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ABSTRACT 

 

BONE MARROW CONTRIBUTION TO RENAL REPAIR FOLLOWING ISCHEMIC IN-

JURY.  Matthew C. Egalka, Sujata Kale, , Lloyd G. Cantley.  Section of Nephrology, Department 

of Internal Medicine, Yale University School of Medicine, New Haven, CT. 

 

Repair of the mammalian renal tubular epithelium following ischemia/reperfusion injury 

is largely effected by surviving epithelial cells and other cells resident in the kidney interstitium; 

however, the precise nature of the contribution of circulating extrarenal cells is unknown.  The 

purpose of this study is to determine whether bone marrow cells have the capacity to differentiate 

into renal tubular epithelium.  This was investigated using both an ex vivo transplantation model 

as well as an attempt to grow epithelial cells from bone marrow in a liquid culture system.   

Recipient female C57BL/6 mice were myeloablated via irradiation and transplanted in-

travenously with lineage-depleted syngeneic male bone marrow.  Following this, renal ischemia 

was induced by surgical interruption of the renal vascular pedicle.  Thin sections were assayed for 

donor contribution by examination by fluorescence in situ hybridization (FISH) for the Y-

chromosome.  Tubules incorporating donor (Y-chromosome positive) cells were only rarely 

found (< 2%) in the outer medulla of damaged kidneys; far more frequent were donor-derived 

interstitial cells, which appear not to be entirely inflammatory in phenotype.  

For the tissue culture experiments, collagenase-released marrow stromal cells (CR-MSC) 

were obtained by collagenase treatment of bone chips following mechanical dissociation of bones 

harvested from C57BL/6 mice.  These cells were grown in culture and examined via immu-

nostaining and reverse-transcription polymerase chain reaction for epithelial markers.  Unfortu-

nately, the resultant cells, although appearing to form epithelial colonies, were found to not ex-

press the epithelial markers cytokeratin and ZO-1 by RT-PCR and immunostaining; instead they 

appeared to be fibroblasts with a novel morphology.  In sum, bone marrow contribution to the 



  

renal epithelium appears to be a rare phenomenon at best and as of now cannot be replicated in 

vitro. 
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INTRODUCTION 

 

Acute renal failure 

The mammalian kidney is an organ with many roles, including the maintenance of blood 

pressure, the regulation of pH and other metabolic parameters, the elimination of nitrogenous 

waste, and the synthesis and release of endocrine factors.  The remarkable ability of the “smartest 

organ in the human body” (Herbert Chase, M.D., personal communication) to maintain homeo-

stasis despite changing conditions has been tested countless times, often by inexperienced medi-

cal students entering fluid orders!  It is therefore no surprise that conditions where this regulatory 

behavior is disrupted have been well characterized and extensively investigated. 

Acute renal failure (ARF), without reference to proximate cause, describes a rapid de-

crease in the ability of the human kidney to adequately process and eliminate waste products, 

manifested by an acute decrease in the glomerular filtration rate (GFR).  There is a consequent 

accumulation of nitrogenous wastes, loss of the ability to concentrate the urine (isosthenuria), as 

well as a variety of metabolic imbalances.  Depending on the cause of ARF, the condition may be 

entirely asymptomatic until the development of uremic features late in the timecourse; as such, 

the diagnosis is usually cinched upon gross and microscopic examination of the urine (urinalysis 

and urinary sediment microscopy) as well as serum markers of kidney filtration (including blood 

urea nitrogen and creatinine).   

Especially in hospitalized patients, ARF is a major cause of morbidity and mortality.  In-

cidence figures vary according to which criteria investigators use to define ARF (currently, no 

consensus exists) although most are based on either absolute increases in serum creatinine, abso-

lute decreases in calculated creatinine clearance, or oliguria.  Prospective cohort studies in the 

U.K. have reported yearly incidence figures ranging from 486 per million (1) to 620 per million 

(2) population.  Unsurprisingly, the incident rate of ARF among hospitalized patients is signifi-

cantly elevated, no doubt due in large part to often-multiple comorbid conditions.  A recent study 
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has shown that 7.2% of hospitalized patients develop at least some degree of renal insufficiency 

(3).  A prospective, multi-center analysis of intensive care unit (ICU) patients demonstrated that 

approximately 25% of medical/surgical ICU patients met diagnostic criteria for ARF, of whom 

70% went on to develop multi-organ dysfunction syndrome (4). 

The causes of renal dysfunction in patients with ARF can be broadly categorized into 

three groups.  Prerenal failure—representing between 21 and 70% of all cases of acute renal fail-

ure (5, 6)—is defined as a decrease in GFR due to hypoperfusion of kidneys, and implies no in-

trinsic dysfunction of the kidneys themselves.  Prerenal failure can be caused by true hypo-

volemic states such as hemorrhage or dehydration, as well as fluid overload states with decreased 

effective circulating volume such as those encountered in congestive heart failure and hepatic 

cirrhosis.  Mechanical impediments to renal blood flow (i.e. renal artery stenosis or fibromuscular 

dysplasia) also cause renal hypoperfusion and can induce a prerenal azotemia.  In prerenal failure, 

the kidneys respond appropriately to what they perceive to be decreased intravascular volume via 

tubuloglomerular feedback mechanisms which include preglomerular arteriole vasodilation and 

postglomerular arteriole vasoconstriction.  Timely reversal of the hypoperfused states generally 

results in recovery of renal function.  Prolonged prerenal azotemia is a common cause of ischemic 

intrinsic injury to the kidney tubule, as discussed below. 

Postobstructive or postrenal failure occurs when mechanical obstruction impedes the free 

flow of urine distal to the nephron, causing hydronephrosis and decreased glomerular filtration.  

The proximal cause of the decrease in GFR is the decreased gradient across which glomerular 

filtration can occur, due to higher tubular luminal pressures.  Again, no intrinsic kidney dysfunc-

tion is involved, and resolution of the renal insufficiency usually occurs rapidly following elimi-

nation of the distal obstruction. 

Intrinsic renal failure certainly represents the gravest etiology of all the causes of ARF, 

and itself can be further subdivided based on the specific site of injury within the kidney.  Glome-

rular disease—especially that of the rapidly progressive subtype—can lead to fulminant renal 
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failure as well as the typical signs and symptoms of glomerulonephritis.  ARF due to tubular in-

terstitial pathology is usually immune-mediated and is classically due to an allergic reaction to a 

medication such as an antibiotic or an analgesic.  Damage to the renal tubule itself, however, 

makes up the bulk (5) of ARF due to intrinsic renal injury.  This damage can be mediated by di-

rect injury to the tubular epithelium by exogenous or endogenous nephrotoxins.  Aminoglycoside 

antibiotics and myoglobin produced by rhabdomyolysis represent two classical nephrotoxins that 

respectively conform to the above sub-classes (7).  Most commonly, however, tubular injury is 

caused by a localized ischemic state secondary to hypoperfusion of the kidney.  Whatever the 

cause, tubular injury is characterized by a relatively unchanging set of histological features 

termed acute tubular necrosis (ATN). 

Regardless of the immediate cause of renal failure, the mainstays of therapy for ARF are 

supportive in nature and include maintenance of appropriate intravascular volume as well as pres-

ervation of electrolyte homeostasis (8).  Renal replacement therapy—in the form of hemodialysis 

or peritoneal dialysis—is a treatment of last resort for ARF, and associated with a dismal progno-

sis (9). 

 

Post-ischemic acute tubular necrosis 

The proximate cause of post-ischemic ATN is a reduction in effective oxygen carrying 

capacity and solute redistribution secondary to a decrease in renal blood flow.  This can be due to 

a myriad of causes.  Like prerenal failure, renal ischemia can be caused by decreased intravascu-

lar volume due to acute blood loss or third-space displacement of intravascular fluid. Iatrogenic 

causes, including operative interruption of aortic or renovascular blood flow and administration 

of vasoactive medications such as non-steroidal anti-inflammatory drugs (NSAIDs), are also 

commonplace.   Small-vessel diseases such as the vasculitides can also adversely affect the renal 

vasculature.  In all of these cases, the end result is decreased effective renal blood flow. 
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Despite the fact that approximately ¼ of systemic arterial blood flow is directed to the 

kidneys, the renal tubule is uniquely vulnerable to ischemia during states of hypoperfusion.  Most 

renal blood flow is directed to the glomerulus, and the hairpin loops of the vasa recta that descend 

into the inner medulla closely apposed to the tubules have characteristically low blood flow, 

which aids in the synthesis of the countercurrent gradient that aids in urinary concentration (10).  

