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Abstract 

The shear strength and deformation capacities of reinforced concrete (RC) 

columns are governed by a multitude of variables related to material properties of the 

steel and concrete used in the design and construction of the columns. Predicting 

performance of RC columns using design variables is a complex, non-linear problem. 

The prediction of shear strength and ductility for these types of structural members has 

historically been performed using empirically or semi-empirically derived formulae 

based on experimental results. The introduction of cyclical lateral loading, such as the 

forces imposed on a structure during an earthquake, can result in severe degradation of 

shear strength and ductility as load cycles continue. This can increase the complexity of 

predicting performance even further, as shear failure of the column occurs at relatively 

low deformations and can significantly affect the ability of the structure to resist lateral 

loading. Most existing models consider monotonic loading only and do not address this at 

all, which can result in extremely poor structural performance in a seismic event when 

compared to performance predictions. 
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Nomenclature 

a = shear span, equal to distance from center of concentrated load to either: (a) 

  face of support for continuous or cantilevered members, or (b) center of  

  support for simply supported members 

Ae = effective shear area 

Ag = gross section area 

Av = total transverse reinforcement area per layer 

bw = base width of column perpendicular to transverse loading 

c = concrete compression-zone depth 

d = distance from extreme compression fiber to centroid of longitudinal  

  tension reinforcement 

D = diameter of column 

D' = internal lever arm, core distance from centerline to centerline of outer  

  transverse reinforcement hoops 

f'c = concrete compression strength 

fyl = yield strength of longitudinal reinforcement 

fyt = yield strength of transverse reinforcement 



 

xii 

 

h = rectangular column depth, or diameter 

P = factored axial force normal to cross section; to be taken as positive for  

  compression and negative for tension 

s = spacing of transverse reinforcement along member axis 

μ = displacement ductility factor, taken as the ratio of ultimate displacement at 

  failure to the displacement at yield 

ρt = transverse volumetric reinforcement ratio 

ρw = longitudinal reinforcement ratio  
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Chapter 1  

Introduction 

The shear strength and deformation capacities of reinforced concrete (RC) 

columns are governed by a multitude of variables related to material properties of the 

steel and concrete used in the design and construction of the columns. Predicting 

performance of RC columns using design variables is a complex, non-linear problem due 

to the interaction of these variables. The prediction of shear strength and ductility for 

these types of structural members has historically been performed using empirically or 

semi-empirically derived formulae based on experimental results. Typically, the 

reliability of semi-empirical approaches depends on the dataset used to calibrate it. The 

introduction of cyclical lateral loading, such as the forces imposed on a structure during 

an earthquake, can result in severe degradation of shear strength and ductility as load 

cycles continue. This can increase the complexity of predicting performance even further, 

as shear failure of the column occurs at relatively low deformations and can significantly 

affect the ability of the structure to resist lateral loading. Most existing models consider 

monotonic loading only and do not address this at all, which can result in extremely poor 

structural performance in a seismic event when compared to performance predictions. 



 

2 

 

1.1 Background and Motivation 

Existing approaches for the analysis of RC columns subjected to seismic forces 

have more recently been defined in terms of deformation capacity and deformation 

demand in a seismic event as opposed to traditional force-based design procedures. 

Recent iterations of codified design procedures related to the rehabilitation of older 

structures have made this an explicit requirement. However, most existing models for the 

prediction of shear strength ignore the degradation of capacity when subjected to cyclical 

loading. Because of the high probability of shear failure at low deformations, overly 

conservative results are obtained at low levels of displacement and highly un-

conservative results are seen at higher levels of deformation. 

More recently, new models have been developed that include the shear strength 

degradation correlated with displacement and cyclical loading. These models often 

address the degradation of shear strength by defining a coefficient affecting the concrete 

contribution to shear strength based on experimental results. This coefficient defines the 

displacement ductility of a structural member, usually as a ratio of displacement at yield 

to ultimate displacement at failure. 

Past research in the literature has presented empirically derived equations for 

predicting shear and deformation capacity of RC columns using “best fit” solutions to 

experimental data sets. These new models have provided solutions with significant but 

acceptable margins of error. With different methods of modern data analysis, more 

accurate solutions and additional confidence in the results can be obtained. This increased 



 

3 

 

level of confidence has a direct correlation to the optimal use of construction materials 

and increased levels of safety. In areas of high seismicity, this higher level of safety for 

new construction or the rehabilitation of older structures is extremely important. While 

empirically derived equations have improved over time in their accuracy, additional 

improvement is necessary and possible using these non-traditional approaches. 

1.2 Research Goals and Approach 

As computing power has increased in recent times, the use of techniques applied 

in the field of artificial intelligence have been used for the analysis of data to find 

solutions to extremely complex and non-linear problems. These techniques are very 

effective in finding consistent and accurate global solutions to problems that may have 

locally defined minima or maxima in domain of the solution set. This research applies 

two such techniques to a data set of experimental results compiled from the literature and 

other sources. 

The two particular techniques explored in the research are artificial neural 

networks (ANN) and genetic algorithms (GA). ANNs are effectively used for finding 

solutions to very complex non-linear multi-variable problems that are difficult to define 

in terms of restrictive domains. An ANN is a model that is ‘trained’ using a data set 

consisting of inputs and outputs. Based on the data, the ANN learns over time what 

outputs should be expected from a certain set of inputs. ANNs can be continuously 

revised over time by providing new training data which increases their accuracy. This is 
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particularly valuable for solving the problems addressed in this research. No mechanical 

model for predicting shear strength exists that also addresses the shear strength 

degradation as a result of cyclical loading. Existing solutions are all empirically derived 

from experimental data. As more data becomes available through testing, the ANN can 

immediately process the new information and produce new, more accurate results. 

Genetic algorithms (GAs) provide a different approach when compared to ANNs. 

GAs are used to solve problems of optimization rather than develop completely new 

models. This research aims to find the most reliable equations and models in the literature 

and apply further optimization to the coefficients defining their performance. Existing 

equations that do not account for the degradation of shear strength can be optimized using 

the test data of cyclically loaded RC columns, providing more accurate results in that 

domain.  

This research aims to investigate the viability of using these knowledge-based 

analytical techniques to define models of shear strength prediction and the prediction of 

deformation capacities of RC columns subjected to cyclical loading. The goal of these 

new models is to exceed the accuracy and reliability of existing analytical techniques 

while providing a basis for further research and expansion of these goals. Further deep 

learning techniques could be applied in the future to address secondary coefficients and 

step functions that have defined existing models and, to a certain extent, the models 

presented in this research. 

The data set used for the training of ANNs and optimization of existing models 

consists of a variety of RC column test specimens that are cyclically loaded and have 
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hysteretic force-displacement data available. Specimens vary widely in terms of their 

material properties and physical dimensions. However, the data set is relatively small as 

this type of testing data is difficult and expensive to obtain. Training ANNs to a degree of 

very high accuracy requires a large data set. Thus, this research is presented as an 

investigation of the viability of using these techniques rather than the production of 

recommended models for determining shear strength and ductility of cyclically loaded 

RC columns. 

1.3 Thesis Outline 

This thesis consists of six chapters and is a presented as a compilation of articles 

written by the author, with contributions from thesis advisor, Dr. Said, which are either 

published or pending publication. Each article addresses topics discussed above. Chapter 

1 addresses the motivation and goals of this particular research and provides some 

necessary background on the methodology. Chapter 2 provides a review of recent 

literature addressing these topics and the various approaches of previous research in 

determining solutions to these problems.  

