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ABSTRACT 

 

Investigating the Feasibility of Growing Algae for Fuel in Southern Nevada 

 

by 

 

Faegheh Moazeni 

 

Dr. Nader Ghafoori, Examination Committee Chair 

Professor of Civil and Environmental Engineering and Construction 

University of Nevada, Las Vegas 

 

Dr. Henry Sun, Research adviser 

Assistant Professor at Division of Earth and Ecosystem Science 

Desert Research Institute, Las Vegas 

 

 

Microalgae capable of growing in waste are adequate to be mass-cultivated for 

biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the 

feedstock production.  This study replaces fertilizers and clean water with waste products.  

The investigated wastes include (1) the liquid fraction of sewage after solids and particles 

are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at 

the end of the lipids extraction process at biofuel plants.  These wastes contain sufficient 

amount of nitrogen and phosphorus required for algal growth.  This study proposes a 

system in which centrate would be used as an initial source of water and nutrients for 

microalgal growth.  The generated biomass waste can be continuously recycled, serving 

as a fertilizer.  If so desired, the centrate can be reverted back into the system from time 

to time as a nutrition supplement and as a make-up water source, particularly in open 

ponds that face evaporation.  Of the six studied algae, i.e. Chlorella sorokiniana, 

Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and 

Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in 
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and around the Las Vegas Valley, two green algae were eligible.  In the laboratory, the 

green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate 

or algal residue faster than in the mineral medium BG11, optimized for algal growth.  

The enhanced productivity is mainly attributed to the photosynthesis known for 

mixotrophic process and the presence of organic carbon in the waste which serves as an 

extra source of energy.  Tolerance for hard water and strong light and, in the case of C. 

sorokiniana, an unusually high optimum temperature between 32 and 35°C are also 

attributing factors to the enhanced productivity of algae.  These studied species are 

particularly suited for cultivation in their native southwestern United States, particularly 

Southern Nevada, where warm climate, non-arable land, and wastewater are available. 

In addition, this study examines the variations in lipid content of algae, which 

affects the overall oil productivity at biofuel plants.  The results demonstrated that lipid 

content is a dynamic property, negatively correlated to growth rate.  Under varied 

environmental conditions, where growth rate can vary, lipid content also varies, but in an 

opposite direction.  Therefore, the conditions that support a high rate of growth may not 

necessarily cause lipid content to increase.  As a result, the tradeoff between growth rate 

and lipid content becomes critical at biofuel plants where the overall oil productivity 

must be optimum.  If the efficiency of a biodiesel production process is 100%, the total 

productivity is equivalent to the amount of lipids produced by each cell multiplied by the 

total number of cells in the culture.  Consequently, the oil productivity would be directly 

influenced by the outcome of the interactions between lipid content and growth rate.  

This research presents a universal pattern that elaborates the relationship between lipid 

content and growth rate of algae under varied environmental conditions. 
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CHAPTER 1 

OVERVIEW 

 

1.1. General Introduction 

 

It is broadly recognized that the era of fossil fuels is coming to an end.  The global 

consumption of these fuels cannot continue at its current rate, because of accumulation of 

carbon dioxide in the atmosphere drastically increases global temperature.  Man must 

explore “clean” and renewable sources of energy that minimize dependence on fossil 

fuels.  While our need for electricity can potentially be met with wind, geothermal, and 

solar (using photovoltaic) energy sources, there is also a need for carbon-neutral 

transportation fuels, meaning that carbon is drawn from and returned to the current 

atmosphere, causing no net change.  Biofuels are considered to be carbon-neutral.    

Biofuels are obtained from a wide-range of alternatives, with corn being the main source 

of ethanol (one type of biofuel) in the United States.  However, corn ethanol creates a 

number of serious issues, including competing with the food industry, increasing food 

prices, and converting the use of agricultural land (Searchinger et al., 2008; Farrell, 

2006).  Hence, cellulosic ethanol and algal biodiesel have become the most promising 

options on the horizon.  Cellulosic ethanol is ethanol produced by turning the sugars in 

cellulose into alcohol fuel.  Cellulose refers to the material comprising the cell walls of 

any green plant, including agricultural residues such as wood and grass.  However, the 

presence of lignin, which has evolved to protect plants from biodegradation, interferes 

with fermentation, i.e. the process of ethanol production.  Ongoing studies into plant 

http://www.ethanolrfa.org/pages/advanced-ethanol


2 

 

biology are seeking ways to grow plants with less lignin.  Besides cellulosic ethanol, 

biofuel can also be produced from aquatic species, specifically algae.  These 

photosynthetic microorganisms grow fast, and are rich in fatty acids and triglycerides, 

precursors to biodiesel.  Algae yield as much as 6,280gal of algae/acre/year, which is 

about 60 times higher than the oil produced by the most prevalent biodiesel feedstock in 

the world, canola (Dropcho et al., 2008; Yang et al., 2011).  As algae are aquatic 

microorganisms, algae farms can be built in deserts or on land that is otherwise of little 

value.  (Amaro et al., 2011; Chisti, 2007; Dismukes et al., 2008; Li et al., 2008; Pienkos 

et al., 2009).   

Interests in algal oil, as a substitute for petroleum, began in 1970s.  It arose as a 

response to the oil embargo imposed on the United States by the Arab countries in 

retaliation for its support of Israel during the Fourth Arab-Israel War.  At that time, the 

technology for turning lipids into diesel, a chemical process known as esterification, was 

already well established.  So the challenge became determining what organisms to use for 

biodiesel and how to grow them on an industrial scale.  Microscopic algae, which grow 

much faster and contain more lipids than higher plants on a whole-plant basis, naturally 

became the focus of different studies (Benemann et al., 1977; Golueke and Oswald, 

1959).  In response to this challenge, a major new program, named the Aquatic Species 

Program (ASP), was established in 1978 by the U.S. Department of Energy.  Over the 

next 18 years, as a result of this program, significant progress was made in three areas.  

First, several thousands of microalgae were cultured from various habitats across the 

United States and screened to yield over 300 fuel-producing candidates rich in lipids.  

Second, genetic engineering methods for improving lipid production were developed in 



3 

 

previously isolated, well studied model algae, although the methods had yet to be applied 

to the new isolates.  Third, outdoor pilot tests were conducted in Hawaii, Southern 

California, and New Mexico. Among these, the test at the latter site was the most 

successful in that high, year-round productivity was maintained continuously for two 

years.  The test showed that open, shallow ponds of raceway design served as an 

economical and effective production system.  The results provided a basis for comparing 

production costs with petroleum.  The estimated cost for one barrel of algal biodiesel, 

assuming the entire process is optimized, could be as low as $59.  At that time, a barrel of 

petro-diesel sold for about $20.  This comparison indicated that, with further 

technological developments, algal diesel could well become a reality.  Unfortunately, the 

ASP program was terminated in 1996 due to budget cuts (Sheehan et al., 1998). 

Algal biodiesel again attracted attention in 2007, when the U.S. Congress passed a 

bill called the Energy Independence and Security Act (EISA).  The law mandated that 

20% of gasoline consumption must be replaced by renewable resources by the year 2017.  

In addition, the renewable substitutes were dictated to have, from cradle-to-grave, at least 

50% less greenhouse gas (GHG) emissions than fossil fuels.  Hence, while the mandate 

stimulated general interests in biofuels, the ambitious target in respect to GHG emissions 

raised challenges for biofuels.  The first result of the mandate was the re-evaluating of 

ethanol production from corn.  New life cycle analyses revealed that such ethanol is not 

as “green” as it was promised.  Its GHG emission was estimated to be only slightly less 

than that from fossil fuels (Farrell, 2006; Searchinger et al., 2008).  This added to the 

previously existing problems of corn ethanol, impacting food production and agricultural 

land-use.  Hence, interests were again toward on algal biodiesel.  Even though the idea of 
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algal biofuel was scientifically sound, its production on an industrial scale still faced 

important issues.  Its main obstacles were identified as feedstock production and 

chemical conversion of algal oil into diesel (Clarens et al., 2010).  Conventional practice 

in conversion of lipids to biodiesel relies on transesterification, through which 

triglycerides react with methanol to produce methyl esters of fatty acids, i.e. biodiesel, 

and glycerol.  Transesterification is catalyzed by acids, alkalis, or lipase enzymes.   

Finding suitable catalysts is the topic of many studies in this area.  Lipase enzymes offer 

important advantages, but they are not considered feasible because of their high cost.  

Alkali catalysts carry out the reaction about 4000 times faster than acidic catalysts, but 

are more expensive (Fukuda et al., 2001).  An alkali-catalyzed reaction requires a 

temperature of 60°C under atmospheric pressure, and about 90 minutes to complete, 

while a higher temperature combined with a higher pressure could speed up the reaction, 

resulting in higher costs.  Currently, chemists are trying to invent affordable and efficient, 

heterogeneous and homogenous, catalysts to expedite the reactions.  In addition to the 

transesterification process, feedstock production also presents challenges to the 

commercialization of algal biodiesel.  The feedstock production process consists of two 

steps, growing and harvesting algae.  Harvesting the biomass is hard due to the 

microscopic size of the algal cells, ranging from 3-30 µM (Grima et al., 2003).  The 

process of biomass recovery is a multi-step solid-liquid separation carried out by 

centrifugation, filtration, or in some cases gravity sedimentation.  Filtration and gravity 

sedimentation are inefficient for mass harvesting because they are very slow.  For 

cultures of a very small volume, sedimentation is suitable when enhanced by flocculation.  

For larger volumes, centrifugation would be the most rapid and efficient choice, yet this 
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method is expensive.   In order to improve sedimentation, new flocculants, such as 

multivalent metal salts, polyferric sulfates, polyelectrolytes, and electroflocculants, are 

being explained.  Such flocculants can neutralize the negative charges being carried by 

algal cells, thus letting the cells coagulate and easily settle (Grima et al., 2003).  The 

other important element of feedstock mass-production is cultivating algae, which also 

poses serious challenges.  This research addresses some of the challenges associated with 

the cultivation of algae in Southern Nevada.  The findings could also be applied to other 

regions of the Southwestern U.S. 

The cultivation of microalgae as biodiesel feedstock requires an enormous supply 

of growth medium.  Sustainability considerations argue against meeting this need at the 

expense of clean water and fertilizers for at least two reasons.  First, clean water and 

fertilizers may not be available in sufficient quantity, especially in the regions considered 

ideal as production sites.  In the Southwestern United States, algae farms could be built 

on non-arable land where the year-round warm climate permits efficient, uninterrupted 

production, but the region has limited water resources.  For instance, in Southern Nevada, 

according to the Southern Nevada Water Authority (SNWA), the Colorado River, i.e. the 

only water resource of this region, is facing the worst drought on record and the water 

level of Lake Mead, serving as a reservoir, has dropped more than 100 feet since January 

2000 (www.snwa.com).  The situation with fertilizer is no better.  While nitrogen 

fertilizers can be synthesized, phosphorus fertilizers must be mined from finite, non-

renewable reserves.  According to recent estimates, the global consumption of phosphate 

rocks due to agricultural food production alone may peak in another 50-100 years 

(Cordell et al., 2009).  In addition, the biogeochemical cycle of phosphorus is already 

http://www.snwa.com/
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“broken” without algae aquaculture.  Heavy use of fertilizer in agriculture has not only 

depleted the global reservoirs of phosphorus, but excess fertilizers have also leached into 

lakes and oceans, where they fuel algal blooms.  Both of these issues would be 

exacerbated considerably by the addition of another fertilizer-dependent industry.  

Second, even if clean water and fertilizers could be allocated for biofuel production, they 

are expensive and incur GHG emissions (Clarens et al., 2010).  The latter are associated 

with fertilizer synthesis, mining, and transportation which are currently powered by fossil 

fuels.   Hence, algal aquaculture for biofuel will not be feasible if it relies on clean water 

and fertilizers.  

To mitigate the above-mentioned concerns, this study substitutes water and 

fertilizers with waste including centrate, i.e. the liquid fraction of sewage, and algal 

biomass residue, i.e. the algal cells after lipids are extracted.  Unlike clean water, centrate 

is abundant and renewable.  The large cities existing close to the future biodiesel 

production sites could provide a sufficient volume of “dirty” water for algae aquaculture.  

For instance, in Southern Nevada, the city of Las Vegas alone generates over 600 million 

liters of municipal wastewater a day, which could supply water for approximately 2 

hectares of algae farms every day (Lien and Roessler, 1986).  In addition, centrate is also 

a rich source of nutrients, i.e. nitrate and phosphate. Nutrients that are currently being 

removed at a cost at treatment facilities could be made available to algae farms free of 

charge.  However, centrate also contains materials that could be toxic to algae, e.g. heavy 

metals, which should be identified and removed from centrate before it is used as a 

growth medium.  Centrate is a very complex material and all its constituents and their 

effects on algal growth have not been identified.  Even if the sources of toxicity are 
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determined, removing them would be economically infeasible.  One solution is to dilute 

the centrate with fully treated sewage to a level at which the toxicity disappears.  Yet, it 

should not be over diluted so that the nutrients become insufficient for algal growth.  

Only a properly diluted centrate could support sufficient growth.  Another potential 

source of nutrients is lipid-free algal biomass remaining at the end of the biodiesel 

production process.  It contains nitrogen and phosphorus in the form of proteins and 

nucleotides that could be recycled to algae farms, serving as fertilizers.  Because algae 

are not capable of utilizing such polymers and big molecules, biomass residue must be 

decomposed before it is used as a nutrient source.  This study investigated biotic 

degradation, via composting, which has been successfully used for years in agriculture 

for plant residue degradation.  It is slow, but economical.  Compost tea, i.e. the product of 

composting, serves as growth medium.  Whether (or not) the target algae are able to grow 

in such medium is yet to be investigated.  In addition to biological degradation, the waste 

biomass can be decomposed chemically as well.  This approach would be fast, but energy 

intensive.  Through chemical degradation, the polymers (e.g. protein) that are not usable 

by algae convert to the monomers (e.g. amino acids) that contained free nutrients, which 

could be consumable by algae.  However, such free nutrients are organic and are not 

usually usable by algae. While algae, like higher plants, prefer inorganic nutrients, e.g. 

nitrate, some marine diatoms utilize the organic nitrogen of amino acids to grow (Liu and 

Hellebust, 1974; Nilsson and Sundback, 1996).  Therefore, it is possible that “fuel-

producer” species are also capable of using this organic nutrient.  Hence, this study 

investigates the feasibility of growing the target algae on amino acids, as the sole source 

of nitrogen.  In short, this author believes that growing feedstock on waste products, 
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when feasible, not only eliminates the use of clean water and fertilizers but also 

transforms waste from being a “cost” to a “benefit”.   

Centrate and algal biomass residue are not only sources of nitrogen and 

phosphorus but also contain an abundance of organic carbon.  Some algae are able to 

utilize organic carbon as a source of energy in the presence, or absence, of light.  When 

there is light, organic carbon could be consumed as an additional source of energy for 

photosynthesis (known as mixotrophy), while in the absence of light, it can serve as the 

only source of energy (known as heterotrophy).  In algae farms, during the day, 

mixotrophic conditions could stimulate growth due to the extra available energy.  The 

conditions at night would be more beneficial in contrast to the autotrophic growth mode 

that is halted at night.  Heterotrophic conditions allow for 24-hour nonstop growth, 

leading to an increase in total biomass density.  This study suggests that taking advantage 

of the organic carbon present in waste will improve biomass productivity in algae farms.  

However, there are some concerns.  First, not all algae are able to utilize organic carbon.  

Like higher plants, algae receive their required energy from light, and thus are usually not 

able to utilize organic carbon.  But some species, acting like plants and bacteria at the 

same time, consume both organic carbon and light as sources of energy.   Second, even 

organic-utilizing algae may not be capable of consuming all types of organic carbon.  For 

instance, an alga that consumes acetate may not consume glycerol.  Third, some algae 

require light to utilize a particular source of organic carbon.  For example, some species 

can utilize glycerol only in the presence of light, mixotrophically, but not 

heterotrophically (Liang et al., 2009).   Hence, to take full advantage of the waste in algal 
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farms, it is essential to identify the types of species capable of consuming the organic 

compounds of waste both under light and in darkness.  

This study postulates that, even if all the stated issues and inefficiencies are 

improved or resolved, only indigenous species are adequate to produce biodiesel 

feedstock, at least for cultivation in open ponds.  They are well adapted to the chemistry 

of water and climate of the region, and thus able to tolerate some moderate degree of 

salinity and temperature, which are desirable for algae aquaculture.  This was illustrated 

by a two-year pilot test conducted outside Roswell, New Mexico, where crops of 

introduced species were quickly displaced by invasive local species (Sheehan et al., 

1998).  In light of this finding, the present research began with isolating and culturing 

algae from urban streams and lakes in and around the Las Vegas Valley, the algal habitats 

that are heavily influenced by treated municipal wastewater.   

Last of all, to accomplish a high oil yield, biomass density and lipid content of 

algae must be tuned together.  They both are influenced by growth conditions, but not in 

the same direction.  Under optimum growth conditions, growth rate is maxima, so is 

biomass density, i.e. the number of cells in a culture.  However, such conditions may not 

support high lipid content, i.e. the quantity of lipids per cell, and in fact, could cause lipid 

content to decrease.  Indeed, unfavorable and stressful growth conditions sometimes 

increase lipid content.  Therefore, there is a “tradeoff” between growth rate and lipid 

content, the outcome of which determines total oil productivity.  This study investigated 

both growth rates and lipid content simultaneously against variations in different growth 

parameters.  It provides enough data points to develop a pattern that explains the 
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interactions between growth rate and lipid content across the major algal groups, i.e. 

green algae, cyanobacteria, and diatoms.   

1.2. Current State of Knowledge 

1.2.1. Wastewater as the Growth Medium 

The idea of using wastewater for feeding algae farms is not new.  In 1977, 

Benemann et al. suggested that algal biofuel plants could be combined with wastewater 

treatment facilities.  Since then, different types of wastewater, including animal urine, 

dairy manure, winery wastewater, industrial wastewater, partially treated sewage, and 

raw municipal wastewater, have been tested in place of, or as supplements to, the growth 

medium.  The current study chose to use sewage because the location of the research, i.e. 

Southern Nevada, does not have farms or wineries, or any other sources of wastewater.  

The following is a brief review of previous work on this topic, which discusses the effects 

of different wastewaters on growth rate, on biomass productivity, and on lipid contents of 

algae.  Although the purpose of some studies was not biofuel (e.g. fish fed, human 

nutrient supplements, pharmaceutical, etc.), their findings are still useful for this industry.  

Tsukahara and Sawayama (2005) grew Botryococcus braunii in a secondary 

treated sewage, on a laboratory scale, in a batch and a continuous bioreactor system.  

Results showed that, in both systems, this alga could remove nitrogen and phosphorus 

from wastewater and grow.  After 9 days, in the batch system, the hydrocarbon content 

reached 53% of cell weight, a relatively high number compared to the usual amount, i.e. 

~20%.   
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Kim et al. (2007) grew algae in a mineral medium and partially treated swine 

urine.  The mineral medium amended with 3% fermented swine urine enhanced the 

growth rate of algae in a mixed culture of Scendesmus acutus, S. spinosus, and S. 

quadricauda.  In such a synthetic medium, all the biomass dry weight, the algal growth 

rate, photosynthetic rate, total carotenoids, and fatty acids increased by 2.5, 3, 1.4, 3.1, 

and 0.2 times, respectively, compared to the mineral medium.  The higher biomass and 

lipid contents suggest that adding urine to the growth medium could be an effective way 

to grow algae.  

Shen et al. (2008) grew Botryococcus braunii in a batch system with various 

concentrations of livestock wastewater. The highest growth occurred in the half strength 

wastewater with the biomass concentration of 2.543 g/L and the lipid content of 20% by 

weight.  After 14 days incubation, 88% of total nitrogen and 98% of total phosphorus of 

the wastewater was removed.  They suggested that algal growth can be used for the 

purpose of both biofuel production and animal wastewater treatment.  

Kong et al. (2010) grew Chlamydomonas reinhardtii in three types of municipal 

wastewater: raw, centrate, and treated.  The least growth occurred in the culture that 

contained treated wastewater due to the low concentrations of nutrients.  To find the best 

concentration of wastewater for growing algae, centrate was diluted to the three 

concentrations of 50%, 75%, and 100%, among which 100% centrate delivered the 

highest cell density, but showed about 4-5 days of lag phase.  The culture containing raw 

wastewater supported growth, but it showed slight inhibition.  It appeared that there was 

some inhibitor in the centrate and raw wastewater, which was removed by, or became 

tolerable by, the algae after a few days. 
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Wang et al. (2010) grew Chlorella sp. in different dilutions (10, 15, 20, and 25 

times) of digested dairy manure.  In the first 7 days, slower growth occurred in the least 

diluted manure samples significantly.  After 21 days of incubation, the algae removed 

100% of ammonium, 75.7-82.5% of total nitrogen, 62.5-74.7% of total phosphorus, and 

27.4-38.4% of COD from the cultures. This showed that high concentration of 

ammonium, 81-178 mg/L, was not toxic or inhibitory to the algae. 

In a separate study, Wang et al. (2010) used undigested dairy manure, diluted to 

20 times, to grow Chlorella vulgaris in a semi-continuous system.   The biomass 

increased more than twice in 4 days of the experiment, higher than the number they 

achieved with growing the algae in the digested dairy manure in the same period of 

incubation.  Also, nutrient and COD removal efficiency increased compared to those 

obtained in the digested manure culture.  This implies that the higher biological load, 

containing high amounts of organics, enhanced growth.  In this case, the undigested 

manure had a higher BOD than the digested one.  However, if the loading rate had gone 

beyond a certain level, the nutrient buildup could have been lethal to the algae.  

Woertz et al. (2009) grew an algal community including green algae, 

cyanobacteria, and diatoms in municipal wastewater and diary manure, in two separate 

experiments.  The municipal wastewater was the effluent of the primary clarifier and the 

dairy manure was the free-stall barn flush water which was already treated in an 

anaerobic digester before the experiment.  The dairy manure experiment was conducted 

outdoors and in batch cultures, while the municipal wastewater experiment was 

conducted indoors in semi-continuous cultures with a 2-4 day hydraulic resident time.  
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Both cultures were supplemented with CO2.  Two media containing 25% and 10% dairy 

manure were tested, in which the culture with more concentrated manure (25%) showed 

better results.  In the 25% manure culture, after 6 days, the lipid content reached its 

maximum, i.e. 14-29% with a productivity of 17 mg/day/L, and after 12 days, ammonium 

and phosphorus were removed almost completely.  In the municipal wastewater culture, 

after 3 days, lipid productivity reached its maximum, i.e. 24 mg/day/L, and almost 100% 

of ammonium and phosphorus were removed.   

Xin et al. (2010) grew 11 algal species in a medium that contained secondary 

treated municipal wastewater, among which Scenedesmus sp. grew best.  After 10 days, 

about 98% of inorganic nutrients of the wastewater were removed and the lipid content of 

Scenedesmus sp. increased from 14% to 31%.  The highest biomass density and lipid 

content of Scenedesmus sp. was measured as 0.11 g/L and 31-33%, respectively.  

Yang et al. (2011) grew Chlorella ellipsoidea in three different secondary treated 

wastewaters: 1) activated sludge (AS) effluent, 2) anaerobic-anoxic-oxic (A
2
O) effluent, 

and 3) oxidation ditch (OD) effluent.  All three wastewaters supported the algal growth.  

While the amount of nitrogen and phosphorus was only 5% and 1% of the nitrogen and 

phosphorus in the mineral medium, the biomass concentration was only one order of 

magnitude lower than the density obtained in the mineral medium.  In all three cultures, 

the highest lipid content was achieved when the cells entered the stationary phase, i.e. 35-

40% compared to 10-15% during the growth phase.   

Sydney et al. (2011) tested secondary treated sewage to grow twenty algal 

species. More than 80% of the species could grow in such water, among which Chlorella 

vulgaris and Botryococcus braunii were identified via DNA sequencing.  Of the 
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wastewater-utilizing isolates, B. braunii showed the highest nitrogen and phosphorus 

removal (80% and 100%, respectively), the highest biomass density (1.88g/L), and the 

highest lipid quantity (36.14%), which makes this species a very promising candidate for 

biofuel production.  C. vuglaris removed only 54% of nitrogen and 50% of phosphorus of 

the wastewater.  The reason for this low efficiency was not discussed in the study. 

Chinnasamy et al. (2010) grew a consortium of fifteen algal species in a medium 

composed of 85-90% carpet industry wastewater, supplemented with 10-15% municipal 

sewage, in open ponds with raceway design.  The results showed that the algae grew in 

such water much better than in the mineral medium, even when the levels of nitrogen and 

phosphorus were lower than those in the mineral medium.   

Mutanda et al. (2011) grew Chlorella spp. in the mineral medium BG11 amended 

with various amounts (100, 80, 60, 40, 20, 0%) of municipal wastewater.  The highest 

growth rate and biomass density occurred where the culture contained 60% wastewater.  

However, the oil yield was almost constant in all the cultures.  These researchers also 

measured the growth rate in a culture that contained post-chlorinated wastewater, serially 

diluted from 0.2 mg/L to undetected chlorine.  The highest growth rate, biomass density, 

and lipid yield occurred in the least diluted culture with 0.2 mg/L chlorine.  As chlorine 

was increased from 0 to 0.2 mg/L, the biomass density and the lipid yield increased by ~ 

8 times.  However, chlorine concentrations higher than 0.4mg/L were found to be 

inhibitory. 

Feng et al. (2011) grew Chlorella vulgaris in artificial wastewater in a column 

aerated photobioreactor, under batch and semi-continuous conditions.  High lipid content 

of 42%, with high productivity of 147 mg/L/d, was achieved.   Also, the highest removal 
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of COD, ammonium, and total phosphorus recorded during the experiments were 89%, 

97%, and 96%, respectively.  

Zhou et al. (2011) isolated a variety of microalgae from wastewater and non-

wastewater environments in Minnesota and compared their growth potential in sewage 

liquor centrate.  The fastest-growing strains, mostly species of Chlorella and 

Scenedesmus, originated from wastewater habitats.  They reported that on day 3 of the 

incubation, total organic carbon (TOC) concentration of the wastewater decreased 

significantly, by 82.27% to 96.18%, while the biomass increased from 0.48 to 1.08g/L, 

meaning the algae utilized the organic carbon of the wastewater.  The algae showed lipid 

contents of 27.5% to 33.53%, which make them suitable candidates for biofuel.   

In a similar study to this work, Bhatnagar et al. (2011) isolated a strain of 

Chlorella minutissima from sewage oxidation ponds in India.  This isolate prefers a 

sewage formulation to the mineral medium BG11.  Results showed that in the half-

strength wastewater, i.e. the sewage diluted by half with tap water, C. minutissima 

produced more cells that exceeded the maximum growth achieved in mineral medium.  

1.2.2. Algae Residue as a Source of Nutrients 

Algae residue contain proteins composed of polypeptides, polymers of amino 

acids linked by strong bonds of peptides between the carboxyl and amine groups.  Amino 

acids are composed of an amine group and a side-chain containing the key elements of 

carbon, hydrogen, oxygen, and nitrogen.  However, whether (or not) algae are able to 

utilize such organic nitrogen is yet to be investigated.  Prior studies in oceanography 

showed that some marine diatoms could utilize some amino acids as a nitrogen source.  

This study examined the capability of the studied green algae for assimilating amino 
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acids.  Below is a brief review of the work that has been done on this topic in marine 

systems.  Although the purpose of these studies was not biofuel, the results still can be 

applied to the subject of biofuel.  

Liu and Hellebust (1974) used amino acids as a source of nitrogen to grow marine 

diatom Cyclotella cryptica. Cells grew on arginine and glutamine as well as on nitrate.  

Also, glutamate, proline, ornithine, and asparagine supported growth very well.  But, 

isoleucine was not consumed.  In the presence of nitrate, no inhibition occurred by any 

amino acid at the tested concentration of 0.1mM.  

Admiraal et al. (1984) investigated the ability of marine diatoms Navicula 

salinarum and Amphiprora paludosa to assimilate nitrogen from a variety of sources, e.g. 

ammonia, nitrate and amino acids.  Both cultures utilized amino acids in the presence or 

absence of inorganic nitrogen sources, i.e. ammonium and nitrate.  The rate of 

consumption, however, was higher in nitrogen-deprived cultures that were supplemented 

with amino acids than in those containing both inorganic nitrogen and amino acids.  

Nilsson and Sundback (1996) studied the uptake of dissolved amino acids in 

microalgal communities.  They added a mixture of amino acids to sediment samples 

collected from a sandy bay on the west coast of Sweden, where benthic diatoms were 

dominated.  About 1 to 44% of algal biomass could assimilate amino acids. 

1.2.3. Organic Carbon as a Source of Energy 

Acting as plant and bacteria, mixotrophic algae can consume simple organic 

carbon sources as an extra source of energy and grow faster.  Similar to bacteria, in the 

absence of photosynthesis, heterotrophic algae can use organic carbon as the sole source 
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of energy and grow in the dark.  Below is a short review of several studies that tested 

these characteristics in algae.   

