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ABSTRACT 
MOLECULAR SITES AND MECHANISMS OF ACTION OF  

ALCOHOL ON THE NMDA RECEPOR  
GLUN2B SUBUNIT 

Yulin Zhao, B.S. 

Marquette University, 2015 

Alcohol abuse and alcoholism are behavioral disorders involving altered synaptic 
transmission in the brain. The N-methyl-D-aspartate (NMDA) receptor, a subtype of 
glutamate-gated ion channel, has been shown to be one of the most important target sites 
of alcohol in the central nervous system. The NMDA receptor is formed between two 
obligatory GluN1 subunits and two GluN2 subunits (2A-2D). Previous studies have been 
mainly focused on the GluN2A subunit-containing NMDA receptor to study the 
molecular sites and mechanisms of alcohol action on the NMDA receptors. However, a 
major role for the GluN2B subunits in the action of alcohol has been pointed out recently.  

To test the hypothesis that alcohol interacts with specific residues in the 
membrane-associated (M) domains of the GluN2B subunit to modulate ion channel 
gating and alcohol sensitivity, we performed site-directed mutagenesis at positions in the 
GluN2B subunit, transfected mutant receptors into human embryonic kidney (HEK 293) 
cells, and did whole-cell patch-clamp recording on these cells. One position in the 
GluN2B subunit showed significant influence on ethanol sensitivity and ion channel 
functions. Moreover, the manner in which mutations at positions in the GluN2B subunit 
alter ethanol sensitivity differ from that of the cognate positions in the GluN2A subunit.  

The predicted structure of the NMDA receptor indicates a close apposition of the 
alcohol-sensitive positions in the M3 and M4 domains between the GluN1 and GluN2 
subunits. By using both two-way ANOVA and mutant cycle analysis, significant 
interactions affecting ethanol inhibition and glutamate potency were observed at three 
pairs of positions in GluN1/GluN2B: Met818/Phe637, Phe639/Leu825, and 
Gly638/Met824; the last pair also interact with each other to regulate ion channel 
desensitization. 

To study whether characteristics of NMDA receptor mutations observed in a non-
neuronal cell line are also observed in central nervous system (CNS) neurons, we 
transfected our constructed GluN1/GluN2A NMDA receptors into rat cortical neurons 
from postnatal day 2 or 3 by using electroporation. Because there is only few endogenous 
GluN2A subunits in rat cortical neurons early in development, the currents recorded from 
these transfected neurons are attributable to the introduced NMDA receptors. 
Electrophysiological recording in these transfected neurons so far yielded currents that 
closely resemble those observed in HEK293 cells. 
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I.  INTRODUCTION 

General Introduction 

The purpose of this thesis is to understand the molecular sites and mechanisms 

through which alcohol modulates the function of GluN2B subunit-containing N-methyl-

D-aspartate (NMDA) receptor. This dissertation provides new information about 1) the 

location of ethanol-sensitive positions in the GluN2B subunit of the NMDA receptor; 2) 

whether these positions can also regulate ion channel gating; 3) how positions among 

different subunits interact to form sites of alcohol action; and 4) whether the effects of 

NMDA receptor mutations on alcohol modulation and ion channel gating observed in a 

non-neuronal cell line can also be observed in mammalian CNS neurons. 

The NMDA receptor, a type of ionotropic glutamate receptor, is highly expressed 

in the central nervous system (CNS). As one type of important neurotransmitter-activated 

ion channel in the brain, NMDA receptors play critical roles in multiple aspects of brain 

function, such as motor function, cognition, sensory processing, as well as plasticity 

involved in learning and memory (Bliss and Collingridge, 1993; Malenka and Nicoll, 

1999; Dingledine et al. 1999; Paoletti and Neyton, 2007). 

Alcohol addiction, characterized by compulsive and uncontrolled consumption of 

alcoholic beverages despite the negative consequences, is a costly and detrimental 

chronic brain disorder. It is thought to be associated with disorganized motor function, 

cognition, and learning and memory processes (Weiss and Porrino, 2002; Koob, 2003), 

all of which involve NMDA receptors. Following the initial finding of Lovinger and 

colleagues (1989) that alcohol inhibits NMDA receptors, a large number of studies have 
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established that the NMDA receptor is a major target of alcohol action in the brain and 

plays a role in several ethanol-associated phenomena such as tolerance, dependence, 

withdrawal and relapse (Khanna et al., 1993; Krystal et al., 2003b; Vengeliene et al., 

2005; Chandrasekar, 2013). However, the molecular sites and mechanisms of alcohol 

action on the NMDA receptor are still incompletely understood. 

The NMDA receptor is a heterotetramer formed between two obligatory GluN1 

subunits and two GluN2 subunits, while four different isoforms of the GluN2 subunits are 

expressed in the brain (GluN2A-GluN2D) (Kew et al., 1998; Dingledine et al., 1999). 

Although the GluN2A subunit-containing NMDA receptor predominates in the 

mammalian brain, recent research has pointed to the importance of GluN2B subunit-

containing NMDA receptors in brain function and alcohol action (Chazot, 2004; Nagy, 

2004; Boyce-Rustay and Holmes, 2005; Gogas, 2006; Kash et al., 2008). Considering the 

importance of the GluN2B subunit in the actions of alcohol, the lack of information about 

the molecular sites and mechanisms of alcohol action on GluN2B subunit containing-

NMDA receptors, represents a critical gap in the understanding of alcohol action in the 

brain. 

Findings presented in this dissertation provide key information for the interaction 

between the GluN2B subunit and the ethanol molecule by identifying candidate sites of 

ethanol action on the GluN2B subunit protein. Furthermore, studies in this dissertation 

may aid in developing a better structural model of the M3 and M4 domains of the 

GluN2B subunit and in understanding the relation between the structure and the function 

of these domains as well as the effects of alcohol on these domains. Finally, studies in 

which wild-type and mutant NMDA receptors were transfected into rat cortical neurons 
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during the early development period have demonstrated that effects of NMDA receptor 

mutations on alcohol sensitivity and ion channel gating observed in a non-neuronal cell 

line are not cell-specific phenomena.    

Alcohol addiction 

Alcohol addiction is defined as a chronic and often progressive disorder, which is 

characterized by preoccupation with alcohol, problems controlling excessive 

consumption, compulsive use of alcohol, and the presence of either physical dependence 

on alcohol or withdrawal symptoms when rapidly decreasing or stopping drinking 

(American Psychiatric Association, 1994). Among addictions, alcohol abuse and 

dependence are both profound in their impact on society and global in scope. Unhealthy 

alcohol consumption can affect various organ systems, such as liver, heart and stomach, 

and the brain is the major target of acute alcohol actions (Grant et al., 2005; Hasin et al., 

2007).  Chronic ethanol exposure also has complex and long-lasting effects on the brain 

at the morphological, functional and behavioral levels. Studies focused on structural 

changes in alcohol addiction have shown that administration of ethanol to rat pups can 

lead to oxidative stress in the developing cerebellum and neurotoxicity-induced loss of 

Purkinje cells in this brain region (Ramezani et al., 2012). And effects of ethanol are not 

only seen during development. Chronic alcohol assumption also results in 

neuropathologically-detectable gray and white matter injury in mature brain, which is 

accompanied by brain shrinkage (Kril et al., 1997; Harper et al., 2003; Bartsch et al., 

2007). Metabolic impairments were found in the mediofrontal and dorsolateral prefrontal 

cortex following chronic alcohol consumption, which suggests an effect of chronic 
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alcoholism on brain metabolic processes (Dao-Castellana et al., 1998). Alcohol addiction 

is thought to be associated with alterations in certain brain functions, such as decision-

making, and impairment is thought to be associated with brain shrinkage (Le Berre et al., 

2012). Moreover, individuals abusing alcohol often show blackout behavior and 

disrupted performance on a variety of short-term memory tasks, which indicates impaired 

learning and memory following binge drinking of alcohol, and acute ethanol can impair 

semantic and figural memory (Miller et al., 1978; Lister et al., 1991; Acheson et al., 

1998).          

Unlike other drugs of abuse, alcohol targets are widespread in the brain, and 

actions involve a number of brain neurochemical systems, with each system supporting 

part of the mechanism of alcohol reward and alcohol-seeking behavior, which presents 

unique challenges to study the basis of alcohol addiction. Alcohol has been demonstrated 

to be associated with dopamine function in the mesolimbic “reward” system (Weiss and 

Porrino, 2002). It has been reported that ethanol can increase the firing of dopamine 

neurons in the ventral tegmental area (VTA) (Gessa et al., 1985; Brodie et al., 1990), and 

ethanol elevates dopamine concentration in the nucleus accumbens core (NAc) (Di 

Chiara and Imperato, 1988). A number of brain regions play a role in the development of 

alcohol dependence, including the central nucleus of the amygdala, the bed nucleus of the 

stria terminalis (BNST), and a transition zone in the medial part of the nucleus 

accumbens (NA). Within these nuclei, alcohol plays a key role in dysregulation of the 

brain stress systems. For example, brain corticotrophin-releasing factor (CRF) activity 

was significantly increased during alcohol dependence reinforcement (Koob, 2003). In 

addition, a large body of research indicates that the function of neurotransmitter-gated ion 
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channels are abnormally altered during alcohol exposure. Lovinger et al. (1989) first 

showed that NMDA-activated current was inhibited by ethanol in hippocampal neurons. 

And this key publication also showed that alcohol-associated NMDA receptor inhibition 

may contribute to the neural impairments induced by alcohol intoxication. In subsequent 

years, several other types of ionotropic receptors were reported to be disrupted by 

alcohol, including γ-aminobutyric acid (GABA)A receptor and glycine receptor, that 

alcohol can enhance their function (Mihic et al., 1997). In addition to its effects on these 

three receptors, the function of neuronal nicotinic acetylcholine (nAch) –like receptor and 

5-hydroxytryptamine 3 (5-HT3) receptor also can be potentiated by alcohol exposure 

(Lovinger, 1997). And among these ligand-gated ion channels (LGICs), the NMDA 

receptor and GABAA receptor has been intensely studied, and viewed as major targets of 

alcohol action in the brain. However, actions of alcohol on GABAA receptors strongly 

depend on variables, such as the subunit composition, that most subunit compositions 

only respond to alcohol action at high concentrations (>60 mM) (Tsai and Coyle, 1998; 

Vengeliene et al., 2008; Chandrasekar, 2013).  

NMDA receptor structure 

The NMDA receptor, a member of the ionotropic glutamate receptor family in the 

brain, is formed as heterotetrameric assemblies of integral membrane protein subunits. 

Early studies about the stoichiometry of NMDA receptors proposed a pentameric 

structure based on the size of chemically cross-linked NMDA receptor protein as well as 

analysis of sensitivity to channel blockers (Brose et al., 1993; Ferrer-Monteil and Montal, 

1996), although other studies from the same time period concluded that the NMDA 
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receptor is a tetrameric protein consisting of two GluN1 and two GluN2, or two GluN3 

subunits in the early postnatal phase (Behe et al., 1995; Pachernegg et al., 2012), and that 

homomeric subunits could arrange as tetramers (Mano and Teichberg, 1998). Eventually, 

sufficient evidence was presented to support a heterotetrameric arrangement for the 

NMDA receptor, which could be activated by concurrent binding of glycine or D-serine 

to the GluN1 subunit and glutamate to the GluN2 subunit. A GluN1 subunit can combine 

with two of the same types of GluN2 subunit, and also can combine with two different 

GluN2 subunits to form triheteromeric receptors. A number of studies have demonstrated 

the presence of GluN1/GluN2A/GluN2B, GluN1/GluN2A/GluN2C, 

GluN1/GluN2B/GluN2D, and GluN1/GluN2A/GluN2D NMDA receptors in different 

brain regions as well as different neuronal subpopulations (Chazot et al., 1994; Chazot 

and Stephenson, 1997; Luo et al., 1997; Dunah et al., 1998; Brickley et al., 2003; Jones 

and Gibb, 2005; Karakas and Furukawa, 2014).  

Expression of functional NMDA receptors requires the co-expression of two 

obligatory GluN1 subunits and at least one type of GluN2A-D subunit or GluN3A-B 

subunit. There are eight different GluN1 subunits generated from alternative splicing 

variants of the same gene, and six separate genes encode four different GluN2 subunits 

(A, B, C, and D) as well as two different GluN3 subunits (A, B; Dingledine et al., 1999; 

Kaniakova et al., 2012; Chandrasekar, 2013; Paoletti and Neyton, 2007). Recent studies 

using x-ray crystallography have reported the structure of the GluN1/GluN2B NMDA 

receptor, which has an overall twofold symmetry, a dimer-of-dimers arrangement in 

which the GluN1 and GluN2B subunits occupy the A-C and B-D positions, respectively, 

defined previously by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
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(AMPA) receptor (Lee et al., 2014; Karakas and Furukawa, 2014; Sobolevsky et al., 

2009; Figure 1.1).  

 

Figure 1.1.  Overall structure of the heterotetrameric GluN1/GluN2B NMDA receptor 

The GluN2B-containing NMDA receptor structure with the amino (AT) and carboxy (CT) domains located 

on the top and bottom, respectively (Karakas and Furukawa, 2014). Two GluN1 subunits are colored in 

orange and yellow, and two GluN2B subunits are colored in cyan and purple, which clearly indicate that 

the NMDA receptor is composed of four subunits in a dimer of dimers manner [Protein Data Bank (PDB) 

ID: 3KG2]. Ifenprodil (IF), is located at the GluN1-GluN2B ATD heterodimer interfaces, and the agonists, 

glycine (Gly) and L-glutamate (L-Glu), bind at the LBD clamshells, as indicated by arrows. Note that the 

large intracellular C-terminal domains are not shown, as their structures could not be resolved. 
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The structure of a single NMDAR subunit can be described by a large amino-

terminal domain (ATD), an extracellular ligand-binding domain (LBD) (S1S2), four 

membrane-associated domains (M1-M4), of which M2 is a re-entrant membrane  

loop, and an intracellular carboxy-terminal domain (CTD) (Figure 1.2). The ATD is 

highly homologous with the bacterial protein leucine/isoleucine/valine-binding protein 

(LIVBP), one of the bacterial periplasmic binding proteins (PBPs) (Masuko et al., 1999; 

Paoletti et al., 2000). Numerous studies have used truncation mutants that lack the entire 

ATD to study the role of this region. However, these truncated subunits seem to assemble 

into functional NMDA receptors with altered open probability, deactivation, and 

desensitization compared with wild-type receptor (Fayyazuddin et al., 2000; Matsuda et 

al., 2005; Rachline et al., 2005; Gielen et al., 2009; Yuan et al., 2009). In turn, the 

nonessential nature of this region seems to be consistent with its regulatory role in the 

receptor. For example, the ATD of the GluN2 subunit contains the binding sites of many 

NMDA receptor modulators, such as zinc, ifenprodil, protons, and polyamines (Choi and 

Lipton, 1999; Fayyazuddin et al., 2000; Gallagher et al., 1996; Gallagher et al., 1997). 
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Figure 1.2. Single subunit of NMDA receptor 

The amino-terminal domain (ATD) is followed by the S1 half-domain (Pre-M1), two transmembrane 

domains (M1, M3) with a re-entrant P loop (M2), the S2 half-domain (linker between M3 and M4), and the 

last transmembrane domain (M4). The carboxyl terminus is located in the cytoplasm, where it can interact 

with proteins of the postsynaptic density. The ligand-binding domain (LBD) is formed by S1 and S2 half-

domains (Armstrong and Gouaux, 2000). 

 

The ligand binding domain (LBD) is formed by two polypeptide segments, named 

S1 and S2, and this domain adopts a clamshell-like structure that undergoes a 

conformational change to enclose the ligand upon binding. The S1 segment, located on 

the amino-terminal side of M1, forms half of the clamshell, and the segment S2 between 

the M3 and M4 domains forms the other half of the clamshell (Armstrong and Gouaux, 
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2000; Furukawa and Gouaux, 2003; Sobolevsky et al., 2009). This region shows 

sequence homology with the bacterial glutamine-binding protein QBP (Stern-Bach et al., 

1994; Hsiao et al., 1996) and contains the agonist binding pocket within the cleft between 

S1 and S2 segment. The initial step for activation of the NMDA receptor requires the 

simultaneous binding of either glycine or D-serine in the GluN1 subunit and glutamate in 

the GluN2 subunit. Agonists of the NMDA receptor uniformly contain sequences that 

correspond to the α-amino and α-carboxyl groups, which form atomic interactions with 

the regions of the binding pocket (Armstrong et al., 1998; Armstrong and Gouaux, 2000; 

Gill et al., 2008; Furukawa et al., 2005).  

The re-entrant membrane loop (M2) is homologous to the P-loop sequences of 

other channels, which, together with the upper region of the M3 domain, contributes to 

formation of the pore facing the cytoplasm, whereas the M3 forms the outer boundary of 

the cavity facing the extracellular side. The M1 helix is located on the exterior of M2 and 

M3, and the M4 domain from one subunit is associated with the ion channel core of an 

adjacent subunit, which indicates not only that the M2 loop and M3 domain are essential 

for ion channel gating, but also that the M1 and M4 helices are important for regulating 

ion channel gating (Schneggenburger and Ascher, 1997; Villarroel et al., 1998; Ren et 

al., 2003a). The ion channel pore of the NMDA receptor has a small segment of amino 

acid sequence that is similar to those found in the inverted ion channel domain of K+ 

channels (Wood et al., 1995; Wo and Oswald, 1995; Kuner et al., 2003). The P-loop 

sequences are responsible for the selection of ion permeability as well as the affinity for 

the pore blocker Mg2+ (Verdoorn et al., 1991; Burnashev et al., 1992). The M3 domain of 



11 
 

GluN1 and GluN2 subunits have also been demonstrated to contribute to the regulation of 

the surface delivery of NMDA receptors (Kaniakova et al., 2012).  

The CTD of the NMDA receptor shows no sequence homology to any known 

proteins; however, it encodes short docking motifs for intracellular binding proteins. This 

region is thought to be responsible for membrane targeting, stabilization, post-

translational modifications, targeting for degradation, and regulating channel function. 

Deletion of this domain in some subunits (e.g., GluN1, GluN2A) does not completely 

abolish channel functions but does alter them (Kohr and Seeburg, 1996; Vissel et al., 

2001; Peoples and Stewart, 2000). For example, the C-terminal domain of the GluN1 

subunit contains a number of regulatory protein binding sites, including sites for 

calmodulin, scaffolding proteins, and phosphorylation sites for protein kinase A (PKA) 

and protein kinase C (PKC) (Wang et al., 2006; Blanke et al., 2009) (Figure 1.3). 
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Figure 1.3. The NMDA receptor is believed to assemble as a tetramer 

Two GluN1 and two GluN2 subunits are arranged in a “dimer of dimers” quaternary architecture. For 

clarity, only one of the two heterodimers is shown. In the extracellular region, the subunits dimerize at the 

level of the ATDs. Glutamate binds at the GluN2 LBD binding site, whereas glycine (or D-serine) binds at 

the GluN1 LBD binding site. Sites in the GluN2 ATD are known to bind allosteric modulators such as zinc 

(GluN2A and GluN2B ATDs) or ifenprodil-like compounds (GluN2B ATDs). Ion channel domain contains 

binding sites for pore blockers such as Mg2+, MK-801 or ketamine. 

