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ABSTRACT 

 

Impact of Secondary Treatment Types and Sludge Handling Processes  

on Estrogen Concentration in Wastewater Sludge  

 

by 

 

Erica Marti 

 

 

Dr. Jacimaria Batista, Examination Committee Chair 

Professor, Civil and Environmental Engineering 

University of Nevada, Las Vegas 

 

 

Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be 

present in the aquatic environment at concentrations that negatively affect fish and other 

wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the 

environment. EDCs are released via effluent discharge and land application of biosolids. 

Estrogen removal in WWTPs has been studied in the aqueous phase; however, few 

researchers have determined estrogen concentration in sludge. This study focuses on 

estrogen concentration in wastewater sludge as a result of secondary treatment types and 

sludge handling processes. Grab samples were collected before and after multiple 

treatment steps at two WWTPs receiving wastewater from the same city. The samples 

were centrifuged into aqueous and solid phases and then processed using solid phase 

extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured 

using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. 

Results confirmed that activated sludge treatments demonstrate greater estrogen removal 

compared to trickling filters and estrogen load (mass estrogen per mass solid) was 
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measured for the first time on trickling filter solids. Physical and mechanical sludge 

treatment processes, such as gravity thickeners and centrifuges, did not significantly 

affect estrogen removal based on mass balance calculations. Dissolved air flotation 

demonstrated a slight decrease in estrogen concentration, while anaerobic digestion 

resulted in increased estrogen load on the sludge and a high estrogen concentration in the 

supernatant. Although there are no state or federally mandated discharge effluent 

standards or sludge application standards for estrogen, implications from this study are 

that trickling filters would need to be exchanged for activated sludge treatment or 

followed by an aeration basin in order to improve estrogen removal. Also, anaerobic 

digestion may need to be replaced with aerobic digestion for sludge that is intended for 

land application. 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor, Dr. Jacimaria Batista, for all of her help and 

guidance during my thesis research and writing. Her advice is invaluable and her 

dedication to her students is admirable. 

I would like to thank several organizations and individuals for their support as I 

conducted my research: the Clark County Water Reclamation District and the City of Las 

Vegas Water Pollution Facility for their assistance in obtaining samples and operational 

information for the treatment plants; Tammy Jones-Lepp and Tom Moy at the United 

States Environmental Protection Agency for help completing the sludge extractions; 

Amber Howerton for instructing me on microplate analysis with ELISA; Guadalupe 

(Gutierrez) Bailey and Leah Irons for their laboratory assistance with sample preparation, 

and finally the Graduate Student Professional Association for financial support. 

 

 

  



vi 

 

 

TABLE OF CONTENTS 

 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGEMENTS ................................................................................................ v 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES .............................................................................................................. x 

CHAPTER 1  INTRODUCTION ....................................................................................... 1 

1.1 Research Problem ................................................................................................. 1 

1.2 Issue One: Impact of Secondary Treatment Type on Estrogen Concentration for 

Wastewater Sludge .......................................................................................................... 2 

1.3 Issue Two: Impact of Sludge Handling Processes on Estrogen Concentration for 

Wastewater Sludge .......................................................................................................... 3 

1.4 Research Objectives and Hypotheses ................................................................... 4 

CHAPTER 2  STATE OF THE KNOWLEDGE ............................................................... 6 

2.1 Natural, Synthetic and Metabolite Forms of Estrogen .............................................. 6 

2.2 Effect of Estrogen as an Endocrine Disrupting Compound ...................................... 9 

2.3 Presence of Estrogen in Wastewater Treatment ...................................................... 11 

2.4 Removal Mechanisms for Estrogen in Wastewater Treatment ............................... 13 

2.5 Analytical Methods for Determining Estrogen Potency ......................................... 16 

2.6 Analytical Methods for Determining Estrogen Concentration ............................... 17 

2.7 Quality Assurance and Quality Control Considerations ......................................... 19 

2.8 Secondary Wastewater Treatment Processes .......................................................... 20 

2.8.1 Activated Sludge............................................................................................... 20 

2.8.2 Biological Nutrient Removal ............................................................................ 21 



vii 

 

2.8.3 Tricking Filters ................................................................................................. 22 

2.9 Sludge Handling Processes ..................................................................................... 23 

2.9.1 Sludge Thickening ............................................................................................ 23 

2.9.2 Mechanical Dewatering .................................................................................... 24 

2.9.3 Sludge Digestion............................................................................................... 25 

2.10 Return Streams ...................................................................................................... 26 

CHAPTER 3  METHODOLOGY .................................................................................... 28 

3.1 Wastewater Treatment Facility Overview............................................................... 28 

3.2 Collection and Preparation of Samples ................................................................... 31 

3.3 Sample Extraction ................................................................................................... 31 

3.3.1 Solid Phase Extraction for Dried Sludge Samples ........................................... 32 

3.3.2 Solid Phase Extraction for Aqueous Samples .................................................. 34 

3.4 Enzyme-linked Immunosorbent Assay (ELISA) Analysis ..................................... 35 

3.5 Interpolation of Absorbance Data ........................................................................... 37 

3.6 Quality Assurance / Quality Control (QA/QC) ....................................................... 39 

CHAPTER 4  EFFECT OF SECONDARY TREATMENT TYPE ON ESTROGEN 

REMOVAL IN WASTEWATER TREATMENT PLANTS ........................................... 49 

4.1 Introduction ............................................................................................................. 49 

4.2 Materials and Methods ............................................................................................ 51 

4.3 Results and Discussion ............................................................................................ 53 

4.3.1 Estrogen Analysis with ELISA......................................................................... 53 

4.3.2 Effect of Secondary Treatment Type on Estrogen Removal ............................ 56 

4.3.3 Comparison of Secondary Treatment Units ..................................................... 62 

CHAPTER 5  EFFECT OF SLUDGE HANDLING PROCESSES ON ESTROGEN 

CONCENTRATION IN WASTEWATER SLUDGES ................................................... 68 



viii 

 

5.1 Introduction ............................................................................................................. 68 

5.2 Materials and Methods ............................................................................................ 70 

5.3 Results and Discussion ............................................................................................ 71 

5.3.1 Estrogen Analysis with ELISA......................................................................... 71 

5.3.2 Change in Estrogen Concentration Due to Sludge Handling Processes ........... 75 

5.3.3 Mass Balance of Estrogen in Sludge Handling Processes ................................ 82 

5.3.4 Fate of Estrogen in Sludge Handling Processes ............................................... 84 

CHAPTER 6  CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS ...... 88 

6.1 Conclusions ............................................................................................................. 88 

6.2 Implications of Findings to Wastewater Treatment and Sludge Handling ............. 90 

6.3 Recommendations for Future Research .................................................................. 93 

APPENDIX A  ESTROGEN MASS BALANCE CALCULATIONS............................. 94 

A.1.Terms ...................................................................................................................... 94 

A.2. Mass Balance Procedure ....................................................................................... 94 

A.3. Summary of Mass Balances ................................................................................ 103 

A.4. Summary of Mass Balance Raw Data and E2 Contributions .............................. 106 

REFERENCES ............................................................................................................... 108 

VITA ............................................................................................................................... 116 

  



ix 

 

 

LIST OF FIGURES 

 

Figure 3.1: Flow scheme of Plant A with sampling locations .......................................... 29 

Figure 3.2: Flow scheme of Plant B with sampling locations .......................................... 30 

Figure 3.3: Extraction procedure for sludge samples ....................................................... 34 

Figure 3.4: Example graph of best-fit line for calibration curve and absorbance values for 

standards ......................................................................................................... 39 

Figure 5.1: Estrogen concentration before and after gravity thickeners ........................... 77 

Figure 5.2: Estrogen concentration before and after centrifuging .................................... 77 

Figure 5.3: Estrogen concentration before and after DAFT and anaerobic digestion ...... 81 

Figure 5.4: Sensitivity Analysis for Mass Balance Calculations ...................................... 83 

Figure A.1: Plant A, Gravity Thickener (GT 2)................................................................ 99 

Figure A.2: Plant A, Anaerobic Digester (AD) .............................................................. 103 

Figure A.3: Plant A, Gravity Thickener (GT 1).............................................................. 104 

Figure A.4: Plant A, Dewatering Centrifuge (CT 2) ...................................................... 104 

Figure A.5: Plant B, Dissolved Air Flotation Thickening (DAFT) ................................ 104 

Figure A.6: Plant B, Dewatering Centrifuge (CT 3) ....................................................... 105 

 

 

 

 

 

  



x 

 

 

LIST OF TABLES 

 

Table 2.1: Structures, octanol-water partition coefficient (Kow), solubility in water, E2 

equivalence, and distribution coefficient (Kd) for free estrogens..................... 7 

Table 2.2: Structures for conjugated estrogens ................................................................... 8 

Table 3.1: Overview of wastewater facility treatment trains ............................................ 30 

Table 3.2: Example of determining fitting parameters for calibration curve ................... 38 

Table 3.3: Results for equipment blanks........................................................................... 40 

Table 3.4: Comparison of single and double extractions for dewatered sludge ............... 43 

Table 3.5: Concentration of estrogen spike standards over time ...................................... 44 

Table 3.6: Coefficients of variation for for ELISA analytical duplicates ......................... 45 

Table 3.7: ELISA analytical duplicates for estrogen standards ........................................ 45 

Table 3.8: Recovery of estrogen for spiked samples ........................................................ 47 

Table 3.9: Recovery of estrogen for selected steps of the method ................................... 48 

Table 4.1: Analytical duplicates ....................................................................................... 55 

Table 4.2: Replicate extraction samples ........................................................................... 55 

Table 4.3: Recovery experiments for extractions ............................................................. 56 

Table 4.4: Comparison of estrogen load and removal for trickling filters ........................ 58 

Table 4.5: Comparison of estrogen load and removal for BNR ....................................... 60 

Table 4.6: Comparison of estrogen load and removal for non-BNR activated sludge ..... 62 

Table 5.1: Precision for ELISA replicates ........................................................................ 73 

Table 5.2: Precision for extraction replicates ................................................................... 74 

Table 5.3: Recovery experiments for extractions ............................................................. 75 



xi 

 

Table 5.4: Input and Output Estrogen Concentrations for Mass Balance Calculations.... 87 

Table A.1: Input, Output, Raw Data and E2 Contributions for Mass Balance Calculations

......................................................................................................................................... 106 

 



1 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Problem 

Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be 

present in the aquatic environment at concentrations that affect fish and other wildlife. 

Wastewater treatment plants (WWTPs) are major contributors of EDCs into the 

environment. EDCs are released via effluent discharge and solid waste (biosolids). In 

both the effluent and solids, the final concentration of the compound depends on the 

treatment processes and environmental conditions. This study focuses on estrogen 

concentration in sludge as a result of secondary treatment and sludge handling processes. 

Wastewater treatment plants are major contributors of EDCs to the environment 

(Daughton and Ternes, 1999), as well as runoff from land where biosolids or manure has 

been applied (Nichols et al., 1997). Estrogens and other EDCs in the aquatic environment 

are known to cause developmental and reproductive problems in fish (Jobling et al., 

1998) and feminization of fish at concentrations as low as a few ng/L (Länge et al., 

2001). Further, the long-term effects on humans from estrogens through water 

consumption are not well known, but pose another possible problem. The potential 

impact of EDCs is widespread in the U.S. (Kolpin et al., 2002) and even affects the local 

area for this project (Snyder et al., 1999).  
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Though concentrations of various estrogens in wastewater effluent discharge have 

received significant attention (Ternes et al., 1999; D’Ascenzo et al, 2003; Gabet-Giraud 

et al., 2010), levels of estrogens in biosolids have not (Janex-Habibi et al., 2009; Suzuki 

and Maruyama, 2006). A compounding issue is the discrepancy regarding the amount of 

estrogens found in biosolids. In the study by Janex-Habibi, only 10% of the estrogens 

were found adsorbed to the solid phase while the study by Suzuki and Maruyama showed 

30% adsorbed to the solid phase. Also, other authors expect that estrogens will show a 

preference for partitioning to the solid phase based on the Kow partition coefficients 

(Gomes et al., 2004; Khanal et al., 2006). In light of an increasing trend for land 

application of biosolids, as opposed to landfilling, it will become even more important to 

monitor estrogens in wastewater sludge. There are no state or federally-mandated 

regulations for estrogen in biosolids. Current pollutant limits for land application of 

biosolids are set only for heavy metals and pathogens (e-CFR, 2011).  

In this research, estrogen removal in wastewater and wastewater sludge was focused 

in two areas: 

1.2 Issue One: Impact of Secondary Treatment Type on Estrogen Concentration for 

Wastewater Sludge 

Secondary treatment type is known to influence estrogen removal in the aqueous 

phase (Ternes et al., 1999; Westerhoff et al., 2005; Joss et al., 2004; Liu et al., 2009), but 

estrogen removal in sludge has not received as much attention. Only a few studies have 

examined estrogen load on secondary sludge in full-scale WWTPs (Andersen, et al., 2003; 

Braga, et al., 2005b; Janex-Habibi, et al., 2009; Joss, et al., 2004; Muller, et al., 2008; 
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Muller, et al., 2010; Ternes, et al., 2002) and one study involved a pilot-scale plant 

(Esperanza, et al., 2007).  

Comparison of estrogen load between treatment types for secondary sludge is 

difficult due to different analytical strategies and different wastewater sources. A variety 

of methods have been used to extract estrogen from sludge, including sonication, shaking, 

solid-phase extraction and vortexing (Esperanza, et al., 2007; Gabet-Giraud, et al., 2010b; 

Muller, et al., 2008; Ternes, et al., 2002) and recovery varies for the method and solvents 

used. Also, some analytical methods quantify natural estrogens separately or combined 

and the reporting limits are not always included. Estrogen load on secondary sludge 

among different WWTPs is difficult to compare because the feed wastewater and primary 

treatment may vary and the effects of secondary treatment type cannot be isolated. This 

study uses a consistent extraction step and measures total deconjugated natural estrogens. 

Additionally, both WWTPs receive wastewater from the same city and have similar 

primary treatment. This will allow for a direct comparison of estrogen removal in sludge 

due to different secondary treatment types. 

1.3 Issue Two: Impact of Sludge Handling Processes on Estrogen Concentration for 

Wastewater Sludge 

The effect of sludge handling processes on estrogen removal in sludge is not well 

established. In previous studies, it has been shown that the type of wastewater treatment 

affects estrogen removal in the effluent (Ternes et al., 1999; Westerhoff et al., 2005; Joss 

et al., 2004; Liu et al., 2009). Similar research is needed for sludge handling processes. In 

one report, it seems that anaerobic vs. aerobic treatment may affect the concentration of 

estrogens in the sludge (Janex-Habibi et al., 2009). However, this study involves different 
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treatment plants and different locations, and therefore a direct comparison cannot be made. 

In order to isolate the effect of sludge handling, a singular wastewater source is needed. In 

this study, estrogen removal will be investigated for wastewater sludge samples, which 

have undergone various sludge handling processes, from two WWTPs receiving 

wastewater from the same city. The information gathered will serve to determine the effect 

of sludge handling processes on estrogen removal. 

1.4 Research Objectives and Hypotheses 

This research aimed at investigating the impact of secondary treatment processes 

and sludge handling processes on estrogen removal in various sludges from two WWTPs 

(Plant A and Plant B) with the same municipal wastewater source. 

The facilities differ in the secondary treatment and sludge handling processes. Plant 

A treatment processes include: primary sedimentation, gravity thickening, trickling filters 

and nitrification, activated sludge with biological nutrient removal (BNR), anaerobic 

digestion, and centrifuging. Plant B treatment processes include: primary sedimentation, 

gravity thickening, BNR, dissolved air flotation, and centrifuging.  

Issue one addresses secondary treatment processes. It was hypothesized that Plant A 

trickling filter sludge would have a greater concentration of estrogen. Since there are 

fewer solids in the trickling filter treatment, adsorption would be greater on a mass basis. 

Also, trickling filters have been shown to have lower biodegradation of estrogen as 

compared to other secondary treatment processes, so there would be a greater likelihood 

for adsorption due to the higher concentration of estrogen. It was hypothesized that BNR, 

which is found in both facilities, would show the lowest concentrations of estrogen in the 



5 

 

sludge because the SRT is higher and this provides a longer time for biodegradation to 

occur. 

In Issue two, it was hypothesized that mechanical processes, such as centrifuging, 

gravity thickening and dewatering, would not affect the estrogen concentration because 

these processes do not assist with biodegradation or interfere with adsorption. On the 

other hand, it is anticipated that anaerobic digestion in Plant A will have the greatest 

impact on the estrogen concentration since the microorganisms will break down solids on 

which estrogen is adsorbed. Also, dissolved air flotation thickening in Plant B may 

decrease estrogen in the sludge because aeration promotes microbial biodegradation. 
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CHAPTER 2 

 

STATE OF THE KNOWLEDGE 

 

2.1 Natural, Synthetic and Metabolite Forms of Estrogen 

Estrogen exists in natural and synthetic forms which have a four-ring or tetracyclic 

composition with differences on the cyclopentane ring at positions C16 or C17 (Table 

2.1).  Natural forms of free estrogen include estrone (E1), 17α-estradiol (αE2), 17β-

estradiol (E2), and estriol (E3). Through metabolic reactions, E1, E2 and E3 are 

interconverted as a result of their similar structures. The synthetic form of estrogen found 

in many birth control pills is ethinyl estradiol (EE2). Estrogen is also found in conjugated 

forms (Table 2.2). In addition to the differences in structure, the other major differences 

between free and conjugated estrogens are that free estrogens are biologically active 

while conjugated estrogens are not, and conjugated estrogens are much more water 

soluble. Of the natural estrogens, E2 is the most potent and the potency of other estrogens 

is equated to E2 through their E2 equivalence. 

Conjugation is a metabolic process that occurs through esterification of free 

estrogen by glucuronide (G) or sulfate (S). The changes occur in either the phenol or 

cyclopentane rings at positions C3, C16 or C17 where there is a hydroxyl group (Khanal, 

et al., 2006). Glucuronidation takes place mainly in the liver and helps with the 

elimination of estrogens from the body. The enzymes responsible are from the UDP-

glucuronosyltransferase family. Sulfonation requires the enzyme sulfotransferase.  



 

 

Table 2.1: Structures, octanol-water partition coefficient (Kow), solubility in water, E2 equivalence, and distribution coefficient 

(Kd) for free estrogens. 

Estrogen Type 

(Abbrev) 

Chemical Structure Log Kow Sol. in water 

(mg/L) 

E2 Equiv. Log Kd Reference 

Estrone  

(E1) 

OCH3

HH

H

OH  

3.1 – 3.4 0.8 – 12.4 0.1 – 0.2 2.78 

 

1.98 – 3.22 

(Ternes, et al., 1999a) 

(Chen and Hu, 2010) 

 

(Chiu, et al., 2009) 

17α-estradiol 

(αE2), 

OHCH3

HH

H

OH  

3.2 – 13.3 3.4 – 4.0 1 – 2  (Lai, et al., 2002) 

17β-estradiol 

(E2) 

OHCH3

HH

H

OH  

5.4 – 13.3 3.8 – 4.0 1 2.61 (Lai, et al., 2000) 

(Chen and Hu, 2010) 

Estriol  

(E3) 

OHCH3

HH

H

OH

OH

 

3.2 – 13.3 2.6 – 2.8 0.02  

 

1.31 – 2.79 

(Lai, et al., 2000) 

 

(Chiu, et al., 2009) 

Ethinyl estradiol 

(EE2) 

OHCH3

HH

H

OH

CH

 

4.15 4.8  

 

1.81 

 

 

 

 

2.00 – 3.81 

(Lai, et al., 2002) 

 

(Stanford and 

Weinberg, 2010) 

(Chiu, et al., 2009) 

Adapted from Khanal et al., 2006
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Table 2.2: Structures for conjugated estrogens 

Estrogen Type Chemical Structure Estrogen Type Chemical Structure 

E1-3S 

OCH3

H
H

H

NaO3SO

 
 

E2-17G 
CH3

HH

H

OH

O

O

OH

OHOH

O

ONa

 

E1-3G 

OCH3

HH

H

O

O

OH

OH

OH

ONaO

 

E3-3S 

OHCH3

HH

H

NaO3SO

OH

 

E2-3S 

OHCH3

HH

H

NaO3SO  

E3-3G 

OHCH3

HH

H

O

OH

O

OH

OH

OH

ONaO

 

E2-3G 

OHCH3

HH

H

O

O

OH

OH

OH

ONaO

 

E3-16G 

CH3

HH

H

OH

O

OH

O

OH

CH3

OH

O

ONa  
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Estrogen is inactive in the sulfate form and may remain in the blood, but can be 

reactivated when it is needed. Estrogen sulfates remain in the body much longer than 

estrogen glucuronides. In general, estrogens are transported throughout the body more 

easily in the conjugated form (Raftogianis, et al., 2000). 