Chapters 3-5 are individual articles that have been previously published or 

submitted for publication covering the topics in greater detail. Chapter 3, “New Equation 

for Estimation of RC Columns Shear Capacity Using GAs”, addresses the use of genetic 

algorithms for optimizing existing equations to predict shear strength of cyclically loaded 

RC columns. Chapter 4, “Predicting Shear Strength of RC Columns Using Artificial 
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Neural Networks”, addresses the viability of ANNs to build a model that can reliably 

predict shear strength performance of cyclically loaded RC columns. Chapter 5, 

“Estimating Ductility of RC Columns Using Artificial Neural Networks”, investigates the 

viability of using ANNs for directly determining ductility and deformation capacity of 

cyclically loaded RC columns. 

Chapter 6 is a discussion on the results obtained from the research and provides 

conclusions and summary and the recommendations of the author. This chapter also 

includes possible future goals of this research and available areas of expansion. 
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Chapter 2  

Literature Review 

Existing literature covering topics related to or influencing this research spans 

decades into the past. However, only within approximately the last 20 years has the 

literature addressed some of the more important issues covered by this research. In the 

early 1990s, following several large seismic events in the US, a significant amount of 

research addressed the capacity of RC structures subjected to cyclical loads imposed 

during seismic events. 

Several references cited by this research are related to previous applications of 

artificial intelligence in civil and structural engineering problems. These and other 

references address the theory, functionality, and application of artificial neural networks 

and genetic algorithms. While these documents provide an important foundation for this 

type of research, their content is outside of the scope of what this research addresses and 

will not be discussed in detail. 

The following sections will review previous research providing significant 

contributions to the articles contained within this thesis. Important topics include 

establishing, verifying, and quantifying the degradation of shear strength in RC columns 

subjected to cyclical loading, existing models for evaluating shear strength and ductility 

of RC columns, prescriptive requirements of design procedures for cyclically loaded RC 

columns, and establishing the value and importance of this research. 
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2.1 Shear Strength Degradation in Cyclically Loaded RC Columns  

Before many modern fundamentals of reinforced concrete design were 

established, a significant number of concrete structures were constructed using details 

and design procedures that made them vulnerable to damage and collapse in earthquakes. 

As discussed by Ascheim & Moehle, failures discovered after many intense seismic 

events could be attributed to inadequate column shear strength (Ascheim & Moehle, 

1992). This research provided a review of RC bridge columns damaged during previous 

earthquakes and was some of the first research to establish the shear strength capacity of 

failed bridge columns using construction details and mode of failure. The authors 

evaluated existing methods for determining column shear strength and discussed the 

adequacy as applied to shear strength determined from the failed structures. 

Code-based design procedures did not address this reduction in shear strength. 

Priestley, et. al. established a database of RC column test specimens that exhibited well-

substantiated shear failures and evaluated existing models that showed a relationship 

between shear strength and ductility (Priestley, Verma, & Xiao, 1994). These authors 

established a predictive model for shear strength of RC columns correlated with the 

flexural ductility of the member. They established a model that incorporated the effect of 

axial load to the concrete contribution to shear strength and showed that shear strength 

was reduced as flexural ductility increased. 

More recently, significantly larger databases of test specimens have been 

compiled and it has become clearer that an extremely strong correlation exists between 
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flexural yielding and the reduction in shear capacity in reinforced concrete members 

(Biskinis, Roupakias, & Fardis, 2004). They were also able to establish an upper bound to 

the shear strength degradation as a function of displacement ductility. 

The research produced and evaluated by these authors have established a clear 

connection between flexural yielding caused by cyclical loading and the reduction in 

shear capacity in reinforced concrete members. They have also brought to light the issues 

with current code design equations and their inability to accurately predict shear strength 

when not accounting for flexural yielding.  

2.2 Existing Models 

Existing models for the prediction of shear strength in RC columns come from 

several different sources. Of the most prominent in the US is ACI 318 by the American 

Concrete Institute, which governs codified design procedures for reinforced concrete 

columns. The models evaluated in this research address shear strength as a function of 

axial load contribution, steel reinforcement, and concrete strength (ACI Committee 318, 

2008; Priestley, Verma, & Xiao, 1994; Biskinis, Roupakias, & Fardis, 2004). Some of the 

earliest models to account for the displacement ductility of RC structural members use a 

factor that is either applied to the concrete contribution alone or to both the steel and 

concrete. Assuming that as the member yields in flexure, both the steel and the concrete 

will be less able to resist shear due to the loss of aggregate interlock (Priestley, Verma, & 

Xiao, 1994). This factor, typically called k in the research, is an empirically determined 



 

10 

 

factor that is a function of the member displacement ductility. However, models in ACI 

318 do not account for such a factor and do not explicitly address the reduction of shear 

strength as a function of ductility. 

Existing models that do account for member ductility in predicting shear strength 

are empirically derived based on large sets of test specimens that have been compiled 

over many years (Biskinis, Roupakias, & Fardis, 2004). These empirically derived 

equations are founded in mechanical principles related to the performance of concrete 

structures (Priestley, Verma, & Xiao, 1994). However, their accuracy is dependent on 

this empirically derived factor that attempts to simultaneously account for a multitude of 

variables and is applicable only to the set of test specimens used for the regression.  

These existing models are evaluated against the database of test specimens 

compiled for this research to determine their performance. The accuracy of these existing 

models is used as a basis to determine the viability of the approaches presented by this 

research. 

2.3 Summary 

The literature has shown that there is a strong correlation between the ductility of 

RC columns and the shear strength. Current design procedures do not explicitly address 

this, while prescriptive models from the Applied Technology Council and other authors 

highlight the importance of considering member ductility when predicting shear strength. 
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The interaction between ductility and shear strength is a very complex and non-

linear problem that is best determined through experimentation and evaluation of existing 

structures that have experienced shear failure after flexural yielding. However, traditional 

analytical techniques have shown that there is still room for improvement as the amount 

of available data expands (Biskinis, Roupakias, & Fardis, 2004). 

Previous research in the field of applying artificial intelligence to problems in 

structural and civil engineering has been effective, especially in situations of high 

complexity and multiple independent variables (El Chabib, Nehdi, & Said, 2006).  
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Chapter 3  

New Equation for Estimation of RC Columns Shear Capacity 

Using GAs 

Columns are crucial members to the stability of a structure and hence the design 

philosophy imposes a strong-column-weak-beam strength hierarchy. Accordingly, it is 

important to accurately estimate the capacity of the column, whether for new construction 

or to assess the need for rehabilitation of an old structure. Currently, the estimation of the 

capacity of reinforced concrete members relies on formulae that are often empirical or 

semi-empirical. For RC columns, several parameters involving steel and concrete define 

the capacity. The interaction between such parameters renders the behavior complex, and 

as a result, estimation of a column’s capacity becomes problematic. This study 

investigates the potential use of genetic algorithms to introduce a formula for shear 

capacity estimation of cyclically loaded RC columns. A database from experimental 

results in the literature was used to formulate and optimize the proposed equation. Results 

from the proposed equation are evaluated with values calculated using semi-empirical 

and empirical formulae from the literature. Two optimized equations are presented that 

produce improved results. The results provide a basis for the use of genetic algorithms in 

shear strength prediction. 
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3.1 Introduction 

When designing a structure to withstand design seismic loads, it is important to 

ensure that the deformation capacities of the structure exceed the deformation demands. 

Capacity-based procedures address this implicitly, while displacement-based design 

procedures are heavily based on this fact. By standard seismic provisions, structures are 

designed with high ductility and large deformation capacities. Shear failure of reinforced 

concrete (RC) members occurs at low deformations, causing a large drop in lateral load 

resistance. This results in poor seismic performance of the structure. 

Numerous studies have shown that cyclic loading causes shear strength of RC 

members to degrade significantly when compared to the flexural strength of the member 

(Ascheim, et al., 1992; Biskinis, et al., 2004; Moehle, et al., 2001; Priestley, et al., 1994). 

For this reason, it is apparent that the design of newer RC structures should take into 

account the reduction of shear strength due to seismic-induced cyclic deformation. 