NMDA receptor kinetic model 

The general concept of activation of the NMDA receptor is that glutamate binds in the 

cleft of the S1-S2 segments of a single NMDA receptor GluN2 subunit (glycine or D-
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serine bind similarly to the GluN1 subunit), which form a clam-shell-like motif. The 

conserved structural elements for this agonist-binding site among different types of 

ionotropic glutamate receptors are an arginine side chain on helix D, which forms the 

major binding site for the ligand α-carboxyl group, and a glutamate side chain, which 

binds the agonist α-amino group (Mayer, 2006; Watkins et al., 1990). As discussed 

previously, the NMDA receptor is formed by heterodimers, and these dimers play a key 

role in coupling the agonists binding to the activation of ion channel gating. As illustrated 

in Figure 1.4, in domain 1 (D1), which is part of the ligand binding domain, dimers are 

 

Figure 1.4. NMDA receptor kinetic model of structural changes accompanying ion channel opening 

and desensitization 

Diagrammatic representations of the resting, activated and desensitized states to illustrate how domain 

closure is linked to breaking of contacts between two D1s. 

connected together by hydrophobic contacts made on the surface of two helices, as well 

as hydrogen bonds and salt bridges. However, the domain 2 (D2) is free to move from the 

Open

D1 D1

D2 D2

D1 D1

D2 D2

Rest Desensitized

D1 D1

D2 D2
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resting state to the agonist-bound state. Immediately after the binding of agonists, D2 

moves toward D1 and produces a scissors-like outward motion of the linkers between the 

membrane-associated domains and ligand-binding domains. In turn, contraction of the 

ligand-binding domains in a dimer assembly upon agonists binding could result in the 

movement of the membrane-associated domains, causing gating of the ion channel. The 

channel opens because the dimer only forms through the D1 surface, but leaves D2 free 

to move. In other ionotropic glutamate receptor types, such as AMPA and kainate 

receptors, each subunit contains an agonist binding domain, which is linked with the 

membrane-associated domains of the same subunit, so it is reasonable to imagine that 

agonist-binding in an individual subunit could result in partial opening of the ion channel. 

This is not the case for NMDA receptors, however, in which binding of either glutamate 

or glycine alone does not trigger ion channel gating (Armstrong and Gouaux, 2000; 

Banke et al., 2003; Schorge et al., 2005).  

This model also suggests that the desensitization state occurs when the 

hydrophobic contacts between ligand-binding domains are broken during the 

conformational rearrangement of the dimer. In this state, even though the agonists remain 

bound to their binding sites, the uncoupled agonist-binding domains in a dimer could 

rotate around the central axis, relieving strain on the linkers between the ligand-binding 

domain and membrane-associated domains, allowing the ion channel to close (Sun et al., 

2002). As described previously, there are at least two mechanisms by which NMDA 

receptor-mediated responses decay over time, in addition to true desensitization: the first 

is manifested as a decrease in glycine affinity, and the second is calcium-dependent 
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inactivation, which depends upon calcium interaction with the GluN1 C-terminal domain 

(Mcbain and Mayer, 1994; Clark et al., 1990).  

NMDA receptor function in the brain 

During brain development, the subunit composition of NMDA receptors changes 

in response to neuronal activity from predominantly GluN2B subunit-containing to 

primarily GluN2A subunit-containing NMDA receptors (Bellone and Nicoll, 2007). 

However, this replacement is not absolute, GluN2B subunits are still expressed in many 

regions in the adult brain and play a major role in multiple brain functions. The molecular 

and chemical mechanisms for the change in expression have not yet to be fully 

understood. It is possible that neuronal activity during this period drives the trafficking 

and insertion of the GluN2A subunit as well as the endocytosis of the GluN2B subunit 

(Barria and Malinow, 2002; Groc et al., 2006; Paoletti et al., 2013). Because this switch 

in subunit composition occurs during a critical time window when synaptogenesis, circuit 

refinement, and acquisition of learning abilities occur (Gambrill and Barria, 2011; 

Sanchez et al., 2012; Dumas, 2005), the change in subunit composition may explain the 

present of these processes during brain development. 

On the synaptic level, NMDA receptor subunit composition plays an important 

role in the process of synaptogenesis, synapse maturation, and synapse stabilization. One 

previous study concluded that GluN2 subunits are key elements of normal development 

of synapses, in which the GluN2A subunit acts to stabilize synapse formation, whereas 

the GluN2B subunit is required for spine retraction and new spine formation (Aizenman 

and Cline, 2007; Wu et al., 1996; Isaac et al., 1997; Gambrill and Barria, 2011). A large 
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number of studies have further explored the role of NMDA receptor-mediated synaptic 

activity in the functional development of neurons and neuronal circuits. Although NMDA 

receptors are not essential for brain development, because transgenic mice lacking 

individual NMDA receptor subunits appears normal, at least at birth, their activities are 

vital for regulating the integration of newborn neurons into mature brain circuits (Tahiro 

et al., 2006; Forrest et al., 1994; Kutsuwada et al., 1996). NMDA receptors are known to 

have a role in axon arbor refinement since experiments on retinotectal topographic map 

indicated an evolutionarily-conserved role of the NMDA receptor in activity-dependent 

sensory map formation (Cline et al., 1987; Cline et al., 1989; Simon et al., 1992). In 

addition to exon arbor elaboration, blockade of NMDA receptor activity with APV also 

showed a reduced dendritic growth rate (Rajan and Cline, 1998). Moreover, during the 

early phase of the subunit type switch, GluN2A subunit-containing NMDA receptors 

progressively predominate in the synapses, which leads to a balance of plasticity and 

stability, and more balanced synapse function is optimal for information processing and 

formation of various associative learning abilities (Quinlan et al., 1999; Quinlan et al., 

2004; Dumas, 2005).   

The fundamental physiological function of the NMDA receptor in the brain is to 

regulate calcium flux in response to synaptic activity as well as to play an important role 

in excitatory synaptic neurotransmission. NMDA receptors regulate functional and 

structural plasticity by activating multiple calcium-dependent pathways upon the removal 

of magnesium block by coincident strong depolarization. Although NMDA receptors 

activate more slowly than other ionotropic glutamate receptors, they have higher affinity 

for glutamate and much longer synaptic potentials compared with AMPA receptors, 
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which are responsible for the initial membrane depolarization that overcomes NMDA 

receptor magnesium block (Mayer et al., 1984; Huang and Bergles, 2004). Coactivation 

of NMDA receptors in multiple synapses enhances excitatory postsynaptic potentials 

(EPSPs) to facilitate temporal summation and allow neurons to detect and react to the 

synchrony of inputs (Zito and Scheuss, 2009). 

Some of the features of NMDA receptors, such as their prolonged EPSP duration, 

magnesium block, and calcium permeability, allow them to play important roles in 

certain forms of both positive and negative synaptic plasticity. High frequency synaptic 

input-induced excitatory postsynaptic potentials (EPSPs) are the basis of the paradigm of 

long-term potentiation (LTP), which involves phosphorylation and enhanced trafficking 

of AMPA receptors to the postsynaptic membrane (Bliss and Lomo, 1973; Johnston, 

1992). The role of NMDA receptors in some forms of LTP in the brain is well 

demonstrated in previous studies, especially in the hippocampal CA1 region (Izquierdo, 

1994; Rockstroh et al., 1996). Long-term depression (LTD), which can be induced by 

prolonged low frequency (0.5 to 3 Hz) stimulation, is the negative counterpart of LTP. 

NMDA receptor-dependent LTD decreases synaptic potentials by dephosphorylation-

induced reduction of open probability and downregulation of AMPA receptors in the 

hippocampal CA1 area (Dudek and Bear, 1992; Bear and Fitzjohn, 1999; Isaac, 2001) 

(Figure 1.5).  

Both NMDA receptor-mediated LTP and LTD are proposed to be cellular 

mechanisms by which the brain can change in response to external stimuli, and LTP in 

particular plays a crucial role in various types of learning and memory (Riedel et al., 

2003). During learning and memory processes, activation of NMDA receptors has been 
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shown to be required for initiation of LTP in multiple brain regions, including the 

hippocampus, amygdala, and medial septum. Studies in experimental animals suggest 

that the glutamate receptor system and LTP are closely linked to the induction of new 

memory formation, and blockade of NMDA receptors before learning can impair 

memory formation (Izquierdo and Medina, 1993; Constantine-Paton, 1994). By using 

 

Figure 1.5. Model of LTP and LTD 

During the basal state, AMPA receptors cycle between the postsynaptic membrane and intracellular 

compartments in an equilibrium (depicted on top). Following induction of LTP, there is enhanced AMPA 

receptor exocytosis and insertion into the membrane of post-synaptic neuron, and this process is driven by 

calcium-induced CAMKII activity and fusion of recycling endosomes (depicted on bottom left). However, 

following induction of LTD, AMPA receptor endocytosis process is enhanced, which is also calcium-

dependent (depicted on bottom right) (Citri and Malenka, 2007).  
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NMDA receptor antagonists and blockers, such as MK-801, learning impairments 

following NMDA receptor inhibition have been reported in nonhuman primates, and 

prevention of the induction of LTP by NMDA receptor antagonists was shown to 

contribute to these learning impairments (Harder et al., 1998; Morris et al., 1986). fMRI 

studies in humans also reported that an NMDA receptor antagonist evoked a range of 

schizophrenia-like symptoms (Honey et al., 2005; Krystal et al., 1994). Administration of 

a pure NMDA receptor antagonist has been shown to disrupt memory formation in 

humans (Rowland et al., 2005). Not surprisingly, because NMDAR-associated brain 

functions can be disrupted by alcohol, it is well established that NMDAR is a major 

target of alcohol actions in the brain (Woodward et al., 1999; Krystal et al., 2003a; 

Peoples et al., 2003; Gass and Olive, 2008; Vengeliene et al., 2008). 

Although appropriate NMDA receptor activation is essential for neuronal survival 

and physiological functions, abnormal activation contributes to multiple pathological 

processes in the brain.  Overactivation of NMDA receptors has been demonstrated to be 

involved in cell death triggered by seizure and ischemic stroke. Under normal conditions, 

calcium entry through the NMDA receptor ion channel can mediate synaptic plasticity in 

the brain. However, excessive NMDA receptor activation could induce unusually high 

intracellular calcium, which triggers a series of cytoplasmic and nuclear processes that 

are involved in neuronal cell death. For instance, upon entry of excessive calcium into the 

cell, enzymes are activated to degrade either essential proteins or certain DNA, which is 

considered to be the mechanism of neuronal cell death in seizure and ischemic stroke 

(Dirnagl et al., 1999;). Moreover, enhanced oxidative stress, together with calcium 

overload, can induce cell death through apoptosis in neurodegenerative diseases. 
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Increased cytoplasmic calcium can enhance the mitochondrial electron transport function, 

increasing reactive oxygen species in these neurons and leading to oxidative stress in the 

brain. It has been demonstrated that dysfunction of the NMDA receptors, located both 

synaptically and extrasynaptically, are associated with certain neurodegenerative 

diseases, such as Alzheimer’s disease, Parkinson’s disease, as well as Huntington’s 

disease. Overactivation of NMDA receptors can lead to increased calcium influx, which 

cause excessive oxidative phosphorylation and increased production of reactive oxygen 

species. This eventually leads to oxidative stress-caused neuronal death, which plays an 

important role in the mechanism of neurodegenerative diseases (Michaelis, 1998; Greene 

and Greenamyre, 1996; Zhou et al., 2013). 

NMDA receptor and alcohol 

Since alcohol can directly inhibit NMDA receptor in the brain, it is important to 

understand how the NMDA receptor structure and function are modified in response to 

alcohol exposure at different levels (Woodward et al., 1999; Krystal et al., 2003a; 

Peoples et al., 2003; Krystal et al., 2003b). At the behavioral level, the NMDA receptor 

has been linked to many alcohol exposure-associated behaviors. Systemic administration 

of NMDA receptor inhibitors significantly inhibited rapid tolerance in the intoxicated 

paradigm in mice, which supports a potential role of the NMDA receptor in the 

attenuation of alcohol intoxication (Khanna et al., 1997). Furthermore, repeated 

administration of NMDA receptor antagonists decreased ethanol consumption in a 

concentration-dependent manner (Vengeliene et al., 2005). Like other types of substance 

addiction, withdrawal is also a hallmark for physical dependence to ethanol, and the 
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NMDA receptor plays an important role during this process. For instance, excessive 

NMDA receptor activity due to withdrawal from chronic ethanol has been proposed to be 

the main cause of neuronal cell death in ethanol withdrawal period (De Witte et al., 2003; 

Fadda and Rossetti, 1998).  

At the level of synaptic physiology, it is well established that calcium influx 

through NMDA receptors regulates synaptic plasticity, especially LTP, via calcium-

regulated signaling processes (Malenka and Nicoll, 1999; Bliss and Collingridge, 1993). 

A previous study reported that LTP in the dentate gyrus of the hippocampus was 

inhibited by intraperitoneal injection of non-intoxicating concentrations of ethanol 

(Givens and McMahon, 1995). In other brain regions, ethanol inhibition of LTP was also 

observed, including in dorsomedial striatum (Yin et al., 2007) and dorsolateral bed 

nucleus of the stria terminalis (Weitlauf et al., 2004).   

At the receptor level, Lovinger and colleagues initially reported that acutely 

applied ethanol could inhibit NMDA-activated ion currents in cultured mouse 

hippocampal neurons (Lovinger et al., 1989). Inhibitory actions of ethanol on NMDA 

receptor-mediated excitatory postsynaptic potentials (EPSPs) in slices from different 

brain regions were subsequently demonstrated, such as hippocampus, cortex, basolateral 

amygdala, nucleus accumbens as well as dorsal striatum (Lovinger et al., 1990; Calton et 

al., 1999; Nie et al., 1994; Yin et al., 2007; Wirkner et al., 2000). In cultured cortical 

neurons, single channel recording showed that ethanol can decrease the open channel 

probability and mean open time of native NMDA receptor (Wright et al., 1996). 

Moreover, when recombinant NMDA receptors were transfected into cell lines, such as 

human embryonic kidney (HEK) 293 cells, reduction in NMDA receptor-mediated 
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excitatory currents have also been reported (Peoples and Stewart, 2000). These changes 

in ion channel kinetics are believed to underlie behavioral changes found in alcohol 

addiction patients (Koob et al., 2003). Although the rapid reduction of channel activity in 

response to ethanol implies that there is a direct interaction between ethanol and NMDA 

receptor, the precise mechanism by which ethanol can inhibit NMDA receptor ion 

channel kinetics is still incompletely understood. And it seems one of the useful ways to 

study ethanol action on NMDA receptor precisely is to transfect different combinations 

of NMDA receptor subunits into nonneuronal mammalian cell culture model, such as 

HEK 293 cells, which do not contain any endogenous NMDA receptor subunits. 

In addition to acute inhibitory effect of ethanol on NMDA receptor, chronic 

treatment of ethanol has more complex and long-lasting effects on the expression and 

function of the NMDA receptors (Lovinger, 1997). Neuroadaptive changes in NMDA 

receptor functions during long-term alcohol treatment may play an important role in the 

development of alcohol tolerance and dependence (Fadda and Rossetti, 1998). Previous 

studies showed that chronic ethanol exposure in adult and fetal cortical neuron cells 

upregulated NMDA receptor subunit genes expression, which eventually contribute to 

upregulation of NMDA receptor subunit levels (Anji and Kumari, 2006). In order to 

compensate prolonged inhibitory effect caused by chronic ethanol exposure, NMDA 

receptor mediated functions were also upregulated. During prolonged ethanol exposure, 

both synaptic NMDA receptor clustering and synaptic NMDA currents were significant 

increased (Carpenter-Hyland et al., 2004). 
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Molecular sites of alcohol action on NMDA receptor 

Compared to other antagonists of the NMDA receptor, alcohol has different 

features when acting on the NMDA receptors. Alcohol acts as a noncompetitive 

antagonist at a site different from other NMDA receptor modulators (Peoples et al., 

1997). However, unlike other NMDA receptor modulators, alcohol does not have a 

known site of action, so it is of interest to determine the molecular sites of alcohol action 

on the NMDA receptor (Peoples and Stewart, 2000; Honse et al., 2004; Ren et al., 2012). 

This information can also be beneficial for the development of pharmacological therapies 

for alcohol addiction. A number of studies have demonstrated that alcohol and NMDA 

receptor antagonists can produce similar subjective effects in animals and humans (Grant 

et al., 1991; Krystal et al., 1998; Hodge et al., 1998).  

Early studies tested whether ethanol could act on the agonist or co-agonist site or 

other modulatory sites. However, the effect of ethanol on NMDA receptors in cultured 

mouse hippocampal neurons showed that ethanol decreased the Emax of the NMDA 

concentration-response curve without affecting the EC50 value. This indicates that the 

mechanism of ethanol inhibition is non-competitive with respect to agonists of NMDA 

receptor (Gothert and Fink, 1989; Gonzales and Woodward, 1990; Rabe and Tabakoff, 

1990; Peoples et al., 1997; Peoples and Stewart, 2000). Studies on the role of the co-

agonist (glycine) site in mediating the effect of ethanol are more controversial. Some 

studies reported a possible interaction of alcohol with the glycine co-agonist site based on 

apparent reversal by glycine of ethanol inhibition (Hoffman et al., 1989; Rabe and 

Tabakoff, 1990; Dildy-Mayfield and Leslie, 1991; Buller et al., 1995), while in other 

studies using full glycine concentration-response curves, the action of ethanol was shown 
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to be noncompetitive with respect to glycine (Gonzales and Woodward, 1990; Peoples 

and Weight, 1992; Woodward, 1994; Chu et al., 1995; Mirshahi and Woodward, 1995; 

Peoples et al., 1997).  It seems the most probable that the glycine-binding site may 

regulate ethanol sensitivity, however, it is not the site of alcohol action by itself.  

A number of studies also tried to identify the relationship between other 

regulatory sites in the NMDA receptor and the inhibitory effect of ethanol. For example, 

studies assessing whether the effect of ethanol on NMDA receptors in cultured cortical 

neurons was dependent upon the concentration of magnesium (Mg2+), demonstrated that 

ethanol inhibition of NMDA-activated currents was not affected by changes in Mg2+ 

concentration (Peoples et al., 1997). Furthermore, the absence of any effect of other 

regulatory agents on the inhibition by ethanol of the NMDA receptor eliminated the 

possibility that ethanol can interact with regulatory site of the NMDA receptor (Snell et 

al., 1994; Peoples et al., 1997).  