Deconjugation of estrogen glucuronide and estrogen sulfate occurs through 

hydrolysis in the presence of enzymes. These enzymes are glucuronidase and sulfatase. 

Glucuronidase is usually not present in the human body except if pathogenic bacteria are 

in the intestine. Sulfatase is the antagonistic enzyme to sulfotransferase. It is present in 

the human body and the two enzymes act in balance to regulate the amount of active 

estrogen available (Douglas Hall, n.d.).  

2.2 Effect of Estrogen as an Endocrine Disrupting Compound 

An endocrine disrupting compound (EDC) is defined by the United States 

Environmental Protection Agency (U.S. EPA) as an “exogenous agent that interferes with 

the production, release, transport, metabolism, binding, action, or elimination of the 

natural hormones in the body responsible for the maintenance of homeostasis and the 

regulation of developmental processes” (U.S. EPA, 2011).  A wide variety of chemicals 

are considered EDCs, including many pesticides, plasticizers, hormones, and industrial 

chemicals.  

Estrogens and estrogenic chemicals make up a significant fraction of EDCs. In 

addition to the steroidal estrogens previously mentioned (e.g., estrone, estradiol, estriol) 

there are nonsteroidal estrogens. Nonsteroidal estrogens are further classified into 

xenoestrogens, phytoestrogens, and mycoestrogens. Xenoestrogens are synthetic 

chemicals that mimic estrogen. Some of the most notorious chemicals are phthalates, 
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polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), and 

bisphenol A. Phytoestrogens are natural, plant-derived chemicals that have common 

structural components (i.e. phenolic ring, hydroxyl groups) and molecular weight with 

steroidal estrogens. Animals are exposed to phytoestrogens as a part of their diet. The 

most active ones are coumestans, prenylated flavonoids and isoflavones. Mycoestrogens 

are produced by fungi. The most active one is zearalenone. It is usually associated with 

stored grain. 

Humans and nearly all groups of wildlife are impacted by EDCs. In humans, EDCs 

have been linked to reduction in sperm count, increased incidence of cancer (e.g., 

testicular, prostate, breast), congenital malformations, and neurological effects (Phillips 

and Harrison, 1999). Effects on other animals were noticed as early as the 1950s. In 

wildlife, documented instances of fertility problems in several mammals, eggshell 

thinning in birds, deformed embryos in reptiles, and intersex changes in fish are clear 

examples of the harmful effects of EDCs (Phillips and Harrison, 1999).  

Environmental exposure to estrogen in particular, both natural and synthetic, has 

been shown to alter the developmental and reproductive processes of some wildlife, 

especially aquatic life. For example, juvenile male fish exposed to estrogen will 

synthesize vitellogenin, which is a female-specific protein. Estrogen exposure is also 

liked to sex reversal, intersexuality, and inhibition of gonadal growth (Jobling, et al., 

1998).  

The “activity” or potential to disrupt to the endocrine system varies for EDCs. 

Estrogen is a very potent EDC. Concentrations as low as a few ng/L can affect fish 

(Routledge, et al., 1998). Although some industrial phenols, such as bisphenol A (BPA), 
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octylphenol and nonylphenol, are found in higher μg/L concentrations compared to ng/L 

concentrations of natural estrogens, industrial phenols have a much lower activity and 

therefore have less of an impact (Gunnarsson, et al., 2009).  

2.3 Presence of Estrogen in Wastewater Treatment 

Exposure to estrogen may occur through several routes. Potential sources for 

humans include food, pharmaceuticals, and drinking water (Phillips and Harrison, 1999). 

For aquatic life, exposure is attributed mainly to wastewater discharge and, to a lower 

degree, from the application of wastewater sludge (biosolids) to land, run-off from fields, 

and run-off or discharge from animal feedlots. Clear evidence exists that the adverse 

effects on aquatic species, as described in the previous paragraph, occur in vicinity of 

wastewater effluent discharge (Jobling, et al., 1998). Therefore it is important to target 

wastewater treatment as the main environmental source of estrogen. 

Estrogens are released from the body mainly through urine and in conjugated forms. 

A small amount of estrogen, 5-10% of the total estrogen excreted, is released through 

feces and in the form of free estrogen (Adlercreutz and Järvenpää, 1982). Deconjugation 

of estrogen in wastewater starts right away in septic tanks and during transport in the 

sewer lines. This was shown by comparing female urine, wastewater in collection tanks, 

and wastewater influent. Even before initial wastewater treatment processes, there was 

evidence of deconjugation as shown by increased concentrations for free estrogen and 

decreased concentrations of conjugated estrogens (D'Ascenzo, et al., 2003). This same 

study demonstrated that estrogen glucuronides are more quickly deconjugated than 

estrogen sulfates and there was a higher level of E3 as compared to E2 and E1. Estrogen 

sulfates undergo very little deconjugation during wastewater treatment and over 74% are 
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still present after the activated sludge process (Gomes, et al., 2009). Deconjugation 

occurs due to β-glucuronidase and arylsulfatase enzymes. Escherichia coli, commonly 

found in wastewater, can synthesize β-glucuronidase in high amounts (Shackleton, 1986). 

This may explain the faster deconjugation for glucuronides as compared to sulfates. 

Deconjugation may also occur during wastewater treatment and therefore may increase 

the concentration of active estrogens (Khanal, et al., 2006).  

Analysis of wastewater treatment plants around the world has established that there 

are ng/L levels (>1 up to 670) of estrogen in the influent and effluent (Table 2.3). 

Although some wastewater treatment processes eliminate a significant portion of free 

estrogens, there is frequently estrogen released in the final effluent. In general, E1 and E3 

make up the greatest fraction in influent and E1 makes up the greatest fraction in effluent.  

E2 is usually found at low levels in the effluent as a result of transformation to E1 

(Combalbert and Hernandez-Raquet, 2010). In some cases, effluent estrogen 

concentrations have been reported to be higher than influent estrogen concentrations. 

This is attributed to estrogen deconjugation, as described earlier. 
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Table 2.3: Selected examples of estrogen concentrations in wastewater treatment plant 

influent and effluent. 

Estrogen Location Unit Influent Effluent Reference 

E1 

United 

States 

ng/L 57.8 – 83.3  6.3 – 49.1 Robert et al., 

2007 

Austria 

 

ng/L 29 – 670 0 – 72 Clara et al., 2005 

Japan 

 

ng/L 259 – 326 0 – 17 Kobayashi et al., 

2006 

France ng/L 18.8 – 170 0.1 – 58 Gabet-Giraud, et 

al., 2010a 

E2 

United 

States 

ng/L 11.2 – 161.6 1.5 – 5.4 Robert et al., 

2007 

Austria ng/L 23 – 660 0 – 275 Clara et al., 2005 

Japan ng/L 0 – 57 4.6 – 14 Kobayashi et al., 

2006 

France ng/L 6 – 48.9 1.1 – 21.4 Gabet-Giraud, et 

al., 2010a 

E3 

United 

States 

ng/L 79.7 – 259.2 2.2 – 3.9 Robert et al., 

2007 

Austria 

 

ng/L 23 – 660 0 – 275 Clara et al., 2005 

Japan 

 

ng/L 0 0 – 151 Kobayashi et al., 

2006 

France ng/L 26.8 – 658 5.2 – 47.7 Gabet-Giraud, et 

al., 2010a 

 

Adapted from Liu, et al., 2009 

 

Note: Concentrations are for free estrogens and do not include conjugated estrogens 

  

 

2.4 Removal Mechanisms for Estrogen in Wastewater Treatment 

Estrogen is removed during wastewater treatment through biodegradation, 

adsorption and chemical oxidation. Estrogen removal has been investigated to some 

extent for both conventional wastewater treatment and advanced treatment. Most studies 

have focused solely on estrogen in the aqueous phase.  
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During conventional wastewater treatment, estrogen removal is greatest during 

secondary treatment. In general, estrogen is not removed during primary treatment 

(Braga, et al., 2005a; Holbrook, et al., 2002; Muller, et al., 2008; Ternes, et al., 1999b). 

Most removal of estrogen takes place during secondary treatment, which is typically done 

with activated sludge in the U.S. Activated sludge has been shown to have better estrogen 

removal than trickling filters, but trickling filters have better estrogen removal than 

treatment by chemical precipitation (Ziegler, et al., 2005; Svenson, et al., 2003; Ternes, et 

al., 1999). 

Khanal, et al. (2006) suggested that the main factors in determining estrogen 

removal for activated sludge systems are solids retention time (SRT), the estrogen 

partition coefficient (Kd), and the biodegradation constant. A longer SRT would increase 

estrogen removal for activated sludge systems. This was demonstrated by Ternes, et al. 

(1999a) when the SRT was increased from 6 to 11 days and the removal for E2 and E1 

improved by 21% and 30%, respectively. The estrogen partition coefficient could be 

increased by having higher mixed liquor suspended solids (MLSS). When MLSS was 

increased from 1000 to 10,000 mg/L, estrogen removal increased significantly (Khanal, 

2006). Also, higher MLSS would increase the biodegradation constant and result in 

increased removal.  

Although estrogen is not eliminated through adsorption to sludge, it is commonly 

considered a removal process in wastewater treatment. Estrogen adsorbs to sludge to 

some extent, which is expected based on the distribution coefficients for estrogens, but 

published studies show very different results. Several groups report that <10% (Muller, et 

al., 2008) of the total estrogen is adsorbed to sludge during wastewater treatment 
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(Andersen, et al., 2003; Janex-Habibi, et al., 2009; Joss, et al., 2004; Muller, et al., 2008) 

and other research has shown that sludge has a high capacity to adsorb estrogen (Clara, et 

al., 2004; Ren, et al., 2007b).  

Estrogen removal may also take place during advanced treatment, including 

activated carbon treatment, membranes, ozonation, chlorination, and photodegradation. 

Granular activated carbon (GAC) has high absorption for E2 at around 80%; however, 

the removal efficiency is linked to the initial concentration. When the initial 

concentration decreased from 100 to 1 ng/L, removal dropped from 81% to 49% (Snyder, 

et al., 2003). Since estrogen concentrations are often found at the low ng/L level, GAC 

may not be suitable for estrogen removal. Powdered activated carbon (PAC) removes 

90% of estrogen and can remove even more with longer retention times. Unfortunately, 

new PAC must be supplied continually, so it would be a very expensive treatment if 

conducted on a continuous basis (Yoon, et al, 2005). 

Estrogen removal by a membrane bioreactor (MBR) can reach 82% for E1, E2, and 

EE2 (Liu, et al., 2005). As described earlier, a longer SRT and higher MLSS can improve 

removal. Although the pores of a membrane are small, even an ultrafiltration membrane 

is 100 to 10,000 times larger than estrogen molecules, so it is possible for estrogen to 

pass through the membrane and be present in the effluent. Estrogen removal with an 

MBR occurs through adsorption to solids and subsequent biodegradation. Increasing 

MLSS will increase adsorption and, ultimately, increase estrogen removal (Khanal, et al., 

2006). 

Oxidation is another approach to remove estrogen. Both ozone and chlorine have 

been used as oxidants. Typical treatment plant ozone dosages (10-50 mg/L) will remove 
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essentially 100% of estrogen; however, a 2 μg/L ozone dosage achieved 95% E1 and E2 

removal (Deborde, et al., 2005). A possible problem with ozonation is the formation of 

byproducts that could be harmful (Petala, et al., 2008). Photodegradation with direct UV, 

UV/H2O2, and UV/TiO2 have also been shown to oxidize estrogen. The combination of 

UV/TiO2 requires the least amount of energy (Khanal, et al., 2006). Chlorine is already 

used as a disinfectant and it can also oxidize some organics. Compared to ozone and UV 

combinations, chlorine is not as effective at oxidizing organics (Liu, et al., 2009). 

2.5 Analytical Methods for Determining Estrogen Potency 

There are many methods to choose from in order to evaluate the presence or effect 

of estrogen. To choose an appropriate method, one must first consider the purpose of the 

information to be acquired. Estrogen potency analyses provide information on the effect 

of one or more chemicals to the endocrine system. These analyses are particularly useful 

when working with a mixture of chemicals, when determining toxicity, or when 

qualitative information is desired. 

In vitro assays are a fairly rapid way to determine if a chemical or mixture of 

chemicals has an estrogenic effect. These tests are usually easier than in vivo tests and 

have clearly understood pathways. Some in-vitro biological assays require specialized 

cell lines to measure receptor binding and gene expression. Examples include the MLVN 

assay, receptor binding assay (RBA), and estrogen responsive activated luciferase (ER-

CALUX). Concentrations are detected to the ng/L and pg/L level (Houtman, et al., 2006; 

Snyder, et al., 2003a). In-vivo bioassays monitor bioindicators after the organism has 

been exposed to estrogen for a specific period of time. Typical bioindicators include 
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vitellogenin, hormone production, reproductive behavior, and gonad development 

(Snyder, et al., 2003b). 

Other biological assays use yeast that has an estrogen receptor integrated into the 

chromosome, often called the yeast estrogen screen (YES) assay. When the receptor 

binds to a ligand, the gene is expressed and an enzyme is produced. The enzyme reacts 

with a substrate and causes a color change. After incubation, the absorbance is measured 

and related to a concentration based on known standards (Routledge and Sumpter, 1996). 

Similarly, a chemiluminescent enzyme immunoassay (CLEIA) uses gene expression; 

however the signal is provided by a chemiluminescent agent rather than a color-changing 

substrate (Roda, et al., 2006). 

2.6 Analytical Methods for Determining Estrogen Concentration 

In contrast to bioassays, there are methods that provide a direct measurement of 

estrogen concentration using instrumentation. The two most common methods use a 

separation technique, gas chromatography (GC) or liquid chromatography (LC), coupled 

with mass spectrometry (MS). Detection limits can be as low as picogram per liter when 

samples are extracted and concentrated. An enzyme-linked immunosorbent assay 

(ELISA) is a quicker and less costly quantitative tool, which has comparable detection 

limits after sample concentration. While quantification is very accurate, these methods do 

not provide information about toxicity. 

Many of the emerging contaminants found in water systems are at μg/L or lower 

levels. In order to detect these substances, they need to be concentrated. One way to do 

this is through extraction and the most common type is solid-phase extraction (SPE). 

Liquid-liquid, Soxhlet, steam distillation, solid-phase microextraction (SPME), and 
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semipermeable membrane devices (SPMDs) are other types that have been used (Snyder, 

et al., 2003a; Vanderford, et al., 2003). In SPE, the water sample is pulled through a 

column, cartridge or disk, often by way of vacuum aspiration. The compounds are 

retained by the column and then eluted using solvents (Snyder, et al., 2003a). SPE is also 

performed on solid matrices, such as sludge. In this case, the solvents are applied directly 

to the dried sample in a container. The solvents are then concentrated by evaporation 

under nitrogen. In this manner, estrogen is concentrated by two or three orders of 

magnitude. 

The choice between GC and LC depends on the volatility of the compound. In the 

case of GC, this method does not perform well with compounds that are highly polar or 

thermally labile. These compounds need to be altered through a process called 

derivatization. After the compound has been modified with another chemical agent, it is 

less polar and more volatile, which allows analysis by GC. This procedure requires extra 

chemicals, significant time, additional cleanup, and disposal of hazardous chemicals 

(Snyder, et al., 2003a). Derivatization is not possible for some compounds, such as 

caffeine, which do not have the necessary functional groups in their structure. LC does 

not require derivatization and can accommodate the compounds that GC cannot. 

Both GC and LC separate the compounds within a sample using the same principle, 

which is the affinity of the analyte to the column. The processes differ in the phase of the 

analyte prior to detection. For GC, a compound is injected into the instrument and 

vaporized. The vapor is transported by an inert carrier gas. With LC, the analyte remains 

in the liquid phase and is carried via a mobile phase. 
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ELISA kits have been developed for the detection of estrogen in environmental 

water samples. The ELISA test detects the presence of an antigen or antibody by enzyme 

linking. The signal, usually a color change or fluorescence, is proportional to the amount 

of antigens or antibodies in the sample (Snyder, et al., 2003a). In a study by Li, et al. 

(2004) an ELISA was created for the detection of estrone in water sources. The method 

used SPE and tested 3 antibodies. The results were compared to HPLC and GC and found 

to be very close at the ng/L level (Li, et al., 2004). Subsequent studies have compared 

ELISA and LC-MS and found the methods to give comparable results, although ELISA 

often reports a higher value than LC-MS (Farre, et al., 2006; Hintemann, et al., 2006). 

2.7 Quality Assurance and Quality Control Considerations 

Quality assurance and control (QA/QC) is the backbone of a good, scientific 

process. For PPCPs and EDCs, there are important QA considerations to take into 

account in order to accurately measure to the ng/L level. First, all equipment requires an 

extensive cleaning process. Since the target compounds may be at trace levels in water, 

only ultra-pure water should be used for cleaning, sample preparation, and dilution. 

Plastic equipment should be avoided since some compounds from the plastic industry are 

EDCs and may result in cross-reactions for non-quantitative tests. Most studies use glass 

or amber glass (Boyd, et al., 2003). It may be necessary to heat the containers to high 

temperatures to oxidize any trace organics. Extraction disks and cartridges need to be 

rinsed with the chosen solvents prior to use. Prior to testing the first samples, blanks 

should be completed for the entire methodology to ensure that no sources of 

contamination exist. 
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 The highest quality reagents and standards must be used and should be tested for 

trace levels of the analyte being studied. An internal standard should be chosen to 

measure concentration in instrumentation analysis. The internal standard needs to remain 

unchanged and should not be absorbed or diluted in any process. Reference standards 

should be checked for degradation. If this occurs, then the standard must be prepared 

fresh for each use. Also, some samples will degrade if they are not preserved 

(Vanderford, et al., 2003). This means sample collection and lab preparation must be 

timed appropriately so that neither the standards nor the samples sit too long before 

analysis.  

 Further considerations include replicate tests, pre-treatment of samples, and 

matrix effects for mixed samples. Replicates ensure that the results are repeatable and 

reliable. Chlorinated water samples may need pre-treatment to avoid reactions with 

reference standards (Boyd, et al., 2003).  

2.8 Secondary Wastewater Treatment Processes 

Secondary wastewater treatment focuses on biological processes to remove 

dissolved organic matter. There are many different designs that range from classic 

techniques, such as stabilization ponds, to emerging technologies, such as membrane 

bioreactors. This study involves three common processes: trickling filters, activated 

sludge, and biological nutrient removal.  

2.8.1 Activated Sludge 

Activated sludge is an aerobic suspended-growth process that uses microorganisms 

to biodegrade dissolved organic material in the wastewater. The microorganisms utilize 

the organics for cell synthesis and for an energy source. The goal in removing dissolved 
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organics is to minimize oxygen depletion in surface water (i.e., biological oxygen 

demand or BOD) after treated wastewater is discharged. Key features of the activated 

sludge treatment process include a large basin to contain the wastewater and 

microorganisms, constant aeration to maintain aerobic conditions, clarification to 

separate the effluent and microorganisms, return of some microorganisms to the basin, 

and wasting of some microorganisms as secondary sludge. 

Aeration is essential for BOD removal through biodegradation. Heterotrophic 

bacteria, which constitute the majority of the microorganisms in activated sludge 

treatment, require oxygen as an electron acceptor. Oxygen is provided via mechanical 

aerators or gas diffusers. The biodegradation rate is directly related to the amount of 

oxygen available to the microorganisms.  

The sludge retention time (SRT) is an important operating parameter. SRT is the 

average time that the microorganisms stay in the activated sludge process before it is 

wasted. To maintain a constant SRT, the amount of microorganisms wasted should equal 

the amount formed.  

2.8.2 Biological Nutrient Removal 

Biological nutrient removal (BNR) is an activated sludge process that has been 

modified in order to reduce both phosphorus and nitrogen. In addition to an aerobic zone, 

BNR also has anaerobic and/or anoxic zones. Nitrification and phosphorus removal occur 

in the aerobic zone, but the anaerobic zone is necessary to cultivate phosphorus-

accumulating organisms (PAOs). 

Nitrification is a two-step biological process where ammonia is oxidized to nitrite 

and then nitrate. Not all WWTPs require ammonia removal, but ammonia is toxic to 
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aquatic organisms and therefore must be eliminated before discharging to surface water 

or other environmentally-sensitive areas. Nitrification can be achieved along with BOD 

removal in a single-sludge system or it can be accomplished separately from BOD in a 

two-sludge system. For BNR, a single-sludge system is used. Nitrifying bacteria oxidize 

ammonia in the aerobic zone of BNR.  