However, in many cases, due to the fact that the shear strength is dependent on 

several independent variables in the member, empirical equations that have been 

developed in analytical manners are often proposed to predict the shear strength of these 

members. These empirical models have improved significantly upon their predecessors as 

shown by Biskinis et al. (2004). However, there is room for improvement. 

Recent procedures issued by FEMA for seismic evaluation of existing structures 

(Federal Emergency Management Agency, FEMA-356, 2000) and seismic design of new 

structures (Federal Emergency Management Agency, FEMA-368, 2000) involve member 
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verifications explicitly in terms of member deformations. These procedures provide a 

strong motivation for an accurate dependable quantification of the load and deformation 

capacities of RC members. Quantification of load and deformation capacities of RC 

members is a difficult task due to their nonlinear and complex behavior under seismic 

loading. Accordingly, the existing equations in the literature need to be reexamined and 

verified utilizing a large amount of experimental data, more recent information in the 

literature and modern analytical techniques. The information derived from this study is 

critical for all RC structures but especially for structures in Nevada since it has the third 

highest seismic activity in the country. 

3.2 Objectives 

This goal of this study is to optimize an already existing equation for predicting 

shear strength of RC members, while taking into account the effect of cyclical loading. 

Several existing equations were evaluated, and the equation with the best performance 

was chosen for optimization. The equation was then calibrated with new empirical 

coefficients by performing genetic optimization on the equation with experimental data 

from the database. Individual equations were developed for both circular and rectangular 

columns. The database has been compiled and consists of column specimens that have 

been loaded cyclically and failed in shear or in shear after flexural yielding (flexure-

shear).  
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The data was obtained from the Pacific Earthquake Engineering Research 

Structural Performance Database (PEER-SPD). PEER-SPD was chosen as the hysteresis 

of load-displacement data was readily available for nearly all column specimens in the 

database. This was necessary to form the load-displacement envelopes to determine 

column displacement and lateral loads at yield and ultimate failure, as well as the 

experimental values for the shear resistance, Vr. The experimental values of the shear 

resistance Vr were obtained by analyzing the force-displacement data for the column, 

determining the maximum loading, and using a value of 75% of the maximum load. This 

75% is an average determined by empirically analyzing the force-displacement loops, and 

following the suit of Biskinis et al. (2004), a yield point was defined as the corner point 

of a bilinear envelope of the first loading cycle on the load-deflection diagram. The value 

of the force at this point is defined as Vr by Biskinis et al. (2004), but for the purposes of 

consistency and simple identification, an average of all specimens was taken at this point 

to be 75% of the peak resistance. Software was written to automatically determine these 

points from the hysteresis and source code is available upon request. 

3.3 Introduction to Genetic Algorithms 

Genetic algorithms (GA) are a form of artificial intelligence best suited for 

solving problems with complex nonlinear solutions, multiple variables, or extraneous 

noise. The method is based on finding the global minimum of a function by using the 

concepts of evolution and natural selection. 
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GAs find solutions to these functions by generating an initial set of random 

individual solutions called the population. Each individual solution, called the 

“chromosome,” consists of values for each variable in the function, called “genes”. These 

initial numbers are selected from ranges specified by the builder of the model, and are 

case specific to the problem. Each chromosome is tested for fitness, and the best 

performing chromosomes are selected to spawn the next generation of chromosomes 

through genetic operators such as crossover, mutation, and selection. In this manner, each 

generation of chromosomes should be superior to the generation before it, and thus closer 

to the final solution of the problem. After several generations, the algorithm will show 

little to no improvement between generations, indicating a convergence of the function. 

Building a model for genetic algorithms and choosing the proper parameters such 

as mutation, selection, and recombination rates is case-dependent. It is also beyond the 

scope of this article to go into greater depth of setting up a genetic algorithm model to 

solve a problem. However, the models presented in this article are available at request of 

the author. 

3.4 Previous Models of Shear Strength Prediction 

Three previous models have been evaluated for their accuracy in predicting the 

shear strength of cyclically loaded members. The models evaluated are the ACI 318-08 

simplified shear strength model (ACI Committee 318, 2008; Priestley et al., 1994; 

Moehle et al. 2001). 
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ACI 318-08 

ACI 318-08 presents the same shear strength prediction model as has been 

provided by code standards in ACI 318-05 as well (ACI 318, 2005). Along with many of 

the other equations, it recognizes a contribution to the shear strength by the steel (VS) as 

well as a contribution by the concrete (VC). 

௥ܸ ൌ ஼ܸ ൅ ௌܸ (3-1) 

௖ܸ ൌ 2 ቆ1 ൅ ௨ܰ

௚ܣ2000
ቇ  ඥ݂′௖ܾ௪݀ (3-2)ߣ

ௌܸ ൌ
௩ܣ ௬݂௧݀
ݏ

 (3-3) 

(Units: psi, in). For spirally reinforced columns, ௦ܸ  is multiplied by ሺsin ∝

൅ cos ∝ሻ where ∝ is the angle between inclined stirrups and longitudinal axis of the 

member. 

Priestly et al (1994) Model 

Priestley et al., 1994 present another model that takes into account the 

displacement ductility, defined by ratio of the ultimate displacement at failure to the 

displacement at yield. This ratio is used to define a modification factor that reduces the 

predicted strength of the column. Priestley et al. (1994) have split the equation into three 

parts, a concrete contribution, ஼ܸ, a steel contribution, ௌܸ, and an axial load contribution, 

௉ܸ. 
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௥ܸ ൌ ஼ܸ ൅ ௉ܸ ൅ ௌܸ (3-4) 

஼ܸ ൌ ݇ට݂ᇱ௖ܣ௘ (3-5) 

௉ܸ ൌ
݄ െ ܿ
2ܽ

ܲ (3-6) 

ௌܸ ൌ
௩ܣ ௬݂௧ܦᇱ

ݏ
cot 30° (3-7) 

where k depends on the member displacement ductility level and the system of units 

chosen (MPa or psi); as well as on whether the column is expected to be subjected to 

uniaxial or biaxial ductility demand.  

 

Figure 3-1 Degradation of Concrete Shear Strength with Ductility 
(Priestley, Verma, & Xiao, 1994) 

 In (3-5), the effective shear area is taken as Ae = 0.8Ag for both circular and rectangular 

columns. A figure is provided by Priestley et al. (1994) to determine k values (Figure 

3-1). In (3-7),	ܦᇱ  is taken as the distance between the very outer peripheral loops or 

spirals of transverse reinforcement, center to center, or ݀ െ ݀′ by some notation. For 

circular columns ௌܸ is multiplied by 
గ

ଶ
 and ݄ is taken as the overall diameter. 
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Moehle et al (2001) Model 

The third model evaluated for its capacity to predict shear strength is a model 

recently proposed by Moehle et al. (2001). This model also recognizes a degradation of 

shear strength as a result of cyclic loading. However, dissimilar to presentation by 

Priestley et al. (1994) this model applies the shear degradation factor to both the concrete 

and steel contributions to shear strength. Doing so results in a more accurate model as is 

evidenced by the data. Moehle’s equations recognize steel and concrete contributions as 

separate as well, with the axial load contribution taken into account in the concrete 

contribution term. 

௥ܸ ൌ ݇ሺ ஼ܸ ൅ ௌܸሻ (3-8) 

݇ ൌ 0.7 ൑ 1.15 െ ߤ0.075 ൑ 1.0 (3-9) 

௖ܸ ൌ 0.5ට݂ᇱ௖ ቌඨ1 ൅
ܲ

0.5ඥ݂ᇱ௖ܣ௚
ቍ ൬ܣ௚

݀
ܽ
൰ (3-10) 

ௌܸ ൌ
ߨ
2
௩ܣ ௬݂௧ܦᇱ

ݏ
cot 45° (3-11) 

In circular columns, ܦᇱ in (3-11) is taken as (diameter – 2 * cover). 

