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ABSTRACT 

Initial Elastic Modulus Degradation Using Pressuremeter and Standard Penetration 

Test Results at Two Sites 

By 

Dustin Robbins 

Dr. Moses Karakouzian, Examination Committee Chair 

Professor of Civil Engineering 

University of Nevada, Las Vegas 

 

 

In-situ testing was performed at two sites consisting of pre-bored pressuremeter 

testing, seismic surface wave testing to develop a shear wave velocity profile, and 

Standard Penetration testing during the soil boring phase in order to evaluate the 

feasibility of using large shallow foundations for a project. This study focuses on a 

comparison of the in-situ direct measurements of soil stiffness obtained from this testing 

program. The small strain modulus obtained from the seismic surface wave test results is 

compared to the intermediate strain modulus obtained from both the initial loading 

pressuremeter modulus and reload pressuremeter modulus. The modulus calculated from 

blowcount correlations is compared to that of the pressuremeter modulus. The 

comparisons made from this relatively small data set reveal several trends within the data 

that are discussed and possible explanations posed. The results of the study are mostly 

inconclusive due to the small data set. Finally, recommendations are given to further 

investigate the trends that are revealed.  
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CHAPTER 1 INTRODUCTION 

1.1 - General 

 An accurate representation of soil stiffness is essential in order to accurately 

predict the deformation response of a soil subjected to a change in stress. Soil stiffness is 

the key parameter on which several types of analyses hinge, including elastic settlement 

analysis, which will be the focus of this study. Although the importance of accurately 

representing soil stiffness has been well established in the literature (Yamashita, 

Jamiolkowski, & Lo Presti, 2000), it is uncommon for direct measurements of soil 

stiffness to be performed either in the laboratory or in the field for typical geotechnical 

investigations. In place of the more accurate direct measurements, less reliable and more 

conservative correlations to penetration tests or index properties are often employed.  

 There are several reasons why direct measurements of soil stiffness are not 

regularly performed. Perhaps the strongest reason to rely on correlations in place of a 

direct measurement is that the methods available for a direct measurement are few, 

specialized, and are typically cost prohibitive. Also, although direct measurements are 

preferred for more accurate measurements of soil stiffness, they carry with them some 

limitations that may lead practicing engineers to believe that they are not a significant 

enough improvement over traditional methods to warrant their use. Most of these 

limitations relate to the soil disturbance that is unavoidable and difficult to quantify, 

particularly when performing these tests in the laboratory, but also when performing 

them in the field. Finally, the standard of practice in the United States, even for 

complicated geotechnical engineering problems, does not require the engineer to estimate 
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elastic stiffness parameters for settlement analysis with anything more than a correlated 

index property and therefore, direct measurements are seen as non-essential. 

 As stated above, the standard of practice for the majority of geotechnical 

investigations is to estimate soil stiffness using correlations from index properties. The 

most common method is to correlate stiffness to Standard Penetration test (SPT) 

blowcounts. These correlations have been shown to be highly variable, lacking of a direct 

correlation, and generally conservative (Bellotti, Ghionna, Jamiolkowski, Lancellotta, & 

Manfredini, 1986). This is likely due to the large amount of scatter in the correlations, 

indicating a high level of uncertainty in the correlation. Another common practice is to 

estimate soil stiffness from the Unified Soil Classification System (USCS) soil 

classification. Ranges of stiffness for each soil classification have been published. 

Unfortunately, these ranges are very large, indicating the uncertainty and great variability 

in this correlation. 

 One obstacle to estimating soil stiffness is that the engineering parameter used to 

describe stiffness known as the modulus has been shown to be non-linear (not a constant 

value), even at very small strains (Fahey & Carter, 1992). Modulus at small strains is 

greater, often dramatically greater, than modulus at intermediate to large strains.  Due to 

the potentially great variability in modulus depending on strain level, using a single 

modulus value to represent soil stiffness is not preferred. Unfortunately, using a single 

value is often unavoidable because the accepted methods available to the engineer to 

estimate settlement require a single value. If a single value is required, it is good practice 

to select a modulus value at a strain level that is likely to be encountered under working 

loads. 
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 It has already been stated that the methods for developing the non-linear 

relationship between soil modulus and strain are typically cost prohibitive. It should also 

be noted that these methods are also laboratory methods that carry with them certain 

additional limitations. The most obvious, and most problematic of these limitations is that 

of soil disturbance due to sampling and transport. It has been shown that the initial 

modulus (maximum tangent modulus) estimated by laboratory methods such as Resonant 

Column Torsional Shear testing is often significantly less than those obtained by field 

measurements and this discrepancy is often related to sample disturbance (Fahey & 

Carter, 1992). Beyond the effects of soil disturbance, the samples obtained may not be of 

the correct size to accurately represent the soil conditions at the site. For the reasons 

stated above, field measurements of modulus are often considered superior to laboratory 

methods for conventional geotechnical analysis. 

This study will analyze data collected at two sites consisting of geophysical 

testing results, conventional geotechnical soil borings, and pre-bored pressuremeter 

testing. The geophysical testing and pressuremeter testing provide field measurements of 

shear modulus at very small and intermediate strains, respectively. The soil borings 

which include both USCS soil classification testing and SPT blowcounts provide 

necessary index properties of the soil as well as penetration data which can be used with 

published correlations to estimate soil stiffness. 

The original scope of testing was developed to evaluate the feasibility of using 

large width (40 feet or greater) shallow foundations for a heavily loaded structure. 

Therefore, this study will be focused on the key parameter required to determine this type 
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of feasibility, the elastic modulus that would control elastic settlement, as consolidation 

type settlement was not anticipated at this site. 

1.2 - Objectives 

The main objective of this study will be to compare elastic modulus values 

calculated from shear wave velocity measurements obtained from seismic surface wave 

testing (small strain) and pressuremeter tests (intermediate strain) with an attempt at 

developing a means for which the intermediate strain modulus can be estimated when the 

small strain modulus is known. The intermediate strain level obtained from the 

pressuremeter is assumed to be the most reliable value and the value that the engineer 

should attempt to obtain for use in an elastic settlement analysis. Once a means of 

degrading the modulus to intermediate strain levels has been developed, the correlations 

presented in the literature for correlating standard penetration test results to elastic 

modulus will be compared to the results of the degradation.  

