in decent relationships with experimental results of uniaxial compression tests 

on the Hydro-StoneTB
®

 cubes. The correlation of UCS is followed power trend, 

as shown in Figure (5.67), and can be represented best by the following equation: 

                                       
                              

 

However, after excluding the results for models containing large unisize circular 

voids, the numerical results showed better power correlation, as shown in Figure 

(5.68), and can be represented best by the following equation: 

                                       
                            

  

2- For the models containing non-circular voids, the numerical results of uniaxial 

compressive strength given by the UDEC showed good relationship with 
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experimental results of uniaxial compression on the cubes. The correlation of 

UCS is also followed power trend, as shown in Figure (5.69), and can be 

represented best by the following equation: 

                                      
                              

 

3- From Figure (5.70) for the merged data, the numerical results of uniaxial 

compressive strength given by the UDEC for the models containing voids with 

different shape, size, distribution and uniformity (all voids) are in decent 

relationship with experimental results of uniaxial compression on the cubes. The 

correlation of UCS is followed power trend and can be represented best by the 

following equation: 

                                       
                              

 

Similarly, after excluding the results for models containing large unisize circular 

voids, the numerical results showed better correlation, as shown in Figure (5.71), 

and can be represented best by the following equation: 

                                       
                             

 

4- The numerical results of E given by the UDEC for the models containing circular 

voids with different size, distribution, and uniformity are in moderate relationship 

with those obtained from the experimental results carried out on the cubes. The 

correlation of E is followed power trend, as shown in Figure (5.72), and can be 

represented best by the following equation: 
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However, after excluding the results for models containing large unisize circular 

voids, the numerical results did not show any change, as shown in Figure (5.73), 

and the relationship can be represented best by the following equation: 

                                   
                                 

  

5- For the models containing non-circular voids, the numerical results of Young’s 

modulus given by the UDEC showed poor relationship with those obtained from 

the experimental results carried out on the cubes. The correlation of Young’s 

modulus is also followed power trend, as shown in Figure (5.74), and can be 

represented best by the following equation: 

                                   
                                    

 

6- From Figure (5.75), the numerical results of Young’s modulus given by the 

UDEC for the models containing voids with different shape, size, distribution and 

uniformity (all voids) are in moderate relationship with those obtained from the 

experimental results carried out on the cubes. The correlation of Young’s modulus 

is followed power trend and can be represented best by the following equation: 
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However, after excluding the results for models containing large unisize circular 

voids, the numerical results showed a moderate power correlation with smaller R
2
, 

as shown in Figure (5.76), and can be represented best by the following equation: 

                                   
                                     

 

According to the results, the two-dimensional plane strain results gave a good 

relationship with three-dimensional experimental results. However, the relationship for 

UCS is stronger than the relationship for E. The correlation can be represented best by 

power equation as follows: 

                                                   
            

Or 

                                                              

 

Where a and b are constants.  Their values vary depending on void geometry and type of 

the mechanical properties. Regarding this numerical analysis for Hydro-StoneTB
®

 porous 

cubes using UDEC (version 3.1) with Voronoi tessellation having average block size of 

3.5 mm, the value of a and b varied from 0.1955 to 2.5351 and 0.5668 to 1.376 

respectively.  

For uniaxial compressive strength, the value of a varied from 0.1955 to 0.385. 

The minimum value, a = 0.1955, was for numerical models containing unisize circular 

voids except those containing large unisize circular void. The maximum value was for the 

numerical models containing non-circular voids. For numerical models containing voids 

with different geometry, all voids, the value of a was 0.2613. The value reduced to 
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0.2382 for numerical models containing voids with different geometry, all voids, except 

those containing large unisize circular voids. The value of a for Young’s modulus varied 

from 1.0071 to 2.5351. The minimum value, a = 1.0071, was for numerical models 

containing circular voids except those containing large unisize circular void. The 

maximum value, a = 2.5351, was for the numerical models containing non-circular voids. 

For numerical models containing voids with different geometry (all voids) the value of a 

was 1.2201. While the value increased to 1.2404 for numerical models containing voids 

with different geometry (all voids) except those containing large unisize circular void. 

Regarding b values, for uniaxial compressive strength, the value of b varied from 

1.1655 to 1.378. The minimum value, b = 1.1655, was for numerical models containing 

non-circular voids. The maximum value was for the numerical models containing unisize 

circular voids except those containing large unisize circular void. For numerical models 

containing voids with different geometry (all voids) the value of b was 1.2738. The value 

increased to 1.3125 for numerical models containing voids with different geometry, all 

voids, except those containing large unisize circular voids. The value of b for Young’s 

modulus varied from 0.5668 to 0.9338. The minimum value, b = 0.5668, was for the 

numerical models containing non-circular voids. The maximum value, b = 0.9186, was 

for numerical models containing circular voids except those containing large unisize 

circular void. For numerical models containing voids with different geometry (all voids) 

the value of b was 0.8535. While the value did not change (0.8512) for numerical models 

containing voids with different geometry, all voids, except those containing large unisize 

circular void. 
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Figure (5.67) Experimental UCS versus Numerical UCS for Specimens  

Containing Circular Voids with Different Geometry  
 

 

Figure (5.68) Experimental UCS versus Numerical UCS for Specimens  

Containing Circular Voids Having Different Geometry  
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Figure (5.69) Experimental UCS versus Numerical UCS for Specimens  

Containing Non-circular Voids Having Different Geometry  
 

 

Figure (5.70) Experimental UCS versus Numerical UCS for Specimens Containing  

Voids with Different Geometry – All Voids  
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Figure (5.71) Experimental UCS versus Numerical UCS for Specimens Containing  

Voids with Different Geometry – All Voids except Large Unisize Circular Voids 

  

 

Figure (5.72) Experimental E versus Numerical E for Specimens Containing Voids  

with Different Geometry – All Circular Voids 
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Figure (5.73) Experimental E versus Numerical E for Specimens Containing Voids with 

Different Geometry – All Voids except Large Unisize Circular Voids 

  

 

Figure (5.74) Experimental Experimental E versus Numerical E for Specimens 

Containing Non-Circular Unisize Voids with Different Geometry 
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Figure (5.75) Experimental E versus Numerical E for Specimens Containing Voids  

with Different Geometry – All Voids 
 

 

Figure (5.76) Experimental E versus Numerical E for Specimens Containing Voids  

with Different Geometry – All Voids except Large Unisize Circular Voids 
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CHAPTER SIX NUMERICAL SIMULATIONS TO GENERATE NEW MODELS 

CONTAING VOIDS WITH DIFFERENT SHAPES, SIZES, AND DISTRIBUTIONS 

 

6.1 Introduction  

Numerical models are extremely less expensive, not time-consuming, and more 

controllable compared to experimental tests. Numerical simulations, once created, can be 

continually changed and modified with extremely less effort. Furthermore, in numerical 

analysis, material can be simulated at any scales; from the macro-scale, such as 

simulating the behavior of a tunnel in the abutment of a dam, to micro scale, effects of 

void porosities on rock mechanical behaviors (Erfourth 2006). For the aforementioned 

reasons, a new set of numerical models will be created using UDEC to: 

1-  Study the effects of void shapes and their orientations on the mechanical 

behavior of the rock-like material under uniaxial compression, and 

2- Validate the hypotheses mentioned in Chapter Four (data analysis); total width of 

solid column (W) is the second factor which governs the mechanical behavior of 

rock-like material after void porosity. 

  

6.2 Generate Models to Study the Effects of Void Shape on the Mechanical 

Properties of Rock-like Material 

To explore the effects of void shape exclusively, the other factors such as void 

porosity, void size, and void distribution, should be kept constant for all the models. To 

fulfill this requirement, twenty four (24) 152.4 mm porous squares were simulated in 

UDEC under uniaxial compression. Four different void shapes with two different void 
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sizes, large (486.1 mm
2
) and small (244.8 mm

2
) sizes, and three different porosities (3.2, 

6.3, and 12.6%) were studied. The various shapes were circular, square, rectangular 

(vertical), and triangular (equilateral). Since voids with different sizes and porosities are 

already leading to different void patterns, only one type of void patterns was studied. The 

void pattern A as studied in the experimental work, cube, was selected and adopted as the 

base for comparison purpose with the numerical models. Table (6.1) and Figures (6.1) 

and (6.2) show the characterizations of model simulated in this section. 

 

Table (6.1) Numerical Models to Simulate the Effects of Void Shapes 

Shape of 

Voids 

Size of Voids, 

(mm)  

Number 

of Voids  

Void 

Porosity, 

n (%)  

Sample Name 

Circular 

Large, 24.88 mm, 

(Diameter) 

1 3.16 PA-UCL1 
3 6.32 PA-UCL3 
6 12.65 PA-UCL6 

Small, 17.66 mm, 

(Diameter) 

3 3.14 PA-UCS3 
6 6.28 PA-UCS6 
12 12.56 PA-UCS12 

Square 

Large, 22.05 mm, 

(Side Length) 

1 3.16 PA-USqL1-Vertical 
3 6.32 PA-USqL3-Vertical 
6 12.65 PA-USqL6-Vertical 

Small, 15.65 mm, 

(Side Length) 

3 3.14 PA-USqS3-Vertical 
6 6.28 PA-USqS6-Vertical 
12 12.56 PA-USqS12-Vertical 

Rectangular 

(Vertical) 

Large,  

15.59 x 31.18 

(mm) 

1 3.16 PA-URL1-Vertical 

3 6.32 PA-URL3-Vertical 

6 12.65 PA-URL6-Vertical 

Small,  

11.06 x 22.13 

(mm) 

3 3.14 PA-URS3-Vertical 

6 6.28 PA-URS6-Vertical 

12 12.56 PA-URS12-Vertical 

Triangular 

(Equilateral) 

Large, 33.5 mm, 

(Side Length) 

1 3.16 PA-TCL1-Straight 
3 6.32 PA-TCL3-Straight 
6 12.65 PA-TCL6-Straight 

Small, 23.78 mm, 

(Side Length) 

3 3.14 PA-TCS3-Straight 
6 6.28 PA-TCS6-Straight 
12 12.56 PA-TCS12-Straight 
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Figure (6.1) Numerical Models to Simulate the Effects of Void Shapes – Large Size 
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Figure (6.2) Numerical Models to Simulate the Effects of Void Shapes – Small Size 
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The numerical results, uniaxial compressive strength (UCS) and Young’s modulus 

(E), for simulated are shown in Table (6.2) and Figures (6.3) to (6.9). According to the 

results, the following observations can be discussed:  

1- For the void porosities ranging from 3% to 13%, from Figures (6.3) to (6.6), the 

numerical results showed decreases in both UCS and E with increasing void 

porosity.  

