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ABSTRACT

Hydroclimatic Forecasting in the Western United States Using Palebmate

Reconstructions and Data-Driven Models

By Christopher Carrier

Dr. Sajjad Ahmad, Examination Committee Chair
Associate Professor, Civil and Environmental Engineering
University of Nevada, Las Vegas

This thesis investigated climate variability and their associatelogic
responses in the western United States. The western United Statebdguedlem of
water scarcity, where the management and mitigation of available wpfgies are
further complicated by climate variability. Climate variabilitgasiated with the phases
of oceanic-atmospheric oscillations has been shown to influence streamflow and
precipitation, where predictive relationships have led to the possibility of praglacig-
range forecasts. Based on literature review, four oceanic-atmosplaiatios indices
were identified in having the most prominent influence over the western United Stat
including the EI Nifio — Southern Oscillation (ENSO), Pacific Decadal Oaiila
(PDO), Atlantic Multidecadal Oscillation (AMO), and North Atlantic Oktibn (NAO).
However, these hydroclimatic processes are not fully understood and endtdif
describe in physically-based models. A viable alternative to generating$tsas
through data-driven models, which extract relationships in a dataset oftascilgputs
and hydrologic outputs to build a structured forecasting model.

One of the limitations to using oceanic-atmospheric oscillations in a dae&dri

model is a short instrumental record from which the model can train on. Data-driven



models often perform better when they are subjected to a larger trainisgtdata
Reconstructions have the potential to extend the period of record by several centuries
which may aid in identifying important hydroclimatological relationships ammoming

the quality of forecasts.

With this motivation, this study focused on increasing the forecast lead time
through the use of reconstructions of oceanic-atmospheric oscillations in thenweste
United States. First, reconstructions of oscillations were investigatedrease the
forecast lead time of four streamflow gages in the Upper Colorado River (BE3RB)
by using the KStar and M5P data-driven models. Secondly, an expanded spatial
examination was performed over the western United States for 21 streamflesvtgag
increase the forecast lead time using the KStar model. Thirdly, diffeyeritications of
oceanic-atmospheric oscillations were tested for precipitation fosgcastO climate
divisions throughout the western United States. Finally, a support vector mactime (S
was used to increase the streamflow forecast lead time for 21 gagesvestbm United
States.

In order to accomplish this task, a collection of annual time series, processing
techniques, testing procedures, and performance measures were used. Reoasstructi
were available for oscillation indices, streamflow volumes, and climaisah
precipitation was developed with a common timeframe available as taabd®58. The
instrumental records used ranged from 1900 to 2007 Noise was removed from the dataset
using a 3-year, 5-year, and 10-year moving average filter. A 10-fold catidation
technique was used as opposed to splitting the dataset into training and testirgygeeriod

that the entire dataset could be tested and to better capture the non-stabdtiaeit



dataset. The performance of the models were evaluated through a series of independe
measures which include the root mean squared error (RMSE), mean absolute error
(MAE), RMSE-standard deviation ratio (RSR), Pearson’s correlationiceetf (R),
Nash-Sutcliffe coefficient of efficiency (NSE), and lineaoeiin probability space

(LEPS) skill score (SK). In addition, all of the models were compared wathlgple

linear regression (MLR) model.

The results indicated that the lead time for streamflow forecasts in the Uppe
Colorado River Basin were increased up to 5 years with the KStar model. In addition, 1
year and 2-year lead-time forecasts with the KStar model were acho\&d f
streamflow gages in the western United States. A 1-year preiopifatecast was also
made for 20 climate divisions with the KStar model throughout the western United Sta
and found that the forecasts deteriorated when any of the four oscillations omgredir
as predictors. Finally, the SVM model produced streamflow forecasts in thernves
United States using the raw data at the 1-year and 5-year leaditiaaglition, the
results indicated that the use of all four oceanic-atmospheric oscillatimes (i.e.

ENSO, PDO, AMO, and NAO) provided the best forecasts, and dropping any of the
indices yielded inferior results. It was also found that noise removal settd¢he
performance of the model, by aiding in the identification of the oscillation phase

The contributions made from this research include an extension of the lead-time
for streamflow and precipitation forecasts and a better understandingeffettis of
climate variability. This study was the first to use reconstructionslatadriven
forecasting model for streamflow and precipitation. Other studies have inatghor

reconstructions for use in determining hydroclimatic behaviors and redajpsnin



comparison to the observed record; however, there have been no previous attempts to use
reconstructions with data-driven techniques for forecasting purposes. |Qiésal

research provided a better understanding of climate variability and tlealbgic

responses in the western United States. The forecasting models produced through this
research are expected to aid water managers in the long-term plannmgraagkment

of water resources in the western United States.
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CHAPTER 1: INTRODUCTION
1.1 Research Problem

The foundation for life on Earth and the growth of human civilization is reliant
upon the deliverance of abundant fresh water. Planning and management isl éssentia
provide an assured water supply for sustaining ecological habitats, maigtairilic
health, driving agriculture and industry, providing hydro-electric power, preserving
community stability, and upholding economic growth (Anderson & Woosley, 2005;
Reclamation, 2011). Historically, water planning and management has been bdsed on t
assumption of stationarity (Milly et al., 2008), where the observed mean and vaiiance
the annual water supply would not change over time. This left water management
practices vulnerable to changes in the water supply brought about by climalaitya
(Kalra & Ahmad, 2009; Milly et al., 2008; Redmond & Koch, 1991; Tootle et al., 2005).
Climate variability directly impacts the available water supply fy@ar to year, which
places complexity on water management to mitigate water resourceate liamiability
influences the hydrologic cycle and is strongly correlated with changlee magnitude
of streamflow and precipitation, (Cayan et al., 1998; Cayan et al., 1999; Hamlet &
Lettenmaier, 1999; Hidalgo & Dracup, 2003; Lins & Slack, 1999; Tootle et al., 2005). In
addition, climate variability modulates hydrological extremes, such a3 fisks and
droughts, which cause large-scale natural and socioeconomic destructiom ¢Calya

1998; Hamlet & Lettenmaier, 1999; Reclamation, 2011).

Water resources management is particularly more important in the wesiezd
States, which has become stressed by an explosive population growth, theg@mesdi

of water for environmental and recreational uses, and the production of food and fiber



from western farms and ranches (Anderson & Woosley, 2005). This arid regieraface
real possibility of water scarcity as a result of increased watestsrand climate
variability (Vorosmarty et al., 2000). Securing water for the western t)Sitates is
challenging because local sources have already been allocated to priorpisésq thy
overuse, or diminished by drought stress (Anderson & Woosley, 2005). Traditionally,
new water supplies are secured to meet the growing demands, but this is an unsistainabl
solution as water resources are limited (Anderson & Woosley, 2005). The sesult |
increased pressure on existing water supplies, which presents challengatefo
resource managers to provide water for the increasing population, irrigatadtagei
power generation, recreation, scenic value, and fish and wildlife habitat &lddghes,
2003). With the heightened state of water stress in the western United 8&tess &
serious concern about the future water availability in this region and longf@aegasts

become a necessity in order to plan for water allocations and mitigegeextvents.

Several indices relating to oceanic or atmospheric fluctuations have been
developed to identify climate variations. There is much interest in thesesndieeto
their cyclic nature and their teleconnection with the magnitude and frequency of
streamflow and precipitation across the globe (Enfield et al., 2001; Hamlet and
Lettenmaier, 1999; Tootle et al., 2005). In addition to their spatial influence, there is
often a delay of several months to over a year on streamflow or precipiegmmses to
these oscillations (Hamlet & Lettenmaier, 1999; Kalra & Ahmad, 2009; Piechalta e
1997). In the western United States, the four most influential oceanic-atmaspheri
oscillations are the El Nifio — Southern Oscillation (ENSO), Pacific DéCesttallation

(PDO), Atlantic Multidecadal Oscillation (AMO), and North Atlantic Otibn (NAO).



ENSO has been linked with streamflow and precipitation in the western Unitesl, State
where a warm EI Nifio event generally brings below normal moisture in thécPacif
Northwest and above normal moisture in the southwestern United States (Cayan et al
1998; Piechota et al., 1997, Redmond & Koch, 1991). The PDO has been identified with
negative precipitation correlations in the Pacific Northwest and positive pagicpi
correlations in the southwestern United States (Manuta et al., 1997). Hidalge@pDra
(2003) revealed that both the ENSO and PDO play a significant influence onflstveam
and precipitation in the western United States, specifically the Upper Colonaelo Ri

Basin (UCRB). Enfield et al. (2001) examined the relationship between pracipita
variability across the United States in relation to the AMO and found that the AM® ha
strong positive correlation in the Pacific Northwest and a strong negatretation in

the southwestern United States. The indices of ENSO, PDO, and AMO have similar
regional influences, which suggests that precipitation and streamflow ligyisbi

influenced by all three oceanic-atmospheric oscillations. This was furtblerea by

Tootle et al. (2005), which evaluated the individual and coupled effects of ENSO, PDO,
AMO, and NAO in relation to streamflow across the United States and foundl| tioairal
indices influence the streamflow variability. Hunter (2006) also found a signific
relationship between the individual and coupled effects of ENSO, PDO, AMO, and NAO
on snowfall throughout the western United States. Furthermore, a study lbsehsnet

al. (2009) found that the individual and coupled effects of ENSO, PDO, and AMO are
prominent in the Colorado River Basin. Based upon the documented literature, oceanic-
atmospheric oscillations have a connection with hydrologic variables ieapgtow and

precipitation. They also have the potential to be used to extend the lead time in



hydrologic forecasting, where a forecast of streamflow or pretigntanay be made a
year or more in advance from the state of the current oscillations. Howeveu,tae t
complex nature of these hydroclimatic processes, they are difficuitépsulate into a

physically-based model (Lin et al., 2009).

1.2 Data-Driven Modeling

Alternative to physically-based models are data-driven models, which use
artificial intelligence to automatically discover patterns in a dataswder to form a
predictive model (Witten et al., 2011). This approach is useful for hydrologiakineg,
in which underlying relationships can be extracted between a trainirggtiatanprised
of the input oscillation indices and the output streamflow or precipitation. The
relationships are stored in the structure of the model through an array of mathemat
equations. The resulting relationships extracted through the data-drivels wexl¢hen

be used for predictive purposes by entering a new series of inputs into the model.

Data-driven models encompass artificial neural networks (ANNS), supgcidr
machines (SVMs), instance-based learners, and decision trees (WitteA@&LH.
ANNs and SVMs are complex black box models, which develop relationships that are
difficult to extract and interpret in the model (Solomatine & Dulal, 2003; Solométine
Xue, 2004; Solomatine et al., 2008). Instance-based learners and decision treefrare muc
simpler data-driven models, which can produce comparable and often more accurate
predictions than complex ANNs (Solomatine & Dulal, 2003; Solomatine & Xue, 2004;
Solomatine et al., 2008).In addition, it is much easier to extract relationstmpsHeir

more transparent algorithmic structures. A drawback of using data-driversnsthat



they are often data-hungry, which requires an ample amount of data in orded t bui

more accurate and robust model (Witten et al., 2011).

1.3 Research Motivation

There is an abundant amount of research that has studied relationships between
oscillation indices and their hydrologic responses. However, the results @kthdses
are based upon an instrumental record that spans 50-100 years. For data-drivieigmodel
this shorter time series serves as an important limitation in the traihthg model (Lin
et al., 2009). A possible solution to this limitation is the incorporation of paledelima
reconstructions. Reconstructions have the potential to extend the period of record by
several hundreds of years through the use of proxies, such as tree rings, coral, and ice
cores (Jones & Mann, 2004).These proxies provide fixed annual time series that can be
correlated with several climatological and hydrological variables inufugiecipitation,
streamflow, air temperature, sea-surface temperature, and sea-ésgeirps (Jones &
Mann, 2004).The resulting time series is filtered in order to attenuate theatge
fluctuations and extract the long-range climatic variations (Hidalgo, 2004abtcét al.,
2004; Probst & Tardy, 1987). With an extended dataset available for these vadables

more flexible data-driven model may be obtained.

An extended period of record was expected to aid data-driven models through
several aspects. The most apparent is the increased number of instaitelele dvathe
data-driven model to train on. This allows for the model to make criticaliolesis the
forecasts with a higher degree of certainty. In addition, the extended perembaf r
allows the model to further examine the relationships between the oscilfatioas and
streamflow or precipitation, which may not be as prevalent in the instrumesded re
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The use of reconstructions could be useful for hydrologic forecasting usargradagn

models.

With this motivation, this thesis used a data-driven approach to increase the
streamflow and precipitation forecast lead time by incorporating reoctisns of
oceanic-atmospheric oscillation indices. The data-driven models used were M5P, a
decision-tree; KStar, an instance-based learner; and a kernel-basetbaellSVM
model. The western United States is considered in the analysis becaudaiti &éxdi
need for long-range forecasts due to hydrologic sensitivity and water 3tiness is also
ample reconstruction data available for both streamflow and precipitation irethelae
four oceanic-atmospheric oscillations of ENSO, PDO, AMO, and NAO were used in the
research because they are commonly associated with hydroclimatologyvestieen
United States and reconstructed data is available for each index. The meels w
evaluated with several performance measures including the root mean squared er
(RMSE), mean absolute error (MAE), RMSE-standard deviation ratio (RS&)}dés
correlation coefficient (R), Nash-Sutcliffe coefficient of efficigi{lSE), and linear
error in probability space (LEPS) skill score (SK). In addition, visual cigpes of the
models were made through scatter plots, box plots, non-exceedance probabilitygplots

charts, and spatial maps.

1.4 Research Objectives

The objective of this research was to increase the forecast lead time for
streamflow and precipitation. In order to increase the lead time, argned&rstanding
of the relationships between oceanic-oscillation indices and their hydrologic
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teleconnections was developed. The resulting forecasts are expected tuldfemuse
water managers to aid in the planning and management of water resourcest to or
achieve these objectives, the following questions and their corresponding hypotheses

were addressed in this research.

Research Question #1: Can the oceanic-atmospheric oscillations be used to improve the
streamflow forecast lead time in the Upper Colorado River Basin and canremigeal

improve the model?

Hypothesis #1: There is a strong relationship between oceanic-atmosphdiat msei
and streamflow variability within the Upper Colorado River Basin and the fareeas
time can be improved as a result. The removal of noise improves the ability addieé m

to produce accurate forecasts.

Research Question #2: Do oceanic-atmospheric oscillations play an important role
streamflow variability in the western United States, and can the osciBdte used to
increase the forecast lead time for gages located in the headwaters @marfstream

gages?

Hypothesis #2: The influence of oceanic-atmospheric oscillations is promirehgage
locations and can be used to forecast streamflow regardless of the vareshidlow

volumes observed in the headwater or downstream locations.

Research Question #3: Can the lead time of precipitation forecasts bgeaohpsousing
oceanic-atmospheric oscillations and do all indices play an equally impatfent the

forecast model?



Hypothesis #3: Precipitation variability across the western United $$ateasiderably
affected by oceanic-atmospheric oscillations and the forecast leadaimiee improved.
The forecast model improves when a non-significant oscillation index is removed as a

predictor.

Research Question #4: Can oceanic-atmospheric oscillations be used in an SVNbmodel
increase the streamflow forecast lead time throughout the western Utaites Bithout

noise removal?

Hypothesis #4: The SVM model is successful in increasing the streamflavasotead

time from the raw data throughout the western United States.

1.5Research Tasks

The research is presented in a manuscript format. The current chapter esmpris
of the introduction and formulates the problem statement for this study. Chapter 2 is a
manuscript titled “Extending Streamflow Forecast Lead Time UsiagyPr
Reconstructions for the Upper Colorado River Basin” and addresses ReseatibrQue
#1. Reconstructions and two data-driven models, M5P and KStar, were used to forecast
annual streamflow for 4 gages in the Upper Colorado River Basin at a 1-5 yefamiea
The relationships between streamflow and oceanic-atmospheric oscillatitvesUpper
Colorado River Basin were also explored, as well as the use of smoothingdilters t
remove noise and their effect on the model performance. Chapter 3 is a manusctipt titl
“Streamflow Forecasts using Paleoclimate Reconstructions in theeVémited States”
and addresses Research Question #2. Reconstructions and the KStar data-driven model

were used to forecast annual streamflow for 21 gages in the westeed Btates at a 1-



5 year lead time. The relationships between streamflow and oceanic-atnmspheri
oscillations were further explored on a larger spatial scale and inclirdach#ow gages
located in headwater areas. Chapter 4 is a manuscript titled “Long-Rang@tBtion
Forecasts Using Paleoclimate Reconstructions in the Western Unites!’ Sirad

addresses Research Question #3. This chapter uses reconstructions and theaKStar dat
driven model to forecast annual precipitation for 20 climate divisions in the wester
United States at a 1-year lead time. This chapter examines thenggbs between
precipitation and oceanic-atmospheric oscillations and their spatial dréetcs
throughout the western United States. It also examines the impact of dropping one or
more of the oceanic-atmospheric oscillations on the model performance. Chapter 5 is
titled “Long-Range Streamflow Forecasts using Support Vector Machiribs Western
United States” and explores Research Question #4. This chapter uses rettoms@ad

an alternative data-driven model, an SVM model, to forecast annual streamfl@tv f
gages in the western United States at 1-year and 5-year lead timegr@Ghaphmarizes

and concludes this thesis and provides recommendations for future research.



CHAPTER 2: EXTENDING STREAMFLOW FORECAST LEAD TIME USING
PROXY RECONSTRUCTIONS FOR THE UPPER COLORADO RIVER BASIN

2.1 Introduction

Streamflow is an important component of the hydrologic cycle that influences
water supplies. Long-term streamflow variability dictates the mgatpply availability in
basins with large amounts of storage available, such as the Colorado Rivei@gsin (
et al., 1998, Dettinger, 1998).Streamflow variability also affects extrggms such as
floods and droughts. In order to plan for the allocation of water and mitigation ahextre
events, the development of a reliable streamflow forecast becomes araimpesk for
hydrologists, meteorologists, water resource engineers, and wategara(@hang &
Chen, 2001; Kahya & Dracup, 1993). A reliable streamflow forecast with a lothg lea
time -- on the order of a year or more -- would allow water resource mariadetter

plan and allocate available water supplies for the forthcoming water yea

One of the most promising routes to developing a long lead time streamflow
forecast is through using oceanic-atmospheric oscillations. There is amiriagre
between the observance of oceanic-atmospheric oscillations and thes effec
streamflow, which researchers may utilize to provide a forecastiteaaft several years
(e.g. Hamlet & Lettenmaier, 1999; Kahya & Dracup, 1994; Kalra & Ahmad, 2009).
There is ample evidence showing that bimodal oceanic-atmospheric phenomenon, such
as El Nifio-Southern Oscillation (ENSO), Pacific Decadal OsahafiPDO), Atlantic
Multi-decadal Oscillation (AMO), and North Atlantic Oscillation (NA@prrelate to
global streamflow fluctuations and particularly in the western UnitegésS(a.g. Beebee

& Manga, 2004; Cayan & Webb, 1992; Dettinger et al., 1998; Enfield et al., 2001,
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Goodrich, 2007; Hamlet & Lettenmaier, 1999; Hidalgo & Dracup, 2003; Kahya &
Dracup, 1993; Knight et al., 2006;Mantua, 1999; Ropelewski & Halpert, 1986; Tootle et
al., 2005). These oscillations indicate atmospheric conditions over the Atlantic and
Pacific Oceans. Changes in seas surface temperatures (SSTs) @spuhatio pressures
identify warm or cool phases, which influence the climate. A number of studies have
identified streamflow responses to oceanic-atmospheric oscillations irokhadb

River Basin (e.g. Hidalgo & Dracup, 2003; Piechota et al., 1997; Tootle et al., 2005).
Notably, Kalra and Ahmad (2009) incorporated ENSO, PDO, AMO, and NAO in the
development of a Support Vector Machine (SVM) model for a three-year lead time
streamflow forecast in the Upper Colorado River Basin (UCRB). Othenmmeea
atmospheric oscillations, including Arctic Oscillation (AO), East Attapattern (EA),
West Pacific Oscillation (WPQO), Tropical/Northern Hemisphere paffeNH), and
Pacific/North American pattern (PNA), are available. However, on the basesults

from previous streamflow studies and documented literature, the oceanic-atnwspheri
oscillations of ENSO, PDO, AMO, and NAO show the most influence on streamflow
patterns within the United States (e.g. Cayan & Webb, 1992; Dettinger et al., 1998;
Enfield et al., 2001; Hamlet & Lettenmaier, 1999; Kahya & Dracup, 1993; Knight et al

2006; Tootle et al., 2005).

From these studies, it is evident that oceanic-atmospheric oscillations daaeflue
streamflow.In fact, there have been attempts to use oscillations asqrethatstimate
streamflow (Asefa et al., 2006; Coulibaly et al., 2000; Hamlet & LettezmnBd99;

Kalra & Ahmad, 2009; Wood et al., 2002). The development of a forecasting model for

long lead time streamflow is difficult due to the challenge in capturingpex
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interactions between oceanic-atmospheric oscillations and streamflovib@yet al.,
2000; Gutierrez & Dracup, 2001). In order to capture the dynamics of oceanic-
atmospheric oscillations in a long lead time streamflow forecast, robustneam-tlata-
driven approaches may be used to identify these relationships (Coulibaly et al., 2000).
Data-driven techniques encompass artificial neural networks (ANN), Skégsession
functions, decision trees, and instance-based learners (Witten et al., 2Qaadriizen
techniques operate through the automatic or semiautomatic process of discovering
patterns within datasets, encapsulating them in a model and using the modelkcto predi
what will happen under new situations (Witten et al., 2011). A data-driven model, which
is trained with a larger dataset, generally creates a more robust WMoideh (et al.,

2011). This is because more data allows the model to learn from more examples that
helps in improving the model forecasts (Ahmad & Simonovic, 2005; Melesse et al.,

2011).

The instrumental record is generally available for less than 100 ydac$, i an
important limitation for data-driven models for use in long lead time sflfeam
forecasting (Dettinger et al., 1998; Hidalgo & Dracup, 2003). Several studiessugge
addressing this limitation with reconstructions using high resolution patesiaiproxy
indicators, especially tree-ring chronologies (e.g. Brito-Castilid.e2003; Dettinger et
al., 1998; Hidalgo & Dracup, 2003; Hunter et al., 2006; Prairie et al., 2008). Tree-rings
provide an opportunity to extend the period of record as they provide a fixed annual
resolution and absolutely dated time series, where moisture and tempeoatelate
with annual tree-ring widths (Cook, 1992, Jones & Mann, 2004; Stockton & Jacoby,

1976). Dettinger et al. (1998) reveals that proxy indicators can reflect thevedbspatial
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and temporal characteristics of climatic variability, which allowsHerpotential to

extend streamflow into pre-instrumental periods. Through tree-ring chronglseiesal
studies produce reconstructed streamflows that extend several hundradtpeties past

and show strong influences from the oceanic-atmospheric oscillations rieogCB8stillo,

2003; Cook & Jacoby, 1983; Gou et al., 2007; Graumlich et al., 2003; Gray et al., 2004a;
Hidalgo, 2004;Lara et al., 2007; Meko et al., 2007; Smith & Stockton, 1981; Stockton &
Jacoby, 1976; Timilsena et al., 2009; Woodhouse et al., 2006). The reconstructions allow
for a full examination of the effects of multi-decadal oceanic-atmospbseiliations

such as the PDO and AMO, where a single phase may persist for 20-40 yedrggmshic
allows for the observation of one to two full cycles in the instrumental recordg&ima

et al., 2009). Since both the reconstructions and the instrumental record indicate that
oceanic-atmospheric oscillations influence streamflow (Gray et al., 2D&ka; et al.,

2007; Woodhouse et al., 2006), it is possible to develop a streamflow forecast model

based upon reconstructed oceanic-atmospheric oscillations.

There are no studies that have used paleoclimate proxy reconstructionsan a dat
driven model. Since reconstructions for oceanic-atmospheric oscillations eauthfébuv
are available for several hundred years, and are continually improving ity qual
guantity, it is expected that an improved streamflow forecast model can bepdeve

compared to models trained on a limited period of instrumental record.

This study focused on the UCRB, which exhibits a need for long-term water
resources planning and management. This area was chosen because prbrhrasear
identified correlations between oceanic-atmospheric oscillations anth8teavithin

the basin and abundant proxy reconstruction data is available for oceanic-atmosphe
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oscillations and streamflow. Streamflow forecasts are of signifiogmirtance in the
Colorado River Basin, in which water stress is beginning to develop due to growing
populations and agriculture industries (Piechota et al., 2004). Therefore, ice &oit

water managers to obtain a reliable streamflow forecast to plan dioe fuaiter

allocations, especially in the snowmelt-driven UCRB, which supplies 90% of the annual

streamflow (Christensen et al., 2004).

The goal of this research was to increase the lead time for streafofemast by
using a data-driven model that incorporates both paleoclimate proxy recooss actd
instrumental record. Forecasting models were developed through the KStabRdetkt
driven techniques. KStar is a nearest neighbor algorithm with an entropldstsace
function. M5P is a decision tree with the possibility of linear regression &ates.
High resolution proxy reconstructions encompassing data for several hundietaea
not yet been incorporated in a long lead time streamflow forecast model. Rectmss
are available for oceanic-atmospheric oscillations, including ENSO, PDIO, And
NAO, and for water year streamflows for four gages in the UCRB. Thelmwade
trained and tested using a 10-fold cross validation technique on a datasetgntaini
reconstructions and instrumental records for both the oscillations and stneafrd
filter anomalies and aid in the identification of oscillation phases, a movinggavitar
was applied to the dataset. The model was set to produce a 1-5 year leadeivans fufr
the water year streamflow from as early as Januof the input year. A forecast
evaluation was performed through the mean absolute error (MAE), root mean squared
error (RMSE), RMSE-observations standard deviation ratio (RSR), cavrelati

coefficient (R), Nash-Sutcliffe coefficient of efficiency (NSBEhd linear error in

14



probability space skill score (LEPS SK). The results of the KStar and M5P swoele
compared with a multivariate linear regression (MLR) model. This proposed mgpdeli
technique can be potentially useful for long lead time water resources meamdgathin

the UCRB.

This paper is organized as follows. The study area and the data used for this study
are described in Sections 2.2 and 2.3, respectively. Section 2.4 describes tren#Sta
M5Pdata-driven techniques as well as the modeling framework for this Stectyon 2.5
describes the methods for performing a forecast evaluation. The resulthérolata-
driven models are presented in Section 2.6. Finally, Section 2.7 provides a discussion of

the findings and concludes the paper.

2.2 Study Area

The Colorado River is a major source of water for much of the arid southwest
United States. However, due to increasing population and agricultural actisiiyjnod
for future water allocations becomes a necessity in order to meettiatieg water
demands. The Colorado River Basin encompasses a total area of 637°GO@ikm
services nearly 30 million people (CRWUA, 2007). It provides water for municipal and
industrial purposes, electricity generation, fish and wildlife, reaeaéind irrigation of
over 7,000 krhof agricultural land (CRWUA, 2007). Under the “Law of the River,”
water is allocated to seven states within the basin including Colorado, Wyomihg, Uta
New Mexico, California, Arizona, and Nevada as well as to Mexico (USBR, 2008)
(Figure 1). The Colorado River Basin is often viewed as a two-basin systiennev
gage at Lees Ferry, Arizona, serving as the division between the basinssifhe ba
upstream from Lees Ferry is defined as the UCRB and serves Colorado, \Wyotain,
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and New Mexico. The downstream basin is defined as the Lower Colorado River Basin
(LCRB) and serves California, Arizona, Nevada, and Mexico. This designation is
important because the annual UCRB snowmelt runoff accounts for 90% of the Colorado
River flow. However, under the “Law of the River’ the LCRB states are appet 7.5

MAF (9.25 kn?) per year for beneficial consumptive use, in which the flow at Lees Ferry
is not to drop below an aggregate of 75 MAF (92.5)kower a 10 year period regardless

of the annual and decadal fluctuations of streamflow in the UCRB (USBR, 2008).
Several basin states are experiencing a rising water demand due torgggropulation

and agriculture industry (Piechota et al., 2004). As a result, the need for a lonméead t
streamflow forecast becomes critical to better manage the stissage in the

Colorado River Basin. The ability to produce long lead time streamflow foseafast
several years would provide better water management for a region thatgswater

scarcity.
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Figure 1: Map showing location of study area and streamflow gge:

2.3 Data

The datasets used in the development of long leagdtreamflow forecasts includ
oceanicatmospheric oscillations and naturalized streamflata. Paleoclimate pro:
reconstructions and instrumental reccwere available for thes#atasetsAll
reconstructions weravailable through the NOAA Paleoclimatology Progr at

(http://www.ncdc.noaa.qov/paleo/recons.l). The instrumental recorcwere obtained

from several sourcesshich are outlined iiTable 1.There were often multipl

reconstruction available, and this study seledtedd with longer lengtr

Table 1 List of data sources for the streamflow gages andcenic-atmospheric
oscillations used in this study
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Data Sources

Period Period in

Gage or Oscillation Source Available Study

Colorado River at Lees Ferry, AZ
Colorado River near Cisco, UT,;
Green River at Green River, UT

San Juan River near Bluff, UT

g Woodhouse et al. (2006) 1490-2000661-1905

USBR (2009) 1906-200} 1906-2007

Jones & Mann (2004) 1650-1980661-1905
Australian Government
Bureau of Meteorology| 1876-2010 1906-2007

ENSO (as SOI)

(2010)

PDO Shen et al. (2006) 1470-1998661-1905
JISAO (2010) 1900-20101906-2007
Luterbacher et al. (2001) 1661-2001661-1905

NAO
Hurrell (2010) 1865-2010 1906-2007
Gray et al. (2004b) 1567-19851661-1905

AMO

ESRL (2010) 1856-20101906-2007

Four streamflow gages located in the Upper Colorado River Basin were used for
this study as shown in Figure 1. These gages included (1) Colorado River &ebses
Arizona (Lees Ferry); (2) Colorado River near Cisco, Utah (Cisco); i&@rGRiver at
Green River, Utah (Green River); and (4) San Juan River near Bluff, LHahJ(@&n
River). This study made use of tree-ring proxy reconstructions of yede (October —
September) streamflow for the four gages in the UCRB from Woodhouse et al. (2006) as

shown in Table 1.