1.3 - Methodology 

 This study will begin with a discussion of relevant background information about 

elastic soil modulus and the methods by which it is measured. Next, the methods used for 

and results of the data collection will be presented. An analysis of the results will then be 

presented and discussed with the goal of satisfying the previously listed study objectives. 

Finally, conclusions of the analysis will be presented. 
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CHAPTER 2 BACKGROUND 

2.1 - General 

The stiffness of a soil is represented by an engineering parameter termed a 

modulus. There are several different types of modulus that can be measured for soils, 

including the elastic modulus, shear modulus, constrained modulus, and bulk modulus. 

Each type of modulus is appropriate for different types of analyses and is determined in 

different ways. For the purposes of this study, the elastic modulus, which is the modulus 

of a soil in triaxial compression (Briaud, 2001), will be the modulus that is preferred 

because the elastic modulus is the modulus most typically used in standard deformation 

analyses. The elastic modulus is also the modulus that is most commonly reported from 

the results of the pressuremeter test. The definition of elastic modulus is given in the 

following equation: 

E = σ/ε 

 Where E is the elastic modulus, σ is the level of axial stress, and ε is the level of 

axial strain. The elastic modulus equation above assumes that the soil is isotropic and 

homogeneous within each soil layer assigned. 

In engineering practice, there are several definitions of the elastic modulus, the 

most common of which are the initial tangent modulus and secant modulus. Figure 2.1 is 

a graphical representation of the definition of both the initial tangent elastic modulus and 

the secant elastic modulus, which is variable according to the strain level. Other 

definitions of modulus that can be reported are the unload modulus, reload modulus, and 

cyclic modulus (Briaud, 2001). 
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Figure 2-1: Definition of Soil Modulus (Briaud, 2001) 

 

As Figure 2-1 implies, the selection of a single value of elastic modulus for a soil 

can be difficult. Not only is the relationship non-linear, it may not be readily apparent as 

to which definition of elastic modulus to use. Moreover, a stress vs. strain plot is often 

unavailable and therefore the engineer must understand the characteristics of the modulus 

they are using based on how it was estimated. 

2.2 - Elastic Modulus from the Pressuremeter Test 

The pre-bored pressuremeter is an in place test procedure consisting of 

positioning a cylindrical probe at depth into a pre-bored hole and then inflating the probe 

with either air or fluid while measuring the amount of fluid (assumed incompressible) 

introduced to the system and the resulting pressure in the probe (Sabatini, Bachus, 
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Mayne, Schneider, & Zettler, 2002). These two measurements along with the probe 

geometry provide the information required to develop an in place stress-strain 

relationship for the soil at the location of the test. Figure 2.2 shows a diagram depicting 

the principles of the pressuremeter test.  

 

Figure 2-2: Description of Pressuremeter Test (Mayne, Barry, & DeJong, 2002) 

 

The pressure measured in the hydraulic line as well as the radial expansion of the 

probe provides the information required to develop what is known as the pressuremeter 

curve. This curve consists of the radial stress vs. percent radial expansion. Figure 2-3 

presents a typical pressuremeter curve with one unload-reload loop. The modulus values 

obtained from this curve would typically be the tangent modulus on the linear portion of 
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the initial loading curve and the reload modulus taken as tangent on the reload portion of 

the curve.  

 

Figure 2-3: Typical Pressuremeter Curve with Unload-Reload Loop 

 

The pressuremeter curve can be converted to show the radial stress vs. cavity 

strain at the borehole wall as shown in Figure 2-4 (Briaud, The Pressuremeter, 1992).  
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Figure 2-4: Typical Stress-Strain Curve from Pressuremeter Curve 

 

As shown in the figures above, the elastic modulus is calculated from the linear 

segment of the initial loading portion of the pressuremeter curve using the following 

expression: 

E = 2(1+ν)(V0+Vm)(∆P/∆V) 

Where E is the pressuremeter elastic modulus, ν is the Poisson’s ratio which is 

generally assumed to be 0.33 for pressuremeter tests (Briaud, The Pressuremeter, 1992), 

V0 is the theoretical volume of the uninflated probe, Vm is the corrected volume increase 

from the initial volume, ∆P is the corrected pressure increase in the linear portion of the 

curve, and ∆V is the corrected volume increase in the linear portion of the curve. The 
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initial loading shear modulus can also simply be taken as half of the initial slope of the 

pressuremeter curve. Similar theory can be used to calculate either the shear or elastic 

reload modulus from the pressuremeter curve as well. 

The initial loading tangent modulus measured from the pressuremeter is known to 

be a relatively low modulus (Briaud, The Pressuremeter, 1992). Although the test 

produces a relatively low modulus, it is commonly accepted that this relatively low initial 

loading modulus is still less conservative than the traditional methods of correlating 

modulus using penetration test results and soil index properties. 

Five reasons that the initial loading modulus measured by the pressuremeter test is 

generally considered to be relatively low were presented in Briaud, 1992. First, relatively 

large strains, on the order of 2% to 5%, are induced on the soil over the range at which 

the modulus is calculated. Second, due to the manner in which the soil is loaded, a 

portion of the soil is in tension, and the modulus measured is an average of the modulus 

of the soil in both tension and compression. It is known that soils are relatively weak in 

tension, and this will therefore reduce the measured modulus. Third, there is disturbance 

that is developed while preparing the borehole wall. Fourth, the equation to calculate the 

modulus is based on that of an infinitely long cylinder. A probe with a smaller length to 

diameter ratio will result in more conservative modulus. Fifth, the pressuremeter tests the 

horizontal modulus, which is not usually as high as the vertical modulus.   

2.3 - Elastic Modulus from Shear Wave Velocity 

 When seismic energy is transmitted within a soil, the energy travels in seismic 

waves. Seismic waves can be either body waves or surface waves and there are multiple 
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types of both (Sabatini, Bachus, Mayne, Schneider, & Zettler, 2002). The types of body 

waves are shear waves and compression waves and a diagram showing their propagation 

patterns is shown on Figure 2.6.  

