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Abstract 
 

In 2010, the total number of reported traffic crashes in the state of Nevada was 

51,664 of which 235 (0.6%) resulted in one or more deaths (Nevada Department of 

Transportation, 2012). The state’s “Zero Fatalities” traffic safety campaign aims to 

reduce the rate even further. Out of the total number of crashes, Clark County (includes 

Las Vegas) accounted for 78.89%. This study examines safety improvement by 

developing advanced crash prediction models. The system of crash prediction equations 

consider geometric conditions and traffic volume using simultaneous equation modeling 

(SEM). The models are based on geometric characteristics and traffic volume data 

collected from Las Vegas freeway systems related to crash data provided by Nevada 

Department of Transportation (NDOT). All data characterizes the year 2010, chosen for 

the least amount of observed roadway construction zones when compared to other years. 

The system of crash rate prediction equations represents connected freeway 

segment types. The types, defined by entrance (EN) and exit (EX) ramp-pair 

combinations, are estimated simultaneously instead of developing separate linear 

regression models. By modeling EX-EN segments connected to EN-EX using SEM, the 

relationship of crash rate in the EN-EX effects crash rate in EX-EN. Most EN-EX 

segments are considered weaving sections (lengths shorter than 2,500 feet) contributing 

to congestion.  

The increase of significant model parameters is apparent when comparing SEM to 

single equation multiple linear regression. The additional information obtained confirms 

the correlation between crash rate prediction residuals exists between connecting EX-EN 

and EN-EX segment types and supports the existence of unobserved variables. SEM 
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method of “three-stage least squares” modeling allows for freeway segments containing 

different characteristics to be modeled together, i.e., presence of auxiliary lane in EN-EX 

can be modeled with EX-EN segments. Instrumental variables replace the missing 

auxiliary lane variable in EX-EN segments resulting in a system of regression equations 

for crash prediction. The models can be used for connecting paired segments of EX-EN 

and downstream EN-EX or a connecting three-segment semi-corridor of EN-EX, 

downstream EX-EN and downstream EN-EX. 
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Chapter 1 Introduction 

 

 In 2010, the total number of reported traffic crashes in the state of Nevada was 

51,664 of which 235 (0.6%) resulted in one or more deaths (Nevada Department of 

Transportation, 2012). The fatality crash rate of 1.06 per 100 mvmt (1.06 fatal crashes 

occur for every 100 million vehicle miles traveled on the state’s roadways) is down from 

previous years and on a par with the national rate. The state’s “Zero Fatalities” traffic 

safety campaign aims to reduce the rate even further. Out of the total number of crashes, 

Clark County (includes Las Vegas) accounted for 78.89%.  

1.1 – Geometric Design Issues 

For roadway planners, designers and traffic operation engineers, safety 

improvements for urban freeways pose many challenges including spatial limitations. 

This study examines safety improvement by developing advanced crash rate prediction 

models. The models consider geometric conditions and traffic volume to predict crash 

rate. The variables used are based on geometric characteristics and traffic volume data 

collected from Las Vegas freeway systems related to crash data provided by Nevada 

Department of Transportation (NDOT). 

In a previous study, Teng et al. (2013) observed the spatial correlations of Las 

Vegas freeway crash data and geometric conditions with the use of ArcGIS. The study 

considered individual freeway segments defined by American Association of State 

Highway and Transportation Officials (AASHTO) design standards of ramp-pair 

combinations seen in Figure 1. The individual segments, examples seen in Figure 2, were 

analyzed for their homogeneous characteristics such as number of lanes, etc. The 
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segments were then digitized with the use of ArcGIS to geographically enclose the 

number of 2010 crashes in each segment. All observations were modeled for crash rate 

prediction using Multiple Linear Regression (MLR). As the study progressed, researchers 

observed possible correlations between successive freeway segments. Also, segments 

containing the most crashes were located near the various interchanges of the study area. 

The same study area (I-15, I-215 and US95 within the Las Vegas Valley) is examined in 

this thesis. The aforementioned possibility of correlations between successive segment 

types of exit-entrance (EX-EN) and entrance-exit (EN-EX) is explored by using 

Simultaneous Equation Modeling (SEM) to predict crashes based on varying geometric 

conditions and traffic volumes. 

 

 

Figure 1 - Ramp-pair combinations define studied freeway segment types, EX-EN 

and EN-EX (AASHTO, 2001) 
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Figure 2 - EX-EN segment type (above). EN-EX segment type showing weaving 

movements (below)  

1.2 – Weaving Sections 

Identifying problematic weaving segments to assess risk factors in the Las Vegas 

freeway system presents the issue of differences among interchange characteristics. A 

generalized approach to analyzing crash data related to geometric design features is often 

practiced, especially when operating and designing interchanges and ramp terminals of 

various distinct interchanges. In the design stages, only the safety concerns of the 

interchange improvement is considered and the connecting freeway segments are 

overlooked. Also, Annual Average Daily Traffic (AADT), which is a measure of traffic 

volume, is non-specific when analyzing the unique geometric layout of each interchange. 
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Correlations of crash frequency to geometric features differ over peak and non-peak 

volume. 

Unintentional freeway safety hazards of the Las Vegas freeways are seen in 

interchange spacing for the following reasons: 

1. The Las Vegas Valley is contained within Clark County boundaries 

2. Clark County follows standard township and sectioning guidelines 

3. The townships consist of many one square-mile sections (usually 36 total) 

4. Major arterials make up the boarders of these sections 

5. Therefore, the arterials interchanges are about one mile apart 

Ramp spacing must be considered along with interchange spacing. The design purpose of 

ramp type selection also dictates the length. The resulting ramp spacing is much shorter 

than interchange spacing. Short interchange spacing causes weaving sections in EN-EX 

segment types. Weaving contributes to traffic delay due to the short maneuvering lengths 

drivers must negotiate along with other competing drivers. 

Any EN-EX ramp-pair freeway section over 2,500 feet is not considered a 

weaving section according to the Highway Capacity Manual 2010 (Roess et al. 2011). 

The AASHTO’s “Green Book” (A Policy on Geometric Design of Highways and Streets) 

recommends, in Exhibit 10-68 (see Figure 1), minimum ramp spacing for five different 

terminal combinations including EN-EX (weaving segment). The recommend minimum 

distance is 2,000 feet between service (smaller features) interchanges or arterial 

interchanges. Many EN-EX segments are classified under the criteria of length less than 

2,500 feet (45% out of the total EN-EX contained in the study area). Furthermore, the 
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distance was established in the 1970s and was based on operational experience (Ray et 

al., 2011). 