The cells of the straight (S3) segment of the proximal tubule, located in the outer stripe of the 

medulla, have been shown to be particularly sensitive to ischemic injury (11).   

Following ischemic insult, the kidney tubule undergoes a series of predictable histopa-

thologic changes.  The brush border present on proximal tubule cells is sloughed into the lumen, 

and cellular swelling is observed.  In cases of severe injury, this is accompanied by the incom-

plete denudation of the epithelial basement membrane.  It is apparent that both necrosis and apop-

tosis play a role in the death and sloughing of these proximal tubular cells (12).  These changes 

are most pronounced in the S3 region of the proximal tubule, and to a lesser extent are detected in 

the thick ascending limb of the loop of Henlé, as these areas are the most metabolically active 

areas of the tubule (11).  The aggregation of the sloughed material is manifested in the formation 

of intraluminal casts, which can obstruct the tubule lumen and promote further injury via 

backleak of luminal contents.  Additionally, influx of hematopoietically-derived inflammatory 

cells is apparent both in the tubular interstitium as well as in the intravascular compartment.  

These histopathologic features are thought to be due to a complex interplay between microvascu-

lar and tubular factors; specifically, endothelial damage, arteriolar/capillary increased vasocon-

striction and decreased vasodilation, the production of paracrine factors by sublethally-injured 

tubular epithelial cells, production of cytokines by inflammatory cells, and hydrostatic effects of 

backleak all contribute to this complex pattern of injury (13).   

It is thought that ATP depletion is the major proximal cause of injury during the ischemic 

phase of ATN.  Paradoxically, however, it is during the reperfusion phase of ATN that the bulk of 

injury occurs.  Reactive oxygen species generated by abruptly-reoxygenated tissue macrophages, 
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mast cells, endothelial cells, and tubule cells themselves cause significant injury through direct 

cytotoxic actions, activation of calcium-mediated signaling pathways, and recruitment of further 

inflammatory cells (14).  The exact degree of damage caused by the inflammatory infiltrate is 

hitherto incompletely characterized, but inflammatory cell depletion as well as inhibition of in-

flammatory cell adhesion to damaged endothelium has been shown to reduce the severity of renal 

injury in ATN (15, 16). 

The investigation of ischemic ATN is made possible by the induction of kidney injury in 

animals.  Currently, many investigations including our own utilize rodent (mouse or rat) models 

of renal ischemia induced by operative interruption of the renal artery for a specified length of 

time.  These protocols fairly reliably produce a histopathologic pattern similar to that seen in hu-

man kidney biopsies as well as a reproducible decrease in GFR if both renal arteries are clamped.  

However, there are some doubts as to whether this rodent model is an acceptable substitute for 

post-ischemic ATN as seen in humans (17).  Efforts to generate a more “physiologic” pattern of 

ATN in rodents by the induction of severe hypotension have been hitherto unsuccessful (18). 
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FIGURE 1.  Human kidney tubule following ischemic injury, hematoxylin & eosin 
preparation.  Note the large numbers of eosinophilic intraluminal casts inside tubules 
with sloughed (missing) epithelium.  The ongoing acute inflammatory response, as dem-
onstrated by the presence of interstitial neutrophils, is evident.  (Image courtesy of the 
Department of Pathology, University of Alabama at Birmingham, via the Pathology Edu-
cation Instructional Resource Digital Library available online at http://peir.net.) 

  
 

Role of resident renal cells in tubule repair following ischemic injury 

Perhaps the most remarkable feature of post-ischemic ATN is the potential for complete 

recovery of tubule structure and kidney function following ischemia/reperfusion (I/R) injury.  

There exists a capacity for complete renewal of the kidney tubule despite extensive cell death.  

This is in stark contrast to other organs such as the heart and nervous system, which have highly 

limited potential for regeneration following ischemic injury.   The cells responsible for this re-

markable regenerative ability have been shown to be sporadic de-differentiated cells that appear 

or survive following injury and proliferate vigorously to reconstitute the denuded tubule epithe-

lium.  Three distinct but not mutually exclusive paradigms have been proposed that can explain 

the identity of these cells (7). 

In experimental models of I/R injury, foci of sublethal injury are observed in addition to 

regions of frank necrosis, apoptosis and de-epithelialization.  These surviving cells undergo de-

differentiation into a more primitive (mesenchymal) phenotype, which is accompanied by migra-

tion and spreading of these cells into areas of basement membrane denudation.  In a manner that 

recapitulates embryonic renal development, these de-differentiated cells enter the cell cycle and 

divide, undergoing intense proliferation (19).  Eventual differentiation of these cells back into an 

epithelial phenotype occurs, which results in an intact, functional epithelium.  The presence of 

mesenchymal cells in this paradigm has been verified on a molecular level with the identification 

of upregulated mesenchymal markers such as fibronectin in the cells undergoing spreading and 

migration (20). 
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The second and third mechanisms that have been posited as supporting renal tubular re-

generation—at least in part—involve the recruitment of stem cells from either a local or a distant 

niche.  A stem cell is defined as an individual cell that has the twin abilities of broad potential and 

self-renewal; that is, to undergo mitosis in an asymmetric fashion, producing a daughter cell that 

can differentiate into many cell types as well as another daughter cell that retains the properties of 

the initial stem cell (21).  Different populations of stem cells have different degrees of plasticity: 

in particular, pluripotent stem cells have the ability to differentiate into all somatic cells from all 

three germ layers, and totipotent stem cells can differentiate into all somatic cells as well as ex-

traembryonic tissues.  During prenatal life these cells give rise to multipotent, tissue-restricted 

stem cells, which are physically resident in the parenchyma of the end organs during adult life 

and can repopulate some or all of the parenchymal cells of the organ in question.  Conventional 

thought holds that these multipotent stem cells are absolutely tissue-restricted in their differentia-

tive capacity and can repopulate only the tissues of the end organ in response to injury, and no 

other organs (22).  Indeed, resident organ-specific stem cells have been shown to be responsible 

for regeneration of all hematopoietic lineages following bone marrow ablation (21) and reconsti-

tution of liver parenchyma subsequent to partial hepatectomy (23), among several other organ 

systems. 

Precise identification of the tissue-restricted renal stem cell—a slowly-cycling mesen-

chymal cell present in the adult kidney and capable of asymmetrically dividing to both replenish 

the stem cell population as well as differentiate into kidney epithelial cells—has been elusive.  

Two investigators have enumerated populations of cells resident in the kidney that retain the syn-

thetic thymidine analogue 5-bromo-2-deoxyuridine (BrdU) long after incorporation, indicating a 

slow cycling time.  These cells are observed to specifically undergo proliferation in response to 

ischemic injury (24, 25).  Whether these cells represent actual renal stem cells or simply slowly-

cycling downstream progenitor (also known as transit-amplifying cells) is unclear; however, their 

importance in contributing to renal repair following ischemic injury cannot be discounted. 
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Plasticity of bone marrow-derived cells 

A significant amount of investigation in the past 15 years has focused on the enhanced 

plasticity of bone marrow-derived cells.  As briefly mentioned above, convention holds that or-

gan-specific stem cells are restricted in their differentiation potential to the organ in question, and 

that so-called “trans-differentiation” across lineages does not occur.  This dogma has subse-

quently been disproved, specifically in the case of the plasticity of bone marrow-derived cells 

following transplantation.  Bone marrow-derived cells are uniquely suited to serve as an extra-

parenchymal source of stem cells due to the fact that they have the ability to circulate in the 

bloodstream.  

Several investigations have demonstrated the ability of bone marrow-derived cells to 

cross lineage boundaries and differentiate into functional, non-hematopoietic tissues in a post-

natal environment.  Gussoni et al. and Ferrari et al. verified the existence of bone marrow-derived 

cells in regenerating muscle tissue following bone marrow transplant (26, 27).  The reconstitution 

of functional hepatocytes from bone marrow precursors has been shown in both mouse (28, 29) 

and human (30) experiments.  Following myeloablation and stem cell transplantation of a single 

hematopoietic stem cell, Krause et al. demonstrated the engraftment of donor-derived cells in 

liver, lung, epithelial tissues, and the GI tract (31).  Orlic et al. confirmed that circulating bone 

marrow-derived cells contributed to myocardium following the induction of mechanical cardiac 

ischemia (32).  Even bone marrow contribution to neuronal cells—traditionally thought to have 

minimal regenerative capacity—has been demonstrated (33). 