The standard chronologies in stepwise regression dataset (Lees-iBeasdsr
the Lees Ferry gage and the full pool of predictor chronologies with steepygsession
was used for the remaining gages in this study. In addition to the paleoclimate

reconstructions for streamflow, naturalized observed records for the wage obtained
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from the U. S. Bureau of Reclamation. The update from September 16, 2009 was used in

this study.

Yearly oceanic-atmospheric oscillations based upon sea-surface temgerat
(SST) and sea-level pressure (SLP) were available for ENSO, PDO, MAMO.
The datasets used for these oscillations are described in TENSO is defined as the
prolonged (1-2 years) warming or cooling of at least 0.5 °C averaged overttoerdsasl
tropical Pacific Ocean; this occurs approximately every 4 years, buvanayrom 2 — 7
years (Ahrens, 2007; Beebee & Manga, 2004; Kahya & Dracup, 1993). El Nifio is the
warm phase, which is identified with above-normal streamflow in the southwester
United States. Similarly, La Nifia is the cool phase, which is identifiddheitow-
normal streamflow in the southwestern United States (Mann et al., 2000; McCabe &
Dettinger, 1999). Currently, there is no single measure of ENSO that is universall
accepted, but this study makes use of a SLP index known as the Southern Oscillation
Index (SOI), which is defined as the difference between the standardizezhSifalies
at Tahiti and Darwin, Australia (Beebee & Manga, 2004; Kahya & Dracup, 1068).
this study, the winter (October to March) SOl was used because it wasr artsziseire
of ENSO as opposed to using the entire year (Mann et al., 2000; McCabe & Dettinger

1999).

The PDO is derived from the leading principal component of monthly sea-surface
temperature (SST) anomalies in the North Pacific Ocean, pole ward of 20k, w
exhibits decadal-scale oscillations that typically last between 20 toaB§ (dantua et

al., 1997). Warm phases of the PDO are associated with above-normal precipitation, a
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the cool phases are associated with below-normal streamflow in the southwsted

States (Mantua et al., 1997).

The NAO is based on the normalized SLP difference between Ponta Delgada,
Azores and Stykkisholmur/Reykjavik, Iceland and oscillates on a large di&ioaela
scale, which may vary annually or may remain in a single phase foakgears
(Hurrell, 1995). NAO is more predominant over the eastern United States and Europe;
however, NAO may be linked to climate variability in the southwestern UnitgdsS

(Hunter et al., 2006).

AMO is an index of SST in the Atlantic Ocean that is calculated from adi0-ye
running mean of detrended SST anomalies between 0 — 70°N in the Atlantic Ocean
(Enfield et al., 2001; Gray et al., 2004b). The AMO exhibits an oscillation thatasty |
65 — 80 years, with phases that may persist for 20 — 40 years (Enfield et al., 2004t; Gray
al., 2004b; Kerr, 2000). Warm phases of the AMO have been linked to below-normal
streamflow and drought in the southwestern United States, while the cool phages brin

about above-normal streamflow (Gray et al., 2003; McCabe et al., 2004).

Although the inclusion of other oscillations may be beneficial for the
development of a streamflow forecasting model, paleoclimate reconstruatelsited

to these four oceanic-atmospheric oscillations.

2.4 Methods

This section describes the KStar and M5P data-driven models used in this study
as well as the framework to implement the models in the development of streamifl

forecasts.
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2.4.1 Model Description

This study focused on two algorithms, KStar and M5P. They were featured in the
Weka software, which is a data-mining software developed by the Unyvefsiaikato
in New Zealand (Witten et al., 2011). These algorithms have been successiintg in
several hydrologic applications, including evaporation estimation, soilun®isbntent,
rainfall-runoff modeling, flood forecasting, and short-term streamflmwdasting (e.qg.
Elshorbagy et al., 2010; Solomatine & Dulal, 2003; Solomatine & Xue, 2004; Solomatine
et al., 2007; Terzi, 2007). Simple instance-based learners and decision trees have bee
shown to produce equal or better results than complex algorithms, such aslangfical
networks (e.g. Solomatine & Dulal, 2003; Solomatine & Xue, 2004; Solomatine et al.,

2007). The KStar and M5P algorithms are described in the following sections.

2.4.2 KStar

KStar is an instance-based learner designed to classify instances thmough a
entropy-based distance measure (Cleary & Trigg, 1995). Like othendesbased
learners, the algorithm will compare an instance to pre-classified essuanpd classify it
based on the most similar example. This is performed through a distance functidn, whic
determines the similarity between the two instances. In the casdaf Kt distance
function is entropy-based. Instead of simply taking the shortest distance between t
instances and ignoring all other possible paths, the KStar algorithm deterng@nes t
distance based upon the probability over all possible paths. This has the advantage of
being able to quickly generate relationships and forecasts from thatiseg|within
seconds, whereas physically-based models often require numerous inputs and tedious

calibrations before they can run. Instance-based learners have beeasfsiligadilized
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in several hydrologic applications, including evaporation estimationEtsigorbagy et

al., 2010; Terzi, 2007), soil moisture content (e.g. Elshorbagy et al., 2010), rainfzfl-
modeling (e.g. Elshorbagy et al., 2010; Solomatine et al., 2007). Simple instaade-bas
learners have been shown to produce equal or better results than complex agorithm

such as artificial neural networks (e.g. Solomatine et al., 2007).

The detailed discussion of KStar is available in Cleary and Trigg (1995). A brief
description of the KStar equations abstracted from Cleary and Trigg (1996yided

here.

Letl be a (possibly infinite) set of instances dnd finite set of transformations
onl. Each te T maps instances to instancet-t1. T contains a distinguished
membes (the stop symbol) which for completeness maps instances to themséajes(
= a). LetP be the set of all prefix codes frofrt which are terminated by. Members of

T* (and so ofP) uniquely define a transformation bn

t(a) = ty(ty_1 (.. t1(@) ...)) where t =ty ... t, Q)

A probability function p is defined of*. It satisfies the following properties:

(W)
0< ‘;ﬁ <1 2)
Yup(tw) = p(® 3)
p(A) =1 (4)

As a consequence it satisfies the following:

Yiepp(D =1 (5)
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The probability function P* is defined as the probability of all paths from instate®:
P*(bla) = Xtepta)=b P(D) (6)

It is easily proven that P* satisfies the following properties:
2pP*(bla) =1 (7)
0<P*(bla) <1 (8)

The K* function is then defined as:
K*(bla) = —log, P*(bla) )

Figure 2 displays the theoretical partitioning of instance space. Inghis, fthe
circles represent the pre-classified examples. When the instance dftirde@mpared to
the examples, the distance formula will determine which examples areimibet ® the
instance of interest. The light gray circles are disregarded asvithept affect the
result. The remaining black circles are the few prototypical exantmesaite saved and
used for training. The dark filled circles are the most similar instémoagh the distance

function and are the only examples that actually get used in the decision making.proces

O o
o ©

Figure 2: Partitions of an instance space (adopted from Witten et al., 2011)
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2.4.3 M5P

M5P is a model tree that incorporates a decisiem @&pproach with the possibil
of linear regression functions at the leaves (W& Witten, 1996). The M5 model tre
wasoriginally developed by Quinlan (1992) awasfurther improved upon by War
and Witten (1996) to develop the M5 Prime (M5P) mldcee. The M5P model c:
categorize similar instances and provides a linegiression model for each set

instances (Witte et al., 201).

LR

»>0.18 <=0274 0274

T — o

«=0879  =0879

«=-0.213 >0213

=054 054 <=0689  =0.689

Figure 3: Example of a M5P decision tree. LM -8 represent linear regressior
models.

The M5P decision tree is developed through a sefidecision and prunin
processes. Figure@ovides an example of a decision tiThe decision tree us:
splitting criterion based upon the standard demmatlhis minimizes the variation in tl
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set of classified values below each node instead of maximizing the inkanngatn at

each node. The splitting procedure in M5P stops when the classified values of all
instances that reach a node vary only very slightly or if only a few instagroas The

tree then is pruned back from each leaf by turning an inner node into a leaf. The main
difference between M5 and M5P is that the leaves in the M5 model are all constant
while the M5P model allows the leaves to be fit with a regression plane (WaVitieh,
1996). Finally, the tree is smoothed to avoid sharp discontinuities between the sub-trees
by combining the linear model predictions at each node along the path back to the root.
Interested readers can refer to Wang and Witten (1996) for a detailegphti@saf the

M5P model. A brief overview of the M5P model is presented here.

The splitting criterion is based on treating the standard deviation as a enehsur
error for instances that reach a node, which determines the maximum expexted e
reduction. The instance that maximizes the expected error reduction is chtsen as

splitting node. The standard deviation reduction (SDR) is calculated, as follows.

SDR = ™ x B(i) x [sd(T) - zje{m% x sd(Tj)] (10)
B=e"% (11)

where m is the number of instances without missing values and T is the set okemstanc
that reach the node. TL and TR are the sets that result from splitting the nodnaccor
to the chosen instandgis a correction factor for the M5P model, which improves the

model’s ability to choose a splitting criterion, where k is the number of values of the
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original enumerated attribute and n is the total number of instances. The spldtegsr

only occurs if the produced leaves have at least two examples.

The pruning process performs linear regression on the instances below a node and
then drops terms if doing so improves the error estimate. The error function ibekscri

as follows.

(n+v) _ Xexamplesldeviation from predicted class value|

(12)

(n-v) n

Finally, a smoothing process is applied to the model to smooth each node. The

smoothing function is described below.

p ="t (13)

n+k

where p’ is the prediction passed up to the next higher node, p is the prediction passed
from the node below, g is the predicted value at the current node, n is the number of
instances that reach the node, and k is a constant. The smoothing process substantially

increases the accuracy of predictions.

2.4.4 Modeling Framework

A description of the data-driven modeling approach is presented in this section.
The oceanic-atmospheric oscillation indices of ENSO, PDO, AMO, and NAO wedle us
as inputs to obtain water year streamflow volumes 1-5 years in advance tagagéscin
the UCRB. The reconstructed data used in the analysis ranged from 1661 to 1905 and
observed data ranged from 1906 to 2007. Both the datasets were combined into one

continuous time series with no overlap so that there was no bias introduced into the
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dataset. This provided more robust approach as opposed to analyzing the reednstruct
and observed dataset individually. The extended time series (i.e. reconsandte
observed) allows the model to learn from a larger training set, whemdartrthe
reconstructed dataset may or may not be evident in the observed dataset/ersac

The studies that developed the proxy reconstructions have shown that the overlapping
period between the proxy reconstructions and instrumental record dataset Were we
correlated. The dataset was prepared using a 3-year, 5-year, and 1@vyiegraaerage

in order to remove the high degree of noise in the dataset. A lead time of 1-wgears
applied to the four streamflow gages in the UCRB to simulate a forecast. Tvarigl|

steps describe the modeling framework.

Step 1. Let i represent the streamflow gage that is the current gage aitjntexe
is, 1 = Lees Ferry, 2 = Cisco, 3 = Green River, and 4 = San Juan River (i = 1-X:] Let [
represent the data matrix that is on the order of T x M, where T represents the oumbe
years and M represents the four oceanic-atmospheric oscillation indicestasahnaflow
gage. The model used the four oceanic-atmospheric oscillation columns as inputs and the
streamflow column as the output. Matrix;[XXomprises of the complete period of record
for this study, including the reconstructions from 1661-1905 and the observed record
from 1906-2007 (T = 347). Data was available for the four oceanic-atmospheric

oscillations and a streamflow gage in the UCRB (M = 5).

Step 2. Partition the data matrix;[Xhto two sub-matrices, [Aand [B], so that
matrix [A] is on the order of N x M and matrix |Bs on the order of (T - N) x M, where

N is the length of the reconstructed period from 1661-1905 (N = 245).
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Step 3. Let | represent the forecast lead time; for example, j = 1 corresgoraded
1-year lead forecast (j = 1-5). The forecast lead time was applied toltmenc
containing the streamflow only. The streamflow column was shifted by | fows
instance, for year “t” the streamflow column will now correspond to yeag™tApply

this method to construct sub-matriceg][and [Bj].

Step 4. Let k represent the number of years of a moving average. A 3-year, 5-
year, and 10-year moving average is used in this study to smooth the dataset and better
capture relations between the indices and streamflow (k = 3, 5, 10). Apply the moving

average to construct sub-matriceggfand [Bj].

Step 5. Rejoin sub-matrices;jA and [By] to reform matrix [Xx]. This dataset
will contain both observed and reconstructed data with the appropriate lead times and

moving averages.

Step 6. Apply a 10-fold cross-validation technique to matrix][Xhe 10-fold
cross-validation technique randomly divides the matrix][Mataset into 10 further sub-
matrices of equal proportions on the order of (T / 10) x M. Under this technique, 9 of
these sub-matrices are used for training and the remaining sub-rmaised for testing.
A forecast is made for each instance in the fold held out for testing. This proedure i
executed a total of 10 times with each sub-matrix held out for testing in turn. The 10
errors are averaged to yield an overall error. The 10-fold crosst@atidachnique is a

standard practice in data-driven models (Witten et al., 2011).

Step 7. Apply the KStar data-driven model to the set of sub-matrices created i
the previous step by using the 10-fold cross-validation technique described in the
previous step. This approach allows for an examination of the performance of the data-
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driven model’s ability to predict future streamflows. The model will output the
streamflow predictions, which are represented by matgjy (& the order of T x 1.
Matrix [Cii] can be compared with the streamflow column of matrix][(¥ provide a

performance evaluation.

In addition, the modeling framework was applied to MLR. In this manner, a direct
comparison between the results of the KStar model can be made with the MLR model
Both KStar and MLR models were subjected to the forecast evaluation édcuske

following section.

The raw data was filtered in order to attenuate the short-rangreafiions and to
extract the long-range climatic variations (Hidalgo, 2004; McCabe et 84, P@obst &
Tardy, 1987). This technique is not new and has been incorporated into studies pertaining
to streamflow and climate fluctuations (e.g. Currie, 1996; Hidalgo, 2004; McCabe et
2004; Pekarova et al., 2003; Probst & Tardy, 1987; Riehl & Meitin, 1979; Riehl et al.,
1979). The current study used a basic 3-year, 5-year, and 10-year moving alterage f
aid in the detection of long-range climatic variations. Other dataridgféechniques were
available; however Probst and Tardy (1987) used three complementary filtering
techniques (cumulative deviation method, moving average, and weighted moving
average) and indicated that all the three filters produce similar resthisugh a
difference of one or two years for the localization of minima and maxirsaa@aetimes

observed.
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2.5 Forecast Evaluation

To assess the quality of the streamflow forecasting models, seveaahpnce
evaluation measures were applied to the model output (Moriasi et al., 2007; Chowdhury
& Sharma, 2009). The measures of performance evaluation were the MAE, R&/SE,

R, NSE, and LEPS SK. In addition, a visual inspection of the model performance in
comparison to the measured data was performed through scatter plots, box plots, and

non-exceedance plots.

The performance evaluation focused on determining the accuracy, ad@kikh
in predicting streamflows compared to the actual streamflows. Thendimea
predictions generated by matrixgiCmay be represented by which is the predicted
value for the'f' instance. The actual streamflows, as provided in the streamflow column
in matrix [Xi], are represented by, avhich is the actual value for thBinstance. Let n
represent the total number of instances. The following measures of perfermanc

evaluation are described by Witten et al. (2005) and Moriasi et al. (2007).

The MAE and RMSE are common measures of model performance that indicate
error in the same dimensionality of the measured variable, where a va@lusdafates a
perfect fit (Moriasi et al., 2007; Witten et al., 2011). The RSR standardiz€MBE& by
using the standard deviation of the observed dataset. This allows the RSR to be used as
an error index that can be compared with other results (Moriasi et al., 2007). This is
useful for comparing the model performance at the four gages in the UCRi®, whe
streamflow greatly varies. RSR is calculated as the ratio of the Rk&GE@ndard

deviation of the measured data as follows:
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_ RMSE Jm
RSR = - -
STDEVeas \/m

RSR ranges from 0 to a large positive value, with 0 indicating a perfect mooiehghet
al., 2007). Table 2 shows the performance levels for RSR from Moriasi et al. (2007),
where RSR is categorized as ‘very good’ if it is between 0.00 and 0.50, ‘good’ if between

0.50 and 0.60, ‘satisfactory’ if between 0.60 and 0.70, and ‘unsatisfactory’ if greater tha

0.70.
Table 2: Performance Rating for RSR, R, and NSE.
Performance Rating RSR R NSE
Very Good 0.06RSR<0.50 | 0.8xR<1.0 0.7< NSE<1.0
Good 0.50<RSR0.60 | 0.8R<0.85| 0.65NSE<0.75
Satisfactory 0.60<RSRO0.70 | 0.7cR<0.80| 0.5 NSE <0.65
Unsatisfactory 0.70<RSR1.0 | 0.0cR<0.70| 0.0 NSE <0.50

®RSR and NSE obtained from Moriasi et al. (2007)

R is a measure of the degree of linear relationship between the actual and
predicted values (Moriasi et al., 2007). The measurement ranges from lt(pesitee
correlation), through 0 (no correlation), to -1 (perfect negative correlalibis) study
defines R as ‘very good’ if it is greater than 0.85, ‘good’ if between 0.80 0.85,

‘satisfactory’ if between 0.70 and 0.80, and ‘unsatisfactory’ if less than 0.7C(Zpbl

NSE is a normalized measure of the residual variance (“noise”) compared to the
measured data variance (“information”) (Moriasi et al., 2007). NSE inditawe well
the predicted and measured data follow a 1:1 relationship (Legates & McCabe, 1999;

Moriasi et al., 2007). The NSE is computed as follows:

— _ Z?=1(X1_Yi)2
NSE = 1 S (15)
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NSE ranges from 1 to negative infinity, where a NSE greater than O is iijeaara
acceptable level of performance because it indicates that the model is areelitdor

than the observed mean of the dataset (Legates & McCabe, 1999; Moriasi et al., 2007).
Table 2 shows that the performance level for NSE is categorized agtvaalyif it is
between 0.75 and 1.00, ‘good’ if between 0.65 and 0.75, ‘satisfactory’ if between 0.50

and 0.65, and ‘unsatisfactory’ if below 0.50 (Moriasi et al.,2007).

To evaluate the quality of forecast LEPS SK is used, which measures itye abil
of the model to produce accurate predictions that are weighted more for values that a

further from the mean (Potts et al., 1996). The LEPS score is defined as
S"=3%(1—|Pf —Po| =Pf2—Pf+ Po2— Po)—1 (16)

where Pf and Po are the forecasted and observed probabilities, respectivalyerHye

skill (SK) is defined as

_ %100S8"

SK = .

(17)

where the summation S” is for all years of record. If S” is positivg,i$Sthe sum of the
best possible forecast (i.e. Pf = Po) for all years of record. If S” is negtten Sy is

the sum of the worst possible forecast (i.e. Pf = 1 or 0) for all years of re&ordn§es
from -100 to 100, where a SK of O represents the climatological score or eqthywale
random data (Casey, 1998). A SK score is considered ‘good’ if it is greater than 10,
‘satisfactory’ if it is greater than 5, ‘poor’ if it is below -5, and ‘badtiisi below -10

(Casey, 1998).
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2.6 Results

The results are discussed in the following sections. Section 2.6.1 examines the
performance of the KStar model when the dataset was subjected to diffierang
averages and different lead times. Section 2.6.2 describes the M5P model redidts. Sec
2.6.3 provides a comparison of the KStar model and the M5P model as well as a
comparison to the MLR model. The results for the Lees Ferry gage aribeesi full

detail and the remaining three gages are discussed in comparison.

2.6.1 KStar Model
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Figure 4: Scatter plots between measured and predicted strearaf’ for KStar for
Lees Ferry under a (A) 3-year moving average, (B) 5-year moving average, and (C)
10-year moving average. The diagonal line is the 45° bisector line. Plots are shown
with a 1-year lag on the left and ascending to a 5-year lag on the right.
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A visual inspection was performed through scatter plots between the autual
predicted streamflow volumes for the Lees Ferry gage (Figure 4). Hgusbows that
the streamflow predictions using 3-year moving average filter wiglglyscattered from
the 1:1 bisector for all the lead times. This indicates that the model hadltiffic
identifying a relationship between the oscillations and streamflow. Thielg due to
the presence of noise, since the moving average window did not sufficientiyyidee
oscillation signals. Figure 4B shows that the results improved with a 5-yeangnovi
average applied to the dataset. The model yielded satisfactory reghltsost
predictions saturated around the bisector line for all the lead times, indieagood fit
between the measured and predicted streamflow volumes. Still, the 5-yeagmovi
average was unable to capture some of the extreme values. A significant imgmbirem
results was noticed when applying a 10-year moving average window to the datase
(Figure 4C). A close match between the measured and predicted streavafiowticed
using the 10-year filter for all the lead times. The sample points wemratgat around the
bisector line, indicating a good model fit. Additionally, the model did reasonaltlynwe
capturing the extreme values, compared to the 3-year (Figure 4A) and bigeae @B)
results for all the lead times. This was due to the fact that the 10-year navenage
filter adequately removed the noise associated with the dataset, makmgdeke
efficient at establishing relationships between the large-scalatelioscillations and
streamflow. The visual inspection of the model through scatter plots indicatésetlix-
year moving average window yielded the best forecasts, while the 5-geargnaverage

and 3-year moving average Yielded satisfactory results for 1-5egghtimes.
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Table 3: Forecast evaluation for Lees Ferry, using KStar for a 3-year, 5-year, and

10-year moving average.

MA #Ierﬁg RMSE | MAE | RSR R NSE| LEPS
1 3.23 | 252 | 1.00] 029 -001 1497
2 346 | 269 | 1.07| 017 -0.16 886
3 3 326 | 257 | 1.01| 028 -002 12.34
4 327 | 251 | 1.01| 030 -002 1683
5 322 | 250| 099 032 o001 1513
1 240 | 1.82| 091| 047] 016 2654
2 248 | 181 | 094| 044 o011 27.64
5 3 236 | 1.74| 0.89] 049 020 3046
4 2.23 1.67 0.85 0.56 028 3446
5 203 | 155| 0.77| 064 04d 39.82
1 103 | 077 | 056| 083 069 5887
2 1.04 | 078 | 057| 082 068 57.06
10 3 101 | 074| 055| 083 069 5873
4 1.06 | 078 | 058| 081 066 549
5 124 | 089 | 068| 073 053 4881

%n MAF (1 ac-ft = 1233.5m

Table 3displays the forecast evaluations at different lead times dsdowith the
KStar model results for the Lees Ferry gage. The 3-year movinggevproduced
unsatisfactory results for R (R < 0.70), RSR (RSR > 0.70), and NSE (NSE < 0.50). In
addition, the MAE and RMSE were rather high with the MAE ranging from 2.50 — 2.69
MAF and the RMSE ranging from 3.22 — 3.45 MAF. Errors of this magnitude were
relatively large for streamflow prediction, where the mean annual flokeiolserved
record was 15 MAF. However, the LEPS SK show that the model produced ‘satigfact
forecasts (SK > 5) for the 2 year lead time, as well as ‘good’ fose(@ist> 10) for the

1, 3, 4, and 5 year lead times.

The forecast performance improved when a 5-year moving average was applied.
Although the model continued to produce unsatisfactory results for R, RSR, and NSE,

there was a notable improvement in these values when compared using a 3-yrgr movi
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average (Table 3). The 5-year moving average reduces the errorstadsoetttathe 3-

year moving average, with the MAE ranging from 1.55 — 1.82 MAF and the RMSE
ranging from 2.03 — 2.48 MAF. The errors showed improvement compared to the 3-year
results but were still on the higher side in the case of streamflow forgcadte LEPS

SK showed that the model produced ‘good’ forecasts (SK >10) for all leasl tvith the

5-year lead time producing the best forecasts when a 5-year moving avesaggeda

A significant improvement in the forecast performance was experiencatdavh
10-year moving average was applied compared to the 3-year and 5-year nvevagga
(Table 3). With the 10-year moving average applied to the dataset, the model produced a
satisfactory correlation (0. %R < 0.80) between the predicted and measured data for the
5-year lead time. However, good correlations (&&0< 0.85) were produced for the
remaining lead times. The RSR agrees with the R in which the predictions were
satisfactory (0.60 < RSR0.70) for the 5-year lead time and good (0.50 < R®F60)
for the 1-year to 4-year lead times. The NSE is also in agreement withatind RSR
results in which the 5-year lead time produced satisfactory {0NERE < 0.65) model
results and the remaining lead times produced good £N&SE < 0.75) modeling
results. The MAE ranged from 0.74 — 0.89 MAF and the RMSE ranged from 1.01 — 1.24
MAF. These low errors show that model was capable of providing an accurate
streamflow forecast. The performance evaluation showed that the nasmtskwith
the dataset is removed and the model performance increased when m@rnger
average window was applied. Overall, the KStar model provided good forecasts and
confirms the visual analysis (Figure 4) that the 10-year moving aveielded/the best

streamflow predictions for all lead times.
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Figure 5: Box plots for KStar for Lees Ferry under a (A) 3-year moving average, (B
5-year moving average, and (C) 10-year moving average. The box shows the
interquartile range (25"-75" percentile). The whiskers extend from the 8 to 95"
percentile values. The solid line inside the box shows the median val&e't
percentile), and the solid dot represents the mean of the value. Plotseaghown with
a 1-year lag on the left and ascending to a 5-year lag on the right.

The box plots in Figure 5 examined the ability of the KStar model to capture
streamflow variability. Figure 5A shows that the long-term mean of tharsftow was
efficiently captured for all the lead times with a 3-year moving averfige fihe 3-year
moving average filter was able to capture some of the larger variatistreamflow,
although it did not do well in capturing the extreme events. Figure 5B shows an
improvement in capturing variability as well as extreme events whereargmoving
average was applied to the dataset as compared to the 3-year moving aidage
This demonstrated that a larger moving average window increased the range of the

streamflow prediction and aided in better capturing the streamflow Jdyiabirelation
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to oceanic-atmospheric oscillations. A further improvement was noticed in tite @i
the model to capture streamflow variability by applying the 10-year moviergge
(Figure 5C). The range of predictions within th& 26 75" percentile increased for all
the lead times. Also, it was noticed that the model better represented @émeex&iues

in the dataset. The box plots show that the KStar model performed well in predicting

streamflow volumes, especially for flows within thé"2p 75" percentiles (Figure 5).
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Figure 6: Non-exceedance probability plots for KStar for Lees Ferry uder a (A) 3-
year moving average, (B) 5-year moving average, and (C) 10-year moving average.
The horizontal dotted line shows an error value of 10%, the horizontal solidrie
shows an error value of 20%, and the horizontal dashed line shows an error valoé
30%. Plots are shown with a 1-year lag on the left and ascending to a 5-year lag on
the right.

The non-exceedance probability plots in Figure 6displayed the acafrdwy

KStar model predictions in terms of their error from the actual streanvibdme.
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Figure 6A shows that the 3-year moving average yielded highes &xetween the
measured and predicted streamflow volumes. The plots show that approximately 35%
45% of the predictions had an error of 10% or less. The successful predictions increased
to 65% - 75% which had an error 20% or less. A further improvement in successful
predictions (80% - 85%) was obtained for an error of 30% or less. This implies that the
majority of the accurate predictions had higher errors, and may not provide valuable
information to water managers. Figure 6B showed an improvement withyter 5-

moving average filter, with 50% - 60% of the predictions with an error of 10% or less
80% - 85% of the predictions with an error 20% or less, and 90% - 95% of the
predictions with an error of 30% or less. The predictions under the 5-year moving
average were more suitable for a streamflow forecast becausedyrabre reliable
predictions than the 3-year moving average. Figure 6C showed a considerable
improvement in the accuracy of the streamflow forecasts. The plots shd®b¥aa 90%

of the predictions had an error of 10% or less, and very few predictions had errors ove
20%. This indicates that the majority of the forecasts had an error of 10% dhiless;
potentially can help water managers in better planning and managementrof wate
resources within the basin. The non-exceedance probability plots highlight that the
year moving average was well suited for providing accurate streamflogagise while

the 5-year and 3-year moving averages Yyielded satisfactory ftwecas

Similar to the Lees Ferry gage, other gages (i.e., Cisco, Green River,radde®a
River), were also analyzed with similar moving average and lead tinneg. the

forecast evaluation for the Lees Ferry gage consistently indicatettiéhB0-year moving
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average provided the best conditions for streamflow forecasting, the restitts &iher

gages were shown only for the 10-year moving average window.
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Figure 7: Scatter plots between measured and predicted strearofl for KStar,

using a 10-year moving average for (A) Colorado River near Cisco, Utah; (B) Green
River at Green River, Utah; and (C) San Juan River near Bluff, Utah. The diagoal
line is the 45° bisector line. Plots are shown with a 1-year lag on the left and
ascending to a 5-year lag on the right.

Figure 7 displays the scatter plots for the gages at Cisco, GreendRige3an
Juan River. The plots show that all three gages had a good fit between theg@raakct
observed streamflow for all lead times, which were similar to the fstsobtained for
the Lees Ferry (Figure 4C). The San Juan River gage in Figure 7C showed &rger
range in the streamflow volumes in terms of the difference from normal Tlow was
likely due to the San Juan River having a smaller annual streamflow than thgamesr

tested, which resulted in larger relative variability to the normal.flow
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Table 4: Forecast evaluation, using KStar for Colorado River near Cisco, Green
River, and San Juan River; using KStar under a 10-year moving average.

