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ABSTRACT 
 

Association of Oceanic-Atmospheric Oscillations and Hydroclimatic Variables in 
the Colorado River Basin 

 
by 
 

Ajay Kalra 
 

Dr. Sajjad Ahmad, Examination Committee Chair 
Associate Professor, Civil and Environmental Engineering 

University of Nevada, Las Vegas 

With increasing evidence of climatic variability, there is a need to improve forecast 

for hydroclimatic variables i.e., precipitation and streamflow preserving their spatial and 

temporal variability. Climatologists have identified different oceanic-atmospheric 

oscillations that seem to influence the behavior of these variables and in turn can be used 

to extend the forecast lead time. In the absence of a good physical understanding of the 

linkages between oceanic-atmospheric oscillations and hydrological processes, it is 

difficult to construct a physical model. An attractive alternative to physically based 

models are the Artificial Intelligence (AI) type models, also referred to as machine 

learning or data-driven models. These models do not employ traditional forms of 

equations common in physically based models, but instead have flexible and adaptive 

model structures that can extract the relationship from the data.  

With this motivation this research focuses on increasing the precipitation and 

streamflow forecast lead times and enhancing the temporal resolution of precipitation 

within the Colorado River Basin (CRB). An AI-type data-driven model, Support Vector 

Machine (SVM), was developed incorporating oceanic-atmospheric oscillations to 

increase the precipitation and streamflow forecast lead times. The temporal resolution of 

precipitation was improved using the stochastic nonparametric K-Nearest Neighbor 
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(KNN) approach. The hydrologic data used in the dissertation comprised of climate 

division precipitation data and naturalized streamflow data for the Colorado River Basin. 

The interdecadal and interannual Pacific Ocean (Pacific Decadal Oscillation (PDO) and 

El Niño-Southern Oscillation(ENSO)) and Atlantic Ocean (Atlantic Multidecadal 

Oscillation (AMO) and North Atlantic Oscillation(NAO)) climatic variability was used in 

this dissertation. 

Initially, the coupled and individual effect of oceanic-atmospheric oscillations in 

relation to annual precipitation within Colorado River Basin was investigated using the 

statistical SVM modeling approach. Next, the SVM modeling was used to investigate the 

coupled and individual effect of oceanic-atmospheric oscillations in relation to annual 

streamflow volume within Colorado River Basin. Finally, the long-term changes (Trend 

and Step) in seasonal precipitation within Colorado River Basin were analyzed using 

nonparametric statistical tests (Mann-Kendall, Spearman’s Rho, and Rank Sum). 

Additionally, the temporal resolution of precipitation was enhanced from annual (water 

year) to seasonal precipitation (autumn, winter, spring, and summer) using the 

nonparametric K-Nearest Neighbor disaggregation approach. 

The results indicated that annual precipitation predictions for 1-year lead time for the 

Upper Colorado River Basin can be successfully obtained using a combination of PDO, 

NAO, and AMO indices, whereas coupling AMO and ENSO results in improved 

precipitation predictions for the Lower Colorado River Basin. Satisfactory annual 

streamflow predictions for 3-year lead time for the Upper Colorado River Basin can be 

obtained using a combination of NAO and ENSO. The seasonal changes in precipitation 

indicated a decrease in the Upper Basin and increase in the Lower Basin winter 
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precipitation due to an abrupt step change. KNN disaggregation results indicated 

satisfactory seasonal precipitation estimates during winter and spring season compared to 

the autumn and summer season. 

The major contributions of this research are threefold. First, this research is the first 

of its kind that used an AI-type SVM modeling approach to increase precipitation and 

streamflow forecast lead times using oceanic-atmospheric oscillations for the Colorado 

River Basin. Second, the results indicated that there is no single climate signal that can be 

used to explain the hydroclimatology within Colorado River Basin. Coupled response of 

oceanic-oscillations in relation to precipitation and streamflow is more pronounced in 

CRB compared to their individual effects. Finally, this is the first study that used a 

nonparametric KNN disaggregation approach for estimating seasonal precipitation for the 

Colorado River Basin. Other studies have focused on disaggregating streamflow within 

CRB from one scale to the other but no other study has attempted to disaggregate 

precipitation within the Colorado River Basin. Overall, this research improves the 

understanding of the relationship between climatic variables and hydrology within 

Colorado River Basin. The long lead time estimates of precipitation and streamflow 

developed in this research can help water managers in managing the water resources (e.g. 

reservoir releases, allocation of water contracts etc.) within the Colorado River Basin.  
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CHAPTER 1 
 

1 INTRODUCTION 

1.1 Climate Variability 

 One of the most important elements essential to the persistence of human life on 

Earth and the maintenance of terrestrial biological systems is the availability of fresh 

water. However, rapidly growing human populations and the accompanying 

anthropogenic effects worldwide are increasing the stresses on currently available water 

supplies. This water stress is further aggravated by the anticipated effects of a changing 

climate induced as a function of natural climate variability. The climate variability has 

direct impacts, both socially and economically, on mankind (Redmond and Koch, 1991). 

The direct impacts occur through the hydrological cycle, and cause extreme events such 

as floods and droughts that in turn cause damage greater than other natural disasters in 

the United States (Wilhite, 1997; Pielke and Downtown, 2000; Lakshmi et al., 2004; 

Huntington, 2006). Hydroclimatic variables such as precipitation and streamflow are 

directly influenced by climatic variability. The climate variability causes a shift in the 

regime of these hydroclimatic variables. Due to this shift, the variables deviate from their 

normal trend and cause an increase/decrease in their magnitude compared to the normal. 

Large scale changes in these hydroclimatic variables occurring due to the changing 

climate have caused several catastrophic floods and drought events globally. These 

changes have caused large scale destruction both to the nature and mankind. A few 

examples of some catastrophic flooding events are the 1993 flooding events along the 

Mississippi, the 1996 autumn floods in New England, the winter floods of 1997 in Pacific 

Northwest and California, and the Ohio River and Red River valley floods during the 
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spring of 1997 (Karl and Knight, 1997). Similar to floods, a few notable drought events 

are the widespread 1988, 1995-1996 droughts in the Upper Midwest and the Ohio Valley, 

the 1991 drought of California, the 1987 droughts in India, the 1983 droughts in Brazil, 

the 2003 droughts in Europe, and the severe sustained drought within the Colorado River 

Basin since 2000. Moreover, the World Health Organization has estimated 150,000 

deaths since 2000 due to the changing precipitation. These fluctuations in climate often 

force water managers to develop plans to mitigate these extremes that require forecasting 

of hydroclimatic variables.  

 Additionally, changes in the frequency, intensity, and duration of droughts and 

precipitation events are being observed recently that can have a significant impact on 

water supplies both for human societies as well as the terrestrial and marine ecosystems 

(Karl and Knight, 1997). While the current climate change is bound to cause steady 

changes in climate profiles (such as temperature, precipitation) across the planet, IPCC 

(2007) also predicts an increased potential for the prevalence and severity of extreme 

events such as heat waves, cold waves, storms, floods and droughts. Changes in 

hydrology due to climate variability are likely to affect all regions in the United States. 

Of particular interest in the United States are the semi-arid regions of the Southwest 

including Colorado River Basin (CRB) that are projected to dry further with the 

suggested changes already assumed to be in progress (Sax et al., 2000). Several key 

issues have been identified with regards to climate variability in the southwest, these are: 

(a) increase stress on the availability of fresh water resources (Regonda et al., 2005), (b) 

increase in temperature, drought, wildfires and an accelerated transformation of the 

landscape (Mote et al., 2005; Stewart et al., 2005), and (c) increase in extreme flood 
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events that result in numerous socio-economic impacts (Clark et al., 2001). Given the 

high water stress in these areas, the future of water availability in the southwest and 

Colorado River Basin is a cause of serious concern.  

Climatic fluctuations and their effects on precipitation and streamflow have received 

much attention in recent research because of their relation to floods and droughts and 

their possible relation to global warming. Several indices of atmospheric and oceanic 

processes have been developed, and these indices have been shown to be related to 

regular cycles in the magnitude and variability of precipitation and streamflow. The most 

commonly studied oceanic-atmospheric oscillations in the south western United States, 

particularly in the Colorado River Basin, are Pacific Decadal Oscillation (PDO), North 

Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Niño-

Southern Oscillations (ENSO). These indices have been linked with hydrological 

variables for improving the reservoir operations and water resources planning and 

management (Pulwarty and Melis, 2001). Piechota and Dracup (1996) showed that 

ENSO events coincide with major dry and wet spells in the Lower Colorado River Basin 

(LCRB) evidenced by the Palmer Drought Severity Index (PDSI). Kahya and Dracup 

(1993) related the 1941 and 1983 heavy rainfall events in the Southwest U.S. including 

CRB with the ENSO phases. Cayan et al. (1998) showed that there has been a change in 

pattern and amount of precipitation within the Colorado River Basin. Merideth (2000) 

observed that 20th century was initially wetter than average, followed by a mid-century 

dry period followed by a wetter period at the end of the century within the Colorado 

Basin. Clark et al. (2001) showed the influence of ENSO on streamflow patterns over the 

United States. Kahya and Dracup (1993) studied the relationship between ENSO and 
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unimpaired streamflow over the conterminous U.S. and indicated a strong ENSO signal 

in the mid-latitudes of the United States. Tootle et al. (2005) evaluated the streamflow 

responses to coupled and individual effects of four oceanic-atmospheric modes i.e., PDO, 

NAO, AMO, and ENSO over the conterminous United States and found a well-

established ENSO signal along with PDO, NAO, and AMO influencing the streamflow 

variability. Dettinger et al. (1998) studied multi-scale streamflow responses to ENSO 

phenomena for regions in America, Australia, Northern Europe, and parts of Africa and 

Asia and indicated that the streamflow changes are associated with the weakening ENSO 

signals for these regions.  

1.2 Motivation for Current Research 

The documented literature shows that oceanic-atmospheric oscillations do influence 

hydrologic variables i.e. precipitation and streamflow. However, the complex interaction 

between hydrologic variable and oceanic oscillation leads to many difficulties in 

constructing a physically based mathematical model (Lin et al., 2009). An attractive 

alternative to physically based models are the artificial intelligence (AI) models, also 

referred to as machine learning or data-driven models. AI models have gained popularity 

in the hydrologic modeling community because of their ease of use and their success in 

capturing the hydrologic process compared to physically based modeling approaches. In 

brief, AI models are used to determine the relationship between inputs and outputs in an 

empirical format. These models do not employ traditional forms of equations, as in 

physically based models, but instead they extract the relationship between input and 

output by employing flexible and adaptive model structures. Furthermore, if a 

hydrological variable such as precipitation or streamflow is estimated at an aggregate 
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scale e.g., annual stochastic disaggregation techniques can be used to improve the 

temporal resolution to a finer scale such as seasonal or monthly depending on the needs 

of end user.  

The stochastic disaggregation techniques help in establishing long range estimates 

from the historic data and generate synthetic values not seen in the historic records and 

also preserve the statistical properties such as mean, median, standard deviation, and 

skewness. With this motivation, this dissertation used statistical approaches to relate the 

climate variables i.e. oceanic-atmospheric oscillations to precipitation and streamflow to 

increase forecast lead time and attempted to improve the temporal resolution of 

precipitation. The ranges of statistical tools vary from simple regression-based 

approaches to pattern recognition methods such as Support Vector Machines (SVMs) and 

stochastic approaches such as K-Nearest Neighbor (KNN). At this juncture, it is 

important to note that all these approaches are statistical methods and cannot be used to 

establish any concrete physical mechanism. The complexity of the statistical methods is 

directly related to the order of the parameter space in which the regression is performed. 

For this dissertation, the Colorado River Basin of the southwest region of the United 

States is considered in the analysis because it is a hydrologically sensitive area for 

reasons explained earlier. The four most commonly studied oceanic-atmospheric 

oscillations i.e. PDO, NAO, AMO, and ENSO were used in the current research to show 

their interaction with the hydroclimatology of the Colorado River Basin.  

1.3 Research Objective and Questions 

The main objectives of the current research are to increase the precipitation and 

streamflow forecast lead times and to enhance the temporal resolution of precipitation. 
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This will lead to a better understanding of the relationship between ocean atmospheric 

indices and precipitation and streamflow and will potentially assist water managers in 

managing the water resource system (e.g. reservoir releases, allocation of water contracts, 

etc.). In order to achieve the desired objectives, the following research questions and 

related hypothesis are addressed. 

Research Question # 1: What role do oceanic-atmospheric oscillations play in 

generating precipitation in the Colorado River Basin, and, can precipitation forecast lead 

time be increased using oceanic-atmospheric oscillations? 

Hypothesis # 1: There is a strong linkage between oceanic-atmospheric oscillations and 

precipitation within Colorado River Basin and the linkage can be used to improve the 

annual precipitation forecast lead time. 

Research Question # 2: What role do oceanic-atmospheric oscillations play in 

generating streamflow in the Upper Colorado River Basin and can streamflow forecast 

lead time be increased using oceanic-atmospheric oscillations? 

Hypothesis # 2: There is a strong linkage between oceanic-atmospheric oscillations and 

streamflow within Upper Colorado River Basin and the linkage can be used to improve 

the annual streamflow forecast lead time.  

Research Question # 3: How can temporal precipitation disaggregation be achieved 

when the data possess higher climate variability? 

Hypothesis # 3: The nonparametric trend and step (Mann-Kendall, Spearman’s Rho, and 

Rank Sum) change tests can be used as robust statistical methods to assess the variability 

in precipitation within the Colorado River Basin. Also, the KNN approach can be used to 

temporally disaggregate precipitation that exhibits high variability.  
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1.4 Research Outline 

This dissertation follows a manuscript format and starts with this introduction. 

Chapter 2 is a manuscript titled “Estimating Annual Precipitation for the Colorado River 

Basin using Oceanic-Atmospheric Oscillations” that addresses the first research question. 

This work uses a state-of-the-art technique called the Support Vector Machines modeling 

approach to estimate annual precipitation for seventeen climate divisions within Colorado 

River Basin. The focus of this chapter is to explore for possible relationships between 

oceanic-atmospheric oscillations and annual precipitation within the Colorado River 

Basin. Chapter 3 is a manuscript titled “Using Oceanic-Atmospheric Oscillations for 

Long Lead Time Streamflow Forecasting” that addresses the second research question. 

Statistical data-driven SVM modeling approach is used for three naturalized gages in the 

UCRB and annual streamflow is estimated with up to 3 years of lead-time. Chapter 4 

addresses research question 3 and is a manuscript titled “Evaluating Changes and 

Estimating Seasonal Precipitation for Colorado River Basin using Stochastic 

Nonparametric Disaggregation Technique”. This chapter investigates the long-term 

changes in seasonal precipitation for 29 climate divisions encompassing Colorado River 

Basin using three nonparametric statistical tests. In addition to evaluating changes, water 

year precipitation is disaggregated into four seasonal values using KNN technique 

preserving their temporal dependences. Chapters 5 summarize the results and conclusions 

of this dissertation as well as provide recommendations for future research.  
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CHAPTER 2 

2 ESTIMATING ANNUAL PRECIPITATION FOR THE COLORADO RIVER BASIN 

USING OCEANIC-ATMOSPHERIC OSCILLATIONS (SUBMITTED                        

TO WATER RESOURCES RESEARCH) 

Abstract 

Estimating long-lead time precipitation under the stress of increased climatic 

variability is a challenging task in the field of hydrology. A moving period data-driven 

precipitation estimation model using Support Vector Machine (SVM) is presented, which 

uses ocean-atmospheric oscillations to estimate annual precipitation. SVM’s are a class of 

neural networks based on statistical learning theory. Oceanic-atmospheric oscillations, 

comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), 

Atlantic Multidecadal Oscillation (AMO), and El Niño-Southern Oscillations (ENSO) for 

a period of 1900–2007 are used to generate annual precipitation estimates with a 1-year 

lead time. The SVM model is applied to seventeen climate divisions encompassing the 

Colorado River Basin in the western United States. The results indicate that long-term 

precipitation predictions for the Upper Colorado River Basin can be successfully 

obtained using a combination of PDO, NAO, and AMO indices, whereas coupling AMO 

and ENSO results in improved precipitation predictions for the Lower Colorado River 

Basin. The results also show that SVM model provides better precipitation estimates 

compared to the Artificial Neural Network and Multivariate Linear Regression models. 

The overall results revealed that the annual precipitation in the Colorado River Basin is 

significantly influenced by oceanic-atmospheric oscillations. The annual precipitation 

 10



estimates obtained using SVM modeling technique will be useful for the long-term 

management of the water resources within the Colorado River Basin. 

Kalra, A., and S. Ahmad (2011), Estimating annual precipitation for the Colorado River 

Basin using oceanic-atmospheric oscillations, Water Resources Research (in review). 

2.1 Introduction 

2.1.1 Background  

Climatic fluctuations and increasing water demand in growing regions have captured 

the attention of scientific communities to study and predict regional and global 

precipitation variations of interannual and longer time scales (Karl and Knight, 1997; 

Hidalgo and Dracup, 2003; Nayak et al., 2008 and 2010; Kim et al., 2006 and 2008). 

Although precipitation is predominantly episodic, changes in climate often cause a shift 

in the regime of precipitation, which results in such catastrophic events as floods and 

drought. The impact of these catastrophic events on the agriculture, water resources, and 

the environment has been studied by many researchers. With growing water demand in 

many parts of the world, efforts have increased to study and predict regional and global 

precipitation variation in relation to interannual, decadal, and multidecadal climatic 

signals, such as oceanic-atmospheric oscillations. Oceanic-atmospheric oscillations, often 

termed as teleconnections, have been used by researchers across the world to study their 

relationship with precipitation over land surfaces at interannual and longer time scales; 

this relationship, in turn, controls such key components as streamflow, soil moisture, and 

evaporation of the hydrological cycle (Ropelewski and Halpert, 1986; Redmond and 

Koch, 1991; Diaz and Kiladis, 1992; Rajagopalan and Lall, 1998; McCabe et al., 2004; 

Piechota and Dracup, 1996; Kahya and Dracup, 1993; Cayan et al., 1998, and1999; 
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Dracup and Kahya, 1994; Viles and Goudie, 2003; Kim et al., 2006 and 2008; Hidalgo 

and Dracup, 2003; Diaz et al., 2001; Gutzler et al., 2002; Xu et al., 2004; Hu and Feng, 

2001; Kumar and Duffy, 2009). According to Allan et al. (1996), the first use of the word 

‘teleconnection’ in a climate change context was in a paper by Angstrom (1935), whose 

focus was on climate change in the North Atlantic and Europe. Later, the term 

‘teleconnections’ was used by Namias (1963) to evaluate the connections between 

weather phenomena in different parts of the world. Increasingly, climatologists have 

become aware of the modes of climatic variability operating over a range of temporal and 

spatial scales and their interactions with different hydroclimatic variables, including 

precipitation. 

2.1.2 Oceanic Variability and Precipitation  

Recently, much attention has been devoted to how and why precipitation varies in 

association with El Niño-Southern Oscillation (ENSO) events (Kane, 1999; Ropelewski 

and Halpert, 1986; Redmond and Koch, 1991; Piechota and Dracup, 1996; Barlow et al., 

2002). Ropelewski and Halpert (1986) identified the regions in the continental U.S. 

where precipitation and temperature are related to the occurrences of ENSO events. Kane 

(1999) analyzed the association between El Niño and droughts in South Asia and China, 

and indicated that the long-term droughts in Singapore, Brunei, Indonesia, and East Asia 

showed good association with El Niño. Barlow et al. (2002) investigated droughts in 

central and southwest Asia, and observed that regional out-of-phase precipitation is 

related to the large scale climate variability induced by ENSO events. Wang et al. (2000) 

observed positive anomalies of precipitation in the central Pacific and eastern Asia during 

extreme phases of ENSO cycles. Lau and Wu (2001) found that ENSO accounts for 30% 
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of climate-related variability in Asian summer monsoon rainfall. Hu and Feng (2001) 

revealed that warmer phases of ENSO are related to increased summer precipitation 

within the central United States.  

In the southwestern United States, particularly in the Colorado River Basin (CRB), 

various types of climate information have been identified for reservoir operations and 

water resources planning and management (Pulwarty and Melis, 2001). Piechota and 

Dracup (1996) showed that ENSO events coincide with major dry and wet spells in the 

Lower Colorado River Basin (LCRB), as evidenced by the Palmer Drought Severity 

Index (PDSI). Kahya and Dracup (1993) related that the 1941 and 1983 heavy rainfall 

events in the southwestern U.S. including CRB with the ENSO phases. Cayan et al. 

(1998) showed that there has been a change in the pattern and amount of precipitation 

within the Colorado River Basin. Merideth (2000) observed that during the 20th century, 

the Colorado Basin initially was wetter than average, followed by a mid-century dry 

period, followed by a wetter period at the end of the century. Piechota and Dracup (1996) 

and Cayan et al. (1999) have established that wet conditions during El Niño induce high 

flows in Colorado River; similarly, dry conditions during La Niña result in low flows in 

the southwest. Moreover, the correlation between ENSO and southwest U.S. precipitation 

is now routinely considered each year by the National Oceanic and Atmospheric 

Agency’s (NOAA) Climate Prediction Center as well as other forecast centers to prepare 

long-lead time winter outlooks (Colorado River Basin Climate, 2005). 

While the principal focus of the majority of studies has related ENSO with 

precipitation, there are other modes of atmospheric oscillations, for instance, Pacific 

Decadal Oscillations (PDO), North Atlantic Oscillations (NAO), Atlantic Multidecadal 
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Oscillations (AMO), Arctic Oscillation (AO), and Pacific North American (PNA) index. 

These are also important indicators of climate variability and have been linked with 

precipitation both individually and in conjunction with ENSO (Bjerknes, 1966; Giannini 

et al., 2001; Gershunov and Barnett, 1998; Higgins et al., 2000; Brito-Castillo et al., 

2002; McCabe et al., 2004; Wang and Swail, 2001; Dickson et al., 2000). Bjerknes 

(1966) associated equatorial Pacific rainfall patterns with the 1957-1958 El Niño 

episodes. Brito-Castillo et al. (2002) correlated PDO with precipitation along 

northwestern Mexico. Higgins et al. (2000) prepared maps showing PDO-like variability 

affecting the interannual variation across the southwestern United States. Gershunov and 

Barnett (1998) found that common positive and negative phases of ENSO-PDO tend to 

strengthen each other when they are in phase and tend to be weak, unstable, and spatially 

incoherent when they are in opposite phases. Hidalgo and Dracup (2003) analyzed the 

effects of ENSO and PDO on streamflow and precipitation in the Upper Colorado River 

Basin (UCRB), using principal component analysis and wavelets. They found that ENSO 

impacts warm season precipitation, and that PDO shifts are coincident with changes in 

the mean of streamflow and precipitation. McCabe and Dettinger (1999) showed a 

pronounced decadal variation between the Southern Oscillation Index (SOI) and winter 

precipitation across the North America; they related these decadal variations to PDO. The 

AMO and NAO indexes exhibit considerable long-term variability, compared to ENSO 

and PDO. Cancelliere et al. (2007) used a stochastic model of ENSO, NAO, and 

European Blocking (EB) to monitor and forecast droughts in Sicily, Italy. In evaluating 

the climate variability, Giannini et al. (2001) observed that during strong periods of 

southern oscillations, NAO can be in phase and out of phase with ENSO. The responses 
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to changes on NAO over the northern hemisphere oceans during the winter and spring 

seasons and along the Arctic Ocean have been linked with the intensity, distribution, and  

prevalence of storms; wave climate (Wang and Swail, 2001); sea volume and iceberg flux 

(Dickson et al., 2000). Several studies have established links between NAO phases and 

precipitation over the Europe and the Mediterranean (Hurrell, 1995; Qian et al., 2000). 

Wedgbrow et al. (2002) found that positive winter anomalies of the NAO index are 

associated with a negative PDSI across eastern parts of the British Isles. Enfield et al. 

(2001) found that AMO has a strong influence on summer rainfall over the continental 

U.S.; this may adjust the strength of the teleconnection between ENSO and winter 

precipitation. McCabe et al. (2004) found that more than 52% of the spatial and temporal 

variation in multidecadal drought frequency over the continental U.S. is attributed to 

PDO and AMO.  

From the past studies, it is evident that oceanic-atmospheric oscillations do influence 

precipitation. In fact, there have been attempts to use oscillations as predictors to estimate 

precipitation. However, the complex interaction between precipitation and oceanic 

oscillation leads to many difficulties in constructing a physically based mathematical 

model (Lin et al., 2009). An attractive alternative to physically based models are the 

artificial intelligence (AI) models, also referred to as machine learning or data-driven 

models. AI models have gained popularity in the hydrologic modeling community 

because of their ease of use and their success in capturing the hydrologic process 

compared to physically based modeling approaches. In brief, AI models are used to 

determine the relationship between inputs and outputs in an empirical format. These 

models do not employ traditional forms of equations, as in physically based models, but 
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instead they extract the relationship between input and output by employing flexible and 

adaptive model structures. By far, the most popular AI type of models are the Artificial 

Neural Network (ANN) models, which are flexible mathematical structures capable of 

identifying complex non-linear relationships between input and output (Tokar and 

Markus, 2000). The concept of ANN was first introduced by McCulloch and Pitts (1943), 

with the objective being to understand the human brain and emulate its functioning. Since 

then, ANNs have been used extensively in a variety of physical science applications, 

including hydrology. Several researchers have used different types of ANN algorithms to 

forecast precipitation (Raman and Sunilkumar, 1995; Kuligowski and Barros, 1998; 

Tokar and Johnson, 1999; Hsu et al., 1995 and 1997; Tokar and Markus; 2000; French et 

al.; 1992; Luk et al., 2000). Raman and Sunilkumar (1995) used ANN to model rainfall 

time series, and showed the superiority of ANN approach over the Autoregressive 

Moving Average (ARMA) modeling results. Kuligowski and Barros (1998) were able to 

make satisfactory short-term (0-6 h) precipitation forecasts for gages in Pennsylvania, 

using wind direction and antecedent precipitation data as input in an ANN model. A 

detailed review of the ANN applications in hydrology is available in the ASCE Task 

Committee report (2000b).  

Despite having number of advantages, traditional neural network models have several 

drawbacks, including the possibility of getting trapped in local minima and also 

subjectivity in the choice of model architecture (Suykens, 2001). Additionally, the model 

architecture and weights are determined by a trial and error procedure and an iterative 

process, both of which are time consuming (Lin et al., 2009). Due to these drawbacks, 

there is a need for a more sophisticated AI-type data-driven model that is capable of 

 16



efficiently representing the multifaceted interaction between oceanic-atmospheric 

oscillations and precipitation.  

2.1.3 Motivation for Current Research  

To estimate precipitation, the current study uses a different AI-type neural network, 

known as the Support Vector Machine (SVM). Support Vector Machine is an 

approximate implementation of the structural risk minimization (SRM) principle, which 

helps it to generalize well on unseen data (Vapnik, 1995 and 1998). The ability of SVM 

to generalize depends more on either the capacity concepts -- the ability of the machine to 

learn any training set without error than merely on the dimensionality of the space (a 

measure of complexity and expressive power) or else the number of free parameters of 

the loss function (Haykin, 2003). In other words, SVM is a statistical tool that approaches 

the problem of training polynomial function, radial basis function, or neural network 

regression estimators in a way that is similar to neural networks but at the same time by 

using a new approach (Liong and Sivapragasam, 2002). SVM originally was developed 

to solve classification problems; however, it was later used to solve regression problems. 

In comparing SVMs and ANNs, there are two major differences. First, ANN is 

constructed based on the principle of empirical risk minimization (ERM), whereas SVMs 

are based on the SRM principle, which simultaneously minimizes both the empirical risk 

and the complexity of the model. This results in better generalization ability of the model. 

Second, the architecture and weights of ANN are determined by trial and error procedure 

as well as an iterative process that is time consuming. In case of SVMs, the architecture 

and weight are expressed in terms of a quadratic optimization problem, which can be 

rapidly solved by a standard programming algorithm. Due to the stronger optimization 
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algorithm and better generalization ability, SVMs have been successfully applied in 

hydrology to forecast streamflow (Lin et al., 2010; Kalra and Ahmad, 2009; Asefa et al., 

2006; Yu and Liong, 2007; Liong and Sivapragasam, 2002; Dibike et al., 2001), 

precipitation (Lin et al., 2009; Tripathi et al., 2006), and soil moisture (Ahmad et al., 

2010; Gill et al., 2006). A majority of these applications have shown the superiority of 

SVM over the traditional ANN modeling approach. However, even though SVMs are 

considered superior to ANNs or other regression methods, they still are statistical data-

driven models. A number of factors determine the accuracy of a SVM: (a) the choice of 

kernel, which is responsible for the data transformation into the high-dimensional space 

in which SVM performs regression; (b) the magnitudes of Cost (C) and Epsilon, which 

can result in overfitting or underfitting and affect the accuracy of the model’s predictions. 

To overcome these issues, several algorithms and methods have been developed, and are 

available in the literature. 

Climatic fluctuations and their effects on precipitation and streamflow have received 

much attention in recent research because of their relationship to floods and droughts as 

well as their possible relationship to global warming. Several indices of atmospheric and 

oceanic processes have been developed; these indices have been shown to be related to 

regular cycles in terms of the magnitude and variability of precipitation. The current 

study uses the four oceanic-atmospheric oscillations; PDO, NAO, AMO, and ENSO to 

estimate annual precipitation one year ahead for 17 climate divisions encompassing the 

Colorado River Basin. These oscillations have been studied by numerous researchers, 

using different time scales to show their interaction with the western U.S. 

hydroclimatology, particularly the Colorado River Basin. Moreover, these are the only 
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four oceanic indices for which reconstructed data has been developed using tree ring 

information. Additionally, the qualitative relationship between oceanic-atmospheric 

oscillations and precipitation has been studied extensively (Piechota and Dracup, 1996; 

Piechota et al., 1997; Cayan et al., 1998; McCabe and Dettinger, 1999; Hidalgo and 

Dracup, 2003; McCabe et al., 2004; Tootle et al., 2005). However, little attention has 

been paid to understanding the coupled impact of these oscillations on precipitation for 

the Colorado River Basin by using an AI-type data-driven model. Although there have 

been no conclusive answers on the physical processes that link the oceanic-oscillations 

with regional scale hydrologic processes, the oscillations  are still believed to be 

statistically teleconnected to these hydrologic processes to a significant degree (Pulwarty 

and Melis, 2001; Kim et al., 2008). The use of climate oscillations information has the 

potential to improve hydrologic forecasts within a basin (Kim et al., 2008). This possible 

connection is the basis for performing the current study. Therefore, this research is an 

attempt to perform a quantitative analysis by incorporating oceanic-atmospheric 

oscillations in a SVM model to estimate annual precipitation with a 1-year lead time for 

the Colorado River Basin. Once annual precipitation with a 1 year lead time has been 

estimated, stochastic techniques, such as K nearest neighbor (KNN), can be used to 

temporally disaggregate the precipitation into seasonal, monthly, or weekly rainfall 

depending on the need of the end user (Kalra and Ahmad, 2011). Furthermore, annual 

precipitation estimates are helpful in analyzing the sediment yield within the basin, which 

varies as a function of annual precipitation (Wilson, 1973). Precipitation is vital for tree 

growth. Annual precipitation estimates are used in paleo-climate studies to reconstruct 
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past hydrology and to evaluate floods and droughts within the CRB (Stockton and 

Jacoby, 1976; Tarboton, 1994; Gray et al., 2003).     

