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ABSTRACT 
REGULATION OF SYSTEM XC- AND ITS CONTRIBUTION TO CELL DEATH 

 
 

XiaoQian Liu, B.S. 
 

Marquette University, 2012 
 
 

The main focus of the studies in this thesis involves examining the role of 
cystine/glutamate exchange (system xC-) in neuronal death in primary cortical cell 
culture, with an emphasis on how glial function affects neuronal cell death.  System xC- is 
a sodium-independent transporter that mediates cystine uptake and glutamate release.  It 
accounts for most of the cystine uptake in astrocytes in mature cultures, providing the 
rate limiting substrate for synthesis of the main endogenous antioxidant glutathione.  The 
glutamate released by system xC- may lead to excessive extracellular glutamate and cause 
excitotoxicity.   

β-N-methylamino-L-alanine (BMAA) is a non-protein amino acid that may be 
involved in neurodegenerative diseases.  We found that BMAA induced oxidative stress 
by competing with cystine at system xC- leading to depletion of glutathione.  BMAA also 
drives system xC- mediated glutamate release, which may contribute to its induction of 
excitotoxicity.   

Fibroblast growth factor-2 (FGF-2) is involved in multiple processes in the central 
nervous system, including plasticity, neurogenesis, differentiation, and neuronal survival.  
Also, alterations in FGF-2 and its signaling have been implicated in neurodegenerative 
diseases and psychiatric disorders.  We found that FGF-2 greatly increased cystine uptake 
through system xC- in astrocyte-enriched primary cultures, but not in neuronal or 
microglial cultures.  Our data showed that FGF-2 increased cystine uptake by 
upregulating system xC- by acting on FGFR1, and signaling through the PI3K/Akt and 
MEK/ERK pathways.   

FGF-2 treatment for 48 hours caused significant neuronal death only in mixed 
neuronal and glial cultures, but not in neuronal-enriched or astrocyte-enriched cultures.  
Blocking system xC-, or AMPA/kainate receptors, eliminated the neuronal death induced 
by FGF-2 treatment.  Therefore, it is likely that 48 hour FGF-2 treatment induces AMPA 
receptor mediated toxicity through increased glutamate release from astrocytes due to 
increased system xC- function.  However, we cannot exclude the possibility that FGF-2 
treatment sensitizes the neurons to normal system xC- mediated glutamate release.   

Together the results indicate that 1) competitive substrates of system xC-, such as 
BMAA, that do not lead to glutathione production are particularly toxic; and 2) 
upregulation of system xC- on astrocytes may be toxic to surrounding neurons.   
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GENERAL INTRODUCTION  
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OVERVIEW 

The brain is an extremely complex organ with complicated and specific 

interactions between multiple cell types and regions.  However, neuroscience research 

has historically focused primarily on neurons.  Glial cells have been traditionally 

considered as merely supporting cells.  In the last couple of decades, as our knowledge of 

the glial cells has dramatically expanded, we now know that the function of glial cells 

extends far beyond just supporting neurons.  Growing evidence suggests that neuronal 

and glial cells communicate through neurotransmitters, neuromodulators, and growth 

factors, and this bidirectional communication is critical for normal function of the brain.   

The aim of this thesis is to explore the interaction between neurons and glia, and 

how that interaction regulates neuronal fate, with a particular emphasis on the 

involvement of the cystine/glutamate antiporter (system xC-) (Fig. 1.1).  System xC- is 

mainly expressed on astrocytes and it is the main route of cystine uptake in these cells.  

This cystine uptake is the critical step in synthesizing the major antioxidant glutathione.  

Astrocytes then release glutathione, and other cysteine containing molecules, to supply 

neurons with cysteine for them to produce glutathione.  With every molecule of cystine 

uptake into the astrocytes, one molecule of glutamate is exchanged out of the cell.  This 

extrasynaptic, nonvesicular, release of glutamate not only serves to regulate synaptic 

function, but also when excessive, can over-activate glutamatergic receptors on the 

neurons to cause excitotoxicity.  Both oxidative stress and excitotoxicity have been 

implicated in various neurodegenerative diseases, as well as psychiatric disorders.  Thus, 

it is possible that system xC- plays a role in these diseases.   
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FIGURE 1.1.  Schematic diagram illustrating the function of system xC- and the 
interaction between neuron and astrocyte. 

C: cysteine, CC: cystine, Glu: glutamate, GSH: glutathione, EAAT: excitatory amino acid 
transporter 
 
 

Several pathways that are involved in system xC- regulation have been identified.  

However, the effects of changing system xC- function are not well understood.  Since 

targeting system xC- as a treatment for various brain disorders is being considered, it is 

very important to achieve a full understanding of system xC- function and regulation, as 

well as the consequences of changing its activity.   
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GLUTAMATE NEUROTRANSMISSION 

Glutamate is the most important excitatory neurotransmitter in the brain (Fonnum, 

1984).  It is also a precursor for the most important inhibitory neurotransmitter GABA 

(Petroff, 2002; Schousboe and Waagepetersen, 2007), and is a component of glutathione,   

one of the major antioxidants in the brain (Meister and Anderson, 1983; Dringen et al., 

2000).  Glutathione can be synthesized de novo from glucose in astrocytes via the Krebs 

cycle, leading to the release of glutamine from astrocytes, which is taken up by neurons 

and hydrolyzed into glutamate by glutaminase (Erecińska and Silver, 1990).  Glutamate 

can activate a large family of receptors existing on neurons and astrocytes leading to 

signal transmission.   

 
Glutamate receptors 

Glutamate signal transmission is mediated by release of glutamate and activation 

of various glutamatergic receptors.  Generally, as illustrated in Fig. 1.2, glutamatergic 

receptors can be divided into ionotropic receptors and metabotropic receptors.  Ionotropic 

receptors include N-methyl-D-Aspartate (NMDA) receptors and 2-amino-3-(5-methyl-3-

oxo-1,2- oxazol-4-yl)propanoic acid (AMPA)/kainate receptors, while metabotropic 

glutamate receptors (mGluRs) can be further divided into three subgroups.  Specific 

receptors and their properties are briefly described below (for a detailed review see 

(Dingledine et al., 1999)).   
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FIGURE 1.2.  Glutamate receptor subtypes 
(From (Niciu et al., 2012)) 
 

AMPA/Kainate receptors 

AMPA receptors are another family of glutamatergic receptors that are 

characterized by low affinity (EC50 ~ 500 µM) (Lomeli et al., 1994; Mosbacher et al., 

1994; Schoepfer et al., 1994).  AMPA receptors are heterotetrameric receptors  composed 

of four subunits (GluR1-4) (Alt et al., 2004).  Unlike the other GluRs, GluR2 has a Q/R 

site (uncharged glutamine/positively charged arginine) located in the pore of the channel.  

Physiologically almost all of the GluR2 subunits are edited to the R form, which makes 

the receptor impermeable to calcium (Jonas et al., 1994; Petroff, 2002; Schousboe and 

Waagepetersen, 2007).  Therefore, while all AMPA receptors are permeable to sodium 

and potassium, GluR2 lacking AMPA receptors are also calcium permeable (Meister and 

Anderson, 1983; Dringen et al., 2000; Clem and Barth, 2006), which awards these 

intriguing features of ionotropic glutamate receptors is their diversity of
channel properties based on subunit composition and expression profile
in the mammalian brain.

5.1.1. NMDA receptors
NMDA receptors have the highest affinity for glutamate (EC50 1 μM).

Three families of NMDA receptor subunits have been identified: (1)
NR1, (2) NR2A-D and (3) NR3A-B. Via in situ hybridization studies, NR1
expression appears to be ubiquitous and obligatory in the brain; it is
critical for neurodevelopment, as NR1 knockout mice die shortly after
birth due to respiratory demise. Interestingly, hippocampal CA1-specific
NR1-knockout mice display grossly normal development but impaired
long-termpotentiation (LTP), themolecular and electrophysiological cor-
relate of learning and memory in CA1 hippocampal pyramidal neurons
and impaired spatial memory in the Morris water maze (Tsien et al.,
1996). NR2 mRNA displays differential expression and appears to be
developmentally-regulated (Monyer et al., 1994). NR2A expression pre-
dominates in the neocortex and hippocampus while NR2B is primarily
expressed in the forebrain. In contrast, NR2C and NR2D are intensely
expressed in the cerebellum and diencephalon/lower brain stem
(Nakanishi, 1992). NR3A is predominantly expressed in the neocortex
and displays neurodevelopmental regulation; dysregulated NR3A devel-
opment has been proposed to contribute to the pathogenesis of schizo-
phrenia (Das et al., 1998; Henson et al., 2008). Finally, NR3B mRNA
expression is evident in the brainstem and alphamotor neurons of spinal
cord (Chatterton et al., 2002; Matsuda et al., 2003; Matsuda et al., 2002;
Nishi et al., 2001). More recently, NR3B has been detected in the cerebel-
lum and hippocampus (Andersson et al., 2001; Bendel et al., 2005).

NMDA receptors are among the most tightly regulated in the
mammalian brain and unique in requiring co-agonists for activation. At
least six binding sites have been identified that regulate the
probability of ion channel opening, viz., sites for two obligatory co-
ligands (glutamate and glycine), polyamines and cations (Mg2+, Zn2+

and H+). NMDA receptor ligands are short-chain dicarboxlic amino
acids (NMDA, glutamate, aspartate, etc.). Glutamate, the most potent
neurochemical agonist identified in the CNS, and several competitive
antagonists of the NMDA receptor including D-2-amino-5-phosphono-
pentanoic acid (D-AP5) and 3-(2-carboxypiperazin-4-yl)1-propeny-1-

phosphonic acid (2R-CPPene) bind to the NR2 subunit of the tetrameric
receptor complex. In contrast, glycine binds to a site on the NR1 subunit
(Dingledine et al., 1999; Kleckner and Dingledine, 1988). The glycine-
binding site on the NR1 subunit has gained clinical significance due to
D-cycloserine's binding at the same glycineB site. D-cycloserine is a par-
tial agonist that has beenproposed as a novel neuromodulatory agent to
enhance the efficacy of evidence-based psychotherapies like exposure
and response prevention in anxiety disorders (Danysz and Parsons,
1998; Krystal et al., 2009; Sheinin et al., 2001). Glycine transport re-
quires the activity of specific glycine transporters (GlyT). Two such
transporters have been identified to date, GlyT1 andGlyT2. Recent stud-
ies suggest GlyT inhibitorsmayprovide an efficacious augmenting strat-
egy in treatment-refractory schizophrenia (Lane et al., 2006; Lane et al.,
2010).

Extracellular Mg2+ acts as an open-channel, voltage-dependent
“pore blocker” to preclude cation flux (Nowak et al., 1984). Interestingly,
Zn2+, while also a divalent cation, does not block the pore of the NMDA
receptor. Instead, Zn2+ is an important allosteric modulator of some glu-
tamate receptors and colocalizes to synaptic vesicles and is co-released
with glutamate in select populations of synaptic vesicles, which possibly
provides an additionalmechanism to regulate glutamate receptor activa-
tion. Several additional NMDA receptor antagonists also exert their influ-
ence in an analogous voltage-dependent manner, e.g. phencyclidine
(PCP), ketamine and MK-801. These noncompetitive antagonists have
recently garnered significant attention both for their psychotomimetic
(Balla et al., 2001; Javitt, 2007; Javitt et al., 2004; Krystal et al., 1994;
Moghaddam and Adams, 1998; Patil et al., 2007; Umbricht et al., 2000)
and rapidly-acting antidepressant-like properties (aan het Rot et al.,
2010; Berman et al., 2000; Diazgranados et al., 2010; Mathew et al.,
2009; Price et al., 2009; Valentine et al., 2011; Zarate et al., 2006).

Hydrogen ions (H+) are also critical endogenous allosteric modula-
tors of glutamate receptors. At physiological pH, the presence of H+

decreases the frequency of channel opening due to H+ binding to
NR2B. The polyamine regulatory sites of ionotropic glutamate receptors
also play an important pH-dependent modulatory role. The binding of
polyamines (spermine, spermidine) relieves the H+-mediated block
and increases cation flux; however, the effect of polyamines reverses
at higher concentrations (Traynelis et al., 1995). These pH-dependent

Fig. 2. Glutamate receptor subtypes.

659M.J. Niciu et al. / Pharmacology, Biochemistry and Behavior 100 (2012) 656–664
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receptors the important property of increasing intracellular calcium levels when they are 

activated (Erecińska and Silver, 1990; Schneggenburger et al., 1993).   

Kainate receptors are tetramers of GluR5, GluR6, GluR7, KA1, and KA2 

(Dingledine et al., 1999).  Similar to AMPA receptors, they are ion channels that are 

permeable to sodium and potassium (Dingledine et al., 1999; Niciu et al., 2012).  

However, the functions of kainate receptors are not well defined.   

 
NMDA receptors 

NMDA receptors are another important ionotropic receptor subtype that are 

usually heteromers of GluN1 and GluN2 (GluN2A, GluN2B) subunits in mature brain 

(Béhé et al., 1995; Premkumar and Auerbach, 1997).  Compared to AMPA receptors, 

NMDA receptors are characterized by a high affinity (EC50 ~1 µM) for glutamate 

(Patneau and Mayer, 1990; Burnashev et al., 1995).  However, under physiological 

conditions, they are normally blocked by magnesium at negative membrane potential 

(Nowak et al., 1984).  During normal synaptic activity, AMPA receptors must be 

activated first to depolarize the cell membrane, which removes the magnesium block 

(Nowak et al., 1984; Dingledine et al., 1999).  NMDA receptor activation also requires 

binding of a co-agonist, such as glycine or D-serine (Johnson and Ascher, 1987; Schell et 

al., 1995).  NMDA receptors are nonspecific cation channels that are permeable to 

sodium, potassium, and calcium (Grienberger and Konnerth, 2012), with the permeability 

to calcium distinguishing them from most AMPA/Kainate receptors.   
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mGluRs  

mGluRs are G-protein coupled receptors that exist on neurons and glial cells 

(Conn and Pin, 1997; Ferraguti and Shigemoto, 2006; Kim et al., 2008).  Like all G-

protein coupled receptors, mGluRs have 7 transmembrane spanning domains, an agonist 

binding domain (N-terminus), as well as an intracellular domain (C-terminus) that 

couples to different G-proteins (Niciu et al., 2012).  To date, there are 8 known family 

members as illustrated in Fig. 1.2: mGluR1-8.  They are divided into three subfamilies: 

Group 1 (mGluR1 and 5) that are coupled to Gq, Group II (mGluR2 and 3) and Group III 

(mGluR 4, 6, 7 and 8) that are coupled to Gi.  Activation of Gq leads to activation of 

phospholipase C (PLC), which cleaves phosphatidylinositol 4,5-bisphophate (PIP2) to 

secondary messengers diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), 

which then lead to the increase in intracellular free calcium levels and activation of 

calcium dependent protein kinases such as protein kinase C (PKC) (Miller et al., 1995; 

Conn and Pin, 1997).  On the other hand, activation of Gi leads to inhibition of adenylyl 

cyclase, decreased cAMP, and decreased activation of protein kinase A (PKA) (Winder 

and Conn, 1993; Niciu et al., 2012).  Group I mGluRs are mainly localized to post 

synaptic and glial membranes, while the majority of Group II mGluRs are localized to 

presynaptic membranes and provide an autoinhibition mechanism for neurotransmitter 

release.   

 
Excitotoxicity 

Although glutamate transmission is essential to normal brain function, excessive 

extracellular glutamate can cause excitotoxicity.  Excitotoxicity is typically caused by 
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over-activation of glutamatergic receptors, especially NMDA receptors due to their 

permeability to calcium and slower inactivation, leading to excessive calcium influx into 

the cells to trigger cell death (Choi, 1987).  This type of neuronal death can occur in 

conditions such as stroke, traumatic brain injury, and neurodegenerative diseases (Bains 

and Shaw, 1997; Choi, 1998).   

In certain situations, over-activation of AMPA receptors can cause excitotoxicity 

as well.  AMPA receptor over-activation by addition of AMPA, a direct agonist for 

AMPA receptors, has been shown to be toxic to oligodendrocytes (McDonald et al., 

1998).  The general AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]quinoxaline-2,3-dione (NBQX) has been shown to be protective to 

oligodendrocytes in multiple sclerosis models (Pitt et al., 2000; Smith et al., 2000).  

Oligodendrocyte toxicity often appears to be mediated by calcium permeable GluR2 

lacking AMPA receptors because it is prevented by the selective antagonist 1-naphthyl 

acetyl spermine (NASPM) (Yoshioka et al., 1996; Bannerman et al., 2007).   

 
Regulation of extracellular glutamate by astrocytic glutamate transporters 

Total glutamate concentration is extremely high in the brain (10 mM) (Erecińska 

and Silver, 1990), but the extracellular glutamate concentration is very low (below 10 

µM) (Ronne-Engström et al., 1995; Baker et al., 2003; Rodriguez et al., 2012).  The 

extracellular glutamate is tightly regulated by the excitatory amino acid transporters 

(EAATs).  EAATs mediate sodium-dependent high-affinity glutamate uptake, which is 

driven by the sodium concentration gradients: for every glutamate taken up, three 

molecules of sodium enter the cell while one molecule of potassium exits the cell 
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(Barbour et al., 1988; Zerangue and Kavanaugh, 1996a).  Astrocytes with abundant 

glutamate transporters EAAT1/GLAST and EAAT2/GLT-1 activity-dependently 

ensheath glutamatergic synapses (Ventura and Harris, 1999; Witcher et al., 2010), where 

they are involved in clearing extracellular glutamate to avoid unwanted prolonged 

synaptic activation and excitotoxicity (Amara, 1992; Kanai and Hediger, 1992; Storck et 

al., 1992; Rothstein et al., 1994; 1996; Diamond and Jahr, 1997; Lehre and Danbolt, 

1998).  Glutamate taken up by astrocytes is converted into glutamine by glutamine 

synthetase.  Glutamine, in turn, can be released and taken up by neurons to synthesize 

glutamate.  This glutamate-glutamine cycle between neurons and astrocytes ensures 

signaling specificity and a fast turnover rate (Sibson et al., 1998).   

 
Synaptic and extrasynaptic compartments 

Another important function of astrocytes ensheathing synapses is that they 

spatially separate synaptic and extrasynaptic compartments of the extracellular space.  

Astrocytic EAATs provide efficient buffering and clearance of glutamate to prevent 

spillover and cross-talk between different synapses and compartments (Rothstein et al., 

1996; Asztely et al., 1997; Rusakov and Kullmann, 1998).   

Synaptic and extrasynaptic receptors seem to have different functions; the most 

studied example are the synaptic and extrasynaptic NMDA receptors.  It has become an 

increasingly accepted point of view that synaptic NMDA receptor activation is 

neuroprotective, while extrasynaptic NMDA receptor activation turns off the 

neuroprotective synaptic NMDA receptor activation and also activates intracellular 

pathways that lead to neuronal death (Hardingham et al., 2002; Riccio and Ginty, 2002; 
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Ivanov et al., 2006; Léveillé et al., 2008; Xu et al., 2009; Hardingham and Bading, 2010).  

Drugs that preferentially block extrasynaptic NMDA receptors have received particular 

attention as potential treatments for neurodisorders.  For example, memantine (MEM), 

which is an FDA approved drug for late stage Alzheimer’s disease, has been shown to 

have selectivity for extrasynaptic NMDA receptors (Lipton and Chen, 2004; Xia et al., 

2010).  MEM is an open channel blocker at NMDA receptors.  At low doses, it does not 

accumulate in the synaptic cleft to interfere with synaptic NMDA receptor mediated 

signaling.  However, it does antagonize extrasynaptic NMDA receptors that are 

hyperactive due to increased extrasynaptic glutamate levels in diseased brains (Lipton 

and Chen, 2004; Chen and Lipton, 2006; Xia et al., 2010).   

 
NEURON-GLIA INTERACTION 

Bidirectional communication between astrocytes and neuronal cells is necessary 

for the normal functioning of the nervous system during signal processing.  Some 

interactions between neurons and glia are discussed below with a focus on a typical 

glutamatergic synapse as shown in Fig. 1.3.   
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FIGURE 1.3.  A typical glutamate synapse.  

(Altered From (Niciu et al., 2012)) 
 

Regulation of astrocytes by neurons 

Physiologically, high levels of neuronal activation can cause elevated 

extracellular potassium levels, and in turn, slowly depolarize glial cells (Meeks and 

Mennerick, 2007; Sasaki et al., 2011).  Under extreme conditions, depolarization can 

spread throughout the astrocyte network and cause cortical spreading depression 

(Unekawa et al., 2012; Bogdanov et al., 2013).   
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Similar to neurons, astrocytes also express a variety of receptors to respond to 

neurotransmitter release, such as mGluRs (Venance et al., 1997), nicotinic acetylcholine 

receptors (Oikawa et al., 2005), adrenoceptor , P2 receptors of the P2X (ligand-gated 

cationic channels) and P2Y (G-protein coupled receptors) types (Butt, 2011; Köles et al., 

2011).  Most of these astrocytic receptors are Gq-protein coupled receptors.  Unlike 

neurons, astrocytes do not generate action potentials,  However, activation of these 

astrocytic Gq-protein coupled receptors by neurotransmitters can lead to elevated 

intracellular calcium levels (Venance et al., 1997; Agulhon et al., 2008).  Astrocytes also 

express some ionotropic glutamate receptors (Seifert and Steinhäuser, 2001), although 

their functional significance is largely unknown.   

 
Regulation of neurons by astrocytes  

Each astrocyte is believed to have its own territory, and within that territory, it 

may interact with 140,000, or more, synapses and neuronal processes (Benarroch, 2009).  

Therefore, individual astrocytes are potentially capable of coordinating a large amount of 

neuronal activity (Poskanzer and Yuste, 2011).  Astrocytes are also connected to each 

other through gap junctions, which allows fast chemical and electrical communication 

among astrocytes, enabling them to function as a network.  Thus, activation of a single 

astrocyte can spread to an extended surrounding area and potentially regulate the function 

of multiple neighboring neurons (Cornell-Bell et al., 1990).   

Astrocytes can also release gliotransmitters (such as glutamate, ATP, D-serine 

etc.) to regulate neuronal function and synaptic plasticity (Fellin et al., 2006; Butt, 2011; 

Parpura et al., 2012).  It is known that increased calcium levels in astrocytes, like that in 
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neurons, can trigger the fusion of vesicles containing gliotransmitters with the plasma 

membrane (Bezzi et al., 1998; 2004; Kreft et al., 2004).  Non-vesicular release of 

glutamate has also been suggested.  A recent study describes a channel mediated release 

of gliotransmitter (<900 Da), such as glutamate (Duan et al., 2003).  System xC- mediates 

a selective non-vesicular release of glutamate.  It is believed that glutamate released from 

astrocytes mainly activates the extrasynaptic pool of glutamatergic receptors (Xi et al., 

2002).   

 
Astrocyte and neuron metabolic coupling 

As the largest population of cells in the nervous system, astrocytes are crucial in 

maintaining normal glutamate transmission (Ye and Sontheimer, 2002; Huang et al., 

2004; López-Bayghen and Ortega, 2011).  Glucose is the major substrate for brain energy 

production.  Astrocytes take up glucose from their endfeet on capillaries (Magistretti and 

Pellerin, 1996; Edvinsson and Krause, 2002), metabolize it, and release L-lactate and 

pyruvate as energy sources for neurons (Dringen et al., 1993).  Metabolites from glucose 

can also be further processed to produce essential neurotransmitters such as GABA and 

glutamate (Magistretti and Pellerin, 1996).  Glutamate uptake and glucose utilization by 

astrocytes are tightly coupled as illustrated in Fig 1.4.   
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FIGURE 1.4.  Schematic representation of glutamate cycling and glucose 
metabolism coupling. 