The short distance limiting driver maneuvering is known to cause turbulence in 

traffic flow (Roess et al., 2011). The turbulence effect stems from lane changing of 

drivers entering occurring at the same time drivers exit. Recent studies would suggest 

weaving sections are problematic in terms of crash frequency. Pulugurtha and Bhatt 

(2010) found crash frequency decreased when weaving section length increased. As well, 

they suggested the increase probably of crashes occurring in weaving section compared 

to all other freeway sections in Las Vegas. 

In this thesis, crash frequency occurs more in the preceding EX-EN segment than 

in weaving sections when considering 2010 crash data. Traffic flow turbulence causes 

momentary speed reduction sending a shockwave effect upstream. As the shockwave 

moves past the influence of the weaving section, unsuspecting drivers fail to respond. 

The weaving segment is interrelated to crash frequency increases in the EX-EN segment 

upstream. Also, primary crashes which occur in weaving section produce shockwave 

speed reduction resulting in secondary crashes. These secondary crashes might not occur 

in the same weaving section. This further strengthens the basis to examine the adjoining 

segment types together.   

1.3 – Simultaneous Equation Modeling 

SEM allows for the analysis of an interrelated system of equations with 

independent (exogenous) variables, i.e., freeway segment characteristics, which differ 

over the two different segment types. In Teng et al. (2013), each segment type was 

modeled separately due to changing variables across successive freeway segments, e.g., 
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EN-EX segments have presences of auxiliary lanes (dummy variable coded 0 or 1) and 

EX-EN do not (no 0 nor 1).  

The endogenous variables (correlated to the error term or dependent) of crash rate 

for EX-EN and EN-EX segments can be used for regression in SEM. By the “three-stage 

least squares” (3SLS) method of SEM, the error structure of each equation, i.e., crash 

prediction residuals for EX-EN and EN-EX, must be correlated for both segment type 

equations. This procedure can be considered when crashes occur within the same study 

time period (1 year, 2010) even though each segment type presents different variables 

(Henningsen & Hamann, 2007). The resulting crash rate estimates are then regressed 

simultaneously to model crash rate of EX-EN and the downstream segment EN-EX, 

which for short lengths (< 2,500 feet) are known for undesirable vehicle weaving 

movements.  

In MLR, the error terms from one observation to the next is assumed to be 

random. Therefore, comparing individual regression equations should result in zero 

covariance with the error terms proving they are independent of each other, i.e., they have 

no correlation. The contemporaneous correlation of the error terms across each equation 

needs to be determined for use of SEM. The contemporaneous correlation explains the 

relationship between the consecutive segment types, and how crash rate of EN-EX will 

affect the other in terms of safety. 

Above all else, identification of the equations is required. The one-to-one 

relationship between the number of explanatory variables and parameters to be estimated 

ensures a system can be solved. More details of the identification process are in Chapter 3 

Methodology. 
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1.4 – Study Objectives 

This thesis includes extensive literature review done to ensure the proper use of 

3SLS method of SEM. The results include analysis done with the data collection 

previously submitted to NDOT in Teng et al. (2013). However, further insight of the data 

is conveyed from the use of SEM. A system of crash prediction models includes one 

equation for each segment type. The correlation coefficients will be determined for the 

error terms of individual MLR equations of crash rate for each segment type. The results 

validate the use of SEM as a method of handling the heterogeneous, connecting freeway 

segment types. The connecting segment pairs and three-segment semi-corridors make up 

part of the urban freeway system influenced by interchanges. The resulting models 

incorporating geometric features and traffic volumes will aid in providing effective 

countermeasures to improve freeway safety. 
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Chapter 2 Literature Review 

 

The literature review contained in this thesis focuses on traffic safety studies 

related to the following topics: freeway geometric features, econometric modeling 

techniques and simultaneous equation modeling in traffic studies. The chapter will lead to 

the methodology used for this study termed “three-stage least squares” (3SLS) and how 

the method is currently used in crash prediction. The significant relationship of geometric 

features and crash frequency of nearby freeway segments is emphasized. The importance 

of how the correlations validate the use of simultaneous equation modeling (SEM) is also 

emphasized. 

The amount of studies focusing on urban freeway safety increased in recent years. 

The Highway Safety Manual (HSM), which is formulated from empirical data, is the 

preferred source for evaluating safety of roadway facilities. However, the HSM does not 

cover safety effects of freeway design functions. Space for freeway facilities decreases as 

any city grows. Lack of space stresses the consideration of all possible designs options to 

improve mobility. All of the aforementioned statements are cause for alarm when 

cogitating safety in freeway design. 

Geometric design standards being used countrywide are congenital of empirical 

observation related to safety of design speeds. As those standards age, the need for 

reevaluation of design standards must keep up with concerns such as population grow 

and urban sprawl as well as innovative safety features established by the auto industry. 

Many studies were completed since the recent edition release of AASHTO’s “Green 

Book” which is formulated from empirical results. Techniques in model estimation have 
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branched into the econometric realm for more complex traffic prediction estimation 

resulting in more vigorous output on which to formulate design standards. 

Correspondingly, the use of Intelligent Transportation System (ITS) allows for more 

detailed database collection. A literature review was performed for this study to 

encompass these emerging techniques for crash frequency prediction for urban freeways. 

2.1 – Highway Safety Manual 

In order to circumvent intricate human behavioral concepts in experimental 

design, geometric features are commonly used for freeway safety studies. Identifying the 

key characteristics of freeway design attributed to crash frequency can produce 

significant prediction results without incorporating human factors. As seen in Figure 3, 

human factors alone account for 57% of all contributing factors of crashes according to 

Treat et al. (1979). Although roadway factors only covers 34% when combined with all 

other considered factors, the roadway is far more controllable than human behavior. 

 

Figure 3 - Crash factors (AASHTO, 2010), (Treat et al. 1979) 
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HSM is a recently developed tool for engineers to assess safety issues of roadway 

design. The HSM offers step procedures on resolving issues through countermeasures. 

An outline of the process for selecting countermeasures for any specific site (except 

freeway facilities) is as follows: 

1) Identify contributing factors at the site in question 

2) Identify countermeasures to address the crash contributor 

3) Conduct cost-benefit analysis for selected countermeasures 

Most countermeasures are described in PART D of the manual along with the 

respective Crash Modification Factors (CMF). The CMF is derived from before-and-after 

studies. The results provided are used to understand the effects on crash frequency if the 

CMF is selected for that specific site. Some CMFs have a value over 1.0 which would 

indicate a rise in crash frequency and should not be considered for implementation of the 

site analyzed. For example, the installation of a signalized intersection where a stop was 

installed previously may increase rear-end crashes over preventing left-hand turn crashes. 

The CMFs are then used with the crash predictive method describe in the HSM. 

The projected crash frequency of the analyzed facility is determined with historical data. 