Gage 'T‘Ierﬁg RMSE | MAE | RSR R NSE| LEPS
1 035 | 028| 058| 08l 068 5579
2 036 | 028 059| 081 069 549
co 3 034 | 025| 057| 082 068 5930
4 038 | 027| 063 078 o061 5404
5 044 | 031| 0.72| 070/ 048 4630
1 035 | 027| 066| 075 058 5151
2 033 | 025| 063| 078 o06d 540
GR 3 032 | 024| 060 080 063 549
4 034 | 026| 065| 076 058 50283
5 038 | 028| 0.73] 069 047 46.10
1 018 | 013| 059| 081 065 57.59
2 019 | 014| 063| 078 o061 5362
sJ 3 019 | 014| 063| 078 06d 5486
4 020 | 0.14| 066| 075 056 49.74
5 021 | 015| 0.70| 0.71] 051 46.4p

%n MAF (1 ac-ft = 1233.5m

Table 4displays the forecast evaluation for the 3 gages. For the Cisco gage, the
model produced ‘good’ correlation values for the 1-year, 2-year, and 3-yeamnhead ti
and ‘satisfactory’ correlations for the 4-year and 5-year lead fpmethe performance
measures shown in Table 2. The RSR and NSE for the Cisco gage showed a similar
forecast evaluation with ‘good’ performance ratings obtained for the lt¢y@ayear lead
times and ‘satisfactory’ performance ratings obtained for the 4ayehb-year lead
times. The MAE was low, ranging from 0.25 — 0.31 MAF. The RMSE was low as well,
and ranged from 0.34 — 0.44 MAF. These errors indicated that the streamfloasteraic
Cisco gage were accurate. This was confirmed through the LEPS SK vi&adalimes

indicating a good modeling result (LEPS SK > 10).

The forecast evaluation for the Green River gage shows ‘satisfacoggadd’

results (Table 4). Following the performance ratings in Table 2, th&R, &d NSE
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showed that the model produced satisfactory predictions for all of the lead ticegs ex
for the 3-year lead time, which yielded ‘good’ predictions. The MAE ranged @.24—
0.28 and the RMSE ranged from 0.32 — 0.38. These errors associated with the Green
River gage were lower when compared to the Cisco gage. This was due to theddiffere
in the streamflow volumes, since the Cisco gage had a higher yearly streawiime
than the Green River gage. The LEPS SK indicated a good model performarkce for a
lead times at the Green River gage. However, the streamflow forec@sts@gage

were better for all lead times.

The forecast evaluation for the San Juan River gage also produced a tsayisfac
to ‘good’ model performance as well (Table 4). The R, RSR, and NSE indicaté¢dethat
model produced ‘satisfactory’ predictions for all of the lead times exoefié 1-year
lead time, which yields ‘good’ modeling results. The MAE was very Ismaaiging from
0.13 — 0.15 MAF. The RMSE was small as well and ranges from 0.18 — 0.21 MAF. The
MAE and RMSE were much lower than the other gages due to the San Juan River having
a much smaller annual streamflow volume than the other gages. The LEPS SH showe

that a ‘good’ model performance was obtained at all lead times for the SaRiVaa
gage.

The low errors associated with all of the tested streamflow gages shwaved t
robustness and confidence in the model in providing accurate streamflow foretaists wi
the UCRB. The performance evaluation showed that the model performedgaetlless
of the streamflow volume. Of the four gages, the KStar model performed bt for
Lees Ferry gage. This was of importance because Lees Ferry lies odithiedig

divide of the upper basin and lower basin, and the water supply to the lower basin is
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governed by the flow at Lees Ferry. Overall, the results showed that taer{&lel was
successful in capturing the relationship between large-scale climsmpatnd
streamflow within the UCRB. ‘Satisfactory’ to ‘good’ streamflow predics were
obtained for 1-5 year lead times with a 10-year moving average filteedgplthe

dataset.

2.6.2 M5P

140

140

(&)

B
|/I

g0t g0t s g0t s 80

R=0.07 R=0.11 R=0.10 sy s

R=0.13

R=0.14

80 100 120 140 80 100 120 140 80 100 120 140 20 100 120 140 80 100 120 140

140

120

100

Pred Flow%sMormal

8y s R=01o | S0 r=s ] B0 R0 | S0 r=023 | B0/ R=0.10

80 100 120 140 80 100 120 140 80 100 120 140 80 100 120 140

oo

0100 120 140

140

120

100 (©
81 R0 | 0]/ re0z2] B0/ R=033 | O0| r=034 | 20/ R=0.31
80 100 120 140 80 100 120 140 80 100 120 140 80 100 120 140 80 100 120 140
Ohs Flow%aMNormal

Figure 8: Scatter plots between measured and predicted strearafl’ for M5P for

Lees Ferry under a (A) 3-year moving average, (B) 5-year moving average, and (C)
10-year moving average. The diagonal line is the 45° bisector line. Plots are shown
with a 1-year lag on the left and ascending to a 5-year lag on the right.

Figure 8 displays the scatter plots between the actual and predicteafistrea
volumes for M5P. The forecast evaluation section explains that the scatseshmot the

agreement between predicted and observed values with the 45° bisector line regresentin
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a perfect fit. Figure 8A shows that the streamflow predictions using tlear3yoving
average filter were saturated around the predicted 100% normal flow line fadall le
times. This indicates that the model was unable to identify a relationshipdretiae
oceanic-atmospheric oscillations and streamflow, and returned the nesanfkiw as

the prediction. The presence of noise and outliers may have hindered the model from
identifying hidden relationships. Figure 8B shows a similar result wélstreamflow
predictions using the 5-year moving average, where the predictions werecsbaumoaind

the mean streamflow. The 5-year moving average was still unable toydentif

relationship between the oceanic-atmospheric oscillations and streardtyovever, the
5-year moving average did perform better than the 3-year moving avergge &C

shows a significant improvement in the forecast when a 10-year moving awenagev

was applied to the dataset. The predictions were more saturated around tbe Imnsec
indicating a good model fit. With the removal of the noise with the 10-year moving
average filter, the M5P model was capable of identifying critical poantsddes in the
development of the decision tree. Without the moving average filter, M5P was unable to
categorize similar instances and yielded unsatisfactory predicemasie there was too
much noise in the dataset. The visual inspection of the model through the scatter plots in
Figure 8 indicated that the 10-year moving average window yielded beteasts,

while the 5-year moving average and 3-year moving average were unable to provide

satisfactory results for 1-5 year lead times.
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Table 5: Forecast evaluation for Lees Ferry, using M5P for a 3-year, 5-year, and 10-
year moving average.

MA #Ierﬁg RMSE | MAE | RSR R NSE| LEPS
1 327 | 253| 1.02| 008 -003 3.29
2 321 | 252| 099 013 o001 267
3 3 320 | 249 | 099 019 002 563
4 321 | 250| 099 015 001  4.0%
5 323 | 250| 1.00| 012 o000 356
1 257 | 204 | 098] 023 005 7.28
2 256 | 201| 097| 024 005 814
5 3 252 | 196| 096| 029 008 1047
4 252 | 198| 096| 028 008 10.38
5 258 | 201| 098] 020 003 751
1 156 | 124 | 085| 053 028 2422
2 151 | 117 | 082| o057 033 27.05
10 3 143 | 1.11| 078 063 039 3095
4 1.48 1.15 0.81 0.58 0.34 27.48
5 155 | 1.20 | 085| 052 027 2283

%n MAF (1 ac-ft = 1233.5m

The M5P forecast evaluation for the Lees Ferry gage is shown in Table 5. The
results indicate an ‘unsatisfactory’ performance through R (R < 0.70), RIRXR<0),
and NSE (NSE < 0.50) for all combinations of lead times and moving average filters.
This indicates that the M5P model was unable to produce accurate predictions for use in
streamflow forecasting. Although the model produced ‘unsatisfactorgtasts, the
model did offer some important insight. The results were shown to steadily improve
when larger moving average filters were applied to the dataset. TheSlER8icates
that a 'satisfactory’ model (LEPS SK > 5) was produced at the 3-year agal fegd
times when a 3-year moving average was applied to the dataset. When aroviegr
average was applied, the LEPS SK showed that all of the models werfacsarys and

a ‘good’ model (LEPS SK > 10) was achieved at the 2-year lead time. Footieeithe
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10-year moving average produced much better models in comparison with the 3-year and

5-year moving averages. This also indicates that M5P was better thatoldgga
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Figure 9: Box plots for M5P for Lees Ferry under a (A) 3-year moving average, (B)
5-year moving average, and (C) 10-year moving average. The box shows the
interquartile range (25"-75" percentile). The whiskers extend from the 8 to 95"
percentile values. The solid line inside the box shows the median vali&"
percentile), and the solid dot represents the mean of the value. Plotseahown with
a 1-year lag on the left and ascending to a 5-year lag on the right.

Figure 9shows the box plots, which examined the ability of the M5P model to
capture streamflow variability. Figure 9A shows that the 3-yedrtieae was capable of
capturing the long-term mean of the streamflow; however, it was unablpttmeauch
of the variability within the 28 to 75" percentile. This indicates that the M5P model was
unable to find viable decision points, leaving the model with few nodes that weia cruc
to developing flexibility in the M5P model. The extent of the whiskers of the predictions

only covered the 2%5to 75" percentile of the observed box plot, indicating that the model
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was unable to predict extreme events. Figure 9B shows some improvement imgaptur
the streamflow variability when a 5-year moving average was appliee tiataset,

when compared to the 3-year moving average window; however, extreme events were
still unaccounted for. The range of predictions within th8 575" percentile increased,
but was still indicative that the model was unable to identify critical ptontthe

decision tree. In addition, the model was unable to capture extreme flowshm8er t

year moving average. Figure 9C shows that the 10-year moving average windtsdresul
in a considerable improvement. The model improved at capturing the streamflow
variability within the 28' to 75" percentile for all lead times, compared to the 3-year and
5-year moving average results. However, extreme events were not capttirednodel.
The box plots shown in Figure indicate that the M5P model accurately predicted
streamflow variability for the 10-year moving average, compared to 5ayeb3-year

moving average. However, all models experienced difficulty in capturingregtflows.
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Figure 10: Non-exceedance probability plots for M5P for Lee's Feyrunder a (A) 3-
year moving average, (B) 5-year moving average, and (C) 10-year moving average.
The horizontal dotted line shows an error value of 10%, the horizontal solidrie
shows an error value of 20%, and the horizontal dashed line shows an error valoé
30%. Plots are shown with a 1-year lag on the left and ascending to a 5-year lag on
the right.

The non-exceedance probability plots in Figure 10showed the accur&ey of t
M5P model in predicting the streamflow volume in terms of their error from the actua
streamflow volume. Figure 10A shows that the 3-year moving average yheggted
errors between the predicted and observed streamflow volumes. The plots show that
approximately 38% - 42% of the predictions had an error of 10% or less. Predictions
improved to 65% - 70%, having an error 20% or less. A further improvement was
observed with 80% - 85% of the predictions, having an error of 30% or less. This implies
that the majority of the predictions for the 3-year moving average werdcresufto

provide meaningful information to water managers. Figure 10B shows an impraveme
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when a 5-year moving average was applied with 45% - 50% of the predictionsiwith a
error of 10% or less, 75% - 80% of the predictions with an error 20% or less, and 90% -
95% of the predictions with an error of 30% or less. The majority of the predictions under
the 5-year moving average had an error of 20% or less, which was not sutbicie

provide meaningful information for planning and managing water resourcese AigC
showed a significant improvement in the accuracy of the streamflow ftsedasn a 10-

year moving average was applied. The plots show that 65% - 70% of the predictions had
an error of 10% or less, and about 95% of the predictions had errors less than 20%. These
errors were more acceptable for streamflow forecasting, as thetyafathe predictions

had an error of 10% or less and therefore can provide useful information to water
managers when planning and managing available water resources withinRBe UC
Furthermore, the non-exceedance probability plots supported the finding thatytbar 10-
moving average was best suited for providing accurate streamflow forasastspared

to the 5-year and 3-year moving averages.

Furthermore, the M5P model indicated that the 10-year moving average window
consistently provided the best streamflow forecasts for the Lees FgeyTeerefore,
the results for the remaining gages for M5P were depicted for the 1@igearg
average window. Similar to the Lees Ferry gage, the M5P model was applieddp Cisc

Green River, and San Juan River gages within the UCRB.
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Figure 11: Scatter plots between measured and predicted streamfldar M5P using

a 10-year moving average for (A) Colorado River near Cisco, Utah; (B) Green River
at Green River, Utah; and (C) San Juan River near Bluff, Utah. The diagonal lines
the 45° bisector line. Plots are shown with a 1-year lag on the left and ascerglio a
5-year lag on the right.

Figure 11 shows the scatter plots for the three gages. Figure 11A shothe that
streamflow predictions for Cisco were a good fit to the observed streancit@i fead
times. The Green River gage in Figure 11B showed satisfactory resudtsléad times.
The San Juan River gage in Figure 11C showed a much larger range irahdlstv
volumes in terms of the difference from normal flow. The lower streamflow \@&dum
observed at the San Juan River gage caused the variations to seem large whesdcompar
to the average annual streamflow. The forecasts for the San Juan River gagkeashowe

good fit for all lead times. The scatter plots for Cisco, Green River, and SaRilea
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gages were in agreement with forecasts for Lees Ferry, where jirétyrat predictions

followed the bisector line, indicating a good model fit.

Table 6: Forecast evaluation, using M5P for Cisco, Green River, and San Juan
River; using KStar under a 10-year moving average.

MA 'T'ﬁﬁg RMSE | MAE | RSR R NSE| LEPS
1 047 | 039 0.78| 063 039 3143
2 049 | 039| 080| 060 038 3002
co 3 045 | 035| 0.74| 067 045 3643
4 047 | 037 | 078 062 039 3299
5 046 | 037 | 0.77] 065 041 3114
1 048 | 039| 090| 043 o018 1821
2 046 | 037 | 087 049 023 19.02
GR 3 045 | 035| 086| 052 028 2410
4 046 | 036| 088 048 023 2015
5 044 | 035| 084 054 029 2546
1 022 | 017 | 0.72| 069 047 3817
2 024 | 019| 0.79| o061 037 32.80
sJ 3 026 | 020| 087 049 o024 2511
4 025 | 020| 083] 056 031 2377
5 025 | 020| 085| 052 0271 2187

3n MAF (1 ac-ft = 1233.5 1)

Table 6 displays the forecast evaluation obtained at the Cisco, Green River, and
San Juan gages when a 10-year moving average was applied. The RSR itiditates
of the models produced ‘unsatisfactory’ results (RSR > 0.70). The R and NSE agreed
with the RSR, but also found that the 1-year lead time for the San Juan gage produced
‘satisfactory’ results (0.78 R < 0.80; 0.5&G NSE < 0.65). These gages further indicated
that the M5P model yielded predictions that were insufficient for stieanfibrecasting.
However, the LEPS SK indicated that ‘good’ forecasting models were produged a

performed better than climatology.
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Of the four gages, the M5P model performed best for the Cisco and San Juan
River gages, although ‘satisfactory’ forecasts were made atgasg@®verall, the results
showed that the M5P model was successful in capturing the relationship betgeen la
scale climate patterns and streamflow within the UCRB, and forecststaanflow with

1-5 year lead time using a 10-year moving average filter.

2.6.3 Comparison of MLR with KStar and M5P
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Figure 12: Scatter plots between measured and predicted streamflder MLR for
Lees Ferry under a (A) 3-year moving average, (B) 5-year moving average, and (C)
10-year moving average. The diagonal line is the 45° bisector line. Plots are shown
with a 1-year lag on the left and ascending to a 5-year lag on the right.

Similar to KStar and M5P, annual streamflow volumes for 1-5 year lead time
were estimated using the MLR model and evaluated using similar parfoenmeasures

at the Lees Ferry gage. Figure 12shows the scatter plots between cheasupeedicted
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streamflow volumes for the five lead times for MLR. Results for all 3 iliedicated

that the predictions lied along long-term mean of the observed data, and the model was
unable to capture the streamflow variability. Though there was some improvement whe
5 and 10 year average were used, the predictions remained close to thegdgified
normal flow. In comparison, the KStar model (Figure 4C) performed exceptiorallly w
and provided a very good fit with the majority of predictions saturating thetbidme.

The M5P model (Figure 8) behaved similarly to the MLR model at the 3-year agal 5-y
moving averages, but performed similarly to the KStar model when a 10-ggargnm
average filter was applied. This shows that the M5P model was unable to identsy node
in the decision tree and resulted in only a few linear regression models. Wheear 10-y
moving average filter was applied, the M5P model was able to find numerous nodes to
create a well-diversified decision tree. This shows that the KStar andrid88ls were
better than MLR in identifying significant relationships between therocedamospheric

oscillations and streamflow.
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Table 7: Forecast evaluation for Lees Ferry, using MLR for a 3-year, 5-year, and
10-year moving average.

mMa | Lead | vaE | RsR R NSE | LEPS
Time

1 252 | 1.00 | 007]| -001 1.88

2 251 | 1.00| 0.11| 001 246

3 3 252 | 1.00| 0.10| 0.00 251
4 247 | 099 | 0.13]| 001 3.59

5 247 | 099 | 0.15| 002 4.04

1 203 | 098] 019 003] 5.9

2 1.99 | 097 | 024 006/ 819

5 3 1.98 | 097 | 024 o006 88l
4 1.99 | 097 | 023 005 7.92

5 202 | 098] 0.19]| 003 6.12
1 142 | 096 | 029] 008 1027
2 139 | 094 | 032 010 1131
10 3 136 | 094 | 033] o0.11] 1182
4 133 | 094 | 034] o011 1278
5 136 | 095| 031]| 0.09] 104}

%n MAF (1 ac-ft = 1233.5 1)

Table 7displays the forecast evaluations for lead times of 1-5 years using the
MLR model at the Lees Ferry gage. All of the MLR results produced ‘sifeetiry’
results for R (R < 0.70), RSR (RSR > 0.70), and NSE (NSE < 0.50). This indicates that
the MLR model was unable to produce significant forecasts, even when the 10-year
moving average was applied. In comparison, KStar was shown to produce ‘satysfact
to ‘good’ predictions using the 10-year moving average (Table 3). HonteeawI5P
produced ‘unsatisfactory’ predictions (Table 5), but was able to outperform the MLR
model. The LEPS SK show that the MLR model exhibited no skill (SK < 5) when a 3-
year moving average filter was applied, ‘satisfactory’ forecasts>(5) at the 5-year
moving average filter, and ‘good’ forecasts (SK > 10) when a 10-year moxengge
was applied (Table 7). In comparison, the KStar model produced ‘good’ faragtst

each of the filters (Table 3) and the M5P model produced ‘satisfactoryaiiseat the 5-
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year moving average and ‘good’ forecasts with a 10-year moving average 6l).
When larger moving averages were applied, the KStar model produced much higher

LEPS SK compared to the M5P and MLR model.

5 25 25 25 25

a0 - 20 - 20 - 20 - 20 -

R RN =T R NI R
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Streamnflow (maf)

Figure 13: Output from MLR model for Lees Ferry under a 10-year moving
average shown as box plots. The box shows the interquartile range {2575"
percentile). The whiskers extend from the 8 to 95" percentile values. The solid line
inside the box shows the median value (5ercentile), and the solid dot represents
the mean of the value. Plots are shown with a 1-year lag on the left and asceryiio
a 5-year lag on the right.

The MLR models were also evaluated through box plots with a 10-year moving
average filter (Figure 13). The MLR model was unable to capture much vayiabiéiny
extreme events. This indicates that the model was unable to identifynsiagis
between the oscillations and streamflow, returning only the mean strearsftoe a
prediction. The box plots in Figure 5C showed that the KStar model wa®atalpttire
nearly all of the variability associated with the observed dataset basagemost of the
extreme events. Figure 9C indicates that the M5P model was capable ahgapist

of the variability, but had difficulty in capturing extreme events.
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Figure 14: Output from MLR model for Lees Ferry under a 10-year moving

average shown as non-exceedance probability plots. The non-exceedance prolitgbil
plot display the horizontal dotted line which represents an error vale of 10%, the
horizontal solid line which represents an error value of 20%, and the horantal
dashed line which represents an error value of 30%.Plots are shown with a 1-year
lag on the left and ascending to a 5-year lag on the right.

Similarly, non-exceedance probability plots (Figure 14) were used to evdhagat
MLR model. Unsatisfactory predictions were made for the MLR model, inhndbout
60% of the predictions had an error of 10% or less. This was relatively highagrror f
streamflow forecasting. In comparison, the plots for the KStar model ime&§C
showed that 85% - 90% of the predictions had an error of 10%.This indicated that the
KStar model was robust and flexible: it produced a wide range of predictiomgaand
better suited for providing reliable information to water managers. Figfd€eshowed
that the M5P model was also proficient at producing accurate results as 65% — 75%
predictions had an error of 10% or less and can also provide water manageetiatih r

forecasts.

Overall, the results indicated that that the MLR model was outperformed by both

the KStar and M5P models, with the KStar model yielding the best overall farecast

2.7 Discussion and Conclusion

The current research presented the KStar and M5P data-driven forecasting

models, which incorporated reconstructed and observed annual oceanic-atmospheric
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oscillations to forecast annual water year streamflow volumes up toS(y€%) into the
future for four gages in the Upper Colorado River Basin. Where other studies were
limited to a short period of instrumental record of less than 100 years, the indorporat
of proxy reconstructions allowed for the period of record to be extended to over 300

years.

A forecast produced with a 10-year moving average provided the best conditions
for streamflow forecasting. A moving average filter was used in tha/$b smooth out
the highly fluctuating data, which had to be filtered in order to attenuate the @hget-r
fluctuations and to extract and clarify the long-range climatic vanat{Hidalgo, 2004;
McCabe et al., 2004; Probst & Tardy, 1987). The shortcoming of this approach was the
inherent loss in streamflow variability, which limited the model’s abibtyorecast
extreme events. However, a moving average filter did not compromise thks signa
associated with the oceanic-atmospheric oscillations, and aided the modatifyirdte
the phases of the oceanic-atmospheric oscillations (e.g. Hidalgo, 2004¢y€efmese of
this study was that the oceanic-atmospheric oscillations can provide predictive
information, which can be used to extend the forecast lead time. In addition, itt@ras of
difficult for data-driven models to identify phases due to the variability ofitjreal
within a phase, which attributes to noise. According to Cleary and Trigg (1995), a smooth
surface was required for predictor attributes so that the model did not ntadierteto
its detriment. Therefore it was necessary to use a filter to cléetilye the phases and
remove the short-term fluctuations within each phase. Other hydrologicsshadie
identified the need to smooth the data with a moving average filter for use in their

analysis (e.g. Currie, 1996; Hidalgo, 2004; McCabe et al., 2004; Pekarova et al., 2003;
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Probst & Tardy, 1987; Riehl & Meitin, 1979; Riehl et al., 1979). The incorporation of a
moving average filter allowed the KStar model to produce more accuramow

forecasts up to 5 years into the future.

In comparison with MLR, both the KStar and M5P models yielded better
forecasts, with the KStar model providing the best overall results. This\agseement
with previous studies pertaining to hydrologic forecasting (e.g. Gangopadhga,

2009; Lall & Sharma, 1996; Piechota & Dracup, 1999), in which a flexible data-driven
approach outperformed standard regression models. The MLR model lacked thécabili
capture the non-linear relationships between the oceanic-atmosphergtiossiland
streamflow, because it used simple linear regression to make predictionsa &irge
majority of the dataset was close to average streamflow conditions, therMdd&® was
weighted to the average streamflow. KStar directly compared the siyndiieach
instance to remove mean-weighted biases. M5P categorized similar ésstagether to
give a more transparent structure to the model. These charactatistiosd for the

KStar and M5Pmodels to better capture the natural variability that wasutith capture

for the linear models.

The data-driven modeling technique showed that accurate streamflowstsreca
could be achieved for the majority of the dataset. The KStar model had success in
capturing extreme streamflows, because it compared the current instaaty diith
extreme streamflow examples by means of the entropy function. Tdwsedlthe KStar
model to maintain flexibility. Similarly, M5P achieved success by groutngegther
similar instances based upon the inputs and outputs. However, both models experienced

difficulties when similar oscillation inputs had dissimilar strdamfvolumes in the
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training set. The moving average filter helped mitigate this by estiafd the phases of
the oscillations as opposed to the raw dataset that contains numerous jumps and

discrepancies.

It is beneficial to determine which oscillations show the most influence within t
UCRB because there is a possibility that some oscillations do not provide a signal fo
streamflow or may hinder the signals of other oscillations. The current séuftymed a
rigorous sensitivity analysis to test the significance of each of the cestamospheric
oscillations on streamflow (results not shown). The analysis indicates t&d BHNDO,
AMO, and NAO used together show a stronger association with UCRB streansilogv
the paleoclimate record. The removal of one or more of the oscillations results in a
deterioration of the forecast. Additionally, the current study indicateshithd¢ad time
can be extended up to 5 years by using reconstructed data. This improves upon the 3-year
lead time achieved by Kalra and Ahmad (2009) using a data-driven SVM model to

predict streamflow volumes for the UCRB using the instrumental record only.

The incorporation of paleoclimatic data into this study aided in understanding the

relationships between oceanic-atmospheric oscillations and streamffmmses The use

of paleoclimatic data has the tremendous benefit of extending the period of ngcord b
several hundred years beyond the instrumental record. The reconstructions allow
researchers to examine long-term physical processes and provide arimtstanding

of a dynamic climate system, which may not be fully studied in the short instrumenta
record. These reconstructions are particularly useful for data-driven nbedelsse they
increase the amount of examples used in the training set, possibly creatirgyralmst

and reliable model. There are limitations and uncertainties when using ractoss
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because there are multiple reconstructions available that are oftergoodiagreement.
This is because reconstructions currently are capable of explaining 50% - 8886 of t

variance observed in the instrumental record (Woodhouse et al., 2011).

Overall, the results from this study contributed to a better understanding of the
impacts of long-term physical processes on streamflow in the Colorado Rivetgas
using paleoclimate reconstructions to extend the period of record back to 16&ierin or
to identify oscillation phases, a moving average filter was applied to tasetla
Although a decrease in the magnitude of the streamflow variability vpesierced, the
model results contributed to the increase of the lead time by 1-5 years fititagive
streamflow forecasts in the Colorado River Basin. This was an improvewvernthe
seasonal (Apr-July) streamflow forecasts for the western UniteelsSiatvided by the
Colorado Basin River Forecast Center. In addition, using all four osilletdices (i.e.
ENSO, PDO, AMO, and NAOQO) as predictors resulted in the best streamfalictoons.
This was in agreement with other studies indicating that no single cligsiégrscan be
used to explain the hydroclimatology within Colorado River Basin. Coupled or grouped
response of oscillations had stronger association with streamflow compared to the
individual effects. The KStar model results provided ‘satisfactory’ eodj streamflow
predictions, which can allow water managers to gain important insights about the
upcoming water year as early as Janudandl can be useful for long-term water

management decisions in the UCRB.
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Chapter 3: Streamflow Forecasts using Paleoclimate Reconstructistin the
Western United States

3.1 Introduction

Climate fluctuations have the potential to cause large impacts on water supply,
electrical power, floods and droughts, and ecological habitat as the watacessin the
western United States become stressed (Cayan et al., 2003; Haml¢ti@niaser, 1999;
Forsee & Ahmad, 2011). The population in the western United States has beeredstimat
to increase by 14.3% from 2000 to 2010 (United States Census, 2010), which places
stress upon a limited renewable resource (Qaiser et al., 2011). In addition, a0t 1 re
from the Bureau of Reclamation has indicated that streamflow in the intexsbern
United States is expected to decline, and these declines are likely to becateeigre
magnitude over the course of the century (Reclamation, 2011). Furthermore, ewst tr
in the western United States have shown that high variability in streamflow et qre
high or low flows are synchronous across major basins, resulting in furthertstweater
resources (Jain et al., 2005; Pagano & Garen, 2005). Water stress or ettasswi
region can also affect conditions in other regions, because water is odteh dra
transferred across state and watershed boundaries (Cayan et al., 2003; ARraabak;,
2010; Vedwan et al., 2008). Changes in climate often result in floods and droughts. The
impact of these events on agriculture, soil moisture, water resourcessygiéns,
human settlements and the environment has been studied by many researchers (e.g
Simonovic & Ahmad, 2005; Mosquera-Machado & Ahmad, 2007; Stephen et al., 2010;
Puri et al., 2011; Ahmad & Simonovic, 2000, 2001, 2006). The increasing water stress
adds complexity to planning and managing water resources in an alreddpgihal

environment of changing demographics, changing water quality and competingtintere
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(Pagano & Garen, 2005; Shrestha et al., 2011; Venkatesan et al., 2011). A reliable long-
range streamflow forecast greater than a year can aid in the fomgitnning and

management of water resources.

Oceanic-atmospheric oscillations provide an opportunity to provide long-range
streamflow forecasts. There is an established body of researchrii@iddrates a
predictable relationship between climatic variations and streamfldve iwéstern United
States over a wide range of temporal and spatial scales (e.g. Dettiatje 1998;
Enfield et al., 2001; Gershunov & Barnett, 1998; Hamlet and Lettenmaier, 1999;didalg
& Dracup, 2003; Mantua, 1999; McCabe et al., 2007; Sheppard et al., 2002; Tootle et al.,
2005). Climatic variations associated with El Nifio — Southern Oscillation (ENSO)
Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Qatibn (AMO), and North
Atlantic Oscillation (NAO) show the most influence over streamflow ‘drig in the
western United States (e.g. Dettinger et al., 1998; Enfield et al., 2001; 1Gutale
2002; Hamlet & Lettenmaier, 1999; Hidalgo & Dracup, 2003; Hunter et al., 2006; Kalra
& Ahmad, 2009; McCabe et al., 2007; Redmond & Koch, 1991; Sheppard et al., 2002;
Tootle et al., 2005). These oscillations have warm and cool phases, which are @ssociate
with variations in the climate and in weather patterns. These oscillationsemesgt for
long-range streamflow forecasting, because their effects on #iiveahave lags that are
greater than a year (Gray et al., 2003; Kalra & Ahmad, 2009). However, be¢haysare
not yet fully understood due to their complexity, it is difficult to incorporate asiaiis

into a physically-based forecasting model (Kalra & Ahmad, 2009).