 

Figure 2-5: Modes of Wave Propagation (Stokoe, Joh, & Woods, 2004) 

 

One important feature of body waves is that they travel at a constant speed within 

a medium and that speed is dependent on the stiffness of that medium. Compression 

wave velocities are dependent on the soil density and the constrained modulus of the soil. 

The velocity at which the shear waves travel is dependent on the density of the soil and 

the shear modulus, or soil skeleton stiffness of the soil.  
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 There are many ways in which the shear wave velocity of a soil can be measured. 

The field tests that can determine shear wave velocities are known as geophysical 

methods. The geophysical methods can vary from surface methods such as refraction and 

reflection to subsurface methods such as downhole, crosshole, and seismic cone 

penetrtormeter. Methods for measuring shear wave velocities in soil that has recently 

been developed are the surface wave methods. The surface wave methods measure 

Rayleigh waves, a type of surface wave, and through an inversion process that utilizes the 

dispersive properties of surface waves, can develop a shear wave velocity profile of a soil 

(Louie, 2001). Common surface wave methods are the Refraction Microtremor (ReMi), 

Spectral Analysis of Surface Waves (SASW), and the Multi-Channel Analysis of Surface 

Waves (MASW) methods. A diagram showing the propagation patterns of Rayleigh 

waves is shown on Figure 2-6. 

 An important limitation of the surface wave methods is that they do not produce 

the detailed layering than can be obtained from a downhole test or seismic CPT test. 

Relatively thin layers that have different stiffness properties than the majority of the 

profile will likely not be detected by these methods. This results in a shear wave velocity 

that has been shown to be relatively accurate at averaging the shear wave velocity over 

large depths, but may not work well to represent the shear wave velocity at every point in 

the soil profile. The traditional and most common application for surface wave methods 

is the development of the average shear wave velocity in the upper 100 feet of the soil 

profile. Using the shear wave velocity profile measured from surface wave testing for the 

modeling of soil stiffness is not common, partly because of the above mentioned 
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limitations. Despite the limitations, surface wave testing is the easiest method of 

obtaining shear wave velocities of a soil.  

  The shear modulus as obtained from the shear wave velocity of the soil is defined 

in the equation below: 

Gss = ρT*(Vs)
2
 

Where Gss is the maximum (small strain) shear modulus, ρT is the total mass 

density, and Vs is the shear wave velocity. The shear modulus as calculated using a shear 

wave velocity is defined as the maximum shear modulus because testing has shown that 

the shear modulus reaches its maximum and is relatively linear at the strain levels 

produced by shear waves (Holtz, Kovacs, & Sheahan, 2011). The strain levels associated 

with shear waves are generally taken to be on the order of 10
-6

 (Iwasaki & Tatsuoka, 

1977).  

The most commonly accepted and utilized methods for performing settlement 

analysis require the use of an elastic modulus, not a shear modulus. The maximum shear 

modulus can readily be converted to elastic modulus using the relationship below: 

Ess=2*Gss(1+ν) 

 Where Emax is the maximum elastic modulus, Gss is the maximum shear modulus, 

and ν is the Poisson’s ratio. At very small strains the Poisson’s ratio of soil has been 

shown to typically vary from 0.1 to 0.2 (Mayne, Barry, & DeJong, 2002). 
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2.4 - Elastic Modulus from Published Correlations 

 An intermediate strain level elastic modulus can be approximated by several 

methods. The two most commonly used methods are the correlations with SPT 

blowcounts and the correlations based on soil type. The correlations utilized in this study 

are presented in Tables 2-1 and 2-2. 

 

Table 2-1: Estimating Elastic Modulus from SPT Blowcounts (AASHTO, 2011) 

Soil Type Espt (ksi) 

Silts, sandy silts, slightly cohesive mixtures 0.056N160 

Clean fine to medium sands and slightly silty sands 0.097N160 

Coarse sands and sands with litte garvel 0.139N160 

Sandy gravel and gravels 0.167N160 

 

Table 2-2: Estimating Elastic Modulus from SPT Blowcounts (McGregor & 

Duncan, 1998) 

Soil Type Espt (kPa) 

Sand 500(N60+15) 

Gravelly Sand and Gravel 600(N60+6)+2000 

 

 

 Where N160 is the SPT blowcount corrected for hammer energy transfer 

efficiency and an overburden pressure of 1 ton per square foot, N60 is the SPT blowcount 

corrected only for hammer energy transfer efficiency, and Eint is the intermediate strain 

modulus. The correlation in Table 2-1 is presented in the AASHTO LRFD Bridge Design 
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Code (AASHTO, 2011) and the correlation in Table 2-2 is presented in the SPT manual 

commonly used in geotechnical practice (McGregor & Duncan, 1998). Note that no 

correlations are presented in the above tables for clay soils. Where the pressuremeter test 

was performed within clay soils, not correlation of SPT blowcounts was performed as it 

is generally assumed in geotechnical practice that SPT blowcounts are not sufficient to 

estimate the elastic modulus of clay soils. 
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CHAPTER 3 DATA COLELCTION AND DATA PROCESSING 

3.1 - General Overview 

 The testing was performed in the northern portion of the Las Vegas Valley. 

Testing Site 1 was located in the unpaved median of an existing highway while Testing 

Site 2 was located in a rough graded area between a parking lot and an access road. The 

general surface geology at the two sites consists of recent alluvium deposits and older 

alluvium deposits. Nearby areas have also been mapped as fine grained spring and marsh 

deposits (Bell, Ramelli, & Caskey, 1998). 

The testing sites were located approximately 1200 feet apart and are shown on 

Figure 3-2.  

 

Figure 3-1: Testing Location Map 

 

Testing was performed at both sites in three phases consisting of geotechnical soil 

borings, including soil sampling and Standard Penetration tests, pre-bored Pressuremeter 
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testing, and geophysical testing to develop a shear wave velocity profile of each site. The 

testing was performed as part of a State highway transportation project for the 

development of preliminary recommendations for the design of bridge foundations. 