One common feature pervading many of these experiments is the induction of a state of 

regeneration in the end organ to be assayed for bone marrow contribution.  Most commonly, this 

occurs either in the setting of acute injury (e.g. myocardial ischemia) or chronic turnover of dif-

ferentiated cells (e.g. mdx mouse model of Duchenne muscular dystrophy).  It is this author’s ex-

perience, having worked extensively with cross-lineage differentiation of bone marrow into mus-
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cle (34), that contribution of bone marrow to quiescent, non-damaged end organs is minimal or 

absent.  This is thought to be due, at least in part, to the release of cytokines and growth factors at 

the site of injury that cause mobilization from the bone marrow and subsequent chemotaxis of 

inflammatory and (presumably) stem cells.   

 

Contribution of bone marrow-derived cells to tubules following ischemic injury 

Bone marrow contribution to kidney tubule epithelium following ischemic injury has 

been extensively studied in the near past as well.  Evidence of bone marrow contribution to tubule 

epithelium was first found in human male recipients of female kidneys, which allowed the use of 

the powerful Y-chromosome fluorescence in situ hybridization (FISH) technique to visualize Y-

chromosome-containing cells of bone marrow origin.  Poulsom et al. and Gupta et al. examined 

biopsy specimens of male recipients of female kidney transplants via Y-chromosome FISH and 

found small but significant numbers of recipient-derived cells that co-expressed the epithelial 

marker cytokeratin upon colocalization by immunohistochemistry (35, 36).  Notably, these cells 

were found only in kidneys that had undergone damage following transplantation.   

Several prospective analyses using whole and lineage-depleted bone marrow transplanta-

tion in mice, including results from our group, have further supported the conclusion that bone 

marrow cells contribute directly to tubular epithelium following ischemia/reperfusion injury.  

Both Lin et al. and Kale et al. used a model involving the transplantation of bone marrow from a 

mouse expressing the β-galactosidase transgene followed by ischemia/reperfusion injury, with 

20-80% of tubules in the outer medulla of the injured kidney containing at least one cell that ex-

pressed the transgene (37-39).  Other groups using the Y-chromosome FISH technique have 

found significantly lower numbers of bone marrow-derived cells making up tubular epithelium 

(36).   

Functional changes in laboratory parameters of ARF have also been examined by our 

group following manipulation of the bone marrow compartment.  Unsurprisingly, the typical 
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laboratory evaluation of a patient suffering from ARF reveals a predictable rise in BUN and 

creatinine—serum markers of renal failure—that will trend back to baseline following resolution 

of the renal failure.  In mice, radioablation of the bone marrow followed by bilateral ische-

mia/reperfusion injury to induce acute renal failure resulted in significantly higher elevations of 

serum markers than seen without the bone marrow transplant.  Intravenous infusion of lineage-

depleted whole bone marrow cells after radioablation and bilateral I/R injury yields an initial rise 

in serum markers comparable to radioablation alone, followed by an abrogation of this exaggera-

tion back to control levels (37).  This phenomenon of initial injury followed by rescue points 

away from bone marrow-derived cells contributing directly to tubule regeneration, as one would 

expect the magnitude of initial injury to be decreased if the cells were able to positively contrib-

ute directly.  Instead, it appears as though the infused cells interact with the regenerating tubule in 

a trans-acting manner. 

 

Identification, isolation and expansion of highly plastic bone marrow cells 

Whole bone marrow consists of two lineages of cells, each with a characteristic stem cell.  

The hematopoietic stem cell (HSC) can reconstitute all lymphoid, myeloid and erythroid lineages, 

and has been extensively investigated and fully characterized.  The function of the marrow stro-

mal cell or mesenchymal stem cell (MSC), the other stem cell present in the bone marrow com-

partment, is more elusive.  MSC are a heterogeneous population of cells characterized by as well 

as isolated via adherence to plastic tissue culture vessels.  Morphologically, they appear stromal 

in phenotype, and possess remarkably few stem cell surface markers to aid in immunologic isola-

tion and characterization.  That being stated, however, human MSC have been shown to differen-

tiate in vitro upon osteoblastic, chondroblastic and adipocytic lineages and are easily maintained 

in liquid culture for many population doublings (40).  They have a broad, active immunosuppres-

sive action mediated by an as-yet-uncharacterized elaborated factor (41, 42); the rodent equiva-

lents of these cells have been shown by several investigators to have renoprotective effects in 
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models of renal ischemia, which could be postulated to be related to this immunomodulatory ac-

tion (43-45).   

Because of these properties, intense recent investigation into the potential plasticity of 

MSC has been undertaken.  Perhaps the most promising result was published by Johnson et al., 

who have identified bone marrow-derived cells capable of reconstitution of the mouse ovary with 

cells that appear histologically to be oöcytes and that express oöcyte markers (46).  These cells 

were expanded from a population of whole bone marrow cells by treating bone chips with colla-

genase and collecting the resultant single cell suspension.  A rare subset of these cells, in turn, 

was shown to give rise to oöcytes in chemotherapy-sterilized mice.  Since in vivo contribution of 

bone marrow to regenerating kidney epithelium is only seen in low numbers, cells that have the 

ability to be easily isolated, expanded ex vivo, and reinjected intravenously in order to reconstitute 

damaged epithelium would be fantastically important from a clinical standpoint.  To this end, we 

designed a series of in vitro experiments that took advantage of Dr. Johnson’s bone marrow 

preparation techniques to determine if a population of bone marrow-derived cells that crossed 

lineages to differentiate into epithelium could be isolated.
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STATEMENT OF PURPOSE 

The general aim of this project is to further elucidate the contribution of bone marrow 

cells to the regenerating kidney following the induction of acute tubular necrosis via ische-

mia/reperfusion injury.  It appears that bone marrow-derived cells contribute in some way to kid-

ney tubular regeneration; however, the nature as well as the proportion of this contribution is cur-

rently incompletely understood.  In this series of experiments, a stem cell transplantation model 

was used to determine the nature of the interaction between bone marrow-derived cells and the 

regenerating kidney epithelium, and to discern whether marrow-derived cells have the capacity to 

differentiate into kidney epithelium itself.  Additionally, in vitro experiments were conducted to 

establish whether a selected population of bone marrow-derived cells subjected to specific culture 

conditions could be induced to differentiate into epithelium. 
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METHODS 

 

Mice 

Inbred C57BL/6 mice were obtained from the Jackson Laboratory (Bar Harbor, ME) and 

the National Cancer Institute (Frederick, MD).  Six-to-eight week old male mice were used as 

stem cell transplantation (SCT) donors, and six-to-eight week old female mice were used as SCT 

recipients.  Four-to-eight week old male mice were used as sources of whole, unfractionated bone 

marrow for in vitro culture. 

 

Ischemia/reperfusion injury and stem cell transplantation 

The ischemic injury and transplantation portions of these experiments were carried out 

exclusively by Dr. Sujata Kale (Yale University School of Medicine, New Haven, CT) and have 

been described previously (37).  Prior approval was obtained from the Yale Institutional Animal 

Care and Use Committee.   

Femurs and tibias were aseptically collected from male donor mice, and whole bone mar-

row was flushed from the medullary cavity of the bones.  The erythrocytes were specifically lysed 

using BD PharmLyse (BD Biosciences, San Jose, CA) as per the manufacturer’s recommenda-

tions.  Subsequent depletion of cells committed to hematopoietic lineages was accomplished us-

ing a cocktail of biotin-conjugated monoclonal antibodies directed against the mouse hematopoi-

etic lineage markers B220, CD3ε, CD11b, Gr-1, and Ter119 (BD PharMingen, San Jose, CA), 

streptavidin-conjugated magnetic beads, and a midiMACS LD depletion column (both Miltenyi 

Biotec, Bergich Gladbach, Germany). 