In 1958, Samejima and Myers tested the ability of algae to grow on organic 

carbon.  They showed that Chlorella pyrenoidosa can grow on glucose, galactose, and 

acetate in the dark, i.e. heterotrophic growth.  Additionally, they demonstrated that a 

number of different nitrogen sources (nitrate, ammonia, or urea) that the growth rate of C. 

pyrenoidosa was similar if there was glucose in the culture.  These authors supplemented 

the mineral growth medium with various sugars and sugar-alcohols including arabinose, 

sucrose, lactose, xylose, ribose, glucose, mannose, galactose, fructose, maltose, 

cellobiose, glycerol, mannitol, i-inositol, in the darkness.  Only glucose and galactose 

supported growth.  Neither sugar phosphate (e.g. phosphoglycerate, glucose-1-phosphate, 

gluose-6-phosphate, fructose phosphate, and fructose-1:6-diphosphate) nor organic acids, 

e.g. acetic acid, supported growth.  Samejima and Myers (1958) suggested that cell 

permeability restrictions in Chlorella pyrenoidosa were the reason for the lack of 

versatility in the use of organic compounds. 

Goulding and Merrett (1967) tested various sources of organic carbon including 

alcohols, amino acids, organic acids and sugars, for growing Pyrobotrys stellate in the 

light and the dark.  Only acetate, under light, supported the growth.  

Khoja and Whitton (1971) reported the ability of 24 filamentous cyanobacteria to 

grow on 0.01M sucrose, heterotrophically.  Out of 24 species, only 7 did not grow on this 

sugar when kept in darkness.  Out of these 7 algae, two species were still alive after 3 

months and started to grow when transferred under light.  In all cases, the heterotrophic 

growth rate of an alga was lower than its mixotrophic growth rate.  For instance, 
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Chlorogloea fritschii  grew heterotrophically at a rate 0.2 times the mixotrophic growth 

rate.  

Ingram et al. (1973) showed that Nostoc sp. can grow heterotrophically on 

glucose, fructose, or sucrose.  When grown mixotrophically, Nostoc cells could also use 

glycerol and acetate as carbon sources.  In the mixotrophic growth mode, when there was 

high light (300 ft-ca) and 1% CO2, adding an organic source did not stimulate the growth.  

When Nostoc cells were grown under a low light level (80 ft-ca) and ambient air, the 

presence of organic carbon in the culture stimulated growth significantly.  However, the 

biomass density obtained in such stimulated growth condition never exceeded the 

biomass density that was obtained under high light and 1% CO2.  

Cero´n Garci´a et al. (2000) grew diatom Phaeodactylum tricornutum on different 

initial concentrations of glycerol (0-0.1M) mixotrophically.  Results revealed that the 

highest biomass density and biomass productivity (16.2 g/L and 61.5 mg/L/h, 

respectively) occurred in the culture that contained 0.1 M initial glycerol.   

Wood et al. (1999) grew 8 different algal species on glycerol, glucose, and 

acetate.  The results showed that, for some of the trial species, growth was stimulated in 

the presence of glycerol, although in some cases the stimulation was not significant.  

None were stimulated by acetate and only one species showed stimulation by glucose.  

Bouarab et al. (2004) grew Micractinium pusillum in a mineral medium 

supplemented with glucose and acetate, under both light and dark concentration.  The 

highest growth occurred in the culture that contained glucose, under light, followed by 

glucose supplemented culture under dark, and then acetate supplemented cultures under 

light and under dark, and finally in the mineral culture with no organic compound under 
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light at the rates of 0.94 d
-1

, 0.79 d
-1

, 0.58 d
-1

, 0.52d
-1

, and 0.38 d
-1

, respectively.  No 

growth occurred in cultures that contained no organics in the absence of light.   

Xu et al. (2006) grew Chlorella protothecoids autotrophically and 

heterotrophically to produce high quality biodiesel.  Under heterotrophic growth, they 

added glucose and corn powder hydrolysate (CPH) separately to a mineral medium.  

Results revealed that C. protothecoids could grow heterotrophically on both glucose and 

CPH much faster than in the autotrophic culture.  Also, heterotrophic cells accumulated 

more lipids (55.2%) and carbohydrate (15.4%) than autotrophic cells (14.57% lipids and 

10.62% carbohydrate).  Moreover, C. protothecoids showed slightly higher growth rates 

on CPH than on glucose.  This can reduce the final cost due to the low price of CPH.  

After 144h of incubation, the cell density reached 3.92 g/L in the culture that contained 

CPH compared to 3.74 g/L in the culture with glucose.  Also, the lipid content of C. 

protothecoids was similar in the presence of both CPH (54.7%) and glucose (55.3%).   

Xiong et al. (2008) grew Chlorella protothecoides heterotrophically on glucose.  

Results showed that the biomass density increased as the glucose concentration was 

increased from 15 to 60 g/L, above which glucose was inhibitory.  

Sun et al. (2008) tested various sugars including glucose, mannose, fructose, 

sucrose, galactose, and lactose to grow Chlorella zofinginesis heterotrophically.  Of these 

sugars, glucose and mannose showed the best results: the highest specific growth rate 

(0.28 h
-1

) and the highest dry biomass (10.6 gL
-1

). The next best sugar was fructose, 

which showed a high specific growth rate and the dry biomass (0.027 h
-1

 and 9.44 gL
-1

, 

respectively).  Sucrose and galactose resulted in very low numbers, 0.018 h
-1

 and        

5.46 gL
-1 

for specific growth rate and dry biomass productivity, respectively.  Lactose 
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was the poorest carbon source with a very low specific growth rate and dry biomass, 87% 

lower than those obtained in the glucose-supplemented culture.  

Liang et al. (2009) showed that Chlorella vulgaris reached their highest biomass 

density when they were grown in a medium supplemented with 1% (w/v) glucose, under 

light.  Also, the highest amount of carbohydrate, lipids, and protein was achieved in 

cultures containing 1% glucose, 2% glycerol, and 1% glycerol, respectively.   

Xiong et al. (2010) used a photosynthesis-fermentation approach (PFM) to grow 

Chlorella protothecoides.  First, cells were grown under illumination without any organic 

source for 120h in the photosynthetic mode (PM), and then the photosynthetic grown 

cells were entered into a fermenter to grow on organics heterotrophically for another 120 

h (FM).  In the PFM, the lipid yield was 69% higher than the yield obtained in the FM, 

which already was higher than the yield obtained in the PM.  When photosynthetic grown 

cells were transferred from autotrophic cultures (PM) into the heterotrophic cultures 

(FM), the color started to change from green to yellowish, meaning that the cells were 

losing their chlorophyll.  The cytoplasm was full of big oil droplets, over 1 µM in 

diameter.  In the PFM, sugars were consumed completely after 48h, i.e. the cells adapted 

to glucose by sequential transfer to a glucose-enriched medium until chlorophyll was no 

longer detectable; the “glucose-adapted” cells left about 2g/L of glucose unused when 

they were grown heterotrophically.   More importantly, in the PFM, the consumed sugars 

were converted to lipids, resulting in a 69.32% higher lipid yield than in the FM.  In both 

stages of photosynthesis and fermentation, CO2 was fixed, and this “double fixation” 

increased the amount of carbon converted from sugar to oil. 
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Kamjunke et al. (2008) showed that Chlamydomonas acidophila can grow on 

glucose mixotrophically.  

O´Grady and Morgan (2011) grew Chlorella protothecoides, in the cultures that 

contained glycerol as the sole carbon source and in a 9:1 glucose:glycerol combination, 

mixotrophically.  The growth rate in the culture with only glycerol was 0.105 d
-1

, while 

this number was 0.104 d
-1

 in the culture containing glucose-glycerol.  The biomass yield 

was also higher in the sole glycerol culture (0.56 g biomass/g substrate) than that in the 

mixed culture (0.45 g biomass/g substrate).  But, the lipid productivity in the sole 

glycerol culture was lower (0.079 g/L/d) than it was in the mixed glucose-glycerol culture 

(0.104 g/l/d).  

Heredia-Arroyo et al. (2010) showed the effect of different carbon sources on the 

biomass concentration and lipid content of Chlorella protothecoides, purchased from 

UTEX.  Glucose, glycerol, and acetate were added to the mineral medium as sole or 

mixed carbon sources, among which the culture that contained only glucose showed the 

highest cell density.  The biomass concentration increased, though not significantly, as 

the initial glucose concentration was increased.  But the lipid content did not change with 

the glucose concentration.  Growth occurred in the presence of glycerol and acetate as 

well, but the cell density in those cultures was lower than that in the culture with glucose.  

Also, combinations of glucose-glycerol and glucose-acetate did not increase the biomass 

density or lipid contents.   

In a separate study, Heredia-Arroyo et al. (2011) added different concentrations 

of glucose, glycerol, and acetate to a culture of Chlorella vulgaris, purchased from 

UTEX, and measured the biomass and lipid content. The biomass and fatty acids 
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production increased as the glucose concentration was increased. Yet, the specific growth 

rate remained constant.   Unlike glucose, glycerol inhibited the growth.  It only 

stimulated the growth when it was combined with glucose. The highest biomass and lipid 

contents were achieved in the culture containing 80:20% glucose:glycerol.  At this ratio, 

the biomass productivity was 4 times the biomass productivity in the culture with only 

glycerol as the carbon source. The same result was reported for the glucose-acetate 

combination.  The highest biomass and lipid content were obtained at 80:20% of 

glucose:acetate.   

Liu et al. (2010) compared the growth characteristics of Chlorella zofingiensis, 

purchased from the American Type Culture Collection (ATCC), under photoautotrophic 

and heterotrophic modes.  Photoautotrophic cells grew very slowly (0.233 d
-1

) compared 

to the heterotrophic growth (0.769 d
-1

), in the presence of 30g/L glucose. The 

photoautotrophic biomass density (1.9 g/L) was also lower than the heterotrophic one 

(9.7 g/L).  The photoautotrophic grown cells of C. zofingiensis accumulated less lipids 

(25.8%) than the heterotrophic grown cells did (51.1%).  The ratio of neutral lipids to the 

total lipids in the autotrophic grown cells was 29.4% compared to 80.9% in the 

heterotrophic grown cells.  Overall, Liu et al. showed that C. zofingiensis grew faster, 

produced more biomass, and accumulated more neutral lipids if they were grown 

heterotrophically on glucose than when they were grown autotrophically.  

Wan et al. (2011) compared the mixotrophic and autotrophic growth of three 

algae Nannochloropsis oculata, Dunaliella saline, and Chlorella sorokiniana on glucose.  

The growth of all three was stimulated on glucose and their biomass productivity was 1.4 

to 4.2 times the biomass productivity obtained in the autotrophic growth.   In all three 
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algae, the protein and lipid content increased with the glucose concentration.  However, 

at glucose concentrations higher than a certain level, both lipid and protein contents 

declined.  This critical level for Chlorella sorokiniana, a similar species to the one used 

in this dissertation study, was 25 g/L. 

1.2.4. Lipid Content Variation 

The amount of lipids varies in response to environmental and growth conditions.  

Proper understanding of the cause of such variations guides biofuel plants to adopt 

effective and efficient ways to increase oil yield.   Earlier studies suggested that when 

nutrients are deficient, or growth conditions are stressful, lipid content increases.  Almost 

all of these findings are qualitative.  Moreover, there is no consistent trend for the 

variations of lipid content.  The findings also differed from one alga to another, with no 

regular pattern even within the same group.  As such, it is hard to speculate the lipid 

content response of the target algae to the fluctuations of environmental conditions.  

Through quantitative studies, the current work sought to develop a universal pattern that 

explains the fluctuations in lipid content of all types of algae in response to various 

environmental conditions.  Below is a summary of previous research on this topic.   

Merzlyak et al. (2007) showed that the fatty acid content of green alga 

Hamematococcus pluvialis increased when it was grown in a nitrogen free medium.   

Zhekisheva et al. (2002) also showed that the fatty acid content of green alga 

Hamematococcus pluvialis increased when it was grown in a nitrogen free medium.  In a 

separate experiment, these researchers grew the alga in BG11, under high light (350 

µmole/m
2
.s).  After two days incubation, neutral lipid content increased by 80 times.  

Results revealed that both nitrogen deficiency and high light increased the lipid content. 
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Pruvost et al. (2009) showed that nitrogen deficiency decreased the growth rate 

and increased the total lipids content in Neochloris oleoabundan.  Total lipid productivity 

was the highest when cells were grown in medium containing sufficient amount of 

nitrogen.  

In separate studies James et al. (2011), Chen et al. (2010), and Rodolfi et al. 

(2009) showed that when there was no detectable or insufficient amounts of nitrogen in 

their cultures, Chlamydomonas reinhardti, Dunaliella teriolecta, Chlorella sp., 

Scenedesmus sp., Tetraselmis suecica, and Nannochloropsis accumulated lipids. 

The same observation was reported for phosphorus deficiency.  Khozin-Goldberg 

et al. (2006) showed that the lipid content of Monodus subterraneus increased when it 

was grown in a low phosphate medium.  Also, in a phosphate free culture, triglycerides 

content increased 6 times, though the growth rate was low in the free/low phosphate 

cultures. 

Tornabene et al. (1983) showed that in a nitrogen deficient culture, cells of 

Neochloris oleoabundans accumulated 35-45% (DW) lipid content, 80% of which was 

triglycerides. 

Feng et al. (2011), however, reported a different observation.  They showed an 

increase in lipid content of Isochyrysis zhangjiangensis when they were grown in an 

extremely high nitrogen medium, about 100 times the nitrogen level in a normal medium.  

The authors considered this level of nitrogen as a stressful condition for algae. 

Chen et al. (2010) also observed different findings.  They showed that in a P-

limited culture, the lipid content of Dunaliella teriolecta did not increase or decrease.  

These authors hypothesized that intracellular phosphate storage provided the needed 
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phosphorus for the cells. In fact, cells were not under phosphorus deficiency conditions at 

all, so cell divisions occurred along with photosynthesis, resulting in no change in lipid 

content. 

1.3. Research Significance 

 

1) As mentioned by Sheehan et al. (1998), southwestern regions of the United 

States are ideal locations to establish the algal biofuel plants.  Yet, no study 

has been conducted to investigate the feasibility of producing such biofuel in 

Southern Nevada.  While some general information can be used from data and 

analyses obtained from prior studies, future algal farms cannot be developed 

based on previous literature alone.  Each region possesses a unique climate 

and geological characteristics (such as sunlight intensity, water chemistry, 

temperature, land, etc.) that affect the biology and ecology of that region.  For 

instance, species from Alaska would require different growth parameters than 

species from Arizona.  Hence, the current study provided the information 

necessary for producing biodiesel feedstock in Southern Nevada.   

2) According to a two-year pilot test conducted by DOE outside Roswell, New 

Mexico, only indigenous algae are adequate for cultivation as the feedstock 

for biofuel.  This study conducts all experiments with the species isolated 

from the lakes and channels in and around Las Vegas.  These isolates have 

never been studied before in the context of this research.  Since, even under 

similar environmental and growth conditions, algal species could grow 

differently, results of the experiments with other species cannot be utilized for 

the isolates of this study. 
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3) Earlier studies showed that wastewater can support algal growth.  However, 

not all types of wastewater are suitable for growing any and all varieties of 

algae.  For example, swine urine might be able to support only a few 

particular species.  Hence, it is essential to know what species can grow in the 

target wastewater.  Even from one single source of wastewater, various 

strengths of such water impact the growth dissimilarly, ranging from 

inhibiting to stimulating the growth.  For instance, fully-treated sewage, i.e. 

the weakest strength, might not support growth at all, while a mixture of raw-

treated sewage (1:1 v/v), i.e. half strength, could be superior to the mineral 

medium, reaching a growth rate higher than the rate accomplished in the 

mineral medium.  Therefore, this study conducted several experiments with 

various strengths of centrate to find the best concentration supporting the most 

growth.  Moreover, besides the nutritious components, wastewater also 

contains inhibitors and toxins, e.g. heavy metals.  The presence of such 

substances could hurt the growth of algae.  This study investigated all aspects 

of growing algae in the sewage of Las Vegas, including potential nutritional 

and inhibiting sources.   

4) This study proposes algal residue as a source of nutrients.  However, the 

nutritional components of this waste are in the form of polypeptides and 

polysaccharides.  Algae cannot utilize polymers and large molecules.  Hence, 

biomass must be decomposed first.  This study attempted to use biological 

degradation, i.e. composting, to break down the strong bonds of peptides in 

order to free nutrients.  The feasibility of growing the isolates in the compost 
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tea, i.e. product of such biotic degradation, must be examined.  In addition to 

the biological approach, chemical degradation is an alternative method of 

breaking the big molecules and polymers of biomass into monomers, e.g. 

amino acids.  Nonetheless, the nature of the librated nutrients are organic, and 

although algae prefer inorganic nutrients, such as nitrate, some marine 

diatoms were able to consume amino acids as a source of nitrogen.  Hence, 

this study investigated the ability of the isolates to assimilate amino acids as 

the sole source of nitrogen.   

5) This author suggests that growing eligible algae in the presence of a proper 

source of organic carbon, existing in different wastes, can enhance biomass 

productivity due to night-time heterotrophic growth and day-time mixotrophic 

growth.  Previous studies showed that mixotrophic and heterotrophic algae are 

able to consume simple organic carbon as a source of energy.  Yet, which 

algae could consume organic carbon sources has not been accurately 

identified; at times contradicting data have been reported.  For instance, Liang 

et al. showed that Chlorella vulgaris consumed glycerol, while Heredia-

Arroyo et al. showed that the same alga, Chlorella vulgaris, could not 

consume glycerol, with contradictory results for the same species and the 

same organic compound.  Due to such confusion, and because there are no 

guidelines in the selection of organic carbon sources by different algae, this 

study investigates the capability of its isolates for utilizing selected organic 

carbon sources, under light and in darkness.   
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6) In order to maximize the total oil yield, it is critical to know how the lipid 

content of various algae correlate with growth rate under different 

environmental and growth conditions.  Though, there were some uncertainties, 

earlier findings showed that unfavorable and stressful growth conditions, such 

as nutrient-deficient conditions, increased the lipid content of algae. First, the 

findings were qualitative, not quantitative.  For instance, lipid content was 

reported “high” under “low” nitrate concentration with no quantification.  

Second, total oil quantity is directly related to both growth rate and lipid 

content, while the prior data reported only lipid content variations.  This 

dissertation studies quantitatively both lipid content and growth rate against 

gradients of growth parameters.  In prior studies, there was not a clear pattern 

available for the variations in lipid content under different environmental 

conditions.  The earlier findings were not consistent, not even within the same 

algal group and under the same condition.  Hence, based on previous data, it 

was difficult to predict both the lipid content and growth rate of a given alga 

under various environmental conditions.  This dissertation renders a universal 

model, valid for all types of algae, which describes the relationship between 

oil content and growth rate for various growth variables.   

1.4. General Problem Statement 

Algal biofuel is scientifically sound, but it is yet to become a reality.  It is not 

sustainable, as it relies on finite, nonrenewable resources of fertilizers and clean water for 

feedstock production.  Moreover, it is not economically feasible, for it is too expensive to 

compete with petroleum.  More than 30% of the estimated price of this biofuel is 
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associated with fertilizers and clean water.  Hence, the needs for nutrients and water have 

to be satisfied from affordable, renewable resources, not from fertilizers and clean water. 

1.5. Research Objectives 

The main objectives of this study are as follows: 

1) Growing the studied algae in municipal wastewater  

2) Growing the studied algae in the medium composed of recycled nutrients from 

waste algal biomass. 

3) Developing a universal pattern that explains the interactions between lipid content 

and growth rate, in response to various environmental conditions, and for all types 

of algae 

The first two objectives aim to reduce the need for freshwater and fertilizers, along with 

increasing the biomass productivity.  The third objective intends to find the best condition 

under which oil productivity is the highest, controlled by both lipid content and growth 

rate.  

1.5.1. Sub-objectives 

To accomplish the above-mentioned objectives, the sub-objectives are as follows: 

1) To collect samples from the waters influenced by wastewater in the Las Vegas 

Valley, where the experiments are being held   

2) To isolate diverse algal species from major groups, i.e. green algae, 

cyanobacteria, and diatoms 

3) To optimize the growth of isolates with respect to temperature, light, major 

nutrients (nitrate and phosphate), and salinity 
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4) To determine the ability of isolates to grow in municipal wastewater and to find 

the best concentration of wastewater to accomplish the highest growth  

5) To determine the ability of isolates to grow on amino acids as the only source of 

nitrogen 

6) To grow isolates in extracts from the algal composts as the growth medium  

7) To determine the ability of isolates to grow on simple organic compounds such as 

glucose, lactate, acetate, and glycerol in the dark and in the light 

8) To investigate the cause of variations in oil content of algae by studying the 

effects of nutrient concentrations (N and P) and light intensity on lipid content 

and growth rate simultaneously 

9) To develop a uniform relationship, valid across all algal groups, between growth 

rate and lipid content. 

1.6. Chapter Breakdown 

Chapter 1– Overview. This chapter includes general introduction, problem 

statement, objectives, background, and literary review. 

Chapter 2– Isolation, culturing, and growth optimization.  In this chapter, 

characteristics of the studied algae are described.  In addition, this chapter demonstrates 

the optimum temperature, light and nutrient requirements, and the salinity tolerance 

threshold for all the isolates.  

Chapter 3– Wastewater as the growth medium.  This chapter discusses negative 

and positive effects of wastewater (as a source of water, inorganic nutrients, and organic 

carbon) on algal growth.  It demonstrates the growth of the isolates in centrate diluted 

with the Wash water at serial dilution rates.  It displays the optimum strength of centrate, 
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at which the algae grew most.  Moreover, in order to take advantage of the organic 

carbon present in the wastewater, this chapter seeks the organic compounds consumable 

by the studied algae under light and in darkness.   

Chapter 4– Recycling algal biomass residue as a nutrient source.  This chapter 

investigates the feasibility of using algal biomass residue as the source of nutrients, 

nitrogen and phosphorus.  It shows whether (or not) the studied algae are able to utilize 

the organic nitrogen of amino acids in absence of nitrate.  This chapter also explains the 

results of biotic degradation, i.e. composting, of the algal biomass, to break down the 

polymers and free the nutrients.  It presents the result of growing the studied isolates in 

compost tea, a product of composting.  It introduces the challenges and difficulties of 

growing the algae in such medium, and the way this study addresses these.  

Chapter 5– Lipid content of algae, variable of growth rate, and photosynthesis 

efficiency.  This chapter displays a pattern that shows the relationship between lipid 

content and growth rate, across the major algal groups in response to varied 

environmental conditions.   

Chapter 6– Conclusions and future recommendations.  This chapter summarizes 

the findings and recommendations of this study. 

Appendix A– Diatom cell walls as a source of silica.  This chapter demonstrates 

that silica existing in the dead cell walls of diatoms can be recovered and re-used in their 

growth medium.    

Appendix B– Amino acids uptake by green algae.  This chapter discusses about 

the potential mechanisms that green algae use to consume amino acids.  In this chapter, 
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three different mechanisms are proposed for three different green algae; C. sorokiniana, 

Scenedesmus sp., and E. gracilis.   

Appendix C– Raw data.  This chapter displays all the data used in this 

dissertation. 
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CHAPTER 2 

ISOLATION, CULTUR, AND GROWTH OPTIMIZATION 

2.1. Introduction 

 

Isolation and culturing of microalgae is a laborious, time-consuming process. To 

save time and costs, most previous studies took advantage of existing culture collections, 

where a large number of well described species, representing major algal taxa, are 

available for a relatively low cost.  These existing resources permitted studies where the 

source of the algae is not critical.  For instance, they have been used to improve lipid 

measurement methods, test various methods of lipid extraction (Murray and Thomson, 

1977; Matsumoto et al., 2009; Wang et al., 2009), study how flue gas might be used to 

stimulate growth (Sheehan et al., 1998), and how nutrient starvation and light stress 

might be employed to raise the lipid content of algae (Liu et al., 2008; Imamoglu et al., 

2009; Mandal and Mallick, 2009; Pruvost et al., 2009; Dragone et al., 2011). 

Recently, it has been recognized that there is a need to go beyond the existing 

culture collections and initiate new isolation efforts targeting algae that live in specific 

environments at specific production sites.  This recognition in part came as a result of a 

field pilot test conducted near Roswell, New Mexico, as part of the Aquatic Species 

Program.  In that test, algae isolated from the southern U.S., e.g. Alabama, were grown in 

an open pond cultivation system with domestic wastewater as a source of nutrients.  

Within a couple weeks, local algae invaded the ponds and displaced the inoculated algae 

(Sheehan et al., 1998).  
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Several recent studies suggest that when isolating and culturing for fuel-producing 

algae, one should take into consideration not only the production site where the isolated 

algae are to be mass cultivated, but also what kinds of water and nutrients that are to be 

used to grow them.  If municipal wastewater is to be used as a nutrient medium, then 

algae that live in environments where they are exposed to wastewater should be targeted 

for isolation.  Indeed, Bhatnagar et al. (2009) showed that Chlorella minutissima isolated 

from sewage oxidation ponds thrived in domestic wastewater, growing faster than in 

standard mineral nutrient medium.  Kong et al. (2010) found that such wastewater loving 

algae are not limited to oxidation ponds, but also present in streams and rivers into which 

wastewater is released after treatment.   

In light of these recent insights, the present isolation effort targeted algae that 

grow in urban streams and lakes in the Las Vegas Valley, including the Las Vegas Wash 

(the Wash hereafter) where 85% of the water is discharge from local sewage treatment 

facilities.  Although other streams do not receive treated wastewater, the presence of 

some amount of feces and urine from wild and domesticated animals is expected.  It is 

hypothesized that the algae that live in these urban waters are not only well adapted to 

local water chemistry and local climate, they may also be able to thrive in an optimized, 

sewage-based medium.   

This chapter has three specific objectives: 1) to isolate and culture local 

microalgae and purify the isolates to the axenic state, i.e. one alga in one test tube and 

free of any bacteria; 2) determine the taxonomic identity of the isolates by means of cell 

morphology and DNA-based molecular methods; and 3) define the optimum growth 
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condition of each isolate in terms of temperature, light level, salinity tolerance, and major 

nutrient requirement. 

2.2. Methodology 

2.2.1. Sites Description 

 

Chlorella sorokiniana and Limnothrix sp. were isolated from the Wash in June 

2009.  The green alga Scendesmus sp. was isolated from the man-made Lake Las Vegas.  

In March 2010, when it was sampled, an algal bloom dominated by the golden alga 

Prymnesium parvum had broken out, indicating a trend towards eutrophication.  The 

cyanobacterium Synechocystis sp. and the diatom Encyonema caespitosum were isolated 

from the Flamingo Wash and the Pittman Wash in June 2009.  Flows in these urban 

streams are small and shallow but year-round, and have formed from urban runoff and 

storm water.  They both ultimately drain into the Wash.  The diatom Nitzschia thermalis 

was isolated from the Echo Bay Marina, Lake Mead in June 2009.  The marina is located 

at the northern end of Lake Mead, on Overton Basin.  Echo Bay Marina is located in a 

part of the reservoir where the water is primarily from the Colorado River and away from 

the influence of the Wash.  Figure 2.1 shows the sampling sites.  

2.2.2. Isolation 

 

Samples were collected in sterile plastic bottles and sent back to the laboratory.  

In the laboratory, the samples were centrifuged and concentrated to increase the biomass 

density.  Concentrated samples were transferred into petri dish plates containing agar-

BG11 (the mineral medium) for enrichment and placed under light.  After about one 

week, dominant algal colonies were selected under the microscope, transferred, and 

streaked by loop, as is shown in Figure 2.2, onto fresh agar-BG11 plates to grow.  

http://en.wikipedia.org/wiki/Stormwater
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Figure 2.1. Las Vegas Valley hydrographic basin.  Yellow circles indicate the locations 

of wastewater treatment facilities. 
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Figure 2.2. Inoculation and streaking with loop on a petri dish plate containing agar-

BG11 medium. 

 

The ultimate goal was to obtain axenic cultures.  To accomplish this goal, serial 

dilution plating was used.  The serial dilution protocol had three steps: counting the cells, 

diluting the cultures, and plating the diluted cultures.  To count the cells after they grew, 

one colony was picked up from a plate, placed under a hood, and suspended in 1mL 

sterile Wash water.  Afterwards, 10µl of Gentian violet, a triarylmethane dye, was added 

to 20µl of the sample, to make the cells visible, and 170µl of nano-pure water were added 

to bring the volume to 200 µl.  One drop of the suspension was transferred onto a 

hemocytometer composed of several counting chambers (Figure 2.3).  Under the 

microscope, stained microorganisms of about 20 different chambers were counted, and 

averaged.  This procedure was repeated three times.  The calculated average number was 

multiplied by the reciprocal volume of the chamber (1/4000 mm
3
) and by 10 (because the 

http://en.wikipedia.org/wiki/Triphenylmethane
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sample was 10 times diluted at first).  The obtained number was reversed, resulting in 

total number of cells per mL.  For instance, if the average number is 70, the final number 

of cells per mL would be [1/ (74 * ¼ *10
-6

)] *10 = 5.4 * 10
5
 cells/mL.  

 

 

 

 

Figure 2.3. Hemocytometer: A) Transferring a small amount of culture with a pipette aid. 

B) Components C) Counting chambers. 