Consequently, the boring locations were selected by the State of Nevada.  

The original scope of exploration was developed to evaluate the feasibility of 

using shallow foundations for heavily loaded structures where elastic settlement was 

assumed to control the foundation design due to the assumed depth to groundwater and 

the relatively coarse grained site geology. 

3.2 - Soil Borings and SPT blowcounts 

 The soil borings were each drilled to a depth of approximately 120 feet with soil 

samples obtained in 2½ foot increments in the upper 20 feet, 5 foot increments from a 

depth of 20 feet to 80 feet, and 10 foot increments below 80 feet. Mud rotary methods 

were used for drilling with a Diedrich D120 drill rig equipped for soil sampling.   

 Standard Penetration test blowcounts were obtained at the majority of the 

sampling intervals using an unlined, 1-3/8 inch inside diameter in conformance with 

ASTM D1586. The sampler was driven with a 140 pound, hydraulically actuated, 

automatic trip hammer free-falling a distance of 30 inches. The number of blows required 

to drive the sampler 6 inches was recorded in the field until either the sampler was driven 

18 inches or more than 50 blows was required to drive the sampler through one of the 

three 6 inch intervals. The hammer was calibrated to an energy transfer efficiency of 78 

percent. 
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 Laboratory testing was performed on the samples recovered from the SPT tests, as 

well as the undisturbed samples obtained from other sampling methods. The laboratory 

testing program was primarily directed toward USCS soil classification and consisted of 

grain size distribution analysis (ASTM C117 and C136), Atterberg Limits testing (ASTM 

D4318), in place Moisture content (ASTM D2216) and in place Dry Density testing 

(ASTM D2937).  

USCS soil classification, corrected and uncorrected SPT blowcounts, moisture 

content and in place density data obtained during testing for both sites is presented in 

Tables 3-1 and 3-2.  

 

Table 3-1: Results of Soil Borings at Test Site 1 

Soil 

Layer 

Top 

Depth 

(feet) 

Bottom 

Depth 

(feet) 

USCS 

Classification 

Average 

Uncorrected 

N for 

Layer* 

N60 N160 

Moisture 

Content 

(%) 

Total 

Density 

(pcf) 

1 0 4.5 GM 38 46 51 8 - 

2 4.5 6.5 ML 34 41 33 9 120 

3 6.5 8.5 SM 25 30 19 11 - 

4 8.5 13.5 GC 72 86 48 8 147 

5 13.5 15.5 SM 51 61 31 11 137 

6 15.5 19 GM 36 43 20 12 - 

7 19 21 SC 25 30 15 27 - 

8 21 24 CL - - - 24 - 

9 24 28 CH 18 22 10 23 - 

10 28 30 SC-SM - - - - - 

11 30 31 CALICHE - - - - - 

12 31 40 SC 40 48 19 15 - 

*Refusal blowcounts not included in average. 
    

 

 



19 

 

Table 3-2: Results of Soil Borings at Test Site 2 

Soil 

Layer 

Top 

Depth 

(feet) 

Bottom 

Depth 

(feet) 

USCS 

Classification 

Average 

Uncorrected 

N for 

Layer* 

N60 N160 

Moisture 

Content 

(%) 

Total 

Density 

(pcf) 

1 0 2 GM - - - - - 

2 2 5 SC-SM 45 54 51 7 - 

3 5 6.5 SC 78 94 69 12 124 

4 6.5 8 CL 46 55 44 13 - 

5 8 12 SM 34 41 25 16 138 

6 12 14.5 SC-SM 17 20 11 20 125 

7 14.5 15.5 GM 87 104 57 2 - 

8 15.5 20 SM 73 88 44 7 141 

9 20 30 SC 37 44 20 16 127 

10 30 35 CL 31 37 16 18 - 

11 35 40 CH 25 30 12 22 - 

*Refusal blowcounts not included inaverage. 
   

 

The field blowcounts were corrected for hammer energy transfer efficiency (N60) 

and overburden stress (N160) by the procedures shown below (Das, 2006). 

��� = ��������	
60 																						�1�� = ����� 

 Where N Is the number of blows required to drive the sampler 12 inches, ηH is the 

hammer efficiency, ηB is the correction for borehole diameter, ηS is the correction for 

sampler type, ηR is the correction for sampling rod length, and CN is the overburden 

correction factor. The overburden correction factor used is defined below (Youd & Idriss, 

2001). 

�� = � ��
����

�
�.�
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Where Pa is the atmospheric pressure and σ’vo is the effective overburden stress at 

the sample depth. 

Data obtained from the grain size distribution analyses and Atterberg Limits tests 

are presented in Tables 3-3 and 3-4. These values include the percent (by weight) of 

gravel, sand, and fines (percent passing the number 200 sieve), the liquid limit, and the 

plasticity index.  

 

Table 3-3: Results of Laboratory Tests at Test Site 1 

Soil 

Layer 

Top 

Depth 

(feet) 

Bottom 

Depth 

(feet) 

USCS 

Classification 

Percent 

Gravel 

Percent 

Sand 

Percent 

Fines 

Liquid 

Limit 

(%) 

Plasticity 

Index   

(%) 

1 0 4.5 GM 50 34 16 - - 

2 4.5 6.5 ML 0 29 71 - - 

3 6.5 8.5 SM 28 46 27 - - 

4 8.5 13.5 GC 58 25 17 44 21 

5 13.5 15.5 SM 31 43 26 49 18 

6 15.5 19 GM 49 36 15 - - 

7 19 21 SC 0 54 46 110 78 

8 21 24 CL 5 34 61 45 28 

9 24 28 CH 0 46 54 61 39 

10 28 30 SC-SM 29 34 36 24 7 

11 30 31 CALICHE - - - - - 

12 31 40 SC 26 44 30 50 26 
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Table 3-4: Results of Laboratory Tests at Test Site 2 

Soil 

Layer 

Top 

Depth 

(feet) 

Bottom 

Depth 

(feet) 

USCS 

Classification 

Percent 

Gravel 

Percent 

Sand 

Percent 

Fines 

Liquid 

Limit 

(%) 