2- The various void shapes studied in this numerical analysis gave discernible effects 

on the mechanical properties. For the same void porosity and regardless of the 

void size, the numerical models containing unisize rectangular (vertical) voids 

gave the highest compressive strength and modulus of elasticity; while, the 

numerical models containing unisze triangular (equilateral) voids gave the lowest 

compressive strength and modulus of elasticity, see Figures (6.3) to (6.6). In other 

words, regardless of void size, the numerical models with unisize vertical 

rectangular voids were stronger and stiffer compared to the other models.  

3- From Figures (6.3) and (6.4), for the same porosity, the models with large square 

voids are slightly stronger than models with large circular voids. However, for the 

models with small voids, the results did not follow specific trend; for the void 

porosities of 3.14% and 6.28%, the models with small square voids were stronger 

than those with small circular voids, while for the void porosity of 12.56%, the 

models with small circular voids were stronger than those with small square 

voids. Regarding Young’s modulus, the two different shapes (square and circular 

voids) did not show any difference; the Young’s Moduli for the models 
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containing unisize square voids were similar to the models containing circular 

voids regardless the void sizes and void porosity, see Figures (6.5) and (6.6) 

4- From Figures (6.3) to (6.6), for the same void porosity, the numerical models 

containing unisize voids gave different values for both UCS and E. However, the 

differences in UCS are higher than those in E.  

5- The differences in both UCS and E for different void shapes linearly increased 

with void porosity increasing as shown in Figures (6.7) and (6.8) and Table (6.3). 

For models with large voids, the difference in UCS for models containing six 

voids (20.905 MPa) is larger by about four times than the differences in UCS for 

models containing only one void (5.992 MPa), while it is about two times for E 

(3.868 GPa for models containing six voids and 1.550 GPa for models containing one 

voids). For models with small voids, the difference in UCS for models containing 

twelve voids (12.067 MPa) is about twofold larger than the differences in UCS for 

models containing only three voids (6.888 MPa), while, it is higher by 60% for E 

(1.835 GPa for models containing twelve voids and 1.142 GPa for models containing 

three voids). 

6- The relationship between UCS and E for all numerical models is plotted in Figure 

(6.9). The results gave a very decent power correlation, and it can be represented 

best by the following equation:  

 

                                                               

 

 



217 
 

 

Table (6.2) Numerical Models Containing Unisize Large Voids with Different Shapes 

Model Name Void Shape 

Porosity 

(n) 

Numerical 

UCS 

 Numerical 

E (25-50%) 

% MPa GPa 

PA-UCL1 

Circular 

3.16 41.059 2.566 

PA-UCL3 6.32 32.076 2.005 

PA-UCL6 12.65 24.762 1.548 

PA-UCS3 3.14 42.489 14.615 

PA-UCS6 6.28 31.845 13.271 

PA-UCS12 12.56 26.566 11.192 

PA-USqL1-Vertical 

Square 

3.16 44.432 15.203 

PA-USqL3-Vertical 6.32 33.477 13.358 

PA-USqL6-Vertical 12.65 25.315 10.536 

PA-USqS3-Vertical 3.14 44.174 14.570 

PA-USqS6-Vertical 6.28 34.478 13.390 

PA-USqS12-Vertical 12.56 22.562 11.182 

PA-URL1-Vertical 

Rectangular 

(Vertical) 

3.16 46.723 15.340 

PA-URL3-Vertical 6.32 41.722 13.892 

PA-URL6-Vertical 12.65 34.656 11.961 

PA-URS3-Vertical 3.14 44.592 15.132 

PA-URS6-Vertical 6.28 39.360 14.052 

PA-URS12-Vertical 12.56 29.974 11.811 

PA-TCL1-Straight 

Triangular 

(Equilateral) 

3.16 40.731 13.790 

PA-TCL3-Straight 6.32 30.186 11.972 

PA-TCL6-Straight 12.65 13.751 8.092 

PA-TCS3-Straight 3.14 37.705 13.990 

PA-TCS6-Straight 6.28 29.974 11.811 

PA-TCS12-Straight 12.56 17.907 9.976 

 

Table (6.3) Differences in UCS and E for Numerical Models Containing Large Voids 

Void Porosity, n Differences in UCS (MPa) Differences in E (25-50%) (GPa) 

% Large Voids Small Voids Large Voids Small Voids 

0.00 0 0 0 0 

3.16 5.992 6.888 1.550 1.142 

6.32 11.536 9.386 1.921 2.242 

12.65 20.905 12.067 3.868 1.835 
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Figure (6.3) Compression Strength versus Void Porosity for Numerical Models  

Containing Large Unisize Voids  
 

 

Figure (6.4) Compression Strength versus Void Porosity for Numerical Models  

Containing Small Unisize Voids 
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Figure (6.5) Deformation versus Void Porosity for Numerical Models  

Containing Large Unisize Voids  
 

 

Figure (6.6) Deformation versus Void Porosity for Numerical Models  

Containing Small Unisize Voids 
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Figure (6.7) Differences in Uniaxial Compression versus Void Porosity for Numerical 

Models Containing Unisize Voids – Both Large and Small Sizes  
 

 

Figure (6.8) Differences in Deformation versus Void Porosity for Numerical  

Models Containing Unisize Voids – Both Large and Small Sizes  
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Figure (6.9) Compression Strength versus Deformation for Numerical Models 

Containing Unisize Voids – Both Large and Small Sizes  
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changed was void orientation through rotating the voids by either 45 degree or 90 degree 

or both. Three different void shapes (square, rectangular, and triangular) with two 

different void sizes (large and small sizes) were studied to check the effects of void 

orientation on the mechanical properties of the numerical models. For the models with 

square voids, one void orientation (45 degree to obtain diamond shapes) was studied; 

while for the models with either rectangular voids or triangular voids two different void 

orientations (45 degree and 90 degree) were studied. Figure (6.10) and Table (6.4) show 

the characterizations of the model simulated in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (6.10) Numerical Models to Simulate the Effects of Void Orientation–

Large Size 
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Table (6.4) Numerical Models Containing Unisize Voids with Different Orientations 

Shape of 

Voids 

Size of 

Voids 

(mm) 

Void 

Rotation 

Number 

of Voids 

Void 

Porosity

, n (%) 

Sample Name 

Square 

Large,  

22.05 mm, 

(Side Length) 

0-degree 

(vertical) 

1 3.16 PA-USqL1-Vertical 
3 6.32 PA-USqL3-Vertical 

6 12.65 PA-USqL6-Vertical 

45-degree 

(Diamond) 

1 3.16 PA-USqL1- 45˚ (Diamond) 

3 6.32 PA-USqL3- 45˚ (Diamond) 

6 12.65 PA-USqL6- 45˚ (Diamond) 

Rectangular 

Large,  

15.59 x 31.18 

(mm) 

0-degree 

(vertical) 

1 3.16 PA-URL1-Vertical 

3 6.32 PA-URL3-Vertical 

6 12.65 PA-URL6-Vertical 

45-degree 
1 3.16 PA-URL1-45˚ 

3 6.32 PA-URL3-45˚ 

6 12.65 PA-URL6-45˚ 

45-degree 

(Horizontal) 

1 3.16 PA-URL1-90˚ (Horizontal) 

 

3 6.32 PA-URL3-90˚ (Horizontal) 

6 12.65 PA-URL6-90˚ (Horizontal) 

Triangular 

(Equilateral) 

Large,  

33.5 mm,  

(Side Length) 

0-degree 

(vertical) 

1 3.16 PA-UTL1-Straight 

3 6.32 PA-UTL3-Straight 

6 12.65 PA-UTL6-Straight 

45-degree 
1 3.16 PA-URL1-45˚ 

3 6.32 PA-URL3-45˚ 

6 12.65 PA-URL6-45˚ 

90-degree 

(Horizontal) 

1 3.16 PA-URL1-90˚ 

3 6.32 PA-URL3-90˚ 

6 12.65 PA-URL6-90˚ 

Square 

Small,  

11.0 mm, 

(Side Length) 

0-degree 

(vertical) 

1 3.14 PA-USqS3-Vertical 

3 6.28 PA-USqS6-Vertical 

6 12.56 PA-USqS12-Vertical 

45-degree 

(Diamond) 

1 3.14 PA-USqS3-45˚ (Diamond) 

3 6.28 PA-USqS6-45˚ (Diamond) 

6 12.56 PA-USqS12-45˚ (Diamond) 

Rectangular 

Small,  

11.06 x 22.13 

(mm) 

0-degree 

(vertical) 

1 3.14 PA-URS3-Vertical 

3 6.28 PA-URS6-Vertical 

6 12.56 PA-URS12-Vertical 

45-degree 
1 3.14 PA-URS3-45˚ 

3 6.28 PA-URS6-45˚ 

6 12.56 PA-URS12-45˚ 

45-degree 

(Horizontal) 

1 3.14 PA-URS3-90˚ (Horizontal) 

3 6.28 PA-URS6-90˚ (Horizontal) 

6 12.56 PA-URS12-90˚ (Horizontal) 