The above models were tested on a database of 120 columns consisting of 65 

spirally reinforced circular or octagonal cross-sections and 55 rectangular sections. 

Octagonal cross-section columns were approximated as circular sections as the small 

difference in the concrete area is negligible. 
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The graphs in Figure 3-2 and statistical data in  

Table 3-1 show the performance for the three equations. Even though there is no 

account for the shear degradation under cyclic loading in ACI 318-08, results are split 

fairly evenly between over prediction of strength and being conservative. However, there 

are many cases where shear strength has been significantly over-predicted. 

 
Table 3-1: Statistical Performance of Shear Strength Equations 

Rectangular Columns Circular Columns 

 
Vrexp/VrCalculated 

  
Vrexp/VrCalculated 

Method 

AAE 

(%) 
Average SD 

CoV 

(%)  

AAE 

(%) 
Average SD 

CoV 

(%) 

Moehle et al. (2001) 46.6% 1.76 0.92 52.4% 
 

42.1% 2.12 3.33 157.5% 

Priestley et al. (1994) 99.3% 0.63 0.27 42.8% 
 

82.4% 0.71 0.40 56.9% 

ACI-318-08 e. [11-4] 46.5% 0.85 0.35 40.5% 
 

28.2% 1.14 0.35 30.5% 

Proposed Equation 22.3% 1.09 0.32 29.1% 
 

25.5% 1.15 0.33 28.5% 

 

Statistical Evaluation of Existing Models  

In the case of Priestley et al. (1994) the equations greatly over-predict the strength 

of almost all specimens. This could be due to the lack of application of the shear 

degradation factor to the steel contribution, or the over-estimation of exactly how much 

concrete is contributing to the shear resistance. 

Moehle’s return to the classical Ritter-Mörsch truss analogy of a 45 degree angle 

seems to be the most conservative, especially with the shear degradation factor applied to 
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the steel contribution. This causes a significant source of scatter and reduction of 

confidence. 

Of the three proposed equations, ACI-318-08 eq. [11-4] evaluates the shear 

strength with the best performance. For this reason, this equation has been chosen as the 

basis for optimization in prediction of shear strength as affected by cyclical loading. 

 

 

Figure 3-2 Performance of shear design equations  
in calculating capacity of cyclically loaded RC columns 
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Genetic Algorithm Model 

The approach for using genetic algorithms in this case is to optimize an already 

existing, high performance equation for predicting shear strength. The equation will be 

optimized for predicting the shear strength of cyclically loaded columns by using the data 

from these tests for optimization. This is done by inserting new coefficients into the 

existing equation, and testing the performance of the individuals against one-half of the 

data set. The other half is reserved to evaluate the performance of the optimization. The 

genetic algorithm will attempt to minimize the cumulative error of the data by choosing 

new coefficients each generation. As the algorithm converges, a set of 3 coefficients are 

generated, offering a more accurate model as applied to the test results. 

In this case, as mentioned previously, the ACI-318-08 eq. [11-4] has been chosen 

for optimization. The original equation is outlined in equations (3-1), (3-2), and (3-3) 

above. The modified version is equation (3-12) below with the new coefficients ܥଵ, ܥଶ, 

and ܥଷ in bold. 

௥ܸ ൌ ૚࡯2 ቆ1 ൅
௨ܰ

௚ܣ૛2000࡯
ቇඥ݂′௖ܾ௪݀ ൅ ૜࡯ ቆ

௬௧݀ܨ௦ܣ
ݏ

ቇ (3-12) 

Each of the new coefficients serves a specific purpose. ܥଵ is positioned to modify 

the contribution of the concrete strength and axial load to the shear strength. ܥଶ is located 

specifically to modify the axial load contribution. ܥଷ  is to estimate the proportion to 

which the steel contribution affects shear strength. 
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3.5 Proposed Models of Shear Strength Prediction 

The model function for the genetic algorithm was optimized using two different 

data sets. Circular and rectangular columns were kept separate. This is due to the fact that 

circular columns under axial compression exhibit greater concrete shear strength 

contribution due to uniform concrete confinement under circular or spiral transverse 

reinforcement. For this reason, two separate sets of coefficients have been produced for 

rectangular and circular columns respectively. Equation (3-13) is for rectangular 

columns, and equation (3-14) is for circular columns. 

௥ܸ ൌ 2.78 ቆ1 ൅ ௨ܰ

௚ܣ2760
ቇඥ݂′௖ܾ௪݀ ൅ 0.24ቆ

௬௧݀ܨ௦ܣ
ݏ

ቇ (3-13) 

௥ܸ ൌ 2.39ቆ1 ൅ ௨ܰ

௚ܣ862
ቇඥ݂′௖݀ܦ ൅ 0.436ቆ

௬௧݀ܨ௦ܣ
ݏ

ቇ 
(3-14) 
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3.6 Results and Discussion 

 

Figure 3-3 Performance of proposed equation on data 

 

Figure 3-3 and Table 3-1 show that the performance of the proposed equations 

exceeds that of previous equations for the prediction of shear strength of RC columns 

under cyclical load. It is also interesting to note that when developing the equation for 

circular columns, the effect of axial load on the shear strength increased, while the 

opposite occurred for rectangular specimens. This could be due to the fact, as mentioned 

before, that the circular transverse reinforcement causes greater concrete confinement 

under axial load, and thus a greater shear resistance. On another note, the steel 

contribution in cyclical loading seems less of an issue than is the case with non cyclical 

loading, because in both equations, the optimum solution is only taking a certain 

percentage of this contribution. However, it is nearly double in circular columns, perhaps 

due to confinement reasons once again. 
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3.7 Conclusion 

The proposed equations show greater performance than existing equations for 

predicting shear resistance of RC columns under cyclic loading. The study also shows 

that genetic algorithms could prove to be a very useful tool for strength prediction of RC 

members under unique circumstances. Existing equations can be optimized for specific 

performance by using experimental data sets to calibrate and breed the genetic algorithm 

and generate superior results. 
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Chapter 4  

Predicting Shear Strength of RC Columns Using Artificial 

Neural Networks 

A primary objective in the seismic design of structures is to ensure that the 

capacity of individual members of a structure exceeds the associated demands. For 

reinforced concrete (RC) columns, several parameters involving steel and concrete 

material properties control behavior and strength. Furthermore, it is unrealistic to simply 

consider the shear strength calculation as the sum of concrete and steel contributions 

while accounting for axial force when, in fact, all those parameters are interacting. 

Consequently, it is challenging to reasonably estimate the shear capacity of a column 

while accounting for all the factors. This study investigates the viability of using artificial 

neural networks (ANN) to estimate the shear capacity of RC columns. Results from ANN 

are compared with both experimental values and calculated values, using semi-empirical 

and empirical formulas from the literature. Results show that ANNs are significantly 

accurate in predicting shear strength when trained with accurate experimental results, and 

meet or exceed the performance of existing empirical formulas. Accordingly, ANNs 

could be used in the future for analytical predictions of shear strength of RC members. 



 

27 

 

4.1 Introduction 

In the seismic design of structures, it is essential to ensure that the deformation 

capacities of a structure and its components exceed the associated deformation demands. 

This concept is implicitly addressed in capacity-based design procedures, and is an 

explicit core requirement of displacement-based design procedures. Thus, it is desirable 

that structures are designed with high ductility and large deformation capacities 

according to seismic provisions. Shear failure of reinforced concrete (RC) members is 

inherently brittle, resulting in a significant drop in lateral load resistance at low 

deformation; this is highly undesirable in seismic design. Several studies have 

demonstrated that the shear strength of RC members degrades substantially under cyclic 

loading when compared to the flexural strength of the member (Ascheim et al., 1992; 

Priestley et al., 1994; Moehle et al., 2002; Biskinis et al., 2004). Accordingly, existing 

seismic design guidelines for RC structures require special reinforcement for zones where 

plastic hinges are expected to form in order to ensure that brittle modes of failure are 

avoided. 