The current study aims at providing annual precipitation totals with a 1-year lead time 

using oceanic-atmospheric indices in a data-driven model. When estimating annual 

cumulative precipitation, as done in the current study, the standard definition of lead time 

i.e., lags between the predictors and the predictand, may not be appropriate. The current 

study uses the previous year oceanic-oscillation values and estimates annual precipitation 

total for the next-year and refers it as a 1-year lead time. Thus on January 1st of the 

current year, the cumulative precipitation total for the entire current year can be known 

using the proposed modeling approach. In their previous work, the authors have 

successfully increased the streamflow lead time up to three years for the UCRB by using 

an SVM-based model that incorporated oceanic-atmospheric oscillations (Kalra and 

Ahmad, 2009). In addition, the authors have applied the SVM modeling approach to 

successfully capture the spatial and temporal variability in soil moisture in the Lower 

Colorado River Basin by using remote sensing data (Ahmad et al., 2010). In this current 

research, the authors propose a moving period SVM model coupled with oceanic-

oscillations to increase the precipitation estimate lead time up to one year. A moving 

period SVM model is proposed in order to better capture the non-stationary data in the 

precipitation within Colorado River Basin. There have been attempts to increase the 

precipitation lead time; however, whatever modest skills a climatologist may have at 

predicting a 3-9 month lead time arises from ENSO and its effect (Colorado River Basin 

Climate, 2005; Kim et al., 2006 and 2008). Along with extending the forecast lead time 

by using four oceanic-atmospheric oscillations; this current research performs a rigorous 
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sensitivity analysis to determine the coupled and also the individual impact of each 

oscillation mode with respect to annual precipitation. Additionally, the current research 

evaluates long-term changes (Trend and Step) in annual precipitation by using 

nonparametric statistical tests. Two statistical tests, Mann-Kendall and Spearman’s Rho, 

are used to evaluate the trends in the precipitation data; the median-based Rank Sum test 

is used to evaluate the step change. The parametric linear regression test is used to 

evaluate correlation between the oceanic-oscillations and precipitation that is persistent 

over time. In order to show that the moving period SVM approach being proposed better 

captures the interaction between oceanic-oscillations and precipitation, SVM 

precipitation estimates are compared with a feed-forward back propagation ANN model 

as well as a Multivariate Linear Regression (MLR) model. All three models are evaluated 

using root mean squared error (RMSE), mean absolute error (MAE), RMSE-observation 

standard deviation ratio (RSR), correlation coefficient (R), and Nash Sutcliffe coefficient 

of efficiency (NSE). It should be noted that an exhaustive comparison between different 

methods for estimating precipitation under different circumstances is not our goal. We 

compared the results of SVM model to ANN and MLR to explore and compare how well 

the SVM model was able to estimate precipitation within CRB by using oceanic-

atmospheric oscillations.  

The paper is organized as follows. Section 2.2 presents the description of the study 

region. The precipitation data for the climate divisions is described in Section 2.3. The 

SVM modeling approach for estimating precipitation as well as a brief description of the 

statistical tests used in this study is described in Section 2.4. Section 2.5 summarizes the 

long-term changes in precipitation. Section 2.6 and 2.7 provides a discussion of SVM 
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modeling results and highlights the comparison of the SVM precipitation estimates with 

the ones obtained using ANN and MLR models. Section 2.8 summarizes and concludes 

the paper. 

2.2 Study Region 

The Colorado River is the most regulated river in the United States, and is governed 

by the “Law of River” (Sax et al., 2000). It encompasses seven states, and is a major 

source of water to the southwestern United States (Figure 1a). It provides industrial and 

municipal water to nearly 25 million people by means of existing reservoirs, Lake Powell 

and Lake Mead. It provides agriculture water for nearly 3-million acres, and produces 

11.5 billion kilowatt-hours of hydroelectric power. The Colorado River Basin is 

composed of the Upper Basin (Wyoming, Colorado, Utah, and New Mexico) and the 

Lower Basin (California, Nevada, and Arizona). The flow demand between the upper and 

the lower basin is established by the flow at Lee’s Ferry (depicted by a triangle in Figure 

1a), which acts as the hydrologic divide. The majority of the flow (nearly 90%) is 

generated in the Upper Basin from the spring-summer snowmelt. Based on the flow 

contribution, the Upper Basin is subdivided further into eight sub-basins (Figure 1b). As 

evident in Figure 1b, majority of the flow is generated from the Colorado headwaters, 

with minimum contribution obtained from the Dolores sub-basin (Prairie and Callejo, 

2005). The United States is divided into 344 climate divisions, based on the climatic 

boundaries. The Colorado River Basin encompasses 29 climate divisions. Out of these 29 

climate divisions, 17 divisions have greater than 30% of their area within the Colorado 

River Basin (Figure 1a). For the purpose of this study, the climate divisions have been 

sorted according to different states, and have been numbered from 1-17. Table 1 shows 

 22



the nomenclature used to identify each climate division within a particular state. 

Divisions 1-7 and 10-12 are within the Lower Basin, and divisions 8-9 and 13-17 

encompass the Upper Basin. An area-weighted method was employed in the Geographic 

Information System to compute the flow contribution from each of the Upper Basin 

climate divisions. The climate divisions were merged with the sub-basins of the Upper 

Basin (Figure 1b) to compute the percentage contribution of each sub-basin within that 

respective division. This resulted in a maximum flow generated by climate division 8 

(~57%), followed by climate division 17 (~14%), and 16 (~ 11%), as shown in Figure 1c. 

The remaining divisions in the Upper Basin generate less than 6% flow, individually. It 

should be noted that portions of the San Juan and Dirty Devil sub-basins do not intersect 

with any of the Upper Basin climate divisions, and therefore were not included in the 

calculations. This accounts for approximately 5% of the flow. Therefore, the total flow 

percentage in Figure 1c adds up to less than 100%. Additionally, the annual percentage of 

streamflow that occurs in the winter and spring is about 70% in the northwestern and 

central parts, and about 35% in the southern part of LCRB (Thomas, 2007).  
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Figure 1: Map showing the location of (a) the Colorado River Basin and the 17 
climate divisions, (b) percent flow contribution from UCRB to Colorado River, and 
(c) flow generated from each climate division in the Upper Basin. (Note: A portion 
of San Juan and Dirty Devil sub-basins (~5%) are not taken into account, because 
they do not intersect with UCRB climate divisions). The location of Lee’s Ferry is 
indicated by a triangle.  
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Table 1: List of climate divisions used in the study. 
Climate Division NAME State Region

1 NORTHWEST AZ Lower Basin
2 NORTHEAST AZ Lower Basin
3 NORTH CENTRAL AZ Lower Basin
4 EAST CENTRAL AZ Lower Basin
5 SOUTHWEST AZ Lower Basin
6 SOUTH CENTRAL AZ Lower Basin
7 SOUTHEAST AZ Lower Basin
8 CO DRAINAGE BASIN CO Upper Basin
9 NORTHWESTERN PLATEAU NM Upper Basin

10 SOUTHWESTERN MOUNTAINS NM Lower Basin
11 EXTREME SOUTHERN NV Lower Basin
12 DIXIE UT Lower Basin
13 SOUTH CENTRAL UT Upper Basin
14 NORTHERN MOUNTAINS UT Upper Basin
15 UINTA BASIN UT Upper Basin
16 SOUTHEAST UT Upper Basin
17 GREEN AND BEAR DRAINAGE WY Upper Basin  

 

2.3 Data 

The data sets used to estimate annual precipitation are the oceanic-atmospheric modes 

of the Pacific and the Atlantic Oceans as well as the precipitation time series. A brief 

description of the precipitation data is provided below. The oscillation data used in the 

current analysis is similar to the author’s previous work; a detailed description can be 

found in Kalra and Ahmad (2009).  

2.3.1 Precipitation Data 

The precipitation data used in this study is the average monthly time series (inch) data 

for 17 climate divisions, covering a period from 1901-2008. The monthly data set is 

added to obtain the annual precipitation time series for each of the climate division. This 

data is obtained from the National Climate Data Center (NCDC) 

http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl. The NCDC prepares 

the data over each climate division by taking an average of temperature and precipitation 
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from stations, reported by the National Weather Service (NWS) Cooperative Observer 

Program (COOP), within a division. The dataset is corrected for time bias by adjusting 

for the variations in average and monthly mean temperatures described in Karl et al. 

(1986). The count and distribution of the stations within COOP have changed over time 

and may not be representative of topographical impacts of climate within a division. This 

may be considered a limitation in the dataset, but the data corresponds well both spatially 

and temporally to large-scale historic climate anomalies, such as drought (Guttman and 

Quayle, 1996).  

Since its availability, the data has been subject to changes and revisions. The latest 

significant change occurred in late 1960s. It should be noted that the CRB is composed of 

highly varied elevations and climate regimes, and it is difficult to integrate all 

precipitation contributions into a single time series that is representative of the entire-

basin precipitation. Therefore, the climate division data used in the analysis is helpful in 

representing the temporal and spatial variation of precipitation within CRB. The annual 

spread of the input data for each climate division is shown in vertical box plots in Figure 

2. The horizontal line inside the box shows the median value. The box represents the 25th 

and 75th percentile (interquartile range) values, and the whiskers extend from 5th to 95th 

percentile values. The dot inside the box shows the historic mean of the input data. The 

box plots show that the annual precipitation within the CRB exhibits a higher degree of 

variability, as indicated by wider box plots for the majority of the climate divisions. 

Estimating this variability by using oceanic-atmospheric oscillations is a challenging 

task. 
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Figure 2: Box plots depicting annual precipitation data from 1901-2008 for 17 
climate divisions encompassing the Colorado River Basin. The horizontal line inside 
the box shows the median value. The box represents the 25th and 75th percentile 
values (an interquartile range), and the whiskers extend from 5th to 95th percentile 
values. The circular dot inside the box represents the long–term mean of annual 
precipitation. 
 

2.4 Methods 

In this section, statistical tests are discussed that are used to detect the changes (trend 

and step) in annual precipitation from 1901-2008 for the 17 climate divisions 

encompassing the CRB. Also in this section is a description of the SVM modeling 

framework used to estimate annual precipitation from oceanic-atmospheric oscillations 

for the 17 climate divisions.  

2.4.1 Statistical Tests 

The current study used nonparametric tests to evaluate the changes (trend and step) in 

annual precipitation from 1901-2008 for 17 climate divisions encompassing the Colorado 

River Basin. The trend in annual precipitation is evaluated using the Mann-Kendall 

(Mann, 1945; Kendall, 1975) and Spearman’s Rho (Lehmann, 1975) tests; the median-

based Rank-Sum test is used to evaluate the step change (Chiew and Siriwardena, 2005). 

In step change studies, the data is divided in two portions in order to evaluate the 

presence of a step in the hydrologic time series. Based on the literature, 1977 was used as 
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the year showing the step change (Kerr, 1992; Beamish et al., 1997; Holbrook et al., 

1997; Mantua and Hare, 2002; Kalra et al., 2008). The use of nonparametric tests is 

preferred over parametric tests because nonparametric tests are thought to be more 

suitable for non-normally distributed data and censored data, which are frequently 

encountered in hydro-meteorological time series. The serial independence of a time series 

is still required in nonparametric tests. Moreover, the tests are rank-based procedures and 

are not influenced by the use of skewed variables (Maidment, 1993). Examples of use of 

these tests for detecting trends in hydrological and hydro-meteorological time series have 

been well documented in the available literature (Bunting et al., 1976); Frei and Schar, 

2000; Haylock and Nicholls, 2000; Hennessy et al., 1999; Karl and Knight, 1997; 

Gonzalez-Hidalgo et al., 2001; Luis et al., 2000; Timbal, 2004; Kalra et al., 2008; Miller 

and Piechota, 2008; Kalra and Ahmad, 2011). Each climate division is evaluated 

independently to detect any change in the data. Agreement of the Mann-Kendall and 

Spearman’s Rho tests is used to identify the trend in the time series. For step change, the 

Rank-Sum test has to be significant to show any change in the data. If for a particular 

climate division both the trend and step changes are significant, the change is referred to 

be occurring due to the step change in the data.  

The tests are evaluated for confidence levels of 95% (p≤0.05). Trend software by 

Chiew and Siriwardena (2005) is used for detecting the changes in the annual 

precipitation. This program is designed to facilitate statistical testing for trend, change, 

and randomness in hydrological data as well as other time series data. Interested readers 

are referred to Chiew and Siriwardena (2005) for detailed explanation of these statistical 

tests. Beside nonparametric tests, the parametric linear regression test is used to compute 
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the Pearson correlation coefficient between the oscillations modes and lag 1 precipitation. 

This helps to evaluate the persistence over time among the different oscillations and 

precipitation for the Colorado River Basin. 

2.4.2 SVM Modeling  

The following is a brief explanation of the underlying principles of SVM. A more 

detailed discussion on the subject within the general framework of statistical learning 

theory can be found in Vapnik (1995 and1998). The basic concept of Support Vector 

Regression (SVR) is to map, nonlinearly, the original data x into a higher dimensional 

feature space such that 

f = wΦ(xi)+b                     (1) 

where Φ(xi)  is a input feature and both w and b are coefficients. The coefficients are 

estimated by minimizing the regularized risk function 
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where C is the cost that determines the trade-off between the complexity of the 

function f and the tolerance for error in the prediction of the function, y ∈  R, taken from 

a set L of independent and identically distributed (i.i.d.) observations; K is the number of 

support vectors; and ε is called the Vapnik’s insensitive loss function. The Vapnik’s ε-

insensitive loss functions acts as a threshold, in the sense that errors less than ε are not 
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considered. Additionally, ξi and ξi
* are the slack variables that determine the degree to 

which samples will be penalized with errors larger than ε. Interested readers are referred 

to Kalra and Ahmad (2009) for the working mechanism as well as an example of the 

SVM modeling approach.  

A typical modeling framework of any AI model consists of the following four steps: 

1) preparation of training and testing data suitable for model, 2) training the model using 

trained data set, 3) testing the trained model using the testing data set, and 4) cross-

validating the model using the entire data set. Step 1 is essential in every data-driven 

modeling application. Steps 2 and 3 are applied collectively in nonparametric stochastic 

modeling applications, for example, KNN; these two steps have never been merged in 

SVM approaches, based on information from prior studies and the authors’ best 

knowledge. Step 4 is applied at the end to show the robustness of the model: it tests to see 

if different training and testing datasets do not yield different results that lead to different 

conclusions. To make the SVM modeling framework more robust and to improve the 

efficiency of the SVM approach as a better forecasting tool, the current research proposes 

a modified SVM modeling framework that combines Steps 2 to 4. The proposed 

modeling approach is called the Moving Period Support Vector Machine technique and is 

described in the ensuing section.  

2.4.2.1 Moving Period SVM Approach 

The Moving Period SVM approach is a special case of the k-fold cross validation 

technique (Geisser, 1975; Stone, 1974). Each fold is held out, in turn; the model is trained 

on the remaining dataset and tested on the held-out fold. In this case, k = N, where N is 

the number of observations in the dataset. The proposed approach is robust, not being 
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period-specific, and can effectively relate the output to the relative input. The modeling 

approach for a single climate division is performed as follows. 

Let the number of observations be denoted by N. Let i represent the current instance, 

which is also representative of the testing instance (i = 1). For each instance i, the training 

set will be comprised of [1,i) U (i,N]. This will train the model on all instances, except 

for instance i, and will test the model on instance i only. This process is repeated for all 

instances and stops when i = N+1. A brief description of the step-by-step algorithm is 

described below: 

Step 1. Let [Xi] represent the data matrix comprising of all observations used in the study 

 of length N, where i is the featured instance and varies from 1:N. 

Step 2. Partition matrix [Xi] into two sub-matrices, [Ai] and [Bi], such that [Ai] is of 

 length N-i and [Bi] is of length i. 

Step 3. Train the SVM model on [Ai] and test the model on [Bi].  

Step 4. Repeat steps 1-3 for all the featured instances. 

Step 5. Evaluate model performance for all instances (pooled) of [Bi]. 

Step 6. Apply steps 1-5 for other climate divisions. 

The performance of SVM depends on the choice of kernel as being a kernel’s 

parameterization problem. In this study, a radial basis kernel is used in the SVM model; 

this has performed better when compared with other kernels, such as linear, polynomial, 

sigmoid or spline, as evident in the past studies (Schölkopf et al., 1997; Smola et al., 

1998; Dibike et al., 2001; Yu and Liong, 2007; Khalil et al., 2006; Gill et al., 2006; Asefa 

et al., 2006; Twarakavi et al., 2006 and 2009). 
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Based on the modeling approach described, four SVM models are developed using 

annual oceanic-oscillations PDO, NAO, AMO, and ENSO for time step ‘t’ in order to 

estimate precipitation at ‘t+1’ (t is in year) for 17 climate divisions encompassing the 

Colorado River Basin. Each climate division is considered independent, and separate 

SVM models are developed for each division. The SVM models are developed by using 

the software package included in the ‘R’ software (http://www.r-project.org/). Model I is 

termed as the “base case,” and uses all four oceanic modes to estimate annual 

precipitation. To estimate precipitation, models II and III uses a combination of 3 and 2 

oscillation modes, respectively. Model IV uses a single oscillation mode to estimate 

precipitation. The major reason for developing models II - IV is to evaluate the role of 

individual and coupled oceanic-oscillations in estimating precipitation within the basin.  

The performance of SVM regression depends on the good selection of so-called hyper 

parameters: cost (C), insensitivity value (ε), and the radial basis kernel width (γ). 

Previous studies have used the following three procedures to estimate hyper parameters 

in any SVR formulation: (1) based on prior knowledge and user expertise, (2) using grid 

based search, and (3) using an analytical approach based on the statistical properties of 

the training data. In the current study, a grid-based search was adopted to compute the 

hyper parameters. The objective of a grid search is to obtain hyper parameters by 

estimating the error prediction for a training data set for every possible combination 

within a feasible hyper parameter space. The hyper parameters, which result in minimal 

error, are selected as optimal values. A number of previous studies have used similar 

approaches (Asefa et al., 2004 and 2005; Gill et al., 2006; Kalra and Ahmad, 2009; 

Twarakavi et al., 2006 and 2009; Ahmad et al., 2010; ) 
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Furthermore, the performance of the moving period SVM model is compared with the 

two most widely used hydrologic time series modeling approaches, the Artificial Neural 

Network (ANN) and the Multivariate Linear Regression (MLR). Many ANN structures 

have been tested since the 1950s. The most widely employed structure includes the feed-

forward neural network with back propagation momentum learning algorithm. The ability 

to learn is one of the most important characteristics of the ANN model. Despite 

differences in detailed structures and the number of layers among ANN models, the ANN 

model performs two basic functions: (1) a learning process that classifies the inputs to 

hidden layers, and (2) an optimization process that maps the classified inputs to outputs. 

This current study employed a feed-forward back propagation ANN model, which is 

composed of one input layer, one hidden layer, and one output layer containing a single 

node. A tan sigmoid function was employed in the hidden layer neurons, and a linear 

transfer function was used at the output node. Several combinations of ANN model 

parameters, such as the number of hidden layers, the type of activation function, and the 

number of training functions, were tried before selecting an optimal parameter set that 

gave sufficient convergence. Additionally, this ANN-type model has been used in earlier 

modeling studies involving different hydroclimatic variables (Raman and Sunilkumar, 

1995; Kuligowski and Barros, 1998; Tokar and Johnson, 1999; Hsu et al., 1995, Ahmad 

and Simonovic, 2005; Melesse et al., 2011). A more detailed description on the 

theoretical aspects of ANN is available in ASCE Task Committee (2000a). The other 

type of model developed is the parametric Multivariate Linear Regression model, which 

consists of oceanic-oscillations as the predictors and annual precipitation as the 
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predictand. The framework (training and testing data set) used to develop the 

corresponding ANN model and MLR model is similar to the SVM modeling approach.  

2.4.2.2 Model Performance Evaluation 

Several techniques have been published in the literature to evaluate the performance 

of hydrological time series forecasting models. The current study uses five performance 

measures: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), RMSE-

Observation Standard Deviation Ratio (RSR), Correlation Coefficient (R), and Nash 

Sutcliffe Coefficient of Efficiency (NSE). RMSE, MAE, and R are the most commonly 

used error index statistics. Lower RMSE and MAE represent better model performance 

(Singh et al., 2005). R is an index of the degree of linear relationship between observed 

and predicted values. R varies from -1 to 1; this variable is oversensitive to high extreme 

values (outliers) and insensitive to additive and proportional difference between model 

predictions and measured data (Legates and McCabe, 1999). RSR standardizes RMSE by 

using the standard deviation of observations (Moriasi et al., 2007); it is calculated as the 

ratio of RMSE to the standard deviation of observed data. RSR can vary between 0 and a 

large positive value, where 0 indicates zero RMSE or residual variation and, therefore, a 

perfect model fit. The lower the RSR, the lower the RMSE and better the model 

performance. RSR is calculated using the following formula:  

ObsSTDEV
RMSERSR =                    (4) 

NSE is used to access the predictive power of hydrological models. It is the 

normalized statistic that determines the relative magnitude of the residual variance 

(“noise”) compared to the measured data variance, and indicates how well the plot of 

observed versus predicted data fits the 1:1 line (Moriasi et al., 2007). It is defined as 
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where yi is the predicted precipitation value, xi is the observed value, x  is the long-

term mean of observed data, and N is the total number of years, for example, 108. NSE 

ranges from -∞ to 1. NSE equal to 1 corresponds to perfect match between the observed 

and predicted values, NSE equal to 0 shows that model predictions are same as the mean 

of the observed data, and NSE less than 0 occurs when the mean of the observed data is 

better predictor than the model.  

Table 2, which is abstracted from Moriasi et al. (2007), shows the performance 

measures for RSR, NSE, and R for predicting precipitation at monthly time step. In 

general, model performance can be judged satisfactory if RSR ≤ 0.70 and NSE > 0.5 

(Moriasi et al., 2007). It should be noted that Moriasi et al. (2007) recommended a value 

of R > ±0.5 for a model performance to be considered satisfactory; however, the current 

study uses a stricter criteria, and considers the model performance as satisfactory when R 

was > 0.7. According to U.S. EPA (2002), the process used to accept, reject, or qualify 

model results should be based on strict guidelines and documented before evaluating the 

model. Therefore, based on the above mentioned performance measures, the efficiency of 

all the three models (SVM, ANN, and MLR) are evaluated in the current research.  
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Table 2: Recommended performance measures at monthly time steps. Performance 
measures for RSR and NSE are taken directly from Moriasi et al., 2007; the 
performance measure for R is modified by the authors. 
Performace Rating RSR R* NSE

Very Good 0.0 - 0.50 0.85 - 1.0 0.75 - 1.0
Good 0.51 - 0.60 0.81 - 0.85 0.65 - 0.75

Satisfactory 0.61 - 0.70 0.71 - 0.80 0.51 - 0.65
Unsatisfactory > 0.70 ≤ 0.70 ≤ 0.50  

 

2.5 Statistical Properties of Annual Precipitation and its relation with Oscillation 

Modes  

Figure 3 shows the spatial profile of (a) trends and (b) step changes in annual 

recipitation for the 17 climate divisions encompassing the Colorado River Basin. An 

increasing trend is noted for climate division 10, and decreasing trends are noted for 

Divisions 1 and 17 (Figure 3a). Annual precipitation remained relatively unchanged for 

the remaining climate divisions. Contrary to trend change, an increasing step change in 

annual precipitation is noted for 9 climate divisions within the Colorado River Basin 

(Figure 3b). Six of these divisions are in the Lower Basin and the remaining three are in 

the Upper Basin. Similar to trend change, Division 10 shows an increasing step change 

and Division 17 shows a decreasing step change in annual precipitation, indicating that 

the changes for these climate divisions are attributed to an abrupt step change and are not 

due to a gradual trend change.  
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Figure 3: Spatial maps showing the (a) trend change, and (b) step change in annual 
precipitation for 17 climate divisions encompassing the Colorado River Basin. 
 

 The visual identification of step change for selected climate divisions is shown in 

Figure 4. The plot indicates an apparent jump in the mean value, either an increase or a 

decrease for the selected climate divisions around the years 1976 to 1977. This jump 

coincides with the ‘regime shift’ of mid-1970s in the North Pacific Ocean Sea (Hare and 

Mantua, 2000). Following the regime shift, a deeper Alteutian low was associated with 

advection of warmer and moist air to the North American West Coast and colder air over 

the North Pacific, producing changes in atmospheric thermodynamic and moisture 

carrying mechanisms (Ingraham et al., 1991). Additionally, these changes manifested as a 

southward shift of normal tracks, changes in the physical environment, and anomalous 

precipitation patterns (Trenberth and Hurrell, 1994). This shift has been well documented 

in the literature (Hollowed and Wooster, 1992, Trenberth and Hurrell, 1994; Mantua et 

al., 1997; Hare and Mantua, 2000). It should be noted that, universally, there is no 

common definition of step change. Majority of the times, changes in natural phenomenon 

over time can be characterized by step change. The shift in hydrologic time series can 
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also be due to the changes in climate resulting from increased CO2 emissions or natural 

variability. Detecting these shifts is of paramount scientific and practical significance for 

water resource systems that are designed and operated on the assumption of stationarity 

(Milly et al., 2008). If the assumption is incorrect then the water systems need to be re-

designed to adequately serve the purpose.  

 

 
Figure 4: Bar plots depicting step changes (increase/decrease) in annual 
precipitation for (a) Climate Division 2, b) Climate Division 7, c) Climate Division 
16, and (d) Climate Division 17. The dotted line shows the pre- and post-1977 mean 
values.  
 

The change results, both in trend and step, indicate that the majority of the climate 

divisions encompassing the northeastern and southern region of the Lower Basin have 

witnessed increase in annual precipitation due to an abrupt step change, compared to the 

changes in the Upper Basin precipitation. The mountainous northern region (Climate 

Division 17) has decreasing precipitation change due to the step change. This region has 
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precipitation primarily in the form of snow, which is generated by the frontal systems 

originating in the North Pacific Ocean. Precipitation in this region replenishes the 

mountain storage and is a source of runoff in the critical spring season, which generates 

approximately 14% (Figure 1c) of the flow in the Colorado River. Decreasing 

precipitation changes for this region will affect the runoff generated in the Upper Basin. 

The trends indicated in the current analysis are in agreement with the findings of some 

other studies. For example, Regonda et al. (2005) showed statistically significant 

increases in winter precipitation in the majority of the Lower Basin region, and decline in 

the monthly snow water equivalent (SWE) over half of the western U.S., including Upper 

Basin. Coincident with these trends, Knowles et al. (2007) reported a general decline in 

the SWE for the western United States and the upper Colorado region during a period 

from 1948 to 2001. In addition to these, Hamlet et al. (2005) and Stewart et al. (2005) 

have documented decreasing snowpack and earlier runoff in the Colorado region. Trends 

in annual historic precipitation data compiled by NOAA indicated an average of a 6.1 

percent increase in annual precipitation over the conterminous United States since 1900, 

although there was considerable regional variability (IPCC, 2007). The greatest increases 

were noted for the eastern, northern, and central U.S. climate regions and also the 

southern region, which included the Lower Colorado River Basin. Hawaii was the only 

region to show a decrease in annual precipitation. According to the Intergovernmental 

Panel on Climate Change (IPCC) report (2007), there will be a global increase in the 

mean surface air temperatures between 1.1oC to 6.4oC by 2100. This will accelerate the 

evaporation rate, which may result in more precipitation falling as rain instead of snow in 

snowmelt driven watersheds, such as the Colorado River Basin. The majority of the 
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precipitation in the CRB (particularly LCRB) is bi-seasonal with moisture contributions 

from frontal systems, tropical cyclones, and the summer monsoon. The main source of 

runoff is the precipitation during the winter and spring season; changes in precipitation 

can lead to the shift in the timing of the spring-summer peak runoff. This study shows 

that the increases in annual precipitation within majority of the CRB are due to the step 

change, and not due to a trend in the data. This is because if a climate division indicates 

both trend and step change, the final change is attributed to the abrupt step and not to a 

gradual trend in the data. Therefore, it becomes necessary to distinguish between a 

gradual trend change and an abrupt step change for climate studies.  

Additionally, the pattern of the trend change can be linear and continuous, whereas 

step changes are nonlinear, can occur abruptly, and may reoccur in the future (McCabe 

and Wolock, 2002). Furthermore, the changes in annual precipitation are in agreement 

with the authors’ recent work that indicates that the Lower Basin is getting wetter, 

compared to the Upper Basin, due to an abrupt step change (Kalra and Ahmad, 2011). 

The authors indicated that the step increases in Lower Basin precipitation can be linked 

with the climate variability associated with ENSO events. Several studies have 

documented that ENSO has a pronounced effect on the hydroclimatology in the Lower 

Basin, compared to the Upper Basin. Furthermore, knowing these shifts in advance can 

potentially assist water managers in getting prepared for extremes in climate (Regonda et 

al., 2005). Moreover, finding these changes are significant for management of regional 

water resources and reservoir operations because precipitation in the form of snow has 

traditionally played a central role in determining the seasonality of natural runoff within 

CRB. In many regions of Upper Basin, the precipitation is stored as snow during winter; 
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this accounts for a significant portion of spring and summer inflow to lower elevation 

reservoirs (Cayan et al., 1998; Regonda et al., 2005; Stewart et al., 2005). Overall, the 

change results indicate that the annual precipitation data within CRB exhibits variability; 

it also brings into question the assumption of stationarity. As mentioned earlier that water 

resources systems are designed on the assumption of stationarity, and questioning this 

assumption has implications for the future design of water resource systems. Therefore, it 

becomes necessary to verify the non-stationarity properties of precipitation in order to 

better represent the temporal and spatial characteristic of precipitation, such as the 

seasonal effect and climate variability (Segond et al., 2006). Therefore it becomes 

necessary to use the climate information when estimating precipitation. Due to this 

reason, current research used an AI-type, data-driven SVM model coupled with oceanic-

oscillations to improve precipitation estimate within the CRB.  

Table 3 shows a parametric linear correlation coefficient of lag 1 between the 

oscillation modes and annual precipitation for 17 climate divisions encompassing the 

CRB. As reported by previous researchers, the correlation coefficients generally are 

computed to investigate the link between large-scale oceanic-atmospheric variability and 

the hydroclimatic variable, in this case annual precipitation, to examine the potential 

predictors (Grantz et al., 2005; Singhrattna et al., 2005). The significant correlations for 

each of the combinations are highlighted in bold, and the minimum and maximum 

correlation values for a particular set are circled.  