Several years’ worth of crash data is suggested in order to determine the “expected 

average crash frequency” per year. The results are used for alternative selection of 

countermeasures contained in the manual. 

Utilization of the HSM to assess various facilities can be accompanied with the 

software, SafetyAnalyst, to preform simulation based modeling. However, the HSM does 

not include many CMFs to be used with various freeway facility types. Most CMFs listed 

for freeways are operational countermeasures such as crash and speed warning signs as 
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well as providing sufficient lighting on freeways. As for geometric planning using CMFs, 

the manual is incomplete for now with the promise of CMFs for freeway geometric 

features in the next edition. This lack of factors related to freeway safety is due to the 

lack of studies done for freeway facilities. 

2.2 – Geometric Features related to Crash Frequency 

 The HSM is comprised of the most relevant studies focused on relating geometric 

conditions and traffic safety. With the emergence of statistical software, simulation 

packages and ITS data, more studies have recently emerged dealing with freeways. Some 

of the studies considering freeway crash frequency and severity are Park et al. (2009), 

Golob et al. (2004), Ray et al. (2011), and Pilko et al. (2007). The researchers used 

geometric variables including vertical and horizontal alignment, number of through lanes 

and ramp spacing. 

Park et al. (2009) defined freeway sections by curve radius and classified the 

sections by presence of ramps. Variables include number of lanes and median type which 

were related to crash frequency. Golob et al. (2004) derived severity prediction equations 

for weaving section types. Type A through C designates each probability equation in a 

multivariate probit model. Weaving type was the only geometric variable and crash 

frequency was found insignificant in their models. Ray et al. (2011) developed frequency 

models using ramp and mainline traffic volume along with interchange and ramp spacing 

to examine the tradeoff between freeway safety and adding a new interchange among 

existing interchanges. Pilko et al. (2007) modeled crash frequency by severity of freeway 

segments with variables such as interchange spacing, shoulder width and number of 

lanes. 
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Geedipally et al. (2012) suggested a reduction in high severity crashes on freeway 

segments with the increase of barrier presences portioned to either side of a freeway 

segment. Median barrier and shoulder barrier lengths are measured and divided by twice 

the length. Freeway segments with both median and shoulder barrier running alongside 

the entire segment would result in a ratio of 1.0. If a segment has median barrier along 

the entire length but no shoulder barrier, it would be given a ratio of 0.5. Ratios from 0.5 

to 1.0 had shown a reduction of fatality crashes from 6.5% to 5.7%, respectively.   

Haleem et al. 2013 demonstrated a two feet increase of shoulder width reduces 

fatal and injury crashes by 10%. However, this reduction was only for ramp influence 

areas of 0.3 miles upstream and downstream from painted gores. These studies are further 

evidence that urban freeway CMFs for the HSM are still in development. 

Teng, et al. (2013) related shoulder width to crash frequency. The effects of 

narrow shoulder width had shown to increase crash frequency for Las Vegas freeways. 

Their crash prediction model also included the minimum number of weaving lanes. The 

presence of auxiliary lane insures at least two lanes are used in weaving movements. 

Weaving movements have long been a source of accidents due to the nature of competing 

lane changing. 

Results from Zhang, et al. (2011) prove that designing for a two lane off-ramp 

without the lane change option can reduce fatal crashes by 0.2% (all other crashes by 

3.6%) when compared to traditional parallel off-ramp design. By eliminating the option 

to exit at the painted gore, a two-lane off-ramp (seen in Figure 4) decreases the need for 

weaving movements just before the off-ramp. Figure 5 shows two-lane off-ramp with 

lane change option for comparison with Figure 4. 
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Figure 4 - Two-lane exit ramp without optional lane (Zhang, et al. 2011) 

 

Figure 5 – Two-lane exit ramp with optional lane (Zhang, et al. 2011) 

 

Park et al. (2009) related geometric design and safety to include ramp density and 

horizontal curves. The horizontal curves were recorded attributes such as number of 

lanes, median type, etc., found in rural and urban freeway segments to analyze with crash 

counts. Much like most recent studies, a negative binomial regression model was 

performed. The results clarified risk involved with the presences of exit and entrance 

ramps. The study was not able to capture the influence of weaving sections on crashes by 

considering ramp density in freeway sections. 
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Many geometric characteristics within a freeway segment can be considered when 

relating to crash occurrence. When pinpointing key regressors, focus should be placed on 

exactly the features exhibiting causality on crash locaion. Also, having too many or not 

enough variables can prove to be disadvantageous to the study. O’Cinneide (1998) 

pointed out that lane width, median width and shoulder width influence driver comfort 

which has been known to affect crash rate. Grade changes on freeway segments at 4% 

increased crash rate by 20% when compared to lower gradients. Las Vegas freeways 

contain only a few areas where grades are steep enough to influence vehicle acceleration 

and overall traffic flow. 

When considering the installation of new interchanges between two existing 

interchanges, Pilko et al. (2007) conducted an experiment to factor geometric design in 

risk assessment models. Characteristics such as interchange spacing, shoulder widths and 

number of lanes in the freeway segment were just a few of the variables considered. The 

models showed that volume had a large sensitivity in freeway and ramp Annual Average 

Daily Traffic (AADT) when predicting fatal and injury crashes. Using AADT does not 

account for factors such as peak hour traffic flows, seasonal weather conditions and 

secondary crashes caused by initial crashes. 

2.3 – Econometric Techniques in Traffic Studies 

As any modeler will proclaim, not all data collected will result in inferential 

statistics especially when using classical regression techniques. Attending to assumption 

violations can be a daunting task when formulating significant results. Assumption 

violations include exogeneity, i.e., no correlation demonstrated between the explanatory 

variables and residuals, and heteroscedasticity, i.e., non-constant variance of error terms. 
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Other pitfalls include model selection when using mixtures of discrete and continuous 

data. Improper knowledge to detect these issues will lead to improper model results. 

Researches mustn’t report results hastily if not all assumptions of classical regression are 

addressed. 

The use of more complex modeling techniques in traffic engineering has 

increased as researchers embrace the use of econometrics. Golob (2003) lists the many 

studies already done using advance techniques of econometrics. Most of the studies deal 

with travel behavior but fundamentally the methods of structural equation modeling can 

be used for most other transportation related issues. Simultaneous equation modeling 

(SEM) is a form of structural equation modeling in which the interrelationship of 

dependent variables can be used to form a system of equations. SEM developed for more 

advanced econometric modeling can take many forms dealing with estimation issues 

expressed earlier in this section. Also, SEM is used for probability outcome variables 

used in probit regression.   

