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ABSTRACT 

Performance-based Economical Seismic Design of Multistory Reinforced Concrete Frame 

Buildings and Reliability Assessment 

 

By  

Chunyu Zhang  

Dr. Ying Tian, Examination Committee Chair, Associate Professor  

Department of Civil and Environmental Engineering and Construction  

University of Nevada, Las Vegas 

As the next generation of seismic design methodology, performance-based seismic design 

(PBSD) method requires a structure satisfy multiple preselected performance levels under 

different hazard levels. Optimal PBSD methods provide different strategies to design the 

numerous variables, including strength, stiffness and ductility of each structural component. The 

overall goal of this study is to develop a new optimal PBSD method for multi-story RC moment 

frames. This method is capable of overcoming the deficiencies of existing optimal PBSD 

methods and can be implemented by the U.S. design practice. The proposed method minimizes 

construction cost and takes the limit of member plastic rotation and optionally inter-story drift as 
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optimization constraints. Other seismic design requirements reflecting successful design practice 

are also incorporated. Simplification is made by reducing design variables into two, one for the 

overall system stiffness and the other for the overall system strength. The optimization contains 

two stages, the determination of feasible region boundary in normalized strength and stiffness 

domain and optimization in the material consumption domain. Capacity spectrum method, which 

jointly considers nonlinear static analysis and inelastic design spectrum, is used to estimate the 

global and local deformation demands at the peak dynamic response.  

The proposed optimization approach is applied to the design of a six-story four-bay 

reinforced concrete frame. The optimal design results indicate that 30% of needed flexural 

strength and 26% of the cross-sectional area can be reduced from the initial strength-based 

design of this prototype structure. Nonlinear time-history analyses are conducted on the 

optimized structure using ten historical ground motions scaled to represent three levels of 

seismic hazard. In general, the average peak dynamic response meets the target performance 

requirements under the three levels of seismic hazard. Structural reliability analyses are applied 

on the optimal structure, the original structure and other 26 structures with different overall 

system stiffness and strength. The effects on nonperformance probability are determined based 

on the nonperformance contours, which is generated based on the reliability analyses results of 

all the 28 structures. To ensure the probabilities of nonperformance due to either plastic hinge or 

inter-story drift rotation is lower than the limits of all three preselected performance levels, the 

prototype structure should be design based on the relative overall system stiffness larger than 



 

v 

0.84 and the relative overall system strength larger than 0.4. To ensure that the probabilities of 

nonperformance only due to plastic hinge is lower than the limits of all three preselected 

performance levels, the prototype structure should be design based on two cases of relative 

strength and relative stiffness: (1) the relative overall system stiffness is larger than 0.75 and the 

relative overall system strength is larger than 0.4, and (2) the relative overall system stiffness is 

larger than 0.65 and the relative overall system strength is larger than 0.45. To ensure that the 

probabilities of nonperformance only due to inter-story drift rotation is lower than the limits of 

all three preselected performance levels, a structure should be design based on the relative 

overall system stiffness larger than 0.85 and the relative overall system strength larger than 0.6. 

.  
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CHAPTER 1 

INTRODUCTION 

1.1 Performance-based Seismic Design  

1.1.1 Conventional strength-based seismic design 

Seismic design attempts to design a structure capable of resisting both gravity and 

seismic loads. Strength, stiffness and inelastic deformation capacity influence the seismic 

performance of a structure. The conventional strength-based seismic design method in the U.S. 

embodied in ASCE 7-10 (2010) designs strength and stiffness based on elastic seismic analysis 

results. According to this standard, seismic design can be performed based on results of static 

analyses, such as equivalent lateral force method and modal response spectrum method, or 

dynamic (time-history) analyses.  

In ASCE 7-10 (2010), the widely used static methods start from externally applying 

lateral seismic forces on a building, then design element stiffness, and finally design element 

strength. The design seismic force for the structure, the total design base shear, is derived by 

dividing the seismic force of an elastic single degree of freedom (SDOF) structure with identical 

natural period by a strength reduction factor, R. The seismic force of the elastic SDOF structure 

is determined by structural seismic weight and design spectra response acceleration and the 

estimated structural vibration period, T. Design earthquake for design earthquake level shall be 

modified based on given site type. T can be estimated by empirical equations or eigen-value 
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analyses. Normally, the lateral strength of a structure to resist seismic loads is designed to be 

lower than that needed to maintain elastic response in severe earthquakes. Then the structure 

would behave inelastically under moderate or severe earthquake to dissipate more earthquake 

induced energy than an elastic structure. Therefore, the design seismic force is derived by 

dividing design earthquake of the elastic structure by R. The value of R is determined based on 

the observations of performance of certain structural type under severe earthquakes (Miranda and 

Bertero, 1994).  

The stiffness design, in ASCE 7-10 (2010), is performed by selecting section sizes of 

structural elements based on structural design experience and architectural requirements. Then 

the inelastic deformation of the structure is checked by comparing the estimated inter-story drift 

ratio under design-level earthquake and the inter-story drift ratio limit given in ASCE 7-10 

(2010). Because the structure performs nonlinearly under a design-level earthquake, the total 

deformation demand, accounting for both elastic and inelastic deformations, can be estimated by 

multiplying a deflection amplification factor, Cd, to the elastic inter-story drift. Element stiffness 

shall be modified based on the checking result to make sure that the structure inter-story drift 

ratio does not exceed the specified drift limit.  

After section sizes are determined, the needed flexural strength of element can be 

obtained based on the elastic analysis results of the structure under combined gravity and design 

seismic force in multiple combinations. The controlling strength demand of each element under 

multiple load combinations is selected to be the needed flexural strength. 



 

3 

Some inaccurate estimations about structural deformation demand and capacity exist in 

the above procedure of the force-based seismic design method. First, T used to obtain the design 

seismic force is derived from empirical equations or elastic analysis. However, the actual 

vibration period keeps decreasing during seismic excitations causing nonlinear structural 

performance, and may be far different from T. Second, R and Cd are identical for a specific type 

of structure without considering its uniqueness. For example, in ASCE 7-10 (2010), R is 

recommended as 8, and Cd as 5.5 for RC special moment-resisting frames regardless their floor 

levels, spans and irregularity. This roughly determined value may lead inaccurate estimation of 

structural ductility demand (Zameeruddin and Sangle, 2016).  

Some observations of the structural damage made after the relatively recent earthquakes 

in the U.S. and Japan, such as the Northridge earthquake (1994 M6.7) and the Kobe earthquake 

(1995 M7.2), revealed the drawbacks of the conventional strength-based seismic design method. 

In these earthquakes, although the structures generally performed well, they suffered unexpected 

severe structural damage, and high economic loss due to dysfunction and prohibiting repair cost. 

(Rainer and Karacabeyli, 2000; Ghobarah, 2001). The total financial loss of the Northridge and 

Kobe earthquakes reached about $20 billion (Kircher et al., 1997) and $200 billion, respectively 

(Bertero and Bertero, 2002). 

The disadvantages of strength-based seismic design are (1) only life safety performance 

level (i.e. life safety) is considered (Krawinkler, 1999; Ghobarah, 2001; Sung et al., 2009); (2) 

non-linear behavior causing the damage of structure in different hazard levels cannot be 
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predicted directly; instead it is derived based on some inaccurate assumptions (Ghobarah, 2001; 

Priestley et al., 2007; Sung et al., 2009); and (3) this method is lack of socio-economic 

description or information, such as cost of repair, for decision making (Krawinkler, 1999). 

1.1.2 Concept of performance-based seismic design 

To avoid the deficiency in the conventional force-based method of seismic design, 

performance-based seismic design (PBSD) method was proposed by the American scientists and 

engineers in the early 1990s (Liu et al., 2004). PBSD is a progressive method, by which a 

structure is designed to achieve a target performance objective under each specified hazard level 

(Ghobarah, 2001). The performance objective is used to distinguish the acceptable or 

unacceptable structures, and shall be different for diverse hazard levels, such as mediate and 

severe earthquakes. Different from the conventional force-based method, which obtains 

structural safety or serviceability with uncertain reliability, PBSD provides designers with a 

method to select a performance objective for diverse hazard levels (Krawinkler, 1999). 

As the next generation of seismic design methodology, PBSD has been a major focus of 

earthquake engineering community. This method was included in: SEAOC Vision 2000 (1995), 

ATC-40 (1996), FEMA 273 and 274 (1996), FEMA 356 (2000), ASCE/SEI 41-06 (2007) and 

ASCE/SEI 41-13 (2014). These documents are evolutionary in the definition of performance 

objectives, seismic evaluation and design methodologies; nevertheless, the basic concepts of 

PBSD are identical (Ghobarah, 2001). In SEAOC Vision 2000 (1995), the framework of PBSD 

was established to accommodate various performance objectives. Structural performance was 
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classified into five levels. Four different seismic design methods were included in this standard: 

conventional force-based method, displacement-based method, energy-based method, and 

prescriptive design method. In ATC-40 (1996), the performance levels of the structural and 

non-structural elements were defined separately. In addition, capacity spectrum method, an 

inelastic static method, was suggested to be incorporated in PBSD. Even though some flaws 

existed within this method, it gave a good estimation of seismic deformation capacity and 

demand (Priestley, 2000). In FEMA 273 and 274 (1996), PBSD related performance levels with 

hazard levels to define performance objective. Structural performance was classified into four 

performance levels: collapse prevention (CP), life safety (LS), immediate occupancy (IO), and 

operational performance levels. Different seismic evaluation and design methods, from linear 

static to nonlinear dynamic methods, were adopted for PBSD in FEMA 273 and 274 (1996). 

Based on engineering practice and observations, the values of deformation limits, such as 

allowable plastic hinge rotation, used to identify whether a structure meets a certain performance 

level, were adjusted in FEMA 356 (2000), and followed by ASCE/SEI 41-06 (2007). Seismic 

evaluation methods, such as the simplification of the factors used in displacement coefficient 

method to predict the peak structure displacement demand, were updated in ASCE/SEI 41-06 

(2007). The allowable plastic hinge rotations were slightly adjusted in ASCE/SEI 41-13 (2014). 

Moreover, specific limit of inter-story drift deformation was eliminated from this standard. 

Based on the standards mentioned above, it can be summarized that PBSD method 

includes four important aspects: multiple performance objectives, criteria used to define the limit 
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states of damage, structural seismic analysis method, and design methodology. First, the purpose 

of PBSD is to reduce the unexpectedly high cost due to the loss of use and repair (Ghobarah, 

2001); thus multiple performance levels, related to different types of cost, shall be satisfied under 

different hazard levels. Figure 1.1 is one example of the definition of performance objectives. 

The chessboard table is composed by different performance levels indicated by the horizontal 

axis, and different earthquake hazard levels indicated by the vertical axis. The performance 

levels are defined as the limit states of damage for both structural and nonstructural components 

of a building (ASCE/SEI 41-13, 2014). Hazard levels can be defined by ground acceleration in 

either a return period format, such as 2475 years for a very rare earthquake, or a probability of 

exceedance in a specified time period format, such as 2% probability of exceedance in 50 years 

(2%/50 year) for a very rare earthquake. Each letter in this chessboard table is defined as one  

 

Figure 1.1 Performance objectives determined by different target performance levels and 

different hazard levels in ASCE/SEI 41-06 (2007) 
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performance objective, reflecting the target performance level under a certain hazard level. A 

structure needs to satisfy all the selected performance objectives. 

Based on ASCE/SEI 41-06 (2007), the performance objectives k and p in Figure 1.1, are 

defined as the basic safety performance objectives, which are suitable for office, residential and 

other general constructions. Nevertheless, some categories of buildings, such as schools, 

hospitals and some government or communication buildings, are more important due to either 

the unique social function or the needed ability to avoid large casualties. Thus, enhanced 

performance objectives are applied on such buildings. The enhanced performance objective can 

be a combination of a single basic safety performance objective and a lower performance 

objective, such as the combination of k and o; alternatively, the enhanced performance objective 

can be a combination of two lower performance objectives, such as j and o. If a building, such as 

warehouse, is less important, the limiting performance objectives applied on its seismic designs 

can be either a single basic safety performance objective, such as k or p alone, or any other single 

higher performance, such as g. 

The second aspect of PBSD is the acceptance criteria. To determinate whether a structure 

can satisfy a certain performance level, criteria used to define the limited damage states shall be 

explicitly quantified. The criteria can be a single criterion or a combination of allowable stress, 

load, strain, displacement, acceleration and energy dissipation. Based on the study by Moehle 

(1992), strain and deformation are more suitable for measuring damage than stress. Therefore, 

PBSD can be deformation-based. However, in addition to deformation, structural damage is 
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affected by other parameters, such as the accumulation and distribution of structural damage, and 

the failure mode of element and overall structure (Ghobarah, 2001). Thus comprehensive criteria, 

considering both deformation and other influence factors, are used to describe the structural 

damage states in some studies. For instance the Park and Ang damage index (Park and Ang, 1985) 

consides both plastic deformation and dissipated energy under cyclic loading (Mechakhchekh 

and Ghosn, 2007). Further studies are still likely needed for a more widely accepted criterion to 

quantify structural damage states.  

RC special moment-resisting frame is a conventional structural type. In the current 

seismic evaluation standards in the U.S., the only explicit damage criteria of this structural type 

are the deformation-based criteria, including allowable inter-story drift ratio and plastic hinge 

rotation. The standards that include these two deformation indexes, are: ATC-40 (1996), 

FEMA-273 (1996), FEMA-356 (2000), ASCE/SEI 41-06 (2007), and ASCE/SEI 41-13 (2014).  

In these standards, the allowable interstory drift is given for three performance levels: 

Immediate Occupancy (IO), Life Safety (LS), and Structure Stability (SS) in ATC-40 (1996) or 

Collapse Prevention (CP) in all the other standards. Along the timeline of these standards, there 

are two major advancements regarding the allowable values, as shown in Table 1.1. In ATC-40 

(1996), the allowable inter-story drift ratio was given for only two performance levels as 2% for 

LS performance level and 3.5% for SS performance level. Since FEMA-273 (1996), the 

allowable interstory drift ratio was given for three performance levels. Note, in ASCE/SEI 41-13 

(2014), there is no specific value for the allowable inter-story drift ratio, excepted for some 
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general descriptions of damage status  

 

Table 1.1 Allowable inter-story drift ratio of RC frames in ATC-40 (1996), ASCE/SEI 41-06 

(2007) and ASCE/SEI 41-13 (2014) 

Performance levels 

Collapse Prevention 

(CP) or 

Structural stability  

(SS) 

Life Safety 

(LS) 

Immediate Occupancy 

(IO) 

ATC-40 3.5% 2% ‒ 

FEMA-273 to 

ASCE/SEI 41-06 

4% transient or 

permanent 

2% transient; 

1% permanent 

1% transient; negligible 

permanent 

ASCE/SEI 41-13 

Transient drift sufficient 

to cause extensive 

nonstructural damage. 

Extensive permanent 

drift. 

Transient drift sufficient 

to cause nonstructural 

damage. Noticeable 

permanent drift. 

Transient drift that 

causes minor or no 

nonstructural damage. 

Negligible permanent 

drift. 
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The values of the allowable plastic hinge rotation of the RC beams and columns were 

also subjected to modifications and increased gradually. Compared with ASCE/SEI 41-06 (2007), 

ASCE/SEI 41-13 (2014) doubled the allowable the values of plastic hinge rotations for the LS 

and CP performance levels. In both documents, the allowable plastic rotation was defined as a 

function of internal force and section detailing, as shown in Table 1.2. In this table, V = shear 

force; P = axial force; ρ and ρ' = tension and compression reinforcement ratios; ρbal = 

reinforcement ratio producing balanced strain conditions; b, d and Ag = width, depth and gross 

area of beam or column section; and f 'c = concrete cylinder compressive strength.1 
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Table 1.2 Allowable beam and column plastic hinge rotation capacity of RC moment frames in 

ASCE/SEI 41-13 (2014) [θ] (unit: rad.) 

Beam plastic hinge rotation capacity Column plastic hinge rotation capacity 

ρ ρ

ρbal


 

c

V

bd f 
 

Performance level 

g c

P

A f 
 c

V

bd f 
 

Performance level 

IO LS CP IO LS CP 

≤ 0.0 
≤ 3 0.010 0.025 0.05 

≤ 0.1 
≤ 3 0.005 0.045 0.060 

≥ 6 0.005 0.020 0.04 ≥ 6 0.005 0.045 0.060 

≥ 0.5 
≤ 3 0.005 0.020 0.03 

≥ 0.6 
≤ 3 0.003 0.009 0.010 

≥ 6 0.005 0.015 0.02 ≥ 6 0.003 0.007 0.008 

 

The third aspect of PBSD method is structural analysis method. Diverse methods of 

structural seismic analysis are available to estimate the nonlinear deformation demand on a 

structure under a certain seismic hazard level. In PBSD, whether the structure satisfies the 

selected performance level can be determined by comparing the estimated deformation demand, 

in terms of plastic hinge rotation and inter-story drift ratio, with the corresponding deformation 

criteria mentioned previously.  

The structural analysis methods include dynamic time-history and static analyses. The 

structural model used for these analyses can be either elastic or inelastic (nonlinear). To estimate 

the structural nonlinear behavior under moderate or severe earthquakes, both nonlinear dynamic 

and static analysis can be used. Normally, the dynamic time-history analysis provides a more 

realistic structural response than the static methods, especially for moderate and severe 

earthquakes and for tall buildings (Deierlein et al., 2010). However, this method is limited by the 

high computational cost due to the need of using multiple earthquake records, and the sensitivity 

to hysteretic model and ground motion selection (Elwood et al., 2007). The nonlinear static 
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method (pushover analysis) cannot effectively capture energy dissipation and lacks accuracy in 

defining the strength and stiffness degradation of elements under cycle loading; however, 

nonlinear static analysis is still widely adopted in practice due to its strong theoretical basis and 

convenience. Both capacity spectrum method proposed by Fajfar (1999) and the displacement 

coefficient method recommended in FEMA-273 (1996) to ASCE/SEI 41-13 (2014) can be used 

to estimate the target displacement of the structure. These two methods are described with details 

in Sections 1.2 and 1.3 respectively. 

The fourth aspect of PBSD method is design methodology. Two types of PBSD 

methodology exist: the iteration method by evaluating and modifying the force-based design 

result, and the direct deformation-based method (Priestley, 2000; Zameeruddin and Sangle, 

2016). The former method alternately applies performance-based structural analysis and 

force-based seismic design. The structural analysis is used to check whether a structure meets the 

selected performance objectives. If not, the force-based seismic design is applied to redesign the 

structure. This process is repeated until all performance objectives are satisfied. This iteration 

process significantly increases the computational cost of PBSD if multiple performance 

objectives are to be satisfied (Priestley, 2000). Direct deformation-based method attempted to 

incorporate deformation criteria in the preliminary design stage without an iteration process 

(Priestley, 2000; Bertero and Bertero, 2002). This method is introduced in Section 1.4. 
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1.2 Capacity Spectrum Method 

1.2.1 Overview 

To estimate the nonlinear response of a structure under moderate and severe earthquakes, 

several methods based on pushover analysis and demand spectra were proposed. In the pushover 

analysis (Section 1.2.3.1), increasing lateral loads are monotonically applied along the height of 

a multi-degree-of-freedom (MDOF) structure defined with inelastic properties. The MDOF 

system is converted into an equivalent SDOF system (Section 1.2.3.2). In the equivalent SDOF 

system, demand spectrum is used to estimate the deformation demand of a bilinear equivalent 

single-degree-of-freedom (SDOF) system (Priestley 2000). 

One of the nonlinear static methods was the N2 method proposed by Fajfar (1988 and 

1996) using inelastic demand spectrum and pushover analysis results. A similar method called 

capacity spectrum method was proposed by Freeman (1988) using highly damped demand 

spectra and pushover analysis results. In this method, both capacity and demand spectrum was 

expressed in spectral acceleration vs. spectra displacement format (Priestley, 2000). These two 

methods were combined as a new version of capacity spectrum method based on the work of 

Fajfar (1999). This method included both physical basis of inelastic demand spectra in the N2 

method, and the convenient graphical procedure in the capacity spectrum method proposed by 

Fajfar (2000).  

Figure 1.2 shows the capacity spectrum method proposed by Fajfar (1999). The capacity 

spectrum is obtained from pushover analysis results, and the demand spectrum is derived from 
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the elastic demand spectrum. Both of these spectra are expressed in spectral displacement (Sd) vs. 

spectral acceleration (Sa) format. The demand spectrum intersects with the capacity spectrum. 

The intersection between the capacity spectrum curve and the demand spectrum curve is used to 

predict the seismic response of a structure under a single hazard level. An idealized bilinear 

response is derived based on equivalent energy theory. Three aspects are included in the capacity 

spectrum method: the demand spectrum establishment, the capacity spectrum establishment, and 

the nonlinear deformation estimation based on the capacity spectrum and the demand spectrum. 

These aspects are described in the following sections. 

 

 

Figure 1.2 Capacity spectrum method to predict structural non-linear deformation demand 

 

1.2.2 Demand spectra 

Elastic demand spectrum can be generated based on the average value of the design 
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response spectra of historical earthquakes. Based on this elastic demand spectrum, two types of 

demand spectra were proposed to reflect the effects of strength reduction of a nonlinear SDOF 

system: highly damped demand spectra and inelastic demand spectra.  

1.2.2.1 Elastic demand spectrum 

Elastic demand spectrum can be generated by smoothing the response spectrum 

constituted by the average spectral acceleration of SDOF systems with different natural period of 

vibration. In addition, site type and system damping ratio also affect the elastic demand spectrum. 

Figure 1.3 demonstrates a typical elastic demand spectrum of a system with 5% damping ratio 

based on ASCE 7-10 (2010). Sae represents the elastic spectrum acceleration of the structures 

with different natural periods of vibration. 

 

 
Figure 1.3 Elastic demand spectrum based on ASCE 7-10 (2010) 
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short period (0.2 second) and at 1 second, and defined in Equations 1.1 and 1.2. T0, TS and TL are 

parameters used to separate short, medium, long and very long periods. 

 

MS a SS F S
 

Equation 1.1 

1 1M vS F S
 

Equation 1.2 

 

where SS and S1 are maximum considered earthquake (MCE) acceleration parameters at short 

period and at 1 second; Fa and Fv are site modification parameters for short period and 1 second, 

respectively. 

1.2.2.2 Highly damped demand spectra 

To equivalent consider the effects of strength reduction on the deformation demand of a 

nonlinear system, Freeman (1998) used elastic demand spectra with a high damping ratio. In 

these elastic demand spectra, the spectral acceleration of the highly deamped elastic SDOF 

system was derived from the maximum nonlinear response of an inelastic SDOF system in a 

time-history analysis. The elastic and inelastic SDOF system should have identical natural period 

of vibration. Figure 1.4 demonstrates the typical highly damped demand spectra. However, this 

method has two major drawbacks (Krawinkler, 1992). First, no physical basis exists to prove a 

stable relationship between viscous damping and structural hysteretic energy dissipation, 

especially when the structure behaves highly inelastically. Second, the influence due to the 

changing in the natural period degradation is ignored in this method.  
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Figure 1.4 Highly damped demand spectra (Chopra, 2017) 

 

1.2.2.3 Inelastic demand spectra 

To overcome the weakness of highly damped demand spectra, inelastic response 

spectrum was proposed by some researchers, such as Veletsos et al. (1960, 1964), Newmark et al. 

(1969), and Murakami and Penzien (1975). The parameters used to derive an inelastic demand 

spectrum from an elastic demand spectrum are based on the statistical analysis of a SDOF 

system with a bilinear force-displacement relationship (Fajfar, 1999). This inelastic demand 

spectrum can more accurately estimate the peak nonlinear deformation than the highly damped 

demand spectrum, especially for structures with short periods or high ductility demand (Fajfar, 

1999, 2002).  

Reinhorn (1997) suggested highly damped demand spectra should be in spectra 

acceleration vs. spectra displacement format instead of the spectra acceleration vs. period format. 
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For an elastic SDOF system, the relationship among elastic spectral displacement, Sde, spectral 

acceleration, Sae, and structural natural period of vibration, T, can be expressed by Equation 1.3. 

Based on this equation, a smooth elastic demand spectrum in the spectral acceleration vs. period 

format can be transformed into spectral acceleration vs. spectral displacement format, as shown 

in Figure 1.5. 