A number of studies also addressed whether ethanol could bind within the channel 

pore region. The inability to demonstrate the binding sites of ethanol within the channel 

pore of NMDA receptor was reported by both whole-cell and single-channel analysis 

results from cultured neurons (Wright et al., 1996; Popp et al., 1999). Taken together, 

these results can be interpreted to indicate that ethanol does not interact with a known site 

in the NMDA receptor, and that alcohol may affect NMDA receptor function via an 

unidentified site, effects on membrane lipids, or other proteins that interact with and 

modulate its activity, such as PKC. To test these possibilities, a previous study used C-

terminal truncation mutant NMDA receptor subunits to investigate a possible role for 

intracellular proteins that can modulate the activity of NMDA receptor. The observations 
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of this study showed that C-terminal truncation did not eliminate ethanol sensitivity of 

the NMDA receptor (Peoples and Stewart, 2000). This would argue against the 

possibility that alcohol inhibition of NMDA receptor is mediated primarily through the 

interaction of alcohol with either intracellular regulatory protein binding sites or the 

second messenger system, and showed in addition that the site of alcohol action of the 

NMDA receptor was not located in the C-terminal domain (Figure 1.6). 

Studies performed to locate the region of the NMDA receptor containing the site 

of alcohol action eliminated the agonist and coagonist sites (see above), the channel pore 

(Wright et al., 1996), and the C-terminal domains (Peoples and Stewart, 2000), making 

the M domains a likely candidate region for a site of alcohol action. The first report of an 

alcohol-sensitive amino acid in the NMDA receptor M domains was from the laboratory 

of Woodward and colleagues (Ronald et al., 2001). This study demonstrated that a 

phenylalanine residue located in the third membrane-associated domain of GluN1 

subunit, Phe639, can influence ethanol sensitivity, but the variable ethanol sensitivity 

among different mutants in a subsequent study (Smothers and Woodward, 2006) implied 

that this is not the only position for ethanol action. A study from our laboratory first 

identified a position of alcohol action in the fourth membrane-associated domain of the 

GluN2A subunit of NMDAR, Met823, which is exposed to extracellular face of 

membrane (Ren et al., 2003b). We also reported an important role for this residue in the 

regulation of ion channel gating, such as in the steady-state NMDA EC50, apparent 

desensitization, mean open time as well as peak current density (Ren et al., 2003a). 

Ethanol sensitivity among various mutants at Met823 was correlated with the steady-state 

to peak current ratio (apparent desensitization) based on these two studies. A linear  
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Figure 1.6. Molecular sites of alcohol action on NMDA receptor 

One heterodimer of NMDA receptor is shown here. Glutamate binds at the GluN2 LBD binding site, 

whereas glycine (or D-serine) binds at the GluN1 LBD binding site. Sites in the GluN2 ATD are known to 

bind allosteric modulators such as zinc (GluN2A and GluN2B ATDs) or ifenprodil-like compounds 

(GluN2B ATDs). Ion channel domain contains binding sites for pore blockers such as Mg2+, MK-801 or 

ketamine. Blue crosses indicate non ethanol-sensitive sites reported by precious studies. 

relation between apparent desensitization and the substituent amino acid hydropathy was 

found in these studies, as was a linear relation between ethanol sensitivity and 

hydrophilicity of the substituent at this position, which indicates that ethanol interact with 

this site in a manner that involves hydrophobic binding. Besides these observations, 

ethanol sensitivity was correlated with molecular volume of the substituent at this 
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position, which is consistent with results of ethanol action on other types of receptors, 

that is, that ethanol binds to a site in a manner that is dependent upon volume occupation 

of this site (Ren et al., 2003a&b; Mihic et al., 1997; Wick et al., 1998; Mascia et al., 

2000).  

Ethanol produces its effects at concentrations in the millimolar range, and 

interacts with multiple sites in other ethanol-sensitive neurotransmitter receptors (Franks 

and Lieb, 1994). It should thus be noted that GluN2A(Met823) could not completely 

account for the action of ethanol on the NMDA receptor. Studies from this laboratory 

successively identified a small number of ethanol-sensitive residues (Ala825 and Phe637) 

in both the M4 and M3 domains of the GluN2A subunit. After functional screening of the 

M4 domains of the GluN2A subunit, the former position was found to regulate ethanol 

IC50 as well as NMDA receptor functions (Honse et al., 2004). The latter position, 

Phe637, is the cognate position of GluN1(Phe639). Various mutations at this position 

showed altered glutamate EC50, maximal steady-state current (Iss) to peak current (Ip) 

ratios, and mean open time of glutamate-activated currents, and ethanol sensitivity was 

significantly correlated with both glutamate peak current and steady-state EC50. However, 

apparent desensitization was not correlated with any of these characteristics. Moreover, 

unlike GluN2A(Met823), ethanol sensitivity of the amino acid substituent at this position 

was not correlated with any of the physicochemical parameters (Ren et al., 2007). 

Recently, another ethanol-sensitive position in GluN2A subunit has been identified in our 

laboratory, Phe636, and a series of substitutions of amino acids at this position exhibited 

significantly altered glutamate potency and apparent desensitization (Ren et al., 2013). 

The common elements among those three identified positions in the GluN2A subunit 
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appear to be that they are hydrophobic, do not line the ion channel lumen, have limited 

accessibility from the cytoplasmic side of the membrane, and are located in regions that 

influence ion channel gating. 

GluN2B subunit and alcohol action in the brain 

Overall sensitivity of an individual NMDA receptor to ethanol depends on 

specific combinations of GluN1 and GluN2 subunits. Both GluN2A and GluN2B 

subunit-containing NMDA receptors are more sensitive to the inhibitory actions of 

ethanol compared to GluN2C and GluN2D-containing NMDA receptor (Chu et al., 1995; 

Mirshahi and Woodward, 1995; Masood et al., 1994; Blevins et al., 1997). However, 

comparison of the degree of ethanol sensitivity between GluN2A and GluN2B subunit-

containing NMDA receptor still remains inconclusive. Although previous studies about 

alcohol actions on the NMDA receptor have been primarily focused on the GluN2A-

containing NMDA receptor, accumulating evidence has shown the importance of the 

GluN2B subunit in the action of alcohol.  

In 1997, one group observed that GluN2B phosphorylation level was increased 

following ethanol administration (Miyakawa et al., 1997). Moreover, chronic ethanol 

treatment upregulated the GluN2B subunit in mouse hippocampus (Kash et al., 2009), 

and ethanol inhibition of NMDAR-mediated synaptic transmission was dependent on the 

GluN2B subunit expression in this brain region (Kash et al., 2008). Another study 

reported that GluN2B subunit knockout eliminated the enhanced long-term potentiation 

(LTP) by chronic application of ethanol in the bed nucleus of the stria terminalis (BNST) 
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in mice (Wills et al., 2011). Behavioral studies have also shown that a GluN2B-selective 

antagonist reduced rat operant self-administration of ethanol (Wang et al., 2007).  

However, there is still little information on the molecular mechanism of alcohol 

modulation of GluN2B-containing NMDAR. It is also unclear whether ethanol-sensitive 

positions in the GluN2B subunit are important for ion channel gating. Based on the fact 

that the third and fourth transmembrane domains of GluN2A and GluN2B are highly 

homologous, studies in this thesis initially tested positions in the GluN2B subunit that 

correspond to ethanol-sensitive sites in the GluN2A subunit. However, not all of these 

positions showed significant ethanol sensitivity changes upon amino acids substitutions. 

In order to look for ethanol sensitive positions, the search was expanded to include other 

adjacent positions. Whether ethanol-sensitive positions are also important for ion 

channel gating was determined by using glutamate concentration-response experiments. 

Interaction between ethanol-sensitive positions   

Because ethanol can interact with multiple positions in NMDA receptor as 

mentioned previously, it is possible that those positions would interact functionally to 

regulate ethanol sensitivity. Our laboratory has initially obtained evidence by using dual 

mutations at Phe637 and Met823 in the GluN2A subunit, which can both influence 

receptor function and alcohol action. Results from this study demonstrated that 

modulation of ethanol by dual mutagenesis was not additive, indicating that these two 

positions are functionally linked (Ren et al., 2008). This result was consistent with the 

model proposed by our collaborator Dr. Donard Dwyer, in which these two positions are 

located in close proximity. These positions, however, do not appear to form a unitary site 
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of alcohol action since they are separated by an estimated distance of 13–14 Å, which 

means they are not close enough to form a common binding site for one ethanol 

molecule. The NMDA receptor model in this study, however, was based on the protein 

aquaporin, and was developed prior to the structural determination of any of the 

ionotropic glutamate receptors. 

In the model of the NMDA receptor derived from the x-ray crystallographic 

structure of the related GluA2 glutamate receptor, the outward face of the M3 domains of 

one subunit orient toward, and seems to form interactions with, the M4 domain of the 

other type of subunit (Sobolevsky et al., 2009). This implies the presence of sites of 

ethanol action in NMDA receptor, because the AMPA receptor and NMDA receptor have 

highly homologous structures. Ronald et al. initially reported that mutations at Phe639 in 

the M3 domain of the GluN1 subunit could alter ethanol sensitivity of NMDAR (Ronald 

et al., 2001). Our laboratory has also identified two ethanol-sensitive positions in the M3 

domain, Phe636 and Phe637, and two in the M4 domains of GluN2A subunits, Met823 

and Ala825 (Ren et al., 2013; Ren et al., 2007; Ren et al., 2003a; Ren et al., 2003b; 

Honse et al., 2004). Based on those previously identified ethanol-sensitive positions as 

well as the structural model, there are four putative pairs of positions in GluN1/GluN2A: 

Gly638/Met823, Phe639/Leu824, Met818/Phe636, and Leu819/Phe639, that can interact 

functionally to regulate ethanol sensitivity. By using both two-way analysis and mutant 

cycle analysis of log-transformed ethanol IC50 values from mutagenesis at both positions, 

our laboratory reported significant interactions with respect to ethanol sensitivity. Unlike 

the interaction between Phe637 and Met823 in the same GluN2A subunit, these sites can 
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alter ethanol action in a manner that suggests that the side chains of these pairs of 

residues physically interact with one another (Ren et al., 2012).  

Considering the high homology of the M3 and M4 sequences in the GluN2A and 

GluN2B subunits, it is likely that similar sites of ethanol action exist between the GluN1 

and GluN2B subunits. In this thesis, studies directed toward the discovery of ethanol-

sensitive sites at the M3-M4 intersubunit interfaces of the GluN2B-containing NMDA 

receptor were conducted based on the study of ethanol-sensitive positions in the GluN2B 

subunit. 
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II.  MATERIALS AND METHODS 

Materials 

All drugs and chemicals were obtained from Sigma-Aldrich (St. Louis, MO, 

USA), except for BAPTA, tetracesium salt (Life Technologies, Carlsbad, CA). 

Chemicals used to make recording solutions were the highest purity available. Ethanol 

(95%; prepared from grain) was obtained from Pharmco (Brookfield, CA). 

NMDA receptor subunit plasmids and site-directed mutagenesis 

Plasmids containing the sequences encoding each NMDA receptor subunit 

(GluN1, GluN2) were used to heterologously express receptors in model cells. 

Site-directed mutagenesis in plasmids containing GluN1 or GluN2 subunit cDNA 

was performed using a PCR-based system, the QuikChange II kit (Stratagene, La Jolla, 

CA). Mutagenic oligonucleotide primers were designed following criteria: 1) Both 

forward and reverse mutagenic primers contained the desired mutation and annealed to 

the same sequence on opposite strands of the plasmid, 2) primer length was between 25 

and 45 bases, 3) primer melting temperature (Tm) was ≥ 78 oC, 4) Primers had a 

minimum GC content of ≥ 40%, 5) primers terminated in one or more C or G bases. In 

each mutagenesis reaction, two complimentary oligonucleotides were added into a tube 

containing reaction buffer, appropriate dsDNA template, ddH2O and dNTP. pfuUltra HF 

DNA polymerase was added into the mixture to amplify the entire plasmid. Following 

PCR amplification, we added Dpn I restriction enzyme to PCR product, to eliminate the 

original template by digesting methylated DNA.  

After Dpn I digestion, 1 µl of the treated DNA from each reaction was added to 

separate aliquots of the XL1-Blue supercompetent cells. Following a 45 s heat pulse and 
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1 hour preincubation at 37 oC, an appropriate volume of cells were plated onto LB-

ampicillin agar plate. The ampicillin was used for selecting cells containing our vector, 

which contains an ampicillin resistance gene. After > 16 hours incubation at 37oC, 

colonies were picked and used to inoculate 5 ml LB cultures containing ampicillin (50 

µg/ml). Plasmid DNA was then extracted by using the QIAprep miniprep kit (Qiagen, 

Valencia, CA). This step yielded around 100 µg pure plasmid, and all mutants were 

verified by double-strand DNA sequencing. 

Cell culture and transfection 

A transformed human embryonic kidney cell line, tsA-201, was used for 

expression of wild-type and mutant NMDA receptors. Cells were cultured in flasks 

containing Dulbecco’s Modified Eagle Medium (DMEM) (Life Technologies, Carlsbad, 

CA) with 10% heat-inactivated sterile fetal bovine serum (FBS) in a humidified 5% CO2 

incubator at 37 oC. For use in experiments, cells were seeded on 35mm dishes coated with 

poly-D-lysine and 0.001% fibronectin. 

We used two ways to transfect heterologous NMDA receptors into tsA-201 cells, 

calcium phosphate (Invitrogen, Carlsbad, CA) and lipofectamine 3000 (Invitrogen). The 

calcium phosphate transfection method introduces DNA into tsA-201 cells by forming a 

calcium phosphate-DNA precipitate, facilitating the binding of the DNA to the cell 

surface. DNA eventually enters the cell by endocytosis. Lipofectamine consists of 

cationic lipids, which interact with the phosphate backbone of the nucleic acid. This 

interaction is via the cationic head groups of the lipids and does not result in the 

formation of micelles or liposomes surrounding the nucleic acid. The cationic lipids also 
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mediate the interaction of the nucleic acid with the negatively charged cell membrane. 

The resulting DNA complexes enter the cell through endocytosis.  

tsA-201 cells at 30 – 50% confluence were transfected with cDNA for the GluN1 

and GluN2 wild-type or mutant subunits and green fluorescent protein (GFP) in a 2:2:1 

ratio, respectively, using either transfection method above. GFP served as a marker for 

cells that were transfected. NMDA receptor antagonists, 200 µM dl-2-amino-5-

phosphonovaleric acid (APV) and 100 µM ketamine, were added to the culture medium 

immediately after transfection to protect cells from receptor-mediated excitotoxicity. 

Cells were recorded from 18-48 hours post-transfection depending on the transfection 

efficiency. Antagonists were removed before recording by extensive washing. 

Electrophysiological recording 

Patch-clamp recordings were performed using an Axopatch 1D or 200B 

(Molecular Devices, Sunnyvale, CA, USA) amplifier. Whole-cell configuration (Figure. 

2.1) was achieved by pressing a fire-polished glass pipette against the surface of a cell 

and applying light suction, followed by rupture of the membrane using negative pressure. 

Gigaohm seals were formed using patch-pipettes with tip resistances of 2-4 MΩ, and 

series resistances of 4-6 MΩ were compensated by 80%. To increase the speed of 

solution exchange around the cell, cells were lifted off the surface of the dish after 

obtaining a gigaohm seal. Cells and patches were voltage-clamped at -50 mV. Data were 

acquired at 2-10 kHz (whole-cell recording) or 50 kHz (single-channel recording) on a 

computer using a DigiData interface and pClamp software (Axon Instruments). During 

the recording, cells were superfused at 1 – 2 ml/min in an extracellular medium 

containing (in mM): NaCl, 150; KCl, 5; CaCl2, 0.2; HEPES, 10; glucose, 10; pH was  
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Figure 2.1. Whole-cell and outside-out patch-clamp configurations 

In whole-cell recording mode (left), a gigaohm seal is established followed by application of strong suction 

to rupture the membrane patch under the pipette tip. Pulling the patch-pipette away from the cell after 

obtaining whole-cell mode can result in the formation of an outside-out patch (right). 

adjusted to 7.4 using NaOH and osmolality to 340 mOsmol/kg using sucrose. Low Ca2+ 

was used to minimize NMDA receptor inactivation, which is dependent on extracellular 

calcium levels (Zilberter et al., 1991), and Mg2+ was excluded from the solution to 

eliminate voltage-dependent NMDA receptor block. The intracellular (patch pipette) 

recording solution contained (in mM): CsCl, 140; Mg4ATP, 2; BAPTA, 10; pH 7.2 and 

310 mOsmol/kg. Solutions containing agonists and drugs were prepared fresh daily. 

EDTA was added into recording solution to eliminate the fast component of apparent 

desensitization due to high-affinity Zn2+ inhibition (Ren et al., 2003a; Erreger and 
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Traynelis, 2005). In order to accomplish rapid-solution exchange, solutions were applied 

to cells using a stepper motor-driven solution exchange system (Warner Instruments, 

Hamden, CT, USA) and three-barrel square glass tubing of internal diameter 600 µm 

(Figure 2.2). The three barrels were connected to reservoirs filled with different solutions 

 

Figure 2.2. Whole-cell recording 

After establishment of a whole-cell or outside-out recording mode, the three-barrel array is placed close to 

the cell or membrane patch. The barrels can be rapidly shifted laterally using a stepper motor under 

computer control to expose the patch to recording solutions flowing out of different barrels, while the 

electrode remains stationary. Ionic current is measured by a high-gain amplifier, digitized, and recorded on 

a computer. 
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and the movement of the barrel array was controlled by a computer. The 10-90% rise 

time for whole-cell solution exchange using this system has been previously shown to be 

~1.5 ms (Ren et al., 2003a). 

Concentration-response experiments 

For ethanol inhibition curves, a serious of ethanol concentrations ranging from 2.5 

- 500 mM were prepared in external solution containing glutamate and glycine. In most 

cases, solutions contained 50 µM glycine, which is a saturating concentration for NMDA 

receptors, and 10 µM glutamate. In cases, in which mutant receptors were less sensitive 

to glutamate compared to wild-type receptors, glutamate concentrations were increased. 