Recipient female mice were administered a 3.5 Gy dose of gamma-irradiation using a 

sealed-source 137Cs irradiator.  Following this, 5.0 x 105 cells suspended in small volume of PBS 

were injected intravenously into each mouse via retro-orbital puncture and housed in specific 

pathogen-free conditions.   
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Twelve hours following transplantation, the female mice described above were anesthe-

tized using 100 mg/kg ketamine and 10 mg/kg xylazine administered intraperitoneally.  Using 

sterile surgical technique, a midline incision was performed and subsequently the peritoneum was 

incised.  The left kidney was isolated using blunt dissection, and the left vascular pedicle was iso-

lated.  Using a vascular clamp (Fine Science Tools, Foster City, CA) the pedicle was completely 

cross-clamped, and renal ischemia was verified by observation of color change of the kidney.  

Saline-moistened gauze was placed over the peritoneal incision, and the mouse was maintained at 

37°C using a heating pad.  After 25 minutes of renal ischemia, the clamp was removed and reper-

fusion was ascertained by direct visualization. 

The mice were kept under specific pathogen free conditions until they were sacrificed at 

7 days following renal injury. 

 

Specimen preparation 

 Both the clamped and unclamped kidneys in each animal were subjected to analysis.  

Kidneys were dissected from the abdominal cavity immediately following sacrifice, and were 

immediately fixed in 10% neutral buffered formalin solution (Sigma-Aldrich, St. Louis, MO) for 

1 hour.  They were then placed in 100% ethanol and transported to the surgical pathology core 

facility, which performed paraffin embedding and microtome sectioning.  Longitudinal 4 μm mi-

crotome sections on conventional glass slides were obtained. 

 

Fluorescence in-situ hybridization probe preparation 

DNA template and protocol for synthesis of the fluorescence in-situ hybridization (FISH) 

probe against the Y-chromosome was kindly provided by Dr. Diane Krause (Yale University 

School of Medicine, New Haven, CT).  This probe has been extensively characterized (47) and its 

preparation has been previously described (29); the most recent version of this protocol is avail-

able on the Internet (48).  Briefly, a degenerate oligonucleotide-primed Polymerase Chain Reac-
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tion (DOP-PCR) reaction was initially performed using previously-amplified mouse Y-

chromosome DNA as a template and the 6AI oligonucleotide (CCG ACT CGA GNN NNN NTA 

CAC C) as primer.  30 total cycles were run using a Peltier thermal cycler (MJ Research, 

Waltham, MA).  Eight reactions were run in parallel and subsequently pooled and precipitated 

overnight using sodium acetate and excess ice-cold absolute ethanol.   

The resulting pellet was washed in cold ethanol and resuspended in distilled, deionized 

water.  This solution was aliquoted and mixed 5:1 by volume with DIG Nick Translation mix 

(Roche Applied Sciences, Mannheim, Germany) containing the digoxigenin-11-dUTP labeled 

nucleotide.  This mixture was allowed to incubate for 90 minutes at 15°C, after which the size of 

the now-labeled probe was verified to be between 100 and 500 base pairs via conventional aga-

rose gel electrophoresis.  The reaction was stopped with the addition of 0.5 M EDTA and the la-

beled probe was precipitated using ice-cold excess ethanol, sonicated salmon sperm and Cot-1 

carrier DNA (both Invitrogen, Carlsbad, CA).  The precipitated probe was pelleted in a micro-

centrifuge and washed with 70% ethanol, following which it was pelleted again and resuspended 

in deionized formamide (American Bioanalytical, Natick, MA).  This was combined in equal vol-

ume with a hybridization buffer consisting of 20% dextran sulfate in 4X SSC. 

 

Fluorescence in-situ hybridization 

 The FISH procedure was performed according to instructions kindly provided by Dr. 

Diane Krause.  Slides of interest were heated to 95°C and deparaffinized in CitriSolv, a xylene 

substitute (Fisher Scientific, Waltham, MA).  Slides were then subjected to rehydration washes in 

graded ethanol/water solutions and washed vigorously in phosphate-buffered saline (PBS).  Anti-

gen retrieval was performed using the citrate-based Retrievagen A (BD Biosciences, San Jose, 

CA) according to the manufacturer’s instructions.   

 Following antigen retrieval and a wash step, slides were incubated for 12 minutes in a 

solution of 0.2 N HCl.  After this, they were washed with two sequential changes of PBS and in-
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cubated for 20 minutes in a 1 M NaSCN solution at a temperature of 72°C.  Slides were then 

taken through three sequential changes of PBS and dehydrated in serial solutions of etha-

nol/water, and carefully wiped.  12 μL of FISH probe, prepared as above and pre-warmed to 

75°C, was applied to each slide, after which they were coverslipped and sealed with rubber ce-

ment.  Slides were hybridized overnight in a humid chamber at 37°C.   

After the overnight incubation, the rubber cement sealant was removed and the slides 

were immersed in 2X SSC solution to remove coverslips.  Following this, the slides were submit-

ted to two further washes of 2X SSC, and then incubated for five minutes in a stringency wash 

consisting of 0.4X SSC and 0.3% NP-40 detergent at 55-65°C.  They were washed twice in 2X 

SSC and blocked for ten minutes in a blocking solution consisting of 2X SSC, 3% protease and 

immunoglobulin-free bovine serum albumin (BSA) (Jackson Immuno Research, West Grove, 

PA) and 0.1% Tween-20 at room temperature.  Following this, rhodamine-conjugated anti-

digoxin Fab fragments (Roche, Mannheim, Germany) at a concentration of 1 μg/mL was applied 

to the slides, which where incubated for 45 minutes at room temperature.  Slides were then sub-

jected to two final washes in PBS, after which they were counterstained using immunofluores-

cence techniques as described below. 

 

Immunofluorescence staining of hybridized sections 

 Primary antibodies used in immunofluorescence colocalization experiments were as fol-

lows: rabbit polyclonal anti megalin (considerate gift of Dr. Dan Biemesderfer) used at 1:500 di-

lution; sheep polyclonal anti-human Tamm-Horsfall protein (Serotec, Raleigh, NC) used at 

1:2000 dilution; and biotinylated mouse anti-mouse lineage panel (BD PharMingen, San Jose, 

CA) used at 1:500 dilution per constituent antibody.  Secondary immunoreactants were, respec-

tively, Alexa Fluor 488-conjugated donkey anti-sheep IgG used at 1:200 dilution; Alexa Fluor 

488-conjugated goat anti-rat IgG used at 1:200 dilution (both Molecular Probes/Invitrogen, 

Carlsbad, CA); and fluorescein-Avidin D (Vector Labs, Burlingame, CA) used at 1:250 dilution. 
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Following in situ hybridization as described above, slides were blocked in a blocking so-

lution consisting of 1% BSA or 10% goat or donkey serum (Jackson Immuno Research, West 

Grove, PA) in PBS for 45 minutes at room temperature.  Excess blocking solution was removed 

from the slide, and primary antibody diluted as above in blocking solution was applied to the sec-

tion, which was incubated for one hour at room temperature.  Slides were then washed in three 

changes of PBS, and the appropriate secondary antibody diluted in blocking solution was applied 

was applied to the sections.  Slides were incubated for ½ hour.  Finally, slides were washed three 

more times in PBS (the final wash supplemented with 0.1% Tween-20) and mounted in Vec-

tashield plus DAPI (Vector Labs, Burlingame, CA). 

Epifluorescent and Hoffman Modulation Contrast microscopy was performed on an in-

verted Nikon TE200 microscope outfitted with dry 10X, 20X and 40X Plan-Apochromat objec-

tives (Nikon, Melville, NY).  Images were obtained using a SPOT RT CCD camera running 

SPOT Advanced software (Diagnostic Instruments, Sterling Heights, MI).  Image analysis was 

performed using Photoshop 7.0 and Illustrator CS 2(Adobe Systems Inc., San Jose, CA). 