 

2

24
de ae

T
S S




 

Equation 1.3 

 

  

(a) 

 

(b) 

Figure 1.5 Elastic demand spectrum in different formats: (a) period vs. pseudo acceleration; (b) 

spectral displacement vs. spectral acceleration  

 

The inelastic demand spectrum of a SDOF system with bilinear force-deformation 

relationship can be derived from the elastic demand spectrum based on Equations 1.4 and 1.5. 
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R R
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 
 Equation 1.5 

 

where Sa and Sd are the spectral acceleration and displacement of inelastic demand spectra, 

respectively; T is structural natural period of vibration; Rμ is reduction factor considering 

strength reduction of inelastic system to allow hysteretic energy dissipation; μ is ductility factor, 

which is the ratio between the target displacement and the yield displacement of an equivalent 

bilinear capacity spectrum.  

Based on Equations 1.4 and 1.5, the accuracy of an inelastic demand spectrum depends 

on the selection of appropriate values for Rμ and μ. Different versions of Rμ‒μ‒T relationship, 

used to calculate Rμ based on μ, were proposed in the past decades (Newmark and Hall, 1982; 

Nassar et al., 1992; Miranda and Bertero, 1994; and Vidic et al., 1994). Nevertheless, all these 

Rμ‒μ‒T relationship provided similar results (Chopra and Goel, 1999). Equations 1.6 to 1.9 

describe the latest Rμ‒μ‒T relationship provided by Vidic (1994). Figure 1.6 obtained by this 

Rμ‒μ‒T relationship demonstrates the elastic demand spectrum and the inelastic demand spectra 

with different μ. 

 

   1 0

0

μ 1 1Rc T
R c T T

T
      Equation 1.6 

   1 0μ 1 1Rc
R c T T      Equation 1.7 

0 2 1μ Tc
T c T  Equation 1.8 
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1 2
v g

a g

c v
T

c a
   Equation 1.9 

 

where c1, c2, cR and cT are hysteretic behavior parameters, which can be defined as 1.35, 0.75, 

0.95 and 0.2 for bilinear hysteresis model with 5% mass damping model; ag and vg are the peak 

ground acceleration and velocity for a specified seismic hazard, respectively; cv and ca are 

amplification factors for vg and ag, and can be defined as 1.8 and 2.5 for structures with 5% 

damping ratio located in the U.S.  

 

 

Figure 1.6 Elastic and inelastic demand spectra based on Vidic (1994) 
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needed steps. First, pushover analysis is conducted on a MDOF system to obtain a top 

displacement vs. base shear curve (Figure 1.7(a) and 1.7(b)). Second, the top displacement vs. 

base shear curve for the MDOF system is transformed into a spectral displacement vs. spectral 

acceleration curve in an equivalent SDOF system (Figure 1.7 (c) and 1.7(d)). 

 

 

Figure 1.7 Pushover analysis and capacity spectrum establishment: (a) the first mode shape and 

the corresponding load pattern; (b) gravity and lateral loads; (c) top displacement vs. base shear 

curve of MDOF system; and (d) capacity spectrum curve of SDOF system, and demand spectra 
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1.2.3.1 Pushover analysis 

In the pushover analysis, lateral forces are monotonically applied on the structure. The 

nonlinear behavior of the structure can be simulated by assigning distributed or concentrated 

plasticity to the structural elements. During lateral loading, inelastic elements start to yield and 

loss stiffness. Accordingly, the structure experiences stiffness degradation and behaviors 

nonlinearly. The overall structural stiffness is affected by the nonlinearity presented in each 

element. The most common measurement to reflect the overall nonlinear response of the 

structure is the top (roof) displacement vs. base shear response, as shown in Figure 1.7(c). 

The horizontal loads applied on the structure in a pushover analysis follow a certain load 

pattern, as shown in Figure 1.7(b). Different load patterns have been suggested. The widely used 

one is related to the first mode shape of the structure, as shown in Figure 1.7(a). This is rational 

for the structures without abrupt changes of vertical strength or stiffness, since the first vibration 

mode dominates such structures. Some other versions of load pattern were proposed to consider 

higher mode effects (Park et al., 2007; Kreslin and Fajfar, 2012) or the variation of the load 

pattern over time due to the inelastic response of the structure subjected to ground motions 

(Gupta and Kunnath, 2000; Antoniou and Pinho, 2004). 

Because the mass of each story is dominated by the slabs and the in-place stiffness of the 

slabs is extremely high, the multi-story structure shown in Figure 1.7(b) can be simplified as an 

lumped masses model with multiple lateral degrees of freedom (DOF) shown in Figure 1.7(a). 

The lumped masses of the structure can be expressed by a diagonal matrix M. The mode shape 
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of this lumped masses model, Φ, can be obtained by an eigenvalue analysis. Then the lateral load 

pattern used for the pushover analysis, P, can be determined by Equation 1.10. The lateral load 

on the i
th

 floor, Pi, is expressed by Equation 1.11. 

 

p p P Ψ MΦ  Equation 1.10 

i i iP pm   Equation 1.11 

 

where Ψ is lateral load pattern vector; p defines the magnitude of lateral load, and mi and Φi are 

mass and mode shape on the i
th

 story.  

1.2.3.2 Transformation between MDOF and SDOF system 

The top displacement and base shear are used to reflect structural nonlinearity during 

lateral loading, as shown in Figure 1.7(c). However, this top displacement vs. base shear curve 

cannot be used together with the demand spectrum to predict structure deformation demand. This 

is because this curve is for a MDOF system, while equivalent demand spectrum is for a SDOF 

system. Therefore, a transformation of responses between the MDOF and SDOF systems is 

needed. 

Based on the equation of motion and assuming that the mode shape remains constant, 

modal participation factor, Γ, is used to transform both the force and displacement of the MDOF 

system to those of the SDOF system (Fajfar 1996 and 1999). Equation 1.12 defines Γ, and the 

general mass of equivalent SDOF system, m
*
, can be obtained by Equation 1.13. 
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2 2
=

T *
i i

T

i i i i

m m

m m


  

 


 

Φ M1

Φ MΦ
 Equation 1.12 

* T

i im m  Φ M1  Equation 1.13 

 

where Φ is mode shape; M is mass matrix of the lumped mass on each floor; mi and Φi are mass 

and mode shape on the i
th

 story; 1 is a unit vector. It is noted that Φ is normalized by 

proportionally modifying the mode shape vector until the roof displacement is equal to 1. 

Top displacement, Dt, and based shear, Vb, of the MDOF system are transformed into 

general displacement, D
*
, and general force F

*
, of the equivalent SDOF system by Equations 

1.14 and 1.15. The spectral acceleration corresponding to F
*
 is defined by Equation 1.16. 

 

* tD
D 


 Equation 1.14 

* bV
F 


 Equation 1.15 

*

a *

F
S

m
  Equation 1.16 

 

The capacity spectrum curve of SDOF system obtained based on the above derivation is 

shown in Figure 1.7(d). However, since the inelastic demand spectrum is used for a SDOF 

system with bilinear force-deformation relationship, the capacity spectrum shall also be 

transformed into a bilinear format based on energy equivalence. 

1.2.4 Estimation of nonlinear deformation demand 

After deriving an inelastic demand spectrum and an equivalent capacity spectrum in the 

SDOF system, an iterative procedure can be used to determine the intersection, which is used to 
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estimate the nonlinear deformation of the structure. Different methods of bilinear idealization 

have been proposed. All were based on energy equivalency, that is, the area enveloped by 

capacity spectrum should be identical to that enveloped by the bilinear equivalent capacity curve. 

Figure 1.8 shows three equivalent transformation methods, where Kini. and Keff. are the initial and 

effective structural stiffness; α is a strain hardening ratio for the post yield segment; Say and Sdy 

are yield acceleration and displacement; Sae and Sde are elastic spectral acceleration and 

displacement; Sai and Sdi are strength and displacement at the intersection between the bilinear 

capacity spectrum and the non-linear demand spectrum.  

The first method requires post yield stiffness be equal to zero, that is, no strain hardening 

is assumed. Additionally, the three curves (non-linear capacity curve, equivalent bilinear capacity 

curve and non-linear demand spectrum) intersect at the identical point, as shown in Figure 1.8(a). 

The second method requires the post-yielding stiffness be equal to zero, and the corresponding 

strength of the first intersection between the equivalent bilinear capacity curve and non-linear 

capacity curve be equal to 60% of the yield strength, as shown in Figure 1.8(b). The third method 

has a strain hardening, and the three curves intersect at the same point, as shown in Figure 1.8(c).  

After the intersection between the capacity spectrum and the demand spectrum is 

determined, the demands of deformation and force, and some other information, such as the 

reduction factor, can be derived based on this intersection. The peak top displacement of the 

MDOF structure, Dt, can be obtained based on Equation 1.14 and the spectrum displacement, D
*
. 

All the external forces and element deformations are recorded in the pushover analysis for an 
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Figure 1.8 Different equivalent methods to transform non-linear capacity spectrum curve to 

equivalent bilinear capacity spectrum: (a) identical intersection and no post-yielding stiffness; (b) 

different intersections and no post yield stiffness; and (c) identical intersection and positive 

post-yielding stiffness 
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increasing Dt. Once Dt is determined, the corresponding records can be obtained. Furthermore, 

Equations 1.17 to 1.20 can be used to determine Rμ, μ and the elastic period of the equivalent 

bilinear SDOF system T
*
. 

 

 Equation 1.17 

 Equation 1.18 

 

Equation 1.19 

 Equation 1.20 

 

where F
* 

y  and D
* 

y  are the yield strength and displacement of the equivalent bilinear SDOF 

system for capacity spectrum, respectively. In this study, the equivalent method shown in Figure 

1.8(a) is adopted, because it can clearly define the factors of R-μ-T relationship (reduction factor, 

Rμ, ductility factor, μ, and equivalent structural period of bilinear SDOF system, T
*
) for both 

demand and capacity spectra. 

1.3 Displacement Coefficient Method 

In addition to the capacity spectrum method, displacement coefficient method can be 

alternatively used to predict the maximum inelastic deformation of a structure. This method was 

suggested in FEMA-273 (1996) to ASCE/SEI 41-13 (2014) to estimate the target roof 

displacement, δt, based on the roof displacement vs. base shear curve derived from a pushover 

μ
ae

ay

S
R

S


μ de de

*

y dy

S S

D S
 

2

* *

y*

*

y

m D
T

F


* *

y ayF S m



 

27 

analysis. ASCE/SEI 41-06 (2007) and ASCE/SEI 41-13 (2014) improved the displacement 

coefficient method used in FEMA-273 (1996). The equation used to calculate δt in ASCE/SEI 

41-13 (2014) is shown in Equations 1.21 and 1.22.  
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where C0 is the modification factor to correlate the spectral displacement of an equivalent SDOF 

system with the roof displacement of the MDOF system; C1 is a modification factor to relate the 

expected maximum inelastic displacements with the maximum displacements for the linear 

elastic system; C2 is a modification factor to represent the effect of pinched hysteresis shape, 

cyclic stiffness degradation, and strength deterioration on the maximum displacement response; 

Sa is the response spectral acceleration at the effective fundamental period, Te; g is gravity 

acceleration; Ti is the elastic fundamental period of the structure; Ki is the elastic lateral stiffness 

of the building; Ke is the effective lateral stiffness of the building obtained by idealizing the 

pushover curve as a bilinear relationship. The details for calculating these factors can be found in 

ASCE/SEI 41-13 (2014). Similar to the capacity spectrum method, once δt is determined, the 

local deformation demands become available.  
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1.4 Direct Displacement-based Seismic Design Methods 

Direct displacement-based design (DDBD) method starts from the target (allowable) 

displacement estimation of a structure under a selected hazard level or a selected performance 

level. The structure is designed to be capable of resisting the target displacement (Priestley et al., 

2007; Welch et al., 2014). The seismic response of a structure is controlled by four quantities: 

strength, stiffness and ductility. Normally, in the direct displacement-based design method, one 

or two of these quantities is predetermined first to predict the target displacement demand. Then 

the other quantities are determined by assuming displacement capacity is equal or slightly larger 

than displacement demand (Fajfar 1999). The nonlinear displacement demand can be obtained 

based on displacement response spectrum and structural effective stiffness or period (Moehle, 

1992; Sasani, 1998). Alternatively, the nonlinear displacement demand can be estimated based 

on the assumed displacement shape related to the inelastic first-mode at the design level of 

seismic excitation and the selected ductility (Priestley et al., 1996; Priestley et al., 2007). In a 

direct displacement-based design, the displacement capacity of a structure can be expressed and 

limited by either allowable material strain or inter-story drift ratio. One drawback of direct 

displacement-based design method is that this method designs structure based on only one 

performance objective; thus, an iteration method may have to be used to modify structural 

capacity so that the other performance objectives can be satisfied. The following sections briefly 

describe the existing direct displacement-based design methods used for structural walls, SDOF 

bridge piers and MDOF RC moment frames. 
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1.4.1 Structural wall 

Sasani (1998) proposed a direct displacement-based design method for RC structural 

walls resisting strong ground motions, as shown in Figure 1.9. First, this method designs a RC 

wall under frequent earthquakes based on the traditional force-based method. At this hazard level, 

the structure is expected to remain elastic, and its design is controlled by the deformation 

requirements of the non-structural elements. Second, a direct displacement-based design is used 

to estimate the structural deformation demand at the life safety performance level. Setting the 

structural deformation capacity to be identical to the deformation demand, the concrete 

compressive strain related to deformation capacity is checked. If this strain is larger than the 

allowable value, then the design should be modified until the concrete strain is no more than its 

limit. Finally, the base shear was checked to avoid an unexpected failure mode. The details of 

this method are described below. 

 

 

Figure 1.9 Fanned radially-cracked region at the bottom of a structural wall and schematic strain 

distribution at the base (Sasani 1998) 
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The nonlinear deformation demand of a RC structural wall was assumed as 1.5 times of 

the elastic deformation demand, which could be determined by the displacement response 

spectra and an estimated structural fundamental period, T. T of the structure with N pieces RC 

wall was obtained by Equation 1.23.  
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Equation 1.23 

 

where H = wall total height; m̄ = the average linear mass along wall height; and EIeq = 

estimated equivalent flexural stiffness.  

The equal displacement rule assumes that the peak inelastic deformation of a structure 

under a strong ground motion is equal to the peak elastic deformation if the structure remains 

elastic. However, based on the study by Wallace and Moehle (1992), the equal displacement rule 

is not suitable for RC structural walls, and the ratio between the inelastic deformation and the 

elastic deformation shall be 1.5. This ratio was adopted in the direct displacement-based design 

method for walls. The deformation capacity at the top of the RC wall, Δ
t 

c, was expressed as:  
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Equation 1.24 

 

where Φu and Φy are the yield and ultimate curvatures of the section; and H and Lp are wall total 

height and plastic hinge length. Φy can be calculated as Φy = Mu/EIeq, where Mu is section 
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ultimate moment capacity. Φu can be obtained by section analysis under cyclic loading when the 

maximum usable concrete strain is reached. Note, compared with Equation 1.24, the code design 

provisions may overestimate the displacement capacity of the RC structural wall by 100%. 

1.4.2 SDOF systems 

Moehle (1992) proposed a direct displacement-based design method for SDOF RC 

structures as shown in Figure 1.10(a). The equal displacement rule was used to predict the 

inelastic deformation demand. Elastic response spectrum, shown in Figure1.10(c), was used to 

predict elastic deformation demand based on the estimated structural period related to effective 

structural stiffness. Deformation capacity was expressed by allowable material strain. 

 

 

(a) 

 

(c) 
 

(b) 

Figure 1.10 Schematic diagram in Moehle (1992): (a) SDOF RC bridge pier; (b) idealized 

flexural curvature; (c) elastic response spectrum  
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The flexural deformation capacity of a SDOF bridge pier shown in Figure 1.10 could be 

determined using Equation 1.25 proposed by Priestley and Park (1987). 
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 Equation 1.25 

 

where δu is ultimate displacement capacity; l and lp are column height and plastic hinge length; 

φu and φy are ultimate and yield curvatures of plastic hinge, respectively. φy can be neglected if 

an idealized bilinear force-displacement model is used. φu can be determined by allowable 

material strain, controlled by either the maximum usable concrete compression strain or the 

longitudinal reinforcement tensile strain.  

1.4.3 MDOF systems 

Goel et al. (2008 and 2010) suggested a direct displacement-based design method for 

MDOF frame structures based on the beam hinging mechanism shown in Figure 1.11 and a 

pre-selected target drift. An equivalent energy method was used to determine the required base 

shear force for different hazard levels. Therefore, multiple performance targets could be 

considered simultaneously by selecting the largest base shear for design. Then the design base 

shear was distributed vertically on each floor. A plastic design method was adopted to design 

beam components based on the virtual work principle. The design base shear of one performance 

objective, Vy, is calculated based on Equations 1.26 to 1.28. 
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Figure 1.11 Target yield mechanism for moment frame (Goel et al. 2010) 
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where α reflects the target deformation demand; γ is an energy modification factor; Sa is the 

design acceleration of one hazard level; θp represents the inter-story drift limit of one 

performance level; W is total weight; T is structural vibration period; λi and hi are story height of 

the i
th

 story and the corresponding distributed lateral load; Rμ is a strength reduction factor; and μ 

is ductility ratio. The base shear of a performance target can be calculated according to the 

selected hazard level and the desired performance level reflected by Sa and θp, respectively.  
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Then the design base shear, controlled by one of the multiple performance objectives, 

was distributed vertically to each story considering the influence of higher mode and structural 

nonlinearity, as shown in Equations 1.29 and 1.30. 
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where Fi is the distributed lateral force at the i
th

 story; βi is a base shear distribution factor for the 

i
th

 story; and wj and hj are the weight and height of the j
th

 story. 

Finally, the plastic design method is used to design the yield strength of the beams 

according to the distributed lateral loads. Virtual work principle is used by assuming the external 

work caused by the distributed lateral load is equal to the internal virtual work caused by the 

plastic hinge rotation at beam ends, as shown in Equation 1.31. 
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where θ represents the target plastic hinge rotation angle of the structure shown in Figure 1.11; 

Mpb and Mpc are the design yield moments of the beams and the columns; L and L'
 

i  are the total 
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and clear lengths of a beam. Mpc can be determined based on beam-hinge mechanism to avoid a 

weak story. The design procedure based on Figure 1.11 implied that plastic hinges appeared at 

each beam end and rotate with same angle under a strong earthquake, which may not be true. 

1.4.4 Drawback of direct displacement-based seismic design method 

Even though direct displacement-based design is considered a PBSD method, some 

disadvantages exist. First, economy is a basic demand of PBSD method (Krawinkler, 1999), but 

not directly involved in the existing direct displacement-based design methods. Moreover, more 

accurate structural analysis methods shall be used to predict the nonlinear deformation of a 

structural system and its elements, which are affected by not only strength but also stiffness. 

However, the current direct displacement-based design methods design the member strength 

based on a preselected or estimated stiffness. Therefore, an optimal PBSD method, which 

provides a strategy to design both element strength and stiffness based on target nonlinear 

structural performance, is desired. 

1.5 Optimal Performance-based Seismic Design Methods 

The conventional PBSD alternately performs structural analysis and design until all the 

performance objectives are satisfied. Optimal seismic design provides a mean to determine 

which and how the design variables shall be modified (Plevris, 2012) so that the structure would 

satisfy not only the design requirements but also a predefined optimal objective. An optimal 

PBSD normally requires an algorithm to achieve the optimal design objective for a structure 
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satisfying various constraints. The optimal design objective can be the minimum construction 

cost, floor acceleration or structural damage. The architectural constraints can be the upper or 

lower bound of design variables, such as section size. The performance-based structural 

constraints can be the allowable forces or deformations for different performance levels, such as 

the allowable inter-story drift ratios shown in Table 1.1. An optimal PBSD problem can be 

expressed using Equations 1.32 to 1.34. 
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                    1,...,L U

i i ix x x i n     Equation 1.34 

 

where Z and f are objective function and its expression; X is a vector of design variables with xi 

being the i
th

 design variable; R(X)
h
 is the structural response (force or deformation) under the h

th
 

hazard level; R
p 

Lim is the allowable value of structural response in the p
th

 performance level; x
L 

i  

and x
U 

i  are the upper and lower bounds of the i
th

 design variable; and n, H and P are the total 

number of design variables, hazard levels and performance levels. 

An optimal PBSD consists of three basic components: an objective function, constraints, 

and an optimization algorithm. Two types of objective function have been considered: single 

objective function and multi-objective function. The constraints can be divided into two 

categories: deterministic constraints and probabilistic constraints. The detailing requirements of 

seismic design to achieve desired failure mechanism, such the minimum reinforcement ratio, can 
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be used as supplemental constraints. Various optimal algorithms have been proposed for optimal 

PBSD; nevertheless, they mainly fall into two categories: metaheuristics method and optimality 

criteria (OC) method.  

1.5.1 Optimal objectives 

Single objective function minimizing the total construction cost was widely used in 

optimal PBSDs (Mohharrami and Grierson, 1993; Soegiarso and Adeli, 1997; Ganzerli et al., 

2000; Liang et al., 2002; Lee et al., 2002; Talatahari et al., 2014; Kaveh and Nasrollahi, 2014 and 

Gholizadeh, 2015). The material cost occupies a large portion of construction cost. Therefore, 

minimizing was often adopted as the single optimal objective and can be expressed by Equation 

1.35. 
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where Z is the total material cost; cj and ρj are unit cost and density of material j; Aij and lij are 

section area and length of component i made by material j; M and N are total types of material 

and total number of component, respectively.  

Different types of multi-objective function were also considered. Xu et al. (2006) 

proposed a multi-objective function for steel buildings, which simultaneously minimizes total 

structural weight and damage. Because structural weight and damage cannot be added, they were 

transformed into two unitless objectives, as shown in Equation 1.36. 
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where Z is the optimal objective minimizing element weight and structural damage together; f1 

and f2 are unitless weight and damage objectives, respectively; ω1 and ω2 are combination factors 

defined by Gong (2003); ρ represents material density; Lj and Aj are the length and cross section 

area of member j; Wmax is the assumed maximum possible weight; ns is the total number of 

stories; vs(x) and Hs are lateral drift and height in the s
th

 story; and Δ(x) and H are roof lateral 

drift and total structural height, respectively. 

In Equation 1.36, the weight objective is normalized by the maximum possible weight, 

while the damage objective is normalized based on equal inter-story drift expectation. This 

expectation believes that structure would suffer least damage if the inter-story drift ratio is 

identical among different stories (Chopra 1999). Therefore, in Equation 1.36, roof drift ratio is 

used as the standard measurement to evaluate the degree of inter-story drift uniformity. Both 

weight objective and damage objective are unitless, and can be optimized simultaneously to 

consider the conflict between construction budget and possible loss during earthquakes. 

Zou et al. (2007) proposed a multi-objective function for RC frames to minimize the 

life-cycle cost of a structure, including both initial material cost and expected future damage loss. 

Equation 1.37 shows the objective function as:  
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 Equation 1.37 

 

where f1 and f2 are the initial material cost and the expected future damage loss; f1c and f1s are 

initial material cost of concrete and reinforcement; Lr and Pr represent the system failure loss and 

the corresponding occurrence probability; wci and wsi are unit material cost of concrete and 

reinforcement; Lci, Lsi and L 'si are the lengths of the i
th

 component, the tension reinforcement and 

the compression reinforcement; bci and dci are the width and depth of the i
th

 component; ρi and ρ'i 

are the tension and compression reinforcement ratios of the i
th

 component; Lq is total structural 

cost including direct and indirect losses; Aq is damage status classified into five types; and r is 

the number of total selected performance levels. 

In Equation 1.37, the initial material cost is related to the total weight of all types of 

material; the expected future damage is related to the initial material cost, and evaluated in five 

aspects. The expected future damage loss includes direct loss, such as repairing or replacement 

cost, and indirect loss, such as structural malfunction.  

1.5.2 Optimization constraints 

The preselected constraints that the solution of an optimal PBSD problem must satisfy 

defines the boundary separating the allowable and undesired systems. The multi-dimensional 

space of the design variables enveloped by the constraints is called as feasible region. Two types 

of PBSD constraints have been adopted in the optimal PBSD problems: deterministic constraints 



 

40 

and probabilistic constraints. The former defines a feasible region, in which the structures with 

deterministic design variables satisfy the performance-based constraints. The latter defines a 

feasible region, in which a structure with probabilistic distributed design variables satisfies the 

allowable failure probability of different performance levels. The structure in this 

multi-dimensional feasible region is not defined by the value of design variables, but their mean 

values. The values of design variables are changeable during optimal process following a 

distribution type with the deterministic mean and variance. Therefore, the structural responses 

under the possible values of a design variable are different. The failure probability of the 

structure with uncertain variables can be obtained by a statistical analysis.  

