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ABSTRACT 

To examine the effects of climate variability on streamflow, this thesis presents a 

comprehensive analysis of the streamflow variability of the continental United States and 

its association with oceanic-atmospheric indices. First, the presence of trends with 

consideration of short term and long term persistence followed by shifts over the past 

years in the continental U.S. streamflow were analyzed by using the non-parametric tests: 

Mann Kendall and Pettitt. Second, the spatio-temporal relationships between seasonal 

streamflow variability of continental U.S. and sea surface temperatures (SST) and 500 

mbar geopotential height (Z500) of the Pacific and Atlantic were established using the 

singular valued decomposition (SVD) factorization technique. Finally, the SVD 

technique was used to determine the spatio-temporal relationships between western U.S. 

seasonal streamflow variability and indicators (SST and Z500) of Pacific Ocean 

variability. 

The results indicated that significant trends and shifts existed in the streamflow 

volumes in the past few decades in the continental U.S., and short term and long term 

persistence was evident in streamflows. Removal of the persistence characteristic 

removed the spurious trends, that could otherwise be misinterpreted. The 1970’s were the 

years when major shifts took place, and most of the shift periods coincided with the phase 

changes of multi-decadal oscillations. A strong spatio-temporal relationship of the 

streamflow was established with the oceanic-atmospheric indicators and the multi-

decadal oscillations (PDO, AMO) did influence these relationships. Seasonal analysis 

showed an improved explanation of co-variability over water-year. The lead-time 

approach showed that the relationships could be explained up to 9 months ahead and Z500 
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showed improved results over SST at shorter lead-times. Several new regions apart from 

the well identified index regions were identified in the oceanic region to have strong 

relationships with seasonal streamflows. The individual basins showed unique 

relationships with the indicators both spatially and temporally which could be due to their 

unique topographical and local factors.  

The contributions from this research include a better understanding of the changes in 

continental U.S. streamflow and the spatio-temporal relationships with oceanic-

atmospheric variability that can help in better water management decisions. 

  



v 
 

EXECUTIVE SUMMARY 

Identification of long-term changes and evaluation of the relationships among streamflow 

variability and oceanic-atmospheric indices. 

By Soumya Sagarika 

Dr. Sajjad Ahmad, Examination Committee Chair 

Associate Professor, Civil and Environmental Engineering 

University of Nevada, Las Vegas 

 

Climate variability is a continuous phenomenon and its influence on hydrological 

cycle ultimately affects streamflows. In order to examine the effects of climate variability 

on streamflow, this thesis presents a comprehensive analysis of streamflow variability of 

the continental U.S., and its association with oceanic-atmospheric indices. Based on 

literature review, two types of changes in streamflow volumes were prioritized: the 

gradual change known as trend, and the abrupt change known as shift. However, methods 

that have been developed for analyzing these changes have not been used for continental 

U.S. streamflow study. Moreover hydrologic variables have the propensity to be present 

in clusters, which is termed as persistence. This characteristic, if not addressed, often 

leads to over- or underestimation of trends. Two important climate indicators identified 

so far are sea surface temperatures (SST) and geopotential height. The SST have been 

used in identifying relationships with hydroclimatic variables by considering specific 

regions of the oceanic-atmospheric oscillations of El Niño-Southern Oscillation (ENSO), 

Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), North 

Atlantic Oscillation (NAO), and others. 500mbar geopotential height index (Z500) can 
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explain many complex climate mechanisms but has not been explored in relation to 

continental U.S. streamflow. 

With this motivation, this study focused on finding the relationships of streamflow 

variability with oceanic-atmospheric indicators. First, the presence of trends with 

consideration of short term and long term persistence followed by shifts over the past 

years in continental U.S. streamflow were analyzed by using the non-parametric Mann 

Kendall and Pettitt tests. Second, the spatio-temporal relationships between seasonal 

streamflow variability of continental U.S. and oceanic-atmospheric indicators (SST and 

Z500) of the Pacific and Atlantic were established using the singular valued decomposition 

(SVD) factorization technique. Finally, the SVD technique was used to determine the 

spatio-temporal relationships between western U.S. seasonal streamflow variability and 

indicators (SST and Z500) of Pacific Ocean variability. 

In order to accomplish this task, unimpaired streamflow gauges were examined for 

consistent and longer data periods of record. The continental U.S. study used 60 years 

(1951-2010) of unimpaired streamflow data of 240 streamflow gauges and the western 

U.S. streamflow analysis included 90 unimpaired streamflow gauges with 50 years of 

data (1960-2010). However, annual water-year streamflow volumes are good for long-

term predictability; they often mask the big disparities that seasonal streamflow volumes 

show. Gridded Pacific and Atlantic SST/Z500 were used at different lead times with the 

streamflows. To distinguish the results of each major hydrologic basin the Walker test, 

which can measure global significance, was incorporated. Linear correlation techniques 

were used to determine the correlation values from the temporal expansion series 

obtained from SVD. All the tests were performed at a threshold significance level. 
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The results indicated that significant trends and shifts existed in the streamflow 

volumes in the past few decades in the continental U.S., and short term and long term 

persistence was evident in streamflows. Removal of the persistence characteristic 

removed spurious trends, which can be misinterpreted. The 1970s were the years when 

major shifts took place, and most of the shift periods coincided with the phase changes of 

multi-decadal oscillations. Strong spatio-temporal relationships of the streamflows were 

established with the oceanic-atmospheric indicators, the multi-decadal oscillations (PDO, 

AMO) did influence these relationships. Seasonal analysis showed improved explanation 

of co-variability over water-year. The lead-time approach showed that the relationships 

could be explained up to 9 months ahead, and Z500 showed improved results over SST at 

shorter lead-times. Several new regions apart from the well identified index regions were 

identified in the oceanic region to have strong relationships with seasonal streamflows. 

The individual basins showed unique relationships with the indicators both spatially and 

temporally which could be due to their unique topographical and local factors.  

The contributions from this research include a better understanding of the changes in 

continental U.S. streamflow and the spatio-temporal relationships with oceanic-

atmospheric variability. Other studies have incorporated streamflow datasets, which may 

not be impaired but have some minimal regularization and water-year streamflow 

relationships. This study was the first of its type in many aspects. First, it uses the 

HCDN-2009 (Hydro-Climatic Data Network) dataset in analysis, and performs both a 

short term and long-term persistence change analysis with the Pettit test on continental 

United States streamflow. Second, this study uses the Z500 dataset, which has not 

previously been, used to establish relationships with continental U.S. streamflow. Third, 
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this is the first study that identifies the relationships of seasonal continental streamflow 

with climate indicators. This study performs comparison at hydrologic region level, 

which is important from a water management perspective. The study aimed to provide a 

better understanding of the effects of climate variability on streamflows that can help in 

better water management decisions. 
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CHAPTER 1: INTRODUCTION 

1.1. Research background. 

“Whiskey is for sharing and water is to fight for.” This famous saying attributed to 

Mark Twain conveys the importance of fresh water availability to our growing needs. 

With the rapid increase in population and economic growth, the stress on fresh water 

resources has increased manifold to meet the domestic, agricultural, industrial, energy, 

wildlife, and recreational demands. Water managers thus face the challenge of meeting 

the future water demands with existing water infrastructure. Substantial anthropogenic 

change of earth’s climate has steered the death of stationarity in hydrologic variables 

(Milly et al., 2008). The recent climate change as a result of increased atmospheric CO2 

and global surface temperature in the Earth’s energy balance is the most unpredictable 

and uncontrollable factor in terms of future water management. Climate variability is a 

continuous slow process; minor variations directly and indirectly impact the environment 

(Impoinvil et al., 2007a; 2007b) and hydrological cycle. Changes in hydrological cycle 

can lead to extreme events such as floods and droughts (Redmond and Koch, 1991; 

Cayan et al., 1999; McCabe and Wolock, 2002; Huntington, 2006 Ahmad and 

Simonovic, 2001c; Simonovic and Ahmad, 2005). The available parameters for detecting 

climate variability are air temperature, air pressure, sea surface temperature, precipitation, 

and others. The variability in climate indicators is monitored through agencies such as the 

National Oceanic and Atmospheric Administration (NOAA) and continuously scrutinized 

by the Intergovernmental Panel on Climate Change (IPCC). Analyses on global patterns 

of climate trends show evidence of a warming climate, which is likely to continue into 

the future (Dettinger et al., 2000; Easterling et al., 2000; Milly et al 2002; Adam et al., 
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2009). In the continental U.S., various studies have predicted future warming, reduced 

winter precipitation and snowpack accumulation in the western U.S., decreased high 

flows in the eastern U.S., shifting summer peak streamflow towards winter, and increases 

of flood and drought risks in the western United States (Dettinger and Cayan, 1995; 

Hamlet and Lettenmaier, 1999; Nijssen et al., 2001; Stewart et al., 2005; Hayhoe et al., 

2007; ). A great deal of research has tried to understand the interdependency of 

streamflow on climate variability; however, there is still a need to investigate these over 

time. 

Study of the long term changes of hydroclimatic variables of the past can help in 

predicting the future water supply (Pagano and Garren., 2006). Streamflow is the major 

source of inland fresh water. With increasing human population many rivers are being 

heavily managed by constructing diversions to meet the different seasonal requirements. 

For example the water of the Colorado River is used for various purposes and is shared 

among seven U.S. states and Mexico as per several legal treaties, and compacts. 

However, to meet the states requirement, the river is highly regulated through a series of 

reservoirs which ensure year-round supplies of water. The effects of these diversions over 

the river flow are complex, and many scientific groups have tried modelling approaches 

to estimate the natural flow of the system. Despite these efforts, anomalies remain due to 

slow long-term changes. In streamflow resulting from climate change, numerous small 

rivers are also being diverted to meet our water requirements, these diversions further 

reduce unimpaired streamflows. Unimpaired streamflows can best represent long-term 

climate change effects, but their decreasing availability reduces our ability to study these 

phenomenons. For the continental U.S., the studies so far on streamflows use data that 



3 
 

have minimal human intervention, but are not completely unimpaired. The reliability of 

using them is questionable in terms of quality. Additionally there are unrealized forcing 

mechanisms like short-term and long-term natural variability and persistence which may 

influence the statistical analysis. 

Some of the well-known and commonly understood climate indices like Southern 

Oscillation Index (SOI, El Niño and La Niña), North Atlantic Oscillation (NAO), 

Atlantic Multi-decadal Oscillation (AMO), SST Indices, Palmer Drought Severity Index 

(PDSI), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation 

(AMO) have been related to streamflow in the U.S. and around the world (Walker 1925; 

Philander, 1990;Mantua et al 1997; Enfield et al 2001), and have also been found to have 

complex relationships with inland hydrology in terms of time and space (Ropelewski and 

Halpert, 1986; Lamb and Peppler, 1987; Redmond and Koch, 1991; Cayan and Webb, 

1992; Hurrel, 1995; Trenberth, 1997; Rodo et al 1997; Kiffney et al., 2002; Gordon and 

Giulivi,2004; Ma, 2007; Kalra, 2012). In the U.S., these periodic oscillations have been 

established to have associations with hydrology such as, impacts on precipitation (Gutzler 

et al., 2002; Goodrich, 2004), snowpack (e.g. Aziz et al.,2010), streamflow (Barlow  et 

al.,2001, etc), droughts(e.g. Goodrich, 2007; Nigam et al., 2011), and fires (Hessl et al., 

2004). Other available climate variability information are gridded datasets of the ocean 

such as sea-surface temperatures, atmosphere such as geopotential height index and sea 

winds data, and other marine and paleoclimate data, and others (NOAA). These gridded 

datasets provide opportunities to explore new avenues of climate variability that are 

different from well-established oscillations (e.g. Grantz et al., 2005; Tootle et al., 2006; 

Soukop et al., 2009; Aziz et al 2010). Thus, various developments in terms of data 
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accumulation, development, and modeling are ongoing to understand and capture climate 

variability and its impacts on hydrology. 

1.2. Research Motivation 

A considerable amount of research has been done on long-term changes in 

streamflow (e.g. Kalra et al., 2014a) and its associations with climate variability (e.g. 

Kalra et al., 2014b). Study of the changes in streamflow using unimpaired stations can 

help in minimizing the effect of anthropogenic influence on land-use, flow storage, and 

diversions; the resulting changes can be attributed to variability and change in the 

climate. The changes exhibited in a hydrological time series may be gradual (trend) or 

abrupt (step/shift). To date, the literature has not yet adequately addressed these 

unrealized forcing mechanisms of short-term and long-term persistence for trend studies 

in continental U.S. streamflow. Trend detection can explain the long-term state of a 

system and its anticipated extension into the future. Abrupt changes, on the other hand, 

are associated with extreme hydrologic events, such as storms, floods, or droughts and 

can lead the streamflow towards a completely different regime (Lins and Slack, 1999). 

For evaluation of the impact of climate change, the distinction between trends and shifts 

is important. Generally, abrupt changes are unpredictable unless the causes are known. 

The presence of a shift in the data series might also affect the significance of the trends, 

which further necessitates their detection. Earlier studies on detection of shifts use a 

predefined shift period and test the stations for significance (Miller and Piechota, 2008; 

Kalra et al., 2008). This method might not be accurate when a large number of stations is 

considered that can have different shift periods. 
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Ideally, the use of different recognized indices like the ENSO, AMO, NAO, PDO, 

and others are used in streamflow forecasting models. These indices have a defined 

spatial scale (example: the Niño 3.4 region lies around 5N to 5S and 120W to 170W) and 

use the sea surface temperature data of that specific location. Considering these 

traditional indices will not incorporate any variation or shift in the spatial region of 

weather phenomena. Moreover some watersheds are not affected by these traditional 

regions of climate indices. The use of an entire gridded data set of an oceanic region will 

eliminate this redundancy and might be able to identify new regions could cause seasonal 

impacts on streamflow. Geopotential height is an index whose application in 

hydroclimatic modeling has been limited. It essentially affects the wind patterns, and, in 

response precipitation. The use of an entire gridded dataset of sea surface temperature 

and geopotential height could be useful in identifying relationships with the 

hydroclimate. 

With this research motivation, this thesis uses statistical approaches in identifying the 

changes in the streamflow volumes of the continental U.S. and determining the spatio-

temporal relationships between oceanic-atmospheric variability and streamflow. The 

statistical methods used to study the changes in the U.S. streamflow are the non-

parametric tests, Mann Kendall and Pettitt. A factorization technique known as singular 

valued decomposition (SVD) is used to find the relationships between oceanic-

atmospheric variability of Pacific and Atlantic and U.S. streamflow variability. The 

continental U.S. has a varied topography from east to west and north to south surrounded 

by two major oceans, i.e. the Atlantic and the Pacific, and the Gulf of Mexico. 

Unimpaired streamflow data is maintained by the USGS as the HCDN network, the 
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gauges are distributed all over the United States. The USGS has divided the U.S. into 21 

major hydrologic regions depending on the major river systems. Of these, 18 hydrologic 

basins are present in continental United States. Comparison among the different 

hydrologic basins of the U.S. is an important part of this work which is achieved by using 

a global significance method called the Walker test. The results were evaluated at a 

particular significance level, typically set at p ≤ 0.10. 

1.3. Research Objectives 

 The objective of this research was to understand the relationships among U.S. 

streamflow and climate variability. In order to achieve the understanding of the patterns 

in the streamflow variability, the continental U.S. streamflow volumes were analyzed 

along with their teleconnections with the oceanic-atmospheric variability. The results are 

expected to improve the understanding of water-managers about the effects of climate 

variability on hydroclimate, and aid in planning and management of water resources. To 

achieve these objectives, the following questions and their corresponding hypotheses 

were addressed in this research. 

Research Question # 1: What were the changes in the hydrology of the continental U.S. 

in the past years and how do they compare temporally and spatially? 

Hypothesis #1: Unimpaired streamflows, which have the least anthropogenic 

interference, can best represent climate variability and the phase changes of the 

multidecadal climate indices. As streamflow data do not follow a normal distribution, 

using non-parametric tests will best represent streamflow variability. 
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Research Question # 2: How do the oceanic-atmospheric indices affect (associate with) 

the streamflows of the continental United States? 

Hypothesis #2: The Oceanic-atmospheric indices have affected the hydrologic cycle by 

influencing the winds, moisture, and ultimately the precipitation. Using a lead-time 

methodology, the interaction between the oceanic-atmospheric indices and streamflow 

variability can be explored. Different basins of the continental U.S. streamflow have 

significant associations with the oceanic-atmospheric indices, but geography will 

determine the differences. 

Research Question # 3: How do the oceanic-atmospheric indices play a role in affecting 

streamflow in adjacent basins, and can the lead time of streamflow forecasting be 

improved? 

Hypothesis #3: Western U.S. streamflow is strongly affected by Pacific Ocean 

variability and depending on the precipitation of the region, the association of the 

oceanic-atmospheric indices and streamflow has a lagged relationship.   

1.4. Research Tasks 

 The research is presented in a manuscript format. The current chapter is 

comprises of introduction and formulates the problem statement for this study. Chapter 2 

is a manuscript titled, “Evaluating the effect of persistence on long-term trends and 

analyzing step changes in streamflows of the continental United States” that addresses 

Research Question #1.This chapter uses 60 years of unimpaired streamflow data from the 

HCDN-2009 network to analyze the persistence and changes in 240 streamflow gauges 

over the continental United States. Two non-parametric tests, the Mann-Kendall test with 



8 
 

persistence addressing variations and the Pettit test, were used. The Walker test was used 

to determine the global significance of the results categorized into 18 hydrologic regions. 

Chapter 3 is a manuscript titled, “Evaluating the influence of sea surface temperatures 

and geopotential height on seasonal streamflows of the continental United States” that 

addresses Research Question #2. This chapter uses SVD to evaluate the 1-4 month lagged 

spatio-temporal relationships between seasonal streamflow of the continental U.S. and 

Pacific and Atlantic sea-surface temperatures and 500mbar geopotential height (Z500). 

Further, the influence of the multidecadal PDO and AMO phases on these relations is 

explored. Chapter 4 is a manuscript titled “Pacific Ocean SST and Z500 climate variability 

and western U.S. seasonal streamflow” that addresses Research Question #3. This chapter 

uses SVD to evaluate the 3-9 month lagged spatio-temporal relationships between 

seasonal streamflow of the western U.S. and Pacific Ocean climate variability. It also 

examines the effect of performing SVD on six individual basins of the western United 

States. Chapter 5 summarizes and concludes this thesis and provides recommendations 

for future research. 
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CHAPTER 2: EVALUATING THE EFFECT OF PERSISTENCE ON LONG-

TERM TRENDS AND ANALYZING STEP CHANGES IN STREAMFLOWS OF 

THE CONTINENTAL UNITED STATES 

Abstract 

Streamflow is a very good indicator of long-term hydroclimatic changes. From a 

water management perspective, the identification of gradual (trend) and abrupt (shift) 

changes in streamflow are important for planning purposes. This study investigated the 

detection of comprehensive change, gradual and abrupt, in 240 unimpaired streamflow 

stations, categorized according to the hydrologic regions in the continental United States. 

The changes in streamflow volume were analyzed for water-year, autumn, winter, spring, 

and summer from 1951 to 2010, a 60-year period. The non-parametric Mann-Kendall 

test, with variations accounting for short term and long-term persistence, was used to 

evaluate the trends; the non-parametric change-point Pettitt test was used to evaluate the 

shifts. The field significance was evaluated using the Walker test. The trend results 

indicated increasing streamflow patterns in the majority of the eastern U.S. regions – the 

Upper Mississippi, Missouri, Great Lakes and Texas Gulf were field significant – and 

dominant decreasing streamflow trends in the Pacific Northwest region. The use of 

different Mann-Kendall test helped in evaluating the spatial distribution of short-term and 

long-term persistence and their effect on trends. The Pettitt test analysis indicated that 

statistically significant shifts occurred during the early 1970s and late 1980s. Similar to 

the trend results, the Midwest as well as the central and southern U.S. had significantly 

increasing shifts; the Pacific Northwest, Tennessee (winter season only), and South-

Atlantic Gulf (spring season only) had decreasing shifts in streamflow. The findings may 
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assist water managers in better planning and management of water resources under 

climate variability and change.  

2.1. Introduction 

With the rapid increase in population, the stress on water resources has increased 

manifold (Qaiser et al., 2013; Shrestha et al., 2011; Ahmad and Prashar, 2010; Wu et al., 

2013). Further, water managers have been concerned about the anticipated impacts of 

climate variability and change on water resources (Dawadi and Ahmad, 2012; Vedwan et 

al., 2008; Kalra and Ahmad, 2012; Dawadi and Ahmad, 2013; Zhang et al., 2014). 

Increased variability in streamflow due to changing climate has resulted in altering the 

hydrological cycle (Puri et al., 2011a; 2011b; Stephen et al., 2010; Ahmad et al., 2010; 

Ahmad and Simonovic 2006). In snow-fed basins, an increase in spring temperatures has 

led to earlier summer streamflow peaks (Arora and Boer, 2001; Voss et al., 2002; Stewart 

et al., 2005; Hamlet and Lettenmaier, 2007); moreover, low annual flows have increased 

in the northeast U.S. in the last century, and have become less extreme (Lins and Slack 

1999; EPA climatic indicators, 2012).  

Changes in climate variability enhance the uncertainties in the availability of fresh 

water for future generations (Middelkoop et al., 2001). Thus, water managers face the 

challenge of meeting future water demands with existing water infrastructure that may be 

inadequate in the future (Qaiser et al., 2011; Ahmad and Simonovic, 2001b). In addition, 

stress is increasing to meet environmental flow requirements and provide water for the 

energy needs (Shrestha et al., 2012, Venkatesan et al., 2011a; Venkatesan et al., 2011b; 

Melesse et al., 2011; Ahmad and Simonovic 2001a; 2005; Choubin et al., 2014). 
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Changes in the hydrological cycle can result from both climate variability and 

anthropogenic interference. These changes may be gradual (trend) or abrupt (shift). 

Changing hydrology may lead to under-designed or over-designed projects (Forsee and 

Ahmad, 2011a; 2011b; Mosquera-Machado and Ahmad, 2007; Ahmad and Simonovic 

2000a), which may not meet long-term needs; thus, the traditional assumption of 

stationarity for hydraulic designs requires review (Milly et al., 2008). To address these 

issues, this study focuses on evaluating trend and step changes in streamflow while taking 

into account streamflow persistence, which affects long-term trends. 

Study of the changes in streamflow, using unimpaired stations, helps to minimize 

the effect of anthropogenic influences on land use, flow storage, and diversions; the 

resulting change can be attributed to variability and climate change. Various studies have 

predicted future warming, bringing change in timings as well as increasing the quantity of 

monthly precipitation; reducing winter precipitation and snowpack accumulation in the 

western U.S.; decreases in high flows in the eastern U.S., and shifting summer peak 

streamflow towards winter, thus increasing the flood and drought risks in western United 

States (Aguado et al., 1992; Dettinger and Cayan, 1995; Hamlet and Lettenmaier, 1999; 

Nijssen et al., 2001; Stewart et al., 2005; Hamlet et al., 2007; Hayhoe et al., 2007). 

Analyses on the global pattern of climate trends concur with evidence of a warming 

climate (Dettinger et al., 2000; Easterling et al., 2000; Milly et al., 2002; Milly et al., 

2005; Adam et al., 2009). 

A great deal of research is taking place to understand the interdependency 

between climate variability, and streamflow (Hamlet and Lettenmaier, 1999; Kalra and 

Ahmad, 2011; Carrier et al., 2011; 2013; Kalra et al., 2013a and Kalra et al., 2013b). 



12 
 

However, there is a need to understand the changing patterns of streamflow over time, 

which can improve planning and operational strategies for sustainable use of available 

water resources (Frederick and Major, 1997; Mirchi et al., 2012; Ahmad and Simonovic, 

2000b). 

In the past, significant efforts have been made to study the long-term trends in 

streamflows over the continental United States. Several studies have shown an increase in 

annual moderate-to-low streamflows and a less significant increase in peak streamflows 

(Lettenmaier et al., 1994; Lins and Slack, 1999; McCabe and Wolock, 2002; Kalra et al., 

2008). Lettenmaier et al. (1994) used monthly records of 1009 unimpaired streamflow 

stations in the continental U.S. for a period of 40 years (1948-1988); they found increases 

in streamflows from November to April that concentrated in the north-central states. Lins 

and Slack (1999) conducted a trend analysis on daily discharges from 395 streamflow 

stations of the Hydro Climatic Data Network (HCDN) for varying years, and identified 

decreasing trends in the Pacific Northwest and Southeast region. For the eastern United 

States, Small et al. (2006) indicated that increases in fall precipitation increased the low 

flows; on the other hand, high flows were not related statistically to trends in spring 

precipitation. Groisman et al. (2001) studied 385 stations from the HCDN and found 

increasing trends in peak streamflows in the eastern U.S. resulting from increasing 

precipitation; however, they found negligible change in the western United States. The 

differences in the results are due to the different techniques used in these studies. 

Regarding regional studies on streamflow changes, in Pennsylvania, Zhu and Day 

(2005) found strong downward trends in the daily streamflow volume. Gebert and Krug 

(1996) found that annual low flows increased and flood peaks decreased in southwestern 
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Wisconsin, which varied from northern Wisconsin. Easterling et al., (2000) and 

Groisman et al. (2001) found an escalation in climate events, such as heavy precipitation, 

floods, and droughts, indicating abrupt climate patterns. In the 20th century, the droughts 

of 1930s and 1950s were identified as the most severe for large areas; the droughts of 

early 2000s in the western U.S. were identified as the most extreme for small areas 

(Andreadis et al., 2005).  

So far, the documented literature has been valuable with regard to streamflow 

change studies. However, various unrealized forcing mechanisms, such as short-term and 

long-term natural variability, need to be considered while analyzing a hydrological time 

series. The hydro-climatic variables have a propensity to be present in clusters during 

certain periods of time, i.e., droughts or floods; this is termed ‘scaling’ or ‘persistence’. 

Short-term persistence (STP), the most common and simple example, has been addressed 

in many studies using the autoregressive-1 model. The presence of long-term persistence 

(LTP), first identified by Hurst (1951) in a study on the Nile River, can influence 

considerably trends determined with independence and STP assumptions (Cohn and Lins 

2005).  

Long-term persistence can be postulated to exhibit the continual variability of 

several factors influencing climate and ultimately streamflow, such as solar forcing, 

volcanic activity, greenhouse gases, carryover storage of water in lakes, soil properties, 

and oceanic oscillations. As stated by Koutsoyiannis and Montanari (2007), the recorded 

data could be a small segment of a longer cycle of natural processes that, under current 

circumstances, are unidentified by currently available observations. Therefore, a longer 

observation period can provide more realistic information of the process under 
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investigation. Each watershed has its own characteristic hydrology, which is the basis of 

hydrologic spatial variability.  