  

Bone marrow isolation and primary culture 

To obtain collagenase-released marrow stromal cells (CR-MSC), mice as described 

above were sacrificed by administration of a lethal dose of isoflurane anesthetic or by carbon di-

oxide asphyxiation.  Femurs and tibias were aseptically collected into a 50 mL conical tube (BD 

Biosciences, San Jose, CA) filled with 5 mL of Dulbecco’s Modified Eagle Medium (DMEM) 

with 25 mM HEPES buffer (EmbryoMax, Millipore Biosciences, Temecula, CA).  Using a ster-

ile, porcelain mortar and pestle (CoorsTek, Golden, CO) the bones were mechanically disrupted 

for 10-15 seconds.  Following this, the resultant cell suspension was aspirated and fresh medium 

was added.  This procedure was repeated for three total iterations.  The remaining bone chips 

were flushed with PBS over a 40 μm nylon mesh cell strainer (BD Biosciences, San Jose, CA) 

and placed in a 100 mm tissue culture-treated Petri dish (BD Biosciences, San Jose, CA). 
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In order to dissociate cells from the bone chips, a collagenase solution consisting of 200 

activity units/mL crude collagenase CLS-2 (Worthington Biochemical, Lakewood, NJ) was pre-

pared in DMEM and sterilized via 0.22 μm syringe filtration.  20 mL of this solution was added 

to the bone chips and the dish was incubated for two hours at 37°C in 5% carbon dioxide.  This 

slurry was mechanically triturated via serological pipet 2-3 times during this period. 

Following incubation, approximately 30 mL of CR-MSC medium was added to the slurry 

and mechanically triturated via serological pipet.  This medium consisted of DMEM/HEPES + 

10% characterized fetal bovine serum (Hyclone, Logan, UT) supplemented with 100 U/mL peni-

cillin, 100 μg/mL streptomycin, and 250 ng/mL amphotericin B (all Invitrogen, Carlsbad, CA).  

A single-cell suspension was obtained by straining the solution through 40 μm nylon mesh, and 

the cells were pelleted in a swinging-bucket centrifuge at 400 x g for ten minutes.  The cells were 

washed twice with 50 mL volumes of PBS, centrifuging between each wash, and finally resus-

pended in CR-MSC medium.  Cells were plated onto tissue culture-treated surfaces in either 100 

mm Petri dish or one or two well LabTek Chamberslides II (Nalge Nunc International, Rochester, 

NY) configurations, and incubated at 37°C at 5% CO2. 

24 to 36 hours following initial plating, medium and non-adherent cells were aspirated 

and the remaining adherent cells were vigorously washed with a single aliquot of PBS, after 

which a complete medium change was performed.  Following this, complete media changes were 

performed every other day.  Cells were not passaged until preparation for flow cytometric analy-

sis or RT-PCR. 

 

Cell lines 

The immortalized inner medullary collecting duct (IMCD) mouse cell line (49) was ob-

tained from the American Type Culture Collection.  Cells were grown at 37°C in 5% carbon di-

oxide in IMCD medium, which consisted of 50% DMEM / 50% Ham’s F12 Medium supple-

mented with 10% heat-inactivated fetal bovine serum, 100 U/mL penicillin, 100 μg/mL strepto-
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mycin, and 250 ng/mL amphotericin B (all Invitrogen, Carlsbad, CA).  Cells were passaged at an 

approximate ratio of 1:5 every 3 days using 0.05% trypsin-EDTA.   

The immortalized mouse fibroblast cell line 3T3 was obtained from the American Type 

Culture Collection.  Cells were grown at 37°C in 5% carbon dioxide in complete medium, which 

consisted of DMEM supplemented with 10% heat-inactivated fetal bovine serum, 100 U/mL 

penicillin, 100 μg/mL streptomycin, and 250 ng/mL amphotericin B (all Invitrogen, Carlsbad, 

CA).  Cells were passaged at an approximate ratio of 1:3 every 3 days using 0.05% trypsin-

EDTA.   

IMCD and 3T3 cells were used variously as positive and negative controls for reverse-

transcriptase Polymerase Chain Reaction (RT-PCR) experiments as well as immunofluorescence 

cytology controls. 

 

Immunofluorescence cytology 

 Adherent cells (including CR-MSC and appropriate controls) to be analyzed using im-

munofluorescence markers were stained after 7-14 days of growth on Chamberslides.  Media was 

aspirated and the slides were washed once in PBS, and then fixed for exactly five minutes with 

ice-cold 100% methanol, followed by a second wash in PBS.  Afterwards, the protocol described 

above for immunofluorescent staining following in situ hybridization was applied, with excep-

tions noted below. 

Primary antibodies used for staining cultured cells included: mouse monoclonal anti-pan-

cytokeratin (clone C-11, Sigma-Aldrich, St. Louis, MO) used at 1:100 dilution; mouse mono-

clonal anti-ZO-1 (clone R40.76, Chemicon, Temecula, CA) used at 1:200 dilution; and rat mono-

clonal anti-mouse CD45 (clone 30.F11, BD-PharMingen, San Jose, CA).  Alexa Fluor 488 and 

594-conjugated goat anti-mouse and goat anti-rat, were used at 1:200 dilution as secondary im-

munoreactants.  Note that the use of mouse primary antibodies on mouse tissues necessitated the 

addition of a step to block mouse IgG non-specifically binding to mouse tissue.  This was ef-
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fected by increasing the blocking time, when applicable, to 75 minutes, adding goat anti-mouse 

Fab fragments (Jackson Immuno Research, West Grove, PA) at a concentration of 5 μg/mL for 

the final 60 minutes of the blockade step. 

 

RT-PCR 

 RT-PCR experiments were pursued in order to analyze expression of epithelial and mes-

enchymal genes on a message level.  All RT-PCR experiments were performed with the assis-

tance of Jiankan Guo, PhD.  Cells to be isolated for RT-PCR were prepared from CR-MSC, 3T3 

and IMCD cells grown as above.  Colonies of 100-150 CR-MSC (on day 14 of growth) were iso-

lated using plastic cloning cylinders and detached from the tissue culture surface with 0.25% 

trypsin-EDTA (Invitrogen, Carlsbad, CA).  Cells were pelleted via microcentrifuge and then ho-

mogenized using QIAshredder columns (Qiagen, Hilden, Germany) according to the manufac-

turer’s instructions.  Total cellular RNA was then prepared using RNeasy Mini kits (Qiagen, Hil-

den, Germany) according to provided instructions, and eluted in 30 μL of buffer. 

 Following the isolation of total cellular RNA, a reverse transcription (RT) reaction was 

undertaken.  Each reaction was prepared in an 0.8 mL thin-walled microcentrifuge tube, to which 

were added the following: 

• Mixed dNTPs, 2mM         1 μL 
• 5X RT-PCR buffer        4 μL  
• Dithiothreitol, 0.1 mM        0.2 μL 
• Random primers, 3 μg/μL        0.5 μL 
• Total cellular RNA        1 μL 
• DEPC-treated dH2O        13 μL 
• Superscript RT, 200 units/μL        1 μL 
 

After addition of the RT and vortexing to mix, the reaction mixture was incubated at 42°C for one 

hour, followed by a five minute incubation at 95°C to inactivate the RT enzyme.  Resulting 

cDNAs were frozen at -80°C. 

 Standard PCR and subsequent gel electrophoresis were performed to amplify and exam-

ine specific cDNAs of interest.  PCR primers were designed using the ENSEMBL genome 
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browsing software available on the Internet at http://www.ensembl.org/Mus_musculus/index.html 

(50).  Primers were designed to span adjacent exons so only messenger RNA would be amplified.  

Sequence uniqueness was verified using the NCBI Basic Local Alignment Search Tool available 

at http://www.ncbi.nlm.nih.gov/BLAST/ (51).  Primer pairs included the following: 

 Forward primer Reverse primer 
Cytokeratin-8 TCA AGA ATA AGT ATG AGG AT AGA CTC CAG CCT GCT CTC CT 
Vimentin GCA CGA TGA AGA GAT CCA GG AGA AAT CCT GCT CTC CTC GC 
E-cadherin CTG GGC AGA GTG AGA TTT GA CCT GTT GGA TTT GAT CTG AAC C 
Fsp-1 CTT GGT CTG GTAC TCA ACG GT TCT GTC CTT TTC CCC AGG AAG 
 
Forward and reverse primers for the β-actin gene, which served as a positive reaction control, 

were thoughtfully provided by Jiankan Guo.   