1.5.2.1 Deterministic constraints 

The limit state function of the deterministic constraints used to avoid structural failure 

can be expressed by Equation 1.38. 
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hPG R R   X X  Equation 1.38 

 

where X is the vector of design variables; R(X)
h
 is the non-linear response of structure with X 

under the h
th

 selected hazard level; [R
P
] represents the deformation limit of the p

th
 performance 

levels; G(X) defines the limit state function of X for the p
th

 performance level under the h
th

 

hazard level. The performance level and corresponding hazard level are predefined according to 

Figure 1.1. Each combination of a performance level and a hazard level is called a performance 

objective. All selected performance objectives shall be achieved. 
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Normally, nonlinear deformation instead of the force or acceleration of structure is 

selected as the constraints for an optimal PBSD problem. Two types of non-linear deformation 

are considered in optimal PBSD: inter-story drift ratio and plastic hinge rotation, as expressed as: 

 

     Equation 1.39 

 θ θ  Equation 1.40 

 

where Δ and [Δ] are inter-story drift ratio of the structure and corresponding limits; θ and [θ] are 

plastic hinge rotation of columns or beams and its limits. 

1.5.2.2 Probabilistic constraints 

Uncertainty exists in external loads, material properties, construction, and numerical 

analysis. The failure probability of a structural caused by these uncertainties can be quantified by 

structural reliability analysis, which identifies the failure probability of the structure using 

models with discrete input variables following certain probability distributions.  

The limit state function of the deterministic constraints defined in Equations 1.39 and 

1.40 includes inter-story drift, and plastic hinge rotation of beams and columns. A structure fails 

when any one of these limit state functions is unsatisfied, that is the structure model shall be 

taken as a series system. Therefore, structure failure probability derived from probability analysis 

can be defined as Equation 1.41.  
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where X is the vector of the design variables; G(X) is limit state function of the deterministic 

deformation constraint with X; P[ ] is conditional probability; symbol   expresses the union of 

two condition subsets; Φ( ) is the standard normal distribution function, which has zero mean 

and unit variance; β is the reliability index of non-linear deformation of structure. 

The probabilistic format of the deformation constraints can be defined as that the failure 

probability in limit state function is lower than its limit, as shown in Equation 1.42 or 1.43. 

 

 P 0 pG p      X  Equation 1.42 

β β p   
 Equation 1.43 

 

where [P
P
] is the allowable failure probability of the nonlinear deformation of structure in the p

th
 

performance level; [β
P
] is the allowable reliability index of non-linear deformation of structure 

under in the p
th

 performance level. 

To date, only SEAOC (1995) proposed the acceptable failure probability of structural in 

deferent performance levels, which was based on the study of Paulay and Priestley (1992) and 

shown in Table 1.3. In this table, [Pf,a] and [βj,a] are the allowable annual failure probability and 

the reliability index; [PfE] and [βj,T] are the allowable failure probability and the reliability index 

of period (normally 50 years). 
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Table 1.3 Target annual probabilities of nonperformance recommended by Paulay and Priestley 

(1992) 

Performance level [Pf,a] [βj,a] [PfE] [βjT] 

Operational 0.0200 2.054 0.100 1.276 

Life safety 0.0020 2.878 0.010 2.326 

Collapse prevention 0.0002 3.540 0.001 3.090 

  

1.5.3 Optimal algorithms 

The two major optimization algorithms for PBSD are metaheuristics and optimality 

criteria (OC) methods. The metaheuristics method treats the optimal variables of a structure as 

the variables of an object in natural world or a social phenomenon, and imitates a searching 

mechanism for an optimal design following the natural phenomena or societal laws. The 

advantage of this method is that it requires neither explicit expression of the constraints, nor the 

explicit formulations of the searching path for the optimal solution. Nevertheless, great 

computational effort is required to simulate the searching mechanism.  

In contrast, OC method requires much less computational effort, but needs explicit 

constraints defined by the optimal variables. The optimal PBSD is then transformed to a 

nonlinear programming problem, which can be solved by diverse mathematical methods. The 

efficiency of these mathematical methods depends on the path of searching optimal solution. 

1.5.3.1 Metaheuristics methods 

The metaheuristics methods adopted in the optimal PBSD problems include genetic 

algorithm (Liu et al., 2005; Kaveh et al., 2012), ant colony algorithm (Kaveh et al., 2010), neural 

networks algorithm (Möller et al., 2009), particle swarm algorithm (Talatahari, 2013; Gholizadeh 
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and Moghadas, 2014), charged system search algorithm (Talatahari et al., 2014), and discrete 

gravitational search algorithm (Yazdani et al., 2016). The gravitational search algorithm 

employed by Yazdani et al. (2016) is described here to demonstrate how the structure variables 

are encoded by the natural objects and how the natural phenomenon is used to search the optimal 

solution. Gravitational search algorithm was first proposed by Rashedi et al. (2009) to search 

optimal solution based on Newton's law of gravity and the law of motion defined in Equations 

1.44 and 1.45.  
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where F is the universal gravitation between two objects; G is the gravitational constant; M1 and 

M2 are the masses of two objects; R is the interval between the two objects; a1 and M1 are the 

acceleration and the mass of the first object. 

The gravity law states that the universal gravitation between two objects in the space is 

proportional to their masses, and inversely proportional to the square of their interval. The law of 

motion indicates that the acceleration of one objective is proportional to the external force 

applied on it and inversely proportional to its mass. To apply these natural laws, the gravitational 

search algorithm assumed that a space with N dimensions includes finite objects. The location 

vector of the i
th

 object, Xi, is expressed in Equation 1.46.  
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where x
d 

i  is the position of the i
th

 object in the d
th

 dimension. The number of space dimension 

shall be equal to the number of the optimal variables Therefore, each position in this space is a 

possible solution of optimal PBSD. In the other word, the location of a position in the i
th

 

dimension represents the value of the i
th

 design variable. 

These objects move in the N-dimension space based on the Newton's law of gravity and 

the law of motion. Each object experiences universal gravitations from all other objects in the 

space, as shown in Figure 1.12. The resultant force, F1, determines the object’s motion direction. 

The acceleration of this object is determined by the external force and its own mass. The initial 

masses of all objects are identical but modified during the searching process based on a fitness 

function. For the objects close to the optimal solution, their masses increase at the current time 

 

Figure 1.12 The combined universal gravitation force and the universal gravitations caused by 

the other masses (Rashedi et al., 2009) 
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step, while the masses of other objects decrease simultaneously. With the additional mass, the 

object has larger attraction to other objects, and its speed is reduced. Nevertheless, this trend is 

opposite for other objects, which are far from the optimal solution. Finally, all the objects will 

stop around the heaviest one, which has the ultimate value of fitness function and represents the 

optimal design solution. The modified masses of the i
th

 object at searching time, t, is shown in 

Equations 1.47 and 1.48. 
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where mi(t) and Mi(t) are the inertial and gravitational masses of the i
th

 object at time t; fiti(t) is 

the fitness value of the i
th

 object at time t; worst(t) and best(t) are the highest and lowest (or 

inverse depending on the objective function) fitness value among all objects. 

The computational effort of any metaheuristics method is considerably high. For instance, 

Kaveh et al. (2010) applied both ant colony optimization algorithm (ACO) and genetic 

algorithms (GA) to the optimal PBSD of two plane steel moment frames shown in Figure 1.13. 

The time required at each iteration step was almost identical for two algorithms, thus the 

computational cost depended only on the required number of iteration. To decrease the design 

variables, 27 members in the 3-story frame (Figure 1.13(a)) were unified into five groups, and 
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108 members in the 9-story frame (Figure 1.13(b)) were unified into 13 groups. Thus, this 

method does not deliver a global optimal design. 

For the 3-story steel moment frame, the required analysis rounds of ACO and GA were 

3900 and 6800, respectively. The optimal weight obtained from ACO was 6.79% lighter than 

from GA. The standard deviation of the results obtained from the ACO and GA algorithms were 

1.701 kips and 3.222 kips, respectively. The 9-story frame was optimized for two cases. For the 

          

(a) 

 
(b) 

Figure 1.13 Two steel frame examples in the study of Kaveh et al. (2010): (a) Three-story 

four-bay planar steel moment frame; (b) Nine-story five-bay planar steel moment frame  
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first case, both beams and columns were taken as optimal variables. For the second case, only 

beams are optimized with predetermined columns. The required analysis rounds for the first case 

were respectively 7000 for ACO and 11500 for GA algorithms. For the second case, the needed 

analysis rounds were 5600 and 9700 for ACO and GA algorithms, respectively. Therefore, 

without a fully automated design process, these metaheuristics methods are difficult to be used in 

the engineering practice due to the high computational cost. 

1.5.3.2 OC methods 

OC method is a type of gradient-based method that determines searching direction and 

speed based on the gradient of constraints, which can be explicitly expressed by design variables 

based on some simplifications. The key challenge existing in OC method is how to transform a 

structural optimization problem with implicit constraints, which cannot be explicitly formulated 

by the optimal variables, into a nonlinear programming problem with explicit constraints. The 

challenge was tackled by some researchers. Grierson et al. (2006) and Xu et al. (2006) proposed 

a performance-based OC method for steel moment frames with a multi-objective function shown 

in Equation 1.36. For steel structures, the stiffness and strength of an element are determined by 

section characteristics, such as the moment of inertia, I, elastic modulus, S, and plastic modulus, 

Z. This OC method expressed all these section characteristics only by section sizes A, as shown 

in Equations 1.49 to 1.51.  

 

2

1 2 3I C A C A C    
Equation 1.49 
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4 5S C A C 
 

Equation 1.50 

ςZ S  Equation 1.51 

 

where C1 to C5 are constants determined by a regression analysis (Gong, 2003); and ς is a shape 

factor depending on the cross-section type. 

The allowable values of inter-story drift ratio and roof displacement was well as the 

upper and lower bounds of section size were considered as constraints, as shown in Equations 

1.52 to 1.54. Equation 1.36 was used to define an objective function. However, the second part 

of the multi-objective function in Equation 1.36 and the nonlinear deformation constraints shown 

in Equations 1.52 and 1.53 were implicit with respect to A. Therefore, the first-order Taylor 

series were used to reformulate the objective function and constraints into Equations 1.55 to 1.58. 

The implicit objective function and constraints were formulated by reciprocal sizing variables, x 

= 1/A, and sensitivity coefficients of inter-story drift ratio, roof displacement and 

ductility-demand, dδ/dxj, dΔ/dxj and df2/dxj. The definition of x can be found in the study by 

Schmit and Farshi (1974). The method to calculate the sensitivity coefficients was proposed by 

Gong et al. (2005). Therefore, the optimal PBSD problem was transformed to a nonlinear 

programming problem with the objective function and constraints explicitly expressed by A.  

 

   : δ δ 1,..., ; 1,...,i i

s h sSubject to x i n s n              Equation 1.52 

            1,...,i i

hx i n               Equation 1.53 

          1,...,L U

j j jA A A j n              Equation 1.54 
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where δ
i 

s  and [δ
i
] are the inter-story drift ratio on the s

th
 story and its allowable value at the i

th
 

hazard level; Δ
i
 and [Δ

i
] are roof displacement and its allowable value at the i

th
 hazard level; Aj, 

[A
L 

j ] and [A
U 

j ] are the cross sectional area and its lower- and upper bound values of the j
th

 

component; nh, ns and n are the number of the hazard level, stories and components. 
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           1,...,L U

j j jx x x j n                 Equation 1.58 

 

where the superscript 0 represents the current design in iteration loop; [x
L 

j ] and [x
U 

j ] are the lower 

and upper bounds of xj; and CP represents the collapse prevention performance level. 

In addition to using Taylor series and sensitivity analysis, Chan and Zou (2004) and Zou 

et al. (2005 a and 2005 b) proposed a notable OC method for RC moment frame structures. This 

method adopted the virtual work principle to explicitly express the inter-story drift as a function 

of the width and depth of all elements, and express the plastic hinge rotation as a function of 

tension and compression reinforcement ratios. The optimal PBSD problem, which minimizes the 

total material cost, is separated into two optimization phases. The objective of the first phase is to 
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minimize the total concrete cost of the RC frame that needs to satisfy the inter-story drift limit 

when the structures behaves elastically under minor earthquakes. In this phase, the section sizes 

of all elements are optimized based on the elastic analysis of the structure under the frequent 

earthquakes. Equation 1.59 shows the objective function.  

 

 
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i

Minimize Z B D w B D


  Equation 1.59 

 

where wi is the unit cost of concrete; Bi and Di are the width and the depth of the i
th

 member; Ni 

is the total number of elements. 

To explicitly express the elastic inter-story drift by the optimal variables, virtual work 

principle is used, as shown in Equation 1.60. 
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Equation 1.60 

 

where u
(n) 

j  is the virtual work on the j
th

 story on the n
th

 mode; Li is the length of the i
th

 member; E 

and G are the Young's modulus and shear modulus of concrete; AX, AY and AZ are the cross 

sectional areas perpendicular to local axes X, Y and Z of the element; IX, IY and IZ are torsional 

and flexural moments of inertia along axes X, Y and Z of the element; F
(n) 

X , F
(n) 

Y , F
(n) 

Z , M
(n) 

X , M
(n) 

Y  

and M
(n) 

Z  are the member internal forces and moments; fXj, fYj, fZj, mXj, mYj and mZj are the virtual 

member force and moment due to a unit virtual load applied to the building at the location 

corresponding to the displacement, uj. The member internal forces and moments could be 
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obtained through structural analysis. Equation 1.60 can be formulated by Bi and Di based on the 

three-dimensional elastic theory proposed by Cowper (1996). Therefore, the elastic displacement 

can eventually be explicitly expressed by the optimal variables, Bi and Di.  

The objective of the second optimization phase is to minimize the total reinforcement 

cost in the condition that the RC frame must satisfy the limits of inter-story drift and plastic 

hinge rotation under severe earthquakes. In this phase, the reinforcement ratio of each element is 

determined based on the nonlinear analysis of the structure subjected to severe earthquakes. 

Equation 1.61 shows the objective function.  

 

   
1

: ρ ,ρ ρ ρ
iN

i i si si i si ii

i

Minimize Z w L L


     Equation 1.61 

 

where wsi is the unit cost of reinforcement; Lsi and L 'si are the length of the tension and the 

compression reinforcement of the i
th

 member; and ρi and ρ 'i  are the tension and compression 

reinforcement ratios. 

Virtual work principle is adopted to explicitly express inter-story drift and plastic hinge 

rotation. The virtual work uj on the j
th

 story derived from a pushover analysis is equal to the sum 

of virtual work produced by both the structural members, uj,memb, and by the plastic hinges, uj,hinge, 

as shown in Equation 1.62. Because the section sizes have been determined in the first phase, 

uj,memb shall be identical to u
(n) 

j in Equation 1.60. Additionally, based on Zou (2005), uj,hinge can be 

expressed by plastic hinge rotations, and the rotation of each element can be explicitly 
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formulated by the optimal variables (ρ and ρ'), as shown in Equations 1.63 and 1.64. Therefore, 

the nonlinear deformations can be explicitly expressed by ρ and ρ'. 

 

, ,j j memb j hingeu u u 
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where m
0 

pjh is the virtual moment at the h
th

 hinge of the i
th

 member on the j
th

 story; the subscript i 

represents the i
th

 element; θph is the plastic rotation at the h
th

 plastic hinge of a member; θ
U 

p  is 

allowable plastic rotation; M is the applied moment at plastic hinge; My and Mu are the yield and 

ultimate moments corresponding to θ
U 

p . My can be explicit expressed by ρ and ρ'. 

In addition to the OC methods described above, Li et al. (2010) proposed a hybrid 

optimization method that combines the OC method proposed by Chan and Zou (2004) with 

genetic algorithm to optimally design RC tall buildings. Hajirasouliha et al. (2012) adopted 

Chan's method (2004) to determine section dimensions; however, the objective function is to 

minimize the reinforcement weight on each story and the structural damage caused by plastic 

hinging. 

Note that, the optimal result by OC method may be only a local optimal solution (Huang 

et al., 2015). Moreover, the nonlinear deformation of a structure is affected by both strength and 

stiffness of the elements. For a RC moment frame, the element flexural stiffness is related to 
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section size, while the element flexural strength is related to both section size and reinforcement 

ratio. In addition, the permitted values of structural nonlinear response, such as allowable plastic 

hinge rotation determined in Table 1.2, are also a function of the optimal variables, such as 

section sizes and reinforcement ratio. Therefore, it is difficult for OC method to obtain the 

sensitivity coefficients of multiple variables. Moreover, Zou and Chan (2005) states that for a 

statistically indeterminate frame, the explicit constraints of structural responses derived from OC 

method are approximate due to the internal force redistribution when an optimal variable is 

changed. Therefore, in each iterative round, a complex nonlinear structural analysis is required to 

estimate the nonlinear structural response based on the updated variables. 

1.6 Research Motivations 

This research is motivated by the economic loss due to the conventional force-based 

seismic design and the lack of practical optimal PBSD method. Unexpected high economic loss 

due to the damage to structural and nonstructural components of buildings occurred during the 

recent earthquakes. This was partially caused by the conventional force-based method, which 

considers only the life safety performance level (Krawinkler, 1999; Ghobarah, 2001; Sung et al., 

2009). PBSD has been a major focus of earthquake engineering community, because it can better 

limit the structural and nonstructural damage under multiple hazard levels (Powell 2008).  

PBSD has been widely employed to evaluate the seismic performance of existing 

buildings, for which design details such as section size and reinforcement arrangement are 
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already known. However, the force-based design approach is still prevailing for designing new 

buildings because of the lack of general procedures of PBSD (Ghobarah, 2001). The current 

PBSD method is essentially a trial-and-error method with very high computational cost. 

Accordingly, it has been applied mainly to the critical facilities, such as hospital buildings.  

The needs to simultaneously design numerous variables, including strength, stiffness and 

ductility of all components, and to consider multiple hazard levels call for developing optimal 

PBSD. As a result, some optimal PBSD methods described previously were proposed for RC 

frames; however, the existing methods have various drawbacks hindering their applications to 

the U.S. design practice.  

(1) Majority of the available optimal PBSD methods employed inter-story drift to measure 

structural performance, while only a few studies (Ganzerli et al., 2000; Zou and Chan, 2005 

and Zou et al., 2007) considered the plastic hinge rotation of beams and columns. However, 

the plastic hinge rotation of a frame component better describes the local behavior of a RC 

frame and has been taken as the only performance measurement in the latest 

performance-based evaluation standard, ASCE 41-13 (2014).  

(2) As reflected in ASCE 41-13 (2014), the allowable plastic hinge rotation of a beam or a 

column is not a constant value; instead, it is a function of the shear stress or axial stress, 

which varies during lateral loading. This property was not considered in the existing studies 

(Ganzerli et al., 2000; Zou and Chan, 2005 and Zou et al., 2007), which assumed constant 

plastic hinge rotation capacity, and would significantly increase the complexity of the 
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optimization problem. 

(3) Majority existing optimal PBSDs requires complex algorithms and high computational cost 

due to the numerous variables. Therefore, a fully automated design process is needed to 

apply these methods. However, the needed computer programs are often not accessible for 

practicing engineers.  

1.7 Research Objectives 

The overall goal of this study is to develop a new optimal PBSD method for multi-story 

RC moment frames. The new method is expected to overcome the deficiencies of existing 

optimal PBSD methods and can be practically implemented by the U.S. design practice. Specific 

objectives include:  

 Develop a simplified optimal PBSD procedure that incorporates the latest criteria of 

structural performance of RC frame buildings and can be practically implemented by design 

engineers; 

 Investigate how much construction cost can be reduced by the proposed method, and how 

much the overall strength and stiffness of the optimal design are reduced from those of the 

conventional force-based seismic design; 

 Examine whether the optimal design derived from the proposed method can satisfy the 

requirements of the selected performance levels under multiple hazard levels; and 

 Investigate the influence of the overall strength and stiffness on the structure failure 
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probability and the statistically features of different types of nonlinear deformations. 

1.8 Research Methodology and Tasks 

Nonlinear pushover analysis is included in the proposed optimal PBSD to estimate the 

structural nonlinear deformation under multiple hazard levels. This structural analysis method 

permits incorporating various assumptions and simplifications and has low computational cost. 

Nonlinear programming is used to determine the optimal solution based on the linear objective 

function and the explicit feasible region boundary derived from the proposed method. Nonlinear 

dynamic analysis is used to estimate the deformation of the optimal structure, because this 

method can provide a more realistic structural response if the hysteretic behavior of structural 

components is properly defined (Deierlein et al., 2010). Latin Hypercube sampling method is 

adopted to perform the failure probability analysis, because this method can generate reliable 

statistical results with comparatively less sampling times. 

This study follows the stages shown in Figure 1.14. In the first stage, a new optimal 

PBSD method is developed for multi-story RC moment frames. In the second stage, the proposed 

optimal PBSD method is applied to a prototype multi-story RC frame building to illustrate the 

detailed procedures and to investigate the effects of the proposed method on cost saving. The 

third stage examines the seismic performance the optimally designed structure by performing 

nonlinear dynamic analyses. The fourth stage investigates the influence of overall strength and 

stiffness on the structure failure probability by using Latin Hypercube sampling method. 
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Figure 1.14 Research methodology and procedure of this study 

Apply the proposed method on a multi-story RC moment

frame and investigate the cost reduction of the optimal design

Investigate influence on structural failure

probability by overall strength and stiffness

Examine whether the optimal design can satisfy the

performance-based requirement under multiple hazard levels

Develop an optimal PBSD methodology Stage 1

Stage 2

Stage 3

Stage 4
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CHAPTER 2 

OPTIMAL PROFORMANCE-BASED SEISMIC DESIGN METHODOLOGY 

2.1 Problem Statements 

This study proposed a practical optimal PBSD method to achieve the minimum overall 

cost of a multistory RC moment frame, which satisfies the deformation requirements of multiple 

performance objectives. In addition, some other seismic design requirements to ensure a desired 

failure mode are incorporated to simplify the structural model and reduce the complexity of the 

optimization process. 

Based on the capacity design philosophy, the expected failure mechanism of the RC 

moment frame is a flexural failure, which is a ductile failure mode with observable deflection 

and cracking before a dramatic loss of strength. However, the shear failure of RC structural 

components is brittle and has little or no warning before a sudden loss of strength. Therefore, the 

flexural strength of the elements in a RC moment frame is used as the design basis for 

force-controlled actions to make sure that they would not occur. Thus, the optimal methodology 

proposed in this study is used to optimize the flexural design. The design methods of the 

force-controlled behaviors, such as shear, still follow the procedures of the current seismic 

design. In addition, the optimized structure based on the proposed seismic design method shall 

also satisfy the gravity design requirements. 
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2.1.1 Objective function 

The most widely selected single objective function minimizing total cost of RC moment 

frames is adopted in this study. The two types of construction material (concrete and 

reinforcement) are taken as the optimal variables. The unit costs of concrete and reinforcement 

are associated with volume and weight, respectively. Therefore, the objective function in this 

study of the RC moment frame is expressed by Equation 2.1.  

 

        c c s sTMinimize C c c W    Equation 2.1 

 

where CT = the total cost; Ωc = total concrete volume; Ws = total weight of reinforcements; cc and 

cs = unit costs for concrete and steel reinforcement. Normally, the unit cost of different material 

includes only the raw material cost without considering the labor cost, such as transportation, 

framework, equation, fabrication, and some other aspects. However, the labor cost occupies 

about 41% of the overall cost for RC structure (Rwamamara et al., 2010) Therefore, the unit cost 

in this study is composed by both raw material cost and labor cost. 

2.1.2 Constraints 

Because the purpose of optimal PBSD problem is to design a structure satisfying multiple 

performance objectives, the constraints shall include the structural behavior limits of multiple 

performance objectives. As described previously, the most widely adopted performance-based 

limits in PBSD are the nonlinear deformation requirements. Therefore, in this study, the design 

code specified nonlinear deformation requirements (inter-story drift ratio and plastic hinge 
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rotation) are adopted to define the performance constraints. Some other seismic design 

requirements, such as minimum positive moment at the ends of beams and strength column weak 

beam principle, are used to simplify the optimization or as the seismic design constraints. 

2.1.2.1 Performance constraints 

In this study, both inter-story drift ratio, γ, and plastic hinge rotation angle, θ, are 

employed to quantify the structural nonlinear behavior under multiple performance objectives. In 

different hazard levels, γ and θ are limited by different allowable values for preselected 

performance levels, as shown in Equation 2.2. The hazard levels include at least two of frequent, 

occasional, rare and very rare earthquakes, as shown in Figure 1.1. 