Vogel et al. (1998) studied the variation of persistence across the U.S., and 

identified larger regions with the homogenous property of persistence. The presence of 

LTP can significantly deviate the mean from actual trends; thus, it is essential to 

investigate LTP’s effects on trends. Burn and Elnur (2002) analyzed trends of hydrologic 

and meteorological variables in Canadian catchments, using serial and cross-correlation; 

they observed an earlier onset of spring-melt conditions, and suggested that hydrological 

variables accentuate patterns existing in meteorological variables acting as input. Kalra et 

al. (2008) analyzed 639 unimpaired U.S. streamflow stations data for 52 years for trends 

with lag-1 autocorrelation; they observed decreasing streamflow trends in the Pacific 

Northwest and South-Atlantic Gulf, resulting from an abrupt step change followed by a 

gradual decreasing trend. In the analysis of streamflow in Indiana, Kumar et al. (2009) 

used lag-1 autocorrelation, complete autocorrelation structure, and LTP. Similarly, 

Ehshanzadeh et al. (2010) conducted a study identifying the STP and LTP influence on 

streamflow trends in Canada. Other studies have suggested that trends are influenced by 

the nature of streamflow statistics, annual/seasonal statistics, the time period, and take 

into consideration the correlation structure (Koutsoyiannis, 2003; Kumar et al., 2009). 

The literature has highlighted the importance of studying long-term trends in 

streamflow; however, addressing the effect of LTP while identifying trends has not 

received prominence in studies of the continental U.S. To evaluate the impact of climate 

change, the distinction between trends and shifts is important. When there is a sharp 

increase or decrease in any hydrological variable, abrupt changes, also known as shifts, 
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may be associated with extreme hydrologic events, such as storms, floods (Ahmad et al., 

2009; 2010a; Ahmad and Simonovic  2001d; 2004), or droughts, along with changes in 

ecosystems. For example, the winter of 1976-1977, in the North Pacific was extreme due 

to a shift in the ocean-atmosphere system (Kerr, 1992; Beamish et al., 1997; Holbrook et 

al., 1997; Mantua and Hare, 2002). During that period, a shift was observed in the mean 

sea-level temperature (Mantua and Hare, 2002). Sudden changes in the inland surface 

water may be result of these climate extremes. 

A trend is anticipated to extend into the future, whereas the occurrence of a shift 

can lead the streamflow towards a completely different regime. Generally, these changes 

are unpredictable unless the causes are known. Previous studies on shift detection in the 

U.S. have been conducted by using a pre-defined known year and by comparing the 

means or medians in the data before and after that time (Kalra et al., 2008; Miller and 

Piechota, 2008). This method has limitations when a large number of stations are 

considered because the shift period may not coincide; hence, it is difficult to pre-define a 

particular shift period. The presence of a shift in the data series might affect the 

significance of the trends, and this necessitates its detection. 

For this study, a comprehensive analysis was conducted of the long-term changes 

in 240 unimpaired streamflow stations over the continental United States. In an attempt to 

provide a better understanding of inter-relations between climate and spatial streamflow 

variability, the key motivation of this work was to 1) identify trends that account for STP 

and LTP along with shifts and 2) compare the changes among the 18 major hydrologic 

regions. A longer duration of data – i.e., 1951-2010 (60 years) – was taken into 

consideration in order to account for the effects of multi-decadal variability in climate. 
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Moreover, the detection of the change point was performed by identifying the shift period 

for each station, which can indicate major events in the particular region. In addition, any 

association between the occurrence of shifts and phases of climate indices, such as El 

Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), was 

investigated. 

Several other climate patterns have been shown to influence streamflow in the 

continental United States. A detailed analysis of the relationship between climate indices 

and streamflow was not within the scope of this current work. Various periods (water-

year, autumn, winter, spring, and summer) were analyzed for both gradual trends and 

abrupt shifts so that the changes in each could be identified separately.  

2.2. Study Area and Data 

The hydrology of the continental U.S. varies from region to region, which makes 

the study of streamflow change challenging. In the western U.S., the Great Plains are 

semi-arid and the mountains are alpine. In the Great Basin, the climate is arid; in the 

Southwest, it is desert; coastal California is Mediterranean; and the coastal northwest is 

oceanic. In the eastern U.S., the climate varies from humid continental in the north to 

humid subtropical in the south.  

The United States Geological Survey (USGS) divides the continental U.S. into 18 

regions. Further, each region is divided into sub-regions, accounting units, and cataloging 

units, denoted with a unique hydrologic unit code (HUC) consisting of two to eight digits 

based on the four levels of classification. The USGS online database 

(http://www.usgs.gov/) makes streamflow data readily available.704 stations within the 
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continental U.S. were verified from the USGS Hydro-Climatic Data Network 2009 

(HCDN-2009) (Lins F. Harry, 2012). The HCDN-2009 dataset is a revision of 1) the 

USGS original HCDN network (Slack et al., 1992) and 2) the streamflow stations within 

the dataset area subset of the revised Geospatial Attributes of Gages for Evaluating 

Streamflow, version II (GAGES) dataset (Falcone et al 2010). Only stations having 

continuous streamflow data from 1951 to 2010 water-years (Oct 1950 to Sept 2010) were 

considered for long-term analysis, which narrowed the total stations. From the HCDN-

2009 network, only 252 stations had continuous data from 1951 to 2010. To avoid spatial 

bias in the results, only one station on a particular stream within each HUC was 

considered; this reduced the number of stations to 240. Stations with missing data could 

be considered by filling the gaps, using imputation methods (Gill et al., 2007); however, 

the results were more likely to be compromised, and these methods were avoided.  

Reducing the temporal period would have increased the number of stations; 

however, the need for a longer streamflow record resulted in the elimination of the 

stations. Taking into consideration the water-year (the previous year October to the 

current year September) facilitated the comparison for seasonal changes, i.e., autumn 

(Oct-Dec), winter (Jan-Mar), spring (Apr-Jun), and summer (Jul-Sept). For the analysis, 

the data was averaged for the water-year and the four seasons.  
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Figure 2.1: Map of continental U.S. showing the spatial distribution of the 240 unimpaired 

streamflow stations over 18 hydrologic regions. 

In the spatial distribution of the streamflow stations shown in Figure 2.1 (a list of 

stations is provided in Table 2.1), it can be seen that the eastern U.S. has streamflow 

stations that have been maintained for a considerably longer duration than in other 

regions. Regions as the Mid-Atlantic (2) and Pacific Northwest (17) have more than 30 

stations, whereas the Upper Colorado (14) has no unimpaired station with 60 years of 

data. The regional comparison of trends and abrupt shifts may be influenced by this 

disparity; however, the overall nature of trends can be inferred. 

The other dataset used in the analysis consists of climate indices, i.e., ENSO and 

PDO. ENSO is the natural coupled cycle in the ocean-atmospheric system over the 
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tropical Pacific. It operates on a timescale of two to seven years as a warm phase (El 

Niño, positive index) and a cool phase (La Niña, negative index). The PDO is an index of 

the decadal-scale variability in sea-surface temperature (SST) in the North Pacific Ocean 

(McCabe and Dettinger, 2002). Similar to ENSO, PDO has two phases, warm and cold. 

Several studies have indicated two full phases of PDO in the past century, with a 

periodicity of 25 to 50 years (Mantua and Hare, 2002; Tootle et al., 2005). For the current 

study, the coupled relationship between PDO and ENSO has been used to verify the shift 

periods. The El Niño, La Niña, and neutral ENSO years have been obtained for PDO 

warm and cold phases, and checked for possible patterns in streamflow shifts 

(http://www.atmos.washington.edu/~mantua/TABLES2.html)  

2.3. Method 

Four statistical tests were used to evaluate the characteristics of changes in 

streamflow. The properties of hydrologic variables facilitate non-parametric tests better 

than parametric tests (Helsel and Hirch, 1992; Yue and Pilon, 2004). While many 

statistical tests have been used for streamflow trend analysis, the non-parametric Mann-

Kendall tests have received wide acceptance due to their independency from the 

distribution of data and robustness against outliers (Lins and Slack 1999; Zhu and Day, 

2005; Burn, 2008; Kumar et al., 2009; Villarini et al., 2009; Villarini and Smith, 2010). 

Villarini et al. (2009) compared five methods for change-point detection, i.e., the Pettitt, 

CUSUM, Guan, Rodionov, and Bayesian methods. They concluded that the non-

parametric Pettitt test has better accuracy than the other tests in identifying change points. 

Using Walker’s test (Wilks, 2006), field significance was evaluated to assess if the trend 

and shifts result in each region are globally significant. Further, the shifts in streamflow 
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were checked against the phases (warm and cold) of ENSO and PDO climate indices for 

any possible pattern. The basis for this analysis was to see if there was a pattern in 

streamflow shifts that coincided with the phase change of climate indices.  

A brief description of the Mann-Kendall tests, abstracted from Yue et al. (2002) 

and Hamed (2008); the Pettitt (1979) test; and Walker’s test, abstracted from Wilks 

(2006), is presented in this section. For a more detailed description, the readers are 

referred to the sources of these tests (Mann, 1945; Kendall, 1975; Hamed and Rao, 1998; 

Koutsoyiannis, 2003; Hamed, 2008; Pettitt, 1979, Wilks, 2006). 

2.3.1. Trend Test  

Statistically significant trend detection in temporal and spatially correlated 

streamflow using the Mann-Kendall test was studied by Yue and Wang (2002), Yue et al. 

(2002), and Khaliq et al. (2009). Use of scaling hypothesis to detect the Hurst component 

was developed by Koutsoyiannis (2003).The rank-based non-parametric Mann-Kendall 

test (Mann, 1945; Kendall, 1975) is robust against data containing outliers and non-linear 

trends (Helsel and Hirsch, 1992; Onoz et al., 2003) and doesn’t assume serial 

interdependency or a probability distribution of data. The power of the test is compared 

against other tests in various investigations (Onoz et al., 2003; Yue et al., 2002; Yue and 

Pilon, 2004). To detect trends, this study used the independent Mann-Kendall test, 

represented as MK1; the modified Mann-Kendall test for STP (lag-1 autocorrelation) by 

Trend Free Pre-Whitening (TFPW), represented as MK2; and the modified Mann-

Kendall test for LTP with scaling hypothesis, represented as MK3.  
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2.3.1.1. Independent Mann-Kendall test (MK1) 

For a series x1,x2,x3,…..xn, the Mann-Kendall test statistic ( ) is given by Equation 

2.1. 

  ∑ ∑      
     

   
         ,          (2.1) 

where the    represents the sequential data values, n is the length of the data set, and 

       {
             
             
           

        (2.2) 

Assuming the data is serially independent and identically distributed: 

                (2.3) 

        
              ∑                

   

  
      (2.4) 

where      is the mean,       is the variance of  , and    is the number of ties of extent 

 . The Mann-Kendall standardized test statistic   is given by: 

  {

   

√    
          

                
   

√    
         

        (2.5) 

The sign of   gives the direction of the trend; that is, a negative sign indicates a 

decreasing trend, and vice versa. The value of Z gives the significance level of rejecting 

the null hypothesis.  

2.3.1.2. Mann-Kendall with lag-1 Autocorrelation for STP (MK2) 

It has been established that the existence of serial correlation can lead to the 

rejection of the null hypothesis due to inflation of the variance (Hamed and Rao, 1998; 

Yue et al., 2002). Thus, the serial correlation was removed by 1) pre-whitening of the 

series by assuming lag-1 autocorrelation; and 2) de-trending the series before removing 
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the lag-1 autocorrelation, also known as trend free pre-whitening (TFPW) (Yue et al., 

2002). The lag-1 autocorrelation coefficient (    is computed from Equation 2.6: 

    

   
 ∑         

   
                 

 

 
∑           

 
   ⁄ 2

,   (2.6) 

where        

 
∑   

 
           (2.7) 

and the confidence interval is: 

        √   

   
    

        √   

   
 .       (2.8) 

If the lag-1 serial correlation computed from Equation 2.6 lies between the confidence 

interval given by Equation 2.8, the sample data is assumed to be serially independent at 

   0.10. Pre-whitening was applied on data that were found to be serially dependent. 

The magnitude of trend is computed using Equation 2.9 (Thiel, 1950, Sen, 1968). 

Thiel-Sen approach (TSA) slope          (
     

   
)        (2.9) 

The de-trended series is obtained from Equation 2.10 by removing the trend. 

  
                   (2.10) 

The serial correlation is removed from the de-trended series by using Equation 2.11. 

  
    

         
          (2.11) 

After removal of serial correlation the trend is added back to the series, using Equation 

2.12. 

     
                (2.12) 

The   and   statistics are calculated again for the new series. 

 

 



23 
 

2.3.1.3. Mann-Kendall with the Hurst Component for Long-Term Persistence 

(MK3) 

The presence of long-term persistence, or the Hurst phenomenon (Hurst, 1951), 

might lead to an underestimation of the serial correlation of the data and an over-

estimation of the significance of the Mann-Kendall test. To detect the trend under LTP, 

the method proposed by Hamed (2008) was adopted. The presence of LTP usually is 

determined by evaluating the Hurst component H, which ranges between 0 and 1. The 

equivalent normal variates of the de-trended time series (Equation 2.10), is given by 

Equation 2.13: 

      (
  

   
),         (2.13) 

where    is the rank of the de-trended series   
  , n is the number of observations, and 

   () is the inverse standard normal distribution function. 

The autocorrelation function at lag   for any scale is given by Koutsoyiannis (2003) as 

Equation 2.14: 

   
 

 
 |   |    ⌈ ⌉   |   |  ),      (2.14) 

and the correlation matrix for a given scaling coefficient H is given by Equation 2.15. 

      [ |   |]                   (2.15) 

The scaling coefficient (H) is estimated using Equation 2.16. The significance of the H 

was tested using mean (    and variance (    values from Equations 2.17 and 2.18. 

         
 

 
   |     |  
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                                        (2.17) 

                             (2.18) 
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If H is found to be significant,    0.10, the variance of S is calculated from Equation 

2.19.  

      
 ∑ ∑

 

 
     (

 |   |  |   |  |   |  |   |

√     |   |      |   | 
)      ,    (2.19) 

where   is calculated from Equation 2.14. 

The variance is corrected for bias in Equation 2.20 by multiplying with the factor B from 

Equation 2.21, where: 

            
           (2.20) 

            
     

     
  .      (2.21) 

The value    is explained in Appendix I. The modified test statistic is calculated further, 

using Equation 2.5.  

Stations with significant lag-1 autocorrelations and Hurst coefficients (H) were 

analyzed with the MK2 test and MK3 test, respectively. 

2.3.2. Change point test 

The non-parametric Pettitt test (Pettitt, 1979) is used to detect abrupt shifts. It is 

least sensitive to outliers, and skewed distribution makes it most suitable for the analysis 

of streamflow data. This test can discern the anomaly in the mean (median) when the 

shift period is unclear. It uses a version of Mann-Whitney statistics for delivering the 

significance of probabilities by testing two samples from the same population.  

Adopted from Pettitt (1979), let T be the length of the time series and τ be the year 

of the shift. Presuming the time series as two samples   …   and     …  , an index    

is defined from Equation 2.22: 

   ∑    (     )
 
    for any τ       (2.22) 
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where        is same as for Equation 2.2. 

A further index,   , is defined by Equation 2.23: 

   ∑ ∑           
 
   

 
          (2.23) 

In presence of a change point, the graph between |  | and τ increases up to the 

change point and then decreases; in the absence of a change point, the graph would 

continually increase. The most significant change point τ is established at the point where 

the value of |  | is maximum, given as    (Equation 2.24). 

           |  |         (2.24) 

The probability of a shift in a year where |  | is the maximum, is estimated by: 

       (
    

 

     )         (2.25) 

The probabilities of    0.10 are considered, and the direction of the change is 

evaluated, contingent upon the minimum or maximum value of    extracted by   . The 

minimum value indicates negative change, and a maximum value indicates a positive 

change. 

2.3.3. Walker’s test  

Field significance was evaluated to assess if the results in each region were 

globally significant. Walker’s test considers the magnitude of the p value of each of the K 

individual (local) trend tests to determine if the global null hypothesis – that all K local 

null hypotheses are true – can be rejected at a global significance level.  

If all the K of the local null hypotheses were true, then each of the respective test 

statistics represent random draws from their null distributions, whatever those 

distributions may be. If those local null distributions are continuous, and if the results of 

the local tests are independent of each other, the resulting K p values will be a random 
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sample from the uniform distribution, f (u) = 1, 0 ≤_ u ≤_ 1. If some of the local null 

hypotheses were false, their p values tend to be smaller than would be expected from this 

uniform distribution.  

Let p(1) be the smallest of the K local p values. The probability distribution for the 

sampling distribution for the smallest p value from K independent tests, all of whose null 

hypotheses are true, is given by: 

 [    ]  
      

        
    

 [      ]
   

               (2.26a) 

 [    ]           
              (2.26b) 

For field significance to be present, p(1) must be no larger than some critical value 

pWalker, corresponding to the global test level αglobal. That is, if the smallest p value is 

small enough, it can be concluded with high confidence that the collection of K local p 

values did not result from independent draws from a uniform distribution. The critical 

value for this global test can be obtained by:  

         ∫ [      ]
   

     
       

 
      (2.27a) 

              
          (2.27b) 

Thus, 

                      
  ⁄  .       (2.28) 

This indicates that a global null hypothesis may be rejected at the αglobal level if the 

smallest of K independent local p values is less than or equal to pWalker.  

Using the above described statistical tests, changes (gradual and abrupt) were 

evaluated for  the water-year, autumn, winter, spring, and summer at a 90% confidence 

level (   0.10) for 240 unimpaired streamflow stations in the continental United States.  

All the computations were performed using Matlab 2013a version. 
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2.4. Results  

Trend and step changes were evaluated for the streamflow stations with and 

without considering the effect of lag-1 autocorrelation and LTP for water-year and four 

seasons at a significance level of p≤0.10, as shown in Figures. 2.2 through 2.7. In these 

figures, the upward-pointing blue triangles represent a significant increasing trend or step 

change, and the downward-pointing red triangles represent a significant decreasing trend 

or step change for the various streamflow stations. In Figures. 2.2 and 2.4, the magnitude 

of the trend, computed using Sen’s slope and shown in color on the maps, represents the 

change in the runoff volume in million cubic meters, (MCM)/ year. In Figures. 2.4 and 

2.5, the lag-1 autocorrelation is shown by blue circles, LTP by red pentagons, and green 

squares represent stations with both Lag-1 autocorrelation and LTP. In Figure. 2.6, 

triangles in yellow, green, and pink show the step changes coinciding with the PDO, El 

Niño, or La Niña years, respectively. In Figures. 2.6 and 2.7, regions with a beige shade 

imply field-significant regions having a step change.  

In Figures. 2.8 and 2.9, the bar graphs depict the number of stations showing 

shifts. An upward direction indicates increasing shifts, and a downward direction 

indicates decreasing shifts.  

2.4.1. Trends under MK1 Test 

Long-term trends in the water-year, autumn, winter, spring, and summer for the 

18 regions at p≤ 0.10 are shown in Figures. 2.2 and 2.3. The spatial distribution of trends 

under MK1 tests in the water-year suggests the monthly mean streamflow has increased 

in most of the central east and northeast part of U.S. and decreased in the northwest part 

and as the southeast (Figure 2.2a). The magnitude of the trend, as expressed by Sen’s 
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slope, shows a maximum of a 9.9 MCM/yr increase and a 1.2 MCM/yr decrease in the 

streamflow volumes over a 60-year period (Figure. 2.2). All 240 streamflow stations 

showed  

 

Figure 2.2: Map showing water-year trends using (a) MK1, (b) MK2, and (c) MK3 tests at 

p≤ 0.10. Upward-pointing triangles indicate significant increasing trends, and downward 

pointing triangles indicate significant decreasing trends. Dots indicate stations with no 

trends. The trend slope shows the magnitude of the change in MCM/year. 

trend tendencies; however, in the water-year, only 50 stations had increasing trends that 

were statistically significant and 23 stations had decreasing trends that were statistically 
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significant (Table 2.1). Regions that showed significant increasing trends in the water-

year were the Great Lakes (4), Ohio (5), Upper Mississippi (7), Souris-Red-Rainy (9), 

Missouri (10), Texas-Gulf (12), and Rio Grande (13). 

During autumn (Figure 2.3a), the spatial distribution of trends showed a slight 

variation from the water-year trends. New England (1), Lower Mississippi (8), and Lower 

Colorado (15) showed an increase in the number of stations having significantly 

increasing trends, compared to the water-year, and were field-significant (Figure 2.3a). 

Trends in Ohio (5) were not field-significant in autumn, and the number of stations 

showing significant decreasing trends in Pacific Northwest (17) decreased. Other regions 

had trends similar to the water-year. A total of 236 stations showed trend tendencies, out 

of which 57 stations had significantly increasing trends and 10 stations had significantly 

decreasing trends (Table 2.1). The maximum increase in autumn streamflows was 10.9 

MCM/yr, and the maximum decrease was 21.2 MCM/yr (Figure 2.3). Overall, there was 

an increase in the percentage of increasing trends compared to decreasing trends over 

continental United States.   

The winter season trends (Figure 2.3a) showed decreasing streamflow trends in 

Ohio and Tennessee and more stations with significant increasing trends in New England 

(1), the Great Lakes (4), Arkansas-White Red (11), the Great Basin (16), and California 

(18). Trends in Arkansas-White Red were field-significant as compared to the water-year 

and autumn. However, in Ohio (5), the Lower Mississippi (8), and the Lower Colorado 

(15), trends were not field-significant. As shown in Table 2.1, 239 stations showed trend 

tendencies, out of which 52 stations had significantly increasing trends and 12 stations 
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had significantly decreasing trends. The maximum increase in winter flows was 14.8 

MCM/yr and the maximum decrease was 34.1 MCM/yr (Figure 2.3). 

 

Figure 2.3: Map showing seasonal trends using (a) MK1, (b) MK2, and (c) MK3 tests. 

Results are reported for autumn, winter, spring, and summer at    0.10. Upward-pointing 

triangles indicate significant increasing trends, and downward-pointing triangles indicate 

significant decreasing trends. Dots indicate stations with no trends. The trend slope shows 

the magnitude of the change in MCM/year in each season. 

The spring season had more stations with decreasing trends compared to the 

water-year, autumn, and the winter seasons (Figure 2.3a). Mostly, the trends were limited 

to areas of the Midwest, South-Atlantic-Gulf (3), and Pacific Northwest (17) regions. 

New England (1), Mid-Atlantic (2), Great Lakes (4), Arkansas–White-Red (11), and 

Texas-Gulf (12) had reductions in the number of stations with increasing trends, 

compared to autumn and winter (Table 2.1). Stations in the Mid Atlantic (2), South 

Atlantic-Gulf (3), and Ohio (5) showed significant decreasing trends as compared to 

autumn and winter seasons. Taken as a whole, in the spring, 239 stations showed trend 
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tendencies, out of which 35 stations had significantly increasing trends and 30 stations 

had significantly decreasing trends (Table 2.1). The maximum increase in spring flows 

was 13.9 MCM/yr and the maximum decrease was 33.9 MCM/yr (Figure 2.3). 

The summer season had regions with increasing trends as well as decreasing 

trends (Figure 2.3a). The regions of New England (1), Mid-Atlantic (2), Great Lakes (4), 

and Tennessee (6) had significant increasing trends as compared to other seasons. Pacific 

Northwest (17) had an increase in stations showing decreasing trends compared to other 

seasons (Table 2.1). On the whole, 237 stations showed trend tendencies, out of which 43 

stations had significantly increasing trends and 28 stations had significantly decreasing 

trends (Table 2.1) during the summer. The maximum increase in summer flows was 6.5 

MCM/yr and the maximum decrease was 15.9 MCM/yr. 

2.4.2. The Effect of Short-Term and Long-Term Persistence 

The stations whose coefficient values for lag-1 autocorrelation were not in the 

range of -0.23 ≤ r_1≤ 0.198 were significantly correlated at p≤ 0.10. Likewise, stations 

with H values that were not in the range of 0.50 ≤ H ≤ 0.58 were significantly correlated 

at p≤ 0.10. Figure 2.4 and 2.5 show the spatial distribution of stations with lag-1 

autocorrelation and LTP in the water-year, autumn, winter, spring, and summer seasons. 

In the Midwest and eastern United States, the water-year (Figure 2.4) had more stations 

with significant correlation for lag-1 autocorrelation and LTP. New England (1), Great 

Lakes (4), and Ohio (5) had more stations with lag-1 autocorrelation than LTP during the 

water-year. 
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Table 2.1. Results of the Three Mann Kendall (MK) Tests Reported at the Station Level for Each Hydrologic Region for the 

Water-Year, Autumn, Winter, Spring, and Summer 

Hydrologic 

Region No. 

Hydrologic Region 

Name 

Number of 

Unimpaired 

Stations 

Number of Stations with Trends 

Water Year Autumn Winter Spring Summer 

MK1

+/- 

MK2

+/- 

MK3

+/- 

MK1

+/- 

MK2

+/- 

MK3

+/- 

MK1

+/- 

MK2

+/- 

MK3

+/- 

MK1

+/- 

MK

2+/- 

MK3

+/- 

MK1

+/- 

MK2

+/- 

MK3

+/- 

1 New England 18 4/0 4/0 3/0 5/0 5/0 5/0 9/0 9/0 4/0 0/0 0/0 0/0 10/0 10/0 9/0 

2 Mid-Atlantic 39 3/0 2/0 0/0 5/0 5/0 2/0 1/0 1/0 0/0 2/7 2/7 2/7 6/0 6/0 6/0 

3 South Atlantic-Gulf 21 0/0 0/0 0/0 1/0 1/0 1/0 0/0 0/0 0/0 0/2 0/3 0/2 1/1 1/1 0/0 

4 Great Lakes 10 4/2 3/2 3/0 3/0 3/0 2/0 7/0 7/0 7/0 2/3 2/4 2/3 5/2 5/2 4/2 

5 Ohio 21 5/0 5/0 3/0 6/0 6/0 6/0 0/2 0/2 0/2 5/1 5/1 4/1 2/0 2/0 2/0 

6 Tennessee 8 0/0 0/0 0/0 0/0 0/0 0 0/2 0/3 0/1 0/2 0/2 0/1 1/0 1/0 1/0 

7 Upper Mississippi 19 13/0 12/0 5/0 12/0 13/0 4/0 5/0 5/0 4/0 12/1 11/1 10/1 5/0 6/0 2/0 

8 Lower Mississippi 2 0/0 0/0 0/0 1/0 1/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

9 Souris-Red-Rainy 3 1/0 1/0 1/0 2/0 2/0 2/0 2/0 2/0 2/0 1/0 1/0 0/0 1/0 1/0 0/0 

10 Missouri 22 10/2 11/2 4/0 8/1 7/1 2/0 7/1 7/1 1/0 8/2 8/2 5/1 6/2 7/2 2/2 

11 Arkansas-White-Red 11 5/1 5/1 3/1 6/0 6/0 1/0 8/0 8/0 8/0 2/1 2/1 2/1 5/1 6/1 4/1 

12 Texas-Gulf 5 3/0 3/0 3/0 3/0 3/0 2/0 5/0 5/0 4/0 0/0 0/0 0/0 1/0 1/0 1/0 

13 Rio Grande 3 1/0 1/0 1/0 3/0 3/0 2/0 3/0 3/0 2/0 2/0 2/0 2/0 0/0 0/0 0/0 

14 Upper Colorado - - - - - - - - - - - - - - - - 

15 Lower Colorado 2 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 0/0 1/0 1/0 0/0 0/0 0/0 0/0 

16 Great Basin 5 0/0 0/0 0/0 1/0 1/0 0 2/0 2/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

17 Pacific Northwest 37 0/17 0/17 0/16 0/7 0/7 0/6 0/6 0/6 0/6 0/11 0/11 0/11 0/22 0/22 0/19 

18 California 14 0/1 0/1 0/1 0/2 0/2 0/1 2/1 2/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 

Total 240 50/23 48/23 27/18 57/10 57/10 31/7 52/12 52 /13 33/10 35/30 34/32 27/28 4 3 /2 8 46/28 31/24 

 

MK1, MK2, MK3: Corresponding MK test. 