At glutamatergic synapses, excessive extracellular glutamate is removed by a glutamate 
uptake system located primarily on astrocytes.  Glutamate is cotransported with Na+, 
resulting in an increase in the intracellular concentration of Na+ in astrocytes leading to 
activation of the Na+/K+ ATPase pump.  The pump utilizes ATP, which is provided by 
membrane-bound glycolytic enzymes.  This demand for ATP activates glycolysis in 
astrocytes, resulting in the production of lactate.  Lactate, once released can be taken up 
by neurons and serve as an energy substrate.  From (Magistretti and Pellerin, 1996) 
 

OXIDATIVE STRESS AND GLUTATHIONE IN THE BRAIN  

Oxidative stress 

Oxidative stress is an excessive accumulation of free radicals and other reactive 

oxygen species (ROS).  It can be caused by either an overproduction of free radicals or a 

deficit in their clearance.  ROS are normal products of cellular metabolism.  While some 

levels of free radical generation is normal and necessary, overwhelming amounts of free 

radicals can lead to oxidative damage to proteins, lipids and DNA, causing dysfunction of 

these molecules (Freeman and Crapo, 1982; Simonian and Coyle, 1996).  As illustrated in 

Fig. 1.5., ROS are mainly generated in the mitochondria: electrons along the electron 
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transport chain in mitochondria leak out and are accepted by oxygen resulting in 

superoxide (O2
-) production (Freeman and Crapo, 1982).  There are various cellular 

defense mechanisms against ROS, such as superoxide dismutase (SOD), catalase, 

glutathione (GSH), vitamin C and vitamin E (Sies, 1997; Brigelius-Flohé and Traber, 

1999).  SOD can degrade superoxide generating hydrogen peroxide (H2O2) (Fridovich, 

1975).  H2O2 is not reactive.  However, when there are metal ions present, highly reactive 

hydroxyl radical can be generated by Fenton reaction.  In contrast, catalase can 

decompose H2O2 into water and oxygen.  The H2O2 can also be eliminated by GSH in a 

process mediated by glutathione peroxidase, generating glutathione disulfide (GSSG).  

GSSG can be reduced back to GSH by NADPH via glutathione reductase (Fig.1.5).  

Besides reducing oxidative stress, GSH can also directly conjugate to toxins, and both 

GSH and GSH conjugates can be transported out of the cells by multi-drug resistance 

proteins (Rush et al., 2012b).   

 

 

FIGURE 1.5.  Diagram illustrating the different pathways for handling O2
-.   

O2
-: superoxide, SOD: superoxide dismutase, GSH: glutathione, H2O2: hydrogen 

peroxide, GSSG: glutathione disulfide.   
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The brain, while only 2% of the body weight, consumes about 20% of the total 

oxygen, generating high levels of ROS (Ballatori et al., 2009), and oxidative stress has 

been shown to be a possible contributor to the damage occurring in neurodegenerative 

diseases (Simonian and Coyle, 1996; Schulz et al., 2000; Ballatori et al., 2009).   

 
GSH in the brain 

 GSH is a tripeptide consisting of the amino acids glutamate, glycine, and cysteine 

(Dringen et al., 2000).  It is the most prevalent cellular thiol in the brain, with an 

intracellular concentration of ~2.5 mM in neurons and ~ 3.8 mM in astrocytes (Bolaños 

et al., 1995; Rice and Russo-Menna, 1998).  Normally, the intracellular GSSG/GSH ratio 

is tightly regulated, with over 99% of the total cellular GSH present as the reduced form 

(Deneke and Fanburg, 1989).  The GSSG/GSH ratio is a sensitive indicator of oxidative 

stress (Rahman et al., 2005).   

 GSH is synthesized via a two-step reaction (Fig. 1.6) (Beutler, 1989; Deneke and 

Fanburg, 1989).  First, glutamate and cysteine are catalyzed to γ-glutamylcysteine by 

glutamate cysteine ligase.  Then glycine joins γ-glutamylcysteine mediated by 

glutathione synthetase.  Both steps require ATP.  Both glutamate and glycine are highly 

available in the cells, so the rate-limiting factor is cysteine.  The rate of this reaction is 

based on intracellular cysteine levels and γ-glutamylcysteine synthetase that is feedback-

regulated by GSH.  Inhibiting cystine uptake inhibits GSH synthesis because the levels of 

intracellular cysteine are dependent on cystine uptake (Bannai and Kitamura, 1980).  
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FIGURE 1.6.  GSH synthesis and cycling in the central nervous system.   
In astrocytes: 1: γ-glutamylcysteine synthetase; 2: glutathione synthetase; 3: γ -
glutamyl transpeptidase.  In Neurons: 4: dipeptidases. Glu: glutamate, CySS: cystine, 
Cys: cysteine, Gly: glycine, GSH: glutathione.  From (McBean, 2002) 
 

 Sources for cysteine seem to depend on the developmental stage and cell type in 

the central nervous system (Kranich et al., 1996).  It is believed that the sodium-

independent system xC- is the main mechanism of cystine uptake in glial cells (Lobner, 

2009), while the sodium-dependent glutamate/aspartate/cysteine transporter [System XAG 

(EAAT3/EAAC1)] is responsible for most of cysteine uptake in mature neurons 

(McBean, 2002).  Cystine will immediately be broken down by thioredoxin reductase 1 

into two cysteine molecules once it enters the cells (Arrick et al., 1985).  

In the nervous system, glial cells are important in supplying neurons with cysteine 

containing molecules, such as cysteine itself, cysteinylglycine (CysGly), or GSH 

(Dringen et al., 1999).  Extracellularly, GSH is metabolized by the ectoenzyme γ-

glutamyl transferase, which transfers the γ-glutamyl residue of GSH to different acceptor 

uptake, reduce cystine transport further
by indirectly blocking exchange.

Oxidative stress and induction of the 
xc

−− exchanger
Depletion of intracellular GSH in
fibroblasts triggers induction of xc

−,
leading to an increased rate of
Na+-independent uptake of cystine [2],
which implies that upregulation of cystine
uptake protects cells against depletion of
GSH. In addition, much recent work has
been directed towards investigating the
response of xc

−-mediated uptake of cystine
to oxidative stress. Chronic exposure of
endothelial [26] or epithelial [27] cells to
the nitric oxide donor, S-nitroso-N-acetyl-
penicillamine (SNAP), which can lead to
the formation of toxic radical species,
increases xc

−-mediated cystine uptake.
Responses to oxidative stress in glioma
cells are linked to increased expression 
of xCT with no alteration in the expression
of 4F2hc [8]. xc

−-mediated transport of
glutamate in astrocytes is upregulated by
dibutyryl cAMP but, in this case, the
expression of both xCT and 4F2hc are
increased [28]. In macrophages, an

increase in intracellular GSH parallels
induction of xCT in response to bacterial
lipopolysaccharide [29].

Although upregulation of the 
xc

− exchanger will provide more cysteine
for GSH synthesis, glutamate release will
also increase, potentially causing the
extracellular concentration to rise [22].
This could trigger glutamate-mediated
toxicity in certain brain pathologies.
Indeed, Ye et al. [30] reported increased
glutamate efflux by the xc

− exchanger 
in glioma cells in which the 
XAG

− transporters were mislocalized or
dysfunctional and therefore not available
to remove glutamate. However, it is
arguable that such a situation would not
happen if XAG

− transporters were operating
normally. In other words, activation of the
xc

− exchanger would not be expected to
cause toxicity unless XAG

−-mediated
glutamate uptake was disrupted.
Conversely, elevation of extracellular
glutamate would inhibit both avenues 
of cystine uptake into the cell, causing 
GSH levels to fall. Release of glutamate in
anoxia, for example, could damage cells
for this reason.

Concluding remarks
Much new information on the molecular
basis of cystine uptake has come to light in
recent years. Current opinion holds that
xc

−-mediated uptake of cystine might be
more important as a provider of cysteine
to synthesize GSH, particularly under
conditions of oxidative stress. However,
this view remains hypothetical until such
time as the physiological role of both 
xc

−- and XAG
−-mediated transport of 

cystine in vivo is fully resolved.
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Fig. 3. The relationship between astrocytes and neurones in glutathione (GSH) synthesis. Transport of glutamate
(G lu) and cystine (CySS) into astrocytes provides substrates for γ-glutamylcysteine synthetase (1), which catalyzes
the production of γ-glutamylcysteine. GSH synthetase (2) then catalyzes the conversion of γ-glutamylcysteine
(γ-G lu–Cys) to GSH. GSH released from astrocytes is a substrate for γ-glutamyltranspeptidase (3), which transfers 
the γ-glutamyl moiety (γ-G lu) of GSH to an acceptor am ino acid (X). A lso shown is the net translocation of cystine into
the cell (broken line) w ith cystine as the acceptor am ino acid. The di-peptide, cysteinyl–glycine (Cys–G ly) is cleaved
into component am ino acids by an ectopeptidase (4). The identity of the glutamate and cystine transporters in this
diagram is not specified. There is uncertainty of the relative importance of cystine or cysteine as a precursor for
GSH synthesis in neurones (see text for details). Further information on other aspects of GSH metabolism in
astrocytes and neurones can be found in [19].
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amino acids leading to the formation of a γ-glutamyl containing dipeptide and a dipeptide 

CysGly.  CysGly is then either cleaved by extracellular dipeptidases to generate cysteine 

and glycine, or directly taken up by neurons.  Knocking out EAAT3 greatly reduces 

neuronal cysteine uptake and intracellular GSH levels, resulting in decreased viability of 

hippocampal neurons against H2O2 insults (Zerangue and Kavanaugh, 1996b; Chen and 

Swanson, 2003; Aoyama et al., 2006).  This suggests that EAAT3 plays a critical role in 

the ability of neurons to obtain cysteine.    

 
SYSTEM XC-  

System xC- is a sodium-independent, chloride-dependent amino acid transport 

system located on the plasma membrane.  System xC- was first characterized by Bannai 

and Kitamura in 1980 when mutual inhibition of glutamate and cystine uptake was 

described (Bannai and Kitamura, 1980).  It can transport one molecule of cystine into the 

cell in exchange for one molecule of intracellular glutamate, with Km values of ~ 80 µM 

for cystine uptake and ~ 160 µM for glutamate uptake (Sato et al., 1999).  The transport 

direction is determined by the high cytosolic glutamate levels and low cytosolic cystine 

levels.   

 
Structure of system xC- 

System xC- is a heteromeric antiporter, composed of two subunits: a light-chain 

subunit xCT and a heavy chain 4F2hc, which are linked together by one disulfide bond 

(Torrents et al., 1998; Shih et al., 2006) (Fig. 1.7.).  The 4F2hc subunit is a single 

transmembrane glycoprotein that is believed to be universally shared among the 
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heterodimer membrane transporter family: transporter systems L (Lewerenz et al., 2012; 

Bridges et al., 2012a).  Although 4F2hc by itself does not have amino acid transport 

function, it is essential to system xC- function because it brings xCT to the membrane 

(Estévez et al., 1998; Sato et al., 1999; Bassi et al., 2001).  xCT determines the substrate 

specificity and efficiency of system xC-.  It is encoded by the solute carrier family 7, 

member 11 (Slc7a11) gene (Bassi et al., 2001), which produces a 502 amino acid short 

chain protein with a predicted molecular mass of about 55.5 kDa (Sato et al., 1999).  The 

xCT subunit is highly hydrophobic and has a 12 transmembrane domain with a re-entrant 

loop and both N- and C-termini are located on the cytoplasmic side (Gasol et al., 2004).  

 

  

FIGURE 1.7.  The structure of system xC- 
System xC- is composed of a light chain xCT (shown in clear) and a heavy chain 4F2hc 
(shown in black), connected by a single disulfide bridge (shown in squares).  From (Shih 
et al., 2006).  
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Function of system xC- 

Because of the dual transport property of system xC-, it can regulate both 

intracellular GSH levels and extracellular glutamate levels.  Cystine that enters cells 

through system xC- can be broken down to cysteine to synthesize GSH, which can reduce 

free radicals or be released to regulate the redox state of the extracellular millieu (Wang 

and Cynader, 2000; Banjac et al., 2008).  System xC- has been shown to be responsible 

for 60% of extracellular glutamate in rat striatum (Baker et al., 2002).  Deleting the xCT 

gene in Drosophila causes a 50% reduction in extracellular glutamate levels (Augustin et 

al., 2007).  Extracellular glutamate released from system xC- can activate presynaptic 

mGluR2/3, which can regulate synaptic release of neurotransmitters, such as dopamine 

(Baker et al., 2002).   

Sato et al. 2005, developed and characterized xCT null mice with a partial 

deletion of the xCT gene.  These mutant mice appear healthy and fertile.  However, in 

plasma, the cystine concentration is doubled compared to wild type, while GSH levels are 

half of the wild type (Sato et al., 2005).  No difference in cysteine levels was reported.  

Microglial cells isolated from these mice showed normal levels of cystine uptake.  

However, the uptake was not blocked by glutamate and was not inducible by 

lipopolysaccharide (LPS) (Sato et al., 2005).  Fibroblasts isolated from these xCT -/- 

mice die unless exogenous 2-mercaptoethanol or N-acetylcysteine, which reduces cystine 

to cysteine, is present (Sato et al., 2005).  In xCT deficient mice, ischemia-reperfusion-

induced acute renal failure is more severe compared to wild type animals (Shibasaki et 

al., 2009).  No increased oxidative stress or brain atrophy were observed (De Bundel et 

al., 2011).  This is probably because in xCT deficient animals other cystine/cysteine 



21 

uptake transporters are upregulated to maintain the normal activity.  However, it is not 

possible to upregulate in these xCT deficient animals under oxidative stress to help 

increase GSH levels (Shibasaki et al., 2009).  Therefore, it appears that some degree of 

compensation for the lack of system xC- occurs, but it is not entirely effective.   

Another mutant mouse line involving altering system xC- function is the sut/sut 

mouse, which has a partial deletion of the xCT gene.  These animals show changes in fur 

color due to a deficiency in the cysteine-dependent yellow/red pigment, pheomelanin 

(Chintala et al., 2005), and a large reduction in pheomelanin is also observed in cultured 

sut/sut melanocytes.  Interestingly, sut/sut mice also exhibit prominent brain atrophy in 

the hippocampus (Shih et al., 2006).  The mechanisms resulting in different phenotypes 

of these two different mutant mouse lines require further studies.   

 
Regulation of system xC- 

Despite the involvement of system xC- in both excitotoxicity and oxidative stress, 

there is limited knowledge about its regulation.  Because xCT is specific to system xC- 

and determines specificity of its transport function, the regulation studies have been 

mainly focused on xCT regulation (Sato et al., 1999).  To date, the best-characterized 

pathways are nuclear factor eythroid 2-related factor 2 (Nrf2)-antioxidant responsive 

element (ARE) and eukaryotic initiation factor-2 (eIF2) - activating transcription factor 

(ATF) 4- amino acid response element (AARE), which are discussed in detail below, 

along with other regulatory mechanisms.   
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Nrf2-ARE pathway 

There are four ARE-like, also known as electrophile response element (EpRE)-

like, sequences in the 5’ flanking region of the mouse xCT gene (Sasaki et al., 2002), two 

of which are completely conserved in the 5’-flanking region of the human xCT gene 

(Sato et al., 2000; Sasaki et al., 2002).   

The transcription factor Nrf2-ARE pathway was first proposed by Venugopal and 

Jaiswal (Venugopal and Jaiswal, 1996), as illustrated in (Fig. 1.8).  Nrf2 is normally 

cytosolic because of keap-1 binding (Itoh et al., 1999).  However, when under oxidative 

stress, Nrf2 is freed and translocates to the nucleus and binds to ARE to activate specific 

protein transcription (Itoh et al., 1999).  ARE is a cis-acting regulatory element located in 

the promoter regions of multiple genes encoding phase II detoxification enzymes and 

antioxidant proteins (Lee and Johnson, 2004).  These proteins include heme oxygenase, 

γ-glutamylcysteine synthetase, glutamate-cysteine ligase, glutathione synthetase, 

glutathione S-transferase, glutathione reductase, multidrug resistance protein 1, as well as 

xCT (Bannai, 1984; Erickson et al., 2002; Sasaki et al., 2002).   
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FIGURE 1.8.  Nrf2-ARE pathway 
Activation of Nrf2-ARE pathways that leads to expression of ARE-driven genes, 
including xCT.  From (Lee and Johnson, 2004).   
 

Nrf2-ARE has been shown to be necessary for increased cystine uptake through 

system xC- induced by various electrophiles, such as diethyl maleate, arsenite, cadmium 

and hydroquinone, in BHK21 kidney cells (Sasaki et al., 2002).  Upregulating Nrf2 has 

been shown to increase xCT levels and protect both glial cells and neurons from 

oxidative stress insults in a phosphatidylinositol 3 kinase (PI3K)/ activate protein kinase 

B (PKB, aka, Akt) dependent manner (Shih et al., 2003; Wang et al., 2009).   

However, knocking out Nrf2 failed to affect MeHg-induced upregulation of xCT, 

which suggests Nrf2-ARE is not always involved in xCT regulation (Wang et al., 2009). 
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eIF2-ATF4-AARE pathway 

 There are two AARE-like sequences in the 5’-flanking region of the xCT gene 

(Sato et al., 2004; Lewerenz and Maher, 2009).  Amino acid response (AAR) is usually 

triggered by limited uptake of any essential amino acid (Kilberg et al., 2005).  It serves as 

a self-protective effect by globally slowing down protein production and cellular activity 

by limiting protein synthesis.  However, transcription and translation of certain proteins, 

such as basic leucine zipper and ATF4 is enhanced (Wek et al., 2006).  These proteins 

then regulate gene expression of membrane transporters and growth factors to cope with 

environmental stresses (Kilberg et al., 2005; Wek et al., 2006; Ameri and Harris, 2008; 

Kilberg et al., 2009).  It is a protective mechanism against a harmful environment, such 

as changed pH, nutrient levels, and oxidative stress (Duncan and Hershey, 1985; 1987).   

 eIF2, a heterotrimer composed of eIF2α, eIF2β, and eIF2γ, is an important 

component of the initiating complex for most of the protein synthesis (Fafournoux et al., 

2000).  The GDP in eIF2 has to be exchanged for GTP mediated by guanine nucleotide 

exchange factor eIF2B to successfully form the initiating complex (Matts and London, 

1984; Dholakia and Wahba, 1989).  Components of eIF2 can be phosphorylated, 

preventing the attached GDP from being replaced with GTP (Kilberg et al., 2009).  

Among the three, eIF2α is the most easily phosphorylated (Costa-Mattioli et al., 2007). 

The two mechanisms of eIF2B inhibition are described below, both of which can lead to 

increased ATF4 production, and then activation of AARE regulated gene transcription.    

 When there are not enough available essential amino acids in the cell, the 

excessive free tRNAs activate the general control nonrepressible protein 2 (GCN2) 

kinase, which in turn phosphorylates eIF2 (Zhang et al., 2002).  Phosphorylated eIF2 has 



25 

increased affinity for eIF2B, although it cannot be activated for initiating complex 

assembly.  Therefore, phosphorylated eIF2 becomes a potent competitive inhibitor for 

eIF2B (Rowlands et al., 1988; Kimball, 1999).  Normally, the intracellular eIF2 levels are 

significantly higher than eIF2B, therefore, phosphorylation of merely 30% of eIF2α is 

enough to completely block eIF2B activity (Matts and London, 1984; Duncan and 

Hershey, 1987).  Besides GCN2, there are other kinases that are sensitive to other 

stressors, and become activated leading to eIF2 phosphorylation.  These kinases include 

heme-regulated inhibitor (HRI) activated by heme-deficiency (Han et al., 2001; Lu et al., 

2001), double-stranded RNA-activated inhibitor (DAI) or dsRNA-dependent 

serine/threonine protein kinase R (PKR) activated by viral infection (Hershey, 1989; 

Proud, 2005) and PKR-like endoplasmic-reticulum (ER)-localized eIF2α kinase (PERK) 

activated by ER stress (Lu et al., 2004) (Fig. 1.9.).  All of these cellular stresses have the 

potential of activating the same pathways amino acid deprivation activate and inducing 

system xC- expression, but this theory has not yet been tested.   
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FIGURE 1.9.  Regulation of translation initiation by eIF2 phosphorylation.   
dsRNA-dependent serine/threonine protein kinase R (PKR), heme-regulated inhibitor 
(HRI), PKR-like endoplasmic-reticulum (ER)-localized eIF2α kinase (PERK), general 
control nonrepressible protein 2 (GCN2) are activated in response to various 
environmental stresses, which leads to phosphorylation of eIF2.  Phosphorylated eIF2 
inhibits eIF2B mediated guanine nucleotide exchange, in turn, globally slows down 
translation initiation, but increases ATF4 levels.  From (Wek et al., 2006) 
 

 Phosphorylation of eIF2B is another mechanism that leads to activation of AARE 

regulated gene transcription (Proud, 2005) (Fig. 1.10).  Glycogen synthetase 3β 

(GSK3β), a constitutively active kinase, can phosphorylate eIF2B, leading to the loss of 

its GEF property (Welsh and Proud, 1993) and prevents assembly of the initiation 

complex.  Hormones, mitogens, and growth factors can activate phosphatidylinositol 

3(PI3)-kinase (Welsh et al., 1998) and MEK/ERK (Kleijn and Proud, 2000; Quevedo et 

al., 2000), which can lead to phosphorylation of GSK3β to inactivate it, which removes 

the GSK3β inhibition effect on eIF2B.   
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FIGURE 1.10.  Regulation of translation initiation by eIF2B phosphorylation.   
Hormones, mitogens, and growth factors can phosphorylate glycogen synthetase 3β 
(GSK3β) through phosphatidylinositol 3(PI3)-kinase and mitogen-activated protein 
kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways. Phosphorylation of 
GSK3β removes the inhibition of eIF2B, and ensures translation initiation.   
 

 Phosphorylation of either eIF2 or phosphorylation of eIF2B can lead to global 

shut down of protein translation, however, there is increased ATF4 production, in turn, 

activates expression of AARE regulated genes.  Mutation studies showed that AARE like 

sequences in the 5’-flanking region of xCT are essential in both basal and amino acid 

deprivation induced increase in system xC- activity (Sato et al., 2004).  Deprivation of 

cystine, an essential amino acid, activates the ATF4-AARE pathway, and induces an 

increase in cystine uptake in cultured human fibroblasts after 24 hours (Bannai, 1984).  

This suggests an involvement of ATF4-AARE in system xC- regulation.  Further studies 

showed that 4F2hc is consistently induced under any amino acid deprivation, while xCT 

is only induced with certain amino acids missing (Sato et al., 2004).  This suggests that 
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the two subunits of system xC- have different regulatory mechanisms.  Decreasing 

intracellular eIF2α levels increases HT22 cells resistance to oxidative glutamate toxicity, 

while increasing intracellular eIF2α can render HT22 cells highly sensitive to glutamate 

toxicity by decreasing system xC- mediated cystine uptake, depleting GSH, and 

increasing ROS (Tan et al., 2001; Lewerenz and Maher, 2009).  This effect is mediated 

through ATF4 binding to AARE (Lewerenz and Maher, 2009).  Therefore, it appears that 

the ATF4-AARE pathway is an important regulatory mechanism for system xC-.   

 
NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) 
 

NF-κB may be another activator of xCT expression because there is a NF-κB 

binding site in the 5’-flanking region of xCT (Sato et al., 2001).  NF-κB has long been 

known to play a role in rapid response to calcium influx and harmful cellular stimuli, 

especially in the immune response (Meffert et al., 2003).  LPS is known to activate NF-

κB (Sen and Smale, 2010).  In mouse peritoneal macrophages, both xCT and 4F2hc 

mRNA increased in a time dependent manner within 12 hours of LPS treatment (Sato et 

al., 2001).  However, this LPS induced increase in xCT levels is not likely to be mediated 

through NF-κB because there was no increased nuclear NF-κB caused by the LPS 

treatment (Sato et al., 2001).  Since LPS still induces the activity of system xC- in 

macrophages prepared from Nrf2-deficient mice, it is not likely that an LPS induced 

increase in system xC- activity is mediated through the Nrf2-ARE pathway (Sato et al., 

2001). Therefore, despite an NF-κB binding site in the 5’-flanking region of xCT, there is 

no direct evidence of its role in system xC- regulation.  The mechanism of LPS inducing 

increased system xC- activity remains unclear.   
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Activator protein 1 (AP-1) 

 There are several putative AP-1 binding sites in the 5’-flanking region of xCT, 

one of them overlaps with the ARE sequence that is essential for response to electrophile 

reagent activated xCT transcription and translation (Sato et al., 2001).  AP-1 transcription 

factor mediates gene regulation in response to cytokines, growth factors, stress, and 

infections (Hess et al., 2004).  However, its role in xCT regulation has not yet been 

studied.   

 
Hypoxia inducible factor (HIF) 

 Hypoxic preconditioning, the protection against a severe hypoxic insult by an 

earlier mild hypoxic insult, increases xCT levels both transcriptionally and translationally 

in hippocampus in vivo and in mouse neuronal stem cells (Ogunrinu and Sontheimer, 

2010; Sims et al., 2012).  This is mostly mediated through HIF-1α, but since siHIF-1α 

does not completely abolish xCT upregulation in B104 mouse neuronal stem cell cultures 

after hypoxic preconditioning, the possibility of other intracellular pathways being 

involved cannot be ruled out (Sims et al., 2012).  Also, hypoxia did not induce system xC- 

function in mouse macrophage cultures (Sato et al., 2001).  Determining the mechanism 

of system xC- regulation by preconditioning, and when it occurs, requires further study.   

 
cAMP  

 In rat striatal punches, system xC- activity is decreased by 15 minutes of 

mGluR2/3 agonist treatment, and this effect is mimicked by inhibiting cAMP (Baker et 
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al., 2002).  Also, a two-fold increase in xCT mRNA levels in rat cortical astrocytes was 

observed after a 10-day incubation with N(6),2'-O-dibutyryladenosine 3':5' cyclic 

monophosphate (dbcAMP), a cAMP analog (Gochenauer and Robinson, 2001).  One 

week dbcAMP treatment potentiates buthionine sulfoximine induced increase in system 

xC- activity in rat primary astrocytes (Seib et al., 2011).  There are two consensus PKA 

phosphorylation sites on human xCT (Baker et al., 2002).  However, the exact 

intracellular pathway by which cAMP is involved in system xC- regulation is yet to be 

investigated.   