Triangular 

(Equilateral) 

Small,  

23.78 mm,  

(Side Length) 

0-degree 

(vertical) 

1 3.14 PA-UTS3-Straight 

3 6.28 PA-UTS6-Straight 

6 12.56 PA-UTS12-Straight 

45-degree 
1 3.14 PA-URS3-45˚ 

3 6.28 PA-URS6-45˚ 

6 12.56 PA-URS12-45˚ 

90-degree 

(Horizontal) 

1 3.14 PA-URS3-90˚ 

3 6.28 PA-URS6-90˚ 

6 12.56 PA-URS12-90˚ 
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The numerical results, uniaxial compressive strength (UCS) and Young’s modulus 

(E), for the simulated (models containing unisize voids with different orientations - 0-

degree, 45-degree, and 90-degree) are plotted as a function of void porosity as shown in 

Figures (6.11) to (6.22). The results are also shown in Tables (6.5) and (6.6). According 

to the results, the following observations can be discussed:  

1- Void orientations for models containing large square voids gave different values 

in uniaxial compressive strength as shown in Figure (6.11) However, for models 

containing small square voids no differences were observed as shown in Figure 

(6.12). From Figure (6.11), for the same porosity, the models with large square 

voids (zero rotation) gave slightly higher uniaxial compressive strength compared 

to the models with rotated square voids (diamond voids). In addition, the 

differences in the uniaxial compressive strength values increased with void 

porosity increasing for models with large voids; they are 1.39, 2.76, and 5.29 MPa 

for void porosities of 3.16, 6.32 and 12.65% respectively.  However, the 

differences in the uniaxial compressive strength values increased with void 

porosity increasing for models with small voids; they are 5.9, 2.38, and 1.98 MPa 

for void porosities of 3.14, 6.28 and 12.56% respectively. 

2- Regarding the values of Young’s modulus, the results for models containing 

square voids (both large and small sizes) showed slightly higher values compared 

to the models with 45-degree rotated square voids (diamond voids) as shown in 

Figures (6.12) and (6.14). The differences increased with void porosity increasing 

as shown in the figures. The differences for the models with large voids are 0.41, 

0.56, and 0.94 MPa for void porosities of 3.16, 6.32 and 12.65% respectively. For 
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the models with small voids, the differences are 0.25, 0.86, and 0.77 MPa for void 

porosities of 3.16, 6.32 and 12.65% respectively. 

3- For models with rectangular voids, both large and small void sizes, the void 

orientations gave different values in both uniaxial compressive strength and 

Young’s modulus as shown in Figures (6.15) to (6.18). From the figures, for the 

same porosity, the models with vertical rectangular voids gave higher strength and 

Young’s modulus compared to the models with rotated rectangular voids. In 

addition, the value of uniaxial compressive strength and Young’s modulus for 

models with rectangular voids rotated by 45-degree were higher than those with 

rectangular voids rotated by 90-degree. The maximum differences in the uniaxial 

compressive strength values are 4.8, 14.52, and 17.99 MPa for void porosities of 

3.15, 6.3 and 12.6% respectively. In other words, regardless of void size, the 

numerical models with unisize vertical rectangle voids were stronger and stiffer 

than the models with rotated rectangular voids.  

4- The different void orientations for models with triangular (equilateral) voids, both 

large and small void sizes, did not show distinct effects on the mechanical 

properties of the numerical models as shown in Figures (6.19) to (6.22). From the 

figures, except the uniaxial compressive strength for models having void porosity 

of 12.65% (large voids only), similar reduction in both uniaxial compressive 

strength and Young’s modules with increasing void porosity was observed 

regardless of the void size and distribution. However, for the void porosity of 

12.65% for large voids, see Figure (6.19), the models with straight triangular 
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voids had lower strength by 6.8 MPa (12.38%) compared to the models 

containing rotated equilateral triangular voids (both 45 and 90-degree).  

 

Table (6.5) Numerical Results for Models Containing Unisize Large Voids 

Model Name 

Porosity 

(n) 
Numerical Values 

Normalized 

Numerical Values 

% 
UCS 

(MPa) 

E 

(GPa) 

UCS 

(MPa) 

E 

(GPa) 

PA-UCL1 3.16 41.059 15.020 0.746 0.939 

PA-UCL3 6.32 32.076 13.327 0.583 0.833 

PA-UCL6 12.65 24.762 10.970 0.450 0.686 

PA-USqL1-Vertical 3.16 44.432 15.203 0.808 0.950 

PA-USqL3-Vertical 6.32 33.477 13.358 0.609 0.835 

PA-USqL6-Vertical 12.65 25.315 10.536 0.460 0.659 

PA-USqL1-45˚ (Diamond) 3.16 43.041 14.793 0.782 0.925 

PA-USqL3-45˚ (Diamond) 6.32 30.713 12.799 0.558 0.800 

PA-USqL6-45˚ (Diamond) 12.65 20.024 9.593 0.364 0.600 

PA-URL1-Vertical 3.16 46.723 15.340 0.849 0.959 

PA-URL3-Vertical 6.32 41.722 13.892 0.758 0.868 

PA-URL6-Vertical 12.65 34.656 11.961 0.630 0.748 

PA-URL1-45˚ 3.16 45.320 14.748 0.824 0.922 

PA-URL3-45˚ 6.32 31.790 11.931 0.578 0.746 

PA-URL6-45˚ 12.65 16.928 9.014 0.308 0.563 

PA-URL1-90˚ (Horizontal) 3.16 41.922 14.318 0.762 0.895 

PA-URL3-90˚ (Horizontal) 6.32 27.203 11.734 0.494 0.733 

PA-URL6-90˚ (Horizontal) 12.65 16.667 7.826 0.303 0.489 

PA-UTL1-Straight 3.16 40.731 13.790 0.740 0.862 

PA-UTL3-Straight 6.32 30.186 11.972 0.549 0.748 

PA-UTL6-Straight 12.65 13.751 8.092 0.250 0.506 

PA-UTL1-45˚ 3.16 44.329 14.570 0.806 0.911 

PA-UTL3-45˚ 6.32 30.541 12.573 0.555 0.786 

PA-UTL6-45˚ 12.65 20.407 8.006 0.371 0.500 

PA-UTL1-90˚  3.16 43.170 14.783 0.785 0.924 

PA-UTL3-90˚ 6.32 30.541 12.570 0.555 0.786 

PA-UTL6 -90˚ 12.65 20.562 8.992 0.374 0.558 
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Table (6.6) Numerical Results for Models Containing Unisize Small Voids 

Sample Name 

Porosity 

(n) 

Numerical 

Values 

Normalized 

Numerical Values 

% 
UCS 

(MPa) 

E  

(GPa) 

UCS 

(MPa) 

E  

(GPa) 

PA-UCSm3 3.14 42.489 14.615 0.772 0.913 

PA-UCSm6 6.28 31.845 13.271 0.579 0.829 

PA-UCSm12 12.56 26.566 11.192 0.483 0.700 

PA-USqSm3-Vertical 3.14 44.174 14.570 0.803 0.911 

PA-USqSm6-Vertical 6.28 34.478 13.390 0.627 0.837 

PA-USqSm12-Vertical 12.56 22.562 11.182 0.410 0.699 

PA-USqSm3-45˚ (Diamond) 3.14 38.271 14.323 0.696 0.895 

PA-USqSm6-45˚ (Diamond) 6.28 32.102 12.526 0.584 0.783 

PA-USqSm12-45˚ (Diamond) 12.56 20.584 10.411 0.374 0.651 

PA-URSm3-Vertical 3.14 44.592 15.132 0.811 0.946 

PA-URSm6-Vertical 6.28 39.360 14.052 0.715 0.878 

PA-URSm12-Vertical 12.56 29.974 11.811 0.545 0.738 

PA-URSm3-45˚ 3.16 37.114 14.029 0.675 0.877 

PA-URSm6-45˚ 6.32 28.368 12.073 0.516 0.755 

PA-URSm12-45˚ 12.65 21.703 9.791 0.395 0.612 

PA-URSm3-90˚ (Horizontal) 3.14 34.065 13.763 0.619 0.860 

PA-URSm6-90˚ (Horizontal) 6.28 28.771 11.495 0.523 0.718 

PA-URSm12-90˚ (Horizontal) 12.56 15.479 9.308 0.281 0.582 

PA-TCSm3-Straight 3.14 37.705 13.990 0.685 0.874 

PA-TCSm6-Straight 6.28 29.974 11.811 0.545 0.738 

PA-TCSm12-Straight 12.56 17.907 9.976 0.326 0.623 

PA-URSm3-45˚ 3.16 35.704 14.406 0.649 0.900 

PA-URSm6 -45˚ 6.32 29.792 11.817 0.542 0.739 

PA-URSm12-45˚ 12.65 20.055 9.682 0.365 0.605 

PA-URSm3-90˚ 3.14 36.741 13.980 0.668 0.874 

PA-URSm6-90˚ 6.28 31.001 12.044 0.564 0.753 

PA-URSm12-90˚ 12.56 19.863 10.059 0.361 0.629 

 



228 
 

 

Figure (6.11) Compression Strength versus Void Porosity for Numerical  

Models Containing Large Unisize Voids – Square Voids 

 

 

Figure (6.12) Compression Strength versus Void Porosity for Numerical  

Models Containing Small Unisize Voids – Square Voids 
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Figure (6.13) Deformation versus Void Porosity for Numerical Models  

Containing Large Unisize Voids – Square Voids 
 

 

 

Figure (5.14) Deformation versus Void Porosity for Numerical Models  

Containing Small Unisize Voids – Square Voids 
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Figure (6.15) Compressive Strength versus Void Porosity for Numerical  

Models Containing Large Unisize Voids – Rectangular Voids 
 

 

Figure (6.16) Compressive Strength versus Void Porosity for Numerical  

Models Containing Small Unisize Voids – Rectangular Voids 
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Figure (6.17) Deformation versus Void Porosity for Numerical Models 