+ : Total number of stations showing increasing trends . 

- : Total number of stations showing decreasing trends. 

Entries in bold indicate results that are field significant at    0.10. 
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Figure 2.4: Map showing the spatial distribution of persistence in the water-years at    

0.10. 

Table 2.2 summarizes the results of lag-1 autocorrelation and LTP. In the water-

year, 106 stations showed lag-1 autocorrelation and 106 showed LTP at p≤ 0.10. A total 

of 89 stations showed both lag-1 autocorrelation and LTP. The Mid Atlantic (2), South-

Atlantic Gulf (3), and Missouri (10) showed a higher number of stations with LTP than 

with lag-1 autocorrelation. Seasonally, autumn had the highest persistence compared to 

the remaining three seasons, with 50 stations showing lag-1 autocorrelation and 73 

stations showing LTP. However, New England (1) had higher persistence in winter and 

summer seasons, Mid-Atlantic (2) had higher persistence in summer seasons, and South 

Atlantic-Gulf had the least persistence in autumn compared to other seasons. The Great 

Lakes (4) had the highest persistence in summer, Ohio (5) had the highest persistence in 

spring, and Tennessee (6) had the highest persistence in winter. 
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Figure 2.5: Map showing the spatial distribution of persistence in a) autumn, b) winter, c) 

spring, and d) summer at    0.10. 

The stations with significant correlation at p≤ 0.10 in lag-1 autocorrelation and 

LTP were tested for trends (Table 2.2). In the water-year, out of the 106 stations with 

significant lag-1 autocorrelation, 38 stations showed trends under the MK2 test. Out of 

106 stations showing significant LTP, three stations had significant trends under the MK3 

test. In autumn, out of the 50 stations with significant lag-1 autocorrelation, 26 stations 

showed trends; out of the 75 stations with significant LTP, three stations showed trends 

under the MK3 test. Similarly, in winter, out of 49 stations with lag-1 autocorrelation, 21 

showed trends; out of 69 stations with LTP, three stations showed trends. In spring, out of 

the 35 stations with significant lag-1 autocorrelation, 15 stations showed trends; out of 

the 40 stations with significant LTP, only two stations showed trends under the MK3 test. 

In summer, out of 46 stations with significant lag-1 autocorrelation, 25 stations showed 

trends in the MK2 test; out of 46 stations showing LTP, only two stations showed trends 

under the MK3 test. 
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Table 2.2. Summary of Stations with lag-1 Autocorrelation and Long-Term Persistence 

(LTP) and Stations that Showed Trends under the MK2 and MK3 Tests in 18 regions for 

the Water-Year, Autumn, Winter, Spring, and Summer at    0.10 

Hydrologic 

Region No 

Hydrologic 

Region Name 

Water-year Autumn Winter Spring Summer 

lag-1/ 

Trend 

LTP/ 

Trend 

lag-1 

/Trend 

LTP/ 

Trend 

lag-1/ 

Trend 

LTP/ 

Trend 

lag-1/ 

Trend 

LTP/ 

Trend 

lag-1/ 

Trend 

LTP/ 

Trend 

1 New England 8/2 6/0 0/0 0/0 2/2 6/0 0/0 0/0 3/3 1/0 

2 Mid-Atlantic 15/2 18/0 4/2 12/0 7/0 13/0 5/0 3/0 3/1 0/0 

3 South Atlantic-Gulf 11/0 15/0 0/0 2/0 3/0 8/0 4/1 7/0 3/0 8/0 

4 Great Lakes 10/5 8/1 3/2 2/0 4/2 3/1 3/3 1/0 5/2 4/0 

5 Ohio 13/5 9/0 2/1 1/0 1/1 1/0 5/1 5/0 4/0 2/0 

6 Tennessee 7/0 7/0 0/0 1/0 6/3 6/0 3/2 2/0 0/0 1/0 

7 Upper Mississippi 13/9 13/0 8/6 13/0 7/1 6/0 3/2 4/0 3/3 4/0 

8 Lower Mississippi 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

9 Souris-Red-Rainy 2/1 2/1 1/1 2/1 1/1 1/0 2/1 2/0 2/1 2/0 

10 Missouri 13/9 15/1 13/7 16/2 9/6 12/1 5/4 10/2 8/6 10/2 

11 Arkansas-White-Red 7/4 5/0 5/4 6/0 1/1 2/1 2/1 1/0 3/2 3/0 

12 Texas-Gulf 0/0 0/0 0/0 2/0 0/0 1/0 0/0 0/0 0/0 1/0 

13 Rio Grande 0/0 0/0 1/1 1/0 1/1 1/0 0/0 0/0 0/0 0/0 

14 Upper Colorado - - - - - - - - - - 

15 Lower Colorado 1/0 1/0 0/0 1/0 0/0 1/0 0/0 1/0 0/0 0/0 

16 Great Basin 3/0 3/0 4/1 4/0 4/2 4/0 2/0 2/0 2/0 1/0 

17 Pacific Northwest 3/1 3/0 4/1 5/0 2/0 2/0 1/0 1/0 8/7 4/0 

18 California 0/0 1/0 5/0 7/0 1/1 2/0 0/0 1/0 2/0 5/0 

Total 106/38 106/3 50/26 75/3 49/21 69/3 35/15 40/2 46/25 46/2 

 

2.4.3. Comparison of MK1 with MK2 and MK3 Tests 

Table 2.1 summarizes the MK1, MK2 and MK3 test results. Figure 2.2 and 2.3 

give the spatial distribution of trends for the hydrologic regions for the water-year, 

autumn, winter, spring, and summer for the three MK tests. The MK2 test results are 

similar to MK1 test results for the water-year and the four seasons. 

There was a reduction in stations having significant trends under MK3 tests in the 

Mid-Atlantic (2), Ohio (5), Upper Mississippi (7), and Missouri (10) in the water-year 

(Table 2.2, Figure 2.2). The MK3 results showed a greater number of stations with trends 

in the spring and summer, compared to fall and winter. In total:27 stations showed  

significantly increasing trends and 18 stations showed significantly decreasing trends in 
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the water-year (Table 2.1); 31 stations showed significantly increasing trends and 7 

stations showed significantly decreasing trends in autumn; 33 stations showed 

significantly increasing trends and 10 stations showed significantly decreasing trends in 

winter. In spring, 27 stations showed significantly increasing trends and 28 stations 

showed significantly decreasing trends. In summer, 31 stations showed significantly 

increasing trends and 24 stations showed significantly decreasing trends under the MK3 

test (Table 2.1). 

2.4.4. Change Point Test  

Significant change points or shifts in the water-year, autumn, winter, spring, and 

summer in the various hydrologic regions are summarized in Table 2.3. Figure 2.6 and 

2.7 show the spatial profile of step changes in the water-years and the four seasons for 

PDO warm, PDO cold, and ENSO years (i.e. El Niño and La Niña). 

In the water-year, the Great Lakes (4), Upper Mississippi (7), Lower Mississippi 

(8), Souris-Red-Rainy (9), Texas-Gulf (12) and Rio Grande (13) showed significant step 

changes in more than 60% of the stations (Figure 2.6a, Table 2.3). Increasing shifts were 

seen in New England (1), the Mid-Atlantic (2), the South Atlantic-Gulf (3), Great Lakes 

(4), Ohio (5), Upper Mississippi (7), Lower Mississippi (8), Souris-Red-Rainy (9), 

Missouri (10), Arkansas-White-Red (11), the Texas-Gulf (12), Rio Grande (13), and 

Lower Colorado (15). Decreasing shifts were seen in the Great Lakes (4), Missouri (10), 

Arkansas-White-Red (11), the Great Basin (16), and the Pacific Northwest (17). 

However, Lower Mississippi (8), Souris-Red-Rainy (9), Missouri (10), Arkansas-White-

Red (11), Texas-Gulf (12), Rio Grande (13), and Lower Colorado (15) had field 

significant shifts in the water-year. 
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Figure 2.6: Map showing stations with shifts in the a) water-year, b) PDO warm years and 

c) PDO cold years at     0.10. Upward-pointing blue triangles represent an increasing step 

change, and downward-pointing red triangles represent a decreasing step change for the 

various streamflow stations. Triangles in yellow, green, and pink show the step changes 

coinciding with the PDO, El Niño, or La Niña years, respectively. The regions with color 

show field significance. 
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Figure 2.7: Map showing stations having shifts in the a) autumn, b) winter, c) spring, and d) 

summer at    0.10. Upward-pointing blue triangles represent an increasing step change, 

and downward-pointing red triangles represent a decreasing step change for the various 

streamflow stations. The regions with color show field significance. 

Figure 2.6 (b-c) shows the occurrence of abrupt shifts in relation to inter-annual 

(ENSO) and multi-decadal (PDO) climate patterns. The results indicate that the 

decreasing streamflow shift years in the Pacific Northwest (17) region coincided with the 

La Niña years during PDO phases (both warm and cold). The years in which increasing 

streamflow shift occurred in the Upper Mississippi (7) and New England (1) regions 

coincided with La Niña years, and increasing streamflow shift for the Mid-Atlantic (2) 

region coincided with El Niño years during the PDO warm phase. Streamflow shifts 

years (increase or decrease) in the Great Lakes (3) region coincided with both PDO and 

ENSO phases. In contrast, the majority of stations in the Missouri (10) region had 

increasing streamflow shifts that were not related to an ENSO phase change, and only 
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coincided with the PDO cold phase. Additionally, stations in other hydrologic regions 

had shifts that coincided with both ENSO and PDO phases simultaneously. 

Table 2.3. Results of the Pettitt Test, Reporting a Shift for the Water-Year, Autumn, 

Winter, Spring, and Summer at    0.10 

Hydrologic 

Region No 
Hydrologic Region Name 

Stations showing shifts 

Water-Year Autumn Winter Spring Summer 

+/- +/- +/- +/- +/- 

1 New England 5/0 4/0 12/0 0/2 10/0 

2 Mid-Atlantic 12/0 15/0 4/2 6/7 12/0 

3 South Atlantic-Gulf 3/0 1/0 2/3 0/9 2/1 

4 Great Lakes 5/3 5/0 7/0 2/4 5/1 

5 Ohio 7/0 11/0 0/3 2/1 4/0 

6 Tennessee 0/0 1/0 0/6 0/3 2/0 

7 Upper Mississippi 13/0 15/0 6/0 12/1 5/0 

8 Lower Mississippi 2/0 1/0 1/0 0/1 0/0 

9 Souris-Red-Rainy 2/0 2/0 3/0 2/0 2/0 

10 Missouri 10/2 13/2 11/1 8/2 7/3 

11 Arkansas-White-Red 5/1 8/0 8/0 2/0 4/1 

12 Texas-Gulf 4/0 3/0 4/0 0/0 2/0 

13 Rio Grande 3/0 3/0 3/0 2/0 0/0 

14 Upper Colorado - - - - - 

15 Lower Colorado 1/0 1/0 1/0 1/0 0/0 

16 Great Basin 0/1 3/2 2/1 0/0 0/0 

17 Pacific Northwest 0/19 1/5 1/7 0/18 0/26 

18 California 
3/0 1/3 5/1 0/1 2/0 

Total 75/26 88/12 70/24 37/49 57/32 

 

+ : Number of stations showing increasing shifts. 

- : Number of stations showing decreasing shifts. 

Entries in bold indicate results that are field significant at    0.10. 

 

In autumn, a greater number of stations had significant shifts than during the 

water-year or other seasons (Table 2.3). The Great Lakes (4), Souris-Red-Rainy (9), and 

Missouri (10) had field significant shifts in all the seasons; on the other hand, New 

England (1), Upper Mississippi (7), Arkansas-White-Red (11), and Texas-Gulf (12) had 

field-significant shifts in all seasons except spring.  Ohio (5) had field significance in 
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autumn, Tennessee (6) had field-significant shifts in winter, and the Lower Mississippi 

(8) and Lower Colorado (15) had field significant shifts in all seasons except winter. The 

Rio Grande (13) and Great Basin (16) had field-significant shifts in autumn and winter, 

and the Pacific Northwest (17) had field significant shifts in spring and summer.  

Figure 2.8 and 2.9 show the different periods in which stations had shifts, 

beginning from 1950 to 2010 for the water-year, autumn, winter, spring, and summer. 

The shifts start after 1963, and show increasing and decreasing phases that continued 

 

Figure 2.8: Increasing and decreasing shifts at    0.10 over a 60-year period during the 

water-year. The upward-pointing blue bars show increasing shifts, and downward-pointing 

red bars show decreasing shifts 

until 2002. A total of 101 stations showed shifts in the water-year at p≤ 0.10, out of 

which 75 were increasing and 26 decreasing. Water-years from 1963 to 1973 mostly had 

increasing shifts in 57 stations, with the period from 1970 to1972 having 36 stations with 

increasing shifts (Figure 2.8). The period from 1974 to 1976 showed decreasing shifts in 

15 stations; out of which 13 were in the water-year 1976. The period from 1977 to 1978 

showed increasing shifts in 3 stations, and the period from 1981 to 1984 showed 

increasing shifts in 9 stations and decreasing shifts in 2 stations. The period from 1986 to 
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1987 showed decreasing shifts in 8 stations, and the period from 1988 to1993 showed 

increasing shifts in 6 stations.  

Autumn had a total of 100 stations that showed shifts at p≤ 0.10, out of which 88 

were increasing and 12 decreasing. Shifts in autumn started earlier than the water-year 

(Figure 2.9a). One station in the Texas-Gulf showed increasing shifts starting early in 

1957. The period from 1963 to 1974 showed increasing shifts in 61 stations. Two stations 

had decreasing shifts from 1974 to 1976. The period from 1977 to 1985 showed 16 

stations with increasing shifts, and the period from 1985 to 1987 showed 10 stations with 

decreasing shifts. The period from 1991 to 1993 showed 6 stations with increasing shifts, 

and 2002 showed 4 stations with increasing shifts. 

 

Figure 2.9: Increasing and decreasing shifts at    0.10 over a 60-year period in a) autumn, 

b) winter, c) spring, and d) summer. Upward-pointing blue bars show increasing shifts, and 

downward-pointing red bars show decreasing shifts. 
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Winter had a total of 94 stations that showed shifts at p≤ 0.10, out of which 70 

were increasing and 24 decreasing. Shifts in winter started in 1957 (Figure 2.9b). One 

station showed increasing shifts starting early in the 1957, and 2 stations showed 

increasing shifts from 1959 to 1960. The period from 1962 to 1972 showed increasing 

shifts in 46 stations, and 1 station had a decreasing shift in 1970.  The period from 1975 

to 1977 showed 6 stations with increasing shifts, and the period from 1975 to 1976 

showed 8 stations with decreasing shifts. The period from 1979 to 1982 showed 11 

stations with increasing shifts, and 1998 showed 10 stations with decreasing shifts 

Spring had a total of 86 stations with shifts at p≤ 0.10, out of which 37 stations 

had increasing shifts and 49 stations had decreasing shifts. The period from 1964 to 1972 

had 15 stations with increasing shifts (Figure 2.9c). The period from 1975 to 1977 had 13 

stations with decreasing shifts, and the period from 1977 to 1982 had increasing shifts in 

10 stations. The period from 1988 to1987 had decreasing shifts in 25 stations; the period 

from 1988 to1994 had increasing shifts in 10 stations; and a later period, 1997 to 1998, 

had decreasing shifts in 5 stations. 

Summer had a total of 89 stations with shifts at p≤ 0.10, out of which 57 stations 

had increasing shifts and 32 stations had decreasing shifts. The period from 1963 to 1975 

had 43 stations with increasing shifts (Figure 2.9d). The period from 1975 to 1976 had 5 

stations with decreasing shifts, and the period from 1980 to 1982 had increasing shifts in 

4 stations. The period from 1983 to1987 had decreasing shifts in 24 stations; the period 

from 1989 to 1993 had increasing shifts in 8 stations.  
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Figure 2.10: Periods showing several hydrologic regions with a) increasing and b) 

decreasing shifts in the water-year. 

Figures 2.10a and 2.10b show time periods in which several hydrologic regions 

showed both increasing and decreasing shifts. The period from 1970 to 1973 showed 

increasing shifts in most of the Midwest regions. The Upper Mississippi (7), Missouri 

(10), and Arkansas-White-Red (11) showed a greater number of distributed shift periods, 

indicating a higher association to natural changes and climate variability than for other 

regions. Souris-Red-Rainy (9) shows increasing shifts only after 1990. Missouri (10) and 

Pacific Northwest (17) showed a high number of stations with decreasing shifts in the 

period from 1975 to 1977 and the period from 1984 to 1987.  

2.5. Discussion 

Based on the results, it is evident that significant long-term changes have occurred 

in the streamflow quantity across the United States. Analyses based on the water-year 

suggest that there is an observed increase in streamflow across most of the southern 

regions (Texas-Gulf and Arkansas-White-Red) and eastern regions (Upper Mississippi, 

Missouri, Ohio, New England), and significant decreases in the Pacific Northwest region. 

These observations are consistent with those from previous studies (Lins and Slack, 
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1999; Kalra et al., 2008). In autumn and winter, approximately 80% of the statistically 

significant trends were increasing. Spring showed a mix of both increases and decreases; 

in summer, approximately 60% of the significant trends were increasing.  

The higher number of stations with significant increasing trends occurred in 

autumn and winter in the Midwest region, which may be attributed to an increase in fall 

and winter precipitation (Groisman et al., 2001; Small et al., 2006; Martino et al., 2013). 

A similar percentage of spring and summer flow stations experienced trends; however, a 

greater number of stations showed decreasing trends compared to autumn and winter, 

which is in agreement with previous studies (Stewart et al., 2005; Miller and Piechota, 

2008). The spring season showed the least increases in trends and the greatest decreases, 

indicating drier conditions. 

The magnitude calculated from the Sen’s slope revealed the effect of non-

significant trends (Bawden et al., 2013). Regions with larger flow increases or decreases 

are observed where trends were not significant and vice versa (Figure 2.3). The slope for 

the seasonal streamflow trend showed that the decreases in volume were much higher 

than the increases; however, they varied spatially for all the seasons.  

The regional assessments of trends indicated that, spatially, trends varied based on 

seasons, topography, climate, and other factors. Some areas are snow-dominant, while 

others are rainfall-dominant; this accounts for distinct variations in seasonal streamflow 

peaks. The Upper Mississippi (7) region had the highest percentage of stations with 

significant trends, approximately 84% of the stations in the MK1 test (Table 2.2). A 

concentration of increasing trends was found in the Midwest regions, and decreasing 
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trends in the Pacific Northwest (17) and South-Atlantic Gulf (3) (Table 2.2). Even after 

accounting for lag-1 autocorrelation and LTP, Souris-Red-Rainy (9) showed significant 

trends for MK2 and MK3 tests during the water-year as well as autumn and winter. 

The quantitative and spatial distributions of the trends varied for the different 

seasons (Figure 2.2, Table 2.2). Spatially, the decreases in streamflows were prevalent in 

spring and summer, whereas higher decreases were observed along the Pacific Northwest 

coast (17) in autumn and winter. Increases in streamflow were prevalent in winter, with 

Sen’s slope values of 14.8MCM/year, indicating an emerging winter season that is wetter 

except in the Pacific Northwest (17), South-Atlantic Gulf (3), southern parts of Missouri 

(10), and northern parts of Arkansas-White-Red (11). This suggests a fluctuation in peak 

streamflow timings, as evident in previous studies (Dettinger and Cayan, 1995; Groisman 

et al., 2001; Burn and Elnur, 2002; Hamlet et al., 2005; Regonda et al., 2005; Hamlet et 

al., 2007).  

 Statistically, correlations can conceal crucial information in sample data, which 

may lead to a more moderate hypothesis test. In other words, trend detection analysis 

may lead to misleading results when serial correlation, if it exists, is ignored (Khaliq et al. 

2008). Moreover, some of the patterns observed in a hydrologic series could be explained 

better by accounting for long-term persistence (e.g., Koutsoyiannis, 2002, 2003, 2006; 

Koutsoyiannis and Montanari, 2007). The trend tests that do not consider LTP greatly 

overstate the statistical significance of the observed trends when LTP is present (Cohn 

and Lins, 2005). Khaliq et al. (2008) found that some evidence of LTP led to a reduction 

in the number of trends detected under a random data assumption. Similarly, in this 

current study, the number of stations with trends identified under independent postulation 
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was more than that accounted for after LTP; further, negligible departures were seen after 

TFPW (Figure 2.2, 2.3, Table 2.1). The persistence characteristic was more prevalent in 

the autumn and winter seasons than in spring and summer. The use of the three MK tests 

helped to differentiate the trends that existed under the assumption of serial 

independence. 

Overall, taking into consideration only the lag-1 autocorrelation (for MK2) was 

not sufficient to remove all significant serial correlations in the data series. For example, 

the water-years in which the Missouri (10), Ohio (5), and Souris-Red-Rainy (9) showed 

field-significant increasing trends under MK1 and MK2 tests (Table 2.1) did not show 

field-significant trends under MK3 tests. In addition, the introduction of variations to the 

Mann-Kendall test helped in evaluating the persistence characteristics. Variations in 

correlations of different U.S. regions with climate indices (Tootle and Piechota, 2006) 

and the serial structure of the time series for PDO indices conforming to a stochastic 

process with LTP (Khaliq and Gachon, 2010) might explain the varying reduction in the 

number of stations due to TFPW and LTP. 

The change point test indicated that more than 40% of the stations experienced an 

abrupt shift in water-year volumes. Most of those shifts were increasing, and were 

observed in more stations than for trends. For seasonal variation, the step change results 

agreed with trend results. Most of the increasing step changes were seen in autumn and 

winter; most of the decreasing step changes occurred in spring. The 1970s to the 1990s 

had the largest number of abrupt changes in the water-year data. The greatest number of 

increasing shifts occurred in 1972, whereas the majority of decreasing shifts occurred 

around 1986. Seasonally, a greater number of stations with significant increasing shifts 
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occurred in autumn and winter, with similar periods as the water-year; however, spring 

and summer had a higher number of significant decreasing shifts from 1983 to 1987. 

The trend and shift results indicated increases in the streamflow volumes for most 

of the U.S. except for Tennessee (6) during the winter and the Pacific Northwest (17) and 

South-Atlantic Gulf (3) during spring. All the regions had a greater number of shifts than 

trends (Table 2.1, Table 2.3) In the past, responses of streamflow to distinct climate 

indices have been studied in various works, for example, Dettinger and Cayan (1995), 

McCabe and Dettinger (2002), Stewart et al. (2005), Hodgkins and Dudley (2006), 

Hamlet and Lettenmaier (2007), and others. The step changes could be associated with 

the phase changes in various climatic indices. For example, the majority of the water-year 

step changes (increases or decreases) coincided with the PDO (warm) years and ENSO 

phase changes (El Niño and La Niña). 

It is well established that ENSO affects the atmospheric anomalies over the low- 

and mid-latitudes at both regional and global scales (Ropelewski and Halpert, 1986; 

Redmond and Koch, 1991; Kahya and Dracup, 1993). In the past, coupling of ENSO with 

PDO has served as an important indicator of climate variability. Hidalgo and Dracup 

(2003) identified significant correlations between warm season precipitation and El Niño 

in the Upper Colorado River Basin (UCRB) from June to November; they observed shifts 

in the mean of UCRB precipitation and streamflow coincident to shifts in PDO phases. 

Analysis of the influence of PDO and ENSO on precipitation and temperature by Hamlet 

and Lettenmaier (2007) showed increased flood risk in the transient basins along the 

coast of Washington, Oregon, and California. McCabe et al. (2007) indicated that decadal 

to multi-decadal variability in sea surface temperatures (SST) was associated with 
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fluctuations in streamflow for the UCRB. Praskievic and Chang (2009) studied winter 

precipitation intensity and ENSO/PDO variability in the Willamette Valley of Oregon; 

they found that the ENSO phase and precipitation intensity was negative in November 

and positive in April, and the relation between PDO and intensity was negative and 

strongest in January and March. 

In addition to ENSO and PDO, such climate indices as the Atlantic Multi-decadal 

Oscillation, North Atlantic Oscillation, sea surface temperature, and geopotential height 

have been studied individually or in conjunction with ENSO or PDO; they have been 

shown to be hydrologically connected within the United States. Even so, the regional 

variation of shift periods is indicative of the spatial variation of the influence of climate 

indices. It is interesting to see that shifts in streamflow volume start early in some regions 

and late in others (Figure 2.10); this needs further study regarding the response of 

different regions to climate variability. The findings of the step change analysis in 

relation to climate indices were purely statistical and informative in nature. Analysis 

using large-scale climate models and evaluation of the individual and coupled effects of 

other teleconnections is recommended in order to draw definitive conclusions. 

Villarini et al., (2009) showed that neglecting a change point could result in 

obtaining a significant trend even when no significant trend was detected before or after 

the change point. Previously, if a station had both a trend and a step change, then the 

change was attributed to the step change (McCabe and Wolock, 2002; Kalra et al., 2008; 

Ehsanzadeh et al., 2011), indicating that the former followed the latter and not vice versa. 

Analysis of the influence of abrupt shifts on gradual trends was not covered in this study; 

however, further research on this aspect should be done to assess the occurrences of 



49 
 

shifts, whether they follow a spatial pattern that coincides with the trends or are 

regionalized due to a changing climate. Although, the discussion of results may have 

been influenced due to the non-uniform distribution of stations – i.e., densely located 

stations in the western and eastern regions and a sparse distribution in the central regions 

of the U.S. – the overall temporal and spatial pattern of streamflow changes (trend and 

shift) still can be analyzed.   

Identifying abrupt shifts is even more important from a climate-change 

perspective. Changes due to climate are assumed part of long-term periodicity, also 

known as multi-decadal variability. Often, gradual trends are attributed to global 

warming or interactions of the system, whereas shifts are attributed to periodic 

variability. The interpretation of a gradual trend is that the trend is likely to continue into 

the future; on the other hand, the interpretation of a step change is that the climate system 

has shifted to a new regime that will likely remain relatively constant until a new shift or 

step change occurs (McCabe and Wolock, 2002). Decadal scale fluctuations are crucial, 

due to their capacity to influence water supplies, biota, and such high-frequency events as 

floods and droughts (Hare and Mantua, 2000). According to Koutsoyiannis (2006), the 

length of the analysis period between a dependent variable and its predictor can influence 

understanding their relationship. The result of this statistical analysis can potentially vary 

with a change in the length of the time series considered. Knowledge of seasonal 

variations in streamflow are important from the perspective of regional water 

management (Ghumman et al., 2014) in order to regularize the flows and maintain 

adequate levels in reservoirs for dry and wet spells.  
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2.6. Conclusions 

In this study, a comprehensive change analysis was performed on the streamflows 

across the continental U.S. for 240 stations for 60 years (1951-2010). Analysis was 

performed using non-parametric statistical tests, accounting for STP and LTP, for the 

water-year and the four seasons (autumn, winter, spring, and summer). The nature of the 

change varied from a monotonic gradual trend to an abrupt shift. Overall, the following 

conclusions can be drawn from the statistical analysis. 