Xu, et al. (2013) used structural equation modeling with crash rate and travel 

speed as endogenous variables. Tobit modeling was used to account for zero valued 

observations for crash rate in arterial mid-blocks. The use of average travel speed as an 

endogenous variable in the two-stage process resulted in more efficient estimators. 

Without the use of endogenous variables, the resulting models found four explanatory 

(exogenous, not effective by system) variables to be significant. With the two-stage Tobit 

model, eight explanatory variables were significant. 

The increase in information picked up from the two-stage Tobit proves there is 

correlation between crash rate and average travel speed. The censored data issue was 
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addressed through Tobit regression by accounting for the zero-valued, non-crash found 

many times in arterial segments. Left-censored data indicates crash rate is unobserved but 

those segments still contain information about crash rate occurrence. It is the difference 

between knowing what cause crashes versus what does not cause crashes. 

Golob, et al. (2004) used multivariate probit model to evaluate crash occurrence 

of the conventional weaving section types. The three types are defined by weaving lane. 

Each observation (vehicle crash) was recorded for weaving section characteristics to 

understand the correlations between multiple characteristics resulting in crashes. 

Characteristic variables included roadway conditions crash severity and crash type, i.e., 

rear-end and side-swipe. The indication that crash severity diminished for weaving 

section with only one movement per merging vehicle had resulted. The researchers found 

no significant effect between weaving section type and crash frequency. 

Multivariate probit model is a form of structural equation modeling in which 

endogenous variables (weaving types in the last example) show some correlation in error 

terms when regressed. The predictive estimates are found by maximum likelihood 

method against the exogenous variables (crash characteristics) in order to compare 

correlations. The probit model was chosen for the discrete case in which the endogenous 

dependent variables are jointly estimated.  

2.4 – Simultaneous Equation Modeling 

Few studies are available demonstrating use of SEM to develop freeway safety 

prediction models. Abdel-Aty et al. (2006) related various types of freeway traffic 

volume to crash frequency using SEM. Ye et al. (2009) and Medina et al. (2006) used 

SEM in highway safety prediction. Ye et al. (2009) modeled crash type frequencies, e.g., 
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property damage and injury crashes, for rural intersections. They use traffic volumes and 

shoulder width to name a few variables. Medina et al. (2006) took into account the 

relationship between crash rate and mean speed as endogenous regressors.   

In a study conducted by Ye, et al. (2009), SEM was used to predicted crash type 

frequencies. In rural areas of the state of Georgia, some 837 crashes spanned the period 

of two years at selected intersections. To understand the correlation between crash types, 

an equation for each of the following was formulated using multivariate Poisson 

regression: head-on, rear-end, sideswipe, sideswipe of opposing direction and pedestrian-

involved. The endogenous variables of crash type then become independent variables in 

the estimating process along with traffic volumes, shoulder width, lighting, number of 

left and right turn lanes, grade and terrain of major and minor roads. The researcher did 

show the correlations in error terms which support that this type of modeling captured the 

unobserved factors of crash types related between intersections. Although the goodness-

of-fit of the model and efficiency of the parameter estimates were improved, no 

additional information was obtained when modeling univariate approach compared to the 

simultaneous multivariate model. 

Abdel-Aty, et al. (2006) used SEM to relate crash frequency of Florida freeways 

to traffic flow and geometric characteristics. Sticking with a count model, Seemingly 

Unrelated Negative Binomial regression was used for the discrete observations. The 

models related crash frequency of various scenarios, i.e., scenarios equal the number of 

equations in system to be modeled, with traffic and freeway geometric characteristics. 

One of the pair of scenarios had single and multi-vehicle crash frequencies simultaneous 

model against indicator variables such as radius category defined by threshold of 3,000 
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feet and pavement type. Also, continuous variables used include volume and speed. Other 

scenarios modeled are morning and afternoon peak hour crashes with the same 

explanatory variables. All of which resulted in more efficient parameter estimates and 

improved model fit when compared to the single equation modeling done in the same 

study. 

Medina, et al. (2006) modeled endogenous variables mean speed and crash rate 

for Indiana highways using “three-stage least squares” method of SEM.  A regression 

equation for crash rate was developed with mean speed as an endogenous variable along 

with posted speed limit, horizontal curve and cross-sectional width as well as behavioral 

indicator variables. The same explanatory variables were used to predict mean speed with 

crash rate as endogenous variable. All variables used for estimation were found 

significant, albeit, at the 10% significant level. Crash data for three years were converted 

to crash rate weighted by exposure as million vehicle miles traveled. 

In this thesis, “three-stage least squares” method of simultaneous equation 

modeling was used based on the literature reviewed. The results show the 

interrelationship of endogenous variables of crash rate of EX-EN and EN-EX freeway 

segments used for estimation of more efficient regression parameters. The results also 

indicate the correlation of adjoining freeway segments which have heterogeneous 

geometric characteristics across adjoining segments and unobserved variables when 

relating crash occurrence to geometric variables such as median and shoulder widths, 

number of lanes, horizontal and vertical alignment as well as segment length with traffic 

volumes. 
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Chapter 3 Methodology 

 

3.1 – Research Methodology 

 This research is a continuation of Teng, et al. (2013). The flow of research begins 

much earlier than the formulation of the problem statement for this thesis. To better 

understand the flow, Figure 5 begins with data collection from the previous study. 

Although the previous research project has a similar problem statement of crash reduction 

for the Las Vegas freeway system, the problem statement for this thesis was not observed 

and imagined until the previous project was drawing to a conclusion. 
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Figure 6 – Research methodology where dotted line represents beginning 

 After the problem statement was formulated, a literature review was completed to 

validate a modeling approach and to ensure the topic was not repeated regarding 

simultaneous equation modeling (SEM) for freeway segment crash prediction. All too 

often in freeway crash prediction studies, the geometric variables provide little 

information for predicting crash count or severity. Due to the limiting segmentation, the 

corridor geometry may change from segment to segment making the study area 
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heterogeneous and variables difficult to capture empirically. Conversely, basic freeway 

segment crash prediction does not explain the influence of connecting segments. 

 The previous data set required rearrangement in order to model connecting 

freeway segments defined by ramp pairs. Most EX-EN segments are located at an 

interchange and have shown crash concentrations influenced by the connecting EN-EX. 

To better understand the causes of the concentration at or near the interchange, the 

upstream EN-EX was then added in another model to complete a semi-corridor without 

compromising exogenous geometric variables.    

The interrelationship of connecting freeway segments in order to find latent 

variables was important to establish before SEM methods can be used. Also, 

identification of equations needs to be established. Modeling using “three-stage least 

squares” allows for crash rate correlations across freeway segments to be distinguishable. 

Through the utilization of instrumental variables (described in the next section), resulting 

model estimates  are more efficient compared to estimates found using multiple linear 

regression. 