Nonetheless, in many cases, due to the complex interaction between the 

parameters that affect shear strength of a member, empirical equations formulated based 

on analytical reasoning are often proposed in order to predict the shear strength of these 

members. These empirical models have been continuously and significantly improved, as 

shown by Biskinis et al. (2004). Recent procedures issued by the U.S. Federal Emergency 

Management Agency (FEMA) for seismic evaluation of existing structures (FEMA-356, 
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2000) and for the seismic design of new structures (FEMA-368, 2000) involve member 

verifications explicitly in terms of member deformations. These procedures provide a 

strong motivation to develop an accurate, dependable quantification of load and 

deformation capacities of RC members. Quantification of load and deformation 

capacities of RC members is a difficult task due to their non-linear and complex behavior 

under seismic loading. Accordingly, existing equations in the literature need to be 

reexamined and verified using a large amount of experimental data, the more recent 

information available in the literature, and modern analytical techniques. 

4.2 Objectives 

This study aims to improve upon existing empirical equations and models by 

implementing artificial intelligence algorithms to predict the shear strength of RC 

columns based on a number of different variables. Artificial neural networks (ANN) have 

been developed and trained to predict the shear resistance for rectangular and circular RC 

columns under axial load and cyclic lateral loading. A database has been compiled that 

consists of column specimens that have been loaded cyclically and failed in shear or in 

shear after flexural yielding (flexure shear). 
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4.3 Experimental Database 

The experimental database used was obtained from the Pacific Earthquake 

Engineering Research Structural Performance Database (PEER-SPD). PEER-SPD was 

chosen because the hysteresis of load-displacement data was readily available for nearly 

all column specimens in the database. This was necessary to form the load-displacement 

envelopes in order to determine column displacement and lateral loads at yield and 

ultimate failure as well as to determine the experimental values for the shear resistance, 

Vr. By applying a uniform approach for evaluating shear strength of RC columns, the 

authors believe that the database that was used will have a more consistent dataset. The 

experimental values of the shear resistance, Vr, were obtained by analyzing the force-

displacement data for the column, determining the maximum loading, and using a value 

of 75% of the maximum load. This 75% is an average determined by systematically 

analyzing the force-displacement loops; following the approach of Elwood (2002), a 

yield point was defined as the corner point of a bilinear envelope of the first loading cycle 

on the load-deflection diagram. The value of the force at this point was defined as Vr by 

Elwood (2002); however, for consistency and simple identification, an average of all 

specimens was taken at this point to be 75% of the peak resistance. Software was written 

to automatically determine these points from the hysteresis. The source code is available 

upon request. 
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4.4 Artificial Neural Networks 

Artificial neural networks (ANN) are powerful computational tools inspired by 

the understanding and abstraction of the structure of biological neurons and the internal 

operation of the human brain (Haykin, 1994). The most important concept of ANNs is the 

way in which data is processed. Each ANN is composed of highly interconnected nodes 

or neurons used to process information. This structure allows ANNs to closely model the 

way that the human brain forms connections to solve problems and learn by example, or 

trial-and-error. A neural network must be “trained” for their specific application. This 

training process is accomplished by providing a network with a large amount of data to 

build connections between neurons. This is analogous to the same process that occurs in 

biological systems during the learning process. Synaptic connections between neurons 

are built and reconfigured over numerous generations of training. Increasingly, neural 

networks are applied to real-world applications where problems are too complex to solve 

by means of conventional methods or for problems where an algorithmic solution would 

be too complex or undefined. They also can be used where algorithmic solutions have 

been developed, but do not yield high accuracy in the results. Many applications of 

ANNs have shown superior accuracy to empirical algorithms in these cases. 

Several types of neural networks exist, the most common of which is the 

continuous multi-layer perceptron (CMP). This type of network is based on recursive 

generational evaluation, consisting of various layers of neurons passing information 

between each other. The first layer, called the ‘input layer’, has the same number of 
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neurons equal to the number of variables. Each successive layer is called a ‘hidden layer’, 

and may contain more or less neurons than the preceding layer. A final layer, called the 

‘output layer’, contains the same number of neurons as the number of outputs expected 

by the response. In the case of no hidden layers, a neural network can only act on linear 

tasks. All problems that are capable of a solution with a CMP can be solved with only 

one hidden layer; however, more layers can be used, and may result in more accurate 

responses. A sample of a neural network architecture is shown in Figure 1. 

Each neuron in a hidden layer first creates a linear combination of the outputs of 

the previous layer and a bias to introduce variation. These combinations and biases are 

called the weights. The neurons in the hidden layer then create a non-linear function 

based on the inputs. The most commonly used function is called the logistic function. 

This function varies from 0 to 1, and maps to a real value that may be positive or negative 

as well as large or small. As a requirement of using this function, all input data must first 

be normalized into a range from 0 to 1. One of the methods of normalizing the data input 

is by using the following equation: 

௧ݔ ൌ
ሺݔ െ ௠௜௡ሻݔ

ሺݔ௠௔௫ െ ௠௜௡ሻݔ
 (4-1) 

where xt is the scaled value of variable x, and xmin and xmax are the minimum and 

maximum values for the dataset, respectively. This normalizes any input data to a 

percentage value of the range of the data used. 

The training is based on making the mean squared error (MSE) in the network as 

small as possible. This is done over many training cycles, because when the network is 
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initially presented with a large seemingly random distribution, the MSE will be very 

large. The training process modifies the ‘weights’ of each neuron in an attempt to 

decrease the MSE of the net to a global minimum over each cycle. Once the training 

process is complete, another set of testing data is presented to the network, and the results 

are compared with experimental results. 

In order to evaluate the performance of the ANN model, the absolute average 

error (AAE) of the ratio of the calculated shear capacity, Vrcalculated, to the experimentally 

measured shear capacity, Vrexperimental, was used to measure how accurately the network 

predicts the shear capacity relative to the experimental data.  The AAE was calculated 

using the following equation: 

 


 100
1

lxperimentae

calculatedlxperimentae

Vr

VrVr

n
AAE  (4-2) 

Furthermore, to determine the coefficient of variation among the ratio of 

Vrexperimental / Vrcalculated, the following equation was used: 

)/(

)/(

calculatedlxperimentae

calculatedlxperimentae

VrVr

VrVr
COV




  (4-3) 

where µ and σ are the mean and standard deviation, respectively. 

4.5 Existing Shear Strength Models 

Three previous models were evaluated for their accuracy in predicting the shear 

strength of cyclically loaded members. The models evaluated were the ACI 318-08 
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(2008) shear strength model and the models developed by Priestley et al. (1994), and 

Moehle et al. (2002). 

The ACI 318-08 model presents the same shear strength prediction model as has 

been provided by code standards in ACI 318-05 (2005). Along with many of the other 

equations, this model recognizes a contribution to the shear strength by the steel (VS) as 

well as a contribution by the concrete (VC), as described in Equations 4-7 (units: psi, in). 

ோܸ ൌ ஼ܸ ൅ ௌܸ (4-4) 

௖ܸ ൌ ට݂ᇱ௖ߣ1.9 ൅ ௪ߩ2500
௨ܸ݀
௠ܯ

ܾ௪݀ ൏ ට݂ᇱ௖ܾ௪݀ඨ1ߣ3.5 ൅
ܲ

௚ܣ500
 (4-5) 

௠ܯ ൌ ௨ܯ െ ܲ
4݄ െ ݀
8

 (4-6) 

ௌܸ ൌ
௩ܣ ௬݂௧݀
ݏ

 (4-7) 

In the case that Mm is negative, it is permitted to use the upper bound of Vc as the 

concrete contribution. For spirally reinforced columns, Vs is multiplied by (sin  + cos 

), where  is the angle between inclined stirrups and longitudinal axis of the member. 