Most of the southern (Texas-Gulf and Arkansas-White-Red) and eastern U.S. 

(Upper Mississippi, Missouri, Ohio, New England) is becoming wetter; streamflow is 

decreasing during winter in Tennessee, and during spring in the southeastern U.S. In 

autumn and winter, approximately 80% of the statistically significant trends are 

increasing. Spring shows a mix of both increases and decreases, whereas summer shows 

that approximately 60% of the significant trends are increasing.  

The three MK tests helped to differentiate the trends that existed under the 

assumption of serial independence. A larger number of stations with trends were 

identified under the independent postulation than those accounted for after LTP; and 

negligible departures were seen after TFPW. 

From 1951 to 2010, analysis of seasonal streamflow showed that the decreases in 

volumes were much higher than the increases, but varied spatially for all seasons.  

The change point test indicated more than 40% of the stations experienced an 

abrupt shift in the water-year streamflows, the majority of which were increasing in 
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nature. All hydrologic regions had a higher number of stations having shifts rather than 

trends; however, patterns for the water-year and seasonal shifts were similar to trends. 

Increasing shifts occurred more around 1970 to 1973, and decreasing shifts occurred 

around 1976. The spatial variation of the shift periods could be indicative of the spatial 

variation of the influence of climate indices. Moreover, variations in seasonal shift 

periods were observed. 

The spatial and temporal variability of persistence helps interpretation of 

understand the peculiarities in the nature of streams. The assessment of shifts on a 

regional basis shows recognizably distinct periods for increasing and decreasing shifts in 

various regions. The number of stations showing shifts at a particular time could be 

indicative of the severity of a particular climate event. The relationship of shifts with the 

climate indices phases shows a pronounced effect during coupled phases compared to 

their individual phase changes. The greater number of shifts compared to trends – as well 

as their spatial and seasonal variability – highlights the importance of local characteristics 

in influencing variability; this requires further investigation. 

The spatial variability of trends and step changes indicate that adjacent basins 

behave similarly. Moreover, this variability provides an improved realization of the 

probable implications of climate variability on U.S. water resources. Unavailability of 

longer runoff records is one of the limitations in understanding relationships between 

long-term memory, short-term memory, and trends, which can be possibly addressed by 

considering reconstructed streamflows. The underlying physical dynamics that govern the 

relationship between climate signals and hydrology are not determined in this study, but 
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the results open a possible scope for further investigations that are regionally focused, as 

well as for attribution analysis of observed trends. 

Appendix I.  

Bias Correction 
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CHAPTER 3: EVALUATING THE INFLUENCE OF SEA SURFACE 

TEMPERATURES AND GEOPOTENTIAL HEIGHT ON SEASONAL 

STREAMFLOWS OF THE CONTINENTAL UNITED STATES 

Abstract 

This study evaluates the influences of two indicators of climate variability – sea 

surface temperatures (SST) and 500-mbar geopotential height (Z500) – on spring-summer 

streamflows of the continental United States. Singular Value Decomposition is used to 

evaluate the spatio-temporal association between the SST/Z500, and the continental U.S. 

streamflow. An approach using a one-to-four month lag of streamflow showed the 

dominant variability modes of winter and fall SST and Z500. Regions of highly correlated 

SST and Z500 were identified that did not have the bias of conservative index regions. 

Better seasonal variability in streamflow was represented by Z500, compared to SST. 

Interdecadal-temporal evaluation of the phases of the Pacific Decadal Oscillation and 

Atlantic Multidecadal Oscillation showed variations in SST regions influencing 

streamflows and 2) weakening of teleconnections. The El Niño Southern Oscillation 

region 3.4, 3 as well as regions in the central and north tropical Pacific Ocean had strong 

associations with U.S. streamflow. 

3.1. Introduction 

Changes in climate variability have led to an increasing interest in improving 

forecasting techniques for various components of the hydrologic cycle, especially 

streamflow. The Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC, 2014) focused on three major elements of climate change: physical 

aspects, impacts and adaptation, and mitigation of climate change. Understanding the 
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effects of climate variability on spatial and temporal characteristics of streamflow is of 

special interest for sustainable management of water resource (Venkatesan et al., 2011a; 

2011b; Shrestha et al., 2011; 2012; Qaiser et al., 2011; 2013;Dawadi and Ahmad, 2012; 

2013; Wu et al., 2013) Out of numerous available climate indicators, land surface, air 

temperature, sea-surface temperature(SST), sea level, specific humidity, snow cover, sea-

ice extent, glacier mass, stratospheric temperatures and pressure, and precipitation 

commonly have been used to study changes in the hydrologic cycle. 

Understanding the relationship between climate indices and streamflow is 

important to improve streamflow estimates (Kalra et al., 2013a) and forecast extreme 

events (Mosquera-Machado and Ahmad, 2007; Stephen et al., 2010; Forsee and Ahmad, 

2011a; 2011b; Puri et al., 2011a; 2011b). The relationship between climate variability 

and streamflow is known to be highly complex and non-linear, in both time and space. 

Hydrologists and climatologists have used various climate indices and their 

teleconnections to study the impacts on precipitation and streamflow. In particular, 

studies have evaluated oceanic– atmospheric variability and hydrological response of the 

continental United States in terms of streamflow, precipitation, and snowpack (Cayan and 

Peterson, 1989; Cayan and Webb, 1992; Kahya and Dracup, 1993; Gershunov, 1998; 

Cayan et al., 1999; Enfield et al., 2001; McCabe and Dettinger, 2002; Rogers and 

Coleman, 2003; Tootle et al., 2005; Hunter et al., 2006; Kalra and Ahmad, 2012; Kalra et 

al., 2013b). 

Variability studies of climate indices – including Pacific Decadal Oscillation 

(PDO), El Niño Southern Oscillation  (ENSO), Atlantic Multi-decadal Oscillation 

(AMO), Pacific North American Index (PNA), North Atlantic Oscillation (NAO), Niño 
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Regions 3 and 3.4 SST Indices, Trans-Niño Index (TNI), and Palmer Drought Severity 

Indices as well as such hydrologic variables as temperature, precipitation, and streamflow 

– have shown significant correlations (Folland et al., 1986; Kahya and Dracup, 1993; 

Cayan, 1996; Piechota and Dracup, 1999; Dettinger et al., 2000b; Barlow et al., 2001; 

Hidalgo and Dracup, 2003; Tootle et al., 2005; Singhrattna et al., 2005; Hunter et al., 

2006; Hamlet and Lettenmaier, 2007; Burn, 2008; Kalra and Ahmad, 2009; Kalra and 

Ahmad, 2011). The correlations have led to the use of climatic variables in predicting 

long lead-time streamflow (Tootle and Piechota 2004; Grantz et al., 2005; Pagano and 

Garen, 2006; Tootle et al., 2007; Soukup et al., 2009). Analysis of global patterns of 

climate trends show an evidence of warming climate (Dettinger et al., 2000a; Easterling 

et al., 2000; Milly et al., 2002; Milly et al., 2005; Adam et al., 2009), which is expected 

to continue in the future. 

Spatial variation of teleconnections of hydrologic variables and climate indices is 

important for regional water management. Numerous studies have identified the 

correlation between oceanic indices and regional hydrology (Chiew et al., 1994; 

Dettinger et al., 2000b; Barlow et al., 2001; Neal et al., 2002; Uvo, 2003; Koczot and 

Dettinger, 2003; McCabe et al., 2004; Gobena and Gan, 2006; Chandimala and Zubair, 

2007; Zhang et al., 2010; Kalra et al., 2013b). A consistent pattern has been observed 

during the phases of ENSO; that is, the El Niño phase has been linked with the Southwest 

U.S. getting wetter, whereas the Northwest gets drier, with opposite changes during the 

La Niña phase (Redmond and Koch, 1991; Kahya and Dracup, 1994; Livezey et al., 

1997). Coastal central California experiences an escalation in the number of extreme 

streamflow days during El Niño, and streamflow responses to ENSO are amplified over 



56 
 

temperature and precipitation (Cayan et al., 1999). Significant correlations between 

warm-season precipitation and the El Niño index in the Upper Colorado River Basin and 

high-elevation areas with ENSO activity from June to November have been observed, 

along with shifts in mean precipitation and streamflow, coincident to shifts in PDO 

(Hidalgo and Dracup, 2003). Analysis on the influence of PDO and ENSO on climate 

variability by Hamlet and Lettenmaier (2007) showed increased flood risk in the transient 

basins along the coasts of Washington, Oregon, and California. Praskievic and Chang 

(2009) indicated that the ENSO phase and winter-precipitation intensity was negative in 

November and positive in April; the association of PDO and winter precipitation was 

negative and more profound in January and March in the Willamette Valley of Oregon.  

Due to the proximity to the Pacific Ocean, the western part of North America is 

influenced the most by long-term and short-term fluctuations in the Pacific Ocean. 

Association of the phases of traditional climate indices, such as positive and negative 

PDO and AMO, have been associated with streamflow variations. Coupled effects among 

oceanic phenomena – for example,  the AMO influencing the La Niña effects in the 

southeast U.S. and the NAO influencing the La Niña effects in the Midwest – have been 

accounted for by Tootle et al. (2005).  In addition, phases of PDO and AMO are 

recognized to have significant and varied associations with the U.S. streamflows.  

The Pacific Ocean SST, during the negative PDO phase, has been affiliated with 

the streamflows of the eastern and western United States. During the positive PDO phase, 

these SSTs have been associated with the streamflow in the regions of Upper Colorado 

and Mid Atlantic (Tootle and Piechota, 2006). Similarly, the SST of the Atlantic Ocean 

has been associated with the streamflow in the Mid-Atlantic and central U.S. regions 
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during the negative phase of AMO, and with the streamflow of the Upper Mississippi, 

northwest U.S., and peninsular Florida during the positive phase. Out of the available 

climate indices, SST has been used successfully for forecasting because it eliminates any 

bias towards a particular spatial index (Tootle and Piechota, 2006; Soukup et al., 2009). 

In addition to SST, different mechanisms at particular air-pressure zones can significantly 

influence the effects of oceanic-atmospheric climate variability.  

Geopotential height (HGT) is defined as the height above mean sea level of a 

particular pressure level. Study of the 500-mbar geopotential height (Z500) show the Z500 

index values to be identified with significant climate variability (Blackmon, 1976; 

Blackmon et al., 1977). The Z500 has been found to be associated with precipitation over 

Greece (Xoplaki et al., 2000), Europe (Casty et al., 2007), eastern U.S., (Serreze et al., 

1998), and southeast U.S. (Chen et al., 2014). When used as a predictor in streamflow 

forecasting models, the Z500 has shown a substantially improved skill (Grantz et al., 

2005). The Z500 has mostly shown to improve the short-lead time (3 month) forecasts in 

comparison to SST (Soukup et al., 2009; Aziz et al., 2011).  

Various studies have used Singular Valued Decomposition (SVD) to evaluate the 

relationships of SST and the Z500 with hydrological variability (Uvo et al., 1998; Enfield 

and Alfaro, 2000; Giannini et al., 2000; Wang and Ting, 2000; Rajagopalan et al., 2000; 

Rodriguez-Fonseca and de Castro, 2002; Martin et al., 2004; Shabbar and Skinner, 2004; 

Tootle and Piechota, 2006; Tootle et al., 2008; Aziz et al., 2010; Soukup et al., 2009; 

Aziz et al., 2011). While principal components analysis (PCA) is very common for this 

type of analysis, SVD has the advantage of being able to establish the similarities 

between two spatio-temporal fields by evaluating the cross-covariance matrix. In 
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contrast, PCA evaluates only one spatial–temporal field. Additionally, the use of SVD on 

gridded SST, Z500 and streamflow eliminates the limitations associated with using pre-

defined regions, e.g., AMO of climate indices and the resultant streamflow responses to 

their variability. 

Previous efforts by Tootle and Piechota (2006) identified the relationship between 

Pacific and Atlantic SSTs and 639 unimpaired streamflow stations in the continental U.S. 

They based the selection of stations from Wallis et al. (1991), and gages were analyzed 

through 1988. These gages were based on whether substantial regulation was noted in the 

data reports of the United States Geological Survey (USGS). The gages of the Hydro-

Climatic Data Network (HCDN) (Slack and Landwehr, 1992) are measured by USGS, 

which take into consideration more than just regulations for their unimpaired status. 

Further, the USGS has updated its network of unimpaired gages. The latest network – 

called the Geospatial Attributes of Gages for Evaluating Streamflow, Version II 

(GAGES-II) (HCDN, 2009) – is based on several additional factors, including 

quantitative GIS-based coverages such as  land use as well as local USGS input. A new 

dataset includes an additional 20 years of streamflow, which provides knowledge of 

recent watershed conditions and changes since the last dataset was developed in 1988. 

Moreover, in studies similar to this one, there is a preference to use as many sites as 

possible. However, many of the sites are spatially correlated, being on the same stream or 

in the same 8-digit hydrologic unit. These additional sites do not add extra information, 

and may contribute to misleading spatial correlation in a region when two or more sites 

show a statistically significant relationship but are measuring the same thing. The 

relationships developed between the oceanic-atmospheric regions and significant 
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hydrologic regions should be obtained by calculating the global/field significance as 

opposed to local relationships at gages within a region. It has been observed that Z500 has 

an immediate effect on precipitation, and should be included as an important indicator 

when developing relationships for streamflow climate variability. HGT has been used in 

developing relationships and forecasting models at local scale but its influence on the 

whole of U.S. streamflow might provide new insights. 

This current study evaluates the spatio-temporal relationships between two 

climate indicators and continental U.S. streamflow for long-term variability. Using SVD 

analysis on 60 years (1951-2010) of fall and winter Pacific and Atlantic SST and Z500  -- 

with 240 unimpaired spring-summer streamflow stations of continental U.S. categorized 

into 18 hydrologic regions – this study attempted to establish one-to-four month lagged 

relationships between climate and streamflow variability. This study improves upon the 

works of Tootle and Piechota (2006) by incorporating the most recent data and an 

additional important climate variability indicator, i.e., Z500.  

3.2. Data 

The dataset used comprises monthly streamflow and SST and Z500 index for 

Pacific and Atlantic Ocean. A brief description of the data and their sources is provided 

as follows: 

3.2.1. Streamflow Data 

Streamflow data used in this study was derived from Sagarika et al. (2014), a 

compilation of 240 unimpaired stations from the Hydro-Climatic Data Network 2009 

(HCDN-2009) maintained by the USGS (Lins, 2009).This dataset is a revision to the 
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USGS’s original HCDN network (Slack and Landwehr, 1992). The new stations are a 

subset of the GAGES II dataset (Falcone, 2011). The USGS divided the continental U.S. 

 

Figure 3.1: Map showing the distribution of 240 streamflow stations across the continental 

United States and the 18 hydrologic regions. 

 into 18 major basins, or regions; each region is divided into sub-regions, denoted with a 

unique Hydrologic Unit Code (HUC). Each region has its own typical characteristic 

topography. The 240 stations were grouped into the 18 hydrologic regions. Average 

monthly streamflow data for all the stations were obtained from the USGS online 

database (http://www.usgs.gov/). Flows for spring- summer (March to August), spring  

(March to May), and summer (June to August) were averaged for 60 years (1951 to 

2010). For a given time frame, no stations were present in Upper Colorado region. The 

distribution of the stations is illustrated in Figure 3.1 and Table 3.1. 

 

http://www.usgs.gov/
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Table 3.1: Number of Unimpaired Stations per each Hydrologic Region in the Continental 

United States  

Hydrologic 

Region No 

Hydrologic Region 

Name 

Number of 

Unimpaired 

Stations 

1 New England 18 

2 Mid-Atlantic 39 

3 South Atlantic-Gulf 21 

4 Great Lakes 10 

5 Ohio 21 

6 Tennessee 8 

7 Upper Mississippi 19 

8 Lower Mississippi 2 

9 Souris-Red-Rainy 3 

10 Missouri 22 

11 Arkansas-White-Red 11 

12 Texas-Gulf 5 

13 Rio Grande 3 

14 Upper Colorado - 

15 Lower Colorado 2 

16 Great Basin 5 

17 Pacific Northwest 37 

18 California 14 

3.2.2. Sea Surface Temperature (SST) 

The monthly SST data used in this study was obtained from the NOAA ESRL 

Physical Sciences Division 

(http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst/sst.mnmean.nc). The oceanic 

SST data consisted of average monthly values for a 2˚ X 2˚ grid cell (Smith and 

Reynolds, 2004). In this study, the region used for Pacific Ocean SST was 100E to 80W 

and 30S to 70N; for the Atlantic Ocean SST, the region used was between 80W to 20W 

and 30S to 70N. This composed a gridded set of 3432 SST cells in the Pacific Ocean and 

1149 cells in the Atlantic Ocean.  
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The SST monthly data was averaged for 60 years for fall (September to 

November from 1950 to 2009) and winter (December to February from 1950 to 2009). 

The interdecadal PDO and multidecadal AMO have periodicity of 25 to 50 years for their 

respective phases i.e., warm (positive) and cold (negative). The periods used in McCabe 

et al. (2004) and Tootle and Piechota (2006) were adopted to demarcate PDO and AMO 

phase years for the SST data. Based on Mantua (2004), PDO warm phase was from 1977 

and continued until the end of the study period (2009), whereas AMO warm phase was 

from 1995 to year 2009. Thus, the PDO had a cold phase from 1950 to 1976 and a warm 

phase from 1977 to 2009. AMO had a warm phase from 1950 to 1963, a cold phase from 

1964 to 1994, and then went back to a warm phase from 1995 to 2009. The warm and 

cold phases of the PDO and AMO were considered for separate periods, and analysis was 

conducted on the SST and streamflow values of particular phases.  

3.2.3. 500-mbar Geopotential Height Index (Z500) 

The monthly Z500 index data available from the NOAA Physical Sciences Center 

(http://www.esrl.noaa.gov/psd/data/gridded) was used. The dataset is a product of the 

NCEP/NCAR Reanalysis (Kalnay et al., 1996), which was a 40-year project. The Z500 

data are available in 2.5˚ X 2.5˚ degree grid cells. The region used for gridded data of the 

Pacific Ocean Z500 was from 100E to 80 W and 70N to 30S; the region used for data of 

the Atlantic Ocean Z500 was from 80W to 20W and 70N to 30S. The Pacific region 

involved 2988 grid cells and the Atlantic region involved 1025 grid cells. 

http://www.esrl.noaa.gov/psd/data/gridded


63 
 

3.3. Method 

3.3.1. Singular Valued Decomposition 

For finding the spatial-temporal relationships between two fields, SVD has 

emerged as a suitable tool. This paper provides a brief description of this method; for a 

more detailed discussion, readers are referred to Bretherton et al. (1992) and Strang 

(1998). SVD is a factorization of a matrix that results in three matrices (i.e., M = USV
T
). 

The orthogonal matrices, U and V, consist of the generated singular vectors commonly 

referred to as left and right matrices. The center diagonal matrix, S, consists of non-zero 

singular values of the original matrix. In general, the first three modes (i.e., the first three 

diagonal elements in S) must explain a significant portion of the variance for SVD in 

order to be statistically applicable (Newman and Sardeshmukh, 1995). Due to issues 

related to statistical inference, caution must be observed when making assertions about 

the cause of the relationships based on the results of SVD, as is required when using most 

statistical tools. In order to apply SVD, the matrices of standardized anomalies for the 

variables should be generated. The temporal resolution and size must match among all 

matrices in order to apply SVD; however, the spatial characteristics do not need to be 

similar. Cross-covariance matrices are found among the matrices, and are decomposed 

using SVD. A square covariance fraction (SCF), or percentage, is calculated by taking the 

square of each singular value and dividing it by the sum of all the squared singular 

values. The SCF value, which indicates how much variability can be explained by the 

model used, has been found to explain variability better than other models (Bretherton et 

al., 1992). The generated singular values – when squared and divided by the count of one 

variable data point times the count of a second variable data point – gives the normalized 
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square covariance (NSC) (Wallace et al., 1992; Bretherton et al., 1992). Similar to the 

SCF, the NSC value is a comparative measurement of the decomposition by SVD, with a 

lower value explaining a better fit. The column vectors contained in the left and right 

matrices are projected onto the original standardized anomaly matrices and the original 

standardized anomaly matrices, respectively. The i
th

 projected vector is the temporal 

expansion series for the i
th

 mode. Only the modes that correspond to a SCF of 10% or 

greater are retained. Finally, the temporal expansion series are correlated with the original 

standardized anomalies of variables, in order to find the relationship between the two 

fields. 

3.3.2. Statistical Approach 

SVD is used to evaluate the spatio-temporal relationships between Pacific and 

Atlantic SST and Z500, and the continental U.S. streamflow. Before applying SVD, 

monthly SST and Z500 values were averaged for fall (September to November from 1950 

to 2009) and winter (December to February from 1950 to 2009). The monthly 

streamflows were summed for spring-summer (March to August), spring (March-May), 

and summer (June to August) from 1951 to 2010. This provides a one-to-four month lag 

in evaluating the influence of Pacific and Atlantic SST/Z500 on the seasonal streamflow.  

SVD was used to decompose the winter Pacific and Atlantic SST and Z500 with 

spring-summer, spring, and summer streamflows, followed by SVD decomposition of fall 

Pacific and Atlantic SST and Z500 with spring-summer, spring, and summer streamflows. 

Heterogeneous correlation values were used to generate heterogeneous correlation maps, 

which are used to analyze the significant regions at p ≤ 0.10. The SST Pacific and 

Atlantic SST data for PDO and AMO cold and warm phases were averaged separately for 
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their corresponding years, for example, PDO cold fall, from 1950 to 1976 (September to 

November) and winter from 1977 to 2009 (December to February). The streamflows for 

PDO cold analysis were spring-summer, spring, and summer averages from 1951 to 

1977, maintaining the same one-to-four month lag. SVD was performed on the PDO 

(AMO) cold and warm years with the Pacific (Atlantic) SST and streamflows, and the 

temporal expansion series were obtained.  

Finally, field significance of the significant correlated regions was calculated 

using the Walker Test, which assesses whether the results are globally significant. The 

individual stations in a region might be significant; however, for a regional comparison to 

occur, the field significance test is important to determine whether the corresponding 

correlations provided by the SVD analysis are significant or not for the whole region. 

This helps in a comparison of the interconnections of the regions. The Walker test, 

extracted from Wilks (2006), takes the p values of the stations derived from the SVD 

analysis. The test considers the p-value of each of the K significance tests in order to 

reject the global null hypothesis that all local null hypotheses are true. Please refer Wilks 

(2006) for detailed description on the Walker test. Using the Walker test in this study, 

changes were evaluated at a confidence level (p ≤ 0.10) for 240 unimpaired streamflow 

stations in the continental United States. 

Presence of trends in data can often lead to biased results while detecting 

temporal variability. Time series that assume stationarity are generally preprocessed by 

some type of detrending technique before further analysis. The impacts of trends on time 

series can be computed by the fraction of variance of the original series to the variance of 

the fitted trend line as shown in equation 3.1. 
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          (3.1) 

where      is the variance of the original time series, and      is the variance of the 

residuals from the fitted trend line.  

The values of R
2
 range from 0 to 1, 0 for no trend and 1 explaining the variability 

by a pure trend. A least-squares-fit is used to remove the trend from the time series. This 

approach is well documented and has been used in numerous studies (Haan, 1977; 

Owens, 1978). Using this approach, trends were first removed from the streamflow data 

and then SVD was applied to evaluate the relationship of detrended SST and Z500 with 

detrended streamflow data. All the computations were performed using Matlab 2013a 

which has inbuilt SVD function. SVD, within Matlab, is implemented through geometric 

mechanism quantified through QR < 75 for convergence and identification of singular 

eigenvectors. 

3.4. Results  

This section describes the SVD results for SST and Z500. Section 3.4.1 describes 

the SVD results of the SST with continental U.S. streamflow followed by section 3.4.2 

describing the Z500 and streamflow results. Section 3.4.3 describes the results for PDO 

phases with streamflow and section 3.4.4 presents the AMO phase relationship with the 

U.S. streamflow. Finally section 3.4.5 presents the SVD results on the detrended datasets. 

The SST and Z500 heterogeneous correlation maps for winter variability (Figures 

3.2 to 3.10), depicting significant correlated regions at p≤ 0.10, are presented to identify 

the spatio-temporal relationships for the first mode. The highlighted regions in the figures 

represent where the correlations are field significant. This approach was used for all 
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heterogeneous correlation maps. The positive/negative correlated regions of SST have 

direct correlations with the positive/negative streamflow regions such that increases 

(decreases) in streamflow relates with increases (decreases) in SST/Z500, and vice versa.  

3.4.1. Streamflow and Oceanic Sea Surface Temperature  

3.4.1.1. Pacific Ocean SST and U.S. Streamflows  

Figure 3.2 depicts the heterogeneous correlation maps displaying significant 

regions of the Pacific Ocean winter SST; Figure 3.2a depicts spring-summer, Figure 3.2b 

depicts spring, and Figure 3.2c depicts summer streamflows for the first mode of SVD. 

The Pacific Ocean variability resulted in SCFs of 52.9%, 56.9%, and 45.6%, respectively, 

and NSC values of 2.7%, 3.0%, and 2.5%, respectively, for spring-summer, spring, and 

summer season streamflows (Table 3.2). Similarly, the second mode resulted in SCFs of 

17.1%, 18.1%, and 20.3%, respectively. Out of 3432 cells, 2390 cells (70%) correlated 

significantly with spring-summer streamflows at p≤ 0.10. Approximately 69% and 67% 

of the Pacific SST grid cells correlated significantly with spring and summer streamflows 

at p ≤ 0.10.  

Two dominant significant regions, representing winter SST variability in the 

Pacific Ocean, were identified for spring-summer (Figure 3.2a). The first SST region  

was identified with positive (+) signals closer to the Asian and Australian continents; it 

showed direct correlations with the Pacific Northwest (17) and opposite correlations with 

California (18), Texas-Gulf (12), and South-Atlantic Gulf (3). The second SST region 

was identified near the equator (90W to 150W), and was more widespread with negative  

(-) signals, indicating opposite correlations with the Pacific Northwest(17) and direct 

correlations with California (18), Texas-Gulf (12), and South-Atlantic Gulf (3). The  
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Figure 3.2. Heterogeneous correlation figures (first mode) for Pacific winter (Dec-Feb) SST 

and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) streamflow, and (c) 

summer (Jun-Aug) streamflow generated through SVD. Significant (>90%) grid regions 

approximated as positive (negative) are represented as red (blue) colors. Significant (>90%) 

positive (negative) streamflow stations are represented by red (blue) circles. Colored regions 

in continental U.S. show field significance. 

significant SST for spring streamflows were similar to that for the spring-summer 

seasons; however, the region influencing summer streamflows were more concentrated 

near the equator and highly correlated along 120W to 150W. As shown in Figure 3.2, 

significant streamflow regions identified with higher correlations with the Pacific SST 

were South Atlantic Gulf (3), Souris-Red Rainy (9), Missouri (10), Texas-Gulf (12), Rio 
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Grande (13), the Lower Colorado (15), the Great Basin (16), the Pacific Northwest (17), 

and California (18). The spring season showed significant correlation with the Mid-

Atlantic (2), Ohio (5), and Tennessee (6); however, the summer season showed field-

significant correlations mostly in the western United States.  