Containing Large Unisize Voids –Rectangular Voids 

 

 

Figure (6.18) Deformation versus Void Porosity for Numerical Models 

Containing Small Unisize Voids – Rectangular Voids 
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Figure (6.19) Compressive Strength versus Void Porosity for Numerical 

Containing Large Unisize Voids – Triangular Voids 

 

 

Figure (6.20) Compressive Strength versus Void Porosity for Numerical  

Containing Small Unisize Voids – Triangular Voids 
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Figure (6.21) Deformation versus Void Porosity for Numerical Models 

Containing Large Unisize Voids – Triangular Voids 

 

 

Figure (6.22) Deformation versus Void Porosity for Numerical Models 

Containing Small Unisize Voids – Triangular Voids  

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 2 4 6 8 10 12 14 

E
 (

G
P

a)
 

Porosity, n (%) 

Large Triangular Voids - Straight 

Large Triangular Voids - 45 Degree Rotated 

Large Triangular Voids - 90 Degree Rotated 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 2 4 6 8 10 12 14 

E
 (

G
P

a)
 

Porosity, n (%) 

Small Triangular Voids - Straight 

Small Triangular Voids - 45 Degree Rotated 

Small Triangular Voids - 90 Degree Rotated 



234 
 

The numerical results showed that the models with either vertical rectangular 

voids or 45-degree rotated rectangular voids gave the highest value for both UCS and E, 

while, the models with either horizontal rectangular voids or straight triangular voids 

gave the lowest values for both UCS and E. 

 

6.4 Numerical Simulations to Validate the Effects of Void Geometry on the 

Mechanical Properties. 

The numerical results from the previous sections, sections 6.2 and 6.3, are used to 

validate the mathematical expressions in Chapter Four [Eqs. (4.11), (4.12), and (4.16)]. 

Therefore, the total width of solid columns (W) for each numerical model was measured 

as shown in Tables (6.7) and (6.8). Figure (6.23) shows examples of solid columns and 

porous columns for models containing six unisize large voids.  

The values of uniaxial compressive strength and Young’s modulus for numerical 

models are plotted as a function of void porosity in Figures (6.24) and (6.25). According 

to the results, for the void porosity ranging between 3% and 13%, regardless of the void 

size, void shape, void orientation, and void distribution, the normalized numerical results 

similar to the experimental results showed increases in both normalized UCS and E with 

decreasing void porosity. However, on the contrast to the experimental results, the 

coefficient of determination for uniaxial compressive strength (R
2
 =0.7902) is smaller 

than that for Young’s modulus (R
2
 = 0.8182). The numerical correlations for both 

strength and deformation followed logarithmic trend with increasing porosity, and they 

can be represented best by the following equations: 
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The percentages of the maximum differences in UCS values are 37.3%, 53.3%, 

and 152% for void porosities 3.15%, 6.3%, and 12.6% respectively. Regarding the 

deformation, the percentages of the maximum differences in E values are 11.6, 22.2%, 

and 104% for void porosities 3.15%, 6.3%, and 12.6% respectively. The differences can 

be attributed to the effects of void geometry and the efficiency of the software used in the 

numerical analysis. However, since the trend of numerical results in the numerical 

analysis in Chapter Five were in a good agreement with the trend of the experimental 

results, the latter cause for the differences can be considered as a secondary cause. 

Therefore, the main source of the differences in both UCS and E is believed to be the 

void geometry that can be represented by expressions in Eqs. (4.11), (4.12), and (4.16) as 

follows:  

           

          
  

 
       

     
 

   
                                                      

         

        
  

 
       

     
 

   
                                                         

             
 

 
  

       

     
                                               

Accordingly, the numerical values of uniaxial compressive strength and Young’s 

modulus for the numerical models are plotted as a function of void porosity, total width 
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of solid columns (W), and void size as shown in Figures (6.26) to (6.31). From the 

results, the following observations can be discussed:  

1- The relationships of normalized UCS and E with the normalized total width of 

solid columns (W), shown in Figures (6.26) and (6.27), are in very good 

agreements. The normalized W was obtained by dividing the total width of 

solid columns (W) for each numerical model by the model’s width, L (152.4 

mm). As shown in the figures, both uniaxial compressive strength and 

Young’s modulus increased when the normalized W increasing. The 

correlations followed very decent power trends and can be represented best by 

the following equations:  

           

          
                                                         

         

        
                                                              

2- From Tables (6.7) and (6.8), and Figure (6.23), the numerical models those 

have the highest strength and stiffness (models containing vertical rectangular 

voids) gave the largest W compared to the other models; W = 136.82 mm. 

While the numerical models with the lowest strength and stiffness (models 

containing straight triangular voids) gave the lowest W compared; W = 118.9 

mm. The total width for solid columns W for models with either circular or 

square voids were close to each other and accordingly their strength and 

stiffness were similar; W = 130.36 mm for models with square voids, and W = 

127.52 mm for models with either circular voids. 
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3- The relationships between the mechanical properties of the numerical models 

with the void porosity and void geometry expressed by total width of solid 

columns (W) gave a decent agreement following logarithmic trend as shown 

in Figures (6.28), (6.29), and (6.31). The mathematical expressions, Eqs. (6.4), 

(6.5), and (6.6),  can be represented best by the following equations: 

           

          
          

        

        
                                   

         

        
          

        

        
                                     

                     
            

        
                                    

                         

4- Considering the total width of solid columns (W) to explore the effects of void 

geometry on the mechanical properties improved the correlations between the 

mechanical properties of the numerical models and void porosity. From 

Figures (6.24) and (6.28), the percentages of the maximum differences in UCS 

values reduced from 152% to 48.4%; up to 68% of the differences are 

reduced. In addition, the coefficient of determination (R
2
) for uniaxial 

compressive strength increased from 0.7902 to 0.9181. Similarly, the 

correlations for Young’s modulus is improved and the percentages of the 

maximum differences in E values reduced from 104% to 26.5%; up to 74.5% 

of the differences are reduced. In addition, the coefficient of determination 

increased from 0.8182 to 0.9411; see Figures (6.25) and (6.29). Regarding the 

relationships between the uniaxial compressive strength and Young’s modulus 

as shown in Figures (6.30) and (6.31), the numerical results showed better 



238 
 

correlation, and the coefficient of determination increased from R
2
 = 0.8517 to 

R
2
 = 0.9247. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6.23) Total Width of Solid Columns (W) for Numerical Models 

Containing Six Large Unisize Voids 
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Table (6.7) Total Width of Solid Columns for Models Containing Large Unisize Voids 

Model Name 
Total Width of Solid Columns (mm) 

w1 w2 w3 w4 w5 W 

PA-UCL1 63.76 63.76       127.52 

PA-UCL3 45.55 19.4 19.48     84.43 

PA-UCL6 11.46 16.71 17.72     45.89 

PA-USqL1-Vertical 65.18 65.18       130.36 

PA-USqL3-Vertical 20.82 46.96 22.31     90.09 

PA-USqL6-Vertical 12.88 18.12 20.55     51.55 

PA-USqL1-45˚ (Diamond) 

(Diamond) 
60.61 60.61       121.22 

PA-USqL3-45˚ (Diamond) 42.4 16.25 13.18     71.83 

PA-USqL6- 45˚ (Diamond) 13.56 8.31 11.42     33.29 

PA-URL1-Vertical 68.41 68.41       136.82 

PA-URL3-Vertical 50.18 24.04 2.62 28.77   105.61 

PA-URL6-Vertical 21.35 16.11 1.5 6.41 27.01 72.38 

PA-URL1-45˚ 59.66 59.66       119.32 

PA-URL3-45˚ 15.3 41.45 11.29     68.04 

PA-URL6-45˚ 7.37 12.61 9.52     29.5 

PA-URL1-90˚ (Horizontal) 60.61 60.61       121.22 

PA-URL3-90˚ (Horizontal) 42.4 16.25 13.18     71.83 

PA-URL6-90˚ (Horizontal) 8.31 13.56 11.42     33.29 

PA-TCL1-Straight 59.45 59.45       118.9 

PA-TCL3-Straight 41.24 15.09 10.86     67.19 

PA-TCL6-Straight 7.15 12.4 9.09     28.64 

PA-URL1-45˚ 57.52 57.52       115.04 

PA-URL3-45˚ 13.16 44.31 12     69.47 

PA-URL6-45˚ 5.22 15.47 10.23     30.92 

PA-URL1-90˚ 56.55 66.53       123.08 

PA-URL3-90˚ 38.65 22.17 15.35     76.17 

PA-URL6-90˚ 9.8 14.23 13.58     37.61 
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Table (6.8) Total Width od Solid Columns for Models Containing Unisize Small Voids 

Model Name 
Total Width of Solid Columns (mm) 

w1 w2 w3 w4 w5 w6 w7 W 

PA-UCSm3 23.01 49.16 26.71     98.88 

PA-UCSm6 4.35 24.94 20.32 15.07    64.68 

PA-UCSm12 0.73 20.28 15.07     36.08 

PA-USqSm3-Vertical 24.02 50.17 28.71     102.9 

PA-USqSm6-Vertical 21.32 16.08 6.35 26.95    70.7 

PA-USqSm12-Vertical 21.29 16.08 1.45     38.82 

PA-USqSm3-45˚ 

(Diamond)  

 

 (Diamond) 