Phosphorus removal is accomplished by manipulating PAOs to either release or 

store phosphorus depending on the presence or lack of oxygen. In the anaerobic zone, 

PAOs assimilate volatile fatty acids (VFAs) or other fermentation products and release 

phosphorus. Upon entering the aerobic zone, PAOs oxidize the stored VFAs and uptake 

phosphorus (Metcalf & Eddy, 2003). This removes phosphorus from the effluent, where 

it could contribute to eutrophication of surface water. 

2.8.3 Tricking Filters 

A trickling filter is a biological treatment unit categorized as a nonsubmerged 

attached-growth process. Microorganisms create a biofilm on the media, which can be 

plastic or rock. Wastewater is sprayed over the media and contacts the biofilm as it 

trickles down. Trickling filters are mainly used for BOD removal and result in low 

nitrification.  

Trickling filters produce a low amount of sludge. Biofilm will eventually break off, 

called sloughing, and new biofilm will grow in its place. If biofilm sloughing did not 

occur, the SRT for trickling filters would be infinite. Calculating the actual SRT is 

difficult, so it is usually estimated based on BOD loading (Metcalf & Eddy, 2003). The 

biofilm is concentrated in a secondary clarifier and the solids may be returned to the head 
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of the plant or it may be mixed with other solids and treated with sludge handling 

processes.  

2.9 Sludge Handling Processes 

Wastewater treatment intentionally results in the separation of solids from the liquid 

stream. The solids are treated in preparation for disposal, which may be for beneficial 

utilization, incineration or placement in a landfill. A main goal of sludge handling 

processes is to remove excess water in order to reduce the total volume of the sludge. 

This reduces disposal costs, especially for transportation, and when recycle streams are 

used, it also increases the net amount of finished water. Wastewater treatment plants in 

this study used thickening, mechanical dewatering, and digestion. 

2.9.1 Sludge Thickening 

Thickening occurs after solids are removed from a clarifier. This step increases the 

solids concentration from around 1% to 2-10% depending on the type of sludge and the 

thickening process used (McFarland, 2001). In this study, one WWTP used a gravity 

thickener for primary sludge and another WWTP used dissolved-air flotation for 

secondary sludge. 

A typical gravity thickener is a basin with a sloped bottom to collect the sludge in 

the center. A mechanical scraper moves along the sloped bottom to direct the thickened 

sludge to the draw-off pipe. Solids settle due to gravitational forces, although other 

settling mechanisms (i.e., discrete and hindered settling) affect the final solids 

concentration. Polymers or other coagulants may be added to assist in forming flocs that 

settle. The effluent or overflow leaves the thickener over a weir at the top of the basin and 

usually returns to the head of the WWTP via a return stream. 
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Dissolved-air flotation thickening (DAFT) is a process that uses pressurized air to 

force solids upward. In opposition to clarifiers and gravity thickeners, the solids are 

concentrated on the surface of the water. A skimmer continuously removes the floating 

solids from the surface. Polymers may be added to assist in aggregation of the solids. The 

subnatant leaves at the bottom of the basin and usually returns to the head of the WWTP 

via a return stream. 

2.9.2 Mechanical Dewatering 

Mechanical dewatering is the use of equipment to remove excess water from 

sludge. In contrast, non-mechanical dewatering systems, such as drying beds, involve 

sedimentation and natural air drying to remove water from sludge. Low-pressure 

mechanical dewatering systems include centrifuges, belt presses and vacuum filters. The 

final solid product, often called cake, is usually 15 to 25 percent solids. High-pressure 

systems include plate-and-frame filter presses and diaphragm filter presses. The final 

cake is usually 30 to 45 percent solids (Letterman, 1999). In this study, only low-pressure 

systems (e.g., centrifuges) were examined. 

Centrifuges use simple physics to exert a force on the sludge through rotation. As 

compared to conventional sedimentation, where particles settle under the force of gravity, 

centrifuges use rotational speed to reach forces of 1500 to 4000 times the force of gravity 

(Letterman, 1999). A typical type of centrifuge is the solid-bowl-decanter. Sludge is fed 

into the centrifuge along with polymers that assist with formation of the cake. The solids 

settle against the wall of the rotating bowl and are pulled to the narrower end of the 

centrifuge by a helical conveyor. The liquid, called centrate, leaves through the larger end 

and usually returns to the head of the WWTP via a return stream. 
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2.9.3 Sludge Digestion 

Digestion is a microbial degradation process where organic matter is converted to 

carbon dioxide, methane and water, depending on the conditions (i.e., anaerobic or 

aerobic). The result is a volume reduction of 40-60% and a stabilized sludge with low 

volatile organic content. Digestion also reduces pathogens. The solids concentration is 2-

4% after digestion. Another advantage of this process is that dewatering is more effective 

on digested sludge. Volatile solids tend to adsorb more water and since digested sludge 

has a reduced amount of volatile organics, it has a reduced ability to hold water 

(McFarland, 2001). 

Anaerobic digestion occurs when molecular oxygen is not available to the 

microorganisms. Organic matter is converted to methane gas, carbon dioxide gas, and 

water. The process usually requires 15 to 40 days. Methane, which is typically 60-70% of 

the gas produced by volume, can be burned as biogas (McFarland, 2001). There are four 

main steps in anaerobic digestion: hydrolysis, fermentation, acetogenesis, and 

methanogenesis. Various microbial populations are responsible for each step; therefore, a 

careful balance between each group is necessary. Digestion is particularly sensitive to 

pH, temperature, and organic loading. If proper conditions are not maintained, the system 

fails and stabilized sludge is not achieved. Anaerobic digestion is useful for both primary 

and secondary sludges. The digested sludge moves on to the dewatering system and the 

supernatant is returned to the secondary or primary treatment via a return stream. 

Aerobic digestion is the oxidation of organic matter to carbon dioxide and water. 

This system requires a constant input of oxygen. Unlike anaerobic digestion, there is no 

methane produced and, consequently, no biogas generated. The process typically lasts 10 
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to 20 days, which is shorter than anaerobic digestion. Energy costs are higher due to 

constant aeration and mixing, but the system is less prone to upsets compared to the 

anaerobic system. In aerobic digestion, microorganisms utilize whatever substrate is 

available. Since most of the useful substrate was biodegraded during secondary 

treatment, there is not much available. Microorganisms then go through endogenous 

respiration where they metabolize their own cellular mass. What remains in the end is a 

sludge comprising cell wall materials and other cellular components that are not easily 

biodegraded. Aerobic digestion systems work best for secondary sludge, which is 

composed of mainly microorganisms. Some of the digested sludge is recycled back to the 

digester. The remaining digested sludge moves on to the dewatering system and the 

supernatant is returned to the secondary or primary treatment via a return stream. 

2.10 Return Streams 

Most solids handling processes will result in a return stream or sidestream. Return 

streams contain a high amount of organic matter and, unless a discharge permit is 

obtained, it is necessary to return the stream to the WWTP for treatment. Another reason 

for treating return streams is to increase the net production of effluent. Return streams 

need to be taken into account during the design of the WWTP in order to not overwhelm 

any particular step of the treatment train. Although the streams may seem small in 

comparison to the raw water, the additional load due to return streams is significant and 

could increase the solids by 50-100% (McFarland, 2001). In addition to organic matter, 

reeturn streams may have high concentrations of pathogens or metals (Letterman, 1999).  

The water quality of the return stream may dictate where in the wastewater 

treatment process the return stream is sent in order to provide the best treatment. Return 
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streams with a high concentration of suspended solids should be routed to the primary 

clarifier for settling. Any dissolved organics would be treated in subsequent processes. 

Return streams with mainly dissolved organic matter should be sent to the secondary 

treatment step for biodegradation.  

Sometimes a stream should not be recycled directly within the WWTP. If the return 

stream contains a substance that does not break down easily, such as non-biodegradable 

chemical oxygen demand (COD), or may harm beneficial microorganisms, such as 

metals, or will impair the effluent water quality, such as nitrogen and phosphorus, the 

return stream may require separate treatment (McFarland, 2001). In this case, the return 

stream would not be directed to the head of the plant. Possible treatment options include 

precipitation, activated carbon, and air stripping (for carbon dioxide in digester 

supernatant). 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Wastewater Treatment Facility Overview 

Samples were collected at two full-scale municipal wastewater treatment facilities 

(Plant A and Plant B) which receive wastewater from the same city. An overview of the 

treatment trains for the two facilities is presented in Table 3.1. 

Plant A (Figure 3.1) has two streams which differ in secondary treatment, but have 

the same primary sedimentation, tertiary direct filtration, and chlorine disinfection. One 

stream has trickling filters for biological oxygen demand (BOD) removal followed by 

nitrification as secondary treatment units while the other stream uses activated sludge 

with anaerobic/aerobic stages to accomplish BOD and biological nutrient removal 

(BNR). The solids from primary sedimentation are sent to gravity thickeners. The waste 

activated sludge (WAS) from nitrification and BNR are combined and then centrifuged. 

Solids from the trickling filter’s secondary clarifiers are returned to the head of the plant. 

The thickened primary and secondary sludges undergo anaerobic digestion and the 

digested sludge is dewatered through centrifuging. Return streams from the gravity 

thickeners, final dewatering centrifuge, and tertiary filters are sent to the head of the 

plant. The centrate from the secondary WAS centrifuge is returned just ahead of the 

nitrification basins. 
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Figure 3.1: Flow scheme of Plant A with sampling locations (*) 

Note: Dotted lines are return streams 

 

Plant B (Figure 3.2) has primary sedimentation, secondary activated sludge, tertiary 

flocculation/filtration, and disinfection by ultraviolet light (UV). The secondary activated 

sludge treatment accomplishes BOD and nutrient removal through anaerobic and aerobic 

stages, which results in  phosphorus removal, nitrification and partial denitrification. The 

solids from primary sedimentation are sent to gravity thickeners. The secondary WAS 

undergoes dissolved air flotation thickening (DAFT). The thickened primary and 

secondary sludges are combined and dewatering through centrifuging. Return streams 

from the gravity thickeners and centrate from the centrifuges return to the head of the 

plant. The return stream from DAFT returns just ahead of secondary treatment. 
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Figure 3.2: Flow scheme of Plant B with sampling locations (*) 

Note: Dotted lines are return streams 

 

Table 3.1: Overview of wastewater facility treatment trains 

Facility Primary 

Treatment 

Secondary 

Treatment 

Nitrogen 

Removal 

SRT, 

Secondary 

Sludge 

Treatments 

Plant A, 

Stream 1 

Sedimentation a) Trickling 

Filters /  

b) Nitrification 

Nitrification a) 2.5 

days
*
 

b) 8 days 

Gravity 

Thickener, 

Centrifuge, 

Anaerobic 

Digestion 

Plant A, 

Stream 2 

Sedimentation Activated 

Sludge (BNR), 

Anaerobic and 

Aerobic Stages 

Nitrification / 

Partial 

Denitrification 

8 days Gravity 

Thickener, 

Centrifuge, 

Anaerobic 

Digestion 

Plant B Sedimentation Activated 

Sludge (BNR), 

Anaerobic and 

Aerobic Stages 

Nitrification / 

Partial 

Denitrification 

5-8 days  Gravity 

Thickener, 

Centrifuge 

*
 Equivalent SRT as determined by BOD loading (Metcalf & Eddy, 2003) 
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3.2 Collection and Preparation of Samples 

In two sampling campaigns, grab samples from Facility A and Facility B were 

collected between March and June 2011. Samples were not hydraulically linked by 

collection time and no composite samples were collected. The goal of this study was to 

determine general trends for estrogen fate after different treatments rather than highly 

accurate quantification of estrogen and therefore it was deemed appropriate to collect 

grab samples. Samples were collected in 500 mL high density polyethylene (HDPE) 

bottles and cooled during transport. Sample locations are shown in Figures 3.1 and 3.2.        

Within 3 hours of the collection time, sludge samples were transferred to 50 mL 

plastic vials and centrifuged at 4000 rpm for 5 minutes to separate the aqueous and solid 

phases. The aqueous portion was decanted into a HDPE container and stored in the 

refrigerator at 4 °C, along with the wastewater samples (influent, effluent, and centrate) 

that were not centrifuged. The solid portion (sludge) was placed in a freezer at -5 to -10 

°C. After at least 24 hours in the freezer, the frozen samples were dried in an oven at 90-

100 °C and then ground with a ceramic mortar and pestle or pulverized with a high-speed 

mixer mill. The following dried sludge samples were pulverized because their texture 

made it impractical to grind them: PC1, PC2, GT1, GT2, PC3, Combined (Plant B). 

Approximately 1 g samples were weighed out for estrogen extraction. 

3.3 Sample Extraction 

Wastewater and dried sludge samples were extracted in order to concentrate the 

estrogen prior to analysis. All equipment used was either new or cleaned via an acid bath, 

purified water, and high heat. A stock solution for E2 (Sigma, 99% pure Beta-Estradiol) 

was prepared at 100 mg/L in methanol (Fox Pure Brand, ACS specifications). Spike 
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standards for sludge extraction were prepared by diluting the stock solution to 1 mg/L 

with 10% (v/v) methanol in laboratory purified water (17 MΩ·cm). The spike standard 

for liquid samples was prepared by diluting the 1 mg/L spike standard to 25 μg/L in 

laboratory purified water. 

Neither the sludge nor the wastewater samples were subjected to enzymes in order 

to transform conjugated estrogens to free estrogens. This study focuses only on 

comparing the free estrogen that is currently available in the sludge and wastewater.  

3.3.1 Solid Phase Extraction for Dried Sludge Samples 

Sludge samples were extracted using Accelerated Solvent Extraction with a Dionex 

ASE-200 using a modified extraction and clean-up procedure from Jones-Lepp and 

Stevens as shown in Figure 3.3 (Jones-Lepp and Stevens, 2007). The extraction method is 

similar to what other researchers have done, but a different solvent was chosen (Gabet-

Giraud, et al., 2010b; Nieto, et al., 2008; Takigami, et al., 2000). The extraction solvent 

used was 4% (v/v) ammonium hydroxide (Anachemia, ACS specifications) in methanol. 

Methanol is a common solvent chosen for estrogen extraction because estrogen is very 

soluble in it and the solvent is easy to evaporate to dryness. The combination of methanol 

and ammonium hydroxide was chosen because estrogen adsorption capacity is low above 

pH 11.5. At pH values above the pKa (10.4 for E1 and E2) estrogen has a negative charge 

(Chen and Hu, 2010). The negative species does not form hydrogen bonds easily with the 

sludge, therefore making extraction more likely.  

Size 22 cells were prepared in layers with filters on both ends (Ahlstrom glass 

microfiber, 2 cm diameter, grade 131) and components other than the sample were 

measured by volume with a graduated cylinder. The layers, from bottom to top, consisted 
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of:  3 mL florisil (EMD Chemicals, 60-100 mesh, gas chromatography grade), 3 mL 

alumina (EMD Chemicals, 80-200 mesh, chromatographic grade), 2 mL hydromatrix 

(Varian), a mixture of 10 mL alumina with 5 mL hydromatrix and the 1 g sample, and 

concluding with 3 mL hydromatrix. For spiked experiments to determine experimental 

recovery, 100 μL of the 1 mg/L E2 standard was pipetted on top of the 1 g sample and 

allowed to soak in for 1 minute before mixing the sample with alumina and hydromatrix 

and adding it to the cell. For equipment blanks, which served as control tests, the cell was 

prepared in the same manner except that the sample was omitted.  

For the extraction, the operating parameters were set at 80 °C and 2800 psi. The 

other conditions were: 1 minute preheating time, 5 minutes heating time, 15 minutes 

static time, 40 mL solvent volume, flush volume 90%, purge time 90 seconds, and 1 

static cycle. Before each extraction, solvent lines were rinsed with 3 mL methanol (Fox 

Pure Brand, ACS specifications). The extract was collected in a 50 mL glass vial with 

plastic cap and septum. 

Following the extraction, extracts were cleaned by rinsing with hexane (Burdick & 

Jackson, trace analysis grade) and concentrated to 2 mL by drying under nitrogen at 35 

°C (Zymark Turbovap II Evaporation Workstation). In the hexane rinse process, about 3 

mL of hexane was added to the extract. The container was vortexed and allowed to settle, 

which formed separate methanol and hexane layers. The hexane was removed by pipette 

and discarded before continuing with solvent evaporation. After two rinses, there was a 

visible difference in the extract; the extract was more transparent and less colored. The 

concentrated 2 mL extracts were transferred to plastic boiling tubes, centrifuged, 

decanted into glass vials and allowed to evaporate to dryness. The solids remaining in the 
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boiling tube after decantation were rinsed with methanol and added to the glass vial. The 

dried extracts were then reconstituted with 10% methanol, transferred to a 10 mL 

volumetric flask, and diluted in preparation for estrogen analysis. A water bath was 

utilized to maintain a temperature of 20-23 °C during dilutions. 

 

 

Figure 3.3: Extraction procedure for sludge samples 

 

3.3.2 Solid Phase Extraction for Aqueous Samples 

Within three days of collection, aqueous wastewater samples were extracted using 

an Autotrace Workstation (Caliper Life Sciences) and Oasis HLB 6 mL cartridges based 

on an established method (Miege, et al., 2009). Aqueous samples were not filtered. 

Filtering the samples would have removed a portion of the solids (non-settleable) from 

the analysis since these solids are not included with the dried sludge samples. The Oasis 

HLB cartridges were pre-conditioned with 6 mL deionized water and 6 mL methanol. 

The loading was 100 mL for each sample. Samples were percolated at 10 mL/min and 
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eluted with 4 mL of 70/30 (v/v) mixture of ethyl acetate/methanol. For spiked 

experiments to determine experimental recovery, the aqueous sample was spiked at 100 

ng/L with E2 and mixed well before loading the sample onto the cartridge. For equipment 

blanks, which served as control tests, laboratory purified water was loaded onto the 

cartridge. 

Following the extraction, extracts were treated similarly to those from the dried 

sludge samples. Extracts were concentrated to 2 mL by drying under nitrogen at 35 °C 

(Zymark Turbovap II Evaporation Workstation) and rinsed with hexane (Burdick & 

Jackson, trace analysis grade). In the hexane rinse process, about 3 mL of hexane was 

added to the extract. The container was vortexed and allowed to settle, forming a separate 

layer from the methanol. The hexane was removed by pipette and discarded before 

continuing with solvent evaporation. One rinse was sufficient to see a decrease in color 

and an increase in transparency with the extract. The concentrated 2 mL extracts were 

transferred to plastic boiling tubes, centrifuged, decanted into glass vials and allowed to 

evaporate to dryness. The solids remaining in the boiling tube after decantation were 

rinsed gently with methanol and added to the glass vial. The dried extracts were then 

reconstituted with 10% methanol, transferred to a 10 mL volumetric flask, and diluted in 

preparation for estrogen analysis. A water bath was utilized to maintain a temperature of 

20-23 °C during dilutions. 

3.4 Enzyme-linked Immunosorbent Assay (ELISA) Analysis 

Estrogen concentrations were measured using an estrogen ELISA kit (Ecologiena, 

Japan EnviroChemicals, Ltd.). There are relatively few studies where estrogen has been 

quantified in wastewater (Allinson, et al., 2011; Farre, et al., 2006; Goda, et al., 2000; 
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Hintemann, et al., 2006; Hirobe, et al., 2006; Li, et al., 2004; Matsui, et al., 2000) and 

sludge (Suzuki and Maruyama, 2006; Takigami, et al., 2000) using ELISA. None of these 

studies are from the United States. A combination E1, E2, and E3 ELISA kit was used to 

determine natural estrogens, expressed as E2. The standard solutions ranged from 0.05 to 

3.0 μg/L.  