 

 

A 

B 

C 
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After the number of cells in one milliliter was estimated, serial dilutions was 

performed; 1 mL of the original culture was diluted consecutively into serial sterile tubes, 

each of which contained 9 mL sterile Wash water and reached 10 mL after 1 mL of the 

culture was added, until the number of cells came to less than 10 per mL in a tube.  For 

instance, if the culture contained 5.4 * 10
5
 cells/mL, after 5 dilutions, the last tube 

contained ~ 5 cells (Figure 2.4).  At the end, the diluted cultures were plated.  From each 

tube, 100µL of the culture was transferred onto an agar-BG11 plate and was spread with 

a sterile triangle spreader to cover the entire area of the plate (Figure 2.4).  In order to 

sterilize and prevent contamination, the triangle spreader was dipped in an ethanol 

solution, sterilized by a flame, and then cooled before spreading the cultures on each 

plate.  

 

 

Figure 2.4. Serial dilution and plating. 

              

After about one week, various colonies of microorganisms grew on the plates, 

among which one type was the target.  The target colony was picked up under 

microscope and the whole of the serial dilution procedure, described above in three steps, 
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was repeated until only one type of algal colony and no other microorganism was found 

on the plates.  This procedure took 6 months to yield axenic cultures.  In some cases, 

novel modifications were added to the original procedure.  For example, to isolate N. 

thermalis, a motile diatom, the whole plate was covered with a piece of paper and only 

one small spot was exposed to light.  The diatoms moved toward that spot to receive light 

while other microorganisms remained in place, making it easier to isolate a pure diatom 

colony.  Another example was the use of a particular antibiotic that could kill the 

bacterial cells but not algal cells.  By adding a low dosage of this antibiotic to the surface 

of the medium in the plates, part of bacteria was killed.   

2.2.3. Growth Media 

 

C. sorokiniana, Limnothrix, Scendesmus sp., and Synechocystis sp. were grown in 

BG11 and diatoms E. caespitosum and N. thermalis were grown in Diatom Media (Table 

2.1).  Both media are pH 7.  Plates were incubated at 25°C and under the illumination of 

50 μmole·m
-2

·s
-1 

(Figure 2.5).  The isolated strain was transferred from the plate into a 

liquid medium, the same medium that the alga was grown in, and incubated under the 

same conditions of temperature and light, with continuous shaking (Figure 2.6).  Liquid 

cultures served as the source of inoculums for the designed experiments.    

2.2.4. Taxonomic Identification 

 

The isolated strains were identified through two methods: microscopy and 

molecular biology.   Morphological features were determined by light microcopy with an 

Axioscop2 Plus microscope.  Also, the genomes of isolates were identified based on their 

DNA. 
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Table 2.1. Constituents of mineral growth media BG11, used for green algae and 

cyanobacteria, and DM, used for diatoms. 

BG11 DM (Diatom Medium) 

Component Final 

Concentration, µM 

Component Final Concentration, 

µM 

NaNO3 17,600 Ca(NO3)2.4H2O 85 

K2HPO4 220 KH2PO4 91 

MgSO4.7H2O 30 MgSO4.7H2O 101 

CaCl2.2H2O 200 NaHCO3 221 

Citric Acid.H2O 30 EDTAFeNa 3.065 

Ammonium 

Ferric Citrate 

20 EDTANa2 3.022 

Na2EDTA.2H2O 2 H3BO3 13.4 

Na2CO3 180 MnCl2.4H2O 2.34 

H3BO3 46 (NH4)6Mo7O24.4H2O 1.68 

MnCl2.4H2O 9 Cyanocobalamin 9.84*10
-3

 

ZnSO4.7H2O 0.77 Thiamine HCl 0.039 

Na2MoO4.2H2O 1.6 Biotin 0.054 

CuSO4.5H2O 0.3 NaSiO3.9H2O 218 

Co(NO3)2.6H2O 0.17    
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Figure 2.5. Cultures on plates, under light. 

 
 

Figure 2.6. Liquid cultures on the shaker under light. 

 

Such identification, of which Dr. Gaosen Zhang at the Desert Research Institute took the 

lead, were conducted based on phylogenetic analysis of the nucleotide sequence of the 

18S ribosomal RNA gene.  Genomic DNA was extracted by the use of an UltraClean soil 

DNA isolation kit (MoBio).  The 18S gene was amplified by way of polymerase chain 

reaction (PCR) using EukA and EukB primers (Medlin et al., 1988).  PCR product was 

purified by the use of an UltraClean GelSpin DNA purification kit (MoBio).  Nucleotide 

sequence was determined by Functional Biosciences, Inc. (Madison, WI).  Sequences of 

closely related species were identified by a BLAST search of the GenBank database 

(Altschul et al., 1990).  Sequences were aligned using CLUSTAL W 2.0 software (Larkin 
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et al., 2007).  Phylogenetic trees were generated using neighbor-joining methods 

available in MEGA 3.1 software and based on 1,000 bootstrap re-samplings (Felsenstein, 

1985; Saitou and Nei, 1987; Kumar et al., 2004).  

2.2.5. Growth Rate Determination 

 

In order to achieve the optima for growth parameters, a growth rate specific to 

each parameter was calculated.  A series of media, containing various amounts of a target 

parameters, were prepared.  Each culture, representing only one variable, grew at a 

particular rate.  The highest growth rate determined the optimum amount of that 

particular parameter.  Growth rate, k, expressed as number of doublings per day, was 

calculated according to the following Sorokin and Krauss (1958) equation (Eq. 2.1): 

                                                                        (Eq. 2.1) 

Where N2 and N1 are biomass density at the beginning and end of a time interval (t) in the 

logarithmic growth phase.  The biomass density was measured either by optical density at 

600 nm (OD600), with Spectronic 20D
+
 spectrophotometer, or by protein concentration, 

quantified by the use of the Folin’s phenol reagent (Lowry at al., 1951).  Briefly, 1mL of 

Lowry stock solution, made of a 49 mL solution of 2% Na2CO3 in 0.1M NaOH, 0.5 mL 

of 1% CuSO4 in dH2O, and 0.5 mL of 2% sodium potassium tartrate, was added to cell 

pellet.  The tubes were left for 30 minutes in a hot water bath.  After that, 100 µL of 

Folin’s reagent (1N) was added to each tube, and they were incubated for another 30 

minutes at room temperature. Absorbance was read in PharmaSpec UV-1700 

SHIMADZU spectrophotometer at the wavelength of 595nm.  The protein concentration 

was quantified by applying a standard calibration curve, using Proteose Peptone No.3 

(DIFCO).   

tNNK /))/((log 122
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Figure 2.7. Standard calibration curve for protein content assay. 

 

2.2.6. Lipid Content Measurement (gravimetric method) 

The gravimetric procedure of Bligh and Dyer (1959) was applied.  Results were 

used for the discussion.  Cells from 100 ml of late-log-phase culture were collected, dried 

at 60ºC, and weighed. Pellet was placed in a solvent containing 2.5 ml of methanol, 2.5 

ml of chloroform, and 1.25 ml of deionized (D.I.) water, and agitated vigorously for two 

minutes.  After centrifugation, the lipid phase was collected.  The algae residues were 

extracted two more times, and the three extracts were combined, dried, and weighed. 

2.2.7. Determination of Temperature Optima 

 

This measurement used a thermal gradient table, a 50cm by 50cm by 2cm 

aluminum plate that was heated at one end, and cooled at the other with circulating water 

from two thermostatically-controlled, high-precision (±0.1°C) water baths (Halldal and 

French, 1958).  The table sat atop a shaker to provide mixing (Figure 2.8).  After being 
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inoculated with the test alga, six 50mL Erlenmeyer flasks containing 15ml of liquid 

medium were placed on the table along the temperature gradient.  A bank of fluorescent 

light tubes overhead (4 tubes, PAR 38) supplied illumination, each of which provided 

1,250 lumens.  Thermocouples in a row of water-filled flasks were used to maintain 

culture temperatures.   

2.2.8. Determination of Light Optima 

 

Test tubes containing algal culture were wrapped in layers of wire mesh to create 

different illumination levels.  The source of illumination was provided from the side by 4 

incandescent light bulbs, each of which provided 1,260 lumens and 100W, with a 

10L/14D cycle.  

To prevent the heating of cultures, the test tubes were placed in a small water bath 

at the optimum temperature of the species.  Before the experiments started, the light 

intensity that each tube could receive underneath the mesh layers was detected by a flat 

model L1-1400 light meter and data logger.  The LI-1400 is a highly sensitive current 

meter able to measure currents from 0±250 µA, with a resolution as low as 7.6 picoamps.  

This makes the LI-1400 ideally suited for accurately measuring photo voltaic and other 

type sensors that produce very small currents.  Most commonly, the current channels are 

used to measure LI-COR radiation sensors (pyranometers, quantum, and photometric 

sensors).  The highest light intensity, received by the tube with no mesh layer, was 

comparable to sunlight intensity around noon.  

2.2.9. Nutrients Requirement 

Growth rates as a function of nitrate concentrations were determined.  Series of 

liquid media containing various amounts of nitrate were inoculated, while all other 
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parameters were sufficient.  Each culture grew at a rate different from other cultures.  

Similarly, phosphate requirement was studied by varying the amounts of phosphate in a 

set of liquid media, while other parameters were sufficient.   

 

 

 

 

Figure 2.8. A) Schematic design of the temperature experiment. B) Picture of the 

temperature table, two water baths, and light. 
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2.2.10. Salinity Tolerance Determination 

 

Like the nutrient requirements, salinity tolerance was investigated by 

supplementing various amounts of NaCl to the prepared liquid media.  Though different 

types of salts present in a system would affect salinity, they all were calculated as 

equivalent sodium chloride.  Thus, for the sake of simplicity, NaCl represented the total 

salts in the system.  

2.3. Results 

2.3.1. Taxonomic Identity 

 

Error bars in all figures of this dissertation represent the standard error (SE) 

calculated from the standard deviation of each sample (        , where   is the 

standard deviation of the population and n is the size of the sample). Each data point is 

the average of four replicates.   

Figure 2.9 shows the pictures of the two green algae, Chlorella sorokiniana and 

Scenedesmus sp., taken by an optical microscope. The phylogenetic relationship was 

constructed on the basis of the nucleotide sequence of the 18S rRNA gene, between our 

isolates and closely related algae (Figure 2.10 and 2.11).  Based on this comparison, the 

six new isolates are designated as strains of Chlorella sorokiniana, Encyonema 

caespitosum, and Nitzschia thermalis, and species of Scenedesmus, Synechocystis, and 

Limnothrix.  
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Figure 2.9. Light micrograph of the two green algae, (A) C. sorokiniana and (B) 

Scenedesmus sp., taken by AxioCam MRC, magnified 1000 times. 
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Figure 2.10. Neighbor-joining trees of 18S rRNA nucleotide sequences depicting 

phylogenetic distances between the new isolates and known species.  Bar represents 

percentage change per nucleotide position. 
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Figure 2.11. Neighbor-joining trees of 18S rRNA nucleotide sequences depicting 

phylogenetic distances between the new isolates and known species.  Bar represents 

percentage change per nucleotide position. 

 

2.3.2. Optimum Temperature 

 

Temperature-growth curves were fit to a second degree polynomial diagram with 

a maximum point or plateau (Figure 2.12).  The optimum temperatures of diatom E. 

caespitosum and Scenedesmus sp. were around 27 ºC and 22ºC, respectively (Fig. 2.12 F 

and B).  Every other studied organism showed an optimal growth temperature at around 

32 ºC (Fig. 2.12 ACDE).  

2.3.3. Light Determination 

 

Light-growth curves of the two green algae C. sorokiniana and  Scenedesmus sp. 

consist of a light sensitive part where the growth rate rises steeply with photo flux, and a 

light insensitive part where the growth rate increases only gradually with light.  Neither 

alga shows photoinhibition in the studied light range (Figure 2.13 A,B).  The two 

cyanobacteria, in contrast, are organisms of dim light.  Synechocystis grow well from 2 to 

50µMole/m
2
.s.  At higher light levels, growth rate plummets (Figure 2.13 C).  Limnothrix 

grow well at an extreme low light intensity of 2µMole/m
2
.s.  Higher light intensity causes 

inhibition, but the decrease in growth rate with light is gradual (Figure 2.13 D).   



51 

 

 

 

Figure 2.12. Partial temperature-growth curves of A) C.  sorokiniana, B) Scenedesmus 

sp., C) Synechocystis sp., D) Limnothrix sp., E) N. thermalis, and F) E.  caespitosum.  

Except for Scenedesmus sp. which had an optimum temperature at ~20°C. 

 

 



52 

 

 

 

Figure 2.13. Light requirement for the growth of A) C. sorokiniana, B) Scenedesmus sp., 

C) Synechocystis sp., D) Limnothrix sp., E) N. thermalis, and F) E. caespitosum. Only the 

two green algae grow well under high light intensity, comparable to sunlight during a 

normal day in Las Vegas.  Cyanobacteria grow best at low light intensities, close to 

darkness, and become inhibited at high light intensities.  Diatoms grow most under 

intermediate light.  The growth rate increases as the light is increased until it reaches a 

critical level,~800µMol.m-2.s-1.  Beyond this level, growth becomes inhibited.  
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The diatoms E. caespitosum and N. thermalis are similar to the green algae in the low-

moderate light range.  However, they do not flourish at high light as the green algae do 

(Figure 2.13 E and F). 

2.3.4. Nitrate and Phosphate Requirement 

 

Figures 2.14 and 2.15 show the effects of nitrate and phosphate on growth rates, 

respectively.  Each curve is resolved into a nutrient-sensitive phase where the growth rate 

rises rapidly with nutrient availability and a nutrient-saturated phase where the growth 

rate no longer changes with nutrient concentration.  No growth occurred if either nitrogen 

or phosphorus was omitted from the medium.  No inhibition happened to any of the 

species in the presence of nitrate as high as 500 μM or phosphate as high as 300 μM.  

2.3.5. Salinity Tolerance 

 

No inhibition occurred to either the green algae or the cyanobacteria until sodium 

chloride (NaCl) reached about 25 mM.  Beyond this point, more salt led to slower 

growth, and 90 mM NaCl stopped the growth completely (Figure 2.16).  In contrast, the 

two diatoms were sensitive to the salinity level.  A salinity level as low as 3 mM caused 

depression in growth.  For reference, the Wash water and seawater contain 12 mM and 

599 mM NaCl, respectively.   
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Figure 2.14. Nitrate requirement of A) C.  sorokiniana, B) Scenedesmus sp., C) 

Synechocystis sp., D) Limnothrix sp., E) N. thermalis, and F) E. caespitosum. The growth 

rate increased as the nitrate concentration was increased until it reached the saturation 

level, ~100µM.  Beyond this, more nitrate did not increase the growth rate.  No inhibition 

occurred.  
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Figure 2.15. Phosphate requirement of A) C. sorokiniana, B) Scenedesmus sp., C) 

Synechocystis sp., D) Limnothrix sp., E) N. thermalis, and F) E. caespitosum.  The growth 

rate increased as the phosphate concentration was increased until it reached the saturation 

level, ~70µM. Beyond such, more phosphate didn’t increase the growth rate.  No 

inhibition occurred.  
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Figure 2.16. Salinity tolerance of A) C. sorokiniana, B) Scenedesmus sp., C) 

Synechocystis sp., D) Limnothrix sp., E) N. thermalis, and F) E. caespitosum. Except for 

(F), all the isolates could tolerate some degree of salinity, ~15mM.  No growth occurred 

at 90mM of sodium chloride, comparable to 15% of the sea salts.  
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2.4. Discussion 

 

This study provides evidence for the suggestion that, everything else being equal, 

local microalgae are preferable for fuel producing crops.   As a result of long-term 

ecological adaptation, they would thrive in the local environment and local water 

chemistry.   For instance, C. sorokiniana, which was isolated from the Wash in the 

summer, has an unusually high temperature optimum, between 27 and 33°C.  From June 

to August, the average water temperature in the Wash is 25°C (State of Nevada: Division 

of Environmental Protection, 1987).  Daily maximum in excess of 30°C are not 

uncommon.  In contrast, Senedesmus sp., which originated from Lake Las Vegas in the 

spring, has a much lower temperature optimum, around 22°C, indicating that the 

temperature requirements are related to the season in which they grow in nature.  This 

result has important practical implications.  It suggests that within the local species, some 

are better suited as summer crops, while others may be suited for production in winter 

and spring. 

The isolates used in this study also show evidence of adaptation to local water 

chemistry.  Water in the Las Vegas Valley has high hardness level 288 parts per million 

(ppm) (www.lvvwd.com).  Not surprisingly, the isolates, all of which are fundamentally 

freshwater species, can, to various extents, tolerate salinity.  This characteristic is also of 

practical value.  For example, the green algae and cyanobacteria isolates can tolerate 

salinity ten times that of the Wash.  This suggests that even in open pond cultivation 

systems the spent medium can be re-used for many cycles despite the inevitable increase 

in salinity associated with evaporative water loss.  

 

http://www.lvvwd.com/
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The light levels preferred by algae vary widely among major taxonomic groups.  

Cyanobacteria, for instance, generally prefer low light levels and suffer from exposure to 

high light levels, a phenomenon known as photoinhibitation (Konopka and Schnur, 1980; 

Konopka, 1983).  Green algae, in contrast, prefer high levels and generally resistant to 

photoinhibition (Li et al., 2010).  The results with the Las Vegas isolates confirmed this 

generality. 

The diatoms appear to be different from both the cyanobacteria and the green 

algae.  The light dependent part of their growth curve is similar to that of the green algae.  

However, unlike the latter, the diatoms are not tolerant of extraordinary high light levels 

(comparable to summer sunlight at noon).  Thus, from a light as well as a temperature 

perspective, the green algae are best suited for production in the summer, whereas the 

cyanobacteria and diatoms may best take advantage of the lower temperature and lower 

light level of the winter time.   

At this stage of the investigation, there is insufficient information about the lipid 

content or lipid quality of the tested isolates in order to evaluate their suitability in these 

regards.  However, it is known that cells of C. sorokiniana and Scenedesmus sp. do 

contain 19.0% and 29.8% lipids respectively, when the organisms are growing 

logarithmically.  Compared to the literature values reported for other algae, these lipids 

concentrations are low and moderate.  However, as will be shown in Chapter 5, the lipid 

contents could be improved by manipulating the growth conditions.  
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CHAPTER 3 

WASTEWATER AS THE GROWTH MEDIUM 

3.1. Introduction 

 

The idea of growing algae in wastewater is not new.  In 1977, Benemann et al. 

suggested that algae farms can be combined with municipal wastewater treatment 

facilities.  In this system, algae would remove the nutrients from wastewater to grow, 

decreasing fertilizers and clean water usage by algae farms and the cost of nutrient 

removal processes at wastewater treatment plants.   

 

 

Figure 3.1. Typical wastewater treatment schematic in municipal wastewater plant. 

 

Figure 3.1 demonstrates the general scheme of a wastewater treatment facility.  

There are three main stages of wastewater treatment: primary, secondary, and tertiary (or 

advanced).  Primary and secondary treatments are mandatory in the United States, but the 

tertiary process is used only under special circumstances because it can be very 

expensive, often doubling the cost of the secondary treatment.  Primary treatment 

removes materials that are either floating or readily settle out by gravity.  In “primary 
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settling tanks” or “primary clarifiers”, the sludge settles, while the grease and oil float to 

the surface to be skimmed off.  The sludge is mechanically collected by a hopper at the 

bottom of the tank to be pumped out.  Primary treatment removes about 60% of total 

suspended solids (TSS) and about 35% of biological oxygen demand (BOD).  The liquid 

fraction of the primary clarifiers, also known as centrate, enters the secondary treatment 

process, performed by activated sludge or oxidation ponds.  In the activated sludge stage, 

organic material is removed by aerobic microorganisms.  The microorganisms also 

convert ammonia to nitrite and nitrate, and eventually, to nitrogen gas, a process called 

denitrification.  Oxidation ponds, also called stabilization ponds or lagoons, are large, 

shallow ponds designed for bacterial and algal photosynthetic activities.  In the ponds, 

algae remove inorganic compounds, i.e. nitrate and phosphate, and release oxygen 

needed by aerobic bacteria.  The bacteria degrade organic compounds and reduce 

nitrogen via denitrification.  Secondary treatment removes more than 85% of both TSS 

and BOD.  If more than 85% must be removed, or if nitrate and phosphate levels are still 

greater than the authorized level, tertiary treatment methods are used.  While removing 

nutrient is currently performed at a cost and with the use of energy at treatment facilities, 

in a combined system, i.e. a wastewater treatment facility/algae farm, the secondary 

treatment stage could be completely replaced by algal cultivation ponds. This would 

result in nutrient removal free of charge, as algae are capable of removing 85% to100% 

of the nutrients (Shen et al., 2008; Wang et al., 2010; Woertz et al., 2009).   

However, existing oxidation ponds cannot be directly used for cultivation of algae 

for biofuel.  Although these lagoons support algal growth, the growth of algae are not be 

sufficient for the purpose of biofuel production.  Plus, the growing strains may not 
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necessarily be the ‘fuel-producing’ species.  The ponds configuration and growth 

conditions should be designed and optimized specifically to fulfill the highest growth of 

selected algae.  Moreover, a proper dilution of wastewater, at which the growth of algae 

is adequate, should be exploited.  This study tries to resolve the latter issue.  Even though 

centrate can stimulate the growth of some species, it might be too concentrated for others, 

leading to growth inhibition.  For example, Kong et al. (2010) reported inhibition when 

Chlamydomonas reinhardtii was grown in raw centrate.  Wastewater is a complex 

medium; while it is a source of nutrients, it contains some compounds that may be toxic 

to algae.  Therefore, the sources of inhibition and toxicity should be identified and adds 

costs before wastewater is used as the growth medium. 

This study examines the feasibility of growing C. sorokiniana and Scenesemus sp. 

in locally generated centrate.  In order to determine the best concentration of centrate, 

various strengths of the centrate were explored.  In addition, this study seeks to identify 

potential sources of toxicity in the centrate.  Instead of removing the toxins, which may 

not be economically viable, the centrate was diluted to a level at which toxicity 

disappeared, while the nutrients levels are still sufficient for algal growth. 

In addition to inorganic nutrients, centrate is also a rich source of organic carbon 

that can provide extra energy for algae (Zhou et al., 2011).  However, the ability of algae 

to consume these organic compounds needs to be investigated.  Algae are photosynthetic 

organisms utilizing the energy of the sun to fix CO2 and produce biomass. They convert 

light energy into chemical energy, fueling algal activities.  However, some algae are able 

to use organic carbon as an alternative source of energy.  When there is light, such algae 

obtain energy from both resources of organic carbon and photosynthesis.  This 
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mixotrophic condition stimulates algal growth during the day.  In the absence of light, 

these algae are able to acquire their required energy from organic carbon.  Such 

heterotrophic ability supports algal growth during the night.  Hence, the presence of 

organic carbon offers continued biomass production at higher rates.   

However, heterotrophic/mixotrophic algae are not able to consume all types of 

organic carbon resources.  Depending on their origin and what organic compounds they 

have been exposed to, different algae have evolved to assimilate various sources of 

organic carbon.  This effect becomes evident when different studies sometimes report 

completely opposite results for the same species.  For example, Liang et al. (2009) 

showed that Chlorella vulgaris consumed glycerol while Heredia-Arroyo et al. (2011) 

showed that the same alga, C. vulgaris, did not consume glycerol.  This is most likely 

because C. vulgaris was isolated from two different regions, in one of which the cells 

were exposed to glycerol while in another they were not.  Therefore, it is crucial to 

determine what algae can assimilate what organic compounds.  This study tests the ability 

of its two isolates, C. sorokiniana and Scenedesmus sp., to assimilate four organic 

compounds: glucose, acetate, glycerol, and lactate.  The rationale for choosing glucose 

and acetate, in addition to their availability in different wastewaters, is their simplicity.  

These two are the most common organic molecules being consumed by microorganisms.  

Glycerol has been chosen because it is the main by-product of biofuel plants.  Ideally, all 

the waste products and by-products of a biofuel plant would be re-used.  Finally, lactate 

has been selected because it is found in various types of wastewaters such as milk, diary, 

and ice-cream factories.  Eventually, the goal should be to utilize all the organic 

substrates from waste sources.  For instance, winery wastewater containing glucose, 
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fructose, lactate, acetic acid, citric acid, and malic acid, could be added to the centrate 

and serve as an organic supplement (Malandra et al., 2003). 

3.2. Methodology 

3.2.1. Centrate and Treated Wastewater 

 

Centrate was obtained from the Henderson wastewater treatment facility.  The Las 

Vegas Wash water represented the treated wastewater (TWW).  Serial liquid media 

synthesized from TWW amended with centrate, resulting in ratios of 0, 10, 15, 30, 35, 40, 

50, 70, 80, and 100% centrate.  The synthesized medium was filtered and stored in sterile 

containers in a refrigerator.   

3.2.2. Effect of Ammonium on Growth 

 

C. sorokiniana was inoculated in serial tubes containing nitrogen-free BG11 

supplemented with various concentrations of ammonium, the same amount that is 

available in the centrate.  In a separate experiment, the same gradients of ammonium 

were added to BG11 in serial tubes, in which C. sorokiniana was inoculated.  The 

experiments were terminated when the first green pallets became visible.  Pallets 

collected with centrifuge were used for protein measurement. 

3.2.3. Effect of Urea on Growth 

 

Three concentrations of 0.1, 0.01, and 0.001% (w/v) of urea were added to 4 mL 

of BG11.  After C. sorokiniana was inoculated, the cultures were placed on the shaker 

under the optimum light condition.  The optical density (OD600) was measured with a 

Spectronic 20D+ spectrophotometer twice a day until the cells entered the stationary 

phase.  
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3.2.4. Effects of Organic Components on Growth 

 

Tubes containing 4ml of BG11 supplemented with 1% (w/v) of glucose, glycerol, 

acetate, or lactate were placed on a shaker, under the optimum light condition of 50 

μmole·m
-2

·s
-1 

with 10:14 light dark cycle.  For the heterotrophic growth experiments, 

tubes were wrapped fully in aluminum foil and placed on the shaker.  To avoid any 

photosynthetic activity, growth measurements were all conducted in full darkness.  Two 

series of tubes containing 4 mL of BG11 were put in the dark and light, representing the 

reference conditions for the heterotrophic and mixotrophic growth, respectively.  Growth 

was measured by recording the optical density (OD600) with the Spectronic 20D+ 

spectrophotometer on a daily basis.   

3.3. Results 

3.3.1. TWW and Centrate Characteristics 

Table 3.1 shows the characteristics of the two water sources.  Note that treated 

wastewater is nearly devoid of phosphate, but its nitrate content is comparable to that of 

centrate. 

3.3.2. Growth in TWW and Centrate 

 

The highest growth rates, exceeding rates achieved in BG11, occurred in the half-

strength centrate.  The two algae grew well in treated wastewater (TWW) amended with 

20 to 70% centrate, significantly better than growth in BG11 (Figure 3.2).   
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Table 3.1. Characteristics of treated wastewater (TWW) and centrate used in this study. 

 

Nutrient Centrate TWW 

NH
3
-N, µM 1,802 4 

NO
3
-N, µM 686 1,023 

TKN, µM 2,754 8 

PO
4
-P, µM 168 NA 

TP, µM NA 4 

BOD, mg/L 234 NA 

Salinity, mM NA 2 

   

 

 

TWW amended with less than 20% centrate supported less growth, apparently due to 

phosphate insufficiency. Amendment greater than 70% was counterproductive, resulting 

in slower growth of Scenedesmus sp. and a long lag phase for C. sorokiniana.   To 

discover the cause of such inhibition, the effects of ammonium, urea, and arsenate on 

growth of C. sorokiniana were explored.  
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Figure 3.2. Log-phase growth rates of C. sorokiniana (A) and Scenedesmus sp. (B) in 

Wash water with different amounts of centrate (sewage liquor). Asterisk denotes an 

exceptional situation where the organism does not enter lag-phase for two to three days.   

 

3.3.3. Effect of Ammonium on Growth 

 A slight inhibition occurred when ammonium was the only nitrogen source in the 

medium.  In contrast, in the presence of nitrate, no inhibition occurred (Figure 3.3).   
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Figure 3.3. Effect of ammonium chloride on growth rate of C. sorokiniana, in nitrogen-

replete (light grey columns) and nitrogen-omitted (dark grey columns) BG11.  Only if 

ammonium was the only source of nitrogen, a slight inhibition occurred in the cultures 

that contained >200µM ammonium.  Ammonium did not inhibit the growth if nitrate was 

present.  As there is always sufficient amount of nitrate in the centrate, ammonium cannot 

cause inhibition. 

 

3.3.4. Effect of Urea on Growth 

Different concentrations of urea caused completely opposite impacts on the 

growth rate.  Below 1 gram of urea per liter of medium (0.1% of urea), the growth was 

stimulated.  At 0.1% and above (data are not shown), growth was inhibited and cells 

showed a long lag phase, ~ 50 hours to grow (Figure 3.4).  When cells entered the lag 

phase, they grew at a rate relatively equal to the rate they achieved in the BG11.  

However, the biomass density in the culture with BG11 was significantly higher than that 

in the culture containing 0.1% urea (Figure 3.5B).   Figure 3.5 compares the growth in the 
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culture containing 100% centrate to the culture containing BG11 supplemented with 

0.1% urea.  

 

Figure 3.4. Effect of various concentrations of urea on growth rate of C. sorokiniana.  

While urea levels below 0.1% stimulated the growth, beyond such was inhibitory. 