The three-barrel array was configured so that the first barrel contained regular external 

solution, the second contained agonist solution, and the third contained agonists and 

various concentrations of ethanol. The third barrel was connected to a seven-tube 

manifold made of fused silica tubing to allow application of multiple alcohol 

concentrations. In an experiment, the barrels are positioned so that the external solution 

flowing from the first barrel bathes the cell. The array is shifted laterally one position to 

expose the patch to the cell to the solution containing glycine and glutamate, shifted to 

the third position to apply ethanol solution to the cell. Concentrations of ethanol were 

applied in random order to minimize any time-dependent effects (e.g., rundown). The 

entire series of ethanol concentrations were tested in a single cell. In most of cases, 4-7 

cells were obtained for each mutant combination tested, and these cells were from 

different recording days. Therefore, each concentration-response curve relies on data 

from several cells collected on at least two days. Ethanol (100 mM) inhibition current is 

shown in Figure 2.3 (left).  
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Figure 2.3. Traces for typical ethanol inhibition and glutamate activation 

The trace on the left shows typical inhibition of GluN2B-containing NMDA receptor-mediated current by 

100 mM ethanol. Current was activated by application of 10 µM glutamate as well as 50 µM glycine. The 

trace on the right is a typical current activated by maximal concentration of glutamate (300 µM), showing 

desensitization. Apparent desensitization was quantified using the maximal steady-state to peak current 

ratio. 

In glutamate concentration-response experiments, current responses evoked by a 

series of glutamate concentrations were compared to the current response evoked by a 

saturating concentration of glutamate (300 µM). A supramaximal concentration of 

glycine (50 µM) was used to saturate the glycine binding site. Only two out of three 

barrels were used in this experiment: the first was filled with external solution and the 

second with different concentrations of glutamate solution. In order to increase the speed 

of the solution exchange in these experiments, cells were lifted off the surface of the dish 

after obtaining a gigaohm seal. The 10% - 90% rise time for solution exchange in lifted 

cells for this system is ~ 1.5 ms. Concentrations of glutamate were applied in random 

order, and the maximal response to glutamate in each cell was determined by applying a 
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saturating concentration of glutamate at the beginning and end of each experiment. The 

entire range of glutamate concentrations was applied to the same cell to allow a full 

concentration-response curve to be generated for each cell. Concentration-response 

curves for each mutant were generated by averaging the curve fits (see below) from 5-8 

cells. An example of glutamate-activated maximal current in a typical cell expressing 

NMDA receptors is shown in Figure 2.3 (right). This current trace shows activation, 

desensitization, as well as deactivation of current. 

Data analysis of ethanol inhibition and macroscopic kinetics (EC50, desensitization and 

deactivation) 

In concentration-response experiments, IC50 or EC50 and n (slope factor) were 

calculated using the equation: y = Emax / 1 + (IC50 or EC50 / x)n, where y is the measured 

current amplitude, x is concentration, and Emax is the maximal current amplitude. This 

identified the concentration that gives a half-maximal inhibition / response, termed IC50 / 

EC50. We measured two types of EC50 values from glutamate concentration-response 

experiments, peak current EC50 as well as steady-state current EC50. Statistical differences 

among concentration-response curve were determined by comparing log-transformed 

IC50 or EC50 values from fits to data obtained from individual cells using one-way 

analysis of variance (ANOVA) followed by Dunnett test to compare value from each 

mutant to the wild-type value. Linear relations of mean values of log IC50 or EC50 were 

made using linear regression analysis by using the program StatView (SAS Institute, Inc., 

Cary, NC). In some cases, during ligand application a distinct desensitization phase of the 

current response was observed. Values for maximal steady-state to peak current ratio 

(Iss:Ip) were obtained from application of a supramaximal agonist concentration. Linear 
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relations of mean values of maximal steady-state to peak current ratio (Iss:Ip) for the 

various mutants were also made using linear regression analysis. For deactivation rate 

analysis, time constants (τ) of deactivation were determined from fits of the current decay 

following the removal of glutamate (in the continued presence of glycine) to an 

exponential function using Clampfit (Axon Instruments). In most cells, deactivation was 

best fitted using a bi-exponential function; in these cases, the weighted time constant is 

reported. For cells in which deactivation was adequately fitted by a single exponential 

function, this value is reported. All values are reported as the mean ± SE.  

Calculation of physicochemical properties of amino acids 

Molecular (Van der Waals) volumes of amino acids were calculated using Spartan 

Pro (Wavefunction, Inc., Irvine, CA) following structural optimization using the AM1 

semi-empirical parameters. Values used for amino acid hydropathy, hydrophilicity, and 

polarity were reported previously (Zimmerman et al., 1968; Hopp et al., 1981). 

Interaction analysis: Mutant cycle analysis and two-way ANOVA 

Significant interactions with respect to ethanol sensitivity, glutamate potency, and 

apparent affinity among mutants at multiple positions were determined by two-way 

ANOVA of log-transformed IC50 values and by mutant cycle analysis. Mutant cycle 

analysis was performed essentially as described by Venkatachalan and Czajkowski, 

(2008). Tryptophan substitution mutations were introduced singly and in combination at 

two positions in GluN1 and GluN2B subunits proposed to interact, and ethanol IC50 and 

glutamate EC50 were determined in each mutant. The apparent interaction free energy 

ΔΔGINT for mutations at two positions is the free energy difference between the parallel 

energies in the cycle (i.e., form the wild-type and either single mutant to the other single 
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mutant and the dual mutant). Apparent interaction free energies among mutated positions 

were calculated using natural logarithms (ln) of either ethanol IC50 or glutamate EC50 

values obtained from wild-type and mutant subunit combinations, using the equation 

ΔΔGINT = RT [ln(WT) + ln(mut1,mut2) – ln(mut1) – ln(mut2)]. Statistically significant 

differences between mean values of ΔΔGINT ± S.E.M and zero energy were interpreted as 

indicating an interaction between two positions, since non-interacting positions should 

have an apparent interaction free energy of zero. The statistically significant differences 

were determined by using one sample t tests, with degrees of freedom df = NWT + NMUT1 

+ NMUT2 + NMUT1,MUT2 – 4, with NX equal to the number of cells used for each 

combination of wild-type and mutant subunits. S.E.M. was determined from propagated 

errors.  

Significant interaction with respect to maximal steady-state to peak current ratios 

in one mutant pair, GluN1(G638W) and GluN2B(M824W), was also determined by two-

way ANOVA of maximal desensitization values and by mutant cycle analysis as 

described above for ethanol IC50 and glutamate EC50 values. All values are reported as 

means ± S.E.M.  

It is important to note that significant coupling energy from these experiments 

may not just result from a direct interaction between side-chains of two residues, but 

could result from the unitary structural element composed of both residues, or from the 

secondary interactions between another residue and each of these two residues. 

Designing the disulfide mutants 

Based on the crystal structure of AMPA receptor and NMDA receptor 

(Sobolevsky et al., 2009; Lee et al., 2014), a series of amino acids in the M3 and M4 
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domain of GluN1 and GluN2B subunit were replaced with cysteine by using site-directed 

mutagenesis. Previous studies revealed that there are two redox-activated cysteine 

residues in the ligand-binding domain of the GluN1 subunit (Cys744, Cys798), which 

could form a flexible disulfide bond upon the application of redox reagents. Formation of 

a disulfide bond between them could affect channel kinetics. For example, after oxidizing 

agent application, glutamate-gated current was decreased; however, a reducing agent 

exerted the opposite effect on the current (Sullivan et al., 1994; Choi et al., 2001; Lipton 

et al., 2002). In order to eliminate kinetic changes caused by the redox site, I introduced 

an alanine substitution at GluN1(Cys744), and combined this mutation with cysteine 

substitutions at other residues in GluN1 subunit.  

Cross-linking experiments 

In order to study possible interactions between the M3 and M4 domains in 

adjacent subunits, we tested whether disulfide bonds could form between certain 

positions in these subunits. Redox reagents were used to either form or break disulfide 

bonds (Figure 2.4). Dithiothreitol (DTT; Sigma-Aldrich Co., St. Louis, MO, USA) was 

used as a reducing agent and freshly prepared daily at a concentration of 10 mM. 

Hydrogen peroxide and copper phenanthroline were used as oxidizing agents. Hydrogen 

peroxide, 0.1%, was prepared daily from a 30% stock solution (H2O2; Sigma-Aldrich 

Co., St. Louis, MO, USA). Copper phenanthroline was prepared at a 1 : 3 molar ratio of 

CuCl2 in water and 1-10-phenanthroline dissolved in ethanol; the final concentration of 

ethanol was 0.0001% v/v; values reported in the experiment results indicate the CuCl2 

concentration. Solutions containing redox reagents were prepared in normal external 

solution. Cross-linking experiments for studying ion channel gating changes were  
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Figure 2.4. Crosslinking of introduced cysteines 

Cysteines were introduced into positions suspected to interact. Two cysteines in close proximity could form 

a disulfide bond upon the application of oxidizing agents that could be broke by using reducing agents 

(left). The diagram of two adjacent M domains (right) illustrates one possibility, that is that formation of a 

disulfide bond between two M domains could “lock” the channel in a closed state. 

performed as follows: solution containing maximal concentrations of agonists (300 µM 

glutamate and 50 µM glycine) was applied for 10 ms, followed by application of either 

oxidizing or reducing agent (1 - 2 min), and a final agonist application (10 ms). The 

procedures were repeated for 3-5 times to test effects of oxidizing/cross-linking and 

reducing compounds. Cross-linking experiments for studying sensitivity to ethanol were 

performed using 1 to 2 min application of redox reagents followed by application of 100 

mM and 250 mM ethanol.  

Previous results from this laboratory have suggested that DTT cannot gain access 

to the transmembrane domain region from outside of the cell. We therefore also applied 

DTT intracellularly by adding it to the solution in the recording pipette. In order to avoid 
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effects due to DTT reacting with the silver chloride – coated recording electrode, the tip 

of the patch-pipette was filled with a small volume of DTT-containing internal solution, 

and the remainder of the pipette, including the section containing the silver chloride wire, 

was backfilled with normal internal solution. DTT was prepared at a concentration of 10 

mM in internal solution. 

Molecular modeling 

Molecular modeling was performed as described in previous studies from our 

laboratory and other laboratories (Dwyer, 2001; Dwyer, 2003; Ren et al., 2008). A model 

of the transmembrane region of the targeted subunit of NMDA receptor was built by 

using InsightII software from Biosym (now Accelrys; San Diego, CA). Available 

proteins from Protein Data Bank, which have similar arrangement with respect to our 

interested domain of NMDA receptor, served as the template for modeling. Since studies 

in our laboratory refined our models for GluN1/GluN2A NMDA receptor based on a 

recent study (Sobolevsky et al., 2009), the coordinates of the GluN2A subunit were used 

as the template to model of GluN2B subunits. Amino acid sequences were optimally 

aligned and models were built by assigning coordinates to structurally conserved regions. 

The initial model was then subjected to energy minimization with the AMBER force field 

(a total of 300 iterations of the steepest descent and conjugate gradient algorithms). The 

minimized structure served as a starting point for following refinement of the model. 

Neuronal cell culture and transfection 

Poly-D-lysine pretreated 35mm sterile dishes were coated overnight with 10 

µg/ml laminin (Sigma), and rinsed three times with water before addition of 2 ml 

neuronal media. Neuronal culture medium was prepared by Dr. Murray Blackmore’s 
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laboratory (Blackmore, et al., 2011). This medium contained Neurobasal medium 

(Invitrogen), 100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen), 5 µg/ml 

insulin (Sigma), 100 µM sodium pyruvate (Invitrogen), 4 µg/ml triiodothyronine 

(Sigma), 200 µM L-glutamine (Invitrogen), 50 µg/ml N-acetyl-L-cysteine (Sigma), B27 

supplement (Invitrogen), 100 µg/ml transferrin (Sigma), 100 µg/ml bovine-serum 

albumin (Sigma), 63 ng/ml progesterone (Sigma), 16 µg/ml putrescine (Sigma) and 

400ng/ml sodium selenite (Sigma).  

Cortical neurons were also prepared by Dr. Blackmore’s laboratory. The method 

used maximizes viability by first using sequential digestion with papain and trypsin, 

followed by trituration of cell clumps. During this process, the upper layer of the cell 

suspension is removed periodically to minimize mechanical stress on dissociated cells. 

Early postnatal rats (P2 or P3) were used to obtain neurons with minimal expression of 

native NMDA receptors. Rats were decapitated and the brains stored in ice-cold 

Hibernate E (minus CaCl2) (Brainbits #HE-Ca 500). The meninges were removed, then 

the frontal cortex was isolated, minced with a razor blade, and incubated in 10 ml 

dissociation media (Hibernate E containing 20 U/ml papain and 150 µg/ml DNAse) at 37 

oC in a shaking incubator for 30 min. If cell clumps were still visible, they were 

resuspended in Hibernate E and the suspension shaken at 37oC for an additional 30 min. 

This process was repeated until no cell clumps were visible. Typically, a total of 12-14 

ml of cell suspension would yield 8-10 million cells for transfection. 

An electroporation method was used for cortical neuron transfection (Buchser et 

al., 2006). Cortical neurons were pelleted and resuspended in Internal Neuronal Buffer 

(INB), which contained (in mM): KCl, 135; CaCl2, 0.2; MgCl2, 2; HEPES, 10; EGTA, 5; 
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pH 7.3). Then 25 µl of cell suspension was placed in each well of a 96-well 

electroporation plate (Harvard Apparatus/BTX #45-0450) and mixed with 25 µl of INB 

containing 1 µg GFP reporter plasmid and 2 µg GluN1 subunit plasmid as well as 2 µg 

GluN2 subunit plasmid. The plate was placed in a plate handler (HT-200) attached to an 

ECM 830 square wave pulse generator (Harvard Apparatus/BTX), and each well received 

a single pulse of 350-475 V for 300 µs. Next, 100 µl of Hibernate E with 2% B27 

supplement was added to each well to promote cell recovery, and cells were transferred 

to 35 mm dishes. Cortical neurons were used for recording 18-24 h post-electroporation. 

Cortical neuron recording 

Whole-cell patch-clamp recording was performed as previously described in 

electrophysiological recording. In order to eliminate currents caused by other receptor 

types, we added an antagonist of the glycine and acetylcholine receptor, strychnine, at a 

concentration of 1 µM into the external solution. When recorded neurons expressed 

GluN1/GluN2A NMDA receptor, either wild-type or mutant, a specific inhibitor of 

receptors composed of the GluN1 and GluN2B subunits, ifenprodil, was added into the 

recording solution in addition to strychnine. To distinguish introduced mutant subunits 

from native subunits, the GluN2A(M823W) mutant, which exhibits a high degree of 

desensitization, was transfected into neurons. Because the greatest desensitization was 

produced by application of maximal concentrations of glutamate and glycine, in this 

experiment, I also used maximal concentrations of both agonists (300 μM glutamate and 

50 μM glycine). We then performed ethanol concentration-response experiments on 

neurons expressing various mutant NMDA receptors. In these neurons, inhibition by 100 

mM and 250 mM ethanol were tested. 
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III.  FUNCTIONAL SCREENING OF POSITIONS IN THE M3 AND M4 

DOMAINS OF THE GLUN2B SUBUNIT AND COMPARISON OF THE ROLES 

OF THESE POSITIONS AMONG DIFFERENT GLUN2 SUBUNITS 

Introduction 

Alcohol binding sites on different receptors and ion channels have been 

characterized in a number of previous studies, however, the location and characteristics 

of these sites differ. For example, sites of alcohol action have been located in the 

cytoplasmic loop of a Drosophila potassium channel (Covarrubias et al., 1995), in the 

ion-channel lumen of muscle nicotinic acetylcholine receptors (Forman et al., 1995), and 

in the transmembrane domains of the GABAA and glycine receptors (Mihic et al., 1997; 

Ueno et al., 1999; Wick et al., 1998). Based on studies indicating that a phenylalanine 

residue in the M3 domain of the GluN1 subunit could regulate ethanol sensitivity of 

NMDA receptor (Ronald et al., 2001; Smothers and Woodward, 2006), previous studies 

in our laboratory have identified four ethanol-sensitive residues in the M3 and M4 

domains of the GluN2A subunit of the NMDA receptor over the past several years by 

constructing various mutants at these positions. (Ren et al., 2003a; Ren et al., 2003b; 

Honse et al., 2004; Ren et al., 2007; Ren et al., 2013). These studies were based on the 

assumption that ethanol sensitive sites on the NMDA receptor are located in membrane-

associated domains, which participate in regulating ion channel kinetics, and are 

accessible from the extracellular environment. Since truncation of the C-terminal of the 

GluN1 subunit of NMDA receptor did not alter ethanol sensitivity (Peoples and Stewart, 

2000). 



48 
 

One position at the M4 domain of the GluN2A subunit, Met823, was first 

characterized by our laboratory as exerting important regulatory influence on the gating 

of the NMDA receptor ion channel. Moreover, ethanol sensitivity among various mutants 

at this position was correlated with apparent desensitization, such that the greater the 

desensitization is for a mutant, the lower its ethanol sensitivity is. This study also 

demonstrated that ethanol sensitivity of mutants was related to molecular volume and 

hydrophilicity of the substituents at this position (Ren et al., 2003a; Ren et al., 2003b). 

Besides this position, our laboratory used tryptophan-scanning mutagenesis in a region of 

the M4 domain which is not apparently accessible from the extracellular aqueous 

environment, and results showed that tryptophan substitution at Ala825 significantly 

altered both mean open time of the channel and concentration-response curve for ethanol 

inhibition (Honse et al., 2004). Thus, this residue, together with Met823 may form or 

contribute to an ethanol-binding pocket. Based on the importance of Phe639 on the 

ethanol action on the NMDA receptor, which is located in the M3 domain of the GluN1 

subunit, characterized by Woodward’s group (Ronald et al., 2001; Smothers and 

Woodward, 2006), as well as the highly homology of the M domains between the GluN1 

and GluN2 subunits, our laboratory pointed out that the cognate position in the GluN2A 

subunit, Phe637, served an important regulatory role on both ion channel gating and 

ethanol sensitivity (Ren et al., 2007). Another position in the M3 domain of the GluN2A 

subunit, Phe636, was identified recently by our laboratory. Tryptophan mutagenesis at 

this position showed the lowest ethanol sensitivity among identified mutants in the 

GluN2A subunit. We also found that substitutions at this position could significantly 
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regulate apparent agonist affinity, apparent desensitization, and ion channel mean open 

time (Ren et al., 2013). 