Table 3.2 presents the summary using fall climate variability and streamflows. 

SVD analysis of the Pacific Ocean fall SST and the spring-summer, spring, and summer 

streamflows for the first mode of SVD resulted in NSC values of 2.9%, 3.2%, and 2.6%. 

56.2%, 59.9%, and 46% of the variance was explained in the first mode for spring-

summer, spring, and summer, respectively. Similarly, the second mode explained 13.8%, 

13.6%, and 18.9% of the variance, respectively (Table 3.2). Regarding the Pacific SST 

grid cells, 67%, 63%, and 67% correlated significantly with the streamflow at p ≤ 0.10 

for the three seasons. The seasonal spatial variation of the significant SST regions and 

significant streamflow regions showed patterns similar to the winter Pacific SST. 

3.4.1.2. Atlantic Ocean SST and U.S. Streamflows  

Significantly correlated regions with the U.S. spring-summer streamflow were 

identified in the Atlantic winter SST region, as shown in the heterogeneous correlation 

maps in Figure 3.3 for the first mode of SVD for spring-summer, spring, and summer 

streamflows. The SVD on the Atlantic winter SST and continental U.S. streamflow 

resulted in SCF of 36.9%, 41.7%, and 31%, respectively, for the first mode and a NSC 

value of 2.2%, 2.2%, and 2.04%, respectively, for the three streamflow seasons (Table 

3.2). Out of 1149 SST grid cells, 561 cells (49%), 485 (42%), and 835 (73%) of the 

Atlantic SST grid cells were found to be correlated significantly with the streamflow at p 

≤ 0.10 in the three seasons. The second mode resulted in SCF of 25.1%, 21.6%, and 
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21.5% for the three seasons. Parts of Atlantic Ocean SST near Europe showed significant 

correlation with the streamflows. The spring season had stronger correlation with the 

northern Atlantic Ocean, whereas the summer streamflows had stronger correlation 

 

 

Figure 3.3. Heterogeneous correlation figures for SVD (first mode) for Atlantic (Dec-Feb) 

SST and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) streamflow, and 

(c) summer (Jun-Aug) streamflow generated through SVD. Significant (>90%) grid regions 

approximated as positive (negative) are represented as red (blue) colors. Significant (>90%) 

positive (negative) streamflow stations are represented by red (blue) circles. Colored regions 

in continental U.S. show field significance. 
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with the southern Atlantic Ocean. The spring season had significant correlation with 

mostly eastern and central U.S. streamflow regions namely Mid-Atlantic (2), South 

Atlantic-Gulf (3), the Great Lakes (4), Ohio (5), Tennessee (6), Upper Mississippi (7), 

Lower Mississippi (8), Missouri (10), Arkansas-White-Red (11), Texas-gulf (12), Rio 

Grande (13), and the Lower Colorado (15). In the summer season however New England 

(1), Souris-Red-rainy (9) and Missouri (10) had significant correlations. 

The significantly correlated regions with the U.S. spring-summer, spring, and 

summer streamflow were identified in the fall SST. The SVD on the Atlantic fall SST 

and continental U.S. streamflows resulted in SCF of approx 45.1%, 49.2%, and 38.1% 

and a NSC value of 2.3%, 2.3%, and 2.06% for the first mode for the three streamflow 

seasons, respectively (Table 3.2). 66%, 65%, and 87% of the Atlantic SST regions were 

found to be correlated significantly with the streamflow at p ≤ 0.10. Similarly, the second 

mode explained 18.8%, 17.2%, and 16.8%, respectively, of the variance for the three 

seasons. Most of the Atlantic Ocean SSTs showed significant correlation with the 

streamflows in the first mode. The higher correlated regions of the Atlantic Ocean tended 

to shift westwards from spring to summer, similar to the streamflow regions of the United 

States. The streamflow regions identified with strong correlations in spring were the Mid-

Atlantic (2), South Atlantic-Gulf (3), the Great Lakes (4), Ohio (5), Tennessee (6), the 

Lower Mississippi (8), Souris-Red-Rainy (9), and the Lower Colorado (15). Streamflow 

regions identified in summer are New England (1), the Great Lakes (4), Souris-Red 

Rainy (9), and Missouri (10). 
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3.4.2. Streamflow and Geopotential Height  

3.4.2.1. Pacific Z500 and U.S. Streamflows  

The SVD analysis between the Pacific winter Z500 and spring-summer, spring, and 

summer streamflows resulted in an SCF of 67.8%, 68.6%, and 63.3%, respectively, for 

the first mode; 10.8% , 10.5%, and 9.6%, respectively, for the second mode; and a NSC 

value of 3.34%, 3.49%, and 2.81%, respectively. The heterogeneous correlation maps for 

the first mode are represented by Figure 3.4, displaying significant Pacific Z500 and 

streamflow regions. Around 2243 (75%) of Pacific Z500 grid cells showed significant 

correlations with the streamflows in the three seasons. The regions around the equatorial 

belt showed the most significant correlations. Additionally, the Pacific regions at the 

western coast of the United States as well as regions in northwest Canada and coast of 

Alaska showed high correlation with the streamflows (Figure 3.4). The spring season Z500 

showed significant correlation with most of the streamflow regions, whereas the summer 

season Z500 showed significant correlations with the western United States (Figure 3.4). 

The SVD analysis of the relationship between the Pacific fall Z500 and spring-summer, 

spring, and summer streamflows resulted in a SCF of 49%, 50.3%, and 49.8%, 

respectively, for the first mode; 18.4%, 19.7%, and 14.9%, respectively, for the second 

mode; and an NSC value of 2.41%, 2.42%, and 2.57%, respectively. Out of 2988 cells 

considered in the Pacific Z500, 61%, 59%, and 64%, respectively, showed significant 

correlations with the streamflows for the three seasons. As in winter Pacific Z500, the 

regions around the equatorial belt showed the most significant correlations. The highly 

correlated spring Z500 regions tended to move westwards in the summer season. The 
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streamflow regions showed high correlation with Souris-Red-Rainy (9), Missouri (10), 

Rio Grande (13), Lower Colorado (15), Great Basin (16), and Pacific Northwest (17). 

3.4.2.2. Atlantic Z500 and U.S. Streamflows  

The Atlantic winter Z500 and the spring-summer, spring, and summer streamflow 

SVDs resulted in SCFs of 67%, 69.7%, and, 58.3%, respectively, in the first mode; with  

NSC values of 3.2%, 3.2%, and 2.69%, respectively. Out of 1025 cells considered in the 

Atlantic Z500, 621 (61%), 631 (62%), and 629 (61%), respectively, were significantly 

correlated with the streamflow for the three seasons. Figure 3.5 shows the heterogeneous 

maps for significant correlations for first mode of SVD. The second mode gave a SCF of 

14%, 12.3%, and 20.4%, respectively, for the three seasons. The region near the 

equatorial belt correlated mostly to the U.S. streamflow. In the spring season, most of the 

streamflow regions showed significant correlation with Z500 regions; however, in the 

summer seasons, the streamflow regions identified with significant correlation were New 

England (1), Missouri (10), Texas-Gulf (12), and Pacific Northwest (17). 

The Atlantic fall Z500 and the spring-summer, spring, and summer streamflow 

SVDs resulted in SCF of 56%, 56.3%, and 59.4%, respectively, in the first mode with a 

NSC value of 2.41%, 2.6%, and 2.4%, respectively. Out of 1025 cells considered in the 

Atlantic Z500, 63%, 64%, and 64%, respectively, were significantly correlated with the 

streamflow. The second mode gave a SCF of 15.4%, 20.4%, and 13.6%, respectively. 

The Atlantic Z500 regions showing significant correlations with U.S. streamflows were 

similar to that of the Atlantic winter Z500, i.e., mostly in the equatorial belt. The 

streamflow regions identified are in the central United States. 
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Figure 3.4. Heterogeneous correlation figures (first mode) for Pacific winter (Dec-Feb) Z500 

and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) streamflow, and (c) 

summer (Jun-Aug) streamflow generated through SVD. Significant (>90%) grid regions 

approximated as positive (negative) are represented as red (blue) colors. Significant (>90%) 

positive (negative) streamflow stations are represented by red (blue) circles. Colored regions 

in continental U.S. show field significance. 
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Figure 3.5. Heterogeneous correlation figures (first mode) for Atlantic winter (Dec-Feb) Z500 

and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) streamflow, and (c) 

summer (Jun-Aug) streamflow generated through SVD. Significant (>90%) grid regions 

approximated as positive (negative) are represented as red (blue) colors. Significant (>90%) 

positive (negative) streamflow stations are represented by red (blue) circles. Colored regions 

in continental U.S. show field significance. 

3.4.3. PDO Phase Relationship with Streamflow 

3.4.3.1. PDO Cold and U.S. Streamflows  

As shown in Figure 3.6, for the PDO cold phase analysis, the heterogeneous 

correlation maps display the significant Pacific Ocean winter SST and continental U.S. 
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spring-summer, spring, and summer streamflow for the first mode of SVD. The first 

mode resulted in SCF value of 44.5%, 46.2%, and 41.6%, respectively, and the second 

mode resulted in SCF of 21.4%, 17.1%, and 17.7%, respectively, at NSC values of 

4.44%, 4.5%, and 4.12%, respectively. Out of 3432 cells in the Pacific SST, 48%, 47%, 

and 45%, respectively, were significantly correlated with the streamflows. The PDO 

Pacific SST had five significant clusters for spring-summer streamflows; however, the 

major cluster shown as 2(-ve), which was near the equatorial belt and ranged from 90W 

to 180W. In the spring season, the streamflow regions of the southern U.S. – namely 

South Atlantic-Gulf, Arkansas-White-Red (11), Texas-Gulf (12), Rio-Grande (13), 

Lower Colorado (15), and the Great Basin (16) – showed significant correlation with the 

Z500; however, in summer, as the Z500-correlated region moved northwards towards the 

western U.S. (Figure 3.6), the significant streamflow-correlated regions were the Mid-

Atlantic (2), Missouri (10), the Great Basin (16) and the Pacific Northwest (17). 

The heterogeneous correlation results for Pacific Ocean fall SST and continental 

U.S. spring-summer, spring, and summer streamflow SVDs for the PDO cold phase 

resulted in SCF values of 47.9%, 52.1%, and 45.9%, respectively, in the first mode and 

19.4%, 15.1%, and 16.4%, respectively, in the second mode, with NSC values of 4.3%, 

4.54%, and 4.21%, respectively. Approximately 56%, 54%, and 53%, respectively, of the 

Pacific SST grid cells correlated significantly with the streamflows in the three seasons. 

The spatial correlations for the PDO cold fall SST were similar to the PDO cold winter 

SST, with spring streamflows showing higher correlations than summer. The significant 

regions of streamflow tended to move northwards from spring to summer, similar to the 

results for the winter PDO cold streamflow. 
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Figure 3.6. Heterogeneous correlation figures (first mode) for PDO cold Pacific winter (Dec-

Feb) SST and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) streamflow, 

and (c) summer (Jun-Aug) streamflow generated through SVD. Significant (>90%) grid 

regions approximated as positive (negative) are represented as red (blue) colors. Significant 

(>90%) positive (negative) streamflow stations are represented by red (blue) circles. 

Colored regions in continental U.S. show field significance. 

3.4.3.2. PDO Warm and U.S. Streamflows  

In the analysis of PDO warm years, Pacific winter SST and continental U.S. 

spring-summer, spring, and summer streamflows resulted in SCF of 44.4%, 33.4%, and 

54.8%, respectively, for first mode and NSC values of 3.6%, 3.26%, and 3.76%, 
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respectively. The heterogeneous correlation maps for the PDO warm year SVDs are 

presented in Figure 3.7, which show significantly correlated regions and stations. Out of 

3432 grid cells for the Pacific SST, 47%, 43%, and 53%, respectively, were significantly 

correlated with the streamflow. The SCF values for the second mode were 19.9%, 20.8%, 

and 12.89% for the respective three seasons. The PDO warm winter Pacific SST regions 

showing significant correlations with the United States were confined within 30 degrees 

of the equatorial belt. However, the SST region showed two separate signs of correlation, 

i.e., negative from 120 E to 150 W (near the Asian and Australian continents) and 

positive from 180W to 90W (near the western coast of the Americas). The spring PDO 

related to the central U.S., whereas the summer PDO related to the eastern United States 

(Figure 3.7). 

In the analysis of PDO warm years, Pacific fall SST and continental U.S. spring-

summer, spring, and summer streamflow SVDs resulted in SCFs of 43.3%, 36.3%, and 

55.4%, respectively, for the first mode and a NSC value of 3.21%, 2.96%, and 3.56%, 

respectively. Around 46%, 54%, and 55% of the Pacific SST grid cells were significantly 

correlated with the streamflow, and the SCF values for the second mode were 18.6 %, 

18.6%, and10% for the respective three seasons. The PDO warm fall SST showed 

similarity with PDO warm winter SST regions; however, the region near the continents of 

Asia and Australia were more prominent than the positive region near the Americas. The 

U.S. streamflow regions showed same pattern as the winter PDO warm streamflows. 
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Figure 3.7. Heterogeneous correlation figures (first mode) for PDO warm Pacific winter 

(Dec-Feb) SST and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) 

streamflow, and (c) summer (Jun-Aug) streamflow generated through SVD. Significant 

(>90%) grid regions approximated as positive (negative) are represented as red (blue) 

colors. Significant (>90%) positive (negative) streamflow stations are represented by red 

(blue) circles. Colored regions in continental U.S. show field significance.  

3.4.4. AMO Phase Relationship with Streamflow 

3.4.4.1. AMO Cold and U.S. Streamflows 

For AMO cold phase winter SST, SVD analysis of the heterogeneous correlation 

figures – representing significantly correlated regions of continental U.S. streamflow for 
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spring-summer, spring, and summer for the first mode – are presented in Figure 3.8. The 

SCF values for the first mode are 40.7%, 39%, and 35.2%, respectively, the second mode 

are 17.1%, 16.1%, and 17.6%, respectively, with NSC values of 3.83%, 3.74%, and 

3.39%, respectively. Out of 1149 cells in the Atlantic SST, the three seasons had 39%, 

38%, and 48% significantly correlated grid cells with the streamflow. The Atlantic SST 

during AMO cold winter months for spring-summer streamflows had two major SST 

regions, one positive correlated region between 10S to 30N and another negative 

correlated region between 20 N to 45N. The spring SST results were the same as the 

spring-summer; however, the summer SST regions showed a new positively correlated 

region from 45N to 70N (Figure 3.8). The streamflow regions identified with significant 

correlations were New England (1), Mid-Atlantic (2), the South Atlantic-Gulf (3), Ohio 

(5), Tennessee (6), the Upper Mississippi (7), Missouri (10), Arkansas-White Red (11), 

Texas-Gulf (12), Rio Grande (13), and the Lower Colorado (15). The Pacific Northwest 

(17) showed correlations for some of its stations in the summer season (Figure 3.8). 

For AMO cold phase fall SST, SVD analysis of the heterogeneous correlation 

results provided significant correlated regions of continental U.S. streamflow for spring-

summer, spring, and summer. SCF values were 27.6%, 25.1%, and 29.2%, respectively, 

for the first mode; 20.6%, 17.4%, and 19.3%, respectively, for the second mode; and had 

NSC values of 3.27%, 3.21%, and 3.26%, respectively. Out of 1149 cells in the Atlantic 

SST, 22%, 24%, and 21% were significantly correlated with the streamflows for the 

respective three seasons. The AMO cold fall SST showed smaller and fewer grids cells 

that were significantly correlated with the U.S. streamflows. The spring-summer 
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Figure 3.8. Heterogeneous correlation figures (first mode) for AMO cold Atlantic winter 

(Dec-Feb) SST and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) 

streamflow, and (c) summer (Jun-Aug) streamflow generated through SVD. Significant 

(>90%) grid regions approximated as positive (negative) are represented as red (blue) 

colors. Significant (>90%) positive (negative) streamflow stations are represented by red 

(blue) circles. Colored regions in continental U.S. show field significance. 

streamflow regions showed significant correlation in Mid-Atlantic (2), the South-

Atlantic-Gulf (3), Ohio (4), and Rio Grande (13). The spring SST regions mostly were 

correlated near 15N latitude, and the correspondingly significant streamflow regions were 

located in the central U.S., such as the Mid-Atlantic (2), Upper Mississippi (7), Missouri 

(10), Arkansas-White-Red (11), Rio-Grande (13), and Great Basin (16). The significant 
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SST region for summer was located at 45N and between 30W to 60W; the eastern U.S. 

streamflow regions from New England (1) to Lower Mississippi (8) were significantly 

correlated. 

3.4.4.2. AMO Warm and U.S. Streamflows 

Figure 3.9 depicts the heterogeneous correlation maps for the Atlantic winter SST 

and the spring-summer, spring, and summer streamflow in the warm phase of AMO, and 

shows 40.8%, 33.8%, and 47.4% , respectively, of the variance in the first mode of SVD. 

The second mode showed 15%, 18.2%, and 13.2%, respectively, of the variance at NSC 

values of 3.42%, 3.28, and 3.71%, respectively. 55%, 56%, and 56% of the Atlantic SST 

grid cells showed significant correlations with the streamflows. The AMO warm winter 

SST region had two significantly correlated regions, one at 30N and between 30W and 

60W and the other at 60N. The significantly correlated U.S. streamflow regions were 

South-Atlantic-Gulf (3), the Great Lakes (4), Arkansas-White-Red (11), and Texas-Gulf 

(12). The spring and summer SST regions were similar to the spring-summer combined; 

however, the summer season showed more streamflow regions with significant 

correlations (Figure 3.9). 

The heterogeneous correlation results for the Atlantic winter SST and the spring-

summer, spring, and summer streamflow in the positive phase of AMO showed 51.9%, 

46.1%, and 55.8%, respectively, of the variability in the first mode of SVD. The second 

mode showed 14.1%, 13.6%, and 10.5%, respectively, of the variability. These results 

were at NSC values of 3.96%, 3.90%, and 3.83% for the respective three seasons. Out of 
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Figure 3.9. Heterogeneous correlation figures (first mode) of AMO warm Atlantic winter 

(Dec-Feb) SST and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) 

streamflow, and (c) summer (Jun-Aug) streamflow generated through SVD. Significant 

(>90%) grid regions approximated as positive (negative) are represented as red (blue) 

colors. Significant (>90%) positive (negative) streamflow stations are represented by red 

(blue) circles. Colored regions in continental U.S. show field significance. 

1149 cells in the Atlantic SST, 74%, 64%, and 69%, respectively, showed significant 

correlations with the spring-summer, spring, and summer streamflows. The AMO warm 

fall SST did not favor any particular region; rather, most of the grid cells were correlated 

with the U.S. streamflows.  Most of the eastern U.S. streamflow regions showed 

significant correlation with the Atlantic AMO warm phased fall SST.  
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3.4.5. SVD on detrended SST, Z500, and U.S. streamflow 

The detrended analysis indicted that 1754 (51%) of Pacific Ocean SST cells in 

winter season and 1461(43%) Pacific SST grid cells in fall season have trends, which 

influence more than 10% of the variability. In the Atlantic Ocean 494 (43%) SST grid 

cells in winter and 642(56%) SST cells in fall show trends to influence more than 10% of 

the variability. Similarly, 1828(61%) Pacific Z500 grid cells in winter and 1813(61%) grid 

cells in fall explain more than 10% of the variability and 653 (64%) Atlantic Z500 grid 

cells in winter and 649 (63%) grid cells in fall accounted for more than 10% of 

variability. The streamflows trends residuals show 14(6%) streamflow stations in spring-

summer, 12(5%) in spring and 17(7%) in summer with more than 10% influence on the 

streamflow variability. 

Figure 3.10 shows the results of the SVD analysis performed on detrended winter 

Pacific SST data and detrended streamflow data. The first mode of winter Pacific Ocean 

SST resulted in SCF of 60.6%, 67.5% and 54.5% in spring-summer, spring, and summer 

season streamflow, respectively. The fall Pacific SST resulted in SCF of 60.7%, 67.5%, 

and 52.2% for the three seasons. Spatially, the significant regions identified using the 

detrended winter Pacific SST and streamflow (Figure 3.10) were similar with regions 

identified using the non-detrended (Figure 3.2) data. The first mode of winter Atlantic 

Ocean SST resulted in SCF of 45.2%, 48.8%, and 32.7% for the three temporal time  
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Figure 3.10: Heterogeneous correlation figures (first mode) for detrended Pacific winter 

(Dec-Feb) SST and (a) spring-summer (Mar-Aug) streamflow, (b) spring (Mar-May) 

streamflow, and (c) summer (Jun-Aug) streamflow generated through SVD. Significant 

(>90%) grid regions approximated as positive (negative) are represented as red (blue) 

colors. Significant (>90%) positive (negative) streamflow stations are represented by red 

(blue) circles. Colored regions in continental U.S. show field significance. 

periods. The Atlantic Ocean fall SST and streamflow SVD resulted in SCF of 51.14%, 

53%, and 36.42% for the first mode during the three seasons. The Pacific winter Z500 and 

streamflow SVD resulted in SCF of 59.3%, 67.2%, and 55.6% whereas, fall Z500 resulted 

in SCF of 37.6%, 43.3%, and 28.6% for the first mode during the three seasons. The first 
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mode of Atlantic winter Z500 and streamflow SVD resulted in SCF of 51.2%, 62.8%, and 

47%, whereas fall Z500 resulted in 34.9%, 47.5%, and 28.9% during the three seasons. 

The PDO cold winter SST and streamflow SVD resulted in SCF of 47.3%, 48.5%, 

and 41.5%, and fall SST resulted in SCF of 52.5%, 55.5%, and 43.9% for the first mode 

during the three seasons. The PDO warm winter and streamflow SVD resulted in SCF of 

37.3%, 27.5%, and 44.2% for the three seasons and fall SST resulted in SCF of 38.7%, 

27.5%, and 49.1% for the three seasons. The AMO cold phase winter SST and 

streamflow SVD resulted in SCF of 40.2%, 39%, and 32.3%, and fall SST resulted in 

SCF of 34.1%, 30.1%, and 33.1% for the three seasons in the first mode. The warm phase 

of AMO resulted in SCF of 25%, 25.1%, and 24.8% in the first mode for winter SST in 

the three seasons, and SCF of 28.8%, 27%, and 22.2% for fall SST for the three seasons. 

3.5. Discussion 

SVD analysis of SST, Z500, and seasonal streamflow identified significant regions 

depicting the spatio-temporal variability in U.S. streamflow with the Pacific and Atlantic 

regions. The SST phase analysis for the Pacific and Atlantic Ocean, using PDO and 

AMO, indicated differences in spatial correlation patterns and signals with streamflows. 

The majority of variability in streamflow was represented by the temporal expansion 

series of first mode of SVD in SST and Z500. 

The first identified region in the east equatorial Pacific Ocean SST resided in the ENSO 

belt, confirms to the Niño index. The second region to be highly correlated in the Pacific 

SST was seen to be consistent in all the seasons, including the PDO cold and warm 

phases, and had been identified in previous studies to be associated with hydrological 

variability of streamflow, snow, and precipitation in different parts of the U.S. (Wang and 
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Ting, 2000; Rajgopalan et al., 2000; Tootle and Piechota, 2006; Soukup et al., 2009; and 

Aziz et al., 2011). The Pacific Northwest region is consistently teleconnected directly 

with the first SST region and inversely teleconnected with the second SST region 

identified in the Pacific Ocean. 

The phases of the PDO influenced the spatial positioning of significant correlation 

of the SST regions with the streamflow. The PDO cold phase significantly correlated 

with the Pacific Northwest (17), the Great Basin (16) and the Missouri (10) regions. 

Significantly correlated SST regions for PDO cold years were concentrated near the 

equatorial belt around Niño 3.4 and Niño 3 regions. An SST region with significant 

negative correlation for PDO warm years was seen to have shifted towards the Niño 3.4 

region; a positively correlated region near the coast of Japan and Australia was found to 

have a prominent horseshoe shape. The PDO warm years were more correlated with the 

eastern United States. 

The north-central region of the Pacific SST, bounded around 150 E to 160 W and 

24 N to 34 N, was shown to be significantly correlated with Pacific Northwest (17) and 

Souris-Red-Rainy (9) and directly and inversely with Mid-Atlantic (2), South-Atlantic-

Gulf (3), and Midwest region of the U.S., and California (18) in almost all the seasons for 

the Pacific SST, including the PDO cold and warm phase. This region has been named 

the Hondo region, and has been found to influence the hydrology of several areas around 

Japan and Asia as well as basins in the western United States (Zhang et al., 1997; Wang 

and Ting, 2000; Rajgopalan et al., 2000; Tootle and Piechota, 2006; Aziz et al., 2010; 

Aziz et al., 2011; Soukup et al., 2009; Lamb et al., 2011; Kalra et al., 2013c). This region 
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Table 3.2: Seasonal singular valued decomposition results for sea surface temperature and 500 mbar geopotential height. 

 

SST 

 

Z500 

SCF (%) NSC Sig Cells SCF (%) NSC Sig Cells 

Climate 

Variability 

Anomaly 

Season Streamflow Season 
Mode 1 Mode 2 

 
Mode 1 Mode 2 

 

Pacific 

Winter 
Spring-Summer 52.9 17.1 2.7 2390 67.8 10.8 3.34 2243 

Spring 56.9 18.1 3 2380 68.6 10.5 3.49 2181 

Summer 45.6 20.3 2.55 2297 63.3 

 

2.81 2228 
 

Autumn 
Spring-Summer 56.2 13.8 2.9 2294 

 

49 18.4 2.41 1810 

Spring 59.9 13.6 3.2 2146 50.3 19.7 2.42 1753 

Summer 46 18.9 2.6 2312 49.8 14.9 2.57 1905 
 

Atlantic 

Winter 
Spring-Summer 36.9 25.1 2.2 561 

 

67 14 3.2 621 

Spring 41.7 21.6 2.2 485 69.7 12.3 3.2 631 

Summer 31 21.5 2.04 835 58.3 20.4 2.69 629 
 

Autumn 
Spring-Summer 45.1 18.8 2.3 760 

 

56 15.4 2.41 643 

Spring 49.2 17.2 2.3 744 56.3 20.4 2.6 653 

Summer 38.1 16.8 2.06 1005 59.4 13.6 2.4 661 
 

   
Cold 

 

Warm 

PDO 

Winter 

Spring-Summer 44.5 21 4.44 1631 44.4 19.9 3.6 1602 

Spring 46.2 17.1 4.5 1606 33.4 20.8 3.26 1488 

Summer 41.6 17.7 4.12 1553 54.8 12.9 3.76 1825 
 

Autumn 
Spring-Summer 47.9 19.4 4.3 1914 

 

43.3 18.6 3.21 1580 

Spring 52.1 15.1 4.54 1184 36.3 18.6 2.96 1862 

Summer 45.9 16.4 4.21 1802 55.4 10 3.56 1885 
 

AMO 

Winter 

Spring-Summer 40.7 17.1 3.83 452 

 

40.8 15 3.42 635 

Spring 39 16.1 3.74 439 33.8 18.2 3.28 646 

Summer 35.2 17.6 3.39 557 47.4 13.2 3.71 639 
 

Autumn 

Spring-Summer 27.6 20.6 3.27 256 

 

51.9 14.1 3.96 852 

Spring 25.1 17.4 3.211 276 46.1 13.6 3.9 740 

Summer 29.2 19.3 3.26 241 55.8 10.5 3.83 792 
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 has been found to improve predicting abilities when used in streamflow forecasting 

(Kalra et al., 2013c). The Hondo region acts as an important pathway for different air 

streams (e.g., the East Asian Jet Stream) to divide and move into particular directions, 

ultimately entering the western U.S. envelope (Zhang et al., 1997). Due to identified 

teleconnections of this region with the western U.S., pressure differences in this region 

when SST is cooler can cause a cyclonic cell near the western U.S., enhancing a 

subtropical jet and returning moist air from the subtropical Pacific Ocean. The SVD 

analysis in this study identified regions in the Pacific Ocean similar to work by Aziz et al. 