 
Growth factors 

Our lab was the first to report growth factor effects on system xC- function.  

Insulin-like growth factor 1 (IGF-1) and transforming growth factor-β (TGF-β) can 

upregulate system xC- function in dental pulp cells (Pauly et al., 2011).  We also showed 

that fibroblast growth factor-2 (FGF-2) upregulates system xC- function selectively in 

primary cortical astrocytes (Liu et al., 2011).   

 
FGF-2 RECEPTORS AND INTRACELLULAR SIGNALING PATHWAYS 

FGF-2 was the first member isolated and cloned among the FGF family of growth 

factors in the 1980s.  After decades of research, we now know FGF-2 is involved in many 

nervous system functions.  During embryonic development, FGF-2 plays an important 

role in regulating proliferation, differentiation, and migration; while in adult, FGF-2 plays 

a critical role in neuronal death, neurogenesis, learning and memory, and lesion repair 

(Reuss and Bohlen und Halbach, 2003; Eswarakumar et al., 2005).  FGF-2 expression is 
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found in both neuronal and glial cells, with glial cells as its main source (Eckenstein et 

al., 1991a; 1991b).   

FGF-2 can activate all members of the FGF receptor (FGFR) family, with FGFR1 

and FGFR2 the prominent forms present in the cerebral cortex (Reuss and Bohlen und 

Halbach, 2003).  Like any typical tyrosine kinase receptor, FGFRs are composed of an 

extracellular ligand-binding domain composed of three immunoglobulin-like domains, a 

single transmembrane domain, and an intracellular domain with catalytic protein tyrosine 

kinase activity (Mohammadi et al., 1996a).  Two molecules of FGF-2 bind to FGFRs, 

which triggers dimerization and activation of tyrosine kinase activity through 

autophosphorylation (Schlessinger et al., 1995; Mohammadi et al., 1996b).  Previous 

studies from our lab showed that in primary mouse cortical culture, FGFR1 is the most 

prevalent receptor, followed by FGFR2, and both are mostly expressed in astrocytes (Fig. 

1.11) .   

 

 

FIGURE 1.11.  Expression of mRNA for FGFR1 and FGFR2 in cerebral cortex, 
neuronal-enriched cultures, and glial-enriched cultures.  

Bps, base pairs; CTX, cerebral cortex; A, glia-enriched cortical cultures; N, neuronal-
enriched cortical cultures. Three isoforms of both FGFR1 and FGFR2 were detected.  
From (Lobner and Ali, 2002).   
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Upon activation, at the carboxy terminal tail of the FGFR, autophosphorylation on 

a tyrosine residue (Tyr766) creates a specific binding site for PLC (Mohammadi et al., 

1992; 1996a) and activates it to catalyze the hydrolysis of PIP2 to generate two secondary 

messengers: IP3 and DAG.  Also, fibroblast growth factor receptor substrate 2 (FRS2) 

constitutively docks at the juxtamembrane domain of FGFRs (Reuss and Bohlen und 

Halbach, 2003; Eswarakumar et al., 2005).  In response to FGFR activation, the docking 

proteins become tyrosine phosphorylated and recruit protein complexes and activate 

multiple intracellular signal transduction pathways, such as PI3K/Akt and mitogen-

activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) 

pathways (Kouhara et al., 1997; Ojeda et al., 2011).  The PLC activation mediated effects 

are independent from the FRS2 mediated effects  (Fig. 1.12.).   
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FIGURE 1.12.  FGF-FGFR1 intracellular signaling pathways.   
Activation of fibroblast growth factor receptor 1 (FGFR1) requires binding of two 
fibroblast growth factor-2 (FGF-2) molecules, and two independent intracellular 
pathways are activated: phospholipase C (PLC), which leads to generation of two 
secondary messengers, inositol 1,4,5-trisphosphate (IP3) and diacyl glycerol (DAG); 
fibroblast growth factor receptor substrate 2 (FRS2) mediated activation of the mitogen-
activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) 
pathway.   
 

FGF-2 regulation, function and dysfunction in diseases 

FGF-2 in ischemia/stroke 

FGF-2 expression is upregulated rapidly in the brain after lesioning or ischemic 

insult (Frautschy et al., 1991).  Most of the FGF-2 expression is in astrocytes, with only 

some of the neurons close to the lesion core showing increased FGF-2 levels (Wei et al., 

2000).  Because of the success of FGF-2 in animal models of ischemia, it has been 

considered as a candidate for stroke treatment in humans (Ay et al., 1999; Ren and 

Finklestein, 2005).  However, clinical trials of trafermin (recombinant human FGF-2) 

administration in human acute ischemic stroke were unsuccessful.  Administration of 
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FGF-2 failed to produce any significant protection in the treated groups as compared with 

the control groups (Clark et al., 2000; Bogousslavsky et al., 2002).  Instead, there was an 

increased mortality rate in the treated patients (Clark et al., 2000; Bogousslavsky et al., 

2002).  One hypothesis was that although FGF-2 is a cationic peptide that can be 

transported across the blood brain barrier at a higher rate than most other growth factors 

(Deguchi et al., 2000), due to the limited transportation efficiency, high doses were 

required to produce the central effect, which caused more peripheral side effects, such as 

vasodilatation (Cuevas et al., 1991; Rosenblatt et al., 1994).  In light of our finding of 

FGF-2 induced increased system xC- function, enhanced excitotoxicity must also be 

considered as a possibility.   

 
FGF2 in major depression/anxiety 

FGF-2 was recently suggested as a potential antidepressant (Turner et al., 2008c; 

Perez et al., 2009).  Human postmortem studies indicate decreased FGF system function 

in the frontal cortex (Evans et al., 2004) and hippocampus (Gaughran et al., 2006) of 

patients who suffered from major depression.  Patients with a history of antidepressant 

treatment showed attenuated FGF signaling dysregulation (Evans et al., 2004).  In rodent 

studies, both FGF-2 and FGFR1 levels were decreased in hippocampus following social 

defeat (Turner et al., 2008a).  Also, in a rodent model where rats were selectively bred to 

enhance different emotional behavior, lowered FGF-2 levels in the hippocampus were 

observed in the high anxiety group comparing to the low anxiety group (Perez et al., 

2009).  Exposure to an enriched environment effectively reduced anxiety behavior of the 

high anxiety group, and this was accompanied by increased FGF-2 levels in the 
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hippocampus (Perez et al., 2009).  Chronic exogenous FGF-2 treatment produced the 

same behavioral effects (Perez et al., 2009).  Furthermore, administration of FGF-2 

during development prevented the low responders from exhibiting high anxiety-like 

behavior in adult (Turner et al., 2011).  Administration of FGF-2 was also reported to 

reduce anxiety-like behaviors in the forced swim test model (Turner et al., 2008c).  

Antidepressants were shown to be able to increase FGF-2 levels in brain regions, such as 

prefrontal cortex, hippocampus, and striatum in rodents (Mallei et al., 2002; Maragnoli et 

al., 2004).  Therefore, the evidence of FGF-2 dysregulation in depression is strong.   

 
FGF-2 and schizophrenia 

Schizophrenia is believed to be a result of interplay of both genetic predisposition 

and environmental risk factors (Tsuang, 2000).  Prenatal stress has been suggested as an 

important environmental risk factor (Tsuang, 2000; Terwisscha van Scheltinga et al., 

2010), and it has been shown to decrease FGF2 expression in rat entorhinal cortex and 

striatum, as well as FGF-2 levels in response to acute and chronic stresses in various 

brain regions in adult (Fumagalli et al., 2005).  Social defeat is another risk factor for 

schizophrenia (Selten and Cantor-Graae, 2005; 2007).  In adult rats, both FGF-2 and 

FGFR1 mRNA in hippocampus are downregulated after social defeat (Turner et al., 

2008a).  Smoking of cannabis is another environmental factor that is known to increase 

the risk of developing schizophrenia (Moore et al., 2007).  Cannabinoid receptor type 1 

antagonists have been shown to inhibit axonal growth responses stimulated by FGF-2 

(Williams et al., 2003).  Decreased FGFR1 mRNA levels in dentate gyrus were reported 

in a mouse knockout model of neuronal PAS domain protein 3, a familial mutation 
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involved in schizophrenia (Kamnasaran et al., 2003; Pieper et al., 2005), and two 

different FGFR1 knockout mice showed “schizophrenia-like characteristics” (Ohkubo et 

al., 2004; Shin et al., 2004; Klejbor et al., 2006).   

Schizophrenia is also believed to involve impairments in connections between 

neurons, and between different brain regions, which could result from abnormal 

development (Foucher and Luck, 2006).  FGF-2 has been shown to promote dendritic 

growth in the hippocampus (Rai et al., 2007), as well as promote embryogenesis and 

increase cerebral cortex volume (Vaccarino et al., 1999).  FGF-2 knockout mice show 

decreased neuronal number in the cerebral cortex (Turner et al., 2006).   

Several antipsychotic drugs have been shown to change FGF-2 mRNA levels in 

both human (Hashimoto et al., 2003) and rat hippocampus (Gómez-Pinilla et al., 2000; 

Ovalle et al., 2001; Fumagalli et al., 2004; Maragnoli et al., 2004).  On the other hand, 

postmortem studies showed that FGF-2 mRNA in the hippocampus was decreased in 

clozapine treated schizophrenic patients compared with the nontreated (Gaughran et al., 

2006).   

Therefore, there is a strong association between FGF-2 dysregulation and 

schizophrenia.  Schizophrenia is also associated with decreased glutathione and 

glutamate dysfunction in the brain (Pérez-Neri et al., 2006; Ballatori et al., 2009).  These 

suggest the possibility of FGF-2 dysregulation mediated effects being due to its 

regulation of system xC-.   
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FGF-2 and addiction 

FGF-2 has also been suggested to be involved in addiction.  Agonists of 

dopaminergic D2 receptors increase FGF-2 gene expression in rat prefrontal cortex and 

hippocampus (Fumagalli et al., 2003).  Both acute and chronic exposure to cocaine 

increases FGF-2 expression in rat striatum, prefrontal cortex, hippocampus, and frontal 

cortex (Fumagalli et al., 2006).  Rats that were selectively bred for enhanced drug 

seeking behavior have higher FGF-2 expression levels (Turner et al., 2009).  Postnatal 

administration of FGF-2 enhances acquisition of cocaine self-administration in adults 

(Turner et al., 2009).  However, the functional involvement of FGF-2 in addiction has 

been little studied.   

 
SYSTEM XC- CONTRIBUTION TO CELL DEATH/SURVIVAL 

Oxidative glutamate toxicity 

 In vitro experiments demonstrated that immature neurons rely heavily on system 

xC- activity to take up cystine (Murphy et al., 1990).  They lack glutamatergic receptors; 

so instead of causing excitotoxicity, high levels of extracellular glutamate cause toxicity 

in these cells by competitively inhibiting system xC-, causing oxidative glutamate toxicity 

(Murphy and Baraban, 1990; Schubert and Piasecki, 2001; Lewerenz et al., 2006). The 

oxidative glutamate toxicity is characterized by depletion of GSH (Miyamoto et al., 1989; 

Murphy et al., 1989; Murphy and Baraban, 1990; Murphy et al., 1990), and has 

characteristics of both apoptosis and necrosis (Tan et al., 1998).  Similar oxidative 

glutamate toxicity is also observed in neuroblastoma-primary retina hybrid cells (N18-
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RE105) (Miyamoto et al., 1989), primary rat hippocampal neurons (Murphy et al., 1989), 

a mouse hippocampal cell line (HT-22) (Tan et al., 2001), and primary oligodendrocytes 

(Oka et al., 1993).   

 
Increased system xC- activity: protection against oxidative stress 

 Upregulation of system xC- has been shown to be protective against oxidative 

stress in multiple systems.  Fast proliferating primary brain glial-derived tumor cells 

produce high levels of ROS.  These cells rely primarily on system xC- to take up cystine 

to produce GSH, therefore, inhibiting system xC- decreases the growth of these tumor 

cells (Chung et al., 2005).  High system xC- activity might contribute to the high tolerance 

of human ovarian cancer cells to anticancer treatments (Okuno et al., 2003).  In mouse 

neural stem cells, hypoxic preconditioning increases system xC- function and strengthens 

the cell’s resistance to oxidative glutamate toxicity (Sims et al., 2012).  This 

preconditioning produced protection is absent when either system xC- is blocked by S-4-

carboxyphenyl glycine (CPG), or GSH synthesis is blocked by buthionine sulphoximine 

(Sims et al., 2012).  IGF-1 and TGF-β increase cystine uptake through system xC- on 

dental pulp cells, which leads to protection against oxidative stress (Pauly et al., 2011).  

Retinoic acid increases SH-SY5Y cell (a human dopaminergic neuroblastoma cell line) 

tolerance for 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium ion 

(MPP+) compared to untreated cells (Crockett et al., 2011).  This is because retinoic acid 

increases system xC- activity, which increases GSH levels and protects the cells from 

these oxidative insults (Crockett et al., 2011).  Upregulating Nrf2, one of the well-

characterized pathways that regulate xCT expression, is also known to protect both glial 
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cells and neurons from oxidative stress insults in a PI3K/Akt dependent manner (Shih et 

al., 2003; Wang et al., 2009).  Ceftriaxone protects fibroblasts and the hippocampal cell 

line HT22 from oxidative glutamate toxicity by upregulating system xC- through the 

Nrf2-ARE pathway (Lewerenz et al., 2009).  All of this data suggests that increasing 

system xC- can increase cystine uptake, which can lead to increased glutathione 

production, and provide protection against oxidative stress.   

 
Increased system xC- activity: enhanced excitotoxicity 

 Increasing system xC- activity is not always protective.  Activated microglia have 

increased glutamate release via system xC-, which causes oligodendrocyte excitotoxicity 

through AMPA receptors (Domercq et al., 2007).  Interleukin 1β (IL-1β) upregulates 

system xC- activity selectively on astrocytes, but not neurons (Jackman et al., 2010).  This 

increased system xC- activity is responsible for exacerbating neuronal cell death mediated 

by excitotoxicity when the cultures are exposed to hypoxia (Fogal et al., 2007) or glucose 

deprivation (Jackman et al., 2012).  These studies demonstrate that when system xC- 

activity is increased, glutamate release is also increased, which can potentially exacerbate 

excitotoxicity.   

 
POTENTIAL ROLE OF SYSTEM XC- IN NEUROLOGICAL DISORDERS 

Alzheimer’s disease (AD) 

 AD is a common neurodegenerative disorder in elderly people.  It is characterized 

by progressive memory loss and impaired cognitive function.  Amyloid-β (Aβ) plaques 

and formation of neurofibrillary tangles are the characteristic hallmarks of this disease.  
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Aβ is a normal product of the brain, therefore, the abnormal deposition must be due to an 

over production and/or impaired clearance.  Astrocytes can degrade Aβ (Koistinaho et al., 

2004; Pihlaja et al., 2011).  However, Aβ can make astrocytes reactive, which can 

contribute to neuronal degeneration (Olabarria et al., 2010).  There are increased levels of 

phosphorylated eIF2α (Chang et al., 2002; Unterberger et al., 2006) and ATF4 

(Lewerenz and Maher, 2009) in AD patient’s brains, which are shown to be involved in 

xCT regulation (Lewerenz and Maher, 2009).  In fact, in PC12 cells, induction of eIF2α 

phosphorylation using the specific eIF2α phosphatase inhibitor, salubrinal, increased 

ATF4 levels, system xC- activity, and resistance to Aβ toxicity (Lewerenz and Maher, 

2009).  Therefore, it is most likely that the increase of eIF2α and ATF4 is an adaptation 

to the increased Aβ accumulation.  However, secreted Aβ precursor protein (APP) can 

activate microglia and stimulate system xC- mediated glutamate release from microglia, 

which leads to decreased synaptic density and neuronal viability (Barger and Basile, 

2001).  Therefore, it is not clear whether upregulation of system xC- during AD is 

beneficial or harmful.  

 
Parkinson’s disease (PD)  

 PD is a common nervous system disorder in the elderly that is characterized by 

degeneration of dopaminergic cells in the substantia nigra, resulting in symptoms such as 

difficulties in initiating and finishing voluntary movements, tremors, stiff movements, 

and eventually leads to muscle atrophy (Obeso et al., 2010).  Extensive postmortem 

studies have reported that increased oxidative stress, decreased GSH, and increased 

oxidative damage to lipids, protein and DNA are observed in PD (Jenner and Olanow, 
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1996; Simonian and Coyle, 1996).  Increased striatal glutamate (Massie et al., 2011) and 

decreased nigral glutathione (Schulz et al., 2000) have both been indicated to contribute 

to dopaminergic cell degeneration.   

 Involvement of system xC- in animal models of PD has been studied.  xCT is 

upregulated in the striatum three weeks after 6-OHDA lesion of the nigrostriatal area 

(Massie et al., 2008).  Also, 24 hour 6-OHDA treatment increases system xC- mediated 

cystine uptake in C6 glioma cells in a dose dependent manner (Massie et al., 2008).  In 

xCT null mice, striatal glutamate levels are significantly lower compared to control 

suggesting that system xC- is responsible for the majority of extracellular glutamate 

(Baker et al., 2002; De Bundel et al., 2011; Massie et al., 2011).  The absence of xCT 

decreased the susceptibility of substantia nigra dopaminergic neurons to 6-OHDA 

toxicity (Massie et al., 2011).  These data suggest that system xC- function may have a net 

damaging effect in PD, but it must be kept in mind that the 6-OHDA lesion model is not 

an ideal model of PD.   

 
Amyotrophic lateral sclerosis–Parkinsonism dementia complex (ALS-PDC) 

ALS-PDC is a neurological disease that is also known as lytico-bodig to the 

Chamorro people on the island of Guam (Reed and Brody, 1975).  The disease has 

aspects of ALS, PD, and AD: muscular weakness, spasticity, flaccid paralysis and 

atrophy, and spinal-cord pathology similar to that are seen in ALS, tremors seen in PD, 

neurofibrillary tangles similar to these occurring in brain tissue in AD, and dementia that 

is seen both in PD and AD (Spencer et al., 1987; Liu et al., 2009).  The disease has been 

known to be occurring on Guam for about 200 years (Kurland and Mulder, 1954).  
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However, an outbreak of ALS-PDC in the 1940s to 1960s gained attention because the 

incidence in the Chamorro population was 100 times higher than ALS elsewhere 

(Kurland and Mulder, 1954; Spencer et al., 1986).  The etiology of ALS-PDC remains 

uncertain, dietetic, environmental and genetic factors have all been considered (Ince and 

Codd, 2005).   

At first, genetic factors were considered as the cause since certain villages and 

families had higher rates of ALS-PDC.  However, no genetic mutation that was found 

that could account for the disease, and later studies indicated that adopting the local life 

style and traditional diet had a significant association with the disease (Garruto et al., 

1981).   

 
β-N-methylamino-L-alanine (BMAA) 

BMAA is a non-protein amino acid that is one of the many potential toxins found 

in cycad plants (Spencer et al., 1987; Cox et al., 2003).  It was proposed as a possible 

environmental trigger for ALS-PDC on Guam (Spencer et al., 1987).  The local 

Chamorro people collect the cycad seeds for food and medicine (Bradley and Mash, 

2009).  The local flying foxes (fruit bats) also feed on cycad seeds and it was found that 

BMAA accumulates at high levels in these bats (Cox and Sacks, 2002; Cox et al., 2003; 

Monson et al., 2003).  Flying fox stew was served as a local courtesy dish until its 

extinction in the 1960s, after which time the incidence of ALS-PDC declined.   

BMAA was found to mimic glutamate and activate glutamatergic receptors when 

bicarbonate is present (Weiss and Choi, 1988; Richter and Mena, 1989) (Fig. 1.13), and 

BMAA was found to cause excitotoxicity when physiological concentration of 
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bicarbonate was present in the media (Weiss and Choi, 1988; Weiss et al., 1989b).  The 

BMAA carbonate competes with glutamate at synapses (Richter and Mena, 1989) and 

was shown to have direct binding to the NMDA receptors (Weiss et al., 1989a).   

 

 

FIGURE 1.13.  Structural similarities between the neurotransmitter L-glutamate 
and the neurotoxic carbonate adduct of BMAA.   

From (Erdner et al., 2008) 
 

 Oral bioavailability conducted in cynomolgous monkeys indicated that 80% of the 

administered BMAA was absorbed into the systemic circulation (Duncan et al., 1992).  

More specifically, BMAA crosses the blood-brain barrier, and is retained at high levels in 

the central nervous system (Kisby et al., 1988; Duncan et al., 1991; Smith et al., 1992).   

 BMAA bicarbonate mimicking glutamate is not the only mechanism of BMAA 

actions, since it also increases calcium levels in dissociated rat brain cells in bicarbonate-

free media (Brownson et al., 2002).  In previous studies, we found that BMAA can cause 

cell death of primary cultured cortical neurons by activating glutamatergic receptors such 

as NMDA and mGluR5 (Lobner et al., 2007).  In this thesis we present evidence that 

BMAA also acts as a substrate for system xC- and by doing so both inhibits cystine 

uptake and stimulates glutamate release (Liu et al., 2009).   
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Heavy metals 

Heavy metal toxicity was another hypothesis for ALS-PDC (Johnson and 

Atchison, 2009).  However, no clear evidence of heavy metal toxicity was discovered.  

Since the outbreak of Minamata disease in Japan in 1956, due to an industrial release of 

methylmercury (MeHg) (Harada, 1995), MeHg has received attention for its neurotoxic 

actions both during development and in adults.   

 MeHg is an environmental neurotoxin that is most often consumed through 

contaminated seafood (Rush et al., 2012a).  It is not directly associated with ALS-PDC, 

but has been implicated in neurodegenerative diseases (Wang et al., 2008).  In vivo 

studies suggest that the major localization of MeHg is in glial cells (Charleston et al., 

1995).  Further studies showed that in glial cells MeHg decreases GSH levels (Aschner et 

al., 1994) and disrupts glutamatergic and GABAergic homeostasis (Schousboe et al., 

1992).  In astrocytes, MeHg exposure activates the Nrf2-ARE pathway to upregulate a 

series of antioxidative proteins and increases GSH levels (Wang et al., 2008; Niciu et al., 

2012).  We have shown that MeHg induces increased system xC- activity in primary 

mixed neuronal and glial cortical culture (Fonnum, 1984; Rush et al., 2012b).  

Interestingly, we also showed that MeHg and BMAA synergistically deplete cellular 

GSH levels and induced toxicity to neuronal cells in primary cultures (Petroff, 2002; 

Schousboe and Waagepetersen, 2007; Rush et al., 2012a).   

 
Ischemia/Stroke 

 Stroke is caused by disturbance in the blood supply to the brain, which leads to 

rapid loss of brain functions and often results in permanent neurological damage (Meister 
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and Anderson, 1983; Dringen et al., 2000; Kalra and Ratan, 2008).  It is one of the 

leading causes for death and disability, especially in the elderly population (Erecińska 

and Silver, 1990; Choi, 1998).  Injury induced increases in IL-1β from microglia may 

exacerbate ischemic injury, because IL-1 receptor type I deficient mice show smaller 

infarcts compared to wild type animals following 90 minute reversible middle cerebral 

artery occlusion (Dingledine et al., 1999; Fogal et al., 2007).  In vitro data shows that IL-

1β selectively upregulates system xC- levels on astrocytes but not neurons, and that 

glutamate released from system xC- enhances hypoxic neuronal death (Jackman et al., 

2010; Niciu et al., 2012).  Therefore, IL-1β mediated ischemic damage may be mediated 

by its upregulation of system xC-.  In contrast, erythropoietin has been shown to be 

protective against ischemic neuronal injury (Noguchi et al., 2007; Niciu et al., 2012).  

Interestingly, erythropoietin increases xCT expression in B104 cells, and this 

upregulation can protect the cells from oxidative glutamate toxicity (Dingledine et al., 

1999; Sims et al., 2010).  Ischemic preconditioning, which protects cells from further 

ischemic stress, has also been shown to upregulate system xC- (Jonas et al., 1994; Sims et 

al., 2012).  It is possible that the net effect of upregulation of system xC- on ischemia 

induced cell death is dependent on the cell type on which it is upregulated.   