Although these four positions do not exhibit a common motif, the common 

elements appear to be that they are all hydrophobic, do not line the ion channel lumen, 

have limited access from cytoplasmic side of membrane and are located in the regions 

that influence ion channel gating (figure 3.1).  The GluN2A subunit has been studied in  

 

Figure 3.1. Common elements of ethanol-sensitive positions in GluN2A subunit 

Previous studies in our laboratory have identified four ethanol-sensitive positions in GluN2A subunit. Two 

of them are in M3 domain, Phe636 and Phe637, and the other two are in M4 domain, Met823 and Leu825, 

which are shown in orange dots. 
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depth in the past, however, recent studies have pointed to a major role of the GluN2B 

subunit in normal brain functions as well as alcohol action in the brain. One study 

demonstrated the importance of the GluN2B subunit on NMDA receptor endocytosis and 

localization; furthermore, several pharmaceutical companies have developed GluN2B-

selective antagonists as therapeutic drugs for several glutamate-mediated diseases 

(Gogas, 2006). Chronic pain could be enhanced by GluN2B subunit overexpression in 

case of any tissue or nerve injury (Zhuo, 2009). One recent study has characterized the 

GluN2B subunit as the key regulator for ethanol actions, and extrasynaptic GluN2B-

containing NMDA receptors exert a unique role in facilitating long-term potentiation 

(LTP) in the bed nucleus of the stria terminalis (BNST) (Wills et al., 2012). Another 

study also suggested that co-exposure of long-term ethanol and corticosterone could 

sensitize the hippocampal CA1 region pyramidal neurons in a GluN2B subunit-dependent 

manner (Butler et al., 2013).  

Because of the high sequence homology of the M3 and M4 domains between the 

GluN2A and GluN2B subunit, this thesis first tested residues in the GluN2B subunit that 

correspond to ethanol-sensitive positions in the GluN2A subunit. By using both alanine 

and tryptophan mutagenesis scanning at these positions, ethanol concentration-response 

experiments were initially performed to test ethanol sensitivity changes following site-

directed mutagenesis compared with wild-type receptors. Because tryptophan is the 

largest and most hydrophobic amino acid, substitution of a tryptophan at these positions 

can significantly increase the molecular volume and hydrophobicity, whereas alanine is 

one of the smallest hydrophobic amino acids that (in contrast to glycine) is unlikely to 

destabilize α-helical regions. Thus, alanine substitution at an ethanol-sensitive position 
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may alter ethanol sensitivity, since ethanol sensitivity is shown to be related to the 

molecular volume of amino acid at the ethanol-sensitive position (Ren et al., 2003b; 

Smothers and Woodward, 2006; Ren et al., 2007; Salous et al., 2009). The manner in 

which mutations at positions in the GluN2B subunit alter ethanol sensitivity differs from 

that of the cognate positions in the GluN2A subunit. Glutamate potency and channel 

kinetics at all four positions after tryptophan and alanine substitution were also examined. 

Compared with related studies of the GluN2A subunit, only tryptophan mutagenesis at 

GluN2B(Phe637) showed altered EC50 values for glutamate-activated peak current and 

steady-state current, as well as increased deactivation tau. Both tryptophan and alanine 

substitutions at this position also showed decreased apparent desensitization compared 

with the wild-type receptor. Since both alanine and tryptophan mutagenesis at Phe637 

exhibited altered ethanol sensitivity, this position deserves further analysis and is the 

subject of studies in the following chapter. 

Results 

Localization of candidate residues in the GluN2B subunit 

The candidate positions in the M3 and M4 domains of the GluN2B subunit 

investigated in this thesis are shown in figure 3.2. This figure shows the highly 

homologous M3 and M4 domains among the GluN1, GluN2A and GluN2B subunits. 

Besides four residues in the GluN2B subunit, that correspond to residues in the GluN2A 

subunit, one adjacent residue in the M4 domain, Leu825, was also tested by replacing it 

with tryptophan. 
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Figure 3.2. Partial sequences of the M3 and M4 domains in the GluN1, GluN2A and GluN2B subunit.  

Ethanol sensitive positions in GluN2A and their cognate positions in GluN2B are indicated in bold. 

GluN2B(Phe637), which is the ethanol-sensitive position, is underlined. 

Ethanol sensitivity of alanine and tryptophan substitution mutations at GluN2B M3 and 

M4 residues corresponding to GluN2A ethanol-sensitive positions 

Since alanine is the smallest hydrophobic amino acid and tryptophan is the largest 

and most hydrophobic amino acid, it is possible that alanine and tryptophan substitution 

at these positions can produce significant change in ethanol sensitivity if these positions 

are ethanol-sensitive positions. Either alanine or tryptophan was initially introduced into 

positions in the GluN2B subunit, Phe637, Phe638, Met824, Leu825, and Gly826, 

corresponding to ethanol-sensitive positions in the GluN2A subunit by using site-directed 

mutagenesis. Mutants or wild-type NMDA receptors were then transfected into tsA201 

cells one-day prior to the recording day. Tryptophan mutagenesis was also introduced to 

GluN2B(Leu825), an adjacent residue.  
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Traces shown in figure 3.3 were recorded from tsA201 cells expressing either wild-type, 

alanine, or tryptophan substitution mutant receptors, which were activated by 10 µM 

glutamate and 50 µM glycine and inhibited by 100 mM ethanol. Mutants constructed 

here all yielded functional receptors. There is no noticeable difference in the degree of 

inhibition by 100 mM ethanol between alanine mutants and the wild-type NMDA 

receptors based on traces shown here. However, GluN2B(M824A) showed increased 

desensitization compared with wild-type current. GluN2B(F637A) showed almost no 

desensitization compared with the wild-type receptor; a detailed characterization about 

this position is given in the following chapter. It is obvious that receptors containing 

GluN2B(F637W) and GluN2B(G826W) mutant subunit showed less ethanol inhibition 

compared with wild-type receptors, and the former mutation also showed delayed 

deactivation. Moreover, the GluN2B(F637W) mutant also showed an obvious decrease in 

desensitization, which is consistent with results observed for alanine substitution at this 

position. Although the GluN2B(M824W) mutants did not show a visible change in 

ethanol sensitivity based on the currents, degree of desensitization was significantly 

increased compared with wild-type receptors, which reflects the change on ion channel 

kinetics. In order to test if ion channel functions are also changed in these mutants, 

glutamate concentration-response experiments were performed and will be characterized 

later. 
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Figure 3.3. 100 mM ethanol inhibition traces of alanine and tryptophan substitutions in the GluN2B 

subunit 

Traces show currents activated by 10 µM glutamate and 50 µM glycine and their inhibition by 100 mM 

ethanol in tsA-201 cells expressing either wild-type receptor or various alanine mutagenesis (upper) and 

tryptophan mutagenesis (lower) at positions in the GluN2B subunit. One-letter amino acid codes are used.  

Ethanol concentration-response experiments were performed on cells expressing 

wild-type and mutant NMDA receptors. To test for ethanol sensitivity changes, a series 

of ethanol concentrations were used, from 2.5 to 500 mM. I recorded the same mutant 

type on different days in order to avoid any effects caused by difference in experimental 

conditions, such as preparation of recording solutions or cells. Ethanol IC50 values of 

each mutant type were determined from recording results of 4-7 cells. In order to further 

compare ethanol sensitivity between wild-type and mutant receptor, concentration-

response curves (figure 3.4) as well as bar graphs of ethanol IC50 values (figure 3.5) were 

generated from ethanol concentration-response results. Mutants shown here were all  
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Figure 3.4. Ethanol concentration-response curves of GluN2B mutants 

Concentration-response curves show ethanol inhibition of glutamate –activated currents in the presence of 

50 µM glycine in cells expressing either wild-type GluN1 and GluN2B subunit or wild-type GluN1 and 

GluN2B alanine (left) and tryptophan (right) mutations at Phe637, Phe638, Met824 and Gly826. One-letter 

amino acid codes are used. Error bars not visible were smaller than the symbols. Curves shown are best 

fitted to the equation given under “Materials and Methods”. Wild-type receptor curve is shown as a black 

line. 
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Figure 3.5. Average ethanol IC50 of alanine and tryptophan mutants 

Bar graphs show average IC50 values for ethanol inhibition of glutamate-activated currents in the presence 

of 50 µM glycine in cells expressing wild-type GluN2B subunit or GluN2B mutants companied with wild-

type GluN1 subunit. IC50 values that are significantly different from wild-type receptor are indicated by 

asterisks (*P < 0.05; **P < 0.01; one-way ANOVA). Results are means ± S.E of 5-7 cells. Pink bars 

indicate alanine substituents, blue bars are tryptophan substituents, and the black bar shows the ethanol IC50 

value of wild-type GluN2B-containing NMDA receptor. 

inhibited by ethanol in a concentration-dependent manner. However, the manner in which 

mutations at these positions alter ethanol sensitivity differs from that of the cognate 

positions in GluN2A subunit. For instance, among alanine mutants, only 

GluN2B(F637A) and GluN2B(F638A) showed significantly altered ethanol sensitivity 
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but the other two mutants were unchanged. Whereas among tryptophan mutants, only 

GluN2B(F637W) and GluN2B(G826W) showed significantly decreased ethanol IC50 

values compared with wild-type receptors (ANOVA; p<0.01). In summary, both alanine 

and tryptophan mutagenesis at GluN2B(Phe637) significantly altered ethanol sensitivity. 

Substitutions at this position also showed visible altered desensitization and deactivation. 

Next, glutamate concentration-response experiments were performed to test ion channel 

function following mutagenesis at positions shown in this part. 

Glutamate potency of alanine and tryptophan substitution mutations at GluN2B M3 and 

M4 domain residues corresponding to GluN2A ethanol-sensitive positions 

Glutamate concentration-response experiments were performed as described in 

Materials and Methods. Both glutamate-activated peak current (Ip) and steady-state 

current (Iss) were analyzed among wild-type receptors and receptors with either alanine or 

tryptophan mutation. Results were collected from 4-8 cells at different recording dates in 

order to avoid side-effects. All constructs recorded here were activated by glutamate in a 

concentration-dependent manner. Concentration-response curves of glutamate EC50 

shown here are from either peak current values of alanine mutants as well as tryptophan 

mutants (Figure 3.6) or steady-state current values of alanine mutants as well as 

tryptophan mutants (Figure 3.8) activated by various concentrations of glutamate (from 

0.01 µM to 300 µM) and maximal concentration of glycine (50 µM). Bar graphs of 

glutamate EC50 values are from either average peak current EC50 values (figure 3.7) or 

average steady-state current EC50 values (figure 3.9). As analyzed by ANOVA, only 

tryptophan mutagenesis at F637 showed both altered glutamate peak current EC50 as well 

as steady-state current EC50 (ANOVA; p<0.01 or p<0.05), which indicates significantly 
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altered ion channel functions. In addition to altered glutamate EC50 on GluN2B(F637W), 

both alanine and tryptophan mutations at this position showed significant increases in 

ethanol IC50 as described previously. In order to study the role of this position on ethanol 

action and ion channel function in detail, I made a panel of mutants at this position and 

tested the ethanol sensitivity of each by whole cell patch-clamp recording, which is 

shown in the next chapter. 

 

Figure 3.6. Glutamate concentration-response curves of peak currents of GluN2B mutants 

Concentration-response curves for glutamate-activated peak currents in the presence of 50 µM glycine in 

cells expressing either wild-type, Ala-substitution mutation receptors (left) or Trp-substitution mutation 

receptors (right). Data points are the means ± S.E of 4-8 cells. Black line shows the fit for the wild-type 

peak current EC50 value. All curves shown here are best fitted to the equation characterized in “Materials 

and Methods”. 
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Figure 3.7. Glutamate peak current EC50 of GluN2B mutants 

Average peak current EC50 values recorded on lifted cells expressing either wild-type or mutant receptors. 

Significantly different from wild-type peak current and steady-state current EC50 values were analyzed by 

one-way ANOVA. EC50 values that are significantly different from wild-type receptor are indicated by 

asterisks (**P < 0.01). Data are the means ± S.E of 4-8 cells. Pink bars indicate alanine substituents and 

blue bars are tryptophan substituents, whereas the black bar shows the ethanol IC50 value of wild-type 

GluN2B-containing NMDA receptor.  
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Figure 3.8. Glutamate concentration-response curves of steady-state currents of GluN2B mutants 

Concentration-response curves for glutamate-activated steady-state currents in the presence of 50 µM 

glycine in cells expressing either wild-type, Ala-substitution mutation receptors (left) or Trp-substitution 

mutation receptors (right). Data points are the means ± S.E of 4-8 cells, error bars not visible were smaller 

than the size of symbols. Black line shows the fit for the wild-type steady-state current EC50 value. All 

curves shown here are best fitted to the equation characterized in “Materials and Methods”.  
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Figure 3.9. Glutamate steady-state current EC50 of GluN2B mutants 

Average steady-state current EC50 values recorded on lifted cells expressing either wild-type or mutant 

receptors. Asterisks indicate significant difference from EC50 value of wild-type receptor (**P < 0.01; one-

way ANOVA). Data are the means ± S.E of 4-8 cells. Pink bars indicate alanine substituents and blue bars 

are tryptophan substituents, whereas the black bar shows the ethanol IC50 value of wild-type GluN2B-

containing NMDA receptor. 

Apparent desensitization in mutation at residue in the GluN2B subunit corresponding to 

GluN2A (Met823) that regulates ion channel gating 

A previous study on GluN2A identified that tryptophan mutagenesis at Met823 in 

the M4 domain significantly altered both the rate and extent of desensitization, when 

compared with wild-type receptor (Ren et al., 2003a). In the current study, although 
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tryptophan mutagenesis at Met824, the cognate position in the GluN2B subunit, did not 

affect glutamate EC50 and ethanol IC50 values, it still showed increased desensitization 

compared to wild-type GluN1/GluN2B NMDA receptors (Figure 3.3). Apparent 

desensitization was determined by steady-state current to peak current ratio for current 

activated by 300 μM glutamate treatment. The importance of the M4 domain in 

regulating desensitization of NMDA receptor has been previously reported (Ren et al., 

2003a; Schorge and Colquhoun, 2003), which indicate that residue Met824 in the 

GluN2B subunit is critical for regulating ion channel gating, even though it is likely that 

this position is not involved in regulation of ethanol action on the NMDA receptor. 

Comparing the role of cognate positions in the GluN2A and GluN2B subunit in 

regulating ethanol sensitivity of the NMDA receptor  

Functional screening of ethanol-sensitive position in the GluN2B subunit is based 

on the high homology of membrane-associated domains among different GluN2 subunits. 

In Figure 3.10 and Table 3.1, it is clearly shown that although alanine and tryptophan 

substitutions at GluN2B(Phe638) and GluN2B(Met824) do not show any ethanol 

sensitivity changes compared to wild-type GluN2B-containing NMDA receptors, their 

cognate positions in the GluN2A subunit showed significantly altered ethanol IC50 values 

upon mutagenesis of original amino acid.  
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Figure 3.10. Comparison of ethanol sensitivity of either alanine or tryptophan substitution at cognate 

positions between GluN2A and GluN2B subunit 

X axis indicates ethanol IC50 values of various mutants. The black dotted line shows ethanol IC50 value of 

wild-type GluN2A-containing NMDA receptor, whereas the red one shows ethanol IC50 value of wild-type 

GluN2B-containing NMDA receptor. Squares indicate ethanol IC50 values of tryptophan mutants, and 

circles indicate ethanol IC50 values of alanine mutants (black, GluN2A subunit; red, GluN2B subunit). The 

longer of distance from dotted line, the more significantly the ethanol sensitivity change is. Ethanol IC50 

values for alanine and tryptophan substitutions at various positions in GluN2A subunit are from previous 

studies in our laboratory (Ren et al., 2003b; Honse et al., 2004; Ren et al., 2007; Ren et al., 2013). 
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Table 3.1. Comparison of characteristics of GluN2B mutants with wild-type receptors 

Discussion 

Based on the highly homologous sequences of the third transmembrane domain 

(M3) and the fourth transmembrane domain (M4) between the GluN2A and the GluN2B 

subunit, I initially scanned for ethanol-sensitive position by replacing original amino 

acids at positions in the M3 and M4 domain of the GluN2B subunit, that correspond to 

the ethanol-sensitive positions in the GluN2A subunit, with either tryptophan or alanine. 

Since tryptophan is the largest and most hydrophobic amino acid, substitution of a 

tryptophan at these positions can significantly increase the molecular volume and 

hydrophobicity. Alanine is the smallest hydrophobic amino acid that (in contrast to 

glycine) is unlikely to destabilize α-helical regions. Alanine substitution at an ethanol-

sensitive position may alter ethanol sensitivity, as it has been shown that ethanol 
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sensitivity is related to the molecular volume of certain ethanol-sensitive position (Ren et 

al., 2003b; Smothers and Woodward, 2006; Ren et al., 2007; Salous et al., 2009). 

Previous studies in this laboratory identified several ethanol-sensitive positions in both 

the M3 and M4 domains of the GluN2A subunit: Phe636, Phe637, Met823, and Ala825 

(Ren et al., 2003b; Honse et al., 2004; Ren et al., 2007; Ren et al., 2013). In this study, a 

number of tryptophan and alanine substitutions were initially introduced into cognate 

positions in the GluN2B subunit M3 and M4 subunits, which are Phe637, Phe638, 

Met824 and Gly826. However, the manner in which mutants altered ethanol sensitivity 

differs from that of the cognate positions in the GluN2A subunit. For example, 

tryptophan substitution at GluN2A(Phe637) increases ethanol IC50 by over two-fold 

relative to the wild-type value (Ren et al., 2007), whereas in the GluN2B subunit, 

tryptophan substitution at the cognate position, Phe638, had no effect on ethanol 

sensitivity. At another position in the M4 domain of the GluN2A subunit, Met823, the 

tryptophan mutant showed significantly increased ethanol IC50, and further experiments 

at this position revealed that ethanol sensitivity was dependent on molecular volume and 

hydrophilicity of the substituent at this position, which is consistent with the volume 

occupation model (Ren et al., 2003b). However, in the present study, neither tryptophan 

or alanine substitution at the cognate position, GluN2B(Met824), altered the ethanol IC50 

when compared with the wild-type value. Of the four positions in the GluN2B subunit we 

tested in this study, only Phe637 showed alterations in ethanol sensitivity following both 

tryptophan and alanine mutagenesis. We also found no changes in glutamate EC50, 

maximal Iss:Ip, or deactivation time constant in alanine or tryptophan substitution mutants 

at Phe638 or Gly826. Interestingly, alanine or tryptophan substitution at Met824 altered 
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glutamate steady-state EC50 and maximal Iss:Ip values, as was observed for the cognate 

position Met823 in GluN2A (Ren et al., 2003a), but did not alter ethanol sensitivity. The 

tryptophan mutant at Phe637 showed increases in both glutamate EC50 and time constant 

of deactivation, and both tryptophan and alanine mutants at this position showed 

decreased macroscopic desensitization.  