Plasticity 

Index    

(%) 

1 0 2 GM - - - - - 

2 2 5 SC-SM 30 39 31 24 6 

3 5 6.5 SC 28 44 28 27 8 

4 6.5 8 CL 9 33 57 24 9 

5 8 12 SM 31 33 36 - - 

6 12 14.5 SC-SM 23 42 35 24 7 

7 14.5 15.5 GM 57 31 13 - - 

8 15.5 20 SM 24 48 28 - - 

9 20 30 SC 11 49 40 35 17 

10 30 35 CL 5 21 73 36 19 

11 35 40 CH 1 38 62 53 32 

 

3.3 - Pressuremeter Data Collection and Processing 

 Pressuremeters utilize either an air or hydraulic pressure system and can be either 

self-boring or require pre-boring. A TexAM hydraulic control unit and a single cell, long 

NX probe pre-bore type pressuremeter manufactured by Roctest was utilized for 

pressuremeter testing for this study. The pressuremeter specifications are given in Table 

3-5.  

 

Table 3-5: Pressuremeter Specifications 

Probe Diameter 

(cm) 

Membrane Length 

(cm) 

Theoretical Volume 

(cm3) 

Total Probe Length 

(cm) 

7 46 1770 117 

 

The pressuremeter testing was performed in general conformance to ASTM D4719. 

The testing was conducted as a volume controlled test (ASTM D4719, Procedure B) 
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where pressure readings were obtained at designated volumes. The units utilized on the 

testing equipment were cubic centimeters for volume and bar for pressure. Volume and 

membrane calibrations were performed periodically throughout testing. Corrections were 

performed to the raw data for membrane resistance, volume losses and hydraulic head in 

the fluid supply line. As part of the testing procedure, once the change in pressure from 

one volume increment to the next decreased from that above it, the soil was deemed to 

have begun to fail and an unload-reload loop was performed in order to obtain and 

unload-reload modulus.  

The pressuremeter testing was performed in a pre-bored hole drilled after and within 

a ten foot radius of the initial soil boring. The pre-bored hole was drilled with mud rotary 

methods using a 3½ inch drill bit. Once the desired depth for testing had been reached, a 

2 15/16 inch drill bit was utilized to drill an additional 3 feet. The three inch outside 

diameter pressuremeter was then lowered into the hole and pushed into the final three feet 

such that the probe was positioned very tightly to reduce disturbance and softening of the 

borehole wall. Where possible, a head of mud was maintained to the top of the hole to 

better simulate overburden pressure. 

A total of 6 successful pressuremeter tests were performed for the project, three at 

each site, ranging from 7.3 to 33.6 feet in depth below ground surface.  

 The shear and elastic modulus values obtained during pressuremeter testing along 

with the required assumptions to calculate them are presented in Table 3-6.  
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Table 3-6: Summary of Pressuremeter Test Results 

Site 

Number 

Depth 

(feet) 
ν EPMT (ksf) 

ER,PMT 

(ksf) 

GPMT 

(ksf) 

GR,PMT 

(ksf) 

1 

7.3 0.33 1060 1455 398 547 

17.3 0.33 135 460 51 173 

28 0.33 530 805 199 303 

2 

7.9 0.33 765 2090 288 786 

11.7 0.33 730 2145 274 806 

33.6 0.33 505 1450 190 545 

 

The shear modulus, as described in Chapter 2, was taken as half the slope of the 

linear portion of the stress-strain curve. Also shown in Table 3-6 are the shear and elastic 

modulus values obtained from the reload portion of the stress-strain curve. The stress-

strain curves for each test are presented on Figures 4-1 through 4-6.  

 

 

Figure 3-2: Pressuremeter Stress-Strain Curve for Site 1 at 7.3 feet 
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Figure 3-3: Pressuremeter Stress-Strain Curve for Site 1 at 17.3 feet 

 

 

 

Figure 3-4: Pressuremeter Stress-Strain Curve for Site 1 at 28.0 feet 
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Figure 3-5: Pressuremeter Stress-Strain Curve for Site 2 at 7.9 feet 

 

 

 

Figure 3-6: Pressuremeter Stress-Strain Curve for Site 2 at 11.7 feet 
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Figure 3-7: Pressuremeter Stress-Strain Curve for Site 2 at 33.6 feet 
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 The shear wave velocity profiles were obtained from the seismic surface wave 

testing for both Site 1 and Site 2 and are presented on Figures 3-8 and 3-9.  
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Figure 3-8: Seismic Surface Wave Test Results for Site 1 
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Figure 3-9: Seismic Surface Wave Test Results for Site 2 
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In order to calculate the small strain modulus, the average total unit weight of the 

soil at each shear wave velocity interval was calculated and a Poisson’s ratio of 1.15 was 

assumed. The Poisson’s ratio of 0.15 was assumed because published testing indicates 

that the appropriate Poisson’s ratio at small strain ranges from 0.1 to 0.2 (Stokoe, Joh, & 

Woods, 2004). The shear wave velocities, total unit weight, small strain shear modulus, 

assumed Poisson’s ratio, and small strain elastic modulus are presented in Table 3-7. 

 

Table 3-7: Summary of Geophysical Test Results 

Site 

Number 

Top 

Depth 

(feet) 

Bottom 

Depth 

(feet) 

Shear Wave 

Velocity 

(ft/s) 

Total Unit 

Weight 

(pcf) 

Gmax 

(ksf) 
ν 

Emax 

(ksf) 

1 
0 17 1057 135 4673 0.15 10747 

17 50 1342 135 7532 0.15 17324 

2 0 50 1091 131 4842 0.15 15960 
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CHAPTER 4 ANALYSIS AND DISCUSSION OF TEST RESULTS 

4.1 - Ratio of Small Strain Modulus to Initial Loading and Reload Pressuremeter 

Modulus 

The goal of this study was to estimate an intermediate strain modulus when the 

small strain modulus is known. In order to accomplish this goal, a ratio of the small strain 

modulus to the intermediate strain modulus is calculated for the use of an engineer who 

has obtained the small strain modulus. Once a ratio has been determined, the engineer 

could divide the known small strain modulus by the ratio to obtain the desired 

intermediate strain modulus as shown in the following equations: 

���� = ���
������� 

																													���� = ���
�!" ��#

 

 Where Eint is the intermediate strain modulus, Ess is the small strain modulus, and 

Rinitial is the ratio of small strain modulus to initial loading pressuremeter modulus and 

Rreload is the ratio of small strain modulus to reload pressuremeter modulus. 