The manufacturer instructions were followed for the analysis procedure. All 

standards and reagents (antigen-enzyme conjugate powder, buffer solution, concentrated 

microplate wash solution, coloring reagent, stop solution) were provided by the 

manufacturer. The kit was stored at 4°C and allowed to reach room temperature before 

analysis. New antigen-enzyme conjugate powder was reconstituted with the buffer 

solution for each separate analysis. In a clean microplate, 100 μL of the standard or 

sample and 100 μL of the conjugate solution were mixed in each well. A 100 μL aliquot 

of the mixture was transferred to a well of the coated microplate and incubated at room 

temperature (22 – 25 °C) for 60 minutes. The mixture was removed and the well was 

gently washed 3 times with 300 μL aliquots. New wash solution was prepared for each 

test by diluting the concentrated solution provided by the manufacturer. After washing, a 

100 μL aliquot of the coloring reagent was added to each well and the microplate was 

incubated at room temperature (22 – 25 °C) for 30 minutes before adding 100 μL of the 

stop solution. Absorbance at 450 nm was measured (TECAN 200 microplate reader) 

within 15 minutes of the reaction stop time. 
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3.5 Interpolation of Absorbance Data 

For each ELISA analysis, a set of 5 standards (0, 0.05, 0.15, 0.50, 3.0 μg/L E2) in 

duplicate was run to create a calibration curve. A three-parameter exponential equation 

was used to fit the data to a curve: 

y = a·e
(b / ( c + x))

       (1) 

 a, b, c = fitting parameters 

 x = concentration 

 y = absorbance  

Using the average (n=4) absorbance values for two scans of the duplicate standards, the 

fitting parameters were determined for each standard with the Solver tool in Excel®. The 

average values for the fitting parameters from all 5 standards were used to establish the 

best-fit curve, as shown in Table 3.2. Figure 3.4 gives a visual representation of the 

agreement between the best-fit curve and the absorbance values for the 5 standards.  

Once the fitting parameters were established, the E2 concentration for samples was 

determined by interpolation using Equation 1. Absorbance values that fell outside of the 

range of the standards were not used. Taking into account the 1:10 dilution step just prior 

to ELISA analysis and the original sample size, the final E2 concentration was 

determined. Example calculations for a sludge sample and a wastewater sample are given 

below. 

 Sludge sample 

 Initial Dried Sample Mass (Sample Mass): 1.0247 g 

 E2 Concentration: 1.0772 μg/L or 1077.2 ng/L 

 Dilution Factor (DF):  10 
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 Extracted Sample Volume (Vol): 10 mL or 0.01 L 

Final E2 Concentration = (E2 Concentration * DF * Vol) / Sample Mass 

   = (1077.2 ng/L * 10 * 0.01 L) / 1.0247 g = 105.1 ng/g 

 Wastewater sample 

Initial Sample Volume (Sample Volume): 100 mL or 0.1 L 

 E2 Concentration: 0.10058 μg/L or 100.58 ng/L 

 Dilution Factor (DF):  10 

Extracted Sample Volume (Vol): 10 mL or 0.01 L  

Final E2 Concentration = (E2 Concentration * DF * Vol) / Sample Volume 

   = (100.58 ng/L * 10 * 0.01 L) / 0.1 L = 100.6 ng/L 

 

Table 3.2: Example of determining fitting parameters for calibration curve 

y (Abs) a b c x (Conc) 

1.565851 0.092531 1.171964 0.414320 0 µg/L 

1.184900 0.094922 1.172170 0.414343 0.05 µg/L 

0.724625 0.091636 1.171407 0.416490 0.15 µg/L 

0.336825 0.093570 1.172256 0.415215 0.5 µg/L 

0.115824 0.082898 1.158458 0.463616 3.0 µg/L 

average 0.091111 1.169251 0.424797  
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Figure 3.4: Example graph of best-fit line for calibration curve and absorbance values for 

standards  

 

3.6 Quality Assurance / Quality Control (QA/QC)  

Recovery and precision tests were performed for the analytical method to ensure its 

repeatability and accuracy. They also serve as a way to compare this method to other 

existing methods and to the reported manufacturer precision of the ELISA kit. Typically, 

an internal standard is used for analytical work. However, since that is not possible for 

the ELISA kit, it is important to have some tools in place for judging the validity of the 

method. 

Quality Control for the Extraction Method 

Control tests were performed at the start of the process and throughout the 

experiment to ensure that there was no background level of estrogen detected and that 
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various procedures did not remove or add estrogen. Equipment blanks, a field blank, a 

laboratory blank, solvent checks, and various method checks were performed. Equipment 

blanks involved extractions that did not contain samples, as described in sections 3.3.1 

and 3.3.2. Table 3.3 shows the results from equipment blanks. The calculated 

concentration was determined from the measured absorbance using Equation 1. All but 

one test resulted in values below the detection limit of 0.05 µg/L. The equipment blank on 

6/13/2011 that was a significant concentration can be attributed to a leak in the Dionex 

ASE-200. Samples from this date were excluded in the final results and all extractions 

after this date were performed using a different ASE-200 with the same method as 

before. 

 

Table 3.3: Results for equipment blanks 

Sludge Extraction – Dionex ASE-200 

Extraction 

Date 

Calculated 

Concentration 

(μg/L) 

Reported 

value (μg/L) 

Extraction 

Date 

Calculated 

Concentration 

(μg/L) 

Reported 

value (μg/L) 

6/23/2011 0.0102 < 0.05 5/3/2011 0.0195 < 0.05 

6/13/2011
* 

0.6210 0.62 4/7/2011
** 

-0.0692 < 0.05 

6/2/2011 0.0427 < 0.05 4/7/2011
** 

-0.0112 < 0.05 

5/16/2011 0.0164 < 0.05 3/16/2011 0.0008 < 0.05 

5/16/2011 0.0180 < 0.05 3/16/2011
** 

-0.0020 < 0.05 

5/3/2011 0.0194 < 0.05 3/16/2011 0.0008 < 0.05 

Liquid Extraction – Caliper Autotrace 

6/1/2011 0.0060 < 0.05    
*
 Leak detected while operating ASE-200 on this day; contamination from previous 

samples is likely  
**

 Negative value is a product of absorbance data interpolation and best-fit equation; 

absorbance values were a close match to 0 μg/L E2 standard 
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For the field blank, collected on 3/3/2011, one HDPE container of laboratory 

purified water was poured into another HDPE container while at a sampling location. The 

field blank received the same treatment for transportation and storage as the other 

samples. The laboratory blank contained laboratory purified water that had the same 

storage conditions as the samples, but the container was not transported to the field 

location. Analysis for the field and laboratory blanks consisted of direct testing via 

ELISA and the concentrations were below detection limits (< 0.05 μg/L). No extractions 

were performed with the field or laboratory blanks. Solvent checks involved direct testing 

via ELISA of the 10% methanol solution used in preparing the standards and diluting the 

extracts. On each occasion (n=3), the concentration was below detection limits. 

Control tests were performed for several steps of the method. The HDPE sampling 

containers and Oasis HLB cartridges were tested indirectly through the field and 

laboratory blanks. The plastic boiling tubes and glass vials were tested by using methanol 

in the subsequent procedure: centrifuging, decanting into glass vials, allowing the solvent 

to evaporate, reconstituting with 10% methanol, and analyzing via ELISA. The 

concentration was below detection limits, indicating the containers did not have an 

adverse effect on the method. Several hexane rinses were tested to ensure that no 

estrogen was partitioning to this phase during the clean-up step of the extract. The hexane 

rinses were treated in the same manner as the extracts and all tests resulted in 

concentrations below detection limits.  

Two steps of the method did show detectable estrogen loss, which impacted the 

final procedure. During the initial extractions (3/3/2011), the solids remaining in the 

boiling tube after decantation were ignored. To check if estrogen remained in the boiling 
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tubes, the solids were rinsed with methanol, poured into a separate glass vial than the 

extract, and treated in the same way as the extract. The estrogen concentration was 0.17 

μg/L, which is greater than the detection limit. In all subsequent extractions, the solids 

were rinsed with methanol and added to the decanted extract, as described in sections 

3.3.1 and 3.3.2. This procedural change was introduced to limit the loss of estrogen. One 

other step of the method that showed estrogen loss during initial extractions was not 

altered because it would have doubled the time needed for extractions. Dewatered sludge 

that was spiked with estrogen was compared through single extractions (static cycle = 1) 

and double extractions (static cycle = 2) to determine if some of the estrogen remained 

with the sludge after the first extraction. The results are shown in Table 3.4. Overall, the 

single extractions for the 5 sludge samples were very similar (CV = 3.67%). The second 

extraction retrieved additional estrogen, corresponding to around 14% of the combined 

extracts. It is clear that a single extraction will not result in total desorption of estrogen 

from the sludge and extraction cell components (alumina, florisil, and hydromatrix). 

Although treating each sample to a double extraction would give more accurate results 

for total estrogen in each sludge sample, this study does not require the higher accuracy. 

It was deemed more efficient to complete single extractions for all sludge types and 

therefore be able to make direct comparisons within this study. 

Quality Control for Spike Standards  

Based on the product information from the manufacturer, β-estradiol solutions 

should be prepared fresh, rather than storing them for future use. To check if the spike 

standards degraded over time, they were diluted to 1 μg/L and tested in duplicate several 

times throughout the experimental timeframe. As shown in Table 3.5, the solutions were 
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stable for about one month, but the solutions did show degradation. Spike standards were 

prepared in March, early May and late May. The spike standard prepared on 3/3/2011 

was used for extractions between 3/3/2011 and 4/13/2011. The spike standard prepared 

on 5/3/2011 was used for extractions on 5/3/2011 and 5/16/2011. The spike standard 

prepared on 5/31/2011 was used for extractions between 6/1/2011 and 6/23/2011. The 

early May spike standard differed by 8% from the beginning to the end of the month, 

which shows there is a little deterioration. However, it is not necessary to prepare the 

standard daily or weekly, as indicated in other studies (Baronti, et al., 2000).  

The desired concentration for the spike standards was 100 μg/L. As shown in Table 

3.5, that exact concentration was difficult to achieve. Ideally, the data for all the spiked 

experiments should be adjusted for the actual concentration of the spike standard. These 

data are used to calculate the recovery for the extractions. Since only an approximate 

recovery was needed, it was deemed unnecessary to adjust the data for the actual 

concentration of the spike standard. 

 

Table 3.4: Comparison of single and double extractions for dewatered sludge 

Sludge sample 
Extraction 1 

(μg/L) 

Extraction 2 

(μg/L) 

Total E2  

(μg/L) 

% of E2 in 

extraction 2 

1 17.11 2.78 19.89 14.0% 

2 18.93 < 3.0 < 21.93 < 13.7% 

3 17.87 n/a 17.87 n/a 

4 17.76 n/a 17.76 n/a 

5 18.11 n/a 18.11 n/a 
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Table 3.5: Concentration of estrogen spike standards over time 

Spike Standard 
Tested on 

5/24/2011 
Tested on 6/7/2011 

Tested on 

6/21/2011 

1 

(prepared 

5/3/2011) 

112 μg/L 101 μg/L 93.6 μg/L 

114 μg/L 106 μg/L 89.3 μg/L 

2 

(prepared 

5/31/2011) 

n/a 86.7 μg/L 87.8 μg/L 

n/a 89.7 g/L 91.1 μg/L 

 

 

Precision Experiments for ELISA Analysis 

ELISA precision was tested throughout the experiment. Analytical duplicates for 

selected extractions were performed and the coefficient of variation (CV) was calculated 

(Table 3.6). Precision was also judged by analytical duplicates for E2 standards (Table 

3.7).  

The manufacturer reports that the CV is usually below 10% and a comparison study 

between ELISA and LC-MS/MS also reported less than 10% CV (Farre, et al., 2006). 

The duplicate standard tests are in agreement with this value; however, a few of the 

samples had poorer precision. This could be due to non-homogeneous samples, 

malfunctioning pipettes or human error. In general, ELISA analysis proved to be 

repeatable.   
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Table 3.6: Coefficients of variation for ELISA analytical duplicates 

Sludge Samples 

Sample 

E2 

Conc. 

(μg/L) 

E2 

Conc. 

(μg/L) 

CV   

(%) 
Sample 

E2 

Conc. 

(μg/L) 

E2 

Conc. 

(μg/L) 

CV   

(%) 

PC1 51.7 53.9 2.9% CT2 53.0 53.4 0.6% 

PC2 42.7 35.3 13.4% PC3 43.2 42.1 1.8% 

TF 52.4 52.5 0.2% AB2 31.0 31.7 1.6% 

AB1 24.0 20.8 10.3% DAFT 20.9 24.6 11.7% 

CT1 43.9 40.9 5.0% Combined 24.9 24.8 0.28% 

AD 62.6 59.4 3.7% CT3 40.0 42.9 4.9% 

Wastewater Samples 

Sample 

E2 

Conc. 

(μg/L) 

E2 

Conc. 

(μg/L) 

CV   

(%) 
Sample 

E2 

Conc. 

(μg/L) 

E2 

Conc. 

(μg/L) 

CV   

(%) 

GT1 310.2 323.4 2.9% CT2 744.2 790.3 4.2% 

TF 354.6 349.4 1.0% PC3 316.3 331.7 3.4% 

AB1 23.2 17.4 20.2% Combined 328.5 324.2 0.9% 

AD 561.2 601.6 4.9% CT3 275.0 251.8 6.2% 

 

 

Table 3.7: ELISA analytical duplicates for estrogen standards 

04/13/11 06/07/11 

Standard 

E2  

Calc. 

Conc. 

(μg/L) 

E2  

Calc. 

Conc. 

(μg/L) 

CV   

(%) 
Standard 

E2  

Calc. 

Conc. 

(μg/L) 

E2  

Calc. 

Conc. 

(μg/L) 

CV   

(%) 

0 1.5536 1.5865 1.48% 0 1.0546 1.0930 2.5% 

0.05 1.1910 1.1737 1.03% 0.05 0.8811 0.8771 0.3% 

0.15 0.7456 0.7009 4.37% 0.15 0.5666 0.5876 2.6% 

0.50 0.3415 0.3321 1.97% 0.50 0.2721 0.2638 2.2% 

3.0 0.1204 0.1111 5.68% 3.0 0.1114 0.1045 4.5% 
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Recovery Experiments for the Extraction Method 

 Overall recovery was used to judge the complete method. It was not used to 

correct the final measurement since not all sample types were spiked and there were 

variations in recovery. For the sludge samples, overall recovery was tested by spiking the 

1 g dried sample with 100 ng E2 (Sigma, 99% pure Beta-Estradiol) just before mixing 

with the alumina and hydromatrix or by spiking the alumina directly for the blank 

sample. For the liquid wastewater samples, overall recovery was tested by spiking 

purified water or wastewater samples prior to extraction. Recovery was calculated as 

expressed in Equations 2 and 3: 

          Spiked alumina (sludge blank) and laboratory purified water       

Recovery = 100
amountestrogenspiked

measuredestrogen
                (2) 

          Spiked sludge and wastewater samples       

Recovery = 100


amountestrogenspiked

loadsamplemeasuredmeasuredestrogen
     (3) 

Spiked samples were always extracted and analyzed concurrently with unaltered samples 

in order to determine the sample load. Recovery was variable (Table 3.8), but this is 

typical of other studies with estrogens with recovery reported from 70-125% (Farre, et 

al., 2006; Hintemann, et al., 2006; Miege, et al., 2009; Takigami, et al., 2000). Low 

recovery values could be due to irreversible adsorption of the estrogen to the sludge or 

extraction materials (i.e., alumina, hydromatrix, HLB cartridge), as well as loss during 

other steps of the method. Recovery values above 100% could be due to poor precision 
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between the spiked and unspiked ELISA analyses or a more complete extraction for the 

spiked sample as compared to the unspiked sample. 

Recovery for various steps of the method was determined in order to see if 

significant losses occurred in any individual step of the method (Table 3.9). The steps 

tested were: solvent concentration with nitrogen, centrifuging, and reconstitution. A 

known amount (100 ng) was used in each step and each was performed in duplicate or 

triplicate. Loss due to sample transfer was not quantified directly; however, it is 

indirectly included for the tested steps. Recovery was calculated using Equation 2. As 

seen in Table 3.9, there was estrogen loss throughout the method; however, the CV 

reveals that the loss is consistent and therefore all samples are expected to have the same 

loss and can be directly compared. 

 

Table 3.8: Recovery of estrogen for spiked samples 

Sludge Samples 

Sample Recovery 

Range 

Sample Recovery 

Range 

Sample Recovery 

Range 

BNR 52-77% PC3 108-124% Combined 91-99% 

CT2 74-76% AB2 60-62% CT3 49-51% 

Wastewater Samples 

Sample Recovery 

Range 

Sample Recovery 

Range 

Sample Recovery 

Range 

DAFT 76-81% Plant A 

Influent 

126-139% Plant A 

Effluent 

48-75% 

CT2 105%     

Blank Samples 

Sludge 

Extraction 

59-60% Wastewater 

Extraction 

78-85%   
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Table 3.9: Recovery of estrogen for selected steps of the method 

Step 
Expected 

E2 (ng) 

Test 1 

(ng) 

Test 2 

(ng) 

Test 3 

(ng) 

Average 

Recovery 

CV 

(%) 

Solvent 

Concentration 
100 66.9 68.7 N/A 68% 1.9% 

Centrifuging 100 86.3 79.2 75.1 80% 7.1% 

Reconstitution 100 72.1 74.7 66.4 71% 6.0% 
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CHAPTER 4 

 

EFFECT OF SECONDARY TREATMENT TYPE ON ESTROGEN REMOVAL IN 

WASTEWATER TREATMENT PLANTS 

 

4.1 Introduction 

Estrogen is known to be biodegraded partially during wastewater treatment 

(Andersen, et al., 2005; Joss, et al., 2004; Ternes, et al., 1999a). The process involved is 

likely aerobic co-metabolism. Anaerobic biodegradation also occurs, but the process is 

much slower. In a batch-test biodegradation study, estradiol (E2) removal was 88% 

within one day for aerobic conditions while anaerobic conditions resulted in only 50% 

degradation after seven days (Lee and Liu, 2002). Initially, it was suspected that 

ammonia oxidizing bacteria, such as Nitrosomonas europaea, in nitrifying activated 

sludge were responsible for estrogen biodegradation during wastewater treatment (Shi, et 

al., 2004a; Vader, et al., 2000). More recently, it appears that heterotrophic bacteria are 

responsible (Gaulke, et al., 2008; Ren, et al., 2007b). A proposed metabolic pathway 

suggests the conversion of E2 to E1, followed by oxidation and ring cleavage; however, 

the process is still not completely understood (Lee and Liu, 2002).  

Previous research has demonstrated that activated sludge treatment will result in 

greater biodegradation of estrogen as compared to trickling filters (Janex-Habibi, et al., 

2009; Svenson, et al., 2003; Ternes, et al., 1999a). Although batch-test experiments show 

biodegradation for anoxic and anaerobic conditions, these compartments within full-scale 

treatment plants do not show significant estrogen removal (Joss, et al., 2004). Taking this 
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into account, an activated sludge system with biological nutrient removal (BNR) may be 

expected to result in the same biodegradation as a non-BNR activated sludge system. 

Other factors that may also play a role in estrogen removal are the solids retention time 

(SRT) and the concentration of mixed liquor suspended solids (MLSS). A greater SRT 

has been shown to result in increased estrogen biodegradation (Andersen, et al., 2003; 

Joss, et al., 2004). Higher MLSS presents the opportunity for more adsorption, which 

could lead to higher estrogen removal through biodegradation occurring on the solids or 

through simple elimination from the aqueous phase (i.e. effluent) by sorption to the 

sludge (Khanal, et al., 2006).  

In this study, estrogen concentration in sludge and wastewater streams was 

compared for three secondary treatment types at two wastewater treatment plants: 

trickling filter (Plant A), non-BNR activated sludge (Plant A), BNR (Plant A) and BNR 

(Plant B). Although estrogen removal in wastewater treatment plants has been reported 

previously (Andersen, et al., 2003; Baronti, et al., 2000; Braga, et al., 2005a; Braga, et al., 

2005b; Clara, et al., 2004; Esperanza, et al., 2007; Gabet-Giraud, et al., 2010a; Janex-

Habibi, et al., 2009; Johnson, et al., 2005; Joss, et al., 2004; Muller, et al., 2008; Svenson, 

et al., 2003; Ternes, et al., 1999b; Ying, et al., 2008), the uniqueness of this study is that 

the different treatment units receive wastewater from the same community. This situation 

allows for a direct comparison between treatment types since all three processes have the 

same wastewater source and essentially the same pre-treatment (bar screen, grit chamber, 

and primary clarifier). For each treatment process, estrogen removal was determined for 

both the aqueous phase and the solid phase of the sludge. 
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4.2 Materials and Methods 

A detailed description is provided in chapter 3, along with diagrams (Figure 3.1 and 

Figure 3.2) showing sampling locations at Plant A and Plant B. Briefly, grab samples 

from two wastewater treatment plants were collected in 500 mL HDPE bottles on two 

occasions in spring and early summer. At the lab, the samples were centrifuged to 

separate the liquid and solid phases of the sludge. The liquid portion was stored in the 

refrigerator (4 °C) and the solid portion in the freezer (-5 to -10 °C). The frozen samples 

were dried in an oven (90-100 °C) and ground with a mortar and pestle or pulverized 

with a high-speed mixer mill.  