The interpretation of the results assisted with recommendations for crash 

reduction. In the conclusion, caveats are suggested for future use of SEM for improved 

prediction modeling. 

3.2 – Instrumental Variables 

 When least squares estimators are inconsistent, they do not converge on the 

probability of being an unbiased estimator as the number of observations increases 

(Wackerly et al. 2008). Instrumental variables allow for improvement for regression 

estimates as long as the assumptions are met.  Instrumental variables must be correlated 
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with the other set of explanatory (or exogenous) variables and have no correlation with 

the error term. The instrumental variable estimates can be found using “two-stage least 

squares” (2SLS) regression. Otherwise, instruments would be impossible to establish for 

regression use. The number of instrumental variables may equal or be less than the other 

set which allows for the use of data sets with different explanatory variables, e.g., EX-EN 

segments contain no auxiliary lanes but still can be regressed with EN-EX segments with 

presence of auxiliary lanes variables (Greene, 2008). Instrumental variables should then 

be able to fill the missing data columns of the uneven variable vectors using 2SLS 

estimation. 

The endogenous variables are made up of data affected by the system. There must 

be the same number of endogenous variable as there are equations in the system in order 

to be considered a “complete system”. The system of equations must be identified in 

which the number of unknown parameters equal the number of estimates coefficients. 

Each equation is identified by the Order Condition demonstrated by Green (2008) in 

equation (1). In equation (2), the difference between the total of exogenous variables in 

the system and the number of exogenous variables in the equation must be more than or 

equal to the difference between the total number of system endogenous variables and the 

number of endogenous variables in the equation minus one. Only then can the system of 

equations be determined through simultaneous equation modeling. The crash rate 

prediction equation for EX-EN segment type lacks the presence of auxiliary lane 

variable. To complete the system and address identification, instrumental variables are 

only included in the EX-EN regression equations. 
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𝐾𝑗∗  ≥  𝑀𝑗          (1) 

𝐾 −  𝐾𝑗  ≥ 𝑀 −  𝑀𝑗
∗ − 1         (2) 

where,  

K = total number of system exogenous variables 

Kj = number of equation exogenous variables 

Kk
* = number of equation exogenous variables excluded 

M = total number of system endogenous variables = total number of equations 

Mj = number of equation endogenous variables 

Mk
* = number of equation endogenous variables excluded 

 

A system of equations for crash rate prediction for each segment type (G) 

included in the models can be seen in equation (3) 

 

𝑦𝑖 =  𝑌𝑖𝛼𝑖 + X𝑖𝛽𝑖 + 𝑢𝑖 , 𝑖 = 1, 2, …𝐺          (3)  

 

where y is the vector of endogenous observed crash rate variables, Y is the vector of 

fitted endogenous crash rate variables with parameter α estimated with the use of 

instrumental variables, X is a matrix of exogenous geometric characteristics and traffic 

volume variables with β estimated parameter coefficients and u the error term. The EX-

EN is when G=1 and EN-EX is when G=2. The assumption is that there is no correlation 

of error terms from observation to observation as seen in (4).  
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𝐸�𝑢𝑖𝑡𝑢𝑗𝑠� = 0   ∀   𝑡 ≠ 𝑠        (4) 

 

However, the contemporaneous correlation across equations for the combined 

observations in (5) is use to obtain the covariance matrix of contemporaneous correlation 

error terms used in SEM estimation techniques. The covariance matrix is seen in (6). 

 

𝐸�𝑢𝑖𝑡𝑢𝑗𝑡� = 𝜎𝑖𝑗         (5) 

 

𝐸[𝑢𝑢𝑇] =  Ω =  ∑⊗ 𝐼𝑇        (6) 

 

where ∑ is the covariance matrix taken with the Kronecker product with I, the identity 

matrix for the T number of observations in each equation. The Kronecker product is not 

to be confused with matrix multiplication but results in a block matrix. 

 The instrumental variables, Z for the ith observation, are estimated in two-stage 

least square and are calculated in the following manner: 

 

𝑍𝑖 =  𝑌𝚤� =  𝑋[(𝑋𝑇𝑋)−1𝑋𝑇𝑌𝑖]       (7) 

 

The next section explains how Z is used in the first stage in the modeling technique used 

in this thesis.    
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3.3 – Three-Stage Least Squares 

 The instrumental variables described in the last section take the place for latent 

variables and thus can account for measurement errors in data collection. The omitted 

variables in ordinary least squares estimation (OLS) cause biasness in single equation 

MLR. Acting as the unobserved variables, instrumental variable are estimated in the 

method of three-stage least squares (3SLS). The process of 3SLS simply explained by 

Washington, et al. (2011) is as follows: 

1. Preform OLS regression for each equation to obtain predicted variables which are 

then used as instrumental variables, Zi in (7) 

2. Find the error terms across equations for covariance matrix, Ω in (6) 

3. Covariance matrix is then used for generalized least square (GLS) estimation of 

regression parameters, α and β in (7 and 8) 

 

 The first stage in the 3SLS method is to regress all exogenous variables using 

OLS on Yi. The exogenous variables, Xi, are the geometric characteristics and traffic 

volume. The predicted endogenous variables of crash rate from each segment type 

become instrumental variables. The instrumental variables are used in the opposing 

equation for residual analysis. The residuals must be contemporaneously correlated. 

 The second stage is calculating the covariance matrix using the residuals from the 

included instruments. The third stage uses the covariance matrix to estimate parameters 

using GLS for the equation system seen in (7) and (8). 

 

𝑌1 =  𝑌2𝛼2 +  𝑋1𝛽 + 𝜀1       (7) 
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𝑌2 =  𝑌1𝛼1 + 𝑋2𝛽 + 𝜀2       (8)  

  

The results from 3SLS, as long as the disturbances are contemporaneously 

correlated, are consistent estimators which are asymptotically more efficient  (Zellner & 

Theil, 1962) (Henningsen & Hamann, 2007). The method of 3SLS is better suited for 

systems of equations to aid in the understanding of the correlation between connecting 

freeway segments when predicting crash rates using geometric and volume variables. 
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Chapter 4 Data 

 

The pooled data set used for modeling was collected from the previous study. A 

reevaluation of the data was required to combine sequential segments from Las Vegas 

freeways, I-15, I-215 and US 95. The previous study involved data collection including 

geometric characteristics, traffic volume and historical crash counts described in the 

following sections. Then, the explanation of how connected freeway segments were 

joined for SEM is found at the end of the chapter. 