PCR reactions were prepared in thin-walled tubes, to which were added the following reagents: 

• Sigma REDTaq ReadyMix (Sigma-Aldrich cat. #R2523)    12.5 μL 
• Forward primer (0.5 μM)       0.5 μL 
• Reverse primer (0.5 μM)       0.5 μL  
• Template cDNA        1 μL 
• RNAse-free H2O        10.5 μL 
 

 The PCR was run in a Peltier thermal cycler using the following protocol: 

step   
1 94°C 2 minutes 
2 94°C 30 seconds 
3 5°C 30 seconds 
4 72°C 30 seconds 
5 Steps 2-4 35 cycles 
6 72°C 5 minutes 
7 4°C indefinitely 
 
PCR products were subjected to agarose gel electrophoresis on a 2% agarose/TAE gel 

supplemented with Gel-Star (Cambrex, East Rutherford, NJ) at a dilution of 1:10000 as 

recommended.  Visualization of bands was accomplished using a Kodak Gel Logic ultra-

violet transilluminator and computerized gel acquisition system (both Kodak Molecular 

Imaging, New Haven, CT). 
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RESULTS 

 

Bone marrow contribution to renal repair 

We first set out to determine the contribution to regenerating tubular epithelium by bone 

marrow cells using the Y-chromosome FISH procedure.  We speculate that the number of tubule 

epithelium cells observed as positive using this procedure will be more representative of the true 

rate of contribution than the problematic β-galactosidase transgene model, which may not ade-

quately report a true proportion of donor-derived kidney cells.   

To quantify the sensitivity and specificity of the Y-chromosome FISH stain, control 

mouse male kidney sections were subjected to Y-chromosome FISH and examined microscopi-

cally (Figure 2).  Y-chromosome-positive nuclei were identified by direct visualization of in-

tranuclear signal in the red channel with a corresponding lack of non-specific signal in the green 

and blue channels. 

 

FIGURE 2.  Y-chromosome FISH stain, male mouse kidney, 100X total magnification.  
Approximately 59% of nuclei have a visible Y-chromosome FISH signal.  No Y-
chromosome containing cells were observed in female kidney sections stained with the 
FISH probe. 
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Unsurprisingly, no Y-chromosome-positive nuclei were observed in any of the female kidney 

sections examined.  Examination of approximately 1400 total nuclei across several high powered 

fields of male kidney revealed that 59% of all nuclei contained visibly staining Y-chromosomes.  

This corresponds with previously published reports of Y-chromosome FISH efficacy. 

 To determine the contribution of bone marrow cells to regenerating kidney tubules fol-

lowing ischemic injury, co-localization experiments were performed.  Following radiologic bone 

marrow ablation and unilateral ischemia/reperfusion injury, female recipient mice underwent 

transplantation via intravenous infusion of 0.5 x 106 lineage-depleted male bone marrow cells.  

These animals were sacrificed after seven days and their kidneys examined for donor cell contri-

bution.  The proximal and distal tubules were identified via positive staining with antibodies 

against the brush border protein megalin (specifically expressed by proximal tubular epithelium) 

as well as Tamm-Horsfall protein which is specifically expressed by the TAL.  Colocalization of 

Y-chromosome signal and tubular epithelial markers was noted in both the kidneys subjected to 

ischemic injury as well as the contralateral (uninjured) kidney (Figures 3-4). 
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FIGURE 3.  A. Megalin and Y-chromosome FISH colocalization micrograph, uninjured 
kidney, 100X.  Y-chromosome FISH signal is shown in red; megalin in green, and nuclei 
(DAPI) in blue.  The arrow denotes a rare Y-chromosome positive nucleus that appears to 
lie within the basement membrane of proximal tubular epithelium.  B.  Same micrograph 
as 3A. with Hoffman Modulation Contrast image overlaid, more clearly showing tubular 
basement membrane designating the borders of the tubular basement membrane.  C.  
Megalin and Y-chromosome FISH colocalization micrograph, injured kidney, 200X.  ; 
The arrow denotes a rare Y-chromosome positive nucleus that appears to lie within the 
basement membrane of proximal tubular epithelium, and arrowheads denote the more 
frequent Y-chromosome positive nuclei that lie within the interstitium.  D.  Same micro-
graph as 3C. with Hoffman Modulation Contrast image overlay. 
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FIGURE 4.  A.  Tamm-Horsfall protein and Y-chromosome FISH colocalization, injured 
kidney, 200X.  Y-chromosome FISH signal is shown in red, Tamm-Horsfall protein 
staining in green, and nuclei (DAPI) in blue.  The arrow denotes a Y-chromosome posi-
tive nucleus that appears to lie within the margins of THP staining.  Arrowheads denote 
Y-chromosome positive cells lying immediately subjacent to but definitively outside 
THP-positive tubules.  B.  Same photomicrograph as Figure 4A overlaid with Hoffman 
Modulation Contrast image to better delineate the tubular basement membrane. 

 
Infrequently, donor bone marrow-derived cells were found within the tubular epithelial layer, 

primarily in the outer stripe of the medulla.  It is apparent from the included representative pho-

tomicrographs that colocalization of the Y-chromosome and tubular markers was a relatively rare 

finding in these analyses, even in the kidneys subjected to ischemia/reperfusion injury.  The con-

tralateral, uninjured kidneys in some cases contained Y-chromosome positive cells, but even 

more infrequently were cells found that also appeared within the tubular epithelium. In both in-

stances, we quantitated the number of tubules that contained at least one Y-chromosome positive 

tubular epithelial cell.  The analysis was conducted across several randomly-chosen high-powered 

fields located in the outer medullary stripe in both injured and control kidneys from two different 

timepoints post-transplantation (Figure 5). 
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FIGURE 5.  Proportion of stained tubules containing a Y-chromosome positive 
cell within the tubule epithelium at seven (A) or 14 (B) days post-transplant.  The 
number of “double positive” tubules in both series was extremely low, and no sig-
nificant difference was observed between proximal (megalin-positive) and distal 
(THP-positive) tubules, nor between injured and uninjured (control) sections. 

 

The proportion of tubules containing Y-chromosome positive cells was considerably less than the 

percent donor-derived tubules in our group’s previous experiments utilizing transplantation with 

β-galactosidase-positive bone marrow.  The total (megalin-positive or proximal and THP-positive 

or distal, combined) number of tubules containing Y-chromosome positive nuclei was 2.6% to 

3.1% of all outer stripe tubules visualized.  When this number is corrected for the assay’s inherent 

sensitivity of 59%, approximately 4.4 to 5.3% of all tubules were estimated to contain cells of 

donor origin.  Determination of whether a particular nucleus containing a Y-chromosome FISH 

signal could be localized to the inside or outside of the tubule basement membrane was extremely 

difficult by epifluorescence microscopy, and these figures represent a generous assessment of all 

possible nuclei that appeared to lie within the basement membrane.   

There appeared to be no significant difference between contribution to proximal and dis-

tal tubules.  Although control kidneys had overall fewer Y-chromosome positive nuclei resident 

in tubules than injured kidneys, this difference is also not significant.  Anecdotally, donor contri-
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butions to kidney epithelium were highest in the outer stripe of the medulla, and were not visual-

ized in the inner medulla or cortex. 

From this series of experiments we concluded that bone marrow contribution to tubule 

epithelium could likely occur, but that it was a rare phenomenon.  We estimate that less than 

0.01% of total kidney epithelial cells in injured kidneys were derived from bone marrow (7).  

This finding contrasts with our group’s previous data showing up to 20% of tubules contain bone 

marrow-derived cells.  This discrepancy is likely explained by the non-specific nature of the β-

galactosidase reporter gene as an effective screen of donor vs. recipient cells in this context.  We 

also speculate that this sparse contribution of bone marrow cells is unlikely to produce the func-

tional/laboratory amelioration of the acute renal failure observed following bilateral ische-

mia/reperfusion injury. 

`The vast majority of Y-chromosome positive cells we visualized were located between 

tubules, in the interstitial spaces of the kidney parenchyma.  Often, these cells were found closely 

apposed to the basolateral surface of the tubule, just outside the basement membrane.  These cells 

were always present in far greater numbers than Y-chromosome positive tubular epithelial cells.  