In earlier studies, this laboratory reported that two positions in the GluN2A M3 

and M4 domains could interactively regulate ethanol sensitivity (Ren et al., 2008), and 

Smothers et al. identified a pair of positions in the GluN1 subunit that can interact with 

each other with respect to ethanol inhibition. A recent study in this laboratory further 

demonstrated that positions in the M3 domain of one subunit type could interact with 

positions in the M4 domain of the other subunit type to regulate ethanol sensitivity and 

ion channel function (Ren et al., 2012). These observations revealed that ethanol 

inhibition of the NMDA receptor is not determined by a single position in the membrane-

associated domains, but rather, multiple ethanol-sensitive positions appear to contribute 

to two pairs of sites of ethanol action. Therefore, the differences in ethanol action 

between GluN2A and GluN2B subunits identified in this study, likely arise because 

positions in the GluN2B subunit interact with positions in the GluN1 differently from the 

cognate positions in the GluN2A subunit. Furthermore, although transmembrane domains 

among different GluN2 isoforms are highly conserved, there are clear distinctions in 

other regions, such as the C-terminal domain and extracellular domain (Fukaya et al., 

2003; Martel et al., 2012). It is possible that distant parts of the protein can affect ethanol 

action on the positions in transmembrane domains. Based on studies in this laboratory, 

different ethanol sensitivity patterns have been identified following tryptophan 
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mutagenesis at cognate positions among different GluN2 subunit types (Figure 3.11) 

(GluN2C data are from Jasmine Wu). Within these mutants, GluN2A and GluN2C  

 

Figure 3.11. Mutagenesis at cognate positions showed different types of ethanol sensitivity change 

Bar graphs show ethanol IC50 values of either wild-type GluN1/GluN2A, GluN1/GluN2B and 

GluN1/GluN2C NMDA receptor or mutant receptors with tryptophan substitution at cognate positions 

among different GluN2 subunits, that are GluN2A(Met823), GluN2B(Met824) and GluN2C(Met821). IC50 

values that are significantly different from wild-type receptor are indicated by asterisks (** P < 0.01; *** P 

< 0.001; two-way ANOVA). 

mutants show significantly altered ethanol sensitivity, however, in an opposite manner. 

As previously mentioned, the GluN2B mutant did not change ethanol sensitivity. This 

study further indicates that positions in other regions of the protein may contribute to the 
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indirect regulation of ethanol sensitivity and ion channel functions. Future studies can 

address the possible mechanism of these differences. For example, a chimeric NMDA 

receptor can be constructed by overlap extension PCR cloning, by which a C-terminal 

domain of GluN2A subunit will be fused with the rest of GluN2B subunit containing a 

tryptophan mutagenesis at Met824. Ethanol sensitivity will be tested on these chimeric 

receptors to study whether the C-terminal domain plays an important role in regulating 

ethanol action on the membrane-associated domains. 

Besides the possibility of differences in distant regions of GluN2A and GluN2B 

subunits in regulation of ethanol sensitivity, it has been previously demonstrated that with 

highly similar sequences (70% identity), they have distinct temporal and spatial 

expression patterns and channel properties in the brain. For example, GluN2B is 

expressed early in the prenatal brain, and is soon overtaken by GluN2A during 

development (Sheng et al., 1994). The reason for this compositional switch is still under 

extensive investigation, though it is clear that there are differences between these “twins” 

receptor isoform (Matta et al., 2011; Gambrill and Barria, 2011). Moreover, GluN2A and 

GluN2B subunits also show spatial expression differences in the brain, in which the 

GluN2A subunits are mainly located in synapses, and the GluN2B subunits are in both 

synapses and the extrasynaptic region (Li et al., 1998; Townsend et al., 2003; Harris and 

Pettit, 2007). Previous studies have also reported that the GluN2A and GluN2B subunit-

containing NMDAR play different roles in LTP and LTD. For example, de novo LTP can 

be induced by activation of GluN2A subunit-containing NMDA receptors, whereas LTD 

required activation of GluN2B subunit-containing NMDA receptors (Massey et al., 2004; 

Morishita et al., 2007; Bartlett et al., 2007; Tang et al., 2009). Previous studies have in 
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some cases demonstrated distinct ethanol actions on different NMDA receptor subunits. 

One study found that ethanol inhibition of NMDA receptor synaptic events are dependent 

on GluN2B-containing NMDAR, but not GluN2A-containing NMDAR (Kash et al., 

2008). In addition, chronic ethanol treatment upregulated GluN2B subunit expression 

level in the hippocampus, but left GluN2A subunit levels unchanged (Kash et al., 2009). 

It is in turn possible that these differences in expression pattern and function can lead to 

distinctly different ion channel functions properties between the GluN2A and GluN2B 

subunits.  
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IV.  PHE637 IN THE NMDA RECEPTOR GLUN2B SUBUNIT M3 DOMAIN 

REGULATES ETHANOL SENSITIVITY 

Introduction 

As described previously, mutation of one position, Phe637, at the M3 domain of 

the GluN2B subunit altered both ethanol IC50 and glutamate EC50, suggesting the 

importance of this position on regulation of NMDA receptor function and ethanol 

sensitivity. In order to test the role of this position on ethanol sensitivity in detail, it is 

important to identify the ethanol sensitivity alteration pattern based on physicochemical 

parameters of various amino acid substituents at this position. So I initially made a panel 

of amino acid substitutions at this position and tested ethanol sensitivities on them by 

conducting ethanol concentration-response experiments.  

Studies about the action of alcohol on other neurotransmitter receptors have 

previously reported that alcohols and anesthetics can produce their actions by occupying 

a certain molecular volume in a binding cavity (Mihic et al., 1997; Wick et al., 1998; 

Mascia et al., 2000), which means that the larger the molecular volume of the cavity, the 

lower the ethanol sensitivity. In our previous studies, these observations were not 

consistent throughout four ethanol-sensitive positions. Only one of these three residues, 

Met823, showed an inverse relationship between ethanol potency and molecular volume 

of the mutant amino acid when the value of tryptophan mutant was excluded from the 

analysis (Ren et al., 2003b). Moreover, a number of studies have demonstrated that 

alcohols act on NMDA receptor in a manner that involves hydrophobic interactions 

between alcohol molecule and its action site (Lovinger et al., 1989; Fink and Gothert, 
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1990; Gonzales et al., 1991; Peoples and Weight, 1995; Peoples and Ren, 2002; Ren et 

al., 2003b). In order to determine whether observed change in ethanol sensitivity is 

dependent on physicochemical parameters of the substituent at GluN2B(Phe637), I 

plotted ethanol IC50 values of mutants with molecular volume, hydrophilicity and polarity 

of substituents at this position to test if there is any correlation between ethanol 

sensitivity and these parameters.  

Results 

Presumed location Phe637 in the M3 domain of GluN2B subunit 

Previously identified ethanol-sensitive positions in our laboratory exhibit a 

common motif, that they are all hydrophobic; they do not line the ion channel lumen; 

they have limited access from cytoplasmic side of membrane; and they are located in 

regions that influence ion channel gating. Results from the previous chapter show that 

mutation of one position, GluN2B(Phe637), significantly altered ethanol sensitivity and 

ion channel function of the NMDA receptor when mutated to tryptophan. Figure 4.1 

shows the presumed location of Phe637 in the M3 domain of the GluN2B subunit, which 

shares similar elements with ethanol sensitive positions in the GluN2A subunit. 

 



72 
 

 

Figure 4.1. Presumed location of GluN2B(Phe637) 

Topological model of the GluN2B subunit showing the membrane-associated domains (M1-M4), ligand-

binding domains (S1-S2), and the presumed location of Phe637 is noted by a yellow dot. 

Mutations at GluN2B(Phe637) could alter ethanol sensitivity 

In order to study the role of this position in ethanol action in detail, ten mutants 

were made by using site-directed mutagenesis (F637A, F637C, F637G, F637I,  

F637L, F637M, F637S, F637V, F637W, F637Y). This panel of amino acids includes 

both polar and nonpolar amino acids. Mutants constructed all yielded functional NMDA 

receptors when co-expressed with the wild-type GluN1 subunit and resulted in 

measurable currents. Figure 4.2 shows the inhibition by 100 mM ethanol in the NMDA 

receptors with various substitutions at position Phe637 in the M3 domain of the GluN2B 

subunit. Values of peak current activated by 10μM glutamate and 50μM glycine varied 
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over a large range among individual mutant subunit, which indicates the variable 

transfection efficiency or single channel conductance. These currents also show that all 

the mutant subunits constructed here were inhibited by ethanol. 

 

Figure 4.2. Ethanol inhibition traces of cells expressing various GluN2B(Phe637) mutants 

Traces show currents activated by 10 µM glutamate and 50 µM glycine and their inhibition by 100 mM 

ethanol in tsA-201 cells expressing either wild-type receptor or GluN1 subunit combined with various 

GluN2B(Phe637) mutants. One-letter amino acid codes are used. 

Ethanol concentration-response experiments were performed on tsA-201 cells expressing 

either wild-type or mutant GluN2B-containing NMDA receptor. A series of ethanol 

concentrations from 2.5 mM to 500 mM were used in these experiments, and results were 

collected from at least 5 cells on different recording dates. As shown in Figure 4.3, all 

functional mutants constructed here were inhibited by ethanol in a concentration-
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dependent manner. Although concentration-response curves for ethanol inhibition were 

essentially parallel to each other, as the slope factors of these curves did not differ  

 

Figure 4.3. Ethanol concentration-response of various GluN2B(Phe637) mutants 

Concentration-response curves for ethanol inhibition of glutamate-activated currents in the presence of 50 

µM glycine in cells expressing various substitution mutations at GluN2B(F637). Data are the means ± S.E 

of 5-7 cells, error bars not visible were smaller than the size of symbols. The black line shows the fit for the 

wild-type receptor. All curves are best fitted to the equation given under “Materials and Methods”.  

significantly, bar graphs of average ethanol IC50 values indicate the statistical difference 

in ethanol sensitivity among various mutants compared to wild- type receptor (Figure 

4.4). Values of ethanol IC50 in the substitution mutants ranged from 144 mM to 318 mM, 

and tryptophan substitution at this position produced the greatest increase in ethanol IC50 
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value. In turn, six out of ten mutants showed significantly decreased ethanol sensitivity 

compared to the wild-type receptor (one-way ANOVA; p<0.05 or p<0.01), however, 

none of these mutants exhibited increased ethanol sensitivity compared to the wild-type 

receptor. Interestingly, even isoleucine and leucine are isomeric amino acids, only 

isoleucine substitution significantly changed ethanol sensitivity (IC50 value: 307 ± 9.4 

mM; one-way ANOVA; p<0.01).  

 

 

Figure 4.4. Ethanol IC50 of various GluN2B(Phe637) mutants 

The average IC50 values for ethanol inhibition of glutamate-activated current in wild-type or 

GluN2B(Phe637) mutant receptors were shown by Bar Graphs. Asterisks indicate significant difference 

from IC50 value of wild-type receptor (*P < 0.05; **P < 0.01; ANOVA and Dunnett’s test). Results are the 

means ± S.E of 5-7 cells. IC50 value of wild-type receptor is shown by black bar. 
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Relationship between ethanol sensitivity and physical-chemical properties of amino acid 

at GluN2B(Phe637) 

To determine whether physical-chemical properties of amino acid substitutions 

contribute to the variation of ethanol IC50 values among these mutants, I tested if the IC50 

value of each substitution could be linearly related to amino acid polarity, hydrophilicity, 

or molecular volume respectively. Because if the observed changes in ethanol sensitivity 

among GluN2B(Phe637) mutants were due to a physical interaction of the ethanol 

molecule with this position in some manner, linear relationship between ethanol 

sensitivity and one of these physical-chemical properties should be found from these 

analysis. In order to evaluate the relative contribution of the physicochemical parameters 

of the amino acid residue at this position to ethanol action, I performed linear regression 

analysis between ethanol IC50 and molecular volume (Figure 4.5), hydrophilicity (Figure 

4.6) as well as polarity (Figure 4.7). However, no significant linear relations were spotted 

among these measurements (P > 0.05). 
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Figure 4.5. Relation of amino acid molecular volume of the substituent at GluN2B(Phe637) to Log-

transformed IC50 

Log-transformed IC50 for ethanol plotted versus molecular volume. The line shown is the least-squares fits 

to the data. There is no significant linear relationship between ethanol IC50 and molecular volume 

(R2=0.096; P>0.05). 
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Figure 4.6. Relation of amino acid hydrophilicity of the substituent at GluN2B(Phe637) to Log-

transformed IC50 

Log-transformed IC50 for ethanol plotted versus hydrophilicity. The line shown is the least-squares fits to 

the data. There is no significant linear relationship between ethanol IC50 and hydrophilicity (R2=0.124; 

P>0.05). 
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Figure 4.7. Relation of amino acid polarity of the substituent at GluN2B(Phe637) to Log-transformed 

IC50  

Log-transformed IC50 for ethanol plotted versus polarity. The line shown is the least-squares fits to the data. 

There is no significant linear relationship between ethanol IC50 and polarity (R2=0.009; P>0.05). 

Ethanol IC50 values of GluN2B(Phe637) mutants are correlated with that of 

GluN2A(Phe636) mutants 

Since I noticed different characteristics of cognate positions between the GluN2A 

and GluN2B subunit (Figure 3.10), and also found ethanol sensitivity alterations among 

various substitutions at GluN2B(Phe637), which is the cognate position of ethanol-

sensitive position in GluN2A subunit, Phe636, I asked next if these two positions are 

correlated with each other with respect to ethanol sensitivity change upon the same amino 

acid substitution. To test this hypothesis, I plotted the ethanol IC50 values of various 
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GluN2B(Phe637) mutants against values of corresponding substitutions at 

GluN2A(Phe636). The ethanol sensitivity among various mutants were highly correlated 

with each other, which indicates the same functional role of each substituent at different 

GluN2 subunits on NMDA receptor ethanol sensitivity (R2 = 0.98, P < 0.0001; Figure 

4.8). 

 

Figure 4.8. Ethanol IC50 values of GluN2B(Phe637) mutants are correlated with that of same amino 

acid substitutions at GluN2A(Phe636) 

Log ethanol IC50 values of GluN2B(Phe637) are plotted versus log ethanol IC50 values of GluN2A(Phe636) 

in a series of mutants, they are significantly correlated (R2 = 0.98, P < 0.0001). The line shown here is the 

least squares fits to the data. Ethanol IC50 values of various GluN2A(Phe636) mutants are from previous 

study in our laboratory (Ren et al., 2013). 
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Discussion 

These studies demonstrated that GluN2B(Phe637), the cognate position of the 

ethanol-sensitive position in the GluN2A subunit, could regulate ethanol sensitivity. I 

further studied the role of this position on ethanol sensitivity by constructing a panel of 

amino acid mutations. Substitutions at GluN2B(Phe637) could significantly alter ethanol 

sensitivity. Although substantial variations of ethanol sensitivity were observed among 

different amino acid substitutions, ethanol sensitivity was not correlated with any 

physicochemical parameter of amino acid substituent at this position.  

Some investigators have demonstrated that alcohols and anesthetics can bind to 

residues in GABAA and glycine receptors and regulate channel functions by occupying a 

critical volume (Mihic et al., 1997; Wick et al., 1998; Yamakura et al., 1999; Kash et al., 

2004). Moreover, for a previously-identified ethanol-sensitive position in M3 domain, 

Phe639 in GluN1, ethanol sensitivity was correlated with molecular volume of the side-

chain at this position (Smothers and Woodward, 2006), and this position is the cognate to 

GluN2B(Phe637). Previous studies in this laboratory demonstrated that ethanol 

sensitivity was dependent on molecular volume of the substituent at Met823 in the M4 

domain of GluN2A subunit (Ren et al., 2003b), and was inversely dependent upon 

molecular volume of the substituent at GluN2A(Phe637) (Ren et al., 2007). In contrast, I 

was unable to identify this molecular volume occupation model at Phe637 in the M3 

domain of the GluN2B. The possible reason for this may be that, the side chain at 637 

interacts with adjacent side chains to form critical volume for ethanol action, rather than 

that the molecular volume of an amino acid at a certain position is important to ethanol 

action. This assumption also can explain the high correlation of ethanol sensitivity among 
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various substitutions between GluN2B(Phe637) and GluN2A(Phe636). In this case, the 

side chain at GluN2B(Phe637) does not directly project into the interior of ethanol-

sensitive site, but rather forms part of the outer boundary of this site.  

The observation of a relation between ethanol sensitivity and hydrophilicity of the 

substitution at GluN2A(Met823) suggests that ethanol could interact with certain residues 

in a manner that involves hydrophobic binding (Ren et al., 2003b). However, the results 

of the present study also did not show any relation between ethanol sensitivity and the 

hydrophilicity of the substituent at GluN2B(Phe637). The lack of a clear role for 

molecular volume and hydrophilicity in the present study was particularly apparent when 

comparing the leucine and isoleucine mutants: there was a striking difference in ethanol 

sensitivity between two mutants, even though they have identical physicochemical 

characteristics. Thus, GluN2B(F637) can regulate receptor ethanol sensitivity in a 

complex manner relaying on the interaction between side chain at this position and other 

positions or environment. Studies in following chapters will define some of these 

interactions. 
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V.  PHE637 IN THE NMDA RECEPTOR GLUN2B SUBUNIT M3 DOMAIN 

REGULATES ION CHANNEL KINETICS 

Introduction 

It has been demonstrated that ethanol inhibits NMDA receptors by changing ion 

channel gating, especially decreasing mean open time (Lima-Landman and Albuquerque, 

1989; Peoples et al., 1997), leading to the assumption that the ethanol action site also 

plays an important role for ion channel functions. Previous studies in our laboratory 

found that mutations at ethanol-sensitive positions in the GluN2A subunit could also 

influence ion channel kinetic behaviors, such as glutamate EC50, apparent desensitization, 

deactivation, and single-channel mean open time (Ren et al., 2003a; Ren et al., 2003b; 

Honse et al., 2004; Ren et al., 2007; Ren et al., 2013). So it is possible that changes in 

ethanol sensitivity among various mutants at these positions are secondary to changes in 

ion channel gating kinetics. GluN2B(Phe637) is within the M3 domain, which has 

conserved role in NMDA receptor ion channel gating, and is at a considerable distance 

from the ligand binding domain (Low et al., 2003; Yuan et al., 2005; Sobolevsky et al., 

2007; Sobolevsky et al., 2009). Furthermore, the importance of this position for ethanol 

action on the NMDA receptor was demonstrated in previous chapter, it’s valuable to 

study the ion channel functions among various mutants. As a first step to answer this 

question, I used whole-cell patch clamp recording and glutamate concentration-response 

experiments to study the apparent potency (glutamate peak current EC50 value), apparent 

affinity (glutamate steady-state current EC50 value) as well as apparent desensitization 
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(maximal steady-state current to peak current ratio) of series of mutations at 

GluN2B(Phe637).  