 
Glioma 

 Gliomas are a type of tumor that arise from glial cells and are the most common 

type of brain tumor (Sontheimer, 2003; Clem and Barth, 2006).  Glioma cells have 

increased need for GSH because of their fast dividing rate.  When glioma cells 

experience oxidative stress, system xC- is rapidly upregulated to maintain the GSH levels 
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(Schneggenburger et al., 1993; Kim et al., 2001).  Glioma cells release a large amounts of 

glutamate into the extracellular space because of the high system xC- activity (Dingledine 

et al., 1999; Ye and Sontheimer, 1999), but they also lack sodium-dependent glutamate 

transporters that clear glutamate from extracellular space (Dingledine et al., 1999; Ye et 

al., 1999).  The combination of these actions cause excitotoxicity to surrounding neuronal 

cells and promotes glioma growth at the same time (Béhé et al., 1995; Premkumar and 

Auerbach, 1997; Takano et al., 2001).  Therefore, glioma cells utilize system xC- to kill 

surrounding neuronal cells by releasing glutamate to cause excitotoxicity to make room 

for additional growth, and take up sufficient amounts of cystine through system xC- to 

make GSH to reduce oxidative stress (Patneau and Mayer, 1990; Burnashev et al., 1995; 

Sontheimer, 2003; 2008).  The high system xC- activity also makes the tumor cells more 

resistant to drugs (Nowak et al., 1984; Lo et al., 2008).  In mouse models of glioma 

tumors, the increased glutamate release can cause epileptic activity, which is a common 

symptom in the majority of glioma patients (Nowak et al., 1984; Dingledine et al., 1999; 

Buckingham et al., 2011).  Because inhibiting system xC- suppresses glioma growth by 

depleting GSH (Johnson and Ascher, 1987; Schell et al., 1995; Chung and Sontheimer, 

2009; Guan et al., 2009), it has been suggested as a treatment for gliomas (Chung and 

Sontheimer, 2009; Grienberger and Konnerth, 2012).   

 
Addiction 

 According to the American Society of Addiction Medicine, “addiction is a 

primary, chronic disease of brain reward, motivation, memory and related circuitry.”  

Decreased levels of basal extracellular glutamate resulting from disrupted system xC- 
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function following chronic cocaine administration has been implicated in the 

pathophysiology of drug addiction (Conn and Pin, 1997; Baker et al., 2003; Ferraguti and 

Shigemoto, 2006; Kim et al., 2008; Lewerenz et al., 2012).  System xC- provides most of 

the extrasynaptic glutamate in nucleus accumbens, which can activate group II mGluRs 

that are autoreceptors localized on presynaptic terminals (Baker et al., 2002; Niciu et al., 

2012).  Intracellularly, group II mGluRs couple to Gi/o to cause decreased cAMP levels 

and eventually lead to decreased neurotransmitter release from the presynaptic terminal 

(Kilbride et al., 2001; Niciu et al., 2012).  Decreased group II mGluRs function has been 

reported after chronic cocaine administration (Xi et al., 2002; Niciu et al., 2012).  

Interestingly, before reinstatement of cocaine seeking, infusing cystine into the nucleus 

accumbens of chronic cocaine administrated animals not only eliminated the decreased 

extracellular glutamate levels, but also prevented acute cocaine induced increase in 

synaptic glutamate release (Choi, 1987; Baker et al., 2003).  Administration of N-

acetylcysteine, a cysteine pro drug, prevented cocaine induced reinstatement (Bains and 

Shaw, 1997; Choi, 1998; Baker et al., 2003; Moussawi et al., 2009).  A logical 

explanation for these results is that chronic cocaine administration decreases glutamate 

release from system xC-, as well as decreases presynaptic group II mGluRs functions, 

which leads to decreased presynaptic inhibition of neurotransmitter release.  After 

extinction, following acute cocaine administration, increased neurotransmitter release 

elicits reinstatement.  However, when extrasynaptic glutamate levels are restored through 

increasing glutamate release by driving system xC- with cystine, presynaptic inhibition is 

restored, which prevents excessive synaptic glutamate release.   
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 The exact mechanism by which cocaine decreases system xC- activity is unknown.  

However, injections of N-acetylcysteine before each self-administration prevented 

chronic cocaine intake escalation (McDonald et al., 1998; Madayag et al., 2007), as well 

as blunted reinstatement (Pitt et al., 2000; Smith et al., 2000; Madayag et al., 2007; Kau 

et al., 2008).  These studies showed that promotion of system xC- function can prevent 

cocaine induced synaptic plasticity to a certain extent.  The beneficial effect of N-

acetylcysteine does not seem to be limited to preventing the synaptic plasticity caused by 

cocaine administration, but also involves the ability to reverse some plasticity caused by 

cocaine administration.  Infusion of N-acetylcysteine after drug administration also 

restores basal extracellular glutamate levels (Yoshioka et al., 1996; Bannerman et al., 

2007; Moussawi et al., 2009), and blunts reinstatement (Erecińska and Silver, 1990; 

Amen et al., 2011).  Ceftriaxone, which induces xCT expression and increases system xC- 

function (Barbour et al., 1988; Zerangue and Kavanaugh, 1996a; Lewerenz et al., 2009), 

was also shown to be able to restore cocaine administration induced decrease in 

extracellular glutamate back to normal and prevent relapse to cocaine seeking (Ventura 

and Harris, 1999; Knackstedt et al., 2010; Witcher et al., 2010).   

 
GENERAL METHODS 

 In this dissertation all of the studies utilize primary cell cultures.  Following is an 

overview of the essential methods used in the studies, with a brief assessment of the 

advantages and limitations of these procedures.   
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Cortical Culture 

 Cortical cell culture is a well-established system for modelling aspects of in vivo 

systems.   For these studies, the cortex is dissected from mice on gestational day 15.  

Cortexes from the same litter are dissociated, then trypsinized before plating in Eagle’s 

minimum essential media containing 5% heat-inactivated horse serum and 5% fetal 

bovine serum on poly-D-lysine and laminin coated 24 well plates.  Cultures are then 

incubated in a 5% CO2 incubator at 37°C for two weeks before being used for 

experiments.  Every six to eight embryos yield one plate.  In a mature mixed plate the 

neurons (~200,000) extend out axons and dendrites to form complicated networks, below 

the neurons, glial cells (~100,000) form a confluent layer.  Similarly, we can also make 

neuronal-enriched and glia-enriched cultures.  By adding cytosine arabinocide, a mitotic 

inhibitor, 2-3 days after plating, glial replication is eliminated producing neuronal-

enriched cultures.  By delaying the dissection until postnatal day one, neurons do not 

survive producing glia-enriched cultures.  These procedures provide a complex, but 

easily reproducible, in vitro system in which to perform studies.   

 However, there are some limitations of this culture system.  The cells can only be 

maintained in vitro for a maximum of about 3 weeks, and even during that time cells are 

continually dying, this limits the ability to mimic low-dose, long-term insults.  Most of 

our experiments are performed on cultures DIV 13-15, with insults lasting 24-48 hours.  

Also, as a common limitation of all cell culture studies, the cells are maintained in a 

media that is optimized for cell health, and is not exactly the same as that in vivo.  These 

limitations should always be kept in mind when interpreting cell culture studies.   

 



50 

Cell death assay 

 To quantify the cell death/survival, plate reader based assays are used.  Lactate 

dehydrogenase (LDH) is a large cytosolic enzyme that is normally retained in the cells.  

However, in the event of cell damage/death, the cell membrane is compromised and the 

cellular contents, including LDH, leak out into the extracellular culture media.  The 

amount of LDH being released is proportional to the amount of dead cells.  The assay for 

LDH involves the fact that it catalyzes the conversion of pyruvate to lactic acid using 

NADH.  By sampling the extracellular media, then adding pyruvate and NADH, the 

amount of LDH present can be determined by measuring the rate of NADH loss using an 

absorbance based plate reader.  By comparing experimental groups to the control group 

and full kill (neuronal full kill is achieved by adding 500 µΜ NMDA to induce 

excitotoxicity; glial full kill is achieved by adding 20 µM A23187, a calcium ionophore, 

to cause calcium overload to induce cell death), the relative percentage of cell death can 

be obtained.  Another assay we use to measure neuronal injury is the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.  MTT can be 

reduced by mitochondrial reductase enzymes forming a dark purple formazan compound.  

By measuring the formazan levels, an indirect measure of cell viability is obtained.  The 

results of these automated assays are confirmed for key experiments by trypan blue 

staining, which is a blue dye that only stains the cells whose membrane is compromised.   

 The automated assays provide a fast and accurate way of assessing cell death.  

However, one should keep in mind that reagents that can potentially alter the function of 

the enzymes that are used for the assays may alter the results.  For example, LDH 

function can be altered by hypoxia (Soñanez-Organis et al., 2012), anoxia (Xiong and 
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Storey, 2012), and growth factors (Matrisian et al., 1985).  Also, these assays utilize 

changes in absorbance to detect color changes to measure enzyme activity.  Therefore, 

reagents that interfere with absorbance detection may dramatically change the results.  

Because of these confounding factors visual examination and estimation of cell death is 

always performed. 

 
14C-cystine uptake 

 Under physiological conditions, system xC- transports cystine into cells in 

exchange for glutamate being transported out.  To assess system xC- activity, we take 

advantage of the amino acid transport function of system xC- and measure the uptake of 

14C-cystine.  The advantage of measuring cystine uptake, as opposed to glutamate uptake 

or release, is that, in our primary cortical cultures, cystine does not directly interact with 

receptors on the cell membrane.  In contrast, there are a large amount of glutamatergic 

receptors and transporters present on the membrane.  However, there are some drawbacks 

to using 14C-cystine uptake as measure of system xc- function.  Cystine taken up by cells 

is quickly broken down into cysteine, and this can happen extracellularly as well.  

Therefore, the uptake data may be a mixture of cystine/cysteine uptake.  Since system xC- 

only transports cystine, not cysteine, this problem can be addressed by blocking system 

xC- to dissect out the system xC- mediated uptake activity.  Intracellularly, cysteine can be 

used to synthesize glutathione, and other cysteine containing molecules, which can be 

exported.  Therefore, with long-term treatment times the uptake data may be a 

compromised by changes in the efflux rate.  To address this concern we compared 14C-

cystine uptake for 2 and 20 minutes with or without 24 hour FGF-2 treatment (Fig. 1.14).  
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The two time points gave similar results, suggesting that 20 minutes is not too long of a 

period to measure uptake under these conditions.  

 

 

FIGURE 1.14.  24 hour FGF-2 treatment on 2 min and 20 min cystine uptake 
Following 24 hour exposure to FGF-2 (100 ng/ml), 14C-cystine uptake was measured for 
2 min and 20 min in astrocyte-enriched cultures.  Data are expressed as 14C-cystine 
uptake in CPM per microgram protein normalized to control (mean±s.e.m., n=4) (A).  * 
indicates significantly different from control uptake.   
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CHAPTER II 

 

 

 

 

β-N-methylamino-L-alanine induces oxidative stress and glutamate 

release through action on system xC−  
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ABSTRACT 

β-N-methylamino-L-alanine (BMAA) is a non-protein amino acid implicated in 

the neurodegenerative disease amyotrophic lateral sclerosis and Parkinson-dementia 

complex (ALS-PDC) on Guam.  BMAA has recently been discovered in the brains of 

Alzheimer’s and ALS patients in North America and is produced by various species of 

cyanobacteria around the world.  These findings suggest the possibility that BMAA may 

be of concern not only for specific groups of Pacific Islanders, but for a much larger 

population.  Previous studies have indicated that BMAA can act as an excitotoxin by 

acting on the NMDA receptor.  We have shown that the mechanism of neurotoxicity is 

actually three-fold; it involves not only direct action on the NMDA receptor, but also 

activation of metabotropic glutamate receptor 5 (mGluR5) and induction of oxidative 

stress.  We now explore the mechanism by which BMAA activates the mGluR5 receptor 

and induces oxidative stress.  We found that BMAA inhibits the cystine/glutamate 

antiporter (system xC-) mediated cystine uptake, which in turn leads to glutathione 

depletion and increased oxidative stress.  BMAA also appears to drive glutamate release 

via system xC- and this glutamate induces toxicity through activation of the mGluR5 

receptor. Therefore, the oxidative stress and mGluR5 activation induced by BMAA are 

both mediated through action at system xC-.  The multiple mechanisms of BMAA 

toxicity, particularly the depletion of glutathione and enhanced oxidative stress, may 

account for its ability to induce complex neurodegenerative diseases.   
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INTRODUCTION 

In the 1950s it was observed that a substantial number of Chamorros, the native 

people of Guam, began developing a disease that showed combined symptoms of 

amyotrophic lateral sclerosis and Parkinson’s dementia complex (ALS-PDC).  The idea 

that BMAA may be involved in this disease began in the 1980s when it was found that 

BMAA was present in cycad seeds which were consumed by the Chamorros (Nunn et al., 

1987; Amara, 1992; Kanai and Hediger, 1992; Storck et al., 1992; Rothstein et al., 1994; 

1996; Diamond and Jahr, 1997; Lehre and Danbolt, 1998) and that injection of BMAA 

into monkey brains induced a Parkinson-like disease (Spencer et al., 1987; Sibson et al., 

1998).  Since its initial proposal, the BMAA hypothesis for the development of ALS-

PDC on Guam has been controversial (Rothstein et al., 1996; Asztely et al., 1997; 

Rusakov and Kullmann, 1998; Cox and Sacks, 2002; Papapetropoulos, 2007).  It was 

challenged by findings that the levels of BMAA in cycad seeds are too low to cause 

damage to the brain or the spinal cord, particularly because the Chamorros thoroughly 

wash the cycad seeds, leading to very low levels of BMAA being consumed (Duncan et 

al., 1990; Hardingham et al., 2002; Riccio and Ginty, 2002; Ivanov et al., 2006; Léveillé 

et al., 2008; Xu et al., 2009; Hardingham and Bading, 2010).  The BMAA hypothesis was 

largely abandoned until the last few years.   

A number of recent studies have brought the BMAA hypothesis back into 

prominence.  First, it was shown that BMAA is biomagnified.  BMAA is produced by 

cyanobacteria that live on cycad plants; it accumulates in the cycad seeds, which are 

eaten by fruit bats, which are in turn eaten by the Chamorros (Cox et al., 2003; Lipton 

and Chen, 2004; Xia et al., 2010).  This system provides a new mechanism by which 
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BMAA can be accumulated to high levels in humans.  Second, it was shown that BMAA 

could become protein-associated.  This property allows for BMAA to build up in tissue 

and provides a mechanism for slow release (Lipton and Chen, 2004; Murch et al., 2004b; 

Chen and Lipton, 2006; Xia et al., 2010).  This slow release may provide a possible 

explanation for the delayed onset of ALS-PDC following the time of BMAA 

consumption (Ince and Codd, 2005; Niciu et al., 2012).  Third, cyanobacteria present 

throughout the world have been shown to produce BMAA (Futamachi and Pedley, 1976; 

Roitbak and Fanardjian, 1981; Cox et al., 2005; Banack et al., 2007; Esterhuizen and 

Downing, 2008; Johnson et al., 2008; Metcalf et al., 2008).  Also, BMAA was found not 

only in brain samples of ALS-PDC patients from Guam, but also in the brains of ALS 

and Alzheimer’s disease patients from North America, but not in patients who died of 

other causes (Venance et al., 1997; Murch et al., 2004a; Pablo et al., 2009).  These results 

suggest that BMAA may be of concern not only for people on select Pacific islands, but 

for a much larger population.  Fourth, BMAA at lower concentrations than previously 

believed is neurotoxic.  The original studies in cortical cell culture found that very high 

BMAA concentrations (1-3 mM) were required to induce neuronal death (Ross et al., 

1987; Weiss and Choi, 1988; Weiss et al., 1989a; Oikawa et al., 2005).  A more recent 

study found that BMAA concentrations as low as 30 µM can cause selective death of 

motor neurons (Rao et al., 2006; Butt, 2011; Köles et al., 2011) and cholinergic neurons 

(Venance et al., 1997; Agulhon et al., 2008; Liu et al., 2010), and we found that BMAA 

concentrations as low as 10 µM can enhance neuronal death induced by amyloid-β or 1-

methyl-4-phenylpyridinium ion (MPP+) (Seifert and Steinhäuser, 2001; Lobner et al., 

2007).   
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Given the potential relevance of BMAA consumption to neurodegenerative 

diseases it is important to determine the mechanism of BMAA induced neuronal death.  

We have previously shown that BMAA induces neuronal death through three distinct 

mechanisms: activation of the NMDA and mGluR5 receptors, and induction of oxidative 

stress (Lobner et al., 2007; Benarroch, 2009).  Through electrophysiological recording it 

has been shown that BMAA directly acts on NMDA receptors(Ross et al., 1987; Weiss 

and Choi, 1988; Brownson et al., 2002; Lobner et al., 2007; Poskanzer and Yuste, 2011).  

The current studies were designed to determine how BMAA activates mGluR5 receptors 

and induces oxidative stress.  Evidence is presented that the cystine/glutamate antiporter 

(system xC-) plays an important role in these effects.  System xC- involves the transport of 

cystine into the cell in exchange for glutamate being transported out of the cell.  Given 

the functions of system xC- it seems likely that it plays an important role in neuronal 

survival and death.  By releasing glutamate it can increase extracellular glutamate levels 

and potentially cause excitotoxicity.  Through providing cystine uptake, it can regulate 

cellular glutathione levels and in this way determine whether oxidative stress induced 

neuronal death will occur.  We find that the effects of BMAA on neuronal death involve 

actions on system xC- to both inhibit cystine uptake and increase glutamate release.   

 
MATERIALS AND METHODS 

Materials 

Timed pregnant Swiss Webster mice were obtained from Charles River 

Laboratories (Wilmington, DE). 35S-cystine was from Perkin Elmer Life and Analytical 

Sciences (Boston, MA). 5-(and -6)-carboxy-2′7′-dichlorodihydrofluorescein diacetate 
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(carboxy-H2DCFDA) was from Molecular Probes (Eugene, OR).   

 
Cortical cell cultures 

 Mixed cortical cell cultures containing neuronal cells were prepared from fetal 

(15-16 day gestation) mice as previously described (Cornell-Bell et al., 1990; Lobner, 

2000).  Dissociated cortical cells were plated on 24 well plates coated with poly-D-lysine 

and laminin in Eagles’s Minimal Essential Medium (MEM, Earle’s salts, supplied 

glutamine-free) supplemented with 5% heat-inactivated horse serum, 5% fetal bovine 

serum, 2 mM glutamine and glucose (total 21 mM).  Cultures were maintained in 

humidified 5% CO2 incubators at 37°C.  Mice were handled in accordance with a 

protocol approved by our Institutional Animal Care Committee.   

 
Induction of neuronal death 

 All experiments were performed on mixed cultures 13-15 days in vitro (DIV).  

Toxicity was induced by exposure to the toxic agents for 24 hours in media as described 

for plating except without serum.  All exposure media contained 26 mM NaHCO3, as it 

has been shown previously that HCO3
- is required for expression of NMDA receptor 

mediated BMAA toxicity (Weiss and Choi, 1988; Fellin et al., 2006; Butt, 2011; Parpura 

et al., 2012).   

 
Assay of neuronal death (LDH release) 

 Cell death was assessed in mixed cultures by the measurement of lactate 

dehydrogenase (LDH) release from damaged or destroyed cells, in the extracellular fluid 



59 

24 hours after the beginning of the insult.  Blank LDH levels were subtracted from insult 

LDH values and results normalized to 100% neuronal death caused by 500 µM NMDA.  

Control experiments have shown previously that the efflux of LDH occurring from either 

necrotic or apoptotic cells is proportional to the number of cells damaged or destroyed 

(Koh and Choi, 1987; Bezzi et al., 1998; Lobner, 2000; Bezzi et al., 2004; Kreft et al., 

2004) .  Glial cell death (assessed by trypan blue staining) was not observed in any of the 

current studies.  Therefore results are presented as percent neuronal death.   

 
35S-cystine uptake 

 Uptake of cystine was measured by exposure of cultures to 35S-cystine (2 µCi/ml) 

for 20 min in the presence or absence of 3 mM BMAA and/or 1 mM S-4-carboxyphenyl 

glycine (CPG).  Following the exposure to 35S-cystine, the cultures were washed three 

times and dissolved in 1% SDS (250 µl).  An aliquot (200 µl) was removed and added to 

scintillation fluid for counting.  Values were normalized to control 35S-cystine uptake (20 

min exposure to 35S-cystine without BMAA or CPG).   

 
Glutathione assay 

Total glutathione was assayed using a modification of a previous method (Baker 

et al., 1990; Duan et al., 2003; Lobner et al., 2003).  Briefly, following exposure to 

BMAA for three hours, cells were washed with a HEPES buffered saline solution, 

dissolved in 200 µl of 1% salicylic acid, and centrifuged.  A 25 µl aliquot of the 

supernatant was combined with 150 µl of 0.1 M phosphate/5 mM EDTA buffer, 10 µl of 

20 mM dithiobis-2-nitrobenzoic acid, 100 µl of 5 mM NADPH, and 0.2 U of glutathione 
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reductase.  Total glutathione was determined by kinetic analysis of absorbance changes at 

402 nm for 1.5 min, with concentrations determined by comparison to a standard curve.   

 
Assay of intracellular oxidative stress 

Oxidative stress was assayed by measuring dichlorofluorescein oxidation using a 

fluorescent plate reader following a modification of a previous method (Wang and 

Joseph, 1999; Bridges et al., 2004; Lobner et al., 2007).  Cultures were exposed to 3 mM 

BMAA for 3 hours in the presence of 5- (and -6)-carboxy-2’7’-

dichlorodihydrofluorescein diacetate (carboxy-H2DFDA) (10 µM).  The carboxy-

H2DFDA is de-esterified within cells to form a free acid that can then be oxidized to the 

fluorescent 2’7’-dichlorofluorecein (DCF).  After the exposure to carboxy-H2DCFDA, 

cultures were washed three times with culture media lacking serum.  Fluorescence was 

then measured using a Fluoroskan Ascent fluorescence plate reader (Thermo lab 

systems).  The excitation filter was set at 485 nm and emission filter at 538 nm.  

Background fluorescence (no carboxy-H2DCFDA added) was subtracted and the results 

normalized to control conditions (carboxy-H2DCFDA added, but no BMAA exposure).   

 
Analysis of glutamate release 

 Glutamate release was measured following exposure to 3 mM BMAA or cystine 

for 1 hour.  Experiments were performed in the presence of 10 µM MK-801 to block 

potential injury induced by glutamate release.  Samples of the bathing media from the 

cell cultures were assayed for glutamate by using phenylisothiocyanate (PITC) 

derivatization, HPLC (Agilent 1100) separation using a Hypersil-ODS reverse phase 
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column, and ultraviolet detection at a wavelength of 254 nm (Cohen et al., 1986; Lobner 

and Choi, 1996; Magistretti and Pellerin, 1996; Edvinsson and Krause, 2002).  200 µl of 

the bathing media was derivatized with 100 µl of PITC, methanol, triethylamine (2,7,4) 

and dried under vacuum.  These samples were then reconstituted in solvent consisting of 

0.14 M sodium acetate, 0.05% TEA, 6% acetonitrile and brought to pH 6.4 with glacial 

acetic acid.  The above solvent was used as the mobile phase with the column being 

washed between each sample run in 60% acetonitrile, 40% water.  Media glutamate 

concentrations were calculated by normalizing to glutamate standards.  Glutamate 

measurements were found to be linear over the range 0.1-10 µM.   

 
Statistical analysis 

 Differences between test groups were examined for statistical significance by 

means of one-way ANOVA followed by the Bonferroni t-test, with p<0.05 being 

considered significant.   

 
RESULTS 

BMAA toxicity involves the NMDA receptor, mGluR5 receptor, and oxidative stress 

As has been shown before we found that blockade of NMDA receptors with MK-

801 provided significant protection against high concentration BMAA toxicity (Ross et 

al., 1987; Weiss et al., 1989a; Dringen et al., 1993).  As we have shown previously 

(Magistretti and Pellerin, 1996; Lobner et al., 2007) that the mGluR5 antagonist 6-

methyl-2-[phenylethynel]-pyridine (MPEP), and the free radical scavenger, trolox, were 

not protective by themselves, but provided additional protection against BMAA toxicity 
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beyond that provided by MK-801 (Fig. 2.1.).  Furthermore, the combination of these 

agents provided the greatest protection, suggesting that they were acting through distinct 

mechanisms.  The MPEP and trolox were not protective against BMAA toxicity with the 

MK-801 present likely because of the overwhelming toxic effects of BMAA on NMDA 

receptor in the absence of MK-801 (Lobner et al., 2007).  Activation of AMPA/kainate 

receptors does not appear to be involved as we have shown previously that blocking 

AMPA/kainate receptors with CNQX is not protective even in the presence of MK-801 

(Freeman and Crapo, 1982; Simonian and Coyle, 1996; Lobner et al., 2007).  A high 

concentration of BMAA (3 mM) was used so that complete neuronal death was induced 

and the different mechanisms of toxicity could be studied.   