When correlating PDO index with the 17 climate divisions for a one-year lead time, 

the correlation values resulted in 11 climate divisions exceeding 90% significance, with 

Climate Division 10 having the maximum correlation and Climate Division 14 having the 

 41



minimum correlation. Five of these divisions are in the Upper Basin, and the remaining 

six in the Lower Basin. In case of NAO, 8 climate divisions exceeded the 90% 

significance with Division 17 having the maximum correlation and Division 14 having 

the minimum correlation. Seven of these divisions are in the Lower Basin, and the 

remaining division is in the Upper Basin. When relating AMO and ENSO, 12 and 7 

climate divisions exceeded the 90% significance, respectively. In case of AMO, Climate 

Division 7 has the maximum correlation, and Climate Division 13 has the minimum 

correlation. In case of ENSO, Climate Division 12 has the maximum correlation, and 

Climate Division 1 has the minimum correlation. PDO shows a stronger association with 

Upper Basin precipitation, whereas NAO and AMO show a comparable stronger 

association with Lower Basin precipitation. On the other hand, ENSO shows a 

pronounced effect in the Upper Basin, as evident by a significant correlation for the 

majority of the climate divisions (Table 3). Additionally, among the predictors, only the 

combinations of PDO-ENSO (± 0.50) and NAO-AMO (± 0.41) had significant 

correlations at 90% significant level. However, to form the basis for a skillful forecast, 

coefficient values alone cannot be considered. Correlations analysis is a first step to 

verify the potential predictors for each climate division that show significant relationships 

with annual precipitation in the CRB. Furthermore, each climate index individually and 

in combination is analyzed by means of the SVM forecast model, and the results are 

discussed in the ensuing section.  
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Table 3: Correlation coefficient between oscillation modes and annual precipitation 
for 17 climate divisions at p≤0.1 confidence level. The significant correlations are 
shown in bold. The minimum and maximum correlation values for each subset are 
circled. 
Climate Division Region PDO NAO AMO ENSO

1 Lower Basin 0.15 0.19 -0.12 -0.06
2 Lower Basin 0.24 0.18 -0.33 -0.16
3 Lower Basin 0.12 0.18 -0.33 -0.10
4 Lower Basin 0.08 0.19 -0.32 -0.11
5 Lower Basin 0.23 0.16 -0.24 -0.13
6 Lower Basin 0.13 0.17 -0.30 -0.18
7 Lower Basin 0.18 0.18 -0.34 -0.14
8 Upper Basin 0.18 0.10 -0.23 -0.12
9 Upper Basin 0.28 0.11 -0.24 -0.13

10 Lower Basin 0.32 0.08 -0.19 -0.12
11 Lower Basin 0.22 0.17 -0.21 -0.22
12 Lower Basin 0.29 0.05 -0.14 -0.29
13 Upper Basin 0.27 0.04 -0.06 -0.24
14 Upper Basin 0.07 -0.01 -0.07 -0.18
15 Upper Basin 0.20 0.02 -0.15 -0.16
16 Upper Basin 0.16 0.05 -0.19 -0.15
17 Upper Basin 0.15 0.22 -0.18 -0.19

90% Significant 11 8 12 7  
 

2.6 Results and Discussion 

Using the method described earlier, first the SVM Model I (base case) 1-year lead 

time precipitation estimates for the 17 climate divisions encompassing the CRB are 

discussed. Next, the coupled and individual effects of oscillations on annual precipitation 

(Models II-IV) are analyzed. Lastly, the annual precipitation estimates obtained using the 

SVM models are compared with the ANN and MLR model estimates.  

2.6.1 Model I  

In Model I, all four oscillations modes are used to estimate annual precipitation with a 

lead time of one year. This results in one model run for each climate division. Figure 5 

shows the scatter plots between the measured and estimated annual precipitation for the 

17 climate divisions for the period of record (1901-2008). A good match is obtained 

between the measured and estimated annual precipitation for majority of the climate 
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divisions. Correlation values for R exceeding 0.70 are obtained for all the climate 

divisions, indicating that the model performs reasonably well in capturing the extreme 

values (high and low). Better predictions are obtained for climate divisions in the Upper 

Basin compared to the Lower Basin. This is evident by the sample points following the 

450 bisector line for majority of the Upper Basin Climate Divisions, indicating a good 

model fit. A point lying far above the bisector line indicates higher estimates, whereas a 

point far below the line shows lower estimates. For Climate Divisions 1, 5, 6, 11, and 12 

of the Lower Basin, the model does fairly well at the low values; however, a few of the 

high values are scattered away from the bisector, indicating that the model was not able 

to capture them satisfactorily.  

 

 
Figure 5: Scatter plot between measured and SVM estimated precipitation for 17 
climate divisions for Model I. Dashed line is the 450 bisector. 
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In order to use the model output for tasks ranging from regulation to research, models 

should be scientifically sound, robust, and defensible (U.S. EPA, 2002). This can be 

achieved by evaluating the performance of the model in terms of the accuracy of the 

simulated data compared to the measured data. Based on Table 2, Figure 6 shows the 

spatial map of the 17 climate divisions, depicting the three performance measures (RSR, 

R, and NSE). Based on RSR, the model shows good precipitation estimates for the 

climate divisions in the Upper Basin, and satisfactory estimates for the Lower Basin 

climate divisions. Based on Figure 1c, climate divisions generating more than 90% of the 

Upper Basin flow have RSR error statistic in the range of 0.51-0.60 (good estimates per 

Table 2). All the divisions in the Lower Basin, except Division 1, have RSR in the 

satisfactory range (0.61-0.70). The RSR measure indicates that the model performs 

unsatisfactorily in estimating precipitation for climate Division 1 (RSR > 0.7). The 

correlation statistics R agrees with the results of RSR, indicating that a good correlation 

(0.81< R < 85) is achieved between the measured and estimated precipitation for the 

Upper Basin climate divisions and a satisfactory value (R > 0.7) for the climate divisions 

in the Lower Basin. In case of NSE error statistics, the climate divisions that generate 

approximately 60% of the Upper Basin flow have good precipitation estimates (NSE > 

0.65). The remaining Upper Basin divisions have satisfactory estimates (0.51-0.65), and 

the Lower Basin’s divisions are in the satisfactory range, except for Division 1. Overall, 

the SVM model is able to provide satisfactory estimates for all the climate divisions, 

except for Division 1. It should be noted that even in case of Climate Division 1, results 

are only slightly below or above the satisfactory levels, with RSR, R and NSE values of 

0.71, 0.71 and 0.49, respectively. Similar results are noticed for RMSE and MAE error 
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statistics, as evident in Table 4. Better results – that is, low RMSE and MAE values are 

obtained for the majority of the climate divisions in the Upper Basin compared to the 

Lower Basin divisions.  

 
Table 4: Performance measures for SVM Model I output. The RMSE and MAE 
values are in inches (1 inch =2.54 cms). 

Clim Div RMSE MAE RSR R NSE
1 2.38 1.25 0.71 0.71 0.49
2 2.03 1.15 0.63 0.80 0.60
3 3.09 1.68 0.69 0.74 0.52
4 3.50 1.88 0.66 0.78 0.56
5 1.29 0.73 0.66 0.78 0.56
6 2.04 1.03 0.62 0.80 0.61
7 1.98 1.06 0.61 0.81 0.62
8 1.53 0.87 0.57 0.83 0.67
9 1.47 0.81 0.57 0.83 0.67
10 1.64 0.94 0.60 0.81 0.63
11 1.53 0.91 0.66 0.78 0.57
12 2.14 1.10 0.59 0.83 0.65
13 1.57 0.90 0.59 0.81 0.65
14 2.57 1.49 0.64 0.78 0.58
15 1.29 0.75 0.63 0.79 0.59
16 1.38 0.76 0.60 0.82 0.64
17 1.37 0.76 0.59 0.82 0.65  

 

 
Figure 6: Spatial maps showing the range of performance measures for 17 climate 
divisions for Model I: (a) RSR, (b) R, and (c) NSE. 
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Based on Model I results, SVM model performs satisfactorily in capturing the 

temporal variability in annual precipitation for a one-year lead time by using large-scale 

climate patterns for the 17 climate divisions within the Colorado River Basin. The scatter 

plots (Figure 5) and the spatial maps of the performance measures (Figure 6) show that 

the model produces good precipitation estimates for the Upper Basin divisions, whereas 

satisfactory estimates (except for Climate Division 1) are obtained for the Lower Basin 

divisions. This is of importance: an accurate precipitation estimate within the UCRB will 

be helpful for the water managers in efficient planning and management of water 

resources within the Colorado River Basin because, on average, 90% of the streamflow is 

generated in the Upper Basin above Lee’s Ferry. The flow to the Lees Ferry gage is 

controlled by the precipitation in the Upper Basin. This gage is on the hydrologic divide 

between the Upper and Lower Basins, and is used as the measurement point for the 

allocation for water between the two basins. Overall, it is justifiable to state that annual 

precipitation estimates are in the range of satisfactory to good for Model I at ‘t+1’ when 

using all the four oscillation indices. This shows that all the four oscillations modes have 

some effect on the hydroclimatology of the Colorado River Basin, and can be 

satisfactorily captured using an AI-type, data-driven SVM model. The coupled and 

individual impacts of the oscillations in relation to precipitation can vary within the 

Upper and Lower Basins. To better understand this variability, Models II-IV are used to 

analyze the coupled and individual oscillations in relation to annual precipitation within 

the CRB; these results are described in the ensuing section.  
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2.6.2 Coupled and Individual Response of Oscillation in relation to Annual 

Precipitation 

To analyze the coupled and individual response of oscillation in relation to annual 

precipitation, separate SVM models (Models II-IV) are created for each climate division, 

as described in section 2.6.2.1. Precipitation estimates ranging from satisfactory-to-good 

are obtained using Model I, and are used as a baseline (or threshold) to compare 

precipitation estimates obtained from Models II-IV. This will help to better understand 

the coupled and individual responses of oscillation modes in relation to precipitation 

within the two regions of CRB. Additionally, understanding the forcing mechanisms that 

affect hydroclimatic conditions in CRB will provide useful information for water 

resources planning. Similar to Figure 6, spatial maps depicting the three performance 

measures RSR, R, and NSE are created for Models II-IV (Figures 7-9).  

2.6.2.1 Model II-Model IV  

In Model II, oscillations are dropped individually, and the remaining three oscillation 

modes are used to predict annual precipitation. This results in four model runs for each 

climate division; the results are shown in Figure 7. By dropping ENSO and using  the 

remaining three oscillations (PDO, NAO, and AMO) as input to the model, an 

improvement results in RSR (Figure 7a) and R (Figure 7b) error statistics for three 

climate divisions in the Upper Basin and five climate divisions in the Lower Basin, 

compared to Model I results. The NSE (Figure 7c) shows improvement in three climate 

divisions in both the Upper Basin and Lower Basin, compared to Model I results. The 

divisions showing improvement in the Upper Basin generate approximately 67% of the 

flow in the Colorado River, based on Figure 1c. The climate divisions showing 
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improvement in Lower Basin encompass the northern and central portion, generating 

approximately 70% of the flow (Thomas, 2007) in the Lower Basin. Deterioration in 

RSR and R error statistics is noted only for Climate Division 13 in the Upper Basin, 

generating approximately 2% of the flow. Based on the flow contribution, the 

precipitation estimates are in the range of very good for the Upper Basin and good for the 

Lower Basin, using a combination of PDO, NAO, and AMO.  

 

 
Figure 7: Spatial maps showing the range of performance measures for 17 climate 
divisions for Model II: (a) RSR, (b) R, and (c) NSE. 
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By dropping AMO and using the combination of PDO, NAO, and ENSO as inputs in 

the model, all the three error statistics deteriorate for Climate Division 16, which 

generates approximately 11% of the flow, compared to Model I results. RSR shows an 

improvement in Division 14, whereas improved correlation is noted for Divisions 13 and 

14 in the Upper Basin. NSE shows an improvement for the divisions of the northwest 

portion of UCRB, generating approximately 22% of the flow. For the Lower Basin, 

improvement in precipitation estimates is noted for Divisions 1 and 10 by using RSR 

statistics; deterioration in the correlation is noted for Divisions 6 and 7, compared to 

Model I. NSE error statistics show an improvement for Division 10 and deterioration for 

Division 3, compared to Model I. Overall, the results are comparable with the Model I 

results for both the Upper Basin and the Lower Basin, and lie in the range of satisfactory 

to good.  

By dropping NAO and using PDO, AMO, and ENSO, deterioration occurs in RSR 

and R error statistics for 2 climate divisions in the Upper and Lower Basins, compared to 

Model I results. The NSE statistic indicates deterioration for Climate Divisions 8 and 9, 

generating approximately 62% of the flow; Division 17, which generates approximately 

14% of the flow, shows improvement in the Upper Basin. The NSE error statistics for the 

Lower Basin are similar to Model I results. Overall, this combination resulted in 

deterioration of precipitation estimates for the climate division in the Upper Basin; 

however, no significant improvements are noticed for the climate divisions of the Lower 

Basin. Dropping PDO and using NAO, AMO, and ENSO as inputs to the model showed 

similarity with Model I performance measures for majority of the climate divisions in the 

Upper Basin, and majority of the Lower Basin divisions showed improvement.  
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Precipitation estimates for the Lower Basin are good, compared to satisfactory Model 

I estimates. Overall, the best estimates for the Upper Basin are obtained using a 

combination of PDO, NAO, and AMO. By coupling NAO, AMO, and ENSO results, 

precipitation estimates improved for the Lower Basin in terms of a one-year lead time. 

Based on Table 2, very good precipitation estimates are obtained for the Upper Basin, 

and good estimates are obtained for the Lower Basin climate divisions. These results can 

be interpreted by indicating that ENSO has a weak association with Upper Basin 

precipitation, whereas PDO does not have a pronounced effect in the Lower Basin. Also, 

it should be noted that the worst precipitation estimates for majority of the CRB are 

obtained when NAO is dropped from the model, indicating that NAO has a strong 

association with CRB hydroclimatology.  

In Model III, oscillations are dropped in pairs, and the remaining two oscillation 

modes are used to predict annual precipitation. This results in six model runs for each 

climate division. The three performance measures are shown on a spatial map in Figure 8. 

Based on the RSR error statistic (Figure 8a), a significant improvement in precipitation 

estimates is noticed for the Upper Basin is noticed by using a combination of NAO-

ENSO, compared to Model I results. Three climate divisions -- 14, 15, and 17 -- show 

improvements, compared to base case. These divisions account for approximately 21% of 

the flow in the Colorado River. The estimates are in the range of good to very good. 

Additionally, coupling NAO and AMO also shows improvement for the Upper Basin, 

compared to Model I results; good precipitation estimates are obtained based on the RSR 

error statistic. All other combinations show deterioration in RSR statistics for majority of 

the climate divisions in the Upper Basin. A stronger correlation (Figure 8b) is obtained 

 51



between the measured and estimated precipitation by using a combination of NAO and 

AMO for climate divisions in the Upper Basin compared to Model I results. Improvement 

in the R statistic is also noticed by coupling NAO and ENSO for a few climate divisions 

in the Upper Basin. For the majority of Upper Basin climate divisions, all the other 

combinations resulted in a lower correlation between the measured and estimated 

precipitation. The NSE error statistics (Figure 8c) showed improved estimates, using a 

combination of PDO and NAO as well as NAO and AMO for the Upper Basin divisions, 

as compared to the Model I results. The improvement in error statistics is noted for three 

climate divisions that generate approximately 21% of the flow in the Upper Basin.  

For a majority of the Upper Basin climate divisions, all other combinations resulted in 

deterioration in NSE. Model III results agreed with Model II results in indicating that 

NAO has a stronger presence in the Upper Basin. This was evident by NAO being one of 

the inputs in the best Model III estimates for the Upper Basin, based on the three error 

statistics. Overall, none of the combinations resulted in better predictions, compared to 

Model II best results using PDO-NAO-AMO for the Upper Basin climate divisions. 

Contrary to this, all the three error statistics were in agreement in indicating that best 

precipitation estimates for majority of the Lower Basin climate divisions are obtained 

using a combination of AMO and ENSO, compared to Model I results.  
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Figure 8: Spatial maps showing the range of 
performance measures for 17 climate divisions 
for Model III: (a) RSR, (b) R, and (c) NSE. 
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All three performance measures showed improvement in the climate divisions 

covering the north central portion of LCRB. This region generates 70% of the flow in the 

basin. The estimates for the majority of the climate divisions are in the range of very 

good compared to satisfactory estimates for Model I and good estimates for the best 

combination of Model II. This implies that a combination of AMO and ENSO has a 

stronger influence on precipitation in the LCRB compared to any other combination of 

indices. Additionally, it was noticed that a combination of PDO and ENSO results in 

unsatisfactory estimates for the majority of the Lower Basin divisions as compared to the 

Upper Basin. These climate divisions generate approximately 70% of the flow and cover 

the northwestern and central portion of the basin. Unsatisfactory precipitation estimates 

are also obtained for a few climate divisions in Upper Basin by coupling PDO and 

ENSO, but these divisions account for approximately 15% of the flow in Colorado River. 

Therefore, combined effect of PDO and ENSO is weakest in the Lower Basin. 

In Model IV, each oscillation was used individually to estimate precipitation for each 

climate division. Figure 9 shows the spatial map representing the three performance 

measures. It is noticed that none of the oscillations, when used individually, results in 

improved precipitation estimates for CRB, as compared to Model I results. Although, a 

satisfactory correlation between measured and estimated precipitation (Figure 9b) is 

achieved for the majority of the Upper Basin climate divisions, and also for a few Lower 

Basin divisions using AMO as the sole input in the model. This is expected because 

AMO had the strongest significant correlation with the majority of the climate divisions 

within CRB (Table 3). The other two error statistics RSR (Figure 9a) and NSE (Figure 

9c) indicate satisfactory predictions for Climate Divisions 17 and 16 by using NAO or 
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AMO as sole input in the model. Overall, Model IV results indicate that none of the 

oscillation indices can be used individually to obtain satisfactory annual precipitation 

estimates for one-year lead time predictions, compared to using coupled oscillations. This 

is in agreement with the findings from previous studies where researchers showed that a 

qualitative understanding of the relationship between oscillations and precipitation within 

the Colorado River Basin can be enhanced by evaluating the coupled response of 

oscillation indices rather than using an individual oscillation mode (Kim et al., 2006 and 

2008; Canon et al., 2007; Hidalgo and Dracup, 2003; McCabe et al., 2007).  

 

 
Figure 9: Spatial maps showing the range of performance measures for 17 climate 
divisions for Model IV:  (a) RSR, (b) R, and (c) NSE. 
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Based on Model II-IV results, it can be inferred that a combination of PDO, NAO, 

and AMO (Model II) has a stronger association with the annual precipitation for a 1-year 

lead time in the Upper Colorado River Basin (Figure 7). Interdecadal hydroclimatic 

variations in the UCRB related to possible PDO influences have been investigated by 

Hidalgo and Dracup (2003). The study indicated shifts in the mean of variables controlled 

by UCRB moisture, which are precipitation and streamflow, coincident with PDO shifts 

suggests a connection between the two processes. Similar to our finding, Hidalgo and 

Dracup (2003) also concluded that ENSO associations are not always consistent, and may 

not be linked with the hydrologic fluctuations in UCRB. On the other hand, several 

studies have established linkages between NAO and precipitation over the Europe and the 

Mediterranean basin; however, not much emphasis has been given to its association with 

precipitation in the western United States, particularly to the CRB (Hurrell, 1995; Qian et 

al., 2000).  

Webb et al. (2005) indicated that a combination of AMO and PDO may help to better 

explain the long-term fluctuations in streamflow within the Colorado River Basin. AMO 

usually reflects the conditions in the Atlantic Ocean that may affect the climate in North 

America (Enfield et al., 2001). Colorado River is a snowmelt driven basin with most of 

the precipitation falling as winter snow in higher elevations of Colorado, Utah, and 

Wyoming. As a result, the physical mechanism by which the downward trend of the 

Atlantic Ocean could influence the winter mountain precipitation in UCRB remains a 

puzzle.  

PDO in combination with other oscillations (AO, PNA, and ENSO) besides NAO has 

been used to evaluate and analyze the hydroclimatology within the CRB by using 
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different statistical techniques. This work resulted in extending lead times for streamflow 

and precipitation (Colorado River Basin Climate, 2005; Webb et al., 2005; Kim et al., 

2006 and 2008); however, the coupled impact of PDO and NAO for the Upper Basin has 

not been explored. The findings of the current study are in partial agreement with the 

other studies that showed that PDO and AMO in combination with other indices can 

serve as useful predictors, to some extent, for extending lead times of different 

hydroclimatic variables – in this case, precipitation within the Upper Basin (Hidalgo and 

Dracup, 2003; Webb et al., 2005; Kim et al., 2006 and 2008; McCabe et al., 2007). 

In case of Lower Basin, best estimates are obtained using the combination of AMO 

and ENSO (Model III). This finding is in agreement with the available literature, 

indicating that ENSO effects are more pronounced in the Lower Basin than in the Upper 

Basin (Redmond and Koch, 1991; Webb and Betancourt, 1992; Kahya and Dracup, 1993; 

Piechota and Dracup, 1996). ENSO has been linked to the occurrence of floods in the 

Lower Basin (Webb and Betancourt, 1992). Additionally, Thomas (2007) identified that 

AMO individually and in combination with PDO and ENSO can explain the streamflow 

variability in the Lower Basin. This is in partial agreement with the current findings. The 

physical significance of the combined effect of AMO and ENSO on the hydrologic 

conditions in the Lower Basin is yet to be explored.  

 Over the time, scientists have learned that no single feature of the system can be used 

to explain the variability in weather and climate of CRB. It is increasingly evident that 

various features are interrelated in a complicated fashion (Webb et al., 2005). Their effect 

on climate depends on the direction and magnitude of their variations, and possibly other 

factors as yet unidentified can also be linked (Colorado River Basin Climate, 2005; Webb 

 57



et al., 2005; McCabe et al., 2007). Though many studies have demonstrated that ENSO 

and PDO are mainly teleconnnected with precipitation variability in the U.S., it is still 

necessary to investigate the influence of other climate indices (Ropelewski and Halpert, 

1986; Ropelewski and Jones, 1987; Kahya and Dracup, 1993; Dracup and Kahya, 1994; 

Mantua et al., 1997; Cayan et al., 1999). The results from this current research indicated 

that there is no single climate system that has a stronger association with the CRB 

precipitation; however, the coupled impact of these oscillations has a more pronounced 

effect on the hydroclimatology within the basin. Overall, the moving period SVM 

modeling approach was successful in establishing the coupled linkage between oscillation 

indices and annual precipitation. This can be used to increase the lead time for 

precipitation forecasting within the Colorado River Basin.  

2.7 Comparison of SVM with ANN and MLR Models 

The SVM application presented in the current research is also compared with ANN 

and MLR models developed for the 17 climate divisions. The scatter plots between 

measured and estimated precipitation for ANN and MLR models, using all four 

oscillations indices, are shown in Figure 10 and Figure 11. The ANN results show that 

for the majority of the climate divisions, the model estimates the mean of the measured 

data. The estimates are scattered around the bisector, indicating a poor model fit. Low 

correlation values are obtained for all climate divisions, indicating the inability of the 

model to capture the extremes. In general, the model estimates are parallel to the x-axis 

instead of following the bisector line, showing poor prediction capability.  
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Figure 10: Scatter plot between measured and ANN estimated precipitation for 17 
climate divisions for Model I. Dashed line is the 450 bisector. 
 

 
Figure 11: Scatter plot between measured and MLR estimated precipitation for 17 
climate divisions for Model I. Dashed line is the 450 bisector. 
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The scatter plots from MLR model (Figure 11) show some improvement, compared 

to the ANN model estimates. Also, relatively better correlation between measured and 

estimated precipitation is achieved, compared to ANN model (Figure 10). Additionally, 

relatively more estimates were around the bisector for the MLR model, as opposed to 

being parallel to x-axis as for the ANN model.  

Compared to the SVM results (Figure 5), both MLR and ANN models performed 

poorly. Table 5 shows the comparison of different performance measures between the 

measured and estimated precipitation for ANN and MLR for Model I, using all four 

oscillations. For all 17 climate divisions, superior performance measures are obtained 

using the SVM model (Table 4), compared to the ANN and MLR models (Table 5). 

Based on Table 2, the performance measures obtained from ANN and MLR are in the 

unsatisfactory range. Although, the SVM model outperforms both the ANN and MLR 

models, all three models perform comparatively better for the climate divisions within the 

Upper Basin compared to the Lower Basin divisions. Similar to Model I, Model II-IV 

(results not shown) were also created, and the results showed a better performance of 

SVM over both the ANN and MLR models.  

There is sufficient evidence from other studies, in different fields of hydrology, that 

showing the superiority of SVM over the traditional ANN and MLR modeling 

approaches (Lin et al., 2010 and 2009; Ahmad et al., 2010; Kalra and Ahmad, 2009; Gill 

et al., 2006; Asefa et al., 2006; Dibike et al., 2001). This is because the SVM model has a 

better ability to generalize, relating the input to the desired output. In addition, the 

optimization algorithm used in SVM is more robust than the one used in traditional ANN 

models. 
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Table 5: Comparison of performance measures for ANN and MLR outputs for 
Model I. The RMSE and MAE values are in inches (1 inch =2.54 cms). 

Clim Div RMSE MAE RSR R NSE RMSE MAE RSR R NSE
1 3.40 2.62 1.02 -0.22 -0.05 3.39 2.58 1.02 0.04 -0.04
2 3.09 2.38 0.96 0.29 0.08 3.05 2.35 0.94 0.33 0.10
3 4.39 3.28 0.98 0.20 0.03 4.36 3.26 0.97 0.24 0.04
4 5.20 3.95 0.97 0.20 0.04 5.19 3.97 0.97 0.24 0.04
5 1.95 1.50 1.00 0.10 -0.01 1.93 1.50 0.99 0.20 0.02
6 3.21 2.38 0.97 0.23 0.05 3.21 2.42 0.97 0.25 0.05
7 3.06 2.31 0.94 0.32 0.10 3.10 2.33 0.96 0.29 0.07
8 2.67 2.11 1.00 0.10 0.00 2.68 2.11 1.00 0.14 -0.01
9 2.49 1.89 0.97 0.23 0.05 2.49 1.87 0.97 0.25 0.05
10 2.69 2.13 0.99 0.16 0.01 2.62 2.09 0.96 0.27 0.06
11 2.37 1.84 1.01 0.09 -0.04 2.29 1.80 0.98 0.22 0.03
12 3.52 2.73 0.97 0.24 0.05 3.53 2.77 0.97 0.25 0.05
13 2.66 2.18 1.00 0.12 0.00 2.66 2.18 1.00 0.16 0.00
14 3.97 3.14 1.00 -0.34 0.00 4.08 3.27 1.02 -0.03 -0.05
15 2.06 1.60 1.01 -0.03 -0.03 2.05 1.59 1.00 0.11 -0.02
16 2.37 1.81 1.02 -0.16 -0.05 2.33 1.78 1.01 0.11 -0.02
17 2.28 1.86 0.99 0.15 0.02 2.29 1.84 0.99 0.16 0.00

ANN MLR

 
 

In case of SVM, the determination of model architecture is expressed in terms of 

quadratic optimization, and the weights are guaranteed to be unique and globally optimal. 

Contrary to this, different optimal weights could be obtained even when ANN is trained 

with the same training data; this is because the weights are determined by iterative 

process. Moreover, different initial weights in ANN lead to different forecasting 

performances and do not yield a global solution. MLR models are based on the 

assumption of normality, and can be used efficiently to relate simple processes. In case of 

hydrological processes where the data does not follow the usual normal distribution, 

MLR models fail to capture the variability. Even so, the current study MLR model was 

able to capture the low values evident in scatter plots; however, the values were in the 

unsatisfactory range and cannot be used for water resources planning and management. 
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The feed-forward back-propagation algorithm used for ANN in the current analysis is 

simple and widely used. There are other ANN architectures and activation functions (see 

Dibike et al., 1999) that may be able to better capture the relationship between 

precipitation and ocean-atmospheric indices. An exhaustive comparison of methods was 

not the focus of our work.  

2.8 Conclusion 

In this study we evaluated the long-term trend and step changes in precipitation in the 

Colorado River Basin. We also explored the association between individual and coupled 

oceanic-atmospheric indices and precipitation in the Colorado River Basin. We used an 

AI-type model to capture the relationship between oceanic-atmospheric indices and 

precipitation, and used this model to extend the lead time for precipitation estimation up 

to one year. For this purpose, a moving period data-driven model, using Support Vector 

Machine and incorporating oceanic-atmospheric oscillations, was constructed for the 17 

climate divisions encompassing the Colorado River Basin. The oceanic-atmospheric 

oscillations used in this study were PDO, NAO, AMO, and ENSO.  

Annual precipitation within CRB is variable both at the temporal and spatial scales. It 

is difficult to construct a single precipitation time series that is representative of the entire 

basin. For this reason, monthly time series data for the climate divisions were used that 

extend more than a century in record and spatially cover the entire basin. Currently, 

Climate Prediction Center issues 3-month forecast for lead times of 0.5 to 12.5 months 

with modest skill for 3-9 month lead time based on ENSO and its indices. Forecasts are 

termed ‘skillful’ if they show improvement over the long-term averages of the 

precipitation record used in the analysis. In general, they have no skill for summer 
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precipitation during ENSO years and no skill for winter precipitation during non-ENSO 

years (Colorado River Basin Climate, 2005; Regonda et al., 2005). During ENSO years, 

the precipitation forecast is higher in the southern part (LCRB) of the basin and has no 

skill in the headwaters that generate majority of the runoff in the Colorado River 

(Redmond and Koch, 1991). Therefore, obtaining accurate estimates of precipitation 

within CRB is a formidable challenge. However, advances along several scientific fronts 

have opened doors for statistical forecast possibilities. In an attempt to address this 

challenge, we evaluated the link between individual and coupled oceanic-atmospheric 

indices and temporal variability in precipitation, and developed a data-driven model to 

estimate annual precipitation with a lead time of one year. 

Four SVM models incorporating individual and coupled oceanic-atmospheric 

oscillations were developed to estimate precipitation one year in advance. The model 

outputs were evaluated by using performance measure guidelines presented in Moriasi et 

al. (2007). The performance measures classified the estimates into four categories that 

ranged from unsatisfactory to very good. Model estimates for each climate divisions were 

considered acceptable if they met the requirements of the satisfactory category (NSE ≥ 

0.5 and RSR ≤ 0.70; R is > 0.70) or above. Moriasi et al. (2007) indicated that lower 

performance measures will suffice if the model is used for basic exploratory research. 

This current research followed the stricter guidelines to show the robustness of the 

proposed modeling approach.  

Model I indicated that good precipitation estimates for the majority of the Upper 

Basin climate divisions and satisfactory estimates for the Lower Basin divisions can be 

obtained using all four oscillation modes. By dropping each oscillation at a time in Model 
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II, a stronger association of coupled PDO, NAO, and AMO was indicated with the Upper 

Basin precipitation. This combination resulted in very good precipitation estimates for 

climate divisions that contribute approximately 67% (two-thirds) of the flow in Colorado 

River. The best estimates for the Lower Basin were obtained by dropping PDO and using 

NAO, AMO, and ENSO as input to the model. The estimates were in the range of “good” 

for majority of the Lower Basin divisions. This model resulted in improved estimates, as 

compared to Model I results. Also, this analysis indicated that the worst predictions are 

obtained when NAO is dropped, indicating that NAO has a pronounced effect on 

hydroclimatology within CRB.  