Data-driven modeling serves as an alternative to physically-basedimgqdien

et al., 2009). Data-driven models use a training dataset comprised of previously known
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examples to extract relationships between inputs and outputs (Witten et al., 2@41). Da
driven models include artificial neural networks (ANNS), support vector machines
(SVMs), decision trees, and instance-based learners. This study uses thaddgtia

which is an instance-based learner that uses a generalized distance fusetibarba
transforms (Cleary & Trigg, 1995; Witten et al., 2011). This is a relativeiplsi model,

but has been shown to outperform more complex models, such as ANNs (Ahmad &
Simonovic, 2005; Solomatine et al., 2008; Wang et al., 2006). Instance-based learners
have been used in several hydrologic applications including evaporation estimati
(Elshorbagy et al., 2010; Terzi, 2007), rainfall-runoff modeling (Elshorbagy, 04l0;
Solomatine et al., 2008), and soil moisture content (Elshorbagy et al., 2010). Although
such data-driven models as KStar are simple in comparison to physicsiy-@dels,

they may become more robust when trained on a larger dataset because of the greate
number of instances (Melesse et al., 2010; Witten et al., 2011). A robust data-driven

model would serve to complement existing physically-based models.

The observed instrumental record typically extends from 50-100 years, and is
useful in examining historical trends and relationships as well as managgngaie
operations on a daily, weekly, or monthly basis (Franz et al., 2003; McEnery et al., 2005).
However, an extended record can potentially provide more information for long-term
management. The record can be extended using paleoclimate reconstratongdr
et al., 1998; Gray et al., 2003). This study used reconstructions to extend th&ascilla
and streamflow record beyond 300 years. Reconstructions are generatedoixes that
are well correlated with temperature and moisture (Hidalgo 2004; Jones and Mann 2004,

Meko et al., 1995; Stockton & Jacoby, 1976). In particular, tree rings provide an annual
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time series where the ring width can be correlated with a streamflomealu

oscillation phases (Hidalgo, 2004; Timilsena et al., 2009; Woodhouse & Lukas, 2006).
Longer records using reconstructions are useful to better understand the climat
variability associated with oceanic-atmospheric oscillations (Dettiegal., 1998;

Hidalgo, 2004; Timilsena et al., 2009; Woodhouse & Lukas, 2006). Although there is a
high level of uncertainty associated with reconstructions, they are alalpttoethe

climate variability (Timilsena et al., 2009). With an extended period of dgu@vided

by reconstructions, a robust data-driven model can be potentially developed for

streamflow forecasting.

There are no previous studies that have used paleoclimate reconstructions of
oceanic-atmospheric oscillations in a data-driven model for streamfloeakineg. With
this in mind, the current study used the KStar model to provide a 1-5 year lead time
forecast for 21 gage stations in the western United States using recomssiutkie
model was trained and tested using a 10-fold cross-validation technique. FRonesrast
evaluated by using root mean squared error observations, standard deviation ratjo (RSR
Pearson’s correlation coefficient (R), Nash-Sutcliffe coefficedrefficiency (NSE), and
linear error in probability space skill score (LEPS SK). This modeling teahns
intended to aid in the planning and management of water resources in the wegtsin Uni

States.

The layout of the paper is as follows. Section 3.2 describes the study area and the
data used in this study. A description of the methodology, including the KStar model and

model performance measures are provided in Section 3.3. The results of thed@ecas
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presented in Section 3.Einally, Sectior3.5provides a discussion and concludes

study.

3.2 Study Area and Data

Annual streamflow data was obtained for 40 gagdékanwetern United State:
These gages were identified with a period of redoooh 1€58to 2007, a total ¢
350years. Reconstructions were used from8 to 1899 and the instrumental record w
used from 190@o 2007. Of these 40 gages, 21 gages were selaased upon dai
availability and compatibility between instrumentatords and reconstructioiFigure
15 and Table &lentify the 21 streamflow gages used in the stTable9 describes the

observed amh reconstructed datasets used for each streaméqge.

Figure 15: Study area depicting the location of the 21 streaflow gages used in th
current study.
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Table 8: Streamflow gage locations

Gage Number| Region/Basin Gage Location
1 UCRB Fontenelle Creek near Fontenelle, WY
2 UCRB Hams Fork near Frontier, WY
3 UCRB Green river at Green River, WY
4 UCRB Green River near Greendale, UT
5 UCRB Green River at Green River, UT
6 UCRB Colorado River above Glenwood Springs, ¢
7 UCRB Gunnison at Crystal Reservoir, CO
8 UCRB Gunnison River near Grand Junction, CC
9 UCRB Dolores River near Cisco, UT
10 UCRB Colorado River near Cisco, UT
11 UCRB Animas River at Durango, CO
12 UCRB San Juan River at Archuleta, NM
13 UCRB San Juan River near Bluff, UT
14 UCRB Colorado River at Lees Ferry, AZ
15 LCRB Gila River near Solomon, AZ
16 SPB Cache La Poudre River near Ft Collins, C
17 ARK Canadian River near Sanchez, NM
18 RGB Saguache Creek near Saguache, CO
19 RGB Rio Grande near Del Norte, CO
20 RGB Conejos River near Mogote, CO
21 RGB Santa Fe River near Santa Fe, NM

A4

O
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Table 9: Data sources for streamflow gages and oscillation indices.

Reconstructions Instrumental Record
Gage Source Data Source Data
Number Available* Available*
United States
1,2,4 | Barnettetal.,, 20071615-1999 Geological Survey, 2011 1952-2010
Woodhouse et al. United States Bureau qf
3.5 2006 1615-1998 Reclamation, 2011 1906-2007
Woodhouse et al. United States
6 2006 1525-1997 Geological Survey, 201[L 1906-2007
7,8,9, | Woodhouse et al. United States Bureau qf
10, 12, 13 2006 1569-1996| ™ eclamation, 2011 | 1206-2007
Woodhouse and United States
1 Lukas, 2006a 1470-2002 Geological Survey, 2011 1928-2010
14 | Mekoetal, 2007 762-2005 Nied States Bureau of ;954 5447
Reclamation, 2011
Meko and United States
15 Hirschboeck, 2008 1332-2005 Geological Survey, 201[ 1921-2010
Woodhouse and United States
16 Lukas, 2006a 1615-1999 Geological Survey, 2011 1911-2007
United States
17 Meko et al., 2007 1604'1997Geological Survey, 2011 1937-2010
Woodhouse and United States
18 Lukas, 2006b 1520-2000 Geological Survey, 201[L 1915-2007
Woodhouse and United States
19 Lukas, 2006b 1508-2002 Geological Survey, 201[L 1891-2010
Woodhouse and United States
20 Lukas, 2006b 1508-2002 Geological Survey, 201[L 1913-2010
) United States
21 Margolis, 2011 1592_2007Geological Survey, 20111 1914-2010
Jones and Mann Australian Gov. Buread
ENSO (2004) 1650-1980 of Meteorology (2011) 1876-2010
PDO Shen et al. (2006 1470-1998 JISAO (2011) 1900-2010
NAO "“ter(bza(‘)%hle)r etall 1658-2001 Hurrell (2011) 1865-2010
AMO Gray et al. (2004)| 1567-198b ESRL (2011) 1856-2010

*Reconstructed data is used from 1685-1952 and instrumental data is used from 1953-

2007

68



Fifteen gages are located in the Upper Colorado River Basin (UCRB). The
remaining gages are located in the Lower Colorado River Basin (LCRB), Satith P
Basin (SPB), Arkansas River Basin (ARK), and Rio Grande Basin (RGB).\@bser
flows are provided by the United States Geological Survey (USGS), and natliraliz
flows are provided by the United States Bureau of Reclamation (USBR). Nagdra
flows are required for some gages in order to remove anthropogenic affelstassuc
consumptive losses and reservoir operations. Reconstructions are archiveddtigwiree

(http://treeflow.info).

In addition, this study used four oceanic-atmospheric oscillations indices as
predictors, based on anomalies of the sea-surface temperature (SSTewvelsg@essure
(SLP). The observed and reconstructed datasets used for each index areddescribe
Table 9. ENSO is a well-known oscillation index with a characteristicrétequency of
4-6 years; it originates over the tropical Pacific Ocean (Hamlett®&hmaier, 1999). For
this study, an SLP index, known as the Southern Oscillation Index (SOI), waasused
indicator of ENSO, which measures the difference in SLP between Tahiti awthDar
Australia (Redmond & Koch, 1991). The winter (October to March) SOI was used
because it is a better indicator of ENSO than using the entire year (Malnr2€00;
McCabe & Dettinger, 1999). The warm phase known as El Nifio is associated with
above-normal streamflow in the southwestern United States and below-normal
streamflow in the Pacific Northwest (Mann et al., 2000; McCabe & Dettid§e9). The

cool phase known as La Nifa is identified with the inverse relationships.

The PDO is a bimodal SST climate pattern in the North Pacific Ocean with

oscillation cycles on the order of 50 years (Hamlet & Lettenmaier, 199%ulslat al.,
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1997). Warm phases of the PDO are associated with above-normal streamflow in the
southwestern United States and below-normal streamflow in the Pacifloaédsit
(Mantua et al., 1997). The cool phases are identified with the opposite effects on

streamflow.

The AMO is a low-frequency North Atlantic SST index that has a 65-80 year
cycle with a 0.4 °C range (Enfield et al., 2001; Gray et al., 2004). Warm phases of the
AMO are identified with below-normal streamflow in the southwestern diStates,
while cool phases are identified with above-normal streamflow in the southwestern

United States (Gray et al., 2004; McCabe et al., 2004).

The NAO is measured by the differential SLP between Iceland and the Aizores
oscillates at a decadal time scale (Hurrell & Van Loon, 1997). The phaliggoshifts
the jet stream north during a warm phase and south during a cool phase, which may
influence climate variability over the Pacific Northwest and northern Rbtdgyntains

(Hunter et al., 2006).

3.3 Methodology

This study uses a forecast model that is generated from the KStathatgori
which is featured in the Weka data-mining software (Witten et al., 20113r n
instance-based learner that uses a generalized distance formula baaadfomis to
find a measure between two instances (Cleary & Trigg, 1995). The KStathatgs
motivated by information theory, where the distance between instances isl defities
complexity of transforming one instance into another, so that all possible trassfiggm

considered (Cleary & Trigg, 1995). Other instance-based learners simply use the
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Euclidean distance between two instances, which is equivalent to only one transform
(Witten et al., 2011). This makes them very sensitive to small changes in theanstanc
space and requires a very smooth surface. The KStar algorithm tries tatdehlsv
problem of smoothness by summing over all possible transformations between two
instances (Cleary & Trigg, 1995). A detailed discussion of the KStar model is gtovide

by Cleary and Trigg (1995).

In addition, a standard multiple linear regression (MLR) model is used as a
forecast model. The MLR model is subjected to the same methodology and performance
analysis as the KStar model. This provides the KStar model with a fair dsorpty

accepted regression techniques.

The forecast model used all four oceanic-atmospheric oscillation indees (i.
ENSO, PDO, AMO, and NAOQO) as predictors, and used one streamflow gage as the
predictand. The entire dataset is used from 1658 to 2007. A lead time approach is used so
that the indices of a given year are used to predict the streamflow volumeaissnto
the future. A total of 210 model runs are performed (KStar and MLR for 1-5 year lea
times at each of the 21 stations). The forecast models are performedswiétifi:d 10-
fold cross-validation technique, which is the standard procedure of predictingahe er
rate of data-driven techniques (Witten et al., 2011). This technique randomiipparti
the dataset into 10 folds of equal proportions. The model is trained on 9 folds and tested
on the remaining fold. This is executed a total of 10 times, where each fold is held out in
turn. The error estimates are averaged together to yield an overdll Teggle results are
analyzed using a set of performance analysis measures, which areetdkescthe

following section.
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When dealing with instance-based learners such as KStar, it is necesssa\at
smooth dataset so that there are no large jumps or discontinuities, which matheause
model to make decisions to its detriment (Cleary & Trigg, 1995). The datasetis use
this study are smoothed with a 10-year moving average filter in ordeetwaté the
short-range fluctuations, or noise, in the dataset and also to extract |lgegeliamate
signals (Hidalgo, 2004; McCabe et al., 2004; Pekarova et al., 2002; Probst & Tardy,
1987). More complex filtering techniques are available, for example, the cuwraulat
deviation method, the weighted moving average, and the exponentially weighted moving
average. Each technique yields a similar filtered time series; howeliferance in the
localization of minima and maxima is sometimes observed in the filtereddmes s
(Hidalgo, 2004; Pekarova et al., 2002; Probst & Tardy, 1987). The filtered dataset
maintains the signatures of the oscillation indices (Hidalgo, 2004), which helpsodel
to determine the correct relationships between oscillation phases and Istreamf

variability.

3.3.1 Performance measures

The forecast results were analyzed using several performanceresascluding
the RSR, R, NSE, and LEPS SK. In particular, the RSR, R, and NSE performance
measures were subjected to strict performance ratings, adopted fromi llioaias
(2007), and were categorized as ‘unsatisfactory,’ ‘satisfactory,” ‘gaod, very good’

(Table 10).
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Table 10: Performance Rating for RSR, R, and NSE.

Performance Rating RSR R NSE
Very Good 0.0 RSR< 0.50 0.8xR<1.0 0.7<NSE<1.0
Good 0.50<RSKR0.60| 0.8kR<0.85| 0.65NSE<0.75
Satisfactory 0.60 <RSRO0.70 | 0.7 R<0.80| 0.5 NSE <0.65
Unsatisfactory 0.70<RSR1.0 0.0tR<0.70| 0.0 NSE <0.50

*RSR and NSE adopted from Moriasi et al., [2007]

The MAE and RMSE are two commonly used performance measures that provide
errors in the same units as the tested data; for both measures, a value ofésiadicat
perfect forecast (Moriasi et al., 2007; Witten et al., 2011). The RSR is definthe
RMSE divided by the standard deviation of the observed dataset; this standardizes the
RMSE to allow it to be used as an error index (Moriasi et al., 2007). It also @savid
better comparison of the model performance than the RMSE because streamilow vol

varies greatly from station to station.

R measures the linear relationship between the observed and predicted values,
which typically ranges from 1 (perfect positive correlation), 0 (no crogl), and -1
(perfect negative correlation). Moriasi et al. (2007) indicates that abtept@dels are
obtained when R is greater than 0.50. However, the current study develops stteriar cri
in order to complement the RSR and NSE performance ratings adopted from Moriasi et

al. (2007) (Table 10).

The NSE measures the residual variance, or noise, in comparison with the
measured data variance, or information, and is defined in Moriasi et al. (2007). NSE
indicates how well the observed and predicted data follows a 1:1 relationshapet &g
McCabe, 1999; Moriasi et al., 2007). NSE ranges from &tovhere a positive NSE is
acceptable because it indicates the model is a better predictor than the obsaived m

(Legates & McCabe 1999; Moriasi et al., 2007).

73



The LEPS SK is designed to measure the accuracy of forecast presjicthere
higher weights are given to values that are further from the mean of #set@otts et
al., 1996). LEPS SK includes climatology in its calculation, and serves agl bett
indicator than climatology (Casey, 1998; Potts et al., 1996). LEPS SK ranges60m
to 100; it is considered ‘bad’ if the measure is below -10, ‘poor’ if it is below -5,

‘satisfactory’ if it is greater than 5, and ‘good’ if it is greater than 18569, 1998).

Besides developing performance measures, a visual inspection of thetfasas
performed by means of scatter plots, box plots, and non-exceedance plots. Botlathe KSt

and MLR models were subject to this set of performance measures.

3.4 Results

3.4.1 KStar model
This section describes the results obtained when ENSO, PDO, AMO, and NAO
were combined in the KStar model to forecast streamflow volumes for each of the

selected gages, as described in the methodology section.

RSR R NSE

@ 0.71- 100 0.61-0.70 @ 051 -0.60 @ 0.00-0.50 @ 000 -0.70 0.71-0.80 @ 0.81-0.85 @ 0.86-L00 @ 000 - 0.50 W51 -0.65 @ 0.66-0.75 @ 0.76- 100
Figure 16: Results displayed in a spatial map using KStar at a 1-year lead time
Performance measures shown are the RSR, R, and NSE.
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Figure 16displays a spatial representation of the RSR, R, and NSE results
obtained for the 21 streamflow gages using KStar with a 1-year lead tinggtér Icolor
indicates that the gage produced poor results, while a darker color repeestaty)
forecast was made at the gage. The RSR indicates that the model prodisfedtwat
forecasts for the majority of the gages with one ‘unsatisfactory’ fetr@cade at Gage
18. Similar results were obtained for R, which showed that the majority of thelgayes
‘satisfactory’ correlations between the measured and predicted valudsSEhalso
agreed with the RSR and R, where the majority of the gages produced ‘satisfactory

forecasts.
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Figure 17: Bar graphs showing the results of the KStar model obtained at 1-5 year
lead times. The performance ratings corresponding to the ‘very good,” ‘good,’
‘satisfactory,” and ‘unsatisfactory’ categories are provided in Table 10.

Figure 17summarizes the performance measures as bar charts for tige 21 ga
stations using a 1-5 year lead time. The bars represent the number of gagesetha
‘very good,’ ‘good,’ ‘satisfactory,” or ‘unsatisfactory,” based upon the perdoica
ratings provided in Table 10. The RSR indicated that the 1-year forecastlyieddeest
performance. It produced 20 ‘satisfactory’ forecasts and 1 ‘unsatisfatorecast made

for Gage 18 in the RGB. The RSR for the 2-year forecast indicated ‘satigfaiesults
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for 19 of the 21 gages. Gages 18and 21in the RGB were the only gages to show
‘unsatisfactory’ results. Forecasts made with a 3-year lead time begdateriorate,
since only 11 of the gages produced ‘satisfactory’ results. 8 of the gages produce
‘unsatisfactory’ forecasts for RSR. However, Gages 1 and 2 in the UCRB produced
‘good’ forecasts. Forecasts continued to deteriorate with the 4-year and|Bageame
forecasts; the number of ‘satisfactory’ gages decreased and the number of

‘unsatisfactory’ gages increased.

The bar chart for R reveals a similar pattern in the performance afrdwét
(Figure 17). The 1-year lead time provided the best set of forecasts widlist@tstory’
results. The 2-year lead time provided acceptable forecasts, with 2Catatigf results
as well. At a 3-year lead time, 11gages produced ‘satisfactory’ &iseeehile 8 gages
produced ‘unsatisfactory’ forecasts. Forecasts at a 4-year lead timeégoravily 5
‘satisfactory’ results. Finally, the 5-year lead time produced 4sfaatory’ results. This
agreed with the results from the RSR in that the forecast deterioratéohgealead
time was used, resulting in fewer ‘satisfactory’ forecasts and moretisfastory’

forecasts.

The bar chart for NSE agrees with the trends in the bar charts for RSR and R
(Figure 17). The 1-year lead time proved to have the best set of results, withe20 ga
having ‘satisfactory’ forecasts. The 2-year lead time shows that all ghtiess produced
‘satisfactory’ forecasts with the exception of Gages 18 and 21 in the RGB, which ha
‘unsatisfactory’ forecasts. At the 3-year, 4-year, and 5-year lead,tthreenumber of
gages with ‘satisfactory’ results continued to decrease, while the numipeged with

‘unsatisfactory’ results increased; this is in agreement with the RSR ersilifss.
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Box plots showing the measured and predicted streamflow values at a 1-gear lea
time for the gages within the UCRB are displayed in Figure 18. The box miitate
that the KStar model produced accurate forecasts. The box representing the %5
percentiles was nearly identical for the measured and predicted data. T¢tasaddhat
the model was able to capture the streamflow variability. The whiskers exteadiey
5™ and 95 percentiles represent extreme events. The model was able to forecast the
majority of the extreme events, but was unable to capture the entire extsat of t
whiskers. This indicated that the model was capable of forecasting veoy dry years,

which is useful for water managers.
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Figure 18: Box plots between measured and predicted streamflow usikgstar for
the gages within the UCRB. The box represents the interquartile raye (25'-75"

percentile). The whiskers extend from the 8 to 95" percentile values. The solid line
inside the box shows the median value (8@ercentile), and the solid dot represents
the mean of the data.
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Figure 1isplays the non-exceedance probability plots for the gages in the

UCRB at a 1-year lead time. The plots indicate that the forecasts haveraof & or

less for 50-70% of the predictions made at each gage. This indicates that thiy wfjori

the predictions had a very low error. The forecasts increased to 80-95% ofdicéqre

that have 10% or fewer errors. This is an indication that nearly all of the pyedict

resulted in few errors. Once again, the forecasts improve to 90-100% of the qnedicti

that have 15% or fewer errors. This further indicates that the models were aloléuoepr

accurate forecasts with few errors at the 1-year lead time.
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Figure 19: Non-exceedance probability plots using KStar for the gages Wih the
UCRB. The horizontal dash-dot line shows an error value of 5%, the horizdal
solid line shows an error value of 10%, and the horizontal dashed line shows an
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Figure 20shows a bar chart of the LEPS SK for the 21 gages, using a 1-5 year
lead time. The LEPS SK incorporates climatology and indicates the positios of t
predicted value compared to the measured value. All of the lead times fagyjaggcare
shown to produce ‘good’ forecast models (LEPS SK > 10), which indicates that the
model is better than climatology. The bar charts indicate that the 1-yddintea
produced the best forecast models as compared to the other lead times for titye hajor
the gage stations. There are a few exceptions, such as at Gage 1, whewrsatheady
time is best, and at Gage 17, where the 3-year lead time is the best. Th&KERs0
tends to agree with the RSR, R, and NSE performance measures, in which the model

performance deteriorates as longer lead times are used.
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Figure 20: Bar graph displaying the LEPS SK obtained for the 21 streamflow gages
using KStar. Each climate division has 5 bars that represent the LEPS Sébtained
from 1-5 year lead times (from left to right).

Overall, the results indicate that ‘satisfactory’ forecasts wexdenat the 1-year
and 2-year lead times. There was a notable decrease in model performangerdead
times were used in the forecasts. ‘Satisfactory’ results widlreldgtinable at the longer
lead times; however, in comparison, the 1-year and 2-year lead times prodieed bet
forecasts. The box plots (Figure 18) and non-exceedance probability plote (Eegur
reveal that the model was capable of forecasting extremely wet agdais/with few

errors at the 1-year lead time.

In addition, other models were run so that different combinations of oscillation

indices could be used to predict streamflow. However, those models produced
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‘unsatisfactory’ results when any of the oscillasovere dropped as predictors in

model (results not showr

3.4.2 MLR model

The KStar model was compared to the MLR modeling@gch. As shown i
Figure 21 which indicates the spatial representation ofl-yearforecast result for th
21 gages, all of the gages produced ‘unsatisfactorgcasts. In addition, all resul
obtained for the B year lead times were ‘unsatisfactory’ and areshotvn. The MAE
and RMSE for MLR were much higher than those oletgifar the KStar mode!
However, Figure 28howed that the LEPS SK was ‘satisfactory’ (LEPS>SK) or
‘good’ (LEPS SK >10) for the majority of the forecast models, indileg that the MLR

model was better than climatology. However, theegensome instances whe

climatology outperformed the MLR model (LEPS SK)x

LIt & * @ Lo 78 4 A7 RE - 1.50 a1

Figue 2]_ Resuls displayed in a spatial map using (A) KStaand (B) MLR at a 1-
year lead time Performance measures shown are the RSR, R, and B
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Figure 22: Bar graph displaying the LEPS SK obtained for the 21 streamflow gages
using MLR. Each climate division has 5 bars that represent the LEPS SK chined
from 1-5 year lead times (from left to right).

It was unclear as to which lead time provided the best forecasts for some of the
gage stations. However, for those stations that had a ‘good’ forecast model, the MLR
model agreed with the KStar model in showing that the 1-year lead time produced the
best set of forecasts. The LEPS SK for KStar was much better than thoseabai

MLR at all gage stations.

3.5 Discussion and Conclusion

This study used paleoclimate reconstructions to generate a streanrgastaor
21 gages in the western United States through the use of KStar, a simple yet tabust da
driven model. The reconstructions can address the problem of a limited period of record.

The instrumental record often limits the use of low-frequency oscillations, subk a
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PDO and AMO, because the study of their behavior is often limited to one or two
oscillation phases in the instrumental record (Gray et al., 2004; Hidalgo 200#€Tiani
et al., 2009). Paleoclimate reconstructions allow for these low-frequecidgtien

indices to be fully studied and incorporated into a forecasting model.

The KStar model, used in this study, was able to produce ‘satisfactory’ and ‘good
streamflow forecasts at a 1-year and 2-year lead time, based upon thpece
measures adopted from Moriasi et al. (2007). These yearly forecasteemay
disaggregated into finer temporal resolutions through the procedure providedray K

and Ahmad (2011).

The spatial map in Figure 16indicates which gage stations yielded ‘good’ or
‘satisfactory’ results at a 1-year lead time. It reveals an irapbmterpretation of the
model, in that the model may be better suited for forecasting larger, downfitream
Several of the tested gages are located in the headwaters of the nddhe majority of
these gages produced ‘satisfactory’ results. At longer lead times, theigdge
headwaters tended to produce ‘unsatisfactory’ results. Those gages thatare fur
downstream in the basin tended to have ‘good’ results, as indicated by Gages 9, 10, 13,
14, and 17 (Figure 16). At longer lead times, the downstream gages proved to be more
resilient, with Gage 17 being the only gage that produced ‘good’ results atredlleft

times for RSR, R, and NSE.

The downstream gages are representative of much of the basin, whereas the gages
located in the headwaters are representative of the local area only. Smegemay not
be affected by one or more of the oscillations, or they may be predominatetga by

a single oscillation. Larger basin-scale areas are more likelyatidmed by all of the
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oscillations, and the streamflow of the downstream gages will reflect ifpe@ls The
headwater and downstream gages serve as an important designation becauseagiownstr
gages often are used by water managers to assess the availableppdyeTde ability

to forecast flows at these downstream gages with a 1-2 year leadltme falr better

water planning and management.

Several studies have examined the correlation between oscillation inalices a
streamflow variability (e.g. Gutzler et al., 2002; Hamlet & Lettei@md 999; Kalra &
Ahmad, 2009; McCabe et al., 2007; Redmond & Koch, 1991; Tootle et al., 2005).
However, the coupling of oscillation indices, such as the Pacific indices of ENBO a
PDO, has been shown to reflect higher streamflow variability as companeahhmeng
the oscillations individually (Gutzler et al., 2002; Timilsena et al., 2009;d ebtl.,
2005). Furthermore, it is clear that oscillations in both the Pacific and Atlanyiapla
significant role in climate variability across the United Statesy@t al., 2003; McCabe
et al., 2004; McCabe et al., 2007; Tootle et al., 2005). In this current study, all four
oscillation indices (i.e. ENSO, PDO, AMO, and NAO) were used together in order to
represent the interactions of Pacific and Atlantic variability and t@exthe maximum
information from the indices. Although the results are not shown in this study, the
removal of one or more of the oscillation indices resulted in a reduction of the model

performance because information becomes lost.

The KStar model is shown to outperform the standard MLR technique. The KStar
model develops forecasts based upon the premise that similar inputs yield reisuilis.
KStar, like other instance-based learners, classifies the output from argaitefbased

on similar examples from the training set (Witten et al., 2011). The KStai tatds the
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set of oscillation indices of the current year and finds examples that haver siahiles

as the current set of indices to produce a streamflow forecast. This typa-dfigan
modeling works for streamflow forecasting, because there is extensearck focused

on streamflow variability and their correlation with phases of oceanic-atnmisphe
oscillations (e.g. Gutzler et al., 2002; Hamlet & Lettenmaier, 1999; KKakbmad,

2009; McCabe et al., 2007; Redmond & Koch, 1991; Tootle et al., 2005). However, the
relationship between streamflow and oscillations is inherently non-linearh wiakes it
difficult for the MLR model to extract relationships using regression methods. |
comparison with climatology, MLR has a better forecast skill for the myamirthe

gages tested, as shown by the LEPS SK (Figure 22); however, KStar outpevfoRrat

all of the gages (Figure 20).

The results of this study contributes to a better understanding of the long-ter
impacts of oceanic-atmospheric oscillations on streamflow variability iwélséern
United States by extending the period of record back to 1658. This is opposed to previous
studies, which were limited to a period of record of 50 to 100 years (e.g., Gutler et
2002; Hamlet & Lettenmaier, 1999; Hunter et al., 2006; Kalra & Ahmad, 2009; McCabe
et al., 2007; Redmond & Koch, 1991; Tootle et al., 2005). The shorter instrumental
record is an important limitation in data-driven modeling. In order to use indices as
predictors for streamflow, the raw data must be filtered in order to attemagateange
fluctuations and extract the long-term oscillations (Hidalgo, 2004; McCalle 2004,
Pekarova et al., 2002; Probst & Tardy, 1987). The raw dataset contains a high degree of

variance (noise), which repeatedly misclassifies new instances andlmglowers the
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performance of the model (Witten et al., 2011). A filtered dataset is requirestance-
based learners, where a smooth surface that is free of gaps and large jungedsoee
that the model does not make decisions to its detriment (Cleary & Trigg, 1995). The
filtered dataset used in this study helped the model to identify the phases of the
oscillations and their corresponding correlation to streamflow varialakty result, the

model performance improved significantly.