 

              γ γ , θ θ 1,  2,  ,  p pp p
Subject to p P     Equation 2.2 

 

where [γ]p and [θ]p are the allowable values for transient γp and θp in the p
th

 performance level. [γ] 

is taken as the global deformation constraint to restrain the damage to nonstructural components, 

such as glass curtain walls, and avoid excessive P-delta effects. However, ASCE/SEI 41-13 

(2014) has no specification on [γ]; thus, the allowable values of [γ] for RC moment frames in the 

different performance levels are determined according to ASCE/SEI 41-06 (2007) shown in 

Table 1.1. On the other hand, [θ] is taken as the local deformation constraint to restrain the 

damage to structural elements (beams and columns). The allowable values of [θ] for RC moment 

beams and columns are determined according to ASCE/SEI 41-13 (2014) shown in Table 1.2. 



 

62 

2.1.2.2 Seismic design constraints 

In addition to restraining the performance-based local and global deformations, other 

design requirements to ensure the desired seismic performance of RC frames are incorporated. 

These requirements, beneficial for reducing optimization complexity, are enforced from the 

original design. First, the beam-sway mechanism shown in Figure 2.1(a) is expected when the 

structure suffers from the rare and very rare earthquakes, and has large lateral nonlinear 

displacements. In this failure mechanism, plastic hinges appear at the ends of beams and the 

bottom ends of the first story columns. Earthquake energy is dissipated by the nonlinear 

deformation of these plastic hinges. Even though severe damage may occur to the beams, the 

structure will maintain its integrity. However, if the structure is designed inappropriately, the 

soft-story mechanism shown in Figure 2.1(b) may occur. In this failure mechanism, plastic 

hinges appear at both ends of the columns on the identical story; thus, the structure becomes an 

unstable geometrically changeable system, and may finally collapse. 

 

(a)                    (b) 

Figure 2.1 Structural failure types: (a) beam-sway mechanism; and (b) soft story mechanism 

Plastic 

hinge
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To avoid the soft-story mechanism, the needed flexural strength of a column is 

determined by the maximum bending moment demand this column may experience when the RC 

frame is loaded in the nonlinear pushover analysis due to rare or very rare earthquakes. 

Additionally, at a beam-column joint, to make sure that the plastic hinges appear at the ends of 

beams rather than in the columns, the flexural capacity of the columns shall be larger than that of 

the beams. This can be defined as strong column-weak beam behavior. For this purpose, the 

method suggested in ACI 318-14 (2014) to determine the flexural strength of columns at a 

beam-column joint is adopted in this study, as shown in Equation 2.3. 

 

1.2nc nbM M   Equation 2.3 

 

where Mnc and Mnb are the flexural strength of columns and beams framing into a joint, 

respectively. 

Second, yielding in the first-floor columns is permitted at their bottom ends. However, 

prior to the exhaustion of column plastic deformation capacity, the sufficient number of beams 

shall have been engaged in developing yielding. The more beam plastic hinges appear, the more 

earthquake energy is dissipated and thus less damage will be induced to the columns. In addition, 

when a structure suffers the lateral loads caused by earthquakes, the axial force of columns will 

increase dramatically. As indicated in Table 1.2, if a column carries a large axial force, its plastic 

hinge rotation capacity [θ] is less than that of a beam. Moreover, reduced column size due to 

optimization leads to decreased [θ]. Therefore, in this study, the flexural strength at the bottom 
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ends of the first story columns is increased. Following the yielding in the first-floor beams, the 

inflection point of a first-floor column moves up and is assumed to be located approximately at 

3/4 of column height, as shown in Figure 2.2. The needed flexural strength of a column at the 

support, Mnc,2, is then taken as 1.5ΣMnb. 

 

 

Figure 2.2 Beam-sway mechanism and column flexural strength in the first floor 

 

Third, the code-specified maximum and minimum reinforcement ratios of a section need 

to be satisfied. If the reinforcement ratio is higher than the maximum allowable value, the 

concrete in compression will fail before the yielding of the tension reinforcement, and an abrupt 

failure will occur due to the continuous failure of concrete in compression. The maximum 

reinforcement ratio limit ensure sufficient rotation capacity of plastic hinges (Subramanian, 

2010). When the reinforcement ratio is lower than the minimum allowable value, an abrupt 

failure will occur without warning due to the suddenly increased deformation (McCormac and 

Brown, 2015). Therefore, the requirements on ACI 318-14 (2014) about the maximum and 
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minimum reinforcement ratios of a section is adopted in this study.  

Fourth, based on ACI 318-14 (2014), the positive moment strength of a beam at plastic 

hinge regions shall be at least half of the negative moment resistance. Therefore, to reduce the 

number of the optimal variables, the positive moment strength of a beam can be assumed as half 

of the negative moment resistance. Furthermore, other code-specified requirements for the 

reinforcement shall be satisfied. For example, ACI 318-14 (2014) requires that both negative and 

positive moment strength at any section along the beams shall be at least one-fourth the 

maximum moment strength provided at the face of either joint. Moreover, Beam short- and 

long-term deflections, shear strength at the beam-column joints, and the shear strength of the 

beams and columns should also be satisfied. 

2.2 Optimization Methodology 

2.2.1 Overview 

Figure. 2.3 outlines the optimization procedure developed in this study. In Figure 2.3(a), 

the optimal solution is obtained by a nonlinear programming method in this study. The nonlinear 

programming problem has a linear objective function and a convex feasible region. The objective 

function and constraints in Equations 2.1 and 2.2 incorporates the three major characteristics of 

an inelastic system resisting seismic loads (i.e., strength, stiffness and ductility) because Ωc 

affects elastic stiffness, Ws is associated with member flexural strength, and γ and θ are related to 

ductility. The constraints related to acceptable structural performance define a feasible region for 
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the two decision variables Ωc and Ws. Because the objective function is linear with respect to Ωc 

and Ws, the optimal solution (Point A in Figure. 2.3(a)) must be located on the feasible region 

boundary and is reached when the objective function becomes tangent to the feasible region.  

 

 

Figure 2.3 Framework of optimization: (a) optimization in material consumption domain; (b) 

stiffness optimization for system with different strengths; (c) MDOF-SDOF transformation; (d) 

nonlinear static analysis and determination of roof displacement demands; and (e) N2 method 

using inelastic spectra 

 

Despite the simple format of the objective function, several challenges in obtaining the 

optimal solution exist. The first challenge is the determination of peak deformation demand 

caused by the different levels of seismic hazard. This study intends formulate the peak 

deformation demand of a nonlinear RC frame system as a function of its lateral stiffness and 

strength. This, however, cannot be achieved by nonlinear time-history analyses. Accordingly, 
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capacity spectrum method, which employs nonlinear static analysis, is adopted to predict the 

peak seismic response. The details of applying this method are given later in Section 1.2, and 

schematically is shown in Figure 2.3(c).  

The second challenge is that the peak nonlinear deformation demand of a RC frame is 

affected by not only stiffness but also flexural strength of the beams and columns because the 

commonly assumed equal displacement rule may not be applicable. As indicated by Krawinkler 

and Seneviratna (1998), the peak lateral displacement of an elastic-perfectly plastic SDOF 

system due to ground excitation differs from that of a purely elastic system. The difference is a 

function of the fundamental period T, the strength reduction factor R, and the ductility ratio μ. 

These properties are correlated through a R-μ-T relationship (Miranda and Bertero, 1994 and 

Vidic et al., 1994). It follows that the optimal member size, which controls system elastic 

stiffness, cannot be solely determined from a target lateral displacement without considering the 

flexural design of members. Accordingly, different from most of the past studies (Zou and Chan, 

2005; Xu et al., 2006; Grierson et al., 2006; Li et al. 2010 and Zou et al., 2007) that utilized 

nonlinear static analysis, Ωc and Ws are not separately optimized in this study.   

The third challenge in obtaining an optimal solution is defining the feasible region 

boundary. As indicated in Equations 2.1 and 2.2, the objective function is expressed by material 

consumptions Ωc and Ws, whereas the constraints are defined using plastic hinge rotation θ and 

optionally by inter-story drift ratio γ. These two sets of variables are correlated by structural 

performance predicted by structural analysis. To solve Equations 2.1 and 2.2, either the feasible 
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region boundary is defined by Ωc and Ws or the objective function is transformed as a function of 

θ and γ. The former approach is considered. However, the deformation demands in terms of γ 

and θ for a multistory RC frame are difficult to be explicitly formulated as a function of Ωc and 

Ws. Moreover, as indicated in Tables 1.1, the plastic rotation capacity [θ] of a member is a 

function of shear or axial force, which varies during lateral loading, implying that [θ] cannot be 

predefined. The coupling effect between plastic hinge rotation capacity and seismic demand 

complicates the development of an optimization algorithm and was not considered in the past 

studies, which assumed a fixed value of [θ]. A two-stage optimization approach is considered 

herein to address these issues. In the first stage, strength-based design procedure is followed to 

obtain an original design for the RC frame. Optimization, as shown in Figure. 2.3(b), is then 

performed to determine a feasible region boundary defined by discretized pairs of a stiffness 

parameter λ and a flexural strength parameter α normalized based on the original design. In the 

second stage, the feasible region boundary determined previously in the λ–α domain is converted 

into that in the Ωc–Ws domain, from which the optimization problem defined by Equations 2.1 

and 2.2 is solved by a nonlinear programming method. 

2.2.2 Simplifications 

The optimal design of a structural system is ultimately represented by the stiffness and 

strength properties of each component. For convenience of formulation, two dimensionless 

design variables, a relative flexural stiffness factor denoted as λ and a relative flexural strength 

factor denoted as α, are defined for each member. The relative stiffness factor λ is defined as the 
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ratio of section moment of inertia varying during optimization to that determined from the 

original design. The relative strength factor α is defined as   

 

0

α n G

n, G

M M

M M





 Equation 2.4 

 

where Mn is member flexural strength varying during optimization, Mn,0 is the flexural strength 

determined from the original design, and MG is the bending moment caused only by the gravity 

loads considered in the seismic design. 

λ is optimized for each α using the algorithm described in Section 2.2.3.4. The feasible 

region boundary in the λ‒α domain shown in Figure 2.3(b) is determined by connecting the 

points with discrete α values and the corresponding minimum λ value. λ = 1 and α = 1 

correspond to the sectional stiffness and strength from the original design, respectively. The 

parameter λ correlates concrete volume Ωc; the parameter α can be translated into the 

consumption of flexural reinforcement Ws when the value of Ωc is determined and indicates the 

degree of reducing member flexural strength from that determined from the original design. A 

RC frame shall also be designed based on the load combinations purely for gravity loading. A 

relative strength factor αG corresponding to gravity design is defined accordingly and taken as 

the lower bound of α. αG is evaluated using Equation 2.4 by replacing Mn with MG,0, the bending 

moment demand caused by gravity design.  

Because many beams and columns exist in a RC frame, the total number of design 
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variables for the entire system far exceeds the two optimal variables Ωc and Ws in Equation 2.1. 

To limit the computational cost associated with optimization and enable expressing the feasible 

region eventually using the two optimal variables, this study intends to reduce the number of 

variables to two as well. For this purpose, it is required that both the ratio of cross-sectional 

dimension and the ratio of flexural strength among different members determined from the 

original design be maintained during the process searching the minimum λ. In other words, the 

relative stiffness factor λ and the relative strength factor α are identical for all the elements at any 

step of optimization; thus these two factors can be used as the overall indices measuring stiffness 

and strength of the entire structure.  

With such a simplification, the additional design requirements described previously, 

regarding strong-column/weak-beam and positive flexural strength of a beam section, are not 

necessary to be considered as optimization constraints, because they are automatically satisfied 

once they have been enforced in the original design. Due to the above simplifications, the design 

result based on the proposed approach would not be a global optimal solution mathematically. 

However, in a seismic design of RC frame, the member sizes are typically the same in every two 

to three stories. Moreover, the beam flexural reinforcement is normally identical on each side of 

a beam-column joint. All these features can be incorporated in the original design. Thus, even if 

the factors α and λ are used to uniformly modify the original design for simplification purpose, 

the optimal design result would be close to a global optimal solution that can reflect design 

practice. 
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2.2.3 Determination of feasible region boundary 

2.2.3.1 Overview 

The key to solving Equations 2.1 and 2.2 is the determination of the feasible region 

boundary, which is obtained first in the λ–α domain. A point situated on the feasible region 

boundary shown in Figure 2.3(b) can be interpreted as either the minimum λ satisfying 

performance criteria at a given α or the minimum α at a given λ. The former definition is 

considered to formulate an iterative procedure used to determine the feasible region boundary. A 

set of discrete α values ranging from αG to 1 are selected. For each α, the flexural strength of a 

member, Mn, is modified from the original design based on Equation 2.4. For the RC frame with 

a specific value of α, λ is minimized for each level of earthquake hazard using a procedure 

described in Section 2.2.3.4; the controlling value of λ gives the optimal λ for this α. This 

procedure is repeated for all selected α values so that a piecewise linear feasible region boundary 

is defined in the λ–α domain. 

The height and effective depth of a beam are denoted in the following discussions as h 

and d, respectively. Their values from the original design are designated as h0 and d0. When 

minimizing λ at a given value of the relative strength factor α, the cross-sectional area of frame 

members is reduced. Accordingly, in addition to limiting plastic hinge rotation and inter-story 

drift ratio, the maximum reinforcement ratio permitted by design codes, ρmax, needs to be 

considered as a constraint. The flexural capacity of a beam can be expressed as  
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 2ω 1 0 59ωn cM bd f .   Equation 2.5 

 

where f 'c is concrete compressive strength; b is beam width; and ω is a tensile reinforcement 

index calculated as ω = ρfy / f 'c with fy being the yield strength of reinforcement. Approximating 

d/d0 as h/h0, the minimum λ corresponding to ρmax can be derived as  
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  Equation 2.6 

 

where ω0 and ωmax are beam tensile reinforcement index according the original design and ρmax, 

respectively. The flexural stiffness of a beam also needs to satisfy the deflection serviceability 

requirement under gravity loading. Denoting the minimum relative stiffness needed for this 

purpose as λmin,2, the lower bound of λ is then defined as [λ] = max{λmin,1,λmin,2}. 

The first-stage optimization that minimizes the relative stiffness factor λ at a given 

relative strength factor α can then be stated as Equation 2.7. Section 2.2.3.4 presents the detailed 

algorithm for solving this optimization problem. Because the flexural strength of a column 

interacts with its axial force, which varies during lateral loading, [λ] corresponding to ρmax for 

columns cannot be predefined and needs to be checked during optimization. However, the 

optimal design for λ should not be affected by ρmax for the columns due to its high permitted 

value up to 8% in a design code ACI 318-14 (2014). Once the optimal result of λ becomes 

available, the section size of each frame member and thus the total volume of concrete Ωc can be 

determined based on those of the original design and the definition of λ. The optimization 
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problem Equation 2.7 is implemented to all selected values of α (αG ≤ α ≤ 1) for each level of 

seismic hazard. The data sets of α and its minimum λ constitute the feasible region boundary in 

the λ–α domain.  
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 Equation 2.7 

 

Each pair of α and its minimum λ provides information regarding the needed flexural 

strength and section size, from which flexural designs are conducted for all the beams and 

columns. The flexural design may be governed by the minimum reinforcement ratio specified in 

design codes; however, this occurs normally at very few locations. Based on the flexural design 

of each component, the total weight of reinforcing steel Ws is evaluated. Note each pair of α and 

its minimum λ corresponds to a unique pair of Ws and Ωc; hence, the feasible region boundary in 

the λ–α domain is transformed into that in the Ws–Ωc domain, where the second stage of 

optimization defined by Equations 2.1 and 2.2 can be carried out. 

2.2.3.2 Load-deformation response due to modified flexural stiffness 

To solve Equation 2.7 at each selected α (αG ≤ α ≤ 1), the peak seismic response of RC 

frame in terms of plastic hinge rotation θ and inter-story drift γ need to be determined for each 

level of seismic hazard. This is achieved by using capacity spectrum method described in Section 

1.2 and summarized in Figures 2.3(c) to 2.3(e). For the RC frame with a specific value of α but 
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without stiffness modification from the original design (i.e., λ = 1), nonlinear static analysis is 

conducted. The analysis provides information regarding base shear, roof displacement, 

inter-story drift ratio, and plastic hinge rotation. For the structural analysis in this study, 

concentrated plasticity model is adopted. This mode simulates the beams and column by line 

elements having concentrated plasticity at ends (plastic hinges). The sections outside the plastic 

hinge regions are linear elastic with a flexural stiffness taking into account the effects of concrete 

cracking. Following gravity loading, lateral loads corresponding to the first vibration mode are 

applied. However, if the variation of inertia force distribution due to inelastic response is 

considered, an adaptive lateral load pattern (Krawinkler and Seneviratna, 1998; Kalkan and 

Kunnath, 2007) accounting for the effects of higher modes and member yielding can be used to 

more accurately capture the structural response by means of nonlinear static analyses. The lateral 

loading response of the structure with λ = 1 evaluated by a nonlinear static analysis consists of 

the generation of a series of plastic hinges. Due to the use of the concentrated plasticity model, 

even if the occurrence of each plastic hinging modifies the system stiffness matrix, it remains 

identical between two subsequent hinging. Lateral loading causing the j
th

 plastic hinge is taken as 

loading step j and designated by a subscript within parenthesis in the following discussions. 

Denoting the system stiffness matrix during loading step j as K(j), the increase in the 

displacement of the system Δu(j) and story drift and the increase in lateral load ΔF(j) satisfies ΔF(j) 

= K(j) Δu(j). Thus, the total displacement u(j) at the completion of the j
th

 loading step under load 

F(j) is 
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When the relative strength factor α is fixed and the relative stiffness factor λ is applied 

uniformly to all frame members to modify their flexural stiffness, the sequence of plastic hinging 

remains unchanged. Accordingly, the stiffness matrix of the modified system during the j
th

 

loading step can be expressed as K
λ 

(j) = λK(j). In addition, when the value of α is fixed, modifying 

λ has not impact on the load increase ΔF
λ 

(j) needed to generate a new plastic hinge in the 

modified system, that is, ΔF
λ 

(j) =ΔF(j). Thus, the lateral displacement of the system with modified 

stiffness can be derived as  
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Accordingly, under the same lateral load F(j) before causing a collapse mechanism, the 

roof displacement δ, inter-story drift ratio γ, and plastic hinge rotation angle θ of the system 

modified by λ must satisfy   

 

0 0 0

δ γ θ 1

δ γ θ λ
    Equation 2.10 

 

where δ0, γ0, and θ0 are the roof displacement, the inter-story drift ratio, and the plastic 

rotation angle of the structure without stiffness modification (i.e., λ = 1). Equation 2.10 is of 
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significant convenience for solving the first-stage optimization problem defined in Equation 2.7. 

As shown in Figure 2.4, once the base shear vs. roof displacement (V-δ) response of a frame 

system at a given value of α but without stiffness reduction (λ = 1) becomes available, it can be 

used to directly construct a nonlinear V-δ response for the system with modified flexural stiffness. 

Accordingly, there is no need to perform extra structural analyses during the process of searching 

for the minimum λ for the structure at the selected α. Thus, the total number of pushover 

analyses needed to complete the proposed optimal seismic design is identical to the number of 

discretized α values (αG ≤ α ≤ 1) chosen to define a feasible region boundary. 

 

   
Figure 2.4 Constructing based shear vs. roof displacement response based on nonlinear static 

analysis result of the structure without stiffness modification (λ = 1) 

 

2.2.3.3 Determination of minimum stiffness at given flexural strength 

For each relative strength factor α (αG ≤ α ≤ 1), the application of capacity spectrum 
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method described in Section 1.2 estimates the peak deformation demands. If the limiting values 

([θ] and [γ]) are not exceeded under any seismic hazard, the relative stiffness factor λ is 

optimized by reducing member section size until one of the constraints in Equation 2.7 controls. 

When the section size decreases, reinforcement ratio increases, because the flexural strength of 

any element is unchanged. The beam shear stress tends to increase due to reduced section size. 

Therefore, the increase of both reinforcement ratio and shear stress result in decreased beam 

plastic hinge rotation capacity [θ], as indicated in Table 1.2. Because of the interaction between λ 

and [θ], an iterative approach is employed to search for the minimum λ.  

A superscript is used for the variables to denote iteration step. The iterations, 

schematically illustrated in Figure 2.5, start from λ
(0)

 = 1, The capacity spectrum method is 

applied to evaluate effective period T
(0)

 and peak displacement D
(0) 

max of the equivalent SDOF 

system as well as story drift ratio γ
(0)

 and plastic rotation angle θ
(0)

 at the peak roof displacement 

δ
(0) 

max of the MDOF system. As stated previously and shown in Figure 2.4, at the same value of α, 

the based shear vs. roof displacement (V-δ) response for different values of λ can be determined 

directly from that of the structure without stiffness modification (λ = 1). It follows that the 

idealized bilinear capacity curve for λ
(0)

 = 1 can be used to construct new bilinear capacity curves 

for λ
(i)

 < 1 (i ≥ 1) in the subsequent iterations. Because member flexural strengths are not 

changed, the yield acceleration Ay for the capacity curves associated with different λ values can 

be approximated to be identical, as shown in Figure 2.5.   
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Figure 2.5 Effects of modifying relative stiffness factor λ on capacity and demand curves 

 

Between two subsequent plastic hinging in the structure under increasing lateral 

deformation, the inter-story drift ratio γ and plastic hinge rotation θ at different locations increase 

linearly but at different rates. If neither θ nor γ reaches the allowable value during the previous 

iteration step i-1, a parameter η
(i)

, defined in Equation 2.11 based on the deformation properties 

given in Equation 2.10, is considered to determine the relative stiffness factor λ
(i)

 for the next 

iteration step i. The term related to γ in Equation 2.11 shall be removed if only plastic rotation θ 

is used to define optimization constraints in Equation 2.2. The parameter η
(i)

 is used to control 

the iteration speed and determine when the iteration stops. If the absolute value of |η
(i)

 ‒ 1| is less 

than a valve v
*
, then either γ or θ becomes sufficiently close to its limit; thus the iteration stops 

and the minimum λ is obtained. The lower bound stiffness parameter [λ] also needs to be 

considered. λ
(i)

 defined by Equation 2.12 is used in step i to uniformly reduce the section 

stiffness of the frame members.  

A

λ(0) λ(i)

Ay

D(0)
max D(i)

max D

Demand Curve 

(λ(0) = 1)

Demand Curve 

(λ(0) < 1)



 

79 

 

   
 

 

 
 

1

1 1

θ γ
η

θ γ

i

i

i i
Min



 

  
   

  

 Equation 2.11 

 
 

 
 

 
1

1

λ 1
λ λ

η
η

i
i

ii
m

m





  


 

Equation 2.12 

 

Once λ
(i)

 is determined, a new bilinear capacity curve in the equivalent SDOF system is 

created. Because λ
(i)

 uniformly modifies member flexural stiffness in the MDOF system, it can 

be approximated that λ
(i)

 equally affects the lateral stiffness of the equivalent SDOF system. Its 

effective period is then determined as T
(i)

 = T
(0)

/(λ
(i)

)
0.5

, because the equivalent mass is 

predominated by the mass of slab and can be assumed as unchanged. As shown in Figure 2.5, 

due to decreased system stiffness, the demand curve shifts to the right side, resulting in an 

increased spectral displacement. Equation 2.13 can be derived from Equation 2.10 and used to 

determine the spectral displacement D
(i) 

max, story drift γ
(i)

, and plastic hinge rotation θ
(i)

 of the 

modified structure in iteration step i. 

 

 

 

 

 

 

   

 

 0 0 0 0

γ θ 1 μ

γ θ λ μ

i i i i

max

i

max

D

D

 
     

 
 Equation 2.13 

 

where μ
(i)

 is determined from the R-μ-T relationship. The strength reduction factor R
(i)

 needed to 

apply the R-μ-T relationship at step i is   
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where S
(i) 

ae  is the elastic spectral acceleration for the structure having an effective period of T
(i)

. 

Iterations with different values of λ are performed until one of the optimization variables 

in Equation 2.7 reaches a limit. Reducing λ increases both γ and θ; meanwhile, [γ] is unchanged 

and [θ] is reduced due to the increased reinforcement ratio and increased shear stress. 

Accordingly, the peak deformation demands in terms of γ and θ gradually approach the limiting 

values after each iteration step and a converged result can be obtained. 

The minimum relative stiffness factor λ shall be the maximum one among all the relative 

stiffness factors derived from different selected performance objectives. The feasible region 

boundary in λ‒α domain can be derived by repeating the process of searching minimum λ for 

different discretized α values. Then the points on this boundary in the λ‒α domain is transform to 

those in the Ωc‒Ws  domain. Based on λ and the section sizes of the beams and columns of the 

structure without stiffness modification (λ = 1), the element flexural stiffness and section sizes of 

the structure modified by λ can be obtained. The total concrete volume Ωc can be derived 

accordingly. Because the relative strength factor α is unchanged, the flexural strength of the 

beams and columns of the structure without stiffness modification can be used to calculate the 

needed reinforcement areas of the elements for the modified structure based on the determined 

section sizes. The total reinforcement weight Ws can be accordingly derived. 
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2.3 Optimal Design Procedures 

The procedure of the proposed optimal PBSD approach is summarized as follows: 

Step 1: A force-based seismic design satisfying the requirements given in Section 2.1.2.2 

is conducted to determine the needed flexural strengths of all members. The initial design results 

(λ = 1 and α = 1) are subjected to optimization.   