Approximately 1 g of dried sludge was extracted (Dionex ASE-200) with 4% (v/v) 

ammonium hydroxide. The unfiltered liquid phase (100 mL) underwent solid phase 

extraction (Caliper Life Sciences Autotrace Workstation) with Oasis HLB 6 mL 

cartridges. The samples were eluted with 4 mL of 70/30 (v/v) mixture of ethyl acetate / 

methanol. Both the extracts from the dried sludge and the liquid phase were concentrated 

to 2 mL by drying under nitrogen (Zymark Turbovap II Evaporation Workstation) in a 

water bath (35 °C). The extracts were allowed to evaporate to dryness at room 

temperature and reconstituted with 10% (v/v) methanol in laboratory purified water (17 

MΩ·cm).  

Estrogen concentrations were measured using an estrogen enzyme-linked 

immunosorbent assay (ELISA) kit. Typically, estrogens in wastewater and sludge have 

been measured using liquid chromatography coupled with mass spectrometry (LC-MS) 

(Farre, et al., 2006; Gabet-Giraud, et al., 2010b; Gomes, et al., 2004; Nieto, et al., 2008; 

Snyder, et al., 2003a; Vanderford, et al., 2003; Yang, et al., 2010) or gas chromatography 
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with mass spectrometry detection (GC-MS) (Hanselman, et al., 2006; Ternes, et al., 

2002). There are at least 9 reports available in the literature on the use of ELISA for 

estrogen quantification in wastewater and sludge with the majority coming from China 

and Japan (Allinson, et al., 2011; Farre, et al., 2006; Goda, et al., 2000; Hintemann, et al., 

2006; Hirobe, et al., 2006; Li, et al., 2004; Matsui, et al., 2000; Shi, et al., 2010; Suzuki 

and Maruyama, 2006; Takigami, et al., 2000). There are no prior reports for estrogen 

analysis by ELISA from studies in the United States. ELISA analysis presents several 

advantages over LC-MS and GC-MS, including: 1) no need for expensive 

instrumentation or highly experienced technicians, 2) no derivatization for samples, 3) 

less sample pre-treatment and purification, 4) rapid and simultaneous analysis of many 

samples, and 5) consistent results with typically less than 10% CV (Farre, et al., 2006; Li, 

et al., 2004). Disadvantages include overestimation due to cross-reactions and low ability 

to measure conjugated estrogens; however, improved ELISA design has reduced cross-

reactions (mainly below 0.7%) (Farre, et al., 2006) and estrogen glucuronides are 

deconjugated rapidly during secondary treatment (Gomes, et al., 2009) making  

conjugated estrogen analysis unnecessary after primary treatment. 

A combination E1, E2, and E3 ELISA kit (Ecologiena, Japan EnviroChemicals, 

Ltd.) was used to determine natural estrogens, expressed in estradiol equivalent (EEQ) 

concentration as E2. The standard solutions ranged from 0.05 to 3.0 μg/L. Conjugated 

estrogens were not intentionally quantified. All standards and reagents were provided by 

the manufacturer and the manufacturer’s instructions were followed for the analysis 

procedure. Absorbance at 450 nm was measured (TECAN 200 microplate reader) within 

15 minutes of the reaction stop time. A calibration curve was determined by fitting data 
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from 5 standards to a three-parameter exponential equation. The estrogen concentration 

for samples was determined by interpolation using this equation. Final estrogen 

concentrations were calculated by taking into account dilutions and the original sample 

size. Total estrogen as E2 was reported in dried sludge samples as ng/g and in the 

aqueous phase as ng/L. Blank, recovery and replicate tests were included in the 

experimental matrix. 

4.3 Results and Discussion 

4.3.1 Estrogen Analysis with ELISA 

Precision 

As part of the method development process, replicate tests were performed. 

Replicate tests for extractions and analytical duplicates were completed during the two 

sampling campaigns. High precision was obtained for analytical duplicates of selected 

samples, as shown in Table 4.1. Most of the CV % values obtained are significantly 

lower than the manufacturer specifications of 10%. Replicate extraction samples 

consisted of dried sludge or wastewater from the same collection container that was 

treated in the same way and extracted in parallel. In two situations (solid phase of the 

trickling filter and aqueous phase of BNR), replicate extraction samples are not available 

due to equipment malfunction. As seen in Table 4.2, extraction replicates showed 

variability. This could be due to estrogen loss during the method or non-homogeneous 

samples. In the case of the solid phase BNR sample for Plant A, the measurements are so 

far apart that they have little value. Ideally, this sample would have been extracted again, 

but it could not be done due to time constraints with the equipment.  
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Recovery 

Single recovery tests were performed on extractions for selected samples. These 

tests were limited due to time constraints with the equipment, as well as cost. A recovery 

range is given based on analytical duplicates. Recovery was variable (Table 4.3), but this 

is typical of other estrogen studies using SPE where recovery ranged from 62-125% 

(Farre, et al., 2006; Hintemann, et al., 2006; Miege, et al., 2009; Suzuki and Maruyama, 

2006; Takigami, et al., 2000). One study had very a similar recovery (62%) for spiked 

sludge (Suzuki and Maruyama, 2006) and another study demonstrated an average 

recovery of 70% for spiked sludge (Takigami, et al., 2000). Low recovery values could 

be due to irreversible adsorption of the estrogen spike to the sludge or extraction 

materials (i.e., alumina, hydromatrix, HLB cartridge), as well as loss during other steps of 

the method.  

Recovery experiments with the solid phase of sludge are more challenging than 

with the aqueous phase, as pointed out by Gomes, et al., (2004) and Ternes, et al (2002). 

Spiking on top of the dried sludge and allowing a short time for adsorption is not the 

same as what occurs during wastewater treatment. The amount recovered should be 

considered as the maximum extractable quantity (Ternes, et al., 2002). Also, there needs 

to be a balance between removing interfering compounds and losing the target compound 

through clean-up steps (Gomes, et al., 2004). 

Since recovery varied and was not performed for all matrices, the final reported 

concentrations were not adjusted. A preferable approach would be to use an internal 

standard, one that is not present in the matrix already, and measure the recovery of that 

compound from the beginning of the method to the end. Then the reported values would 
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be adjusted based on the internal standard recovery. This tactic is not possible for the 

analytical method employed in this study because the ELISA kit only measures 

estrogens. This is a disadvantage of ELISA analysis. However, the benefit of quicker 

analysis and the minimal instrumentation required outweigh that disadvantage (Farre, et 

al., 2006; Suzuki and Maruyama, 2006). 

 

Table 4.1: Analytical duplicates 

Sample 
E1+E2+E3 

Conc. 

E1+E2+E3 

Conc. 

CV      

(%) 

Solid phase, Trickling Filter 52.4 ng/g 52.5 ng/g 0.2% 

Solid phase, BNR (Plant B) 31.0 ng/g 31.7 ng/g 1.6% 

Solid phase, non-BNR 24.0 ng/g 20.8 ng/g 10.3% 

Aqueous phase, Trickling Filter 354.6 ng/L 349.4 ng/L 1.0% 

 

 

Table 4.2: Replicate extraction samples 

Sample 
E1+E2+E3 

Conc. 

E1+E2+E3 

Conc. 

CV     

(%) 

Solid phase, BNR (Plant B) 23.7 ng/g 28.6 ng/g 13.2% 

Solid phase, BNR (Plant A) 116.5 ng/g 19.6 ng/g 101% 

Solid phase, non-BNR 22.4 ng/g 21.2 ng/g 5.4% 

Aqueous phase, Trickling Filter 352.0 ng/L 290.5 ng/L 13.5% 

Aqueous phase, non-BNR 20.6 ng/L 20.3 ng/L 1.0% 

Aqueous phase, BNR (Plant B) 28.8 ng/L 28.5 ng/L 0.7% 
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Table 4.3: Recovery experiments for extractions 

Solid Phase 

Sample Recovery Range Sample Recovery Range 

BNR (Plant A) 52-77% BNR (Plant B) 60-62% 

Blank Samples 

Sludge Extraction 59-60% Wastewater Extraction 78-85% 

 

 

4.3.2 Effect of Secondary Treatment Type on Estrogen Removal 

Results from the two sampling campaigns were combined. This study did not look 

at temporal variations, but the temperature difference between campaigns was not drastic. 

The temperature of the wastewater was for campaign 1 was 21.0 °C and campaign 2 was 

24.8 °C. As with most studies involving sludge, grab samples were collected since it is 

difficult to collect hydraulically-linked or 24 hour composite sludge samples. The 

samples were collected at different times for the campaigns; however, this is likely not a 

concern. A study on estrogen showed that there was low (<20% RSD) inter-day 

variability at 14 French WWTPs (Gabet-Giraud, et al., 2010b). 

Estrogen concentrations in the solid and aqueous phases are given in ng/g and ng/L, 

respectively. For the solid phase, the term “load” is used instead of concentration in order 

to distinguish the two phases more readily. In the context of this research, load refers to 

the mass of estrogen (ng) in the sample per dried mass (g) of the entire solid sample.  

Trickling Filter 

Samples for the trickling filter were obtained from the return stream of the 

sedimentation basin at Plant A (Figure 3.1). The estrogen load in the sludge for the 
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primary clarifier (40.0±1.4 ng/g as E2) preceding the trickling filter and the estrogen 

concentration in the aqueous phase of the primary influent (429±2.1 ng/L as E2) were 

measured in order to evaluate the change in estrogen concentration caused by this 

treatment step. 

In general, information is scarce on the estrogen load for sludge and no other 

reports were found with a load for trickling filter solids (Table 4.4). Other studies have 

looked at estrogen removal in the aqueous phase after trickling filters (Janex-Habibi, et 

al., 2009; Johnson, et al., 2007; Ternes, et al., 1999a; Ternes, et al., 1999b) or estrogen 

load in the final dewatered sludge for treatment trains that included a trickling filter 

(Janex-Habibi, et al., 2009). Although E2 removal was high for some WWTPs in the 

Janex-Habibi et al. study (Table 4.4), good E2 removal was associated with high E1 in 

the trickling filter effluent. Taking this into account, the combined estrogen (E1 + E2) 

would be higher and consequently total estrogen removal would be much lower (data not 

presented in paper). Since these removals do not take total estrogen into account, they 

should not be compared directly against the other reported removals. 

Estrogen removal in the aqueous phase for the trickling filter is low compared to 

other studies (Table 4.4). However, the removal is close to the low end of the Johnson et 

al. (2007) study when the standard deviations are taken into account. Overall, this study 

suggests that estrogen removal for the trickling filter was incomplete and low compared 

to activated sludge (Table 4.6), which was expected. As for the solid phase, no 

comparison is possible with other studies. The load is slightly higher on the trickling 

filter solids compared to primary sludge. Without more measurements, it is not possible 
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to confirm that estrogen load for the trickling filter solids is generally higher compared to 

primary sludge. 

 

Table 4.4: Comparison of estrogen load and removal for trickling filters 

 Solid Phase Aqueous Phase 

Reference 

Conc. 

E1+E2+E3 

(ng/g dw as E2) 

Removal 

Conc. 

E1+E2+E3 

(ng/L as E2) 

Removal 

This study 52.5 –31% 321±43 25±13% 

Ternes et al. 1999a n.d. n.d. n.r. 67% 

Johnson et al. 2007 n.d. n.d. n.r. 
70±36% 

(E2 only) 

Janex-Habibi et al. 

2009 
n.d. n.d. n.r. 

*
79% 

(E2 only) 

Janex-Habibi et al. 

2009 
n.d. n.d. n.r. 

*
0% 

(E2 only) 

Janex-Habibi et al. 

2009 
n.d. n.d. n.r. 

*
10% 

(E2 only) 

Janex-Habibi et al. 

2009 
n.d. n.d. n.r. 

*
83% 

(E2 only) 

n.r. = not reported; n.d. = not determined; dw = dry weight; 
*
estimated from figure, exact 

value not reported 

 

 

Biological Nutrient Removal 

Samples were collected from the BNR return activated sludge (RAS) streams at 

both Plant A and Plant B. This study is focused on the end result for each secondary 

treatment and therefore intermediate samples were not collected. There may be variability 

in estrogen adsorption to the sludge and aqueous phase concentration in the anoxic and 

aerobic zones, but that was not evaluated. The estrogen concentration in the aqueous 

phase and estrogen load in the solid phase for the primary clarifier preceding BNR was 



 

59 

 

measured in order to evaluate the change caused by this treatment step (Plant A: 

43.9±12.7 ng/g and 400±8.0 ng/L; Plant B: 39.5±4.5 ng/g and 324 ng/L; estrogen as E2 

for solid and aqueous phases, respectively). The values are close between the two plants, 

which is expected because the wastewaters being treated in both plants are from the same 

city and have similar characteristics. 

BNR differs from conventional activated sludge treatment in that there are 

anaerobic or anoxic zones in addition to an aerobic zone. These different environments 

promote the growth of different microorganisms and also impact whether phosphate is 

stored or utilized. A few studies have quantified estrogen in the aqueous and solid phases 

for BNR treatment (Table 4.5). Aqueous phase removal is greater than 70% and 

frequently above 90%. In the Janex-Habibi et al. study (2009), the removals reported are 

for E2 only and not total estrogen. Aerobic conditions are ideal for the conversion of E2 

into E1, so the total estrogen removal may be lower. 

The roughly 90% aqueous phase removals in the BNR of this study agree with 

previously reported results (Table 4.5). It was expected that BNR would have high 

removal because it includes an aerobic phase. Janex-Habibi et al. reports a significant 

reduction in E2 for the solid phase, which was not seen in this study. However, the 

removals reported by Janex-Habibi et al. do not account for E1 that is present from E2 

transformation. The high variability for estrogen load on the Plant A BNR sludge makes 

interpretation for those results very difficult. The estrogen load for the Plant B BNR 

sludge is higher than those reported previously (Table 4.5), but still lower than the 

estrogen load measured in the primary sludge (39.5±4.5 ng/g as E2) and dewatered 

sludge (41.2±6.4 ng/g as E2) at that plant. Overall, the estrogen concentrations in the 
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Plant B BNR aqueous and solid phases coincide with expectations based on results from 

other reports in the literature. 

 

Table 4.5: Comparison of estrogen load and removal for BNR 

 Solid Phase Aqueous Phase 

Reference 

 

Conc. 

E1+E2+E3 

(ng/g dw as E2) 

Removal 

Conc. 

E1+E2+E3 

(ng/L as E2) 

Removal 

This study, Plant A 63.8±49.0 –45±82% 46.9 89% 

This study, Plant B 27.9±3.9 29±18% 28.7±0.2 91±0.7% 

Janex-Habibi et al., 

2009 
n.r. 

*
88-96% 

(E2 only) 
n.r. 

*
70-97% 

(E2 only) 

Janex-Habibi et al., 

2009 
n.r. 

*
86-88% 

(E2 only) 
n.r. 

*
90-95% 

(E2 only) 

Janex-Habibi et al., 

2009 
n.r. 

*
95% 

(E2 only) 
n.r. 

*
97% 

(E2 only) 

Janex-Habibi et al., 

2009 
n.r. 

*
70% 

(E2 only) 
n.r. 

*
77% 

(E2 only) 

Andersen et al., 2003 
~8.2 

(E1+E2) 
n.d. <2 

>99% 

(E1+E2) 

Muller et al., 2010 
13±6.4 

(E1+E2) 
n.r. n.r. n.r. 

Joss et al., 2004 n.r. n.r. 
34.6±6 

(E1+E2) 
n.r. 

Joss et al., 2004 n.r. n.r. 
47±8.2 

(E1+E2) 
n.r. 

Ternes et al., 2002 
5  

(E1+E2) 
n.r. n.r. n.r. 

n.r. = not reported; n.d. = not determined; dw = dry weight; 
*
estimated from figure, exact 

value not reported; ~ = estimated value (not measured) 
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Non-BNR Activated Sludge 

Samples were collected from the nitrification basin RAS stream at Plant A. The 

Trickling Filter preceded this treatment step and estrogen levels were measured in the 

aqueous and solid phases, as reported earlier.  

Several researchers have examined the fate of estrogens in the aqueous phase for 

conventional activated sludge (Andersen, et al., 2003; Baronti, et al., 2000; Braga, et al., 

2005b; Carballa, et al., 2004; D'Ascenzo, et al., 2003; Gabet-Giraud, et al., 2010a; 

Gomes, et al., 2009; Hashimoto, et al., 2007; Holbrook, et al., 2002; Janex-Habibi, et al., 

2009; Johnson, et al., 2005; Joss, et al., 2004; Muller, et al., 2008; Nieto, et al., 2008; 

Ternes, et al., 1999b; Ying, et al., 2008) but only a handful have quantified estrogen on 

the sludge itself (Andersen, et al., 2003; Braga, et al., 2005b; Joss, et al., 2004; Koh, et 

al., 2009; Muller, et al., 2008; Nieto, et al., 2008; Ternes, et al., 2002). 

Estrogen load for activated sludge in this study falls into the middle of the range for 

previously reported values (Table 4.6). Janex-Habibi et al. (2009) reports a significant 

decrease in estrogen load on activated sludge, but these values only represent E2 and not 

total estrogen. The aqueous phase in this study is slightly higher than what is reported 

elsewhere; however, the initial concentration entering the nitrification basin (trickling 

filter effluent, 321 ng/L) is also higher compared to the other studies (70-85 ng/L). All of 

the activated sludge treatments consistently remove at or above 90% of the estrogen in 

the aqueous phase. 
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Table 4.6: Comparison of estrogen load and removal for non-BNR activated sludge 

 Solid Phase Aqueous Phase 

Reference 

 

Conc. 

E1+E2+E3 

(ng/g dw as E2) 

Removal 

Conc. 

E1+E2+E3 

(ng/L as E2) 

Removal 

This study 31.5±17 40±17% 20.5±0.2 94±14% 

Ternes et al., 2002 
54  

(E1+E2) 
n.r. n.r. n.r. 

Andersen et al., 2003 
4.2-9.9  

(E1+E2) 
n.r. 

1.8  

(E1+E2) 
98% 

Braga et al., 2005 
16.5±9.4 

(E1+E2) 
n.r. 

9.1±4.2 

(E1+E2) 
85-96% 

Muller et al., 2010 
55±13 

(E1+E2) 
n.r. n.r. n.r. 

Lorenzen et al., 2004 
11.3 

(E2) 
n.r. n.r. n.r. 

Gabet-Giraud et al., 

2010 
n.r. n.r. n.r. >89% 

Janex-Habibi et al., 

2009 
n.r. 

*
79-97% 

(E2 only) 
n.r. 

*
97-98% 

(E2 only)
 

Janex-Habibi et al., 

2009 
n.r. 

*
91% 

(E2 only) 
n.r. 

*
95% 

(E2 only)
 

Janex-Habibi et al., 

2009 
n.r. 

*
90% 

(E2 only) 
n.r. 

*
91% 

(E2 only)
 

Janex-Habibi et al., 

2009 
n.r. 

*
88% 

(E2 only) 
n.r. 

*
95% 

(E2 only)
 

n.r. = not reported; n.d. = not determined; dw = dry weight; 
*
estimated from figure, exact 

value not reported 

 
 

4.3.3 Comparison of Secondary Treatment Units 

Three secondary treatment types (trickling filter, non-BNR activated sludge, and 

BNR) were compared on the basis of estrogen load to sludge and estrogen removal in the 

aqueous phase of wastewater. Although two WWTPs were involved, the source 

wastewater came from the same city and estrogen concentration was similar after primary 

treatment.   
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Decrease in estrogen load on sludge between treatment units 

There is a small reduction in estrogen load between the primary and BNR sludges at 

Plant B (29±18%) and between the trickling filter and non-BNR sludges at Plant A 

(40±17%). The reduction could be an artifact of the extraction process if the estrogen is 

not uniformly desorbed from different sludge matrices. Unfortunately, this is an inherent 

problem when dealing with wastewater sludge and not even isotopic dilution can 

overcome this obstacle (Ternes, et al., 2002). 

Another possibility is that the reduction is due to different adsorption capacities of 

the sludges, but other research indicates this is not the case. Although primary and 

secondary sludges have very different composition, adsorption appears to be similar and 

rapid. Using activated sludge that was inactivated with heat, in order to eliminate 

biodegradation as a factor, Ren et al. (2007) demonstrated that estrogen has an initial 

rapid adsorption (105-237 μg/g in 10 minutes), followed by slow and continuous 

adsorption that leads to >93% removal from the aqueous phase. Some researchers have 

reported Freundlich adsorption coefficients (KF) for estrogen onto activated sludge (Chen 

and Hu, 2010; Clara, et al., 2004; Ren, et al., 2007b), while others have reported solid-

water distribution coefficients (Kd) for estrogen on activated sludge (278-476 L/kg) 

(Andersen, et al., 2005; Joss, et al., 2004; Ternes, et al., 2004) and digested sludge (303-

461 L/kg) (Carballa, et al., 2008). Only one study has reported on adsorption for primary 

sludge (Ternes, et al., 2004). This study examined EE2 and not E2; however, EE2 

adsorption was similar for primary (278 L/kg) and secondary sludge (349 L/kg) and the 

EE2 Kd coefficients are within the same order of magnitude as E2. The similarity in 
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values for Kd among various sludges (i.e., primary, secondary, and digested) suggests that 

estrogen adsorption is not significantly affected by sludge type.  