This current study revealed that the data-driven model, KStar, offers a
guantitative forecast that yields ‘good’ and ‘satisfactory’ resultsifioio two years into
the future. By using the KStar model, an improvement can be made over current
forecasting tools that provide seasonal qualitative forecasts. When all éanioc
atmospheric oscillations indices become available, as early as Jatwéthd current
year, the model provides ‘good’ and ‘satisfactory’ forecasts for the upcomatey year.
The forecasts are better when compared to climatology. The proposed modelaaghappr
provides an alternative to complex, physically-based simulations, and is exjmebte

useful for long-term water resources management.
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Chapter 4: Long-Range Precipitation Forecasts Using Paleoclimate Reructions
in the Western United States

4.1 Introduction

Fluctuations in precipitation impact the water supply, affect biota, and modulate
extreme events, such as floods and droughts (Cayan et al., 1998). Precipitation
forecasting poses a greater challenge than other hydrologic variablesitiihigh
temporal and spatial variability (Georgakakos & Hudlow, 1984). For the \wddteted
States, where water resource issues are paramount, precipitatiostivatalonger
lead times become important (Guttman & Quayle, 1996). A long-range preacipitat
forecast of a year or more allows water resource managers tataleater supplies and

better plan for reservoir operations.

Oceanic-atmospheric oscillations allow for long-range precipitation feieca
because their effects on precipitation response lag by several moaties toyear (Gray
et al., 2003; Gutzler et al., 2002). Several oceanic-atmospheric oscillations have been
identified that may contribute to climate variability across the wesiaited States.
These oscillations are indicators of the atmospheric conditions over the Paaéo and
Atlantic Ocean, which are typically indicated by warm or cool phases. Pheses are
identified with changes in sea surface temperatures (SSTs) and atnwo8pws; which
results in variations to weather patterns and climate. Previous studsgerthat the
oscillations of El Nifio — Southern Oscillation (ENSO), Pacific Decadall@tsmn
(PDO), Atlantic Multi-decadal Oscillation (AMO), and North Atlantic Qls¢ion (NAO)
exhibit strong correlations with precipitation throughout the western Uniteds®e.qg.,
Cayan & Webb, 1992; Cayan et al., 2010; Clark et al., 2001; Enfield et al., 2001;Gutzler

et al., 2002; Hidalgo & Dracup, 2003; Hunter et al., 2006; Kim et al., 2008; Lee et al.,
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2004; Mantua et al., 1997; McCabe et al., 2004; McCabe & Dettinger, 1999; Redmond &
Koch, 1991; Ropelewski & Halpert, 1986). Although, these studies indicate that ENSO,
PDO, AMO, and NAO show the most influence on precipitation variability within the
western United States, it is challenging to incorporate theiramhesctions in a
physically-based model (Kalra & Ahmad, 2009). The Climate PredictioteCef the

National Weather Service (NWS) uses a collection of statistibalbged forecast tools to
provide qualitative probabilistic precipitation outlooks up to 12.5 months into the future

(NWS, 2008).

An alternative to physically-based models are data-driven models, such as
artificial neural networks (ANN), support vector machines (SVM), linegireission,
decision trees, and instance-based learners. The data-driven approach cdride use
examine hidden relationships between oceanic-atmospheric oscillations eapdairen
(Partal & Kisi, 2007; Silverman & Dracup, 2000; Zeng et al., 2011). Data-drieeiels
generally perform better with a larger training dataset (Witteth ,€2011). The inclusion
of more examples helps the model in identifying critical relationships withreehi
degree of certainty. Data-driven models are often compromised by discoesirant
noise in the training dataset, and require a smooth training surface (Cl&aiggs
1995). A moving average filter is often used to smooth out short-range fluctuations and

extract long-range climatic variations (Pekarova et al., 2003; Probstd¥, TE#87).

High resolution paleoclimatic proxy reconstructions, especially those derive
from tree-ring chronologies, can be used to extend the observed record for usein a dat
driven long term precipitation forecast (Prairie et al., 2008). Reconstisgiroduce

absolutely dated time series, which provide an opportunity to extend the climatic and
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hydrologic conditions beyond the instrumental record (Cook, 1992; Trenberth & Otto-
Bliesner, 2003; Villalba et al., 2011). A study by Dettinger et al. (1998) rel/dadé the
spatial and temporal characteristics of climatic variability #natobservable in the
instrumental record are also present in tree ring chronologies. Examiaft

precipitation reconstructions show a strong influence from oceanic-atmaspher
oscillations similar to that of the instrumental records (Barlow et al., 2006&dBet al.,
2001; D’Arrigo et al., 2001; Gedalof & Smith, 2001; Gray et al., 2004a; Hidalgo, 2004,
MacDonald & Case, 2005; Villalba et al., 2011). In addition, the longer period of record
allows for further examination of factors influencing climate varighigspecially from
multi-decadal oscillations such as the PDO and AMO (Gray et al., 2003). In tlegrwest
United States, decadal fluctuations account for 20%—45% of the annual precipitati
variance (Cayan et al., 1998). Since the behavior between oceanic-atnwspheri
oscillations and precipitation are similar in both the reconstructions and tharmieatal

record, a precipitation forecast model utilizing reconstructions is possible.

The primary objective of this research was to extend the lead time for
precipitation forecast by using a data-driven model that incorporates betitlpahte
proxy reconstructions and instrumental record. Reconstructions of oscillatieadta
yet been incorporated into a precipitation forecast model and are expecteddedrthne
forecast. In this study, the KStar data-driven model, a nearest neighbathatgerih a
generalized distance function based on entropy, was used to develop a forechst mode
Reconstructions were available for ENSO, PDO, AMO, and NAO. The model used a
dataset containing reconstructions and instrumental records. A moving afliéeageas

applied to the dataset to remove anomalies and aid in the identification citasill
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phases. A 10-fold cross-validation technique and a lead time approach were used, wher
the oscillation indices of the current year were used as inputs to forecagsitatien for
the following year. In addition, the relative role of individual and coupled osaii&in

estimating precipitation was explored.

The results of the KStar model were compared to the multiple linaassign
(MLR) modeling approach. Both the models were evaluated using mean absolute e
(MAE), root mean squared error (RMSE), RMSE-observations standard deviaton rati
(RSR), Pearson’s correlation coefficient (R), Nash-Sutcliffe auefft of efficiency
(NSE), and linear error in probability space (LEPS) skill score (SK). A visual
examination of the model output was performed using scatter plots, box plots, and non-

exceedance probability plots.

This paper is organized as follows. The study region is described in Section 4.2.
The data used for this study are described in Section 4.3. Section 4.4 defines the models
and performance measures. The results of the data-driven models are pressetadnn

4.5. Section 4.6provides a discussion of the findings of the paper and concludes the study.

4.2 Study Area

Water availability is a major concern in the western United States, which is
known for low precipitation, aridity, and droughts. Typically, rainfall is less 8tacm
per year west of the 1H0veridian (Anderson & Woosley, 2005). Rapid population
growth in the western United States has led to the full allocation of suvédee supplies
(Anderson & Woosley, 2005). Under these circumstances, it is critical to mandge

plan carefully for future water supplies to meet escalating dem&imd= climate greatly
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varies across the western United States, this study focuses on fivicspegoains as
shown in Figure 23: the Pacific Northwest (PNW), the Great Basin, (B8)Jpper
Colorado River Basin (UCRB), the Lower Colorado River Basin (LCRB), and the Ri

Grande Basin (RBG).
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Figure 23: Study area showing the major drainage basins and their represtative
climate divisions in the western United States.

Since precipitation exhibits large spatial variability, this studyp$fias the
model in terms of spatial coverage by making use of climate divisions develogesl by t
National Climatic Data Center (NCDC). Climate divisions represgmbme that are
relatively climatically homogeneous (McCabe & Dettinger, 1999m@&te divisions in

the western states are primarily divided by drainage basins (GuttrqQaragde, 1996).
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This is important as it allows precipitation to be representative of st@andtought,
and water supply in the western U.S. The spatial variability is accotartbg testing
several climate divisions, which represent different regions within tiseeweU.S.
Climate division precipitation also reflects the influences of oceaniosgtheric
oscillations (McCabe & Dettinger, 1999). This allows for climate divisionsifitcgently
provide the necessary spatial coverage while maintaining the relationshvesibet

oceanic-atmospheric oscillations and precipitation.

Climate divisions are typically identified by state and division number; for
example, AZ1 refers to Climate Division 1 in Arizona. For simplicity, cterdivisions
used in this study were labeled 1-20, as displayed in Figure 23. The actadéclim
division numbers and locations corresponding to these numbers were reported in Table
11. Precipitation variability associated with each climate division wasagiesghlusing

box plots in Figure 24.

93



Table 11: Climate Division Description.

NS

gil\'/rigfgﬁ Region Description
1 PNW | Oregon Climate Division 7: South Central Oregon
2 PNW | Oregon Climate Division 8: Northeast Oregon
3 GB Nevada Climate Division 3: South-Central Nevada
4 LCRB | Arizona Climate Division 1: Northwest Arizona
5 LCRB | Arizona Climate Division 2: Northeast Arizona
6 LCRB | Arizona Climate Division 3: North-Central Arizona
7 LCRB | Arizona Climate Division 4: East-Central Arizona
8 LCRB | Arizona Climate Division 5: Southwest Arizona
9 LCRB | Arizona Climate Division 6: South-Central Arizona
10 LCRB | Arizona Climate Division 7: Southeast Arizona
11 UCRB | Utah Climate Division 6: Uinta Basin
12 UCRB | New Mexico Climate Division 1: Northwestern Plateau
13 RGB | Colorado Climate Division 5: Rio Grande Drainage
14 RGB | New Mexico Climate Division 2: Northern Mountain
15 RGB | New Mexico Climate Division 3: Northeastern Plains
16 RGB | New Mexico Climate Division 4: Southwestern Mountaif
17 RGB | New Mexico Climate Division 5: Central Valley
18 RGB | New Mexico Climate Division 6: Central Highlands
19 RGB | New Mexico Climate Division 7: Southeastern Plains
20 RGB | New Mexico Climate Division 8: Southern Desert
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4.2.1 Pacific Northwest

For this study, the PNW was defined as region 17 from the United States
Geological Survey’s Hydrologic Unit Map (Seaber et al., 1987). This region osrtkes
668,000 km Columbia River Basin, which drains portions of Wyoming, Montana, Idaho,
Washington, Oregon, Alberta, and British Columbia (Figure 23). The PNW is known for
its wet and humid climate. However, the PNW exhibits a highly variable telimigh
coastal areas receiving more than 75 cm of precipitation per year, approxi2s&em
in the Cascades and less than 50 cm in the interior regions (Climate Innpaps G

2011). From October to March, this region receives approximately two-thirgs of
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annual precipitation (Climate Impact Groups, 2011). The PNW is representuriage

Divisions 1 and 2, located in the interior of the PNW (Figure 23).

4.2.2 Great Basin

The GB region has an area of 477,664 lamd covers much of Nevada and
western Utah as well as portions of California, Washington, Idaho, and Wyonmgugg Fi
23). The GB region has an average annual precipitation of about 28 cm per year
(Flaschka et al., 1987). Precipitation greatly varies across the basin, witlscotinern
valleys receiving 7 — 13 cm per year, northern valleys receiving 40 — 50 cm, and as much
as 150 cm in the high mountain ranges near the eastern and western bordersa(Btaschk

al., 1987). Climate Division 3 covers the majority of the southern GB (Figure 23).

4.2.3 Colorado River Basin

The Colorado River Basin drains an area of 637,000&km includes portions of
Colorado, Wyoming, Utah, New Mexico, California, Arizona, Nevada, and Mexico; it
discharges into the Gulf of California (Figure 23). The average annugpipe&on in
this basin is about 40 cm per year (Christensen et al., 2004). The Colorado River is ofte
viewed as a two-basin system, with the gage at Lees Ferry, Arizona sextireg a
division. The downstream basin, defined as the LCRB, serves California, Arizona,
Nevada, and Mexico. The LCRB is represented by Climate Divisions 4-10€F8ur
The upstream basin, defined as the UCRB, serves Colorado, Wyoming, Utah, and New
Mexico. Climate Division 11 represents the northern portion of the UCRB, and the

southern portion of the basin is partially represented by Climate Division Ji&€r23).
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The annual UCRB snowmelt runoff accounts for 90% of the Colorado River flow

(Christensen et al., 2004).

4.2.4 Rio Grande Basin

The RGB drains an area of 471,900%kand includes portions of Colorado, New
Mexico, Texas, and Mexico; it discharges into the Gulf of Mexico (Figure 23). The
average annual precipitation in this basin ranges from about 15 — 20 cm per year in the
semi-arid regions to as much as 64 cm in the higher mountains (State of New Mexico
Water Quality Control Commission, 2006). The RGB is represented by Climate

Divisions 13-20 (Figure 23).

4.2.5 Oceanic-Atmospheric Oscillations

Yearly indices of oceanic-atmospheric oscillations provide valuable infimma
about the current state of each oscillation and their magnitudes. This studigassed t
indices as the predictors for precipitation forecasting, including the ENSQO, R0,
and NAO. Although the inclusion of other oscillations would be beneficial, paleoclimate

reconstructions were limited to these four.

ENSO is defined as a warming or cooling of at least 0.5°C in the east-central
tropical Pacific Ocean over a period of 1 — 2 years, which occurs approyimeatey 2 —
7 years (Ahrens, 2007). This study uses the winter (October to March) Southern
Oscillation Index (SOI) as a measure of ENSO, which is the differestagebn the sea-
level pressure (SLP) anomalies measured at Tahiti and Darwin, Au@tfalia et al.,
2000; McCabe & Dettinger, 1999). El Nifio is the warm phase of ENSO that typically

enhances warm winter storms and brings above-normal precipitation in the soetthwest
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United States, while the Pacific Northwest receives below-normal gegmpi
Similarly, the cool phase known as La Nifa is associated with below-norecgbipation
in the southwestern United States and above-normal precipitation in the Pacific

Northwest (Mann et al., 2000, McCabe & Dettinger, 1999).

The PDO is derived from the leading principal component of monthly sea-surface
temperature (SST) anomalies in the North Pacific Ocean, pole ward of 2064, whi
exhibits decadal-scale oscillations that typically last between 20 toaB§ (Mantua et
al., 1997). Although the causes of the PDO are currently unknown, warm phases of the
PDO are associated with above-normal SSTs and cool phases are assaitidieldw-
normal SSTs (Ellis et al., 2010). As a result the PDO exhibits ENSO-like congitions
where a warm PDO phase is linked to above-normal precipitation in the southwestern
United States and below-normal precipitation in the Pacific Northwest (idatal.,

1997). The cool phase is associated with inverse precipitation patterns.

The AMO index is calculated from a 10-year running mean of de-trended SST
anomalies between 0°and 70°N in the northern Atlantic Ocean (Enfield et al., 2001; Gray
et al., 2004b). The AMO exhibits a multi-decadal oscillation that may last 65 ea8§, y
with phases that may persist from 20 — 40 years (Enfield et al., 2001; Gray et al., 2004b;
Kerr, 2000). Cool phases have been identified with wet conditions in the southwestern
United States (Enfield & Cid-Serrano, 2006). The warm phases have beendirgked t
increase in drought frequency over parts of the United States including thradzol
River Basin (Ellis et al., 2010; Gray et al., 2003, 2004b; McCabe et al., 2004). The

increase in drought frequency may be due to the weakening of easterly atriecdtpls
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from above-normal SSTs in the Atlantic and Gulf of Mexico, which reduces the neoistur

delivery into the western United States (Shubert et al., 2004).

The NAO index is derived from the normalized SLP difference between Ponta
Delgada, Azores and Stykkisholmur/Reykjavik, Iceland and it is shown to vary annually
or may remain in a single phase for several years (Hurrell, 1995). Althbe O
predominantly influences the eastern United States and Europe, there aswadfess
which have linked NAO to western United States climate variability. Hattal (2006)
identified the influence of NAO on snow water equivalent (SWE) in the westetadJni
States, although a distinct spatial region was not identified. In addition, the phases of
NAO shifts the jet stream north during a warm phase and south during a cool phase,
which may influence climate variability over the Pacific Northwest anthaor Rocky

Mountains (Hunter et al., 2006).

4.3 Datasets

The datasets used in this study included oceanic-atmospheric oscillations indice
as predictors and climate division precipitation as predictands. Proxy mexiosis for
indices and precipitation were available through the National Climatia Oenter
(NCDC, 2011). The instrumental records were obtained from various sources. These

datasets are described in Table 12.

It should be noted that there are multiple reconstructions for the oscillation indices
available through NCDC; however, reconstructions were selected based amgthefe
the time series and on their relative statistical properties to the imstralmecord. It is

also important to note that the annual precipitation values are not measured over the
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calendar year, but are measured as the water year or cool season poecipitéhe
climate division. The period of measure for each water year is providedcfor ea
reconstruction (Table 2), in which the appropriate period of measure is applied to the

instrumental record.

The model used reconstructions from 1658 to 1899 and observed data from 1900
to 2007 into one continuous time series with no overlap so that no biases were introduced
into the dataset. For two climate divisions in the Pacific Northwest, @iDiaisions 1
and 2, reconstructions were used from 1705 to 1899 due to a shorter available
reconstruction period. This provided a more robust approach as opposed to analyzing the
reconstructions and observed dataset individually. The extended dataset aldedenefi
the data-driven model by allowing it to determine relationships from morkalaieai

examples resulting in improved model performance (Witten et al., 2011).
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Table 12: Data Sources for Climate Divisions and Oscillation Indice

Climate
OD;\cI;Iii:tri]o; Source Period Available Peng?ua)s/ed n
Index
12 Garfin and Hughes (1997) 1705-1979 1658-1899
' ESRL (2011) 1895-2010 1900-2007
3 Hughes and Graumlich (1996) 6000BC-1996 1658-1899
ESRL (2011) 1895-2010 1900-2007
5 Salzer and Kipfmueller (2005) 570-1987 1658-1899
ESRL (2011) 1895-2010 1900-2007
11 Gray et al. (2004) 1226-2001 1658-1899
ESRL (2011) 1895-2010 1900-2007
Grissino-Mayer and Baisan
13 (1998) 1035-1995 1658-1899
ESRL (2011) 1895-2010 1900-2007
16 Grissino (1996) 136BC-1992 1658-1899
ESRL (2011) 1895-2010 1900-2007
1‘8: ?'2,7'13” 2’5 Ni et al. (2002) 1000-1988 1658-1899
17,18, 19, 20 ESRL (2011) 1895-2010 1900-2007
Jones and Mann (2004) 1650-1980 1658-1905
ENSO Australian Government Bureau
of Meteorology (2011) 1876-2010 1900-2007
PDO Shen et al. (2006) 1470-1998 1661-1905
JISAO (2011) 1900-2010 1906-2007
NAO Luterbacher et al. (2001) 1658-2001 1661-1905
Hurrell (2011) 1865-2010 1906-2007
AMO Gray et al. (2004b) 1567-1985 1661-1905
ESRL (2011) 1856-2010 1906-2007
4.4 Method

To provide a precipitation forecast, this study used a data-driven modeling

technique, KStar, to discover relationships between oceanic-atmosphericioscillat

inputs and precipitation outputs. The relationships were applied to give a priggipitat

forecast based upon the current state of the oscillation indices. To simidegeasst, a

one-year lead time was applied to the climate division precipitation. A 10-fudd-cr

validation technique was used to test the dataset, which is standard practieedrnveat
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modeling (Witten et al., 2011). Under this technique, the dataset was randomly divided
into 10 equal folds; 9 of these folds were used to train the model, and the remaining fold
was used for testing. Forecasts are made for each instance in the foldhéiéhioist for
testing. This procedure was executed 10 times, with each fold held out in turnifgy. test
The results from the 10 folds were averaged together to yield an overall oeshé f

model. This technique allows for forecasts to be obtained for each year in the ({lataset

1658-2007), which are then averaged together to provide a final forecast.

In addition, a sensitivity analysis was performed to determine if an impentem
in the forecast was made through a particular set of coupled oscillatigrastitular, the
model performance of using all oscillation indices together as predictorsowgmared to
the model performance of dropping an index so that only 3 of the 4 oscillations were used

as predictors.

The raw data was filtered in order to attenuate the short-range flaogiand to
extract the long-range climatic variations (Hidalgo, 2004; McCabe et 84, Pdobst &
Tardy, 1987). It was also required for data-driven models, where a smooth training
surface without large jumps and discontinuities was needed so that the model did not
make decisions to its detriment (Cleary & Trigg, 1995). Filtering a eigpaor to
analysis is not new and has been incorporated into studies that examine hydnadbgi
climate fluctuations (e.g. Currie, 1996; De Jongh et al., 2006; Hidalgo, 2004; Grbrec
& Rossel, 2002; McCabe et al., 2004; Pekarova et al., 2003; Probst & Tardy, 1987; Riehl
& Meitin, 1979; Riehl et al., 1979). This study used a basic 10-year moving average filter
to aid in the detection of long-range climatic variations. Studies by Pantdstardy

(1987) and Hidalgo (2004) revealed that different filtering techniques e.g., atiraul
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deviation method, moving average, and weighted moving average yield simitadfilte
time series, but a difference of one or two years for the localization ahanigand

maxima was sometimes observed.

4.4.1 Model

This study used the KStar model featured in Weka 3.6.2, which is a data-mining
software developed by the University of Waikato, New Zealand (Wittah,&t011).
KStar is an instance-based learner that uses an entropy-based distasioe rite
compare an instance to pre-classified examples (Cleary & Trigg, 1995)mbiel
works under the assumption that a similar set of input oscillation indices will praduce
similar output precipitation. The entropy-based distance function measures the
complexity of transforming one instance into another (Cleary & Trigg, 1995), which
provides a consistent approach to the handling of attributes and allows a comparison to
the entire dataset. This is in contrast to simple k-nearest neighbor insteseckldarners,
where comparisons are limited to the shortest distance to a defined number lodrseigh
A study by Solomatine et al. (2008) concludes that instance-based learner mathbes c
important alternatives to statistical models and non-linear methods such\&s &
may play an important role in hydrological forecasting, thus complementingaliys
based models. They also have the advantage of being more transparent than ANNSs, thus
may be more easily accepted by decision-makers (Solomatine et al., R00&her
strength of instance-based learners is that they are simple modekthat wn very
quickly. This serves as an advantage over physically-based models, which aies ae
large amount of input data and calibration. Instance-based learners have beenrapplied i

data-driven estimations and forecasts of evaporation, soil moisture conteat|-rainf
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runoff, and streamflow (Elshorbagy et al., 2010; Solomatine et al., 2008; Terzi, 2007).

Cleary and Trigg (1995) provides a detailed discussion of KStar.

This study did not aim to provide an extensive comparison among forecast
models, but rather to complement existing forecast models. However, a enlutigalr
regression (MLR) model was subjected to a similar set of tests to prasddihe

results.

4 .4.2 Performance Measures

The performances of the KStar and MLR forecast models were ehiuiditethe
MAE, RMSE, RSR, R, NSE and LEPS SK. In addition, scatter plots, box plots, and non-
exceedance probability plots were used to provide a visual inspection of the model
performance in comparison to the measured data. These performance measares
outlined in Moriasi et al. (2007), which provides ratings that were recommended for
models being used for high-impact decisions that required much stricter paréam
requirements. Although much more lenient performance ratings would suffice for
research oriented studies (Moriasi et al., 2007), this study maintaindddhe s

performance ratings to evaluate the forecast models.

The MAE and RMSE are commonly used to analyze results because they indicate
error in the same dimensionality of the measured variable, with a value of Qingleca
perfect fit (Moriasi et al., 2007; Witten et al., 2011).The RSR, a standardizéahvets
the RMSE, incorporates the standard deviation of the observed dataset, whichhadlows t
RSR to be used as an error index that can be scaled or normalized so that it can be

compared with other results (Moriasi et al., 2007). This is useful for clidmgtaon
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precipitation in the western United States, where the climate shows consdgrail
variability. RSR is calculated as the ratio of the RMSE and standard deviation of the
measured data. RSR ranges from O to a large positive value, with O indicatingcta perfe
model (Moriasi et al., 2007). Table 13shows the performance level used ituthyis s
provided by Moriasi et al. (2007), where RSR is categorized as ‘very goods if it i
between 0.00 and 0.50, ‘good’ if between 0.50 and 0.60, ‘satisfactory’ if between 0.60

and 0.70, and ‘unsatisfactory’ if greater than 0.70.

Table 13: Performance Rating for RSR, R, and NSE.

Performance Rating RSR R NSE
Very Good 0.0 RSR< 0.50 0.8 R<1.0 0.7<NSE<1.0
Good 0.50<RSKR0.60| 0.8kR<0.85| 0.65NSE<0.75
Satisfactory 0.60 <RSRO0.70| 0.7 R<0.80| 0.5 NSE <0.65
Unsatisfactory 0.70<RSR1.0 0.0tR<0.70| 0.0 NSE <0.50

"RSR and NSE obtained from Moriasi et al., [2007]

R, an index of the degree of linear relationship between the predicted and
measured data (Moriasi et al., 2007), ranges from -1 to 1, where -1 indicatéech pe
negative relationship, 0 indicates no relationship, and 1 indicates a perfect positive
relationship. Moriasi et al. (2007) indicates that R > 0.5 or R <-0.5 is considered
satisfactory. For the purposes of this study, stricter criteria aera@ed for R, where R
is defined as ‘very good' if it is greater than 0.85, ‘good’ if between 0.80 and 0.85,
‘satisfactory’ if between 0.70 and 0.80, and ‘unsatisfactory’ if less than 0.70(Tapl
R is limited to the linear relationship in the data only, and is more sensitive &r®utli

than to observations near the mean (Legates & McCabe, 1999; Moriasi et al., 2007).

NSE is a normalized measure of the residual variance (“noise”) compared to the
measured data variance (“information”) (Moriasi et al., 2007). NSE inditate well

the predicted and measured data follow a 1:1 relationship (Legates & McCabe, 1999;
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Moriasi et al., 2007). NSE ranges from 1 to negative infinity, where a NSEgtean O

is generally an acceptable level of performance because it indicatésethaddel is a

better predictor than the observed mean of the dataset (Legates & McCabe, 1988; Mori
et al., 2007). Table 1shows that the performance level for NSE is categorized as ‘very
good’ if it is between 0.75 and 1.00, ‘good’ if between 0.65 and 0.75, ‘satisfactory’ if

between 0.50 and 0.65, and ‘unsatisfactory’ if below 0.50 (Moriasi et al., 2007).

The LEPS SK measures the ability of the model to produce accurate predictions
that are weighted more for values that are further from the mean (Pottsl&08). The
LEPS SK incorporates climatology in the computation and serves as an indicator for
accessing the forecast compared to the climatology. LEPS SK rfaogesl00 to 100,
where a LEPS SK of 0 represents the climatological score or equiyal@antlom data
(Casey, 1998). LEPS SK is considered ‘good’ if it is greater than 10, ‘satigfacit is

greater than 5, ‘poor’ if it is below -5, and ‘bad’ if it is below -10 (Casey, 1998).

4.5 Results

The results are discussed in the following sections. Section 4.6.1 evaluates the
statistical properties of the relationship between oceanic-atmosphaliatmns and
precipitation. Section 4.6.2 examines the results obtained when all four oscilEtons
used for precipitation forecasting. This is followed by the results when usimg thre
oscillations for precipitation forecasting in section 4.6.3. Section 4.6.4 provides a

comparison of the KStar model with an MLR model.
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4.5.1 Statistical Relationship between Oceanic-Atmospheric OscillationracigiRation

Before oceanic-atmospheric oscillations can be used as a potential predictor
precipitation, the relationship between the two must be identified. The rekagions
between each oscillation and precipitation was examined through the conrbletiveen
the oscillation indices and climate division precipitation. Table 14shows thiemstzp
between each index (ENSO, PDO, AMO, and NAO) and precipitation in each climate
division (Climate Divisions 1-20), using a typical correlation technique. @helations
are based on the annual water year precipitation for each climate divisiescabed in
Table 2. A lead time of 1-year was applied to climate division predgit&d determine
the significance of each oscillation as a predictor for a 1-year &irddaere were 330
instances in the final dataset. Under a normal distribution with a mean of 0, and a
standard deviation of 1, the correlation between a given oscillation index and climate
division precipitation was considered significant at the 95% confidence |besl R
exceeded % 0.11. This process was useful for identifying which oscillationa pla

significant role in explaining precipitation for each region in the westeitet) States.
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Table 14: Correlation between each oscillation and climate division. Thewelation
is significant at the 95% confidence level when R exceeds + 0.11.

Division Region| ENSO*| PDO] AMO|] NAO
1 PNW -0.07 0.01 | 0.12 | -0.23
2 PNW -0.01 | -0.27 | -0.10 | -0.37
3 GB -0.36 0.22 | -0.26 | -0.07
4 LCRB -0.41 0.30 | 0.06 0.09
5 LCRB -0.43 0.33 | -0.10 | 0.20
6 LCRB -0.20 041 | -0.28| 0.11
7 LCRB -0.13 0.30 | -0.35| 0.04
8 LCRB -0.28 0.40 | -0.27| 0.07
9 LCRB -0.31 0.56 | -0.08 | 0.20
10 LCRB -0.11 0.30 | -0.46 | 0.02
11 UCRB | -0.03 0.28 | -0.01 | 0.04
12 UCRB | -0.29 0.42 | -0.20| 0.10
13 RGB -0.34 0.18 | -0.28| -0.21
14 RGB -0.28 0.39 | -0.22| 0.03
15 RGB -0.23 0.23 | -0.33| -0.04
16 RGB -0.09 0.63 | -0.08 | 0.21
17 RGB -0.13 0.43 | -0.38| 0.03
18 RGB -0.11 0.13 | -0.44| -0.12
19 RGB -0.17 0.22 | -0.41| -0.07
20 RGB -0.30 0.24 | -0.36| -0.07
Total climate divisions
significant at the 95% 16 19 14 8

confidence interval
*ENSO shown as SOI, where a negative correlation with SOI corresponds to epositi
correlation with ENSO.