Model III results did not provide any definitive conclusion for the Upper Basin, as 

different combinations resulted in improved estimates based on the performance 

measures. Even so, all the combinations showed improvement over Model I results, but 

were inferior to best results of Model II. A stronger coupled effect of AMO and ENSO 

was noticed for the majority of the Lower Basin divisions. The estimates for the majority 

of the Lower Basin divisions were in the range of “very good;” these divisions account 

for generating approximately 70% of flow in the Lower Basin. Additionally, it was 

noticed that combination of PDO and ENSO resulted in unsatisfactory estimates for the 

majority of the Lower Basin divisions, compared to estimates for the Upper Basin. Model 

IV results indicate that by using individual oscillation modes, the model can identify the 

strength of the relationship between individual oscillations and precipitation; however, 

these results cannot be used to extend lead time for precipitation forecasts up to one year. 

Overall, the best annual precipitation estimates for the Upper Basin were obtained using 

Model II, where a combination of three oscillations (PDO-NAO-AMO) is used. The best 
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Lower Basin estimates were obtained using Model III, where a combination of two 

oscillations (AMO-ENSO) is used as an input in the model.  

The precipitation estimates from the SVM model were compared with ANN and 

MLR modeling approaches. The results showed that SVM approach performs better in 

capturing the interaction of oscillation indices and precipitation within CRB for a one-

year lead time. Along with estimating precipitation, the long-term changes in annual 

precipitation within CRB were also evaluated. The result showed that the majority of the 

Lower Basin is getting wetter, compared to the Upper Basin. The changes in the Lower 

Basin are attributed to an abrupt step change and not to the gradual trend in the data. The 

step change coincides with the climate regime “shift” of mid 1970s in the North Pacific 

Ocean. Therefore it is challenging to obtain successful estimates for a non-stationary time 

series.  

The application of SVM as a simple and efficient statistical tool to estimate 

precipitation has been shown by means of its implementation in the Colorado River 

Basin. Hydroclimatic variability within the CRB, using PDO and ENSO as climate 

indices, has been reported extensively (Kahya and Dracup, 1993; Piechota and Dracup, 

1996; Mantua et al., 1997; Cayan et al., 1999; Pulwarty and Melis, 2001). Attempts also 

have been made to study the relationship between AMO and to the hydrologic conditions 

within the Colorado River Basin. Contrary to this, NAO primarily has been  studied in 

relation to changes in mean sea level pressures (SLP) over the Arctic Ocean (Walsh et al., 

1996), to trends in surface wave heights over the North Atlantic (Kushnir et al., 1997), to 

predicting storm activity and shifts in storm tracks in the Atlantic Ocean (Hurrell, 1995). 

Lesser attention has been given to the changes in precipitation in relation to NAO within 
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the Colorado River Basin. Our results indicate that NAO, coupled with other indices, can 

improve the precipitation estimates in the UCRB.  

The major contributions of this research are as follows. First, there is no single 

oscillation, for example, PDO, NAO, AMO, or ENSO that can be used to adequately 

explain the climate variability within CRB. It is evident that various oscillations are 

interrelated and can be used in combination to improve annual precipitation forecasting 

with a one-year lead time within CRB. Second, NAO coupled with other indices can 

improve the precipitation estimates in the UCRB. This has been evident in the author’s 

prior work on streamflow (Kalra and Ahmad, 2009); therefore, the effect of NAO on the 

UCRB hydroclimatology requires in-depth analysis, using more sophisticated techniques. 

Third, the moving period SVM approach is robust for the entire time series, which 

confirms that the model is stable. Conclusions drawn from this analysis are not specific to 

a particular period, and are based on stricter performance measures. Fourth, for the period 

of record, the majority of the Lower Basin is getting wetter, compared to the Upper 

Basin. These changes result from an abrupt step instead of a gradual trend in the data.  

Colorado River Basin is a snowmelt driven watershed with snowpack making up 63% 

of the annual precipitation within the Upper Basin and 39% of the annual precipitation 

within the Lower Basin (Serreze et al., 1999). The current study does not differentiate 

between precipitation as rainfall and snowfall. Furthermore, the trends detected in the 

current study are dependent upon the period considered for the analysis. Additionally, 

there are some variations that are still unexplained, and which cannot be addressed using 

the statistical approach. However, the precipitation estimates for a one-year lead time, 
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obtained by using the moving period SVM approach proposed in this study, potentially 

can be useful for water supply and reservoir operations within CRB.  

 The results from the current research increase our understanding of the association 

between different oceanic-atmospheric indices and precipitation in the Upper and Lower 

Colorado River Basin. The results presented in this study are statistical in nature, and the 

physical mechanisms that drive these relationships are not fully understood at this time. 

The SVM modeling approach used in the current research was successful in estimating 

the annual precipitation within the basin. Using the proposed approach, cumulative 

precipitation totals for the current year can be made available as early as January 1st of 

that year. The cumulative value can be temporally disaggregated into finer values using 

stochastic techniques based on the need of end user. Overall, the moving period SVM 

model used in this study provides very good precipitation estimates that have the 

potential for better water management within the basin.  
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CHAPTER 3 

3 USING OCEANIC-ATMOSPHERIC OSCILLATIONS FOR LONG LEAD             

TIME STREAMFLOW FORECASTING (PUBLISHED IN                                             

WATER RESOURCES RESEARCH) 

Abstract 

We present a data-driven model, Support Vector Machine (SVM), for long lead time 

streamflow forecasting using oceanic-atmospheric oscillations. The SVM is based on 

statistical learning theory that uses a hypothesis space of linear functions based on Kernel 

approach, and has been used to predict a quantity forward in time based on training from 

past data. The strength of SVM lies in minimizing the empirical classification error and 

maximizing the geometric margin by solving inverse problem. The SVM model is 

applied to three gages i.e. Cisco, Green River, and Lees Ferry in the Upper Colorado 

River Basin in the western United States. Annual oceanic-atmospheric indices, 

comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), 

Atlantic Multidecadal Oscillation (AMO), and El-Niño-Southern Oscillations (ENSO) for 

a period of 1906–2001 are used to generate annual streamflow volumes with three years 

lead time. The SVM model is trained with 86 years of data (1906–1991) and tested with 

10 years of data (1992-2001). Based on Correlation Coefficient, Root Means Square 

Error, and Nash Sutcliffe Efficiency Coefficient the model shows satisfactory results, and 

the predictions are in good agreement with measured streamflow volumes. Sensitivity 

analysis, performed to evaluate the effect of individual and coupled oscillations, reveals a 

strong signal for ENSO and NAO indices as compared to PDO and AMO indices for the 

long lead time streamflow forecast. Streamflow predictions from the SVM model are 
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found to be better when compared with the predictions obtained from feed-forward back 

propagation Artificial Neural Network model and linear regression.  

Citation: Kalra, A., and S. Ahmad (2009), Using oceanic-atmospheric oscillations for 

long lead time streamflow forecasting, Water Resour. Res., 45, W03413, 

doi:10.1029/2008WR006855. 

3.1 Introduction 

For decades, streamflow prediction has been regarded a benchmark problem for 

hydrologists (Chang and Chen, 2001). Water resource managers consider streamflow as 

one of the most vital surface hydrological variable for predicting water supply and water 

hazards such as floods and droughts (Chang and Chen, 2001; Grantz et al., 2005; Maier 

and Dandy, 2000; Zealand et al., 1999; McCabe et al., 2004). Streamflow prediction 

becomes relatively more important for western United States because its consumption of 

renewable water supplies (44%) is significantly higher than rest of the United States (4%) 

(el-Ashry and Gibbons, 1988).  

The climate variability has direct impacts, both socially and economically, on the 

society (Redmond and Koch, 1991). The direct impacts occur through the hydrological 

cycle, for which climate is the primary driving force, and cause extreme events such as 

droughts and floods (Grantz et al., 2005; Redmond and Koch, 1991; McCabe and 

Dettinger, 2002; Dettinger et al., 1998; Hamlet and Lettenmaire, 1999; Regonda et al., 

2005). Streamflow prediction becomes even more challenging under the stress of 

increased climatic variability (Grantz et al., 2005; Gutierrez and Dracup, 2001).  

The oceanic-atmospheric modes are linked to climate variability and change, and 

occur at interdecadal and century time scales (Regonda et al., 2005). The oceanic-
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atmospheric modes such as Pacific Decadal Oscillation (PDO), North Atlantic Oscillation 

(NAO), Atlantic Multidecadal Oscillation (AMO) and, El-Niño-Southern Oscillations 

(ENSO) Arctic Oscillations (AO), and Sea Surface Temperature (SST) influence 

streamflow across the globe and particularly in the Western United States (Rogers and 

Coleman, 2003; Tootle and Piechota, 2006; Kahya and Dracup, 1993; Piechota et al., 

1997; Redmond and Koch, 1991; McCabe and Dettinger, 2002; Hamlet and Lettenmaire, 

1999; Cayan and Webb, 1992). On one hand, climate variability is a challenge in reliably 

forecasting long-range streamflow patterns (Kahya and Dracup, 1993) but a correlation 

between oceanic-atmospheric oscillations and streamflow also provides a forecast 

opportunity. Researchers have investigated this correlation. Clark et al. (2001) showed 

the influence of ENSO on streamflow patterns over the United States. Kahya and Dracup 

(1993) studied the relationship between ENSO and unimpaired streamflow over the 

conterminous U.S. and indicated a strong ENSO signal in the mid-latitudes of the United 

States. Tootle et al. (2005) evaluated the streamflow responses to coupled and individual 

effects of four oceanic-atmospheric modes i.e., PDO, NAO, AMO, and ENSO over the 

conterminous United States and found a well established ENSO signal along with PDO, 

NAO, and AMO influencing the streamflow variability. Dettinger et al. (1998) studied 

multiscale streamflow responses to ENSO phenomena for regions in America, Australia, 

Northern Europe, and parts of Africa and Asia and indicated that the streamflow changes 

are associated with the weakening ENSO signals for these regions. McCabe et al. (2004) 

used the rotated principal component analysis (RPCA) to study the association between 

PDO and AMO and the multidecadal drought frequency for 344 climate divisions in the 

United States. The results indicated that the first streamflow component of RPCA was 
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correlated with PDO and second component with AMO. Hamlet and Lettenmaier (1999) 

performed streamflow forecasting for the Columbia River Basin using a macroscale 

hydrologic model and found that the increase in lead time for streamflow forecasting is 

achieved by using PDO and ENSO modes. Piechota et al. (1997) used the Principal 

Component Analysis (PCA), Cluster Analysis, and the Jackknifing Analysis to find that 

spatial and temporal modes of streamflow are associated with ENSO in the western 

United States. McCabe et al. (2007) studied the decadal to multidecadal sea-surface 

temperature variability and its association with the Upper Colorado River flow using 

RPCA. The results show a strong correlation of streamflow with AMO and PDO with 

first and second modes of RPCA, respectively.  

It is evident that streamflow is dependent on climate variability occurring due to 

oceanic-atmospheric patterns. Based on the results from different previous streamflow 

studies the main modes of oscillations influencing streamflow patterns across the US 

comprise of PDO, NAO, AMO, and ENSO (Grantz et al., 2005; Regonda et al., 2005). 

Although there are other large scale climate indices such as Snow Water Equivalent, 

Geometric Potential, and Palmer Drought Severity Index for obtaining streamflow 

predictions but the four teleconnection patterns discussed above by far remain most 

popular. These teleconnection patterns are dominant on large scale and are important 

predictors in forecasting streamflow for the western United States (Dettinger et al., 1998). 

Since the effects of oceanic-atmospheric oscillations have a lag of several years, models 

based on these oscillations could be developed to increase the forecast lead time.  

The common techniques used for modeling hydrological time-series and generating 

streamflows have been based on conceptual models and time-series models (Hsu et al., 
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1995; Kraijenhoff and Moll, 1986; Yapo et al., 1996; Rodriguez-Iturbe and Valdes, 1979; 

Zealand et al., 1999). Conceptual models are based on mathematically simulating the 

process and physical mechanisms that contribute to the hydrological cycle (Zealand et al., 

1999) and require a great deal of data inputs, which may involve field work and 

surveying. At times, it becomes challenging to deal with the empirical irregularities and 

periodicities occurring in the model that are often masked by noise (Zealand et al., 1999).  

Time series modeling is a stochastic approach in which the time series models are 

fitted to the data for the purpose of forecasting and generating sequences used in 

simulation studies (Gutierrez and Dracup, 2001; Zealand et al., 1999). For modeling the 

water resources time series, the most commonly used approach in this category is 

multivariate autoregressive moving average (ARMA) model (Raman and Sunilkumar, 

1995; Haltiner and Salas, 1988; Thompstone et al., 1985). The ARMA-type model uses a 

stationary data (Hipel, 1985) and follows a normal distribution for the data (Irvine and 

Eberhardt, 1992). The ARMA-type models are best suited for short-term forecasting 

based on daily or weekly time scales but not for long-term forecasting which involves 

seasonal or annual time scale (Tang et al., 1991). Although both modeling techniques can 

produce the long-term mean and variance of streamflow, they do a poor job in predicting 

the long-term streamflow variability (Dettinger et al., 1998; Gutierrez and Dracup, 2001). 

Stochastic disaggregation models are also used to simulate streamflow preserving 

their temporal and spatial dependencies. These models are based on the nonparametric 

approaches and do not rely on assumptions that the data are drawn from a given 

probability distribution. Due to fewer assumptions, their applicability is much wider than 

the corresponding parametric methods. In hydrology, the most widely used non 
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parametric approaches of streamflow simulations are based on the traditional kernel 

nearest neighbor (KNN) time series bootstrap technique developed by Lall and Sharma 

(1996). The authors show the synthetic streamflow series generation from KNN is better 

than that from ARMA models. KNN technique is more flexible than the conventional 

models and is capable of reproducing both linear and nonlinear dependences (Sharma et 

al., 1997). The KNN method is preferred where the researchers are uncomfortable with 

the prior assumption about the data (e.g. linear or nonlinear). 

Other statistical methods such as artificial neural networks (ANN’s) are often 

considered as the prime choice for modeling hydrologic process. Neural networks are 

black box models that learn from a training data set mimicking the human-learning 

ability. They are robust to noisy data and can approximate multivariate non-linear 

relations among the variables. ANN’s have been used for a wide range of different 

learning-from-data applications and input-output correlations of non-linear processes in 

water resources, and hydrology (Hsu et al., 1995; Zealand et al., 1999; Chang and Chen, 

2001, Tingsanchali and Gautam, 2000; Imrie et al., 2000). A review of ANN applications 

in hydrology is available in the ASCE Task Committee report (2000b). Ahmad and 

Simonovic (2005) used feed-forward back-percolation ANN for estimation of runoff 

hydrograph parameters. Chang and Chen (2001) used ANN model to predict hourly 

streamflow and showed the superiority of ANN models over the ARMAX models.  

Disadvantages associated with using neural networks are that they are ‘data hungry’, 

and some training algorithms are susceptible to local minima. Incorrect network 

definition i.e., number of nodes and number of hidden layers may lead to over fitting of 

the model, resulting in poor performances during testing.  
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Recently, another data-driven model i.e., Support Vector Machine (SVM) has gained 

popularity in many ANN dominated fields and has attracted the attention of many 

researchers (Liong and Sivapragasam, 2002; Asefa et al., 2006; Yu and Liong, 2007; 

Khalil et al., 2006; Tripathi et al., 2006). SVMs are trained with learning algorithm 

derived from optimization theory that uses a hypothesis space of linear functions in a 

higher dimensional feature space. The learning algorithm is then implemented in a 

learning bias derived from a statistical learning theory (Cristianini and Shaw-Taylor, 

2000). SVMs are considered as kernel based learning systems rooted in the statistical 

learning theory and structural risk minimization (Haykin, 2003). SVMs have been 

successfully applied for pattern recognition and regression in different fields such as bio-

informatics and artificial intelligence. There are few applications of SVM in hydrology. 

Liong and Sivapragasam (2002) indicated a superior SVM performance over ANN in 

forecasting flood stages for the Bangladesh River system. Asefa et al., (2006) applied 

SVM to forecast flows at seasonal and hourly time scale for the Sevier River Basin. The 

results indicated a better performance in solving site-specific, (uses local climatological 

data and requires less inputs than physical models) real-time, water resources problems as 

compared to the ANN models. Dibike et al. (2001) applied SVM for rainfall/runoff 

modeling and classification of digital remote sensing image data and compared results 

with ANN. SVM showed superior performance than the ANN approach. Gill et al. (2006) 

applied SVM for predicting soil moisture for four and seven days in advance using 

meteorological variables and compared the results with ANN model. SVMs soil moisture 

predictions were a good match with the actual soil moisture data and SVM model 

performed better than ANN model. It is noteworthy that in all the above-mentioned 
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applications, the SVM modeling results are better than results obtained from ANN 

models due to the high generalization characteristic of SVM models. 

In this paper, a data-driven model, Support Vector Machine (SVM) is presented for 

predicting streamflow using four oceanic-atmospheric oscillations i.e., PDO, NAO, 

AMO, and ENSO. Streamflow predictions are made three years in advance for three 

gages in the Upper Colorado River Basin. Numerous studies have identified Upper 

Colorado River Basin (UCRB) and other regions in the U.S. showing responses to 

oceanic- atmospheric oscillations on a seasonal to annual scale but no study has 

incorporated these oscillations in a SVM model and forecasted streamflow volumes three 

years in advance. The sensitivity of individual and grouped oscillations in forecasting 

streamflow is evaluated. Nonparametric statistical tests including Man-Kendall, 

Spearman’s Rho, and Rank Sum, and parametric test including autocorrelation and linear 

regression are performed to determine the trend/step changes for streamflow and 

oscillation modes. These tests help in evaluating the trends in the data that are based on 

the statistical properties such as mean, median, and variance. Moreover, a feed forward-

back propagation ANN model is developed to predict streamflow volumes three years in 

advance. The streamflow volumes obtained using SVM are compared with the volumes 

obtained using ANN approach. Model performance is evaluated using correlation 

coefficient, root mean square error and model efficiency.  

The paper is organized as follows. Sections 3.2 present a theoretical background on 

SVM. The study region and the data used are described in sections 3.3 and 3.4, 

respectively. In section 3.5, the proposed method to forecast streamflow and evaluate the 

significance of single and grouped oceanic-atmospheric modes for streamflow 

 87



predictions is presented. Section 3.6 summarizes the statistical properties of oscillation 

modes and streamflow using non parametric and parametric testing. Section 3.7 includes 

the results and discussion of streamflow volumes obtained using SVM for different 

models and a comparison with the streamflow volumes obtained using ANN. Section 3.8 

summarizes and concludes the paper.  

3.2 SVM Background 

A brief description of theoretical basis of SVMs is provided in this section. A more 

detailed description on the subject is available in Vapnik (1995, 1998). The idea of 

learning machines was first proposed by Turing (1950). The trainer of learning machine 

is ignorant of the processes undergoing inside it, which is considered to be the most 

important feature of the machine (Turing, 1950). Vapnik (1995) discussed the features of 

learning machines by Turing (1950) and stated two important factors to control the 

generalization ability of the learning machine. The first factor is the error-rate on the 

training data, and the second factor is the capacity of the learning machine measured in 

terms of Vapnik-Chervonenkis (VC) dimensions (Vapnik and Chervonenkis, 1971). The 

nonlinearities in the system being modeled were handled by including kernels which act 

as building blocks for SVMs and are based on the requirements to satisfy Mercer’s 

theorem (Vapnik, 1995; Vapnik, 1998; Cristianini and Shaw-Taylor, 2000). The 

requirement of kernels in optimization algorithm to achieve global optimum differentiates 

SVM from other learning machines such as ANNs, that may converge to local optima, 

and the use of kernels helps in obtaining different “machines”.  

The ultimate goal of working with statistical learning tools is to find a functional 

dependency, f(x), between independent variables {x1,x2,….xL}, obtained from RK. The 
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(dependent) output {y1,y2,….yL}is obtained from y ∈  R selected from a set L of 

independent and identically distributed (i.i.d.) observations. The observations are called 

the regularized functionals, as shown in (Vapnik 1998; Smola et al., 1998) and have the 

following formulation: 

Minimize ( )∑
=

++
L

i
iiC

1

*2||||
2
1 ξξw  

Subject to                   (1) 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥ξξ

ξ+ε≤−+

ξ+ε≤−−

∑∑

∑∑

= =

= =

0,

ybxw

bxwy

*
ii

*
ii

K

1j

L

1i
jij

i

K

1j

L

1i
jiji

where bf += xw,)x( , xw,  denotes the dot product of w and x, x is the input 

vector, w is the weights vector norm, ε  is Vapniks insensitive loss function, C is capacity 

parameter cost, and b is bias. The first term in the minimizing equation refers to 

minimizing the VC-dimension of the learning machine, and the second term controls the 

empirical risk. The trade off between the flatness of f and the amount up to which 

deviations larger than ε tolerated are determined by C > 0. This corresponds to Vapniks 

“ε-insensitive” loss function (shown in Figure 12) and measures the agreement between 

estimated and actual measurements. An increase in C penalizes large errors and 

consequently leads to a decrease in approximation error. This is achieved by increasing 

the weight vector norm, ||w||, which does not necessarily guarantee a good generalization 

performance of the model. Also in equation (1), ξi and ξi
* are called the slack variables 

that determine the degree to which sample points are penalized if the error is larger than 

ε. Hence, for any (absolute) error smaller than ε, ξi=ξi*=0, no data points are required for 
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the objective function. This implies that not all the variables are used to estimate f(x). 

The functional dependency f(x) is written as: 

bxwf
K

j
jj += ∑

=1
)(x                                              (2) 

where, xw,  denotes the dot product of w and x, K is the number of support vectors, 

and ‘b’ is the bias.  

 

 

 

 

 

 
Figure 12: Pre-specified accuracy and slack variable ξ in SVM model. 
 

Another technique of solving the optimization problem subject to constraints in loss 

function is using the dual formulation. In dual formulation, Lagrange multipliers α* and α 

are introduced, and the minimization equation is solved by differentiating with respect to 

the primary variables, and it results in a maximizing problem. 
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In equation (3) and (4), α*, α are Lagrange multipliers; and k(x, xi) is the kernel 

function that measures non-linear dependence between two input variables. The xi’s are 

“support vectors”, and N (usually N << L) is the number of selected data points or support 

vectors corresponding to values of the independent variable that are at least ε away from 

actual observations. The training pattern in the dual can be used to estimate the dot 

product of two vectors of any dimensions and is regarded as the advantage of the dual 

formulation (Smola et al., 1998). This advantage in SVM is used to deal with non-linear 

function approximations. Therefore, the steps involved in SVM modeling are: (1) 

selecting a suitable kernel function and kernel parameter (kernel width - γ), (2) specifying 

the ‘ε’ insensitive parameter, and (3) specifying the capacity parameter cost,‘C’.  

The working mechanism of SVM is shown in Figure 13. The input vector is 

transformed into the feature space using a function, Y. The transformation function is not 

computed explicitly but the dot products that correspond to evaluating kernel functions k 

at locations k (xi, x) are calculated. These dot products are then summed using weights 

(that are actually non-zero Lagrange multipliers) and added to the bias “b” that gives the 

final prediction.  
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Figure 13: Flow diagram for SVM model. 

 

The above concept is illustrated using the example of a simple ‘sinc’ function [sinc(x) 

= (sinx)/x for x = [0 1]. This function is approximated using the SVMs with a radial basis 

kernel. Figure 14 shows the resulting approximations using Vapniks “ε-insensitive” loss 

function (ε = 0.01 (a) and ε = 0.1 (b)). Figure 14 shows that few points are needed to 

capture the behavior of sinc function. The solid line represents the true values, and the 

dotted lines are the predictions with triangles being the support vectors. The changes in 

Vapniks “ε-insensitive” loss function result in the change in location and number of 

support vectors. Increase in Vapniks “ε-insensitive” loss function gives lesser number of 

support vectors (23 to 7) and results in a slight misfit between the true and predicted 

values. This demonstrates the ability of SVM to trade between accuracy of approximation 

and complexity of the approximation given in the objective function (Equation 1). 
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Figure 14: Examples of SVM for ‘Sinc’ Function for Vapniks “ε-insensitive” loss 
function (a) ε = 0.01 and (b) ε = 0.1. 
 

3.3 Study Region: Upper Colorado River Basin (UCRB) 

The Colorado River is a major source of water supply to the southwestern United 

States. The water from the Colorado River is allocated to seven states (California, 

Nevada, Utah, Arizona, Colorado, Wyoming, New Mexico) within the Colorado River 

basin based on the “Law of River” (Piechota et al., 2004). Due to growing population and 

agricultural activity, certain states such as California depend on water surpluses from the 

Colorado River. The Colorado River basin is composed of upper and lower basin. The 

Upper Colorado River Basin generates 90% of the Colorado River flow from spring-

summer runoff due to snowmelt (Figure 15). The UCRB is defined as the part of basin 

upstream from the gage at Lees Ferry and just downstream of Glen Canyon Dam in 
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Northern Arizona. It serves Wyoming, Colorado, Utah, and New Mexico. It encompasses 

a total area of 286,000 km2 and is comprised of mountains, agricultural, and low-density 

developments. The streamflow in the UCRB is allocated and regulated on the assumption 

of negligible changes in the mean and higher moment’s statistical distribution of annual 

and decadal inflow to Lake Powell and Lake Mead. This is because Lake Powell and 

Lake Mead represent 85% of the storage capacity of the entire Colorado River Basin. The 

lower basin is downstream of Lees Ferry and serves California, Nevada, and Arizona. 

The supply to lower basin is governed by the water released from the upper basin.  

 

 
Figure 15: Map showing location of study area and streamflow gaging stations. 
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Although the water allocations in the UCRB are governed by the “Law of River”, it 

still becomes critical every year to forecast streamflow that would be available for the 

entire basin (Piechota et al., 2004). This is due to the fact that water supply estimates for 

the UCRB are released monthly by the collaborative effort of National Weather Service 

(NWS), Natural Resources Conservation Service, U.S. Bureau of Reclamation, U.S. 

Geological Survey, local water district managers, and the Colorado River Basin Forecast 

Center (Tootle and Piechota, 2006). Moreover, water managers face challenges in 

forecasting streamflow due to the availability of small lead time (Tootle and Piechota, 

2006; McCabe et al., 2007). The ability to provide long lead time (2-3 years in advance) 

forecasting of streamflow volumes for the UCRB could be useful for water managers in 

managing water resources system which includes the reservoir releases, allocation of 

water contracts, etc. (Tootle and Piechota, 2006). The focus of this study is on using 

Pacific and Atlantic Ocean modes i.e., PDO, NAO, AMO, and ENSO as predictor, in a 

data-driven model, to forecast streamflow three years in advance for the selected gages in 

UCRB. 

3.4 Data 

The data sets used to forecast long lead time streamflow are the oceanic-atmospheric 

modes of Pacific and Atlantic Ocean and the naturalized streamflow data for UCRB. 

Both the data sets are described in the ensuing sections. 

3.4.1 Streamflow Data 

Three streamflow gages in the UCRB, shown in Figure 15, are used in this study. 

These gauges are Colorado River near Cisco, Utah (site 1); Green River at Green River, 

Utah (site 2); and Colorado River at Lees Ferry, Arizona (site 3). Annual naturalized 
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streamflows volumes (acre-feet) at these locations are available for the 96 year period 

spanning 1909 – 2004. These flow volumes have been computed by removing 

anthropogenic impacts (i.e., reservoir regulation, consumptive water use, etc.) from the 

recorded historic flows. The natural flow data and additional reports describing these data 

are available at http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html. Two out 

of the three selected gages i.e., Cisco and Green are unimpaired (free from anthropogenic 

effects) and archived in the Hydro-Climatic Data Network (HCDN) (Slack et al., 1992). 

The third gage i.e., Lees Ferry is not a part of HCDN and flows at this gage are back 

calculated accounting for reservoir regulation, consumption and other diversions. 

However, these back calculated flows do not account for land use changes and are 

provisional, i.e., subjected to change. Lees Ferry is used in the analysis because of its 

location; it divides the Colorado River Basin in upper and lower basins. 

3.4.2 Oceanic-Atmospheric Data (PDO, NAO, AMO, and ENSO) 

Monthly oceanic-atmospheric modes are available for PDO, NAO, AMO, and ENSO. 

The PDO is an index of decadal-scale Sea Surface Temperature (SST) variability in the 

North Pacific Ocean (McCabe and Dettinger, 2002) and has been linked to hydro-

climatic variability in the western United States (McCabe and Dettinger, 2002; 

Gershunov and Barnett, 1998). Monthly PDO index values are available from the Joint 

Institute Study of the Atmosphere and Ocean, University of Washington 

(http://jisao.washington.edu/pdo). Several studies have indicated two full phases of PDO 

in the past century (Tootle et al., 2005) with a periodicity of 25 – 50 years (Mantua and 

Hare, 2002).  
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The NAO index is the winter climate variability mode in North Atlantic Ocean and is 

defined as the difference in normalized mean winter (December to March) sea level 

pressure (SLP) anomalies between the island of Iceland and Portugal (Hurrell, 1995). 

NAO also has cool (negative index) and warm (positive index) regimes. The NAO index 

shows annual variability but has the tendency to remain in single phase for intervals 

lasting several years (Hurrell, 1995; Hurrell and Van Loon, 1995). Monthly NAO values 

are obtained from the National Center for Atmospheric Research (NCAR) 

(http://www.cgd.ucar.edu/cas/jhurrell/indices.html). NAO has exhibited interannual 

variability and long-term persistence in particular phases. Hurrell and Van Loon (1995) 

defined the NAO cool phase from 1952 – 1972 and again 1977 – 1980 and warm phases 

from 1950 – 1951, 1973 – 1976, and 1981 – present. 

The continuing sequences of long duration changes in the sea surface temperature of 

the North Atlantic Ocean are termed as AMO (Enfield et al., 2001). AMO indices have 

been identified as important modes of influencing decadal to multidecadal (D2M) climate 

variability in the western United States (Enfield et al., 2001; Gray et al., 2003; Rogers 

and Coleman, 2003; McCabe et al., 2007). Monthly AMO index values comprising of 

cold (negative index) and warm phases (positive index) are obtained from the National 

Oceanic and Atmospheric Administration (NOAA) Climate Diagnostics Center 

http://www.cdc.noaa.gov/ClimateIndices/List/. The cool and warm phases of AMO can 

last from 20-40 years at a time (Enfield et al., 2001; Gray et al., 2003). Recent studies 

have indicated that from the mid 1990s, AMO has returned to warm phase (Enfield et al., 

2001; Gray et al., 2003; McCabe et al., 2007). Studies have indicated that warm phases of 
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AMO have led to severe and prolonged droughts in the Midwest and Southwest United 

States. 

The natural coupled cycle in the ocean-atmospheric system over the tropical Pacific is 

defined as ENSO. ENSO operates on a timescale of 2 – 7 years. Warm (El-Niño, positive 

index) and cool phases (La-Niña, negative index) of ENSO have been associated with 

regional and global climate variability and streamflow variability in the western United 

States (Piechota et al., 1997; Tootle et al., 2005; Regonda et al., 2005). Warm ENSO 

phases in the eastern coastal tropical Pacific have been used for forecasting streamflows 

for Columbia (Gutierrez and Dracup, 2001) and have been linked with decrease in fish 

population due to decreased nutrients (Ahrens, 1994). Currently, there is no single data 

set universally accepted for measurements of ENSO (Beebee and Manga, 2004). 