Biodegradation is the most likely cause for the decrease in estrogen load. 

Desorption into the aqueous phase is a possibility, but it is a much slower process than 

biodegradation. In bench-scale experiments with activated sludge, E1 and E2 desorption 

were <1.1% within three hours (Ren, et al., 2007b) while biodegradation was essentially 

complete within one hour (Hashimoto and Murakami, 2009). The bench-scale tests by 

Hashimoto and Murakami monitored aqueous and solid phase estrogen levels. Results 

showed that most of the E2 (94-98%) in the aqueous phase was biodegraded or 

transformed to E1 within 5 minutes and the aqueous E1 was subsequently biodegraded 

within one hour. For the solid phase, estrogen load increased in the 5 minutes after the 

initial spike and gradually decreased within one hour. Some information is available on 

the pathway for biodegradation (Lee and Liu, 2002), but there is still no information on 

where biodegradation occurs, such as: on the floc surface, throughout the floc or in the 

medium around the floc through release of extracellular enzymes (Joss, et al., 2004). In 

general, after fast adsorption to sludge, biodegradation will reduce estrogen in both the 

aqueous and solid phases. Applying the trend to this study, biodegradation explains the 

reduction in estrogen load on the sludge which occurred concurrently with a significant 

estrogen drop in the aqueous phase between primary and BNR sludges at Plant B 

(91±0.7%) and between the trickling filter and non-BNR sludges at Plant A (94±14%).  

Comparison of aqueous phase estrogen removal 

As expected, estrogen removal in the aqueous phase was greater for the BNR 

activated sludge treatments (91±0.7% and 89%) than the trickling filter (25±13%). 
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Further evidence of the enhanced estrogen removal capability of activated sludge 

treatment is shown by the low aqueous estrogen concentration (20.5±0.2 ng/L as E2) for 

the nitrification basin immediately following the trickling filter in Plant A. The 

nitrification basin removed 94±14% of estrogen in the aqueous phase, bringing the 

concentration very close to the secondary effluent at Plant B. Also, the estrogen load on 

the sludge (31.5±17 ng/g as E2) is similar to the activated sludge at Plant B (27.9±3.9 

ng/g as E2).  

Previously, it was thought that ammonia oxidizing bacteria (AOB) were responsible 

for estrogen biodegradation based on bench-scale studies (Shi, et al., 2004b; Vader, et al., 

2000). These bacteria are more plentiful in sludge operated at a high SRT and some 

studies saw positive correlation between estrogen removal and SRT (Andersen, et al., 

2003; Joss, et al., 2004). In particular, Andersen et al. (2003) measured estrogen 

concentration in the effluent of a conventional AS (SRT <4 days) WWTP prior to its 

conversion to BNR (SRT 11-13 days). After conversion, E1 and E2 were below the 

detection limit (1 ng/L) and previous measurements were 5 ng/L E2 and 24 ng/L E1.  

Recent work demonstrates that heterotrophic bacteria are more important than 

nitrifying bacteria for estrogen biodegradation in full-scale WWTPs (Gaulke, et al., 2008; 

Ren, et al., 2007a; Suzuki and Maruyama, 2006). Work by Suzuki and Maruyama (2006) 

suggests that estrogen biodegradation with activated sludge is independent of 

nitrification. Ren et al. (2007a) found that E3 is mainly biodegraded by heterotrophic 

bacteria and some of the same researchers noticed that when AOB are inhibited, there is 

still biodegradation by heterotrophic bacteria (Ren, et al., 2007b).  
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In light of this new information, as well as the studies that show full-scale anaerobic 

and anoxic zones have little impact on estrogen biodegradation (Joss, et al., 2004), it 

makes sense that non-BNR and BNR activated sludges result in the same estrogen 

removal, as shown in this study.  

Comparison of estrogen load on sludge for secondary units 

Estrogen load on the sludge was higher for trickling filter solids (52.5 ng/g as E2) 

than non-BNR activated sludge (31.5±17 ng/g as E2) and BNR sludge (27.9±3.9 ng/g as 

E2). There are a few possibilities that can explain the higher loading for the trickling 

filter solids. First, some studies have shown that biodegradation is lower for trickling 

filters as compared to a highly aerobic process such as activated sludge treatment (Janex-

Habibi, et al., 2009; Svenson, et al., 2003; Ternes, et al., 1999b). Lower biodegradation 

would mean a higher amount of estrogen remains adsorbed to the sludge. Activated 

sludge has been shown to have a very high capacity to adsorb estrogen and studies were 

unable to reach saturation (Clara, et al., 2004; Ren, et al., 2007b). While no adsorption 

studies have been completed with trickling filter solids, adsorption capacity is likely high 

as well based on similarities in adsorption among sludges, which was covered earlier in 

the discussion.  

Second, trickling filter solids may be exposed to more estrogen than other sludges. 

In theory, the SRT for a TF is infinite. However, biofilm does slough off and leave. An 

equivalent SRT can be calculated based on BOD loading to the TF (Metcalf & Eddy, 

2003). Average BOD in the primary effluent at Plant A is 120 mg/L and the volume of 

one tank is 5044 m
3
. Based on this loading (0.9 kg BOD/m

3
·d), the equivalent SRT is 

about 2.5 days. Compared to the SRTs (5-8 days) for the activated sludge units, this is 
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significantly shorter. However, the aqueous phase estrogen concentration remains high 

throughout the TF treatment, unlike the activated sludge process where biodegradation is 

rapid. The combination of high estrogen concentration and high adsorption capacity 

could result in greater estrogen exposure for the TF solids, even with a low SRT. More 

research is necessary to confirm this assertion. Adsorption studies have not been 

performed for trickling filter solids.  
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CHAPTER 5  

 

EFFECT OF SLUDGE HANDLING PROCESSES ON ESTROGEN 

CONCENTRATION IN WASTEWATER SLUDGES 

 

5.1 Introduction 

Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be 

present in the aquatic environment at concentrations that affect fish and other wildlife 

(Jobling, et al., 1998; Routledge, et al., 1998). It has been established that wastewater 

treatment plants are major contributors of estrogen to the environment (Daughton and 

Ternes, 1999). As pointed out in review papers (Combalbert and Hernandez-Raquet, 

2010; Khanal, et al., 2006), most of the previous research on estrogen has focused on the 

effluent or aqueous phase of wastewater. Estrogen fate for sludge has received far less 

attention, despite estrogen’s relatively high octanol-water partition coefficients (Kow), 

which signal a preference for adsorption to solids over remaining in the aqueous phase 

(Gomes, et al., 2004; Khanal, et al., 2006). In fact, adsorption to sludge is greater for 

estrogen compared to other micropollutants (Urase and Kikuta, 2005). Previous research 

has shown that 6-43% of the total estrogen entering the wastewater treatment plant is 

adsorbed onto the solid phase (Andersen, et al., 2003; Braga, et al., 2005b; Combalbert 

and Hernandez-Raquet, 2010; Janex-Habibi, et al., 2009; Suzuki and Maruyama, 2006). 

In light of an increasing trend for land application of sludge, as opposed to landfilling, it 
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will become even more important to monitor estrogens in wastewater sludge, as they pose 

a risk of groundwater and surface water contamination. 

A handful of studies have looked at estrogen concentration on activated sludge 

(Andersen, et al., 2003; Baronti, et al., 2000; Clara, et al., 2004; Joss, et al., 2004; Suzuki 

and Maruyama, 2006; Ternes, et al., 1999a), but only a few have examined the fate of 

estrogen for particular sludge treatment processes (Andersen, et al., 2003; Braga, et al., 

2005b; Esperanza, et al., 2007; Janex-Habibi, et al., 2009; Lorenzen, et al., 2004; Muller, 

et al., 2008). A downside to these studies is that the treatment processes were compared 

among different WWTPs with different wastewater sources and therefore a direct 

comparison is difficult.  

The goal of this study was to determine estrogen load (mass estrogen per mass 

solids) for sludge after particular sludge treatment processes, such as thickening, 

dewatering, and digestion. Specifically, the following treatment processes were 

examined: gravity thickener, dissolved air flotation thickening, centrifuging, and 

anaerobic digestion. This study involves WWTPs where the wastewater source is from 

the same city, which should make direct comparison easier. For each sludge treatment 

process, both the estrogen load on the sludge and the estrogen concentration in the 

aqueous phase were determined before and after treatment. Mass balance calculations 

were performed for each sludge treatment process to check for estrogen loss through 

biodegradation or partition change between the solid and aqueous phases. A sensitivity 

analysis was performed to determine which parameters in the mass balance analysis 

exhibited the greatest influence. 
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5.2 Materials and Methods 

A detailed description is provided in chapter 3, along with diagrams (Figure 3.1 and 

Figure 3.2) showing sampling locations at Plant A and Plant B. Briefly, grab samples 

from two wastewater treatment plants were collected in 500 mL HDPE bottles on two 

occasions in spring and early summer. At the lab, the samples were centrifuged to 

separate the aqueous and solid phases of the sludge. The aqueous portion was decanted 

and stored in the refrigerator (4 °C), while the solid portion was placed in the freezer (-5 

to -10 °C). The frozen samples were dried in an oven (90-100 °C) and ground with a 

mortar and pestle or pulverized with a high-speed mixer mill. The aqueous phase was not 

filtered prior to analysis. Filtering the sample would have removed non-settleable solids 

that were still present in the aqueous phase after centrifuging and decanting. 

Approximately 1 g of dried sludge was extracted (Dionex ASE-200) with 4% (v/v) 

ammonium hydroxide. The aqueous phase (100 mL) underwent solid phase extraction 

(Caliper Life Sciences Autotrace Workstation) with Oasis HLB 6 mL cartridges. The 

samples were eluted with 4 mL of 70/30 (v/v) mixture of ethyl acetate / methanol. Both 

the extracts from the dried sludge and the aqueous phase were concentrated to 2 mL by 

drying under nitrogen (Zymark Turbovap II Evaporation Workstation) in a water bath (35 

°C). The extracts were allowed to evaporate to dryness at room temperature and 

reconstituted with 10% (v/v) methanol in laboratory purified water (17 MΩ·cm).  

Estrogen concentrations were measured using an estrogen enzyme-linked 

immunosorbent assay (ELISA) kit (Ecologiena, Japan EnviroChemicals, Ltd.). A 

combination E1, E2, and E3 ELISA kit was used to determine natural estrogens, 

expressed as E2. The standard solutions ranged from 0.05 to 3.0 μg/L. Conjugated 
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estrogens were not quantified. All standards and reagents were provided by the 

manufacturer and the manufacturer instructions were followed for the analysis procedure. 

Absorbance at 450 nm was measured (TECAN 200 microplate reader) within 15 minutes 

of the reaction stop time. A calibration curve was determined by fitting data from 5 

standards to a three-parameter exponential equation. The estrogen concentration for 

samples was determined by interpolation using this equation. Final estrogen 

concentrations were calculated by taking into account dilutions and the original sample 

size. Total estrogen as E2 was reported in dried sludge samples as ng/gss and in the 

aqueous phase as ng/Laq. Blank, recovery and replicate tests were included in the 

experimental matrix. 

5.3 Results and Discussion 

5.3.1 Estrogen Analysis with ELISA  

Precision 

As part of the method development process, replicate tests were performed. 

Replicate tests for extractions and analytical duplicates were completed during the two 

sampling campaigns. High precision (0.6-13.4%) was obtained for analytical duplicates 

of selected extractions, as shown in Table 5.1. Most of the CV % values obtained are 

significantly lower than the manufacturer specifications of 10%. Replicate extraction 

samples consisted of dried sludge or wastewater from the same collection container that 

was treated in the same way and extracted in parallel. As seen in Table 5.2, extraction 

replicates showed greater variability (0.5-30.8%); however, only 4 sample locations (PC 

2, GT 1, CT 2, and Combined) exceeded 15% over the two collection campaigns. All of 
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these were extractions for dried sludge, which is known to be complex and difficult to 

extract (Ternes, et al., 2002). 

Recovery 

Single recovery tests were performed on extractions for selected samples. These 

tests were limited due to time constraints with the equipment, as well as cost. A recovery 

range is given based on replicate ELISA analysis. Recovery was variable (Table 5.3), but 

this is typical of other estrogen studies using SPE where recovery ranged from 62-125% 

(Farre, et al., 2006; Hintemann, et al., 2006; Miege, et al., 2009; Suzuki and Maruyama, 

2006; Takigami, et al., 2000). As discussed in chapter 4, there is no way to prove 

complete extraction of estrogen from sludge, even with an internal standard. Since 

recovery varied and was not performed for all matrices, the final concentrations reported 

were not adjusted.  



 

 

 

Table 5.1: Precision for ELISA replicates 

ELISA precision 

Plant A Plant B 

Sample E1+E2+E3 Conc. 
E1+E2+E3 

Conc.  
CV 
(%) 

Sample E1+E2+E3 Conc.  
E1+E2+E3 

Conc. 
CV 
(%) 

Solid phase, primary sludge 
(PC 1) 

42.7 ng/g 35.3 ng/g 13.4 
Solid phase, primary sludge 
(PC 3) 

43.2 ng/g 42.1 ng/g 1.8 

Solid phase, primary sludge 
(PC 2) 

51.7 ng/g 53.9 ng/g 2.9 
Solid phase, dissolved air 
flotation thickening (DAFT) 

30.9 ng/g 24.6 ng/g 11.7 

Solid phase, digested 
sludge (AD) 

62.6 ng/g 59.4 ng/g 3.7 
Solid phase, dewatered sludge 
(CT 3) 

40.0 ng/g 42.9 ng/g 4.9 

Solid phase, dewatered 
sludge (CT 2) 

53 ng/g 53.4 ng/g 0.6 Aqueous phase, influent  263.8 ng/L 284.6 ng/L 5.4 

Aqueous phase, influent  397.7 ng/L 464.1 ng/L 10.9 
Aqueous phase, primary 
sludge (PC 2) 

316.3 ng/L 331.7 ng/L 3.4 

Aqueous phase, effluent 82.3 ng/L 89.8 ng/L 6.2 
Aqueous phase, primary and 
secondary sludge (combined) 

328.5 ng/L 324.2 ng/L 0.9 

Aqueous phase, primary 
sludge (PC 1) 

310.2 ng/L 323.4 ng/L 2.9 
Aqueous phase, dewatering 
centrate (CT 3) 

275 ng/L 251.8 ng/L 6.2 

Aqueous phase, digested 
sludge (AD) 

561.2 ng/L 601.6 ng/L 4.9   

   Aqueous phase, dewatering 
centrate (CT 2) 

744.2 ng/L 790.3 ng/L 4.2   
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Table 5.2: Precision for extraction replicates 

Extraction precision 

Plant A Plant B 

Sample 
E1+E2+E3 Conc.  

Range 
E1+E2+E3 
Conc. Avg. 

CV 
(%) 

Sample 
E1+E2+E3 Conc.  

Range 
E1+E2+E3 
Conc. Avg. 

CV 
(%) 

Solid phase, primary sludge 
(PC 1) 

39.0-41.0 ng/g 40.0 ng/g 3.6 
Solid phase, primary sludge 
(PC 3) 

36.3-42.7 ng/g 39.5 ng/g 11.4 

Solid phase, primary sludge 
(PC 2) 

34.9-52.8 ng/g 43.9 ng/g 28.9 
Solid phase, dissolved air 
flotation thickening (DAFT) 

22.6-25.4 ng/g 23.6 ng/g 6.7 

Solid phase, thickened 
primary sludge (GT 1) 

38.6-73.5 ng/g 56.9 ng/g 30.8 
Solid phase, primary and 
secondary sludge (combined) 

18.3-31.9 ng/g 25.0 ng/g 27.1 

Solid phase, thickened 
primary sludge (GT 2) 

37.9-39.9 ng/g 38.7 ng/g 2.7 
Solid phase, dewatered sludge 
(CT 3) 

34.7-47.4 ng/g 41.2 ng/g 15.4 

Solid phase, digested 
sludge (AD) 

61.0-70.7 ng/g 67.3 ng/g 8.1 Aqueous phase, influent  
274.2-287.8 

ng/L 
281.0 ng/L 3.4 

Solid phase, dewatered 
sludge (CT 2) 

53.2-79.3 ng/g 66.2 ng/g 27.9 Aqueous phase, effluent  13.7-14.1 ng/L 13.9ng/L 2.0 

Aqueous phase, influent  428.0-430.9 ng/L 429.4 ng/L 0.5 
Solid phase, dissolved air 
flotation thickening (DAFT) 

15.5-19.0 ng/L 17.2 ng/L 14.2 

Aqueous phase, effluent 86.1-87.8 ng/L 86.9 ng/L 1.4   
   

Aqueous phase, primary 
sludge (PC 1) 

259.4-316.8 ng/L 288.1 ng/L 14.1   
   

Aqueous phase, primary 
sludge (PC 2) 

34.3-405.6 ng/L 400.0 ng/L 2.0   

   Aqueous phase, dewatering 
centrate (CT 2) 

767.3-907.8 837.5 11.9   
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Table 5.3: Recovery experiments for extractions 

Solid Phase 

Sample Recovery Range Sample Recovery Range 

CT 2 74-76% PC 3 108-124% 

Combined 91-99% CT 3 49-51% 

Aqueous Phase 

Influent, Plant A 48-75% Effluent, Plant A 126-139% 

DAFT 76-81%   

Blank Samples 

Sludge Extraction 59-60% Wastewater Extraction 78-85% 

 

 

5.3.2 Change in Estrogen Concentration Due to Sludge Handling Processes 

Gravity Thickeners 

Gravity thickeners are used to concentrate suspended solids through sedimentation 

in order to reduce the volume of sludge that receives further treatment. In the WWTPs 

studied, gravity thickeners are used to concentrate primary sludge. Samples were 

collected for two gravity thickeners (GT 1 and GT 2) at Plant A. While there is some 

difference between the results, the estrogen load in the thickened primary sludge is 

similar given the analytical error for these measurements.  

As expected, there is minimal change in the estrogen load for the sludge before and 

after thickening (Figure 5.1). In the thickeners, there is little opportunity for 

biodegradation because the conditions are anaerobic. Biodegradation rates have been 

shown to be slower in anaerobic and anoxic (>4 hours) compared to aerobic (<1 hour) 

environments (Hashimoto and Murakami, 2009; Lee and Liu, 2002). The return stream 
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from GT 1 shows a similar estrogen concentration as the influent, which fits the 

expectation that estrogen biodegradation is negligible during primary treatment.  

The return stream from GT 2 shows a lower estrogen concentration compared to the 

influent. Removal could be due to some degree of biodegradation or adsorption to solids. 

Neither of these alternatives is expected to be significant since biodegradation is slow in 

anaerobic conditions and estrogen adsorption is fast (Ren, et al., 2007b), thus it would 

have occurred before primary sedimentation. Analytical error and variability between 

grab samples are more likely explanations for the low estrogen concentration in the GT 2 

return stream. 

One study was found in which the estrogen load on sludge was measured before 

and after thickening (Esperanza, et al., 2007); however, only the load for primary sludge 

(before thickening) is reported in the paper. Consequently, the results from this study 

cannot be compared to previous work. Several studies state that primary treatment 

provides no estrogen removal (Braga, et al., 2005a; Holbrook, et al., 2002; Muller, et al., 

2008; Ternes, et al., 1999b), but these studies did not investigate primary sludge 

treatment, such as gravity thickeners. 
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Figure 5.1: Estrogen concentration before and after gravity thickeners 

 

 

 

Figure 5.2: Estrogen concentration before and after centrifuging 
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Centrifuges  

Centrifuges are used to thicken or dewater sludge, depending on the solids 

concentration in the feed. Thickened sludge refers to material that is fluid and can be 

pumped in a pipeline. Dewatered sludge refers to material that has less water, so it is no 

longer fluid and cannot be pumped. In this study, samples were collected for two 

dewatering centrifuges and one thickening centrifuge. 

The thickening centrifuge (CT 1) was fed by two secondary sludges at Plant A 

(Figure 5.2). The feed had low estrogen concentration in both the aqueous and solid 

phases, which is typical of aerobically treated wastewater because biodegradation is very 

effective under aerobic conditions (Hashimoto and Murakami, 2009; Lee and Liu, 2002). 