4.1 – Description of Variables   

 The following section contains simple explanations of the variables used for 

SEM. Table 1 includes the variable designations along with their units for quick 

reference. The crash rate was calculated by normalizing exposure of crash counts 

(recorded for a one year time period) taken over the traffic volume and length of the 

individual segment. All variables excluding AADT are characteristics of geometric 

design. Only crash rates are endogenous variables. 
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Table 1 - Description of Variables Used in Modeling 

 

4.2 – Segmentation  

All measurements were taken from Google Earth image dated 5/28/2010 in order 

to evaluate the proper geometric features representative of 2010. The dated image also 

allows for the appropriate assessment of construction work zones which alter the driving 

conditions. If the image is not dated, improper geometric condition maybe recorded for 

the study year causing error in the dataset. The Las Vegas freeway system, as well as 

most urban freeways, necessitates improvement projects including freeway widening 

which can change geometric variables observed. The recorded observation changes 

introduce difficulties in yearly studies. 

As-Built designs are ideal for recording geometric characteristic variables in any 

roadway study resulting in more accurate measurements for variables such as median and 

shoulder width. However, examining each plan set is very time consuming and would 
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constitute a research project unto itself. The tradeoff of accuracy issues using Google 

Earth image is unequal to the amount of time spent recording data from As-Built plan 

sets. 

 The segmentation was done using the AASHTO ramp-pair combinations of EX-

EN and EN-EX (as seen in Chapter 1). The length was considered from the painted gore 

of the first ramp terminal to the painted gore of the next ramp. The segment length in this 

study is considered base length in the Highway Capacity Manual 2010 for basic freeway 

and weaving segments. 

 The study area is highlighted in Figure 7. Not all freeway areas were used. 

Freeway segments with ramp pair combinations of EX-EX and EN-EN were excluded. 

Also, any segment with construction zone observed for 2010 was excluded. 

 

 

Figure 7 – Las Vegas studied freeways highlighted in blue 
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4.3 – Endogenous Variables 

 The crash rate variables were calculated using the following equation: 

 

CRASHRATE = 𝑁
𝑉∗365∗𝐿

∗  106         (10) 

where, 

N = number of crashes in 2010 per segment 

V = vehicles per day taken from AADT 

L = segment length in miles 

 

Crash data was supplied by the Nevada Department of Transportation and was previously 

geocoded. The accuracy of crash location is questionable; however, relative spatial 

correlations across segment types are still significant when making inferences related to 

geometric factors. Measurement errors in the recording of the crash data are prevalent. 

Mention of this fact is in the Highway Safety Manual 2010. Consistency in reporting 

techniques allow the observed crash data to still be compared over the years. 

4.4 – Exogenous Variables 

 The geometric characteristics which include number of lanes, shoulder width, 

median shoulder width, average grade change, curve radius and segment lengths were 

recorded with the use of Google Earth. To relax accuracy issues when taking 

measurements, multiple measurements were taken with the use of Google Earth distance 

ruler and an average was recorded. Distance was averaged for shoulders, medians, radii 

and lengths for all segments. Taking an average for grade change is described by Roess 

(2011) in which freeway segment lengths less than 4,000 feet and grade change less than 
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5% can be done for composite grades. In this study, elevation was recorded at each end of 

the segment using Google Earth as well. Then, the average percent grade was recorded by 

taking the elevation difference over the segment length. 

 The shoulder width was measured according to the AASHTO "Green Book" 

definition. The freeway shoulder is the "usable" width intended for disabled vehicle 

parking and emergency vehicle passageway. The shoulder should be paved and 

continuous. The suggested width should be 10 to 12 feet depending on truck volume. The 

suggested width agrees with most of the measurements recorded for the studied freeway 

segments. The median is taken as the Green Book definition of median (the total distance 

between opposing interior lanes) and recorded as half for both directions. This 

measurement usually considered median shoulder width and should be 4 to 8 feet for 

each direction with 2 feet median barrier which agrees with the majority of recorded 

measurements in this thesis. 

 To overcome for the lack of state geometric data base and to simplify 

measurement, each horizontal curve observed was treated as a simple curve. Arc and 

chord length were recorded in Google Earth. The use of ArcGIS Curve Calculator under 

the COGO toolbar provided curve radii. When the same freeway segment encountered 

multiple curves, the shorter radius was recorded due to the stronger effect on driver 

comfort. The same reasoning was considered for segments containing both curve radius 

and tangent sections. Some freeway segments shared curve radius. In this case, every 

segment was designated with the same curve radius measurement. 

 Average annual daily traffic (AADT) volume data was taken from the Nevada 

Department of Transportation. When spot volumes were not included in their traffic 
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report, a balance approach was considered so that all freeway segments in the study had 

AADT values in the data set. The ramp AADT along with nearby volumes assisted with 

the balance calculations. An example of balance calculation can be seen in Figure 8. The 

given nearby volume is added with each ramp volume resulting in the missing volume 

sum. A map showing which segments with missing volume from the published traffic 

report is shown in Figure 8. 

 

Figure 8 – The sum of given volumes (black) results in the missing volume (red) 
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Figure 9 – Las Vegas freeway segments with given and calculated AADT 

4.5 – Combining Freeway Segments  

Freeway segments were paired initially by the EX-EN segment and the 

connecting (or downstream) EN-EX. Later, the upstream EN-EX was added for 

additional analysis of a combined three-segment semi-corridor. In Figure 10, the included 

EX-EN segment in the paired segment data set to be modeled must be followed by an 

EN-EX segment. The correlation of crash frequency between these two segment types 

was observed. The results chapter demonstrates the interrelationship when the two 

segments are modeled together. 
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Figure 10 – Segment pairing of EX-EN to sequential EN-EX of US 95 at Eastern 

Ave. 

The upstream EN-EX was then added to the paired segment observations 

resulting in an additional data set to be modeled. The three segments together form a 

heterogeneous semi-corridor in which explanatory variables differ across segments. Both 

examples of combining paired segments and combining the three-segment observations 

for data sets are seen in Figure 11. The resulting data sets to be modeled are pair-segment 

and three-segment, respectively. The effects of the interchange are better understood 

when including the upstream and downstream basic/weaving freeway segments (EN-EX). 

Each connected segment observation was modeled as one case in the SEM.   
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Figure 11 – Demonstration of combining successive freeway segments for data sets 
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Chapter 5 Results 

 

The following chapter discusses the statistics of crash frequency analysis by 

segment type for pooled, paired segment and three-segment data sets. The tables and 

figures confirm intuitive reasoning for use of simultaneous equation modeling in order to 

show the unobserved relationship between segment type crash predictions. 

Overall descriptive statistics including all endogenous and exogenous variables 

for each data set follows. The distribution of all variables dictates which model to use 

according to Empirical Bayes method descried in the Highway Safety Manual. 

 Lastly, the simultaneous equation modeling (SEM) results for the pair-segment 

and the three-segment models are shown. The interpretation of significant variables for 

each model is explained. 