Priestley et al. (1994) presented a model that takes into account the displacement 

ductility, defined by the ratio of the ultimate displacement at failure to the displacement 

at yield. This ratio is used to define a modification factor that reduces the predicted shear 

strength of the column. Priestley et al. (1994) divided the strength calculation into three 

parts: a concrete contribution, Vc; a steel contribution, Vs; and an axial load contribution, 

Vp. These equations are presented as follows: 
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ோܸ ൌ ஼ܸ ൅ ௉ܸ ൅ ௌܸ (4-8) 

஼ܸ ൌ ݇ට݂ᇱ௖ܣ௘ (4-9) 

௉ܸ ൌ
݄ െ ܿ
2ܽ

ܲ (4-10) 

ௌܸ ൌ
௩ܣ ௬݂௧ܦᇱ

ݏ
cot 30° (4-11) 

where k depends on the member displacement ductility level and the system of 

units chosen (megapascals or pounds per square inch) as well as on whether the column 

is expected to be subjected to uniaxial or biaxial ductility demand. In Equation (9), the 

effective shear area is taken as Ae = 0.8 Ag for both circular and rectangular columns. 

Figure 2, provided by Priestley et al. (1994), is used to determine k values. In Equation 

(11), D' is taken as the distance between the very outer peripheral loops or spirals of 

transverse reinforcement, center to center, or (d - d)' by some notation. For circular 

columns, Vs is multiplied by 
గ

ଶ
, and ݄ is taken as the overall diameter.  

The third model, evaluated for its capacity to predict shear strength, is a model 

recently proposed by Moehle et al. (2002). This model also recognizes a degradation of 

shear strength as a result of cyclic loading. However, in contrast to the presentation by 

Priestley et al. (1994), this model applies the shear degradation factor to both the concrete 

and steel contributions to shear strength. Doing so results in a more accurate model, as is 

evidenced by the data. Moehle’s equations recognize steel and concrete contributions as 

separate as well, with the axial load contribution taken into account in the concrete 

contribution term. 
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ோܸ ൌ ݇ሺ ஼ܸ ൅ ௌܸሻ (4-12) 

݇ ൌ 0.7 ൑ 1.15 െ ߤ0.075 ൑ 1.0 (4-13) 

௖ܸ ൌ 0.5ට݂ᇱ௖ ቌඨ1 ൅
ܲ

0.5ඥ݂ᇱ௖ܣ௚
ቍ൬ܣ௚

݀
ܽ
൰ (4-14) 

ௌܸ ൌ
ߨ
2
௩ܣ ௬݂௧ܦᇱ

ݏ
cot 45° (4-15) 

In circular columns, D' in Equation 15 is taken as (diameter – 2 × cover). 

The above models were tested on a database of 120 columns consisting of 65 

spirally reinforced circular or octagonal cross-sections and 55 rectangular sections. 

Octagonal cross-section columns were approximated as circular sections, since the small 

difference in the concrete area is negligible. 

Evaluation of the existing shear strength models for RC columns is shown in 

Figures 3 through 5 as well as Table 1. Despite the fact that ACI 318-08 does not account 

for shear degradation under cyclic loading, results are split fairly evenly between over-

prediction of shear strength and a conservative prediction, as shown in Figure 4-3. 

However, there are several cases where shear strength has been greatly over-predicted, 

for example, in the case of Priestley et al. (1994), where the equations greatly over-

predict the shear strength of almost all specimens, as shown in Figure 4. This may be 

attributed to the lack of application of the shear degradation factor to the steel 

contribution or to the over-estimation of the concrete contribution to shear resistance. 

Moehle’s return to the classical Ritter-Mörsch truss analogy of a 45-degree angle seems 
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to be the most conservative, especially with the shear degradation factor applied to the 

steel contribution, as illustrated in Figure 5.  

The statistical performance of the three approaches presented in this paper, shown 

in Table 1, indicates that the ACI approach is quite acceptable, taking into account that it 

is a design standard that needs to conform to a wide range of applications. 

4.6 ANN Model 

Hundreds of neural network architectures were created and tested, and the top 

performing networks for circular and rectangular columns were selected. Selection 

criteria were based on the best fit to the data as well as the lowest absolute mean error. 

The networks were trained with a subset of the original data. This subset, chosen at 

random by a Gaussian distribution function, consisted of half the specimens available in 

the database. The other half was reserved to test the performance of the network. Figures 

6(a) and 6(b) illustrate the networks for rectangular and circular columns, respectively. 

For rectangular columns, seven input variables were provided to predict the shear 

strength of the member. These variables are shown in Table 2.  Table 3 illustrates 

relevant statistical data for each of the top ANN models for rectangular columns. 

Network NN-321 had the best correlation to the results, and an error mean that leaned 

more towards the conservative side of prediction, which is preferable.  

For circular columns, the same input variables were used to train the networks, 

with the exception of bw and d, and the addition of the column diameter, D, bringing the 
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total number of input variables for circular columns to six. Table 3 illustrates the 

pertinent properties and information about the structure and statistical data of the top 

ANN model for circular columns. The ANN models used for predicting the shear strength 

of circular columns were not as robust and efficient, and did not achieve the same 

confidence in the results as did the rectangular ANNs. However, the confidence was still 

significantly greater than the previously presented empirical equations.  

ANN model NN-149 performed the best out of a large number of evaluated ANN 

models. However, NN-149 had trouble predicting shear strength for columns identified as 

high outliers. This is typical for many of the properties, especially in ANN modeling, 

where confidence in the results becomes dependent on the number of test specimens from 

the database used for training within that range. For that reason, it is recommended that 

the models are only used within the range of parameters that they are used in training. 

4.7 Results and Discussion 

In the prediction of shear strength for RC columns under cyclic loading, neural 

networks prove to be a very valuable tool due to the extremely non-linear nature of the 

parameters involved contributing to shear strength and the complexity of their interaction. 

Neural networks extend beyond the typical realm of empirically based equations, but 

have the important requirement of computing power and a meaningful database to predict 

the shear strength of columns. Neural networks can be retrained when new data become 

available, and actually ‘learn’ how to predict the shear strength based on all available 
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information, just as humans can. Such capacity makes ANNs very beneficial in the 

seismic design of structures. 

Rectangular Columns 

For rectangular columns, the best performing ANN model was capable of 

predicting the shear strength of concrete columns significantly better than existing 

models in the literature. Results displayed in Figure 7 shows data points mostly around 

the 45 line; this is in clear contrast to the results shown in Figures 3 through 5. Results 

listed in Table 3 show the capacity of the network to estimate the shear strength of 

columns accurately for the wide range of parameters studied. Figure 9 shows the ratio of 

experimental to calculated column shear strength plotted against the range of several 

parameters. While most data points are close to the unity line, point clustering is quite 

common. Accordingly, it is recommended that new tests target new values of parameters, 

thus improving the performance of ANN models as well as other models in the literature. 

Circular Columns 

For circular columns, the ANN model performance was hindered by the limited 

number of data points provided. Nonetheless, the ANN model was able to outperform 

other formula in the literature, as seen in Figure 8. Furthermore, Figure 10 shows 

clustering of data for several parameters indicating that some parameters are repeatedly 

used at the same value, similar to rectangular columns. Figure 10(c) illustrates the need 
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for high strength concrete column testing, since most tested column are below 40 MPa. It 

is also noteworthy that the majority of the estimated results were an underestimation. 

4.8 Conclusion 

In the prediction of shear strength for RC columns under cyclic loading, neural 

networks proved that it can be a very valuable tool due to the extremely non-linear nature 

of the parameters involved contributing to shear strength of RC columns. Neural 

networks extend beyond the typical realm of empirically based equations, but have the 

necessary computing power to predict the shear strength of the column. Neural networks 

can be retrained when new data become available, and can actually ‘learn’ how to predict 

the shear strength based on previous information, just as humans can. This makes ANNs 

very beneficial in the seismic design of structures. 