 

 

FIGURE 2.1.  BMAA induced toxicity occurs through multiple mechanisms. 
MK: 10 µM MK-801; MPEP: 50 µM 6-methyl-2-[phenylethynyl]-pyridine (MPEP); trolox: 
100 µM trolox.  Bars show % neuronal cell death (mean ± s.e.m., n = 16-20) quantified 
by measuring release of LDH, 24 hours after the beginning of the insult.   
* indicates significant difference. 
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BMAA induces oxidative stress through inhibition of system xC- mediated cystine 
uptake 
 

One possibility for induction of oxidative stress by BMAA is that it inhibits 

cystine uptake.  Cystine is the precursor for production of the endogenous free radical 

scavenger, glutathione.  We found that BMAA did in fact greatly attenuate cystine uptake 

(Fig. 2.2.).  Also, the cystine uptake was largely blocked by the cystine/glutamate 

antiporter (system xC-) inhibitor (s)-4-carboxyphenylglycine (CPG), suggesting that 

themajority of the cystine uptake is system xC- mediated.  BMAA did not cause inhibition 

of uptake in the presence of CPG (Fig. 2.2.).  Therefore, it is likely that BMAA attenuates 

the uptake of cystine by inhibition of system xC-.   

 

 
FIGURE 2.2.   BMAA inhibits system xC- mediated cystine uptake. 
BMAA: 3 mM BMAA; CPG: 1 mM S-4-carboxyphenyl glycine (CPG).  Bars show 35S-
cystine uptake during a 20 minute exposure presented as % control (mean ± s.e.m., n = 
16).  * indicates significant difference from control. 
 

 Since cystine uptake is rate-limiting step for glutathione synthesis, glutathione 

levels in response to BMAA treatment was measured.  After a three hour treatment with 

BMAA, glutathione levels were decreased by about 50% (Fig. 2.3.).  Three hour 

exposure was chosen because at this time point there was no significant neuronal death 

observed (less than 10% by the LDH release assay).   



64 

Since BMAA causes a decrease in the levels of the endogenous free radical 

scavenger glutathione, the total oxidative stress of the cells should be increased.  We 

measured cellular oxidative stress with the fluorescent dye dichlorofluorescein (DCF).  

Treatment with BMAA for 3 hours caused a significant increase in oxidative stress, 

which was blocked by the free radical scavenger trolox (Fig. 2.4.).   

 

 

FIGURE 2.3.  BMAA decreases cellular glutathione levels. 
BMAA: 3 mM BMAA.  Bars show glutathione levels following three hour BMAA exposure 
presented as % control (mean ± s.e.m, n = 16).  * indicates significant difference from 
control. 
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FIGURE 2.4.  BMAA induces oxidative stress. 
BMAA: 3 mM BMAA; trolox: 100 µM trolox.  5-(and -6)-carboxy-2’7’-
dichlorodihydrofluorescein diacetate (10 µM) was added to the cultures during a three 
hour exposure to BMAA.  Bars show % control fluorescence (mean ± s.e.m., n = 12).  * 
indicates significant difference from control.   
 

 The inhibition by BMAA of system xC- mediated cystine uptake suggests that 

BMAA competes with cystine; if like cystine, it is transported, the high levels of BMAA 

used in these studies should lead to increased glutamate release.  We did in fact find that 

3 mM BMAA increased extracellular glutamate.  A similar increase was also caused by 3 

mM cystine (Fig. 2.5.).   
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FIGURE 2.5.  BMAA and cystine stimulate glutamate release. 
BMAA: 3 mM BMAA; cystine: 3 mM cystine.  Bars show extracellular glutamate levels 
following a 1 hour BMAA or cystine exposure (mean ± s.e.m., n = 8).  * indicates 
significant difference from control.   
 

Since BMAA appears to induce glutamate release via system xC-, it is possible 

that this glutamate is responsible for at least part of the glutamate receptor mediated 

neuronal death.  Because BMAA is also a direct agonist for glutamate receptors (Lobner 

et al., 2007; Cucchiaroni et al., 2010), and 3 mM cystine caused a similar increase in 

extracellular glutamate compared with 3 mM BMAA, we used 3 mM cystine to study the 

effect of glutamate released by system xC-.  We found that 3 mM cystine did induce 

neuronal death (Fig. 2.6.).  However, the death was less than that caused by 3 mM 

BMAA, likely due to the fact that cystine is not a direct NMDA receptor agonist like 

BMAA.  However, the cystine toxicity was partially blocked by either MPEP or MK-801.  

No protection was afforded by trolox, as would be expected since a high concentration of 

cystine should not induce oxidative stress.   
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FIGURE 2.6.  Cystine-induced neuronal death is attenuated by MK-801 and MPEP. 
MK: 10 µM MK-801; MPEP: 50 µM MPEP; trolox: 100 µM trolox.  Bars show % neuronal 
cell death (mean ± s.e.m, n = 24) quantified by measuring release of LDH, 24 hours after 
the beginning of the insult.   * indicates significant difference from control (cystine alone).   
 

DISCUSSION 

 We found that BMAA inhibits system xC- mediated cystine uptake leading to 

decreased cellular glutathione.  The process of glutathione production in neurons involves 

a complex series of steps in which cystine is taken up primarily into astrocytes (Freeman 

and Crapo, 1982; Sagara et al., 1993).  The glutathione produced by astrocytes is released 

and converted extracellularly into cysteine, which is taken up by neurons and used by 

them to produce glutathione (Fridovich, 1975; Wang and Cynader, 2000).  Whether the 

action of BMAA to inhibit cystine uptake was primarily on neurons or astrocytes was not 

determined in this study.  Therefore, it is not known if BMAA is initially acting to inhibit 

cystine uptake into neurons, or if it inhibits the uptake of cystine into astrocytes and 

prevents their release of glutathione and therefore restricts the supply of cysteine to 

neurons.  Complicating this simple analysis of BMAA effects of glutathione levels is the 
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finding that blocking system xc- with CPG for as long as 24 hours does not cause a 

decrease in cellular glutathione levels (data not shown).  The fact that BMAA does cause 

a decrease in cellular glutathione indicates that it has actions beyond its effect on system 

xc- mediated cystine uptake.  Other known actions of BMAA that may play a role in its 

effect on glutathione levels include inhibition of the enzymes involved in glutathione 

synthesis (Esterhuizen-Londt et al., 2011), activation of NMDA and mGluR5 receptors 

(Lobner et al., 2007), and results presented in the current study indicating that it can 

cause glutamate release.   

The data presented here strongly suggests that BMAA not only inhibits cystine 

uptake, but also drives system xC- to release glutamate and that this glutamate induces 

neuronal death by acting on mGluR5 receptors and NMDA receptors.  The evidence for 

this is that BMAA and cystine at the same concentration (3 mM) increase extracellular 

glutamate and they both induce NMDA receptor and mGluR5 mediated neuronal death.  

There is no evidence that either of these compounds directly activates mGluR5.  

Unfortunately, CPG could not be used to block the glutamate release because while it is a 

fairly poor substrate for system xC- (Patel et al., 2004; Rush et al., 2012b), at the high 

concentrations needed to compete with the high concentrations of BMAA and cystine 

used in these studies it stimulated glutamate release by itself (data not shown).  Why in 

our studies there was some protection against cystine induced toxicity by MK-801 is not 

clear.  There is no published data indicating that cystine is a direct NMDA receptor 

agonist.  However, we can not exclude the possibly that some of the cystine may be 

converted into cysteine, which is an NMDA receptor agonist (Pullan et al., 1987; 

Ballatori et al., 2009).  Alternatively, the glutamate release stimulated by cystine via 
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system xC- may act to stimulate NMDA receptors.  Furthermore, it has been shown 

activation of mGluR5 and NMDA receptor positively enhances each other’s activity 

(Alagarsamy et al., 1999; Benquet et al., 2002; Chen et al., 2011), which could 

potentially add to the BMAA toxicity.   

 Both oxidative stress and excitotoxicity have been suggested to be regulated by 

system xC- in various cell types.  It has been known for many years that inhibition of 

cystine uptake mediated by system xC- can induce neuronal death by decreasing 

glutathione levels (Murphy et al., 1989; Murphy and Baraban, 1990; Dringen et al., 2000)  

In contrast, astrocytes activated by IL-beta were shown to kill cortical neurons by release 

glutamate via system xC- (Bolaños et al., 1995; Rice and Russo-Menna, 1998; Fogal et 

al., 2007).  Also, microglia can release glutamate via system xC- that can kill cerebellar 

granule cells (Deneke and Fanburg, 1989; Piani and Fontana, 1994), oligodendrocytes 

(Rahman et al., 2005; Domercq et al., 2007), and enhance amyloid-β induced neuronal 

death in cortical cultures (Beutler, 1989; Deneke and Fanburg, 1989; Qin et al., 2006a).  

Finally, glutamate release from kidney dendritic cells via system xC- can inhibit T cell 

activation through actions on mGluR5 receptors (McBean, 2002; Pacheco et al., 2006).  

In the current study we find evidence that oxidative stress induced by the inhibition of 

cystine uptake and excitotoxicity induced by system xC- mediated glutamate release both 

play a role in BMAA induced neuronal death.   

Interestingly, another amino acid implicated in neurological diseases, β-N-oxalyl-

L-α,β-diaminopropionic acid (ODAP), also shares some properties with BMAA: it 

directly activates glutamatergic receptors and is transported by system xC- (Kranich et al., 

1996; Chase et al., 2007).  It is likely that ODAP acts similar to BMAA and causes 
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cytotoxicity through at least some of the same mechanisms.   

 The finding that BMAA not only inhibited cystine uptake by system xC-, but also 

stimulated glutamate release, suggests that it was transported by system xC-.  This 

transport provides a mechanism by which BMAA can accumulate in cells.  There is 

evidence that BMAA may be incorporated into proteins (Murch et al., 2004b; Lobner, 

2009) and could therefore potentially play a role in the protein misfolding found in 

neurodegenerative diseases (McBean, 2002; Uversky, 2008).  Whether BMAA can be 

incorporated into GSH is unknown.  If BMAA does become incorporated into GSH this 

would provide another potential mechanism for its ability to cause depletion of GSH and 

oxidative stress.   

 The importance of BMAA acting on system xC- to induce oxidative stress and 

excitotoxicity at the same time is that this may be partially account for the different types 

of neurological diseases that have been associated with BMAA consumption.  It is 

possible that the different actions of BMAA, in association with varying underlining 

conditions, may lead to the multiple disorders.  Most neurodegenerative diseases appear 

to involve NMDA receptor mediated excitotoxicity (Arrick et al., 1985; Lipton and Chen, 

2004) and oxidative stress (Dringen et al., 1999; Cui et al., 2004), and mGluR5 receptor 

activation has been implicated in Parkinson’s disease as well (Zerangue and Kavanaugh, 

1996b; Chen and Swanson, 2003; Marino et al., 2003; Aoyama et al., 2006).  All of these 

mechanisms of neuronal injury may be enhanced by BMAA.  The finding that BMAA 

causes a depletion of cellular glutathione is of particular importance.  There is evidence 

that glutathione depletion plays a role in Alzheimer’s disease, Parkinson’s disease, and 

ALS (Bannai and Kitamura, 1980; Bains and Shaw, 1997; Liu et al., 2004; Zeevalk et al., 
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2008).  This type of low level, long-term, depletion of glutathione that may be caused by 

the inhibition of cystine uptake could cause the long-term oxidative stress that may 

underlie aspects of neurodegenerative diseases.   

From these results and previous studies, it is obvious that system xC- plays an 

important role in neuronal fate.  We next want to examine if system xC- can be regulated 

by neurotrophic factors, which are naturally occurring molecules, which also regulate 

neuronal fate in multiple ways.  Neurotrophic factors have wide ranging effects in the 

central nervous system, including altering excitotoxicity (Koh et al., 1995; Sato et al., 

1999), oxidative stress (Zhang et al., 1993).    
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ABSTRACT 

The cystine/glutamate antiporter (system xC-) is a sodium-independent amino acid 

transport system.  Disruption of this system may lead to multiple effects in the central 

nervous system including decreased cellular glutathione.  Since multiple neurological 

diseases involve glutathione depletion, and disruption of growth factor signaling has also 

been implicated in these diseases, it is possible that some growth factors effects are 

mediated by regulation of system xC-.  We tested the growth factors fibroblast growth 

factor-2 (FGF-2), insulin-like growth factor-1 (IGF-1), neuregulin-1 (NRG), 

neurotrophin-4 (NT-4), and brain derived neurotrophic factor (BDNF) on system xC- 

mediated 14C-cystine uptake in mixed neuronal and glial cortical cultures.  Only FGF-2 

significantly increased cystine uptake.  The effect was observed in astrocyte-enriched 

cultures, but not in cultures of neurons or microglia.  The increase was blocked by the 

system xC- inhibitor (s)-4-carboxyphenylglycine (CPG), required at least 12 hour FGF-2 

treatment, and was prevented by the protein synthesis inhibitor cycloheximide.  Kinetic 

analysis indicated FGF-2 treatment increased the Vmax for cystine uptake while the Km 

remained the same.  Quantitative PCR showed an increase in mRNA for xCT, the 

functional subunit of system xC-, beginning at 3 hours of FGF-2 treatment, with a 

dramatic increase after 12 hours.  Blocking FGFR1 with PD 166866 blocked the FGF-2 

effect.  Treatment with both a PI3-kinase inhibitor (LY-294002) or a MEK/ERK inhibitor 

(U0126) for 1 hour prior to and during the FGF-2 treatment blocked the increased cystine 

uptake.  The upregulation of system xC- by FGF-2 may be responsible for some of the 

known physiological actions of FGF-2.   
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INTRODUCTION 

The function of system xC- makes it likely to play an important role in regulating 

many processes in the central nervous system.  By releasing glutamate, it can increase 

extracellular glutamate levels, which may alter neuronal plasticity and potentially cause 

excitotoxicity; Through providing cystine uptake, it supplies the substrate for cellular 

glutathione synthesis, and in this way may determine whether oxidative stress induced 

neuronal death will occur.   

There is considerable evidence that glutamate released from system xC- is 

involved in both physiological and pathological processes.  Physiologically glutamate 

release from system xC- plays a role at the photoreceptor synapse (Hu et al., 2008) and in 

regulating immune cell function (Xue and Field, 2011).  It is known that glutamate 

release from system xC- can cause toxicity, and this is observed in many pathological 

processes.  Activated astrocytes release glutamate via system xC- that can kill cortical 

neurons (Fogal et al., 2007).  Also activated microglia release glutamate via system xC- 

that can kill cerebellar granule cells (Piani and Fontana, 1994) and enhance amyloid-beta 

induced neuronal death in cortical cultures (Qin et al., 2006b).   

Glutathione is known to detoxify superoxide in a reaction catalyzed by 

glutathione peroxidase forming disulfide/oxidized glutathione.  This reaction is 

accomplished by redox changes at the sulfhydryl group of the cysteine residue of 

glutathione (Dringen and Hirrlinger, 2003).  The cystine uptake mediated by system xC- 

appears to play a critical role in regulating cellular glutathione levels, because de novo 

synthesis of glutathione in the brain is rate-limited by the uptake of cystine (Sagara et al., 

1993).  Specifically, astrocytes express high levels of system xC- and have high levels of 
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cystine uptake (Dringen et al., 2000; Lewerenz et al., 2006), while neurons of the central 

nervous system have limited capacity for cystine uptake, and are reliant primarily on 

astrocytes for the provision of cysteine and cysteinylglycine for neuronal glutathione 

production (Dringen et al., 1999).  The first evidence that system xC- could play a role in 

neuronal death was provided when it was shown that high concentrations of glutamate 

could competitively inhibit cystine uptake leading to an oxidative stress mediated 

neuronal death (Murphy et al., 1990).  This type of toxicity was shown to occur before 

glutamate receptors developed (Murphy and Baraban, 1990) and to involve depletion of 

glutathione (Ratan et al., 1994).  In contrast to the enhancement of neurotoxicity caused 

by releasing glutamate, system xC- activity on non-neuronal cells can be protective to 

neurons by generating and releasing glutathione.  Overexpression of xCT, the functional 

subunit of system xC-, in astrocytes has been shown to enhance glutathione release and 

protect neurons from oxidative stress (Shih et al., 2006).  Since neurological diseases 

including schizophrenia, depression, Alzheimer’s disease, and Parkinson’s disease have 

all been associated with depletion of cellular glutathione (Ballatori et al., 2009; Dean et 

al., 2009; Shibasaki et al., 2009; Maes et al., 2011), it is possible that altered system xC- 

function plays a role in these diseases.   

Neurotrophic factors have wide ranging effects in the central nervous system 

including altering excitotoxicity (Koh et al., 1995; Chintala et al., 2005), oxidative stress 

(Zhang et al., 1993; Shih et al., 2006), and cellular glutathione levels (Pan and Perez-

Polo, 1993; Sato et al., 1999).  The overlapping actions of growth factors and system xC- 

suggest the possibility that some neurotrophic factor effects may be mediated by 
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regulation of system xC-.  Therefore we tested the effects of a number of well-established 

neurotrophic factors on system xC- function.   

 
MATERIALS AND METHODS 

Materials 

Timed pregnant Swiss Webster mice were obtained from Charles River 

Laboratories (Wilmington, DE).  Serum was from Atlanta Biologicals (Lawrenceville, 

GA).  Growth factors were from Alomone Labs (Jerusalem, Israel).  14C-cystine was from 

Perkin Elmer (Waltham, MA).  All other chemicals were obtained from Sigma (St. Louis, 

MO).   

 
Cortical cell cultures 

Mixed cortical cell cultures containing glial and neuronal cells were prepared 

from fetal (15-16 day gestation) mice as previously described (Lobner, 2000; Sasaki et 

al., 2002).  Dissociated cortical cells were plated on 24-well plates coated with poly-D-

lysine and laminin in Eagles’ Minimal Essential Medium (MEM, Earle’s salts, supplied 

glutamine-free) supplemented with 5% heat-inactivated horse serum, 5% fetal bovine 

serum, 2 mM glutamine and glucose (total 21 mM).  Neuron-enriched cultures were 

prepared exactly as above with the addition of 10 µM cytosine arabinoside 48 hours after 

plating to inhibit glial replication.  In these cultures <1% of cells are astrocytes (Dugan et 

al., 1995; Sato et al., 2000; Sasaki et al., 2002; Rush et al., 2010).  Astrocyte-enriched 

cultures were prepared as described for mixed cultures except they are from cortical 

tissue taken from post-natal day 1-3 mice (Choi et al., 1987; Schwartz and Wilson, 1992; 
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Venugopal and Jaiswal, 1996; Rush et al., 2010).  Microglia cultures were prepared by 

first growing astrocyte-enriched cultures, then shaking the microglia free and plating 

them in media containing 10 ng/ml colony stimulating factor (CSF) (Itoh et al., 1999; 

Barger and Basile, 2001).  Cultures were maintained in humidified 5% CO2 incubators at 

37°C.  Mice were handled in accordance with a protocol approved by our institutional 

animal care committee and in compliance with the Public Heath Service Policy on 

Humane Care and Use of Laboratory Animals.  All efforts were made to minimize animal 

suffering and reduce the number of animals used.   

 
14C-cystine uptake 

System xC- mediated uptake of radiolabeled cystine was assayed as previously 

described with modifications (Itoh et al., 1999; Liu et al., 2009).  Growth factors were 

added to the serum containing media for the indicated durations.  Cultures were then 

washed into HEPES buffered saline solution and immediately exposed to 14C-cystine 

(0.025µCi/ml) for 20 min.  Following 14C-cystine exposure, cultures were washed with 

ice cold HEPES buffered saline solution and dissolved in 250 µl sodium dodecyl sulfate 

(0.1%).  An aliquot (200 µl) was removed and added to scintillation fluid for counting.  

In some experiments an aliquot was also used to measure cellular protein levels by the 

BCA assay.  Values were normalized to 14C-cystine uptake in untreated control on the 

same experimental plate.  Kinetic analysis of cystine uptake was performed as previously 

described (Lee and Johnson, 2004; Fogal et al., 2007).  Uptake of 14C-cystine was 

measured over a range of cystine concentrations: 0.1 µM, 0.3 µM, 1µM, 3 µM, 10 µM, 

and 30 µM.  Kinetic analysis was performed using the Hanes-Woolf plot where 
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[substrate]/velocity is plotted against [substrate].  The slope corresponds to 1/Vmax, while 

the X-intercept corresponds to the Km.   

 
Reverse transcription quantitative real-time PCR (RT-qPCR) 

Transcriptional expression of xCT in astrocyte-enriched cultures after stimulation 

with FGF-2 was examined using RT-qPCR.  Briefly, after various durations of treatment 

with FGF-2 cells were washed 3 times with cold PBS.  Total RNA was isolated with 

TRIzol extraction (Invitrogen; Carlsbad, CA) according to manufacturer’s protocol, 

cDNA was synthesized using the Reverse Transcription System (Promega; Madison, WI) 

from 1 µg of total RNA following the manufacturer’s protocol.  All products were 

amplified on a StepOne real-time PCR system (Applied Biosystems; Carlsbad, CA) using 

100 ng of cDNA, PerfeCTa SYBR Green FastMix with ROX (Quanta Biosciences; 

Gaithersberg, MD), and the following primers: gapdh mouse forward-AAG GGC TCA 

TGA CCA CAG TC; gapdh mouse reverse-GGA TAC AGG GAT GAT GTT CT; xCT 

mouse forward-AGG GCA TAC TCC AGA ACA CG; xCT mouse reverse-GAC AGG 

GCT CCA AAA AGT GA.  xCT expression was normalized to the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (gapdh).  Quantitative PCR was used to 

determine fold increase of xCT mRNA using the 2-ΔΔC
T method.   

 
Statistical analysis 

Differences between test groups were examined for statistical significance by 

means of one-way ANOVA followed by the Bonferroni correction post-hoc test, with 

p<0.05 being considered significant.   
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RESULTS 

The effects of FGF-2, IGF-1, NRG, NT-4, and BDNF, each of which have been 

shown to have actions on cortical cells (Bannai, 1984; Koh et al., 1995; Anton et al., 

1997; Erickson et al., 2002; Sasaki et al., 2002; Lobner et al., 2003), were tested on 14C-

cystine uptake in mixed neuronal and glial cortical cultures.  In these cultures 

approximately 90% of cystine uptake is mediated by system xC- (Lee and Johnson, 2004; 

Liu et al., 2009; Lobner, 2009).  Following 24 hour growth factor treatment, only FGF-2 

caused a significant increase in cystine uptake (Fig. 3.1.).  Importantly, the growth factors 

were added to the cultures on DIV 13-14, a time point at which there was already a 

confluent layer of astrocytes.  None of the growth factors had a significant effect on total 

cellular protein levels (data not shown).   

 

 

FIGURE 3.1.   Growth factor effects on cystine uptake in cortical cultures. 
Treatment for 24 hours with 100 ng/ml of the growth factors on mixed neuronal and glial 
cultures.  FGF-2: fibroblast growth factor-2; IGF-1: insulin-like growth factor-1; NRG: 
neuregulin; NT-4: neurotrophin-4; BDNF: brain derived neurotrophic factor.  Cultures 
were exposed to growth factors for 24 hours, washed into a growth factor free media, 
and 14C-cystine uptake measured for 20 min.  Bars show % control (mean ± s.e.m., n = 
12-16).  * indicates significantly different from control uptake.   
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This effect of FGF-2 on cystine uptake does not appear to be limited to cortical 

astrocytes.  We also examined some growth factors that are known to have effects on 

spinal cord, and found a similar regulatory effect of FGF-2 on cystine uptake in spinal 

cord glial cultures (Fig. 3.2.).   

 

 
FIGURE 3.2.  Growth factor effects on cystine uptake spinal cord glial cultures. 
24 hour treatment with growth factors (100 ng/ml) on primary mouse spinal cord glial 
cultures.  FGF-2: fibroblast growth factor-2; NT-4: neurotrophin-4; IGF-1: insulin-like 
growth factor-1; NRG: neuregulin; BMP-2: Bone morphogenetic protein 2; BDNF: brain 
derived neurotrophic factor. Cultures were exposed to growth factors for 24 hours, 
washed into a growth factor free media, and 14C-cystine uptake measured for 20 min. 
Spinal cord glia cultures were prepared as cortical glial cultures except they were 
prepared from whole spinal cords from postnatal day one mice.  Bars show % control 
(mean±s.e.m., n=12-16). * indicates significantly different from control uptake.  