 The calculation of the ratio of measured small strain modulus to intermediate 

strain modulus was performed for both the pressuremeter modulus and the unload-reload 

pressuremeter modulus. The results of these calculations are presented in Table 4.1. 
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Table 4-1: Summary of Small Strain to Intermediate Strain Modulus 

Site 

Number 

Depth 

(feet) 

EPMT 

(ksf) 

ER,PMT 

(ksf) 
Ess (ksf) Rinitial Rreload 

1 

7.3 1060 1455 10747 10.1 7.4 

17.3 135 460 17324 128.3 37.7 

28 530 805 17324 32.7 21.5 

2 

7.9 765 2090 15960 20.9 7.6 

11.7 730 2145 15960 21.9 7.4 

33.6 505 1450 15960 31.6 11.0 

 

4.1.1 - Initial Loading Pressuremeter Modulus vs. Reload Pressuremeter Modulus 

The first item to discuss is the obvious difference between the ratios for the initial 

loading pressuremeter modulus and the unload-reload pressuremeter modulus. This is to 

be expected for two reasons. First, the initial loading of the pressuremeter is performed 

after the pressuremeter is inserted into a pre-bored hole. The pre-bored hole has likely 

experienced significant relaxation as the previously existing confinement of the soil has 

been removed as the hole is excavated. Also attributed to the drilling of the hole is the 

probable disturbance of the soil in the area of the pressuremeter test which likely causes a 

reorientation of the soil grains upon initial loading. Second, the initial loading modulus is 

calculated at a greater strain level than that of the unload-reload modulus (Briaud, The 

Pressuremeter, 1992). The initial loading pressuremeter modulus is known to be a 

relatively low modulus, and although this low modulus is still higher than the modulus 

given by most correlations, many have found that the unload-reload modulus is more 

effective in accurately predicting settlements (Briaud, The Pressuremeter, 1992). The 

initial loading pressuremeter modulus may be desirable if very large strains are expected.  
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4.1.2 - Range of Initial and Reload Pressuremeter Modulus Ratios  

The ratios calculated from the initial loading pressuremeter modulus ranged from 

10.1 to 32.7, with one test resulting in a ratio of 128.3 and the ratios calculated from the 

reload pressuremeter modulus ranged from 7.4 to 37.7. The large range of ratios is most 

likely explained by the seismic surface wave method’s inability to detect relatively thin 

layers. The velocities presented are best understood as an average over that depth 

interval. This will result in much variability if softer or stiffer soils than average for that 

layer interval are tested by the pressuremeter. 

Although this range is larger than desirable for use in practice to reduce a small 

strain modulus, the information is still useful. The engineer could use an average value 

for elastic modulus provided that they are confident that they are not over-predicting the 

modulus in the near surface, where the greatest strains are expected. 

4.1.3 - Comparison of Initial and Reload Pressuremeter Modulus Ratios with Respect to 

Depth  

Another trend that is clearly shown within the data is the relative consistency of 

the ratios in the upper 17 feet. For the ratio to the unload-reload modulus, these values 

range from 7.4 to 7.6; a remarkably small range. Although a greater range than for the 

unload-reload modulus ratio, the ratio for the initial loading pressuremeter modulus is 

still relatively consistent, ranging from 10.1 to 21.9. This was not an expected outcome of 

the testing. Although this was not an expected outcome of the data, the relationship 

requires a discussion of some possible explanations. 
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 A possible explanation of the consistency of the ratios in the upper 17 feet is the 

possible reduction in the ability of the surface wave method for calculating shear wave 

velocity with increasing depth. This reduction in ability due to the smaller depth of 

penetration of surface waves has been demonstrated in the literature (Rutledge, Mauldon, 

& Smith, 2005), although much of the literature indicates that although thinner layers are 

more difficult to represent with depth, the average shear wave velocity is represented 

relatively well (Louie, 2001).  

 A more likely explanation has to do with the differences in modulus degradation 

for different soil types. The ReMi test performed at Site 1 indicates a probable layer 

boundary at a depth of 17 feet. This is important, because it has been shown that the rate 

at which a modulus degrades is different for different soil types. If the soils at this site in 

the upper 17 feet are relatively consistent, and the soils below 17 feet are quite different 

than those above them, then it would make sense for the ratio of small strain modulus to 

intermediate strain modulus to be different. The soil boring performed at Site 1 does not 

indicate a significant difference in the soil types above and below 17 feet, although the 

soils below 17 feet may be considered slightly finer grained, consisting of more clay. 

Despite the slight increase in fines, most of the soils still classify as sands both above and 

below 17 feet. 

 Finally, the data presented in Tables 3-1 and 3-2 show an increase in moisture 

content below a depth of approximately 17 feet. This, in conjunction with the increase in 

the amount of fine grained soils, may explain why the ratios are different below 17 feet. 

Although it is known that the shear wave velocity is unaffected by the presence of water, 
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it is possible that the moisture content has an effect on the soil stiffness measured by the 

pressuremeter. 

 It has been established above that the ratios for this data in the upper 17 feet are 

relatively consistent. The ratios below 17 feet are very inconsistent with each other, but 

are always greater than those in the upper 17 feet ranging from 31.6 to 128.3 for the 

initial loading pressuremeter modulus ratio and 11.0 to 37.7 for the unload-reload 

pressuremeter modulus ratio.   

 The inconsistency of these results could be explained by the diminished reliability 

of seismic surface wave methods in determining the shear wave velocity with depth. 

Even if the average shear wave velocity over a large layer is relatively accurately 

determined by seismic surface wave methods, it is likely that the resolution of the data is 

poor; that it cannot recognize relatively thin layers. If the relatively thin layers are not 

captured by the method, then thin layers of either harder or softer zones will yield much 

different values.  