46.92 20.78 22.23     89.93 

PA-USqSm6-45˚ 

(Diamond) 
12.84 18.08 20.47     51.39 

PA-USqSm12-45˚ 

(Diamond) 
12.84 18.04      30.88 

PA-URSml3-Vertical 26.51 52.26 33.3 7.15    119.22 

PA-URSm6-Vertical 18.57 23.42 6.03 31.53 10.93   90.48 

PA-URSm12-Vertical 18.57 23.38 3.52 6.23 6.03 7.33 2.14 67.2 

PA-URSm3-45˚ 20.3 46.06 20.89     87.25 

PA-URSm6-45˚ 12.36 17.21 19.46     49.03 

PA-URSm12-45˚ 12.37 17.18      29.55 

PA-URSm3-90˚ 

(Horizontal) 
20.78 46.92 22.23     89.93 

PA-URSm6-90˚ 

(Horizontal) 
12.84 18.08 20.47     51.39 

PA-URSm12-90˚ 

(Horizontal) 
12.84 18.04      30.88 

PA-TCSm3-Straight 19.95 46.1 20.58     86.63 

PA-TCSm6-Straight 12.01 17.26 18.82     48.09 

PA-TCSm12-Straight 12.01 17.22      29.23 

PA-URSm3-45˚ 18.58 48.28 21.39     88.25 

PA-URSm6-45˚ 10.64 19.44 19.63     49.71 

PA-URSm12-45˚ 10.64 19.4      30.04 

PA-URSm3-90˚ 44.26 24.98 23.77     93.01 

PA-URSm6-90˚ 17.04 15.42 1.4 22    55.86 

PA-URSm12-90˚ 15.38 17.04      32.42 
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Figure (6.24) Normalized UCS versus Void Porosity for All Numerical Models  

Containing Unisize Voids with Different Shape, Size, Orientation and  

Distribution 

  

 

Figure (6.25) Normalized E versus Void Porosity for All Numerical Models  

Containing Unisize Voids with Different Shape, Size, Orientation and  

Distribution  
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Figure (6.26) Normalized UCS versus Normalized Total Width of Solid Columns  

(W) for All Numerical Models Containing Unisize Voids with Different Shape,  

Size, Orientation and Distribution 
 

 

Figure (6.27) Normalized E versus Normalized Total Width of Solid Columns  

(W) for All Numerical Models Containing Unisize Voids with Different Shape,  

Size, Orientation and Distribution 
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Figure (6.28) Normalized UCS versus Void Porosity versus and Normalized Total  

Width of Solid Columns (W) for All Numerical Models Containing Unisize Voids  

with Different Shape, Size, Orientation and Distribution 
 

 

Figure (6.29) Normalized E versus Void Porosity versus and Normalized Total  

Width of Solid Columns (W) for All Numerical Models Containing Unisize Voids  

with Different Shape, Size, Orientation and Distribution 
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Figure (6.30) Compressive Strength versus Void Porosity and Deformation for  

Numerical Models Containing Unisize Voids with Different Shape, Size,  

Orientation and Distribution  
 

 

Figure (6.31) Compressive Strength versus Void Porosity, Deformation, and  

Normalized Total Width of Solid Columns for Numerical Models Containing  

Unisize Voids with Different Shape, Size, Orientation and Distribution 
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CHAPTER SEVEN CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

 This study used both experimental and numerical results to characterize the 

effects of void porosity and geometry on strength, stiffness and failure modes of rock-like 

materials. For the experimental program, fifty two porous cubes made of Hydro-Stone 

TB
®

 containing voids with different size, shape and distribution were tested under 

uniaxal compression. In the numerical works, one hundred twenty seven (127) two-

dimensional porous models were simulated under uniaxial compression using UDEC 

software. 

 

7.1.1 Conclusions for the Experimental Results 

From the experimental results, the following conclusions can be drawn:  

1- For the void porosity ranging from 6% to 20%, the experimental values of 

uniaxial compressive strength and Young’s modulus for Hydro-StoneTB
®

 cubes 

decreased with void porosity increasing. However, the results displayed very high 

variation, especially with regard to Young’s modulus. 

2- The results in this study showed that it is not-only the porosity but also the void 

geometry can affect the strength and deformability of rock-like materials. 

Accordingly, the void geometry is partially responsible for the scattering of the 

test results. 

3- The hypothesis of using the bridge distances (Br), side distances (S), and top 

distances (T) to express the effects of void geometry on the mechanical properties 
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of rock-like materials did not improve the correlations between the mechanical 

properties and void geometry. This may due to the fact that these factors are 

interacting with each other and cannot be explored individually.  

4- The hypothesis of using the total width of solid columns (W) to express the effects 

of void geometry on the mechanical properties of rock-like materials improved 

the correlations between the uniaxial compressive strength and void geometry. 

The percentage of the maximum difference in UCS value reduced to less than 

half. In addition, the coefficient of determination for uniaxial compressive 

strength increased. However, the Young’s modulus did not show any distinct 

response. The correlations between Young’s Modulus and void porosity for rock-

like materials are very difficult to be constructed using experimental results 

obtained from uniaxial compression tests. Therefore, great care must be taken 

regarding strain measurement for unaixail compression tests on porous specimens.  

5- The ratio of specimen size (side length) to void size (void diameter) is important. 

For the ratio of specimen size to void size equal to and less than 7, both 

experimental and numerical results showed better correlation with void porosity. 

In addition, for the same porosity, increasing the void sizes from 12.8 mm in 

diameter to 31.1 mm in diameter (the ratios of large void sizes to smaller void size 

were ranging from 1 to about 2.5) did not show discernible effects on the 

mechanical behaviors of the rock-like material. Accordingly to explore the effect 

of voids size, larger ratios should be considered.  

6- The experimental results showed that the dominant failure modes for porous 

cubes with void porosity ranging from 6% to 20% is axial splitting (tension 
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fractures or failure). However, in each porous cube there were some shear failure 

(inclined cracks) depending on the void alignments and bridge distances. In 

general, the cracked were formed mainly at the void poles (or void tips) and 

intended to expand approximately parallel to the axial compression load, 

however, in some cubes cracks were formed between voids horizontally or sub-

horizontally depending on the distances between one void and the other voids 

located at the immediate vicinity of the void. In those cubes, when a crack passes 

vertically (or sub-vertically) between two voids, a horizontal crack was formed to 

connect that crack to the void side or the sample side. Finally, the coalescence of 

those cracks (horizontal (or sub-horizontal) and the vertical (or sub-vertical) 

cracks) formed an inclined crack that gave a failure mode similar to the shear 

failure mode. 

 

7.1.2 Conclusions from the Numerical Results 

From the numerical results, the following conclusions can be drawn:  

1- The numerical results from the two-dimensional numerical analysis using 

discrete element method, UDEC program, showed trend of reduction in the 

value of the mechanical properties of rock-like materials with void porosity 

increasing similar to the experimental results. However, the two-dimensional 

UDEC simulation gave conservative values for both uniaxial compressive 

strength and Young’s modulus compared to the values obtained from the 

experimental tests. This is because of either modeling a three-dimensional 

medium in two dimensions plane strain, or  inability to model  the friction 
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between the steel platen and the Hydro-StoneTB
®

 surfaces (top and bottom 

faces of the cubes), or both.  

2- The numerical strength results (numerical UCS) showed lesser scattering and 

larger coefficients of determination (R
2
) compared to the experimental 

strength results. In addition, the differences in UCS values reduced by more 

than half. Accordingly, up to half of the differences in the experimental UCS 

values can be attributed to the uncertainties existing in the experimental 

uniaxial tests. Similarly, the numerical deformation results (numerical E) 

tremendously reduced the data scattering and greatly increased the 

coefficients of determination. In addition, the percentages of the maximum 

differences in E values reduced by up to 85%. Therefore, again, great care 

must be taken regarding strain measurement for unaixail compression tests on 

porous specimens.  

3- The two-dimensional uniaxial compression results can be transferred to three-

dimensional results through power relationship; (Experimental Results)3D = 

a[(Numerical Results)2D]
b
. UDEC simulations showed that the value of a 

constant is ranging between 0.1955 and 0.385 for  uniaxial compressive 

strength, and between 1.0071 and 2.5351 for Young’s modulus. Regarding b 

constant, its value varies from 1.1655 to 1.378 for uniaxial compressive 

strength, and from 0.5668 to 0.9338 for Young’s modulus varied. 

4- UDEC simulations showed that the void shape has discernible effects on the 

mechanical properties of the two-dimensional models under uniaxial 

compression. The numerical simulation displayed that the models containing 
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vertical rectangular voids were the strongest and stiffest models compared to 

the models with either, circular voids, or square voids, or straight equilateral 

triangular voids. While the specimens with straight equilateral triangular voids 

were the weakest. The porous models with circular void showed similar 

results to the models with square voids.  

5- UDEC simulations showed that the void orientation is also having effects on 

the mechanical properties. The rotation of square voids by 45-degree, to 

obtain models with voids having diamond shape, gave models with slightly 

smaller uniaxial compressive strength and Young’s Modulus. The rotation of 

vertical void by 90-degree, to obtain models with horizontal rectangular voids, 

reduced the strength of the models to less than half.  However, the void 

orientation for triangular voids did not show any effects on the mechanical 

properties of the two-dimensional models under uniaxial compression.  

6- UDEC simulations showed that the hypothesis of using the total width of solid 

columns (W) to express the effects of void geometry on the mechanical 

properties can improve the correlations between the uniaxial compressive 

strength and void geometry. From the numerical results, using W to express 

the effects of void geometry, the percentages of the maximum differences in 

UCS values reduced from 152% to 49%; up to 68% of the differences are 

reduced. In addition, the coefficient of determination (R
2
) is increased. 

Similarly, the correlations for Young’s modulus is improved and the 

percentages of the maximum differences in E values reduced from 104% to 
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27%; up to 74% of the differences are reduced. In addition, the coefficient of 

determination is increased as well. 

 

7.2 Recommendations 

To extend the scope of understanding the effects of void porosity and void geometry 

on the mechanical properties of porous rock, more researches are needed as follows: 

1-  Three-Dimensional numerical analysis to study the effects of void geometry on 

the mechanical behavior of rock-like materials. 

2- Numerical analysis to study the effects of void geometry on the mechanical 

behavior of rock-like materials using plane stress assumption. 