 

We also examined FGF-2 actions on neuronal-enriched, astrocyte-enriched, and 

microglial cultures to see which cell type mediates the FGF-2 effect.  We found that the 

FGF-2 effect only occurred in astrocyte-enriched cultures (Fig. 3.3.).  We have shown 

previously that the majority of cystine uptake in cortical cultures is into the glial cells 

(Lobner, 2009).  Astrocyte-enriched cultures prepared by the current method are known 

to also contain microglial cells (Shih et al., 2003; Hamby et al., 2006; Wang et al., 2009).  
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However, since there was no effect of FGF-2 in the microglial cultures, we believe that 

the effect occurs on astrocytes.  Therefore, all of the following experiments were 

performed using the astrocyte-enriched cultures.  We next tested whether the effect of 

FGF-2 was on system xC- mediated cystine uptake.  More than 90% of cystine uptake 

was blocked by the system xC- antagonist (s)-4-carboxyphenylglycine (CPG), and the 

increase caused by 24 hour treatment with FGF-2 was completely blocked by CPG (Fig. 

3.4.).   
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FIGURE 3.3.  Effects of FGF-2 on cystine uptake in neuronal-enriched cultures (A), 
astrocyte-enriched cultures (B), and microglial cultures (C).   

Cultures were exposed to FGF-2 (100 ng/ml) for 24 hours, washed into a growth factor 
free media, and 14C-cystine uptake measured for 20 min.  Bar show % control 
(mean±s.e.m., n=8).  * indicates significantly different from control uptake.   
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FIGURE 3.4.   FGF-2 induced increase in cystine uptake is mediated by 
system xC-. 

Astrocyte-enriched cultures were exposed to FGF-2 (100 ng/ml) for 24 hours, washed 
into a growth factor free media, and 14C-cystine uptake measured for 20 min with or 
without the system xC- antagonist (s)-4-carboxyphenylglycine (200 µM CPG).  Bars show 
% control (mean±s.e.m., n=8).  * indicates significantly different from control uptake.   
 

The previous studies were all performed using a 24 hour growth factor treatment.  

We next performed a time course of FGF-2 treatment.  A significant effect of FGF-2 

treatment was first observed after a 12 hour exposure (Fig. 3.5A.).  None of the growth 

factors tested in Fig. 3.1., including FGF-2, had an effect with acute treatment (20 min 

prior to and during the cystine uptake-data not shown).  Treatment with the protein 

synthesis inhibitor cycloheximide during the 24 hour FGF-2 treatment blocked the FGF-2 

induced increase in cystine uptake (Fig. 3.5B.).   These results suggest an upregulation of 

the number of transporters.   
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FIGURE 3.4.   Time and protein synthesis dependent changes in cystine uptake 
induced by FGF-2 treatment on astrocyte-enriched cultures. 

(A) Cultures were exposed to FGF-2 (100 ng/ml) for the indicated period of time, washed 
into a growth factor free media and 14C-cystine uptake measured for 20 min.  Bars show 
% control (mean±s.e.m., n=32).  (B) Cultures were exposed to FGF-2 (100 ng/ml) for 24 
hours with or without the protein synthesis inhibitor cycloheximide (CHX, 200 ng/ml), 
washed into a growth factor and inhibitor free media, and 14C-cystine uptake measured 
for 20 min.  Bars show % control (mean±s.e.m., n=8).  * indicates significantly different 
from control uptake.   
 

We also assessed the kinetic changes of the transporter.  Treatment with FGF-2 

for 24 hours caused a significant increase in the Vmax of the transporter activity, but no 

change in the Km (Fig.  3.6.).  
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FIGURE  3.6.  Kinetic analysis of FGF-2 effects on cystine uptake. 
Following 24 hour exposure to FGF-2 (100 ng/ml), 14C-cystine uptake was measured for 
20 min in astrocyte-enriched cultures in the presence of varying concentrations of 
cystine.  Data are expressed as 14C-cystine uptake in CPM per microgram protein 
(mean±s.e.m., n=4) (A).  Vmax (1/slope) and Km (-X-intercept) were determined using the 
Hanes-Woolf plot (B).  * indicates significantly different from control uptake.   
 

Finally, a time course of mRNA levels of xCT, the functional subunit of system 

xC-, measured with RT-qPCR, showed an increase starting after 3 hours of FGF-2 

treatment, with a large increase after 12 hours (Fig. 3.7.).   

 

 

FIGURE 3.7.  Time course of changes in xCT mRNA in astrocyte-enriched cultures 
assessed by RT-qPCR following different durations of FGF-2 (100 ng/ml) 
treatment. 
Bars show % control (mean ± s.e.m.), data is from 4 independent experiments run in 
duplicate for n=8.  * indicates significantly different from control. 
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FGF-2 can act on a number of FGF receptors.  FGFR1 is highly expressed in the 

brain (Gonzalez et al., 1995; Wang et al., 2009) and it is found at high levels in astrocytes 

in the current culture system (Lobner and Ali, 2002; Sato et al., 2004; Lewerenz and 

Maher, 2009).  Therefore we tested the effects of an antagonist of this receptor on the 

FGF-2 treatment induced increase in system xC- function.  The FGFR1 antagonist PD 

166866 caused a concentration dependent inhibition of FGF-2 stimulated cystine uptake 

(Fig.  3.8A.).  We next attempted to determine the signaling pathway of the FGF-2 effect.  

We tested the effects of selective inhibitors of the MEK/ERK (U0126) (Favata et al., 

1998; Kilberg et al., 2005) and PI3-kinase (Vlahos et al., 1994) pathways on the FGF-2 

stimulated cystine uptake.  Inhibition of either the MEK/ERK or PI3-kinase pathway 

partially blocked the FGF-2 stimulated cystine uptake, while the combination of the 

inhibitors completely blocked the increase (Fig.  3.8B.).   
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FIGURE 3.8.  FGF-2 stimulation of cystine uptake is mediated by activation of 
FGFR1 and both the MEK/ERK and PI3-kinase pathways. 
(A) Astrocyte-enriched cultures were exposed to FGF-2 (100 ng/ml) for 24 hours with or 
without the FGFR1 inhibitor (PD 166866), washed into a growth factor and inhibitor free 
media, and 14C-cystine uptake measured for 20 min.  Bars show % control 
(mean±s.e.m., n=12).  (B) Astrocyte-enriched cultures were exposed to FGF-2 (100 
ng/ml) for 24 hours with or without the MEK/ERK inhibitor (10 µM U0126) or the PI3-
kinase inhibitor (45 µM LY-294002) added 1 hour prior to and during the FGF-2 
exposure, washed into a growth factor and inhibitor free media, and 14C-cystine uptake 
measured for 20 min.  Bars show % control (mean ± s.e.m., n = 18).  * indicates 
significantly different from control uptake.  # indicates significantly different from FGF-2 
stimulated uptake. 
 

DISCUSSION 

The upregulation of system xC- induced by the FGF-2 treatment has multiple 

implications for understanding the biological effects of FGF-2 and its potential use as a 

therapeutic agent.  Both dysregulation of FGF-2 signaling and system xC- function have 
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been implicated in psychiatric disorders such as schizophrenia, depression, and addiction.  

As FGF-2 and regulators for system xC- have been suggested for therapeutic use, it is 

important to understand the mechanism of regulation of system xC-.  Also, upregulation 

of system xC- must be taken into account when considering the use of FGF-2 for the 

treatment of neurological conditions, particularly those that involve excitotoxicity.   

The evidence suggesting the involvement of dysregulation of the FGF-2 system in 

schizophrenia is substantial (Terwisscha van Scheltinga et al., 2010).  FGF-2 is involved 

in neurogenesis and normal brain development (Zechel et al., 2010).  FGFR1 is widely 

expressed in the brain (Gonzalez et al., 1995) and is required for proliferation of 

hippocampal stem cells (Ohkubo et al., 2004).  Therefore FGF-2 system signaling 

dysregulation may be involved in altered development in schizophrenia.  Supporting this 

idea, in post-mortem brains from schizophrenia patients there was found to be increased 

FGFR1 expression in the CA4 region of the hippocampus (Gaughran et al., 2006) and 

there is increased expression of FGF-2 in the serum of schizophrenia patients (Hashimoto 

et al., 2003).  It is interesting to note that disruption of MEK/ERK and PI3-kinase 

signaling have also been implicated in developmental diseases, such as schizophrenia 

(Waite and Eickholt, 2010; Yuan et al., 2010).  We found that the action of FGF-2 to 

upregulate system xC- function was partially dependent on both MEK/ERK and PI3-

kinase signaling.  The results presented in the current study of FGF-2 effects on system 

xC- that are mediated by FGFR1 provide a potential mechanism by which defects in FGF-

2 signaling leads to developmental disorders.   

There are decreased levels of glutathione in schizophrenics (Raffa et al., 2011) 

and an animal model of schizophrenia involves the post-natal treatment with buthionine 
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sulfoximine, an inhibitor of a glutathione synthesis (Cabungcal et al., 2007).  In one study 

it was found that in an animal model of schizophrenia there was decreased system xC- 

activity, although in the brain of human schizophrenics there was a slight increase in xCT 

expression (Baker et al., 2008).  Therefore, it is possible that increased FGF-2 signaling is 

a compensatory mechanism in schizophrenia to increase xCT expression to increase 

system xC- activity.  However, a great deal more work determining the time course of 

changes in FGF-2 system signaling, system xC- function, glutathione levels, development 

changes, and development of the disease is necessary.   

Disruption of FGF-2 signaling may also be involved in depression.  In the post-

mortem brains of depressed patients there is reduced mRNA for FGF-2, but increased 

mRNA for FGFR1 (Gaughran et al., 2006).  Treatment with FGF-2 has antidepressant 

effects in mouse models of depression and reversed the decrease in neurogenesis in the 

hippocampus of these mice (Zechel et al., 2010).   

Alterations in both system xC- and FGF-2 have been implicated in cocaine 

addiction.  In adult rats, following withdrawal from repeated cocaine, there is decreased 

function of system xC- in the nucleus accumbens (Baker et al., 2003).  Repeated cocaine 

administration increases FGF-2 mRNA in the striatum and prefrontal cortex (Fumagalli 

et al., 2006), while it decreases FGFR1 mRNA in the hippocampus but increases it in the 

prefrontal cortex (Turner et al., 2008b).  Due to differences in the areas of the brain 

assessed, it is at this time not possible to draw conclusions regarding the interaction 

between system xC- and FGF-2 during addiction.  However, it is clear that both are 

changed.   
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We showed that 24 hour treatment with FGF-2 increases cystine uptake through 

system xC- selectively on primary cortical astrocytes, but not neurons or microglia.  This 

effect does not appear to be limited to cortical astrocytes.  We found a similar regulatory 

effect of FGF-2 on cystine uptake through system xC- in spinal cord glial cultures.  The 

result that FGF-2 also increases cystine uptake in spinal cord gial cultures is especially 

interesting because of a recent study showing that knocking out FGF-2 can delay disease 

progression in the SOD1 ALS mouse model (Thau et al., 2012).  One possible 

explanation for this result is that the lack of FGF-2 signaling leads to decreased system 

xC- activity in the ALS mice, and the protection would then be due to decreased 

glutamate release from system xC- and decreased excitotoxicity.  However, what role 

FGF-2 plays in ALS is unclear.  Post mortem studies revealed that there was no change in 

FGF-2 or FGFR1 mRNA in ALS patients compared to control (Petri et al., 2009).  

Preliminary data from our laboratory on mutant SOD1 mice showed a significant increase 

in system xC- function in spinal cord slices even before the animals showed any 

symptoms (unpublished data).  Future studies on FGF-2 signaling and regulation of 

system xC- in the SOD1 model can potentially help clarify the involvement of FGF-2 and 

system xC- in ALS.   

The function of system xC- makes it likely to play an important role in regulating 

neuronal survival and death; by releasing glutamate it can increase extracellular 

glutamate levels and potentially cause excitotoxicity, through providing cystine to the cell 

it regulates cellular glutathione levels and in this way may protect cells against oxidative 

stress.  Both excitotoxicity and oxidative stress play a role in neurodegenerative diseases 

(ALS) (Bains and Shaw, 1997; Lau and Tymianski, 2010).  The dual nature of system xC- 
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means that it may either protect against or enhance neuronal death depending on the 

relative importance of excitotoxicity and oxidative stress in each disease.   

FGF-2 was tested in clinical trials for the treatment of stroke.  It was found that 

FGF-2 treatment caused roughly a doubling of the mortality rate (Clark et al., 2000; 

Bogousslavsky et al., 2002).  While there are many possible reasons for a lack of 

protective effects of FGF-2, the increase in mortality indicates that, in this situation, it 

was having injury potentiating effects.  Could an increase in system xC- be responsible 

for the increased mortality following FGF-2 treatment?  Certainly excitotoxicity plays a 

role in cerebral ischemia (Choi, 1998) and system xC- activity can enhance excitotoxicity 

(Fogal et al., 2007).  However, FGF-2 has multiple effects on systems that can alter 

neuronal death.  For example, in the central nervous system, it increases AMPA receptor 

expression (Cheng et al., 1995), and decreases NMDA receptor expression (Mattson et 

al., 1993).  Therefore, the net effect of FGF-2 on neuronal death in various conditions 

will depend on many factors.  We began to explore the net effect of FGF-2 by testing 

whether long-term upregulation of system xC- by FGF-2 directly induces neuronal death.    
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CHAPTER IV 

 

 

 

 

FGF-2 INDUCES NEURONAL DEATH  
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ABSTRACT 

FGF-2 upregulates system xC- selectively on astrocytes, which will lead to both 

increased cystine uptake, with increased glutathione production, and increased 

extracellular glutamate.  While the increased intracellular glutathione can contribute to 

decreased oxidative stress, the increased glutamate release can potentially lead to 

excitotoxicity to neurons.  To test this hypothesis, we performed a long-term treatment 

(48 hours) of FGF-2 in mature mixed neuronal and glial cultures.  Treatment with FGF-2 

for 48 hours caused a significant neuronal death in these cultures.  This cell death was not 

observed in neuronal-enriched cultures, or astrocyte-enriched cultures, suggesting the 

toxicity is a result of neuron-glia interaction.  Blocking system xC- eliminated the 

neuronal death.  Since increasing cystine uptake is unlikely to induce toxicity, we 

examined the involvement of glutamate release.  The general AMPA/kainate receptor 

antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) 

abolished the neuronal toxicity induced by FGF-2 treatment, and surprisingly, the NMDA 

receptor antagonist memantine did not.  When cultures were exposed directly to 

glutamate, either NBQX or memantine blocked the neuronal toxicity.  The mechanism of 

this altered profile of glutamate receptor mediated toxicity by FGF-2 is unclear.  The 

selective calcium permeable AMPA receptor antagonist 1-naphthyl acetyl spermine 

(NASPM) failed to offer protection. FGF-2 has been suggested to be able to decrease 

NMDA receptor mediated toxicity by both reducing NMDA receptor expression and 

causing a faster inactivation.  FGF-2 has also been shown to increase GluR1 expression, 

as well as increased calcium influx.  Therefore, the most logical explanation for the 

results is that 48 hour FGF-2 treatment induces AMPA receptor toxicity through 



94 

increased system xC- function resulting in increased release of glutamate.  At the same 

time, FGF-2 decreases neuronal sensitivity to NMDA receptor mediated toxicity, and 

possibly enhances sensitivity to AMPA receptor mediated toxicity, although we cannot 

exclude the possibility that FGF-2 treatment sensitizes the neurons to normal system xC- 

mediated glutamate release.   

 
INTRODUCTION 

Fibroblast growth factor 2 (FGF-2), despite its discovery in fibroblasts, is widely 

expressed throughout the brain (Eckenstein, 1994; Dono, 2003).  FGF-2 can activate 

members of the FGF receptor family leading to activation of several intracellular 

pathways, including PI3K/Akt and MEK/ERK pathways (Reuss and Bohlen und 

Halbach, 2003).  It has been demonstrated to be involved in development (Ohkubo et al., 

2004), adult neurogenesis (Mudò et al., 2009), and tissue repair (Reuss and Bohlen und 

Halbach, 2003).  Dysregulation of FGF-2 signaling has been implicated in acute and 

chronic neurodegenerative diseases, such as stroke (Alzheimer and Werner, 2002), 

traumatic brain injury (Mellergård et al., 2012), and Alzheimer’s disease (Mark et al., 

1997), as well as psychiatric disorders such as schizophrenia (Terwisscha van Scheltinga 

et al., 2010), stress (Molteni et al., 2001; Frank et al., 2007), addiction (Flores and 

Stewart, 2000), and major depression (Evans et al., 2004).  The use of FGF-2 for 

treatment for stroke in clinical trials has been attempted but without success (Clark et al., 

2000; Bogousslavsky et al., 2002).   

System xC- is a cystine/glutamate antiporter on the cell membrane (Sato et al., 

1995b; Liu et al., 2011).  Physiologically, system xC- takes up cystine and releases 
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glutamate in exchange at a 1:1 ratio (Sato et al., 1999).  The direction of transport is 

determined by the high glutamate levels and low cystine levels intracellularly.  Once 

cystine is taken up it is rapidly reduced to cysteine, which can then be used to synthesize 

protein, or glutathione (GSH), an important endogenous antioxidant in the brain (Meister 

and Anderson, 1983).  GSH and cysteine can both be released into the extracellular 

space, typically by astrocytes, to regulate the redox state of the brain (Wang and Cynader, 

2000; Dringen and Hirrlinger, 2003).  Also, the extracellular cysteine is taken up by 

neurons to synthesize GSH (Wang and Cynader, 2000; Lewerenz et al., 2006; Escartin et 

al., 2011).  The glutamate released by system xC- can have multiple effects.  Glutamate is 

the most important excitatory neurotransmitter in the central nervous system.  Along with 

mediating excitatory neurotransmission at synapses, glutamate released from astrocytes is 

also believed to regulate synaptic activity and plasticity through activating parasynaptic 

and extrasynaptic receptors (Asztely et al., 1997; Hardingham et al., 2002).  However, 

high extracellular glutamate levels can cause neuronal death through excitotoxicity, 

typically resulting from high NMDA receptor activation leading to excess calcium influx 

triggering cell death (Choi et al., 1987).   

System xC- has been shown to be widely expressed, especially in the central 

nervous system (Sato et al., 2002; Burdo et al., 2006).  In vitro cell culture studies have 

shown that immature neuronal cells rely on system xC- to take up cystine (Murphy et al., 

1990).  When immature neuronal cell cultures are incubated with high levels of 

glutamate, glutamate competitively inhibits cystine uptake through system xC- and the 

cells die from oxidative stress (Murphy et al., 1989).  This mechanism of neuronal death 

is called oxidative glutamate toxicity (Schubert and Piasecki, 2001).  This type of 
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glutamate toxicity is distinct from glutamate toxicity in mature neuronal cells, which 

results from over-stimulation of NMDA receptors leading to excessive calcium influx, 

and it is called excitotoxicity (Choi, 1987).  Also, in mature cell cultures, neurons show 

low levels of system xC- activity, while astrocytes exhibit high levels of system xC- 

activity (Lobner, 2009).  This shift of function indicates that as cells mature, they take on 

more specialized tasks and cooperate as a system (Fellin and Carmignoto, 2004; 

Stipursky et al., 2011; Suzuki et al., 2011).   

The dual actions of system xC- give it a unique potential for influencing cell fate. 

System xC- activity can be either beneficial or destructive depending on the cellular 

properties.  If cells are susceptible to oxidative stress, increasing system xC- activity 

should be protective as it increases cystine uptake, which can contribute to increased 

antioxidative defense.  However, if the cells express high levels of glutamatergic 

receptors, it is likely that they will be sensitive to glutamate induced excitotoxicity.  

Thus, increasing system xC- activity might be destructive by increasing extracellular 

glutamate, which can potentially over-stimulate extrasynaptic glutamatergic receptors.   

In the present study, we used primary mixed neuronal and glial cell cultures 

derived from prenatal mouse cortex to investigate the effect of 48 hour FGF-2 treatment 

on neuronal survival/death.  We have previously demonstrated that 24 hour FGF-2 

treatment upregulated system xC- activity on astrocytes, but not neurons or microglia.  

We demonstrate here that after system xC- is upregulated for a prolonged period of time, 

neuronal death occurs due to system xC- mediated excitotoxicity.   
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MATERIALS AND METHODS 

Materials 

Timed pregnant Swiss Webster mice were obtained from Charles River 

Laboratories (Wilmington, DE).  Serum was from Atlanta Biologicals (Lawrenceville, 

GA).  FGF-2 was from Alomone Labs (Jerusalem, Israel).  14C-cystine was from 

PerkinElmer (Waltham, MA).  All other chemicals were obtained from Sigma (St. Louis, 

MO).   

 
Cortical cell cultures 

Mixed cortical cell cultures containing glial and neuronal cells were prepared 

from fetal (15-16 day gestation) mice as previously described (Lobner, 2000).  

Dissociated cortical cells were plated on 24-well plates coated with poly-D-lysine and 

laminin in Eagles’ Minimal Essential Medium (MEM, Earle’s salts, supplied glutamine-

free) supplemented with 5% heat-inactivated horse serum, 5% fetal bovine serum, 2 mM 

glutamine and glucose (total 21 mM).  Neuron-enriched cultures were prepared exactly as 

above with the addition of 10 µM cytosine arabinoside 48 hours after plating to inhibit 

glial replication.  In these cultures <1% of cells are astrocytes (Dugan et al., 1995; Rush 

et al., 2010).  Astrocyte-enriched cultures were prepared as described for mixed cultures 

except they are from cortical tissue taken from post-natal day 1-3 mice (Choi et al., 1987; 

Schwartz and Wilson, 1992; Rush et al., 2010).  Cultures were maintained in humidified 

5% CO2 incubators at 37°C.  Mice were handled in accordance with a protocol approved 

by our institutional animal care committee and in compliance with the Public Heath 
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service Policy on Humane Care and Use of Laboratory Animals.  All efforts were made 

to minimize animal suffering and reduce the number of animals used.   

 
Induction of neuronal death 

 All experiments were performed on cultures 13 days in vitro (DIV).  Cultures 

were exposed to different compounds for 48 hours in media as described for plating 

except without serum.   

 
Assay of neuronal death  

LDH release 

 Cell death was assessed in mixed cultures by the measurement of lactate 

dehydrogenase (LDH) released from damaged or destroyed cells, in the extracellular fluid 

48 hours after the beginning of the insult (Koh and Choi, 1987; Lobner, 2000).  Blank 

LDH levels were subtracted from insult LDH values and results normalized to 100% 

neuronal death caused by 500 µM NMDA, or 100% cell death caused by 20 µM of the 

calcium ionophore A23187, added 24 hours before the assay.  Control experiments have 

shown previously that the efflux of LDH occurring from either necrotic or apoptotic cells 

is proportional to the number of cells damaged or destroyed.  Glial cell death (assessed by 

trypan blue staining) was not observed in any of the current studies.  

 
MTT assay  

Cell survival was quantified by the measurement of the reduction of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) to produce a dark blue 
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formazan product (Lobner, 2000).  MTT was added to each well 48 hours after the 

beginning of the insult to the cells (following removal of media for LDH assay).  After 

30-minute incubation, the medium was removed, and cells were dissolved in dimethyl 

sulfoxide. The formation of formazan was measured as the amount of reaction product by 

absorbance change at a wavelength of 590 nm by using a VersaMax tunable microplate 

reader (Molecular Devices, Sunnyvale, CA).  Levels of formazan formation from cultures 

exposed to 500 µM NMDA (100% neuronal death) were subtracted from insult formazan 

levels, and results were normalized to a sham wash.   

 
14C-cystine uptake 

System xC- mediated uptake of radiolabeled cystine was assayed as previously 

described with modifications (Liu et al., 2009).  FGF-2 was added to the serum 

containing media for the indicated durations.  Cultures were then washed into HEPES 

buffered saline solution and immediately exposed to 14C-cystine (0.025µCi/ml) for 20 

min.  Following 14C-cystine exposure, cultures were washed with ice cold HEPES 

buffered saline solution and dissolved in 250 µl sodium dodecyl sulfate (0.1%).  An 

aliquot (200 µl) was removed and added to scintillation fluid for counting.  Values were 

normalized to 14C-cystine uptake in untreated control on the same experimental plate.   