 The values of the ratios below 17 feet were also shown to be much greater than 

the values above 17 feet. The most likely explanation for this phenomenon that the layers 

tested was simply within the zones that were softer than the average modulus as 

determined by the shear wave velocity. This does raise the question of the possibility that 

the zones tested in the upper 17 feet were simply stiffer than the zones tested in the lower 

17 feet. This conclusion will be investigated deeper, when the results of the Standard 

Penetration test results correlations are compared with the results of the pressuremeter 

testing. 
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 A final discussion on the apparent trend at 17 feet should note that when 

performing a deformation analysis, the accuracy at which the near surface soils are 

characterized is of much greater importance than the deep soil because the near surface 

soils bear the largest stress increase under loading and will therefore settle the most. The 

consistency, therefore, in the upper 17 feet may make the engineer more comfortable in 

making use of the above presented modulus reduction ratios. Although it is clear that the 

trend at 17 is not applicable at all sites at the depth of 17 feet, further investigation should 

be performed to determine if the pressuremeter results tend to be more consistent in the 

near surface.  

4.1.4 - Discussion of Pressuremeter Test at Test Site 1 at a Depth of 17.3 feet 

The ratios for the pressuremeter test performed at site 1 at a depth of 17.3 feet are 

noticeably larger than the ratios for the other 5 tests. This anomalous value may be 

explained by a result from the geophysical testing. The ReMi test performed at the site 

shows a break in layers at 17 feet. When the pressuremeter testing was performed, the 

depth to the center of the probe was measured to be 17.3 feet. If a layer boundary is 

present within the approximate 18 inches thick zone of testing by the pressuremeter, there 

may be an adverse effect on the test results (Briaud, The Pressuremeter, 1992). This 

result may be more pronounced if the layer boundary is very near the center of the 

inflating probe.  

4.2 - Comparison of Initial Loading and Reload Pressuremeter Modulus Ratios to Ratios 

Calculated Using SPT Blowcounts 

 As a means of better understanding the ratios developed in section 4.1, a 

comparison of the ratio of small strain modulus to an intermediate strain modulus where 
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the intermediate strain modulus is estimated by correlations with SPT blowcount data is 

warranted. These correlations were performed and the results are presented in section 3.4. 

Similar to the equations presented in Section 4.1, a ratio can be used to estimate the 

intermediate strain modulus as shown below: 

		���� = ���
��$%

 

Where Eint is the intermediate strain modulus, Ess is the small strain modulus, and 

RSPT is the ratio of small strain modulus to the correlated intermediate strain modulus 

from SPT blowcount data. 

The ratios of the small strain modulus to the intermediate strain modulus as 

calculated using the two published blowcount correlations were calculated and are 

presented in Table 4-2. The correlations were not performed for the tests at Site 2 at 

depths of 7.9 and 33.6 feet because soil classification testing indicated that these are clay 

soils. Standard Penetration test blowcount correlations are not appropriate for clay soils. 
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Table 4-2: Summary of Small Strain to Intermediate Strain Modulus by Blowcount 

Correlations 

Site 

Number 

Depth 

(feet) 

+
N N1,60 

*Espt 

(ksf) 
N60 

**Espt 

(ksf) 
Ess (ksf) *Rspt **Rspt 

1 

7.3 25 19 379 30 470 10747 28.3 22.9 

17.3 36 20 483 43 658 17324 35.8 26.3 

28.0 49 24 481 59 771 17324 36.0 22.5 

2 

7.9 46 34 - 55 - 15960 - - 

11.7 19 12 246 23 395 15960 64.8 40.4 

33.6 31 15 - 37 - 15960 - - 
+
 N values were obtained from the SPT test nearest the depth of the pressuremeter test. See Table 4-1 for 

more information on SPT blowcounts. 

*Correlations from (AASHTO, 2011) 

**Correlations from (McGregor & Duncan, 1998) 

 

 

 

An initial discussion is warranted in the discrepancy in the results between the 

two methods. These values compare relatively well with each other, but it is obvious that 

the second correlation method proposed by Duncan results in the prediction of a stiffer 

soil (lower Rspt ratio). This may be cause by a number of reasons, but the more important 

item to note is that they are relatively consistent with one another, and that they are 

significantly greater than those measured by the pressuremeter test. 

A comparison of the ratios calculated for the pressuremeter tests and SPT 

blowcounts are presented in Table 4-3, Comparison of Small Strain to Intermediate Strain 

Modulus Values obtained from Pressuremeter and Standard Penetration Tests. 
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Table 4-3: Comparison of Small Strain to Intermediate Strain Modulus Values 

obtained from Pressuremeter and Standard Penetration Tests 

Site 

Number 

Depth 

(feet) 
Ess/EPMT Ess/ER,PMT *Rspt **Rspt 

1 

7.3 10.1 7.4 28.3 22.9 

17.3 128.3 37.7 35.8 26.3 

28.0 32.7 21.5 36.0 22.5 

2 

7.9 20.9 7.6 - - 

11.7 21.9 7.4 64.8 40.4 

33.6 31.6 11.0 - - 

*Correlations from (AASHTO, 2011) 

**Correlations from (McGregor & Duncan, 1998) 

 

 

 

As described in the introduction, the modulus values calculated by SPT 

blowcounts are typically smaller than those calculated in the laboratory or with in-situ 

methods such as the pressuremeter or dilatometer. The calculated values are smaller 

because of the conservatism employed due to the relatively large amounts of uncertainty 

in the relationship (Sabatini, Bachus, Mayne, Schneider, & Zettler, 2002). As expected, 

the modulus values calculated from SPT blowcounts are generally smaller (larger Ess/Espt 

ratio) than those calculated by both the initial loading pressuremeter and reload 

pressuremeter tests. Exceptions are the initial loading pressuremeter modulus for the test 

at Site 1 at a depth of 17.3 feet and one of the values of the blowcount correlated ratio for 

Site 1 at a depth of 28.0 feet. As was discussed in Section 5.1, the pressuremeter test at 

Site 1 at a depth of 17.3 feet is considered anomalous and the very low value may have 

been caused by the possible layer boundary around 17 feet. 