Step 2: A series of relative strength factors (αG ≤ α < 1) are selected. For each α, the 

member flexural strengths in the initial design are uniformly reduced and Steps 3 and 4 are 

implemented. The ratio of section dimension and the ratio of flexural strength among different 

members are maintained throughout optimization.  

Step 3: For a specific α, the relative stiffness factor is set as λ = 1 and a nonlinear static 

analysis is conducted. The considered seismic hazards are defined using elastic spectral 

accelerations. Capacity spectrum method is then applied to determine the peak seismic 

deformation demands at different seismic hazards for the structure with λ = 1.   

Step 4: For the structure with the α value considered in Step 3, the relative stiffness factor 

λ is optimized by solving Equation 2.7 using the numerical approach presented in Section 

2.2.3.3.   

Step 5: Based on the pairs of α and optimized λ determined from the previous steps, a 

feasible region is defined in the λ–α domain. For each pair of α and optimized λ, section flexural 

design is conducted and the total material consumptions Ωc and Ws are evaluated. The feasible 

region in the λ–α domain is then accordingly converted into that in the Ωc–Ws domain.  
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Step 6: The Ωc and Ws that minimize total cost are determined by solving Equations 2.1 

and 2.2. The values of λ and α corresponding the optimal Ωc and Ws provide information 

regarding the optimal section size and flexural reinforcement design of each member. Finally, the 

design code requirement for minimum flexural reinforcement ratio is implemented.. 

Figure 2.6 shows the flow of the optimal PBSD method proposed in this study 

corresponding to the steps above. 
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Figure 2.6 Flow of the optimal PBSD method proposed in this study 
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2.4 Extension of the Proposed Optimal PBSD Method 

To increase accuracy, computational efficiency, and applicability, some extensions can be 

incorporated into the proposed optimal PBSD method. First, the number of the discretized α 

between αG and 1 affects the computational cost of the proposed method and the accuracy of the 

optimal result. When this number increases, the computational cost would increase; when this 

number decreases, the accuracy of the optimal result would decrease. To solve this conflict, the 

proposed method can be first applied with large interval between two successive α (Figure 2.7(a)) 

to obtain the range (between point A and B) of the probable optimal design (point C). Then the 

proposed method is applied with small interval around this range (Figure 2.7(b)), to achieve a 

more accurate optimal result based on part of the feasible region boundary with small intervals. 

 

 

(a)                                            (b) 

Figure 2.7 Illustration of the two times of optimal PBSD methods with (a) large interval; and (b) 

small interval 

 

Second, the accuracy of the nonlinear pushover analysis depends on the lateral load 
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pattern, which simulates the total inertial forces of each story caused by ground acceleration. 

However, the inertial force distribution pattern along the height of the structure keeps changing 

after the member yielding (Krawinkler and Seneviratna, 1998; Kalkan and Kunnath, 2007), and 

the effect of higher modes increases accordingly. Therefore, an adaptive lateral load pattern can 

be used by assuming the lateral load pattern is proportional to either the story drift pattern of the 

structure (Fajfar and Fischinger, 1988) or to the story shear pattern (Bracci et al. 1997).  

2.5 Uniqueness of Proposed Optimal PBSD Method 

To compare the optimal strategies of the proposed method with the two-step method 

proposed by Zou and Chan (2005), the searching paths of these methods are demonstrated on the 

coordinate system defined by total concrete volume Ωc and total reinforcement weight Ws, shown 

in Figure 2.8. Figure 2.8(a) illustrates the searching paths of the two-step OC or hybrid 

OC‒metaheuristics optimal methods, such as the work by Zou and Chan (2005), Hajirasouliha et 

al. (2012), and Li et al. (2010). These methods first optimize the concrete consumption based on 

the performance constraints for occasional earthquake by reducing Ωc, then optimize the 

reinforcement consumption by reducing Ws based on constraints for rare and very rare 

earthquakes. The computational cost of this strategy is reduced compared with the first one; 

however, this method essentially assumes that (1) no nonlinear deformation appears on the 

structure under the occasional earthquake; thus the deformation constraint of the first step is a 

straight line perpendicular to the Ωc axis; (2) the optimal design (point A in Figure 2.8(b)) is 



 

86 

controlled by the deformation constraint of the occasional earthquake (corresponding to IO 

performance level). However, in ASCE 41-13 (2014) nonlinear deformation is allowed in the RC 

moment frame under occasional earthquake. In addition, no evidence has been proved that the 

optimal result is controlled by the constraint of the occasional earthquake, such as point A' in 

Figure 2.8(a). 

 

 
Figure 2.8 Comparison of the searching method of different optimal algorithms: (a) OC method 

proposed by Zou and Chan (2005); (b) and (c) optimal algorithm proposed in this study 
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method proposed in this study. This method first adopts all the constraints of different hazard 

levels to determine the feasible region boundary in λ–α domain, then transforms it into Ωc–Ws 

domain for optimal solution by nonlinear programming method. Several innovations of the 

proposed optimal PBSD method are that: (1) this method reduces numerous optimal variables 

(section size and reinforcement area of all elements) into only two variables (λ and α) based on 

some rational simplifications of construction and seismic design. Accordingly, the complexity of 

the optimization and the computational cost is highly reduced than the current optimal PBSD 

methods. (2) instead of repetitively applying complex nonlinear structural analyses, an explicit 

relationship is suggested to express the nonlinear deformation (plastic hinge rotation and 

inter-story drift) based on λ and single pushover analysis results, if the flexural strength of all 

elements remain unchanged. This explicit expression relates nonlinear deformation to λ and α, 

which can be transformed to Ωc and Ws; thus the optimal variables Ωc and Ws in the objective 

function (Equation 2.1) can be used to formulate the nonlinear constraints (Equation 2.2). In 

addition, mathematical iteration is used to search the minimum λ for each α, instead of iterative 

method using complex nonlinear structural analyses. (3) the two-step method first determines the 

feasible region boundary by simultaneously using the constraints of multiple hazard levels; 

therefore, the possible inaccuracy described in Figure 2.8(c) is avoided. In addition, the two-step 

method separately using constraints and objective function at each step to reduce the complexity 

of the optimal process.  
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CHAPTER 3 

IMPLEMENTATION OF THE PROPOSED OPTIMAL PBSD METHOD AND 

EXAMINATION OF THE OPTIMAL DESIGN 

3.1 Implementation of the Proposed Optimal PBSD Method 

3.1.1 Initial design of the original RC frame structure 

The suggested optimal PBSD approach is applied to a six-story prototype RC moment 

frame building shown in Figure 3.1. The building, with a story height of 12 ft and a span of 30 in 

either direction, is located on a soft rock site in southern California, where the mapped 

short-period and 1-sec spectral accelerations for 5% critical damping for the hazard level with 

2%/50 year probability of exceedance are Ss = 1.50g and S1 = 0.60g, respectively. Concrete 

compressive strength is assumed as 5000 psi and reinforcement yield strength as 60 ksi. The 

floors consist of 8 in. thick two-way slabs. A dead load of DL = 117 psf and a live load of LL = 

20 psf act on the roof, whereas these values are 120 psf and 50 psf for all other floors.  

Modal response spectrum analysis is used to perform a strength-based design. Based on 

requirements of ASCE 7-10 (2010), two vibration modes are considered to obtain design base 

shear and lateral loads. To meet the 2% inter-story drift limit, the section size of the beams is 

chosen as 22 in. × 32 in. for the 1
st
 to the 3

rd
 floors and 20 in. × 28 in. for the 4

th
 to the 6

th
 floors, 

and the section size of the columns as 29 in. × 29 in. for the 1
st
 to the 3

rd
 floors and 24 in. × 24 in. 

for the 4
th

 to the 6
th

 floors. The flexural design of members follows the seismic design provisions 

in ACI 318-14 (2014) as well as the additional design requirements described in Section 2.1.2.2. 
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Table 3.1 gives the needed negative and positive moment resistances for the beams and columns 

of an interior frame of the original design.  

 

 

(a) 

                  

(b) 

Figure 3.1 Prototype RC frame building: (a) floor plan; and (b) elevation plan  
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Table 3.1 Flexural capacity of the elements in the original structure (unit: kip-in.) 

Floor 

Beam Column 

External Internal 
External Internal 

M 
‒
 M 

+
 M 

‒
 M 

+
 

Roof 3682 2974 4505 2974 4204 5001 

5 5240 2974 5532 2974 5001 6399 

4 5647 2974 6054 3027 5505 7798 

3 6762 4310 7107 4310 9603 13400 

2 6992 4310 7222 4310 10400 15002 

1 6514 4310 6868 4310 11099 17002 

 

3.1.2 Finite element model 

Because the proposed optimal PBSD method is based on the nonlinear static analysis 

results of a two-dimensional (2D) frame, the interior RC moment frames designed with and 

without optimal PBSD are simulated using the software Open System for Earthquake 

Engineering Simulation (OpenSees 2017). The structural elements (beams and columns) are 

modeled using displacement-based line elements with zero-length plastic hinges at the element 

ends as shown in Figure 3.2(a). Each element contains two types of regions along its length: 

zero-length plastic hinge at element ends and elastic portion between the plastic hinges (Figure 

3.2(b)). The nonlinear model suggested by Ibarra et al. (2005) is used to define the backbone 

moment-rotation of the zero-length plastic hinges (Figure 3.2(c)). The parameters of the 

backbone curves are defined based on ASCE 41-13 (2014). The elastic flexural stiffness of the 

beams and columns are defined as 30% and 50% of uncracked sectional stiffness, respectively. 

The gravity loads applied on the beams include factored dead load plus 50% of design live load. 
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Figure 3.2 Illustration of (a) location of the zero-length plastic hinge elements; (b) concentrated 

plasticity model of one column; and (c) moment-rotation backbone curve of the plastic hinge 

suggested byLignos and Krawinkler (2012) 

 

The member flexural stiffness Kele is composed by the stiffness of the line element Kbc 

and the stiffness of the zero-length plastic hinges Kph, which are needed to be defined for the 

nonlinear model used in OpenSees. As a series system, Kele is expressed as 
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Equation 3.1 

 

Kele shall be distributed appropriately to avoid the numerical instability problem caused 

by concentrating of all the stiffness on either the line element or the plastic hinges. Therefore, a 

method suggested by Ibarra and Krawinkler (2005) is adopted. This model defines the flexural 

stiffness of the plastic hinges is n times of the line element. Therefore, the value of Kbc and Kph 

can be expressed by Kele using Equation 3.2. Ibarra and Krawinkler (2005) suggested that the 

value of n shall be much larger than 1. However, due to the lack of further explanation, a series 

of numerical experiments are performed on the models with different n values (10, 100, and 

1000). No difference is found among the results of these experiments; thus, the value of n is 

defined as 10 in this study. 

 

 Equation 3.2 

 

DL of the beams and columns is normally assumed to be distributed along their 

longitudinal directions. Nevertheless, the DL of slabs, the superimposed DL and LL are 

uniformly applied on the top surfaces of slabs. As a results, the gravity loads transferred from the 

slabs to the beams (Figure 3.3(a)) are not uniformly distributed on the beams; instead, the load 

distribution should be linear, as shown in Figure 3.3(b). However, OpenSees cannot apply this 

linearly increased load along elements. Thus, these loads are transformed equivalently to five 
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concentrated loads, as shown in Figure 3.3(c). These concentrated loads can generate shear and 

flexural moment (Figure 3.3(b)) at beam ends identical to those in the beams subjected to 

linearly distributed loads. The lateral loads used to simulate the inertia forces caused by the 

ground acceleration are applied on the joints between beams on each story and the middle 

column. P-delta effects are considered in the OpenSees model through the geometry 

transformation of the columns. 

 

 
Figure 3.3 Transformation of loads: (a) two-way slab load distribution; (b) load combination; 

and (c) equivalent concentrated loads 
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3.1.3 Optimization 

3.1.3.1 Feasible region boundary in λ‒α domain 

To apply the capacity spectrum method during optimization, Sae needs to be determined 

for different levels of seismic hazard. Based on ASCE 7-05 (2005), Sae is formulated as a 

function of mapped spectral accelerations at short period (Ss) and 1-sec periods (S1) as well as the 

site condition. Ss and S1 are 1.50g and 0.60g for very rare earthquakes (2%/50 years events) and 

1.00g and 0.377g for rare earthquakes (10%/50-yrs events), respectively. Ss and S1 for occasional 

earthquakes (50%/50 years events) unavailable from the seismic maps can be calculated based 

on ASCE 41-06 (2007) by Equation 3.3. 

 

 Equation 3.3 

 

where Si is the spectral response acceleration parameter at the desired probability of exceedance 

(“i”=“S” for short period, or “i”=“1” for 1-sec period); Si10/50 is the spectral response acceleration 

parameter at a 10%/50-year exceedance rate (“i”=“S” for short period, or “i”=“1” for 1-sec 

period); the value of n is 0.29 for the earthquakes in California. Based on this equation and a 

mean return period of 72 years, Ss and S1 are evaluated as 0.436g and 0.164g for occasional 

earthquakes. R-μ-T relationship suggested by Vidic et al. (1994), which is expressed by Equation 

1.6 to 1.9 is employed. The peak ground motion acceleration (ag) and velocity (vg) at a specified 

seismic hazard, needed for applying the R-μ-T relationship, are determined based on the mapped 
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data provided by U.S. Geological Survey, and listed in Table 3.2.  

 

Table 3.2 Peak ground motion acceleration and velocity for three hazard levels 

 Three hazard levels 

2%/50 year 10%/50 year 50%/50 year 

ag (cm/s
2
) 461.47 244.94 106.79 

vg (cm/s) 43.24 22.56 9.62 

 

 The optimization procedure described previously is followed. Eight values for the 

relative strength factor, including α = αG = 0.28 and α = 0.4 to 1 at an interval of 0.1, are selected 

to determine the feasible region boundary in the λ‒α domain. For each α, the optimal relative 

stiffness factor λ is evaluated for the three considered levels of seismic hazard and shown in 

Figure 3.4. For comparison purpose, this figure shows the optimal λ values evaluated based on 

the individual types of constraint (i.e., plastic hinge ration limit, drift limit, and minimum relative 

 

Figure 3.4 Feasible region of the six-story four-span RC moment frame in λ–α domain 
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stiffness factor) for each seismic hazard level. It is seen that λ is approximately linear with 

respect to α except for inter-story drift due to occasional earthquakes. In general, λ decreases 

with increased α. In other words, the flexural strength and stiffness of the structural members are 

not independent to each other in terms of the optimization results.  

As seen in Figure 3.4, if no strength reduction is considered (α = 1), inter-story drift limit 

for LS under rare earthquakes governs the optimal relative stiffness factor λ. In this case, λ is 

determined as 0.51, leading to a 29% reduction in cross-sectional area. If inter-story drift is not 

taken as a constraint, the optimal relative stiffness factor becomes λ = 0.40, controlled almost 

identically by plastic hinge rotation limit for LS under rare earthquakes or inter-story drift limit 

for IO under occasional earthquakes.   

The pairs of selected α and the governing optimal λ based on all constraints constitute the 

feasible region boundary in the α–λ domain shown in Figure 3.4. The optimal λ is controlled by 

either inter-story drift ratio limit for Life Safety (LS) under rare earthquakes if 0.5 ≤ α ≤ 1 or 

plastic-hinge rotation limit for Immediate Occupancy (IO) under occasional earthquakes if α < 

0.5. Note that the inter-story drift limit under occasional earthquake is far from controlling the 

feasible region boundary. This result is remarkably different from some existing optimal PBSD 

approaches for RC frames (Zou and Chan, 2005; Li et al., 2010; and Zou et al., 2007), which 

optimized section size based only on the inter-story 0.2 drift limit under minor earthquakes. 

Moreover, deformation limits defined for CP under very rare earthquakes also have no impact on 

the feasible region boundary. 
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3.1.3.2 Feasible region boundary in Ωc‒Ws domain and optimal solution 

For each pair of α and λ on the feasible region boundary shown in Fig. 3.3, the needed 

section size is determined, and the flexural designs of beams and columns are conducted. Then, 

the total weight of steel reinforcement Ws and total concrete volume Ωc for all the beams 

(including those in the transverse direction) and the columns located between the slab center 

lines enclosing an interior frame are evaluated. Figure 3.5 shows the new feasible region 

boundary defined in the Ωc–Ws domain. To define the objective function expressed in Equation 

2.1, the unit cost of concrete and steel reinforcement, cc and cs, are calculated based on the 

construction cost data published by the BNi Building News (2015) and RS Means (2015) and 

listed in Table 3.3. cc and cs consider both material and labor cost; cc also includes formwork cost 

defined based on four uses. For comparison purpose, Table 3.3 also provides the unit costs 

 
Figure 3.5 Feasible region boundary and optimal solutions in Ωc–Ws domain 
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considering only the material cost. 

 

Table 3.3 Unit cost of material only and combined material and labor cost 

Material Cost Only  Material Cost and Labor Cost 

unit cost of concrete (cc) 
unit cost of steel 

reinforcement (cs) 
unit cost of concrete (cc) 

unit cost of steel 

reinforcement (cs) 

$119/C.Y. $940/ton $352/C.Y. $1624/ton 

 

The solid line in Figure 3.5 shows the object function. The tangent point between the 

objective function and feasible region gives the optimal solution in terms of Ws and Ωc, which 

correspond to α = 0.70 and λ = 0.55. The optimal design leads to a 30% reduction in needed 

flexural strength and a 26% reduction in cross-sectional area from the initial strength-based 

design. For comparison purpose, the dashed line in Figure 3.5 represents the object function 

considering only material cost, which is generally used by existing optimal PBSD methods 

(Fragiadakis and Papadrakakis, 2008; Grierson et al., 2006; and Xu et al., 2006). The optimal 

solution is α = 0.60 and λ = 0.57. The optimal design corresponds to a 40% reduction in seismic 

design loads and a 25% reduction in section area from the initial strength-based design.  

Figure 3.6 shows the capacity curve for the optimized structure (λ = 0.55, α = 0.70) in the 

equivalent SDOF system and the demand curves (inelastic displacement–acceleration spectra) 

for the three levels of considered earthquake hazard. As shown by the capacity curve derived 

from nonlinear static analysis, the structure experiences little strength degradation after reaching 

the peak load. Moreover, the demand curve for occasional earthquakes intersects the first branch 
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of the idealized bilinear capacity curve, indicating an overall elastic behavior of the optimized 

structure under occasional earthquakes. 

  

   
Figure 3.6 Application of the capacity spectrum method to determine the seismic deformation 

demands of occasional, rare, and very rare earthquakes 
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The costs of the interior frame based on the initial design and the cost based on the 

optimal design are evaluated and compared in Table 3.4. The optimal design reduces the needed 

flexural strengths of the beams and columns by 30%. However, because of the 14% decrease in 

section size, the cost of flexural reinforcement in the optimal design is reduced by only 5%. 

Major cost saving is contributed by the significantly decreased concrete consumption and the 

corresponding labor cost. The transverse reinforcement needed for shear and confinement in the 

beams and columns are designed based on ACI 318-14 (2014). The section size reduction 

0

0.04

0.08

0.12

0.16

0.2

0 4 8 12 16 20

S
a

(g
)

Sd (in.)

50%/50 years 10%/50 years

Inelastic Sd‒Sa Spectra 

Idealized Capacity Spectrum

2%/50 years



 

100 

decreases the length of the transverse reinforcement but increases the number of needed 

transverse reinforcements. Therefore, the total weight of transverse reinforcement is almost 

identical between the optimal and original structures.  

 

Table 3.4 Comparison of cost for the initial and optimal designs 

 Original design 

($) 

Optimal Design 

($) 

Cost Reduction 

(%) 

Concrete 37,497 27,977 25.4 

Flexural reinforcement 17,305 16,441 4.99 

Transverse reinforcement 30,860 29,171 5.47 

Labor 86,098 66,805 22.4 

Total cost without transverse reinforcement 140,900 111,223 21.1 

Total cost with transverse reinforcement 171,760 140,394 18.3 

 

3.2 Examination of Optimal Design 

Compared with the initial strength-based design, the optimal PBSD considerably reduces 

needed flexural stiffness and strength of the beams and columns. Moreover, the proposed 

optimization approach estimates the peak dynamic response of a nonlinear system using capacity 

spectrum method. Therefore, whether the optimal design derived from the proposed method can 

satisfy the requirements of the selected performance levels under multiple hazard levels shall be 

examined. If the hysteretic behavior of structural components is properly defined (Deierlein et al., 

2010), nonlinear time-history analyses provide a more realistic structural response than the 

nonlinear static methods considered in the spectrum method, especially for moderate and severe 

earthquakes and for tall buildings, if the hysteretic behavior of structural components is properly 
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defined (Deierlein et al., 2010). Therefore, nonlinear dynamic analyses using ten ground motions 

are performed to examine the seismic performance of the optimized building. 

3.2.1 Hysteretic behavior model 

The concentrated plasticity model with two zero-length plastic hinges at the element ends 

and an elastic portion between the plastic hinges described in Section 3.1.2 is used in the 

time-history analyses of the 2D models of the optimal and original structures. The elastic portion 

has a reduced flexural stiffness to account for the effects of concrete cracking. The plastic hinges 

are defined with a backbone moment-rotation relationship and hysteretic behavior. The hysteretic 

behavior of the plastic hinges is defined by the element strength and stiffness degradations under 

cyclic loading. Figure 3.7 demonstrates the modified Ibarra-Medina-Krawinkler deterioration 

model (Ibarra et al., 2005) used in this study. This model was calibrated by experimental data of 

 

Figure 3.7 Hysteretic behavior of modified Ibarra-Medina-Krawinkler model (Lignos and 

Krawinkler, 2012) 
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200 RC beams and proved reliable.   

When using the Ibarra-Medina-Krawinkler model, the strength, stiffness and ductility 

properties are defined per ASCE 41-13 (2014) to generate the backbone curve. The hysteretic 

behavior of this model is determined mainly based on two groups of parameters: cyclic 

deterioration parameters and deterioration rate (Ibarra et al., 2005). The parameters in the former 

group reflect the cumulative rotation capacity, while the latter reflects the rate of cyclic 

deterioration. Each group of parameters includes four types of deterioration: basic strength, 

post-capping strength, unloading stiffness, and accelerated reloading stiffness. Using an identical 

value for the four deterioration parameters in the same group can adequately describe the 

deterioration behavior (Lignos, 2008). Therefore, the values of cyclic deterioration parameters 

are selected in this study all as 1.0, which has about 50% probability of exceedance (Lingnos and 

Krawinkler, 2010). The reasonable range of deterioration rate is between 1.0 to 2.0; thus, in this 

study, the default value in OpenSees for the rate of deterioration (1.0) is adopted to define the 

hysteretic behavior of the model with a fast deterioration process in the early cycles but a slow 

deterioration process in the late cycles.  

3.2.2 Earthquake record selection and scaling 

3.2.2.1 Earthquake record selection 

Ten earthquake records are selected from the PEER (Pacific Earthquake Engineering 

Research Center) ground motion database NGA-West 2 to conduct dynamic analyses. The 

ground motion records cover different fault types, last durations, and distances to the fault. Table 
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3.5 gives the selected motions, earthquake magnitude, duration, closest distance to surface 

projection of the fault plane (Rjb), closest distance to the fault plane (Rrup), and fault type.  

 

Table 3.5 Details of selected ground motions 

No. Year Earthquake 
Record No. 

in database 
Magnitude 

Duration 

(sec.) 