Commonly used ENSO indices include regional SST indices (e.g. Nino-1+2, Nino-3, 

Nino-4, Nino-3.4 and Japan Meteorological Agency (JMA)) and surface atmospheric-

pressure based Southern Oscillation Index (SOI). The SOI is the difference between the 

de-seasonalized, normalized SLP anomalies over the Tahiti and Darwin used by the 

Australian Bureau of Meteorology (Ropelewski and Jones, 1987). SOI measures the 

tendency for easterly winds to blow along the Equatorial Pacific. Positive values of SOI 

indicate strong easterly winds in the tropics and the tropical Pacific and vice-versa in case 

of negative SOI values. Initially, SOI data was available since 1950, but has been 

extended and now available since 1882 from the Climate Prediction Center (CPC). For 

this study, monthly SOI values are obtained from NOAA-CDC 

(http://www.cdc.noaa.gov/ENSO/). Annual averages of all indices are computed to obtain 

the time series from 1906 – 2001. Figure 16 shows the time series plot for the average 
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annualized oscillation modes. It can be noted that that NAO and ENSO fluctuate every 

few years, whereas PDO and AMO fluctuate on decadal time scales.  

 

 
Figure 16: Fluctuations of input oscillation modes during 1906-2001. 
 

3.5 Methods 

The annual averaged indices of PDO, NAO, AMO, and ENSO for time step ‘t’ are 

used to predict annualized streamflow volumes for ‘t+3’ (where ‘t’ is in years) for the 

three gages in the Upper Colorado River Basin. Four models are developed to predict 

streamflow volumes. In Model I (base case) all the four oceanic modes are used and that 

resulted in one model run. The input-output structure of SVM model is shown in Figure 

17. The variable ‘X’ indicates the inputs, which are annualized average PDO, NAO, 

AMO, and ENSO indices. The variable ‘Y’ depicts the output, which is the annualized 
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streamflow volume predictions for ‘t+3’. The hidden layer takes into account the 

selection of kernels which is an important component of SVM and satisfies the Mercers 

Theorem as explained in the SVM Background section. In Model II, each oscillation 

mode is dropped one at a time and remaining three modes are used to predict streamflow. 

This resulted in four different model runs. In Model III, oscillation modes are dropped in 

pairs and then streamflow predictions were obtained using the remaining two modes. 

This resulted in six different model runs. In Model IV, only one oscillation mode is used 

(dropping three oscillation modes) to predict streamflow. This resulted in four different 

model runs. The models II - IV are designed to evaluate the relative significance of 

oceanic-atmospheric oscillations, individually and in different combination, in predicting 

streamflow. 
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Figure 17: Flow diagram of SVM model structure (Model I). 
 

The SVM model comprises of training and testing phases. The data set is divided in 

two parts; one is used in training (86 years i.e. 1906 – 1991) the model and other for 

testing (10 years i.e. 1992 – 2001) the predictions. The training stage aims at finding the 

optimal estimates of cost, C, insensitivity values, ε, and the kernel width, γ, to achieve the 
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best generalization. Each streamflow gage is considered independent and separate SVM 

models are developed for each gage. The matrix in training phase is 

 

 

where ‘A’ is of size ‘m x n’, ‘m’ is the number of years (86) and ‘n’ is the total input 

variables which the model takes into account and equals 4 for model I, 3 for model II, 2 

for model III, and 1 for model IV. The output matrix ‘B’ has a size of ‘m x 1’ where ‘m’ 

is the number of years (86) and the only output variable is streamflow volume. The 

matrix was replicated for all the selected gages. The SVM software package included in 

the ‘R’ software is used in this study (http://www.r-project.org/). The statistical testing 

criteria used for evaluating the effectiveness of the SVM model during the testing phase 

are correlations coefficient (R), Root Means Square Error (RMSE), and Nash-Sutcliffe 
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where, yi are the predicted streamflow volumes during the testing phase, xi are the 

observed values, x  is the mean of observed values and n is the number of years in testing 

phase i.e. 10.  

Radial basis kernel is used in SVM model. Schölkopf et al. (1997) concluded that 

Radial Basis Function (RBF) kernel performs better when compared with other kernels 

such as linear, polynomial, sigmoid or spline. Dibike et al. (2001) showed the superior 

efficiency of RBF kernels as compared to other kernels in SVM modeling applications. 
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Additionally, various other studies have indicated the favorable performances by using 

RBF kernels in hydrological forecasting problems (Asefa et al., 2006; Yu and Liong, 

2007; Khalil et al., 2006; Gill et al., 2006). When RBF kernel is used, the Support 

Vectors algorithm automatically determines centers, weights and threshold that minimize 

an upper bound on the expected test error (Schölkopf et al., 1997). Khalil et al. (2006) 

inferred that the centralized feature of the RBF enables it to model regression process 

effectively. 

In order to assess the relative performance of SVM model, we develop a feed 

forward-back propagation type ANN model. The feed forward-back propagation is 

adapted due to its applicability in variety of different problems (Hsu et al., 1995). The 

structure of ANN model comprised of one input layer, one hidden layer with three nodes, 

and one output layer with one node. The input layer is the first layer consisting of 

processing elements (PEs) referred to as nodes that connect the input variables. The input 

layer passes the input variables onto the subsequent layers of the network. The last layer 

is the output layer which connects to the output variable(s). The layer between the input 

and the output layer is called the hidden layer. The main function of the hidden layer is to 

enhance the networks ability to model complex functions. Details on the theoretical 

aspects of ANN are available in ASCE Task Committee, 2000a. Four ANN models are 

developed using the same training and testing data set used for SVM models. The 

comparison of SVM and ANN model predictions are made using the statistical 

performance measures of R, RMSE, and E.  

Nonparametric Mann-Kendall and Spearman’s Rho tests are performed to detect the 

trends in streamflow. Trends in streamflow (Groisman et al., 2001; Kalra et al., 2008) are 
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important as they help the water managers in responding to changes in water supply. The 

Rank Sum test is used to identify the step changes in the data. It is important to clearly 

differentiate between a gradual trend and a step change for climate change studies 

because the pattern of the trend change can be linear and continuous, whereas step 

changes are non linear, occur abruptly, and may reoccur in the future (McCabe and 

Wolock, 2002; Mantua and Hare, 2002). For analyzing step changes, 1977 was used as 

the year showing the step change. The “climate regime” shift occurring during the winter 

of 1977 has been documented by previous researchers (Holbrook et al., 1997; Mantua 

and Hare, 2002). Pearson correlation coefficient between oscillations modes and 

streamflow gages is calculated to evaluate the randomness (persistence over time) and 

correlation among the climate indices and streamflow gages.  

The test results are evaluated at significance level of p≤0.05. The tests are performed 

using Trend software (www.toolkit.net.au/trend) which is designed to facilitate statistical 

testing for trend, change and randomness in hydrological and other time series data.  

3.6 Statistical Properties of Oscillation Modes and Streamflow 

Figure 18 shows the scatter plot for oscillations and streamflow and least square 

regression line at three gages. The non parametric correlations coefficients for streamflow 

and parametric correlation coefficients for oscillation modes are shown in Table 6. It can 

be noted that NAO has the highest correlation for Cisco and Lees Ferry, whereas PDO 

has the highest correlation for Green River gage. ENSO shows the weakest correlation 

for Cisco and Green River gage. The streamflow has a decreasing trend as depicted by 

the negative Mann-Kendall and Spearman’s Rho coefficient and it is noteworthy that the 
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changes are due to trend and not due to any abrupt step change as the rank sum test shows 

no significance in the median values for the selected gages.  

 

Table 6: Statistical testing of oscillation modes and streamflow gages at p≤0.05 
confidence levels. 

Man Kendall Spearman Rho Rank Sum
Gages PDO NAO AMO ENSO p-value
Cisco 0.25 -0.5 -0.18 -0.14 -0.13 -0.19 0.75

Green River 0.4 0.3 -0.29 0.16 -0.09 -0.15 0.76
Lees Ferry 0.12 -0.32 -0.23 -0.16 -0.1 -0.19 0.76

Correlation Coefficient

g g
Pearson Correlation Coefficient

Oscillation Modes
Trend/Step Change (Streamflow)

 

 

 
Figure 18: Scatter plots depicting correlation between oscillation modes and 
streamflow gages. 
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Figure 19: Streamflow variability for the selected gages. Averages using 2 year, 5 
year , and 10 year moving windows are shown to depict the trend/step change in the 
data from 1909-2004. Bars represent the averaged annualized natural flows for the 
selected gages. 
 

The nonparametric correlation coefficients are significant at p≤0.05. Figure 19 shows 

2 year, 5 year, and 10 year moving averages for the streamflow at the three gages. It can 

be noticed that there is a decrease in streamflow volumes for the gages in the UCRB and 

the decreases are more significant around the year 2000, which coincides with the worst 

drought in the past 80 years for portions of the Upper Colorado River Basin (UCRB) 

(Piechota et al., 2004). 

3.7 Results and Discussion 

The results are discussed in two ensuing sections. The first section describes the SVM 

parameters estimation and modeling results for three gages during the training and testing 
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phases. The second section presents the ANN modeling results during testing phase and 

the comparison with the results obtained from SVM models. 

3.7.1 SVM Models 

The SVM modeling is performed in two stages: (a) training (1906 – 1991) and (b) 

testing (1992 – 2001). The training stage aims at finding the optimal cost, C, insensitivity 

value, ε, and radial basis kernel width, γ, to achieve the best generalization. During the 

testing stage, the ability of the trained SVM to predict final values is evaluated. SVM 

parameters can be estimated using three procedures: (a) based on a prior knowledge and 

user expertise, (b) using a thorough grid search approach, and (c) using an analytical 

estimation based on the statistical properties of the training data set. In this study, we 

opted for using the grid-based search approach. The optimal hyper-parameters for the 

SVM are estimated by searching within the feasible parameter space. The feasible 

parameter space for each hyper-parameter is constructed using the minimum (0) and 

maximum (100) possible values with 0.1 intervals that are given a priori. This is the most 

widely used approach and has been well documented (Cherkassky and Ma, 2004; Gill et 

al., 2006; Tokar and Markus, 2000; Asefa et al., 2006, Tripathi et al., 2006).  

In Model I, all four oscillation modes are used for streamflow prediction. This results 

in one model run for each gage. Figure 20 shows the correlation between measured and 

predicted streamflows during training (Figure 20 a) and testing phase (Figure 20 b). 

Based on correlation criterion, the best model predictions are obtained for the Cisco gage 

with correlation of 0.84 and 0.87 during training and testing phases, respectively. The 

second best model predictions are for Lees Ferry gage with correlation of 0.72 and 0.81 

during training and testing phases, respectively. For Green River gage the correlation 
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coefficient is 0.63 and 0.72 during training and testing phases, respectively. Similar 

results are observed based on the performance criteria of model efficiency, where model 

performance during testing for Lees Ferry (0.47) and Cisco (0.45) gages is better 

compared to Green river (0.29) gage (Table 7). Based on the performance measures, 

model I has acceptable predictions but it lacks in capturing the extreme (wet/dry) years in 

the data. This is evidenced by the predictions lying around the bisector line. Overall, 

satisfactory streamflow predictions are obtained for model I at ‘t+3’ for the three gages 

with variations in performance measures. 

 

 
Figure 20: SVM predicted streamflow volumes at ‘t+3’ for model I for (a) training 
phase and (b) testing phase at the three selected gages. Dashed line is the 450 
bisector and solid line is true regression line between the measured and predicted 
streamflow volumes. 
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Table 7: Comparison of SVM and ANN models during testing phase. Drop 0, 1, 2, 3, 
and 4 refer to None, PDO, NAO, AMO, and ENSO, respectively. The RMSE values 
are in 1000 ac-ft. Best model estimates for each model and for each gage are shown 
in bold. 

CISCO DROP RMSE R E RMSE R E

Model I 0 1592.86 0.87 0.45 1767.95 0.53 0.29
1 1488.38 0.91 0.67 1742.52 0.61 0.34
2 1713.68 0.77 0.36 1842.49 0.53 0.26
3 1453.89 0.88 0.44 1860.37 0.58 0.31
4 1652.48 0.79 0.41 1891.68 0.51 0.22

1,2 1729.72 0.76 0.35 1951.38 0.72 0.17
1,3 1452.38 0.88 0.54 1874.80 0.80 0.41
1,4 1622.62 0.82 0.43 1911.68 0.59 0.20
2,3 1708.84 0.73 0.36 2253.76 0.57 0.11
2,4 1823.50 0.68 0.28 2059.54 0.56 0.18
3,4 1825.87 0.79 0.27 2081.49 0.54 0.16

2,3,4 1906.03 0.70 0.19 2159.50 0.60 0.10
1,3,4 1806.05 0.76 0.26 2043.63 0.69 0.17
1,2,4 1958.91 0.69 0.16 2198.12 0.58 0.09
1,2,3 1671.31 0.75 0.40 2089.67 0.63 0.14

GREEN
Model I 0 1536.87 0.72 0.29 1939.50 0.35 0.18

1 1339.96 0.81 0.46 1596.54 0.76 0.24
2 1543.64 0.66 0.29 1890.81 0.13 0.11
3 1471.47 0.70 0.35 1469.76 0.68 0.36
4 1603.97 0.61 0.23 2658.30 0.62 0.14

1,2 1541.00 0.60 0.29 1757.52 0.62 0.17
1,3 1341.67 0.74 0.46 1502.87 0.62 0.33
1,4 1459.72 0.72 0.36 1875.96 0.45 0.15
2,3 1556.68 0.70 0.28 1728.25 0.53 0.13
2,4 1624.75 0.67 0.21 1831.99 0.45 0.11
3,4 1579.26 0.56 0.25 1853.94 0.43 0.21

2,3,4 1642.33 0.61 0.18 1845.32 0.51 0.10
1,3,4 1573.51 0.69 0.26 1837.80 0.60 0.15
1,2,4 1635.08 0.55 0.20 1813.30 0.48 0.11
1,2,3 1558.29 0.63 0.27 1758.34 0.57 0.13

LEES FERRY
Model I 0 3429.31 0.81 0.47 4625.47 0.56 0.20

1 3260.54 0.84 0.53 3666.08 0.65 0.28
2 3969.84 0.77 0.29 4706.68 0.43 0.18
3 3488.44 0.81 0.45 3514.60 0.67 0.24
4 3546.25 0.79 0.35 4353.29 0.50 0.16

1,2 4015.45 0.69 0.27 4291.79 0.56 0.23
1,3 3229.31 0.86 0.55 4156.78 0.78 0.30
1,4 3637.63 0.76 0.40 4378.65 0.50 0.14
2,3 3876.21 0.79 0.32 4256.65 0.53 0.23
2,4 4040.62 0.67 0.26 4582.94 0.51 0.17
3,4 3905.82 0.74 0.31 4777.17 0.52 0.18

2,3,4 4028.09 0.62 0.16 4796.22 0.33 0.15
1,3,4 3452.71 0.79 0.31 4440.66 0.54 0.22
1,2,4 3902.29 0.66 0.18 4898.89 0.30 0.12
1,2,3 3604.23 0.69 0.27 4600.55 0.45 0.20

Model IV

Model IV

SVM ANN

Model II

Model III

Model IV

Model II

Model III

Model II

Model III
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In Model II, oscillations are dropped individually and the remaining three oscillation 

modes are used to predict streamflow volumes. This results in four model runs for each 

gage. Results for Model II during the testing phase for the selected gages are shown in 

Figure 21. The results show significant improvement in all three performance measures 

and for all three gages compared with results from model I when PDO is dropped (Figure 

21 (a), (b), and (c)). When AMO is dropped there is marginal improvement in some 

performance measures. For example, for the gage at Green (Figure 21 b) correlation 

slightly reduces compared to Model I but RMSE and E show some improvement (Table 

7). When either NAO or ENSO are dropped there is noticeable deterioration in all three 

performance measures for all gages (Figure 21 (a), (b), and (c)).  

In Model III, oscillations are dropped in pairs and the remaining two oscillation 

modes are used to predict streamflow volumes. This results in six model runs for each 

gage. It is observed that best performance measures were obtained by dropping PDO and 

AMO simultaneously for each of the gages (Table 7). An increase in correlation 

coefficient is observed for all 3 gages compared to Model I. RMSE and E also show 

improvement pointing to better predictions compared to model I when PDO and AMO 

are dropped together, compared to the other input combinations for all the gages. 

Considering all three model performance criteria the worst predictions are obtained when 

NAO and ENSO are dropped simultaneously.  
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Figure 21: SVM predicted streamflow volumes at ‘t+3’ for model II at (a) Cisco ,(b) 
Green, and (c) Lees Ferry gage. Dashed line is the 450 bisector and solid line is true 
regression line between the measured and predicted streamflow volumes. 
 

In Model IV, individual oscillation modes are used to predict streamflow volumes. 

This results in four model runs for each gage (Figure 22 (a), (b), and (c)). Based on the 

performance measures (Table 7) relatively better predictions are obtained using NAO and 

ENSO as inputs compared to using PDO and AMO.  

The results from Model II - IV point that NAO and ENSO individually and in 

combination have relatively stronger signal than PDO and AMO in three year lead 

streamflow predictions for the Upper Colorado River Basin. Although ENSO has the 

weakest correlation with the streamflow (Table 6) and NAO has the strongest correlation, 

both indices in combination provide the best predictions. The results indicate that the 

oscillations (NAO, ENSO) with short cycle periodicity (2-7 years) are more useful in 
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long lead time streamflow predictions as compared to the oscillations (PDO and AMO), 

which have long cycle periodicity (25 – 40 years). 

 

 
Figure 22: SVM predicted streamflow volumes at ‘t+3’ for model IV at (a) Cisco ,(b) 
Green, and (c) Lees Ferry gage. Dashed line is the 450 bisector and solid line is true 
regression line between the measured and predicted streamflow volumes. 
 

To test the model performance for different lead time streamflow predictions in the 

UCRB, R, RMSE, and E were calculated for SVM and ANN models using all four 

oscillation indices and lead times ranging from one to five years. The correlations 

between measured and predicted streamflow values during testing using the SVM model 

are shown in Figure 23 (a) (ANN model results not shown). It is noticed that using all 

four oscillation indices, correlation coefficient between predicted and measured volumes 

increases up to three years and then deteriorates. This was counterintuitive as one would 
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expect a decrease in forecast accuracy with increase in forecast lead time. A rigorous 

analysis was performed to understand this anomaly; lag 1, lag 2, and lag 3 SVM model 

streamflow predictions were made using all possible combinations of oscillation indices 

i.e. models I-IV at all gages. The best predictions obtained for lag 1, lag 2, and lag 3 for 

Lees Ferry is shown in Figure 23 (b, c, d). An interesting finding was that the best 

predictions for each lead time were result of a different combination of input indices. For 

example, the best predictions for lag 1 (Figure 23 (b)) are obtained using all four indices. 

The best predictions for lag 2 (Figure 23 (c)) are obtained using combination of PDO, 

NAO and AMO, and the best predictions for lag 3 (Figure 23 (d)) are obtained using 

combination of NAO and ENSO. Performance measures for Lees Ferry show that lag 2 

predictions are better than lag 1 and lag 3 predictions when best possible input 

combination is used for each lag time, compared to using the same inputs for all lag 

times. This analysis shows that various combinations of oscillation indices can be used to 

enhance predictions for different lead times. Moreover, NAO comes across as an 

important predictor for the UCRB streamflow and can be used to extend lead time up to 

three years, which is the primary intent of the current research. Same analysis was 

performed for other gages (results not provided) and resulted in similar findings as 

reported for Lees Ferry gage.  

To evaluate the influence of size of training data set we ran three modeling 

experiments at all gages with 86, 80 and 76 years of data for training, respectively. 

Correlation coefficient, RMSE and E were calculated to measure model performance. 

Figure 23 (e) shows that decreasing the training sample size from 86 years to 80 years 

and further to 76 years reduces the correlation coefficient between measured and 
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predicted streamflow volumes for the testing phase significantly. Similar trend was 

observed in other performance measures and at all three gages. 

 

 
Figure 23: a) Correlation coefficient for test years at three gages for different lead 
times using all indices (b-d) model performance at Lees Ferry using best input 
combination for 1, 2 and 3 year lead time forecast (e) selection criteria for training 
years.  
 

For example, R for the Lees Ferry gage with 86, 80 and 76 year of training data is 

0.81, 0.58, and 0.51, respectively. E for the Lees Ferry gage with 86, 80 and 76 year of 

training data is 0.47, 0.30, and 0.18 respectively. RMSE for the Lees Ferry gage with 86, 

80 and 76 year of training data is, 3429, 4192, and 4317, respectively. This analysis led to 

the basis of dividing the data set only in two parts i.e., training (86 years) and testing (10 

years) for all the SVM models. Dividing the data in only two sets i.e., training and testing 

 113



is a widely used practice in the SVM modeling and has been adopted in several other 

studies.  

The robustness of the SVM model is verified by cross validation. This is done by 

dividing the data set into nine 10-year sub periods. The first sub period i.e. 1912-1921 is 

dropped and the remaining 86 years are used for training the SVM model with NAO and 

ENSO indices and then tested on the dropped sub period. The process is repeated for 

other eight sub periods and performance measures are calculated for individual periods 

and for the pooled values from all sub-periods. Figure 24 shows performance measures 

for pooled values at three gages. Comparison of performance based on R, RMSE, and E, 

between SVM model III best prediction (using NAO and ENSO) and pooled results 

shows that the performance deteriorates for pooled predictions. For example, at Cisco 

gage R decreases from 0.88 to 0.71, RMSE increases from 1452.38 to 1763.3, and E 

decreases from 0.54 to 0.38 for pooled predictions. Examination of model performance 

for different testing sub-periods shows that model performed reasonably well for most 

sub-periods, the only exception was the period 1972-1981 when performance was poor 

(sub-period results are not shown). Although, the model performance for pooled 

predictions at all three gages is lower than the performance for 1992-2001 testing period 

from the SVM model III (Table 7) but is within the acceptable range. The scatter plots for 

the pooled values show that the model is able to provide satisfactory results as the 

predictions are close to the bisector line.  
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Figure 24: Scatter plot for validation of SVM model using pooled values at the 
selected gages.  

 

A linear regression model is also developed using NAO and ENSO oscillations 

modes for 86-years. This model is used to predict streamflow for the testing period for all 

gages. All three performance measures for linear regression model were weaker than the 

ones obtained from SVM model III. The R, RMSE and E for Lees Ferry using linear 

regression model are 0.52, 3876.24, and 0.20, respectively compared to SVM model 

performance of 0.86, 3229.31, and 0.55. Similar results are obtained for other gages. 

Linear regression model is not able to capture the association between streamflow and 

oscillations modes as well as the SVM model does. 

3.7.2 Comparison with ANN Models 

The results obtained from the SVM models are compared with the traditional machine 

learning tool used in hydrology known as Artificial Neural Networks (ANNs). ANN 

model is developed for streamflow predictions at ‘t+3’ time step for the four models 

discussed earlier. A feed forward-back propagation method with Sigmoid Activation is 

used in ANN to predict streamflow volumes. NueNet Pro software is used to develop the 

ANN model (http://www.cormactech.com/neunet/). 

 115



Figure 25 shows the correlation coefficient between the training and testing phases 

for gages using all four inputs. During the training phase (Figure 25 a), the predictions lie 

far from the bisector resulting in poor predictions in the testing phase (Figure 25 b), also 

evident by performance measures shown in Table 7. Similar results of lower performance 

measures are noticed for the other models using ANN approach (Table 7). Comparison of 

results shows superior performance of SVM model over the ANN model at all three 

gages. The superiority of SVM over the ANN modeling approach has been well 

established by Dibike et al. (2001), Asefa et al. (2006), Gill et al. (2006), and Liong and 

Sivapragasam (2002) in various fields of hydrology. Although SVM model predictions 

are better compared to ANN model, both modeling approaches reveal stronger signals for 

NAO and ENSO as compared to PDO and AMO in the Upper Colorado River Basin.  

3.8 Conclusions 

The application presented in this paper uses the annual averaged oceanic-atmospheric 

indices to predict annual streamflow volumes three years (t+3) in future for three gages in 

the Upper Colorado River Basin. Streamflow is used as the hydrological response 

variable, because streamflow is regarded as the most vital component of the hydrological 

cycle. We consider hydrologic variability at the regional scale to obtain better streamflow 

forecast instead of using the entire continental United States. Streamflow volume 

predictions by Model I at the selected gages, as indicated by the performance measures 

(Table 7), are satisfactory. The predictions improve for Model II and Model III when 

PDO and AMO are dropped individually and in pairs for the selected gages (Table 7). An 

increase in R and E, and decrease in RMSE is noted for Model II and Model III after 

dropping PDO and AMO. Figure 21 shows that predictions obtained by dropping PDO 
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and AMO separately are saturated along the 450 line as compared to predictions obtained 

by dropping NAO and ENSO which are scattered. Model IV used single input and 

identified that better predictions are obtained using NAO and ENSO compared to PDO 

and AMO for three years lead time which is evident by the three performance measures. 

 

 
Figure 25: ANN predicted streamflow volumes at ‘t+3’ for model I for (a) training 
phase and (b) testing phase at the three selected gages. Dashed line is the 450 
bisector and solid line is true regression line between the measured and predicted 
streamflow volumes. 
 

The agreement between the results from Models II, III, and IV shows that NAO and 

ENSO have relatively stronger signal in streamflow predictions as compared to PDO and 

AMO. The SVM model results are compared with the results obtained from ANN model 

and linear regression. In general, results from both SVM and ANN models are in 

agreement in showing stronger signal for NAO and ENSO compared to PDO and AMO 
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for all the gages. Based on all three performance measures, for all four models, and at all 

three gages, SVM model outperformed the ANN model and linear regression model.  

The application of SVM as a forecasting tool has been shown with its implementation 

in the Upper Colorado River Basin. The SVM approach comprised of two parts: one part 

relating to the regularization of the solution; and the other to the ε-insensitive goodness of 

fit resulting in remarkable generalization capabilities. The SVM models belong to the 

class of data-driven approaches so it becomes important to determine the dominant model 

inputs, which helps in reducing the training time and increases the generalization.  

The seasonal to annual scale relationship between ENSO and streamflow variability 

in the UCRB has been reported extensively. NAO has been linked with decreases in 

mean sea level pressures (SLP) over Artic oceans (Walsh et al., 1996), trends in North 

Atlantic surface wave heights (Kushnir et al., 1997), changes in storm activity, and the 

shifts in the Atlantic storm track (Hurrel, 1995). A linkage between NAO and streamflow 

variability for UCRB has not been conclusively established to date. McCabe et al. (2007) 

left an open ended question to the significance of AMO in predicting streamflow 

variability in the UCRB, but identified NAO as influencing streamflow at annual scale. 

Although Figure 23 shows that a relatively better prediction is possible for a 2-year lead 

time using a different combination of indices but performance of 3 year lead time is still 

satisfactory. The present study finds that long-term streamflow predictions i.e. three years 

for UCRB can be obtained using NAO and ENSO oscillation modes.  

The results from the current research contribute to increasing the lead time up to three 

years for the streamflow forecasting in the UCRB, using NAO and ENSO oceanic-

atmospheric indices. During model validation we learned that the SVM model did not 
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perform equally well for all testing sub-periods. This may be because during some testing 

sub-periods other oscillations modes, besides NAO and ENSO, may have been dominant. 

The SVM model also did not adequately capture low and high flows, which points to the 

fact that the indices used may not fully represent the physical processes linked with 

streamflow generation. Increasing the size of training data set may also improve the 

predictions.  

Although, the model is unable to successfully capture the extreme events, the long-

lead time forecast, developed in this research, would be helpful to the water managers in 

UCRB in managing water systems in response to inter-decadal climate variability. The 

research also shows prospects for the use of statistical learning theory (SVM) to predict 

highly complex process (streamflow) that are difficult to understand and simulate using 

conceptual models. 
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CHAPTER 4 

4 EVALUATING CHANGES AND ESTIMATING SEASONAL PRECIPITATION FOR 

COLORADO RIVER BASIN USING STOCHASTIC NONPARAMETRIC 

DISAGGREGATION TECHNIQUE (PUBLISHED IN                                         

WATER RESOURCES RESEARCH) 

Abstract  

Precipitation estimation is an important and challenging task in hydrology due to high 

variability and changing climate. This research  involves i) analyzing changes (trend and 

step) in seasonal precipitation, and ii) estimating seasonal precipitation by disaggregating 

water year  precipitation using k-nearest neighbor (KNN) nonparametric technique for 29 

climate divisions encompassing Colorado River Basin. Water year precipitation data 

from 1900 to 2008 is subdivided into four seasons’ i.e. autumn, winter, spring, and 

summer. Two statistical tests i.e., Mann-Kendal and Spearman’s Rho are used to evaluate 

trend changes and Rank Sum test is used to identify the step change in seasonal 

precipitation. The results indicate a decrease in the upper basin and increase in the lower 

basin winter precipitation resulting due to an abrupt step change. The affect of El Niño-

Southern Oscillations (ENSO) in relation to seasonal precipitation is also evaluated by 

removing the historic El Niño events. Decreasing winter and spring season precipitation 

trends for the upper basin are not linked with El Niño. Corroborating evidence of changes 

in seasonal precipitation is established by analyzing the trends in SNOTEL data and 

streamflow at Lees Ferry gage. KNN disaggregation results indicate satisfactory seasonal 

precipitation estimates during winter and spring season compared to autumn and summer 

season and the superiority of KNN results is established when compared with the first 
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order periodic autoregressive (PAR-1) parametric approach. The analysis of seasonal 

changes and estimates of precipitation can help water managers in better management of 

water resources in the Colorado River Basin.  

Citation: Kalra, A. and S. Ahmad (2011), Evaluating changes and estimating seasonal 

precipitation for the Colorado River Basin using a stochastic nonparametric 

disaggregation technique, Water Resour. Res., doi:10.1029/2010WR009118. 

4.1 Introduction 

4.1.1 Background 

The need for better information about the variability exhibited by precipitation has 

increased due to the changing climate (New et al., 2001; Karl and Knight, 1997; Regonda 

et al., 2005; Block and Rajagopalan, 2007; and Hansen et al., 2006). Large scale changes 

in precipitation due to the changing climate have caused several catastrophic flood and 

drought events globally. These changes have caused large scale destruction both to the 

nature and mankind. A few examples of some catastrophic flooding events are the 1993 

flooding along the Mississippi River, the 1996 autumn floods in the New England, the 

winter floods of 1997 in the Pacific Northwest and California, and the Ohio River and the 

Red River valley floods during the spring of 1997 (Karl and Knight, 1997). Similar to 

floods, a few notable drought events are the 1995-1996 droughts in the Upper Midwest 

and the Ohio Valley, the 1991 drought of California (Tarboton, 1994; Lins and Slack, 

1999), and the severe sustained drought within the Colorado River Basin (CRB) since 

2000 (Piechota et al., 2004). The increased variability in precipitation has forced water 

managers to develop plans to mitigate these climate extremes. This requires evaluating 
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the long-term changes in precipitation and estimating precipitation using statistical 

techniques.  