Mutations of residues in the γ-aminobutyric acid type A (GABAA) and glycine 

receptors showed that physicochemical parameters, such as molecular volume, of the 

substituent could influence ion channel gating behavior (Wick et al., 1998; Koltchine et 

al., 1999; Yamakura et al., 1999; Jenkins et al., 2001). Previous studies in our laboratory 

have also demonstrated the relationship between physicochemical parameters of 

substituent amino acid and either glutamate EC50 or desensitization of mutant receptor 

(Ren et al., 2003a). In order to study the relationship between physicochemical 

parameters of the substituent amino acid and ion channel functions, I also plotted the 

value of each physicochemical parameter against each ion channel function.    

Results 

Mutations at GluN2B(Phe637) alter glutamate peak current EC50 and glutamate steady-

state EC50 

In Chapter III, I first compared EC50 values for glutamate-activated peak and 

steady-state currents between wild-type and mutant NMDA receptor by co-transfecting 

GluN1 and GluN2B (either wild-type or alanine and tryptophan mutant) into tsA-201 

cells and performing glutamate concentration-response experiments in lifted cells. I 

found that tryptophan substitution at GluN2B(Phe637) significantly decreased glutamate 

EC50 values on both peak (EC50 value: 1.1 ± 0.17 µM; ANOVA and Dunnett’s test; p < 

0.01) (Figure 3.7) and steady-state (EC50 value: 1.05 ± 0.16 µM; ANOVA and Dunnett’s 

test; p < 0.01) (Figure 3.9) glutamate-activated currents. Besides that, this mutant also 
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showed significantly decreased apparent desensitization (Iss:Ip) (WT: 0.76 ± 0.02; 

F637W: 0.96 ± 0.01; two-way ANOVA; p < 0.01) as well as an increased time constant 

of deactivation (τ) following removal of agonist (WT: 920.20 ± 3.30 ms; F637W: 

2167.78 ± 2.84 ms; ANOVA; p < 0.0001) (Figure 5.1).  

 

Figure 5.1. Desensitization and deactivation of GluN2B (F637W) mutant 

Normalized traces show the desensitization (left) and deactivation (right) of currents activated by 300 µM 

glutamate in the presence of 50 µM glycine in lifted tsA-201 cells expressing GluN1/GluN2B or 

GluN1/GluN2B(F637W) subunit. 

Based on initial results of how tryptophan substitution at GluN2B(Phe637) altered 

ion channel kinetics, I decided to further determine whether other mutations at this 

position could also influence NMDA receptor physiological characteristics. Results from 

this study can provide a more complete understanding about the role of this position on 

ion channel function. Values of current activated by maximal glutamate concentration 

(300 µM) and 50 µM glycine varied among mutants, which may indicate variable 

transfection efficiency. I performed glutamate concentration-response experiments in all 

mutants I tested for ethanol sensitivity using a rapid solution exchange apparatus in lifted 
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cells. It is noticeable that at least three out of ten mutants exhibit prolonged channel 

deactivation (figure 5.2).  

 

Figure 5.2. Glutamate-activated currents in cells expressing various GluN2B(Phe637) mutants 

Traces show 300 µM glutamate-activated current in the presence of 50 µM glycine in lifted cells expressing 

wild-type receptors or receptors containing various substitutions at GluN2B(F637). One-letter amino acid 

codes are used. 

Hill coefficients of the glutamate concentration- response curves for various 

mutants did not differ significantly from the wild-type peak current (Figure 5.3) as well 

as steady-state current value (Figure 5.5). However, highly significant differences were 

observed among the peak current EC50 (ANOVA; P < 0.01; Figure 5.4) and the steady-
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state current EC50 (ANOVA; p < 0.01; Figure 5.6) of the series of substitutions at 

GluN2B(Phe637). Eight out of ten mutants showed significantly decreased glutamate 

peak current EC50 values, but only four of them showed decreased glutamate steady-state 

current EC50 values. Interestingly, the difference between isoleucine and leucine was also 

present here, as only isoleucine substitution at this position showed significantly altered 

glutamate steady-state current EC50 (0.85 ± 0.08 µM; ANOVA; p < 0.01), whereas 

substitution with leucine did not (2.5 ± 0.24 µM; ANOVA; p > 0.05) (Figure 5.6). 

 

Figure 5.3. Glutamate concentration-response curves of peak currents of GluN2B(Phe637) mutants 

Concentration-response curves for glutamate-activated peak current EC50 recorded from lifted cells 

expressing wild-type or mutant receptors. Data points are the means ± S.E of 4-6 cells, error bars not visible 

were smaller than the size of symbols. All curves here are best fitted to the equation described in “Materials 

and Methods”. The black curve indicates the fit for wild-type receptors.  
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Figure 5.4. Glutamate peak current EC50 of GluN2B(Phe637) mutants 

Bar graphs show the average EC50 values for glutamate activated peak currents recorded from cells 

expressing GluN1 and wild-type GluN2B or cells expressing GluN1 and GluN2B(F637) mutants. Asterisks 

indicate EC50 values that differ significantly from that of the wild-type GluN1/GluN2B subunit (**P < 

0.01; ANOVA and Dunnett’s test). Results are the means ± S.E of 4-6 cells. The EC50 value for wild-type 

receptor is shown by black bar. 
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Figure 5.5. Glutamate concentration-response curves of steady-state currents of GluN2B(Phe637) 

mutants 

Concentration-response curves for glutamate-activated steady-state current EC50 recorded from lifted cells 

expressing wild-type or mutant receptors. Data points are the means ± S.E of 4-6 cells; error bars not 

visible were smaller than the size of symbols. All curves here are best fitted to the equation described in 

“Materials and Methods”. The black curve indicates the fit for wild-type receptors. 
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Figure 5.6. Glutamate steady-state EC50 of GluN2B(Phe637) mutants 

Bar graphs show the average EC50 values for glutamate steady-state currents recorded from cells expressing 

GluN1 and wild-type GluN2B or cells expressing GluN1 and GluN2B(F637) mutants. Asterisks indicate 

EC50 values that differ significantly from that of the wild-type GluN1/GluN2B subunit (**P < 0.01; 

ANOVA and Dunnett’s test). Results are the means ± S.E of 4-6 cells. The EC50 value for wild-type 

receptor is shown by black bar. 

Mutations at GluN2B(Phe637) of NMDA receptor could alter steady-state to peak 

current ratio (Iss:Ip) 

In whole-cell recordings from lifted cells, besides altered glutamate EC50, 

pronounced decreases were also obtained in apparent desensitization (maximal steady-

state to peak current ratio) of all mutants, which indicates significantly altered ion 

channel gating in mutant receptors (ANOVA; p < 0.01; figure 5.7). Moreover, these 
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results combined with altered glutamate EC50 values reveal the importance of this 

position on NMDA receptor ion channel gating. 

 

Figure 5.7. Apparent desensitization of GluN2B(Phe637) mutants 

The average values of maximal steady-state to peak current ratio (Iss:Ip) in lifted cells co-expressing GluN1 

and GluN2B(wild-type) subunits or GluN2B subunits containing various substitutions at F637. Currents 

were activated by 300 µM glutamate in the presence of 50 µM glycine. Asterisks indicate Iss:Ip values that 

are significantly different from the value for the wild-type GluN1/GluN2B subunits (*P < 0.05; **P < 0.01; 

ANOVA and Dunnett’s test). Results are the means ± S.E of 4-6 cells. The value for wild-type receptor is 

shown by the black bar. 
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GluN2B(Phe637) mutant glutamate EC50 and physical-chemical properties of the amino 

acid at the substituted position 

To determine whether physical-chemical properties of amino acid substituents 

contribute to the changes of peak current EC50 values, steady-state current EC50 values, 

and apparent desensitization, I tested if they could be linearly related to amino acid 

polarity, hydrophilicity or molecular volume. However, no significant linear relation was 

observed among these measures (Table 5.1). 

 

 Glutamate Ip 
EC50 

Glutamate Iss 
EC50 

     Maximal Iss:Ip 

                                       R2 P  R2 P  R2 P   

Molecular 
Volume 

0.196 >0.05 0.33 >0.05 0.07 >0.05 
 

Hydrophilicity 0.173 >0.05 0.276 >0.05 0.05 >0.05  

Polarity 0.079 >0.05 0.056 >0.05 0.07 >0.05  

Table 5.1. Relation of NMDA receptor ion channel functions with the physicochemical parameters of 

the substituent at GluN2B(Phe637) 

Relation of peak current glutamate EC50, steady-state current EC50, as well as maximal 

steady-state to peak current ratio, among various substitutions at GluN2B(Phe637) 

In one previous study, our lab found that, by introducing mutated residues at 

GluN2A(Phe636), there was a strong correlation between peak and steady-state 

glutamate EC50, and both of them were altered in a manner that was linked to 

desensitization (Ren et al., 2013). Moreover, one study at Met823 in the M4 domain of 

the GluN2A subunit demonstrated that for a series of substitutions at this position, 

changes in steady-state glutamate EC50 were attributed to changes in desensitization (Ren 

et al., 2003a). In this study, I observed that the peak current glutamate EC50 values were 
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strongly correlated with steady-state current glutamate EC50 values (R2 = 0.95, P < 

0.0001; figure 5.8). However, when I plotted maximal Iss:Ip ratios against EC50 values of 

glutamate- activated peak and steady-state current, neither of them showed significant 

correlation with apparent desensitization (R2 = 0.01, P > 0.05 for peak and R2 = 0.008, 

P > 0.05 for steady-state; Fig 5.9).  

 

Figure 5.8. Relationship between Ip EC50 and Iss EC50 

Graph plots values of glutamate log EC50 values for steady-state current versus peak current in a series of 

GluN2B mutants. Glutamate EC50 values for peak and steady-state current are significantly correlated (R2 = 

0.95, P < 0.0001). The line shown is the least squares fits to the data.  
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Figure 5.9. Relationship between apparent desensitization and either Ip EC50 or Iss EC50 

Graph plots log maximal steady-state to peak current ratio (Iss:Ip) versus either glutamate peak current log 

EC50 values or glutamate steady-state current log EC50 values from various GluN1/GluN2B(F637) mutant 

receptors. Log maximal Iss:Ip for glutamate was not correlated with either of them (p > 0.05). The lines 

shown are the least squares fits to the data. Open circles show values from glutamate peak current and open 

squares show values from glutamate steady-state current. 

GluN2B(F637) mutant ethanol sensitivity and receptor function 

Since mutagenesis at GluN2B(Phe637) altered both ethanol sensitivity and 

NMDA receptor function, I asked if observed changes in ethanol sensitivity among 

mutants result from changes in agonist potency or ion channel gating kinetics. By plotting 

ethanol IC50 values against glutamate peak current, steady-state current glutamate EC50 
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values or maximal steady-state to peak current ratios, I noticed that ethanol sensitivity of 

mutants was significantly negatively correlated with both peak (R2 = 0.78, p < 0.001) and 

steady-state current EC50 (R2 = 0.63, p < 0.01) (Figure 5.10).  As expected, ethanol IC50 

was not correlated with maximal Iss:Ip (p > 0.05; figure 5.11), since glutamate EC50 values 

were not correlated with maximal Iss:Ip (p > 0.05; figure 5.9).  

 

Figure 5.10. Relationship between ethanol sensitivity and glutamate potency 

Graph plots log ethanol IC50 values in a series of mutants versus log values of glutamate EC50 for peak or 

steady-state current. Ethanol IC50 values are correlated with glutamate EC50 for peak (R2 = 0.78, p < 0.001) 

and steady-state current (R2 = 0.63, p < 0.01). The lines shown are the least squares fits to the data. Open 

circles show values from glutamate peak current and open squares show values from glutamate steady-state 

current. 
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Figure 5.11. Relationship between ethanol sensitivity and apparent desensitization 

Graph plots log ethanol IC50 values in a series of mutants versus the log Iss:Ip values. Ethanol IC50 values 

are not correlated with Iss:Ip values (R2 = 0.19, p > 0.05). The line shown is the least squares fits to the data. 

Glutamate EC50 and maximal steady-state current to peak current values of 

GluN2B(Phe637) mutants are correlated with those of GluN2A(Phe636) mutants 

Since amino acid substitutions altered channel ethanol sensitivity in the same 

manner between two cognate positions, GluN2A(Phe636) and GluN2B(Phe637), it is 

possible that these two positions could regulate ion channel function in a similar manner.  

In order to study this possibility, I plotted glutamate Ip EC50, glutamate Iss EC50, as well 

as maximal Iss:Ip values, of various GluN2B(Phe637) mutants against values of each 

parameter of the same substitutions at GluN2A(Phe636), and noticed that their peak 

current EC50 (R2 = 0.84, P < 0.0001) and steady-state current EC50 changes (R2 = 0.76, P 



97 
 

< 0.001) (Fig. 5.12) are also highly correlated among various substitutions. When 

comparing their apparent desensitization changes among mutants, we found that they are 

also correlated with each other (R2 = 0.49, P < 0.05; Fig. 5.13). 

 

Figure 5.12. Glutamate EC50 values of GluN2B(Phe637) mutants are correlated with those of the 

same amino acid substitutions at GluN2A(Phe636) 

Graphs plot log values of Ip EC50 (left) or Iss EC50 (right) of GluN2B(Phe637) mutants versus each of these 

two parameters of GluN2A(Phe636) mutants. Both of them are significantly correlated (R2 = 0.84, P < 

0.0001 and R2 = 0.76, P < 0.001). The lines shown are the least squares fits to the data. Glutamate EC50 

values of GluN2A(Phe636) mutants are from a previous study in our laboratory (Ren et al., 2013). 
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Figure 5.13. Steady-state to peak current ratios of GluN2B(Phe637) mutants are correlated with 

those of the same amino acid substitutions at GluN2A(Phe636) 

Graph plots maximal steady-state to peak current ratio (Iss:Ip) of GluN2B(Phe637) versus Iss:Ip values of 

GluN2A(Phe636) among various mutant receptors. Maximal Iss:Ip for glutamate of GluN2B(Phe636) 

mutants were also correlated with apparent desensitization values of its cognate position, GluN2A(Phe636) 

(R2 = 0.49, P < 0.05). The line shown is the least squares fit to the data. Maximal Iss:Ip values of 

GluN2A(Phe636) mutants are from a previous study in our laboratory (Ren et al., 2013). 

Discussion 

At the four positions in the GluN2B subunit tested in this study, both tryptophan 

and alanine mutagenesis at Phe637 showed significantly decreased ethanol sensitivity. 

Subsequent glutamate concentration-response experiments demonstrated that tryptophan 

mutagenesis at Phe637 also showed altered glutamate EC50 values for glutamate-
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activated peak and steady-state current. Moreover, this tryptophan mutant also showed 

increased deactivation tau, and both tryptophan and alanine mutants showed decreased 

apparent desensitization compared with the wild-type receptor. I further studied the role 

of Phe637 on channel gating by constructing a panel of amino acid substitutions at this 

position. All mutants constructed at GluN2B(Phe637) showed decreased peak glutamate 

EC50 values and increased maximal steady-state to peak current ratios (Iss:Ip), and only 

three of them showed significantly decreased steady-state glutamate EC50 values. Since 

Phe637 is in the M3 domain, which has an important role in NMDA receptor ion channel 

gating, and is at a considerable distance from ligand binding domain (Low et al., 2003; 

Yuan et al., 2005; Sobolevsky et al., 2007; Sobolevsky et al., 2009), the changes in 

glutamate EC50 values among mutants at this position could be a result of modifications 

in ion channel gating. Among all mutants, isoleucine and leucine were also different from 

each other with respect to glutamate EC50, such that only isoleucine mutagenesis 

increased peak and steady-state glutamate EC50. This indicates that not only ethanol 

sensitivity of the NMDA receptor, but also ion channel function, is sensitive to alterations 

in the side chain of amino acid at position 637 in the GluN2B subunit. A previous study 

on GluN2A(Met823) identified that EC50 values for glutamate-activated steady-state 

current in mutants were highly correlated with Iss:Ip ratios, which can indicate apparent 

desensitization. The mechanism for the increased glutamate affinity in this case appeared 

to be increased dwell times of the receptor in one or more desensitized states, resulting in 

a greater degree of trapping of the agonist (Ren et al., 2003a). Among a series of amino 

acid substitutions at Phe636 in the GluN2A subunit, which is the cognate position of 

GluN2B(Phe637), Iss:Ip ratios had an inverse relationship with peak glutamate EC50 
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values, and a parallel trend with steady-state glutamate EC50 values (Ren et al., 2013). 

Results of the present study, however, appear to show different characteristics of 

GluN2B(Phe637) from those previously characterized ethanol-sensitive positions. There 

was a strong correlation between glutamate peak and steady-state EC50 values, but neither 

EC50 values for glutamate-activated peak nor steady-state current were correlated with 

maximal Iss:Ip ratios, indicating that agonist potency can be influenced by the substituent 

at this position in a manner that is independent of changes in desensitization. The 

mechanism for this is still unclear at this time, but could be explained by the long-

distance modulation of agonist-binding domain resulted from the substitutions at this 

present position. Thus, although GluN2A(Phe636) and GluN2B(Phe637) are cognate 

positions, and both affect ethanol sensitivity, their actions on ion channel function differ. 

Precise ion channel kinetic differences between them can be addressed by single-channel 

recording studies and detailed kinetic modeling. By performing single-channel recording 

in outside-out patches at very low glutamate concentrations (but a saturating 

concentration of glycine), effects of mutations at GluN2B(Phe637) on ion channel gating 

can be fully characterized. 

It has been shown that ethanol inhibits NMDA receptors by altering ion channel 

gating, primarily by decreasing mean open time (Wright et al., 1997; Lima-Landman and 

Albuquerque, 1989). Previous studies in this laboratory showed that ethanol sensitivity of 

the NMDA receptor was inversely correlated with glutamate EC50. In these studies, we 

observed that mutations at GluN2A(Phe636) and GluN2A(Phe637) which had higher 

agonist potency yielded lower ethanol sensitivity (Ren et al., 2007; Ren et al., 2013). 