 

 

3.3.5. Utilization of Organic Compounds 

 

Both of the algae grow mixotrophically.  The number of organic carbon that can 

be utilized as a substrate is slightly different for the two studied algae.  C. sorokiniana 

grew on glucose and acetate, but not on glycerol and lactate (Figure 3.6A).  Scenedesmus 

sp. grew on glucose, acetate, and glycerol, but not lactate (Figure 3.6B).  In the 

heterotrophic mode, in the dark, both isolates grew on glucose and acetate.  Neither grew 

on glycerol nor lactate (Figure 3.7). 
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Figure 3.5. Delayed but not slowed: A) the growth of C. sorokiniana in the full-strength 

centrate versus the half strength, B) the growth of C. sorokiniana in the BG11 with and 

without 0.1% urea. Similar to the full-strength centrate, urea added to BG11 delayed the 

growth, but growth rate was still comparable to the growth rate of BG11.  The similarity 

between the growth in the urea-plus culture and the full-strength centrate implies that 

urea could be an important inhibitor in the centrate. 

 

 

A 

B 
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Figure 3.6. Mixotrophic growth rates in the BG11 without and with glucose (glu), 

glycerol (gly), acetate (ace), and lactate (lac).  A) C. sorokiniana, B) Scenedesmus sp.  In 

both species, presence of glucose and acetate enhanced the growth rate. In Scenedesmus 

sp., glycerol also stimulated the growth as well as glucose.   
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Figure 3.7. Heterotrophic growth occurred only in the cultures that contained BG11 

supplemented with either glucose or acetate.   Neither lactate nor glycerol supported the 

growth under the dark (data is not shown).  A) C. sorokiniana, B) Scenedesmus sp.   

 

3.4. Discussion 

The results of growing the isolates in different strengths of centrate are similar to 

those obtained by Bhatnagar et al. (2009), who studied a strain of Chlorella minutissima 

isolated from oxidation ponds in wastewater treatment facilities in India.  Like the strains 

investigated in this study, their isolate grew faster in half-strength centrate than in BG11.  
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Full-strength centrate also supported lower growth than BG11. Thus, it has been 

demonstrated that for at least these three algae prefer municipal wastewater to a 

freshwater-based medium.   

The results of this study also answer two important questions.  First, why does the 

centrate need dilution? Second, what makes the centrate better than the standard growth 

medium, BG11? Centrate is a complex material containing a wide range of organic and 

inorganic substances.  While some substances, such as nitrate, phosphate, and possibly 

organics are beneficial; others could be suppressive or toxic.  The results from chapter 2 

indicate that inhibition does not come from excessive salt, as the two green algae could 

tolerate a moderate degree of salinity.  Another potential toxin is ammonium.  

Ammonium is a source of nitrogen for algae, but it can be toxic in high concentrations 

(Abeliovich and Azov, 1976; Azov and Goldman, 1982).  However, the results exclude 

the potential toxicity of ammonium.  In response to ammonium gradients, C. sorokiniana 

did not show any types of inhibition when there was adequate nitrate in the medium.  

Given the presence of sufficient nitrate in the centrate, inhibition could not be imposed by 

ammonium.   

The last candidate for a source of toxicity is urea.  Domestic sewage usually 

contains some amount of urea, which varies from one location to another.  Urea 

metabolism in green algae is permitted either by urease or by ATP-urea amidolyase 

(Hodson and Thompson, 1969; Bekheet and Syrett, 1977).  Both enzymes degrade urea to 

NH3 and CO2 (Eq. 3.1).   

CO (NH2)2 + H2O  CO2 + 2 NH3                    (Eq. 3.1) 
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While it is well known that green algae can utilize urea as a nitrogen source (Bekheet and 

Syrett, 1977), the results reveal significant inhibition when the dosage of urea goes 

beyond 1 g/L.  At this concentration, urea suppressed growth to slightly below pre-

stimulation levels.  This result replicated the inhibitive nature of undiluted centrate, in 

which C. sorokiniana was suppressed for the first two to three days of incubation.  The 

stimulation of growth by urea at low concentrations most likely comes from the carbon 

source (CO2), while the inhibition at high concentrations almost certainly comes from 

NH3.  In order to avoid inhibition, the current study tried to adapt the algae to urea before 

transferring them into the centrate.  The cells were exposed to urea during the pre-

adaptation phase to produce urea-degrading enzymes, i.e. either urease or ATP-urea 

amidolyase.  Hence, the already induced enzymes would degrade urea right after the 

algae were transferred into the centrate.  The results were unsuccessful as the cells could 

not adapt and the growth curve duplicated the previous result.  

 The optimum centrate dilutions, 20% to 70%, represent a tradeoff between 

diluting toxins to a non-toxic level, without overly diluting nitrate and phosphate to sub-

saturation levels.  In contrast to the toxic characteristics of full-strength centrate, properly 

diluted centrate outperforms BG11 because it contains, in addition to mineral nutrients, 

organic compounds that provide additional energy for growth.  As demonstrated by the 

results from this chapter, both isolates grew mixotrophically and heterotrophically on 

glucose, acetate, or glycerol, indicating that the isolates are able to take advantage of 

organic compounds present in the centrate.  Although it is not known what organic 

compounds are exactly present in the tested centrate (responsible for the BOD), it is 

likely that some of them are available to the isolates, given their broad 
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mixotrophic/heterotrophic capabilities.  This finding adds to a growing body of literature 

that many algae, including Chlorella and Senedesmus species, are able to utilize organics 

for growth either under heterotrophic conditions or under mixotrophic conditions 

(Samejima and Myers, 1958; Karlander and Krauss, 1966; Kamjunke and Tittel, 2009; 

Liang et al., 2009; Gao et al., 2010; Heredia-Arroyo et al., 2010; Xiong et al., 2010; 

Heredia-Arroyo et al., 2011; O'Grady and Morgan, 2011). 
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CHAPTER 4 

RECYCLING ALGAL BIOMASS RESIDUE AS A SOURCE OF NUTRIENT 

4.1. Introduction 

 

An algal biofuel plant must function as a closed system, in terms of nutrients, if it 

is intended to be sustainable.  One key step towards this goal is to supply input material, 

including nutrients, from the generated waste at the plant.  One major waste would be 

algal biomass residue, i.e. the algae remaining at the end of biofuel production processes.  

After lipids are extracted, algal cells still contain nitrogen and phosphorus in the form of 

nucleotides and proteins, which can be recycled and re-used in place of fertilizers.  

Nucleotides are composed of nitrogenous bases, five-carbon sugars, and phosphate 

groups, all potential nutrients and energy sources.  Proteins present in the cell wall are 

polymers of amino acids, i.e. a source of nitrogen.  However, such nutrients are not 

biologically available to algae.  In nucleotides, phosphate groups form strong bonds with 

the carbon sugar.  Similarly, in polypeptides (i.e. polymers of the protein) amino acids are 

held together by strong peptide bonds.  Hence, it is impossible for algae to consume the 

existing substrates unless the biomass is broken down to small and simple molecules.  

Two possible ways to accomplish this are biological and chemical degradation.  The 

current study performs the former, biotic decomposition, via composting.  Although 

composting is slow, it is economical.  Also, it has been successfully practiced for a long 

time for purposes of recycling agricultural residues.  Through this biological process, 

bacteria convert the big molecules, which algae cannot utilize, into substrates that algae 

can potentially use.  Algal biomass composting is followed by extracting the dissolved 
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nutrients, known as compost tea, which can be used as a growth medium.  However, the 

feasibility of growing the selected algae in compost tea needs to be explored.   

In order to determine the most efficient method of composting, which would also 

support the highest growth rate in compost tea, aerobic and anaerobic conditions were 

tested.  While the anaerobic condition generated higher amounts of compost (out of the 

same base of biomass) than the aerobic condition, the production occurred at a lower 

pace. Under both conditions, composting with and without paper as a source of cellulose 

was also tested.  The paperless compost is preferred because it requires fewer additives, 

making the process more economical and sustainable.  However, the feasibility of 

composting without a cellulose source is ambiguous.  Finally, after the composts are 

ready, the compost teas with and without the supplementing of glucose (as a simple 

organic carbon source) were tested to determine whether additional organic carbon 

enhances growth.  Overall, eight varieties of compost tea were examined to grow the two 

isolates C. sorokiniana and Scenedesmus sp.: tea from aerobic compost without paper, 

aerobic compost with paper, anaerobic compost without paper, and anaerobic compost 

with paper, and all other mentioned teas supplemented with glucose.  

Chemical degradation is another way of degrading polymers and large molecules 

(e.g. proteins) to the monomers (e.g. amino acids) possibly consumable by algae.  Such 

monomers are sources of ‘organic’ nutrient, such as organic nitrogen from amino acids.  

While algae prefer inorganic nitrogen, some algal species are known to assimilate amino 

acids, especially if inorganic nitrogen is not available (Liu and Hellebust, 1974; Admiraal 

et al., 1984; Admiraal et al., 1987; Nilsson and Sundback, 1996). 
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 After centuries of being exposed to amino acids dissolved in the oceans, marine 

diatoms have evolved to utilize amino acids as a source of nitrogen.  But whether ‘fuel-

producer’ species are also capable of utilizing this type of nitrogen is yet to be 

investigated.  Even though this study does not perform chemical decomposition, it 

examines the feasibility of growing two green algae, C. sorokiniana and Scenedesmus 

sp., on a potential product of such a process, i.e. amino acids.  The tested amino acids, 

including aspartic acid, glutamic acid, alanine, and leucine, serve as the sole sources of 

nitrogen in the medium.  These are the most common amino acids present in the algal cell 

wall (Punnett and Derrenbacker 1966), therefore they are expected to be present in the 

biomass residue as well.   

4.2. Methodology 

4.2.1. Growth Experiments 

 

Growth experiments were conducted at 25ºC, under 50 ìmole·m
-2

·s
-1 

light with 

10:14 light dark cycle, and continuous shaking.  Four L-amino acids, including aspartic 

acid, glutamic acid, alanine, and leucine, were examined.  For each experiment, cells 

were grown in three types of media: amino acid-positive, reference, and blank.  The 

amino acid-positive medium was made of the nitrogen-free BG11 supplemented with one 

amino acid, the reference medium contained the standard mineral medium (BG11), and 

the blank medium was made of nitrogen-free BG11, without any type of nitrogen source.  

Each experiment was performed with four replicates.   
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4.2.2. Growth Curves 

 

The optical density of the cultures was measured daily by Spectronic 20D+ 

spectrophotometer, at the wavelength of 600 nm (OD600).  This shows the algal growth 

over the time course of the experiment, providing the data points for the growth curve.   

4.2.3. Amino Acid Uptake Determination 

 

A 50µl sample was collected, on a daily basis, from the amino acid-positive 

cultures under sterile conditions to keep the cultures axenic, and then centrifuged. The 

supernatant was prepared for the amino acid detection assay.  Amino acids were 

derivatized with OPA-NAC and analyzed with HPLC (Agilent 1100) as previously 

described with Zhao and Bada (1995).  The derivatives of 4 L-amino acids were 

separated on a Luna 5u C18 column (Phenomenex).  However, since each injected 

sample carried only one amino acid at a time, only one single strong peak was detected.  

The mobile phases were (A) methanol and (B) 50 mM sodium acetate (pH 7.5). The 

column was equilibrated with 5% A and 95% B for 5 min after injection. A gradient was 

started to change the mobile phase to 94% in 6 min, 94% in 7 min, 88% in 8 min, 81% in 

9 min, 75% in 10 min, 70% in 11 min, 65% in 12 min, 60% in 13 min, 55% in 14 min, 

50% in 15 min, 45% in 16 min, and 40% in 18 to 24 min.  It finally switched back to 95% 

B in 25-30 min, as the system was ready for the next injection. The flow rate was 1 

mL/min. The column effluent was monitored with a Ga321A fluorescence monitor at an 

excitation wavelength of 340nm and an emission wavelength of 450nm.  The actual 

quantities of amino acids in samples were calculated from peak-area integration by using 

the peak area determined from a known amount of authentic standard. 
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4.2.4. Algae Compost 

 

Naturally grown biomass of macroscopic green alga Cladophora, collected in 

Summer 2009 from the Flamingo Wash, was decomposed under aerobic and anaerobic 

conditions and with or without paper as a source of carbon (C:N ratio 4:1).  Soil was 

added as the microbial source.  During the incubation time, the biomass kept moist and 

the internal temperatures of composts were monitored on a daily basis with a 

thermometer placed deep inside the composting buckets, located in an incubator with the 

temperature set at 25ºC.   When the temperature started dropping, indicating a decrease in 

microbial activities, the experiment was terminated.  After three weeks, the compost was 

extracted in an equal volume of water.  The resultant extracts were centrifuged and 

autoclaved, ready to be used as growth medium for the studied isolates, either with 

glucose (1g/L), or without, as a source of energy.  A small portion of each extract was 

saved for chemical analysis.  The two algae, C. sorokiniana and Scenedesmus sp. were 

inoculated in the sterile compost teas.  The cultures were placed at 25ºC under 50 

μmole·m
-2

·s
-1 

lights with 10:14 light dark cycle, and with continuous shaking.  Optical 

density was measured twice a day with a Spectronic 20D+ spectrophotometer, at the 

wavelength of 600 nm (OD600).    

4.3. Results 

4.3.1. Consumption of and Growth on the Amino Acids 

 

Scendesmus sp. consumed the four tested amino acids (Figure 4.1).  In all the 

experiments, as the amino acid concentration decreases, the cell density of the culture 

increases until the concentration of the amino acid approaches zero.  After this, the algal 
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cells enter the stationary phase and the cell density no longer changes; the growth rate 

becomes almost zero.  In the cultures containing aspartic acid and alanine, the growth is 

stimulated compared to the reference. 

Unlike Scendesmus sp., C. sorokiniana consumed only leucine and aspartic acid, 

but not alanine nor glutamic acid (Figure 4.2).  In the cultures containing aspartic acid 

and leucine, the cell density increases as the concentration of the amino acid decreases, 

and becomes constant as amino acid concentration approaches its minimum level.  In the 

culture with aspartic acid, a slight stimulation in growth is observed, compared to the 

reference curve which is the growth curve in the nitrate-containing BG11 (shown by 

triangles).  In the cultures that contained alanine or glutamic acid, the concentration of the 

amino acid does not change, indicating no uptake.  The growth curve of these cultures is 

identical to the growth curve of the blank, lying far below the reference curve.  

The amino acids did not inhibit growth in any of the experiments.  A slight 

growth in the blank cultures might be due to the nitrogen contamination.  

4.3.2. Growing the Isolates in the Extracts from Algal Compost 

 

The compost teas supported the growth of both C. sorokiniana and Scendesmus 

sp.  The extract from the aerobic compost, with or without paper, supported a robust 

growth rate of C. sorokiniana when supplemented with glucose (Figure 4.3A, columns 2 

and 4 from left).  For Scendesmus sp., even without glucose supplement, the tea from the 

aerobic compost with paper could also support a significant growth rate (Figure 4.3B, 

column 3 from left).   
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Figure 4.1. Growth curves of Scendesmus sp. in the amino acids-positive (filled circles), 

the reference (open triangles), and the blank (open circles) media, along with the amino 

acid uptake diagram (filled squares).  Amino acid is the sole nitrogen source in the amino 

acid-positive media, nitrate is the nitrogen source of the reference, and no nitrogen source 

exists in the blank.   
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Figure 4.2.  Growth curves of C. sorokiniana in the amino acids-positive (filled circles), 

the reference (open triangles), and the blank (open circles) media along with the amino 

acid uptake diagram (filled squares).  Amino acid is the sole nitrogen source in the amino 

acid-positive media, nitrate is the nitrogen source of the reference, and no nitrogen source 

exists in the blank.  C. sorokiniana consumed aspartic acid and leucine, but not glutamic 

acid and alanine.  Also, growth occurred only in these two cultures, meaning that cells 

gained the required nitrogen from amino acids.  In the glutamic acid and alanine cultures, 

cells didn’t grow as they were not able to obtain their needed nitrogen from amino acids, 

although there was not any other nitrogen source in the cultures.   
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Tea from aerobic, paper-less compost supported some growth (Figure 4.3A&B, 

first column from left).  C. sorokiniana showed signs of stress, in the form of clumping, 

and Scenedesmus sp. showed a very long lag phase, ~172h.  The growth of C. 

sorokiniana was not registered in optical density due to cell clumping.  Adding glucose 

rescued the algae (Figure 4.3 A&B, second column from left).  When, instead of 

receiving glucose, the tea was treated with H2O2 (1:1 v/v), the toxicity also disappeared 

(Table 4.1), suggesting that the potential source of toxicity is organic in nature, possible 

pheophytin, an oxidation product of chlorophyll.  

Tea from anaerobic, paper-containing compost did not support any growth 

(Figure 4.3 A&B, first and second columns from right).  In contrast, tea from the compost 

that is also anaerobic, but paperless, supported algal growth equivalent to BG11, 

horizontal dashed lines (Figure 4.3 A&B, fourth column from right).  Adding glucose to 

this tea reduced the growth rate of C. sorokiniana but stimulated the growth of 

Scenedesmus sp. (Figure 4.3 A&B, third column from right). 

The highest growth rate for C. sorokiniana occurred in the extract from aerobic 

compost supplemented with glucose, with or without paper.  For Scenedesmus sp., the 

highest growth happened in the extract from the aerobic compost with paper, but no 

glucose.  Comparing their highest growth rates, C. sorokinian’s was slightly higher than 

that of Scendesmus sp.   
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Figure 4.3. Growth rate of (A) C. sorokiniana and (B) Scenedesmus sp. in 8 extracts of 

algal composts.  The highest growth rate of C. sorokiniana occurred in the extract from 

aerobic compost without paper, with glucose.  For Scenesedmus sp., the highest growth 

rate was detected in the extract from aerobic compost with paper, without glucose.  This 

means that presence of paper, as a source of carbon, turned on the mixotrophic growth 

mode, stimulating growth. 

 

 

A 

B 
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Table 4.2 compares chemical characteristics of anaerobic paper-containing 

compost tea to BG11.  As highlighted in gray, the extract contains large quantities of 

nitrogen and phosphorus, orders of magnitudes greater than those in BG11.  Plus, the tea 

contains a high amount of acetate, a source of organic carbon that could stimulate algal 

growth.   

 

Table 4.1. Growth rate (number of doublings per hour) of the two isolates, C. sorokiniana 

and Scendesmus sp., in different compost teas. O2 represents oxygen, C represents 

carbon, G represents glucose, and plus and minus signs represent the presence and 

absence, respectively.  For example, O2(+)C(+)G(-) means aerobic compost with paper 

without glucose. NG means no growth. * The growth rate in the extract after treated with 

H2O2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compost tea C. sorokiniana Scendesmus sp. 

O2(+)C(-)G(-) 0.022* 0.0096 

O2(+)C(-)G(+) 0.0385 0.0177 

O2(+)C(+)G(-) 0.024 0.026 

O2(+)C(+)G(+) 0.036 0.0217 

O2(-)C(-)G(-) 0.029 0.01408 

O2(-)C(-)G(+) 0.0179 0.02277 

O2(-)C(+)G(-) NG NG 

O2(-)C(+)G(+) NG NG 
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Table 4.2. A comparison between the chemical components of the extract from anaerobic 

algal compost with paper without glucose (O2(-)C(+)G(-)) and the mineral medium of 

BG11.  ND and NA mean non detectable and not available, respectively.  The highlighted 

components point out the potential nutritious and inhibiting substances to the algal 

growth present in this compost tea.  

 

Characteristics O2(-)C(+)G(-) BG11 

NH4, µM 1191.0 20 

SiO4, µM 2252.2 NA 

NO2+NO3, µM 86.5 NA 

Lithium , µM 6.8 NA 

Sodium , µM 8494.6 17.600 

Ammonium , µM 881.5 20 

Potassium , µM 21446.1 110 

Magnesium , µM 8594.0 30 

Calcium , µM 87947.4 200 

Fluoride , µM ND NA 

Chloride , µM 14244.6 105 

Nitrite , µM ND NA 

Bromide , µM ND NA 

Nitrate , µM ND 17,600 

Phosphate , µM 935.2 220 

Sulfate , µM 334.3 15 

Acetate , µM 152223.6 NA 

 

 

 

4.4. Discussion 

 

The results of this study revealed the potential of growing Scenedesmus sp. and C. 

sorokiniana in medium composed of algal biomass residue, either biologically or 

chemically decomposed.  Amino acids served as the sole source of nitrogen.  In the 

cultures containing amino acids, the decrease in amino acid concentration and the 
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increase of algal cell density are nicely synchronized, implying that the algae obtained 

their required nitrogen from amino acids.  Cells grow fast as long as there is enough 

amino acid in the culture, yet by the time that the amino acid is depleted, cells stop 

growing.  No growth was observed in cultures in which uptake was not detected.   The 

results demonstrate a considerable stimulation in the growth of Scenedesmus sp. in the 

presence of aspartic acid and alanine, indicating the mixotrophic growth.  It appears that 

the algal cells consumed both the nitrogen and carbon components of these two amino 

acids, the former as nutrient and the latter as an extra energy source.  Likewise, the 

growth of C. sorokiniana was stimulated in the presence of aspartic acid, representing the 

mixotrophic growth mode.  

The inflexibility of C. sorokiniana cells in metabolizing different amino acids, i.e. 

consuming only two amino acids, led to their death in some cases due to the lack of 

nitrogen.  It is hypothesized that the alga forms L-amino acid oxidases (LAAOs) specific 

to the type of amino acid outside the cell.  For instance, the LAAOs that are formed to 

oxidize L-aspartic acid may not oxidize L-glutamic acid, and so on.  Two of the oxidation 

products, ammonium and α-keto acid, are recycled as carbon and nitrogen, while the third 

one, hydrogen peroxide, is converted to oxygen and water.  To determine if this 

hypothesis is correct, additional experiments were performed in the presence of D-amino 

acids and with an additional green alga, Euglena gracilis.  Since this is not directly 

related to biofuel and was conducted purely for the sake of science, the results are 

presented separately, in the Appendix B.   

The compost teas, i.e. the products of biotic degradation, supported the algal 

growth.  The results of this study revealed significant stimulation in the growth of C. 
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sorokiniana and Scenedesmus sp. in the tea from the aerobic compost supplemented with 

glucose (with or without paper), indicating mixotrophic growth.   

Stress signs of C. sorokiniana and, less severely, of Scenedesmus sp. grown in tea 

from the aerobic compost without paper or glucose, went away after being treated with 

hydrogen peroxide.  Since the olive-gray color of the compost tea disappeared after the 

treatment, pigments that caused such color are considered to be the source of stress and 

inhibition.  Pheophytin generates such color.  Pheophytin is a chlorophyll molecule 

lacking a central Mg
+2

 ion that can be produced from chlorophyll.  The reason why 

pheophytin inhibits the algal growth is not known.  However, in a cancer-related study, 

chlorophyll groups (chlorophyll, pheophytin, pyropheophytin, and phophorbide) 

significantly inhibited cancer developments (Chernomorsky et al., 1999).  Although this 

information cannot justify the inhibitory effects of the chlorophyll group on algae growth, 

it can help to understand it.  It is speculated that the chlorophyll family could form 

complex molecules with the substances that are essential to algal growth and thus reduce 

or totally eliminate the bioavailability of those compounds, the same way they acted 

against the cancer mutagens.  To assure that phaophytin caused the stress, it would be 

useful to determine the pheophytin concentration of the compost tea before and after 

H2O2 treatment.  The level of pheophytin is expected to be reduced significantly after the 

treatment.  This experiment required fluoresce spectrometer that was not available during 

this study.  However, even if it is proved that the inhibition comes from the chlorophyll 

group, the mechanism of such inhibition would still remain undiscovered.  This 

necessitates more studies in the level of molecular biology to understand the exact effects 

of these molecules on the structure of the cells. 
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Inhibition also occurred in the tea from the anaerobic compost with paper, with or 

without glucose.  Table 4.2 presents the components of this compost tea, some of which 

are much higher than the potential sources of inhibition in BG11.  First, relatively high 

levels of sodium chloride could cause osmotic stress and thereby growth suppression.  

However, the results from chapter 2 rule out this possibility.  The chapter 2 results also 

showed no growth rate reduction in response to sodium chloride until it reached 40mM.  

The second possibility could be the presence of ammonium in the absence of nitrate.  

Still, the results from ammonium experiments in chapter 3 showed only a slight growth 

inhibition.  Therefore, this level of ammonium could not cause a complete inhibition on 

growth.  Finally, excessive amounts of calcium existing in paper used as the cellulose 

source could cause the inhibition.  Calcium carbonate, i.e. the most common additive 

being used as whitening agent in common papers (Sundara-Rajan et al., 2004), remains in 

paper and leaches into the compost and then into the compost tea.  Calcium is a 

chaotropic agent.  In the Hofmeister series (shown in the box), calcium followed by 

magnesium was identified as the second strongest chaotropic cations, after guanidinium.  

Chaotropic agents destabilize the enzymes and denature the protein (Von Hippel and 

Wong, 1965; Herberhold et al., 2004; Zhang and Cremer, 2006).  In contrast, 

kosmotropic agents can stabilize the enzymes.  In the anion series of Hofmeister, species 

to the left of chloride are kosmotropic, with SCN
-
 being the strongest.  Sufficient amounts 

of kosmotropes in a system can detoxify the chaotropes.  
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Hofmeister series 

Kosmotropes (detoxifier)   ---------------------------------- Chaotropes (toxin) 

Anion series  

Cation series                

 

Earlier studies have speculated that chaotropic ions affect the bulk property of 

water (Zhang and Cremer, 2006).  Recent evidence contradicts this early notion.  Instead, 

chaotropic effects appear to rise from direct interactions between such ions and enzymes.  

Functional enzymes are folded, typically with the hydrophobic core of the center.  

Hydrogen bonds are the key to the folding.  Emerging evidence indicates that chaotropic 

agents such as calcium and magnesium have a “salt in” effect, disrupting hydrogen bonds 

and causing the hydrophobic core to collapse.  Conversely, kosmotropic agents have the 

effect of “salt out”, helping stabilize protein folding (Herberhold et al., 2004; Zhang and 

Cremer, 2006).  To shed some light on this, an additional experiment was conducted in 

which BG11 was supplemented with 10 mM calcium chloride.  As it is shown in Figure 

4.4, the algal growth was significantly inhibited by this amount of calcium.  Also, in the 

presence of calcium, the C. sorokiniana cells became stressed (Figure 4.5, tube on the 

right); instead of a healthy suspension (Figure 4.5, tube on the left), the cells aggregated 

into clumps and grew attached to the wall of the test tube.  Such stress signs and 

inhibition occurred in the presence of only 10 mM of calcium, while the concentration of 

calcium present in the extract is almost 10 times higher, ~90mM, which could cause more 

severe damage to the cells and possibly completely inhibit growth.  As stated before, 

kosmotropic agents can detoxify chaotropic cations.  Based on Hofmeister seris, sulfate is 
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a strong kosmotrope.  The compost tea contain sulfate, yet its concentration is too low to 

be able to detoxify calcium.  

The above discussion might raise this question: why such serious inhibition was 

not observed in the aerobic compost teas containing paper? It is believed that anaerobic 

conditions reduce the level of sulfate significantly, most likely due to the presence of 

sulfur bacteria.  Unlike these compost teas, the aerobic compost teas contain quite high 

amounts of sulfate, sufficient for detoxifying calcium. 

Other elements, including trace metals, shown in Table 4.2 did not contribute to 

toxicity because they are not considered chaotropic agents or toxic. 

Considering the above evidence, the author is of opinion that the source of 

toxicity in the compost teas is the high concentration of calcium.  Hence, paper was not a 

good choice as a cellulose source. 
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Figure 4.4. Effect of calcium on growth of c. sorokiniana.  Even a small amount of 

calcium (10mM) could significantly inhibit growth.  This is about 9 times smaller than 

the amount of calcium existing in the O2(-)C(+)G(-) extract, which was completely 

inhibitory to growth.  
 

 

 
 

Figure 4.5. Algal growth in medium containing BG11 (on the left) and 10mM of calcium 

(on the right).  While cells are nicely suspended in the BG11, they are attached to the 

wall in the presence of calcium. 

 



93 

 

CHAPTER 5 

MANIPULATION OF GROWTH CONDITIONS FOR HIGHER LIPIDS 

PRODUCTION 

5.1. Introduction 

The amount of lipids in an algal cell is a dynamic feature, at least in some species.  

This was first shown by Spoehr and Milner (1948) working on the green alga Chlorella 

pyrenoidosa in an attempt to understand how the growth environment affects the relative 

proportions of its lipid, protein, and carbohydrate content.  The authors expressed these 

proportions in a simple measurement– the amount of molecular oxygen required to 

oxidize a given amount of biomass to carbon dioxide, expressed as the R-value.  Because 

lipids contain less oxygen than proteins and carbohydrates, cells rich in lipids require 

more oxygen to oxidize.  In other words, the R-value is an approximation of lipid content.  

The relationship between the R-value and several environmental factors, including the 

level of CO2, nutrient starvation, temperature, and light, was investigated.  Cells raised at 

3% CO2 had a higher R-value than those raised at 0.04% CO2 (i.e. ambient air).  