4.1.2 Changes in Precipitation  

It would be remiss not to mention some notable work that has emphasized the 

changes in precipitation (Bunting et al., 1976; Hennessy et al., 1999; Gonzalez-Hidalgo et 

al., 2001, Luis et al., 2000; Timbal, 2004). Bunting et al (1976) used linear regression to 

evaluate the trends in the long-term rainfall records for West Africa and indicated that the 

trends can be used to forecast rainfall one to two seasons ahead. Timbal (2004) used 

statistical technique based on synoptic situation to study observed rainfall trends in 

Southwest Australia. He was able to reproduce the trends observed globally during the 

past 50-years, indicating the sensitivity of the statistical approach to the changes in 

climate conditions. Hennessy et al. (1999) used Kendall-Tau test to compute trends in 

seasonal and total rainfall for 379 stations spread over the entire Australia from 1910-

1995 and compared the results using linear regression test. They concluded that changes 

are significant for total rainfall but show non-significant changes during different 

seasons. Gonzalez-Hidalgo et al. (2001) used spearman’s rho and linear regression to 

evaluate rainfall trends in western Mediterranean area for 97 pluviometric stations for a 

period from 1960-1990. The results indicated an increase in winter and summer 

interannual precipitation. Luis et al. (2000) used nonparametric Mann-Kendal and 

Spearman’s Rho tests to evaluate the trends in rainfall for 97 rain-gauge stations in the 

region of Valencia (East Spain). They observed a decrease in annual rainfall and showed 

a significant increase in the interannual variability. In Canada and the United States, an 

increasing trend in the annual totals of precipitation and decreasing trend in lower-
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latitude precipitation have been observed during the twentieth century (Groisman and 

Easterling, 1994; Groisman et al., 2001).  

Although, there is no single method of analysis that can comprehensively cover all 

aspects of changes in precipitation, it is fairly apparent that more consideration should be 

given to the type of question an analysis can answer. Majority of studies analyzing the 

changes in precipitation used nonparametric statistical trend tests such as the Mann-

Kendall and Spearman’s Rho but did not account for an abrupt step change in the 

precipitation. It is important to clearly differentiate between a gradual trend and a step 

change for climate change studies. This is necessary because the pattern of the trend 

change can be linear and continuous, whereas step changes are non linear, occur abruptly, 

and may reoccur in the future (McCabe and Wolock, 2002, Kalra et al., 2008). It is well 

documented that rapid climatic changes were noted during the winter of 1976-1977 in the 

North Pacific region due to the shift in the ocean-atmosphere system (Kerr, 1992; 

Beamish et al., 1997; Holbrook et al., 1997; Mantua and Hare, 2002). These oceanic 

changes intensified the weather in the sub-Arctic Pacific, which affected the sea surface 

temperatures. Variations (i.e., increase and decrease in sea surface temperatures) were 

noted for the Eastern Pacific and Central Pacific regions (Kerr, 1992; Beamish et al., 

1997). This step-like shift in the mean sea level temperatures has been termed as the 

“climatic regime”, following a regime shift in 1977 (Mantua and Hare, 2002). Due to this 

reason, evaluating a step change in the precipitation becomes important and knowing 

these shifts in advance can help water managers to improve reservoir operations to meet 

the competing demands for municipal use, irrigation, environmental need, and power 

generation (Regonda et al., 2005). 
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4.1.3 Need for Precipitation Estimation  

Precipitation is regarded as a vital governing factor in the temporal and spatial 

variability of runoff and soil moisture, which in turn control the entire hydrologic regime 

of a river basin. Accurate estimate of precipitation are often necessary for monitoring the 

variability in climate extremes and are helpful in understanding the hydrological cycle 

(Bell, 1987; Hsu et al., 1997; Nayak et al., 2008, 2010). Accessing high resolution 

temporal precipitation data is of prime importance in a multitude of hydrologic 

applications (Olsson, 1998; Guntner et al., 2001; Sivakumar, et al., 2001; Srikanthan and 

McMahon, 2001; Koutsoyiannis, 2003). Increasing climate variability has shifted the 

focus of different scientific communities i.e. hydrological, meteorological, and 

agricultural to deal with complex problems, such as pollution transport, rainfall-related 

pollution effects on plants, soil water infiltration, and soil erosion (Guntner et al., 2001; 

Sivakumar, et al., 2001). If precipitation data is not available at required spatial and 

temporal scale, it results in additional uncertainties. A solution to this problem is to 

collect high-resolution data relevant to the problem but it is costly and time consuming. 

General Circulation Models (GCMs) are normally used to forecast future weather 

conditions at global and regional scales. These models generate rainfall data at a very 

course spatial (in the order of 250 km2 or greater) resolution (Chiew et al., 2010). In most 

of the watershed scale modeling work, input data is required at much finer spatial (in the 

order of 100 m2 grids) resolution and temporal resolution varies upon the need of end 

user. The only possible alternative that is simple and parsimonious is to transform the 

available data from one time scale to another. If precipitation data at aggregate scale is 

available from statistical models or GCMs, disaggregation techniques can be used to 
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estimate precipitation at finer temporal resolution. Stochastic disaggregation techniques 

are often necessary for reproducing the right statistical characteristics of the data, at the 

required time scale, because the disaggregated series is a realization from the original 

aggregated time series (Mehrotra and Sharma, 2006). The stochastic disaggregation 

techniques help in establishing long range estimates from the historic data and generate 

synthetic values not seen in the historic records and also preserve the statistical properties 

such as mean, median, standard deviation, and skewness.  

4.1.4 Disaggregation Applications in Hydrology 

The first linear stochastic disaggregation model was developed by Valencia and 

Schaake (1973) to disaggregate streamflow. The authors aggregated flow using a linear 

model and then disaggregated it using the linear stochastic model. The model by Valencia 

and Schaake (1973) was modified and improved by several researches (Mejia and 

Rousselle, 1976; Lane, 1982; Stedinger and Vogel, 1984). Besides linear stochastic 

disaggregation techniques, there have been alternate approaches, which allow 

representation of the non-Gaussian data directly in the disaggregation procedure (Tao and 

Delleur, 1976; Todini, 1980; Koutsoyiannis, 1992; Koutsoyiannis, 2001). These 

approaches do not require data transformation and preserve the additive property and 

higher order statistics of the aggregated and disaggregated data by performing a stepwise 

disaggregation. The major disadvantage of such techniques is that they assume linearity 

in the data and are iterative in nature, which makes them computationally intensive.  

To overcome the issues in disaggregation procedures, Lall and Sharma (1996) 

developed a nonparametric bootstrap approach of time series simulations based on the 

kernel nearest neighbor (KNN). They showed that the synthetic streamflow series 
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generated from KNN is better than that from ARMA models, and the KNN technique is 

more flexible and is capable of reproducing both linear and nonlinear dependences. The 

KNN method is preferred where the researchers are uncomfortable with the prior 

assumption about the data (e.g. linear or nonlinear). Sharma et al. (1997) used KNN to 

simulate streamflow at a single site and showed the advantages of using KNN over 

traditional linear models. Tarboton et al. (1998) developed a kernel based temporal 

streamflow disaggregation approach for multiple sites. This work was an extension of the 

single site work by Sharma et al. (1997). Srinivas and Srinivasan (2005) developed a 

semi parametric disaggregation multisite model called the hybrid moving block bootstrap 

multisite model (HMM). This method incorporated the merits of both parametric and 

nonparametric techniques but still required multiple steps, which were computationally 

intensive. Prairie et al. (2005, 2006, and 2007) modified the KNN disaggregation 

procedure developed by Lall and Sharma (1996) for streamflow simulations and 

disaggregated streamflow both spatially and temporally at multiple sites. They were able 

to generate values not observed in the historic data using a modified bootstrap KNN 

approach.  

Compared to streamflow disaggregation, precipitation disaggregation has greater 

challenges due to its intermittence characteristics and the lack of gaussianity (Guenni and 

Bardossy, 2002). Furthermore, the required temporal resolution of precipitation depends 

on the purpose for which disaggregation will be performed. Precipitation values 

generated through GCMs may not be directly useable for some application but can be 

used indirectly in disaggregation schemes. Studies evaluating long-term climate changes, 

critical crop production decisions and sediment yield within catchments require seasonal 
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data, whereas estimation of water demand and the simulation of water supply generally 

needs monthly data (Srikanthan and McMahon, 2001; Hansen et al., 2006). Hydrological 

applications that control surface and subsurface processes require daily or hourly 

precipitation data (Rajagopalan et al., 1997; Rupp et al., 2009). Due to the continued need 

of high-resolution precipitation data several precipitation disaggregation techniques have 

been used by numerous researchers for transforming the data from one scale to the other 

(Grace and Eagleson, 1966; Schaake et al., 1972; Woolhiser and Osborn, 1985; 

Hershenhorn and Woolhiser, 1987; Arnold and Williams, 1989; Econopouly et al., 1990; 

Bo et al., 1994; Connolly et al., 1998; Olsson, 1998; Olsson and Berndtsson, 1998; 

Koutsoyiannis, 1988, Koutsoyiannis and Xanthopoulos, 1990; Rajagopalan and Lall, 

1999; Harrold et al., 2003; Gangopadhyay et al., 2005; Block and Rajagopalan, 2007). 

Grace and Eagleston (1966) disaggregated storm depth for shorter duration using a 2-

dimensional overland flow model. A Markov chain model for disaggregating monthly 

rainfall into daily value was proposed by Schaake et al. (1972). A nondimensionalised 

Markov process for disaggregating storm depth into fractional depths was developed by 

Woolhiser and Osborn (1985). Hershenhorn and Woolhiser (1987) developed a daily 

stochastic model to disaggregate rainfall into a number of individual storms in a day. The 

model did not address the external storm structure and was later modified by Econopouly 

et al. (1990). A simple stochastic model for generating half-hourly rainfall intensity from 

daily rainfall totals was proposed by Arnold and Williams (1989). Koutsoyiannis (1988) 

and Koutsoyiannis and Xanthopoulos (1990) proposed general methods for 

disaggregating rainfall for time scales finer than monthly. Connolly et al. (1998) 

proposed a stochastic model for disaggregating daily rainfall totals into multiple storm 

 133



events in a day and accounted for the time-varying intensity within each event. Bartlett-

Lewis rectangular pulse (BLRP) model developed by Rodriguez-Iturbe et al. (1987) was 

used by Bo et al. (1994) to disaggregate daily rainfall values into hourly values. Olsson 

(1988) used the multifractal simulation techniques to model the temporal structure of 

rainfall. Later, Olsson and Berndtsson (1998) improved on the method and employed a 

scaling-based cascade model to disaggregate daily seasonal values to 45-minute temporal 

resolution. Burian et al. (2000) used Artificial Neural Network (ANN) approach to 

disaggregate hourly rainfall data into shorter time units, based on theory of learning. 

Sivakumar et al. (2001) used a chaotic approach to disaggregate rainfall of five 

simulations using the correlation dimension technique to verify the assumption of chaos 

at the Leaf River Basin in the state of Mississippi. Harrold et al. (2003) used KNN to 

generate rainfall amounts of wet days, which takes into account the seasonality and 

reproduces important distributional and dependence properties of observed rainfall. Lall 

et al. (1996) used a wet/dry KNN model to resample daily precipitation using kernel 

probability density estimators. Rajagopalan and Lall (1999) used KNN to simulate daily 

precipitation and other weather variables and compared the results with the multivariate 

autoregressive model (MAR-1)). The results indicated a better performance of KNN 

compared to results from the MAR-1 model. Gangopadhyay et al. (2005) used KNN to 

downscale precipitation and temperature from a weather prediction model for four 

diverse basins across the conterminous United States. The authors compared the KNN 

downscaling model with multiple linear regression based downscaling model and showed 

the superiority of KNN. Tripathi et al. (2006) applied Support Vector Machine (SVM) to 

downscale GCM output to monthly time scale for operation purposes in India. Block and 
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Rajagopalan (2007) evaluated the interannual variability and ensemble seasonal forecast 

of Upper Blue Nile Basin Kiremt in Ethiopia using stochastic approach based on K-

nearest neighbor. The authors used the Prairie et al. (2007) disaggregation technique to 

generate monthly precipitation values from aggregated seasonal precipitation. Interested 

readers are referred to Koutsoyiannis (2003) for detailed description and applications of 

different precipitation disaggregation techniques.  

Review of disaggregation literature shows that KNN has been used extensively to 

disaggregate streamflow, whereas KNN based precipitation disaggregation studies are 

less common and deal primarily with simulating rainfall at hourly, daily, weekly, and few 

at monthly time scales. Seasonal estimations reveal the average conditions over a period 

of time and are not limited to a particular day. Seasonal precipitation disaggregation 

estimates are necessary for the hydrologic, meteorological, and agricultural communities 

(Singhrattna et al., 2005; Hansen et al., 2006; Robertson et al., 2007). Estimating seasonal 

precipitation values is important for resource planning and management e.g. reservoir 

management, agricultural practices, and flood management (Bindlish and Barros, 2000; 

Rupp et al., 2009). Seasonal precipitation values are useful in determining the variations 

in crop productions and can help in adjusting critical decisions (Hansen et al., 2006). 

Understanding the year to year variability in seasonal precipitation is helpful in 

mitigating potential disasters (Block and Rajagopalan, 2007). Although, seasonal 

predictions have been made with generalized circulation models (GCMs), they are often 

useful for some regions and during particular seasons (Goddard et al., 2003).  

Based on the extensive literature review on disaggregation and per author’s 

knowledge, it is noteworthy that none of the precipitation disaggregation studies have 
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been within the Colorado River Basin (CRB). It will be true to state that there is no river 

governed more physically and legislatively than the Colorado River (Christensen and 

Lettenmaier, 2007). Climate change is a major concern in the CRB due to sensitivity of 

discharge to precipitation and temperature (Christensen and Lettenmaier, 2007, Miller 

and Piechota, 2008; Kalra and Ahmad, 2009). Regonda et al. (2005) have indicated that 

climate change may lead to the intensification of different hydrological processes, and 

may affect the nature of precipitation events within the CRB. Due to this, there has been 

an increased emphasis on the drought and water availability studies of higher temporal 

scales within CRB (Hamlet et al., 2005; Mote et al., 2005; Christensen and Lettenmaier, 

2007; Pagano and Green, 2005; Easterling et al., 2007). 

4.1.5 Motivation of Current Research  

To manage available water and analyze drought conditions, there is a need to evaluate 

the long-term changes in precipitation and provide seasonal precipitation estimates within 

the Colorado River Basin. With this motivation, the study presented here evaluates both 

the trend and step changes in seasonal precipitation over 29 Climatic Divisions within the 

Colorado River Basin over a 109 year time span (1900 – 2008). Nonparametric statistical 

tests Mann-Kendall and Spearman’s Rho are used to evaluate trends in data and 

nonparametric Rank Sum is used to evaluate the step change. The changes are evaluated 

for four seasons i.e., autumn, winter, spring, and summer. The seasons were selected in 

such a manner that the water year can be divided into four seasons and the affect of each 

season can be analyzed separately. The duration of the seasons are explained in the data 

section. Miller and Piechota (2008) have evaluated trend and step changes in 

precipitation within the CRB using the nonparametric tests similar to the current study 
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using the monthly data from 1951-2005. The current study evaluates seasonal 

precipitation changes for the entire twentieth century i.e. 1900-2008. Also the effect of El 

Niño-Southern Oscillations (ENSO) on seasonal precipitation within the CRB is 

evaluated. In the past, ENSO has been strongly associated with climate fluctuations 

within the arid and semiarid Southwest, which makes it vital in evaluating changes in 

precipitation for efficient water resources planning and management within a watershed.  

In the western U.S. including the Colorado River Basin, 50%-70% of annual 

precipitation falls as snow (Seereze et al., 1999), which is largely stored through the 

winter season. April 1 Snow Water Equivalent (SWE) is usually used to provide 

estimates and forecast of the annual runoff and is critical in the management of reservoirs 

and irrigation practices (McCabe and Dettinger, 2002). To verify the findings of the 

changes in seasonal precipitation in the current study, trends in March 1, April 1, and 

May 1 SWE data from 1961-2006 (46-years) are also analyzed for snowpack stations 

within the Colorado River Basin. Moreover, seasonal changes in streamflow for Lees 

Ferry gage are analyzed from 1922-2009 (88-years) to understand the relationship 

between upper basin precipitation and streamflow.  

Along with evaluating changes in seasonal precipitation, the current research also 

disaggregates water year precipitation totals into four seasonal values based on 

nonparametric KNN disaggregation technique. Seasonal precipitation estimates are useful 

for river basin management and reservoir operation. Seasonal precipitation estimates 

within the CRB are also vital for paleoclimatic studies, which are used in developing 

long-duration climate proxies. Tree ring widths are sensitive to precipitation and 

precipitation that does not impact tree growth is not reflected in the tree ring widths and 
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cannot be used to reconstruct the past hydrology (Stockton and Jacoby, 1976; Tarboton, 

1994). The disaggregation approach used in the current research will be useful in 

evaluating the seasonal variability exhibited by precipitation within the Colorado River 

Basin. The results from the KNN approach are compared with the first order periodic 

autoregressive model (PAR-1) that has been widely used in practice.  

The findings of the current research will help in understanding the temporal (109 

years) and spatial (location and number of climate divisions) trends in seasonal 

precipitation that will be useful for water resources planning and management in the 

Colorado River Basin to meet competing urban, agricultural, environmental, and power 

generation needs. Secondly, disaggregating water year precipitation into seasonal values 

will be helpful for paleoclimatic studies for reconstructing the past hydrology (i.e. 

streamflow). The information available through reconstructions can be used to evaluate 

the long-term hydrological variability within the Colorado River Basin, which is critical 

for the effective management of surface water resources. 

The paper is organized as follows. The study region and the data used are described in 

sections 4.2 and 4.3, respectively. In section 4.4, the proposed methods to evaluate 

changes in the seasonal precipitation along with the KNN disaggregation technique are 

presented. Section 4.5 covers the trend and step changes and KNN disaggregation results. 

Section 4.6 summarizes and concludes the paper.  

4.2 Study Region 

The Colorado River is a major source of water supply to the southwestern United 

States. The water from the Colorado River is allocated to seven states (California, 

Nevada, Utah, Arizona, Colorado, Wyoming, New Mexico) within the Colorado River 
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Basin based on the “Law of River” (Sax et al., 2000). Due to growing population and 

agricultural activity, certain states such as California depend on water surpluses from the 

Colorado River. The Colorado River basin is composed of upper and lower basin (Figure 

26). The Upper Colorado River Basin generates 90% of the Colorado River flow from 

spring-summer runoff due to snowmelt. The UCRB is defined as the part of basin 

upstream of the gage at Lees Ferry (shown as triangle in Figure 26) and just downstream 

of Glen Canyon Dam in Northern Arizona. It serves Wyoming, Colorado, Utah, and New 

Mexico. It encompasses a total area of 286,000 km2 and is comprised of mountains, 

agricultural, and low-density developments. The streamflow in the UCRB is allocated 

and regulated on the assumption of negligible changes in the mean and higher moment’s 

statistical distribution of annual and decadal inflow to Lake Powell and Lake Mead 

(McCabe et al., 2007). This is because Lake Powell and Lake Mead represent 85% of the 

storage capacity of the entire Colorado River Basin. The lower basin is downstream of 

Lees Ferry and serves California, Nevada, and Arizona. The supply to lower basin is 

governed by the water released from the upper basin. In general, the LCRB is a semi-arid 

region with primarily mixed vegetation and bare soil landcover types. 

The conterminous US is divided into 344 climate division out of which 29 climate 

divisions encompass the Colorado River Basin (Figure 26). The Climate Divisions are 

structured along county lines, drainage basins, and in some instances reflect the economic 

and political boundaries defined by the National Climate Data Center (NCDC). The 

climate divisions are intended to be useful for agricultural, irrigation, transportation, 

forestry, and engineering communities. For the purpose of this study, the climate 
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divisions have been sorted according to States and have been numbered from 1-29. Table 

8 show the nomenclature used to identify each climate division within a particular state.  

 

 
Figure 26: Map showing Colorado River Basin and 29 climate divisions.  
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Table 8: List of climate divisions used in the study. 
Climate Division (CD) State NAME

1 AZ NORTHWEST
2 AZ NORTHEAST
3 AZ NORTH CENTRAL
4 AZ EAST CENTRAL
5 AZ SOUTHWEST
6 AZ SOUTH CENTRAL
7 AZ SOUTHEAST
8 CA SOUTHEAST DESERT BASINS
9 CO AR DRAINAGE BASIN
10 CO CO DRAINAGE BASIN
11 CO PLATTE DRAINAGE BASIN
12 CO RIO GRANDE DRNG. BASIN
13 NM NORTHWESTERN PLATEAU
14 NM NORTHERN MOUNTAINS
15 NM SOUTHWESTERN MOUNTAINS
16 NM SOUTHERN DESERT
17 NV NORTHEASTERN
18 NV SOUTH CENTRAL
19 NV EXTREME SOUTHERN
20 UT WESTERN
21 UT DIXIE
22 UT SOUTH CENTRAL
23 UT NORTHERN MOUNTAINS
24 UT UINTA BASIN
25 UT SOUTHEAST
26 WY SNAKE DRAINAGE
27 WY GREEN AND BEAR DRAINAGE
28 WY WIND RIVER
29 WY UPPER PLATTE  

 

4.3 Data 

The data sets used in the current study comprise of the average monthly precipitation 

time series (inch), Snow Water Equivalent (inch), and streamflow (acre-ft) data for Lees 

Ferry. All the data sets are described in the ensuing sections: 

4.3.1 Precipitation  

The precipitation data used in this study is the averaged monthly time series (inch) 

data for 29 climate divisions covering a period from 1900-2008 and is obtained from the 

National Climate Data Center http://www.esrl.noaa.gov/psd/cgi-
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bin/data/timeseries/timeseries1.pl. The precipitation data over each climate division is 

derived by taking an average of each station reported from the National Weather Service 

(NWS) Cooperative Observer Program (COOP) within that division. The count and 

distribution of the stations within COOP have changed over time and may not be 

representative of topographical impacts of climate within a division. This may be 

considered a limitation in the dataset, but the data corresponds well to large-scale historic 

climate anomalies such as drought, both spatially and temporally (Guttman and Quayle, 

1996). Since the availability of the data, the data has been subject to changes and 

revisions. The latest significant change occurred in late 1960s.  

The monthly precipitations data is summed to obtain precipitation for water year 

(October of the previous year to September of the current year) and the four seasons i.e. 

autumn (October of the previous year to December of the previous year), winter (January 

of the current year to the March of the current year), spring (April of the current year to 

the June of the current year), and summer (July of the current year to the September of 

the current year). The periods are selected in such a manner that the water year can be 

divided into four seasons and the affect of each season can be analyzed separately. 

Similar to current study, past researchers have also used the same seasonal categorization 

in different hydrologic studies (Tootle and Piechota, 2004; Regonda et al., 2005; 

Singhrattna et al., 2005; Tootle and Piechota, 2006; Kalra et al., 2008). The seasonal 

spread of the input data for each climate division is shown in horizontal box plots (Figure 

27 a and 27 b). The horizonatl line inside the box shows the median value. The box 

represents the 25th and 75th percentile (interquartile range) values, whereas the whiskers 

extend from 5th to 95th percentile values.  
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Figure 27: Box plots depicting seasonal precipitation data from 1900-2008 for (a) 
Climate Divisions 1-15, and (b) Climate Divisions 16-29. The four seasons are 
Autumn (A), Winter (W), Spring (S), and Summer (SU). The vertical line inside the 
box shows the median value. The box represents the 25th and 75th percentile 
(interquartile range) values whereas the whiskers extend from 5th to 95th percentile 
values. 

(a) 

(b) 
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The box plots show that the seasonal precipitation within the CRB exhibits higher 

degree of variability and capturing this variability is a challenging task. 

4.3.2 Snow Water Equivalent 

Historic March 1, April 1, and May 1 SNOTEL data for the Colorado River Basin 

were used from Aziz et al. (2010). The data ranges from 1961-2006 and is archived in the 

Natural Resources Conservation Service (NRCS) SNOTEL website 

(http://www.wcc.nrcs.usda.gov/snotel/). Due to the tradeoff between the length of period 

and number of stations, 50 snowpack stations within the CRB for March 1 and April 1 

and 43 for May 1 are used in the current analysis.  

4.3.3 Streamflow  

The average monthly streamflow data (cfs) for United States Geologic Survey 

(USGS) stream gage 09380000 (Colorado River at Lees Ferry, Arizona) is obtained from 

the USGS_ NWISWeb Data retrieval (http://waterdata.usgs.gov/nwis/). The data ranges 

from 1922-2009. The monthly streamflow estimates were converted to volume (acre-ft) 

using appropriate conversion and summed for the water year and the four seasons i.e., 

autumn, winter, spring and summer as described in section 4.3.1.  

4.4 Methods 

First, the nonparametric statistical tests used to detect the changes (trend and step) in 

seasonal precipitation from 1900-2008 for the 29 climate divisions within the CRB are 

discussed. Next, the modified KNN disaggregation framework used to estimate seasonal 

precipitation values for the 29 climate divisions is described.  
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4.4.1 Statistical Tests 

Seasonal time series of precipitation ranging from 1900-2008 over each climate 

division is evaluated independently for detecting change in the data. Trend software by 

Chiew and Siriwardena (2005) is used for detecting the changes in the seasonal 

precipitation. The program is designed to facilitate statistical testing for trend, change and 

randomness in hydrological and other time series data. Two statistical tests i.e., Mann-

Kendall and Spearman’s Rho are used for trend analysis and Rank-Sum for step change 

analysis. In what follows is a brief description of the statistical tests. Interested readers 

are referred to Chiew and Siriwardena, (2005) for detailed explanation of these tests.  

The Mann-Kendall test is a nonparametric test in which the rank of the data values 

within a time series are compared. A test statistic, S, is derived through 
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where R is the rank of the value x within a time series X, n is the number of values, 

and sgn(x)=1 for x>0, sgn(x)=0 for x=0, and sgn(x)=-1 for x<0. The z-statistic i.e. critical 

values can be derived from a normal probability table  
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Spearman’s Rho is also a nonparametric rank based test which determines the 

correlation between variables within a time series. Like the Mann-Kendall test, the n time 

series values are replaced by their ranks. The z-statistic ρs is described by following 

equations and can be obtained from the normal probability tables.  
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where xi is time, yi is the variable (in this case seasonal precipitation), and X and Y  

are their ranks.  

The Rank-Sum test is a nonparametric test comparing the medians in two different 

periods of a dataset. The dataset is divided in two periods based on the step change 

temporal location. In the current analysis the year 1977 was used as the year showing the 

step change as it has been documented by other researchers (Kerr, 1992; Beamish et al., 

1997; Holbrook et al., 1997; Mantua and Hare, 2002). Values over the entire time series 

are ranked into a single series without the regard to which sample they are in. The sum S 

of the smaller dataset is computed. In case of equal samples, an average sum is computed. 

A theoretical mean µ and standard deviation σ are defined as  

2/)1( += Nnµ  and                   (9) 

[ 5.012/)1( += Nnmσ ]                      (10) 

where n is the number of values in the small dataset, m is the number of values in the 

large dataset, and N is the total number of values in the entire time series. The z-statistic 

Zrs is computed as  

)5.0( µ−−= SZ rs  if S> µ                     (11) 
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0=rsZ  if S= µ and                  (12) 

)5.0( µ−+= SZ rs  if S< µ                (13) 

Zrs can be compared to a normal probability table to derive a level of significance. 

The tests are rank-based procedures and are not influenced by the use of skewed 

variables. Also, the tests do not assume any form of linear relationship within the data as 

is inherent in the correlation analysis. The reliability and efficiency of these tests in 

evaluating trends in different hydroclimatological variables (i.e. temperature, 

precipitation, and streamflow) is well established (Bunting et al., 1976; Frei and Schar, 

2000; Haylock and Nicholls, 2000; Hennessy et al., 1999; Karl and Knight, 1997; 

Gonzalez-Hidalgo et al., 2001; Luis et al., 2000; Timbal, 2004; Kalra et al., 2008; Miller 

and Piechota, 2008). In the current analysis, a trend change for a climate division is 

termed as increasing or decreasing when both tests i.e. Mann-Kendall and Spearman’s 

Rho are in agreement. For step change, the rank sum test has to be significant to show 

any change in the data. The tests are evaluated for confidence levels of 90% (p≤0.10), 

95% (p≤0.05), and 99% (p≤0.01). Overall confidence levels reported in the study are 

based on individual tests and the confidence levels between the tests do not have to 

match. For instance, if for a climate division Mann-Kendall shows significance at p≤0.05 

and Spearman’s Rho coefficient shows significance at p≤0.10, the results are reported at 

a significance of p≤0.10. The affect of El Niño-Southern Oscillations (ENSO) in relation 

to seasonal precipitation is also evaluated. The precipitation values for El Niño years are 

extracted and the trend analysis is preformed on the remaining data set for each of the 29 

climate divisions within the Colorado River Basin. The entire process is than repeated for 

the SNOTEL data and the streamflow gage to analyze the hydroclimatic variability in 
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SWE and Lees Ferry streamflow in relation to seasonal precipitation within the Colorado 

River Basin.  

4.4.2 Modified K-Nearest Neighbor Disaggregation Algorithm 

The framework used to disaggregate water year precipitation into four seasonal 

values for the 29 climate divisions within the CRB follows the work of Prairie et al. 

(2007). Usually, the disaggregation problem amounts to the simulation from the 

conditional Probability Distribution Function (PDF) f (X/Z) with the constraint that the 

disaggregated value sum up to the aggregated value. The basic technical details and 

example of the KNN disaggregation technique are outlined in Prairie et al. (2007). A 

brief overview of the KNN algorithm abstracted from Prairie et al. (2007) is described 

below. The algorithm refers to the temporal (water year to seasonal) disaggregation in 

which the dimensionality d is equal to 4 (i.e. seasons). The conditional PDF can be 

written as 

∫= dxZXfZXfZXf ),(/),()/(               (14) 

where X is the seasonal precipitation vector and Z is the aggregated water year 

precipitation. The numerator in equation (14) requires the estimation of d + 1 

dimensionality joint density function but due to the additivity requirement, all of the mass 

of PDF is situated on the d-dimensional hyperplane defined by 

ZXXX d =++ ............21                 (15) 

The conditional PDF for a particular aggregated value Z is defined by the probability 

density on a d -1 dimensional hyperplane slice through the d-dimensional density f (X/Z). 

The disaggregation procedure is considered as a sampling from conditional PDF f (X/Z) 

with the (additivity) constraint that all X should add up to Z. This is achieved by 
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orthonormally rotating vector X into a new vector Y whose last coordinate is aligned 

perpendicular to the hyperplane defined in equation (15). The simulation is performed in 

the rotated space and back rotated (Tarboton et al., 1998). Gram Schmidt 

orthonormalization (e.g. Lang, 1970) is used to determine this rotation. The steps 

involved in modified KNN algorithm for a single climate division are as follows. 

Step 1: Orient the historic seasonal data X such that the seasonal precipitation values are 

across rows and time is across column. X is then rotated into Y (as described above) 

through a rotation matrix R where, 

Y = RX                     (16) 

The detailed procedure for obtaining the rotation matrix R is outlined in Tarboton et 

al. (1998). A succinct summary of the procedure is presented herein. The rotation matrix 

is developed from a standard basis (basis vector aligned with the coordinate axes), which 

is orthonormal but does not have a basis vector perpendicular to the conditioning plane. 