Rjb 

(km) 

Rrup 

(km) 
Fault Type 

1 1983 Coalinga 357 6.36 12.2 32.8 34.0 REV 

2 1984 Morgan Hill 472 6.19 21.8 31.9 31.9 SS 

3 1989 Loma Prieta 748 6.93 12.3 43.9 44.1 REV/OB 

4 1994 Northridge 948 6.69 17.3 41.1 41.4 REV 

5 1999 Chi-Chi 1259 7.62 20.1 43.5 47.9 REV/OB 

6 1999 Hector Mine 1762 7.13 26.7 41.8 43.1 SS 

7 1992 Landers 3752 7.28 27.3 45.3 45.3 SS 

8 2004 Niigata 4230 6.63 40.3 36.8 39.4 REV 

9 2007 Chuetsu-oki 5261 6.80 56.8 42.0 45.4 REV 

10 2008 Iwate 5779 6.90 29.1 36.3 36.3 REV 

Note: Fault mechanism = REV: Reverse; SS: Strike-slip; OB: Oblique  

The selected ground motions with different magnitude from M6.2 to M7.3 earthquakes at 

soft rock sites, where the average shear wave velocity in the upper 30 meters of the site (vs,30) is 

between 360 m/sec. and 760 m/sec.. Moreover, the duration between 5% to 95% of total 

cumulative energy for each selected record is longer than 12 sec. to ensure adequate structural 

reaction time. Six of the ten selected ground motions were recorded in California. Fourier 

transformation is performed on each record by SeismoSignal platform to eliminate the records 

that may resonate with the optimal or original structures. To avoid the effect of the near-source 

earthquake, both Rrup and Rjb for each record are larger than 30 km, which was taken as the 

maximum distance for near-source earthquakes by Iervolino and Cornell (2008). Figure 3.8 
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shows the unscaled horizontal ground acceleration time-history of the 10 selected earthquakes. 

3.2.2.2 Earthquake record scaling 

To represent the three hazard levels, the peak ground accelerations (PGAs) of the chosen records 

are scaled so that the response spectrum for each seismic hazard matches the design spectrum. 

ASCE 7-10 (2010) requires that the arithmetic mean of the response spectrum acceleration shall 

not be less than the acceleration of design spectrum with 5% damping ratio within 0.2T to 1.5T, 

if the 2D analyses are performed using at least seven record. The online tools provided by PEER 

ground motion database are adopted to scale the ten ground motion records. Considering the 

increase of the structure vibration period during the seismic effect, the weight factors for 0.2T, 

1.0T and 1.5T are determined as 4.0, 10.0 and 6.0, respectively. Table 3.6 lists the scaled factors 

 

Figure 3.8 Time-history of unscaled horizontal ground acceleration for ten earthquakes  
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and the scaled PGA values for the ten ground motions. Figures 3.9, 3.10, and 3.11 show the 

scaled time-history records corresponding to very rare, rare and occasional hazard levels, 

respectively. Figure 3.12 shows the response spectrum of each ground motion, the average 

response spectrum, and the design spectrum for very rare, rare and occasional earthquakes. 

Table 3.6 Details of scaled ground motions 

No. Earthquake 
Scaled Factor Scaled PGA (g) 

occasional rare very rare occasional rare very rare 

1 Coalinga 1.994 4.583 7.190 0.301 0.692 1.086 

2 Morgan Hill 2.520 5.792 9.087 0.199 0.458 0.718 

3 Loma Prieta 1.376 3.164 4.963 0.153 0.351 0.551 

4 Northridge 2.664 6.124 9.607 0.242 0.557 0.874 

5 Chi-Chi 2.230 5.126 8.041 0.194 0.446 0.700 

6 Hector Mine 0.862 1.982 3.109 0.157 0.361 0.566 

7 Landers 1.758 4.042 6.341 0.200 0.461 0.723 

8 Niigata 4.012 9.223 14.470 0.273 0.627 0.984 

9 Chuetsu-oki 4.362 10.027 15.731 0.144 0.331 0.519 

10 Iwate 1.930 4.434 6.957 0.139 0.319 0.501 

 

 
Figure 3.9 Time-history of ten horizontal ground acceleration scaled according to very rare 

earthquake level 
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Figure 3.10 Time-history of ten horizontal ground acceleration scaled according to rare 

earthquake level 

 

Figure 3.11 Time-history of ten horizontal ground acceleration scaled according to occasional 

earthquake level  
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(a) 

 
(b) 

 
(c) 

Figure 3.12 Acceleration response spectra and scaled ground motions for different hazard levels: 

(a) very rare earthquake; (b) rare earthquake; and (c) occasional earthquake 
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3.2.3 Examination results and discussions 

Dynamic analyses are conducted on the optimal and original structures using the scaled 

ground motions under three hazard levels. The simulation results are then summarized and 

analyzed. Two types of peak nonlinear deformation (inter-story drift ration and plastic hinge 

rotation) of the optimal and original structures are examined by their performance-based limits. 

3.2.3.1 Results of optimal design 

Inter-story drift ratio 

In general, the average peak dynamic response in terms of inter-story drift ratio meets the 

target performance requirements under the three levels of seismic hazard. Figure 3.13 shows the 

profiles of peak inter-story drift γmax caused by individual ground motions and the average γmax. 

In this figure, the average γmax under occasional and rare earthquakes are almost identical to the 

target limits of IO performance level ([γ]1 = 1%) and of LS performance level ([γ]2 = 2%), while 

the average γmax very rare earthquakes is much less than the target limit of CP performance levels 

([γ]3 = 4%). These observations are consistent with the results shown in Figure 3.4 derived from 

the proposed optimal PBSD method, except that the average peak inter-story drift of occasional 

earthquakes obtained from the dynamic analyses is larger than the results shown in Figure 3.4. In 

addition, mainly due to the effect of higher modes, the maximum average γmax of the structure 

occurs in either the 4
th

 or the 5
th

 floor, rather than in the 1
st
 or 2

nd
 floor.  
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Figure 3.13 Peak inter-story drift ratio for optimal design subjected to ground motions scaled for 

(a) occasional earthquakes; (b) rare earthquakes; and (c) very rare earthquakes 
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Table 3.7 shows that, for all three hazard levels, the maximum standard deviations (S.D.) 

of the peak inter-story drift appear on the 3
rd

 story, above which the section sizes of beams and 

columns change. The relative variability of the inter-story drift is measured by the coefficient of 

variation (COV), the ratio between S.D. and the mean value. Because the values of COV are 

similar among the three hazard levels, a similar dispersion exists even though the nonlinearity of 

the structure as well as hazard levels are different. 

 

Table 3.7 Maximum standard deviation of inter-story drift ratios of optimal structure 

 2%/50 year 10%/50 year 50%/50 year 

Story of max. S.D. 3 3 3 

Maximum S.D. 0.0077 0.0044 0.0020 

Mean drift ratio of max. S.D. 0.0272 0.0161 0.0076 

COV 0.28 0.27 0.26 

 

Plastic hinge rotation 

The rotation capacity of a plastic hinge varies during dynamic loading due to the change 

in beam shear or column axial force. Thus, a normalized plastic hinge rotation, defined as the 

ratio of average peak plastic hinge rotation demand to capacity (θmax/[θ]p), is considered (p = 1, 2, 

3 for IO, LS and CP performance levels, respectively). Figure 3.14 shows the location of 

normalized plastic hinge rotation for the three levels of seismic hazard. Under occasional 

earthquakes, only one ground excitation causes yielding and, as shown in Figure 3.14(a), the 

yielding occurs only in a few beams on the 4
th

 and 5
th

 stories. Under rare earthquakes, all the 

beams yield (Figure 3.14(b)). The normalized plastic hinge rotation ranges from 0.20 to 0.518 and 
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is much lower in the columns than in most of the beams. The large θmax/[θ]2 (0.45 to 0.518) 

appear on the 1
st
 to 3

rd
 stories. Under very rare earthquakes, the average peak plastic rotation 

  

(a) 

 

(b) 

 

(c) 

Figure 3.14 Ratio of average peak plastic hinge rotation demand to capacity (θmax/[θ]) for 

optimal design subjected to ground motions scaled for (a) occasional earthquakes; (b) rare 

earthquakes; and (c) very rare earthquakes  
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demand is less than 67% of capacity in any member (Figure 3.14(c)). The large θmax/[θ]3 (0.5 to 

0.662) appear on the 3
rd

 to 4
th

 stories. Figure 3.14(c) also shows that the normalized column 

plastic rotations at the supports of the exterior columns are less than that of the three interior 

columns.  

As shown in Figures 3.14(b) and 3.14(c), column yielding occurs at the upper stories, 

which is not predicted by the nonlinear static analyses, indicating the effects of higher vibration 

modes. Note that even though the average peak plastic hinges appear at both ends of all the 

columns on the same story, these plastic hinges occur at different time or under different 

earthquake recorders; thus weak story failure mechanism does not appear.  

3.2.3.2 Result of original design 

Inter-story drift ratio 

In general, the force-based design is conservative, because the average peak inter-story 

drifts are far less than the target performance requirements under the three hazard levels, as 

shown in Figure 3.15, the values of the maximum γmax/[γ] among all stories are 0.73, 0.81 and 

0.59 for the occasional, rare and very rare earthquakes, respectively. This observations is 

consistent with the optimal results derived from the optimal PBSD, in which the largest and 

smallest γmax/[γ] appear under rare and very rare earthquakes, respectively. In addition, the effect 

of higher modes occurs on the model, because the maximum average γmax appears on the 5
th

 

floor. 
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Figure 3.15 Inter-story drift ratio for original design subjected to ground motions scaled for (a) 

occasional earthquakes; (b) rare earthquakes; and (c) very rare earthquakes 
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Table 3.8 shows that, for all three hazard levels, the maximum S.D. of the peak 

inter-story drift appears on the 5
th

 story, where the maximum peak inter-story drift occurs. The 

values of COV for both optimal and original structures are similar, which indicates that an 

identical dispersion exist even though the strength and stiffness of the structures as well as 

hazard levels are different. 

 

Table 3.8 Maximum standard deviation of inter-story drift ratio of original structure 

 2% / 50 year 10% / 50 year 50% / 50 year 

Story of max. S.D. 5 5 5 

Maximum S.D. 0.0073 0.004 0.0018 

Mean drift ratio of max. S.D. 0.0239 0.0163 0.0073 

COV 0.31 0.25 0.25 

 

Plastic hinge rotation 

No plastic hinge appears on the original structure under the ground motions scaled for 

occasional earthquakes. Figure 3.16 shows the distribution of normalized plastic hinge rotation 

for two greater levels of seismic hazard. The maximum normalized plastic hinge rotations are 

0.43 and 0.47 for the rare and very rare earthquakes, respectively. Under rare earthquakes, all the 

beams and some columns on the 5th and 6th stories yield (Figure 3.16(a)). As shown in this 

figure, most large values of θmax/[θ]2 (0.2 to 0.425) appear on the 3
rd

 to 5
th

 stories. Under very 

rare earthquakes, large values of θmax/[θ]3 (0.35 to 0.472) appear on the 3
rd

 to 5
th

 stories (Figure 

3.16(b)). Column yielding occurs in the upper stories, which is not predicted by the nonlinear 

static analyses, indicating the effects of higher vibration modes.  
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(a) 

 

(b) 

Figure 3.16 Ratio of average peak plastic hinge rotation demand to capacity (θmax/[θ]) for 

original structure subjected to ground motions scaled for (a) rare earthquakes and (b) very rare 

earthquakes 
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Compared with the nonlinear static analysis used in the proposed optimal PBSD method, 
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effect. Therefore, the dynamic analyses are performed on the eight structures to obtain their 
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seismic response. The values of pairs of λ and α used to design these eight structures are (0.5, 

0.65), (0.5, 0.7), (0.5, 0.75), (0.55, 0.65), (0.55, 0.75), (0.6, 0.65), (0.6, 0.7), and (0.6, 0.75) as 

shown in Figure 3.17(a). Based on the method described in Section 2.2.3.3, these nine points are 

 
(a) 

  
(b) 

Figure 3.17 Feasible region and the design variables of nine structures in (a) λ–α domain and (b) 

Ωc–Ws domain 
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transformed from the λ–α domain to the Ωc–Ws domain shown in Figure 3.17 (b) to show the 

corresponding material consumptions.  

The eight structures are designed based on the values of corresponding λ and α shown in 

Figure 3.17 (a) and requirements of ASCE 7-10 (2010). Nonlinear analysis models of these eight 

structures are established based on the method given in Section 3.1.2. Dynamic analyses are 

performed on the eight structures to obtain the peak normalized deformations. Ten earthquake 

records selected in Section 3.2.2.1 are adopted to simulate the seismic effect. These records are 

scaled based on the response spectra of the three hazard levels, very rare, rare, and occasional 

earthquake hazard levels, as mentioned in Section 3.2.2.2. The peak normalized deformations, 

γmax/[γ] and θmax/[θ], of the structures under a hazard level are the average values of the 

normalized deformations caused by the ten ground motions.  

The dynamic analysis results for each of the eight structures indicate that the peak 

inter-story drift ratio of the structure under rare earthquake governs the peak normalized 

deformations. This observation is consistent with the peak normalized deformation of the 

optimal design (λ = 0.55, α = 0.70). Figure 3.18 shows the values of peak normalized inter-story 

drift ratio of the eight structures and the structure with optimal design under rare earthquake. In 

this figure, the peak inter-story drift ratio of seven structures, including the optimal design, is 

larger than 1.0, that is, the nonlinear deformations of these structures exceed performance limits. 

For the other two structures (λ = 0.6, α = 0.7 and λ = 0.6, α = 0.75), the peak normalized 

inter-story drift ratio is less than 1.0. Among the eight points and the optimal design, if the values 
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of λ are identical, the value of γmax/[γ] increase with the decline of α, except point d; if the values 

of α are identical, the value of γmax/[γ] increase with the reduction of λ, except point g. The value 

of γmax/[γ] at points d and g are very close to that of the points around them. Therefore, in general, 

a continuous variation tendency exists in the area determined by the eight points without abrupt 

change. In addition, the optimal solution determined from dynamic analyses must be located 

within the area determined by points b, c, e, f, h, and i. 

 

 
Figure 3.18 Peak inter-story drift ratio of the nine structures under rare earthquake derived from 

dynamic analyses and the feasible region boundary determined from static analyses. 
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determined from dynamic analyses must be located on this contour line. The tendency of all the 

contours in Figure 3.19 is continuous especially for the area determined by points b, c, e, f, h, 

and i. 

 

  
Figure 3.19 Contours of the peak normalized inter-story drift ratio and the design variables of 

the nine structures 
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the eight points at point c. However, the construction cost of the optimal design is about 20% less 

than the initial design derived from the force-based seismic design method. 

 

   
Figure 3.20 Construction cost of the nine structures for verifying the validity of the proposed 

optimal PBSD method. 
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CHAPTER 4 

RELIABILITY EVALUATION OF PROTOTYPE BUILDING 

4.1 Overview of Reliability Evaluation 

The prototype structure designed by the conventional force-based seismic design method 

is conservative. The degree of conservatism is reduced when the prototype structure is optimized 

by the optimal PBSD method. For the optimal structure, one or more types of deformation are 

equal to their performance limits. The deformations of this optimal structure and the limits are 

derived based on the nominal values of external loads, model parameters, and deformation limits. 

However, large uncertainties exist in these three aspects; thus, the deformations of the optimal 

structure may be larger than their limits in some extreme conditions. For economic reasons, these 

extreme conditions are not eliminated. However, the probability of occurrence of these extreme 

conditions shall be controlled to make sure that the optimal design has sufficient reliability. 

Accordingly, the reliability evaluation is necessary for the optimal design derived from the 

proposed optimal PBSD method. Reliability evaluation is also applied to the original design to 

compare with the evaluation results of the optimal design. Furthermore, reliability evaluations 

are performed on the other 26 structures with different relative strength factor α and relative 

stiffness factor λ to observe how these two variables affect the probability of occurrence of the 

extreme conditions. 

The reliability evaluations include three procedures in this study. First, Latin Hypercube 
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sampling method is used to select the discrete values of the random variables, and combines 

these discrete model parameters to create 8000 structure model samples for both the optimal and 

the original structures. Second, 8000 samples are simulated by nonlinear dynamic analysis 

method for the peak normalized deformation (θ/[θ] and γ/[γ]). Third, the outputs of these samples 

are used to generate the regression lines of peak normalized deformation and fragility function 

curves. In addition, to analyze how relative strength factor α and relative stiffness factor γ affect 

the reliability evaluation results, the previous procedures are applied on 28 structures besides the 

optimal and original structures with seven α levels (α = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) and 

four λ levels (λ = 0.55, 0.7, 0.85, 1.0). The structure nonperformance contours are generated 

based on the results of these structures.  

4.2 Statistical Properties of Variables 

Uncertainty exists in diverse aspects of structural seismic response, and can be derived 

from five sources (Bulleit, 2008): time (future external loads and structural characteristics 

affected by time), statistical limits (lack of data for their probabilistic distribution), model 

limitation (simplifications and assumptions within models), randomness (uncertainty in structural 

properties), and human error (mistakes in design and construction). These uncertainties can be 

classified into three types (Ayyub and McCuen, 2016): stochastic, epistemic and numerical 

uncertainty. Stochastic uncertainty reflects the unpredictability of natural hazard, such as seismic 

and snow loads; thus, this type of uncertainty is unavoidable. Epistemic uncertainty is caused by 
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the lack of statistical data or knowledge of understanding. Numerical uncertainty exists when a 

mechanical model is adopted to simulate actual buildings, such as when the finite-element 

method is used.  

Large uncertainties exist in the external loading, structure model for simulation and 

performance limits. In this study, the uncertainties in seven aspects (dead load, live load, seismic 

effect, flexural strength and effective stiffness of elements, and the limits of inter-story drift and 

plastic hinge rotation) are considered. In addition, the uncertainty in some other aspects, such as 

structural damping ratio, site condition type, and deterioration of strength and stiffness of plastic 

hinge model, also influence the structural nonlinear deformation. However, they are not 

considered in this study due to the lack of statistical data. The statistical properties of seven types 

of uncertainties are shown in Table 4.1. In this table, x̄ and xn are the mean value and the 

nominal value of parameter x; λ is the bias factor, which is the ratio between the mean value and 

the nominal value of one type of parameter x; Vs is the coefficient of variation, which is the ratio 

between the standard deviation (σx) and mean value of parameter x. Vs is a standardized measure 

of dispersion of a probability distribution. 
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Table 4.1 Summary of statistical properties of input variables 

Random Variable Type 
Mean 

( x ) 

Bias Factor 

( λ
n

x

x
 ) 

Coefficient of 

Variation 

(
σx

xV
x

 ) 

Type of Distribution 

Dead load (DL) ‒ 1.05 0.10 
Normal 

(Ellingwood 1980) 

Live load (LL) ‒ 1.00 0.25 
Type Ⅰ (Gumbel)  

(Ellingwood 1980) 

Flexural Strength (M) 

(Reinforced Concrete, 

Grade 60) 

‒ 1.1025 0.11 
Normal 

(Ellingwood 1980) 

Inter-story 

drift limit ([γ]) 
‒ 1.00 0.1 

Lognormal  

(SEAOC 1995) 

Plastic hinge 

rotation limit ([θ]) 
‒ 1.00 0.1 

Beta 

(SEAOC 1995) 

Seismic effect 

(PGA) 
0.1156 ‒ 5.48 

Lognormal 

(Abrahamson et al. 

2014) 

Ratio between effective 

stiffness and gross 

stiffness (EIeff / EIg) 

0.403 ‒ 0.643 

Lognormal 

(Elwood et al. 2007) 

Fitting based on Matlab 

 

4.2.1 Statistical properties of external loads 

External loading can be divided into two groups. The first group includes dead load (DL) 

and live load (LL) applied vertically as constant loading in this study. The second group includes 

seismic load (E) applied horizontally as period loading. The uncertainties of DL and LL are 

simulated by applying random value generated based on their statistical properties on different 

beams and joints. On the other hand, the uncertainty of earthquake exists in peak ground 

acceleration (PGA), duration, and frequent content of earthquakes. Many studies(Abrahamson et 

al., 2014; Boore et al., 2014; Campbell and Bozorgnia, 2014; Chiou and Youngs, 2014; and Idriss, 
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2014) focused on the statistical properties of PGA, but none for duration or frequent content. 

Therefore, the uncertainty of PGA is simulated by the statistical parameters listed in Table 4.1, 

and the uncertainty of duration and frequency content is simulated by 10 earthquake recorders 

listed in Table 3.5. 

4.2.1.1 Dead load and live load 

As suggested by Ellingwood (1980), probability distribution types of DL and LL are 

assumed to be normal and Type Ⅰ (Gumbel), respectively. Classic probability density function 

(PDF) curves for these two types of distribution are shown in Figure 4.1. These probability 

distribution types are widely used in many studies (Gaxiola et al., 2017; Kogut and Chou, 2004; 

and Ellingwood, 2003). The corresponding bias factor and coefficient of variation listed in Table 

4.1 are based on a 50-years reference period. For the nominal live load, Ln, Ellingwood (1980) 

suggested that it can be calculated by Equation 4.1 based on A58 standard (1980). The nominal 

value calculated by this equation is statistical equal to the 50-year mean value, L̄. Therefore the 

bias factor λ(the ratio between the mean value to the nominal value) for live load is assumed as 

1 in this study. 

 

0

15
0 25n

I

L . L
A

 
  
 
   

Equation 4.1 

 

where AI is influence area and L0 is basic unreduced live load based on A58 (1980). 
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(a) 

 

(b) 

Figure 4.1 Probability density function (PDF) curve of: (a) normal distribution; and (b) Type Ⅰ 

distribution 

 

The nominal value of DL includes the self-weight of all components (beams, columns 

and slabs), and superimposed dead load (roofing, curtain wall, and mechanical). The nominal 

value of LL includes the weight of building users, furniture and other moveable equipment.  

4.2.1.2 Seismic load 

The seismic load applied on a RC moment frame structure is influenced mainly by the 

intensity measurement, duration, and frequency content of an earthquake. Many factors can 
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describe the intensity measurement of earthquake, such as peak ground acceleration (PGA) or 

peak ground velocity. PGA is the most widely used, and conveniently applied in the dynamic 

structural analysis. The statistical properties of PGA at a specific location can be determined 

through different types of attenuation formulations, which correlate ground motion magnitude to 

the distance away from fault rupture. These formulations were established in 2008 and updated 

in 2014 by five separate research teams: Abrahamson et al. (2014), Boore et al. (2014), Campbell 

and Bozorgnia (2014), Chiou and Youngs (2014), and Idriss (2014). In this study, the statistical 

properties of PGA are determined by the next-generation attenuation proposed by Abrahamsonet 

al. (2014), and listed in Table 4.1. This attenuation formulation was established based on 2754 

ground motion records from 135 earthquakes, and considered the effect of fault type and 

geometry, hanging wall effect, site type and other factors. The probability distribution type of 

PGA is normally assumed as lognormal (Yazdani et al., 2016; Khatibinia et al., 2013; and Huyse 

et al., 2010). Classic PDF curve of lognormal distribution is shown in Figure 4.2. 

 

Figure 4.2 Probability density function curve of lognormal distribution 
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In addition to the intensity measurement quantified by PGA, earthquake duration and 

frequency content can also influence the structural seismic response. Duration is related to total 

input energy of earthquake, and frequency content of earthquake determines the magnitude of the 

resonance effect on the structure. Based on Fourier transform, chaotic and random earthquake 

wave can be decomposed into a series of since waves with different phase, frequency and 

amplitude. Resonance occurs when the structure free vibration frequency is equal to the 

frequency of a sine wave. The resonance magnitude depends on the amplitude of this wave. In 

this study, the uncertainty of earthquake duration and frequency content is covered by the 

different durations, fault types, and occurrence locations of the ten selected earthquakes listed in 

Table 3.5.  

4.2.2 Statistical properties of member resistance 

4.2.2.1 Elemental flexural strength 

The structural resistance against gravity and seismic loads is affected by component 

effective stiffness (K) and flexural strength (Mu). These properties influence structural vibration 

period and load redistribution within the structure during external loading. Therefore, the 

uncertainties of K and Mu are two major considerations for member resistance in seismic 

reliability assessment. The statistical properties of these two variables listed in Table 4.1 cover 

both material and construction uncertainties. 

According to Ellingwood (1980), the probability distribution of Mu is assumed to have a 

normal distribution. The bias factor of Mu of reinforcement concrete component with grade 60 
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reinforcement was assumed to be 1.05 based on static loading experiments. However, the 

strength of concrete and reinforcement tends to increase by 5% due to a high loading rate under 

earthquakes. Therefore, in the dynamic analysis, the bias factor of Mu is also increased by 5% so 

that it is equal to 1.1025. The nominal value of Mu is determined by the seismic design of RC 

moment frame structure.  

4.2.2.2 Elemental effective stiffness 

Due to concrete cracking and bar slip, the K of a RC component under seismic loads is 

less than that evaluated based on gross section. In addition, shear deformation is found to occupy 

15% of total component deformation (Elwood and Eberhard, 2009; and Kenneth et al. 2009). 

Therefore, total effective displacement of RC component should include the deformations caused 

by flexure, longitudinal bar bond slip, and shear deformation. K is the reciprocal of total effective 

displacement under unit load. 

No study has ever suggest the distribution type, mean value or standard deviation of K. 