It is speculated that the functional amelioration of acute renal failure alluded to above might be 

due in part to bone marrow cells engrafting in the interstitium and exerting a paracrine or trans-

acting effect on regenerating tubular epithelium.  To rule out a simple inflammatory reaction, we 

examined kidney sections of mice sacrificed twelve weeks following transplantation (to allow the 

vigorous inflammatory response provoked by ATN to subside).  Sections were subjected to Y-

chromosome FISH followed by indirect immunofluorescent staining with a cocktail of antibodies 

directed against hematopoietic lineage antigens, to enumerate inflammatory cells (Figure 6). 
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FIGURE 6.  A.  Injured kidney 12 weeks status-post bone marrow transplantation, 200X.  
Y-chromosome staining is shown in red; lineage markers in green; nuclei (DAPI) in blue.  
Sporadic lineage-positive donor-derived cells are observed (arrows) but the majority of 
donor-derived cells lie clearly in the tubule interstitium (arrowheads).  The asterix de-
notes a glomerulus.  B.  Same photomicrograph as 6A. but with Hoffman Modulation 
contrast image overlay. 
 

After the inflammatory reaction is allowed to subside, the majority of interstitial donor-derived 

cells are lineage-negative.  As expected, no lineage-positive tubular cells were observed.  Line-

age-positive interstitial inflammatory cells are unlikely to mediate the renoprotective effect of 

infusion of bone marrow cells, so it is postulated that another type of bone marrow-derived resi-

dent cell is responsible for this effect. 

 

In vitro expansion of epithelial cells derived from bone marrow 

 A second series of experiments undertaken by our group attempted to expand and charac-

terize epithelial cells in vitro from a bone marrow preparation.  A member of our group had ser-

endipitously grown a colony of epithelioid cells from bone marrow previously (Figure 7) but 

these results were not pursued.  This was intriguing because, apart from endothelium, there are no 

epithelial cells located within bone or bone marrow (stromal elements are mesenchymal and ap-

pear fibroblastic in liquid culture, and hematopoietic cells are generally round mononuclear or 

polynuclear cells).  The concept of epithelial cells able to be easily expanded from accessible 
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specimens would also give further insight into whether the sparse bone marrow contribution to 

regenerating tubular epithelium could be further augmented. 

 

FIGURE 7.  A. and B.  Epithelioid colonies via Hoffman Modulation Contrast micros-
copy, 40X and 100X total magnification.  While some cells appear to be fibroblastic and 
thus similar to mouse MSC (arrows) the majority of the cells are epithelioid, polygonal-
shaped cells that make what appear to be tight junctions with adjacent cells. 

 
These cells appear to form a contiguous epithelial layer with apparent tight junctions between 

adjacent cells, with occasionally interspersed triangular or fibroblast-like cells (with pseudopod 

extension).  It was unclear whether these cells represented a clonal population derived from a sin-

gle undifferentiated bone marrow cell, or whether this was simply a novel, undescribed shape 

taken on by the normally-triangular fibroblast cells grown from mechanically-dissociated bone. 

Using these results as a guideline, we empirically created and optimized a protocol for 

isolating these collagenase-released MSC (CR-MSC), described in detail in this report.  In brief, 

bones from juvenile mice were mechanically dissociated using a mortar and pestle, and the result-

ing bone chips were subjected to crude collagenase digestion for two hours.  The cells were then 

washed and plated in fetal bovine serum-containing medium for 5+ days without passaging. 

From these preparations, we were routinely able to identify colonies of epithelioid cells 

among plates containing largely groups of fibroblastic cells.  The colonies were first visualized on 

day #3 of culture.  Attempts to subculture the colonies via trypsinization and passage were unsuc-



30  

cessful, as only fibroblastic cells and no epithelioid colonies could be identified on plates follow-

ing passage.  As previously, these cells were polygonal and closely apposed to adjacent epithelial 

cells; also appreciated were fibroblastoid cells at the periphery of the colony (Figure 8). 

 

FIGURE 8.  Hoffman Modulation Contrast photomicrographs of CR-MSC at various 
stages of growth (day #3, day #5, day #5, day #5).  Rapid growth of large colonies of 
relatively homogeneous cells was observed, with the notable presence of fibroblast-like 
cells at the periphery of the colonies.  The highly refractile cells present in image C may 
represent non-specific binding of contaminant hematopoietic cells such as macrophages 
to the free surface of these cells. 

 
We attempted to verify the epithelial nature of these cells using immunofluorescent cytometry 

against the epithelial marker cytokeratin, an intermediate filament cytoskeleton protein present in 
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all epithelial cells, as well as the tight junction protein ZO-1.  Since macrophages are also known 

to assume an epithelial conformation when undertaking a granulomatous response, staining 

against the pan-hematopoietic marker CD45 was performed as well (Figure 9). 
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FIGURE 9.  Immunofluorescence cytology.  IMCD cells and CR-MSC versus pan-
cytokeratin (A and B); IMCD cells and CR-MSC versus ZO-1 (C and D); whole mouse 
bone marrow cells and CR-MSC versus CD45 (E and F).  No positive, specific staining 
was seen for either of the two epithelial markers despite clear staining in the positive-
control IMCD cells.  Likewise, CR-MSC were revealed to be CD45 negative. 

 
This surprising set of negative results suggested that despite the epithelial appearance, CR-MSC 

may not be fully-differentiated epithelial cells and instead could be an odd physical conformation 

of mesenchymal cells, possibly brought upon by artificial (collagenase treatment) manipulation.  

To test this theory, we performed expression analysis using RT-PCR to assay for expression of 

common epithelial and mesenchymal markers.  We chose the epithelial cytoskeleton protein cy-

tokeratin-8 and the zonula occludens constituent E-cadherin, which are universally expressed in 

epithelial cells; as well as the mesenchymal intermediate filament protein vimentin and the fibro-

blast-specific protein FSP-1 (52).  Total cellular RNA was isolated from control (IMCD epithelial 

cells and 3T3 fibroblasts) cells as well as CR-MSC, and a reverse transcription reaction was per-

formed to synthesize cDNAs.  PCR primers were specifically chosen to span adjacent exons in 

order to amplify only messenger RNA.  The resulting PCR products were subjected to agarose gel 

electrophoresis (Figure 10). 

Despite the inconsistent expression of the control IMCD cells in these samples which 

may be due to hitherto uncharacterized de-differentiation of this immortalized cell line, it is clear 

that CR-MSC have an expression profile quite similar to that of fibroblasts and dissimilar to an 

epithelial phenotype.  No assayed epithelial markers were expressed, and the mesenchymal 

marker vimentin as well as the fibroblast-specific marker fsp-1 were both expressed.  This effec-

tively verifies our immunofluorescence cytology data in that these cells are likely fibroblasts with 

an altered appearance on plastic tissue culture dishes rather than a novel population of epithelial 

cells.   
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FIGURE 11.  A.  RT-PCR versus cytokeratin (and the housekeeping gene actin) on 
IMCD, CR-MSC and 3T3 RNA.  Only IMCD cells express cytokeratin; CR-MSC and 
3T3 cells do not.  B.  RT-PCR versus vimentin, fsp-1, E-cadherin (Ecdhn), and actin on 
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IMCD, CR-MSC (colony) and 3T3 RNA.  IMCD and 3T3 cells appear to express both 
vimentin and fsp-1 in addition to the CR/MSC sample; this likely represents accidental 
contamination of the IMCD sample as these are known to have an epithelial phenotype.  
Likewise, the weak expression of E-cadherin in 3T3 cells may be non-specific amplifica-
tion.  Most importantly, CR-MSC express the mesenchymal proteins vimentin and fsp-1 
and lack expression of E-cadherin. 

 

In order to verify our suspicion that this population of cells freely exchanges with fibro-

blasts in liquid culture, we photographed the cells using time-lapse photography for 14 consecu-

tive hours while growing at 37°C in 5% CO2.  These data are available in the included supple-

mental data on CD-ROM and in the Yale Medicine Thesis Digital Library located at 

http://ymtdl.med.yale.edu/.  In this time-lapse clip, an epithelioid colony is shown.  At the periph-

ery of the colony, fibroblastic cells are clearly shown migrating toward the colony and retracting 

their pseudopods, eventually becoming closely apposed to the epithelioid cells.  Likewise, epi-

thelioid cells are seen to extend pseudopods and migrate rapidly away from the colony.  This free 

interplay between epithelioid and fibroblastic cellular morphology is further support for a single, 

mesenchymal origin of this cell population as opposed to a novel epithelial population from this 

mesenchymal tissue. 
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DISCUSSION 

 

To assay for bone marrow contribution to renal repair following ischemia/reperfusion in-

jury, we transplanted female mice with male bone marrow prior to injuring the kidney with me-

chanical interruption of the renal vascular pedicle.  After 7-14 days we examined thin sections of 

the kidneys using colocalization of immunofluorescence and in situ hybridization signals.  Our 

experimental results indicate that bone marrow contribution to the regenerating kidney tubular 

epithelium is rarely observed, and that the majority of donor-derived cells in injured kidneys are 

actually localized to the interstitium.  This leads to the conclusion that the cells actually responsi-

ble for renal regeneration are likely to be intrinsic renal cells, and that contribution from the bone 

marrow constitutes a definite but small and likely insignificant component of the regenerative 

response.   