(2010), Soukup et al. (2009), and Grantz et al. (2005). The regions centered in the 

equatorial region, with ENSO-like dynamics involving the thermocline depth of the 

ocean and the atmosphere’s trade winds. This could be responsible for the observed 

variability.  

Atlantic SST regions correlated for all years were similar to those identified by 

Tootle and Piechota (2006), both spatially and in signs (positive or negative).The Atlantic 

SST resulted in higher correlations with the eastern U.S. than the western U.S., compared 

to the Pacific SST. The seasonal variations in winter and fall SST-significant regions 

showed the highly correlated north region moved southwards towards the tropic and 

equator. The streamflow regions were confined to the east coast for fall SST, and winter 

SST influenced the deeper Midwest regions. The differences in the AMO cold and warm 

phases were evident in the signs of their teleconnections with the U.S. streamflows; the 

sub-tropics on cold AMO showed opposite relationships with the eastern U.S. 

streamflow, and the AMO warm phase showed direct relationships. The AMO cold phase 

fall SST had the weakest signals in influencing the streamflows, with low SCF values in 
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the first mode. The Atlantic SST regions identified in AMO cold years as well as the 

correlation type differed from those identified by Tootle and Piechota (2006). Similar 

results were found by Chang et al. (1997), who pointed out that the equatorial region of 

the Atlantic SST was found, in many studies, to influence the variability of rainfall in 

Northeast Brazil and the Sahel region of Africa (Moura and Shukla, 1981; Hastenrath, 

1984; Folland et al., 1986). 

The first mode SVD on Pacific SST and seasonal streamflow at p≤0.10 gave a 

minimum correlation value of |0.21| and maximum correlation value of |0.65|; however, 

the maximum r value increased up to |0.80| in PDO cold phases. Likewise, the r value 

obtained from first mode Atlantic SST and 60-year streamflow gave a maximum r value 

of |0.55|; however, it increased to |0.74| in the AMO warm phase. The increase in 

correlation values while considering the multi-decadal oceanic oscillations only can be 

indicative to more regional teleconnections of the multidecadal oscillations with the 

streamflow. The Pacific Z500 regions remained concentrated in the equatorial region. Two 

other regions showed significant teleconnections with the U.S. streamflow from 

December to February; however, they showed very weak teleconnections with the 

streamflow from September to November. Interestingly, winter Pacific and Atlantic Z500 

influenced the central and western U.S., whereas the fall Pacific and Atlantic Z500 tended 

to influence the central U.S. streamflow. Z500 explained variability better than other 

factors due to a higher SCF value. 

Weather systems and atmospheric circulations are responses of uncertain 

boundary forcings between sea surface temperatures, land surface changes and other 

climate variables, many of which are yet to be fully understood. Z500 level on average 
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exists at around 5.5km above the sea level and the weather systems beneath it steer in the 

same direction as the winds at the Z500 level. A jet stream is created when the geopotential 

index level changes more rapidly i.e., the contours are close to each other. The contours 

of the Z500 present the troposphere waves with troughs representing cyclones and (ridges 

anticyclones, which vary rapidly in the mid-latitudes creating a circumpolar jet stream. 

The short-wave troughs lead to surface cyclones and precipitation. Z500 has a strong 

regulating effect on winter precipitation depending upon the depth of the short-wave 

troughs. Higher depth of the trough i.e., stronger jets leads to intense precipitation and 

cyclone. The movement of the precipitation over U.S. is driven by polar jet stream along 

the coast of Alaska and Canada and moves from west towards east in the northern United 

States. A southward movement of this polar jet towards southwestern and central U.S. 

will capture more moisture and bring higher than average precipitation leading to higher 

streamflow.  The third positive significantly correlated region off the coast of 

Washington State (Figure 3.4) has been identified by Grantz et al. (2005) in high 

streamflow years to develop winter low-pressure jet streams. This jet stream brings 

moisture through the southerly winds towards the Sierra Nevada Mountains resulting in 

increased snowfall and spring streamflow. Low streamflow is followed by decreased 

snow when cold and dry air is brought by the northwesterly winds. 

Precipitation in the southeast U.S. has shown to be influenced by an anomalous 

trough, which extends from the northern Pacific basin and induces southerly or 

southwesterly flow anomalies that provide a moisture supply from the eastern Pacific and 

the Gulf of Mexico. Regions of stable low-pressure anomalies in the North Pacific (Gulf 

of Alaska), South Central U.S., and North Atlantic (east of the Labrador Sea) have shown 
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to influence winter precipitation in the southeastern United States (Chen et al., 2014). 

Literature directs that the spring-summer flows in the U.S. are primarily modulated by 

location of the pressure gradients driving the wind directions (jet streams). Precipitation 

has shown to be an immediate response to movement of these jet streams arising from 

geopotential pressure level differences. Further, Z500 has shown to improve the 

forecasting skill for streamflow and the snow-water equivalent (Grantz et al., 2005; 

Soukup et al., 2009; Aziz et al., 2011). The Z500 anomalies have shown to be consistent 

with vector winds, and the SST patterns have shown to be a direct response to pressure 

and winds (Grantz et al., 2005).  

SVD results on detrended SST and Z500, and streamflow data were similar when 

compared with the results using non-detrended data. The Pacific and Atlantic SST and 

streamflow analysis showed better explanation of variance on detrended data, but the Z500 

showed decreases in the SCF values for the first mode. The PDO warm phase SCF values 

decreased when trends were removed, but no differences were observed in the cold 

phase. The AMO warm phase showed increases in the explanation of variance, but cold 

phase results were consistent with the non-detrended results. Overall there was no change 

in identification of regions. Identification of similar regions using raw and detrended data 

indicated that there was no bias in the analysis introduced due to not detrending the time 

series, and trends do not mask the underlying variability explained by SST and Z500 data.  

 The temporal expansion series of the first mode of SST and Z500 showed higher 

correlation values obtained from the expansion series, indicating the use of SST and Z500 

data as important predictor variables for improving the forecasting of streamflows. 

Heterogeneous correlation maps and correlation values that were generated provided 
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information about the interactions of the various regions of the U.S. streamflows with 

significant SST and Z500 regions. This current study identified spatial SST and Z500 

regions that explained the majority of this variability in continental U.S. streamflow.  

 The SVD of Z500 with streamflow and snowpack were in agreement with previous 

studies (Grantz et al., 2005; Soukup et al., 2009; Aziz et al., 2011). In comparison to 

hydrologic information only, the inclusion of climate information, particularly the Z500, 

was shown to substantially improve the forecasts at longer lead times (Grantz et al., 2005; 

Soukup et al., 2009; Kalra et al., 2013c). Coupled effects of indices influencing each 

other have been reported in other studies. Moreover, the North Pacific oscillation has 

been observed to employ a modulating effect on ENSO teleconnections (Gershunov and 

Barnett 1998). 

One limitation of this type of study is the absence of longer instrumental records. 

Potentially, the use of reconstructed data from tree rings can address this issue (Carrier et 

al., 2011; 2013); however, it has certain limitations. With land use changes, several 

unimpaired stations now are influenced by human activities, leading to the revision of the 

HCDN dataset. Overall, the identification of coupled regions of oceanic-atmospheric 

predictors and streamflow can help to understand the complex hydrologic response of 

watersheds to climate variability and potentially improve streamflow forecasts. 

3.6. Conclusions 

SVD analysis on the streamflows of the entire continental U.S. provides a 

comprehensive idea about the possible influences of climate variability on a broader 

spatial scale. The results showed a large incongruity regarding influencing streamflows in 
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different regions of the continental U.S., where two adjacent basins could have different 

associations with the oceanic-atmospheric indicators.  

In this study, new regions of SST were identified that influence the streamflows in 

different hydrologic regions of the U.S.; moreover, regions of atmospheric Z500 were 

identified that might be correlated to continental U.S. streamflows. The understanding 

that the geopotential height index is associated with streamflow is relatively recent, and 

can improve the accuracy of correlations of the oceanic-atmospheric indicators that 

influence streamflows. This research contributes to comprehensively understanding the 

influence of SST and Z500 on the continental U.S. streamflow. The analysis led to the 

generation of a temporal expansion series of SST and Z500 (significant SVD mode), 

which can be used to improve the lead time for streamflow forecasts. 

The inclusion of variable modes of the SST and Z500 was facilitated by using a 

long period of Pacific and Atlantic SST and Z500, which desegregated the various multi-

decadal phenomena, i.e., PDO and AMO. By means of the temporal expansion series, the 

Pacific Ocean SVD showed a strong influence of the ENSO and PDO signals.  The 

oceanic-atmospheric indicators showed significant correlations with streamflow.  

The results in the current study suggest the persistent relationships of the climate 

variability and streamflow in different seasons. The teleconnections identified in the 

study offer possible improvements in forecasting techniques for peak streamflow seasons 

with one to four month ahead. The inclusion of entire SST and Z500 regions avoided the 

conservative tendency of using pre-defined indices. The major contributions of this work 

are:  
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(1) Inclusion of Z500 index for analysis of seasonal streamflow variability in the 

continental United States; 

(2) The identification of the Pacific and Atlantic Ocean SST and Z500 regions that 

associate with a longer new improved dataset of unimpaired gauge streamflow stations in 

the continental United States.;  

(3) Comparison of the influence of phases of PDO and AMO SST climate indices on 

the continental U.S. streamflow, and  

(4) Comparison of teleconnections of SST and Z500 with the continental U.S. 

streamflow in the 18 hydrologic regions.  

Although, the current study is very comprehensive, still there are some unexplained 

variances, which cannot be addressed using the approach adopted in the current study. 

Moreover, not all physical mechanisms of teleconnections are fully understood at this 

time. The underlying mechanisms resulting in the Atlantic Ocean relationships with 

streamflow should be further explored. Future research at the local/regional scale is also 

required to study the climate forcing in detail.  
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CHAPTER 4: PACIFIC OCEAN SST AND Z500 CLIMATE VARIABILITY AND 

WESTERN U.S. SEASONAL STREAMFLOW 

 

Abstract 

A study on the interactions between the Pacific Ocean climate variability and western 

U.S. streamflow investigated unimpaired streamflows of six major basins of the western 

U.S., as defined by United States Geological Survey: Rio Grande, Upper Colorado, 

Lower Colorado, Great Basin, Pacific Northwest, and California. The singular-valued 

decomposition (SVD) technique was applied on data from 50 years (1960-2010) of sea-

surface temperatures (SST), geopotential height index of 500 mbar (Z500), and western 

U.S. streamflows; the results established a spatio-temporal association for each major 

hydrologic region in the western U.S. with Pacific oceanic variability. An approach using 

a three-to-nine month lead time was utilized, i.e., the previous year’s July to August 

SST/Z500, the previous year’s October to December SST/ Z500 to predict streamflow for 

current year spring-summer (April to September), spring (April to June), and summer 

(July to September) seasons. Significant regions of the Pacific were identified that 

influence hydrology of the western U.S. The traditional El Niño/Southern Oscillation 

(ENSO) and Pacific Decadal Oscillation (PDO) regions were identified along with 

regions over eastern Russia, Canadian British Columbia, and the Hondo region along the 

east coast of Japan. Most of the streamflow regions showed similar relationships with the 

Pacific region, except for the Pacific Northwest, which showed opposite relationships 

compared to other regions. The SVD results showed improvement in correlation values 

of smaller spatial regions over larger regions, and a lagged response of adjacent 

hydrologic regions to the same physical indicators; this could be due to topographic and 
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local factors. The results obtained in this study could be helpful in improving the current 

forecasting models for water management.  

4.1. Introduction 

Climate change and its effects on different water systems has been an important 

research topic for scientists and engineers for the sustainable management of water 

resources. Water resource managers are responsible for meeting water demands for 

municipal, irrigation, industries, fisheries, and hydroelectricity use. Furthermore, they 

need to diligently balance increasing water demands while dealing with the effects of 

climate variability (Schaake and Kaczmarek, 1979). Therefore, it is important for them to 

understand various types of climate variability and their potential effects on water 

resources. These growing requirements have led scientists and engineers to focus on 

understanding the relationship between climate variability and its hydrologic 

consequences (Walker and Bliss,1932). With limited inland freshwater sources to rely 

upon, various techniques have been studied to understand the future of water sources 

(Nemec and Schaake, 1982; Shrestha et al., 2011; 2012; Qaiser et al., 2011; 2013). 

Significant research regarding climate indicators and relating them with hydrologic 

variables has led to a better understanding of the changing water systems (Puri et al., 

2011a; 2011b). 

In particular, the western U.S. highlands are affected by orographic lifting that 

results from extreme precipitation and flooding during winter storms (Goodridge, 1994; 

Kalra et al., 2011). This precipitation is influenced by a widening tropical belt (Seidel et 

al., 2008) and the northward shift of westerly winds (Archer and Caldeira, 2008). Other 

changes include reduced snow-cover and earlier snowmelt leading to early spring runoff; 
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these issues have become a concern for hydrologic scientists as well as water managers. 

Moreover, forecasts from the Natural Resources Conservation Service and the National 

Weather Service on the current water supply is based on different statistical techniques, 

and this forecasts is not available to water managers until four to five days before the 

beginning of a month (Pagano and Garren, 2006). Although a growing body of literature 

has established relationships between climate variability and the hydroclimate, there still 

is a need to develop better models with sufficient lead time for decision making. 

Periodic oceanic oscillations, such as the Southern Oscillation Index (SOI), El 

Niño, La Niña, Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), 

Atlantic Multi-Decadal Oscillation (AMO), and other climate indices have been 

identified (Walker 1924; Philander, 1990; Mantua et al. 1997; Enfield et al., 2001) that 

have  complex relationships with inland hydrology in terms of time and space 

(Ropelewski and Halpert, 1986,1987; Lamb and Peppler, 1987; Redmond and Koch, 

1991; Cayan and Webb, 1992; Hurrel, 1995; Trenberth., 1997; Rodo et al 1997; Kiffney 

et al., 2002; Gordon and Giulivi, 2004; Ma, 2007). These oscillations have been 

established to have associations with U.S. hydrology, and affect, for example, 

precipitation (Gutzler et al., 2002; Goodrich, 2004; Kurtman and Scanion, 2007), 

snowpack (e.g., Aziz et al., 2010), streamflow (e.g., Barlow et al., 2001 ), droughts (e.g., 

Goodrich, 2007; Nigam et al., 2011), and fires (Hessl et al., 2004).  

The sea-surface temperatures (SST) influence the air above them, developing 

pressure variability. The pressure differences at various zones drive wind dynamics and 

circulatory movements. The SST has been utilized to establish relationships with 

snowpack, precipitation, streamflow, etc., in western United States. The El Niño 
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Southern Oscillation (ENSO) is a dominant oceanic phenomenon in the Pacific that 

affects both sides of the tropics, and its effects on western U.S. hydrology has been 

prominent (Ropelweski and Halpert, 1986; Redmond and Cayan 1994). It affects the 

circulation of winds by increasing the winds over North Pacific Ocean; these winds can 

move further south and bring higher precipitation in the southwest region as well as lower 

in the northwest region of the western U.S. (Redmond and Koch, 1991; Cayan and Webb, 

1992). During El Niño, the Southwest has shown to be wet and the northwest dry; this 

effect is reversed for La Niña.  

The PDO has been identified to have relationships with snowmelt in California 

(Dettinger and Cayan, 1994), precipitation and streamflow of the Colorado River Basin 

(Hidalgo and Dracup, 2002; Canon et al., 2007), and the United States in general (Barlow 

et al., 2001; Tootle and Piechota, 2006). The traditional method of identifying these 

relationships has been established by using sea-surface temperature (SST) data of a 

particular index region – for example, the Niño 3.4 region lies in between 5 N–5 S and 

120W–170W – and by using statistical methods for correlation with the hydroclimate. 

Despite the identification of the standard indices of the Pacific in influencing the 

hydrology (i.e., Niño 3, Niño 4, PDO, and others), these have not been efficient 

predictors for the hydrology of all the basins of western United States. These indexes 

mostly are confined to certain locations, and small changes in climate pattern can lead to 

erroneous correlations with the hydrology and fail to establish consistent relationships.  

Aziz et al. (2010) used SST data and snowpack data for the Upper Colorado River 

Basin (UCRB) to discover  a region around 34°N–24°N and 150°E–160°W that was a 

primary driver of UCRB snowpack and which was not included in the ENSO or PDO 
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region. Similarly, Lamb et al. (2011) found this region to be a driver of the Colorado 

River Basin streamflow. Moreover, considering only particular index regions masks the 

effect that other regions of the Pacific might have with seasonal hydrology of the western 

U.S. basins. McCabe and Dettinger (2002) studied the relationships among 323 snow 

water equivalent (SWE) stations in the western U.S., PDO, and ENSO SST; they found 

that PDO and ENSO represent variability in SWE, but they could not establish 

relationship successfully of central western U.S. snowpack with either PDO or ENSO. 

Additionally, the northern and southern subtropical jets both influence the central western 

U.S., which could be responsible for undermining the effects of other phenomena, such 

as ENSO or PDO, in these regions. Significantly influential regions of the Pacific vary 

for each basin in the western U.S., and need to be distinguished.   

Geopotential height (HGT) is an atmospheric variable, and its anomalies have 

shown to be associated with climate variability. Geopotential height is defined as the 

height of a particular pressure surface above mean sea level in the atmosphere. Studies of 

the 500-mbar geopotential height (Z500) show the Z500 index values to be identified with 

significant climate variability (Blackmon, 1976; Blackmon et al., 1977). The Z500 has 

been found to be associated with precipitation over Greece (Xoplaki et al., 2000), Europe 

(Casty et al., 2007), the eastern U.S., (Serreze et al., 1998), and southeastern U.S. (Chen 

et al., 2014). When used as a predictor in streamflow forecasting models, the Z500 has 

shown a substantially improved capability (Grantz et al., 2005). Mostly, the Z500 has 

shown to improve the short-lead time forecasts (three months) in comparison to SST 

(Soukup et al., 2009; Aziz et al., 2011).  Thus, it is an important variable, representing 

climate variability, and is finding increasing application in climate-predicting models. 
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Hydrological variables show random variability, and statistical concepts have 

long been used to analyze natural phenomena. Statistical methods – such as canonical 

correlation analysis, principal component analysis, and singular value decomposition – 

have been used to establish relationships between two spatio-temporal datasets. Out of 

several methods available, singular value decomposition (SVD) has been tested to be 

better for identifying relationships between two spatio-temporal fields (Bretherton et al., 

1992). Wallace et al. (1992) tested SVD over wintertime SST and Z500 anomalies, and 

found a coupling with regard to their similar patterns. Since then, SVD has been used in 

numerous applications to identify relationships and spatial patterns of climate variability 

with precipitation (Wang and Ting, 2000), droughts (Rajagopalan et al., 2000), and 

streamflow (Tootle and Piechota 2006, McCabe et al., 2014), on larger scale. On a 

smaller scale, Tootle et al. (2008) used SVD to establish relationships among the 

Colombian streamflow with the Pacific and Atlantic SSTs. Soukop et al. (2009) used 

SVD on streamflows of the North Plate River basin, oceanic SST, and atmospheric Z500 

in order to develop their forecasting techniques. Aziz et al. (2010; 2011; 2012) used SVD 

to determine regions of significance in snow and streamflow data in the western U.S. and 

France. One limitation in using SVD on a large-resolution-spatial dataset is that the effect 

of smaller significant regions was diminished; otherwise, this would be significant at a 

smaller scale  

Unimpaired streamflow as the integrator of various components of the 

hydrological cycle can be represented as an indicator of climate change. This study 

focused on evaluating the relationships between the spatio-temporal fields of Pacific 

ocean SST and atmospheric pressure (Z500) with streamflow in the western U.S. This will 
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aid in identifying significant associated regions in the Pacific that are not covered under 

standard climate indices. In this study, SVD was performed on spring-summer 

streamflows for six major hydrologic regions in the western U.S.; the study used 3-, 6-, 

and 9-month lead SST and Z500 datasets of the Pacific Ocean. Additionally, SVD on each 

hydrologic region was performed individually, which might result in spatio-temporal 

relationships with the Pacific that are not evident when global or lower-spatial-resolution 

data is used. The temporal expansion series obtained from this analysis might be used for 

generating predictor variables for streamflow forecasting. 

4.2. Study Area and Data 

 

 

Figure 4.1: Western U.S. hydrologic regions and the unimpaired streamflow stations 
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U.S. hydrology has been divided into 21 hydrologic regions by United States 

Geological Survey (USGS). These regions are divided by taking into consideration their 

unique topography and a major river or a typical water system. The western U.S. is in 

close proximity to the Pacific Ocean, and is affected by the trade winds and the moisture 

brought in from the Pacific. The study area consists of six major hydrologic regions of 

the West, as defined by USGS, namely, Rio Grande (13), Upper Colorado (14), Lower 

Colorado (15), Great Basin (16), Pacific Northwest (17), and California (18), as 

illustrated in Figure 1. The Rocky Mountains in Upper Colorado gives this region an 

alpine-type climate, with maximum precipitation when winter snows feed the rivers in 

spring by snowmelt. The Rio Grande and Lower Colorado are fed by snowmelt from the 

Rockies as well, with mild precipitation due to winter and summer storms. The Great 

Basin mostly has a mid-latitude desert climate, and is bordered by the Sierra Nevada 

mountains to the west. California’s Mediterranean climate results in cool, rainy winters 

and dry summers. The Pacific Northwest on the west coast has a marine oceanic climate 

in the west coast; further to the east, it has a semi-arid steppe type of climate. This region 

receives huge amounts of rainfall through the year except during summers, which are 

milder.  

4.2.1. Streamflow data 

Natural fluctuations in the hydroclimate are  harder to measure because human 

interventions, such as reservoirs and other diversions, alter the routes of many river 

systems. The USGS maintains unimpaired streamflow stations under the Hydro-Climatic 

Data Network 2009 (HCDN-2009) (Lins, 2009; Falcone et al., 2012). The new HCDN-

2009 dataset, which is a revision of the original USGS HCDN network (Slack et al., 
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1992), includes the dataset for the revised Geospatial Attributes of Gages for Evaluating 

Streamflow, Version II (GAGES) (Falcone et al 2010).  

The HCDN-2009 has 704 stations within 18 hydrologic regions in the continental 

United States. In this study, these 704 stations in the network were checked for their 

spatial attributes and data consistency. Out of the stations in the western U.S. hydrologic 

regions, only 90 stations had continuous monthly streamflow data for 50 years. Some 

regions had no stations with longer datasets; for example, the Upper Colorado had no 

stations with 60 years of data. Thus, the time period for the 90 unimpaired stations in the 

western United States was set as 50 years (1951 to 2010). The spatial distribution of these 

stations is shown in Figure 1, and the number of stations in each hydrologic region is 

given in Table 1. Data for average monthly streamflow for all the stations were obtained 

from the USGS online database (http://www.usgs.gov/) 

Table 4.1: Number of Unimpaired Stations per Each Hydrologic Region in the Western 

United States  

 

Hydrologic 

Region No 
Hydrologic Region Name 

Number of 

Unimpaired 

Stations 

13 Rio Grande 4 

14 Upper Colorado 4 

15 Lower Colorado 4 

16 Great Basin 7 

17 Pacific Northwest 46 

18 California 25 

13-18 Total Western U.S. 90 

 

4.2.2. Sea Surface Temperatures (SST) 

The monthly data for sea-surface temperature used in this study was obtained 

from the Physical Sciences Division of the  National Oceanic and Atmospheric 

Administration’s Earth System Research Laboratory (NOAA ESRL) The oceanic SST 

http://www.usgs.gov/
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data consisted of average monthly values for a 2˚ X 2˚ grid cell (Smith and Reynolds, 

2004). In this study, the region used for Pacific Ocean SST was 100E to 80W and 30S to 

70N.  This consisted of a gridded set of 3,432 SST cells in the Pacific Ocean.  

4.2.3. 500-mbar Geopotential Height Index (Z500) 

The monthly Z500 index data available from the NOAA Physical Sciences Center 

was used. The dataset is a product of the reanalysis project by the National Centers for 

Environmental Prediction and the National Center for Atmospheric Research, commonly 

known as NCEP/NCAR Reanalysis (Kalnay et al., 1996), a 40-year project. The Z500 data 

are available in 2.5˚ X 2.5˚ degree grid cells. The region used for gridded data of the 

Pacific Ocean Z500 was from 100E to 80 W and 70N to 30S. The Pacific region involved 

2,988 grid cells.  

4.3. Methods 

4.3.1. Singular Valued Decomposition 

For finding the spatial-temporal relationships between two fields, SVD has 

emerged as a suitable tool. This paper provides a brief description of this method; for a 

more detailed discussion, readers are referred to Bretherton et al. (1992) and Strang 

(1998). SVD is a factorization of a matrix that results in three matrices (i.e., M = USV
T
). 

The orthogonal matrices, U and V, consist of generated singular vectors commonly 

referred to as the left and right matrices. The center diagonal matrix, S, consists of non-

zero singular values of the original matrix. In general, the first three modes (i.e., the first 

three diagonal elements in S) must explain a significant portion of the variance for SVD 

in order to be statistically applicable (Newman and Sardeshmukh, 1995). Due to issues 
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related to statistical inference, caution must be observed when making assertions about 

the cause of the relationships based on the results of SVD, as is required when using most 

statistical tools. In order to apply SVD, the matrices of standardized anomalies for the 

variables should be generated. The temporal resolution and size must match among all 

matrices in order to apply SVD; however, the spatial characteristics do not need to be 

similar. Cross-covariance matrices are found among the matrices, and are decomposed 

using SVD.  

A square covariance fraction (SCF), or percentage, was calculated by taking the 

square of each singular value and dividing it by the sum of all the squared singular 

values. The SCF value, which indicates how much variability can be explained by the 

model used, has been found to explain variability better than other models (Bretherton et 

al., 1992). The singular values that were generated – when squared and divided by the 

count of one variable data point times the count of a second variable data point – resulted 

in the normalized square covariance (NSC) (Wallace et al., 1992; Bretherton et al., 1992).  