 
Statistical analysis 

Differences between test groups were examined for statistical significance by 

means of one-way ANOVA followed by the Bonferroni correction post-hoc test, with 

p<0.05 being considered significant.   
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RESULTS  

As reported previously, 24 hour FGF-2 treatment of mixed neuronal and glial 

cultures did not cause any cell death (Fig. 4.1.).  However, significant neuronal death was 

observed after 48 hours of FGF-2 treatment (Fig. 4.1.).   

 

 

FIGURE 4.1.  FGF-2 induced toxicity occurs in mixed neuronal and glial cultures 
after 48 hour treatment. 

Bars show % neuronal cell death (mean ± s.e.m., n = 24) quantified by measuring 
release of LDH, 24 and 48 hours after the beginning of treatment with 100 ng/ml FGF-2.  
* indicates significant difference from control.   

 

This neuronal death following FGF-2 treatment for 48 hours is only observed on 

mixed neuronal and glial cultures, but not neuronal-enriched cell cultures or glial-

enriched cell cultures (Fig. 4.2.), suggesting an interaction of glia and neurons may be 

necessary for FGF-2 induced neuronal death to occur.   
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FIGURE 4.2.  FGF-2 does not induce toxicity after 48 hour treatment on either 

neuronal-enriched cultures or astrocyte-enriched cultures. 
A: Neuronal-enriched culture. Bars show % neuronal death (mean ± s.e.m., n = 8) 
quantified by measuring release of LDH, 48 hours after the beginning of treatment with 
100 ng/ml FGF-2.  B: Astrocyte-enriched culture.  Bars show % cell death (mean ± 
s.e.m., n = 16) quantified by measuring release of LDH, 48 hours after the beginning of 
treatment with 100 ng/ml FGF-2.   

 

 We have shown previously that 24 hour FGF-2 treatment significantly increased 

system xC- activity selectively in astrocytes, with no effect on neuronal-enriched and 

microglial-enriched cultures (Liu et al., 2011).  To determine whether FGF-2 upregulated 

system xC- function is still present after 48 hours we measured 20 min cystine uptake 

following 48 hour FGF-2 treatment of astrocyte-enriched cultures.  FGF-2 treatment 
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doubled the cystine uptake, and the cystine uptake was mediated by system xC- as its 

inhibitor (s)-4-carboxyphenylglycine (CPG) completely blocked the increase (Fig. 4.3.).   

 

 

FIGURE 4.3.  FGF-2 induced increase in cystine uptake is mediated by system xC-. 
Astrocyte-enriched cultures were exposed to FGF-2 (100 ng/ml) for 48 hours, washed 
into a growth factor free media, and 14C-cystine uptake measured for 20 min with or 
without the system xC- antagonist (s)-4-carboxyphenylglycine (200 µM CPG).  Bars show 
% control (mean ± s.e.m., n = 6).  * indicates significant difference from control uptake. 
 

To assess whether system xC- is involved in the FGF-2 induced neuronal death, 

we tested the effects of the system xC- inhibitors CPG and sulfasalazine (SSZ) on 

neuronal death induced by 48 hour FGF-2 treatment.  Cotreatment of cells with either 

CPG or SSZ during the 48 hour FGF-2 incubation prevented the neuronal death (Fig. 

4.4.).  Because SSZ interferes with the LDH release assay, we used the MTT metabolism 

assay to assess cell survival.   
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FIGURE 4.4.  FGF-2 induced neuronal death is prevented by blocking system xC-. 
Mixed neuronal and astrocyte cultures were exposed to FGF-2 (100 ng/ml) with or 
without the system xC- antagonists (s)-4-carboxyphenylglycine (200 µM CPG) or 
sulfasalazine (300 µM SSZ) for 48 hours.  Bars show % cell survival (mean ± s.e.m., n = 
8) quantified by measuring MTT reduction, 48 hours after the beginning of the insult.  * 
indicates significant difference from control.   
 

System xC- mediates cystine uptake and glutamate release at the same time: 

cystine uptake contributes to GSH synthesis that can decrease oxidative stress, therefore, 

it is not likely to cause cell death; However, increasing glutamate release can lead to 

over-activation of glutamatergic receptors to cause excitotoxicity.  To test this possibility, 

we used various glutamatergic receptor antagonists to determine if they prevented FGF-2 

induced neuronal death.  We found that the AMPA receptor antagonist NBQX, but not 

the NMDA receptor blocker memantine, blocked the FGF-2 induced neuronal death (Fig. 

4.5A.).  This result is surprising because both NBQX and memantine block 48 hour direct 

glutamate toxicity (Fig. 4.5B.).   
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FIGURE 4.5.  Effects of the AMPA receptor antagonist NBQX and the NMDA 
receptor antagonist memantine on neuronal death induced by 48 hour 
exposure to FGF-2 or glutamate.   

A: FGF-2 (100 ng/ml) treatment induced toxicity is protected by blocking AMPA 
receptors.  B: Glutamate (15 µM) induced toxicity is protected by blocking AMPA or 
NMDA receptors.  NBQX: 7.5 µM 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-
2,3-dione.  MEM: 10 µM memantine.  Bars show % neuronal cell death (mean ± s.e.m., 
n = 12) quantified by measuring release of LDH, 48 hours after the beginning of the 
insult.  * indicates significant difference from control.  # indicates significant difference 
from FGF-2 or glutamate treated.   
 

One possibility for the results is that FGF-2 upregulates calcium permeable 

AMPA receptors making the neurons susceptible to AMPA receptor mediated toxicity.  
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However, we did not observe any protection against neuronal death when cultures were 

cotreated with FGF-2 and various concentrations of the selective calcium permeable 

AMPA receptor antagonist 1-naphthyl acetyl spermine (NASPM) (Fig. 4.6.).   

 

 

FIGURE 4.6.  FGF-2 induced toxicity is not mediated by calcium-permeable AMPA 
receptors.   

Mixed neuronal and glial cultures were exposed to FGF-2 (100 ng/ml) for 48 hours with 
or without calcium permeable AMPA receptor antagonist 1-naphthyl acetyl spermine 
(NASPM).  Bars show % neuronal cell death (mean ± s.e.m., n = 8) quantified by 
measuring release of LDH, 48 hours after the beginning of the insult.  * indicates 
significant difference from control.  
 

DISCUSSION 

This study examined the effect of FGF-2 on neuronal cell death in mixed neuronal 

and glial cultures and the involvement of its selective upregulation of system xC- on 

astrocytes.  System xC- has gained increasingly more attention because of its dual 

transport property.  System xC- provides cystine to the cells, which is the rate-limiting 

source for cysteine, which is one of the three components of glutathione, the major 

antioxidant in the brain (Dringen et al., 2000; Dringen and Hirrlinger, 2003).  In contrast, 

system xC- mediated glutamate release can lead to uncontrolled extracellular glutamate 
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and cause excitotoxicity (Fogal et al., 2007; Jackman et al., 2010).  Both oxidative stress 

and excitotoxicity are involved in various neurodegenerative diseases and psychiatric 

disorders.  Also, FGF-2 dysregulation is observed in acute and chronic neurological 

disorders (Gaughran et al., 2006; Terwisscha van Scheltinga et al., 2010; Zechel et al., 

2010).  Therefore, it is possible that changes in system xC- function may be responsible 

for some of the actions of FGF-2.   

Our previous data showed that 24 hour FGF-2 treatment resulted in an increase in 

cystine uptake through system xC- on astrocytes, but with no effect on neuronal and 

microglial cystine uptake (Liu et al., 2011).  FGF-2 treatment mediated increase of 

system xC- was mediated through activation of FGFR1 and required both MEK/ERK and 

PI3 kinase pathway activations (Liu et al., 2011).  All of these cellular events happened 

without significant neuronal toxicity.  However, after 48 hour FGF-2 treatment, 

significant neuronal cell death began to occur.  This neuronal death was blocked by the 

system xC- antagonists CPG and SSZ.   

The role of system xC- in cell death has been investigated in different cell types 

and under different conditions.  Inhibition of system xC- has been shown to be harmful to 

system xC- expressing cells.  Oxidative glutamate toxicity was first described on 

immature neuronal cultures, in which system xC- is the major route of cystine uptake 

(Murphy et al., 1989; 1990).  Applying high concentrations of glutamate (millimolar 

range) to these immature neurons led to GSH depletion and eventually cell death from 

oxidative stress (Miyamoto et al., 1989; Murphy et al., 1989; Murphy and Baraban, 

1990).  Under these circumstances, increasing system xC- levels would likely be 

protective.   
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However, increasing system xC- function is not always protective.  It seems that 

increasing system xC- function in certain population of cells can be toxic to the 

surrounding cells.  Primary microglia cultured in physiological extracellular 

concentrations of cystine and glutamine have been shown to be able to release enough 

glutamate through system xC- to kill surrounding neurons (Piani and Fontana, 1994) 

(Domercq et al., 2007).  Activation of these microglia by bacterial components enhanced 

system xC- mediated glutamate release, which was prevented by blocking protein 

synthesis (Piani and Fontana, 1994).  Similarly, the increase in xCT expression in 

microglia induced by lipopolysaccharide treatment led to increased system xC- mediated 

release of glutamate, causing excitotoxicity to cocultured oligodendrocytes (Domercq et 

al., 2005).  This toxicity was decreased by blocking AMPA receptors with CNQX 

(Domercq et al., 2005).  This result is similar to what we have observed on our primary 

mixed neuronal and glial cultures.  The difference is that oligodendrocytes are normally 

sensitive to AMPA receptor toxicity (McDonald et al., 1998; Takahashi et al., 2003), 

while in cortical neurons, glutamate induced excitotoxicity is normally mediated 

primarily by activation of NMDA receptors (Choi et al., 1987; Choi, 1998).   

Similar to microglia, selectively increasing system xC- on astrocytes with IL-1β 

can also lead to increased glutamate release, which potentiates srounding neuronal death 

induced by hypoglycemia and hypoxia (Jackman et al., 2010; 2012), both of which are 

well-known to kill neurons in a process that involves over-activation of glutamatergic 

receptors (Snider et al., 1998; Czyz et al., 2002).  The neuronal death in these conditions 

was largely attenuated by blocking NMDA receptors with the selective NMDA receptor 

open channel blocker MK-801, and was also blocked by the system xC- inhibitor CPG 
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(Fogal et al., 2007; Jackman et al., 2010; 2012).  Our data shows that FGF-2 treatment, 

like IL-1β, selectively increases system xC- activity on astrocytes (Liu et al., 2011).  But 

FGF-2 by itself induced neuronal cell death after system xC- activity was upregulated for 

48 hours.  Also, the pharmacological profile of the excitotoxicity was different from non-

FGF-2 treated neurons.  We showed that, while neuronal death induced by direct 

exposure of cultures to glutamate was blocked by either NMDA or AMPA receptor 

antagonists, FGF-2 induced neuronal death was only attenuated by the AMPA antagonist.   

FGF-2 has been shown to be able to change neuronal expression of both NMDA 

and AMPA receptors, and to alter sensitivity to NMDA receptor mediated toxicity both in 

vitro and in vivo.  A study conducted on cerebellar granule cells reported that FGF-2 

treatment caused a time-dependent decrease in expression of NMDA receptor subunits 

GluN2A and GluN2C with a decrease of NMDA-evoked calcium influx, while GluN1 

and GluN2B levels were not changed (Brandoli et al., 1998).  Also, FGF-2 pretreatment 

protected striatal neurons from NMDA receptor mediated toxicity (Freese et al., 1992).  

Systematic administration of FGF-2 protected against intrastriatal injection of NMDA 

(Nozaki et al., 1993a; 1993b).  FGF-2 treatment enhanced the rate of NMDA receptor 

inactivation in response to calcium influx in hippocampal neurons (Boxer et al., 1999).  

FGF-2 treatment decreased NMDA receptor levels in hippocampal cell cultures and 

elevations in intracellular calcium levels after glutamate exposure compared to non-FGF-

2 treated cells (Mattson et al., 1993).  FGF-2 treatment has been shown to increase 

AMPA receptor subunit GluR1 levels in the same cultures, without altering GluR2, 

GluR3, and GluR4 levels (Cheng et al., 1995).  This suggested the possibility that FGF-2 

increased the levels of GluR2 subunit lacking AMPA receptors, which have calcium 
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permeability (Bannerman et al., 2007).  However, the selective antagonist of these 

channels, NASPM, failed to offer protection in our study.  At concentrations above 5 µM, 

NASPM began to induce some toxicity by itself.  The IC50 of NASPM for calcium-

permeable AMPA receptors is 0.33 µM (Brackley et al., 1993; Koike et al., 1997).  

Therefore, the 5 µM concentration that was not toxic should have been an effective 

concentration.  Therefore, it is possible that the FGF-2 treatment induced increased 

glutamate release from system xC- causes an AMPA receptor specific neuronal death 

because of attenuated NMDA receptor mediated toxicity induced by FGF-2 treatment.   

FGF-2 was a potential candidate for the treatment of stroke as it was shown to 

reduce ischemic damage, as well as, promote recovery and regeneration in multiple in 

vitro and animal models (Nozaki et al., 1993b; Rosenblatt et al., 1994; Song et al., 2002; 

Watanabe et al., 2004).  However, in human clinical trials, FGF-2 not only failed to show 

any beneficial effect in treated patients compared to control patients, it actually increased 

the mortality rate in treated patients (Clark et al., 2000; Bogousslavsky et al., 2002).  The 

reasons for FGF-2 being beneficial in animal models but not in human trials are not yet 

fully understood.  Given that FGF-2 can increase system xC- activity, and the dual 

functions of system xC-, it is not surprising that FGF-2 can have varying effects on 

cerebral ischemia.   

FGF-2 administration has been shown to be beneficial in rodent studies in other 

disease models, such as depression (Turner et al., 2008c) and Parkinson disease (Hsuan et 

al., 2006).  It is possible that these beneficial effects may be mediated by the FGF-2 

effect on system xC-, which leads to enhanced glutathione synthesis.  However, again 



110 

taking into account the dual actions of system xC-, the effects of long-term treatment with 

FGF-2 must be rigorously studied.   

 
CONCLUSIONS 

The dual amino acid transport function allows system xC- regulate intracellular 

cystine and extracellular glutamate levels at the same time.  Cystine taken up is broken 

down immediately to cysteine, which is a substrate for glutathione synthesis and protein 

synthesis.  While increasing cystine uptake can be protective by increasing the cells’ 

antioxidative defense, glutamate released at the same time can potentially cause toxicity 

by over activating glutamatergic receptors.  We show here that the net effect of long-term 

upregulation of system xC- selectively on astrocytes in mixed neuronal and glial cultures 

by FGF-2 treatment is negative.  That is, the excitotoxicity component dominates, leading 

to neuronal death.   
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CHAPTER V 

 

 

 

 

GENERAL DISCUSSION 

  



112 

System xC- mediates cystine and glutamate exchange (Sato et al., 1999), thus it is 

involved in both regulating extracellular glutamate and intracellular GSH due to its dual 

amino acid transport function.  Both abnormal glutamate transmission and chronic 

oxidative stress have been indicated to contribute to neurodegenerative diseases, such as 

amyotrophic lateral sclerosis, stroke, traumatic spinal cord/brain injury, Alzheimer’s 

disease and Parkinson’s disease (Dugan and Choi, 1994; Andersen, 2004), as well as 

psychiatric disorders such as addiction (Tsai et al., 1998) and schizophrenia (Pérez-Neri 

et al., 2006).  Therefore, it seems likely that alterations in system xC- function may play a 

role in these diseases.  To begin to resolve this question, a series of studies were 

conducted to find out how system xC- is involved in brain cell health in primary cortical 

cell cultures.  We found that the environmental neurotoxin BMAA can compete with 

cystine at system xC- leading to both oxidative stress and excitotoxicity, that FGF-2 can 

upregulate system xC- selectively on astrocytes, and that the upregulation of system xC- 

by FGF-2 treatment may be responsible for AMPA receptor specific neuronal death 

caused by 48 hour treatmentFGF-2 .  Following is a discussion of some of the issues that 

arose during these studies.   

 
INTERACTION OF FGF-2 AND BMAA ON NEURONAL DEATH 

Since both BMAA and FGF-2 have actions on system xC-: FGF-2 upregulates 

system xC- function (Liu et al., 2011) and BMAA competes with cystine at system xC- 

(Liu et al., 2009), we examined whether FGF-2 pretreatment alters BMAA toxicity.  

FGF-2 pretreatment for 24 hours changed the concentration response of BMAA toxicity 

(Fig. 5.1).  At low concentrations, BMAA toxicity was potentiated by FGF-2 
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pretreatment, while at high concentrations, FGF-2 pretreatment protected neurons from 

BMAA toxicity.   

 

 

FIGURE 5.1.  Concentration response of BMAA induced neuronal death after FGF-
2 pretreatment. 

Mixed neuronal and glial cultures were pretreated with 100 ng/ml FGF-2 for 24 hours 
before various concentrations of BMAA were added.  Media was sampled for LDH assay 
24 hours after the beginning of the BMAA insults.  Bars show % neuronal cell death 
(mean ± s.e.m., n= 8) quantified by measuring release of LDH.  * indicates significant 
difference from control (no BMAA). 
 

The mechanism to explain this result may be very complicated, since both BMAA 

and FGF-2 have multiple effects on cells.  BMAA can decrease glutathione by decreasing 

cystine uptake (Liu et al., 2009), inhibiting glutathione synthesis (Esterhuizen-Londt et 

al., 2011), and potentially be incorporated into glutathione.  With bicarbonate present, 

BMAA mimics glutamate and directly activates glutamatergic receptors (Weiss and Choi, 

1988; Rao et al., 2006; Lobner et al., 2007).  FGF-2, as a growth factor, has a wide range 

of effects on both neurons and glia (Beck, 1994; Eckenstein, 1994; Ghosh and Greenberg, 

1995; Temple and Qian, 1995; Grothe and Wewetzer, 1996; Ford-Perriss et al., 2001; 

Reuss and Bohlen und Halbach, 2003; Mudò et al., 2009).   



114 

If we consider system xC- as the main mediator of the effects of both compounds, 

the most likely explanation for the data is as follows.  At low levels of BMAA, when 

system xC- is upregulated by FGF-2 pretreatment, BMAA drives increased glutamate 

release from system xC-, which exacerbates BMAA toxicity by over activating 

glutamatergic receptors.  The result could also be explained by a different mechanism: 

FGF-2 pretreatment may potentiate low level BMAA toxicity by upregulating system xC- 

allowing more BMAA to enter the cells and through inhibition of enzymes or 

incorporation into glutathione act to decrease cellular glutathione levels.    However, at 

high levels of BMAA, excitotoxicity caused by direct activation of glutamatergic 

receptors by BMAA is already maximized, and no further excitotoxicity can be induced, 

but elevated system xC- function by FGF-2 pretreatment provides cells with more cystine 

which strengthens antioxidative defense, thus providing protection against BMAA 

toxicity.   

Due to the complicated actions of both BMAA and FGF-2, and the lack of direct 

scientific implication of their interaction occurring, no further studies were performed 

concerning BMAA and FGF-2 interactions.   

 
CONTROVERSIES REGARDING BMAA 

 In chapter two of this thesis we examined the mechanisms of BMAA toxicity and 

found that one novel way in which it kills neurons is through actions on system xC-.  It 

not only competitively inhibits cystine uptake leading to glutathione depletion, but also 

increases glutamate release, causing excitotoxicity.  This is potentially a very important 

result because it provides a novel mechanism for BMAA toxicity, but it is only important 
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if BMAA does play a role in neurodegenerative diseases.  In this section, we will explore 

some of the controversies regarding the potential role of BMAA in neurodegenerative 

diseases.   

 
Is BMAA a potent neurotoxin? 

One major question concerning BMAA is whether it can cause neuronal death at 

low enough concentrations to make it a potential factor in neurodegenerative diseases.  

Studies in cortical cell culture have shown that very high BMAA concentrations (1 - 3 

mM) are required to induce neuronal death (Ross et al., 1987; Weiss and Choi, 1988; 

Weiss et al., 1989b; Lobner et al., 2007).  One potential mechanism by which BMAA 

may be involved in neurodegenerative diseases is that it is not acting as the sole cause of 

the disease, but may act in concert with other environmental or genetic factors.  In 

support of this possibility it was found that BMAA, at concentrations as low as 10 µM, 

potentiated amyloid-β and 1-methyl-4-phenylpyridinium ion (MPP+) toxicity, models of 

Alzheimer’s and Parkinson’s disease, respectively (Lobner et al., 2007).   

We also looked into the possibility of BMAA causing selective toxicity of 

specific vulnerable populations of neurons.  Mesencephalic and septal primary cultures 

were prepared to study the death of dopaminergic neurons and cholinergic neurons, 

which are associated with Parkinson’s disease and Alzheimer’s disease, respectively.  

The small percentage (0.1%-1%) of dopaminergic and cholinergic neurons present in the 

two cultures allowed for the analysis of death of these specific cell populations at the 

same time as death of the total neuronal population.  That is, the total neuronal death was 

assessed by the LDH release assay, and then the cells were fixed and stained, with the 
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number of dopaminergic or cholinergic cells counted.  In mesencephalic cultures there 

was no difference between the sensitivity of the total neuronal population and the 

dopaminergic neurons to BMAA toxicity (Fig. 5.2A).  In contrast, in the septal cultures, 

the cholinergic neurons were significantly more sensitive than the total neuronal 

population at both the 30 and 300 µM BMAA concentrations (Fig. 5.2B).  The LC50 

values calculated by nonlinear regression analysis were: dopaminergic neurons – 304 

µM; total mesencephalic neurons – 241 µM; cholinergic neurons – 32 µM; total septal 

neurons – 586 µM.   
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FIGURE 5.2.  Cholinergic, but not dopaminergic neurons are selectively sensitive 
to BMAA toxicity. 

BMAA concentrations of 3 µM, 30 µM, 300 µM, and 1 mM were present for 24 hours. 
The cell counting data shows % dopaminergic (A) or cholinergic (B) neuronal death 
(mean ± SEM, n = 8) quantified by counting the number of TH or ChAT-positive neurons.  
The LDH release data shows % total neuronal cell death (mean ± SEM, n = 8). * 
indicates significant difference between the LDH release and cell counting data. 
 

 To determine the mechanism of BMAA toxicity in septal cultures we assayed the 

protective effects of the NMDA receptor antagonist MK-801, the AMPA/kainate receptor 

antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), 

and the free radical scavenger trolox on both total neural death and specific cholinergic 

neuronal death.  To match the levels of death, 500 µM BMAA was used for total septal 

neuronal death, and 300 µM BMAA for cholinergic neuronal death.  For total septal 
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neuronal death, protection was provided by MK-801 and trolox, but not NBQX (Fig. 

5.3A.).  This is consistent with our previous results in cortical cultures where we found 

evidence for both NMDA receptor and free radical mediated neuronal death (Lobner et 

al., 2007).  In contrast, the death of cholinergic neurons was not attenuated by MK-801 or 

trolox, but was decreased by NBQX (Fig. 5.3B.).   

 

 

FIGURE 5.3.  MK801 (10 µM) and trolox (100 µM) provide protection against BMAA 
toxicity to total septal neurons (A), while NBQX (20 µM) provides protection of 
cholinergic neurons (B).   

Bars show % neuronal cell death (mean + SEM, n= 12) quantified by measuring release 
of LDH (A) or counting of cholinergic neurons (B). * indicates significant difference from 
control.   
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In cortical cultures, where at least 1mM BMAA is required to induce general 

neuronal death (Ross et al., 1987; Weiss and Choi, 1988; Weiss et al., 1989b; Lobner et 

al., 2007).  However, death of the small subpopulation of NADPH-diaphorase cells 

occurs at a BMAA concentration of 100 µM, because these NADPH-diaphorase cells are 

characterized by high levels of calcium permeable AMPA receptors (Weiss et al., 1989b).  

Similarly, motor neurons, which are also characterized by calcium permeable AMPA 

receptors, have also been shown to be highly sensitive to BMAA toxicity, with death 

occurring at a concentration of 30 µM (Rao et al., 2006).  Furthermore, like NADPH-

diaphorase cells, this death is mediated by activation of AMPA/kainate receptors (Weiss 

et al., 1989a; Carriedo et al., 1995).  Cholinergic neurons have also been shown to 

possess high levels of calcium permeable AMPA receptors (Yin et al., 1994).  The results 

indicated that neurons containing high levels of calcium permeable AMPA receptors are 

more sensitive to BMAA toxicity.  However, the protective effect of NBQX was not 

complete, suggesting that other mechanisms of toxicity are also involved.   