However, higher CO2 concentrations, 5% or 10%, resulted in little further increase in the 

R-value.  Differences in growth temperature, from 15 to 30°C, had a little effect on the R-

value.  When a culture was aged for 112 days, the R-value increased by 12%, due to 

nutrient starvation.  The effect of nitrogen starvation on lipid content in another Chlorella 

species, C. sorokiniana, was also investigated by Richardson et al. (1969).  In batch 

culture, fatty acids rose from 57 to 137.8 mg/g dry weight, which was attributed to nitrate 

depletion.  In continuous culture, in contrast, the differences in nitrate levels (20, 10, and 

5 mM) had no effect on fatty acid content, likely because none of these levels were 

limiting.  While Spoehr and Milner (1948) showed that, in contrast, for the green alga C. 
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pyrenoidosa growth temperature does not affect lipid content, Kleinschmidt and 

McMahon (1970) showed that in the red alga Cyanidium caldarium temperature does 

affect lipid content.  In this case, cells grown at 55°C, the optimum temperature for the 

organism, contained 20 mg lipids per gram dry weight.  Cells grown at 20°C contained 

50 mg lipids per gram dry weight, a 2.5-fold increase.   

Most of the studies conducted after the 1980s focused on increasing lipid 

production through manipulating two factors of nutrient level and light intensity because, 

from the algal biodiesel production standpoint, these two are more practical to be varried 

than other environmental factors.  Lien and Roessler (1986) demonstrated that lipid 

content of green algae Chlorella sp. and Ankistrodesmus sp. and golden alga Chryosphyte 

sp. can be raised two- to three-fold via nitrate limitation.  James et al. (2011) showed that 

when green alga Chlamydomonas reinhardtii was transferred from a nitrate-sufficient 

medium to a nitrate-omitted medium, cells division was halted but lipid bodies started to 

appear.  Merzlyak et al. (2007) also reported that, after one month of incubation, lipid 

content of green alga Parietochloris incise grown in a nitrate-omitted medium was one 

order of magnitude higher than that in cells grown in a nitrate-sufficient medium.  

Zhekisheva et al. (2002) demonstrated that in green alga Hamematococcus pluvialis, 

astaxanthin (mostly mono-esterified) and triglycerides, i.e. esters derived from glycerol 

and fatty acids, increased when cells were grown in a medium with no nitrate.  Under 

nitrate deprivation, production of each pico-gram of astaxanthin was accompanied by 

production of 5 pico-grams of fatty acids.  After 8 days of incubation, while only a slight 

growth occurred in the nitrate-free medium, fatty acids level increased by 30%.  In 

contrast, in the nitrate-sufficient medium, no change in fatty acid content was observed, 
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over the same time course of incubation.  Pruvost et al. (2009) demonstrated that lipid 

content of green alga Neochloris oleoabundans increased from 17% to 37% of dry weight 

during progressive nitrate deprivation.  However, Feng et al. (2011) found an increase in 

lipid content of marine alga Isochrysis zhangjiajiensis under excessive nitrate.  They 

compared the lipid content of cells grown in three batch cultures: one with daily nitrate 

replenishment, another with nitrate replenishment in every two days, and the other one 

with nitrate replenishment in every three days.  The highest lipid content was attained in 

the culture with daily nitrate replenishment.  Even though these authors believed that 

such high lipid content was due to extra nitrate, it is also possible that it was due to 

phosphate depletion.  Phosphate could be depleted quickly because nitrate was abundant 

and thus growth was fast.  Indeed, Khozin-Goldberg and Cohen (2006) showed that 

phosphate limitation caused higher lipid content in Monodus subterraneus.  They 

reported that in the cultures containing 52.5 and 17.5 µM phosphate, fatty acid content 

was twice as high as that of the 175 µM phosphate and was 2.7 times higher in the 

absence of phosphate.   However, Chen et al. (2010) reported a different result.  Lipid 

content of marine alga Dunaliella teriolecta grown in a phosphate-free Erdschreiber 

medium was similar to the lipid content in cells grown in a standard Erdschreiber 

medium.  They speculated that cells had internal phosphorus storages sufficient for their 

need during the experiment.  In this author’s opinion, it is possible that, under some 

circumstances, this type of alga stored the excess carbon in a form different from lipids, 

e.g. starch.  As a part of the same study, Chen et al. (2010) reported consistent results 

with other studies in respect to nitrogen deficiency.  In the nitrate-free medium, lipid 
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content of D. teriolecta peaked by the third day and then dropped down by the day 7, 

whereas cells grown in the standard medium showed their largest lipid content on day 7. 

Based on the literature published so far, there is little doubt that once algae run 

out of nutrients and stop multiplying in numbers, they begin accumulating lipids and 

triglycerides.  What is unclear from the past experiments, because of the way they were 

carried out, is exactly which nutrient ran out causing this change.  For example, when two 

cultures, one with limited nitrogen and one with abundant nitrogen, are both allowed 

reaching the stationary phase, as is customarily done, they may not be entirely 

comparable.  In the former case, the onset of the stationary phase may indeed be caused 

by nitrogen depletion.  The same is not necessarily true of the latter, however.  Because it 

contains more nitrogen without other ingredients being proportionally raised, something 

else, for example phosphorus, is more likely to be depleted first.  This is a limitation 

associated with the batch system.  A better alternative is a flow through culture where the 

nutrient concentrations are kept constant throughout the experiment. 

Lacking access to a flow through system, this study attempts to use the batch 

culture in an improved way, by making the lipid measurements at the logarithmic growth 

phase.  At this early stage of the growth, lipid content, as well as growth rate, is still 

controlled by the starting nutrient concentration.  In addition, for each of the algae under 

study, the saturating nitrate and phosphate concentrations are known from the chapter 

2.  The methodological improvement, plus the diversity of algae available, allows the 

effects of nutrient limitation and of different genetics on algal lipid content to be better 

defined. 
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  This study also demonstrates a universal pattern in which lipid content is 

negatively correlated to the growth rate.  It is hypothesized that changes in the growth 

rate are accompanied by changes in lipid content, but in an opposite direction.  Therefore, 

growth rate and lipid content of the six isolates, including green algae Chlorella 

sorokiniana and Scenedesmus sp., diatoms Encyonema caespitosum and Nitzchia 

thermalis, and cyanobacteria Synechocystis and Limnothrix, are determined in response to 

changes of nitrogen and phosphorus.   

After nutrients, light intensity has the most influence on lipid content.  Spoehr and 

Milner (1948) showed that while growth rate of C. pyrenoidosa increased with light 

power, in a range of 25 to 100 Watt, the R-value decreased and reached down a minimum 

level and then increased again.  Within this range, the R-value changed more quickly 

under stronger light: the stronger light, the shorter time was needed to reach the minimum 

R-value.  For example, under 100 Watt light power, the R-value reached the minimum 

level in 9 days, while under 40 Watt, it reached the same minimum level after 32 days.  

Zhekisheva et al. (2002) demonstrated that in green alga Hamematococcus pluvialis, cells 

grown under 350 µmole.m
-2

.s
-1

 contained higher lipid content than those grown under 75 

µmole.m
-2

.s
-1

.  Under both conditions, the maximum lipid content was attained on day 

two of the 6 days incubation.  Runagsomboon (2011) studied the lipid content of green 

alga Botryococcus braunii under various intensities of 0.3, 87.5, 200, and                      

538 µmole.m
-2

.s
-1

.  Under the highest intensity (538 µmole.m
-2

.s
-1

), the highest lipid 

content was obtained.  However, cultures exposed to low light intensity of                   

87.5 µmole.m
-2

.s
-1

 showed the highest biomass.  Yeesang and Cheirsilp (2011) found that 

in four strains of Botryococcus grown under 33, 49.5, and 82.5 µmole.m
-2

.s
-1

,
 
the highest 
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lipid content of the four strains were obtained under 49.5 µmole.m
-2

.s
-1

.  All four strains 

showed photoinhibition under high light intensity, 82.5 µmole.m
-2

.s
-1

.   

Prior findings revealed that the effect of light on algal growth is as complicated as 

on lipid production of algae.  While algae require the energy from light to grow, they 

sometimes become suppressed by high light levels, a phenomenon known as 

photoinhibition.  Jones and Kok (1966) verified that strong light can cause the loss of all 

chloroplast activities in some algae.  Such high light level can damage photosystem I and 

II and deactivate some of the light-dependent processes, yet the actual mechanism 

remains unclear.  Algae across the major groups respond to light differently.  Most green 

algae grow well under strong light, while cyanobacteria prefer dim light.  Li et al. (2010) 

showed that growth rate of green alga Pseduchlorococcum sp. increased with light, 

experiencing no photoinhibition.  Also, Sorokin and Krauss (1961) demonstrated that the 

growth of green alga C. pyrenoidosa was proportional to light intensities, ranging from 

zero to 3000 ft-ca, facing no photoinhibition.  In contrast, cyanobacteria Merismopedia 

tenuissima and Oscillatoria sp. grew well under low light intensity and became inhibited 

by high light intensities (Konopka and Schnur, 1980; Konopka, 1983). 

In spite of all the above-mentioned complexities, this study offers a uniform, 

simple pattern that describes and explains variations in lipid content, as well as in growth 

rate.  It is hypothesized that when light level changes, there is a negative correlation 

between growth rate and lipid content, a pattern similar to what is proposed for nutrients.  

Therefore, growth rate and lipid content of the six isolates of this study is determined 

simultaneously in response to a light gradient. 
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5.2. Methodology 

5.2.1. Growth Rate Determination 

 

Logarithmic growth rate, k, expressed as number of doublings per day, was 

calculated according to the following equation of Sorokin and Krauss (1958): 

                                          (Eq. 5.1) 

Where N2 and N1 are the biomass quantity at the beginning and end of a time interval (t).  

The biomass quantity was measured in protein per volume culture, quantified by the use 

of the Folin’s phenol reagent (Lowry et al., 1951). 1mL of Lowry stock solution, made of 

49 mL solution of 2% Na2CO3 in 0.1 M NaOH, 0.5 mL of 1% CuSO4 in distilled water, 

and 0.5 mL of 2% sodium potassium tartrate, were added to cell pellet.  The tubes were 

left for 30 min in a hot water bath. After that, 100 µL of Folin’s reagent (1 N) was added 

to each tube, and incubated them for 30 min at room temperature.  Absorbance was read 

in a spectrophotometer at 595nm.  The protein concentration was quantified by applying 

the standard calibration curve. 

5.2.2. Lipid Content Measurement 

 

Neutral lipids were determined by the improved Nile Red method of Chen et al. 

(2009).  Briefly, 1 mL of 25% (v/v) DMSO and 50µL of NR reagent (10 µg/mL NR in 

acetone) were added to cell pellet, which was then kept at 35C for 10 min.  Fluorescence 

intensity was measured in a fluorometer at 530 nm excitation and 575 nm emissions.  To 

calculate the lipid content (amount of lipid per cell), each number obtained here was 

divided to its relative protein amount (refer to chapter two for the protein measurement 

protocol).  

tNNK /))/((log 122
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5.2.3. Light Experiment 

 

Test tubes containing algal culture were wrapped in layers of wire mesh to create 

different light levels.  The source of illumination was provided from the side by a bank of 

100W incandescent light bulbs, with a 10L/14D cycle.  To prevent the heating of 

cultures, the test tubes were placed in a small water bath at their optimum temperature.  

Before the experiments started, the light intensity that each tube could receive, 

underneath the mesh layers, was detected by a flat model L1-1400 light meter and data 

logger, able to detect all the photosynthetic range.  The highest light intensity, received 

by the tube with no mesh layer, was comparable to summer sunlight intensity around 

noon. 

5.2.4. Nutrients Experiment 

 

Growth rates as a function of nitrate concentrations were determined.  Series of 

liquid media containing various amounts of nitrate were inoculated, while all other 

parameters were sufficient.  Each culture grew at a rate different from other cultures.  

Similarly, phosphate requirement was studied by varying the amounts of phosphate in a 

set of liquid media, while other parameters were sufficient.   

5.3. Results 

5.3.1. Effect of Nitrate on Lipid Content 

 

The six studied isolates displayed a similar pattern of oil content variations in 

response to nitrate gradients.  The lipid content varied only if nitrate was limiting, but not 

if it was sufficient.  In the cells grown under various degrees of nitrate deficiency, i.e. 0-

100µM, the lipid content was inversely correlated to the nitrate level and the growth rate.  

As nitrate was raised from near zero to the saturation level (~100µM), the growth rate 
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increased, but the lipid content decreased.  At higher nitrate levels, the growth rate 

became constant, as did the lipid content (Figure 5.1 A-F).   

 

 
Figure 5.1. Negative correlation between growth rate and oil content, in response to 

nitrogen gradients.  While nitrate was limited, in a range of zero to the saturation level 

(~100µM), lipid content was inversely related to growth rate.  Beyond such level 

(>100µM), the growth rate did not change, neither did oil content.   (A) C. sorokiniana, 

(B) Scenedesmus sp., (C) Synechocystis sp., (D) Limnothrix sp., (E) E. caespitosum, and 

(F) N. thermalis. 
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5.3.2. Effect of Phosphate on Lipid Content. 

 

In five of the organisms, including C. sorokiniana, Scendesmus sp., Limnothrix 

sp., E. caespitosum, and N. thermalis, the lipid-phosphate relationship was nearly the 

same as the lipid-nitrate relationship.  The growth rate varied only if phosphate was 

below the saturation level, ~100µM (Figure 5.2 A,B,D,E,F).  Within this range, the oil 

content was negatively correlated with the phosphate concentration and the growth rate.  

As phosphate concentration was increased from zero to below the saturation level, the 

cells divided faster, but contained less lipids.  Beyond the saturation point, more 

phosphate did not lead to a higher or a lower growth rate.  At this point, the lipid content 

no longer varied.   The only exception was Synechocystis sp., in which the lipid content 

did not change with the phosphate level at all, yet the growth rate did (Figure 5.2C).  

5.3.3. Effect of Light Level on Lipid Content. 

 

Both lipid-light and growth-light relationships were dissimilar among the cultures 

of the different algal groups.  In the two green algae, the light curve consisted of a light 

sensitive part where the growth rate and lipid content changed rapidly with the light, and 

a light insensitive part where the growth rate increased and lipid content decreased slowly 

as light level increased largely.  No photoinhibition occurred (Figure 5.3 A,B).  Unlike 

the green algae, the two cyanobacteria grew most under low light and contained the least 

amount of lipids.  In Synechocystis sp., photoinhibition occurred at a relatively moderate 

level of light, i.e. 50 µmole/m
2
.s, below which both growth rate and lipid content were 

constant.  Beyond this critical threshold, the growth rate decreased rapidly while lipid 

content spiked (Figure 5.3C).  Limnothrix sp. required a light intensity close to darkness 

(2 µmole. m
-2

.s
-1

), as even low intensities were too high for the cells.  This made it hard 
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to get data points below 2 µmole. m
-2

.s
-1 

(Figure 5.3D).  In this cyanobacterium, the 

growth rate decreased with the light level, while lipid content increased.  In contrast to 

the green algae and the cyanobacteria, the diatoms preferred the moderate light levels.  

The light curve comprised of a light sensitive phase, at which the growth rate increased 

and lipid content decreased rapidly with the light, a light insensitive phase, at which both 

growth rate and lipid content were constant, and a photo-inhibited phase, where growth 

was suppressed but lipid content increased (Figure 5.3 E,F).   
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Figure 5.2. Except for (C), in which oil content was constant, oil content of other species 

was negatively correlated to growth rate, as long as phosphate was limiting, i.e. <100µM.  

Above this level, growth rate did not change, neither did oil content.  (A) C. sorokiniana, 

(B) Scenedesmus sp., (C) Synechocystis sp., (D) Limnothrix sp., (E) E. caespitosum, and 

(F) N. thermalis. 
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Figure 5.3. Correlation between oil content and growth rate, in response to the light 

variations.  In the green algae (A) C. sorokiniana and (B) Scenedesmus sp., growth rate 

increased with light, reaching the highest amount at high intensities.  In an opposite 

direction, lipid content was maximal at low light and decreased with light until it reached 

its lowest amount at high light intensities. In the cyanobacteria (C) Synechocystis sp. and 

(D) Limnothrix sp., growth rate decreased with light intensity, became inhibited with 

high light, comparable to the Summer sunlight at noon. But, lipid content increased. In 

the diatoms (E) E. caespitosum, and (F) N. thermalis, growth rate increased with light, 

became constant, and then decreased with light. In an exact opposite direction, lipid 

content decreased with light, stayed constant, and then increased with light.  
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5.4. Discussion 

 

Except for the cyanobacterium Synechocystis sp. under varied phosphate 

concentration, lipid content in the other studied algae varied with nitrate and phosphate 

concentrations.  Below the saturation level, where growth rate significantly changed with 

nutrient concentration, lipid content was negatively correlated to growth rate.  This 

finding illustrates that the amount of lipids in the studied algae is a dynamic property. 

The results of this study indicate that algae grown under nutrient-limitation, but 

not nutrient-starvation, accumulate lipids.  In their logarithmic phase of growth, cells 

raised in a medium with inadequate amount of nutrient contained more lipids than those 

grown in a nutrient-sufficient medium.  However, lipid content of Synechocystis sp. 

neither increases nor decreases in response to phosphate gradient.  Although this result 

was not expected, it can be explained.  Excess carbon can be stored inside a cell in 

different forms of lipid, starch, or polysaccharide.  It is possible that this cyanobacterium, 

under phosphate limitation, used starch or polysaccharide for storage of carbon.  This 

phenomenon is known in cyanobacteria.  Konopka and Schnur (1980) and Konopka 

(1983) demonstrated that the cyanobacteria Merismopedia tenuissima and Oscillatoria 

rubescenes accumulated polysaccharide when they were grown under stressful growth 

environments.  Polysaccharide storage under starvation has also been observed in some 

green algae.  For instance, the green alga Pseudochlorococcum sp. used starch as a 

primary storage product of carbon.  During the time course of the experiment, starch 

content gradually decreased and lipid content increased until on day 10 that all the starch 

disappeared and lipids became predominant (Li et al., 2011).  This finding suggests that 

there are some species capable of producing both starch and lipids.  On the other hand, 
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there are some algae that are not able to store excess carbon inside the cell in any form; 

they excrete the excess carbon in the form of polysaccharide (Hellebust, 1965; Mehta and 

Vaidya, 1978; Jensen, 1984).  This is not the case in Synechocystis sp., as it did 

accumulate lipids in response to nitrate and light gradients.  Indeed, this species might 

use different forms of storage under various circumstances.   

How exactly nutrient limitation can cause an increase in lipid content is not clear.  

It is speculated that when at least one major nutrient is not sufficient, cells do not divide 

well and thus do not consume all the photosynthetically generated reduced carbon for the 

purpose of cell wall synthesis.  Therefore, carbon starts to build up and is stored as starch, 

polysaccharide, or lipids.   

 In response to light, lipid content in all the studied species varied.  Such variations 

were accompanied by variations in growth rate.  Growth was mostly slow under high 

light levels, which are stressful for most of the algae, or low light levels, which are 

inadequate to support growth.  In either case, light intensity impacted the lipid content.  

Indeed, lipid content was negatively correlated to growth rate, similar to what was 

observed for nutrients.  Though, not all the organisms demonstrated the same pattern.  In 

the two green algae, at low light, cells did not grow fast, likely due to inadequate energy.  

Yet for some unknown reason, they generated excess carbon, more than what they 

needed for cell wall synthesis.  It could be because photosynthesis efficiency is high at 

low light, meaning that the number of fixed CO2 per photon is higher (Flameling and 

Kromkamp, 1998).  But such fixed carbon was not utilized for the growth; thereby it 

went into the storage.  At high light levels, cells grew well and thus almost all the 

generated carbon was utilized, producing little excess carbon.   In the case of 
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cyanobacteria, however, the scenario was different.  At low light levels, cells grew very 

well, consuming nearly all the generated carbon which resulted in a very low excess 

carbon.  At high light levels, growth was so or halted so that practically all the generated 

carbon remained unused and thereby stored as lipids.  Diatoms appeared to act similarly 

to both cyanobacteria and green algae.  Similar to green algae, cells division was slow at 

low light levels, leading to a high excess carbon.  Similar to cyanobacteria at high light, 

photosynthetic reaction centers became saturated, causing a decrease in growth rate.  

Hence, almost all the fixed carbon accumulated as lipids.   

To summarize, lipid content of an alga is a function of the exact growth rate 

relative to the maximum growth rate that potentially could be accomplished under 

optimum growth conditions.  Consequently, any environmental factor, e.g. nutrient 

limitation or low/high light level, that negatively impacts the growth rate can cause an 

increase in lipid content.   
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1. Introduction 

 

This study affirms that growing native algae in the southwest of the U.S. does not 

require clean water or chemical fertilizers.  Fertilizers could be replaced by the nutrients 

obtained from two waste sources: centrate (the liquid fraction of sewage) and algal 

biomass residue (algae after lipids are extracted).  The idea is to use centrate as an initial 

source of water and nutrients, i.e. nitrogen and phosphorus, to start producing biomass.  

Afterwards, the recycled biomass by itself, once lipids are extracted, can continuously 

provide the required nutrients.  In fact, in terms of nutrients, a biodiesel plant would 

function as a closed system, fed by its own waste.  The nutrients existing in the biomass 

residue, along with the used water would be returned to the algal cultivation unit, serving 

as the growth medium.  Meanwhile, centrate supplements the culture from time to time, 

boosting growth of the algae and bringing fresh water into the system.  The used water 

often needs to be replaced by the fresh water, as salt accumulating in the overly used 

water could increase the salinity beyond the tolerance threshold of the algae, particularly 

in open ponds facing evaporation.  In addition to nitrogen and phosphorus, centrate and 

algal biomass residue contain organic carbon that serves as an additional source of energy 

because it stimulates growth and increases feedstock production.  In summary, using 

centrate amended with the recycled substrates from biomass residue mitigates the use of 

fertilizers and clean water and, in addition, it enhances the biomass productivity (Figure 

6.1). 
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Figure 6.1. A schematic design of an algal biofuel plant, emphasizing the recycling of 

generated waste. 

 

 

6.2. Conclusions and Discussions 

6.2.1. Isolation, Culturing, and Growth Optimization 

 

Chapter 2 provides an introduction to the biology of the studied algae.  It serves 

two objectives.  First, to isolate species indigenous to Southern Nevada which are 

suitable for the biofuel feedstock.  Second, to optimize the growth of the promising 

isolates in terms of nutrients, light, and temperature.  Previous efforts to develop algal 

biodiesel in the Southwestern U.S. indicated that, everything else being equal, native 

algae are preferable.  Specifically, in an outdoor pilot test conducted outside Roswell, 

New Mexico, inoculums of algae originating elsewhere were quickly invaded and 

replaced by native species (Sheehan et al., 1998).  The present study shows that native 

species might provide better crop stability.  Both C. sorokiniana and Scenedesmus 

species can tolerate salinity, excessive light, and elevated temperatures, suggesting that 

they are well-adapted to the local hard water and to the local climate conditions.  



111 

 

Additionally, they both contained relatively high lipid contents; C. sorokiniana and 

Scenedesmus sp. contained 19.0% and 29.8% lipids respectively, making them capable of 

being biofuel feedstock.  C. sorokiniana grew best at 32-35ºC, while Scenedesmus sp. 

grew best at 22ºC.  Hence, this study suggests utilizing C. sorokiniana for cultivation in 

summer, and Scenedesmus sp. for other seasons.  

6.2.2. Wastewater as the Growth Medium 

 

The goal of chapter 3 was to investigate the possibility of using centrate as a 

source of nutrients and water to grow algal feedstock.  In addition to inorganic nutrients, 

centrate is also a good source of organic compounds.  Some algae are able to use such 

organic carbon as an additional source of energy and grow even faster.  This chapter also 

investigated the ability of the studied isolates to take advantage of the organics present in 

centrate.  However, centrate is a complex material containing a wide range of organic and 

inorganic substances.  While some substrates are nutritious, others can be suppressive or 

toxic.  Inhibitors should be eliminated or diluted to a non-toxic level.  This chapter sought 

a proper concentration of centrate, at which toxins are detoxified, whereas at the same 

time the nutrients are still adequate for algal growth. 

6.2.2.1. Results and Discussions 

 

For both isolates, C. sorokiniana and Scenedesmus sp., the highest growth rates 

occurred in 20 - 70% centrate, and these rates were higher than those in BG11.  This 

agreed with the results of growing algae in different strengths obtained by Bhatnagar et al 

(2009), who studied a strain of Chlorella minutissima isolated from oxidation ponds in 

wastewater treatment facilities in India.  Our results also showed that the Las Vegas 

Wash water with less than 20% centrate was suboptimal, and inferior to BG11, 
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presumably due to insufficient phosphate.  The Wash water containing more than 70% 

centrate was counterproductive, and the two isolates responded differently.   

Scenedesmus sp. grew at a reduced rate for the entire duration of the experiment.  C. 

sorokiniana, in contrast, overcame the inhibition after two to three days.  At the log phase 

that followed, its growth rate was high, in fact higher than that reached at optimum 

centrate concentration, i.e. 50%.  A similar situation was previously observed with 

Chlamydomonas reinhardtii in undiluted centrate (Kong et al., 2010).  As a result, at least 

the four algae, C. sorokiniana, Scenedesmus sp., C. minutissima, and C. reinhardtii, 

prefer municipal wastewater over a freshwater-based medium.   

As pointed out earlier, in addition to the nutritious substrates, centrate also carries 

toxic compounds.  Further investigation tentatively identified four potential sources of 

inhibition in the centrate: high nutrients concentration, ammonium, heavy metals, and 

urea.  The results from chapter 2 rule out the possibility of inhibition caused by high 

nutrient concentrations.  No evidence of inhibition was observed from nitrate as high as 

800 μM, or from phosphate as high as 300 μM, the upper concentration limits to nitrate 

and phosphate in centrate.  The next possible inhibitor would be ammonium.  

Ammonium is a source of nitrogen to algae, but it can be toxic in high concentrations 

(Abeliovich and Azov, 1976; Azov and Goldman, 1982).  This is also the case with C. 

sorokiniana.  Ammonium inhibited growth when it was the only source of nitrogen.   

This inhibition was not observed if the organism was grown in nitrate-replete instead of 

nitrate-omitted BG11.  Centrate contains both nitrate and ammonium.  Therefore, the 

ammonium toxicity observed in the nitrate-omitted BG11 is unlikely to be the cause of 

inhibition observed in centrate.  The other potential source of toxicity would be heavy 
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metals.  Centrate is known to contain arsenate/arsenic and other toxic heavy metals 

(Mohan and Pittman, 2007).  Yet, the presence of heavy metals in high concentration in 

sewage is very improbable.  Therefore, heavy metals cannot be the source of toxicity.  

The last possibility would be urea, which is usually present in typical domestic sewage.  

The results indicate that there is a critical level for urea, above which it is toxic and below 

which it is nutritious.  The growth rate of C. sorokiniana in nitrate-replete BG11 was 

significantly enhanced by low-level urea amendments, 0.001% and 0.01%.  At a higher 

concentration of 0.1%, urea suppressed growth to slightly below pre-stimulation level.  

This result replicated the inhibitive nature of undiluted centrate.  C. sorokiniana could 

overcome the inhibition of 100% centrate after two to three days of incubation.  This 

result is shown in more details in Figure 3.5A, by comparing the growth dynamic in 

100% centrate, where inhibition exists, and in 50% centrate, where inhibition does not 

exist.  The same result was observed when C. sorokiniana was grown in BG11 with 0.1% 

urea (Figure 3.5B).  In the absence of urea, the organism displayed virtually no lag phase.  

In its presence, in contrast, it showed a long lag phase. 

Utilization of urea by green algae as a nitrogen source is well documented 

(Bekheet and Syrett, 1977).  It is also known that urea metabolism in green algae is 

enabled either by urease or by ATP-urea amidolyase (Hodson and Thompson, 1969; 

Bekheet and Syrett, 1977).   Both enzymes degrade urea to NH3 and CO2 (Eq. 6.1). 

CO (NH2)2 + H2O  CO2 + 2 NH3                                                                                                            (Eq. 6.1) 

The stimulation of urea at low concentrations most likely comes from the carbon source 

(CO2), while the inhibition at high concentrations almost certainly comes from NH3.  To 

avoid inhibition, an attempt was made to adapt C. sorokiniana to urea before being 
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transferred into the centrate.  The rationale was to expose the cells to urea during the pre-

adaptation phase in order to induce urea-degrading enzymes, i.e. either urease or ATP-

urea amidolyase.  It was hoped that the induced enzymes would degrade urea right away, 

once the alga is transferred into the centrate, negating or shortening long lag phase.  

Ultimately, the result of this experiment resulted in a long lag phase occurred.    

As mentioned previously, properly diluted centrate not only supports growth, but 

also outperforms the mineral medium BG11 due to the presence of organic substrates, 

which provide an additional source of energy for the algae.  The growth of C. 

sorokiniana was enhanced by glucose and acetate, but not by glycerol and lactate (Figure 

3.6A).  The growth of Scenedesmus sp. was stimulated by glucose, acetate, and glycerol, 

but not by lactate (Figure 3.6B).  The results also illustrated the heterotrophic abilities of 

the two algae, growing on organic carbon in darkness.  Both algae could consume 

glucose and acetate in the dark, but not glycerol and lactate (Figure 3.7).  This result is 

consistent with previous findings that many algae, including Chlorella and Scenedesmus 

species, consumed organic carbon as an energy source in the dark or under light 

(Samejima and Myers, 1958; Karlander and Krauss, 1966; Kamjunke and Tittel, 2009; 

Liang et al., 2009; Gao et al., 2010; Heredia-Arroyo et al., 2010; Xiong et al., 2010; 

Heredia-Arroyo et al., 2011; O'Grady and Morgan, 2011).  The heterotrophic abilities of 

the isolates permit uninterrupted growth, in contrast to the phototrophic growth which is 

halted during the night.  The continuous growth enriches biomass density.  Centrate has a 

significant biological oxygen demand or BOD (Table 3.1).  While it is not known what 

organic compounds are exactly responsible for the BOD, it is likely that some of them are 

available to the isolates, given their broad mixotrophic/heterotrophic capabilities.  Such 
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substances support night-time growth and stimulate day-time growth, improving total 

biomass productivity.   