Similar to the SCF, the NSC value is a comparative measurement of the 

decomposition by SVD, with a lower value explaining a better fit. The column vectors 

contained in the left and right matrices are projected onto the original standardized 

anomaly matrices and vice versa. The i
th

 projected vector is the temporal expansion series 

for the i
th

 mode. Only the modes that correspond to a SCF of 10% or greater are retained. 

Finally, in order to find the relationship between the two fields, the temporal expansion 

series are correlated with the original standardized anomalies of variables.  
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4.3.2. Statistical approach 

Flows for spring (April to June, AMJ), summer (July to September, JAS), and 

spring-summer (April to September, AMJJAS) were averaged for 50 years (1961 to 

2010). The SST monthly data was averaged for 50 years for July to September (JAS) 

from 1960 to 2009, and October to December (OND) from 1960 to 2009. Over the 

streamflow, both a 6-to-9-month lead of JAS SST and Z500 and a 3-6-month lead of OND 

SST and Z500 was achieved, useful in evaluating a spatial lead-lagged effect on the 

streamflow. 

SVD is used to evaluate the spatio-temporal relationships among the Pacific SST 

and Z500 and the western U.S. streamflow. First, SVD decomposed the JAS and OND 

Pacific SST and Z500 with spring-summer, spring, and summer streamflows for the entire 

western U.S. streamflow. This was repeated for the stations of each hydrologic region, 

using the Pacific SST and Z500. Thus, a lag of 9, 6, and 3 months for SST and Z500 over 

the seasonal streamflows was used to develop the relationships. Heterogeneous 

correlation values were used to generate heterogeneous correlation maps, which were 

used to analyze the significant regions at p ≤ 0.10. The temporal expansion series 

obtained from SVD was used to derive correlation values by means of typical correlation 

techniques that can establish the relationships between oceanic-atmospheric variability 

and streamflow variability. The correlation values were developed between seasonal  

SST/Z500 (JAS and OND) and the seasonal streamflows (AMJJAS, AMJ, and JAS). All 

the computations were performed using Matlab 2013a which has inbuilt SVD function. 

SVD, within Matlab, is implemented through geometric mechanism quantified through 

QR < 75 for convergence and identification of singular eigenvectors. 
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4.4. Results 

Section 4.4.1 discusses the SVD results of the SST and Z500 with streamflow of 

entire western U.S. followed by Sections 4.4.2 to 4.4.7, which discuss the SVD results of 

the SST and Z500 with streamflows of individual hydrologic regions.  The SST and Z500 

heterogeneous correlation maps for JAS and OND variabilities (Figures 4.2 to 4.10), 

depicting significant correlated regions at p≤0.10, identify the spatio-temporal 

relationships for the first mode. The regions identified for positive (negative) SST/ Z500 

had direct relationships with the positive (negative) streamflow regions such that 

increases (decreases) in streamflow were related to increases (decreases) in SST/Z500, and 

vice versa. Table 4.2 gives the SCF values for the first mode from the SVD analysis for 

all the hydrologic regions. The number of Pacific grid cells (SST/ Z500) showing 

significant relationships with the streamflow were for the first mode. 

4.4.1. Western U.S. Regions 

Figures 4.2, 4.3, and 4.4 present the heterogeneous correlation maps generated 

from spatially plotting the significant correlated streamflows and values of the Pacific 

region obtained from SVD results of all the 90 stations taken in combination. The SVD of 

Pacific Ocean SSTs and western U.S. streamflows resulted in squared covariance 

fractions (SCF) of 68.5% for the first mode and 10.44% for the second mode for JAS 

SST and AMJJAS streamflows. Fifty-four streamflow stations showed significant 

correlation with the Pacific JAS SST, and 2091 (61%) SST grid cells showed significant 

correlation with the streamflows. SVDs for the JAS SST and AMJ streamflows resulted 

in SCFs of 68% and 12.5%, respectively, for the first and second modes. Moreover, 2110 

(61%) number of SST cells showed significant correlation, and 52 streamflow stations 
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showed significant correlation with the Pacific JAS SST. The JAS SST and JAS 

streamflow SVDs resulted in SCFs of 54.89% and 22.19% for first and second modes, 

with 44 stations showing significant correlation; 2068 (60%) grid cells showed 

significant correlation. 

 

Figure 4.2: Heterogenous correlation maps representing the results of SVD of AMJJAS 

streamflows with (a) JAS SST, (b) OND SST, (c) JAS Z500, and (d) OND Z500 

 

The correlation values obtained for the streamflow ranged from |0.002| to |0.62| 

for AMJJAS, |0.009| to |0.636| for AMJ, and |0.004| to |0.53| for JAS streamflows. The 

OND SST and AMJJAS SVD resulted in an SCF of 73.6% in the first mode; 56 stations 

showed significant correlation and 2120 (62%) stations showed significant correlation. 

The OND SST and AMJ streamflow SVD resulted in 73.6% for the first mode. 54 

streamflow stations had significant correlation with SST, and 2111 (62%) Pacific SST 

grid cells showed significant correlation with the streamflow. The JAS streamflow and 

OND SST SVD resulted in an SCF of 60.12% in the first mode and 20.33% in the second 
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mode, with 47 stations showing significant correlation with SST and 2061 (60%) SST 

grid cells showing significant correlation with the streamflows. The correlation values 

obtained for the streamflows ranged from |0.01| to |0.66| for AMJJAS, |0.001| to |0.67| for 

AMJ, and |0.01| to |0.58| for JAS streamflows. 

The SVD on Z500 and 90 streamflow stations resulted in an SCF of 54.74% for the 

first mode and 25.09% for the second mode for JAS Z500 and AMJJAS streamflows. 

Twenty-two stations showed significant correlation with Z500. Out of 2988 Z500 grid cells 

in the Pacific, 1450 (49%) Z500 grid cells showed significant correlation with the 

streamflow. The JAS Z500 and AMJ streamflow SVD resulted in SCFs of 50.9% and 

29%% for the first and second modes, respectively, with 38 stations showing significant 

correlation with Z500 and 1434 (48%) Z500 grid cells showing significant correlation with 

the streamflow.  

 

Figure 4.3: Heterogenous correlation maps representing the results of SVD of (a) JAS SST 

with AMJ streamflow, (b) JAS SST with JAS streamflow, (c) OND SST with AMJ 

streamflow, and (d) OND SST with JAS streamflow 
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The JAS Z500 and JAS streamflow SVD resulted in SCFs of 58.47% and 14.21% 

and 11.13%, respectively, for the first three modes. Twenty stations showed significant 

correlation with Z500 and 1648 (55%) Z500 grid cells showed significant correlation with 

the streamflow. The correlation values obtained for the streamflow ranged from |0.001| to 

|0.39| for AMJJAS, |0.004| to |0.36| for AMJ, and |0.007| to |0.38| for JAS streamflow. 

The OND Z500 and AMJJAS SVD resulted in an SCF of 66.7% for the first mode and 

16.8% for the second mode. Forty-one stations showed significant correlation with Z500 

grid cells and 1873 (63%) Z500 grid cells showed significant correlation with the  

 

Figure 4.4: Heterogenous correlation maps representing the results of SVD of (a) JAS Z500 

with AMJ streamflow, (b) JAS Z500 with JAS streamflow, (c) OND Z500 with AMJ 

streamflow, and (d) OND Z500 with JAS streamflow 

streamflow. SVD on OND Z500 and the AMJ streamflow resulted in an SCF of 63.94% 

for the first mode and 17.17% for the second mode, with 42 stations showing significant 

correlation with Z500 and 1822 (61%) Z500 grid cells showing significant correlation with 

the streamflow. The JAS streamflow and OND Z500 SVD resulted in an SCF of 62.9% in 
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the first and 19.45% in the second mode for R13 to R18 regions. Thirty-four stations 

showed significant correlation with Z500 and 1766 (59%) Z500 grid cells showed 

significant correlation with the streamflow. The correlation values obtained for the 

streamflow ranged from |0.002| to |0.63| for AMJJAS, |0.002| to |0.65| for AMJ, and 

|0.006| to |0.54| for JAS streamflow. 

Table 4.2: The Square Covariance Fraction (Percent) from First mode of SVD analysis.  

Hydrologic 

Region 

 
Streamflow seasons 

Pacific Indices↓ 
Spring-Summer 

(AMJJAS) 

Spring 

(AMJ) 

Summer 

(JAS) 

R13-18 

SST 
JAS 69 68 55 

OND 74 74 60 

Z500 
JAS 55 51 58 

OND 67 64 63 

R13 

SST 
JAS 91 93 79 

OND 93 95 79 

Z500 
JAS 81 84 66 

OND 92 94 74 

R14 

SST 
JAS 69 69 71 

OND 72 73 69 

Z500 
JAS 63 59 69 

OND 80 75 84 

R15 

SST 
JAS 80 93 60 

OND 90 96 57 

Z500 
JAS 75 90 77 

OND 83 91 48 

R16 

SST 
JAS 73 71 73 

OND 71 70 72 

Z500 
JAS 68 66 62 

OND 66 66 59 

R17 

SST 
JAS 80 78 62 

OND 86 84 72 

Z500 
JAS 60 53 69 

OND 86 86 82 

R18 

SST 
JAS 74 71 78 

OND 76 73 81 

Z500 
JAS 75 73 72 

OND 75 72 76 

 

The SCF values and the heterogeneous correlation maps of the combined SVD 

analysis for six regions showed an overlay of the individual hydrologic-region SVDs with 
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the Pacific (Table 4.2). The significant SST regions in the Pacific Ocean that correspond 

to streamflow mostly were similar for both 6-month and 3-month time periods. The 

ENSO and PDO regions both were highlighted, and showed strong correlations with the 

streamflow. The northwest U.S. – i.e., the Pacific Northwest region – behaved differently 

from other regions, showing negative correlation with the ENSO region (highlighted in 

Figure 4.2 and 4.3) but directly proportional to the SST regions east of the Asian 

continent. The region close to the Gulf of Alaska was significantly related with the 

streamflows as well as to the individual basins. 

4.4.2. Individual Regions  

4.4.2.1. Region 13 (Rio Grande) 

Figure 4.5 shows the heterogeneous correlation maps for the first mode for Rio-

Grande stations and the Pacific region. The SVD analysis with JAS SST and AMJJAS 

streamflow for Region 13 resulted in an SCF of 90.9% for the first mode. Out of 3432 

SST grid cells in the Pacific Ocean, 1016 (30%) SST grid cells showed significant 

correlation with the streamflows of Rio Grande. The JAS SST and AMJ streamflow SVD 

resulted in SCF of 93% for the first mode, with 860 (25%) SST grid cells showing 

significant correlation. The JAS SST and JAS streamflow resulted in SCF of 79.3% for 

the first mode and 14.2% for the second mode, with 901 (26%) SST grid cells showing 

significant correlation with the streamflow. The correlation values obtained for the 

streamflow were high in the range from |0.42| to |0.53| for AMJJAS, |0.39| to |0.51| for 

AMJ, and |0.12| to |0.49| for JAS.  

The OND SST and AMJJAS streamflow SVD resulted in an SCF of 93.2% for 

the first mode, with 1676 (49%) SST grid cells showing significant correlation. The OND 
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SST and AMJ streamflow SVD resulted in an SCF of 94.6% for the first mode, with 1583 

(46%) SST grid cells showing significant correlation. The OND SST and JAS streamflow 

SVD resulted in an SCF of 79.3% for the first mode and 14.23% for the second mode, 

with 1348 (39%) SST grid cells showing significant correlation. The streamflow 

correlation values ranged from |0.41| to |0.56| for AMJJAS, |0.45| to |0.55| for AMJ, and 

|0.08| to |0.48| for JAS. 

The SVD analysis for JAS Pacific Z500 and AMJJAS streamflow resulted in an 

SCF of 80.84% for the first mode and 14.6% for the second mode. Out of the 2988 Z500 

grid cells, 205 (7%) showed significant correlation with the streamflow for the first 

mode. The JAS Z500 and AMJ streamflow SVD resulted in SCF of 83.5% for the first 

mode and 12.53% for the second mode, with 203 (7%) grid cells showing significant 

correlation.  The JAS Z500 and JAS streamflow SVD resulted in SCF of 65.9% for the 

first mode and 22.8% for the second mode, with only 45 (2%) grid cells showing 

significant correlation (Figure 5 c). The correlation values obtained for the JAS Z500 on 

the streamflow ranged from |0.40| to |0.56| for AMJJAS, |0.38| to |0.56| for AMJ, and 

|0.26| to |0.48| for JAS.  

The SVD analysis between OND Z500 and AMJJAS streamflow resulted in SCF 

of 92.3% for the first mode, with 1126 (38%) Z500 grid cells showing significant 

correlation. The OND Z500 and AMJ streamflow SVD resulted in an SCF of 94.32% for 

the first mode, with 1040 (35%) Z500 grid cells showing significant correlation. The OND 

Z500 and JAS streamflow SVD resulted in an SCF of 73.6% for the first mode and 

17.38% for the second mode, with 494 (17%) cells showing significant correlation.  The 
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correlation values for 3 to 6 month lead of OND Z500 on streamflow ranged from |0.44| to 

|0.58| for AMJJAS, |0.44| to |0.56| for AMJ, and |0.27| to |0.46| for JAS streamflow. 

In Rio Grande region, all four stations showed significant correlation with the 

SST and Z500 indicators. The 6-9 months’ lead of the JAS SST with AMJ and JAS 

streamflows showed the streamflow to be positively correlated with the SST in the 

eastern Pacific region and negatively correlated with the western Pacific region above the 

equator, also known as the Hondo region. The 3-month to 6-month lead of OND SST 

with AMJ and JAS streamflow showed a variation in the SST regions. The negatively 

correlated region grew wider from JAS to OND SST seasons, and a region closer to the 

northwestern U.S. moved farther west towards 45N and 150W from AMJ to JAS 

streamflow seasons.  

The ENSO region continued to show significant correlations, and moved 

westward from Niño 3 to Niño 3.4 in OND, compared with JAS SST (Figure 4.5b). The 

Z500 correlation maps, however, showed two significant regions for the 6- to 9-month 

lead time from JAS Z500 with respect to AMJ and JAS streamflows. There was one 

positively-correlated region from 30N to 45N and 180W and another negatively-

correlated region above 60N and in-between 150W to 180W. However, the 3- to 6-month 

lead time of OND Z500 and AMJ and JAS streamflow showed five significant regions in 

the Pacific region. These regions mostly were confined to the northern part above 30N; in 

between 120E to 150E, 150E, and 150W; and in-between 120W to 90W (Figure 4.5d). 
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Figure 4.5: Heterogenous correlation maps of spring-summer (AMJJAS), spring (AMJ), 

and summer(JAS) streamflow of Rio Grande (Region 13) with (a) JAS SST, (b) OND SST 

(c) JAS Z500, (d) OND Z500 for first mode of SVD 

4.4.2.2. Region 14 (Upper Colorado) 

The heterogeneous correlation maps for the first mode of the SVD results are 

represented in Figure 6. The SVD analysis between JAS SST and AMJJAS streamflow of 

Upper Colorado resulted in an SCF of 68.7% for the first mode and 21.7% for the second 

mode, with 566 (16%) SST grid cells showing significant correlation. The SVD between 

JAS SST and AMJ streamflow resulted in an SCF of 69.4% for the first mode and 21.7% 

for the second mode, with 676 (20%) SST grid cells showing significant correlation. The 

JAS streamflow SVD resulted in an SCF of 70.6% for the first mode and 21.1% for the 

second mode, with 320 (9%) grid cells showing significant correlation. The 6- to 9-month 

lead time of JAS SST with the streamflow resulted in correlation values that ranged from 

|0.07| to |0.48| for AMJJAS, |0.005| to |0.47| for AMJ, and |0.29| to |0.48| for JAS. The 

OND SST and AMJJAS streamflow SVD resulted in an SCF of 71.9% for the first mode 
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and 21.1% for the second mode, with 760 (22%) grid cells showing significant 

correlation. The OND SST and AMJ streamflow SVD resulted in an SCF of 72.6% for 

the first mode and 19.9% for the second mode, with 839 (24%) SST grid cells showing 

significant correlations. The OND SST and JAS streamflow SVD resulted in an SCF of 

68.7% for the first mode and 25.9% for the second mode, with 360 (10%) SST grid cells 

with significant correlation.  The correlation values obtained for the 3- to 6-month lead 

OND SST on the streamflow ranged from |0.10| to |0.53| for AMJJAS, |0.09| to |0.53| for 

AMJ, and |0.26| to |0.49| for JAS.  

 The SVD analysis between JAS Pacific Z500 and AMJJAS streamflow resulted in 

an SCF of 62.9% for the first mode and 29.6% for the second mode, with 572 (19%) Z500 

grid cells with significant correlation. The SVD analysis between JAS Z500 and AMJ 

streamflow resulted in an SCF of 58.8% and 35.25% for the first and second modes, 

respectively, with 1101 (37%) Z500 grid cells with significant correlation. The SVD 

between JAS SST and JAS streamflow resulted in an SCF 69.4% and 20.5% in the first 

and second modes, respectively, with only 43 (1%) of  cells significantly correlated with 

the streamflow for the first mode. The 6- to 9-month lead time resulted in correlation 

values ranging from |0.05| to |0.26| for AMJJAS, |0.04| to |0.23| for AMJ, and |0.05| to 

|0.24| for JAS streamflow. The SVD analysis of OND Z500 and AMJJAS streamflow 

resulted in an SCF of 80.2% and 14.9% for the first mode, with 582 (19%) cells with 

significant correlation. The SVD analysis of OND Z500 and AMJ streamflow resulted in 

an SCF of 75.37% and 19.98% for the first and second modes, respectively, with 650 

(22%) cells with significant correlation. The SVD analysis with OND Z500 and JAS 

streamflow resulted in an SCF of 84.02% and 11.06% for the first and second modes, 
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respectively, with 308 (10%) Z500 cells with significant correlation. The 3- to 6-month 

lead of OND Z500 resulted in correlation values of the streamflows, which ranged from 

|0.09| to |0.49| for AMJJAS, |0.06| to |0.50| for AMJ, and |0.16| to |0.40| for JAS.  

In the Upper Colorado region, the correlation values for JAS streamflow 

compared to AMJ streamflow for SST with better results. The El Niño region was 

negatively correlated with the streamflow (Figures 4.6a and b). The SST regions showing 

connections with spring and summer streamflow differed, however. The summer (JAS) 

streamflow showed relationships with the Hondo region. However, the OND SST region 

indicated a new region that was positively correlated with the streamflows at around 45N 

and in between 150W to 180W; another was negatively associated region near the west 

coast of Canada at around 45N and 130W to 140W. The results for the Z500 and 

streamflows did not identify streamflow stations that had significant relationships with 

JAS Z500; however, OND Z500 showed significant influence. The Z500 regions identified in 

OND were similar to the SST regions identified in OND for the Upper Colorado Basin, 

with the negatively-correlated region over western Canada and the positively-correlated, 

newly identified region below the coast of Alaska. 

 



119 
 

 

Figure 4.6: Heterogenous correlation maps of spring-summer (AMJJAS), spring (AMJ), 

and summer(JAS) streamflow of Upper Colorado (Region 14) with (a) JAS SST, (b) OND 

SST (c) JAS Z500, (d) OND Z500 for first mode of SVD 

 

4.4.2.3. Region 15 (Lower Colorado) 

Figure 4.7 shows the heterogenous correlation maps for the first mode of the 

Lower Colorado and the significant Pacific SST and Z500 regions. The SVD analysis with 

JAS Pacific SST and AMJJAS streamflow resulted in an SCF of 80.46% and 15.41% for 

the first and second modes, respectively, with 1653 (48%) SST grid cells showing 

significant correlation. The JAS SST and AMJ streamflow SVD explained 92.98% of the 

variability for the first mode, with 1547 (45%) SST grid cells with significant correlation. 

The SVD for JAS SST and JAS streamflow resulted in an SCF of 60.39% , 27.75%, and 

10.87% for first , second, and third modes, respectively, with only 513 (15%) SST grid 

cells with significant correlation for the first mode. The correlation values obtained using 

the temporal expansion series for JAS SST ranged from |0.005| to |0.59| for AMJJAS, 
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|0.35| to |0.59| for AMJ, and |0.12| to |0.45| for JAS streamflow. The SVD analysis of 

OND SST and AMJJAS streamflow resulted in SCF of 90.15% for the first mode; 1750 

(51%) SST grid cells showed significant correlation. The OND SST and AMJ streamflow 

resulted in an SCF of 95.73% for the first mode, with 1820 (53%) grid cells showing 

significant correlation. The OND SST and JAS streamflow SVD analysis resulted in an 

SCF of 57.19% for first mode , 23.53% for second mode, and 18.02%  for the third mode, 

with 650 (19%) grid cells showing significant correlation. The correlation values of the 3- 

to 6-month lead time for OND SST and the streamflow ranged in between |0.09| to |0.64| 

for AMJJAS, |0.39| to |0.64| for AMJ, |0.09| to |0.33| for JAS streamflow. 

 The SVD on JAS Pacific Z500 and AMJJAS streamflow resulted in SCF of 

74.60% and 18.81% for the first and second modes, respectively, with 666 (22%) grid 

cells showing significant correlation. The SVD analysis for AMJ streamflow with JAS 

Pacific Z500 resulted in an SCF of 90.3% for the first mode; 675 (23%) Z500 grid cells had 

significant correlation. The JAS Z500 and JAS streamflow SVD resulted in SCF of 

77.14% for the first mode and 15.58% for the second mode, with 408 (14%) Z500 grid 

cells showing significant correlation. The correlation values for the streamflow ranged 

from |0.20| to |0.49| for AMJJAS, |0.30| to |0.45| for AMJ, and |0.17| to |0.28| for JAS. 

The OND Z500 and AMJJAS streamflow SVD resulted in SCF of 83.47% and 10.45% for 

the first and second modes, with 542 (18%) Z500 grid cells showing significant 

correlation. The OND Z500 and AMJ streamflow SVD resulted in SCF of 91.21% for the 

first mode, with 629 (21%) Z500 grid cells showing significant correlation. The OND Z500 

and JAS streamflow SVD resulted in SCF of 48.43% for the first mode and 31.12% for 

the second mode, with only 32 (1%) grid cells showing significant correlation. The 3- to 
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6-months lead time SVD for Z500 resulted in streamflow correlation values that ranged 

from |0.20| to |0.63| for AMJJAS, |0.47| to |0.70| for AMJ, and |0.13| to |0.29| for JAS. 

The Lower Colorado region showed strong correlations with both SST and Z500 

regions; moreover, the spring (AMJ) streamflow explained around 90% of its spring 

variability. The strong relationships between the spring streamflow and Pacific variability 

were validated from the high correlation values. The JAS and OND SST showed similar 

influence on the streamflow, indicating that a 6-month lead was capable of explaining the 

streamflow variability. The SST regions identified with significant relationships showed 

the prominence of ENSO and PDO signals. However, for summer (JAS) streamflow, 

these signals were poor. The streamflow had a positive correlation with the El Niño 

region and negative correlation with the region east of the Asian continent (Figures 7a 

and b). The significant JAS Z500 regions identified with the spring (AMJ) streamflow 

showed negative correlation, and the JAS Z500 region identified with summer streamflow 

showed positive correlation (Figure 4.7c). The OND Z500 regions identified with spring 

(AMJ) streamflow mostly involved five major clusters with two positively correlated 

clusters, a negative region over eastern Russia, another over Central Canada, and the third 

negative region over the southwestern U.S. (Figure 4.7d). However, the summer 

streamflow showed only one station that had a direct correlation with a small region over 

15N and in-between 150W to 120W (Figure 4.7d). 
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Figure 4.7: Heterogenous correlation maps of spring-summer (AMJJAS), spring (AMJ), 

and summer (JAS) streamflow of Lower Colorado (Region 15) with (a) JAS SST, (b) OND 

SST (c) JAS Z500, (d) OND Z500 for first mode of SVD 

 

4.4.2.4. Region 16 (Great Basin) 

The heterogeneous maps derived from the first mode of the SVD results for Great 

Basin are shown in Figure 4.8. The SVD analysis between JAS Pacific SST and AMJJAS 

streamflow resulted in an SCF of 73.07% for the first mode and 16.09% for the second 

mode, with 1362 (40%) SST grid cells showing significant correlation. The SVD analysis 

between JAS Pacific SST and AMJ streamflow resulted in an SCF of 71.14% for the first 

mod and 16.84% for the second mode, with 1448 (42%) SST grid cells showing 

significant correlation. The SVD analysis between JAS SST and JAS streamflow resulted 

in an SCF of 72.98% for the first mode and 13.60% for the second mode, with 1104 

(32%) SST grid cells showing significant correlation for the first mode. The correlation 

values for streamflow, obtained by using the temporal expansion series, ranged from 
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|0.06| to |0.55| for AMJJAS, |0.02| to |0.52| for AMJ, and |0.05| to |0.56| for JAS. The 

OND SST and AMJJAS streamflow SVD resulted in an SCF of 71.47% for the first 

mode and 20.82% for the second mode; 1465 (43%) SST grid cells showed significant 

correlation with the Great Basin streamflows. The OND SST and AMJ SVD resulted in 

an SCF of 69.71% and 21.40% for the first and second modes, respectively; 1597 (47%) 

SST grid cells showed significant correlation. The SVD between OND SST and JAS 

SVD resulted in an SCF of 72.34% for the first mode and 17.07% for the second mode, 

with 1096 (32%) SST grid cells showing significant correlation. The 3- to 6-month lead 

time resulted in streamflow correlation values that ranged from |0.01| to |0.51| for 

AMJJAS, |0.06| to |0.50| for AMJ, and |0.05| to |0.53| for JAS.  

 The SVD between Pacific JAS Z500 and AMJJAS streamflow resulted in an SCF 

of 67.58% for the first mode and 19.86% for the second mode, with 307 (10%) Z500 cells 

showing significant correlation. The JAS Z500 and AMJ streamflow SVD resulted in an 

SCF of 65.98% and 22.96% for the first and second modes, respectively, with 303 (10%) 

Z500 grid cells showing significant correlation. The JAS Z500 and JAS SVD analysis 

resulted in an SCF of 62.46% and 22.03%  for the first and second modes, respectively, 

with 442 (15%) Z500 grid cells showing significant correlation. The correlation values 

obtained using the JAS Z500 temporal expansion series and the Great Basin streamflow 

ranged from |0.01| to |0.35| for AMJJAS, |0.01| to |0.32| for AMJ, and |0.04| to |0.38| for 

JAS streamflow. The SVD analysis for  OND Z500 and AMJJAS streamflow resulted in 

an SCF of 65.89% for the first mode and 25.97% for the second mode, with 1214 (41%) 

Z500 grid cells showing significant correlation. The SVD analysis for OND Z500 and AMJ 

streamflow resulted in an SCF of 65.96% and 24.93% for the first and second modes, 
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respectively, with 1224 (41%) Z500 grid cells showing significant correlation. The OND 

Z500 and JAS streamflow resulted in an SCF of 58.94% and 31.44% for the first and 

second modes, respectively, with 1203 (40%) Z500 grid cells showing significant 

correlation. The correlation values obtained for OND Z500 and streamflows, using the 

temporal expansion series from the SVD results, ranged from |0.04| to |0.45| for AMJJAS, 

|0.04| to |0.44| for AMJ, and |0.003| to |0.44| for JAS. 