For the prediction of the shear strength of rectangular RC columns, the ANN 

model NN-321 proved to be the best candidate with the best fit to the data, while ANN 

model NN-149 was the best model for circular columns. Both models outperformed the 

existing models in the literature examined in this study. 

Nonetheless, neural networks have inherent limitation to their capability to predict 

shear strength of RC columns. ANN models are most accurate within the range of 

parameters used to train the network and accordingly, they should be applied cautiously 

outside the ranges of parameters. 
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Table 4-1 Statistical Performance of Existing Shear Strength Equations 

Rectangular Columns Circular Columns 

 
Vrexperimental / VrCalculated 

  
Vrexperimental / VrCalculated 

Method 

AAE 

(%) 
Average SD 

CoV 

(%)  

AAE 

(%) 
Average SD 

CoV 

(%) 

Moehle et al. (2001) 46.6% 1.76 0.92 52.4% 
 

42.1% 2.12 3.33 157.5% 

Priestley et al. (1994) 99.3% 0.63 0.27 42.8% 
 

82.4% 0.71 0.40 56.9% 

ACI-318-08 eq. [11-4] 46.5% 0.85 0.35 40.5%  28.2% 1.14 0.35 30.5% 

 

 

 

Figure 4-1 An example of the structure of an artificial neural network (ANN). 
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Table 4-2 ANN Input Variables for Rectangular Columns 

Input Variable Notation Units Comments 

Column Base ܾ௪ length  

Effective Depth ݀ Length 

 

Distance from extreme compression fiber to 

centroid of longitudinal tension reinforcement 

Axial Load Contribution 
ܲ

௚ඥ݂′஼ܣ
 unitless  

Aspect Ratio 
ܽ
݀

 unitless  

Displacement Ductility ߤ unitless 

 

Ratio of ultimate displacement at failure to 

displacement at yield 

Longitudinal Reinforcement 

Ratio 
 ௪ unitlessߩ

 

Area of longitudinal reinforcement divided by 

gross concrete area 

Volumetric Transverse 

Reinforcement Ratio 
 ௧ߩ unitless  
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Table 4-3 ANN Properties and Performance for Rectangular and Circular Columns 

Network NN-321 

(Rectangular Columns) 

NN-149 

(Circular Columns) 

Data Mean 158.7418 253.68 

Data S.D. 113.2625 130.08 

Error Mean 2.325053 2.133 

Error S.D. 14.703 29.609 

Abs E. Mean 9.635623 21.719 

S.D. Ratio 0.129813 0.974 

Correlation 0.991577 2 

# of Hidden Layers 2 10 

# Hidden Units, Layer 1 15 7 

# Hidden Units, Layer 2 13 --- 

 

 

Figure 4-2 Degradation of concrete shear strength with ductility 
 (Priestley, et al., 1994) 
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Figure 4-3 ACI 318-08 experimental vs. calculated column shear strength, 
according to Equation 11-4. 

 

Figure 4-4 Priestley experimental vs. calculated column shear strength  
according to the Priestley et al. (1994) model. 
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Figure 4-5 Moehle experimental vs. calculated column shear strength  
according to the Moehle et al. (2002) model.  

 

  

Figure 4-6 ANN model architecture  
for (a) NN-321 (rectangular columns)  
and (b) NN-149 (circular columns). 
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Figure 4-7 Rectangular ANN model experimental vs. calculated 
column shear strength  

 

Figure 4-8 Circular ANN model experimental vs. calculated  
column shear strength 
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Figure 4-9 NN-321 parametric analysis (rectangular columns) 
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Figure 4-10 NN-149 parametric analysis (circular columns) 
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Chapter 5  

Estimating Ductility of RC Columns Using Artificial Neural 

Networks 

In seismic design of reinforced concrete (RC) structures, it is highly desirable to 

have a more ductile structure to dissipate energy during the occurrence of a seismic 

event. The ductility of a particular concrete member is often determined through full-

scale testing or empirical models to ensure the drift capacity is within certain code-

prescribed limits or displacement-based design limitations. Estimating the ductility of RC 

members is a complicated task due to the multitude of factors that influence the behavior 

of the member. Experimental data has been used numerous times to create and test 

analytical models that are empirical. This research shows the feasibility of using artificial 

neural networks (ANN) to predict the drift capacity of RC columns. An experimental 

database of results from the literature was used to train and test various networks, and the 

results are compared to existing models used to predict drift capacity. The results show 

that ANNs can be used successfully to provide more accurate results for the prediction of 

drift capacity of RC columns than existing methods. 
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5.1 Introduction 

In seismic design of structures, it is important that the structure have the ability to 

withstand large deformations without collapse. Ductile structures are highly desired for 

their ability to withstand significant inelastic deformation without collapse. Ductile 

structures dissipate large amounts of energy through the yielding of the materials used in 

their construction. Specifically, in reinforced concrete (RC) structures, relevant 

correlations have been shown between the ratio and configuration of transverse 

reinforcement (Lam, et al., 2003; Elwood & Moehle, 2005), the strength of the concrete 

(Oehlers, Ali, & Griffith, 2009), the longitudinal reinforcement ratio, the shear span, axial 

loads, and the member size. As the relationship between these variables is non-linear and 

often unpredictable when looked at as a whole, very accurate empirical models are 

difficult to develop. For the same reason, these models often have limitations imposed on 

the range of the variables which the models can be used with reasonable confidence. 

Recent building codes implement more stringent requirements for the seismic 

design of structures, especially on the ductility and drift capacity of a structure (Federal 

Emergency Management Agency, FEMA-356, 2000; Federal Emergency Management 

Agency, FEMA-368, 2000; Applied Technology Council, 1996). As a result, there is a 

strong motivation to find accurate and dependable methods to quantify the load and 

deformation capacities of structural members without costly testing. As mentioned, this is 

a difficult task due to the nonlinear behavior exhibited during seismic loading. Existing 
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models and empirical equations need to be re-evaluated and verified using large amounts 

of data and more modern analytical techniques.  

This study uses a collection of tests that were obtained from the Pacific 

Earthquake Engineering Research Structural Performance Database (PEER-SPD). This 

database is comprised of columns tested with cyclical horizontal load until failure. The 

data has been split into two subsets: rectangular columns and circular columns. All 

specimens included raw hysteresis data which was important to the research. An 

application was developed to programmatically determine the displacement ductility as 

defined by Elwood et. al. (Elwood & Moehle, 2005). This data was then used to develop 

and train several artificial neural networks (ANN) to predict the displacement ductility 

based on parameters of the column. 

5.2 Objectives 

The objective of this research is to develop an accurate and reliable method to 

determine the ductility of arbitrary concrete columns utilizing several properties of the 

column. This research creates a model that will provide a measure of how ductile a 

column is by predicting the displacement ductility. The displacement ductility is taken as 

the ratio of the displacement at shear failure to the displacement at yield. 

Several ANNs are trained and evaluated for performance in predicting this value 

using a large database of test specimens. These results are analyzed against experimental 

results to determine if this approach provides more accuracy. 
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5.3 Methodology 

Initially, a large database of test specimens was compiled from the PEER-SPD. 

These test specimens were required to have raw load-displacement values from the test. 

These values were then analyzed by a program called DISPLFIND written specifically 

for this task. DISPLFIND programmatically builds an envelope around the hysteresis 

curves. Building this envelope is critical to determining the displacement ductility as 

defined by Elwood et. al. The displacement ductility is defined as ∆ݏ ⁄ݕ∆   where ∆ݏ is the 

displacement after shear resistance dropped below 80% of the maximum shear, and ∆ݕ is 

the displacement at the point of intersection of a horizontal line at the peak shear, and a 

line formed by the origin and the point on the force-displacement envelope where the 

shear is at 70% of its peak value. 