ENSO was shown to have a significant relationship with 16 of the 20 climate
divisions used in this study. Climate divisions in the PNW did not show a significant
response to ENSO. However, ENSO did have a significant relationship withifaen
in the GB and in the LCRB. Climate Division 11 in the UCRB did not show a significant
relationship between ENSO and precipitation, while Climate Division 12 did show a
significant relationship. The majority of climate divisions in the RGBcatg#id a

significant relationship between ENSO and precipitation.
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The PDO was shown to have a significant relationship with 19 of the 20 climate
divisions, as shown in Table 14. Only Climate Division 1 in the PNW did not show a

significant response to the PDO.

The AMO was found to have a significant correlation with precipitation in 14 of
the 20 climate divisions (Table 14). In the PNW, Climate Division 1 showed dicagni
correlation with the AMO. However, Climate Division 2 did not exceed the 95%
significance threshold. The GB had a significant correlation withtaton. In the
LCRB, precipitation in the majority of the climate divisions showed a faxgunit
response to the AMO. Precipitation in Climate Division 11 in the UCRB did not have a
significant correlation with the AMO, but precipitation in Climate Divisidhdid show a
significant correlation with the AMO. The majority of climate divisioamshe RGB

showed a significant correlation between the AMO and precipitation.

The NAO showed correlations at the 95% significance level with preappitizt
8 of the 20 climate divisions, as shown in Table 14. In the PNW, precipitation in the
climate divisions showed a significant correlation with the NAO. The @Bhdi show a
significant correlation between precipitation and the NAO. In the LCRB,2ofthe 7
climate divisions showed a significant correlation with the NAO. Pratipn in the
UCRB did not have a significant correlation with the NAO. In the RGB, only 3 @ the

climate divisions had a significant correlation between the NAO and pegimpit
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4.5.2 All Oscillations

In this section, ENSO, PDO, AMO, and NAO were used together to predict
precipitation in the selected climate divisions using the KStar model ashaekirithe

methods section.

RSR R

I 000 - 050 [ 051 -0s0 [ 061070 ERZJ0.71 - 100 I 056 - .00 [ 0.81-0.85 [l 0.71 - 0.80 LX) 0.00-0.70

c

NSE

[ 075 - .00 [ 066 - 0.7s [IR] 051 - 065 B0 0.00 - 0.50

Figure 25: KStar model results obtained when using all four oscaltions (ENSO,
PDO, AMO, and NAO). Performance measures shown are the (a) RSR, (b) R, and
(c) NSE.
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Figure25adisplays a spatial representation of the RSR values obtained using the
KStar model when all oscillations were used to forecast precipitationd BaseSR,
‘satisfactory’ (0.60< RSR < 0.70) and ‘good’ predictions (0.8(RSR < 0.60) for the
majority of the climate divisions. An ‘unsatisfactory’ predictions (0.70 RR4.0) was
obtained in the UCRB and a ‘very good’ prediction was obtained in the RGB. E€limat
Division1 showed a ‘satisfactory’ prediction and Climate Division 2 showedad'g
prediction for precipitation in the PNW. Climate Division 3 in the GB also pravide
‘good’ precipitation predictions. Within the LCRB, ‘satisfactory’ petiins were made
for Climate Divisions 4, 6, 7, and 8. 'Good’ predictions were made in the LCRB for
Climate Divisions 5, 9 and 10. In the UCRB, Climate Division 11 produced an
‘unsatisfactory’ prediction, while Climate Division 12 yielded a ‘googidiction.
Climate Divisions 15-20 within the RGB showed ‘good’ precipitation predictions
Climate Division 13 in the northernmost portion of the basin showed ‘very good’

predictions, while Climate Division 14 showed ‘satisfactory’ predictions.

Figure 25b shows a spatial map of the R values for the climate divisions in the
western United States. The R values generally agree with the RSR valuesrshow
Figure 25a. Climate Division 1 in the in the PNW provided a ‘satisfactoryelation
(0.70< R < 0.80) and Climate Division 2 provided a ‘good’ correlation (8.80< 0.85).
Climate Division 3 in the GB had a ‘very good’ correlation (8%< 1.0) between the
predicted and measured precipitation. A mix of results were obtained in the. LCRB
Climate Divisions 4, 6, 7, and 8 showed ‘satisfactory’ correlations, Climaisi@ns 5
and 9 ‘very good’ correlations (0.85R < 1.0), and Climate Division 10 showed a

‘good’ correlation. Climate Division 11 in the UCRB showed an ‘unsatisfdctory
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correlation (0.0 R < 0.70), while Climate Division 12 showed a ‘satisfactory’
correlation. Climate divisions in the RGB provided correlations that range fr
‘satisfactory’ to ‘very good’. Climate Division 14 showed a ‘satighay’ correlation in
the RGB. Climate Divisions 15-20 showed a ‘good’ correlation. Climate iDivik3 in

the northernmost portion of the basin had a ‘very good’ correlation.

NSE values for the climate division models in the western United States are
shown in Figure 25c. NSE generally agreed with the RSR values (FigarartbR
values (Figure 25b). In the PNW, Climate Divisions 1 and 2 produced ‘good’ model
results (0.65NSE < 0.75). ‘Very Good’ modeling results (0ZNSE< 0.75) were
obtained for Climate Division 3 in the GB. The climate divisions in the LCRBed
from ‘satisfactory’ (0.5 8 NSE < 0.65) to ‘very good’ modeling results. Climate
Divisions 4, 6, 8 and 10 showed ‘good’ modeling results. Climate Divisions 5 and 9
provided ‘very good’ modeling results, while Climate Division 7 produced ‘satsfact
modeling results. In the UCRB, Climate Division 11 produced ‘unsatisfaatorgeling
results (0.06< NSE < 0.50), while Climate Division 12 produced ‘good’ modeling
results. Climate divisions in the RGB showed modeling results that geod‘and
‘very good. 'Climate Divisions 14, 15, 17, 18, 19, and 20 showed ‘good’ modeling results

in the RGB. Climate Divisions 13 and 16 produced ‘very good’ modeling results.

112



34
32
30
28

Pred Precip{crn) Fred Precip{cm) Fred Precip{cm)

Pred Precip{em)

35

FD-1 1) 50 D2 FD-2 12FDa . FD-S 7
{ i NARE ST i
: Y 30 CLNETERT T,
. ® 0 - 14 . 2
40| ¥ 18 12 2”3 . -
LA o R _ 5 i _ «s. _ 25 % .
/\93 E=072 b =023 16 {53 R=0285 1k R=0.30 "+ Re026
28 30 32 34 40 45 50 16 18 20 22 24 mm 12 14 16 18 5 30 35
Ilea Precip{em) Ilea Precipicm) Ilea Precip{cm) Iulea Preciplem) Ilea Precip(em)
FD-8 FD-7 18 FD-9 . -4} 1BEDAD s o¥,
0 16 SO el
& PRI
% 25 14 £ 12
¥ . 12 ot
+# : m),
e . e .o 10 ) 3l )
Lt E=0.79 s =077 % E=026 p - F=0.22
m 15 20 25 15 20 25 30 112 14 16 18 6 8 1012 14 16 18
Ivlea Preciplcrn) Ilea Precipicra) Ilea Precipicmm) Ivlea Preciplcmm)
FOLT 7 ‘rp1 A1 4fD13 w7} 16fD1a —7 2pp1s
14 ° N . A
12 . 14 %‘:f 10
iy 10 BE I
(it ' BT s M A B
. = e =i 1t . = =
L F=0.71 LA R=022 L F=0.20 - =022
16 18 20 22 24 26 3 10 12 14 14 25 30 35 40 m 12 14 14 g 1a 12
Tvlea Precipicm) Ilea Precipicra) Ivlea Precip(om) Ivlea Precipiomm) Ivlea Preciplom)
CD-16 .~ CD-18 B¢ 12FDI9 12 FD-20 L ey
. ‘{ 20 4 g.‘;/‘\, h . *x}gﬂf‘l:v
: ‘g’h A e 1a 1a o Fe
A * 15 .
. gl : gl L4
e T BN ET
o + = e = i) S = s =
i R=025 lﬂé . =023 e e R=0322 B F=024
35 40 45 4 1] 3 10 15 20 3 10 12 a & 10 12
Ilea Precip{om) Ilea Precipiem) Ilea Precip{em) Ilea Preciplem) Ilea Precip{em)

Figure 26: Scatter plots between measured and predicted precipiiah using KStar
for the 20 climate divisions. The diagonal line is the 45° bisector line.

Figure 2&displays the scatter plots for the climate divisions. The scatter plots

showed that the majority of the points saturated the 45° bisector line, indicatitigetha

KStar model was capable of identifying relationships between the oceéamasgheric

oscillations and precipitation in each of the climate divisions. With the alaligentify

these relationships, the KStar model was proficient at providing accuraigtatemn

predictions for the majority of the dataset.
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Figure 27: Box plots between measured and predicted precipitation ugg KStar for
the 20 climate divisions. The box shows the interquartile range (2575 percentile).
The whiskers extend from the § to 95" percentile values. The solid line inside the
box shows the median value (3bpercentile), and the solid dot represents the mean
of the value.

Figure 27shows the box plots for the climate divisions obtained using the KStar
model. Two box plots were provided for each climate division to give a comparison
between the measured values and the predicted values. The plots illustratekKBaaithe
model predictions were capable of matching the precipitation variadsigtyciated with
each climate division. In addition, the box plots show that the model was capable of
predicting the majority of extreme precipitation events, which wgnesented by the
whiskers. However, it was unable to capture the very low and very high pregcipitati

events near thé'sand 9%' percentiles.
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Figure 28: Non-exceedance probability plots for KStar for the 20 climateivisions.
The horizontal dash-dot line shows an error value of 5%, the horizontal siol line
shows an error value of 10%, and the horizontal dashed line shows an error valoé
15%.

Non-exceedance probability plots in Figure 28show the accuracy of the model
predictions in terms of their error from the measured values. The plots wepedatdd as
the percent of predictions that are less than or equal to a given error. About 65% - 100%
of the predictions in each climate division had an error of 10% or less. This @sdilcat
the majority of the precipitation predictions in all of the climate divisionsahlagv error
associated with them. Climate Divisions 1 and 2 in the PNW showed that all of the
predictions had an error of 10% or less. The number of predictions improved to 85% -
100% of the predictions having an error of 15% or less. Climate Divisions 1, 2, 3, 5, and

16 remained the only climate divisions that had 100% of the predictions with an error of
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15% or less. The non-exceedance probability plots show that for the majority of the

precipitation values, the KStar model was capable of producing very accudittiqgns.
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Figure 29: Bar graph displaying the LEPS SK obtained for each of the 20 clinta
divisions using KStar. Each climate division has 5 bars that represent ¢m left to
right) the LEPS SK obtained using all oscillations, dropping ENSO as a pdictor,
dropping PDO as a predictor, dropping AMO as a predictor, and dropping NAO as
a predictor.

Figure 29 displays a bar graph of the LEPS SK obtained for each climaiemlivi
The black bars represent the model performance when using all four oscilétions
predictors in the model. The plot indicates that the LEPS SK value when using all
oscillations ranged between 45 and 67. As described in the method section, a LEPS SK
score greater than 10 indicated a ‘good’ model and was better than climatolog
Therefore the precipitation estimates using the KStar model were ratiehthan the

climatology.
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Table 15: Model Performance for the KStar Model.

CD RMSE MAE RSR R NSE LEPS
1 1.10 0.85 0.63 0.78 0.60 51.35
2 1.41 1.08 0.56 0.83 0.69 55.51
3 0.97 0.71 0.52 0.85 0.73 64.43
4 1.15 0.83 0.60 0.80 0.64 52.97
5 1.53 1.19 0.52 0.86 0.73 62.04
6 2.25 1.61 0.61 0.79 0.63 56.83
7 2.59 1.88 0.64 0.77 0.60 54.51
8 0.74 0.53 0.62 0.78 0.61 55.32
9 1.04 0.75 0.51 0.86 0.74 62.34
10 1.48 1.08 0.58 0.82 0.67 56.49
11 1.50 1.05 0.71 0.71 0.50 45.45
12 1.09 0.77 0.58 0.82 0.66 57.76
13 1.74 1.23 0.47 0.88 0.77 66.48
14 0.95 0.69 0.61 0.80 0.63 57.61
15 0.74 0.54 0.57 0.82 0.67 59.20
16 1.64 1.15 0.53 0.85 0.72 62.40
17 0.74 0.52 0.57 0.82 0.67 61.00
18 1.40 0.93 0.55 0.83 0.69 63.82
19 0.95 0.68 0.57 0.82 0.68 61.93
20 0.95 0.64 0.54 0.84 0.71 64.19

Table 15rovides a summary of the performance measures obtained for each
climate division using the KStar model. The RMSE and MAE for the climate aingsi
were all low in comparison with the precipitation variability associatéla @ach climate
division (Figure 24). The RSR, R, NSE, and LEPS SK values obtained for each climate
division also were displayed in Table 15. The values for RSR, R, and NSE corresponde
to the values displayed in Figure &3d were subject to the performance rating as shown

in Table 13.
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4.5.3 Coupled Oscillations

For this set of KStar models, similar tests were performed; howevigradhsf all
four oceanic-atmospheric oscillation indices used together as predictprednitation,
one oscillation was dropped so that only three out of the four oscillations were used as
predictors in turn. Consequently, each climate division had four model runs using
different oscillation index combinations. The results from these coupled asoslat
showed a possible loss or gain of information from dropping one of the oscillation indices
in comparison to the base case of using all four oscillation indices as predibieraas
useful for identifying the role each oscillation had in precipitation forecaspecially

for those oscillations that were not identified as significant at the 95%gean€ level.

4.5.3.1 Drop ENSO

Figure 30ashows a spatial representation of the RSR values obtained under the
KStar model when ENSO was dropped so that PDO, AMO, and NAO were used to
forecast precipitation. In comparison with the model that used all four asciigFigure
25a), there was a noticeable increase in the RSR with only6 of the 20 climatendivi
producing ‘satisfactory’ results and the remaining 14 climate divisions had
‘unsatisfactory’ results. The increase in RSR indicated a decredsenmodel
performance. Figure 30b and Figure 30c agree with the RSR in which the R and NSE
were ‘satisfactory’ for the same 6 climate divisions and ‘unsat@fgdor the remaining
climate divisions. The light gray bars in Figure 29represent the [SP&botained when
ENSO was dropped as a predictor from the model. The LEPS SK ranged from 25 to 51,

which indicated a ‘good’ forecast and that the model was better than cbigatol
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However, the LEPS SK was lower for all climate divisions when comparedng aisi

oscillations.

I 05 - 1.00 [ 0.81-0:85 [ 0.71-080 [/ 0.00-0.70

NSE
I o.76 - .00 [ 0:65-0.75 [ 0.51-065 0.00 - 0.50

Figure 30: KStar model results obtained when dropping ENSO as a préctor.
Performance measures shown are (a) RSR, (b) R, and (c) NSE.
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4.5.3.2 Drop PDO

Figure 31a displays the RSR values obtained when PDO was dropped and ENSO,
AMO, and NAO were used to forecast precipitation. In comparison with the results
obtained when using all four oscillations (Figure 25a), there was ansedrethe RSR
i.e., model performance deteriorated. This was shown as only ClimateoDi¢3i
produced ‘good’ results, 9 of the 20 climate divisions produced ‘satisfactory’s;emodt
the remaining 11 climate divisions produced ‘unsatisfactory’ results. Thatelim
divisions which performed well were located in the southern portion of the stealy a
indicating that the PDO had a more prominent influence over the northern portion of the
study area. The R values shown in Figure 31b and the NSE values shown irBEgure
agree with the RSR. Figure 29 shows the LEPS SK as gray bars whend&itopped
as a predictor. The LEPS SK ranged from 29 to 55, which was lower for allelimat
divisions in comparison to using all oscillations. However, it still indicated thgaad'

forecasting model was achieved in comparison with climatology.
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Figure 31: KStar model results obtained when dropping PDO as a preclior.
Performance measures shown are (a) RSR, (b) R, and (c) NSE.
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4.5.3.3 Drop AMO

Figure 32a displays a spatial representation of the RSR values obtained when
AMO was dropped and only ENSO, PDO, and NAO were used to forecast precipitation.
In comparison with the results obtained when using all four oscillations (Figaye 25
there was an increase in the RSR, signifying a decrease in the modehpede. Only
Climate Divisions 5, 13, and 16 produced ‘satisfactory’ results and the remaimiagecli
divisions produced ‘unsatisfactory’ results. Figure 32b and Figure 32c showeuktRat t
and NSE values tend to agree with the RSR. However, Climate Divisions 4, 5, 9, 13, and
16 were identified with producing ‘satisfactory’ results, with the remaidiingate
divisions producing ‘unsatisfactory’ results. The dark gray bars in &2@irepresent the
LEPS SK when AMO was dropped as a predictor. The LEPS SK ranged from 25 to 45,
which indicated a ‘good’ model was achieved compared to climatology. FA§uakso
showed a decrease in LEPS SK for all climate divisions in comparison to using all

oscillations.
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Figure 32: KStar model results obtained when dropping AMO as a predior.
Performance measures shown are (a) RSR, (b) R, and (c) NSE.

4.5.3.4 Drop NAO

Figure 33a shows a spatial representation of the RSR values obtained using the
KStar model when NAO was dropped as a predictor and ENSO, PDO, and AMO were
used to forecast precipitation. In comparison with the model that used all foumtasusl|
(Figure 25a), there was an increase in the RSR, which indicated a decréesmodel
performance. Climate Divisions 5, 9, 13, and 16 produced ‘good’ forecasts. Climate
Divisions 1, 7, and 11 produced ‘unsatisfactory’ results. The remaining 13 climate

divisions produced ‘satisfactory’ results. Figure 33b displays the R values) sliowed
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similar results as the RSR results. Climate Divisions 5, 9, 13, and 16 produced ‘good’
forecasts. Climate Divisions 7 and 11 produced ‘unsatisfactory’ resultseifagning 14
climate divisions produced ‘satisfactory’ results. NSE values for thepmison forecast
models were also shown in Figure 33c, which also showed similar resutst€li
Divisions 5, 9, and 16 produced ‘good’ forecasts. Climate Divisions 1, 7, and 11
produced ‘unsatisfactory’ results. The remaining 14 climate divisions produced
‘satisfactory’ results. Figure showed the darker gray bars as8R8& ISK when NAO

was dropped as a predictor. The LEPS SK ranged from 34 to 56, which indicates a ‘good’
forecast model was achieved compared to climatology. A decrease in tBeSKEWas
observed for all climate divisions in comparison to using all oscillations. Howewas
clear that the LEPS SK decreased the least in comparison with the LEdtSa8ted

when dropping ENSO, PDO, or AMO.
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Figure 33: KStar model results obtained when dropping NAO as a predtor.
Performance measures shown are (a) RSR, (b) R, and (c) NSE.

4.5.4 Comparison of Coupled Oscillations and All Oscillations

The results for the coupled oscillations analysis showed that dropping an
oscillation index as a predictor caused a decline in the model performance in sompari
to the performance when all four oscillations were used as predictos0 HRDO, and
AMO each had a significant influence over precipitation in the western UniesSts
dropping any one of these resulted in a deterioration of the model performance.

Additionally, the NAO did show an influence on precipitation in the western US,
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although it was not as apparent as the other oscillation indices. The sohetbestration
in the model performance was obtained when NAO was dropped as a predictor.
Therefore, all four oscillation indices together provided the best sesulprecipitation

forecasting.

In addition to the tests performed for all oscillation indices and dropping one
oscillation index, similar tests were performed dropping two and thredatiscilindices.
A total of 6 model runs for each climate division were performed to represent e
possible combination of two oscillation indices when they were used as predictors. Whe
single oscillations were used as predictors, four models were used, oaetfor e
oscillation index. ‘Unsatisfactory’ results for RSR (0.70 < RSR71), R (0.0&C R <
0.70), and NSE (0.08 NSE < 0.50) were obtained for all 20 climate divisions when two
oscillation indices and single oscillation indices were used as prediataddition, the
LEPS SK continued to deteriorate in comparison with using all oscillations and dropping
one oscillation. The results were not shown for these model runs. Howeverg#rithelt
the best model results were obtained when all oscillations were used t@gether

predictors.
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4.5.5 Comparison with Multiple Linear Regression Approach

The KStar model was compared with the standard MLR modeling approach.
Figure 34 shows a spatial representation of the performance measures obtagaet! f
climate division using the MLR model with all four oceanic-atmospheric asoiti
indices used as predictors. The RSR (Figure 34a), R (Figure 34b), and NSE @Eigur
values for all of the climate divisions using the MLR model were considered
‘unsatisfactory’ when subjected to the performance ratings, as shown inlbaflee
LEPS SK shows that the MLR model was better than climatology for theitpabthe
climate divisions. However, the LEPS SK results obtained for KStar wera@upethe
MLR model. In addition, other combinations of oscillation predictors also produced

‘unsatisfactory’ results, and the results were not shown.
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Figure 34: MLR model results obtained when using all four oscillabns (ENSO,

PDO, AMO, and NAO). Performance measures shown are the (a) RSR, (b) R, and
(c) NSE.
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Table 16: Model Performance for the MLR Model.

CD RMSE MAE RSR R NSE LEPS
1 1.76 1.45 1.00 0.12 0.00 131
2 2.34 1.87 0.92 0.39 0.15 13.7(
3 1.61 1.28 0.87 0.49 0.24 23.78
4 1.69 1.37 0.88 0.47 0.22 18.51
5 2.50 2.05 0.84 0.54 0.29 24.0¢
6 3.18 2.56 0.86 0.51 0.26 23.8(
7 3.63 2.93 0.89 0.45 0.21 19.45
8 1.00 0.81 0.84 0.53 0.28 25.58
9 1.64 1.26 0.80 0.60 0.36 30.65
10 2.13 1.73 0.83 0.55 0.31 26.34
11 2.05 1.65 0.97 0.25 0.06 7.78
12 1.62 1.26 0.86 0.52 0.27 24.86
13 3.13 2.58 0.85 0.53 0.28 22.99
14 1.36 1.06 0.87 0.49 0.24 22.70
15 1.15 0.95 0.89 0.45 0.20 15.36
16 2.42 2.00 0.78 0.63 0.39 31.57
17 1.04 0.83 0.81 0.58 0.34 31.09
18 2.18 1.67 0.86 0.50 0.25 23.60
19 1.44 1.14 0.86 0.51 0.26 26.8%
20 1.48 1.19 0.84 0.54 0.29 26.05%
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Figure 35: Scatter plots between measured and predicted precipiiah using MLR
for the 20 climate divisions. The diagonal line is the 45° bisector line.
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Figure 36: Box plots between measured and predicted precipitation usj MLR for
the 20 climate divisions. The box shows the interquartile range (25th-75th
percentile). The whiskers extend from the 5th to 95th percentile vaés. The solid
line inside the box shows the median value (8@ercentile), and the solid dot
represents the mean of the value.

4.6 Discussion and Conclusion

This study presented a data-driven forecasting model, KStar, which inderpora
paleoclimate reconstructions of annual oceanic-atmospheric oscillation italfoescast
water year precipitation with a 1-year lead time for select cirdaisions in the western
United States. This study addressed the limitation of using a relasivettperiod of
record, common to current forecasting models (Ahmad et al., 2009; Ahmad et al., 2010).
Paleoclimate reconstructions were incorporated to extend the period af recwer 300
years to aid the data-driven model in creating a forecast. This novel approach of
incorporating paleoclimate reconstructions allowed for the examinatitve affluence

of long range oceanic-atmospheric oscillations over precipitation, sudGsaitd
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AMO, which were limited to only 1 or 2 cycles in the instrumental record. TharKS
model was able to produce ‘good’ and ‘very good’ forecasts for the majort of t
climate divisions based on performance measures by Moriasi et al. (ZB87@nnual
precipitation forecast provided by the KStar model can be disaggregatéddo a

temporal resolution depending on the needs of the end user (Kalra & Ahmad, 2011).

The findings showed that the best precipitation forecasts were produced Lsing al
four oceanic-atmospheric oscillations indices -- ENSO, PDO, AMO, and NA® --
predictors in the KStar model. The use of multiple indices as predictors alloned f
data-driven model to grow in complexity. In the case of instance-basedreauneh as
KStar, the distance function measured the complexity of transforming oardeshto
another (Cleary & Trigg, 1995). The use of more predictors provided more decision
criteria, which enhanced the accuracy of the model. The removal of one or muee of t
predictor indices resulted in a loss of information, yielding a less aeconodel that
showed a significant deterioration of the precipitation forecast as showruie Big,

Figure 31, Figure 32, and Figure 33. It was shown that dropping ENSO, PDO, or AMO
as a predictor resulted in several ‘unsatisfactory’ results. HowevéD, \W#s shown to

have a smaller impact because there were many ‘satisfactory’ @l fgodeling

results when it was dropped as a predictor. This was confirmed in Figuré&e, tve
LEPS SK showed the smallest deterioration in the results, when NAO wasdlesppe

predictor, compared to the base case.

To complement the analysis of the coupled effects of the oscillation indices over
precipitation, the correlations between the indices and precipitation thasigeifecant

at the 95% confidence level revealed the importance of each index in the westedh Uni
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States. This also identified positive or negative relationships between thesiaddte
precipitation, which were not discernable from the modeling forecasts. When &@BSO
compared with climate division precipitation, the correlations were signiffoa the

majority of the southwestern United States (Table 14). This agrees with tia¢ spa
representation of the climate divisions when ENSO is dropped as a predictor (Figure
30a), where the majority of the climate divisions experienced a decreaserindbke
performance. ENSO was shown to have a positive correlation with precipitation i
southwestern United States (Table 14). This finding agrees with previous stullieh

have found a positive correlation between ENSO and southwestern United States
precipitation over the observed instrumental record (e.g. Dettinger et al., M&88pe

& Dettinger, 1999; Redmond & Koch, 1991). However, the previous studies also
indicated that precipitation in the PNW is negatively correlated with ENSP (

Dettinger et al., 1998; McCabe & Dettinger, 1999; Redmond & Koch, 1991). The current
study could not confirm this relationship with precipitation in the PNW due to the finding
that Climate Divisions 1 and 2 were not significant at the 95% confidence devel f

ENSO.

The correlations in Table iddicate that the PDO plays a significant role in the
precipitation variability throughout the western United States. This isiaipéaie in
the LCRB and RGB where the correlations between PDO and precipitaticeisdnesly
strong. Table lédicates that Climate Divisions 5, 6, 9, 12, and 16 showed correlations
greater than 0.4 for the PDO. In comparison, ENSO correlations did not exceed -0.4.
These climate divisions showed a reduction in the model performance when@&DO w

dropped as a predictor (Figure 31b). Using the instrumental record, previous studie
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indicated that the PDO had a positive correlation with precipitation in the sotghmaves
United States and a negative correlation in the northwestern United Statesdeny. B
and Comrie, 2004; Mantua et al., 1997; McCabe & Dettinger, 1999). The findings in
Table 14agree with the previous studies where all of the climate divisions in the GB,
UCRB, LCRB, and RGB showed positive correlations with PDO. In the PNW a@im
Division 1 indicated no correlation to PDO. However, precipitation in Climate iDivB

showed a significant negative correlation with the PDO.

According to Enfield et al. (2001), the southwestern United States, including the
GB, UCRB, LCRB, and RGB, showed a negative correlation between AMO and
precipitation in the observed record, while the PNW showed a positive correldtesn.
findings in the current study agree with those of Enfield et al. (2001), where fecaigni
number of climate divisions in the southwestern United States showed negative

correlations and Climate Division 1 in the PNW showed a positive correlatibfe(T4).

In contrast, the NAO signal in the instrumental record was generally mbifietd
in precipitation and streamflow in specific regions in the western Unitecstaater et
al., 2006; Tootle et al., 2005; Visbeck et al., 2001). However, Hunter et al. (2006) did
identify the NAO signal through the snow water equivalent (SWE) in 40 of 121 Snow
Pack Telemetry (SNOTEL) stations that were tested in the westeted States;
however, they could not identify any distinct spatial regions of NAO influence. The
results of the current study agree with the findings of Hunter et al. (2006)eRB3
indicated that by dropping the NAO as a predictor, a decrease in model perf@ermanc
occurred in some of the climate divisions. The current study found that thend80

associated with precipitation in 8 of the 20 tested climate divisions in the wesiigzd U
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States (Table 14), but no distinct spatial area was identified, whichiswasoasistent
with Hunter et al. (2006). In the current study, a negative correlation betwee
precipitation in Climate Divisions 1 and 2 and the NAO was identified in the PNW.
Hunter et al. (2006) also identified a negative correlation between theadddAQWE in

Oregon, but the signal was only evident when coupled with the La Nifia phase of ENSO.

A study by Gray et al. (2003) found that moisture variability was sogmf for
multi-decadal periods and may be attributed to the oscillations of PDO and AMO. T
study theorized that long-range forecasts greater than a year caddi&eable with
knowledge about the current phase of the PDO and AMO. The current study confirmed
this theory, as the vast majority of the tested climate divisions in therwébstaged
States showed a significant reduction in the model performance when the PDO @nd AM
oscillations are dropped as predictors (Figure 31 and Figure 32). This ésdicat
climatic variability in the western United States involves complex ictierss between
the Pacific and Atlantic Oceans, as theorized by Gray et al. (2003). Howeselid not
agree with the findings of Kalra and Ahmad (2009). They developed an SVM model
using the instrumental record to provide a streamflow forecast within the Colaorsdo R
Basin using the oceanic-atmospheric oscillations of ENSO, PDO, AMO, and NAO. The
study showed that the oscillations of ENSO and NAO serve as the best prddictors
streamflow forecasting, whereas the multi-decadal oscillations 6f &2l AMO did not
provide as strong a signal., This may be attributed to the shorter instruneeotal used

in the study, where only ENSO and NAO were fully represented.