The centrate and thickened secondary sludge had estrogen concentrations that were in the 

same range as the feed. This suggests that centrifuging had no effect on estrogen 

concentration. This is expected because the process is not aerated, so biodegradation is 

unlikely, and the spinning motion of the centrifuge seems not to impact adsorption on 

stabilized sludge. 

The two dewatering centrifuges had different feeds (digested sludge vs. thickened 

sludge) and different results. CT 2, which had digested sludge as the feed, shows an 

increase in estrogen concentration in the aqueous phase (44%) and essentially no change 

(<2%) in estrogen load for the sludge. CT 3, which has thickened sludge as the feed, 

shows a decrease in estrogen concentration in the aqueous phase (19%) and an increase 

(65%) in estrogen load on the sludge. Although the increase in estrogen load for the 

sludge after CT 3 seems high, when the standard deviations are taken into account, the 

values are quite similar. It appears that there is an increase in total estrogen after CT 2; 
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however, a mass balance of the system provides a better viewpoint for identifying 

changes between the aqueous and solid phases.  

Dissolved Air Flotation Thickening (DAFT) 

DAFT is a process where solids are separated from the wastewater by buoyancy. 

Fine air bubbles are used to lift solids to the surface and then the solids are removed with 

a skimmer. DAFT was used at Plant B to thicken activated sludge in the waste stream 

after the secondary clarifier. Estrogen concentration in the feed was low and decreased 

noticeably in the aqueous phase (40%) and slightly in the solid phase (15%). Estrogen 

removal by biodegradation is a strong possibility because DAFT is an aerated process. 

No other studies were found on estrogen removal via DAFT. In general, micropollutant 

removal by DAFT is seldom reported (Reungoat, et al., 2010). 

Anaerobic Digestion 

Anaerobic digestion is a microbial degradation process in the absence of molecular 

oxygen. It is used in order to decrease sludge volume and to stabilize it by reducing 

volatile solids. Anaerobic digestion converts organic matter into methane, carbon dioxide 

and water. Plant A uses a mesophilic anaerobic digester. 

Compared to the feed sludges, the estrogen load on the digested sludge was 

significantly higher (51%). The estrogen concentration in the aqueous phase 

(supernatant) was higher than the influent for the WWTP. Given that solids were 

destroyed and the solids concentration changed, it is unwise to evaluate the results for 

anaerobic digestion without looking at a mass balance. However, it is clear that 

biodegradation did not occur during anaerobic digestion, which is expected based on 

bench-scale experiments (Hashimoto and Murakami, 2009). 
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Several studies have examined estrogen fate during anaerobic digestion conditions 

(Andersen, et al., 2003; Carballa, et al., 2006; des Mes, et al., 2008; Esperanza, et al., 

2007; Holbrook, et al., 2002; Janex-Habibi, et al., 2009; Joss, et al., 2004; Lorenzen, et 

al., 2004; Muller, et al., 2010). Joss et al. (2004) performed batch tests under anaerobic 

conditions. The results suggest that digester supernatant will have a high estrogen 

concentration due to deconjugation of estrogen from primary sludge and estrogen 

desorption from digested sludge. An increase in estrogen after digestion was confirmed. 

Lorenzen et al. (2004) measured significantly higher estrogen in sludge after anaerobic 

(1233 ng/g) treatment compared to aerobic treatment (11.2 ng/g) for 19 WWTPs in 

Canada. Andersen et al. (2003) found an increased estrogen concentration in the 

anaerobic digester effluent (5.4 ng/L E2, 67.1 ng/L E1) compared to the aqueous phase 

for activated sludge (1.4 ng/L E1). The authors state that estrogen input and output are 

equal for the anaerobic digester in their study, but this is based on an assumption since 

primary sludge was not analyzed for estrogen. Holbrook et al. (2002) measured 

estrogenic activity with the YES assay before and after anaerobic and aerobic digestion 

of sludge. Estrogenic activity increased drastically in the aqueous and solid phases 

following digestion. The authors suggest an increase in extractability for the digested 

sludge. Muller et al. (2010) and Janex-Habibi et al. (2009) found a slight increase in E1 

load on sludge after anaerobic digestion. 

Other studies have shown estrogen removal or no impact on estrogen concentration 

during anaerobic digestion. Esperanza et al. (2007) conducted parallel pilot-scale 

experiments with anaerobic and aerobic digestion. Both digesters showed estrogen 

removal (aerobic: 69% E1, 90% E2; anaerobic: 68% E1 and E2); however, the authors 
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express caution in these values because a significant fraction of estrogen in the synthetic 

influent remained unaccounted for after analysis. The supernatant of the anaerobically 

digested sludge had greater estrogen concentration and the authors suggest that this is due 

to the higher solids destruction for anaerobic digestion (45.5%) compared to aerobic 

digestion (36.1%). Pilot-scale experiments by Carballa et al. (2007) demonstrated 88% 

removal for estrogen by anaerobic digestion. Des Mes et al. (2008) studied anaerobic 

digestion for pig manure and found no biodegradation for estrogen, but about 30% of the 

available estrogen adsorbed to the sludge.   

 

 

Figure 5.3: Estrogen concentration before and after DAFT and anaerobic digestion 
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5.3.3 Mass Balance of Estrogen in Sludge Handling Processes 

Calculation of Mass Balance 

For each of the sludge handling processes considered in this research, mass balance 

calculations were completed to compare E2 load for the sludge, wastewater and return 

streams before and after treatment. One treatment process, centrifuge thickening (CT 1), 

was not included in mass balance calculations because the ratio of secondary sludges 

entering the centrifuge was not known. Wherever possible, average values for E2 

concentration were used. Total suspended solids concentrations were estimated based on 

previously measured values at each WWTP (Jeong, 2004; Mota, 2001). Detailed 

calculations are found in Appendix A.  

Mass balance for anaerobic digestion required knowing the ratio of sludges entering 

the digester. The feed for the anaerobic digester in this study was 80% thickened primary 

sludge and 20% thickened secondary sludge by volume; primary and secondary sludge 

both contained 76% volatile solids. It was assumed that 60% of the volatile solids in the 

primary sludge and 20% of the volatile solids in the secondary sludge were destroyed 

(Metcalf & Eddy, 2003; Grady et al., 1999). Biodegradation was ignored as part of the 

calculations. If biodegradation did occur, it would be apparent by a decrease between the 

input and output concentrations. 

Mass Balance Sensitivity 

Due to the uncertainty in data for the mass balance calculations, a sensitivity 

analysis was completed to identify which parameters exhibited the greatest influence. The 

sensitivity analysis was performed for Plant B, Dewatering Centrifuge (CT 3). The 

comparison value chosen was the net E2 formed. The following 7 parameters were varied 
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one at a time by ±1%, ±5%, and ±10%: combined primary and secondary sludge E2 

concentration, combined primary and secondary aqueous phase E2 concentration, 

dewatered sludge E2 concentration, centrate E2 concentration, solids concentration for 

combined sludge, solids concentration for dewatered sludge, and solids concentration for 

centrate.  

The new values for net E2 formed were graphed and a trendline for each parameter 

was created. A steeper slope corresponds to greater sensitivity for the parameter. The 

highest sensitivity was found for dewatered sludge E2 concentration (square) and solids 

concentration for dewatered sludge (triangle) as shown in Figure 5.4. Sensitivity is a 

direct reflection of E2 contribution. In this example, dewatered sludge (1595 ng/Lww) 

contributes far more E2 to the total output (1819 ng/Lww) than the centrate (224 ng/Lww). 

Consequently, both factors associated with dewatered sludge (E2 concentration and 

solids concentration) have the greatest influence. For improved mass balance accuracy, 

these parameters should be measured multiple times for precision. 

 

 

Figure 5.4: Sensitivity Analysis for Mass Balance Calculations 
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5.3.4 Fate of Estrogen in Sludge Handling Processes 

Gravity Thickeners 

This treatment process does not significantly impact estrogen concentration. 

Although the output shows a small decrease compared to the input, it is in the same range 

as the analytical variability for the measurements (Table 5.4). No other data have been 

found regarding the mass balance of a gravity thickener.  

Dissolved Air Flotation Thickening 

A decrease in the output (Table 5.4) suggests some degree of biodegradation may 

have occurred. This study has only a few measurements at one location. Further research 

is needed to confirm this assertion and verify that it holds true at other WWTPs. Even 

when estrogen is removed to below detection limits in the aqueous phase, the solid phase 

usually maintains a small estrogen load as shown in bench-scale experiments (Hashimoto 

and Murakami, 2009) and full-scale samples (Andersen, et al., 2003). DAFT could be a 

beneficial treatment option for further reducing estrogen in sludge. 

Centrifuges 

Results for the two dewatering centrifuges are contradictory. The centrifuge 

receiving digested sludge showed little change (8.7%) between the total input and output. 

This agrees with another study where centrifuge dewatering did not impact estrogen 

concentration (Muller, et al., 2008). Mechanical dewatering by a filter press also had little 

impact on estrogen concentration (Braga, et al., 2005b).  

In this study, the centrifuge receiving thickened sludge showed a significant 

increase (41%), which could be due to analytical error, estrogen deconjugation, or a 

change in estrogen extractability from the sludge. Estrogen deconjugation is unlikely 
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because most glucuronides are deconjugated to free estrogens during activated sludge 

treatment and the sulfates that are not transformed in secondary treatment remain 

conjugated in the effluent (Gomes, et al., 2009). Muller et al. (2010) suggested that 

thermal-pressurized treatment increased estrogen extractability prior to centrifuge 

dewatering in their study. In the work presented here, there was no treatment beyond 

thickening prior to centrifuge dewatering; therefore, analytical error is the most 

reasonable answer. The estrogen load on the sludge represented the largest contribution 

(1595 ng/Lww) to the total estrogen output (1819 ng/Lww). As shown in the sensitivity 

analysis, a higher contribution means a greater influence, so the mass balance could be 

skewed by the measurement for estrogen load on the dewatered sludge. 

Anaerobic Digestion 

Mass balance calculations assumed no biodegradation during anaerobic digestion 

and this appears to be valid based on the 18% increase between the input and output 

estrogen concentrations. Also, other studies indicate biodegradation does not occur at 

full-scale treatment for anaerobic digestion (Andersen, et al., 2003; Holbrook, et al., 

2002; Janex-Habibi, et al., 2009; Muller, et al., 2010). 

Estrogen load on the digested sludge is greater compared to the thickened sludge in 

the feed and the expected estrogen load from mass balance calculations. Assuming that 

estrogen adsorbed to the sludge prior to digestion remained adsorbed to the undestroyed 

solids, the expected load in the anaerobic sludge is 42.2 ng/gss (Appendix A). The 

measured estrogen load for digested sludge was 67.3 ng/gss, which is significantly higher. 

Similarly, the expected estrogen concentration in the aqueous phase, based on desorption 

from destroyed solids, was 659 ng/Lww and the measured estrogen concentration was only 
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569 ng/Lww. This suggests increased adsorption to the solid phase. As solids are 

destroyed during digestion, there is the potential for desorption to the aqueous phase. In 

this study and other studies (Andersen, et al., 2003; Esperanza, et al., 2007; Holbrook, et 

al., 2002), the digester supernatant had a high estrogen concentration, which is in 

agreement with estrogen desorption for destroyed solids. Since sludge has been shown to 

have high adsorption capacity for estrogen (Carballa, et al., 2008; Clara, et al., 2004; Ren, 

et al., 2007b), the newly desorbed estrogen from destroyed solids will readsorb to the 

remaining solids.  

Anaerobic digestion may increase the potential for estrogen desorption from sludge, 

which is a major concern for land-applied sludge. In this study and another (Muller, et al., 

2010), an increase in estrogen (44%, this study) was found in the centrate after 

dewatering digested sludge. In other instances, no effect on estrogen concentration was 

seen for centrifuging non-digested sludge (Muller, et al., 2008) or filter pressing non-

digested sludge (Braga, et al., 2005b). Muller et al. (2010) also reported that thermal-

pressurized treatment on digested sludge may have increased estrogen extractability. 

Considering that soil microbes biodegrade estrogen much slower than sewage microbes 

(Colucci and Topp, 2001; Jacobsen, et al., 2005), easily extractable estrogen may end up 

in surface water due to runoff or end up in groundwater through infiltration (Jacobsen, et 

al., 2005). Consequently, concerning estrogen, anaerobic digestion may not be beneficial 

for sludge that is intended for land application. Aerobic digestion, which shows greater 

estrogen removal (Esperanza, et al., 2007; Lorenzen, et al., 2004), may prove to be a 

good strategy to remove estrogen from wastewater. However, there is a significant power 
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cost associated with providing the needed aeration and useful byproducts, such as 

methane, are not generated (Metcalf & Eddy, 2003). 

 

Table 5.4: Input and Output Estrogen Concentrations for Mass Balance Calculations 

Treatment Process Code     *Input     *Output 
% 

Difference 
**CV (%) 

Gravity Thickener GT 1 667 ng/Lww 580 ng/Lww -13% 
3.6, 30.8, 

14.1 

Gravity Thickener GT 2 508 ng/Lww 391 ng/Lww -23% 
28.9, 2.7,  

2.0 

Centrifuge CT 2 1964 ng/Lww 2135 ng/Lww 8.7% 
8.1, 27.9, 

11.9  

Centrifuge CT 3 1288 ng/Lww 1819 ng/Lww 41% 27.1, 15.4 

Dissolved Air 
Flotation Thickening 

DAFT 252 ng/Lww 184 ng/Lww -27% 
13.8, 6.7, 

14.2 

Anaerobic Digestion AD 1660 ng/Lww 1964 ng/Lww 18% 
44.5, 30.8, 

2.7, 8.1, 
14.4, 14.1 

* Caculated using average E2 concentrations as shown in Appendix A 

** Note: These are CV (%) values for the various input and output streams for the 

particular treatment process 
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CHAPTER 6  

 

CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

This research aimed at investigating the influence of secondary treatment type and 

sludge handling processes on the fate of estrogen in wastewater and wastewater sludge. 

The study involved three secondary treatments (activated sludge, activated sludge with 

biological nutrient removal, and trickling filters) and four sludge handling processes 

(gravity thickeners, centrifuges, dissolved air flotation thickening, and anaerobic 

digestion) at two different WWTPs. The unique component of this study was that both 

WWTPs received wastewater from the same city. 

In comparing these secondary treatment types, results from this study agreed with 

previously published work: 

 Activated sludge treatments demonstrated greater estrogen removal 

compared to trickling filters, which has also been reported by other 

researchers (Janex-Habibi, et al., 2009; Johnson, et al., 2007; Ternes, et al., 

1999b).  

 BNR and non-BNR activated sludge treatment showed similar removal, 

which agrees with another study that found anaerobic and anoxic zones in 

WWTPs have little effect on estrogen removal (Joss, et al., 2004).  
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A new piece of information contributed by this study is the estrogen load on 

trickling filter solids (52.5 ng/gss). No other values were found in the literature. The 

higher estrogen load on the trickling filter solids can be explained considering: 

 Biological sludge has a high capacity to adsorb estrogen and reported 

studies were unable to reach estrogen saturation in secondary sludge (Clara, 

et al., 2004; Ren, et al., 2007b). 

 The equivalent SRT in the trickling filter is shorter (2.5 days) than in 

activated sludge, which means less time for biodegradation to occur. 

 The oxygen concentration is lower in trickling filters compared to activated 

sludge, which results in slower biodegradation rates. Slower biodegradation 

rates mean that more estrogen will remain adsorbed to the trickling filter 

solids. 

 High estrogen concentration in the aqueous phase (321.3±43.5 ng/Laq) 

correlates to high estrogen load in the sludge. 

The impact of gravity thickeners, centrifuges, and dissolved air flotation thickening 

(DAFT) on estrogen removal was examined: 

 Centrifuges and gravity thickeners exhibited little influence on estrogen 

removal. Mass balance computations demonstrated that the input and output 

E2 contributions for the aqueous and solid phases were the same or similar 

when considering analytical errors.  

 DAFT showed a slight decrease in estrogen concentration for the aqueous 

and solid phases. This can be attributed to some degree of biodegradation 

since DAFT is an aerated process.  
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Anaerobic digestion resulted in increased estrogen load on the sludge and a high 

estrogen concentration in the supernatant as a result of solids destruction and release of 

the adsorbed estrogen. Other studies involving full-scale WWTPs have found high 

estrogen concentration or high estrogenicity in the supernatant of anaerobic digesters 

(Andersen, et al., 2003; Esperanza, et al., 2007; Holbrook, et al., 2002). Based on mass 

balance calculations and an assumed destruction of volatile solids, the expected estrogen 

load for the digested sludge was 42.2 ng/gss and the expected estrogen concentration in 

the aqueous phase was 569 ng/Lww. The measured estrogen concentrations were 67.3 

ng/gss and 659 ng/Lww, in the solid and aqueous phases, respectively. The estrogen load in 

the sludge was higher than expected and the estrogen load in the supernatant was lower 

than expected. The following points may explain why the estrogen concentrations 

deviated from the expected values: 

 As solids were destroyed during digestion, estrogen desorbed from the 

solids and was released to the aqueous phase. 

 Subsequently, estrogen was adsorbed by the remaining solids because 

digestion does not destroy all solids and sludge has been shown to have a 

very high adsorption capacity for estrogen (Carballa, et al., 2008; Ren, et al., 

2007b). 

 

6.2 Implications of Findings to Wastewater Treatment and Sludge Handling 

Presently, there are no state or federally mandated discharge effluent standards or 

sludge application standards for estrogen. However, all three natural estrogens (E1, E2, 

and E3) and the synthetic estrogen (EE2) are included in the current Unregulated 
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Contaminant Monitoring Regulation (UCMR 3) for public water systems (US EPA 

UCMR3, 2012). There is the potential that estrogens will be regulated in the future, but 

no guidelines have been suggested yet. Arbitrary reference points of 80% and 90% 

estrogen removal in effluent discharge and 30 ng/gss estrogen load for biosolids are used 

to provide implications for wastewater treatment and land application of biosolids. The 

arbitrary 30 ng/gss reference point for biosolids was chosen based on estrogen load in 

secondary sludge for this study and others (Andersen, et al., 2003; Braga, et al., 2005b; 

Muller, et al., 2008; Ternes, et al., 2002). Compared to primary, digested or dewatered 

sludges, secondary sludge typically has the lowest estrogen load.  

Current knowledge supports that activated sludge treatments, whether they include 

BNR or not, will typically have >80% estrogen removal in the effluent and meet the 

arbitrary lower reference point. Most WWTPs would not require any operational changes 

for 80% estrogen removal. To meet the higher reference point, WWTPs may need to 

make operational modifications, such as increasing the SRT for activated sludge. A few 

studies show that estrogen removal increases with higher SRT (Andersen, et al., 2003; 

Clara, et al., 2005; Johnson, et al., 2005; Racz, et al., 2012). In general, an SRT greater 

than 5 days for activated sludge will result in >90% removal (Esperanza, et al., 2007). 

Estrogen load on activated sludge was below 30 ng/gss for BNR and non-BNR activated 

sludges in this study. In general, activated sludge has a low estrogen load and would meet 

the reference point for land application. 

Trickling filters are shown to have poor estrogen removal and would not achieve 

any of the arbitrary reference points for effluent discharge and land application. One 

solution for meeting the effluent discharge reference point would be to add an aeration 
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basin following the trickling filter. This addition would involve significant capital and 

operational costs. In this study, the combined TF and aeration basin performed as well as 

BNR treatment for estrogen removal. Trickling filter solids have a higher estrogen load 

compared to activated sludge and would not meet the reference point for land application. 

However, trickling filters produce far less solids than activated sludge treatment and 

these solids could be blended with the wasted activated sludge to minimize the impact on 

land application. 

Mechanical and physical treatment processes, such as gravity thickeners and 

centrifuges, have no significant impact on estrogen removal. Although these processes do 

not decrease estrogen concentration, they also do not increase its availability. These 

sludge handling processes would not hinder or help a WWTP in meeting the reference 

points, but they would still be a necessary treatment step for reducing sludge volume. 

Estrogen load on secondary activated sludge following DAFT was below 30 ng/gss, 

which meets the reference point for land application. For WWTPs with an estrogen load 

right at the reference point, such as those with low SRTs for activated sludge treatment, 

DAFT could be used to remove estrogen in both return streams and secondary sludge.  