As in Section 4.1, the data above 17 feet and below 17 feet should be discussed. 

Due to the limitations of the blowcount correlations, only two values exist below 17 feet 
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that we can discuss. The first of which (Site 1 at a depth of 17.3 feet) has already been 

discussed to be potentially anomalous due to the probable layer boundary located near the 

centerline of the pressuremeter probe, and therefore, it is difficult to draw a conclusion on 

this test. It is noteworthy, however, that the intermediate strain modulus calculated by the 

blowount correlations appear to be relatively consistent with that calculated with the 

pressuremeter test for the test at Site 1 at a depth of 28 feet. This may lead us to believe 

that the correlations possibly provide a better estimation of stiffness as the tests become 

deeper below the surface. More research would have to be performed to further this 

discussion topic.  

As discussed in Section 4.1, the ratios developed from pressuremeter data 

increase significantly below a depth of 17 feet. The question should be raised as to 

whether or not this is simply due to stiffer soils existing above 17 feet than below 17 feet. 

One point that seems to indicate that this result was not simply due to stiffer soils being 

present above 17 feet is that the ratios developed by the Standard Penetration test 

blowcounts do not show the same trend. In fact, the largest ratio is present at a depth of 

11.7 feet. It is therefore unlikely, although still possible because of the limited amount of 

data, that the soils tested above 17 feet were simply stiffer than the soils tested below 17 

feet.  
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CHAPTER 5 CONCLUSIONS 

 The primary objective of this study was to compare the small strain modulus as 

calculated from the shear wave velocity determined from seismic surface wave methods 

to the intermediate strain modulus directly measured by the pressuremeter test. The 

comparison was made by calculating a ratio of small strain modulus to pressuremeter 

modulus. An additional comparison was made by calculating the ratio of small strain 

modulus to an intermediate strain modulus calculated by using SPT blowcounts. These 

comparisons led to multiple conclusions. 

 It was shown that the ratio of small stain modulus to pressuremeter modulus was 

relatively consistent in the upper 17 feet and both larger and more variable below 17 feet. 

This could be due to a number of factors, each of which could be examined in more detail 

with additional testing. First, the ReMi test performed at Site 1 indicated a probable layer 

change at a depth of 17 feet. It is probable that the soil type changes below a depth of 17 

feet. It is known that the degradation of soil modulus is dependent on soil type, and 

therefore, if the soil type has changed significantly at 17 feet, this should change the ratio 

of small strain modulus to intermediate strain modulus. Second, it is possible that the 

shear wave velocities measured by ReMi seismic surface wave method are less accurate 

with increasing depth. This has been shown in the literature. Finally, due to the small 

amount of data available, it is possible that this data trend is merely coincidental. 

 It was also shown that, when looking at all of the small strain modulus to 

pressuremeter modulus ratios irrespective of their test depth, there was a relatively large 

range of ratios (10.1 to 128.3 for the initial loading pressuremeter modulus and 7.4 to 

37.7 for the unload-reload pressuremeter modulus). Although these ranges are not as 
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small as desirable, this information can be used by the engineer to approximate the upper 

and lower bound of stiffness degradation to an intermediate strain level. The average ratio 

may also be used by the engineer if they are confident that they are not underestimating 

stiffness in the near surface soils, which are subjected to the greatest strains. 

 The ratios of small strain modulus to the unload-reload pressuremeter modulus 

were generally smaller (stiffer intermediate strain modulus) than those calculated using 

the published SPT blowcount correlations. The unload-reload pressuremeter modulus is a 

direct measurement of soil stiffness at intermediate strains and is therefore believed to be 

less conservative than the modulus values calculated using Standard Penetration test 

blowcounts. The engineer may, at a minimum, prefer to use the upper bound of the ratio 

of small strain modulus to unload-reload pressuremeter modulus as opposed to traditional 

blowcount correlation method. 
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CHAPTER 6 RECOMMENDATIONS 

As discussed above, the findings of this study are mostly inconclusive due 

primarily to the small size of the data set. Although the findings are inconclusive, trends 

were identified that should be researched further. These trends include that of the range 

of ratios of small strain modulus to intermediate strain modulus determined from 

pressuremeter tests being very large and the relatively consistent ratios in the near surface 

soils. 

It is thought that the large range of ratios is caused by the inability of the surface 

wave methods to accurately represent relatively thin layers; layers that were directly 

measured by the pressuremeter. A feasible method for testing this hypothesis would be to 

perform a downhole type seismic test to directly measure shear wave velocity at the depth 

that the pressuremeter test was performed. Increasing the size of the data set by 

performing more pressuremeter tests would also be valuable as it would better identify 

trends in the data and reveal outliers.  

The relative consistency and higher stiffness of the pressuremeter data in the 

upper 17 feet is thought to have been caused by the decreasing ability of the seismic 

surface wave methods to accurately represent shear wave velocity with increasing depth. 

This may have also been caused by a change in soil type, which was shown in the results 

of the seismic surface wave testing and laboratory testing. It was also shown that the SPT 

blowcounts do not indicate that the data in the upper 17 feet is simply a more consistent 

and stiffer material with respect to the difficulty of penetration. As the data seems to 

indicate that this trend was caused by soil type and moisture content it would make sense 

to further investigate the effect of soil type and moisture content on modulus degradation. 
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As the data set for this study is relatively small, additional soil borings with additional 

moisture content tests and soil classification tests should be performed along with the 

additional pressuremeter tests. 

With the amount of existing data at the project site, it would be beneficial for 

researchers if settlement monitoring was performed during and after construction so that 

effective stiffness parameters could be back calculated. This would provide a true value 

that the values derived from the different methods could be compared to. 

Finally, a laboratory testing program could be performed on relatively 

undisturbed samples. Testing should include Resonant Column Torsional Shear testing to 

estimate the initial shear modulus which could then be compared to the value determined 

in the field, and triaxial testing in axial compression could be used to estimate the 

intermediate strain modulus. 
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