The ability to capture the relationships between the oceanic-atmospheric

oscillations and precipitation was observed in the KStar modeling result®astbe
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MLR modeling results had difficulty in identify the relationships. In congoa with

MLR, the KStar model produced better precipitation forecasts. Because M&Rnese
regression to make the precipitation predictions, the model lacked the tbdéapture

the non-linear relationships between the oceanic-atmospheric oscillations and
precipitation. KStar compared the similarity between a tested instadqee-classified
examples to remove mean-weighted biases that may occur in lineariggrnesdels
(Cleary & Trigg, 1995). The forecasts obtained with KStar are based on the assumpti
that similar sets of input oscillation indices will produce a similar pretipit forecast.
Although the relationships identified through KStar are hidden, a closer examination of
their predictors can reveal which combination of oscillation phases have a amgnific
influence over precipitation. This approach can be useful for identifying ossillati
combinations that frequently result in extreme events. As a result, this Bwlgdsthat
KStar was better at capturing the natural variability associat&dongcipitation, which

was difficult for the MLR model to identify.

The KStar model served as an improvement over many existing models because
of the ability to provide quantitative forecasts. This was as opposed to qualitative
forecasts, such as those provided by NWS. With qualitative forecasts vestagens had
difficulty in making operational decisions. A quantitative forecast provides mor
meaningful information to water managers for planning and allocation decisincs. S
many climate divisions in the western United States were based upon dizasage
(Guttman & Quayle, 1996), the qualitative precipitation forecast could beased t

determine the future water supply in the region.
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In order for the models to determine the relationships between various oceanic-
atmospheric oscillations and precipitation, the data must be filtered. Hydrstogies
that examined long-range fluctuations have used filters to clarify théatatae in an
analysis (e.g. Currie, 1996; Garbrecht & Rossel, 2002; De Jongh et al., 2006yvBekar
al., 2003; Probst & Tardy, 1987; Riehl & Meitin, 1979; Riehl et al., 1979). A moving
average filter was used in this study to smooth out the highly fluctuating daté, lvelvie
to be filtered in order to attenuate the short-range fluctuations and to extratarégd c
the long-range climatic variations (Probst & Tardy, 1987).The moving gediteer
aided in identifying the phases of the oscillations and removed the noise rdé¢le i
signal within each phase. This ensured that the phases of the oscillation®mectdy
identified, so that they may be correlated with a precipitation response. lioadditta-
driven models required that anomalies, noise, and large jumps within a dataset to be
smoothed out so that the model did not make decisions to its detriment (Cleaggé& Tri
1995). This was applicable to the input oscillation indices, where the datasidben
smoothed out so that the model did not make errors in the learning and forecasting
phases. The limitation of using a moving average filter was that the neuedility
associated with the precipitation became reduced; however, the forecast cagtelle m

year into the future.

Other limitations result from using reconstructions for forecasting purposes.
Reconstructions are estimates of past climates, which always contatiaia degree of
uncertainty. Currently reconstructions are only capable of explaining 50% - 80% of the
variance observed in the instrumental record (Woodhouse et al., 2011). This requires the

reconstructions to be rescaled so that they are compatible with the instrumeona r
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which avoids heteroskedasticity in the dataset. Another source of unceddhythere

are multiple reconstructions available for the oscillation indices. Thesesteactions

are often not in very good agreement, which may produce different results for each
reconstruction. For purposes of this study, a single reconstruction for edtdtiosci

index was selected based on length and statistical properties. Althoughr¢here a
limitations when using paleoclimate reconstructions, the limitations of asshort

period of observed records were addressed. Reconstructions aided in underdtanding t
complex relationships between oceanic-atmospheric oscillations and ptexipita
variability by extending the period of record by several hundred years beyond the
instrumental record. The reconstructions allowed for an examination of lang-ter
processes, which were not fully represented in the short instrumental. iezoger
oscillation cycles exhibited by the PDO and AMO show a stronger influencestioater
cycles that were characteristic of ENSO and NAO had a relativeljesnméluence over
precipitation. For data driven models, more training data helped in improving thé mode
forecasts (Ahmad & Simonovic, 2005; Melesse et al., 2011). Reconstructions aided data-
driven models because they increased the amount of examples that the mod&bl@arns

(Witten et al., 2011).

Overall, the results from this study contributed to a better understanding of the
impacts of long-term statistical processes on precipitation in the wéstéed States by
using paleoclimate reconstructions to extend the period of record back to 1658a3his w
as opposed to previous studies, which evaluated the individual and coupled impacts of
oceanic-atmospheric oscillations in the observed instrumental record of 50 — 190 year

(e.g., Brown & Comrie, 2004; Dettinger et al., 1998; Enfield, 2001; Hunter et al., 2006;
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Kalra & Ahmad, 2009; Mantua et al., 1997; McCabe & Dettinger, 1999; Redmond &
Koch, 1991). In addition, the proposed model generated quantitative precipitation
forecasts with a 1-year lead time in the western United Statesrgyfosir oscillation

indices: ENSO, PDO, AMO, and NAO. This improved upon the current 12.5 month lead
time forecasts employed by NWS, which were limited to qualitative gatation

forecasts.

The data-driven model, KStar, provided ‘good’ forecasts for annual preipitat
by using all four oceanic-atmospheric oscillations as predictorspfEuictions were
better compared to the climatology. When oscillation indices become availaimecast
for the water year is provided as early as Janu@of the current year. This provides
important information to water managers about the water availability ipt@ming
year. The proposed approach also provides an alternative to complex models that
simulate physical processes and is expected to be useful for long-teenregaurces

management.
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Chapter 5: Long-Range Streamflow Forecasts using Support Vector Mames in

the Western United States

5.1 Introduction

The management of water resources in the western United States istarucia
ensure that appropriations are made for local water supplies, electrical, poa
ecological habitat as the water sources become stressed (Calya20&t3 Hamlet &
Lettenmaier, 1999). The western United States has experienced a largei@ogubatth
since 2000, with an estimated average growth of over 14% from 2000 to 2010 (United
States Census, 2010). In addition, streamflow in the western United State® teads t
highly variable, but persistent high flows and low flows that are synchronous across
major basins are not uncommon (Jain et al., 2005; Pagano & Garen, 2005). In particular
periods of sustained droughts can pose a serious problem for water resources in the
western United States. Hydrologic conditions within one region can affedttions in
other regions, because water is often traded or transferred across stasteasied
boundaries (Cayan et al., 2003). Furthermore, yearly streamflow volumes tieaaser
the primary source for renewable water resources are expectedine dethe western
United States and gradually worsen over the course of the century (Recla@@itibn
The result of an increasing population, highly variable climate, and declinieg wat
supplies is a growing state of water stress in the western United Statestfia et al.,
2011; Venkatesan et al., 2011 a, b). This adds to the complexity of planning and
managing water resources in an already challenging environment girafpan
demographics and competing interests (Pagano & Garen 2005; Qaiser et alin2011).

order to properly appropriate water resources in a complex environment, watgyersa
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will need long-range forecasts to aid in planning and management of water @ssourc

(Ahmad & Simonovic 2001; Forsee & Ahmad 2011; Vedwan et al., 2008).

The ability to produce a model that yields accurate forecasts has becenteah
problem in water resources management (Yu & Long, 2007). Better forecasistca
only help in improving the water management but also reduce damages (Ahmad &
Simonovic, 2005, 2006; Mosquera-Machado & Ahmad, 2007; Simonovic & Ahmad,
2005). A viable option for improving the accuracy of long range forecasts is to
incorporate climate variability in the form of oceanic-atmospheric afioitls. These
oscillations are identified with warm and cool phases that have an influence akemwe
patterns and the climate. Extensive research indicates that prediai@nsiips can be
developed between the phases of an oscillation and their corresponding impacts on
streamflow in the western United States (e.g. Beebee & Manga, 2004; Beéirad.,
1998; Enfield et al., 2001; Hamlet & Lettenmaier, 1999; Hidalgo & Dracup, 2003leToot
et al., 2005). Oceanic-atmospheric oscillations are identifiable througlesnoficea-
surface temperatures (SSTs) and sea-level pressures (SLPs) thanooterannual,

decadal and interdecadal timescales (Tootle et al., 2005).

El Niflo — Southern Oscillation (ENSO), Pacific Decadal Oscillation (RDO
Atlantic Multi-decadal Oscillation (AMO), and North Atlantic Osciltati (NAO) are the
most studied indices that have shown the most prominent influence over streamflow
variability in the western United States (e.g. Beebee & Manga, 2004; €agan1999;
Dettinger et al., 1998; Enfield et al., 2001; Gutzler et al., 2002; Hamlett&rireaier,
1999; Hidalgo & Dracup, 2003; Hunter et al., 2006; Kalra & Ahmad, 2009; Mantua,

1999; McCabe et al., 2007; Redmond & Koch, 1991; Tootle et al., 2005). These
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oscillations exhibit two desired qualities for use in streamflow foregasthe first is

that these oscillations have been shown to influence streamflow variabilityy edndoe
utilized to improve the accuracy of a forecast (Tootle et al., 2005). The sadadl the
observed fluctuations in streamflow are often lagged by several months to oeer a ye
from when an index identifies a particular phase of an oceanic-atmosphdrationci
(Gray et al., 2003; Kalra & Ahmad, 2009). However, it is difficult to incorpdtae
complex hydroclimatic relationships into a physically-based foregpstodel (Kalra &

Ahmad, 2009).

Data-driven modeling provides an alternative to physically-based mgdelm
et al., 2009). A variety of data-driven models are available includingcatifieural
networks (ANNS), support vector machines (SVMs), instance-based learnersisiehde
trees. These models work by extracting relationships between inputs and cotpus f
training dataset comprised of previously known examples (Witten et al., 2011). Hpweve
a frequent problem is that the training data is often noisy and there is no guardrdee tha
hidden relationship can be correctly captured into a model (Cristianini & Shayler,
2000). This study used an SVM model to extract the underlying relationships. SVM is a
statistical learning methodology that uses a hypothesis space of lindasraric a
higher dimensional feature space (Vapnik, 1995, 1998; Scholkopf & Smola, 2002;
Cristianini & Shawe-Taylor, 2000). In order to capture the complex nonlinear
relationships associated with hydroclimatology, a kernel-based apprasszudisThis
allowed for nonlinear functions in the hypothesis space that can be transformed into
solvable linear functions in the feature space (Scholkopf & Smola, 2002). SVMs are not

new in hydrologic modeling and have been successfully used in groundwater monitoring
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(Asefa et al., 2004), soil moisture prediction (Gill et al., 2006; Ahmad et al., 2010),
precipitation downscaling (Tripathi et al., 2006); rainfall/runoff modelindpi{@ et al.,
2001), and streamflow forecasting (Asefa et al., 2006; Kalra & Ahmad, 2Q08; Y
Liong, 2007). A robust SVM model would serve to complement existing physically-

based models.

The observed instrumental record typically extends from 50-100 years and has
been useful for previous studies in examining historical trends and relationsthips a
managing the reservoir operations on daily, weekly, or monthly basis (Frainz2€03;
McEnery et al., 2005). However, an extended record is available beyond 300 years
through paleoclimate reconstructions. Reconstructions provide an annual timéhsgries
are well correlated with the instrumental record (Gray et al., 2004; Hidalgo, 2004;
Timilsena et al., 2009; Wilson et al., 2007; Woodhouse & Lukas, 2006). Although
uncertainty is present when using reconstructions, they are able to captlimste
variability, which is essential for this study (Timilsena et al., 20099eBan the
documented literature and authors’ knowledge, there have been no previous studies that
have used an extended period of record provided by paleoclimate reconstructions in an
SVM model for streamflow forecasting. The availability of the reconstduecord may
help in providing useful information and may assist in improving the lead time. With this
motivation, the current study used the SVM model to provide a 1-year and 5-year lead
time forecast for 21 gage stations in the western United States using thecfanicoc
atmospheric oscillations as predictors (i.e. ENSO, PDO, AMO, and NAO). dtdelm
was trained and tested using a leave-one-out cross-validation technique as opposed to

splitting the dataset into training and testing datasets. The forecastewatuated
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through the mean absolute error (MAE), root mean squared error (RMSE), RMSE-
observations standard deviation ratio (RSR), Pearson’s correlation coeffiR)eNiash-
Sutcliffe coefficient of efficiency (NSE), and linear error in probapsipace skill score
(LEPS SK). This modeling technique is intended to aid in the planning and management

of water resources in the western United States.

The layout of the paper is as follows. Section 5.2 describes the study area and the
data used in this study. A description of the methods, which includes the SVM model, is
provided in Section 5.3. The model performance measures are provided in Section 5.4.
The results of the forecasts are presented in Section 5.5. Finally, Section 5.6paovide

discussion and concludes the study.
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5.2 Study Area and Data

South Platte Basin

Upper Colorado
River Basin

Arkansas
River Basin

|
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Figure 37: Study area depicting the location of the 21 streamflow gages usadhe
current study.

Annual observed and reconstructed streamflow data were obtained for 21 selected
gages in the western United States. These gages were identified withdagbeecord
from 1658 to 2007 (350 years). Reconstructions were used from 1658 to 1952 and the

instrumental record was used from 1953 to 2007.
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Table 17identifies the 21 streamflow gages used in the study and Figure 37 displays
their corresponding locations. The observed and reconstructed datasets used for each
streamflow gage are provided in Table 18. 14 gages are located in the Upped&olora
River Basin (UCRB). The remaining gages are located in the Lower Colonaelo R

Basin (LCRB), South Platte Basin (SPB), Arkansas River Basin (ARK), anGRinde
Basin (RGB). Observed flows are provided by the United States GeologigalySur
(USGS) and the United States Bureau of Reclamation (USBR). Reconstruotions a

provided by TreeFlow (http://treeflow.info).

In addition, four oceanic-atmospheric oscillations indices were used in this study
Table 18 also describes the datasets used for each index. Reconstructiomsiteereol
ENSO, PDO, AMO, and NAO. In addition, these reconstructions often have multiple
reconstructions, which often do not agree with each other. This study selected
reconstructions based upon the length of the time series and their statiepeaties in

relation to the available instrumental record.

The most well-known index is ENSO, which originates over the tropical Pacific
Ocean and exhibits a frequency of 4-6 years (Cayan et al., 1999; Haméd¢terhaier,
1999). El Nifio is the warm phase of ENSO, which typically brings above-normal
streamflow in the southwestern United States and below-normal streamftbesPacific
Northwest. La Nifia is the cool phase of ENSO which brings about below-normal
streamflow in the southwestern United States and above-normal streamflevRacific
Northwest (Mann et al., 2000; McCabe & Dettinger, 1999). There is no universal
indicator for ENSO (Beebee & Manga, 2004); this study used the Southerratiscill

Index (SOI) as a measure for ENSO. The SOI is measured from the diffeneBLPs
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between Tahiti and Darwin, Australia (Redmond & Koch, 1991). The winter (October to
March) SOI was used instead of the annual SOI because it better repites&NSO

signature (Mann et al., 2000; McCabe & Dettinger, 1999).

The PDO is low-frequency climate pattern centered in the North P@aé&an
with oscillation cycles lasting up to 50 years (Hamlet & Lettenma@99; Mantua et al.,
1997). PDO cycles behave similarly to those of ENSO in which the warm phasgs bri
above-normal streamflow in the southwestern United States and below-normal
precipitation in the Pacific Northwest (Mantua et al., 1997). Inverse st@ampétterns

are associated with the cool phases of PDO.

The AMO is also a low-frequency climate pattern, but is located in the North
Atlantic Ocean that has a 65-80 year cycle (Enfield et al., 2001; Gahy 2004). Warm
phases of the AMO bring below-normal streamflow over much of the western United
States, while cool phases bring above-normal streamflow (Enfield ed@l.; Gray et

al., 2004).

The NAO is measured by the difference in SLPs between Iceland and the Azores
and oscillates at a decadal time scale (Hurrell & Van Loon, 1997). Tihence of the
NAO phases is more dominant over the eastern United States; however, NAO may
influence climate over the Pacific Northwest and the northern Rocky Moufithinger

et al., 2006).
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Table 17: Streamflow gage locations

Gage Number| Region/Basin Gage Location
1 UCRB Fontenelle Creek near Fontenelle, WY
2 UCRB Hams Fork near Frontier, WY
3 UCRB Green river at Green River, WY
4 UCRB Green River near Greendale, UT
5 UCRB Green River at Green River, UT
6 UCRB Colorado River above Glenwood Springs, ¢
7 UCRB Gunnison at Crystal Reservoir, CO
8 UCRB Gunnison River near Grand Junction, CC
9 UCRB Dolores River near Cisco, UT
10 UCRB Colorado River near Cisco, UT
11 UCRB Animas River at Durango, CO
12 UCRB San Juan River at Archuleta, NM
13 UCRB San Juan River near Bluff, UT
14 UCRB Colorado River at Lees Ferry, AZ
15 LCRB Gila River near Solomon, AZ
16 SPB Cache La Poudre River near Ft Collins, C
17 ARK Canadian River near Sanchez, NM
18 RGB Saguache Creek near Saguache, CO
19 RGB Rio Grande near Del Norte, CO
20 RGB Conejos River near Mogote, CO
21 RGB Santa Fe River near Santa Fe, NM

O
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Table 18: Data sources for streamflow gages and oscillation indices.

Reconstructions Instrumental Record
Gage Source Data Source Data
Number Available* Available*
United States
1,2,4 | Barnettetal.,, 20071615-1999 Geological Survey, 2011 1952-2010
Woodhouse et al. United States Bureau qf
3.5 2006 1615-1998 Reclamation, 2011 1906-2007
Woodhouse et al. United States
6 2006 1525-1997 Geological Survey, 201[L 1906-2007
7,8,9, | Woodhouse et al. United States Bureau qf
10, 12, 13 2006 1569-1996| ™ eclamation, 2011 | 1206-2007
Woodhouse and United States
1 Lukas, 2006a 1470-2002 Geological Survey, 201[L 1928-2010
14 | Mekoetal, 2007 762-2005 Nied States Bureau of ;954 5447
Reclamation, 2011
Meko and United States
15 Hirschboeck, 2008 1332-2005 Geological Survey, 201[ 1921-2010
Woodhouse and United States
16 Lukas, 2006a 1615-1999 Geological Survey, 2011 1911-2007
United States
17 Meko et al., 2007 1604'1997Geological Survey, 2011 1937-2010
Woodhouse and United States
18 Lukas, 2006b 1520-2000 Geological Survey, 201[L 1915-2007
Woodhouse and United States
19 Lukas, 2006b 1508-2002 Geological Survey, 201[L 1891-2010
Woodhouse and United States
20 Lukas, 2006b 1508-2002 Geological Survey, 201[L 1913-2010
) United States
21 Margolis, 2011 1592_2007Geological Survey, 20111 1914-2010
Jones and Mann Australian Government
ENSO 'l 1650-1980| Bureau of Meteorology| 1876-2010
2004 2011
PDO Shen et al., 2006 1470-1998 JISAO, 2011 1900-2010
NAO L”terbz""ggler etaly 16582001 Hurrell, 2011 1865-2010
AMO Gray et al., 2004| 1567-198b ESRL, 2011 1856-2010

*Reconstructed data is used from 1685-1952 and instrumental data is used from 1953-
2007
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5.3 Method

This study used a forecast model that is generated from a multiclasisiased
SVM model. SVMs are based on statistical learning theory, in which angaalgorithm
derived from optimization theory uses a hypothesis space of linear functions irea hig
dimensional feature space (Vapnik, 1995, 1998; Scholkopf & Smola, 2002; Cristianini &
Shawe-Taylor, 2000). SVMs are designed to minimize the structural risk in order t
balance the error rate on the training data and the capacity of the modet fodeathe
training data (Scholkopf & Smola, 2002). Nonlinearities associated with hydatidim
processes are handled by incorporating kernels into the SVM model. The keirtaks
model in obtaining a global optimum to produce accurate forecasts, while miaigtai
generalization within the model so that it can be used to provide successful fovatast
new instances (Scholkopf & Smola, 2002). This serves as an advantage over other data-
driven models such as ANNs, where the model may converge upon local optima or over-
fit the training data, resulting in poor forecasts. A detailed discussion o¥/tientdel
is provided by Vapnik (1995, 1998) and a brief description of the formulation is given

here.

The goal of the SVM model is to formulate a relationship between the oseaillati
indices as input variables and streamflow volume as output variables given as input
vector (x), through the functional dependency f(x). The estimation of f(x) isvachie
through an optimization problem from the best subset of instances or number of support

vectors (N) as follows:
Minimize

“lwliz + S G - &) (1)
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Subject to

fx)—(w,x)—b<e+¥¢

wx)+b—f(x)<e+¢& (2
fi' El* =0
To obtain
f(x)=(w,x)+b )

where «w, x>is the dot product of the support vector weight (w) and the input vector (x), b
is the bias, C is the capacity parameter coistthe insensitive loss function (Vapnik,

1995), and; andé* are slack variables; andé* are used in Vapnik’'s (1995}

insensitive loss function (Figure 38) to determine the degree to which instaaces
penalized for absolute errors which are greater ¢h&or absolute errors less thgrihe
instances have a 0 value in the loss function§&;* = 0) and are not included in the
objective function. This limits the number of instances which are used to estir)ate f(

The constant C > 0 determines the trade-off between the complexity of f(x) and the
amount up to which deviations greater thare tolerated. A larger C places a higher
penalty on large errors and will reduce the approximation error, but makes trexprobl

more unconstrained.

Loss

f(x)

y - g e y-f(x)
Figure 38: g-insensitive loss function adopted from Vapnik (1995).
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In order to introduce non-linear dependencies, a dual formulation to the standard
SVM (Equations 1-3) is often used. This is accomplished by introducing the Lagrang
multipliersa anda* and the kernel function k(x,)xto replace the dot products of input
instances. The kernels may be represented as the dot products of nonlinear @éinsform
functions. The result is a linear function in the feature space that can be migre easi
solved (Figure 39). Differentiating the dual form with respect to the primiblas (w,

b, &, &*) yields the following optimization problem:

Maximize
—e X0 () + T £+ (@ — @)
W= 1oy @)
_Ezi,j=1(ai —a;) (aj —q; )k(xi;xj)
Subject to
é\l=1(a:lik - ai) = O; (5)
0<a;,a; <C
To obtain
fO) =Xis(af —a)k(x,x;)+b (6)

where the s are the selected instances that have an error greaterahdrare called the
support vectors, and n (usually n « N) is the number of support vectors. The SVM has the
advantage over other models is dealing with nonlinear approximations. In order to
successfully develop an SVM model, three parameters must be specified inthading

kernel functiong-insensitive function, and the capacity parameter cost C (Vapnik, 1995,

1998).
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Input Space ® Feature Space

d(x)

v
v

Figure 39: Conceptual representation of Kernel transformation adoptedrom Asefa
et al. (2004)® is the transform function.

In addition, a standard multiple linear regression (MLR) model was used as a
forecast model to provide a comparison to the SVM model. The MLR model was

subjected to the same methodology and performance analysis as the SVM model.

The forecast model used all four oceanic-atmospheric oscillation indies (i.
ENSO, PDO, AMO, and NAO) as predictors, and used one streamflow gage as the
predictand. The entire dataset was used from 1658 to 2007. A 1-year lead time was used
to simulate a forecast. The forecast models were performed with adieexait cross-
validation technique, where each instance was held out in turn for testing and the model
was trained on all of the remaining instances (Witten et al., 2011). The d¢muates

were averaged together to yield an overall result. This allows the noogdedinine the
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entire dataset and better capture the non-stationarity associated vi#tabet as
compared to the standard practice of splitting the dataset into trainingsaing t
datasets. The forecasts were subjected to a set of performance miataesdescribed

in the following section.

5.4 Performance measures

Several performance measures were used to analyze the forecastagritiedi
MAE, RMSE, RSR, R, NSE, and LEPS SK. These performance measures provided a
thorough and independent analysis. Categorical performance ratings werel didopte
Moriasi et al. (2007) which defined forecasts as ‘unsatisfactory,’ faetsy,” ‘good,” or

‘very good’ (Table 19).

Table 19: Performance Rating for RSR, R, and NSE.

Performance Rating RSR R NSE
Very Good 0.06¢RSR<0.50 | 0.8xR<1.0 0.75<NSE<1.0
Good 0.50<RSKR0.60| 0.8kR<0.85| 0.65NSE<0.75
Satisfactory 0.60<RSR0O.70 | 0.7cR<0.80| 0.5 NSE <0.65
Unsatisfactory 0.70<RSR1.0 0.0tR<0.70| 0.0 NSE <0.50

*RSR andNSE adopted from Moriasi et al., [2007]

The MAE and RMSE are common performance measures because they provide
errors in the same units as the tested data, and a value of 0 indicates a pedasi for
(Moriasi et al., 2007; Witten et al., 2011). The RSR is defined as the RMSE divided by
the standard deviation of the observed dataset to standardize the RMSE (Matiasi et
2007). This provides a better comparison of the model performance than the RMSE

because streamflow volume will greatly vary between stations.

R is a measure of the linear relationship between the measured and predicted

values, which typically ranges from 1 (perfect positive correlation), O (no abore),
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and -1 (perfect negative correlation). Moriasi et al. (2007) indicatesdteptable
models are obtained when R is greater than 0.50. However, the current study develops
stricter criteria to complement the RSR and NSE performance raisiogdged from

Moriasi et al. (2007) which are shown in Table 19.

The NSE measures the residual variance (noise) in comparison with the iheasure
data variance (information) and is defined by Moriasi et al., 2007. It nesahe
tendency of the measured and predicted data to follow a 1:1 relationship (Legates &
McCabe, 1999; Moriasi et al., 2007). NSE ranges from &tovhere a positive NSE is
acceptable because it indicates the model is a better predictor than thecdbs=ae

(Legates & McCabe, 1999; Moriasi et al., 2007).

The LEPS SK determines the accuracy of forecast predictions, wheee high
weights are given to values that are further from the mean of the d&taistd al.,
1996). LEPS SK includes climatology in its calculation and serves as a bditator
than climatology (Casey, 1998; Potts et al., 1996). LEPS SK ranges from -100 to 100,
where it is considered ‘bad’ if it is below -10, ‘poor’ if it is below -5, ‘sat$bry’ if it is

greater than 5, and ‘good’ if it is greater than 10 (Casey, 1998).

In addition, a visual inspection of the forecast was performed through scatter
plots, box plots, and non-exceedance plots. The SVM and MLR models were subjected to

this set of performance measures.

5.5 Results

This section describes the results of the forecasts obtained for the SVManddel

the MLR model. Section 5.6.1 describes the forecasts obtained from the SVM model
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when using a 1-year lead time. Section 5.6.2 presents the 5-year forecastsdolith
the SVM model. Finally, Section 5.6.3 provides the results of the MLR model in

comparison to the SVM model.

5.5.1 1-Year Lead Time SVM Forecast

This section describes the results obtained when ENSO, PDO, AMO, and NAO
were used together to forecast streamflow volumes for each of the selegtedigmg

the SVM model with a 1-year lead time as described in the method section.
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Figure 40: SVM resultsrun with a 1-year lead time displayed aspatial map
showing (a)RSR, (b) R, and (c) NSE

Figure 4@ provides a spatial representation of the perfoo@aneasures obtain
for the SVM model run with a-year lead time. The resufisr RSR indicated the
‘satisfactory’ forecasts were obtained 18of the 21 gages. These gages were locat
the northern portion of the study area includingrheall of the gages in the UCR
RGB, and SPB. Of the remaining gactwo ‘good’ forecast were made in the middle

the study area for Gages 17 and 21. Finally, ay'gend’ forecast was made for Gage

157



in the LCRB. The results for NSE agreed with the results for RSR. A “oarg’ dorecast

was obtained at Gage 15 and ‘good’ forecasts were obtained at Gages 17 and 21 near the
middle of the study area. The remaining gages produced ‘satisfact@yasts in the

northern areas of the study area. While the RSR and NSE indicated that the model
produced ‘satisfactory’ forecasts, the R indicated that the forecastisweee accurate.

Gages 1 in the northern region of the UCRB was the only gage with a ‘satigfact
correlation. ‘Good’ correlations were obtained for 150f the 21 gages and included the
majority of the gages in the UCRB and SPB. The remaining 5gages wegzllottie

southern portions of the study area and produced ‘very good’ correlations: (R.20

0.80). These included Gages 12, 15, 17, 20, and 21 with the last three gages located in the
RGB. The spatial representation of these performance measures showedttleat a be

model performance was achieved for gages located in the southeastern portion of the
study area. Overall, the results indicated that accurate forecagioduced at all gages

with the SVM model.

Table 20 provides the individual results of the performance measures. The MAE
and RMSE were relatively low in comparison to the average flow at each gags/dnpw
it was difficult to compare these measures directly between gagesER® $Ks for the
all of the gages indicated that a ‘good’ forecast model was achieved. IndddRPS
SKs were all greater than 50, which indicated that very good forecastindgsnaeate
produced. This shows that the SVM model was able to produce accurate forecasts and
that the model performed better than climatology. The RSR, R, and NSE results have

been summarized in the spatial representation shown in Figure 40a.
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Table 20: Summary of SVM Results run with a 1-year Lead Time

Gage RMSE* MAE* RSR R NSE LEPS SK
1 11.90 6.90 0.69 0.79 0.53 54.9
2 15.97 9.53 0.68 0.80 0.54 53.7
3 233.38 138.15 0.65 0.82 0.58 55.8
4 369.58 218.45 0.64 0.82 0.59 56.9
5 1069.50 613.32 0.65 0.82 0.58 56.5
6 345.16 197.46 0.66 0.81 0.57 56.9
7 241.68 144.12 0.66 0.81 0.57 52.5
8 455.79 269.91 0.65 0.81 0.58 54.1
9 220.19 137.11 0.64 0.83 0.59 52.4
10 1252.80 746.13 0.65 0.81 0.57] 52.4
11 108.19 66.88 0.62 0.85 0.62 53.9
12 299.22 185.59 0.60 0.85 0.64 54.0
13 531.69 329.18 0.63 0.83 0.61 52.7
14 2387.70| 1414.3C 0.62 0.84 0.62 55.3
15 126.48 52.53 0.49 0.91 0.76 67.9
16 61.04 36.55 0.66 0.81 0.56 54.1
17 50.71 19.38 0.54 0.89 0.71 67.7
18 10.82 6.56 0.65 0.81 0.58 54.6
19 119.77 73.56 0.61 0.84 0.62 54.1
20 43.37 26.30 0.61 0.85 0.62 53.8
21 1.27 0.66 0.55 0.88 0.70 64.6

*In 1000 ac-ft (1 ac-ft = 1233.5 ™
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Figure 41: 1-year lead time results for5 selected gages are shown foe t8YM model
as (a) scatter plots and (b) non-exceedance plots as well as the MLR mode(cs
scatter plots and (d) non-exceedance plots. The diagonal line in the ¢eaplots
represents the 1:1 bisector line. The horizontal dashed line ilné non-exceedance
plots shows an error value of 30%.