The rational of choosing glucose and acetate for the hetero/mixo-trophic 

experiments was that they are the most common organic carbon sources that 

microorganisms can utilize.  Glucose is a simple monosaccharide found in plants, a 

primary source of energy, and a metabolic intermediate for most organisms.  Acetate, 

also, is the most common building block for biosynthesis.  Hence, it was likely that algae 

could utilize these two carbon sources.  Lactate was adopted due to its availability in the 

wastewater of dairy and ice-cream factories.  The notion was to amend the growth 

medium with such organic-rich wastewaters to boost growth.  Glycerol was also tested, 

as a growth stimulator, due to its excessive production and abundance in the market (as a 

byproduct of biodiesel production).  

6.2.3. Recycling Algal Biomass Residue as a Source of Nutrient 

 

Chapter 4 discusses the feasibility of replacing fertilizers with the nutrients 

recycled from algal biomass residue, i.e. the algal cells remaining at the end of the lipid 

extraction process.  However, such nutrients are bonded in complex molecules such as 

proteins, nucleotides, or carbohydrates.  Algae are not able to utilize such large 

molecules.  Hence, waste biomass must be decomposed first.  Biological degradation was 

carried out through “algal composting”, similar to plant composting in agriculture, in 

which bacteria convert the polymer-like molecules into substrates that algae can utilize.  

Through algal composting, dissolved nutrients were extracted.  The resulting liquid-like 

extract is commonly referred as ‘compost tea”.  The compost tea was used as growth 

medium to examine its suitability to grow the studied algae.  The alternative, chemical 

http://en.wikipedia.org/wiki/Biosynthesis
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approach, decomposes the biomass faster and simpler, but it incurs energy cost.  During 

this process, polymers (e.g. proteins) would break down to monomers (e.g. free amino 

acids), possibly consumable by algae.  However, such monomers are sources of organic 

nutrients.  Although algae, like higher plants, prefer inorganic forms of nutrients, e.g. 

nitrate, some marine diatoms can utilize the organic nitrogen of amino acids as well 

(Admiraal et al., 1984; Admiraal et al., 1987).  Thus, it is possible that some ‘fuel strains’ 

also could assimilate amino acids as a source of nitrogen.  The present study tested the 

would-be product of such a chemical degradation, i.e. amino acids, to grow algae.  

Consequently, the ability of the studied isolates to consume four amino acids, including 

aspartic acid, glutamic acid, alanine, and leucine, as their sole source of nitrogen, was 

examined.  These are the most common amino acids present in the algal cell wall 

(Punnett and Derrenbacker, 1966) which are also expected to be present in the waste 

biomass.    

The rationale for preparing composts under aerobic (moist, daily turnover) and 

anaerobic (submerged in water, no mixing) conditions was to find the most efficient of 

the two.  The anaerobic condition generates more compost than the aerobic condition out 

of the same base biomass, but at a slower process rate.  Under each condition, algae were 

decomposed with a cellulose source in the form of office papers, or without it.  

Composting without paper is preferred, if it is viable, because fewer additives make the 

composting more economical.  All composts were extracted in the same amount of water.  

The extracts, or teas, with or without supplemented glucose (as a simple organic carbon 

source) were tested to grow the studied algae.  Overall, eight types of teas were used to 
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grow the two isolates C. sorokiniana and Scenedesmus sp.  Growth in BG11 was a point 

of reference.  

6.2.3.1. Results and Discussions 

 

The results illustrate the ability of the two studied algae, C. sorokiniana and 

Scenedesmus sp., to grow in compost tea at a rate comparable to, or higher than that 

obtained in BG11.  The tea from aerobic compost, with or without paper, supported a 

robust growth rate of C. sorokiniana when supplemented with glucose, most likely due to 

mixotrophy.  For Scendesmus sp., the tea from aerobic paper-containing compost, 

without glucose supplement, could also support a significant growth rate.  Such 

enhancement could be due to the organic carbon sources, such as acetate, already present 

in the tea.  The occurrence of growth demonstrates that compost tea, i.e. the product of 

biologically degraded biomass, can be used in place of growth medium.   

However, no growth, for either alga, occurred in the teas from anaerobic paper-

containing composts, with or without glucose.  In retrospect, the use of office papers as a 

source of cellulose was a poor choice.  Office papers contain calcium carbonate, added 

during the whitening process of paper during commercial production (Sundara-Rajan et 

al., 2004), which leads to calcium toxicity.  According to the Hofmeister series, shown in 

the box, calcium is the strongest chaotropic cation after guanidinium.  Chaotropic agents 

denature protein (Von Hippel and Wong, 1965; Herberhold et al., 2004; Zhang and 

Cremer, 2006), which in this case would be the protein of the algae.  Calcium toxicity 

could be remedied by a strong kosmotropic anion.  The Hofmeister series shows that 

sulfate and fluoride are the strongest kosmotropes.  Kosmotropic ions, opposite to 

chaotropes, stabilize protein, thus these can detoxify the chaotropic agents (explained in 
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detail in chapter 4).  Even though sulfate was detected in the tea, its quantity was not 

enough to detoxify the high concentration of calcium, ~90mM.  

 

Hofmeister series 

Kosmotropes (detoxifier) ---------------------------------- Chaotropes (toxin) 

Anion series  

Cation series   

 

The toxicity of calcium to algae was also revealed by the results of our 

preliminary experiments, in which the presence of 10mM calcium, in the culture, 

suppressed the growth of C. sorokiniana significantly (Figures 4.4 and 4.5).   

In contrast, tea from the compost that is also anaerobic but paperless supported 

algal growth, equivalent to BG11 (Figure 4.3 A, B–horizontal dashed lines).   

Tea from aerobic, paper-less composting supported some growth.  The growth of 

C. sorokiniana was not measured by optical density due to cell clumping.  Clumping 

itself is an indication of stress response.  Adding glucose rescued the algae.  Such partial 

inhibition, was also eliminated after treatment with hydrogen peroxide (data not shown).  

The olive-grey color of the tea and inhibition disappeared simultaneously, implying a 

single cause for both and suggesting an organic source of toxicity such as pheophytin.  

Pheophytin is an organic substance creating such color.  Pheophytin is a chlorophyll 

molecule lacking a central Mg
+2

 ion that can be produced from chlorophyll under high 

temperatures, i.e. > 100 °C. This could have happened during autoclaving.  How exactly 

this molecule suppresses growth is yet to be investigated.   



119 

 

Tea from the paper-present aerobic compost supported growth of C. sorokiniana 

at about 80% of BG11 and of Scenedesmus sp. better than BG11, suggesting that the 

presence of cellulose provided the energy needed to oxidize pheophytin.  If supplemented 

with glucose, the same tea became superior to BG11, for both species.  This is probably 

because both algae are mixotrophic, utilizing glucose as an extra source of energy.   Here, 

although paper was present, there was no calcium toxicity to either alga, perhaps due to 

aerobic conditions promoting sulfate formation instead of its removal (i.e. sulfate 

reduction).   

To summarize, aerobic decomposition is fast, yet has the drawback of producing 

pheophytin.  However, such toxicity could be prevented by adding a source of cellulose 

during composting.  Anaerobic decomposition, in absence of paper, is without the 

problem of pheophytin.  However, the rate of decomposition is slow.   

In addition to compost tea, the two algae consumed amino acids, i.e. hypothetical 

products of chemical biomass decomposition, as the sole source of nitrogen (Figures 4.1 

and 4.2).  A decrease in the amino acid concentration, accompanied by an increase in the 

cells density, specifies that the algae obtained their required nitrogen from the amino 

acids.  This implies that chemically decomposed biomass can also be used instead of 

fertilizers.   

Figure 6.1 demonstrates a very general schematic design of what is explained 

above.  It introduces three benefits.  One, it provides an efficient, sustainable way to 

dispose of a large amount of waste (biomass and glycerol) that will be generated at 

biofuel plants.  Second, it makes biofuel plants independent from fertilizers and clean 

water.  Third, it enhances biomass productivity at no extra cost.   
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6.2.4. Manipulation of Growth Conditions for Higher Lipids Production 

 

The aim of chapter 5 was to provide a better understanding of the cause of 

variations in lipid content as it impacts the overall productivity of lipids.  Lipids serve as 

storage for excess carbon, the content of which fluctuates with inflow and outflow 

carbon.  The inflow represents the generated carbon, via photosynthesis, while the 

outflow symbolizes the utilized carbon, through growth.  Hence, lipid content is the 

outcome of interactions between photosynthesis efficiency (the number of fixed CO2 

divided by the number of photons absorbed at irradiances which are sub-saturating to 

photosynthesis) and growth rate.  When light is consistent, growth rate alone controls 

lipid content.  On the other hand, lipids productivity changes with both lipid content and 

biomass density.  In order to achieve a high lipid yield, both variables of ‘lipids quantity 

per cell’ and the ‘total number of cells in the culture’ must be optimized, according to the 

following: 

Total lipids per volume of culture= (the amount of lipids produced per cell) * (total 

number of cells per volume of culture) 

Prior studies showed that lipid content increased under unfavorable growth 

conditions, e.g. nutrient deficiency (Zhekisheva et al., 2002; Khozin-Goldberg and 

Cohen, 2006; Merzlyak et al., 2007; Pruvost et al., 2009; Rodolfi et al., 2009; Chen et 

al., 2010; James et al., 2011).  Yet, there were some issues that needed to be clarified or 

optimized.  First, the approach of performing the experiments invited uncertainties to the 

results.  For instance, where the effect of nitrate deficiency on lipid content was tested, 

there is a high possibility that phosphate had also become limiting.  Although the 

experiments began with sufficient amounts of phosphate, phosphate had become limited 
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later, at the time that lipid content was measured; in batch cultures, in general, all the 

chemicals change over time.  Hence, nitrate concentration may not have been the only 

variable in the system affecting the lipid content.  To improve that issue, this research 

used a gradient of concentrations.  Parallel experiments were begun at the same time and 

under equal conditions, but with different initial concentrations of the target variable.  All 

the experiments were terminated before other parameters became limiting.  As a result, 

the lipid contents were compared among the cells experiencing the same phase of growth, 

i.e. log phase, while all parameters, except the target, were still sufficient.   

Previous results reported in the literature were sometimes contradictory.  

Different findings were reported for one given parameter, in species belonging to one 

algal group.  This situation made it almost impossible to predict the trend of lipid content 

variations in response to a given variable.  This study developed a universal pattern that 

shows the relationship between growth rate and lipid content in response to varied 

environmental conditions.   

6.2.4.1. Results and Discussions 

 

Irrespective of the environmental and growth conditions, test results indicate that 

lipid content is negatively correlated to growth rate (Figures 5.1, 5.2, 5.3).  This finding 

suggests that while unfavorable growth conditions increase the amount of lipids inside 

the cell, they do not necessarily increase the total lipid production.  

One exception to the proposed trend was Synechocystis sp. in response to 

phosphate gradients, in which growth rate varied but lipid content did not (Figure 5.2C).  

In this case, the excess carbon was likely stored as starch.  This agrees with Li et al. 

(2010) results, showing that Pseduchlorococcum sp. used starch as a primary storage 
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product of carbon, not lipids.  These findings indicate the importance of genetics, in 

addition to physiology, in lipid production.  Some species are able to store excess carbon 

in different forms, i.e. starch, polysaccharide, and lipids, under various conditions.  It is 

evident from the results of this study that Synechocystis sp. stored lipids under nitrate-

limitation conditions and high light intensities while producing starch or polysaccharide 

under phosphate-limitation circumstances.  On the other hand, some algae are not 

genetically capable of storing any forms of excess carbon inside the cell: some, mostly 

cyanobacteria, excrete the excess carbon in the form of polysaccharide into the culture 

while some others store polysaccharide outside the cell and use it when it is needed 

(Hellebust, 1965; Mehta and Vaidya, 1978; Jensen, 1984).  However, neither of these 

types of algae nor the starch-producers are suitable candidates for biodiesel. 

In contrast to light intensity and nutrient concentration, temperature did not 

change the lipid content (data are not shown).  It agrees with the findings of Spoehr and 

Milner (1948) in which lipid content of C. pyrenoidosa did not change with temperature.  

The reason could be that temperature affects both photosynthesis and growth similarly 

and simultaneously, increasing or decreasing both jointly.  In other words, the difference 

of the generated carbon and the utilized carbon is always constant and thereby, lipid 

content stays constant.  Similar to the growth-temperature curve (Figure 2.12), the 

photosynthesis-temperature relationship also forms a bell curve.  Photosynthesis is a 

series of chemical reactions influenced by temperature, like all other chemical reactions.  

At low temperatures, the enzymes responsible for photosynthesis do not have adequate 

kinetic energy to function.  Increasing temperature, which generates more kinetic energy, 

causes net photosynthesis to increase.  More kinetic energy leads to more collisions 
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between the reactants in photosynthesis, until net photosynthetic activity reaches its peak, 

above which too much heat denatures those enzymes responsible to catalyze 

photosynthesis.  This condition causes photosynthesis to become severely inhibited.  

While this study did not determine the photosynthesis rate in relation to temperature, 

including this study would not have changed the conclusions.  

6.3. Future Recommendations 

6.3.1. Effect of Carbon Dioxide on Growth Rate 

 

In addition to nutrients and light, algae also require carbon dioxide to grow.  Due 

to unavailability of the proper instruments, this study was unable to investigate growth 

against various concentrations of carbon dioxide.  However, the preliminary results of 

this study, conducted with one concentration at a time against ambient air as a reference, 

portrayed an increase in the growth rate of C. sorokiniana in the presence of additional 

CO2 (Figure 6.2).   It can be speculated that, if all other growth parameters are sufficient, 

an additional CO2 can speed up the photosynthetic rate, thereby increasing biomass 

production (Eq. 6.2). 

n CO2 + n H2O  biomass + n O2                                                                         (Eq. 6.2) 

However, beyond a certain level, carbon dioxide may become ineffective due to the pH 

falling below the tolerance threshold of algae.  Carbon dioxide dissolves slightly in water 

and forms a weak acid, H2CO3 (Eq. 6.3). 

CO2 + H2O  H2CO3                                                                                                                                             (Eq. 6.3) 

Carbonic acid in water forms a hydronium cation, H3O
+
, and bicarbonate ion, HCO3

-
, 

reducing the pH of the culture (Eq. 6.4).
 

H2CO3 + H2O  HCO3
-
 + H3O

+                                                                                                                  
(Eq. 6.4)
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Figure 6.2. Effect of carbon dioxide on growth rate of C. sorokiniana. Growth rate 

increases as carbon dioxide is increased.  Above 10% CO2, the growth rate dropped 

down due to the acidic environment. 

 

Nevertheless, the removal of CO2 by algae increases pH and decreases the partial 

pressure of CO2.  Therefore, the pH of the culture depends on the rate of CO2 

consumption and the rate of CO2 diffusion.  As such, it is crucial to monitor the pH of the 

culture continuously and adjust it to the level at which growth is optimal.  Similar to 

other growth parameters, the pH tolerance level of algae is species-specific.  The 

preliminary results of this study suggest that the optimum pH for C. sorokiniana was 

around 8 while it could tolerate a pH in the range of 6.5-9.  Practically, no growth 

occurred at pH of 4 or less (Figure 6.3).  A study to determine the pH tolerance range of 

the species and the maximum allowed CO2 concentration is recommended.    

 

 

 



125 

 

 

Figure 6.3. pH tolerance of C. sorokiniana  The highest growth occurred at pH = 8. 

 

6.3.2. More Collection and Screening 

 

Since the algae must be able to utilize wastewater, it would be a good idea to 

collect samples from oxidation ponds in wastewater treatment facilities.  Also, in order to 

grow them on waste biomass, species must be chosen from amongst those that are able to 

consume organic nutrients, e.g. amino acids.  Additionally, the isolates should have 

mixotrophic and heterotrophic capability to take advantage of the organic compounds 

available in wastewater and waste algal biomass. 

Among diverse types of algae, diatoms contain high lipid content.  Two of them 

originated from the Las Vegas Wash (shown in Figure 6.4) and possess oil droplets full 

of neutral lipids in addition to membrane lipids.  The droplets fluoresce yellow 

(excitation-emission 517-584 nm) after staining with Nile Red, a lipophilic dye, 

indicating the presence of neutral lipids.  One of them was designated as Stephanodiscuss 

sp.  This study never succeeded in bringing either diatom into the pure cultures to do 
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experiments.  Particularly in the culture of Stephanodiscuss sp., there were many small 

single cell diatoms and different bacteria attached to this large filamentous diatom, which 

grew so fast that the slow fat diatom never dominated the nutrient uptake.  Other 

microorganisms existing in the culture flourished, causing the large diatom to die.   

 

         

Figure 6.4. Oil rich diatoms, native to the Las Vegas Wash.  Stephanodiscus sp. on the 

left and unidentified diatom on the right.  In addition to the lipid membrane, all types of 

algae possess, these diatoms contain additional oils, fluoresced yellow and confined in 

the droplet shaped storages. 

 

 

In general, the challenge with growing diatoms on an industrial scale is their need 

for silicate.  The silicate is required for cell wall synthesis.  In this study, for the first 

time, the silica of the dead diatom cell walls was used as a nutrient source (explained in 

Appendix A).  As a result, diatom N. thermalis grew well in a medium made of the 

recycled silica.  The second issue with the oil-rich diatoms is their slow growth.  The low 

growth rate decreases biomass and lipid productivities.  This could be resolved by 

applying genetic engineering methods in which the diatom genes responsible for oil 

Chloroplast 

Chloroplast Oil droplet 

Oil droplet 
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production would be transferred to a fast growing alga, like Chlorella.  This approach is 

not yet developed, and currently is an on-going research topic in genetic engineering.  

6.3.3. Determining Toxins in Centrate 

 

Heavy metals could impose a serious threat to algal growth if they are present at 

high concentration, i.e. millimolar.  Wastewater is known to contain heavy metals, the 

concentrations of which vary based on the water chemistry and geological characteristics 

of the region.  A study to detect the concentration of the heavy metals in the wastewater 

before it is used in algal farms is recommended.  Moreover, to determine the safety 

margin of centrate concentration in algal farms, it is recommended that an investigation 

to determine suitable concentration of urea in the centrate be carried out.   

6.3.4. Improving the Methods of Algal Biomass Decomposition 

 

In order to break down waste algal biomass and to free the nutrients, the present 

study used biodegradation, i.e. composting the algae.  Yet, inhibition occurred in some 

compost teas.  To eliminate the inhibition caused by calcium toxicity of papers in the 

anaerobic compost teas, other sources of cellulose, such as waste wood, should be 

examined.  In order to figure out the exact source of stress and inhibition that occurred in 

the extract from aerobic compost without paper or glucose, it is recommended that the 

concentration of chlorophyll group molecules, particularly pheophytin, before and after 

the hydrogen peroxide treatment be determined.  A considerable reduction in any of these 

molecules designates them as the source of toxicity.  Additionally, it would be helpful to 

do a growth experiment in BG11 supplemented with chlorophyll or pheophytin, to 

observe whether any inhibition occurs. 
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Even though composting is an economical way to decompose the algal biomass, it 

is slow.  As mentioned earlier, chemical approach is an alternative in which high heat and 

pressure would break the polymers.  This approach is fast, but is energy-intensive.  The 

other option for degrading the biomass could be a two-step process: fermentation and 

chemical decomposition.  Through fermentation, methane gas is produced while 

converting polymers into bio-accessible substrates.  The generated methane gas can 

provide the required energy for the subsequent chemical process to break down the rest of 

the biomass residue.   

6.3.5. Other Waste Organic Carbon Sources 

 

In addition to centrate and algal biomass residue, wastewater from sugar factories, 

breweries, wineries, dairy factories, and etc. could also be tested as a source of organic 

carbon.  If these nutrient-rich wastewaters are found suitable for and consumable by 

algae, they can be added to the waste-based growth medium to stimulate algal growth.  

To improve efficiency of biofuel plants, exploitation of glycerol-utilizing algae (such as 

Scenedesmus sp.) as feedstock is highly recommended.    

6.3.6. Calculating Overall Lipid Productivity 

 In order to calculate overall lipid productivity, it is necessary to determine the 

exact quantity of lipids produced in an algal cell.  While the results of this study revealed 

a uniform trend of lipid content in response to various environmental factors, they cannot 

be used for lipid productivity calculation.  For this reason, it is highly recommended to 

either quantify lipid content with a standard calibration curve, in place of reporting 

relative numbers, or determine lipid content with a gas chromatography–mass 

spectrometer (GC-MS), instead of the nile red method used in this study. 
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APPENDIX A 

DIATOM CELL AS A SOURCE OF SILICA 

 

Silicate, as well as nitrate and phosphate, is a major nutrient for diatoms, one of 

the main groups of algae.  Silica, i.e. the primary source of silicate, is most commonly 

found in nature as sand or quartz, i.e. finite, non-renewable resources.  Providing this 

compound in a large scale for algal farms could cause economic barriers.  Therefore, it is 

important to find renewable and economical sources of silicate.  One source could be the 

cell walls of dead diatoms.  Diatom cell walls possess a complicated structure made of 

nano-patterned silica, SiO2 (Kröger and Poulsen, 2008).  While the structure of the cell 

wall is species-specific, its material is similar within all the diatoms.  Antonides, 1998 

verified that about 80% of oven-dried diatom cell walls are made of silica.  This study 

suggests that after all the useful material of a diatom (including lipids, nutrients, organic 

carbon, etc.) is extracted, the cell can be completely burned until only silica is remained.  

The obtained silica in reaction with hot sodium hydroxide would generate sodium silicate 

that can be used in diatom medium (DM).  However, the feasibility of this idea and the 

ability of diatoms to consume such source of silicate are yet to be investigated.  Hence, 

this study tries to grow the diatom N. thermalis in a DM contained recycled silica as the 

sole source of silicate.   

Cells of the diatom Stephanodiscus sp., collected from the Las Vegas Wash, were 

baked in an oven at 400°C for three hours (Figure A.1).  



130 

 

 

Figure A.1. After baking at 400˚C for 3 h, frustules’ structures of Stephanodiscus sp. 

without the organic components of the diatom cells observed by scanning electron 

microscopy. 

 

 

One gram of the baked diatoms was added to about 1.5g “molten” sodium hydroxide, at 

320°C, to produce sodium silicate (Eq. A.1).   

2 NaOH + SiO2  Na2SiO3 + H2O                                                                        (Eq. A.1) 

Sodium silicate could also be generated from adding hot aqueous NaOH, instead of 

molten.  The whole procedure was performed under a hood and inside a ceramic 

container. 

The generated sodium silicate then was added to the silicate-free DM, while all 

other gradients were the same as the DM recipe.  The new medium was autoclaved and 

then cooled down in room temperature.  Thereafter, the diatom N. thermalis was 

inoculated.  As a reference, the diatom was also inoculated into the standard DM.  After 

five days, both cultures became turbid, showing golden color which is the color of the 

inoculated diatom.  Cells were harvested by centrifugation and the protein content was 
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measured based on the Lowry assay.  One milliliter of the culture composed of the 

recycled-silica contained 1.10 mg protein while the same volume of the reference culture 

contained 1.41 mg protein.  This finding shows that the diatom cells actually could 

consume the recycled-silica to grow.   

SEM Preparation Procedure 

 

Cells were fixed in 3% glutaraldehyde solution buffered with 0.1% phosphate 

buffer (pH 7) for 2 hours.  After centrifugation, the cells pellet was rinsed with nano-

water for three times.  The pallet then was dehydrated with 100% ethanol for five 

minutes.  Ethanol was dried and the cells were rinsed with nano-water for five times.  The 

wet cells were baked at 400°C for three hours to burn all the organics.   
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APPENDIX B 

AMINO ACIDS UPTAKE BY GREEN ALGAE 

 

This appendix discusses the findings produced by additional experiments with 

amino acids, in addition to the experiments presented in chapter 4.  In order to understand 

the mechanism of consuming amino acids by green algae, two native algae, C. 

sorokiniana and Scenedesmus sp., plus one additional green alga, Euglena gracilis, 

purchased from the UTEX, were grown separately on D- or L-enantiomers of aspartic 

acid, glutamic acid, alanine, and leucine, serving as the sole source of nitrogen.  The three 

species showed three distinct uptake patterns.  Scenedesmus species consumed both D- 

and L-enantiomers of the four studied amino acids (Figure B.1, A and B).  C. sorokiniana 

utilized only L-aspartic acid and L- alanine, but no D-amino acid (Figure B.2, A and B).  

E. gracilis did not take up any D- or L-amino acid (Figure B.3 and B.4).  It is 

hypothesized that two mechanisms are involved, racemization and producing outer-cell 

amino acid oxidases, specific to each amino acid.  Through racemization, organisms 

convert D-amino acids (D-AAs) to L-amino acids (L-AAs).  D-AAs are a source of 

toxicity.  The fact that Scenedesmus sp. could consume all four D-AAs as well as L-AAs 

to grow suggests the presence of racemization enzymes in this species.  Dr. Sun, the 

supervisor of this research, in his recent under-revision paper suggested that in racemic 

mixtures, the organism first exhaust L-AAs and then, without interruption, begins to use 

D-AAs, already converted to L- form.  To find out if Scenedesmus sp. possesses 

racemases, a mixture of D- and L-enantiomers of each amino acid was added to the 

concentrated culture of Scenedesmus sp.  Uptake was monitored by high performance 

liquid chromatography analysis of enantiomers remaining in the medium.  If the uptake 
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of D- and L-amino acids were identical, there would be a very high chance of the 

racemization presence.    

As demonstrated in Figure B.1, A and B, Scenedesmus sp. consumes L-glutamic 

acid and L-alanine at the rates comparable to D-glutamic acid and D-alanine, 

respectively.  In the culture containing DL-glutamic acid, L-glutamic acid uptake starts 

immediately but D- is not consumed for about 40 hours.  The delay in the onset of the 

activity could be because D-AAs have to wait for the L-enantiomers to be exhausted first.  

However, at hour forty, the cells consumed the D-glutamic acid at a rate that could meet 

their need for the L-AAs (Figure B.5). This suggests that D-glutamic acid is taken up, 

converted, and metabolized as L-glutamic acid.  Zhang and Sun, in their recent under-

revision paper, proposed three scenarios for racemization, all of which correspond to the 

current findings.  In scenario one, an organism with sufficient rasemase activity would 

consume both D- and L-AAs in equal rates, the case of DL-alanine.  In scenario two, the 

organism would also take up both enantiomers, but with rate kinetics that favor L-

enantiomers, the case of DL-aspartic acid and DL-leucine.  In scenario three, the 

organism with limited racemase activity would consume the two forms sequentially, first 

the L-enantiomers, then the D-enantiomers, the case of DL-glutamic acid.   
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Figure B.1. A. Growth curve of Scendesmus sp. in the media composing of nitrogen-free 

BG11 supplemented with L- or D- amino acids, aspartic acid or glutamic acid, (filled 

circles), in the standard BG11 (open triangles), and in the nitrogen-free BG11 (open 

circles) along with the amino acid uptake diagram (filled squares).  In consort with 

growth, all the L- and D-enantiomers were utilized, indicating that the alga obtained its 

nitrogen requirement, for growth, from the amino acids.    

A 
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Figure B.1. B. Growth curve of Scendesmus sp. in the media composing of nitrogen-free 

BG11 supplemented with L- or D-amino acids, alanine or leucine, (filled circles), in the 

standard BG11 (open triangles), and in the nitrogen-free BG11 (open circles) along with 

the amino acid uptake diagram (filled squares).  In consort with growth, all the L- and D-

enantiomers were utilized, indicating that the alga obtained its nitrogen requirement, for 

growth, from the amino acids.    

 

 

 

 

 

B 
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Figure B.2. A. Growth curve of C. sorokiniana in the media composing of nitrogen-free 

BG11 supplemented with either L- or D-amino acids, aspartic acid or glutamic acid, 

(filled circles), in the standard BG11 (open triangles), and in the nitrogen-free BG11 

(open circles) along with the amino acid uptake diagram (filled squares).  Only L-aspartic 

acid and L-Leucnine were utilized, accompanied with growth.  The unutilized enantiomer 

did not support nor inhibit the growth.   

 

A 
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Figure B.2. B. Growth curve of C. sorokiniana in the media composing of nitrogen-free 

BG11 supplemented with either L- or D-amino acids, alanine or leucine, (filled circles), 

in the standard BG11 (open triangles), and in the nitrogen-free BG11 (open circles) along 

with the amino acid uptake diagram (filled squares).  Only L-aspartic acid and L-

Leucnine were utilized, accompanied with growth.  The unutilized enantiomer did not 

support nor inhibit the growth.   