3- Numerical analysis to study the effects of void geometry on the crack initiation 

and propagation using UDEC. 

4- Numerical analysis to study the effects of void uniformity on the mechanical 

behavior of rock-like materials; comparing the numerical results for models 

containing voids with mixed sizes to the numerical results of models containing 

voids with unisize sizes for the same void porosities. 

5- In order to see if the block size in the discrete element modeling has effects on the 

numerical results of UDEC simulations, more numerical study needs with 

different block sizes. 

6- To verify the numerical conclusions on the effects of void shape and orientation, 

more experimental tests are necessary. 

7- To explore the effects of confining pressure on the mechanical behavior of porous 

rocks, more numerical simulations with different confining pressure are needed. 
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8- Experimental testing of rock-like material with void porosity less than 6% and 

more than 20%.  

9- Since conducting experimental tests to explore the effects of void porosity and 

geometry on the tensile strength of rocks are semi-impossible, simulating 

numerical models under uniaxial tension stress can be helpful, and accordingly 

more research is needed in this area.   
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APPENDIX (I) LABROTARY TEST DATA 

 

Table (I-A1) EXPERIMENTAL RESULTS OF TESTED CUBES 

Sample 

No. 
Sample Name 

Porosity 

(n) 

Uniaxial 

Compressive 

Strength, UCS 

Young's 

Modulus, E  

(25 - 50%) 

% MPa GPa 

1 PA-UCL2-A 6.56 19.24 9.81 

2 PA-UCL2-B 6.56 19.37 8.90 

3 PA-UCL2-C 6.56 16.62 8.65 

4 PB-UCL2-A 6.56 17.17 10.98 

5 PB-UCL2-B 6.56 19.99 11.21 

6 PB-UCL2-C 6.56 14.75 13.02 

7 PC-UCL2-A 6.56 19.17 10.13 

8 PC-UCL2-B 6.56 24.27 9.46 

9 PC-UCL2-C 6.56 24.96 9.99 

10 PA-UCL4-A 13.12 18.20 8.55 

11 PA-UCL4-B 13.12 14.27 8.56 

12 PA-UCL4-C 13.12 13.51 9.66 

13 PB-UCL4-A 13.12 11.45 9.95 

14 PB-UCL4-B 13.12 11.65 7.40 

15 PB-UCL4-C 13.12 13.24 - 

16 PC-UCL4-A 13.12 15.31 11.45 

17 PC-UCL4-B 13.12 11.79 11.09 

18 PC-UCL4-C 13.12 17.24 8.18 

19 PA-UCL6-A 19.68 9.24 6.53 

20 PA-UCL6-B 19.68 10.34 6.84 

21 PA-UCL6-C 19.68 9.93 7.74 

22 PB-UCL6-A 19.68 8.89 13.44 

23 PB-UCL6-B 19.68 10.34 5.76 

24 PB-UCL6-C 19.68 9.65 9.18 

25 PC-UCL6-A 19.68 8.55 7.54 

26 PC-UCL6-B 19.68 10.76 15.41 

27 PC-UCL6-C 19.68 5.03 - 

28 PA-UCM4-A 6.61 21.24 12.2 

29 PA-UCM4-B 6.61 24.61 11.95 

30 PA-UCM4-C 6.61 21.86 10.29 
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Table (I-A2) EXPERIMENTAL RESULTS OF TESTED CUBES 

Sample 

No. 
Sample Name 

Porosity 

(n) 

Uniaxial 

Compressive 

Strength, UCS 

Young's 

Modulus, E  

(25 - 50%) 

% MPa GPa 

31 PB-UCM4-A 6.61 20.96 10.81 

32 PB-UCM4-B 6.61 21.99 11.01 

33 PB-UCM4-C 6.61 24.89 11.67 

34 PC-UCM4-A 6.61 25.44 13.77 

35 PC-UCM4-B 6.61 23.65 12.23 

36 PC-UCM4-C 6.61 19.44 14.27 

37 PA-UCM8-A 13.21 19.37 7.92 

38 PA-UCM8-B 13.21 18.96 - 

39 PA-UCM8-C 13.21 17.65 - 

40 PB-UCM8-A 13.21 17.72 10.07 

41 PB-UCM8-B 13.21 16.96 - 

42 PB-UCM8-C 13.21 10.41 - 

43 PC-UCM8-A 13.21 15.44 12.78 

44 PC-UCM8-B 13.21 13.24 7.60 

45 PC-UCM8-C 13.21 13.24 10.91 

46 PA-UCM12-A 19.82 12.82 8.23 

47 PA-UCM12-B 19.82 12.55 8.80 

48 PA-UCM12-C 19.82 12.20 8.80 

49 PB-UCM12-A 19.82 7.58 9.52 

50 PB-UCM12-B 19.82 9.17 4.10 

51 PB-UCM12-C 19.82 9.65 13.46 

52 PC-UCM12-A 19.82 5.72 7.80 

53 PC-UCM12-B 19.82 2.76 7.34 

54 PC-UCM12-C 19.82 5.38 5.72 

55 PA-UCS11-A 6.07 26.75 11.95 

56 PA-UCS11-B 6.07 27.99 11.20 

57 PA-UCS11-C 6.07 24.06 - 

58 PB-UCS11-A 6.07 25.41 - 

59 PB-UCS11-B 6.07 28.89 10.67 

60 PB-UCS11-C 6.07 25.92 10.67 

61 PC-UCS11-A 6.07 20.48 11.33 

62 PC-UCS11-B 6.07 17.51 11.75 

63 PC-UCS11-C 6.07 22.82 11.05 

64 PA-UCS22-A 12.14 15.79 11.99 
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Table (I-A3) EXPERIMENTAL RESULTS OF TESTED CUBES 

Sample 

No. 
Sample Name 

Porosity 

(n) 

Uniaxial 

Compressive 

Strength, UCS 

Young's 

Modulus, E  

(25 - 50%) 

% MPa GPa 

65 PA-UCS22-B 12.14 18.89 9.46 

66 PA-UCS22-C 12.14 15.65 9.51 

67 PB-UCS22-A 12.14 17.31 8.51 

68 PB-UCS22-B 12.14 16.96 8.30 

69 PB-UCS22-C 12.14 18.41 9.36 

70 PC-UCS22-A 12.14 9.93 12.09 

71 PC-UCS22-B 12.14 16.75 - 

72 PC-UCS22-C 12.14 16.75 - 

73 PA-UCS33-A 18.22 10.89 11.02 

74 PA-UCS33-B 18.22 10.96 8.34 

75 PA-UCS33-C 18.22 12.20 8.04 

76 PB-UCS33-A 18.22 11.86 - 

77 PB-UCS33-B 18.22 13.24 10.11 

78 PB-UCS33-C 18.22 13.31 8.27 

79 PC-UCS33-A 18.22 10.41 8.22 

80 PC-UCS33-B 18.22 7.65 6.66 

81 PC-UCS33-C 18.22 9.77 - 

82 PA-USqL3-A 6.28 20.96 10.19 

83 PA-USqL3-B 6.28 23.44 - 

84 PA-USqL3-C 6.28 18.55 - 

85 PB-USqL3-A 6.28 27.79 11.76 

86 PB-USqL3-B 6.28 28.96 10.84 

87 PB-USqL3-C 6.28 28.06 11.42 

88 PA-USqL6-A 12.56 16.96 10.98 

89 PA-USqL6-B 12.56 16.55 10.25 

90 PA-USqL6-C 12.56 15.10 11.71 

91 PB-USqL6-A 12.56 20.34 8.07 

92 PB-USqL6-B 12.56 19.24 8.03 

93 PB-USqL6-C 12.56 20.48 8.43 

94 PA-USqS6-A 6.32 27.17 11.82 

95 PA-USqS6-B 6.32 25.17 13.57 

96 PA-USqS6-C 6.32 26.27 10.39 

97 PB-USqS6-A 6.32 26.20 7.18 

98 PB-USqS6-B 6.32 26.54 10.81 
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Table (I-A4) EXPERIMENTAL RESULTS OF TESTED CUBES 

Sample 

No. 
Sample Name 

Porosity 

(n) 

Uniaxial 

Compressive 

Strength, UCS 

Young's 

Modulus, E  

(25 - 50%) 

% MPa GPa 

99 PB-USqS6-C 6.32 26.82 9.91 

100 PA-USqM12-A 12.65 16.27 10.31 

101 PA-USqS12-B 12.65 17.37 12.77 

102 PA-USqS12-C 12.65 18.48 10.80 

103 PB-USqS12-A 12.65 17.10 7.67 

104 PB-USqS12-B 12.65 15.44 9.76 

105 PB-USqS12-C 12.65 16.00 7.78 

106 PA-UDmL3-A 6.28 15.38 9.91 

107 PA-UDmL3-B 6.28 16.75 10.46 

108 PA-UDmL3-C 6.28 16.06 10.58 

109 PB-UDmL3-A 6.28 22.41 11.62 

110 PB-UDmL3-B 6.28 24.82 11.37 

111 PB-UDmL3-C 6.28 21.17 9.83 

112 PA-UDmL6-A 12.56 12.00 7.99 

113 PA-UDmL6-B 12.56 12.00 4.75 

114 PA-UDmL6-C 12.56 11.65 9.90 

115 PB-UDmL6-A 12.56 11.17 10.34 

116 PB-UDmL6-B 12.56 10.48 7.62 

117 PB-UDmL6-C 12.56 10.00 9.69 

118 PA-UDmS6-A 6.32 19.17 11.45 

119 PA-UDmS6-B 6.32 19.44 11.96 

120 PA-UDmS6-C 6.32 19.03 9.64 

121 PB-UDmS6-A 6.32 18.68 11.56 

122 PB-UDmS6-B 6.32 22.61 10.54 

123 PB-UDmS6-C 6.32 22.55 11.57 

124 PA-UDmS12-A 12.65 10.27 9.16 

125 PA-UDmS12-B 12.65 11.31 7.05 

126 PA-UDmS12-C 12.65 11.45 9.35 

127 PB-UDmS12-A 12.65 14.41 10.75 

128 PB-UDmS12-B 12.65 16.34 12.58 

129 PB-UDmS12-C 12.65 17.51 10.69 

130 PA-UXCL1M1S3-A 6.59 21.93 11.41 

131 PA-UXCL1M1S3-B 6.59 24.55 11.53 

132 PA-UXCL1M1S3-C 6.59 23.86 10.29 
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Table (I-A5) EXPERIMENTAL RESULTS OF TESTED CUBES 