The results of SVD for the Great Basin were consistent in all seasons. The 

significant SST regions for the 6-month JAS lead and 3-month OND lead were similar to 

spring (AMJ) streamflow (Figures 4.8a and 4.b). Similarly, the 9-month JAS SST lead 

and 6-month OND SST lead for summer (JAS) streamflow in the Great Basin identified 

similar regions (Figure 8a and b). The SVD for Z500 as well as spring and summer 

streamflow showed consistent results with JAS and OND Z500, indicating that a 9-month 

lead over streamflows for JAS SST will produce similar results to a 6-month lead; a 6-

month lead over streamflow for OND Z500 will produce results similar to a 3-month lead. 

The regions around the equator showed a positive correlation with the streamflow for 

JAS and OND Z500. Two clusters of negative correlation with the streamflows were seen 

over northeastern Russia and the northwest U.S. The correlation values obtained from the 

SST were better than Z500 for the Great Basin. 
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Figure 4.8: Heterogenous correlation maps of spring-summer (AMJJAS), spring (AMJ), 

and summer(JAS) streamflow of Great Basin (Region 16) with (a) JAS SST, (b) OND SST 

(c) JAS Z500, (d) OND Z500 for first mode of SVD.  

 

4.4.2.5. Region 17 (Pacific Northwest) 

The results of the SVD analysis of the Pacific region (SST and Z500) with Pacific 

Northwest region are represented in Figure 4.9 as heterogeneous correlation maps. The 

SVD analysis between Pacific JAS SST and AMJJAS streamflow resulted in an SCF of 

79.81% for the first mode, with 1617 (47%) SST grid cells showing significant 

correlation. The JAS SST and AMJ streamflow resulted in an SCF of 78.09% for the first 

mode and 10.35% for the second mode, with 1623 (47%) SST grid cells showing 

significant correlation. The SVD for JAS SST and JAS streamflows resulted in an SCF of 

61.74% and 20.86% for the first and second modes, respectively, with 1185 (35%) SST 

grid cells showing significant correlation. The correlation values obtained for the 

streamflow through the SVD ranged from |0.01| to |0.65| for AMJJAS, |0.02| to |0.65| for 
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AMJ, and |0.002| to |0.59| for JAS. The OND SST and AMJJAS streamflow resulted in 

an SCF of 85.81% for the first mode, with 1908 (56%) SST grid cells showing significant 

correlation. The OND SST and AMJ streamflow resulted in an SCF of 84.31% for the 

first mode, with 1972 (57%) SST grid cells showing significant correlation. The OND 

SST and JAS streamflow resulted in an SCF of 72.05% and 15.73% for the first and 

second modes, with 1546 (45%) SST grid cells showing significant correlation. The 

correlation values of SST information, obtained for streamflows with 3- to 6-month lead 

times, ranged from |0.04| to |0.70| for AMJJAS, |0.03| to |0.69| for AMJ, and |0.001| to 

|0.62| for JAS. 

The SVD analysis between Pacific JAS Z500 and AMJJAS streamflow resulted in 

an SCF of 60.36% and 27.89% for the first and second modes, respectively, with 1331 

(45%) Z500 grid cells showing significant correlation. The SVD for JAS Z500 and AMJ 

streamflow resulted in an SCF of 53.16% and 34.35% for the first and second modes, 

respectively, with 1372 (46%) Z500 grid cells showing significant correlation. The SVD 

for JAS Z500 and JAS streamflow resulted in an SCF of 68.94% and 14.56% for the first 

and second modes, respectively, with 1283 (43%) Z500 grid cells showing significant 

correlation. The 6- to 9-month lead times resulted in correlation values ranging from 

|0.01| to |0.43| for AMJJAS, |0.003| to |0.42| for AMJ, and |0.01| to |0.40| for JAS. The 

SVD for OND Z500 and AMJJAS streamflow resulted in an SCF of 85.78% for the first 

mode, with 1811 (61%) grid cells showing significant correlation. The SVD between 

OND Z500 and AMJ streamflows resulted in an SCF of 85.52% for first mode, with 1762 

(59%) Z500 grid cells showing significant correlation. The SVD between  OND Z500 and 

JAS streamflows resulted in SCF of 82.48% for the first mode with 1740 (58%) Z500 grid 
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cells showing significant correlation. The 3- to 6-month lead Z500 gave correlation values 

ranging from |0.01| to |0.65| for AMJAAS, |0.002| to |0.67| for AMJ, and |0| to |0.56| for 

JAS. 

The Pacific Northwest showed significant relationships with the Pacific SST. The 

significant SST regions identified in the Pacific Ocean showed strong ENSO and PDO 

signals. The El Niño region showed opposite correlation with the streamflow, whereas 

the PDO regions showed positive correlations with the streamflow. The region near the 

Gulf of Alaska – at around 150W and 45N to 60N – showed opposite correlations with 

the streamflow of Pacific Northwest (Figure 4.9a). However, the OND SST  showed the 

well-identified Hondo region to correlate directly with the Pacific Northwest streamflows 

(Figure 9b). The effect of the PDO signals on summer streamflow was faint. The Z500 

regions that showed that the most significant relationships with the Pacific Northwest 

streamflow were located in the equatorial belt. Stations of the Pacific Northwest 

streamflow in the northern part of the region showed a direct correlation with the 

equatorial JAS Z500; the southern part of the region showed an opposite correlation with 

the equatorial JAS Z500.  On the other hand, the OND Z500 showed an opposite correlation 

to the streamflows of Pacific Northwest. Two other significant regions were identified in 

the OND Z500, one with a direct correlation with the streamflows at 180W and in between 

30N and 60N and another over the coast of western Canada in British Colombia. Notable 

variations for JAS and OND in the influence over the Pacific Northwest streamflows 

were important when considering lead times. 
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Figure 4.9: Heterogenous correlation maps of spring-summer (AMJJAS), spring (AMJ), 

and summer(JAS) streamflow of Pacific Northwest (Region 17) with (a) JAS SST, (b) OND 

SST (c) JAS Z500, (d) OND Z500 for first mode of SVD 

 

4.4.2.6. Region 18 (California) 

 The heterogeneous correlation maps generated from the SVD results for 

California streamflow are shown in Figure 4.10.The SVD analysis of Pacific JAS SST 

and AMJJAS streamflow resulted in an SCF of 74.17% for the first mode and 16.73% for 

the second mode, with 1167 (34%) grid cells showing significant correlation. The SVD 

of AMJ streamflow with JAS SST resulted in an SCF of 70.98% and 19.65% in the first 

and second modes, respectively, with 1218 (35%) SST grid cells showing significant 

correlation. The JAS streamflow with JAS SST resulted in an SCF of 78.07% for the first 

mode; 1307 (38%) SST grid cells showed significant correlation. The correlation values 

obtained for California streamflow from a lead time of 6 to 9 months for JAS SST ranged 

between |0.07| to |0.58| for AMJJAS, |0.08| to |0.58| for AMJ, and |0.12| to |0.56| for JAS. 
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The SVD for OND SST and AMJJAS streamflow  resulted in an SCF of 76.13% and 

14.44% for the first and second modes, with 1188 (35%) grid cells showing significant 

correlation. The SVD for OND SST and AMJ streamflow resulted in an SCF of 72.67% 

for the first mode and 17.41% for the second mode, with 1302 (38%) SST grid cells 

showing significant correlation with the streamflows in the first mode. The SVD analysis 

for OND SST and JAS streamflow resulted in an SCF of 81.02% for the first mode; 1284 

(37%) SST grid cells showed significant correlation with the streamflow. The 3- to 6-

month lead time for the OND SST temporal expansion series resulted in generating 

streamflow correlation values ranging from |0.05| to |0.58| for AMJJAS, |0.02| to |0.58| 

for AMJ, and |0.12| to |0.56| for JAS. 

 The SVD analysis between Pacific JAS Z500 and AMJJAS streamflow resulted in 

an SCF of 75.14% for the first mode and 16.95% for the second mode, with 610 (20%) 

Z500 grid cells with significant correlation. The SVD analysis for JAS Z500 and AMJ 

streamflow resulted in an SCF of 73.45% and 17.26% for the first and second modes, 

respectively, with 698 (23%) Z500 grid cells showing significant correlation. The SVD 

analysis for JAS Z500 and JAS streamflow resulted in an SCF of 72.29% and 13.08% for 

the first and second modes, respectively, with 293 (10%) Z500 grid cells having 

significant correlation with the streamflows. The correlation values resulting from the 

temporal expansion series ranged from |0.14| to |0.33| for AMJJAS, |0.13| to |0.33| for 

AMJ, and |0.10| to |0.38| for JAS. The SVD for OND Z500 and AMJJAS streamflow 

resulted in an SCF of 74.51% and 13.53% for the first and second modes, with 577 (19%) 

Z500 grid cells showing significant correlation. The SVD for OND Z500 and AMJ 

streamflow resulted in an SCF of 72.21% and 15.41% for the first and second modes, 
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with 663 (22%) grid cells showing significant correlation. The SVD analysis of OND 

Z500 and JAS streamflow resulted in an SCF of 75.58% for the first mode, with 564 

(19%) Z500 grid cells showing significant correlation. The correlation values for 

streamflow obtained using the temporal expansion series ranged from |0.14| to |0.49| for 

AMJJAS, |0.10| to |0.48| for AMJ, and |0.17| to |0.50| for JAS. 

 

 

Figure 4.10: Heterogenous correlation maps of spring-summer (AMJJAS), spring (AMJ), 

and summer(JAS) streamflow of California (Region 18) with (a) JAS SST, (b) OND SST (c) 

JAS Z500, (d) OND Z500 for first mode of SVD 

 

The Californian streamflows were positively influenced by the SST of the El Niño 

region and negatively influenced by the PDO region and the Hondo regions. The Z500 

regions that showed significant correlation were located in the equatorial belt towards the 

American continents. However, the JAS Z500 and summer (JAS) streamflow resulted in 

three SST regions that could influence the streamflows. A negatively-correlated region at 
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120E and 60 N was observed. Furthermore, the OND Z500 around the equator and the El 

Niño region showed to be positively correlated with the streamflow. Two negatively-

correlated regions with the Californian streamflow were identified, 1) one was over the 

eastern Russian region that was similar to the JAS Z500 and summer (JAS) streamflow 

region and 2) another over the western Canadian coast of British Columbia. The 

correlation values for JAS streamflow were higher, compared to the ones for the AMJ 

streamflow of California. 

4.5. Discussion 

The results of the SVD analysis helped to identify the spatio-temporal 

relationships between the different basins of the western U.S. and the Pacific Ocean. 

Among the six basins, the SVD of the Rio Grande showed one of the highest SCFs 

(Table 4.2). The correlation values obtained for summer (JAS) streamflow were lower 

than spring (AMJ) and spring-summer AMJJAS) streamflows. The streamflow in the Rio 

Grande during spring was shown to be influenced mostly by the Pacific Ocean by means 

of ENSO and PDO, both in terms of spatial and temporal variations (Khedun et al., 

2012).  

 The Upper Colorado showed the least SCF among the basins (Table 4.2). The 

ENSO had little effect on Upper Colorado hydrology (McCabe and Dettinger, 2002; Aziz 

et al., 2010; Lamb et al., 2011). On the other hand, the Lower Colorado showed very 

good SCF (Table 4.2) and correlation values for spring (AMJ) streamflows. Winter 

precipitation as snowfall is the major water source of Upper Colorado; as snowmelt, it 

flows into the Lower Colorado Basin. This might be a reason for the lagged response of 

the streamflow of the Upper Colorado to Pacific variability. The SST regions identified to 
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have significant relationships for the Lower Colorado were identified in Rio Grande as 

well (Section 4.4.2.1).  

 The significant regions identified in the Pacific for the Great Basin were 

consistent for the streamflow seasons over up to a 9-month lead time of information, 

which could be used for long-lead forecasting in this region. The Pacific Northwest 

showed an opposite correlation with the Pacific, except for theZ500 in the equatorial 

region for the JAS season. The Niño 3.4 (Trenberth, 1997) SST region, located along the 

equatorial Pacific Ocean (5°S–5°N, 170°–120°W), showed to have strong relationships 

with the individual basins. In addition, the PDO, which is bounded in northern Pacific 

Ocean (poleward of 20° north) (Mantua et al., 1997), was a strong indicator of hydrologic 

variability.  

 The Hondo region – identified in various studies as located at around 150 E to 

160 W and 24N to 34N; and which influences the hydrology of Japan, Asia, and the 

western U.S. (Zhang et al., 1997; Wang and Ting, 2000; Rajgopalan et al., 2000; Tootle 

and Piechota, 2006; Aziz et al., 2010; Aziz et al., 2011; Soukup et al., 2009; Lamb et al., 

2011; Kalra et al., 2013c) – was identified to influence each of the basins in terms of 

seasonal SST or Z500. The lead times associated with this region and each basin were an 

important factor while considering streamflow forecasting.  

 Physical explanations for this region is that it is an important pathway for 

different air streams (e.g., the East Asian Jet Stream) to divide and move into particular 

directions, ultimately entering the western U.S. envelope (Zhang et al., 1997). Due to 

teleconnections of this region that are identified with the western U.S., pressure 

differences in this region when SST is cooler can cause a cyclonic cell near the western 
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U.S., enhancing subtropical jet and returning moist air from the subtropical Pacific 

Ocean. Another region identified over northeastern Russia and eastern Asia, as explained 

Zhang et al. (1997), is a region of storm tracking that enters the East Asian Jet Stream.  

 The movement of the winds and the pathways they take has been the main cause 

of precipitation in various forms, from low to intensified rain or snow. A jet stream is 

created when the geopotential index level changes more rapidly, i.e., the contours are 

close to each other. The contours of the Z500 represent the troposphere waves, with 

troughs representing cyclones and ridges that indicate anticyclones, which vary rapidly in 

the mid-latitudes and create a circumpolar jet stream. Z500 has a strong regulating effect 

on winter precipitation, depending upon the depth of the short-wave troughs.  

 The movement of the precipitation over U.S. is driven by a polar jet stream along 

the coast of Alaska and Canada. Precipitation has shown to be an immediate response to 

movement of these jet streams, arising from differences is the level of geopotential 

pressure. A southward movement of this polar jet towards the southwestern and central 

U.S. captures more moisture, creating higher than average precipitation, which leads to 

higher streamflow. The Cascade Range, the Sierra Nevadas, and the Rocky Mountains 

pick up most of the moisture from these jet streams by orographic effects, resulting in 

most of the precipitation in the American West.   

 In this study, the region over the Gulf of Alaska and British Columbia, Canada, 

has shown prominence for a 3-month lead of Z500 for all the basins. This region is also 

identified by Grantz et al. (2005), and winter low-pressure jet streams developed in this 

region results in high streamflow years. By means of southerly winds, these jet streams 

bring moisture towards the Sierra Nevada mountains, resulting in increased snowfall and 
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spring streamflow (Grantz et al., 2005). Low streamflow is followed by decreased snow 

when cold and dry air is brought by northwesterly winds. Z500 for this region has shown 

to improve the forecasting skill for streamflow and the snow-water equivalent (Grantz et 

al., 2005; Soukup et al., 2009; Aziz et al., 2011). 

The results of the combined analysis were mostly similar to the results of the 

individual analysis in most aspects, but also differed in some aspects. For example, the 

region around eastern Russia, which was prominent for each region individually, was not 

shown as significant in the combined analysis. This directs the research team to use 

individual basins for SVD analysis in order to find relationships, since a comprehensive 

analysis would dampen the effect one grid region might have on other hydrological 

regions having different spatial attributes. The SCF values for individual regional 

analyses at a smaller scale improved in the combined analysis at a larger scale (Table 

4.2).  

This study acknowledges the bias that is produced when global datasets are used 

to find relationships between climate signals and hydrologic variables, such as 

streamflow (Rajgopalan et al., 2000; McCabe and Wolock, 2014). This work shows 

improvement over studies that were based on a larger spatial scale (Tootle et al., 2006; 

Aziz et al., 2010), thus addressing the bias that is generated by using global datasets. 

Using the correlation values developed in this study, future research may focus on the use 

of a streamflow forecast model  that is non-parametric or regression-based and having 

long-lead times (Hastenrath et al. 1984, Tootle and Piechota 2001, Kalra et al., 2013). 
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4.6. Conclusions 

The SVD analysis between the Pacific SST/ Z500 and the western U.S. streamflow helped 

in understanding the inter-relationships in the various; furthermore, it allowed 

comparison of the anomalies. The combined SVD of the six regions provided a 

comprehensive understanding of the complex teleconnections; moreover, the SVDs for 

the individual hydrologic region highlighted the inter-basin differences of responses to 

climate variability. The loss of noise (i.e., counterfeit regions) in the predictand dataset 

was possible by using smaller spatial regions as well as the inclusion of the entire Pacific 

region. Most importantly, the use of entire SST/ Z500 datasets of the Pacific over 

predefined regions of other indices (e.g., Niño 3.4) removed the biases or errors that are 

associated with small spatial change over the time period being considered.  

  The mapped spatial pattern identified in this study showed that the traditional 

ENSO-like and PDO-like patterns – along with other regions in the North Pacific – to be 

important factors. The overall contributions of this work are: 

1) Inclusion of the new HCDN-2009 dataset, which has updated information of the 

unimpaired streamflow stations. 

2) Identification of regions in the Pacific that were included in the ENSO or PDO 

regions but which are significantly related to the basins in the western United States. 

3) Comparison of SVD analyse of larger spatial scale to those of  smaller spatial scale, 

which indicated that the analysis of smaller regions should be preferred over larger 

regions for purposes of decision making. 

4) Comparison of relationships of adjacent basins of the western U.S. with the Pacific 

region  showed lagged response of certain basins to the same physical areas of 
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atmosphere and ocean; this could be due to differences in wind movements resulting 

from topography or local factors. 

This work is important to determine improved results over global patterns and to 

avoid randomness in SVD results. Although several relationships are explained through 

this approach, future research efforts may focus on providing a physical explanation of 

the results by examining Z500 geopotential height, winds, and global circulation 

phenomena.  
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CHAPTER 5: CONTRIBUTIONS AND RECOMMENDATIONS 

5.1. Summary 

With rapid development and limiting resources, climate variability increases the 

uncertainty of available resources, of which water is a vital component. For the U.S. 

which has a diverse climate and many river systems, water resources are stressed by 

increasing demands of agriculture, industries, energy, and domestic needs; it becomes 

necessary to understand the factors contributing to streamflow variability. Oceanic-

atmospheric indices have complex relationships with the hydrological cycle. Making 

better water management decisions depends on our understanding of the future of which 

climate change is an indispensable variable. Predicting the future starts from 

understanding the past changes and interactions of hydroclimatic variables. This study 

provides better understanding of the streamflow variability and factors affecting it in the 

continental United States.  

In this study, statistical approaches were mostly used to address the three research 

questions. The study successfully identified the types of changes in the past years in the 

continental U.S. streamflows and their relationships with oceanic-atmospheric variability. 

A comprehensive study of the continental U.S. was conducted, followed by a focus on 

the western U.S., which is mostly influenced by Pacific Ocean variability. Unimpaired 

streamflow volumes and comparisons of different basins were key elements in this study. 

Three tasks were performed to address the research questions and their hypotheses posed 

in the study. 

The first task investigated Research Question #1: What were the changes in the 

hydrology of the continental U.S. in the past years and how do they compare temporally 
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and spatially? It was hypothesized that unimpaired streamflows, which have the least 

anthropogenic interference, can best represent climate variability, and the phase changes 

of the multidecadal climate indices should be captured by streamflow. It was also 

hypothesized that as streamflow distributions did not have a definite pattern, using non-

parametric tests would best represent streamflow variability. Research Question#1 was 

addressed by using two non-parametric statistical tests, Mann-Kendall and Pettitt, for 240 

unimpaired streamflow stations in the continental United States. Streamflow volumes for 

60 years starting from 1951 to 2010 were obtained from the USGS. The stations obtained 

were categorized into 18 major watershed regions as defined by the USGS. The 

persistence characteristic present in streamflows was addressed while analyzing the 

changes by incorporating variations accounting for short term and long-term persistence 

in the Mann-Kendall test. The change in terms of quantity was calculated through a 

Thiel-Sen trend-slope of the time series. The Pettitt test was able to identify the 

streamflow shifts, which had a major change point, as well as identifying the shift year. 

Grouping the stations according to the regions and using a global field significance 

Walker test helped in generalizing the results for each hydrologic region. A comparison 

of results among the regions helped in identifying the regions that had experienced 

significant higher, lower, or no changes. 

The second task addressed Research Question #2: How do the oceanic-

atmospheric indices affect (associate with) the streamflows of the continental United 

States? It was hypothesized that the oceanic-atmospheric indices affect the hydrologic 

cycle by influencing the winds, moisture, and ultimately the precipitation. It was also 

hypothesized that using a lead-time methodology, the interaction between the oceanic-
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atmospheric indices and streamflow variability can be explored. In addition, it was 

hypothesized that different basins of the continental U.S. streamflow had significant 

associations with the oceanic-atmospheric indices, but geography would determine the 

differences. Research Question #2 was addressed by using the factorization technique 

known as singular valued decomposition to provide a 1-4 month lagged relationship 

between fall and winter (SST/Z500) with the spring-summer streamflow volumes of 60 

years in the continental United States. Further, SVD was applied to Pacific and Atlantic 

SST of the warm and cold phases of the multidecadal PDO and AMO, and heterogeneous 

correlations with the streamflows was obtained. The SVD analysis provided information 

about regions in the Pacific and Atlantic Oceans that are highly correlated to the 

continental U.S. streamflows and vice versa. The temporal expansion series obtained 

from the SVD may be used as input for forecasting models. The inclusion of the warm 

and cold phases of the PDO and AMO helped in identifying the possible coupled effects 

of the particular climate indices on streamflows. The identified oceanic regions showed 

signals of the ENSO and PDO regions. AMO, however was not seen as a significant 

influencing factor. The Walker test for global significance was used to determine the 

significant basins, which showed that geopotential height influenced the central U.S. 

streamflow more. The Z500 was showed better relationships with the streamflow 

variability than SST.  

The final Research Question #3 How do the oceanic-atmospheric indices play a 

role in affecting streamflow in adjacent basins, and, can the lead time of streamflow 

forecasting be improved? It was hypothesized that western U.S. streamflow is strongly 

affected by Pacific Ocean variability, and depending on the precipitation of the region, 
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the association of the oceanic-atmospheric indices and streamflow has a lagged 

relationship. This study addressed research Question #3 by using singular valued 

decomposition on 3-9 month lead time Pacific sea surface temperature and pressures with 

western U.S. streamflow. Fifty years of 90 unimpaired spring-summer streamflow data 

for six hydrologic regions of the western U.S. were used. Additional  SVDs  were 

performed on each hydrologic region individually. It was observed that the relationships 

improve when analysis of individual basins was performed. The Z500 was shown to have 

better relationships to streamflow than sea-surface temperature at shorter lead times. 

Different basins showed strong relationships with similar regions in the Pacific but at 

different lag times. These results confirmed the third hypothesis. 

5.2. Contributions 

While previous authors have performed substantial work in these areas, the major 

contributions of this research are as follows. First, this research is the first of its kind that 

uses the HCDN-2009 stations, a new dataset of unimpaired streamflows for the 

continental United States. This work identifies the significant changes that the 

continental U.S. streamflows have experienced in the past 60 years considering long 

term and short term persistence, which has not been accounted for in previous studies. 

This is also the first use of the Pettit test to identify step changes and periods for 

streamflow at the continental U.S. scale. 

Second this work presents a comprehensive study that uses SVD on the Pacific 

and Atlantic SST and Z500 with the continental U.S. seasonal streamflow. Use of 1-4 

month lead time explains the significant anomalies between streamflow and oceanic-

atmospheric variability. 
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The third contribution is in the use of geopotential height as an indicator for 

streamflow variability. This is the first study to use the gridded Z500 data with 

continental U.S. streamflow variability. Several studies have used correlation 

techniques to identify relationships between sea surface temperatures and streamflows. 

Finally, this study helps in improving our understanding of the lagged effects of 

climate indices over seasonal streamflow. The use of several lag times helps in 

removing the noisy regions and identifying some new regions in the Pacific Ocean, that 

have significant influences. 

5.3. Limitations 

Though this study makes a comprehensive attempt to answer the above described 

research questions listed, certain limitations are inevitable. The major dataset used was 

unimpaired streamflow. Due to anthropogenic influences, the major river systems have 

been controlled through diversions. This study tries to capture the lowermost streamflow 

station in a river, but some heavily regulated rivers could be missed due to non-

availability of unimpaired data for some subwatersheds. This study started with 704 

unimpaired stations initially, but due to unavailability of continuous data for longer 

timescales, many stations were removed. In order to capture the multidecadal oscillations 

properly, longer time periods provide better results. The limitation of hydrologic time 

series is that the results are dependent on the temporal window for which data are 

available. The time window being studied could be part of a longer periodic phenomenon 

that is not yet completely identified. 

Singular valued decomposition is a technique that will nearly always find a 

relationship between two datasets, even if it is by pure chance. Therefore, one must be 
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cautious about the noise that arises in the results. Though statistical tests provide an 

understanding of the changes and relationships, the underlying physical mechanisms 

should be understood to interpret the results.  

5.4. Recommendations for future work 

The study presented is able to evaluate the significant changes in the continental U.S. 

streamflow and successfully identify the spatio-temporal relationships between 

streamflow variability and oceanic-atmospheric indices. However, many aspects that this 

work has brought to attention can be improved in terms of accuracy or future 

applications. Future researchers working on similar aspects of hydroclimate should 

consider the following:  

1) This study analyzed the types of changes in streamflow over past years and 

explored the association of streamflow variability with climate variability. Future 

research should focus on understanding the underlying dynamics of these systems that 

explain the physical mechanisms. 

2) Though a seasonal approach was used in this study for identifying the streamflow 

and climate relationships, only the peak streamflow seasons of spring and summer were 

used. Future research should include the low flow seasons, which are also important from 

a water management perspective. 

3) One limitation of this study was unavailability of data for longer periods. Using 

tree ring or paleo reconstruction could extend the available time series. Future research 

should explore this option. 
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4) The statistical approaches implemented used in this study for hydrologic analysis 

have been long used. Other newer methods such as wavelet analysis or boot-strapping 

should be explored to get insights into time series analysis of hydroclimatic variables. 

5) The study explores the oceanic-atmospheric variability of sea surface 

temperatures and 500mbar geopotential height. It is recommended that future research 

include the climate indices of ENSO, PDO, AMO, NAO, etc. and provide a comparison 

with entire gridded datasets. Geopotential height brings atmospheric jet streams into the 

picture, which should be explored further.  

6) Various non-parametric modeling techniques can be employed to use the results 

obtained from the SVD analysis as predictors for streamflow forecasting. This should be 

tested with different lead times to determine the best possible approach for each basin. 
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