5.1 – Segment Type Crash Statistics  

In past studies, weaving segments were thought to cause the majority of crashes 

on congested urban freeways. The influence area of weaving sections for density is 

defined by the Highway Capacity Manual. Influence area exceeds the ramp painted gore 

by 500 feet on either side of the segment. This can be seen in Figure 12 and can be 

compared to the crash frequency illustrated in Figure 13. The GIS exhibit (Figure 13) 

shows that the influence areas of weaving sections for safety, as opposed to density, 

might extend more than 500 feet on each side of the painted gores. Only one segment pair 

is displayed in Figure 13. However, similar patterns are observed in most weaving 

section in the Las Vegas freeway system where congestion is influenced by major arterial 

interchanges. 
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Figure 12 – Influence areas of weaving sections for density defined in HCM (TRB, 

2010) 

 

Figure 13 – Crash frequency of I-215 South between Jones Blvd. and Decatur Blvd. 

 Furthermore, the number of crashes for the west-bound EX-EN segment of I-215 

at S. Jones Blvd. (interchange on the left-hand side of Figure 13) is 61 for 2010. The 

connecting EN-EX segment has 3 observed crashes. The connecting EX-EN segment at 

the S. Decatur Blvd. arterial interchange (right-hand side of Figure 13) has 67 crashes. 

Both EX-EN segments previously descried might be extreme cases of crashes observed 

when comparing to the connecting EN-EX segment. However, the pattern persists for all 
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freeways in Las Vegas. The following Table 2 gives the total number of crashes for EX-

EN segments paired with EN-EX segments. 

 

Table 2 - Crash Totals for the Pooled and Paired Segment Data Sets 

 
 
 

 The larger number of crashes observed in EX-EN segments indicate the focus of 

freeway safety should not be on weaving sections. Most EN-EX segments in the Las 

Vegas freeway system can be considered weaving sections as they contain auxiliary lanes 

and have short segment lengths. These two variables are indicative to Type A weaving 

section defined in the HCM 2010 (about 0.5 miles in length and presence of auxiliary 

lanes). Weaving sections create situations for drivers where maneuvering for lane 

changes happens almost at the same time with other drivers within a short distance. This 

causes drivers to slow down during most of these interactions resulting in a shockwave of 

reduced speeds. The shockwave is then felt by the drivers upstream, some of which might 

not react in time resulting in crashes. The number of Type A weaving sections in the 

paired segment data set is 22 out of the 70 EN-EX segments and accounts for 107 crashes 

out of the 329 for 2010.  
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 Note in Table 2, the pooled data set included EX-EN and EN-EX segments from 

the study area that totaled to 194.However, EX-EN and EN-EX segments were paired for 

SEM and resulted in 140 total segments. More on this reduction in explained in the next 

section. 

5.2 – Descriptive Statistics  

The three-stage least squares model used the exogenous and endogenous (crash 

rate) variables seen in Table 3. The reevaluation of the pooled data set resulted in the two 

data sets used for SEM, pair-segment (PS) and three-segment (TS) data sets. The pair-

segment data set consists of EX-EN and connecting downstream EN-EX. For 

simplification of data set and model explanations, the pair-segment types are referred to 

as PS1 for the EX-EN segment and PS2 for the downstream EN-EX segment.   

 

Table 3 – Descriptive Statistics for Pair-Segment Data Set 

 

 

The total of pooled segments reduced even more when modeling for three 

consecutive segments of EN-EX, downstream EX-EN and downstream EN-EX. The 

descriptive statistics for the three-segment data set are in Table 4. The three-segment data 
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set and model equations are referred to as TS1 for EN-EX segment, TS2 for the 

downstream EX-EN segment and TS3 for the downstream EN-EX. 
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 The reduction in the number of segments from the pool data set, to the paired 

segment data set and further reduced on the three-segment data set is due to not all EX-

EN segments being followed by EN-EX. Other segment types, EN-EN and EX-EX, break 

up the sequence and are normally found at freeway-to-freeway interchanges and more 

complex arterial interchange layouts. When adding another EN-EX segment upstream 

from the paired segments, the number of trios decreases even further to 58 segment sets. 

A comparison of pair- and three-segments crash totals can be seen in Table 5.  

 

Table 4 – Crash Total for the Pooled, Pair- and Three-Segment Data Sets 

 
 

5.3 – Pair-Segment Model Results  

 SEM was estimated using “Three-Stage Least Squares” (3SLS) and can be seen in 

Table 6. Obtaining more efficient estimates from the observations is accomplished 

through the 3SLS method. The first stage involved regression of all exogenous variables. 

The fitted endogenous variables are used in the second stage. The regressed endogenous 
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variables in conjunction with the instrumental variables are used to model the system of 

equations. The third stage involves iterating the covariance matrix until the estimated 

results converge in the generalized least squares process.  

  

Table 5 – SEM Model for Pair-Segment Data Set 

   
 
  

The modeling results in Table 6 were estimated using R Project software with 

“systemfit” installed package. The package was tested by Henningsen and Hamann 

(2007) for 3SLS estimate results comparable to estimates found in “Econometric 

Analysis” by Greene (2008). 

 The parameter estimates were found without truncating the data set by the 

different freeways as in the previous study done by Teng, et al. (2013). This way, the 

pair-segment model is more generalized for use with any freeway segmented in the same 

manner as in this study. Also note, the variables, both endogenous and exogenous, were 

not transformed to address heteroscedasticity among error terms. Transformations are not 

required due to the relaxing effect SEM has on heteroscedasticity.  

 In the pair-segment model, the following observed variables were found to be 

significant in the estimated EX-EN (PS1) model equation: shoulder width, median 
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shoulder width, AADT and curve radius. Any increase for shoulder width and median 

shoulder width would decrease crash rate. Widening these areas of the freeway increases 

driver comfort for any lane changing maneuvering. Easing driver comfort decreases the 

chance for hesitation which can lead to mistakes, i.e., crashes. Also, increased curve 

radius results in a smoother curve which also decrease crash rate as horizontal alignment 

is handled better by the driver. 

 The increase of AADT has long been accredited to increases in crash rate. The 

increased volume experienced in the same freeway facility increases the chance for 

vehicle crashes to occur. The positive parameter estimated confirms this. The coefficient 

indicates that for every increase of AADT by 100,000 vehicles per day, while all other 

variables remain unchanged in the system, crash rate would increase by 0.1 million 

vehicle-miles traveled. 