Sample 

No. 
Sample Name 

Porosity 

(n) 

Uniaxial 

Compressive 

Strength, UCS 

Young's 

Modulus, E  

(25 - 50%) 

% MPa GPa 

133 PB-UXCL1M1S3-A 6.59 23.03 11.20 

134 PB-UXCL1M1S3-B 6.59 18.68 11.77 

135 PB-UXCL1M1S3-C 6.59 24.89 10.50 

136 PC-UXCL1M1S3-A 6.59 22.61 12.69 

137 PC-UXCL1M1S3-B 6.59 19.44 10.45 

138 PC-UXCL1M1S3-C 6.59 21.51 9.31 

139 PA-UXCL2M3S6-A 14.83 13.17 6.30 

140 PA-UXCL2M3S6-B 14.83 14.34 9.68 

141 PA-UXCL2M3S6-C 14.83 14.27 7.99 

142 PB-UXCL2M3S6-A 14.83 13.86 8.43 

143 PB-UXCL2M3S6-B 14.83 13.72 7.93 

144 PB-UXCL2M3S6-C 14.83 0.00 4.31 

145 PC-UXCL2M3S6-A 14.83 14.69 9.75 

146 PC-UXCL2M3S6-B 14.83 0.00 9.20 

147 PC-UXCL2M3S6-C 14.83 0.00 9.47 

148 PA-UXCL2M5S8-A 19.24 8.96 6.46 

149 PA-UXCL2M5S8-B 19.24 12.13 7.03 

150 PA-UXCL2M5S8-C 19.24 11.45 7.17 

151 PB-UXCL2M5S8-A 19.24 9.93 9.65 

152 PB-UXCL2M5S8-B 19.24 10.82 12.64 

153 PB-UXCL2M5S8-C 19.24 10.55 6.95 

154 PC-UXCL2M5S8-A 19.24 8.96 6.40 

155 PC-UXCL2M5S8-B 19.24 7.45 8.07 

156 PC-UXCL2M5S8-C 19.24 11.86 - 

157 Solid-1 0.00 54.95 16.04 

158 Solid-2 0.00 54.80 14.66 

159 Solid-3 0.00 53.42 16.01 

160 Solid-4 0.00 52.85 16.70 

161 Solid-5 0.00 57.31 14.77 

162 Solid-6 0.00 55.45 18.13 

163 Solid-7 0.00 54.65 15.55 

164 Solid-8 0.00 56.94 16.79 

165 Solid-9 0.00 56.7 14.91 

166 Solid-10 0.00 53.05 16.20 
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FIGURE (I-1) PHOTOGRAPHS OF TESTED POROUS AND SOLID CUBES 
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APPENDIX (II) UDEC CALIBRATION 

 

Table (II-1) MATERIAL PROPERTIES USED IN THE MODEL CALIBRATION 

Model 

Name 

Material Properties Used as UDEC Input Data 

Den K
m

 G
m

 
jten, 

t
m

 

jfric, 

Ø
m

 

jcoh, 

C
m

 
resTen resFric resCohr kn ks 

kg/m3 Pa Pa Pa Degree Pa Pa Degree Pa Pa/m Pa/m 

SDSC1 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 
35 

12 

x106 
0 15 0 

1.211 

x 1012 

0.624

x1012 

SDSC2 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
12 

x106 0 15 0 
1.211 

x 1014 

0.624

x1014 

SDSC3 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
24 

x106 0 15 0 
1.211 

x 1014 

0.624

x1014 

SDSC4 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
26 

x106 0 15 0 
1.211 

x 1014 

0.624

x1014 

SDSC5 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
24.5 

x106 0 15 0 
1.1 x 

1014 

0.55 

x1014 

SDSC6 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
24.8 

x106 0 15 0 
1.05 x 

1014 

0.525 

x1014 

SDSC7 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
25 

x106 0 15 0 
1.05 x 

1014 

0.525 

x1014 

SDSC8 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
25.5 

x106 0 15 0 
1.0 x 

1014 

0.5 

x1014 

SDSC9 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
25.2 

x106 0 15 0 
1.02 x 

1014 

0.51 

x1014 

SDSC10 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
25.2 

x106 0 15 0 
1.03 x 

1014 

0.515 

x1014 

SDSC11 1700 
12.11 

x109 

6.24 

x109 

5.516 

x104 
35 

25.1 

x106 
0 15 0 

1.03 x 

1014 

0.515

x1014 

SDSC12 1700 
12.11 

x109 

6.24 

x109 

5.516 

x105 35 
25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC13 1700 
12.11 

x109 

6.24 

x109 

1.1032 

x106 35 
25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC14 1700 
12.11 

x109 

6.24 

x109 

2.758 

x106 35 
25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC15 1700 
12.11 

x109 

6.24 

x109 

5.516 

x106 35 
25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC16 1700 
12.11 

x109 

6.24 

x109 

11.032 

x106 35 
25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC17 1700 
12.11 

x109 

6.24 

x109 

16.548 

x106 
35 

25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC18 1700 
12.11 

x109 

6.24 

x109 

27.58 

x106 
35 

25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC19 1700 
12.11 

x109 

6.24 

x109 

5.516 

x107 
35 

25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC20 1700 
12.11 

x109 

6.24 

x109 

11.032 

x107 
35 

25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC21 1700 
12.11 

x109 

6.24 

x109 

5.516 

x108 
35 

25.1 

x106 0 15 0 
1.03 x 

1014 

0.515

x1014 

SDSC22 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
21 

35.6 

x106 
0 7 0 

1.03 x 

1014 

0.515

x1014 

SDSC23 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
21 

36 

x106 
0 7 0 

1.03 x 

1014 

0.515

x1014 

SDSC24 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
21 

36.2 

x106 
0 7 0 

1.03 x 

1014 

0.515

x1014 

SDSC25 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
21 

36.22 

x106 
0 7 0 

1.03 x 

1014 

0.515

x1014 

SDSC26 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
21 

36.22 

x106 
0 3 0 

1.03 x 

1014 

0.515

x1014 
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Table (II-2) MATERIAL PROPERTIES USED IN THE MODEL CALIBRATION 

Model 

Name 

Material Properties Used as UDEC Input Data 

Den K
m

 G
m

 
jten, 

t
m

 

jfric, 

Ø
m

 

jcoh, 

C
m

 
resTen resFric resCohr kn ks 

kg/m3 Pa Pa Pa Degree Pa Pa Degree Pa Pa/m Pa/m 

SDSC27 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
24 

33.67 

x106 
0 8 0 

1.03 x 

1014 

0.515

x1014 

SDSC28 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
24 

33.69 

x106 
0 8 0 

1.03 x 

1014 

0.515

x1014 

SDSC29 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
24 

33.8x

106 
0 8 0 

1.03 x 

1014 

0.515

x1014 

SDSC30 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
24 

33.75 

x106 
0 8 0 

1.03 x 

1014 

0.515

x1014 

SDSC31 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
24 

33.75 

x106 
0 5 0 

1.03 x 

1014 

0.515

x1014 

SDSC32 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

27.5 

x106 
0 9 0 

1.03 x 

1014 

0.515

x1014 

SDSC33 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

32 

x106 
0 9 0 

1.03 x 

1014 

0.515

x1014 

SDSC34 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

31 

x106 
0 9 0 

1.03 x 

1014 

0.515

x1014 

SDSC35 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

31.3 

x106 
0 9 0 

1.03 x 

1014 

0.515

x1014 

SDSC36 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

31.1 

x106 
0 9 0 

1.03 x 

1014 

0.515

x1014 

SDSC37 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

31.12 

x106 
0 9 0 

1.03 x 

1014 

0.515

x1014 

SDSC38 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

31.12 

x106 
0 5 0 

1.03 x 

1014 

0.515

x1014 

SDSC39 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
27 

31.12 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC40 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
31 

28 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC41 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
31 

27 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC42 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
31 

26.7 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC43 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
31 

26.66 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC44 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
31 

26.65 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC45 1700 
12.121

2 x109 

6.25 

x109 

16.63 

x106 
31 

26.55 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC46 1700 
12.121

2 x109 

6.25 

x109 

16.68 

x106 
31 

26.5 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC47 1700 
12.121

2 x109 

6.25 

x109 

16.678 

x106 
31 

26.48 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC48 1700 
12.121

2 x109 

6.25 

x109 

16.679 

x106 
31 

26.46 

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC49 1700 
12.121

2 x109 

6.25 

x109 

16.679 

x106 
31 

26.44

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC50 1700 
12.121

2 x109 

6.25 

x109 

16.679 

x106 
31 

26.45

x106 
0 11 0 

1.03 x 

1014 

0.515

x1014 

SDSC51 1700 
12.121

2 x109 

6.25 

x109 

16.679 

x106 
31 

26.45

x106 
0 5 0 

1.03 x 

1014 

0.515

x1014 

SDSC52 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
35 

25.2 

x106 
0 15 0 

1.03 x 

1014 

0.515

x1014 

SDSC53 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
35 

23.2 

x106 
0 15 0 

1.03 x 

1014 

0.515

x1014 
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Table (II-3) MATERIAL PROPERTIES USED IN THE MODEL CALIBRATION 