We believe that the use of in situ hybridization to report rates of donor cell engraftment in 

the kidney is more accurate than the use of β-galactosidase (ROSA) mice, which relies on the ex-

pression of an enzyme capable of catalyzing a histochemical reaction.  To date, two groups in-

cluding our own have found a significantly higher number of donor-derived cells via the β-

galactosidase reporter system than via their own analysis of similarly transplanted mice using the 

Y-chromosome FISH system (37, 38, 53).  Notably, our previous results found no evidence of β-

galactosidase-positive interstitial cells, which sharply contrasts with our significant donor-derived 

interstitial infiltrate seen via Y-chromosome FISH.   

It is currently unclear why the Y-chromosome FISH technique is superior in these trans-

plantation and renal injury models over the β-galactosidase technique.  The β-galactosidase assay 

may have proven problematic in renal tissue due to a fixation or staining artifact.  Alternately, 

diffusion of the enzyme itself might have occurred out of inflammatory cells and into damaged 

tubules (39).  More unlikely possibilities include the β-galactosidase product itself entering the 
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vasculature and being freely filtered at the glomerulus (39), or increased intrinsic β-galactosidase 

activity of the injured tubule itself (54).   

Perhaps most interestingly, a recently-published study of bone marrow-derived cells in-

corporating into intestinal epithelium authored by Rizvi et al. has shown the potential for cell fu-

sion to occur between donor cells expressing β-galactosidase and recipient cells expressing the Y-

chromosome (55).  A significant number of enterocytes both expressing β-galactosidase and con-

taining a Y-chromosome were observed.  Several cells were seen to express β-galactosidase but 

did not contain a Y-chromosome, a phenomenon which was not observed when β-galactosidase 

and enhanced green fluorescent protein were used as donor and recipient markers, respectively.  

The authors concluded that the Y-chromosome might have been extruded subsequent to the fu-

sion event, and that because of this activity Y-chromosome analysis may have its own shortcom-

ings as a marker for transplanted cells. 

Regardless, our current results are consistent with recent scholarship in this area.  Using 

transplantation of male bone marrow followed by I/R injury, Lin et al. found only 8.3% of tubules 

(1% of tubular epithelial cells) contained a Y-chromosome positive nucleus (53).  This contrasts 

with previous results from this group using the β-galactosidase system, which revealed that up to 

80% of tubules had some donor contribution (38). The majority of donor-derived cells in the in-

jured kidney were interstitial cells, as we observed.  Another study by Herrera et al. has reported 

labeled cells making up the renal tubular epithelium in a glycerol-induced renal injury model fol-

lowed by infusion of GFP-labeled MSC (56).  Similarly, Morigi et al. demonstrate Y-

chromosome positive cells as constituents of a regenerating tubule in cisplatin-induced renal in-

jury followed by MSC infusion (45).   

A common limitation to all these studies is the use of conventional (inverted or upright) 

microscopy and staining with tubular epithelial markers to verify donor nucleus or cell localiza-

tion on the tubular aspect of the tubule basement membrane.  Personal experience has revealed to 

this author that discerning the precise location of tubule epithelial cell nuclei is difficult and often 
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uncertain.  Definitive ascertainment of the location of these rare intra-tubular donor nuclei will 

likely require three-dimensional deconvolution microscopy rather than conventional epifluores-

cent techniques.  It is entirely evident that conventional or epifluorescent light microscopy is an 

incomplete and inappropriate mechanism for adequate analysis of donor contribution to kidney 

epithelium. 

The question of whether bone marrow contributes to regenerating tubular epithelium at 

all remains controversial.  In a recent study, Duffield et al. studied Y-chromosome positive cell 

contribution to regenerating tubules in a similar experiment to ours but using three-dimensional 

deconvolution microscopy.  They found a small number of donor-derived cells that appeared to 

constitute tubular epithelium, but when examined with ultrathin deconvolution microscopy and 

staining for the endothelial antigen von Willebrand Factor the nuclei were clearly shown to be-

long to endothelial cells (54).  Likewise, a recent investigation performed by Szczypka et al. us-

ing a folic acid-induced model of renal injury yielded no evidence of donor-derived renal tubular 

cells by in situ hybridization against the Y-chromosome, although the group was able to culture 

an extremely rare population of donor-derived cells expressing the epithelial markers AT1 and 

ZO-1 (57).  It is unlikely that given these conflicting sets of data that this question will be defini-

tively resolved in the near future; it is apparent, however, that direct engraftment of bone marrow 

cells into renal tubules is not the prevalent mechanism for renal repair. 

Given the functional amelioration seen by our group following infusion of whole bone 

marrow cells, an interesting question—hopefully to be answered by future experiments—involves 

the effect of MSC infusion on renal function.  Previous data from our group demonstrated a func-

tional improvement in experimentally-induced ischemic renal failure following infusion of frac-

tionated bone marrow.  In two subsequent studies as well as unpublished data from our own 

group, this effect has been reproduced following the infusion of expanded MSC populations fol-

lowing kidney injury.  Togel et al. infused approximately 106 MSC intra-arterially into rats with 

recent bilateral I/R injury, and found significant improvements in laboratory parameters of renal 
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function as well as decreased apoptosis and injury on a histologic basis (43).  Purified fibroblasts 

were unable to reproduce this effect.  Donor-derived cells were observed only in transit through 

the kidney vasculature, and from this the authors concluded that MSC exert their renoprotective 

effect in a paracrine, trans-acting manner.  They postulate that due to the incompletely-

characterized immunomodulatory activity of MSC, a soluble anti-inflammatory factor may medi-

ate the renoprotective effect.  Similarly, Morigi et al. found significant histologic improvement 

after MSC were injected into mice whose kidneys were injured by cisplatin; this effect was not 

seen with the injection of purified HSC (45).  As mentioned above, donor-derived cells were 

found occasionally within the tubule epithelium in this study.  Most recently, a manuscript ac-

cepted for publication by Togel et al. has shown that complex paracrine interactions between en-

dothelial cells and MSC are at least in part responsible for the renoprotective effect of MSC (44). 

Even if transdifferentiation of bone marrow cells into renal tubular epithelium is a rare 

event in vivo, the clinical value of a population of expandable, easily obtained cells from bone 

marrow stroma that are capable of transdifferentiating into epithelium in vitro is unquestionable.  

To explore this possibility, we investigated a population of collagenase-released marrow stromal 

cells that appeared to assume an epithelial morphology when plated onto tissue culture vessels.  

Unfortunately, immunofluorescent and RT-PCR analysis proved that these cells expressed no 

markers of epithelial differentiation, and on time-lapse photography were seen to freely exchange 

with cells with fibroblast morphology at the edges of the colonies.  Thus we draw the conclusion 

that these cells likely represent a subpopulation of MSC that assume a serendipitously epithelioid 

phenotype without any evidence of transdifferentiation. 

Further characterization of these cells, especially to determine whether they can be in-

duced to differentiate into other mesenchymal-origin tissues and whether they too have a renopro-

tective effect when infused into mice with kidney injury, would be enlightening.  However, given 

our negative results it is unlikely that these cells represent a population of bone marrow cells with 

enhanced plasticity as described by Johnson et al. (46).   
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Certainly, since we only investigated cells derived from male mice, it could be postulated 

that the differentiative capacity of CR-MSC could be increased in females compared with males, 

but there is currently no reason to believe that there should be any difference in the makeup of 

these cells solely based on sex difference.  

In summary, using a transplantation model we found positive evidence of rare bone mar-

row contribution to regenerating kidneys, although to such a small degree that it is unlikely to 

represent a significant source of epithelial cells during the regenerative process.  We also charac-

terized a population of ex vivo bone marrow stromal cells that appeared to form epithelial colo-

nies when cultured, but upon further analysis had minimal evidence of an epithelial phenotype.
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