 

B 
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Figure B.3. Growth curve of Euglena gracili, UTEX 367, in the media composing of 

nitrogen-free P49 supplemented with either L-amino acids (filled circles), in the standard 

P49 (open triangles), and in the nitrogen-free P49 (open circles) along with the amino 

acid uptake diagram (filled squares).  No amino acid was utilized. 
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Figure B.4. Growth curve of Euglena gracili, UTEX 367, in the media composing of 

nitrogen-free P49 supplemented with either D-amino acids (filled circles), in the standard 

P49 (open triangles), and in the nitrogen-free P49 (open circles) along with the amino 

acid uptake diagram (filled squares).  No amino acid was utilized. 
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Figure B.5. Kinetics of the D- (filled circle) and the L- (open circles) enantiomers of the 

amino acids consumption by Scenedesmus sp., when the two enantiomers were supplied 

as a mixture, with no nitrate added. 

 

For C. sorokiniana, the situation was different.  Cells consumed only two amino 

acids, aspartic acid and leucine, and only the L- forms.  This indicates that this alga does 

not possess racemases.  Two potential situations are proposed.  First, D-AAs were toxic 

to the alga but the toxicity did not appear due to the lack of nitrogen source in the 

medium.  Since the cells are not able to grow in the absence of nitrogen any way, the 

potential inhibition was not exposed.  Hence, further experiments were conducted in 
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which the D-AAs were added to the media that contained sufficient amount of nitrate.  In 

this case, no growth would mean suppression by D-AAs.  The results ruled out this 

possibility (Figure B.6A, B.7A).  Cells grew in presence of D-AAs as well in the mineral 

medium BG11, in the absence of D-AAs. 

In another additional experiments, L-aspartic acid and L-leucine were added to 

the media containing nitrate.  No uptake occurred (Figure B.6B, B.7B).  That C. 

sorokiniana consumed these two L-AAs only in the absence of nitrate but not in the 

presence of it suggests that the cells express the responsible enzymes only when the 

amino acids are required for growth.  It is speculated that only when it is required, cells 

secrete L-AA oxidases (LAAOs) into the culture, outside the cell.  This enzyme is 

specific to the type of the amino acid, thus LAAOs associated to aspartic acid cannot 

metabolize glutamic acid.  This could be the reason why C. sorokiniana assimilated only 

two amino acids.  The enzyme also is enantiomeric- specific, meaning LAAOs cannot 

oxidize D-AAs and vice versa.  It is postulated that the cells produce LAAOs only in the 

demanding situations because of energy cost associated with enzyme production.  For 

instance, they produce LAAOs when they need to consume the nitrogen source of amino 

acids to divide.  The LAAOs oxidize the amino acids into ammonium, α-keto acid, and 

hydrogen peroxide, the first two of which are recycled as nitrogen and carbon and the 

third one converts to oxygen and hydrogen.   
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Figure B.6. Growth curve of C. sorokiniana in the media containing the standard medium 

BG11 added with either D- or L- enantiomers of aspartic acid (filled circles), and in the 

standard BG11 (open circles) along with the amino acid uptake diagram (filled squares).  

A) D-aspartic acid, B) L-aspartic acid.  None were utilized.  No inhibition occurred. 
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Figure B.7. Growth curve of C. sorokiniana in the media containing the standard BG11 

added with either D- or L- enantiomers of leucine (filled circles), and in the standard 

BG11 (open circles) along with the amino acid uptake diagram (filled squares).  A) D-

leucine, B) L-leucine.  None were utilized.  No inhibition occurred. 

 

Hence, the results suggest that C. sorokiniana cells produce only LAAOs corresponding 

to aspartic acid and Leucine.  They do not produce any DAAOs.   

 

 



144 

 

APPENDIX C 

RAW DATA 

Nitrate Requirement 
 

Chlorella sorokiniana   

Nitrate, µM Rate Error 

0 0 0 

4.9 0.27 6.98E-03 

9.9 0.80 0.0123 

49.4 1.21 9.31E-03 

98.9 1.13 6.65E-04 

148.3 1.13 0.0185 

197.8 1.13 0.0233 

296.7 1.04 0.0305 

395.6 1.13 0.0211 

494.5 1.13 0.0174 

588 1.16 0.0461 

686 1.12 6.34E-03 

784 1.12 4.02E-03 

   

Scenedesmus sp.    

Nitrate, µM Rate Error 

0 5.22E-03 0 

4.9 1.1339 6.98E-03 

9.9 1.4372 0.0123 

49.4 1.4589 9.31E-03 

98.9 1.5318 6.65E-04 

148.3 1.5895 0.0185 

197.8 1.6372 0.0233 

296.7 1.5971 0.0105 

395.6 1.6165 0.0211 

494.5 1.5852 0.0174 

588 1.4814 0.079 

686 1.518 0.0868 

784 1.4389 2.63E-03 
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Synechocystis sp. 

Nitrate, µM  Rate Error 

0 0 2.02E-03 

4.9 0.7234 4.99E-03 

9.9 0.8356 5.33E-03 

49.4 1.1111 4.70E-03 

98.9 1.1504 4.09E-03 

148.3 1.1313 4.77E-03 

197.8 1.1111 4.77E-03 

296.7 1.0896 5.72E-03 

395.6 1.1111 4.59E-03 

494.5 1.0896 7.85E-03 

   

Limnothrix sp.   

Nitrate, µM Rate Error 

0 0 8.54E-04 

4.9 1.16 2.59E-03 

9.9 1.24 7.07E-03 

49.4 1.32 8.13E-03 

98.9 1.33 4.66E-03 

148.3 1.33 7.63E-03 

197.8 1.33 6.14E-03 

296.7 1.33 0.0111 

395.6 1.33 0.0123 

494.5 1.34 0.0136 

   

Nitzschia thermalis   

Nitrate, µM Rate Error 

0 0 1.26E-03 

4.9 0.75 5.31E-03 

9.9 1.11 7.43E-03 

49.4 1.39 8.34E-03 

98.9 1.51 2.60E-03 

148.3 1.51 4.97E-03 

197.8 1.48 3.12E-03 

296.7 1.48 3.77E-03 

395.6 1.44 0.0109 

494.5 1.48 0.0104 
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Encyonema caespitosum   

Nitrate, µM Rate Error 

0 0 4.08E-04 

4.9 0.39 2.02E-03 

9.9 0.85 4.99E-03 

49.4 1.04 5.33E-03 

98.9 0.99 4.70E-03 

148.3 0.99 4.09E-03 

197.8 0.99 4.77E-03 

296.7 0.93 4.77E-03 

395.6 0.99 5.72E-03 

494.5 0.98 4.59E-03 

 

Phosphate Requirement 
   

C. sorokiniana   

Phosphate, µM Rate Error 

0 0.1266 0.0105 

28.7 1.7672 0.0211 

57.4 2.0931 0.0174 

86.2 2.286 7.90E-04 

114.9 2.2866 0.0168 

172.4 2.2869 2.63E-03 

229.9 2.2894 0.0123 

287.3 2.2892 9.31E-03 

   

Scenedesmus sp.   

Phosphate, µM Rate Error 

0 2.20E-03 0.0105 

28.7 1.08 0.0211 

57.4 1.36 0.0174 

86.2 1.61 7.90E-04 

114.9 1.68 0.0168 

172.4 1.75 2.63E-03 

229.9 1.75 0.0123 

287.3 1.75 9.31E-03 

   

Synechocystis sp.   

Phosphate, µM Rate Error 

0 0.36 8.54E-04 

28.7 1.28 2.59E-03 
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57.4 1.50 7.07E-03 

86.2 1.57 8.13E-03 

114.9 1.61 4.66E-03 

172.4 1.63 7.63E-03 

229.9 1.6 6.14E-03 

287.3 1.62 0.0111 

   

Limnothrix sp.   

Phosphate, uM Rate Error 

0 0.45 1.70E-03 

28.7 2.84 1.19E-03 

57.4 3.32 2.96E-03 

86.2 3.31 3.43E-03 

114.9 3.33 2.52E-03 

172.4 3.36 6.61E-03 

229.9 3.41 5.30E-03 

287.3 3.42 6.89E-03 

   

N. thermalis   

Phosphate, µM Rate Error 

0 0.03 1.26E-03 

28.7 1.17 5.31E-03 

57.4 1.53 7.43E-03 

86.2 1.62 8.34E-03 

114.9 1.63 2.60E-03 

172.4 1.69 4.97E-03 

229.9 1.71 3.12E-03 

287.3 1.72 3.77E-03 

E. caespitosum   

Phosphate, µM Rate Error 

0 0.02 5.45E-03 

28.7 1.31 5.35E-03 

57.4 1.63 5.45E-03 

86.2 1.75 3.47E-03 

114.9 1.77 0.0105 

172.4 1.74 0.0109 

229.9 1.77 0.0135 

287.3 1.75 5.98E-03 
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Salinity Tolerance 

   

C. sorokiniana   

Sodium chloride, mM Rate Error 

2.995 0.24 0 

11.98 0.23 6.98E-03 

17.97 0.24 0.0123 

23.96 0.31 9.31E-03 

41.93 0.20 6.65E-04 

59.9 0.09 0.0185 

89.85 7.95E-03 0.0233 

   

Scenedesmus sp.    

Sodium chloride, mM Rate Error 

2.99 0.39 0 

11.98 0.40 6.98E-03 

17.97 0.42 0.0123 

23.96 0.44 9.31E-03 

41.93 0.39 6.65E-04 

59.9 0.28 0.0185 

89.85 4.39E-03 0.0233 

Synechocystis sp.   

Sodium chloride, mM Rate Error 

2.995 0.91 2.74E-03 

11.98 1.00 2.21E-03 

17.97 0.97 2.68E-03 

23.96 0.96 2.02E-03 

41.93 0.83 2.81E-03 

59.9 0.81 3.38E-03 

89.85 0.63 2.90E-03 

   

Limnothrix sp.   

Sodium chloride, mM Rate Error 

2.995 0.92 3.30E-03 

11.98 0.90 3.52E-03 

17.97 0.91 1.89E-03 

23.96 0.89 2.35E-03 

41.93 0.80 5.04E-03 

59.9 0.32 3.94E-03 
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89.85 0.01 5.24E-03 

   

N. thermalis   

Sodium chloride, mM Rate Error 

2.995 0.73 4.79E-04 

11.98 0.76 8.17E-04 

17.97 0.70 2.89E-04 

23.96 0.62 4.08E-04 

41.93 0.35 9.46E-04 

59.9 0.13 8.54E-04 

89.85 0.06 1.08E-03 

   

E. caespitosum   

Sodium chloride, mM Rate Error 

2.995 0.83 1.47E-03 

11.98 0.73 1.08E-03 

17.97 0.59 1.11E-03 

23.96 0.61 1.80E-03 

41.93 0.32 1.66E-03 

59.9 0.10 1.89E-03 

89.85 0.06 2.25E-03 

 

Temperature Requirement 

   

C. sorokiniana   

T,C Rate Error 

43.3 1.72 0.0105 

38.1 2.30 0.0211 

33.7 2.48 0.0174 

26.9 2.48 7.90E-04 

21.6 1.92 0.0168 

17.7 1.04 2.63E-03 

   

Scenedesmus 

sp.   

T,C Rate Error 

43.3 0.62 0.0105 

38.1 0.69 0.0211 

33.7 0.53 0.0174 
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26.9 0.38 7.90E-04 

21.6 0.23 0.0168 

17.7 9.72E-03 2.63E-03 

   

Synechocystis 

sp.   

T,C Rate Error 

43.3 0.04 0.0829 

38.1 0.91 0.0539 

33.7 1.23 0.0157 

26.9 1.36 0.0608 

21.6 1.03 0.045 

17.7 0.93 0.0549 

   

Limnothrix sp.   

T,C Rate Error 

43.3 0.03 0.01 

38.1 0.20 0.0147 

33.7 0.51 0.025 

26.9 0.23 0.0185 

21.6 0.18 0.0196 

17.7 0.13 0.0248 

N. thermalis   

T,C Rate Error 

46 0.02 0.025 

38.1 0.48 0.0194 

36 0.71 2.33E-03 

33.7 0.81 0.0238 

32 0.87 4.03E-03 

26.9 0.84 2.56E-03 

21.6 0.76 0.0342 

17.7 0.3 3.00E-03 

   

E. caespitosum   

T,C Rate Error 

43.3 0.04 0.039 

38.1 0.29 2.22E-03 

33.7 0.51 9.57E-04 

26.9 0.83 0.0281 

21.6 0.72 4.35E-03 
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17.7 0.41 3.68E-03 

 

Light Requirement 

   

C. sorokiniana   

Light intensity, 

µmole/m
2
.s Rate Error 

1155 1.65 4.08E-03 

825 1.59 8.66E-04 

82.5 1.41 0.0122 

33 1.34 7.50E-03 

16.5 1.24 0.0408 

8.25 1.22 0.0629 

1.65 0.78 1.18E-03 

0 0 9.46E-04 

   

Scenedesmus sp.   

Light intensity, 

µmole/m
2
.s Rate Error 

1155 1.05 0.0119 

825 1.04 2.17E-03 

82.5 1.01 0.0206 

33 1.00 0.0171 

16.5 0.99 2.25E-03 

8.25 0.99 2.83E-03 

1.65 1.02 0.0108 

0 0 1.80E-03 

   

Synechocystis sp.   

Light intensity, 

µmole/m
2
.s Rate Error 

1155 0.10 2.90E-03 

825 0.27 2.81E-03 

82.5 0.41 3.28E-03 

33 0.54 2.17E-03 

16.5 0.54 2.46E-03 

8.25 0.55 3.64E-03 

1.65 0.56 3.71E-03 

   

Limnothrix sp.   

Light intensity, Rate Error 
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µmole/m
2
.s 

1155 0.11 0.0466 

825 0.35 2.72E-03 

82.5 0.53 0.0409 

33 0.78 0.0315 

16.5 0.77 0.0474 

8.25 0.91 0.0397 

1.65 1.3 3.16E-03 

   

N. thermalis   

Light intensity, 

µmole/m
2
.s Rate Error 

1155 0.88 0.0479 

825 0.86 8.17E-04 

82.5 1.04 2.89E-03 

33 1.04 0.0408 

16.5 1.04 0.0946 

8.25 0.93 8.54E-04 

1.65 0.78 1.08E-03 

0 0 0.0147 

E. caespitosum   

Light intensity, 

µmole/m
2
.s Rate Error 

1155 0.94 0.018 

825 1.00 0.0166 

82.5 1.06 0.0189 

33 1.06 2.25E-03 

16.5 1.07 1.89E-03 

8.25 1.01 0.0239 

1.65 0.87 0.0887 

0 0 1.22E-03 

 

Centrate Amendment 

 

C. sorokiniana   

Time 0% Error 

0 0.031 8.54E-04 

16 0.032 1.25E-03 

24 0.039 1.32E-03 

56 0.037 3.20E-03 
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64 0.042 5.76E-03 

72 0.044 6.76E-03 

80 0.048 4.79E-03 

88 0.046 4.50E-03 

96 0.057 5.64E-03 

120 0.055 4.65E-03 

   

10% Error 15% 

0.04 2.27E-03 0.041 

0.061 2.18E-03 0.063 

0.093 3.52E-03 0.162 

0.156 0.0196 0.271 

0.172 0.0176 0.316 

0.201 7.04E-03 0.329 

0.204 6.51E-03 0.336 

0.234 5.36E-03 0.365 

0.262 0.0189 0.382 

0.286 0.0154 0.399 

   

Error 25% Error 

3.18E-03 0.04 1.89E-03 

4.29E-03 0.06 2.74E-03 

3.82E-03 0.19 2.06E-03 

7.96E-03 0.27 0.0241 

0.0169 0.35 6.26E-03 

8.63E-03 0.4 5.20E-03 

9.29E-03 0.41 5.65E-03 

4.89E-03 0.43 8.26E-03 

7.27E-03 0.45 7.85E-03 

9.29E-03 0.46 9.31E-03 

   

35% Error 40% 

0.049 4.92E-03 0.044 

0.077 1.89E-03 0.069 

0.19 4.27E-03 0.24 

0.32 8.73E-03 0.34 

0.41 0.0315 0.44 

0.44 0.0245 0.47 

0.45 0.0279 0.47 
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0.47 0.0168 0.49 

0.46 0.0223 0.50 

0.48 0.0148 0.52 

   

Error 50% Error 

2.00E-03 0.036 1.02E-03 

1.32E-03 0.05 3.85E-04 

4.25E-03 0.15 5.43E-03 

2.17E-03 0.34 6.57E-03 

7.32E-03 0.45 0.024 

7.72E-03 0.47 0.0128 

4.92E-03 0.49 0.0122 

3.15E-03 0.49 0.0149 

2.50E-04 0.51 0.0122 

2.94E-03 0.52 0.011 

 

 

   

BG11 Error  

0.021 6.67E-04  

0.039 1.68E-03  

0.11 0.014  

0.28 5.81E-03  

0.33 8.88E-03  

0.37 0.018  

0.39 0.0227  

0.43 0.0208  

0.47 0.0169  

0.48 0.0154  

 

Centrate Percentage Rate Error 

0 0.12 0.0131 

10 0.44 0.0352 

15 0.81 0.0188 

30 1.25 0.0178 

35 1.34 0.0427 

40 1.33 0.0169 

50 1.21 0.0543 

70 0.62 0.0402 

80 0.59 0.0657 
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100 0.049 0.0169 

 

Scenedesmus sp.      

Time 0% Error 20% Error 

0 9.00E-03 4.08E-04 9.00E-03 1.15E-03 

12 9.75E-03 4.79E-04 0.012 2.50E-03 

36 0.016 2.50E-04 0.029 2.66E-03 

60 0.021 1.19E-03 0.069 8.90E-03 

84 0.031 1.19E-03 0.13 0.0199 

132 0.049 2.63E-03 0.32 0.0174 

156 0.069 2.96E-03 0.36 0.0179 

180 0.073 2.46E-03 0.38 0.0255 

204 0.082 5.95E-03 0.40 0.0288 

228 0.085 8.26E-03 0.43 0.0226 

278 0.092 3.86E-03 0.48 9.47E-03 

300 0.092 2.75E-03 0.49 7.59E-03 

     

40% Error 50% Error 60% 

9.00E-03 4.08E-04 0.01 6.29E-04 0.011 

0.012 1.89E-03 0.013 1.32E-03 0.016 

0.030 2.18E-03 0.032 1.47E-03 0.036 

0.074 3.28E-03 0.066 3.88E-03 0.060 

0.17 0.0141 0.143 3.17E-03 0.123 

0.36 0.0195 0.351 2.93E-03 0.370 

0.39 0.0185 0.381 5.07E-03 0.408 

0.43 0.0173 0.403 0.0134 0.441 

0.46 0.0127 0.437 5.85E-03 0.469 

0.48 9.85E-03 0.462 5.94E-03 0.486 

0.52 3.95E-03 0.511 6.46E-03 0.525 

0.53 3.95E-03 0.522 5.23E-03 0.533 

     

Error 70% Error 80% Error 

1.32E-03 0.015 3.66E-03 0.014 7.07E-04 

2.16E-03 0.018 4.32E-03 0.017 4.79E-04 

1.55E-03 0.033 4.71E-03 0.036 2.50E-03 

2.50E-03 0.052 4.44E-03 0.054 1.68E-03 

0.0112 0.094 0.0146 0.089 4.37E-03 

0.0166 0.314 5.76E-03 0.279 0.0114 

0.0178 0.391 0.0318 0.377 6.65E-03 
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0.0149 0.41 2.84E-03 0.420 0.0105 

0.0171 0.454 0.0239 0.443 8.02E-03 

0.019 0.469 0.0228 0.462 7.39E-03 

0.0151 0.487 0.022 0.507 9.67E-03 

0.0132 0.503 0.0182 0.519 0.0106 

     

100% Error BG11 Error  

0.017 1.50E-03 0.010 8.00E-04  

0.019 1.32E-03 0.012 8.90E-04  

0.037 2.46E-03 0.02 1.03E-03  

0.050 2.25E-03 0.023 4.33E-04  

0.065 3.42E-03 0.028 1.51E-03  

0.154 0.0153 0.077 9.90E-03  

0.217 0.0137 0.099 0.0148  

0.267 0.0204 0.130 0.0203  

0.325 0.0393 0.161 0.0263  

0.368 0.0361 0.192 0.0307  

0.427 0.0209 0.27 0.0411  

0.432 0.0215 0.280 0.0398  

 

Centrate Percentage Rate Error 

0 0.033 1.36E-03 

20 0.554 0.0231 

40 0.557 0.0232 

50 0.647 0.027 

60 0.795 0.0331 

70 0.868 0.0362 

80 0.581 0.0242 

100 0.24 0.01 

 

Growth of C. sorokiniana in Presence of Different Urea Percentages 

   

Time 0.10% Error 0.01% Error 0.001% 

0 0.01 0 0.011 7.07E-04 0.012 

12 0.02 0 0.045 1.55E-03 0.085 

24 0.017 3.46E-03 0.171 2.12E-03 0.162 

48 0.014 1.41E-03 0.287 1.19E-03 0.255 

56 0.024 4.95E-04 0.357 7.07E-04 0.337 
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80 0.076 5.44E-03 0.392 0.0289 0.388 

90 0.130 1.05E-03 0.422 0.0411 0.420 

100 0.146 9.19E-03 0.479 0.0255 0.473 

112 0.205 6.01E-03 0.531 1.55E-03 0.519 

120 0.24 3.54E-03 0.532 4.31E-03 0.529 

130 0.249 2.12E-03 0.539 3.97E-03 0.539 

      

Error BG11 Error 

1.44E-03 0.015 2.50E-03 

2.90E-03 0.021 2.14E-03 

0.02 0.111 2.00E-03 

8.66E-04 0.195 5.17E-03 

2.86E-03 0.262 5.45E-03 

0.0173 0.325 0.0135 

4.25E-03 0.359 0.028 

0.0142 0.395 0.026 

1.32E-03 0.424 0.0298 

6.49E-03 0.457 0.0287 

6.77E-03 0.472 5.17E-03 

   

Medium  Rate Error 

BG11 0.963 3.87E-03 

BG11+0.001 1.104 0.0212 

BG11+0.01 1.128 0.0197 

BG11+0.1 0.394 2.86E-03 

 

Growth of C. sorokiniana in Presence of Arsenate 

 

Time Rate with As Error 

Rate in 

BG11 Error 

0 0.032 0 0.029 7.07E-04 

12 0.048 0.012 0.061 1.41E-03 

60 0.067 0.0198 0.224 9.19E-03 

68 0.081 0.0127 0.261 2.12E-03 

76 0.097 8.49E-03 0.304 4.95E-03 

84 0.130 0.0219 0.317 0.0184 

92 0.198 0.0141 0.344 0.0191 

118 0.236 0.012 0.381 0.0184 
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142 0.307 0.012 0.432 0.0283 

214 0.315 0.012 0.438 0.0226 

226 0.318 8.49E-03 0.431 0.0148 

250 0.330 0.0233 0.428 7.78E-03 

 

Mixotrophic Growth 

   

C. sorokiniana   

  Rate Error 

BG11 0.717 0.1066 

glucose 1.295 0.0101 

glycerol 0.626 0.0113 

acetate 1.899 0.0119 

lactate 0.708 0.097 

 

 

 

 

  

Scenedesmus sp.    

  Rate Errors 

BG11 0.420 0.0466 

glucose 0.888 0.0659 

glycerol 0.879 0.0384 

acetate 0.56 0.0388 

lactate 0.41 0.0512 

 

Heterotrophic Growth 

 

C. sorokiniana     

Time BG11+glucose  Error BG11+acetate  Error 

0 0.021 1.89E-03 9.50E-03 4.11E-03 

12 0.023 3.54E-03 0.011 2.06E-03 

20 0.026 4.48E-03 0.021 1.93E-03 

32 0.043 6.60E-03 0.060 6.12E-03 

54 0.06 9.59E-03 0.099 7.44E-03 

78 0.16 1.11E-03 0.187 3.93E-03 

82 0.25 1.19E-03 0.264 7.20E-03 

90 0.35 1.71E-03 0.313 4.74E-03 
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104 0.36 3.37E-03 0.373 2.40E-03 

128 0.362 4.01E-03 0.374 7.03E-03 

152 0.360 4.01E-03 0.367 0.0126 

176 0.362 1.72E-03 0.383 9.32E-03 

     

Only BG11 

0 

1.00E-03 

2.00E-03 

1.25E-03 

2.50E-04 

5.00E-04 

3.50E-03 

1.00E-03 

7.50E-04 

7.50E-04 

1.00E-03 

2.00E-03 

 

Scenedesmus sp.     

Time BG11+glucose  Error BG11+glycerol  Error 

0 0.021 1.89E-03 0.014 8.17E-04 

12 0.023 3.54E-03 0.014 1.55E-03 

24 0.026 4.48E-03 0.013 1.38E-03 

30 0.043 6.60E-03 0.014 1.85E-03 

42 0.06 9.59E-03 0.013 8.54E-04 

66 0.160 1.11E-03 0.012 9.13E-04 

90 0.253 1.19E-03 0.012 8.54E-04 

114 0.350 1.71E-03 0.012 5.00E-04 

138 0.36 3.37E-03 0.012 4.79E-04 

162 0.362 4.01E-03 0.012 1.11E-03 

200 0.360 4.01E-03 0.012 6.78E-04 

234 0.362 1.72E-03 9.00E-03 2.22E-03 

     

BG11+ acetate  Error Only BG11 

0.018 3.20E-03 0 

0.018 1.03E-03 1.00E-03 

0.016 1.97E-03 2.00E-03 

0.019 2.61E-03 1.25E-03 
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0.02 1.96E-03 2.50E-04 

0.03 2.69E-03 5.00E-04 

0.03 2.53E-03 3.50E-03 

0.034 2.72E-03 1.00E-03 

0.045 2.25E-03 7.50E-04 

0.053 3.15E-03 7.50E-04 

0.064 4.45E-03 1.00E-03 

0.072 1.17E-03 2.00E-03 

 

Amino Acids Uptake 

     

Scenedesmus sp.     

Aspartic acid     

Time L/rate  Error D/rate  Error 

0 0.013 4.08E-04 0.014 8.54E-04 

12 0.016 1.47E-03 0.014 1.03E-03 

24 0.017 7.07E-04 0.017 1.18E-03 

48 0.025 1.55E-03 0.025 1.03E-03 

72 0.039 4.67E-03 0.036 1.70E-03 

128 0.134 9.08E-03 0.097 4.74E-03 

148 0.177 0.0118 0.120 6.66E-03 

172 0.221 9.28E-03 0.147 9.50E-03 

194 0.272 6.60E-03 0.168 5.78E-03 

218 0.309 3.08E-03 0.184 2.69E-03 

266 0.325 1.26E-03 0.224 2.94E-03 

314 0.330 1.19E-03 0.235 2.32E-03 

     

BG11-N/rate  Error BG11/rate  Error  

9.25E-03 3.50E-03 0.028 3.94E-03  

0.013 4.25E-03 0.027 3.30E-03  

0.032 1.93E-03 0.027 1.44E-03  

0.04 1.32E-03 0.028 1.93E-03  

0.046 4.52E-03 0.041 2.02E-03  

0.054 5.95E-03 0.082 7.32E-03  

0.078 9.12E-03 0.09 7.42E-03  

0.085 8.22E-03 0.1 7.56E-03  

0.075 6.42E-03 0.127 0.0138  

0.074 6.20E-03 0.14 0.0154  
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0.073 3.49E-03 0.2 0.0111  

0.074 6.41E-03 0.208 8.44E-03  

     

Time L concentration 

D 

concentration 

0 42.23 24.03 

48 34.81 23.8 

72 17.28 22.11 

128 10.31 17.13 

172 9.96 15.13 

194 1.67 15.31 

218 1.23 13.6 

266 1.44 4.89 

314  2.22 

 

Glutamic acid 

     

Time L/rate Error D/rate Error 

0 0.022 4.79E-04 0.023 9.57E-04 

12 0.027 1.11E-03 0.027 7.50E-04 

24 0.043 1.29E-03 0.025 7.07E-04 

48 0.070 3.22E-03 0.084 1.47E-03 

72 0.10 3.75E-03 0.13 2.40E-03 

96 0.11 4.31E-03 0.15 8.66E-04 

128 0.12 4.64E-03 0.17 3.12E-03 

176 0.15 7.26E-03 0.23 7.69E-03 

188 0.17 2.29E-03 0.26 9.26E-03 

210 0.21 4.61E-03 0.28 8.28E-03 

     

BG11-N/rate Error BG11/rate Error 

9.25E-03 4.79E-04 0.01 7.50E-04 

0.013 1.38E-03 0.014 9.46E-04 

0.033 2.69E-03 0.037 2.68E-03 

0.04 2.04E-03 0.051 1.89E-03 

0.046 3.57E-03 0.062 3.20E-03 

0.054 4.82E-03 0.093 1.68E-03 

0.078 9.25E-03 0.149 6.46E-03 

0.085 2.25E-03 0.182 9.41E-03 

0.075 0.0112 0.221 5.60E-03 



162 

 

0.074 0.0117 0.234 8.59E-03 

    

Time 

L 

concentration, 

µM 

D 

concentration, 

µM 

0 32.88 27.513 

24 27.45 31.983 

48 20.04 25.333 

72 10.00 24.159 

96 5.20 12.780 

128 5.087 14.150 

176 2.083 12.794 

188 2.083 10.045 

210  9.262 

 

Alanine 

     

Time L/rate Error D/rate Error 

0 0.015 2.02E-03 0.014 1.78E-03 

12 0.015 1.44E-03 0.014 1.04E-03 

24 0.015 2.17E-03 0.017 1.47E-03 

48 0.022 3.28E-03 0.026 1.65E-03 

72 0.029 5.73E-03 0.038 1.83E-03 

128 0.094 0.0134 0.096 6.99E-03 

148 0.136 0.0184 0.13 0.0153 

172 0.193 6.51E-03 0.169 7.17E-03 

194 0.22 3.94E-03 0.217 7.58E-03 

218 0.27 3.75E-03 0.245 9.12E-03 

266 0.28 1.41E-03 0.287 3.90E-03 

314 0.29 1.32E-03 0.297 3.07E-03 

 

     

 

BG11-N/rate Error BG11/rate Error  

9.25E-03 3.50E-03 0.028 3.94E-03  

0.013 4.25E-03 0.027 3.30E-03  

0.032 1.93E-03 0.027 1.44E-03  

0.04 1.32E-03 0.028 1.93E-03  

0.046 4.52E-03 0.041 2.02E-03  

0.054 5.95E-03 0.082 7.32E-03  
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0.078 9.12E-03 0.09 7.42E-03  

0.085 8.22E-03 0.1 7.56E-03  

0.075 6.42E-03 0.117 5.60E-03  

0.074 6.20E-03 0.13 7.18E-03  

0.073 3.49E-03 0.195 8.40E-03  

0.074 6.41E-03 0.208 8.44E-03  

     

Time L concentration 

D 

concentration 

0 26.42 31.43 

48 26.13 31.31 

72 15.87 24.60 

128 4.18 5.46 

172 4.63 2.37 

194 3.49 2.84 

218 3.88 2.62 

266 4.12 1.62 

314 3.87 2.01 

 

C. sorokiniana     

Aspartic acid     

Time L/rate Error D/rate Error 

0 0.010 1.02E-03 0.018 3.20E-03 

12 0.011 1.15E-03 0.025 3.57E-03 

24 0.013 1.68E-03 0.042 6.86E-03 

48 0.061 6.96E-03 0.071 6.07E-03 

72 0.084 5.67E-03 0.083 4.66E-03 

96 0.106 6.00E-03 0.10 9.55E-03 

120 0.142 3.71E-03 0.12 9.65E-03 

148 0.190 5.05E-03 0.13 0.0115 

172 0.245 1.33E-03 0.13 0.0138 

196 0.296 2.04E-03 0.12 0.0159 

220 0.347 3.91E-03 0.12 0.0162 

244 0.371 7.73E-03 0.12 0.0287 

268 0.368 1.92E-03   

292 0.372 4.73E-03   

     

BG11-N/rate Error BG11/rate Error  

0.018 2.04E-03 7.50E-03 6.46E-04  
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0.018 1.76E-03 8.50E-03 8.66E-04  

0.031 3.85E-04 0.014 1.19E-03  

0.056 3.79E-03 0.056 1.78E-03  

0.072 5.55E-03 0.095 1.32E-03  

0.084 4.37E-03 0.161 0.0119  

0.07 4.00E-03 0.182 9.11E-03  

0.06 1.33E-03 0.250 7.04E-03  

0.060 7.34E-03 0.357 7.67E-03  

0.054 6.58E-03 0.378 0.0116  

0.052 4.07E-03 0.435 5.82E-03  

0.050 3.42E-03 0.443 6.98E-03  

0.051 3.42E-03 0.440 6.98E-03  

0.054 3.42E-03 0.443 6.98E-03  

 

 

     

Time L concen. D concen.   