A vector perpendicular to the conditioning plane replaces one of the basis vectors. By 

doing this the basis set of vectors is still non orthonormal. Gram Schmidt 

orthonormalization procedure is used to obtain an orthonormal vector perpendicular to 

the conditioning plane. This results in orthonormal perpendicular R vector with the 

property of RT=R-1.  

Step 2: The next step is to generate the aggregate water year precipitation value z*. 

Previous KNN studies generated aggregate value from fitting the data to an appropriate 

model (Salas, 1985; Lall and Sharma, 1996; Prairie et al., 2005, 2006, and 2007). This 

approach sometimes resulted in missing the extreme values, which are of particular 

interest to the water managers and are vital for managing the reservoir operations. Also, 
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the values generated can be period specific, which is a latent problem in many 

disaggregation approaches due to fewer samples in the model validation period. To avoid 

these issues the current analysis uses a weighted moving window of periods to generate 

the aggregate value. Average monthly values are available for the period of 1900-2008. 

The available monthly precipitation values are averaged for the water year (as described 

in section 4.3.1) to obtain the aggregate value z*. For a particular year ‘m’ (where m = 

1900:2008, i.e. 109 years) aggregated value, the number of nearest neighbors K of the 

historic data series are selected by a heuristic scheme NK =  (where N is the sample 

size). Although there are other methods such as generalized cross validation (GCV) that 

can also be used to obtain K but the heuristic scheme has performed well in a variety of 

applications (Lall and Sharma, 1996; Rajagopalan and Lall, 1999; Singhrattna et al., 

2005; Prairie et al., 2007). Then the selected neighbors of the generated zsim
’ = z*/sqrt(d) 

(where d is the dimension) are assigned weights giving more weight to the nearest 

neighbor and less to the farthest neighbor.  

∑
=

= K

i i
k

kW

1

1
1)(                    (17) 

k = 1,2,3….K 

Say the seasonal disaggregation for water year 1920 is desired. The years close to 

1920 are given higher weight and farther less. 

Step 3: Using the weights in equation (17), the neighbors for jth time of the mth historic 

record are resampled.  

Step 4: The rotated matrix Y in equation (16) has its last column Yd = zsim
’ = z*/sqrt(d) 

and the first d -1 columns of the rotated matrix are denoted by U. Then the rotated matrix 
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Y becomes a function of U and zsim
’ such that Y = [U, zsim

’]. The disaggregated 

precipitation variable Y* is generated for the mth year 

Y* = (Uj,zsim’)                    (18) 

Step 5: The rotation matrix is back rotated to the original space for the mth year 

X* = RTY*                    (19) 

where X* is the seasonal vector of the mth year disaggregated water year precipitation 

and will sum up to z*. Step 2-5 are repeated for the entire 109-years of data to generate a 

pool of seasonal disaggregated values. Also, for each mth year aggregated value, 1000 

simulations each of 108-years in length are computed to generate ensembles of seasonal 

values instead of a single trace. The entire process is then repeated for all the climate 

divisions. The performance measures used for evaluating the effectiveness of the KNN 

model for the pooled values for each climate division are Root Means Square Error 

(RMSE), Mean Absolute Error (MAE), and Correlations Coefficient (R). However, the 

current approach resample the historic data but using weighted moving window of 

periods helps in better capturing the nonstationarity in the precipitation. The 

bootstrapping approach helps in generating the seasonal values not seen in the past as 

opposed to using the simple KNN based approach, which generates values only seen in 

the historic data. Similar to Prairie et al. (2007) disaggregation approach, the current 

approach also produces negative values. But using the more robust and not period 

specific moving window bootstrap approach for generating precipitation simulations the 

negative values are minimized (less than 0.3% of the simulated values for all climate 

divisions) and they do not affect the overall results.  
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In order to assess the relative performance of KNN approach, first order periodic 

autoregressive model (PAR-1) is also developed to obtain the seasonal precipitation 

values for the 29 climate divisions within the Colorado River Basin. The AR type models 

are time series parametric models designed to capture the basic statistical characteristics. 

Details on the theoretical aspects of AR type models are available in Salas et al. (1980).  

4.5 Results and Discussion 

The results are discussed in three ensuing sections. Sections 4.5.1.1 - 4.5.1.5 describe 

the trend and step changes in seasonal precipitation, its relationship to ENSO, trends in 

SWE, and Lees Ferry streamflow data. Section 4.5.2 highlight the seasonal precipitation 

disaggregation results using KNN approach for the 29 climate divisions encompassing 

CRB, and section 4.5.3 provides the KNN disaggregation comparison with the standard 

parametric alternative.  

4.5.1 Trend and Step Changes 

The changes in seasonal precipitation and SWE are reported at three confidence 

levels (described in section 4.4.1) whereas the changes in seasonal flow at Lees Ferry 

gage are reported at p≤0.05. It should be noted that the magnitude of trend and step 

changes for seasonal precipitation and SWE are not computed because the different 

confidence levels used in the current research represent the quantitative measure of the 

data. 

4.5.1.1 Seasonal Precipitation Trend Changes 

The spatial profile of trend changes in seasonal precipitation for the 29 climate 

divisions encompassing the CRB is shown in Figure 28A. For autumn season (OND) an 

increasing trend in precipitation is noted for climate divisions 15, 16, and 22 for p≤0.0.5 
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and for climate division 25 at p≤0.10. Decreasing trends for climate divisions 8, 27, and 

28 are noted at p≤0.05 and climate division 29 show decreasing trend at p≤0.10, while the 

remaining divisions show no changes during autumn season. 

 

 
Figure 28: Spatial maps showing the (A) Trend change, and (B) Step change in 
seasonal precipitation for 29 climate divisions encompassing the Colorado River 
Basin. The seasonal Trend and Step change in Lees Ferry streamflow are also 
shown.  

 

For winter season (JFM) climate divisions 8 and 10 show decreasing trends at p≤0.10 

and p≤0.05 and climate divisions 26-29 show decreasing trends at p≤0.01. For spring 

season (AMJ) decreasing trends in seasonal precipitation are dominant with six climate 

divisions showing decreasing trends and a single climate division showing increasing 

trends. The decreasing trends are noted for climate divisions 9 and 14 at p≤0.10, climate 

divisions 4, 8, 9, and 28 at p≤0.05. The increasing trend is noted for climate division 23 at 
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p≤0.01 with remaining divisions showing no change. For summer season (JAS) 

precipitation remained relatively unchanged with single climate division (CD 1) showing 

decreasing trend at p≤0.01. 

The trend results indicate that overall there is a decrease in seasonal precipitation 

within the CRB. The decreasing trends in precipitation are dominant during winter and 

spring seasons; compared to the autumn and summer seasons. The increasing trends are 

seen for four climate divisions during autumn season and one climate division during the 

spring season. Majority of the climate divisions that show decreasing precipitation trends 

during the winter season envelop the northwest mountainous region of the Colorado 

River Basin. This region primarily has precipitation in the form of snow, which is 

generated by the frontal systems originating in the North Pacific Ocean. Precipitation in 

this region replenishes the mountain storage and is a source of snowmelt in the critical 

spring runoff season. Decreasing precipitation trends for this region indicate the changing 

character of climate due to variability in the atmospheric circulation patterns and sea 

surface temperature (SST) of the tropical and North Pacific Oceans, which can affect the 

frequency and moisture content of frontal systems and alter the long-term trend of winter 

precipitation within the Colorado River Basin. The winter precipitation within CRB plays 

a vital role in generating the peak spring-summer streamflow. The decreasing winter 

precipitation trend coupled with temperature change can lead to the intensification of the 

hydrological cycle (Huntington, 2006) and cause a shift in the timing of the peak runoff 

(Cayan et al., 2001). Additionally, increases in surface temperature at higher latitude have 

been noticed, which have resulted in systematic decrease in snow cover extent and 

changes in the amount of precipitation falling as rain versus snow during the winter 
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months (Karl et al., 1993). The decreasing trend of winter precipitation within the UCRB 

is in agreement with the findings of Christensen et al. (2004). Christensen et al. (2004) 

assessed the hydrology and water resources of the CRB by comparing the downscaled 

climate simulations of a Parallel Climate Model (PCM) for three periods (2010-2039, 

2040-2069, and 2070-2098) into the future. They indicated decrease in winter 

precipitation for all three periods, which resulted in large reduction in streamflow within 

the Colorado River Basin. Decreases in winter precipitation over southern Europe 

(Brunetti et al., 2001) and Mediterranean, and wet anomalies from Iceland eastward are 

related to positive phases of North Atlantic Oscillations (NAO) (Hurrell, 1995). Similar 

climate fluctuations can be related to cause changes in winter precipitation within CRB as 

streamflow within UCRB is strongly associated with NAO variability (Kalra and Ahmad, 

2009). Moreover, results from several GCM runs and scenarios have shown a 10% 

increase in precipitation above current values in the northwestern U.S. and a 10% 

decrease below current values for the southwestern United States (Nash and Gleick, 

1991; Christensen and Lettenmaier 2007). The increases in autumn precipitation for 

climate divisions in mid-elevations can be attributed to the increase in temperatures that 

have lead to more frequent moderate to high intensity non-convective events (Hennessy 

et al., 1997). Summer precipitation usually has not much role to play within CRB and has 

remained unchanged during the period of record as indicated by the trend analysis.  

4.5.1.2 Seasonal Precipitation Step Changes 

The spatial profile of step changes in seasonal precipitation for the 29 climate 

divisions in the CRB is shown in Figure 28B. An increasing step change in seasonal 

precipitation is noted for climate division 22 at p≤0.10 and climate divisions 15 and 16 at 
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p≤0.05 for autumn season (OND). Climate division 28 shows decreasing step change at 

p≤0.10 and climate divisions 8 and 27 show decreasing step changes at p≤0.01 for 

autumn season, while other divisions remained unchanged. Increasing step changes are 

noted for eleven climate divisions during winter seasons (JFM) but with varying 

confidence levels. It should be noted that majority of the climate divisions showing 

increasing step change in winter season precipitation cover the Lower Colorado River 

Basin. The spring (AMJ) and summer seasons (JAS) remained relatively unchanged with 

one (spring) and three (summer) climate divisions showing increasing step changes and 

two (spring) and one (summer) climate divisions showing decreasing step changes at 

different confidence levels.  

The step change results for the seasonal precipitation are similar to the results 

obtained from trend change analysis for autumn, spring and summer seasons but not for 

winter season. The step change result show a decrease in winter precipitation for climate 

divisions enveloping the northwest mountainous region of the CRB (similar to trend 

results) but also indicated that majority of the LCRB is getting wetter opposed to the 

trend results. To clearly visualize a step change bar plots for sample climate divisions 

depicting the abrupt shift of 1976-77 (increase and decrease) in winter precipitation are 

shown for the lower basin (Figure 29A and B) and upper basin (Figure 29C and D). A 

clear jump (upward and downward) in the mean value is seen around the year 1976-77 

for the selected climate divisions. The precipitation is altered following the step change 

indicated by the bar plot. This jump may be attributed to the changing climate as a result 

of increased greenhouse gas concentrations or land use change (urbanization, clearing, 

aforestation, etc) as documented in previous studies. This jump in the mean value 
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coincides with the climate ‘regime shift’ of mid-1970s, which had widespread 

consequences for the biota of the North Pacific Ocean and Bearing Sea (Hare and 

Mantua, 2000). This regime was a result of the shift towards warm regime in Californian 

Current and Gulf of Alaska (Hollowed and Wooster, 1992, Trenberth and Hurrel, 1994; 

Mantua et al., 1997; Hare and Mantua, 2000). The cooling of central North Pacific Ocean 

and the warming of the Northeast Pacific Ocean was witnessed following the regime shift 

(Hare and Mantua, 2000). Increased sea level pressures were witnessed over the western 

U.S., the central Arctic, northern Africa, and northern Asia. Usually there is no common 

definition of step change but is characterized by a behavior of a natural phenomenon 

(e.g., sea level pressure,) over time (Hare and Mantua, 2000). Due to this, it becomes 

imperative to distinguish between a gradual trend change and an abrupt step change for 

climate studies.  

 

 
Figure 29: Bar plots depicting step changes (increase/decrease) in winter season 
precipitation for A) climate division 2, B) climate division 25, C) climate division 27, 
and D) climate division 28. The dotted line shows the pre and post-1977 mean value.  
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Apart from statistical results (Figure 29), increases in the LCRB precipitation can be 

linked to the warm winter storms, which tap the moisture from the Tropical Pacific 

Ocean and may increase the rainfall events and even their intensities resulting in high 

runoff and floods on major rivers within the basin. Other possible explanations for an 

abrupt step change are attributed to anthropogenic global warming caused by increased 

urbanization resulting in greater CO2 emissions (McCabe and Wolock, 2002). The 

increasing step change for LCRB climate divisions is in agreement with the works of 

Miller and Piechota (2008) but for a different period of record. Increasing step changes 

witnessed in winter precipitation for an arid region like the LCRB with sparse and 

shrubland like vegetation can affect the soil characteristics within the region (Hansen et 

al., 2006; Hansen and Ines, 2005; Robertson et al., 2007; and Ahmad et al., 2010). 

Changes in soil characteristics can be resourceful in evaluating the long-term variations 

in crop production, which in turn can be used to adjust decisions related to water releases. 

Furthermore, the decreasing winter precipitation in the northwest mountainous region of 

the upper basin is attributed to an abrupt step change compared to a gradual trend in data. 

This is indicated by the spatial profile (Figure 28) and corroborated by the jump 

(upward/downward) shown in the bar plots (Figure 29). This declining precipitation step 

change is of concern because approximately 20% of the basins precipitation falls in the 

highest 10% and roughly 40% of the precipitation falls in the highest 20% of the basin. 

This winter precipitation is primarily stored and transferred to the dry summers. With the 

increasing temperature (due to global warming) and declining precipitation, reduced 

summer streamflow volumes are obtained that significantly affect the water resources 

planning and management within the basin (Cayan et al., 2001; Stewart et al., 2005). 
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4.5.1.3 El Niño and Seasonal Precipitation Trend Changes 

The increasing impacts of droughts and flood on agriculture, water resources, and 

environment due to natural climate variability on interdecadal and decadal time scales 

have captured the attention of scientific community (Mann et al., 1995; Hu and Feng, 

2001). Signatures of recent climate trends are seen in several regional and global 

variables including precipitation. One of the most important characteristics of 

precipitation within the Southwest U.S. is the high degree of seasonal, interannual, and 

decadal variability induced by large scale oceanic-atmospheric oscillations. Much 

attention has been devoted to why precipitation varies in relation to ENSO (Ropelewski 

and Halpert, 1986; Diaz and Kiladis, 1992). ENSO events typically last from 6 to 18 

months and is the single most important factor affecting the interannual variability on 

global scale and particularly in the western U.S. and the Colorado River Basin (Diaz and 

Kiladis, 1992; Cayan et al., 2001; Webb et al., 2005). In the past, different phases of El 

Niño-Southern Oscillations (ENSO) i.e. El Niño (warm) and La Niña (cold) have been 

used to explain the weather conditions in the Southwest and particularly within the 

Colorado River Basin. In general, El Niño events have been associated with wetter than 

average winters in the CRB while La Niña have been linked with dry conditions. The 

spatial profile of the trend (Figure 28A) and step change (Figure 28B) results along with 

the bar plots (Figure 29B) indicated that winter season precipitation in the UCRB has a 

decreasing trend while the LCRB precipitation showed an increasing trend (Figure 28 and 

Figure 29A). The changes in precipitation are attributed to an abrupt step change 

compared to the gradual trend indicated by the statistical results. This step shift in winter 
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precipitation can have serious implication for water resources and need to be analyzed for 

its linkage with the climate variability at interdecadal or decadal time scales. 

 

 
Figure 30: Spatial map showing the Trend change in seasonal precipitation 
removing the ENSO years for 29 climate divisions encompassing the Colorado River 
Basin.  
 

For this reason, the impact of ENSO on the regional climatology of the CRB needs to 

be evaluated. Historic El Niño events were removed from the seasonal precipitation data 

for all the 29 climate divisions and the trend analysis was performed on the remaining 

data set. The information about the historic El Niño events was obtained from the 

National Weather Service (NWS) Climate Prediction Center (CPC) website 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml).  

It should be noted that the step change year i.e. 1976-77 used in the current analysis was 

an El Niño year and was removed from the data so only the trend analysis was 

performed. Figure 30 shows the spatial profile of trend changes in seasonal precipitation 

for the 29 climate divisions in the CRB after removing the data for El Niño years. During 

the autumn season, none of the climate divisions in the UCRB show increasing trends in 

precipitation. Although increasing trends were noticed for divisions 22 and 25 (Figure 

 160



28A) when using the entire data set. This indicates that the increasing trends in autumn 

season precipitation for divisions 22 and 25 are results of El Niño events caused by 

shifting of jet streams. These jet streams are pulled south of California and cause storms 

in the Pacific Ocean. This combination of jet streams and storms results in warmer than 

average ocean waters, and often is the cause of increase in precipitation. Decreasing trend 

for the divisions 8, 27, and 28 and increasing precipitation trends for divisions 5 and 16 in 

the LCRB during autumn season are similar to the results from Figure 28A indicating no 

linkages with El Niño. The decreasing trend in winter season precipitation for climate 

divisions in the northwest mountainous region is shown in Figure 30 similar to Figure 

28A indicating no linkages with El Niño. This is in agreement with the works of 

Redmond and Koch (1991) where they highlighted that the precipitation in the mountains 

of Colorado, Wyoming, Utah are not greatly impacted by ENSO and better forecast of 

ENSO and its effects are not likely to greatly improve the upper basin mainstem 

streamflow forecasts. The decreasing precipitation trends for climate divisions in the 

UCRB for spring and summer season are quite similar to results from Figure 28A 

indicating no linkages with El Niño. Overall, the results from this analysis indicated that 

the decreasing seasonal precipitation trends for majority of the climate divisions in the 

UCRB indicated in Figure 28A are not due to the effect of El Niño. Also, the increasing 

trends in autumn precipitation in upper basin are linked with El Niño. Another important 

inference drawn through this analysis is that the increasing winter precipitation step 

change (Figure 28B) for the climate divisions in the LCRB may be a result of El Niño. 

This is because ENSO effects are more pronounced in the lower basin than in the upper 

basin. Piechota and Dracup (1996) showed that ENSO events coincide with major dry 
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and wet spells in the Lower Colorado River Basin evidenced by the Palmer Drought 

Severity Index (PDSI). Moreover, when southern regions of the southwest are wet, 

precipitation in the Upper Colorado is often average or below average (Guido, 2010). 

This corroborates the findings of current research indicating that winter precipitation in 

upper basin is decreasing and whereas lower basin has an increasing trend in precipitation 

over the twentieth century. The summer season precipitation has no signatures of ENSO 

associated with it. Although, ENSO exerts a strong influence in modulating wet and dry 

conditions within the CRB, there might be other climate patterns such as Pacific Decadal 

Oscillation, Atlantic Multidecadal Oscillation, North Pacific Oscillations etc., which 

individually or coupled with other climate patterns can affect the hydroclimatology 

within the Colorado River Basin. 

4.5.1.4 Streamflow Trend and Step Changes 

Lees Ferry gage is a point on the Colorado River located on the hydrologic divide 

between the upper basin and the lower basin. The water supply to the lower basin is 

governed by the available water at this gage. Due to this reason evaluating long-term 

trends become vital at Lees Ferry and can be used by the water managers in efficient 

planning and management of water resources within the Colorado River Basin. Similar to 

seasonal precipitation, trends in seasonal Lees Ferry streamflow are evaluated using 

nonparametric tests. The increasing (decreasing) trend and step change for each season 

are shown by upward (downward) facing triangles and reported at p≤0.05 confidence 

level. Figure 28 shows the seasonal trend (A) and step (B) changes for Lees Ferry 

streamflow from 1922-2009. An increasing trend and step change is noted for the autumn 

season streamflow. Decreasing trend and step changes are noted for winter and spring 
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season flows. The summer season streamflow showed a decreasing step change. The 

decreasing streamflow trends during winter and spring season are in agreement with the 

decreasing trends in precipitations for the climate divisions in the upper basin. The winter 

snowpack generates the peak summer streamflow. Changes in the timing of the snowmelt 

due to rising winter and spring temperatures results in earlier snowmelt driven 

streamflow and shifting the peak earlier in season (Cayan et al., 2001) resulting in 

reduced summer flows. Although the climate divisions in the upper basins showed 

decreasing trends in autumn season precipitation, the flow at Lees Ferry showed an 

increasing trend. This could be attributed to the late summer storms, which are caused by 

the moist air from the Gulf of Mexico, the Gulf of California, and the eastern Pacific 

Ocean (Webb et al., 2005). These storms can result in late August and September 

month’s high-intensity rainfall at elevations below 7,000 feet and contribute to the 

autumn peak streamflow. It should be noted that the seasonal trends in Lees Ferry gage 

are due to an abrupt step change and not due to gradual trend change. This is of 

importance because unlike trend changes, step changes are non-linear, occurs abruptly, 

and may reoccur in the future and can lead to extreme events such as floods and droughts 

caused by the increases and decreases in precipitation.  

4.5.1.5 Snow Water Equivalent Trend and Step Changes  

In CRB, snowpack is an important source of runoff and water supply, accounting for 

50 to 70 percent of the annual precipitation. Majority of flow to the headwaters of Lees 

Ferry is generated by the winter season snowpack in the mountainous regions of 

Colorado, Utah, and Wyoming. Evaluating long-term trends in the winter season 

snowpack can be useful for water managers and forecasters in improving the spring-
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summer runoff estimates, which are critical in the management of reservoir operations 

and agricultural demands. The trend and step changes were evaluated for March 1, April 

1, and May 1 Snow Water Equivalent. Figure 31 shows the spatial profile of the trend (A) 

and step (B) changes for the three SWE temporal periods. The results indicate a 

decreasing trend and step change in SWE for the three temporal periods within the upper 

basin. The decreasing trend is more pronounced in May 1 SWE, than April 1 SWE, and 

least in March 1 SWE data. The decreasing trends in April 1and May1 SWE is dominant 

in the northwest mountainous regions of the basin, which is a major contributor to the 

streamflow within the basin. A couple of stations also showed increasing trends in the 

April 1 SWE value. The reductions in SWE are directly attributable to higher winter 

temperatures and the resulting decreases in the ratio of precipitation falling as snow 

versus rain (Mote et al., 2005; Hamlet et al., 2005). It is noteworthy that the changes in 

SWE are also due to an abrupt step change and not due to a gradual trend. Also, the 

results are in agreement with the trend and step change analysis in seasonal precipitation 

(Figure 28), which indicated decreasing step changes for winter precipitation for the 

climate divisions encompassing the northwest mountainous regions within the Colorado 

River Basin. The seasonal changes for Lees Ferry (section 4.5.1.4) also agree with April 

1 and May 1 SWE results and decreasing spring and summer flows are a results of the 

decreasing trends of the mountain snow-pack. Decreases in mountain snowpack occur 

due to winter rainfall events as they do not replenish mountain storage and can come at 

the expense of snowfall events (Groisman et al., 2001). 
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Figure 31: Spatial map showing the (A) Trend change and (B) Step change for 
March 1, April 1, and May 1 SWE stations within the Colorado River Basin.  

 

Similar to Figure 29, step change (increase/decrease) in April 1 SWE values for 

selected locations is shown in Figure 32. The increasing step change is depicted for 

SNOTEL stations in Nevada and Utah, whereas the decreasing step change is shown for 

stations in Wyoming and Colorado. A clear jump (upward/downward) in the mean of 

SWE values is observed around the year 1976-77. Following the step change, variation in 

snow depth is witnessed (Figure 32). This jump in the mean value coincides with the 

climate ‘regime shift’ of mid-1970s discussed earlier. Overall, the SWE results are in 

agreement with the changes in seasonal precipitation and indicate that the precipitation in 

the upper basin has a decreasing trend.  
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Figure 32: Bar plots depicting step changes (increase/decrease) in April 1 SWE for 
SNOTEL stations A) NV-14K05S, B) UT-09J05S C) WY-10G20S, and D) WY-
10G02S. The nomenclature used for the SNOTEL sites is similar to that of archived 
in NRCS. The dotted line shows the pre and post-1977 mean value.  

 

The trend and step change analysis indicated that seasonal precipitation within the 

CRB exhibits higher variability. The seasonal variability of precipitation has tremendous 

affect on runoff generation in the basin. The value of evaluating long-term changes in 

precipitation for scientific communities is in getting prepared for climate extremes. These 

changes serve the qualitative purpose by providing valuable information for developing 

future climate change scenarios. Furthermore, precipitation is the driving mechanism of 

several hydrological processes that are assumed to be operating under the assumption of 

stationarity. Detecting changes in precipitation brings the stationarity assumption in 

question (Segond et al., 2006; Milly et al., 2008), along with the design of water resource 

systems that operate under this assumption. Therefore, it becomes necessary to include 

the non-stationary properties of precipitation to better represent the temporal 
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characteristic of precipitation such as the seasonal effect and climate variability (Segond 

et al., 2006). For resource planning and management of the water resources, managers are 

interested in quantitative aspect of precipitation. GCMs can provide precipitation 

estimates at a coarser temporal and spatial resolution. Multitude of hydrologic 

applications and climate change studies often rely on climate information available at 

finer temporal resolution. In the changing climate it becomes essential to achieve 

continuous realistic realizations of precipitation through statistical downscaling 

techniques. For this reason, nonparametric techniques such as KNN become useful, 

which can be used for temporal disaggregation of precipitation preserving the standard 

distributional statistics. Additionally, there is renewed interest in disaggregation methods 

due to their ease of use, simplicity, and robustness as the climate related issues (regional 

ENSO forecasts or downscaling of climate change scenarios) have come to the fore. With 

this motivation, the current study developed a weighted moving window KNN scheme to 

disaggregate water year precipitation into four seasonal values for the 29 climate division 

encompassing the Colorado River Basin. Disaggregating water year values into seasonal 

values is useful for river basin management, reservoir operation, agriculture related 

decisions, and paleoclimatic studies to construct the past hydrology within the Colorado 

River Basin. The disaggregation results are discussed in the ensuing section.  

4.5.2 Seasonal Precipitation Disaggregation  

Three performance measures i.e., RMSE, MAE and R are used to analyze the 

seasonal precipitation disaggregation results for the 29 climate divisions covering the 

Colorado River Basin and are reported in Table 9. The RMSE values range from 0.72-

2.69 (in) during autumn season, 0.60-2.67 (in) during winter season, 0.44-1.61 (in) during 
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spring season, and 0.86-2.07 (in) during summer season. The MAE ranges from 0.58-

1.96 (in) during autumn season, 0.47-2.05 (in) during winter season, 0.30-1.22 (in) during 

spring season, and 0.63-1.65 (in) during summer season. The correlation coefficient R 

ranges from 0.10-0.68 during autumn season, 0.12-0.83 during winter season, 0.13-0.68 

during spring season, and 0.10-0.58 during summer season. In general it is noticed that 

majority of climate divisions have smaller RMSE and MAE errors between measured and 

disaggregated precipitation during the four seasons.  

Table 9: Performance statistics for the measured and disaggregated seasonal 
precipitation for the 29 climate divisions. The RMSE and MAE are in inches (1 inch 
=2.54 cms). 

Clim_Div RMSE MAE R RMSE MAE R RMSE MAE R RMSE MAE R
1 1.53 1.20 0.18 1.61 1.24 0.63 0.83 0.61 0.30 1.79 1.30 0.20
2 1.43 1.07 0.53 1.63 1.25 0.60 0.92 0.72 0.31 1.65 1.38 0.20
3 2.02 1.54 0.44 2.47 1.84 0.60 1.22 0.89 0.19 2.07 1.65 0.27
4 2.69 1.96 0.49 2.67 2.05 0.64 1.13 0.86 0.30 2.02 1.63 0.29
5 0.80 0.60 0.57 0.92 0.67 0.65 0.44 0.30 0.13 1.02 0.73 0.31
6 1.40 1.08 0.59 1.42 1.11 0.71 0.70 0.52 0.27 1.57 1.24 0.10
7 1.33 1.04 0.68 1.29 0.95 0.57 0.69 0.54 0.17 1.73 1.35 0.37
8 1.42 1.09 0.30 1.40 1.05 0.83 0.67 0.50 0.41 0.92 0.63 0.11
9 0.95 0.77 0.40 0.74 0.58 0.14 1.35 1.06 0.66 1.46 1.21 0.40
10 1.26 1.03 0.35 1.16 0.96 0.44 0.96 0.75 0.52 1.13 0.93 0.49
11 1.10 0.89 0.29 0.78 0.61 0.12 1.61 1.20 0.56 1.52 1.25 0.38
12 1.07 0.80 0.53 0.93 0.72 0.48 0.99 0.82 0.45 1.34 1.04 0.42
13 1.13 0.91 0.49 1.10 0.85 0.33 0.79 0.62 0.46 1.29 0.98 0.39
14 1.26 1.00 0.41 0.91 0.70 0.39 1.24 1.01 0.58 1.66 1.35 0.25
15 1.20 0.94 0.53 0.89 0.66 0.39 0.81 0.63 0.53 1.39 1.15 0.54
16 1.16 0.90 0.57 0.99 0.72 0.17 0.81 0.61 0.26 1.61 1.28 0.45
17 1.02 0.81 0.33 1.00 0.79 0.28 1.17 0.97 0.54 0.93 0.74 0.37
18 1.01 0.81 0.27 1.12 0.90 0.46 0.92 0.73 0.39 1.02 0.81 0.44
19 1.04 0.79 0.10 1.15 0.86 0.71 0.60 0.45 0.23 1.09 0.76 0.13
20 0.79 0.58 0.49 0.79 0.63 0.38 0.85 0.63 0.54 0.90 0.66 0.40
21 1.66 1.28 0.27 2.04 1.59 0.63 1.11 0.84 0.25 1.75 1.22 0.10
22 1.29 0.95 0.42 1.22 0.99 0.54 0.89 0.67 0.49 1.32 1.04 0.24
23 1.91 1.54 0.45 1.62 1.28 0.58 1.34 1.06 0.56 1.35 1.09 0.38
24 0.92 0.75 0.47 0.72 0.55 0.28 0.81 0.64 0.52 0.90 0.73 0.53
25 1.09 0.81 0.47 0.99 0.77 0.45 0.77 0.56 0.46 1.04 0.84 0.34
26 1.64 1.31 0.55 1.77 1.40 0.58 1.56 1.22 0.30 1.41 1.15 0.45
27 0.81 0.65 0.36 0.80 0.57 0.36 0.97 0.76 0.59 0.93 0.73 0.58
28 0.88 0.70 0.30 0.60 0.47 0.12 1.39 1.09 0.68 1.10 0.83 0.55
29 0.72 0.60 0.46 0.72 0.58 0.22 0.96 0.75 0.63 0.86 0.70 0.58

Autumn Winter Spring Summer

 

 168



The performance measures are mapped to see the spatial extent of performance 

measures during the four seasons for 29 climate divisions within the CRB (Figure 33). 