Scatter plots and non-exceedance plots in Figure 41 show a visualization of the
ability of the model to produce accurate forecasts at the 1-year lead timscaltes
plots (Figure 41a) showed that several of the instances lied on or near the dtdr bise

line, indicating a perfect forecast was made. However, the plots also showe tha
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model was prone to missing extreme events. The SVM model under predicted very high
flows and over predicted very low flows. The magnitude of the error was shown to
increase for measured flows which are further from the mean of the dataseariFhe
exceedance plots (Figure 41b) examined the accuracy of the model in termsafrthe e
associated with the model performance. About 40% - 45% of the forecasts exhdbite
error, which indicated a perfect forecast was made. In addition, approlyimadé -

90% of the forecasts had an error of 30% or less, which indicates that the medel wa
capable of producing accurate predictions for the majority of the fore¢astsnstances

that had errors greater than 30% correspond to the instances that were Wwah&omn

the 1:1 bisector line on the scatter plots (Figure 41a). From these resultsMhad&ié|

was shown to produce accurate forecasts.

Figure 42: 1-year lead time results for Gage2 and Gage 15 are shown for the SVM
model as (a) scatter plots and (b) non-exceedance plots. The diagonal lin¢hia
scatter plots represents the 1:1 bisector line. The horizontal dasthéine in the non-
exceedance plots shows an error value of 30%

A further analysis was performed on Gage 2, which performed the worst, and

Gage 15, which performed the best. Scatter plots and non-exceedance ploted/éve us
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show the comparison in Figure 42. Figure 42a shows a scatter plot for Gagevash
comparable to the scatter plots for the other gages (Figure 41a). Gagarheenivorse
than the other gages due to the higher number of extreme events that westddrasa
the mean flow. In comparison, Gage 15 performed the best as the majority of the
instances lie on the 1:1 bisector line. Figure 42b indicates that Gage 2made perfec
forecasts for about 42% of the predictions and approximately 80% of the foltemdsis
error of 30% or less. In comparison perfect forecasts were made at Gage 15 fufr 58%
the forecasts and about 85% of the forecasts had an error of 30% or less. These plots
indicate that the SVM model performs exceptionally well as nearly hétiegbredictions

are perfect; however, the errors tend to be high for instances represaitérge events.

5.5.2 5-Year Lead Time SVM Forecast

The SVM model was run with a 5-year lead time using ENSO, PDO, AMO, and

NAO to forecast streamflow volumes.

A spatial representation of the performance measures obtained for the SVM
model run with a 5-year lead time is shown in Figure 43a. The RSR results indicated tha
‘satisfactory’ forecasts were obtained for 16 of the 21 gages, which includeajtriyn
of the gages in the UCRB, RGB, and SPB. Out of the remaining gages, 4‘good’tlorecas
were made at Gages 1, 14, 17, and 21. With the exception of Gage 1, these gages were
located in the middle of the study area. Finally, a ‘very good’ forecasbliased for
Gage 15 in the LCRB. The R indicated that the forecasts were very welbatedrwith
the observations at each gage. ‘Good’ correlations were made for 15 of the 21 gages
including the majority of the gages in the UCRB, RGB, and SPB. Gages 1, 6, 10, 15, 17,

and 21 produced ‘very good’ correlations, which did not have a distinct spatial layout
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with the 5-year lead time. The results for NSE indicated that a ‘very gomtdst was
obtained at Gage 15 in the LCRB. Gages 17 and 21 in the southeast portion of the study
area produced ‘good’ forecasts. Finally, ‘satisfactory’ forecasts wlatained at the

remaining gages in the UCRB, SPB, and RGB. Similar to the 1-year lead tisegdtsr

made with the 5-year lead time indicated that model performance wasftetages

located in the southeastern portions of the study area. Overall, the resultechtheat

accurate forecasts are produced at all gages with the SVM model.
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Figure 43: SVM resultsrun with a 5-year lead time displayed aspatial map
showing (a) RSR, (b) Rand (c) NSE.

The individual results of the performance measaredisplayed iiTable 21. The
MAE and RMSE were each small in comparison to teamflow for each gage.
‘good’ forecast model was achieved for all of tlages, with each gage having a LE
SK greater than 50. TH&VM model was able to produce accurate forecastshee
model performed better than climatoloFigure 43summarized the RSR, R, and N

results according to thegrerformance ratings in a spatial map. The restoits the -
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year lead time are comparable to the results from the 1-year lead tible 203,

indicating that the forecast lead time can be extended out to 5 years withguadatien

of the performance. In fact, an improvement in the forecast was experiencesdaal

of the instances with a 5-year lead time in comparison to the 1-year lead recests.

Table 21: Summary of SVM Results run with a 5-year Lead Time

Gage RMSE* MAE* RSR R NSE LEPS SK
1 10.32 5.95 0.59 0.86 0.65 61.8
2 14.26 8.02 0.60 0.84 0.63 62.0
3 232.50 141.00 0.65 0.84 0.58 54.5
4 354.17 214.09 0.61 0.85 0.63 57.5
5 1017.20 576.70 0.61 0.84 0.62 60.0
6 320.25 185.81 0.61 0.85 0.63 60.5
7 224.23 132.00 0.61 0.85 0.63 57.3
8 438.43 261.23 0.62 0.83 0.61 56.2
9 209.40 127.80 0.60 0.85 0.63 55.9
10 1164.00 698.22 0.61 0.85 0.63 56.6
11 108.56 64.56 0.62 0.83 0.62 55.8
12 306.20 184.02 0.61 0.84 0.62 54.9
13 517.62 308.40 0.61 0.84 0.63 55.8
14 2303.30 | 1327.00 0.59 0.85 0.65 58.4
15 122.86 52.51 0.47 0.92 0.78 67.8
16 57.11 34.87 0.62 0.84 0.62 56.6
17 49.36 18.54 0.52 0.90 0.73 70.5
18 10.19 6.24 0.61 0.85 0.62 57.0
19 119.92 71.62 0.61 0.84 0.63 55.5
20 42.89 24.37 0.60 0.84 0.63 58.0
21 1.25 0.67 0.54 0.90 0.71 64.9

*In 1000 ac-ft (1 ac-ft = 1233.5

Scatter plots and non-exceedance plots are shown in Figure 44 for 5 stneamfl

gages, which exhibited the highest annual streamflow volume. The scatten [pimsre

8a indicated that several of the instances lied on or near the 1:1 bisectohlaote, w

represents a perfect forecast. However, the high flows were often undergutedidtthe

low flows were over predicted. The magnitudes of the errors increasestanges that
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were further from the mean, such as extreme events, as compared to flomer¢hat

closer to the mean of the dataset. Figure 44b showed the non-exceedance plots, which
examined the accuracy of the model in terms of the errors associated withdbke
performance. About 40% - 50% of the forecasts exhibited no error, which indicated a
perfect forecast was made. In addition, approximately 80% - 90% of the fereadsin
error of 30% or less, which indicates that accurate forecasts were m#uke ricajority

of the forecasts. The instances with higher errors were shown to lie fudimethe 1:1
bisector line on the scatter plots (Figure 8a). From these results, ther®dM was

shown to produce accurate forecasts with a 5-year lead time.
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Figure 44: 5-year lead time results for 5 selected gages are shown for 8¢M
model as (a) scatter plots and (b) non-exceedance plots. The diagonal lin¢hi@
scatter plots represents the 1:1 bisector line. The horizontal dasthéine in the non-
exceedance plots shows an error value of 30%.

Of the gages tested, Gage 11 performed the worst and Gage 15 performed the
best. A further examination of these gages was provided through scatter plots and non-
exceedance plots in Figure 45. Figure 45a shows a scatter plot for Gage havesid s

that while the majority of the instances lied on or near the 1:1 bisector line, there a

several instances that were not correctly predicted in the model. The moddlttende
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miss extreme events. In contrast, Gage 15 provided the best performance wait the
majority of the instances lying on or near the 1:1 bisector line and much feweetity
forecasted instances. Figure 45b showed that perfect forecasts were naduteifet2%

of the predictions at Gage 11 and approximately 90% of the forecasts had an error of 30%
or less. In comparison perfect forecasts were made at Gage 15 for appebyxt6%o of

the forecasts and about 85% of the forecasts had an error of 30% or less. Although Gage
11 produced fewer forecasts with high errors than Gage 15, the model for Gage 15
produced many more forecasts with little or no error. These results show that\ihe SV
model was accurate for the majority of the forecasts, although the extrenmie weee

difficult to forecast in the model.
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Figure 45: 5-year lead time results for Gage 11 and Gage 15 are shown for theNsV
model as (a) scatter plots and (b) non-exceedance plots. The diagonal lin¢hia
scatter plots represents the 1:1 bisector line. The horizontal dasthéine in the non-
exceedance plots shows an error value of 30%.

5.5.3 MLR Forecast

The MLR modeling approach was run in comparison with the SVM models. As
shown in Figure 46, all of the gages produced ‘unsatisfactory’ forecaske fb+yiear
lead time in terms of the RSR, R, and NSE. The MAE and RMSE for MLR were much
higher than those obtained for the SVM model (Table 22). However, the LEPS SK
indicates that the forecast model has no skill with a LEPS SK < 5 for all ajréeabt
models, indicating that climatology outperforms the MLR model. In addition, thieisca
plots in Figure 47 show that the forecasts tended to return the mean of the dataset a
predictions, indicating that the MLR model was unable to determine anpmslaips in
the dataset. In addition, the non-exceedance plots in Figwigodvthat 30% - 75% of
the forecasts had an error of 30% or less and no perfect forecasts weremsde. T

indicates that the MLR model produced inaccurate results.
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Figure 46: MLR r esults at a -year lead-timedisplayed in a spatial map for (a) RSR
(b) R, and (c) NSE.
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Table 22: Summary of MLR Results run with a 1-year Lead Time

Gage RMSE* MAE* RSR R NSE LEPS S
1 17.46 13.80 1.01 -0.10 -0.02 1.0
2 23.80 18.97 1.01 -0.15 -0.03 1.0
3 361.47 291.08 1.01 -0.06 -0.02 1.0
4 583.08 471.66 1.01 -0.08 -0.02 1.2
5 1664.20 | 1317.40 1.01 -0.13 -0.02 1.4
6 529.29 417.71 1.01 -0.11 -0.02 11
7 370.21 300.69 1.01 -0.01 -0.01 0.6
8 705.47 574.59 1.00 0.05 -0.01 0.3
9 345.79 284.70 1.00 0.07 0.00 0.8
10 1918.50 | 1562.90 1.00 0.04 -0.01 0.5
11 175.65 144.24 1.00 0.04 -0.01 0.6
12 500.79 412.79 1.01 0.00 -0.01 0.1
13 852.58 701.42 1.00 0.01 -0.01 0.2
14 3860.90 | 3173.20 1.00 0.08 0.00 0.5
15 253.28 192.06 0.98 0.21 0.04 3.4
16 92.63 74.51 1.01 -0.04 -0.02 0.8
17 94.71 67.82 1.00 0.04 -0.01 0.0
18 16.78 13.54 1.01 -0.07 -0.02 0.5
19 196.96 161.98 1.01 -0.01 -0.02 0.1
20 71.34 58.18 1.01 -0.08 -0.02 0.4
21 2.28 1.81 0.98 0.18 0.03 2.8

*In 1000 ac-ft (1 ac-ft = 1233.5™
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5.6 Discussion and Conclusion

This study used an extended dataset through the use of reconstructions in order to
generate a streamflow forecast for 21 gages in the western United &atg an SVM
model. The SVM model was able to produce ‘satisfactory’ to ‘very good’ sti@am
forecasts at a 1-year lead time, based upon the performance measures amlopted fr
Moriasi et al. (2005). These yearly forecasts may also be disaggregatédant
temporal resolutions as described by Kalra and Ahmad (2011). The forecasttegkn
by the SVM model can complement existing physically-based models fer kgaources

management.

The spatial maps in Figure 40 and Figure 43 reveal that the SVM model
performed better for gages located in the southeastern portion of the studyg area
compared to gages located in the northwestern portion of the study area. The RSR and
NSE reveal that ‘good’ and ‘very good’ forecasts were made in the saigtimepsrtions
of the study area as compared to the ‘satisfactory’ forecasts obtairibd femainder of
the study area. In addition, the spatial map for R indicates that ‘very goodatone
were obtained in the southeastern portion of the basin; gages located in the miadelle of
study area had ‘good’ correlations; and gages in the northwestern portion ofdghe st
area had ‘satisfactory’ correlations. This is indicative that thenoc@mospheric
oscillations have a more prominent influence over the southwestern portion of the study
area compared to the remainder of the study area. Such oscillations as thaENSO
PDO have been shown to have a stronger influence over streamflow in the LCRB and the
RGB compared to the UCRB (Cayan et al., 1999). It is also clear from the spabs

that the SVM model was capable of producing forecasts regardless of émeflsive
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gages being located in the headwaters of the basin or located in the downstream porti

of the basin.

The correlation between oscillation indices and streamflow variabilith &as
examined in several studies (e.g. Gutzler et al., 2002; Hamlet & Lettenrh999; Kalra
& Ahmad, 2009; McCabe et al., 2007; Redmond & Koch, 1991; Tootle et al., 2005).
However, the coupling of oscillation indices, such as the Pacific indices of BN&O
PDO, has been shown to reflect higher streamflow variability as companeahhmeng
the oscillations individually (Gutzler et al., 2002; Timilsena et al., 2009; & ebtl.,
2005). Furthermore, it is clear that oscillations in both the Pacific and Atlanyi@apla
significant role in climate variability across the United Statesy@t al., 2003; McCabe
et al., 2004; McCabe et al., 2007; Tootle et al., 2005). In the current study, all four
oscillation indices (i.e. ENSO, PDO, AMO, and NAO) are used together to reptiesent
interactions of Pacific and Atlantic variability and extract the miaxn information from
the indices. Although the results are not shown in this study, the removal of one or more
of the oscillation indices results in a reduction of the model performance because

information is lost.

The SVM model was shown to outperform the standard MLR technique. At all
gages with a 1-year lead time, the RMSE, MAE, RSR, R, and NSE results fafNhe S
model (Table 20) were much better than the respective results obtained withRhe ML
model (Table 22). In addition, the MLR model was unable to outperform climatology as
shown by the LEPS SK, but the SVM model was much better than climatology. The
SVM model develops forecasts based upon the premise that similar inputsrgitdd si

outputs. The kernel function allows the SVM model to identify instances which have both
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similar inputs and outputs. This allows the model to retain the nonlinear relationships
between the input oscillations and output streamflow when they are transformed into the
feature space and fitted with a regression plane. In comparison, it was tiffidhle

MLR model to extract the nonlinear relationships using basic linear regressibads

and as a result it was only able to capture the mean of the dataset.

The forecasts provided using the SVM model can be further improved by
providing it with more information. Witten et al. (2011) explains that data-driven siodel
are often more robust and perform better when trained on a larger training sés$. Thi
where paleoclimate reconstructions significantly help the SVM modelxtending the
period of record much further than the instrumental record. A study by Kalra andlAhma
(2009) used an SVM model approach to forecast streamflow in the UCRB using the
instrumental record only. The model was capable of producing accurate foratiasts
R of 0.72, 0.87, and 0.81 for Green River at Green River (Gage 5), Colorado River near
Cisco (Gage 10), and Colorado River at Lees Ferry (Gage 14), respedtively
comparison to the current study, the addition of reconstructions (Table 20) resumt®
of 0.83, 0.82, and 0.84 for the same respective gages. From this simple comparison, the
addition of paleoclimate reconstructions did not seem to significantly improwgiétiéy

of the forecasts nor did it substantially degrade the forecasts.

The results of this study contribute to a better understanding of the lomg-ter
impacts of oceanic-atmospheric oscillations on streamflow variability iwélséern
United States. In this study, using reconstructions, the period of record wadezkt
back to 1658. This differs from previous studies, which were limited to a period of record

of 50-100 years (e.g. Gutzler et al., 2002; Hamlet & Lettenmaier, 1999; Hirate,
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2006; Kalra & Ahmad, 2009; McCabe et al., 2007; Redmond & Koch, 1991: Tootle et

al., 2005).

The data-driven SVM model provides a quantitative forecast which yields
‘satisfactory’ to ‘very good’ results with lead times up to 5 years in theicustudy.
This serves as an improvement over current forecasting tools, which mosthyeprovi
gualitative forecasts at seasonal lead-times. Better forecasibtained when using all
four oceanic-atmospheric oscillations as predictors. The forecasts arentette
compared to climatology. Although the SVM model was not able to accuratetasir
extreme events, the model results with up to 5 years of lead time can stilyhesetil
for water resource planning and in determining the streamflow resporigadtec
variability. The proposed modeling approach provides an alternative to complex,
physically-based models and is expected to complement existing models ifofargg

term water resources management.
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Chapter 6: Contributions and Recommendations
6.1 Summary

Climate variability has a profound influence over the hydrologic cycle, which
complicates water resources planning and management. Climate ugrislaih
especially important variable in the arid western United States, wheseate water
resources are stressed by population growth, agricultural and industrial demanks, and t
desire to provide water for recreation and wildlife. Oceanic-atmospherilatsios
affect hydrologic variables such as streamflow and precipitation, whichdicators of
the available water supply. It becomes necessary to understand thesectattdrating
to climate variability in the western United States. Since it is difffonlphysically-
based models to capture the complex dynamics of hydroclimatic variabldieraata
approach to understanding these relationships are provided through the use ofdata-dri

models.

In this study, a data-driven modeling approach was performed to provide long-
range forecasts of streamflow and precipitation in the western Unitex$ Sthis was
accomplished by discovering relationships between oceanic-atmospheridioasikand
their hydrologic response through streamflow and precipitation. Paleoclimate
reconstructions were used to provide a larger dataset for the data-driven models. The
study focused on the arid regions of the western United States. An elevated \wasres
placed on the Colorado River Basin, which exemplifies the highest need for lg&y-ran
forecasts due to its susceptibility to climate variability and highfiretd water
resources. Four tasks were performed to address the research questions and thei

hypotheses posed in this study.
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The first task investigated Research Question #1: Can the oceanic-atneospheri
oscillations be used to improve the streamflow forecast lead time in the Uppeadcol
River Basin and can noise removal improve the model? It was hypothesized that there
was a strong relationship between oceanic-atmospheric oscillations eard i
variability within the Upper Colorado River Basin and the forecast lead timd beul
improved as a result. It was also hypothesized that the removal of noise wowddampr
the ability of the model to produce accurate forecasts. Research Questios #1 wa
addressed by using two data-driven models, KStar and M5P, to forecast stwetonfl
four gages in the UCRB. Reconstructions from 1658-1905 and instrumental reoords fr
1906-2007 were obtained for four oceanic-atmospheric oscillation indices i.e., ENSO,
PDO, AMO, and NAO to predict annual streamflow volumes at 1-5 year lead-#nes
forecast evaluation was performed through the mean absolute error (MAE) e@ot m
squared error (RMSE), RMSE-observations standard deviation ratio (RSRIgtcamre
coefficient (R), Nash-Sutcliffe coefficient of efficiency (NSBEnd linear error in
probability space (LEPS) skill score (SK). The results of the KStar aftirivtiels were
compared with a multivariate linear regression (MLR) model. The readitsated that
the KStar model was capable of producing ‘satisfactory’ to ‘good’ foreeastll lead-
times when a 10-year moving average filter is applied to the dataset. The M5IP mode
produced ‘unsatisfactory’ to ‘satisfactory’ forecasts. The LEPS SKaleg¢hat both the
KStar and M5P models were able to outperform the MLR model and climatology.
‘Unsatisfactory’ results were obtained when a 5-year or 3-year movergge filter was
used for KStar and M5P. This indicated that the model was unable to identify patterns i

the dataset because there was too much ‘noise’ in the dataset. These findingeedonfi
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the hypothesis that the lead time can be improved by up to 5 years, and that the model

performance improves with the removal of noise.

The next task addressed Research Question #2: Do oceanic-atmospheric
oscillations play an important role in streamflow variability in the wastiited States,
and can the oscillations be used to increase the forecast lead time fologatggsin the
headwaters and for downstream gages? It was hypothesized that theceniieceanic-
atmospheric oscillations were prominent at all gage locations and could be used to
forecast streamflow regardless of the variable streamflow volumessetise the
headwater or downstream locations. Research Question #2 was examined by using the
KStar model to provide 1-5 year lead-time forecasts for 21 streamfloss gaghe
western United States, using all four of the oceanic-atmospheric oscillasons
predictors. Reconstructions were used from 1658-1899 and the instrumental record was
used from 1900-2007 were obtained for ENSO, PDO, AMO, and NAO as well as the 21
selected streamflow gages. Forecasts were made at 1-5 yeamlesdwith a 10-year
moving average applied to the dataset. Forecast evaluations werengerfoith the
RSR, R, NSE, and LEPS SK. An MLR model was run in comparison to the KStar model.
The KStar model produced ‘satisfactory’ and ‘good’ forecasts at the 1l+yg@-gear
lead times at all gages. This indicated that the model is capable of producirageaccur
forecasts regardless of the location of the streamflow gages or the magnitioele
streamflow volume. Deterioration in the forecasts was observed at loagdamees,
although ‘good’ and ‘satisfactory’ forecasts were still obtainable at stre@mflow
gages. The MLR model produced ‘unsatisfactory’ forecasts for all gagéseataiimes.

The LEPS SK revealed that the KStar model was able to outperform climatdlogse

179



findings confirmed the hypothesis that the lead time can be improved by up ts2 year
and that the model can be used to forecast streamflow regardless of thd®ireamf

volumes or gage locations.

The third task examined Research Question #3: Can the lead time of pieaipitat
forecasts be improved by using oceanic-atmospheric oscillations and do all indices pl
an equally important role in the forecast model? It was hypothesized that tateripi
variability across the western United States was considerably dffecteceanic-
atmospheric oscillations and the forecast lead time could be improved. In additien it wa
theorized that the forecast model would improve when a non-significant oscillation inde
was removed as a predictor. In order to address Research Question #3, the KStar dat
driven model was used to provide a 1-year forecast for precipitation for 20 climate
divisions in the western United States using the four oceanic-atmospheriatiosll
For this model, paleoclimate reconstructions from 1658-1899 and the instrumental record
from 1900-2007 were used with a 10-year moving average filter. The model was
evaluated using the MAE, RMSE, RSR, R, NSE, and LEPS SK. ‘Good’ precipitation
forecasts were achieved with the KStar model. A thorough sensitivity anadgigiated
that using all four oscillations together (i.e. ENSO, PDO, AMO, and NAO) dscpoes
results in the best overall forecasts. Deterioration in the forecasexpasenced when
any of the four indices were dropped as predictors. The forecasts were foundtterbe be
than MLR and climatology. The first part of the hypothesis was confirméacbeasing
the precipitation forecast lead time by 1 year. However, the hypothesisdpaing an

oscillation index in the forecast was proven false.
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The final task investigated Research Question #4: Can oceanic-atmospheric
oscillations be used in an SVM model to increase the streamflow forechsihtea
throughout the western United States without noise removal? It was hypathbsizthe
SVM model was successful in increasing the streamflow forecast leadrtim the raw
data throughout the western United States. This study addressed Reseaticn @y
using an SVM model to provide 1-year to 5-year lead-time forecasts farce2indiow
gages throughout the western United States The results indicated thacsatysto
‘very good’ forecasts were achieved for the gages at a 1-year yeat tfead-time. It was
discovered that better forecasts were obtained for gages in the southeadtenof the
study area compared to the gages in the northwestern portion of the study area. The
forecast results show improvement over standard MLR models and climatology. The
hypothesis that the forecast lead time could be increased using the ramvata&VM

model was confirmed.

6.2 Contributions

The results from Research Questions #1, #2, #3, and #4 provided several
contributions to the fields of hydroclimatology and machine learning. Thagesul
indicated thatising all four oceanic-atmospheric oscillation indices (i.e., ENSO,

PDO, AMO, and NAO) as predictors provided the best streamflow and

precipitation forecasts A reduction in the model performance was experienced when
using individual indices or combinations of 2 or 3 oscillation indices. This suggests that
hydrology in the western United States cannot be explained by a single pbhatass
influenced by complex atmospheric interactions originating over both the Atéardi

Pacific Oceans.
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This research extended the lead-time of quantitative forecasts fotreamflow
and precipitation. Quantitative streamflow forecasts were achieved at lead-times up to 5
years, which improves upon the seasonal forecasts of the Colorado River BasasFor
Center. These long-range forecasts are expected to be useful for theopdatening

of water resources.

Secondlythis study is the first attempt at using paleoclimate reconstructions
in a data-driven model to forecast streamflow and precipitation at leadHnes
greater than a year Several studies suggested that the use of paleoclimate
reconstructions have the potential to improve forecasts. However, there are @® studi
which have attempted to use paleoclimate reconstructions in a data-driven model for

forecasting precipitation and streamflow

The removal of noise in the data set improves the quality of the forecasts
was difficult for data-driven models to identify relationships in the dataset thieee is
too much noise present. The moving average filter used in this study did not compromise
the signals associated with the oscillations, but aided in the identificatiox@actien
of oscillation phases. A larger 10-year moving average filter was foundvaerbetter

forecasts compared to the smaller 5-year and 3-year moving average filte

6.3 Limitations

Many of the watersheds in the western United States are snow-melt donen f
accumulated winter snowpack. This study operated at an annual timescale and did not

differentiate the precipitation or streamflow that is derived from raiafadnowfall.
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Several limitations of the study were brought about by the use of proxy
reconstructions. Proxies such as tree rings are limited to localizex) alesre a large
number of samples can be cross-dated. Trees must also be free of other inflingcites w
may hinder a precipitation signal, such as ground water, location in a flood plain, etc
This makes it difficult to develop streamflow and precipitation reconstnefor all
areas across the United States. Reconstructions for oceanic-atmospghkaitcoos can
be developed from multiple proxies including tree-rings, coral, and ice coggs. Hi
guality and precise reconstructions for the oscillation indices can be devealompecotal
and ice cores, but are problematic for developing very long multi-century trras se
(Woodhouse et al., 2011). Tree rings can develop hydrologic reconstructionieaniall
scales, but the full series is not included in the current study because a cortgrimset
of oscillation indices are only available up to 300 years. Many reconstruatemssed
on conservative regression techniques, which capture more low-frequency climat
variability. There is generally a certain degree of uncertainty wedolith
reconstructions because they only capture 50% - 80% of the variance that is olvserved i
the instrumental record, but they are able to identify events such as theshifts
oscillation phases. It is very difficult to replicate the instrumentardedue to other

influences that are not accounted for in the reconstruction techniques.

As a result of the uncertainty and noise in the reconstructions, this study used a
large moving average filter to identify and extract the long-termatérfluctuations in
the dataset. The use of the moving average filter makes the model unsuitable for
operational purposes. The model loses the ability to forecast extreme ewels afhd

droughts at expense of forecasting at longer lead times.
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This study operated on the fundamental notion that the past is indicative of the
future. Although climate change may be partially explained by clineiability,
anthropogenic influences may result in climate changes that have not beendlrserve
the instrumental record or examined in the reconstructed timeline. Furtieermor
reconstruction proxies such as tree-rings have shown a change in responsatéo clim
variability as a result of the increased CO2 in the atmosphere (Woodhouse et al., 2011)

which have to be taken into account in recent reconstructions.

6.4 Recommendations

The data-driven models presented in this study were able to produce
‘satisfactory,” ‘good,” and ‘very good’ forecasts based upon relationshipzéet
oceanic-atmospheric oscillations and such hydrologic variables as fébreand
precipitation. The quality of these forecasts can be improved as hydroclimadblogic
research expands to implement new strategies and explore new theories ia order
further explore the dynamics of climate variability and climate ghaAs a result of this

study, future hydroclimatic explorations can be made:

1) This study used data-driven models as an alternative to physically-based models
in order to explore relationships between oceanic-atmospheric oscillations and
hydrologic responses in streamflow and precipitation. Future research should
explore the physical properties and dynamics of these atmospheric phenomena
that drive the changes in the hydrologic cycle. A physically-based roodiel
then be developed based on the properties.

2) Data-driven modeling is a growing field that continues to see improvement over
existing models. New methods and models could improve upon current long-
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3)

4)

range forecasts. Categorical data-driven models could also be developed to
provide qualitative forecasts. Emerging models can potentially find new issight
into the effects of climate variability to aid water managers and help in the
understanding of climate dynamics.

A further exploration is recommended into the development of paleoclimate
reconstructions using more advanced methods designed to reduce uncertainty.
Most reconstructions are developed through parametric approaches, mostly
regression. Nonparametric approaches to developing reconstructions may aid in
capturing the variability.

This study explores the oceanic-atmospheric oscillation indices of ENSO, PDO,
AMO, and NAO. These are the four most commonly studied indices that affect
streamflow and precipitation in the western United States. They arthalsnly
indices which have been reconstructed. It is recommended that further research
into other oscillation indices, such as the Pacific North American Pattest, We
Pacific Pattern, Arctic Oscillation, Madden-Julian Oscillation, etcxipéoead for
their effects on hydrology in the western United States. Reconstructionsef the
oscillations should also be considered if they are found to have a significant

hydroclimatic influence.
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