Anaerobic digestion was shown to increase estrogen concentration in the aqueous 

phase and the solid phase, so digested sludge would not meet the reference standard for 

land application. It also appears that estrogen extractability is greater after digestion 

(Holbrook, et al., 2002; Muller, et al., 2010). Estrogen could desorb from the sludge and 

enter surface water through runoff. Since soil microbes biodegrade estrogen slowly, 

estrogen could also infiltrate soil and end up in the groundwater. Anaerobic digestion 

would not be recommended for sludge that is intended for land application because of 
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high estrogen concentrations; however, anaerobic digestion is frequently used to meet 

Class A pathogen-reduction criteria (McFarland, 2001). Aerobic digestion is commonly 

used to treat mixtures of waste-activated sludge or trickling filter sludge and primary 

sludge (Metcalf & Eddy, 2003). Aerobic digestion would result in lower estrogen load on 

the sludge (Esperanza, et al., 2007). However, it may require a long SRT, such as 40 days 

at 20°C or 60 days at 15°C (Metcalf & Eddy, 2003), to achieve a significant reduction of 

pathogens. Operating aerobic digestion with a long SRT would lead to a high power cost. 

6.3 Recommendations for Future Research 

As continuation of this research, there are several studies that could be completed to 

provide further information on estrogen fate in wastewater treatment and estrogen 

adsorption to sludge: 

 Confirm that trickling filter solids have a greater estrogen load compared to 

activated sludge. 

 Complete an adsorption study, including the determination of Freundlich 

coefficients and adsorption kinetics, for primary sludge and compare the 

results with secondary sludge. 

 Confirm the results for gravity thickeners and DAFT by investigating 

estrogen removal in multiple units. Use mass balance calculations to verify 

the degree of estrogen removal. 
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APPENDIX A 

 

ESTROGEN MASS BALANCE CALCULATIONS 

 

A.1.Terms 

SS = suspended solids 

VSS = volatile suspended solids 

Csldg = concentration of estrogen in dried sludge, reported as ng/g E2  

Caq = concentration of estrogen in aqueous phase, reported as ng/L E2 

gss = grams of suspended solids 

Laq = liters, aqueous phase 

Lww = liters, wastewater stream (suspended solids and aqueous) 

F = fraction of wastewater flow 

 

A.2. Mass Balance Procedure 

Direct comparison of E2 load before and after sludge handling processes provides a 

quick view, but it does not convey the complete story. Sludge handling processes result in 

changes in suspended solids concentration and in the formation of return streams. 

Suspended solids and return streams may contain estrogen and if these estrogen sources 

are neglected, this could skew interpretation. For example, a decrease in estrogen load on 

solids may appear at first as estrogen removal, unless a return stream or solids destruction 



 

95 

 

are taken into account. Therefore, interpretation of estrogen load data necessitates mass 

balance calculations. 

For each of the sludge handling processes considered in this research, mass balance 

calculations were completed to compare the E2 load for the sludge, wastewater and return 

streams. Wherever possible, average values for E2 concentrations were used. Total 

suspended solids concentrations were estimated based on previously measured values at 

each WWTP (Jeong, 2004; Mota, 2001). In the calculations, the density of the sludge was 

assumed to be the same as that of water. The specific gravity of sludge is typically only 

slightly higher (1.005-1.02; Metcalf & Eddy, 2003) and therefore this assumption will not 

significantly affect the results. 

Mass balance diagrams were drawn for each sludge handling process (Figures A.1-

A.6). For all unit processes, except for the anaerobic digester, it was assumed that there 

was no formation or destruction of solids since these were mechanical and not biological 

processes.  

Total E2 for a Wastewater Stream 

The total E2 concentration for a wastewater stream was determined as the sum of 

E2 in the dried sludge (ng/gss) and E2 in the aqueous phase (ng/Laq). E2 concentrations 

for dried sludge (Csldg) were converted based on the percent solids for that wastewater 

stream. For example, the E2 concentration for Plant A primary sludge (PC 2) is 40.0 

ng/gss and the solids concentration for this stream is 6.0 gss/Lww or 0.6% solids. Therefore, 

the sludge contributes 240 ng/Lww to this wastewater stream. 

40.0 ng/gss * 6.0 gss/Lww = 240 ng/Lww 
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The contribution of the liquid stream is based on the E2 concentration in the aqueous 

phase (Caq) and the fraction of the liquid in the wastewater stream (100 – 0.6% solids = 

99.4% aqueous). In this case, a liquid stream with 429 ng/Laq E2 concentration 

contributes 427 ng/Lww. 

0.994 Laq/Lww * 429 ng/Laq = 427 ng/Lww 

The combined E2 for this wastewater stream is 667 ng/Lww. This represents the primary 

sludge stream entering the Gravity Thickener and will be used in another example below. 

 Sludge E2 + Aqueous phase E2 = Total E2 in wastewater stream 

240 ng/Lww + 427 ng/Lww = 667 ng/Lww 

Determining Fraction of Flow for Output Streams 

The fraction of flow for each stream was determined by a mass balance of 

suspended solids. Two equations were written: one equation for the suspended solids 

input and one equation for the suspended solids output. The input equation used the 

percent solids for the feed wastewater stream and was assigned a fraction of 1 (i.e., 

100%). The output equation was a sum of the output percent solids multiplied by a 

fraction of flow. Initially, the fractions were assigned as 0.5 (50%) to each output. 

 Input = SSin * Fin 

Output = SSout1*Fout1 + SSout2*Fout2 

Where   SS = concentration of suspended solids 

F = fraction of flow (1 for Fin; sum of Fout = 1) 

The Solver function on Microsoft Excel ® was used to determine the correct fraction for 

the output streams. This was done by setting the output equation equal to the input 
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equation, setting the output fractions as variables, and constraining the variables to be 

greater than zero and sum to 1. 

SSin * Fin = SSout1*Fout1 + SSout2*Fout2 

Variables: Fout1, Fout2 

Fout1, Fout2 > 0  

Fout1 + Fout2 = 1 

Mass Balance of E2 in Thickeners and Centrifuges 

Thickeners and centrifuges have a single input stream and two output streams. Once 

the total E2 is calculated for each wastewater stream and the fraction of flow for the 

output streams is determined, then a mass balance can be completed. For example, Plant 

A Gravity Thickener (GT 2) has an input stream of primary sludge and the outputs are 

thickened primary sludge and a return stream. The solids concentrations are 6 gss/Lww, 

39.095 gss/Lww, and 0.1033 gss/Lww, respectively. Using Solver, the equation below 

resulted in Fout1 = 0.151 and Fout2 = 0.849 for the output flows. 

SSin * Fin = SSout1*Fout1 + SSout2*Fout2 

6 * 1 = 39.095*Fout1 + 0.1033*Fout2 

The E2 contribution for the input wastewater stream, consisting of sludge and an aqueous 

phase, was calculated as shown in the first section: 

Input, primary sludge = 240 ng/Lww + 427 ng/Lww = 667 ng/Lww 

The E2 contributions for the output wastewater streams were calculated as shown in the 

first section: 

 Output, thickened primary sludge = 56.9 ng/gss * 39.095 gss/Lww = 2224 ng/Lww 

 Output, return stream = 288 ng/Lliq * (100 – 0.1033) = 288 ng/Lww 
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Lastly, the output stream E2 contributions were multiplied by the fraction of flow and a 

total output was determined. 

 Thickened primary sludge = 2224 ng/Lww * 0.151 = 336 ng/Lww 

Return stream = 288 ng/Lww * 0.849 = 244 ng/Lww 

Total output =  336 ng/Lww + 244 ng/Lww = 580 ng/Lww 

The total input and outputs were compared to see if there was a mass balance overall. If 

they differed, the percent difference was calculated and compared to the coefficients of 

variation from the E2 analyses to see if the difference was significant or not. 

Total input = 667 ng/Lww 

Total output = 580 ng/Lww  

Percent difference = (580 – 667) / 667 * 100 = -13% 

Coefficients of variation 

 Primary sludge  4% 

 Thickened primary sludge 31% 

 Recycle stream  14% 

In this case, the percent difference is smaller than the coefficients of variation, so there is 

no significant difference between the input and output flows. 
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Figure A.1: Plant A, Gravity Thickener (GT 2) 

*
 Assuming same E2 as primary influent 

 

Mass Balance of E2 in Digester 

Unlike centrifuges and thickeners, the suspended solids concentration in the 

digester will change as a result of solids destruction. For the digestion mass balance 

calculations, the following assumption was made: 

 Anaerobic digestion results in the destruction of 60% of the volatile solids present 

in the primary sludge and 20% of the volatile solids present in the secondary 

sludge (Metcalf & Eddy, 2003; Grady et al., 1999) 

The total input E2 for the digester was determined based on the actual ratio of thickened 

primary and centrifuged secondary sludges entering the digester. The concentrations for 

GT 1 and GT 2 were averaged (47.8 ng/gss) to obtain the E2 load for thickened primary 

sludge. For digestion calculations, the primary and secondary sludges were treated 

independently because solids destruction due to digestion is not equal. A volume of 1 

liter was used to simplify calculations. 

 Gravity Thickener 
(GT 2) 

Primary Sludge 
Csldg = 40.0 ng/gss 

Caq = 429.4 ng/Laq
* 

 
 
 
Input = 667 ng/Lww  

Thickened Primary Sludge 
Csldg = 56.9 ng/gss 

 
 
Output = 580 ng/Lww 

Overflow / Recycle 
Caq = 288.1 ng/Laq 
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Digester sludge ratio: 80% thickened primary sludge and 20% centrifuged 

secondary sludge by volume (personal communication, Daniel Fischer 

WPCF) 

Thickened primary sludge E2: 47.8 ng/gss * 35 gss/Lww = 1673 ng/Lww 

 For 1 liter entering digester: 0.80 * 1673 ng = 1338.4 ng E2 

Centrifuged secondary sludge E2: 32.2 ng/gss * 50 gss/Lww = 1610 ng/Lww 

 For 1 liter entering digester: 0.20 * 1610 ng = 322.0 ng E2 

1 liter of mixed sludge entering digester contains: 

1338.4 ng E2 for thickened primary sludge 

322.0 ng E2 for centrifuged secondary sludge 

The initial solids entering the digester were determined. Since digestion removes volatile 

suspended solids (VSS) and not fixed suspended solids (FSS), these were treated 

independently in the calculations. Both the primary and secondary sludges are composed 

of 76% VSS and 24% FSS (personal communication, Daniel Fischer WPCF).  

 Feed primary sludge solids: 35 gss/Lww, 80% of digester input 

  Feed primary sludge solids in 1 liter: 0.8 * 35 g SS = 28 g SS 

Feed VSS for primary sludge: 0.76 * 28 g = 21.3 g VSS 

 Feed secondary sludge solids: 50 gss/Lww, 20% of digester input 

  Feed secondary sludge solids in 1 liter: 0.2 * 50 g SS = 10 g SS 

Feed VSS for secondary sludge: 0.76 * 10 g = 7.6 g VSS 

Next, the amount of solids destroyed and the solids remaining after digestion were 

calculated. As stated previously, it was assumed that 60% of the primary VSS and 20% 

of the secondary VSS were destroyed. The E2 associated with the destroyed VSS was 
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also calculated. For these calculations, biodegradation of E2 in the digester was ignored. 

If biodegradation did occur, this would be apparent in the final calculated values as a 

decrease between the input and output. 

Loss of VSS = % destroyed * VSS of sludge  

E2 associated with VSS = 76% VSS * initial E2 entering digester 

E2 associated with loss of VSS = % destroyed * E2 associated with VSS 

Remaining solids = Initial solids – Loss of VSS 

 

Loss of VSS in primary (1°) sludge: 0.6 * 21.3 g = 12.8 g VSS 

  E2 associated with 1° sludge VSS: 0.76 * 1338.4 ng = 1017.2 ng E2 

  E2 associated with destroyed 1° sludge VSS: 0.6*1017.2 ng = 610.3 ng E2 

Loss of VSS in secondary (2°) sludge: 0.2 * 7.6 g = 1.5 g VSS 

E2 associated with 2° sludge VSS: 0.76 * 322.0 ng = 244.7 ng E2 

E2 associated with destroyed 2° sludge VSS: 0.2 * 244.7 ng = 48.9 ng E2 

 Overall E2 associated with destroyed VSS: 610.3 ng + 48.9 ng = 659.2 ng E2 

 Remaining solids in 1° sludge: 28 g SS – 12.8 g VSS = 15.2 g SS 

 Remaining solids in 2° sludge: 10 g SS – 1.5 g VSS = 8.5 g SS 

 Overall remaining solids in sludge: 15.2 g SS + 8.5 g SS = 23.7 g SS 

From this, the expected E2 remaining was calculated for each sludge and overall. The 

expected E2 load on the sludge was determined based on the expected E2 remaining and 

the overall remaining solids in the sludge. 

 Expected E2 remaining for 1° sludge: 1338.4 ng – 610.3 ng = 728.1 ng E2 

 Expected E2 remaining for 2° sludge: 322.0 ng – 48.9 ng = 273.1 ng E2 
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 Expected overall E2 remaining in sludge: 728.1 ng + 273.1 ng = 1001.2 ng E2 

 Expected E2 sludge loading: 1001.2 ng E2 / 23.7 g SS = 42.2 ng/gss 

Next, the measured E2 levels were used to calculate the overall E2 contribution in the 

sludge and supernatant of the digested wastewater, as shown below. The contribution of 

E2 from the digested sludge was determined from the E2 load (67.3 ng/gss) and the solids 

concentration (20.728 gss/Lww). The contribution from the supernatant was based on the 

E2 concentration in the aqueous phase (Caq = 581.4 ng/Laq) and the fraction of the liquid 

in the wastewater stream (100 – 2.0728% solids = 97.93%). The overall E2 contribution 

after digestion was the sum of the contributions from the digested sludge and supernatant. 

 E2 contribution from sludge: 67.3 ng/gss * 20.728 gss/Lww = 1395.0 ng/Lww 

 E2 contributed from supernatant: 581.4 ng/Laq * 0.9793 Laq/Lww = 569.3 ng/Lww 

Overall E2 after digestion: 1395.0 ng/Lww + 569.3 ng/Lww = 1964.3 ng/Lww 

The expected E2 values were compared to the measured E2 in the sludge and supernatant 

of the digested wastewater. The percent difference was calculated and compared to the 

coefficients of variation from the E2 analyses to see if the difference was significant or 

not. 

Input, E2 before digestion = 1660.4 ng/Lww 

Output, E2 after digestion = 1964.3 ng/Lww 

 % difference: 100 * (1964.3 – 1660.4) / 1660.4 = 18.3%    

Measured E2 contribution for sludge: 1395 ng/Lww 

Expected E2 contribution for sludge: 1001.2 ng/Lww 

 % difference: 100 * (1395.0 – 1001.2) / 1001.2 = 39.3%  

Measured E2 load on sludge: 67.3 ng/gss 
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Expected E2 load on sludge: 42.2 ng/gss 

  % difference: 100 * (67.3 – 42.2) / 42.2 = 59.4%   

 Measured E2 contribution for supernatant: 569.3 ng/Lww 

 Expected E2 for supernatant (from destroyed VSS): 659.3 ng/Lww 

  % difference: 100 * (569.3 – 659.3) / 659.3 = –13.6 %  

Coefficients of variation: 

  Thickened primary sludge, 30.8% 

Secondary centrifuged sludge, 44.5% 

Digested sludge, 8.1% 

Supernatant of digested sludge, n/a 

 

A.3. Summary of Mass Balances 

 

  

 

 

 

 

 

 

 

Figure A.2: Plant A, Anaerobic Digester (AD) 

 

 

 

 

 

Anaerobic Digester 

Thickened Primary Sludge 
Csldg = 47.8 ng/gss 

35 gss/Lww and 80% of flow 
 

Digested Sludge 
Csldg = 67.3 ng/gss 

20.7 gss/Lww 
 
 
Output: 1964.3 ng/Lww 

Centrifuged Secondary Sludge 
Csldg = 32.2 ng/gss 

50 gss/Lww and 20% of flow 
 
 
Input: 1660.4 ng/Lww 

 

Solids Loss: 60% VSS primary & 
20% VSS secondary 

Supernatant 
Caq = 581.4 ng/Laq 
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Figure A.3: Plant A, Gravity Thickener (GT 1) 

 

 

 

 

 

 

Figure A.4: Plant A, Dewatering Centrifuge (CT 2) 

 

 

 

 

 

 

 

 

Figure A.5: Plant B, Dissolved Air Flotation Thickening (DAFT) 

 

 

 

 

 Gravity Thickener 
Basin 5/6 

Primary Sludge 
Csldg = 43.9 ng/gss 

Caq = 429.4 ng/Laq
* 

 
 
Input = 508 ng/Lww  
 

Thickened Primary Sludge 
Csldg = 38.7 ng/gss 

 
Output = 391 ng/Lww 
 

Overflow / Recycle 
Caq = 400.0 ng/Laq

 

 

 DAFT 

Secondary Sludge 
Csldg = 27.9 ng/gss 

Caq = 28.7 ng/Laq
 

 
 
Input = 252 ng/Lww  
 

Overflow / Recycle 
Caq = 17.2 ng/Laq

 

 

Thickened Secondary Sludge  
Csldg = 23.6 ng/gss 

 
Output = 184 ng/Lww 
 

 Centrifuge 

Digested Sludge 
Csldg = 67.3 ng/gss 

Caq = 581.4 ng/Laq
 

 
 
Input = 1964 ng/Lww  
 

Dewatered Sludge (cake) 
Csldg = 66.2 ng/gss 

 
Output = 2135 ng/Lww 
 

Centrate 
Caq = 837.5 ng/Laq 
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Figure A.6: Plant B, Dewatering Centrifuge (CT 3) 

 

 

 

 

 

 

 Centrifuge 

Combined Primary and 
Secondary Sludge 
Csldg = 25.0 ng/gss 

Caq = 326.4 ng/Laq
 

 
 
Input = 1288 ng/Lww  
 

Dewatered Sludge (cake) 
Csldg = 41.2 ng/gss 

 
Output = 1819 ng/Lww 
 

Centrate 
Caq = 263.4 ng/Laq

 



 

 

 

A.4. Summary of Mass Balance Raw Data and E2 Contributions 

 

Table A.1: Input, Output, Raw Data and E2 Contributions for Mass Balance Calculations 

Plant A, GT 1 
   

Measured value Conversion Fraction 
E2 

Contribution 

Input 667   Primary 40 ng/g 240 ng/L 1 240 

Output 581   Influent 429.4 ng/L 
  

0.94 427 

Difference -86   Thickened 56.9 ng/g 2225 ng/L 0.151 336 

% Diff -12.9%   Recycle 288.1 ng/L     0.849 245 

 

         
Plant A, GT 2 

   
Measured value Conversion Fraction 

E2 
Contribution 

Input 508   Primary 43.9 ng/g 79.0 ng/L 1 79 

Output 391   Influent 429.4 ng/L 
  

0.9982 429 

Difference -117   Thickened 38.7 ng/g 344 ng/L 0.167 57 

% Diff -23%   Recycle 400 ng/L     0.833 333 

          
Plant A, CT 2 

   
Measured value Conversion Fraction 

E2 
Contribution 

Input 1964   
Digest. 
Sldg 67.3 ng/g 1395 ng/L 1 1395 

Output 2135   Digest. Liq 581.4 ng/L 
  

0.97927 569 

Difference 171   Dewater. 66.2 ng/g 19722 ng/L 0.069 1355 

% Diff 9%   Centrate 837.5 ng/L     0.931 780 

1
0
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Plant A, AD 
   

Measured value Conversion Fraction 
E2 

Contribution 

Input 1660   Prim. Sldg 47.8 ng/g 1338 ng/L 1 1338 

Output 1964   Sec. Sldg 32.2 ng/g 322 ng/L 1 322 

Difference 304   
Digest. 
Sldg 67.3 ng/g 1395 ng/L 1 1395 

% Diff 18%   Digest. Liq 581.4 ng/L     0.979 569 

          
Plant B, DAFT 

   
Measured value Conversion Fraction 

E2 
Contribution 

Input 251.7   Sec. AS 27.9 ng/g 223.2 ng/L 1 223.2 

Output 183.8   
Sec. AS 
Liq. 28.7 ng/L 

 
  0.992 28.5 

Difference -68   DAFT Sldg 23.6 ng/g 778.8 ng/L 0.219 170.4 

% Diff -27%   Recycle 17.2 ng/L     0.781 13.4 

          
Plant B, CT 3 

   
Measured value Conversion Fraction 

E2 
Contribution 

Input 1288.7   Combined 25 ng/g 975.0 ng/L 1 975.0 

Output 1818.7 
 

Comb. Liq. 326.4 ng/L 
 

  0.961 313.7 

Difference 530 
 

Dewater. 41.2 ng/g 10712.0 ng/L 0.149 1594.5 

% Diff 41%   Centrate 263.4 ng/L     0.851 224.2 
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