Nevertheless, Elwood and Eberhard (2006) collected 221 experiment results of the ratio between 

the effective flexural stiffness, EIeff, and the gross bending stiffness, EIg, of rectangular column, 

as shown in Figure 4.3.  
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Figure 4.3 Measured ratio between effective stiffness and gross bending stiffness (Elwood et al., 

2007) 

 

Although only the flexural experiments of column are summarized in these results, beam can be 

taken as a flexural component without axial load. Therefore, in this study, the K of beams and 

columns are assumed to have statistical properties identical to those of the experimental data 

given by Elwood and Eberhard (2009). However, in these papers, neither the distribution type or 

the statistical properties of the ratio between effective stiffness and gross stiffness is not given. 

Therefore, Matlab distribution fitting toolbox is used in this study to obtain a suitable probability 

distribution type and corresponding statistical properties of K. First, 221 discrete value of the 

ratio between effective stiffness and gross stiffness are distributed into twelve frequency 

histogram columns with an interval of 0.1 stiffness ratio, as shown in Figure 4.4(a). Then, 

eighteen distribution types in Matlab toolbox are used to fit this frequency histogram of stiffness 

data without excluding the extreme value. Based on the fitting results, Lognormal and 
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Birnbaum-Saunders distributions are suitable to the discrete data of the stiffness ratio with log 

likelihood factor 41.51 and 43.89. A higher log likelihood factor expresses a better fitting 

between the PDF or CDF curve and the frequency distribution histogram. At last, Lognormal 

distribution is chosen as the probability distribution type of the stiffness ratio in this study, 

because it is more widely used than Birnbaum-Saunders distribution. The corresponding  

 
 

 
(a) 

 
(b) 

Figure 4.4 Distribution fitting of discrete stiffness ratio (a) frequency histogram of discrete 

stiffness ratio and PDF of fitting lognormal distribution; (b) cumulate frequency histogram of 

stiffness ratio and CDF of fitting lognormal distribution 
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mean value and COV are listed in Table 4.1. The cumulative distribution function curve can 

closely match the discrete data, as shown in Figure 4.4(b). 

In Figure 4.4(a), 221 discrete experiment data in Elwood and Eberhard (2009) are 

distributed into twelve frequency histogram columns. Eighteen distribution types in Matlab 

toolbox are used to fit this frequency histogram of stiffness data without excluding the extreme 

value. Based on the fitting results, Lognormal and Birnbaum-Saunders distributions are suitable 

to the discrete data of the stiffness ratio with log likelihood factor 41.51 and 43.89. A higher log 

likelihood factor expresses a better fitting between the PDF or CDF curve and the frequency 

distribution histogram. As the most widely used distribution type, Lognormal distribution is 

chosen as the probability distribution type of the stiffness ratio in this study. The corresponding 

mean value and COV are listed in Table 4.1. The cumulative distribution function curve can 

closely match the discrete data, as shown in Figure 4.4(b). 

4.2.3 Statistical properties of deformation limits 

Inter-story drift and plastic hinge rotation are two major deformation measurements of 

the seismic performance assessment of RC moment frame structure. However, no sufficient 

information is provided in ASCE 41-13 (2014), the standard used in this study for 

performance-based seismic evaluation, to select appropriate bias factor or COV for allowable 

values of inter-story drift [γ] and plastic hinge rotation [θ]. In addition to ASCE 41-13 (2014), 

SEAOC (1995) can be used to assess seismic performance. In this document, the statistical 

properties of inter-story drift, local damage index and global damage index are provided. The 
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local damage index, considering both component section rotation and energy dissipation effect, 

is defined by Park and Ang (1985) and Moller et al. (2009), as  
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Equation 4.2 

 

where ϕm is the maximum cross-sectional rotation; ϕu is the ultimate rotation during a monotonic 

load; ϕy is the recoverable rotation during unloading; dE is the energy dissipation caused by 

hysteretic deformation; and My is section yield moment. In Equation 4.2, both section rotation 

part and energy dissipation part are impact mainly by plastic hinge rotation; thus, it is rational to 

assume [θ] and local damage index have identical statistical properties. In this study, [θ] is 

assumed to have Beta distribution, which is the distribution type of local damage index in 

SEAOC (1995). A classic Beta distribution is drawn in Figure 4.5. The value of [γ] and [θ] in 

ASCE41-13 are used as the nominal value, and the bias factor is assumed to be 1.0. 

 

 

Figure 4.5 Probability density function curve of Beta distribution 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

α = 2 

β = 2

 
 

 

β 1α 1 1
α β

B α β

x x
f x | ,

,

 


 
   

 

α β
B α β

α β
,

 


 



 

134 

4.3 Sampling Methods 

Sampling method is a survey methodology used to predict statistical properties of whole 

sample population by repeatedly testing a finite number of samples within this population. For 

this purpose, simulations by performing nonlinear dynamic structural analyses of the optimized 

structure with seven input parameters are conducted in this study.  

4.3.1 Monte Carlo sampling method 

Monte Carlo sampling method is a conventional sampling method, which has been used 

so solve statistical problems in many fields. Monte Carlo sampling method repeats random 

sampling of input variables and experimental or numerical simulation to obtain a probabilistic 

distribution of the results. Monte Carlo sampling method is reliable; however, the difficulty of 

using this method in practice is its extremely high experimental or computational cost for 

complex system or small probability of occurrence. In a structural seismic failure simulation, 

complex nonlinear dynamic analysis is applied to obtain the nonlinear deformation of the 

structure considering the uncertainties within seismic records. In addition, the allowable failure 

probability of the structure under the very rare earthquake is as small as 0.001 (Paulay and 

Priestley, 1992). Therefore, the required sampling number is enormous and even impracticable. 

Soong and Grigoriu (1993) proposed a method to estimate the approximate number required for 

using Monte Carlo sampling method, as shown in Equation 4.3. 
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where N is the required number of samples; P is the estimated failure probability; and V is the 

COV of sample population. Based on Equation 4.3, the required sampling number of Monte 

Carlo sampling method for the problem with a 0.001 failure probability and 5% COV is 399600. 

Although controversy exists about the exact required number of samples in the Monte Carlo 

sampling method (Shooman, 1968; Soong and Grigoriu 1993), it is definitely an extreme large 

number, and difficult to be applied to the failure probability analysis of RC frames. 

4.3.2 Latin Hypercube sampling method 

An alternative approach is Latin Hypercube sampling method proposed by Iman and 

Conover (1980). It is a near-random sampling method to estimate the probability properties of 

the sample population. The Latin Hypercube sampling method requires smaller sampling number 

than Monte Carlo sampling method, and has been proved to be effective and reliable in 

evaluating the structural failure probabilities under seismic or wind load effect (Yazdani et al., 

2016; Li and Hu, 2014; and Khatibinia et al., 2013). 

4.3.2.1 Procedure of Latin Hypercube sampling method 

To select near-random input variables for each sample by Latin Hypercube sampling 

method, two steps are used to establish a N×K input variable matrix with a total sample number 

of N and a total number of input variable types of K shown in Figure 4.6(d). First, for every type 

of input variable, such as dead load, N discrete representative values are selected according to the 
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cumulative distribution function of this variable, as shown in Figure 4.6(a). Second, the 

sequential order of the selected value of each variable is adjusted according to the table of 

random permutation of rank number, as shown in Figure 4.6(c). This procedure is repeated for 

every input variable, and the N×K input variable matrix shown in Figure 4.6(d) is established. 

The values of the input variables of the i
th

 sample are the data on the i
th

 row in the N×K input 

variable matrix, and all the discrete representative values of the j
th

 input variable are the data on 

the j
th

 column in this matrix. 

 

 
Figure 4.6 Procedure of Latin Hypercube sampling method: (a) representative values selection 

from CDF of one variable; (b) frequency histogram and PDF of selected representative values; 

(c) order rearranging of representative values of one variable; and (d) input data matrix of all 

variables and samples 
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To obtain N discrete representative values of a variable in the first step, cumulative 

distribution function curve of this variable is separated into N intervals with identical difference 

in probability, as shown in Figure 4.6(a). The frequency histograms of these selected values 

shown in Figure 4.6(b) still statistically obey the probability density function of this variable 

shown in Figure 4.6(a). The representative value of each interval is the variable value with a 

centroid probability of the corresponding interval defined in Equation 4.4. Currently, all selected 

values are ordered from small to large. In the second step, the small-to-large ordered 

representative values are rearranged according to the table of random permutation of rank 

number into a random order, as shown in Figure 4.6(c). The rank number of this variable is an 

arrange of integers [1, 2, ... N]
T
 coupling to the selected representative values in a small-to-large 

order. In the table of random permutation of rank number, this rank number is rearranged 

randomly to reflect the uncertainty in nature. These two steps are repeated for K variables, and a 

N×K matrix is established, as shown in Figure 4.6(d). The data on the i
th

 column of this matrix 

are the representative values in random order of variable i, and the data on the j
th

 row are the 

input values of variables of sample j. Eventually, the data of this matrix are inputted into N 

models for numerical or experimental simulations.  

 

1 0 5nK
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Equation 4.4 

 

where F
‒1 

K  is inverse cumulative distribution function of variable K, and mnK is rank number of 
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the n
th

 interval of variable K. 

4.3.2.2 Elimination of correlation between variables 

Based on Figure 4.6, for each type of input variable, an unique table of random 

permutation of rank number with N random values exists; thus for totally K types of input 

variables, all the tables of random permutation of rank number can be composed of a N×K matrix. 

This matrix reflects the uncertainty of each variable and the independency among the variables. 

This independency can be described as a linear relationship between any two types of input 

variables, as shown in Figure 4.7. In Figure 4.7(a), two variables have obviously positive linear 

correlation, that is, sample values of one type of variable tend to increase with the other type of 

variable. However, two variables in Figure 4.7(b) are comparatively independent. Because the 

table of random permutation of rank number used in Latin Hypercube Sampling method is 

generated randomly, the linear correlation between two variables cannot be completely avoided. 

 

Figure 4.7 Relationship between two variables: (a) correlation and (b) independent 
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A modified Latin Hypercube sampling method using specifically modified tables of 

random permutations of ranked number and Spearman coefficient is proposed by Yang (2006) to 

eliminate this linear correlation. First, a measurement of the correlation level called Spearman 

rank-order correlation coefficient (Spearman coefficient) is proposed by Hettmansperger and 

McKean (1978) and defined as follows. The N representative values of two variables, P and Q, 

are selected and arranged from small to large with same rank numbers [1, 2, ... n]
T
. To reflect 

uncertainty of the nature, the order of Qi is changed according to one table of random 

permutation of rank number, that is, the rank number of Qi becomes to [R1, R2, ... Rn]
T
 ≠ [1, 2, ... 

n]
T
, where Ri is corresponding to the out-of-order rank number of Qi. The Spearman coefficient rs 

between variables P and Q can be defined by Equation 4.5. Spearman coefficient is always 

located between ‒1 and +1, which reflect the negative and positive linear correlations exist 

between two variables. Thus the more Spearman coefficient close to zero, the more two variables 

get independent. 
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Equation 4.5 

 

Second, a critical coefficient or threshold should be determined to check whether the 

correlation between two variables is higher than necessary. This is because an absolutely 

independent relationship between two variables is hard to get due to the limited sampling number. 
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Such an independent relationship is also unnecessary due to its negligible effect on the statistical 

probability. Accordingly, threshold Spearman coefficient r
* 

s  is proposed, and the rank number of 

two variables is modified if this threshold is exceeded.  

If the Spearman coefficient between two variables is higher than r
* 

s , the following process 

can be performed to reduce the undesired correlation. For a system with K variables and, N 

sample numbers, the N×K table of random permutations of ranked number is defined as R, in 

which the data in column is the random rank number of one of the K variables. A K×K Spearman 

coefficient matrix, T, can be established according to Equation 4.5, and Tij represents the 

Spearman coefficient between the i
th

 and j
th

 variable. Obviously, T is a symmetrical matrix, and 

always assumed as positive. T satisfies Equations 4.6 to 4.8. A lower triangular matrix, S, is used 

to establish the modified table of random permutations of ranked number, RB. Cholesky 

factorization scheme can be used to solve the problem with lower triangular matrix. 

 

1TS T S    Equation 4.6 

1S Q  Equation 4.7 

TT Q Q   Equation 4.8 

 

where Q is a lower triangular matrix. A modified table of random permutations of ranked number, 

RB, can be obtained by Equation 4.9. 

 

T

BR R S 
 Equation 4.9 
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The procedure described above is repeated until no element in T is larger than r
* 

s , that is, 

matrix T gets close to unit matrix. In the current step, this modified table of random permutations 

of ranked number can be used to product uncorrelated representative values of variables. It has 

been proved that this modified Latin Hypercube sampling method can significantly reduce the 

output variance of probability analysis (Yang, 2006). One example of applying modified Latin 

Hypercube sampling method is illustrated in Figure 4.8, through eliminating the correlation 

between inter-story drift limit and PGA of input earthquake acceleration. 

 

 

(a) 

 

(b) 

Figure 4.8 Illustration of the relationship between two input variables: (a) correlated relationship 

(b) independent relationship 

 

4.4 Probability-based Nonperformance Probability 

For each structure with determined relative strength and stiffness factors, 8000 samples 

are created based on the discrete variables for seven uncertainties selected and combined by 

Latin Hypercube sampling method. The deformation of these 8000 samples are estimated by 
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nonlinear dynamic analysis method described in Section 3.2. The examined output data of the 

dynamic analysis are two types of peak normalized deformation in terms of plastic hinge rotation 

and inter-story drift: peak θ/[θ] and peak γ/[γ].  

To determine the reliability of a structure, the probability of nonperformance of this 

structure is evaluated by its limits. Nonperformance due to a certain type of deformation is 

defined as the peak normalized value of this type of deformation is larger than 1. In this study, 

three types of nonperformance are defined: nonperformance due to plastic hinge (peak θ/[θ] > 1), 

nonperformance due to inter-story drift (peak γ/[γ] > 1), and nonperformance due to either plastic 

hinge or inter-story drift (either peak θ/[θ] > 1 or peak γ/[γ] > 1). Because the values of both [θ] 

and [γ] are different for diverse performance levels (CP, LS, and IO performance levels), each 

type of nonperformance can be measured by the limit for different performance levels. To define 

a nonperformance of a structure, both nonperformance type and performance level shall be 

indicated, such as nonperformance due to inter-story drift for LS performance level. For a 

structure, the nonperformance due to a certain type of deformation for a performance level 

indicates that this type of deformation of the structure cannot satisfy the deformation limit of this 

performance level. 

For a structure, the probability of nonperformance due to a certain type of normalized 

deformation for a performance level, PfE, is the ratio between the number of the samples with 

peak normalized deformation larger than 1 and 8000 samples. This nonperformance probability 

is for 50-year duration. Because the nonperformance limit suggested by Paulay and Priestley 
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(1992) listed in Table 1.3 is for 1-year duration, the annual probability of nonperformance due to 

a certain type of deformation for a performance level, Pf,a, can be calculated based on by 

Equation 4.10. 

 

 , 1 exp νf a fEP P    Equation 4.10 

 

where ν is the mean occurrence rate of the earthquakes, which is normally assumed as ν = 0.2 for 

a Poisson process (Khatibinia et al., 2013; Moller et al., 2015).  

4.5 Fragility Curve Generation 

Fragility function indicates the relationship between the probability of nonperformance 

and a intensity measure of ground motion, which can be quantified as the peak ground 

acceleration (PGA) (Baker, 2015). In this study, the fragility functions of the optimal and original 

structures are generated by the method suggested by Baker (2015) based on the normalized 

deformations of 8000 samples. These samples include 800 PGA levels, and 10 types of 

earthquake records for each PGA level. First, the nonperformance probability for each PGA, 

which is the ratio between the number of nonperformance samples and 10, is obtained. Then, the 

median and standard deviation of the nonperformance probability for all PGA are estimated by 

maximum likelihood method. Based on the estimated median, μ͂ , and estimated standard 

deviation of ln(PGA), σ͂, a lognormal cumulative distribution function is typically used to create 

the fragility function based on Equation 4.11.  
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where Φ() is the standard normal cumulative distribution function. The estimated median and 

standard deviation instead of the actual ones are used here, because these parameters are derived 

from only the samples, which is part of the population.  

4.6 Results and Discussion 

4.6.1 Normalized deformation 

For the optimal and original structures, the peak normalized deformation (peak θ/[θ] and 

peak γ/[γ]) of 8000 samples are obtained by nonlinear dynamic analyses. The larger peak 

normalized deformations between peak θ/[θ] and peak γ/[γ] of 8000 samples are drawn in Figure 

4.9. The single type of peak normalized deformation (peak θ/[θ] or peak γ/[γ]) of 8000 samples 

are drawn in Figures 4.10 and 4.11, respectively. In these figures, regression analyses are 

performed to obtain a mean value line of peak normalized deformation (solid line) as a function 

of peak ground acceleration. The functions of these lines are defined as y = a1x + b1 for the larger 

peak normalized deformation between peak θ/[θ] and peak γ/[γ], y = aθx + bθ for peak θ/[θ], and 

y = aγx + bγ for peak γ/[γ]. In addition, the 95% confidence band are drawn as the dash lines in 

each figure.  

Based on the slope a of the regression line, the probability of different types of 

nonperformance can be estimated. If the nonperformance probability when either θ/[θ] > 1 or 
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γ/[γ] > 1 is define as 100%, then the probability when both θ/[θ] > 1 and γ/[γ] > 1 can be 

calculated by a2 = (aθ + aγ ‒ a1)/a1. The probability when θ/[θ] > 1 but γ/[γ] < 1 can be calculated 

by aθ/a1 ‒ a2; similarly, when γ/[γ] > 1 but θ/[θ] < 1, the probability can be calculated by aγ/a1 ‒ a2. 

The results of different types of nonperformance are listed in Table 4.2. 

 

Table 4.2 Composition of different types of nonperformance (unit: %) 

Performance 

level 

Optimal Structure Original Structure 

θ/[θ] > 1 

but 

γ/[γ] <1 

θ/[θ] < 1 

but 

γ/[γ] > 1 

θ/[θ] > 1  

and  

γ/[γ] > 1 

θ/[θ] > 1 

but 

γ/[γ] <1 

θ/[θ] < 1 

but 

γ/[γ] > 1 

θ/[θ] > 1  

and 

γ/[γ] > 1 

CP 5.3 27.3 67.3 2.9 37.9 59.2 

LS 5.5 27.1 67.4 2.5 38.3 59.2 

IO 12.5 17.1 70.4 8.0 27.5 64.5 

 

Based on Table 4.2, the probabilities of different types of nonperformance are similar 

between CP and LS performance levels. The probability of both θ/[θ] > 1 and γ/[γ] > 1 is much 

higher than the other types of nonperformance, while the probability of θ/[θ] > 1 but γ/[γ] < 1 is 

much lower than the other types of nonperformance. It can be concluded that (1) the probability 

of simultaneous appearance of both types of nonperformance (θ/[θ] > 1 and γ/[γ] > 1) is higher 

than the probability due to other types of deformation; (2) nonperformance due to plastic hinge 

hardly appears alone without the nonperformance due to inter-story drift; (3) No matter the type 

of deformation, the nonperformance probabilities of optimal and original structures are close. 

The width of the 95% confidence band w reflects the uncertainty of the normalized 

deformation. The width is normalized by the slope of the regression line as w/a to compare the 
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uncertainty of the sample with different magnitudes. The normalized width of the 95% 

confidence band of three types of failure for both optimal and original structures in different 

performance levels are listed in Table 4.3. In this table, the higher value reflects higher 

uncertainty. 

 

Table 4.3 Normalized width of the 95% confidence band (w/a) 

Performance level 

Optimal Structure Original Structure 

peak 

θ/[θ] 

peak 

γ/[γ] 

max(peak θ/[θ] 

& peak γ/[γ]) 

peak 

θ/[θ] 

peak 

γ/[γ] 

max(peak θ/[θ] 

& peak γ/[γ]) 

CP 0.445 0.236 0.243 0.519 0.217 0.221 

LS 0.335 0.164 0.165 0.439 0.161 0.163 

IO 0.173 0.096 0.094 0.265 0.099 0.102 

 

Based on Table 4.3, the normalized width of the 95% confidence band for peak θ/[θ] is 

much higher than the other two types of deformation. the normalized width of the 95% 

confidence band for CP performance level is higher than the other two performance levels. It can 

be concluded that (1) the uncertainty of normalized plastic hinge is much higher than the other 

two types of deformation; (2) the uncertainty of different peak normalized deformation for CP 

performance level is higher than the other two types of performance levels. 
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(a) 

 
(b) 

 
(c) 

Figure 4.9 Statistical result of the peak normalized plastic deformations (maximum value of 

γ/[γ] and θ/[θ]) of the optimal and original design in various performance levels: (a) collapse 

prevention; (b) life safety; and (c) immediate occupancy 
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(a) 

 
(b) 

 
(c) 

Figure 4.10 Statistical result of the peak normalized plastic deformations (peak θ/[θ]) of the 

optimal and original design in various performance levels: (a) collapse prevention; (b) life safety; 

and (c) immediate occupancy 
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(a) 

 
(b) 

 
(c) 

Figure 4.11 Statistical result of the peak normalized plastic deformations (peak γ/[γ]) of the 

optimal and original design in various performance levels: (a) collapse prevention; (b) life safety; 

and (c) immediate occupancy 
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4.6.2 Nonperformance probability 

For the optimal and original structure, the probabilities of nonperformance due to plastic 

hinge rotation, inter-story drift, and either plastic hinge rotation or inter-story drift for three 

performance levels are shown in Table 4.4. In addition, the allowable nonperformance 

probabilities of different performance levels [PfE] suggested by Paulay and Priestley (1992) are 

also listed in this table.  

 

Table 4.4 Probabilities of nonperformance due to different types deformation of the optimal and 

original structures 

 Optimal Structure Original Structure 

Performance 

level 
[PfE] θ/[θ] > 1 γ/[γ] > 1 

either θ/[θ] > 

1 or γ/[γ] > 1 
θ/[θ] > 1 γ/[γ] > 1 

either θ/[θ] > 

1 or γ/[γ] > 1 

IO 0.100 0.0635 0.1435 0.1464 0.0395 0.0745 0.0770 

LS 0.010 0.0095 0.0160 0.0180 0.0031 0.0064 0.0069 

CP 0.001 0.0015 0.0005 0.0015 0.0004 0.0000 0.0004 

 

Based on Table 4.4, for the original structure, the probabilities of nonperformance due to 

all three types of deformation for all three performance levels satisfy the probability limits 

suggested by Paulay and Priestley (1992). For the optimal structure, the probabilities of 

nonperformance due to plastic hinge for all three performance satisfy the probability limits. The 

probability of nonperformance due to inter-story drift for CP performance level satisfies the 

probability limit, while those for LS and IO performance levels are about 50% higher than the 

probability limits. The probabilities of nonperformance due to either plastic hinge or inter-story 

drift for all three performance levels are about 50% higher than the probability limits. These 
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results indicate that the optimal structure shall be designed based on higher relative strength 

and/or relative stiffness factors to ensure that the probabilities of nonperformance satisfies the 

probability limits. 

4.6.3 Fragility curve of nonperformance probability 

The fragility curves of the optimal and original structures are generated by using the 

method described in Section 4.5, and drawn in Figures 4.12 and 4.13, respectively. The estimated 

median value and estimated standard deviation used to create the lognormal distributed fragility 

curves are achieved based on the normalized deformations of the 8000 samples for each structure. 

In Figures 4.12 or 4.13, the fragility curves of three types of nonperformance (due to either 

plastic hinge or inter-story drift, only due to plastic hinge, and only due to inter-story drift) are 

drawn. The fragility curves of each type of nonperformance include three curves for three 

performance levels (CP, LS, and IO).  

These fragility curves can be used to determine the faillure probability of a structure 

under a selected PGA. In this study, the PGA corresponding to very rare, rare, and occasional 

earthquakes are 0.6g, 0.4g and 0.174g. In addition, the fragility curves of different performance 

levels can be used to define structure damage states: None, slight, moderate and extensive. As 

shown in Figure 4.14, these four types of structure damage states can be defined as: (1) none 

damage, when deformation is less than deformation limit of IO performance level; (2) slight 

damage, when deformation is more than deformation limit of IO performance level but less than 

that of LS performance level; (3) moderate damage, when deformation is more than deformation  
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(a) 

 
(b) 

 
(c) 

Figure 4.12 Fragility curves for the optimal design in different nonperformance types: (a) either 

θ/[θ] > 1 or γ/[γ] > 1; (b) θ/[θ] > 1; and (c) γ/[γ] > 1 
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(a) 

 
(b) 

 
(c) 

Figure 4.13 Fragility curves for the original design in different nonperformance types: (a) either 

θ/[θ] > 1 or γ/[γ] > 1; (b) θ/[θ] > 1; and (c) γ/[γ] > 1 
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limit of LS performance level but less than that of CP performance level; extensive damage, 

when deformation is more than deformation limit of CP performance level. The probablity of 

occurrence each damage state of a structure under a specific PGA is defined as pi (i = 1, 2, 3, or 4 

for None, slight, moderate or extensive damage states). Probability of nonperformancee of a 

structure for a specific PGA is defined as Pj (j = IO, LS, or CP performance level). Therefore, 

based on Figure 4.14, pi can be calculated based on Equation 4.12. 