 

 

Figure 5-1 Definition of displacement ductility 
 (Elwood & Moehle, 2005) 

 

Once the data had been prepared, it was used to train several ANNs of varying 

size and parameter. The data is split into rectangular columns and circular columns, as 
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behavior is slightly different for each in terms of ductility. These results from the ANN 

were then compared against experimental results to evaluate their accuracy. 

5.4 Introduction to Artificial Neural Networks 

Neural networking is a technique of information and data processing built to 

model biological nervous systems such as the brain. The most important concept of 

ANNs is the way in which data is processed. Each ANN is composed of highly 

interconnected nodes or neurons used to process information. This structure allows ANNs 

to closely model the way that the human brain forms connections to solve problems and 

learn by example, or trial-and-error. A neural network must be “trained” for their specific 

application. This training process is accomplished by providing a network with a large 

amount of data to build connections between neurons. This process is analogous to the 

same process that occurs in biological systems during the learning process. Synaptic 

connections between neurons are built and reconfigured over numerous generations of 

training. Neural networks are applied more and more often to real world applications 

where problems are too complex to solve via conventional methods or problems where an 

algorithmic solution would be too complex or undefined. They can also be used where 

algorithmic solutions have been developed, but do not yield high accuracy in results. 

Many applications of ANNs have shown superior accuracy to empirical algorithms in 

these cases. 
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Figure 5-2 Example Structure of an ANN 

 

There are several types of neural networks, the most common of which is the 

continuous multi-layer perceptron (CMP). The network is based on recursive 

generational evaluation, consisting of various layers of neurons passing information 

between each other. The first layer, called the “input layer”, has the same number of 

neurons equal to the number of variables. Each successive layer is called a “hidden layer” 

and may contain more or less neurons than the previous. A final layer, called the “output 

layer”, contains the same number of neurons as the number of outputs expected by the 

response. In the case of no hidden layers, a neural network can only act on linear tasks. 

All problems which are capable of solution by a CMP can be solved with only one hidden 

layer, but more layers can be used and may result in more accurate responses. 

Each neuron in a hidden layer first creates a linear combination of the outputs of 

the previous layer and a bias to introduce variation. These combinations and biases are 

called the weights. These neurons in the hidden layer then create a non-linear function 

based on the inputs. The most commonly used function is called the logistic function. 
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This function varies from 0 to 1 and maps to a real value which may be positive or 

negative, and large or small. As a requirement of using this function, all input data must 

first be normalized into a range from 0 to 1. One of the methods of normalizing the data 

input is through the following equation: 

௧ݔ ൌ
ሺݔ െ ௠௜௡ሻݔ

ሺݔ௠௔௫ െ ௠௜௡ሻݔ
 

Where ݔ௧ is the scaled value of variable ݔ, and ݔ௠௜௡ and ݔ௠௔௫ are the minimum 

and maximum values for the dataset, respectively. This normalizes any input data to a 

percentage value of the range of the data used. 

The training is based on making the mean squared error (MSE) in the network as 

small as possible. This is done over many training cycles, because when the network is 

initially presented with a large seemingly random distribution, the MSE will be very 

large. The training process modifies the “weights” of each neuron in an attempt to 

decrease the MSE of the net to a global minimum over each cycle. Once the training 

process is complete, another set of testing data is presented to the network, and the results 

are compared with experimental results. 

However, other approaches to neural networking do not require this approach of 

normalization to the dataset, and are much more adaptive. This is a result of the 

technology improving and computing power becoming greater and allowing for a more 

robust simulation of a neural network. 
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5.5 Results 

Hundreds of neural network configurations were trained and tested, and the top 

network for circular and rectangular columns was selected. Selection criteria are based on 

the lowest absolute mean error and lowest standard deviation on the testing subset. 

Networks were trained with a subset of the original data. This subset is chosen at random 

by a Gaussian distribution function and consists of half the specimens available in the 

database. The other half is reserved to test the performance of the network. The network 

illustrations can be found below. 

For each neural network, six input variables are provided to train the network. 

They are as follows: 
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Table 5-1 ANN Input Variables 

Input Variable Notation Units Comments 

Column Base or Diameter ܾ௪ or D meters  

Effective Depth ݀ meters 

Distance from extreme 

compression fiber to centroid of 

longitudinal tension 

reinforcement 

Axial Load Contribution 
ܲ

௚ඥ݂′஼ܣ
 unitless  

Aspect Ratio 
ܽ
݀

 unitless  

Longitudinal Reinforcement 

Ratio 
 ௪ unitlessߩ

Area of longitudinal 

reinforcement divided by gross 

concrete area 

Volumetric Transverse 

Reinforcement Ratio 
 ௧ߩ unitless  
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Table 5-2 Results and Parametric Evaluation 
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The following table illustrates various properties of each neural network. 

 

Table 5-3 ANN properties 

Network Name NN-10 Rectangular NN-28 Circular 

Mean of Experimental/Predicted 1.007 1.125 

Standard Deviation 0.367 0.366 

Coefficient of Variance 0.364 0.325 

Number of hidden layers 1 2 

Number of neurons in hidden layer 10 (1) – 30, (2) - 22 

 

The parametric evaluation of the parameters used to train the network show a few 

important correlations. The first shows that in both the circular and rectangular networks, 

the predictions were accurate when the concrete strength was within the 27-32MPa range. 

This could be due to the fact that there were not many specimens well outside the range 

with which to train the network. The second important trend is shown when viewing the 

experimental displacement ductility. At lower measured levels of displacement ductility, 

the network tends to overestimate the ductility. As the actual ductility, is higher, the 

networks tend to be more conservative by over estimating the ductility. 

Overall, the results are promising. The circular network performed better than the 

rectangular network. This could be due to a larger sampling set being available. The 

rectangular column data set was only comprised of 54 test specimens, whereas the 

circular column database contained 64. 
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5.6 Conclusion 

Neural networks prove to be a very valuable tool to predict the ductility of a 

column. Neural networks extend beyond the typical realm of empirically-based 

equations, but have the important requirement of requiring computing power to make 

predictions. Neural networks can be retrained when new data become available, and 

actually “learn” how to make predictions the based on previous information, just as 

humans can. This makes ANNs very beneficial in the seismic design of structures. 

Both models presented in this paper provide accurate predictions of the 

displacement ductility of a particular column based on many parameters of the column’s 

construction. However, it is the opinion of the author that the networks be re-evaluated 

using larger datasets before recommendation of real-world usage. As indicated in the 

literature, neural networks can provide more accurate results if larger datasets are 

available (El Chabib, Nehdi, & Said, Evaluation of Shear Capacity of FRP Reinforced 

Concrete Beams Using Artificial Neural Networks, 2006; Lee, 2003). 
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Chapter 6  

Conclusions and Recommendations 

As the research has shown, ANN models are viable methods for predicting shear 

strength and ductility of RC concrete columns. Compared to existing models, lower 

margins of error were achieved and statistically significant improvements were shown.  

This research also demonstrates the viability of using genetic algorithms to 

optimize existing design equations in a particular domain of data. In this case, existing 

design equations were optimized using a data set of cyclically loaded RC columns 

subjected to flexural yielding and shear failure. These optimized equations demonstrated 

superior performance to existing models when used to predict shear strength in cyclically 

loaded conditions. 

However, ANNs and GAs both exhibit better performance with larger data sets, 

and accordingly, these models should be used to predict structural performance when 

they are trained or optimized using significantly larger data sets. As ANNs can be 

continually trained using new test data, a model that exhibits favorable performance 

using smaller sets of data can be advanced by providing more experimental data. 

Future research into this field could be expanded by providing this type of ANN 

model to other researchers as the body of test data grows. Providing an interface for other 

researchers would increase the value and accuracy of the model as it is continuously re-

trained. However, as these approaches are trained using test data, they best suited as 
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verification within the same range of variables encompassed by the training data rather 

than a model that could be used to predict shear strength and ductility in all RC columns. 
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