Model 

Name 

Material Properties Used as UDEC Input Data 

Den K
m

 G
m

 
jten, 

t
m

 

jfric, 

Ø
m

 

jcoh, 

C
m

 

res

Ten 
resFric 

res

Cohr 
kn ks 

kg/m3 Pa Pa Pa Deg. Pa Pa Deg. Pa Pa/m Pa/m 

SDSC54 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
35 

23.4 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC55 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
35 

23.8 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC56 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
35 

23.6 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC57 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
35 

23.5x10
6 

0 15 0 
1.03 x 

1014 

0.515x101

4 

SDSC58 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
11 

23.5x10
6 

0 15 0 
1.03 x 

1014 

0.515x101

4 

SDSC59 1700 
12.121

2 x109 

6.25 

x109 

16.625 

x106 
5 

23.5x10
6 

0 15 0 
1.03 x 

1014 

0.515x101

4 

SDSC60 1700 
12.121

2 x109 

6.25 

x109 

16.670 

x106 
42 

20.5 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC61 1700 
12.121

2 x109 

6.25 

x109 

17.00 

x106 
42 

20.2 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC62 1700 
12.121

2 x109 

6.25 

x109 

17.00 

x106 
42 

20.25 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC63 1700 
12.121

2 x109 

6.25 

x109 

16.7 

x106 
42 

20.3 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC64 1700 
12.121

2 x109 

6.25 

x109 

17.0 

x106 
42 

20.29 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC65 1700 
12.121

2 x109 

6.25 

x109 

16.92 

x106 
42 

20.32 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC66 1700 
12.121

2 x109 

6.25 

x109 

16.92 

x106 
42 

20.4 

x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC67 1700 
12.121

2 x109 

6.25 

x109 

16.92 

x106 
42 

20.4 

5x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC68 1700 
12.121

2 x109 

6.25 

x109 

16.92 

x106 
42 

20.45 

5x106 
0 15 0 

1.03 x 

1014 

0.515x101

4 

SDSC69 1700 
12.121

2 x109 

6.25 

x109 

16.00 

x106 
31 

26.31 

x106 
0 11 0 

0.70 

x1014 

0.35 

x1014 

SDSC70 1700 
12.121

2 x109 

6.25 

x109 

16.15 

x106 
31 

26.24 

x106 
0 11 0 

0.71 

x1014 

0.355 

x1014 

SDSC71 1700 
12.121

2 x109 

6.25 

x109 

16.12 

x106 
31 

26.245 

x106 
0 11 0 

0.714 

x1014 

0.357 

x1014 

SDSC72 1700 
12.121

2 x109 

6.25 

x109 

16.09 

x106 
31 

26.075 

x106 
0 11 0 

0.728 

x1014 

0.364 

x1014 

SDSC73 1700 
12.121

2 x109 

6.25 

x109 

16.09 

x106 
31 

26.068 

x106 
0 11 0 

0.7272 

x1014 

0.3636 

x1014 

SDSC74 1700 
12.121

2 x109 

6.25 

x109 

16.095 

x106 
31 

26.0675

8x106 
0 11 0 

0.7272 

x1014 

0.3636 

x1014 

SDSC75 1700 
12.121

2 x109 

6.25 

x109 

16.09 

x106 
31 

26.00 

x106 
0 11 0 

0.72728

x1014 

0.36364x

1014 

SDSC76 1700 
12.121

2 x109 

6.25 

x109 

16.077 

x106 
31 

26.01 

x106 
0 11 0 

0.72728

x1014 

0.36364x

1014 

SDSC77 1700 
12.121

2 x109 

6.25 

x109 

16.072 

x106 
31 

26.0191

5x106 
0 11 0 

0.72728

x1014 

0.36364x

1014 

SDSC78 1700 
12.121

2 x109 

6.25 

x109 

16.072 

x106 
31 

26.0172

5x106 
0 11 0 

0.72728

x1014 

0.36364x

1014 

SDSC79 1700 
12.121

2 x109 

6.25 

x109 

16.071 

x106 
31 

26.0172

x106 
0 11 0 

0.72728

x1014 

0.36364x

1014 

SDSC80 1700 
12.121

2 x109 

6.25 

x109 

16.072 

x106 
31 

26.0173

5x106 
0 11 0 

0.72728

x1014 

0.36364x

1014 
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Table (II-4) NUMERICAL RESULTS FOR SIMULATED MODELS IN THE 

CALIBRATION PROCESS 

Model 

Name 

Uniaxial Compressive 

Strength, UCS 
Young’s Modulus, E 

Uniaxial Compressive 

Strength, UCS 

(MPa) (GPa) (MPa) 

SDSC1 30.281 2.733 - 

SDSC2 28.281 15.816 - 

SDSC3 52.066 16.123 - 

SDSC4 56.660 16.161 - 

SDSC5 53.592 16.062 - 

SDSC6 54.313 15.999 - 

SDSC7 54.480 16.004 - 

SDSC8 55.745 15.984 - 

SDSC9 55.242 15.984 - 

SDSC10 55.039 16.004 - 

SDSC11 54.548 15.984 0.011 

SDSC12 54.965 16.004 0.073 

SDSC13 54.923 15.992 0.155 

SDSC14 54.989 15.997 0.521 

SDSC15 55.039 16.004 0.000 

SDSC16 55.230 16.008 3.424 

SDSC17 58.807 16.006 5.507 

SDSC18 58.903 16.031 8.383 

SDSC19 58.867 16.031 8.390 

SDSC20 58.867 16.031 8.390 

SDSC21 58.867 16.031 8.390 

SDSC22 53.956 16.127 5.510 

SDSC23 54.653 16.024 5.508 

SDSC24 54.937 16.036 5.506 

SDSC25 54.985 16.034 5.510 

SDSC26 52.692 16.017 5.510 

SDSC27 54.872 16.021 5.506 

SDSC28 54.891 16.021 5.506 

SDSC29 54.698 16.020 5.506 

SDSC30 55.056 16.019 5.506 

SDSC31 53.239 16.015 5.506 

SDSC32 48.540 15.978 5.492 

SDSC33 56.613 16.038 5.492 

SDSC34 54.799 16.024 5.492 

SDSC35 55.338 16.031 5.492 

SDSC36 54.912 16.025 5.492 

SDSC37 54.953 16.017 5.492 

SDSC38 52.268 16.005 5.492 

SDSC39 55.512 16.024 5.492 

SDSC40 58.453 16.042 5.446 
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Table (II-5) NUMERICAL RESULTS FOR SIMULATED MODELS IN THE 

CALIBRATION PROCESS 

Model 

Name 

Uniaxial Compressive 

Strength, UCS 
Young’s Modulus, E 

Uniaxial Tensile 

Strength, UTS 

(MPa) (GPa) (MPa) 

SDSC41 55.761 16.022 5.446 

SDSC42 55.220 16.014 5.450 

SDSC43 55.325 16.013 5.439 

SDSC44 54.819 16.013 5.451 

SDSC45 55.401 16.021 5.446 

SDSC46 55.231 16.014 5.521 

SDSC47 55.120 16.015 5.481 

SDSC48 55.145 16.015 5.505 

SDSC49 54.744 16.014 5.498 

SDSC50 55.064 16.016 5.510 

SDSC51 55.049 16.016 5.506 

SDSC52 59.069 16.050 5.512 

SDSC53 54.323 16.012 5.495 

SDSC54 54.762 16.018 5.500 

SDSC55 55.710 16.022 5.509 

SDSC56 55.225 16.024 5.492 

SDSC57 55.026 16.021 5.501 

SDSC58 55.007 16.021 5.502 

SDSC59 55.014 16.021 5.497 

SDSC60 55.296 16.024 5.427 

SDSC61 54.534 16.017 5.445 

SDSC62 54.559 16.020 5.503 

SDSC63 54.498 16.017 5.438 

SDSC64 54.638 16.017 5.513 

SDSC65 54.462 16.018 5.520 

SDSC66 54.662 16.019 5.507 

SDSC67 55.048 16.022 5.488 

SDSC68 53.134 16.010 5.488 

SDSC69 57.553 15.954 5.460 

SDSC70 54.985 15.933 5.586 

SDSC71 57.491 15.977 5.556 

SDSC72 54.471 15.971 5.519 

SDSC73 55.240 16.000 5.415 

SDSC74 54.520 15.991 5.517 

SDSC75 54.194 15.993 5.531 

SDSC76 54.146 15.997 5.534 

SDSC77 55.123 16.000 5.528 

SDSC78 54.147 16.924 5.528 

SDSC79 54.272 16.008 5.511 

SDSC80 55.026 

 

15.999 

 

5.528 
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Figure (II.1) COMPRESSION STRESS-STRAIN CURVE FOR THE 

CALIBRATED MODEL 

Figure (II.2) POST-FAILURE MODE (IN COMRESSION) FOR THE 

CALIBRATED MODEL 
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Figure(II.3) TENSION STRESS-STRAIN CURVE FOR THE CALIBRATED 

MODEL 

Figure (II.4) POST-FAILURE MODE (IN TENSION) FOR THE CALIBRATED 

MODEL 
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APPENDIX (III) NUMERICAL SIMULATIONS FOR HYDRO-STONETB
® 

CUBES 

AND THEIR STRESS-STRAIN CURVES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PA-UCL2-2 

PB-UCL2 

Figure (III.1) Numerical Simulations for Hydro-StonTB
®

 Cubes and Their Stress-Strain 

Curves - PA-UCL2-1 
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APPENDIX (IV) NUMERICAL MODELS AND THEIR STRESS-STRAIN CURVES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

PA-UCL6 

PA-UCL3 

Figure (IV.1) Numerical Models and their Stress-Strain Curves - PA-UCL1 
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PA-USqL3-Vertical 

PA-USqL1-Vertical 

PA-USqL6-Vertical 

PA-USqL1-45˚ (Diamond) 



299 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PA-USqL3-45˚ (Diamond) 
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