 

 

 

 
1

1 1,  IO

   2 or 3,  IO or LS,  1 LS or CP

   4,  CP

i j

j j

j

p P i j

P P i j j

P i j



   

     

  

 Equation 4.12 

 

 
Figure 4.14 Defination of the four types of damage states 
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are selected for both optimal and original structures according to the three hazard levels used in 

this study. For each selected PGA, Equation 4.12 is used to calculate the value of pi based on Pj. 

Because Pj for three types of nonperformance (only due to plastic hinge, only due to inter-story 

drift, and due to either plastic hinge or inter-story drift) are given in Figures 4.12 and 4.13, pi for 

this three types of nonperformanced are summarized in Table 4.5. 

 

Table 4.5 Probability of occurrence of the optimal and original structures under three hazard 

levels (unit: %) 

PGA (g) 
Damage 

states 

Optimal Structure Original Structure 

θ/[θ] > 1 γ/[γ] > 1 

θ/[θ] > 1 

or  

γ/[γ] > 1 

θ/[θ] > 1 γ/[γ] > 1 

θ/[θ] > 1 

or  

γ/[γ] > 1 

0.6  

(Very rare) 

Extensive 0.7 0.4 0.7 0 0 0 

Moderate 17.7 31.8 34.4 4.67 12.2 13.3 

Slight 59.6 64.8 61.6 62.53 77.3 78.1 

None 22.0 3.0 3.3 32.80 10.6 8.6 

0.4 

(Rare) 

Extensive 0 0 0 0 0 0 

Moderate 2.3 4.5 5.7 0.10 0.6 0.7 

Slight 31.7 68.4 67.3 18.23 42.6 45.0 

None 66.1 27.1 27.0 81.67 56.8 54.3 

0.174 

(Occisonal) 

Extensive 0 0 0 0 0 0 

Moderate 0 0 0 0 0 0 

Slight 0.2 2.4 2.8 0 0.1 0.1 

None 99.8 97.6 97.2 100 99.9 99.9 

 

To have a better understand of the data in Table 4.5, these data are drawn in Figure 4.15 

for both optimal and original structures. Four type of structural damage states (extensive, 

moderate, slight, and none) are representative by four different colors form dark to light. For the 

original structure, no extensive damage state exists. In this figure, the tendency of the probability  
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(a) 

 

(b) 

Figure 4.15 Probability histogram of four damage states of the (a) optimal and (b) original 

structures 
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of occupation of different damage state can be summarized as (1) under occasional earthquake 

hazard level, none damage state is predominate for both optimal and original structures; (2) 

under rare earthquake hazard level, none damage state is predominate for original structure, 

while slight damage state is predominate for optimal structure; (3) under very rare earthquake 

hazard level, slight damage state is predominate for both optimal and original structures; (4) 

under rare earthquake hazard level, the probability of occurrence of slight damage or moderate 

damage state when θ/[θ] > 1 is about half of that when γ/[γ] > 1 or when either θ/[θ] > 1 or γ/[γ] > 

1 for both optimal and original structure; (5) under very rare earthquake level, the probability of 

occurrence of moderate damage state when θ/[θ] > 1 is about half of that when γ/[γ] > 1 or when 

either θ/[θ] > 1 or γ/[γ] > 1 for both optimal and original structure. 

The fragility curves in Figures 4.12 and 4.13 are rearranged in Figure 4.16 based on the 

performance level. For comparison purpose, the fragility curves of both optimal and original 

structures for a selected performance level are drawn together. As shown in Figure 4.16(a), the 

minimum PGA when the probability of nonperformance for CP performance level is larger than 

zero for optimal and original structures are about 0.55g and 0.75g, respectively. The maximum 

difference of the probability of nonperformance between the fragility curves of optimal and 

original structures is about 20%. In Figure 4.16(b), when PGA is more than about 0.3g, the 

probability of nonperformance for LS performance level of the optimal structure is larger than 

zero; while when PGA is more than about 0.35g, the probability of nonperformance for LS 

performance level of the original structure is larger than zero. When PGA is more than 0.6g, the  
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(a) 

  
(b) 

   
(c) 

Figure 4.16 Fragility curves for both the optimal and original designs in different performance 

levels: (a) collapse prevention; (b) life safety; and (c) immediate occupancy 
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difference between the fragility curves of the optimal and original structures remain constant as 

about 20%. Figure 4.16(c) shows that the fragility curves of IO performance level for both 

optimal and original structures. The minimum PGA when the probability of nonperformance for 

IO performance level is larger than zero for optimal and original structures are about 0.15g and 

0.2g, respectively. The maximum PGA when the probability of nonperformance for IO 

performance level is close to 1.0 are 0.75g and 0.8g. When PGA is located between 0.3g and 

0.5g, the difference between the fragility curves of the optimal and original structures remain 

constant as about 20%. In these figures, the probability of nonperformance of the fragility curve 

of the optimal structure is always higher than that of the optimal structure.  

4.6.4 Nonperformance probability contour 

Reliability evaluations are performed on the 28 structures generated from the original 

structure using seven relative strength levels (α = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) and four 

relative stiffness levels (λ = 0.55, 0.7, 0.85, 1.0) to establish the nonperformance probability 

contours. Three types of nonperformance are considered: nonperformance due to inter-story drift, 

nonperformance due to plastic hinge rotation, and nonperformance due to either inter-story drift 

or plastic hinge rotation. Probability contours, as shown in Figures 4.17, 4.19 and 4.20, are 

created for each type of nonperformance at different performance levels (CP, LS and IO) to 

reflect the magnitude of the deformation. 

Figure 4.17 shows the probability contours of nonperformance evaluated based only on 

inter-story drift. According to Figure 4.17(a), if a structure is designed with a relative strength 



 

160 

factor α > 0.4 and a relative stiffness factor λ > 0.55, the nonperformance probability for CP is 

always lower than the probability limit(0.1%) of this performance level. Due to the very low 

probability of nonperformance, no obvious tendency can be identified from the nonperformance 

contours for CP.  

As shown in Figure 4.17(b), when λ > 0.8, the nonperformance contours for LS can be 

approximated as lines oriented about 60 degrees relative to the horizontal axis. If the value of λ is 

fixed, the structure with lower α has lower nonperformance probability. This observation agrees 

with the performance of a SDOF system predicted using the R-μ-T relationship considered in this 

study (Section 1.2.2.3). Figure 4.18 shows the relationship between spectral displacement versus 

spectral acceleration for inelastic SDOF systems. As seen in this figure, if two structures have 

identical stiffness but different yield strength, the structure with a lower yield strength tends to 

have smaller lateral displacement demand. In addition, for each contour in Figure 4.17(b), two 

bumps exist when α is equal to about 0.8 and 0.6. This may be caused by the resonance between 

some earthquakes and the structures with α values equal to 0.8 and 0.6. When λ is larger than 0.8, 

the slope of the contour increases. When the nonperformance probability of the contours is lower 

than 0.5 for LS, the number of the nonperformance samples is too small to obtain an obvious 

tendency related to λ and α.  

According to Figure 4.17(c), the nonperformance contours for IO performance level can 

be taken as lines with about a 70-degree slope with respect to the horizontal axis. Two bumps 

also exist in the contours when α values are about equal to 0.8 and 0.6. Because the probability of 
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(a) 

 
(b) 

 
(c) 

Figure 4.17 Probability contours of nonperformance due to inter-story drift for different 

performance levels (a) collapse prevention' (b) life safety and (c) immediate occupancy (unit: %) 
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Figure 4.18 Deformation demand of inelastic SDOF systems with identical stiffness but 

different yield strength 

 

nonperformance at IO performance level is higher than the other performance levels, the 

tendency of the contours is clearer. For both LS and IO performance levels shown in Figures 

4.17(b) and 4.17(c), the nonperformance probability due to inter-story drift is affected mainly by 

the relative stiffness factor λ rather than the relative strength factor α. For the structures with an 

identical λ, the nonperformance probability due to inter-story drift is generally reduced with the 

decrease in α. 
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(a) 

 
(b) 

 
(c) 

Figure 4.19 Probability contours of nonperformance due to plastic hinge rotation for different 

performance levels (a) collapse prevention; (b) life safety and (c) immediate occupancy (unit: %) 
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negative 45-degree slop with respect to the horizontal axis. Under this condition, if the value of λ 

is fixed, the nonperformance probability increase with the decrease of α. This indicates that to 

obtain an identical nonperformance probability, the structure can be designed based on higher α 

but lower λ, or based on lower α but higher λ. When λ < 0.7 and 0.65 < α < 0.75, the 

nonperformance contour can be approximated as lines with positive slope. This tendency shows 

that the structure designed with lower values of both λ and α would have an identical 

nonperformance probability to those with higher λ and α if λ < 0.7 and 0.65 < α < 0.75. When λ 

is more than 0.7 and α is less than 0.6, the nonperformance contours have about 45-degree angle 

with respect to the horizontal axis. Under this condition, if the value of λ is fixed, 

nonperformance probability increases with the decrease of α. For the other contours with very 

low nonperformance probability (0.02%), no obvious tendency can be identified. In Figure 

4.19(a), especially for λ < 0.7, the feature of the contours of nonperformance due to plastic hinge 

rotation is similar to that due to inter-story drift shown in Figure 4.19(b). This could be because 

plastic hinge rotation is governed by inter-story drift under large lateral deformation.  

As shown in Figure 4.19(c), the nonperformance contour for IO performance level is 

affected mainly by α instead of λ. When 0.9 < α < 1.0 and 0.55 < λ < 0.85, the nonperformance 

contours can be approximated into lines with about 20-degree slope with respect to the horizontal 

axis. The slope increases with the value of λ. In two areas, one 0.9 < α < 1.0 and 0.85 < λ < 1.0, 

the other with 0.4 < α < 0.6 and 0.7 < λ < 0.87, the nonperformance contours can be 

approximated as lines oriented about 30 degrees relative to the horizontal axis. In these two areas, 
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if the value of λ is fixed, the nonperformance probability increases with the reduction of α. The 

other contours in Figure 4.19(c) can be taken as horizontal lines, indicating that the probability 

nonperformance evaluated based only on plastic hinge is governed by α.  

In Figure 4.19(b), if λ < 0.8 and α > 0.5, the nonperformance contours for LS can be 

approximated into lines oriented about 40 degrees relative to the horizontal axis. Two bumps 

exist on these contours when the values of α are about equal to 0.6 and 0.8. If the value of λ is 

fixed, the nonperformance probability is reduced with the increase of α. If λ < 0.55 and 0.4 < α < 

0.5, the tendency of the contours are similar to those for λ < 0.8 and α > 0.5, but the slope is 

decreased from 40 degrees to 30 degrees. For the aforementioned two cases, both λ and α affect 

the nonperformance contours. This is because the number of plastic hinges and magnitude of 

plastic hinge rotation for LS is between those for CP and IO; accordingly, both inter-story drift 

and relative strength factor α affect the nonperformance contours. If 0.7 < λ < 0.83 and 0.4 < α < 

0.5, the contours are almost vertical. In this area, the nonperformance probability is affected 

mainly by λ rather than α. If λ > 0.8, a clear tendency cannot be identified due to the very low 

nonperformance probability. 

Figure 4.20 shows the probability contours of nonperformance due to either plastic hinge 

rotation or inter-story drift. The contours depends on the nonperformance probability due to 

plastic hinge rotation or inter-story drift, whichever controls. As shown in Figure 4.20(a), the 

nonperformance contours for CP are very similar to those shown in Figure 4.19(a) for CP. This is 

because the nonperformance probability due to inter-story drift is much lower than that due to  
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(a) 

 
(b) 

 
(c) 

Figure 4.20 Probability contours of nonperformance due to either inter-story drift or plastic 

hinge rotation for different performance levels (a) collapse prevention; (b) life safety; and (c) 

immediate occupancy (unit: %) 
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plastic hinge rotation.  

When α is more than 0.6, the nonperformance contours for LS shown in Figure 4.20(b) 

are similar to those due to inter-story drift alone (Figure 4.17(b)). This is because, when α > 0.6, 

the nonperformance probability due to inter-story drift alone (Figure 4.17(b)) is at least 50% 

higher than that due to plastic hinge rotation only (Figure 4.19(b)). When α < 0.6, the difference 

of nonperformance probability between the two types of contours becomes small, and the slope 

angle of the contours due to plastic hinge only is much smaller than that due to inter-story drift 

only. Therefore, when α < 0.6, the contours due to either plastic hinge rotation or inter-story drift 

shown in Figure 4.20(b) are similar to those due to plastic hinge rotation only (Figure 4.19(b)). 

When the α is about equal to 0.6 and 0.8, two bumps exist in the contours shown in Figure 

4.20(b). In this figure, the contours corresponding to nonperformance probability greater than 0.7 

shown can be divided into four segments for 0.4 < α < 0.6, 0.6 < α < 0.7, 0.7 < α < 0.8, and 0.8 < 

α < 1.0. In the first and third segments, contours have 45- to 70-degree angles with respect to the 

horizontal axis. If the value of λ is fixed, the nonperformance probability is reduced with the 

increase of α. In the second and fourth segments, contours also have 45- to 70-degree angles with 

respect to the horizontal axis but are in the opposite direction. Thus, if the value of λ is fixed, the 

nonperformance probability increases with α. In all segments, the angle between the contours 

and the horizontal axis is reduced with the increase of λ. 

The nonperformance contours due to either plastic hinge rotation or inter-story drift for 

IO are shown in Figure 4.20(c). When α > 0.6, the contours are similar to those due to inter-story 
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drift only because the nonperformance probability due to inter-story drift alone is much higher 

than that due to plastic hinge rotation alone. When α < 0.6, the difference in nonperformance 

probability between the two types of contours shown in Figures 4.17(c) and 4.19(c) becomes less. 

The contours of nonperformance due to inter-story drift only and those due to plastic hinge 

rotation only for IO are affected respectively by λ and α. Thus, as shown in Figure 4.20(c), the 

contours of nonperformance based on both inter-story drift and plastic hinge rotation affected by 

both λ and α when α < 0.6. In general, the contours in Figure 4.20(c) can be separately described 

by two segments based on the values of α: (1) 0.6 < α < 1.0 and (2) 0.4 < α < 0.6. In the first 

segment, the contours are almost vertical, implying that the nonperformance probability is 

primarily affected by λ rather than α. In the second segment, the contours can be approximated 

into lines with a 40-degree slope with respect to the horizontal axis. If the value of λ is fixed, the 

nonperformance probability increases with the reduction of α. This tendency reflects that, with 

the same nonperformance probability, a structure can be designed based on higher λ but lower α, 

or higher α but lower λ. 

As shown in Table 4.4, the nonperformance probability limits suggested for CP, LS and 

IO performance levels are 0.1%, 1%, 10%, respectively. Figures 4.21 summarizes the 

nonperformance contours corresponding to these limits. If a structure is designed based on the 

values of λ and α at the point located on the right side of a contour, the nonperformance 

probability is lower than the nonperformance probability limits represented by this contour. 

Figure 4.21(a) shows the nonperformance probability limits based on inter-story drift  
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(a) 

    
(b) 

   
(c) 

Figure 4.21 Nonperformance contours due to (a) inter-story drift; (b) plastic hinge rotation; and 

(c) either plastic hinge rotation or inter-story drift (unit: %) 
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only. The nonperformance probability for structures within the range of λ and α is always lower 

than the limit for CP; thus, only the nonperformance contours corresponding to the limit of LS 

and IO are drawn. The nonperformance probability limit for IO performance level is on the right 

side. Therefore, it controls the feasible region of λ and α. If a structure is designed based on λ 

larger than 0.84 and α larger than 0.4, then the nonperformance probability due to inter-story 

drift satisfies all the nonperformance probability limits for three performance levels. Because the 

contour for IO has about 80-degree angle measured from the horizontal axis, if the structure is 

designed based on a low value of α such as 0.4, the feasible λ can be reduced to 0.78.  

Figure 4.21(b) shows the nonperformance probability limits based on plastic hinge 

rotation only. If a structure is designed with λ > 0.74 and α > 0.4, the nonperformance probability 

limit for IO performance level controls the feasible region of λ and α, and the nonperformance 

probability is lower than the limits for all three performance levels. If a structure is designed with 

α > 0.45, the nonperformance probability limit for CP performance level controls the feasible 

region of λ and α. In this condition, the feasible λ can be reduced to 0.65 while the structure can 

still satisfy the nonperformance probability limit for all three performance levels. 

As shown in Figure 4.21(c), the nonperformance probability limit for IO performance 

level controls the feasible region of λ and α. If a structure is designed with λ > 0.85 and α > 0.6, 

then the nonperformance probability based on both plastic hinge rotation and inter-story drift is 

always lower than the limits for all three performance levels. The contour for IO performance 

level has a 40-degree angle with respect to the horizontal axis. Therefore, if a structure is 
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designed with 0.4 < α < 0.6 and this structure is expected to satisfy the nonperformance 

probability limits for all performance levels, the value of λ shall be increased from 0.85 to 1.0.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

5.1 Summary 

The overall goal of this study is to develop an optimal performance-based seismic design 

(PBSD) method for multi-story RC moment frames. This method is expected to have low 

computational cost, and can be practically implemented by the U.S. design practice. To achieve 

this goal, four tasks are completed: (1) developing a simplified optimal PBSD procedure that 

incorporates the latest criteria of structural performance of RC frame buildings and can be 

practically implemented by design engineers; (2) applying the proposed optimal PBSD method 

to a prototype structure to investigate the efficiency of this method on cost saving; (3) examining 

whether the optimal design derived from Task 2 can satisfy the requirements of the selected 

performance levels under multiple hazard levels; and (4) performing structural reliability 

analyses on the optimal structure, original structure, and other structures with different flexural 

strength and stiffness to investigate how these factors affect the nonperformance probability of 

RC moment frames. 

For the first task, an optimal PBSD method based on capacity spectrum method is 

developed for multi-story RC moment frames. This method minimizes the total construction cost, 

and ensure that the optimized frame satisfies the deformation constraints for multiple selected 

performance levels under different hazard levels. The proposed method simplifies the numerous 
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optimal variables into only two overall system variables normalized based on the original design: 

a relative stiffness factor and a relative strength factor. A two-step optimal procedure is adopted 

in this method. The feasible region boundary in the domain composed by the relative strength 

factor and the relative stiffness factor is determined. The feasible region boundary is transformed 

from the relative strength and stiffness factor domain to the material consumption domain. Then 

the optimal design in the domain composed by the consumption of concrete and reinforcement is 

determined.  

To obtain the feasible region boundary in the first step, a convenient mathematical 

iteration method based on the results of a single pushover analysis is proposed to search the 

minimum relative stiffness for a given relative strength factor level. The feasible region 

boundary is composed by the minimum relative stiffness factors for different levels of relative 

strength factors. To obtain the optimal design in the second step, nonlinear programming method 

is used to search the optimal solution of the problem with a linear objective function and a 

convex feasible region.  

For the second task, the proposed optimal PBSD method is applied to a six-story four-bay 

RC prototype structure. The structure is first designed based on the conventional force-based 

seismic design method as an initial design. The proposed optimal PBSD method is applied to 

obtain the feasible region boundary in the relative strength and stiffness factor domain, and the 

optimal design in the material consumption domain. The construction cost of the optimal design 

is derived and compared with that of the original design. 
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For the third task, the nonlinear responses of the optimal and original structures are 

determined from nonlinear dynamic analyses. The average structural responses under ten scaled 

earthquake records are evaluated. These ten records are scaled according to the design spectra of 

three selected hazard levels. The nonlinear responses of the optimal and original structures for 

these three hazard levels are examined by the preselected performance limits.  

For the fourth task, structural reliability analyses are performed on the original and 

optimal structures by considering seven types of uncertainties in external loads, strength and 

stiffness used to define the structural model, and performance-based limits. Latin Hypercube 

sampling method is used to select the discrete values of the random variables, and combines 

these discrete model parameters to create 8000 structure model samples for both the optimal and 

the original structures. For each sample, nonlinear dynamic analysis is performed to obtain the 

normalized nonlinear structural deformations defined by inter-story drift and plastic hinge 

rotation. The normalized nonlinear structural deformation reflects whether the sample satisfies a 

target performance level. The normalized nonlinear structural deformations of 8000 samples are 

used to establish fragility curves and calculate the nonperformance probabilities of the optimal 

and original structures. Such a reliability analysis method is the extended to on other 26 

structures with various relative strength and stiffness factors different from the optimal and 

original structures. The nonperformance probabilities of the total 28 structures are used to 

establish the nonperformance contours to investigate how the relative strength and stiffness 

factors affect the nonperformance probability.  
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5.2 Conclusions  

The following conclusion can be reached based on the optimal result of the prototype 

structure used in this study by applying the proposed optimal PBSD method: 

(1) An optimal performance-based seismic design method for multi-story RC moment 

frames is proposed in this study based on the capacity spectrum method. The proposed method 

requires comparatively low computational cost. 

(2) Compared with the conventional strength-based design, the proposed optimal PBSD 

method can lead to a 30% reduction in the needed flexural strength for the beams and the 

columns, a 26% reduction in this cross-sectional area, and about 20% reduction in the overall 

cost. 

(3) If both inter-story drift and plastic hinge rotation are used to evaluate the structural 

nonlinear response, the optimal result for the prototype building is controlled by inter-story drift 

limit for the Life Safety performance level under rare earthquakes. If only plastic hinge rotation 

is used to measure structural performance, the construction cost can be further reduced, and the 

optimal design would be controlled by the limit for the Life Safety performance level under rare 

earthquakes. The limits of inter-story drift and plastic hinge rotation for Collapse Prevention 

performance level do not control the optimal result.  

(4) Nonlinear dynamic analyses indicate that, in general, the optimal result derived from 

the proposed optimal PBSD method can satisfy the deformation limits of multiple performance 

levels under different hazard levels. The plastic hinge rotation demand are farther less than the 
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limits for all three performance levels. 

(5) Structural reliability analyses indicate that, in general, the structural probability of 

nonperformance evaluated using inter-story drift is sensitive the relative stiffness factor rather 

than the relative strength factor. The probability of nonperformance due to plastic hinge rotation 

for Immediate Occupancy performance level is sensitive to relative strength factor instead of 

relative stiffness factor. The probability of nonperformance due to plastic hinge rotation for Life 

Safety performance level is affected by both relative strength factor and stiffness.  

(6) When both plastic hinge rotation and inter-story drift are used to limit the response of 

structure, the probability for Collapse Prevention performance level is affected mainly by plastic 

hinge rotation. The probability of nonperformance for Life Safety and Immediate Occupancy 

performance levels is affected by both plastic hinge rotation and inter-story drift. The effect 

caused by inter-story drift is higher than plastic hinge rotation. 

(7) To design a structure satisfying the probability limit of nonperformance due to 

inter-story drift, the relative stiffness factor λ shall be larger than 0.84 and the relative strength 

factor α shall be larger than 0.4. To design a structure satisfying the probability limit of 

nonperformance due to plastic hinge rotation, λ can be larger than 0.75 and the α can be larger 

than 0.4; otherwise, λ can be larger than 0.65 and the α can be larger than 0.45. To design a 

structure satisfying the probability limit of nonperformance due to either plastic hinge rotation or 

inter-story drift, λ shall be larger than 0.85 and the α shall be larger than 0.6. 
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5.3 Suggestions 

The followings are future research suggestions: 

(1) The proposed optimal PBSD method can be extended by using more optimal 

variables. This can be achieved by assigning different relative stiffness and strength factors for 

each story to optimize the stiffness and strength of the elements. A better optimal design can be 

obtained based in this way, which however requires additional optimal algorithm and 

computational cost. 

(2) The proposed method can be applied to RC moment frames with different geometries 

considering the effect of higher vibration modes to further support the conclusions derived from 

the prototype structure in this study.  

(3) To obtain an realistic flexural response of elements, fiber elements can be used to 

establish the structural model instead of using the plastic concentrated elements in this study. 

However, this will cause a large additional computational cost in structural analyses. 

(4) The required minimum sampling number shall be determined in order to identify a 

clear tendency of contours, when the nonperformance probability is less than 0.1%.  
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