Rapid electrophysiological studies have established that the effects of BMAA on 

NMDA receptors are due to direct actions on the receptor (Weiss et al., 1989b; Lobner et 

al., 2007).  BMAA has been shown to bind to AMPA receptors (Rakonczay et al., 1991; 

Cucchiaroni et al., 2010), and cause convulsions when injected into the lateral ventricle 

of rats that are blocked by AMPA antagonists (Matsuoka et al., 1993).  In our lab, we 

found that BMAA is a substrate for system xC-, and through this action drives glutamate 

release (Liu et al., 2009).  Therefore, an alternative explanation for BMAA being a direct 

AMPA receptor agonist is that BMAA may stimulate the release of endogenous 

glutamate, which activates the glutamatergic receptors.  In this case, the presence or 
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absence of calcium permeable AMPA receptors would determine the sensitivity of the 

cells to the toxicity of the endogenous glutamate.   

The importance of these results is that they show that specific, and functionally 

important, populations of neurons are sensitive to BMAA toxicity at concentrations that 

are much lower than the general cortical neuronal population, making it more likely that 

BMAA plays a role in neurodegenerative diseases where cell death of specific 

populations occurs.   

 
Measurement of BMAA 

Another area of controversy is the detection and quantification of BMAA in 

tissues.  There are labs that have successfully measured and quantified it in multiple types 

of tissues (Cox and Sacks, 2002; Murch et al., 2004a; Pablo et al., 2009), while there are 

also labs that have failed to detect BMAA in similar systems (Montine et al., 2005; 

Snyder et al., 2009).  Different methods used in these studies may be responsible for the 

lack of detection (Crimmins and Cherian, 1997).  A recent review by Steve Cohen of 

Waters Corp, the developer of multiple amino acid detection methods, suggested that 

using HILIC columns with tandem mass spectrometry, the method used by all of the 

investigators not detecting BMAA, may not be detecting BMAA because of the high 

level of ionization suppression due to much higher concentrations of other matrix 

components (Cohen, 2012).  Another complication is that it has been shown that the 

majority of BMAA in tissue is protein bound (Murch et al., 2004b).  This may be 

occurring through misincorporation into cellular proteins by BMAA being mischarged to 

the tRNAs (unpublished data).  Therefore, the processing method of samples becomes 
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important in whether BMAA is detected (Crimmins and Cherian, 1997; Murch et al., 

2004b).   

 
BMAA in animal models 

Several studies have been conducted to examine BMAA effects in vivo.  

Macaques were fed 100-350 mg/kg BMAA daily for 13 weeks, after which 

corticomotoneuronal dysfunction, Parkinsonian features and behavioral abnormalities 

were observed (Spencer et al., 1987).  However, the study was criticized for the high 

levels of BMAA that was tested (Duncan et al., 1990).  Intracerebroventricular 

administration of 0.5 mg/day of BMAA to rats up to 60 days old caused cholinergic cell 

degeneration as early as 16 days after BMAA administration and general cortical 

neuronal damage after 40 days (Rakonczay et al., 1991).  With the same BMAA 

administration, behavioral changes such as splay, jerking movements, and rigidity were 

elicited 6 days after administration (Rakonczay et al., 1991; Matsuoka et al., 1993).  

Although the symptoms elicited by BMAA administration are not exactly the same as 

observed in ALS-PDC, considering the difficulty in modeling the effects of chronic 

BMAA exposure, it was encouraging to observe neuronal toxicity and behavior changes 

following BMAA administration.  However, these studies involve intracerebroventricular 

injection, while exposure in humans is through ingestion.  There are a number of studies 

that failed to observe any behavioral responses following oral intake of BMAA.  Force-

feeding a total of 15.5 g/kg (500mg/kg or 1000 mg/kg doses) of BMAA to Cynomolgus 

monkeys for 11 weeks did not induce any behavior changes, nor any neurotoxicity in the 

cerebral cortex (Perry et al., 1989).  In another study, feeding adult mice 28 mg/kg of 
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BMAA per day for 30 days caused no motor, cognitive or neuropathological changes 

(Cruz-Aguado et al., 2006).  Therefore, whether chronic BMAA administration induces 

any behavioral or neuropathological changes is still controversial and requires more 

study.  One problem is that humans may be exposed to BMAA for decades, which cannot 

be mimicked in animal models.  Also, animal studies have involved administration of 

BMAA to young, healthy animals, which does not mimic the complex changes occurring 

in the aging human brain, or interactions with other environmental and genetic factors.    

 
Is action on system xC- an important mechanism of BMAA toxicity? 

We showed that along with the already known action of BMAA of activating 

glutamatergic receptors, BMAA also acts as a substrate for system xC- decreasing cystine 

uptake and increasing glutamate release.  Thus, by acting at system xC-, BMAA can 

cause both oxidative stress and excitotoxicity, both of which occur during 

neurodegenerative diseases.  This makes it an attractive mechanism to explain BMAA’s 

potential role in neurodegenerative diseases.  BMAA producing cyanobacteria exist 

ubiquitously, and it can get into the food supply, by accumulation in fish, crabs, and 

oysters (Banack et al., 2007; Cox et al., 2009; Brand et al., 2010; Jonasson et al., 2010; Li 

et al., 2010).  Therefore, it is important to study the potential threats of BMAA and 

understand the role of system xC- in its mechanism of toxicity.   

 
REGULATION OF SYSTEM XC- BY FGF-2 

 In chapter three of this thesis, we presented data showing the novel action of 

FGF-2 on astrocytes: increasing system xC- function (Liu et al., 2011).  This effect was 
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mediated by FGFR1, and required activation of both the PI3K/Akt and MEK/ERK 

pathways.  It has been well accepted that FGF-2 is involved in many aspects of central 

nervous system function and regulation (Eckenstein, 1994; Dono, 2003; Reuss and 

Bohlen und Halbach, 2003).  This new action of FGF-2 might provide insights into some 

of its effects in the brain.   

 
FGF-2 in the central nervous system 

FGF-2 is a well studied growth factor that has been shown to be more prevalent in 

the central nervous system than the peripheral organs (Ledoux et al., 1992).  By 

interacting with four cell surface tyrosine kinase FGF receptors and acting through 

several intracellular pathways, FGF-2 has been shown to be involved in development 

(Ohkubo et al., 2004), adult neurogenesis (Mudò et al., 2009), and tissue repair (Reuss 

and Bohlen und Halbach, 2003).  FGF-2 may be involved in acute and chronic 

neurodegenerative diseases such as stroke (Alzheimer and Werner, 2002) and 

Alzheimer’s disease (Mark et al., 1997).  FGF-2 expression can be changed.  Processes 

such as injury, stress, seizures, learning and memory all have been shown to increase 

FGF-2 expression (Dono, 2003; Fumagalli et al., 2005).  FGF-2 dysregulation has been 

suggested in schizophrenia (Terwisscha van Scheltinga et al., 2010), stress (Molteni et 

al., 2001; Frank et al., 2007), addiction (Flores and Stewart, 2000), major depression 

(Evans et al., 2004), as well as traumatic brain injury (Mellergård et al., 2012).  Its 

important role in neurogenesis and tissue repair in adult makes FGF-2 an attractive 

candidate for treatment of various neurodegenerative disorders.   
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FGF-2 and oxidative stress 

There is substantial evidence indicating that system xC- is induced when cells 

suffer from oxidative stress or low GSH (Sato et al., 2004; Seib et al., 2011; Lewerenz et 

al., 2012; Bridges et al., 2012b).  The effects of FGF-2 on oxidative stress are unclear.  It 

has been shown that FGF-2 potentiates oxidative stress mediated neuronal death (Lobner 

et al., 2003).  However, FGF-2 has also been shown to be protective against oxidative 

stress mediated toxicity (Yang and de Bono, 1997; Yamada et al., 2001).  Regarding the 

possibility that the FGF-2 upregulation of system xC- that we observed was mediated by 

oxidative stress, co-treatment of the free radical scavenger trolox with FGF-2 did not 

prevent the increased system xC- mediated cystine uptake induced by FGF-2 treatment 

(Fig. 5.4.).  We have shown previously that trolox blocks methylmercury induced 

increased system xC- activity, which we believe was mediated by decreased 

glutathione/oxidative increased stress (Rush et al., 2012b).  Therefore, it is unlikely that 

the FGF-2 treatment induced increase in system xC- function was mediated by oxidative 

stress.   
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FIGURE 5.4.  FGF-2 induced increase in cystine uptake is not oxidative stress 
dependent. 

Astrocyte-enriched cultures were exposed to FGF-2 (100 ng/ml) with or without the free 
radical scavenger trolox (100 µM) for 24 hours, washed into a growth factor free media, 
and 14C-cystine uptake measured for 20 min.  Bars show % control (mean ± s.e.m., n = 
6).  * indicates significantly different from control uptake.   
 

FGF-2 and glutamate 

It is well accepted that there is an interaction between FGF-2 and glutamate 

neurotransmission.  FGF-2 is required for normal generation of glutamatergic projections 

in vivo (Korada et al., 2002).  Decreased glutamatergic neurons and glutamatergic 

transmissions were reported in FGF-2 deficient mice (Fadda et al., 2007).  Mice carrying 

a mutation in fgfr1 gene showed decreased glutamatergic transmission in frontal and 

temporal cortex (Shin et al., 2004).  FGF-2 also promotes glial expression of glutamate 

transporters (Figiel et al., 2003), and reduced NMDA receptor activity in vivo (Fumagalli 

et al., 2004).   

We also investigated whether glutamate has an effect on system xC- activity.  We 

used 50 µM bicuculline, a GABA(A) receptor blocker, and 2.5 µM 4-AP, a potassium 

channel blocker, to cause the presynaptic release of neurotransmitters and selectively 
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activate synaptic receptors.  In our primary cortical cultures, the majority of the synapses 

are glutamatergic synapses.  Our preliminary data suggested that synaptic glutamate 

release can lead to increased cystine uptake within 20 min (Fig. 5.5.), and the cystine 

uptake was mediated through system xC- because it was CPG sensitive (Fig. 5.5.).  The 

effect, while significant, was small and variable among different plates.  When we 

continued these studies by testing the effect of various glutamatergic receptor antagonists 

on the effect of bicuculline/4-AP of increasing cystine uptake, the increase in cystine 

uptake disappeared.  Also, we were unable to determine whether the increase of system 

xC- function is caused by synaptic glutamate release.  Therefore, this line of study was 

not pursued further.   

 

 
FIGURE 5.5.  Short-term synaptic glutamate release increases system xC- activity.   
Mixed neuronal and glial cultures were exposed to (-)bicuculline methochloride (Bic, 50 
µM) and 4-aminopyridine (4-AP, 2.5 µM) for 20 min, then 14C-cystine is added to the 
media, and 14C-cystine uptake is measured for 20 min.  Bar show % control 
(mean±s.e.m., n=24).  * indicates significantly different from control uptake.   
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TOXICITY OF FGF-2 MEDIATED BY SYSTEM XC- 

Despite the numerous reports of FGF-2 as a neuroprotective growth factor 

(Alzheimer and Werner, 2002), cytotoxic effects of FGF-2 have also been reported.  

FGF-2 inhibits growth of cultured breast cancer cells (Johnson et al., 1998; Wang et al., 

1998), Ewing’s sarcoma cells (Schweigerer et al., 1987), and human neuroblastoma cells 

(Russo et al., 2004).  In Ewing’s sarcoma tumors, the cytotoxic effect of FGF-2 is 

mediated through the same pathways that were associated with FGF-2 induced cell 

proliferation (Kim et al., 2004; Russo et al., 2004; Williamson et al., 2004; Ma et al., 

2008).  48 hour treatment of FGF-2 inhibits Ewing’s sarcoma growth by inducing cell 

death in three different cell lines (Sturla et al., 2000; Ma et al., 2008).  FGF-2 also 

inhibits Ewing’s sarcoma growth in vivo (Sturla et al., 2000).  Overexpressing FGF-2 in 

mice reduces chondrocyte proliferation by increasing apoptosis (Sahni et al., 2001).   

 We also observed significant neuronal death 48 hours after FGF-2 treatment, 

which was associated with upregulation of system xC- activity.  Blocking either system 

xC- or AMPA receptors eliminated the neuronal cell death, suggesting glutamate exported 

from astrocytic system xC- contributes to the neuronal death.  However, we cannot 

exclude the possibility that the neuronal toxicity was due to FGF-2 sensitizing the 

neurons to normal glutamate release from system xC-.  An AMPA receptor antagonist, 

NBQX, but not an NMDA receptor antagonist, MEM, blocked the FGF-2 induced 

neuronal death.  This profile of toxicity is different from non-FGF-2 treated cells, in 

which low level glutamate exposure causes a similar level of neuronal death, but it is 

prevented by either AMPA or NMDA receptor antagonists.  We could not use the more 

potent NMDA receptor antagonists (2R)-amino-5-phosphonovaleric acid (APV) or MK-
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801 because they cause cell death by themselves, even at low concentrations, after 48 

hours (data not shown).  Bath incubation of glutamate is believed to activate extracellular 

receptors, which is likely similar to glutamate released from system xC-.  Therefore, FGF-

2 is in some way altering the type of excitotoxicity that occurs to the neurons.  To 

determine what FGF-2 changes in terms of response to glutamate, detailed studies would 

need to be carried out examining whether the levels of NMDA and AMPA receptors were 

changed.  This could be done by western blotting, examining the levels of NMDA and 

AMPA receptor subunits.  Furthermore, electrophysiological studies would be needed to 

examine whether functional changes in receptors occurred.  Fura-2 studies could also be 

carried out to examine whether calcium influx was changed by FGF-2 treatment.  It is 

also possible that the changes in glutamate receptor mediated toxicity are due to changes 

in the intracellular signaling cascade downstream of receptor activation.   

We made several attempts to measure whether there was elevated glutamate 

accumulating in the culture media following 48 hour FGF-2 treatment.  DIV 13 astrocyte-

enriched cultures were washed into fresh media, then following 48 hour exposure to 

FGF-2 or not (CTRL), bathing media from the cell cultures was collected and assayed for 

glutamate by HPLC.  The media used for such long-term exposure was requred to be a 

complex media we call MS, which contains more than 100 µM concentrations of 8 amino 

acids including cystine.  Astrocyte-enriched cultures were used because in mixed cultures 

neuronal death would occur at this time point, and the dead neurons would have released 

large amounts of glutamate.  Since the FGF-2 effect on system xC- occurs on astrocytes, 

the effect should be observed in the astrocyte-enriched cultures.  Two HPLC methods 

were tried to quantitate glutamate: phenylisothiocyanate (PITC) derivatization with 
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ultraviolet detection on an Agilent 1100 HPLC and fluorescence detection with 

ophthaldehyde pre-column derivitization on a Shimadzu LC10AD HPLC.  However, 

because the experiments were done in a complex media, there was an interfering peak 

where glutamate was to be measured.  Both a Hypersil-ODS reverse phase column and a 

Synergi Hydro-RP column were tested with the PITC derivatization with ultraviolet 

detection method in an attempt to separate the interfering peak from the glutamate peak. 

Also various mobile phases and flow rates were tested.  Although the new column, and 

using a slower flow rate appeared to give us better separation, it significantly decreased 

the sensitivity for detection of glutamate (more than 10 times less sensitive).  Since we 

are detecting glutamate in a large amount of extracellular media compared to that of the 

restricted space among the attached cells (with an estimated 1:1000 dilution), the 

glutamate concentration in the extracellular media is very low.  Furthermore, it is not 

known whether FGF-2 treatment changes the glutamate uptake efficiency.  Therefore, we 

were unable to determine the extracellular glutamate levels under these conditions.  

We cannot exclude the possibility of FGF-2 treatment changing neuronal 

susceptibility to normal extracellular glutamate levels.  One of the possibilities being that 

FGF-2 treatment changes the astrocytes’ ability to release cysteine-containing molecules, 

which in turn, selectively decreases glutathione levels in neurons, causing them to be 

susceptible to any insult, including glutamate levels that does not cause death to healthy 

neurons.  This hypothesis could be tested by measuring thiols by HPLC in the culture 

media of mixed neuronal and glial cultures.   
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IS SYSTEM XC- ACTIVITY TOXIC TO NEURONS? 

In this dissertation, we have shown that BMAA can contribute to neuronal death 

by acting at system xC-.  Also, that prolonged FGF-2 treatment can upregulate system xC- 

and cause a system xC- function dependent neuronal toxicity.  As knowledge of the 

function of system xC- expands, and the interest in targeting this system as a treatment for 

various neurodegenerative diseases and psychiatric disorders increases, it is important to 

understand the potential damage that system xC- activity can cause.  Currently, it is clear 

that for cells that mainly rely on system xC- to take up cystine for the production of 

glutathione, blocking system xC- function can be toxic (Murphy et al., 1989).  The 

question remains whether the glutamate exchanged out of these cells by system xC- is a 

threat to surrounding cells.  Glioma cells have increased system xC- function, as well as 

decreased glutamate uptake, leading to increased extracellular glutamate which can cause 

toxicity to the surrounding neurons (Ye and Sontheimer, 1999; Sontheimer, 2003; 2008; 

Ogunrinu and Sontheimer, 2010).  Both FGF-2 (Liu et al., 2011) and IL-1β (Fogal et al., 

2007) upregulate system xC- function selectively on astrocytes.  Long-term FGF-2 

treatment causes a system xC- function dependent, and AMPA receptor specific, neuronal 

death.  While IL-1β treatment potentiates hypoxia and glucose deprivation induced 

neuronal death through a system xC- activity dependent mechanism (Fogal et al., 2007; 

Jackman et al., 2012).  Another example of increased system xC- function is activated 

microglia, which release enough glutamate through system xC- to cause toxicity to the 

surrounding neurons (Domercq et al., 2007).  In all of these studies, along with the 

involvement of system xC-, the neurons are under stress: hypoxia, glucose deprivation, or 

stimulation by growth factors or cytokines.  Therefore, while it is clear that enhanced 
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system xC- activity on non-neuronal cells can potentiate neuronal death when the neurons 

are compromised, it is uncertain whether glutamate release from system xC- can cause 

neuronal death under normal conditions.  

 
QUESTIONS REGARDING SYSTEM XC- STUDIES 

Molecular properties of system xC- 

Northern blot has shown three different xCT transcripts (12, 3.5 and 2.5 kb) in 

cultured macrophages and HT22 cells, as well as in various mouse organ tissues (Sato et 

al., 1999; 2001; 2004; 2005; Lewerenz et al., 2006; Taguchi et al., 2007).  They may 

represent alternative splicing or alternative polyadenylation (Sato et al., 1999; Lewerenz 

et al., 2006).  While all of these transcripts are inducible to a similar extent in culture 

(Sato et al., 1999), they have a different distribution pattern. The 3.5 and 2.5 kb 

transcripts were predominantly seen in macrophages, while the 12 kb RNA transcript was 

found in mouse brain, but not in peripheral organs such as heart, lung, liver, and kidney 

(Sato et al., 1999; Bassi et al., 2001; Sato et al., 2002).  Human ovarian cancer cell lines 

(Okuno et al., 2003), hamster kidney cells (Sasaki et al., 2002), and cultured rat 

astrocytes (Gochenauer and Robinson, 2001)were shown to exclusively express the 12 kb 

transcript of xCT.   

The predicted amino acid sequence from cDNA for xCT would be a protein of 

502 amino acids with a relative molecular mass of 55.5 kDa (Sato et al., 1999).  

However, in reality, xCT with various molecular masses have been reported.  The 55kDa 

protein is observed both in brain in vivo and in cortical neuronal stem cell cultures (Sims 

et al., 2012).  50 kDa xCT was detected in human glioma cells (Kim et al., 2001) and 
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retinal ganglion cell line membranes (Dun et al., 2006).  In vitro expression of xCT in 

Xenopus oocytes (Sato et al., 1999) and HT22 cells (Burdo et al., 2006) showed a band of 

an approximately 40 kDa protein, which could be downregulated by siRNA (Burdo et al., 

2006).  This 40 kDa xCT was detected in rat brain tissue, with the expression level 

increasing during development and reaching the highest expression as an adult (La Bella 

et al., 2007).  xCT was also observed in mouse hippocampus at a molecular weight of 

~35 kDa, which is absent in xCT -/- mice (Pacchioni et al., 2007; De Bundel et al., 2011).   

There are also studies reporting that xCT is detected at multiple molecular masses 

in the same tissue, with the same antibody.  A study done in primary rat astrocyte cultures 

revealed three distinct bands for xCT: 40, 45, and 50 kDa, however, only the 40 kDa was 

released from the system xC- heterodimer after reducing agent was added (Seib et al., 

2011).  xCT was also detected at 50 kDa and 40 kDa in mouse Muller cells, with the 50 

kDa protein as the majority version.  However, it was not inducible by oxidative stress, 

while the minority 40 kDa form, which is normally predominantly located intracellularly, 

was upregulated by oxidative stress and translocated to the membrane (Mysona et al., 

2009).  The same 40 kDa form of xCT was also found to be almost exclusively present on 

the cellular membrane in rat brain tissue, cultured human fibroblast, rat neurons and 

astrocytes (La Bella et al., 2007).  xCT was detected at 35 kDa and 55 kDa in mouse 

brain and mouse astrocyte cultures, with the 55 kDa form prominently detected only in 

mouse meninges (Shih et al., 2006).   

Together with these mixed results, there are also a number of system xC- studies 

that did not report the band(s) mass in their paper (Bridges et al., 2004; Qiang et al., 

2004; Sakakura et al., 2007).  It seems that the use of different antibodies and different 
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tissues can lead to different results.  Furthermore, increased expression does not 

necessarily mean increased membrane expression and increased function.  Therefore, 

claims about potential system xC- function by measuring xCT protein expression must be 

considered skeptically.  In our studies, we have focused on the functional activity of 

system xC- measured by 14C-cystine uptake.   

 
Relevance and limitations of translating in vitro studies to in vivo:  

 It has been suggested that when compared to in vivo, system xC- activity is much 

higher in vitro (Lewerenz et al., 2012).  This is believed to be because system xC- activity 

can be easily induced.  Even regular cell culture conditions with ambient O2 of 21% 

strongly induces system xC- activity in diverse cell types, including fibroblasts, HEK 

cells, hippocampal HT22 cells, astrocytes, and microglial (Lewerenz et al., 2012).  In 

freshly prepared hepatocytes and macrophages, the activity of system xC- is barely 

detectable (Takada and Bannai, 1984; Watanabe and Bannai, 1987), but it is significantly 

upregulated after 12 hours of culturing (Watanabe and Bannai, 1987).  A much higher 

system xC- activity level is measured in macrophages cultured for 8 hours in the presence 

of LPS and diethyl maleate (Sato et al., 1995a).  Various electrophilic agents and 

different pH have been proven to be system xC- activity inducers (Reynolds et al., 1991; 

Sasaki et al., 2002).  These concerns regarding cell culture studies must be kept in mind 

when attempting to extrapolate cell culture studies to the in vivo situation.   

 Our in vitro data showed that astrocytes have greater system xC- activity than 

neurons (Lobner, 2009), in agreement with another lab (Jackman et al., 2012).  

Preliminary data from our lab indicates that neuronal conditioned media significantly 
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increases astrocytic system xC- activity within 24 hours (Fig. 5.7.).  The exact mechanism 

of how neuronal conditioned media causes this functional increase of system xC- in 

astrocytes requires further study.   

 

 

FIGURE 5.7.  24 hour exposure to neuronal-conditioned media (NCM) increases 
system xC- mediated cystine uptake in astrocytes. 

Culture media from the DIV 13 primary mouse glia-enriched cultures was replaced with 
NCM collected from DIV 13 neuronal-enriched cultures, 14C-cystine uptake for 20 min is 
measured 24 hours later.  Bars show % control (mean ± s.e.m., n = 12-16). * indicates 
significantly different from control uptake.   
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CONCLUSION 

System xC- dysregulation has been implicated in various neurodegenerative 

diseases and psychiatric disorders.  The dual function of system xC- awards it a distinct 

role in influencing cell fate.  It may be protective by promoting cystine uptake and 

preventing oxidative stress, but it may be harmful by releasing glutamate and 

exacerbating excitotoxicity.   

The goal of this thesis was to add to the knowledge regarding the role of system 

xC- in neuronal death.  Two major advancements to the field were made.  First, we 

discovered that the environmental neurotoxin BMAA acts as a substrate for system xC-.  

Through this action, BMAA both inhibits cystine uptake, leading to oxidative stress and 

drives glutamate release causing excitotoxicity.  This result is important not only for 

understanding the mechanism of BMAA toxicity, but also provides evidence that 

compounds that are transported by system xC-, particularly if they do not lead to 

increased glutathione production, are potentially highly neurotoxic.  Second, the results 

involving FGF-2 suggest that increasing system xC- selectively on astrocytes is 

potentially harmful to neurons.  This finding, in concert with the well known neurotoxic 

action of glomas, that also have upregulated system xC-, suggests a general hypothesis 

that upregulation of system xC- on non-neuronal cells can be toxic to neurons.   
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