0 39.87 51.48   

24 36.50 48.90   

48 29.67 51.50   

96 27.85 49.04   

172 14.11 50.49   

196 5.36 46.49   

244 3.52 50.66   

292 4.05 51.19   

 

Glutamic acid     

Time L/rate Error D/rate Error 

0 0.032 2.02E-03 0.018 3.15E-03 

12 0.043 1.08E-03 0.018 2.50E-03 

24 0.055 1.41E-03 0.035 1.71E-03 

48 0.052 3.66E-03 0.055 5.24E-03 

72 0.070 4.03E-03 0.084 7.07E-04 

96 0.059 0.0145 0.090 6.88E-03 

128 0.074 3.07E-03 0.101 0.0106 

148 0.072 1.84E-03 0.112 2.25E-03 

172 0.086 3.25E-03 0.128 3.23E-03 

196 0.061 5.42E-03 0.135 5.69E-03 
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BG11-N/rate Error BG11/rate Error  

0.018 1.25E-03 0.024 1.44E-03  

0.018 2.29E-03 0.043 2.02E-03  

0.031 1.83E-03 0.105 2.93E-03  

0.056 8.54E-04 0.235 7.84E-03  

0.072 0.0108 0.305 0.0158  

0.084 0.011 0.346 0.0154  

0.068 4.35E-03 0.37 0.0141  

0.071 1.75E-03 0.40 2.74E-03  

0.070 2.66E-03 0.46 6.54E-03  

0.074 3.80E-03 0.504 2.90E-03  

Time 

L 

concentration 

D 

concentration   

0 48.067 27.49   

48 44.21 27.05   

72 42.41 28.00   

96 41.49 26.02   

148 45.88 26.68   

196 44.0743 27.54   

 

Alanine     

Time L/rate Error D/rate Error 

0 0.032 1.11E-03 0.018 1.32E-03 

12 0.043 1.73E-03 0.025 2.17E-03 

24 0.055 4.57E-03 0.037 2.74E-03 

48 0.062 6.80E-03 0.063 1.04E-03 

72 0.070 6.87E-03 0.075 2.21E-03 

96 0.088 2.16E-03 0.083 8.54E-04 

128 0.084 7.04E-03 0.085 3.71E-03 

148 0.082 1.32E-03 0.087 2.40E-03 

     

BG11-N/rate Error BG11/rate Error  

0.018 1.25E-03 0.024 1.44E-03  

0.018 2.29E-03 0.043 2.02E-03  

0.031 1.83E-03 0.105 2.93E-03  

0.056 8.54E-04 0.235 7.84E-03  

0.072 0.0108 0.305 0.0158  

0.084 0.011 0.346 0.0154  

0.068 4.35E-03 0.37 0.0141  
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0.071 1.75E-03 0.403 2.74E-03  

Time 

L 

concentration D concentration  

0 45.88 44.63  

24 38.91 40.57  

48 40.21 46.42  

72 43.384 40.72  

120 40.472 46.65  

148 40.574 44.31  

 

Leucine     

Time L/rate Error D/rate Error 

0 0.02 3.40E-03 0.027 3.88E-03 

12 0.032 2.17E-03 0.048 1.44E-03 

24 0.058 1.58E-03 0.068 2.39E-03 

48 0.135 0.0213 0.097 3.70E-03 

72 0.151 0.0253 0.090 3.69E-03 

128 0.199 0.0282 0.072 3.24E-03 

148 0.208 0.0311 0.047 0.013 

172 0.235 0.03 0.028 3.47E-03 

194 0.241 0.0248 0.035 5.82E-03 

218 0.26 0.0288 0.052 0.0142 

266 0.262 0.0295 0.038 0.0152 

314 0.275 0.0252 0.041 0.0151 

338 0.296 0.0302 0.053 0.0135 

350 0.300 0.0278 0.054 0.0142 

362 0.315 0.0242 0.063 0.0114 

374 0.329 0.0193 0.066 0.0165 

386 0.331 0.02 0.070 0.0165 

398 0.33 0.018 0.058 0.0114 

410 0.34 0.0184 0.067 0.0186 

     

BG11/rate Error BG11-N/rate Error  

0.017 1.26E-03 0.018 2.04E-03  

0.038 2.50E-03 0.018 1.76E-03  

0.118 4.17E-03 0.031 3.85E-04  

0.171 7.08E-03 0.056 3.79E-03  

0.178 8.26E-03 0.072 5.55E-03  

0.21 0.0159 0.084 4.37E-03  
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0.222 0.0129 0.068 4.00E-03  

0.243 0.0122 0.061 1.33E-03  

0.267 0.0124 0.060 7.34E-03  

0.287 0.0144 0.054 6.58E-03  

0.286 0.0109 0.052 4.07E-03  

0.306 0.0195 0.050 3.42E-03  

0.316 0.0175 0.049 3.42E-03  

0.321 0.0171 0.054 3.42E-03  

0.345 0.0185 0.072 4.37E-03  

0.353 0.0206 0.086 4.00E-03  

0.356 0.0184 0.061 1.33E-03  

0.364 0.0178 0.074 7.34E-03  

0.365 0.0167 0.063 6.58E-03 

 

 

Time 

D 

concentration 

L 

concentration   

0 74.153 40.08   

24 67.436 37.48   

48 71.351 35.32   

96 68.072 32.55   

172 71.119 18.93   

196 55.99 8.733   

244 66.13 9.637   

292 69.23 4.323   

386 68.37 4.757   

410 71.25 4.3   

 

E. gracilis 

Aspartic acid 

 

Time L/rate Error D/rate Error 

No 

N/rate Error 

with 

N/rate Error 

0 2.00E-03 0 

2.00E-

03 0 0.0145 0 

2.00E-

03 0 

12 2.00E-03 0 

2.00E-

03 0 0.015 0 

2.00E-

03 0 

24 0.0125 

1.76E-

03 0.01 0 0.016 0 0.01 0 

48 0.0145 

3.07E-

03 0.012 

1.32E-

03 0.019 

1.89E-

03 0.014 

4.79E-

04 
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Glutamic acid 

         

Time L/rate Error D/rate Error 

No 

N/rate Error 

with 

N/rate Error 

0 0.016 2.35E-03 0.014 

3.28E-

03 0.014 

1.19E-

03 0.014 0 

12 0.018 3.65E-03 0.014 3.66E- 0.014 1.11E- 0.015 9.46E-

72 0.0293 

3.47E-

03 0.029 

3.03E-

03 0.045 

4.59E-

03 0.084 

4.11E-

03 

128 0.034 

2.29E-

03 0.039 

2.02E-

03 0.053 

3.63E-

03 0.098 

2.55E-

03 

148 0.044 

2.86E-

03 0.046 

3.08E-

03 0.058 

4.02E-

03 0.151 

3.23E-

03 

172 0.053 

3.48E-

03 0.052 

1.78E-

03 0.066 

2.95E-

03 0.159 

5.74E-

03 

194 0.059 

6.29E-

04 0.056 

2.38E-

03 0.069 

3.81E-

03 0.184 

6.34E-

03 

218 0.078 

1.41E-

03 0.071 

2.27E-

03 0.073 

3.72E-

03 0.22 

2.02E-

03 

266 0.08 

8.54E-

04 0.076 

1.55E-

03 0.083 

6.25E-

03 0.23 

5.60E-

03 

314 0.084 

2.58E-

03 0.080 

2.87E-

03 0.083 

4.34E-

03 0.27 

8.43E-

03 

338 0.085 

1.80E-

03 0.082 

2.00E-

03 0.090 

3.17E-

03 0.25 0.0118 

 

350 

 

0.083 

 

2.25E-

03 

 

0.083 

 

2.29E-

03 

 

0.095 

 

3.67E-

03 

 

0.259 

 

9.65E-

03 

362 0.086 

3.47E-

03 0.078 

1.87E-

03 0.098 

4.05E-

03 0.266 0.0111 

374 0.09 

1.63E-

03 0.084 

2.90E-

03 0.099 

4.59E-

03 0.271 0.0123 

 

 

Time 

L 

concentration 

D 

concentration 

0 44.07 44.146 

72 43.41 43.031 

96 44.40 44.172 

120 43.811 45.125 

148 44.086 44.088 

220 44.884 42.905 

268 43.357 43.455 

364 44.01 41.763 

374 44.442 43.592 
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03 03 04 

24 0.019 1.55E-03 0.019 

2.33E-

03 0.016 

1.44E-

03 0.020 

1.55E-

03 

72 0.025 3.54E-03 0.022 

1.41E-

03 0.019 

2.40E-

03 0.027 

7.44E-

03 

96 0.048 2.81E-03 0.059 

1.49E-

03 0.045 

3.88E-

03 0.053 

4.17E-

03 

120 0.06 4.13E-03 0.06 

5.52E-

03 0.053 

3.38E-

03 0.074 

5.11E-

03 

148 0.061 5.28E-03 0.062 

5.07E-

03 0.058 

2.52E-

03 0.093 

8.41E-

03 

172 0.067 2.33E-03 0.069 

4.56E-

03 0.066 

3.97E-

03 0.118 

6.90E-

03 

196 0.072 2.95E-03 0.068 

5.79E-

03 0.069 

2.90E-

03 0.127 

6.41E-

03 

220 0.076 1.11E-03 0.074 

4.53E-

03 0.073 

4.95E-

03 0.146 

3.45E-

03 

244 0.084 1.32E-03 0.076 

5.31E-

03 0.083 

3.82E-

03 0.166 

8.08E-

03 

268 0.085 1.32E-03 0.081 

5.64E-

03 0.083 

4.61E-

03 0.191 

7.11E-

03 

292 0.093 2.55E-03 0.086 

5.33E-

03 0.090 

6.20E-

03 0.202 

6.98E-

03 

316 0.097 2.17E-03 0.089 

4.25E-

03 0.095 

4.99E-

03 0.234 

1.38E-

03 

340 0.097 1.93E-03 0.087 

2.66E-

03 0.098 

3.87E-

03 0.237 

1.60E-

03 

364 0.1 3.14E-03 0.089 

2.10E-

03 0.1 

3.84E-

03 0.24 

2.97E-

03 

Time 

L 

concentration 

D 

concentration       

0 40.66 38       

24 36.18 36.56       

72 39.71 36.62       

96 38.34 36.35       

148 38.94 35.1       

220 37.98 34.57       

268 38.5 33.55       

364 37.61 35.88       
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                            Alanine 

          

Tim

e L/rate Error D/rate Error 

No 

N/rat

e Error 

with 

N/rat

e Error 

0 0.016 2.43E-03 0.019 

1.08E

-03 0.014 

1.78E

-03 0.02 

2.14E-

03 

12 0.018 2.04E-03 0.017 

5.77E

-04 0.015 

1.58E

-03 0.021 

2.50E-

03 

24 0.019 1.35E-03 0.013 

1.08E

-03 0.016 

1.03E

-03 0.018 

3.24E-

03 

48 0.025 1.91E-03 0.013 

1.25E

-03 0.019 

1.85E

-03 0.014 

2.35E-

03 

72 0.048 6.20E-03 0.011 

4.08E

-04 0.045 

1.25E

-03 0.016 

2.66E-

03 

128 0.06 7.00E-03 0.029 

2.56E

-03 0.053 

5.24E

-03 0.101 

8.68E-

03 

148 0.061 3.79E-03 0.028 

2.72E

-03 0.058 

5.95E

-03 0.106 

4.29E-

03 

172 0.067 1.89E-03 0.041 

9.46E

-04 0.066 

3.24E

-03 0.143 

4.84E-

03 

194 0.072 3.57E-03 0.057 

4.96E

-03 0.069 

2.04E

-03 0.153 

8.01E-

03 

218 0.076 5.92E-03 0.060 

6.17E

-03 0.073 

3.30E

-03 0.166 

3.84E-

03 

266 0.084 4.80E-03 0.068 

2.84E

-03 0.083 

3.28E

-03 0.168 0.0105 

314 0.085 2.33E-03 0.081 

5.02E

-03 0.083 

1.76E

-03 0.173 0.0119 

338 0.093 3.82E-03 0.08 

5.77E

-04 0.090 

3.40E

-03 0.182 

7.51E-

03 

350 0.097 3.09E-03 0.085 

5.12E

-03 0.095 

1.04E

-03 0.196 0.0105 

362 0.097 2.21E-03 0.088 

3.55E

-03 0.098 

1.61E

-03 0.21 

7.43E-

03 

374 0.1 6.91E-03 

0.084

3 

4.65E

-03 0.099 

1.80E

-03 0.204 

9.50E-

03 

386 0.096 6.60E-03 

0.086

3 

2.02E

-03 0.088 

4.33E

-03 0.212 

9.35E-

03 

398 0.093 3.55E-03 0.088 

8.66E

-04 0.098 

2.02E

-03 0.216 0.0108 

410 0.103 3.01E-03 0.091 

1.80E

-03 0.106 

2.84E

-03 0.221 0.01 

422 0.108 1.26E-03 0.099 3.33E 0.107 2.18E 0.224 9.34E-
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                           Lucine 

         

Time L/rate Error D/rate Error 

No 

N/rate Error 

with 

N/rate Error 

0 0.0165 1.32E-03 0.016 

6.67E-

04 0.0145 

1.19E-

03 0.014 0 

12 0.019 2.48E-03 0.028 

1.92E-

03 0.0148 

1.11E-

03 0.0153 

9.46E-

04 

24 0.021 2.45E-03 0.031 

1.02E-

03 0.0163 

1.44E-

03 0.0205 

1.55E-

03 

72 0.028 2.29E-03 0.038 

3.71E-

03 0.0195 

2.40E-

03 0.0268 

7.44E-

03 

96 0.047 8.54E-04 0.046 

6.67E-

03 0.0455 

3.88E-

03 0.0535 

4.17E-

03 

120 0.066 3.66E-03 0.062 

4.91E-

03 0.0535 

3.38E-

03 0.0743 

5.11E-

03 

148 0.067 3.94E-03 0.071 

4.16E-

03 0.058 

2.52E-

03 0.0928 

8.41E-

03 

172 0.072 2.25E-03 0.079 

5.29E-

03 0.0663 

3.97E-

03 0.1185 

6.90E-

03 

196 0.073 2.66E-03 0.085 3.71E- 0.0695 2.90E- 0.1273 6.41E-

3 -03 -03 03 

434 0.109 1.26E-03 

0.107

3 

4.91E

-03 0.107 

1.04E

-03 0.227 0.0115 

446 0.112 3.55E-03 

0.108

7 

4.19E

-03 0.107 

1.04E

-03 0.23 0.0107 

458 0.115 5.77E-03 0.109 

4.33E

-03 0.107 

1.04E

-03 0.233 

9.81E-

03 

470 0.115 5.77E-03 0.107 

3.46E

-03 0.105 

3.79E

-03 0.231 0.0115 

482 0.116 6.14E-03 0.097 

4.27E

-03 0.1 

4.58E

-03 0.232 0.0132 

Tim

e 

L 

concentratio

n 

D 

concentratio

n       

0 37.33 38.16       

72 36.362 37.465       

120 34.53 38.845       

168 33.342 35.71       

216 35.124 36.73       

264 34.84 38.105       

312 35.44 37.591       

408 34.92 36.197       

482 35.215 38.423       
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03 03 03 

220 0.086 1.89E-03 0.084 

3.67E-

03 0.073 

4.95E-

03 0.1458 

3.45E-

03 

244 0.092 2.46E-03 0.086 

1.02E-

03 0.083 

3.82E-

03 0.1663 

8.08E-

03 

268 0.097 2.99E-03 0.095 

1.33E-

03 0.083 

4.61E-

03 0.1908 

7.11E-

03 

292 0.091 4.15E-03 0.108 

2.31E-

03 0.09 

6.20E-

03 0.2028 

6.98E-

03 

316 0.109 1.65E-03 0.12 

3.01E-

03 0.09 

4.99E-

03 0.2348 

1.38E-

03 

340 0.110 5.02E-03 0.119 

1.15E-

03 0.098 

3.87E-

03 0.2368 

1.60E-

03 

364 0.105 5.72E-03 0.12 

6.68E-

03 0.099 

3.84E-

03 0.237 

2.97E-

03 

 

Time 

 

L 

concentration 

D 

concentration 

0 39.707 40.057 

24 38.224 37.350 

72 36.631 35.323 

96 36.448 36.388 

120 38.926 35.040 

148 38.555 36.904 

220 37.041 35.114 

268 38.024 36.960 

364 37.281 35.344 

 

Kinetics of Aspartic Acid Uptake by Scenedesmus sp.  When Both Enantiomers were 

Present, With No Nitrate Added. 

   

Time D concentration L  concentration 

0 93.22 82.99 

12 50.252 50.68 

24 45.398 49.05 

36 39.832 30.566 

48 33.315 0 

60 24.312 0 
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Growth of C. sorokiniana in the Media Supplemented With Aspartic Acid and Leucine , 

in Presence of Nitrate 

Aspartic acid 

        

Time D/rate Error L/rate Error BG11/rate Error 

0 5.75E-03 5.98E-05 5.25E-03 1.07E-04 4.00E-03 7.50E-04 

12 0.037 6.24E-04 0.042 2.90E-04 0.041 9.46E-04 

24 0.106 1.49E-03 0.103 7.11E-04 0.132 2.68E-03 

48 0.160 3.76E-03 0.198 3.24E-03 0.236 1.89E-03 

72 0.206 5.40E-03 0.253 9.90E-04 0.28 3.20E-03 

96 0.272 2.25E-03 0.32 1.71E-03 0.318 1.68E-03 

128 0.294 5.19E-03 0.357 2.02E-03 0.324 6.46E-03 

148 0.345 5.74E-03 0.389 1.88E-03 0.38 9.41E-03 

172 0.368 5.12E-03 0.406 2.11E-03 0.412 5.60E-03 

194 0.388 5.58E-03 0.419 1.63E-03 0.416 8.59E-03 

 

Time D concentration L  concentration 

0 146.581 58.282 

24 147.825 54.511 

48 145.748 56.85 

72 162.373 45.29 

96 154.76 47.14 

148 149.61 50.65 

172 143.11 53.48 

194 155.72 58.96 

 

Lucine 

       

Time D/rate Error L/rate Error BG11/rate Error 

0 5.75E-03 5.98E-05 5.25E-03 1.07E-04 4.00E-03 7.50E-04 

12 0.037 6.24E-04 0.042 2.90E-04 0.041 9.46E-04 

24 0.106 1.49E-03 0.103 7.11E-04 0.132 2.68E-03 

48 0.160 3.76E-03 0.198 3.24E-03 0.236 1.89E-03 

72 0.206 5.40E-03 0.253 9.90E-04 0.28 3.20E-03 

96 0.272 2.25E-03 0.32 1.71E-03 0.318 1.68E-03 

128 0.294 5.19E-03 0.36 2.02E-03 0.324 6.46E-03 

148 0.345 5.74E-03 0.39 1.88E-03 0.38 9.41E-03 

172 0.37 5.12E-03 0.41 2.11E-03 0.412 5.60E-03 

194 0.388 5.58E-03 0.42 1.63E-03 0.416 8.59E-03 
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Time D concentration L  concentration 

0 146.581 58.28 

24 147.825 54.51 

48 145.75 56.85 

72 162.37 45.29 

96 154.76 47.14 

148 149.61 50.65 

172 143.11 53.48 

194 155.73 58.96 

 

Lipid Content Variation 

Variable Nitrate 

C. sorokiniana   

Nitrate, µM lipid content Error 

4.9 10.146 6.98E-03 

9.9 3.521 0.0123 

49.4 2.609 9.31E-03 

98.9 2.699 6.65E-04 

148.4 1.513 0.0185 

197.8 1.217 0.0233 

296.7 0.192 0.0305 

395.6 0.096 0.0211 

494.5 0.082 0.0174 

   

Scenedesmus sp.   

Nitrate, µM lipid content Error 

4.9 23.33 6.98E-03 

9.9 6.582 0.0123 

49.4 4.756 9.31E-03 

98.9 4.105 6.65E-04 

148.4 2.818 0.0185 

197.8 2.384 0.0233 

296.7 2.385 0.0105 

395.6 2.58 0.0211 

494.5 2.522 0.0174 

4.9   

9.9   
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49.4 lipid content Error 

98.9 7.09 3.40E-03 

148.4 5.25 5.56E-03 

197.8 2.40 6.42E-03 

296.7 1.96 9.49E-03 

395.6 1.59 9.12E-03 

494.5 1.16 6.34E-03 

4.9 0.75 6.25E-03 

9.9 0.58 2.12E-03 

49.4 0.61 8.98E-03 

   

Limnothrix sp.   

Nitrate, µM lipid content Error 

4.9 4.719 3.45E-03 

9.9 3.818 5.33E-03 

49.4 3.391 2.87E-03 

98.9 2.715 6.02E-03 

148.4 2.543 2.65E-03 

197.8 2.543 3.45E-03 

296.7 2.326 3.97E-03 

395.6 2.476 7.88E-03 

494.5 2.45 5.12E-03 

   

N. thermalis   

Nitrate, µM lipid content Error 

4.9 37.45 0.01 

9.9 14.83 0.0112 

49.4 9.453 2.06E-03 

98.9 10.37 2.10E-03 

148.4 8.426 3.19E-03 

197.8 8.089 5.45E-03 

296.7 7.73 5.35E-03 

395.6 8.561 5.45E-03 

494.5 6.300 3.47E-03 

   

E. caespitosum   

Nitrate, µM lipid content Error 

4.9 133.078 7.85E-03 

9.9 36.4 5.52E-03 
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49.4 25.02 3.40E-03 

98.9 19.51 5.56E-03 

148.4 16.20 6.42E-03 

197.8 17.18 9.49E-03 

296.7 19.17 9.12E-03 

395.6 15.29 6.34E-03 

494.5 14.22 6.25E-03 

 

Variable Phosphate 

   

C. sorokiniana   

Phosphate, µM lipid content Error 

0 2.322 0.0105 

28.7 1.64 0.0211 

57.4 0.96 0.0174 

86.21 0.41 7.90E-04 

114.9 0.42 0.0168 

172.4 0.472 2.63E-03 

229.9 0.441 0.0123 

287.3 0.453 9.31E-03 

   

Scenedesmus sp.   

Phosphate, µM lipid content Error 

0 8.104 0.0105 

28.7 3.513 0.0211 

57.4 1.872 0.0174 

86.21 1.493 7.90E-04 

114.9 1.284 0.0168 

172.4 1.392 2.63E-03 

229.9 1.459 0.0123 

287.3 1.386 9.31E-03 

   

Synechocystis sp.   

Phosphate, µM lipid content Error 

0 1.001 0.0123 

28.7 1.059 0.0136 

57.4 1.061 3.45E-03 

86.21 1.062 5.33E-03 
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114.9 1.062 2.87E-03 

172.4 1.062 6.02E-03 

229.9 1.062 2.65E-03 

287.3 1.062 3.45E-03 

   

Limnothrix sp.   

Phosphate, µM lipid content Error 

0 3.52 6.40E-03 

28.7 1.93 6.28E-03 

57.4 0.84 6.01E-03 

86.21 0.456 2.02E-03 

114.9 0.42 1.87E-03 

172.4 0.39 2.50E-04 

229.9 0.33 2.89E-04 

287.3 0.334 4.55E-03 

   

N. thermalis   

Phosphate, µM lipid content Error 

0 3.884 0.0109 

28.7 1.581 1.04E-02 

57.4 0.754 4.94E-03 

86.21 0.642 0.01 

114.9 0.548 1.12E-02 

172.4 0.435 2.06E-03 

229.9 0.441 2.10E-03 

287.3 0.419 3.19E-03 

   

E. caespitosum   

Phosphate, µM lipid content Error 

0 1.661 5.12E-03 

28.7 0.582 4.29E-03 

57.4 0.332 1.23E-02 

86.21 0.384 1.18E-02 

114.9 0.475 1.52E-02 

172.4 0.518 1.33E-02 

229.9 0.533 8.54E-03 

287.3 0.567 9.12E-03 
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Variable Light Intensity 

   

Scenedesmus sp.   

Light intensity, 

µmole/m
2
.s lipid content Error 

1155 0.249 0.0119 

825 0.269 2.17E-03 

82.5 0.324 0.0206 

33 0.366 0.0171 

16.5 0.381 2.25E-03 

8.25 0.598 2.83E-03 

1.65 0.724 0.0108 

   

C. sorokiniana   

Light intensity, 

µmole/m
2
.s lipid content Error 

1155 0.239 1.19E-03 

825 0.425 2.17E-03 

82.5 0.871 2.06E-03 

33 1.02 1.71E-03 

16.5 1.347 2.25E-03 

8.25 1.371 2.83E-03 

1.65 2.598 1.08E-03 

   

Synechocystis sp.   

Light intensity, 

µmole/m
2
.s lipid content Error 

1155 2.695 2.90E-03 

825 1.452 2.81E-03 

82.5 0.853 3.28E-03 

33 0.496 2.17E-03 

16.5 0.3 2.46E-03 

8.25 0.42 3.64E-03 

1.65 0.39 3.71E-03 

   

Limnothrix sp.   

Light intensity, 

µmole/m
2
.s lipid content Error 

1155 4.64 4.09E-03 

825 2.47 5.12E-03 
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82.5 1.77 4.74E-03 

33 2.026 3.97E-03 

16.5 2.00 4.66E-03 

8.25 1.18 2.72E-03 

1.65 0.20 3.16E-03 

   

N. thermalis   

Light intensity, 

µmole/m
2
.s lipid content Error 

1155 1.61 0.0479 

825 1.633 8.17E-04 

82.5 0.979 2.89E-03 

33 0.914 0.0408 

16.5 0.921 0.0946 

8.25 1.27 8.54E-04 

1.65 2.098 1.08E-03 

   

E. caespitosum   

Light intensity, 

µmole/m
2
.s lipid content Error 

1155 0.20 0.0119 

825 0.15 2.17E-03 

82.5 0.120 0.0206 

33 0.121 0.0171 

16.5 0.112 2.25E-03 

8.25 0.131 2.83E-03 

1.65 0.235 0.0108 
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