Figure 33A shows that of the total of 29 climate divisions, 27 divisions have a RMSE 

value of less than 1.50 (in) during spring season, whereas 23, 22, and 19 divisions have a 

RMSE value of less than 1.50 (in) during autumn, winter, and summer seasons, 

respectively. In case of MAE, 23 climate divisions have a MAE value of less than 1.00 

(in) during spring season, whereas 18, 19, and 13 climate divisions have MAE value of 

less than 1 (in) during autumn, winter, and summer seasons (Figure 33B). An acceptable 

correlation coefficient between the measured and disaggregated precipitation is observed 

for most of the climate divisions during autumn, winter, and spring seasons but not 

during summer season (Figure 33C). A correlation value greater than 0.5 between the 

measured and disaggregated precipitation is obtained for 8 climate divisions during 

autumn, 13 divisions during winter, and 12 divisions during spring season, respectively. 

Five climate divisions have an R value greater than 0.5 during summer season.  

RMSE (Figure 33A) and MAE (Figure 33B) spatial maps indicate that the best KNN 

predictions are obtained during spring season and worst during summer season. The 

KNN model does a better job in disaggregating upper basin precipitation compared to the 

lower basin for all the seasons as evident by low RMSE values (less than 1 inch) for 

majority of the climate divisions within the upper basin. Besides spring season, the other 

three seasons have few climate divisions in the LCRB showing higher RMSE values 

(greater than 1.5 inch). The MAE spatial maps agree with the RMSE results indicating 

that better precipitation predictions are obtained for divisions in the upper basin 

compared to lower basin for all the seasons. The best predictions for divisions in lower 
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basin are obtained during spring season compared to the other seasons. The correlations 

maps (Figure 33C) show that the disaggregated precipitation correlates best with winter 

seasons precipitation values for the climate divisions covering the lower basin compared 

to the upper basin. Whereas spring season disaggregated precipitation correlates best with 

divisions in the upper basin compared to the lower basin divisions. Based on the 

performance measures it is evident that the KNN model does a better job in 

disaggregating precipitation for divisions within the upper basin compared to the lower 

basin.  

 

 

Figure 33: Spatial maps showing the range of performance measures i.e. (A) RMSE, 
(B) MAE, and (C) R during the four seasons for the 29 climate divisions. 
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To better examine the temporal variability in seasonal precipitation, bisector plots are 

created between the measured and estimated precipitations for sample climate divisions 

in the upper basin and lower basin. The sample divisions within the upper basin (CD 10, 

24, 25, and 27) and lower basin (CD 1-7) are selected such that they envelop majority of 

the CRB and can effectively demonstrate the model performance. Figure 34 shows the 

scatter plots between the measured and estimated seasonal precipitation for the selected 

divisions in the upper basin. A good match is obtained between the measured and 

predicted seasonal precipitation for the climate divisions in the upper basin for the four 

seasons. The model does a fairly good job in capturing the extremes (low and high 

values) during winter (Figure 34B) and spring (Figure 34C) seasons compared to autumn 

(Figure 34A) and summer seasons (Figure 34D). This is evident by the majority of 

sample points lying close to the 450 bisector line indicating a good model fit. A point 

lying far above the bisector line indicates higher predictions whereas a point far below 

the line shows lower predictions. During autumn and summer seasons, model does fairly 

well in capturing the low values but misses the extreme at few locations. Accurate winter 

and spring season predictions for divisions 10 and 27 show the robustness of the model as 

decreasing trend change (Figure 28A) was noticed for these divisions and the KNN 

model was able to capture this variability efficiently. Moreover, the precipitation 

variability in division 25, having an increasing step change (Figure 28B), is adequately 

captured by the model. Although few sample points lie far away from the bisector line 

but majority of the points are saturated around the bisector line. 
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Figure 34: Scatter plots between the measured and disaggregated seasonal 
precipitation for the selected climate divisions in the upper basin for (A) Autumn, 
(B) Winter, (C) Spring, and (D) Summer seasons. Dashed line is the 450 bisector line.  
 

The scatter plots between the measured and estimated seasonal precipitation for the 

divisions in the lower basin are shown in Figure 35. Satisfactory predictions are obtained 

for the selected divisions during autumn season (Figure 35A). The model does a good job 

in capturing the low values for divisions 1-5 and perfectly captures the extremes for 

divisions 6 and 7. A very good match is obtained between the measured and predicted 

winter season precipitation for all the selected divisions (Figure 35B). This is evident by 

majority of sample points following the bisector line indicating that model does 

reasonably well in estimating both the low and high precipitation values. For spring 

season, the model shows acceptable predictions for low precipitation values but fails to 
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capture the high values (Figure 35C). This is indicated by low values saturated around the 

bisector line and high values are scattered above the bisector. For summer season, the 

model does fairly well for low precipitation values for majority of the selected divisions 

but fails to capture the high values (Figure 35D). The best predictions for the lower basin 

are obtained during winter season and worst during spring. Moreover, divisions 2, 6, and 

7 showed increasing step change (Figure 28B) in winter precipitation, which is efficiently 

captured by the model and shows the robustness of weighted moving window KNN 

approach.  

 

 
Figure 35: Scatter plots between the measured and disaggregated seasonal 
precipitation for the selected climate divisions in the lower basin for (A) Autumn, 
(B) Winter, (C) Spring, and (D) Summer seasons. Dashed line is the 450 bisector line.  
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Box plots depicting the standard statistical properties i.e. mean, standard deviation, 

and skewness of the simulations for the 29 climate divisions during winter seasons are 

shown in Figure 36. The box represents the 25th and 75th percentile (interquartile range) 

values, whereas the whiskers extend from 5th to 95th percentile values. The vertical line 

inside the box shows the median (50th percentile) value. The statistics of the historic 

value are represented by the triangle, connected by the dotted line. Historic values lying 

inside the box is judged as good while increased variability is indicated by a wider box 

plot. Mean and standard deviations are well reproduced for all the climate divisions as the 

historic values are captured by the interquartile range. The skew for majority of the 

climate divisions is preserved but for few climate divisions it is over represented and lies 

outside the interquartile range. Similar results were obtained for other seasons (results not 

shown) but the best preservation of the standard distributional statistics was obtained 

during the winter season.  

The results from Figure 34 and Figure 35 show that the model does fairly well in 

estimating winter and spring season precipitation compared to autumn and summer 

season. This is of importance because the precipitation exhibits higher degree of 

variability during winter and spring seasons compared to autumn and summer seasons in 

the CRB and obtaining satisfactory predictions during these seasons can be useful for 

water managers. Even the worst estimates obtained during autumn and summer seasons 

for the upper and lower basin indicate that although the model misses the high 

precipitation values, it is able to capture the low precipitation values, which can be 

helpful for water managers for monitoring the low flows and analyzing droughts within 

the Colorado River Basin. The box plots for the predicted values during winter season 
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indicate that model performs satisfactorily in preserving the distributional dependence by 

efficiently capturing the long-term statistical properties. 

 

 
Figure 36: Box plots of seasonal precipitation statistics for the 29 climate divisions 
during winter season. The box shows the interquartile range (25th – 75th percentile). 
The whiskers extend from 5th to 95th percentile values. The solid line inside the box 
shows the median value (50th percentile) and the triangle represents the historic 
statistic. 
 

4.5.3 Comparison of KNN and Parametric Model (PAR-1)  

The simulations of the KNN approach developed in this research are compared with 

the traditional parametric model (PAR-1). Figure 37 shows the scatter plot between 

measured and predicted seasonal precipitation values for the selected climate divisions in 

the upper basin. A poor fit is obtained between the measured and predicted precipitation 

for autumn (Figure 37A) and summer season (Figure 37D). The model misses both the 
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low and high values evident by majority of the points scattered around the bisector. 

During winter (Figure 37B) and spring (Figure 37C) the model performance is 

satisfactory in estimating low precipitation values for majority of the climate divisions 

but not the high values. Overall, the range of variability of the predicted values is much 

lower (in some plots only half) than the range of data; evidenced by the scattered points 

lying around the lines with angular coefficients much lower than 1 (bisector). Comparing 

the results obtained using KNN (Figure 34) approach, superiority of KNN approach is 

noticed over the PAR-1 modeling approach. Similar results were obtained for the 

divisions in the lower basin (results not shown).  

 

 
Figure 37: Scatter plot between the measured and disaggregated seasonal 
precipitation for the selected climate divisions in the upper basin for (A) Autumn, 
(B) Winter, (C) Spring, and (D) Summer seasons using PAR-1 approach. Dashed 
line is the 450 bisector line.  
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Previous studies have indicated that parametric models are designed to capture the 

basic statistical properties but have difficulty in capturing the skewness. Figure 38 shows 

the box plot depicting the mean, standard deviation, and skewness of the simulations for 

the 29 climate divisions during winter seasons using PAR-1 model.  

 

 
Figure 38: Box plots of seasonal precipitation statistics for the 29 climate divisions 
during winter season using PAR-1 approach. The box shows the interquartile range 
(25th – 75th percentile). The whiskers extend from 5th to 95th percentile values. The 
solid line inside the box shows the median value (50th percentile) and the triangle 
represents the historic statistic. 
 

The mean and standard deviation are well reproduced for majority of the climate 

divisions. This is evident by historic statistical values captured within the interquartile 

range. The skewness coefficient is not well represented by the parametric model 

indicated by majority of the climate divisions having historic value outside the 
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interquartile range and for some cases lying outside the whiskers. . Overall, the 

parametric model results were in agreement with KNN model results as both had best 

predictions for winter and spring season compared to autumn and summer season. 

However, the quality of parametric model estimates, based on performance measures, 

was lower compared to nonparametric model estimates.  

Based on the results, it is seen that nonparametric disaggregation techniques such as 

KNN can be used as an efficient statistical tool for generating seasonal precipitation 

values within the Colorado River Basin. The spatial maps (Figure 33) and scatter plots 

(Figure 34 and Figure 35) show that model performs well during winter and spring 

season compared to autumn and summer seasons. In similar studies, the aggregate value 

of the hydrological variable is estimated using a model fitted to the data and then the 

disaggregated values miss the extremes and model cannot be extrapolated to obtain those 

values (Prairie et al., 2007). The current approach uses a weighted moving window of 

aggregate values to account for the variability in the data and extreme values, and shows 

that the model is not period specific and can be used to evaluate the higher degree of 

variability exhibited by seasonal precipitation. 

4.6 Summary and Conclusions 

The current study evaluates the trend and step changes in seasonal precipitation over 

29 Climate Divisions within the Colorado River Basin over 109 years (1900–2008); and 

estimates four seasonal precipitation values from water year precipitation using 

nonparametric KNN disaggregation technique. More than 100 years of precipitation 

records are examined for evidence of change and to identify the pattern of seasonal 

precipitation within the CRB. The trend and step changes are evaluated using multiple 
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statistical tests at three confidence levels of p≤0.10, p≤0.05, and p≤0.01. The trend results 

indicate that overall there is a decrease in seasonal precipitation in the Upper Colorado 

River Basin. The main source of flow generation within CRB is the winter precipitation. 

The winter precipitation falls as snow in the upper elevations of Colorado, Utah, and 

Wyoming. The decreasing trends in precipitation are pronounced in the northwest 

mountainous region of the upper basin during the autumn, winter, and spring seasons. 

The precipitation that falls as snowfall is stored and transferred to relatively dry summers. 

Temperature increases have lead to more frequent moderate to high intensity non-

convective currents causing increase in mid-elevation autumn precipitation within the 

basin. This is in agreement with results depicting increasing trend in autumn precipitation 

within the Colorado River Basin. Summer precipitation usually has not much role to play 

within CRB and has remained unchanged during the period of record as indicated by the 

trend analysis.  

The step change results for seasonal precipitation are similar to the results noted 

during trend change analysis for autumn, spring and summer seasons but not for winter 

season. A step increase in winter season precipitation is seen for majority of the climate 

divisions covering the lower basin due to the warm winter storms. Another possible 

explanation for an abrupt step change can be the climate variability causing 

intensification of the hydrologic systems (Huntington, 2006). One notable result from the 

step change analysis is the decreasing winter precipitation in the northwest mountainous 

region of the upper basin, which is due to an abrupt step change compared to a gradual 

change. Figure 29 depicted apparent step changes for selected climate divisions in the 

upper and lower basin. The plot explicitly indicated the jump (upward/downward) in the 
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mean value around the year 1976-77. This jump coincides with the warm climate “regime 

shift” of 1976-77 in the North Pacific Ocean, which had significant biological, 

ecological, and climatic consequences on the southwestern hydroclimatology. Moreover, 

the increasing step change for LCRB climate divisions indicated in the current research is 

in agreement with the previous works of Miller and Piechota (2008). The identification of 

abrupt step change rather than a gradual trend is important due to significant differences 

in their implications. Gradual trends are interpreted to continue in the future, whereas 

abrupt step change signifies that climate system has shifted to a new regime and will 

likely remain in new regime unless another shift occurs.  

With the increasing scientific evidence of climate variability, it becomes necessary to 

understand fluctuations of long-term changes in associations with climate signatures. 

ENSO is the most single important factor affecting the interannual variability on global 

scale and particularly in the western U.S. and the Colorado River Basin. The current 

study evaluates the impact of ENSO events on the seasonality of the CRB by removing 

the El Niño events from the historical records and performing the trend analysis on the 

remaining data set. The increasing trends in autumn precipitation are linked with El Niño, 

caused by shifting of jet streams in the Pacific Ocean. The summer season precipitation 

has no signatures of ENSO associated with it. The decreasing trend in winter 

precipitation within the upper basin is not due to the result of past El Niño events. 

Contrary to this, the increasing winter season precipitation within the lower basin is 

linked to the El Niño events. The findings of this analysis are in agreement with other 

studies that have depicted stronger association of ENSO with the upper basin compared 

to the lower basin (Piechota and Dracup, 1996, Guido, 2010). The relationship between 
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upper basin precipitation and seasonal changes in streamflow at Lees Ferry gage is 

evaluated. An increasing trend is noted for the autumn season streamflow, whereas 

decreasing trends are noted for winter, spring, and summer season flows. The changes in 

streamflow are a result of an abrupt step change, not due to gradual trend. To corroborate 

the seasonal precipitation change results, SNOTEL stations within the CRB are evaluated 

for trends in March 1, April 1, and May 1 SWE data. The results are in agreement with 

the trend and step change analysis in seasonal precipitation, which indicated decreasing 

step changes for winter precipitation for the climate divisions encompassing the 

northwest mountainous regions within the Colorado River Basin. About 70% of the water 

originates in this region through winter precipitation and contributes to the flow in the 

Colorado River. Decreasing precipitation trend in this reason can seriously affect the 

water resources within the basin. Moreover, the changes in SWE are also due to an abrupt 

step change and not due to a gradual trend. Similar to Figure 29, the step change 

(increase/decrease) in April 1 SWE for selected SNOTEL stations is depicted in Figure 

31. A clear shift in the regime of snow depth is witnessed around the year 1976-77 for 

stations indicting step change. Similar to precipitation results, the shift in snow values 

coincides with the historic regime shift witnessed in the Pacific Ocean. The findings of 

the analysis excluding ENSO events, with flow at Lees Ferry, and with SWE confirmed 

that winter season precipitation within the upper basin is decreasing and the decreases are 

a result of abrupt step change not a gradual trend in the data. 

The majority of the water resources systems have been designed and operated on the 

assumption of stationarity. With the increasing scientific evidence that global climate has 

changed, is changing and will continue to change the assumption of stationarity may not 
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be valid (Milly et al., 2008). Detection of long-term change in precipitation trends is 

important and can assist in evaluating the assumption of stationarity leading to a better 

planning and management of the water resources within a basin. But for design and 

operational purposes, water managers are also interested in the precipitation at 

appropriate temporal scale. Many GCMs models have been developed by numerous 

researchers for obtaining precipitation estimates but the information available is at a 

coarser scale and cannot be used for regional scale hydrology. In such cases, statistical 

disaggregation techniques are an attractive alternative for obtaining continuous 

realizations of precipitation. Several statistical disaggregation techniques have been used 

by numerous researchers to transform precipitation from one scale to the other. 

Precipitation disaggregation in most cases is not an end in itself and provides information 

to understand and potentially act upon the impacts that are likely to be caused by climate 

extremes and future climate changes.  

The current study used a weighted moving window K-nearest neighbor approach to 

transform water year precipitation into four seasonal values for 29 climate divisions 

within the Colorado River Basin. The KNN disaggregation results indicate that the model 

does a satisfactory job in estimating seasonal precipitation within the Colorado River 

Basin. The model does a fairly good job in capturing the extremes (low and high values) 

during winter and spring seasons compared to autumn and summer seasons. The box 

plots for predicted values during winter season indicate that the model performs 

satisfactorily in preserving the distributional dependence by efficiently capturing the 

long-term statistical properties. Overall, best predictions are obtained during winter and 

spring season compared to autumn and summer season. This is of importance because 
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majority of the streamflow within the CRB is generated from the winter and late spring 

precipitation (Mote et al., 2005; Pagano and Green, 2005, Stewart et al., 2005). Better 

winter and spring precipitation estimates can lead to better streamflow estimates and in 

turn can help the water managers in planning and management of the water resources 

within the Colorado River Basin. Superiority of KNN approach is witnessed by 

comparing the simulations with the traditional parametric approach (PAR-1). The 

advantages of using the current approach compared to the previous studies are 1) better 

representation of the temporal variability exhibited by seasonal precipitation; 2) method 

is not period specific and can be used to generate extreme value. 

It should be noted that the distinction between precipitation as rainfall and snowfall is 

not explicitly addressed in the current study. Snow pack is considered to be dominant in 

the CRB, making up 63% of the annual precipitation within the upper basin and 39% of 

the annual precipitation within the lower basin (Serreze et al., 1999). Also, it is important 

to note that hydrological trends are crucially dependent upon the time period considered 

in the analysis. Unlike other studies, the aggregate value used in the current study is not 

generated through a model but historical values are used. The aim of the current study is 

to show that a stochastic disaggregation technique such as KNN can serve as a useful tool 

in obtaining satisfactory seasonal precipitation estimates within the CRB, which exhibits 

high variability. So if an annual aggregate value is obtained from another source such as 

GCM’s, empirical method, or statistical techniques, KNN method can be used to 

downscale to a temporal resolution useful for regional scale studies. For non stationary 

time series with a strong seasonal component, many desirable characteristics should be 

preserved, which can be achieved through reliable and robust disaggregation technique. 
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Using a simple, efficient and robust technique such as KNN can help in evaluating future 

climate change scenarios and in efficient water resource planning and management.  

The study presented here shows prospects for analyzing the precipitation trends and 

seasonal variability within the Colorado River Basin, which are of primary importance to 

the water resource managers in the Southwest and the Bureau of Reclamation. Previous 

studies (Huntington, 2006 and Miller and Piechota, 2008) have evaluated the trends in 

precipitation but at different spatial and temporal scales. The current study was successful 

in capturing the changes (trend and steps) in seasonal precipitation for the entire 20th 

century within the CRB, which have not been evaluated is the past studies. The current 

study was also able to provide a distinction between a gradual trend and an abrupt step 

change not addressed in other studies. The identification of step and gradual trend 

changes are important for climate change studies, and for hydrological, meteorological 

and agricultural communities and can help in managing water resources and reservoir 

operations in the Colorado River Basin. Furthermore, none of the precipitation 

disaggregation studies have been performed within the Colorado River Basin. Most of the 

disaggregation studies within CRB have focused on transforming streamflow from one 

scale to the other. With the increasing and stronger evidence of global warming, changes 

in precipitation and other climate variables are evident and will be amplified in 

streamflow (Sankarasubramaniam et al., 2001; Fu et al., 2007). Therefore, developing 

precipitation disaggregating techniques for CRB are as important as performing 

streamflow disaggregation. Further research is underway to predict annual precipitation 

using large scale climate information that can be useful in transforming the aggregate 

precipitation value into finer resolutions depending on the need of end user.  
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CHAPTER 5 

5 CONTRIBUTIONS AND RECOMMENDATIONS 

5.1 Summary  

In an era of changing climate due to natural and anthropogenic factors, it becomes 

crucial for us to understand the underlying relationships between the variables that 

describe climatic variability and its effects on the hydrological variables (such as 

streamflow, precipitation, soil moisture etc.). Climate variability has an enormous effect 

on the hydrology of our planet. This is especially true in the southwest U.S. where water 

resources are strained by human demands. The spatial and temporal scale involved as 

well as the complexity of these relationships makes understanding through physical 

models a very demanding task. Given this setback, statistical approaches provide a viable 

alternative to understand these relationships.  

In this dissertation, a comprehensive analysis of the applicability of the statistical 

approaches (such as SVM and KNN) to improve hydrologic predictions in response to 

climate variability was performed. The area of interest in this dissertation was the 

Colorado River Basin. Colorado River Basin represents an area with one of the highest 

population growth rates and as a consequence high strain on water resources. It would be 

correct to state that no other river in the world is governed more socially, economically, 

and politically than the Colorado River. Three research questions were addressed through 

this research. 

Research Question # 1: What role do oceanic-atmospheric oscillations play in generating 

precipitation in the Colorado River Basin, and, can precipitation forecast lead time be 

increased using oceanic-atmospheric oscillations? 
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Research Question # 2: What role do oceanic-atmospheric oscillations play in generating 

streamflow in the Upper Colorado River Basin and can streamflow forecast lead time be 

increased using oceanic-atmospheric oscillations? 

Research Question # 3: How can temporal precipitation disaggregation be achieved when 

the data possess higher climate variability? 

To address first research question, the hypothesis tested was that there is a strong 

linkage between oceanic-atmospheric oscillations and precipitation within Colorado 

River Basin and the linkage can be used to improve the annual precipitation forecast lead 

time. For verifying the hypothesis, a moving period SVM model coupled with oceanic-

atmospheric oscillations (PDO, NAO, AMO, and ENSO) from 1900-2007 (108 years) 

was used to estimate annual precipitation for a 1-year lead time for 17 climate divisions 

encompassing the Colorado River Basin. The model was evaluated using root mean 

squared error (RMSE), mean absolute error (MAE), RMSE-observation standard 

deviation ratio (RSR), correlation coefficient (R), and Nash Sutcliffe coefficient of 

efficiency (NSE). The results indicated that long-term precipitation predictions for the 

Upper Colorado River Basin can be successfully obtained using a combination of PDO, 

NAO, and AMO indices, whereas coupling AMO and ENSO results in improved 

precipitation predictions for the Lower Colorado River Basin. Furthermore, the results 

obtained from the analysis were not specific to any period. The precipitation estimates 

obtained from the SVM model were compared with the ANN and MLR model outputs. 

The results showed the superiority of SVM approach over the ANN and MLR modeling 

approaches. Along with estimating precipitation, long-term changes in annual 

precipitation within CRB were also evaluated. The result showed that the majority of the 
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Lower Basin is getting wetter, compared to the Upper Basin. The changes in the Lower 

Basin are attributed to an abrupt step change and not to the gradual trend in the data. The 

step change coincides with the climate regime “shift” of mid 1970s in the North Pacific 

Ocean. Overall, the hypothesis tested for research question 1 was true and indicated a 

strong relationship between oceanic-atmospheric oscillation and annual precipitation for 

1-year lead time within Colorado River Basin.  

The hypothesis tested for second research question was that there is a strong linkage 

between oceanic-atmospheric oscillations and streamflow within Upper Colorado River 

Basin and the linkage can be used to improve the annual streamflow forecast lead time. 

This resulted in the formulation of a SVM based model to relate the various oceanic-

atmospheric oscillations (PDO, NAO, AMO, and ENSO) and annual stream flow for 

three naturalized gages in the Upper Colorado River Basin. The SVM model was trained 

with 86 years of data (1906–1991) and tested with 10 years of data (1992–2001). On the 

basis of correlation coefficient, root means square error, and Nash Sutcliffe Efficiency 

Coefficient the model showed satisfactory results, and the predictions were in good 

agreement with measured streamflow volumes. Sensitivity analysis, performed to 

evaluate the effect of individual and coupled oscillations, revealed a strong signal for 

ENSO and NAO indices as compared to PDO and AMO indices for the long lead time 

streamflow forecast. Best streamflow predictions at 3-year lead time were obtained using 

a combination of NAO and ENSO indices. The results were corroborated by a moving 

period cross validation analysis. Streamflow predictions from the SVM model were 

found to be better when compared with the predictions obtained from feed-forward back 

propagation artificial neural network model and linear regression. Overall, the hypothesis 
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tested for research question 2 was true and indicated a strong coupled relationship 

between oceanic-atmospheric oscillation and annual streamflow for 3-year lead time 

within Upper Colorado River Basin. 

The third research question focused on enhancing the temporal resolution of 

precipitation within Colorado River Basin. The hypothesis tested for this research 

questions was that the nonparametric trend and step (Mann-Kendall, Spearman’s Rho, 

and Rank Sum) change tests can be used as robust statistical methods to assess the 

variability in precipitation within the Colorado River Basin. Also, the KNN approach can 

be used to temporally disaggregate precipitation that exhibits high variability. For this 

purpose, the current research investigated the long-term changes (Trend and Step) in 

seasonal precipitation from 1900-2008 (109 years) within CRB and estimated seasonal 

precipitation using nonparametric K-Nearest Neighbor disaggregation approach. 

Evaluating the changes in CRB precipitation on seasonal basis is of primary importance 

to the water resource managers in the Southwest and the Bureau of Reclamation. Several 

studies have evaluated the trends in CRB precipitation but at different spatial and 

temporal scales. The current dissertation analyzed the changes in seasonal precipitation 

for the entire 20th century for 29 climate divisions encompassing the Colorado River 

Basin. The results indicated a decrease in the upper basin and increase in the lower basin 

winter precipitation resulting due to an abrupt step change. The effect of El Niño-

Southern Oscillations in relation to seasonal precipitation was also evaluated by 

removing the historic El Niño events. The results indicated that decreasing winter and 

spring season precipitation trends for the upper basin are not linked with El Niño. The 

findings of the changes and climate analysis were corroborated by analyzing the trends in 
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SNOTEL data and streamflow at Lees Ferry gage. A clear identification was made 

between the step and gradual trend change that are important for climate change studies 

and for hydrological, meteorological and agricultural communities for managing water 

resources in the Colorado River Basin. The change results serve the qualitative purpose 

but for resource planning and management of the water resources, managers are 

interested in quantitative aspect of precipitation. For this reason a weighted moving 

window KNN scheme was developed to disaggregate water year precipitation into four 

seasonal values for the 29 climate division encompassing the Colorado River Basin. The 

KNN disaggregation results indicate that the model does a fairly good job in capturing 

the extremes (low and high values) during winter and spring seasons compared to autumn 

and summer seasons. This is of importance because majority of the streamflow within the 

CRB is generated from the winter and late spring precipitation. Better winter and spring 

precipitation estimates can lead to better streamflow estimates and in turn can help the 

water managers in planning and management of the water resources within the Colorado 

River Basin. Superiority of the KNN approach is witnessed by comparing the simulations 

with the traditional parametric approach (PAR-1). The advantages of using the current 

KNN approach compared to the previous studies are 1) better representation of the 

temporal variability exhibited by seasonal precipitation; 2) method is not period specific 

and can be used to generate extreme value. Overall, the hypothesis tested for research 

question 3 was true and indicated that nonparametric tests can be used to evaluate the 

long term changes (trend and step) in seasonal precipitation within Colorado River Basin. 

Additionally, the moving period stochastic KNN disaggregation approach can be used to 

enhance the temporal resolution of precipitation Colorado River Basin. 
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5.2 Contributions  

The results from research question 1 and 2 indicated that there is no single climate 

signal that can be used to explain the hydroclimatology within Colorado River 

Basin. Coupled response of several oceanic-oscillations in relation to streamflow and 

precipitation is more pronounced in CRB compared to oscillations individual 

effects. Numerous studies have identified Colorado River Basin and other regions in the 

U.S. showing responses to oceanic-atmospheric oscillations on a seasonal to annual scale. 

However based on documented literature and prior knowledge, no previous study has 

attempted to incorporate oceanic-atmospheric oscillations in a SVM model and estimated 

precipitation and streamflow forward in time. This research is the first in its kind and 

resulted in a new data-driven modeling framework that incorporated large scale 

climate patterns and improved the hydrologic forecast lead time. The lead time 

developed in this research would be helpful to water managers in the CRB in managing 

water systems in response to inter-decadal climate variability. The research also shows 

prospects for the use of statistical learning theory (SVM) to predict the complex 

processes (i.e. precipitation and streamflow) that are difficult to understand and simulate 

using physically based models. Also, it is noteworthy that no other research has 

attempted to enhance the temporal resolution of precipitation within Colorado 

River Basin. Other studies have focused on disaggregating streamflow from one scale to 

the other within Colorado River Basin. This is the first study that used a 

nonparametric moving window KNN approach for obtaining seasonal precipitation 

estimates from annual water year value. Furthermore, the results obtained from the 

analysis are not specific to any period. The variability exhibited in precipitation is 
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amplified in streamflow. Therefore, similar to disaggregating streamflow, precipitation 

disaggregation is also important.  

5.3 Limitations 

Colorado River Basin is a snowmelt driven watershed with snowpack making up 63% 

of the annual precipitation within the Upper Basin and 39% of the annual precipitation 

within the Lower Basin. The current study does not differentiate between precipitation as 

rainfall and snowfall. Furthermore, the trends detected in the current study are dependent 

upon the period considered for the analysis. Additionally, the streamflow estimates 

obtained using the SVM modeling approach is specific to the testing period. Still, there 

are some variations that remain unexplained in the current dissertation, and which cannot 

be addressed using the statistical approach. 

5.4 Recommendations 

Although statistical methods performed satisfactorily in characterizing the 

relationships between oceanic-atmospheric variables and precipitation and streamflow 

and improving the temporal resolution of precipitation, a lot is still left to be desired in 

terms of the accuracy of their predictions. The fields of hydrology and the science of 

climate change are constantly evolving as researchers and scientists continue to explore 

new ideas, develop new methods, and make new observations. As a result of this 

dissertation, several future research investigations could be performed. These include: 

1.) This dissertation identified the relationship between coupled oceanic-atmospheric 

indices and hydrologic variables, which is an important first step. Follow-up studies 

could focus more on the explanation of physical processes driving this mechanism. 
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2.) While this dissertation evaluated the annual response of oscillations in relation to 

hydrologic variables, the phase interaction (i.e. warm and cold) of these oscillations 

should be considered for future analysis.  

3.) Streamflow and precipitation lead times are improved using observed data. Extending 

the period of record using reconstructed tree ring data may potentially help in improving 

the forecasts.  

4.) This dissertation investigated the coupled and individual impact of most commonly 

used oscillations i.e. PDO, NAO, AMO, and ENSO. There are other climate indices such 

as SWE, Geopotential Height Index, PNA, AO, etc. that could be used to represent the 

hydrologic conditions within CRB.  

5.) Several new approaches such as relevance vector machines are emerging and could 

potentially improve the forecasts. Therefore, the potential of these techniques in 

improving hydrologic forecast in relation to climate variability could be evaluated. 

6.) It is also recommended that similar models be developed for various other locations in 

U.S. and an effort be made to understand the hydrologic variability within these models 

as a function of the geography and landscape.  

7.) Finally, the ultimate goal would be to move towards a physical based approach that 

characterizes the relationships between oceanic-atmospheric oscillations and hydrologic 

variables. It is recommended that the statistical techniques developed here could pave the 

way for more physically-based models. 
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