 In the EN-EX (PS2) model equation, the shoulder width and curve radius follow 

the same ability to decrease crash rate if increased. However, the median shoulder width 

was not found significant at the 95% level. The AADT coefficient has the opposing effect 

of the EX-EN (PS1) equation. The negative parameter might be due to the EN-EX 

segment already experiencing high volumes compared to EX-EN. The entrance ramp 

exhibit volumes that add to the EN-EX segment and then a reduction in volume is 

experienced before the EX-EN segment begins due to exiting volumes. An increase of 

AADT in an already high volume situation would increase levels to near jam capacity 

reducing any crash rate increase by impeding all vehicle maneuvers. The shockwave 

theory is supported. The shockwave effects are felt upstream in the EX-EN segment 

increasing crash rate. The endogenous variable estimated is negative which also supports 
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the theory. More studies are needed for peak hour analysis of the impact of AADT on 

crash rate for these connected segment types. 

 The Mc Elroy R2 indicates goodness-of-fit of the model at 0.602. Root Mean 

Squared Error for both equations is relatively low considering the nature of the data. 

Measurements recorded using Google Earth and crash data are not as accurate as required 

for fundamental statistical modeling. However, the information gained when relating 

connecting freeway segment characteristics and crash rate is invaluable.  

5.4 – Three-Segment Model Results 

 The SEM model for three sequential freeway segments, EN-EX, EX-EN 

downstream and EN-EX downstream, can be seen in Table 7. The number of segments 

decreased to 58 due to the limiting possibility of the three segments being uninterrupted 

by an EN-EN or EX-EX segment. Shoulder width and median shoulder width are the 

only variables significant for each estimated segment equation. Increases in these 

variables decrease crash rate for all equations for the same reason explained in the 

previous section.  
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Only the EN-EX (TS1) model equation has segment length as a variable. The 

negative coefficient indicates that if segment length is increased by 100 feet, then annual 

crash rate would decrease by 0.008 million vehicle-miles traveled if all other variables in 

the system remain unchanged.  

The EX-EN (TS2) estimated model equation exhibited an additional variable of 

average percent grade change when compared to the pair-segment model. The positive 

coefficient indicates that if average grade is increased by 1% then crash rate is increased 

by 0.127 when variables in the system remain unchanged.  

The tradeoff from using pair-segment to three-segment model is goodness-of-fit. 

The Mc Elroy R2 has decreased slightly from the paired segment model. Root Mean 

Squared Error has increased from the last model as well. Also, the endogenous parameter 

in the EX-EN (TS2) equation has decreased effect on crash rate then the previous model 

in terms of the coefficient. The interpretation of the endogenous variable is unclear on 

how it relates to the other equations. The increase in parameter estimates indicates the 

unobserved correlation between freeway segment types exist. Further, the use of SEM is 

useful in understanding the interrelatedness of crash rates across sequential freeway 

segments.      

5.5 – Comparison of Model Estimates 

 The intent of 3SLS method is to produce asymptomatically more consistent 

parameter estimates. Table 8 shows the comparison of SEM paired model to multiple 

linear regression (MLR) of individual crash rate prediction models. One MLR equation 

for EX-EN and a separate model for the connecting downstream EN-EX were done 

without transformations for comparison purposes only. The estimates for the paired 
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model have slightly more standard error when predicting their respective crash rate 

compared to MLR. However, more consistent estimators are seen with the addition of 

variable parameters when using SEM. Modeling crash rate simultaneously with the use of 

instrumental variables has provided more information for Las Vegas freeway segments. 

SEM usage for this study proves the interrelatedness of connecting EX-EN and EN-EX 

segments.  

A comparison was not done for the three-segment model. A Chow-Fisher test was 

considered in order to combine regression equations for the upstream EN-EX (TS1) and 

downstream EN-EX (TS3) segments. If both EN-EX equations were combined, then a 

fair comparison would be warranted when considering the three-segment model with 

MLR and SEM paired segment model.  



49 
 

 



50 
 

Chapter 6 Conclusion 

Development of SEM models consisting of connecting freeway segments was 

completed using pair-segment data set, EX-EN (PS1) and EN-EX (PS2), along with a 

three-segment data set, EN-EX (TS1), EX-EN (TS2) and EN-EX (TS3). The increase of 

significant model parameters from single equation MLR shows the correlation between 

crash rate prediction residuals exists between the connecting segment types. Also, the 

indication of unobserved variables when relating these freeway segments exists. 

SEM modeling allows for freeway segments containing different characteristics, 

e.g., presents of auxiliary lane, to be examined together while resulting in a system of 

regression equations for crash prediction. Further study is needed to adhere to Highway 

Safety Manual (HSM) 2010 suggestions when considering the improvement of the 

models in this study. 

  The HSM defines a Safety Performance Function (SPF) as a regression based 

evaluation of the crash frequency of a roadway facility. The SPF is developed with the 

use of “expected average crash frequency” to account for the natural phenomenon of 

regression to the mean. For any facility, the  extreme number of crashes observed in one 

year tends to decrease in the next year. The manual suggest examining more than three 

years in order to fully survey the up- and down- trends of crash frequency unrelated to the 

changes in physical characteristics. Once the average trend is observed, the 

corresponding crash frequency can be taken as the predictor variable. 

Crash Modification Factors (CMF) are only developed after a treatment is 

installed and studied for safety effectiveness. The CMFs are then used along with the 

respective facility SPF for crash frequency evaluation.  The results from SPF also include 
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pedestrian and other transportation modes calculated safety assessment which is also 

factored in the SPF. 

As for the models in this study, shoulder width plays a crucial role in preventing 

crashes. In the individual MLR, pair- and three-segment models, the shoulder width is 

significant. Each model shows by increasing the shoulder width the crash rate will 

reduce. The three-segment model parameters decrease crash rate for shoulder, median, 

radius and length distances for the segment equation in which they are significant for. As 

to be expected, AADT and average grade increases will increase crash rate in the EX-EN 

(TS2) segment. 

The only counter-intuitive result is found in the pair-segment model. An increase 

in AADT increases crash rate in the EX-EN (PS1) segment equation. However, it 

decreases in the EN-EX (PS2) segment equation. As suggestion in the results chapter 5, 

peak hour volumes may play a role in adding to jam capacity in PS2 preventing any 

movement that restricts crashes. 

Other suggestions for further study also involve AADT volumes. All previous 

studies reviewed rely on traffic volumes recorded in AADT from their respective 

transportation planning authorities. Although using AADT simplifies the modeling 

process, the generalized variable does not provide enough information. Archived ITS 

data is useful in analyzing various scenarios such as multiple crashes (in that one crash 

caused another) occurrence as Abdel-Aty et al. (2007), studied in Florida. The intent of 

the study was to reduce crash risk in real-time by imploring ITS system elements, i.e., 

ramp metering, Variable Messaging System, etc., after speed variation was detected. The 

archived data used for model calibration consisted of speed, volume and lane.  
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