Similar inverse correlations between ethanol sensitivity and glutamate peak or steady-
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state EC50 were observed in this current study at GluN2B(Phe637), and a correlation 

between ethanol sensitivity and apparent desensitization among mutants was also 

observed at this position. Studies in several ligand-gated ion channels showed that 

ethanol could influence desensitization in these ion channels (Moykkynen et al., 2009; 

Dopico and Lovinger, 2009). Because ethanol-sensitive positions in different subunits of 

the NMDA receptor are also important for ion channel function, based on the correlations 

between ethanol sensitivity and ion channel gating characterized from studies about 

GluN2B(Phe637), the possibility was raised that changes in ethanol sensitivity are 

secondary to alterations of ion channel functions in GluN2B subunit-containing NMDA 

receptors. Previous findings initially suggested that ethanol inhibition of NMDA receptor 

does not involve changes in desensitization (Peoples et al., 1997; Woodward, 2000; Ren 

et al., 2003b). Furthermore, single-channel recording results involving three ethanol-

sensitive positions in the GluN2A subunit, Phe637, Met823, or Ala825, revealed that 

tryptophan substitution mutations differentially affect ethanol sensitivity and mean open 

time. Although tryptophan substitution at all three positions showed significantly 

increased ethanol IC50 values, mean open time was decreased in the Phe637Trp mutant, 

increased in the Met823Trp mutant, and unchanged in Ala825Trp mutant. Thus, effects 

of mutations on mean open time in positions in the GluN2A subunit are not sufficient to 

explain decreased ethanol sensitivity. In general, these studies cannot support the 

possibility that changes in ethanol sensitivity are secondary to changes in open-time of 

the ion channel. As a first step to study this possibility in the GluN2B subunit-containing 

NMDA receptor, cells expressing GluN1/GluN2B(F637W) subunits were used for 

performing ethanol concentration-response experiments. However, ethanol sensitivity 
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was not altered when ethanol was either pre-applied for 10 s before receptor was 

activated or when ethanol was applied during steady-state current. So far, it appears most 

likely that similar factors may influence both ion channel kinetics and ethanol sensitivity 

in parallel. I also recorded from outside-out patches by using the single-channel recording 

method to compare mutagenesis-induced changes in ethanol sensitivity and mean open 

time. However, it was difficult to get a large enough number of open events for 

subsequent analysis. A previous study showed that GluN2A-containing NMDA receptors 

have a higher open probability than GluN2B-containing NMDA receptors (Erreger et al., 

2005). Further studies should be conducted to resolve this question, such as optimizing 

transfection efficiency of GluN2B-containing NMDA receptors. 

We showed that the role of cognate positions in the GluN2A and GluN2B 

subunits in determining ethanol sensitivity differs. The position we characterized in this 

chapter, GluN2B(Phe637), showed significant correlations with its cognate position in 

the GluN2A subunit for values of ethanol IC50, glutamate Ip and Iss EC50, and maximal 

Iss:Ip. This suggests that there are both important similarities and differences in the action 

of ethanol on the GluN2A and GluN2B subunits, and in the contributions of ethanol-

sensitive positions to ion channel gating. 
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VI.  INTERACTIONS AMONG POSITIONS AT THE INTERSUBUNIT 

INTERFACES OF GLUN2B-CONTAINING NMDA RECEPTOR FORM SITES 

OF ETHANOL ACTION 

Introduction 

Previous studies in our and other laboratories have identified and characterized a 

number of amino acid positions in the GluN1 and GluN2A subunit membrane-associated 

(M) domains of the NMDA receptor that influence both gating and alcohol sensitivity of 

the ion channel. These studies indicate that ethanol action sites may be located in one or 

more membrane-associated (M) domains (Ronald et al., 2001; Ren et al., 2003a; Ren et 

al., 2003b; Honse et al., 2004; Ren et al., 2007). Besides the importance of a single 

position on the NMDA receptor ethanol sensitivity, an earlier study in our laboratory also 

found that two ethanol-sensitive positions, Phe637 and Met823 in the GluN2A subunit, 

could interact to regulate ethanol sensitivity, but do not appear to form a common site of 

ethanol action (Ren et al., 2008). Based upon the crystal structure of the GluA2 AMPA 

receptor, a putative model describing the arrangement of M domains of the NMDA 

receptor suggest the presence of unitary sites of alcohol action on the NMDA receptor. 

By using both two-way ANOVA and mutant cycle analysis methods, we found that there 

are four sites of alcohol action: two sites at the GluN1 M3/GluN2A M4 interfaces, and 

the other two at the GluN1 M4/GluN2A M3 interfaces (Ren et al., 2012).  

Although the GluN2A subunit predominates in the mammalian brain, a number of 

studies suggest a major role for the GluN2B subunit in the action of alcohol in the brain 

and a therapeutic importance of GluN2B subunit for alcohol addiction (Chazot, 2004; 

Nagy, 2004; Boyce-Rustay and Holmes, 2005; Gogas, 2006; Kash et al., 2008). 
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However, information about the molecular mechanism of alcohol modulation of the 

GluN2B subunit is still limited. Recent studies from two laboratories presented the X-ray 

crystal structures of GluN1/GluN2B NMDA receptor. They characterized that the 

arrangement of M domain helices is the similar to that of the GluA2 AMPA receptor, 

following a 1-2-1-2 fashion (Lee et al., 2014; Karakas and Furukawa, 2014). So the 

orientation of M3 domains of one subunit type appear to face the M4 domain of the 

adjacent subunit of the other type, which also suggests the interactions between M3 and 

M4 domain of different subunit types. Here, I tested for the specific ethanol-sensitive 

sites in GluN1/GluN2B NMDA receptor, which are composed of multiple amino acids in 

different subunits (Figure 6.1), as well tested some adjacent residues. In the present 

study, three pairs of positions in the GluN1/GluN2B NMDA receptor were identified, 

whose interactions could affect ethanol inhibition and ion channel functions. Based upon 

the results found previously that the GluN2B subunit contains different ethanol-sensitive 

positions compared with the GluN2A subunit, I also proposed here that the 

GluN1/GluN2B NMDA receptor shows different intersubunit interactions with respect to 

both ethanol sensitivity and ion channel kinetics, compared with the GluN2A-containing 

NMDA receptor, although they do share highly conserved M domains sequences (89% 

identity) (Ryan et al., 2013). 
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Figure 6.1. Putative interacting positions between M3 and M4 domains of adjacent subunit types 

A, Alignment of M3 and M4 domain residues in GluN1 and GluN2B subunits. Alcohol-sensitive positions 

identified previously are noted by arrows; residues proposed in this study to contribute to interactions are 

denoted by bold lettering. Single letter abbreviations are used to indicate amino acids. B. Model of the 

NMDA receptor M domains from Sobolevsky et al., 2009. M domains of the GluN1 subunit are shown in 

gray and those of the GluN2B subunit are shown in cyan. Side-chains of the amino acids noted by bold 

letters in A are illustrated in red for the GluN1 M4/GluN2B M3 interface and in blue for the GluN1 

M3/GluN2B M4 interface. 
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Results 

Single mutations in the M3 and M4 domains of GluN1 and GluN2B subunits alter ethanol 

inhibition of NMDA receptors. 

Previous work in this laboratory identified significant interactions at four pairs of 

positions in the GluN1/GluN2A interfaces with respect to ethanol inhibition and receptor 

deactivation (Ren et al., 2012). In the current study, putative ethanol action sites in the 

M3-M4 intersubunit interfaces between GluN1 and GluN2B subunits were initially 

tested, and each of these sites is formed by group of 4-6 residues corresponding to 

interacting positions in the GluN1/GluN2A subunit described in Ren et al. (2012). One 

previous study described a residue in the M3 domain of the GluN1 subunit, Phe639, as an 

ethanol-sensitive position (Ronald et al., 2001). In this study, I tested possible 

interactions between this position and positions in the M4 domain of the GluN2B subunit. 

Since previous studies showed that tryptophan substitution has the greatest modulation of 

ion channel behavior without loss of normal channel function (Ren et al., 2003a; Ren et 

al., 2003b; Honse et al., 2004; Ren et al., 2007; Ren et al., 2008; Salous et al., 2009; Ren 

et al., 2012; Ren et al., 2013), I first tested whether single tryptophan mutagenesis at each 

residue of these putative interacting sites could alter ethanol sensitivity. All tryptophan 

substitution mutants tested in this study yielded functional NMDA receptors. Current 

recorded from GluN1(G638W) mutant showed altered ethanol inhibition and delayed 

deactivation compared with wild-type receptors (Figure 6.2). These mutants 
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Figure 6.2. Ethanol inhibition traces of cells expressing tryptophan substitutions at various positions 

in GluN1 and GluN2B subunit 

Traces are currents activated by 10 µM glutamate in the presence of 50 µM glycine and their inhibition by 

100 mM ethanol in cells expressing various single tryptophan substitution mutations in GluN1 (upper) and 

GluN2B (lower) subunits. One-letter amino acid codes are used. 

all showed concentration-dependent ethanol inhibition (Figure 6.3). Only 

GluN1(G638W) and GluN1(F639W) showed shifted concentration-response curves 

compared with the wild-type receptor, which indicates that they may exhibit altered 

ethanol IC50 values compared with wild-type. Bar graphs of ethanol IC50 values of the 

wild-type receptor and mutants showed that all tryptophan substitutions in the GluN1 

subunit M3 domain exhibited significantly decreased ethanol sensitivity, while 

tryptophan substitution at any of the four positions in the GluN1 subunit M4 domain did 

not have any effect on receptor ethanol IC50 value (Figure 6.4). Among tryptophan 

substitutions in GluN2B subunit, only two of them exhibited significantly decreased 

ethanol sensitivity (Figure 3.5), which was shown previously in Chapter III. 
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Figure 6.3. Ethanol concentration-response of various GluN1 mutants 

Concentration-response curves for ethanol inhibition of glutamate-activated currents in the presence of 50 

µM glycine in cells expressing various substitution mutations in GluN1 subunit. Data are the means ± S.E 

of 5-6 cells, error bars not visible were smaller than the size of symbols. The black curve shows the fit for 

the wild-type receptor. All curves are best fitted to the equation given under “Materials and Methods”. 
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Figure 6.4. Ethanol IC50 of tryptophan substitutions at various positions in GluN1 subunit 

Bar graphs show average IC50 values for ethanol in cells expressing either wild-type receptor or the various 

single mutants at M3 and M4 domains of GluN1 subunits. Asterisks indicate IC50 values that differed 

significantly from the IC50 value for wild-type GluN1/GluN2B subunits (**P < 0.01; ANOVA and 

Dunnett’s test). Black bar shows average ethanol IC50 value for wild-type receptor. Results are means ± 

S.E. of 5-7 cells.  

Dual mutations in the M3 domain of the GluN1 subunit and the M4 domain of the 

GluN2B subunit could alter ethanol inhibition of the NMDA receptors. 

Next GluN1 and GluN2B tryptophan mutant subunits were co-transfected into 

tsA-201 cells, and I tested if the dual mutant could show any alteration of ethanol 
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inhibition. Mutant pairs used here correspond to interacting positions shown previously in 

the GluN1/GluN2A NMDA receptor (Ren et al., 2012). Currents recorded from cells 

expressing either wild-type or mutant receptors show that all mutant combinations tested 

formed functional NMDA receptors (Figure 6.5). It is noticeable that the current in the 

GluN1(G638W)/GluN2B(M824W) dual mutant showed obvious increased 

desensitization compared to that in the wild-type receptor. Two other dual mutants, 

GluN1(G638W)/GluN2B(L825W) as well as GluN1(F639W)/GluN2B(G826W), 

exhibited changes in current features, with the former showing altered deactivation and 

the latter exhibiting almost no inhibition by 100 mM ethanol. However, two single 

mutations of the latter pair, GluN1(F639W) and GluN2B(G826W), both showed evident 

ethanol inhibition as characterized in Figure 6.2, which indicates a possible interaction 

between these two positions. 

 

Figure 6.5. Ethanol inhibition traces of cells expressing tryptophan substitutions at dual positions in 

M3 of GluN1 and M4 of GluN2B subunit 

Records are currents activated by 10 µM glutamate and 50 µM glycine with 100 mM ethanol inhibition in 

cells expressing dual mutations in the GluN1 M3 / GluN2B M4 domains. One-letter amino acid codes are 

used. 
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These dual mutants showed typical concentration-response curves for ethanol 

inhibition (Figure 6.6), and these curves are essentially parallel to each other, as the slope 

factors did not differ significantly. Among these dual mutants, two showed obvious 

shifted curves compared with the wild-type receptor. Statistical analysis of ethanol IC50 

values of wild-type and mutant receptors revealed a significant decrease in ethanol 

inhibition of two mutants with shifted ethanol concentration-response curves (Figure 6.7). 

 

Figure 6.6. Ethanol concentration-response of dual tryptophan substitutions at M3 of GluN1 subunit 

and M4 of GluN2B subunit 

Concentration-response curves for ethanol inhibition of glutamate-activated currents in the presence of 50 

µM glycine in cells expressing various dual tryptophan substitution mutations in GluN1 M3 and GluN2B 

M4. Data are the means ± S.E of 6-7 cells, error bars not visible were smaller than the size of symbols. The 

black curve shows the fit for the wild-type receptor. All curves are best fitted to the equation given under 

“Materials and Methods”. 
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Figure 6.7. Ethanol IC50 of dual tryptophan substitutions at positions in the M3 of GluN1 subunit 

and M4 of GluN2B subunit 

Graphs plot average IC50 values for ethanol in dual mutations in the GluN1 M3 / GluN2B M4. Asterisks 

indicate IC50 values that differed significantly from the IC50 value for wild-type GluN1/GluN2B subunits 

(**P < 0.01; ANOVA and Dunnett’s test). Black bar shows average ethanol IC50 value for wild-type 

receptor. Results are means ± S.E. of 6-7 cells. 

Dual mutations in the M3 of GluN2B and M4 of GluN1 subunit alter ethanol inhibition of 

NMDA receptors. 

Following these results, the ethanol sensitivity pattern of mutants with dual 

tryptophan substitutions in the M3 domain of the GluN2B subunit and the M4 domain of 
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the GluN1 subunit were also studied. As in previously tested mutants, these mutants all 

formed functional receptors and exhibited typical ethanol inhibition of current upon 

activation by glutamate and glycine (Figure 6.8). 

 

Figure 6.8.  Ethanol inhibition traces of cells expressing tryptophan substitutions at dual positions in 

M3 of GluN2B and M4 of GluN1 subunit 

Records are currents activated by 10 µM glutamate and 50 µM glycine with 100 mM ethanol inhibition in 

cells expressing dual mutations in the GluN2B M3 / GluN1 M4 domains. One-letter amino acid codes are 

used. 

These mutant receptors also show typical ethanol concentration-response curves 

as other mutants tested in this thesis (Figure 6.9). Analysis of ethanol IC50 values showed 

that only two of six mutants exhibited significantly increased ethanol IC50, and both are 

GluN1 mutant subunits combined with the GluN2B(F637W) mutant (Figure 6.10). 
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Figure 6.9. Ethanol concentration-response of dual tryptophan substitutions at M4 of GluN1 subunit 

and M3 of GluN2B subunit 

Concentration-response curves for ethanol inhibition of glutamate-activated currents in the presence of 50 

µM glycine in cells expressing various dual tryptophan substitution mutations in GluN1 M4 and GluN2B 

M3. Data are the means ± S.E of 4-7 cells, error bars not visible were smaller than the size of symbols. The 

black curve shows the fit for the wild-type receptor. All curves are best fitted to the equation given under 

“Materials and Methods”. 
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Figure 6.10. Ethanol IC50 of dual tryptophan substitutions at positions in the M4 of GluN1 subunit 

and M3 of GluN2B subunit 

Graphs plot average IC50 values for ethanol in dual mutations in the GluN1 M4 / GluN2B M3. Asterisks 

indicate ethanol IC50 values that differed significantly from the IC50 value for wild-type GluN1/GluN2B 

subunits (**P < 0.01; ANOVA and Dunnett’s test). Black bar shows average ethanol IC50 value for wild-

type receptor. Results are means ± S.E. of 4-7 cells. 

In some cases, compared with single mutagenesis in the M3 and M4 domains of 

either the GluN1 or GluN2B subunit, dual mutations influenced ethanol sensitivity in a 

manner that is non-additive, which indicates the possibility that amino acids at these 
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positions could interactively mediate the action of ethanol on the receptor (Figure 6.4, 

Figure 3.16, Figure 6.7 and 6.10).  

Positions in the M3 and M4 domains of the GluN1 and GluN2B subunits interact to 

regulate ethanol inhibition of NMDA receptors. 

In order to test possible interactions between positions characterized in the 

previous part, I used both two-way analysis of variance (ANOVA) on log-transformed 

ethanol IC50 values and mutant cycle analysis (characterized in the Materials and 

Methods). For the GluN1 M3 / GluN2B M4 mutant combinations, I found significant 

interactions between GluN1(Gly638) and GluN2B(Met824). As indicated in the figure on 

the right, the apparent interaction free energy ΔΔGINT for mutations at two positions is 

the free energy difference between the parallel energies in this cycle (i.e., from the wild-

type to either G638W or M824W, and from either single mutant to the dual mutant, 

G638W/M824W). Because non-interacting positions should have an apparent interaction 

free energy of zero, mean values of ΔΔGINT ± S.E.M. were tested for statistically 

significant differences from zero energy using one sample t tests (Figure 6.11). I also 

found interactions between GluN1(Gly638) and GluN2B(Leu825), GluN1(Phe639) and 

GluN2B(Leu825), as well as GluN1(Phe639) and GluN2B(Gly826) with respect to 

ethanol sensitivity, as indicated by both types of analysis (Figure 6.12 and Table 6.1). 
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Figure 6.11. GluN1(Gly638) and GluN2B(Met824) interactively regulate NMDA receptor ethanol 

sensitivity 

Graph (left) plots ethanol IC50 values vs. the tryptophan substitution at GluN1(Gly638) for tryptophan 

substitution at GluN2B(Met824), as indicated. A significant interaction detected using log-transformed IC50 

values between two positions is indicated by asterisks (****P < 0.0001; two-way ANOVA). One-letter 

amino acid codes are used. Mutant cycle analysis of ethanol IC50 values (right) for the combination 

GluN1(Gly638)/GluN2B(Met824), which showed the most significant interaction with respect to ethanol 

sensitivity. Apparent free energy values associated with various mutations (ΔGx) are given in kcal mol-1. 

Asterisks indicate a statistically significant difference of the apparent interaction energy ΔΔGINT from zero 

energy determined using a one sample t test (****P < 0.0001). 
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Figure 6.12. GluN1(Gly638) and GluN2B(Met824) interactively regulate NMDA receptor ethanol 

sensitivity 

Graphs plot ethanol IC50 values vs. the substituent at GluN1(Gly638) or GluN1(Phe639) for mutants at 

GluN2B(Leu825) or GluN2B(Gly826), as indicated. Significant interactions detected using log-

transformed IC50 values between positions are indicated by asterisks (*P < 0.05, **P < 0.01, ****P < 

0.0001; two-way ANOVA). One-letter amino acid codes are used. 
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Mutant Pair 

(GluN1/GluN2B) 

ΔG1 

WT����N1 

ΔG2 

WT����N2B 

ΔG3 

WT����N1/

N2B 

ΔG4 

N1����N1/

N2B 

ΔG5 

N2B����N1/

N2B 

ΔΔGINT df Significance 

 

G638W/M824W 0.303 0.0987 -0.0162 -0.319 -0.115 -0.417 20 P < 0.0001 

 

G638W/L825W 0.303 -0.0511 0.558 0.255 0.609 0.307 19 P = 0.0001 

 

F639W/L825W 0.222 -0.0511 0.0108 -0.212 0.0620 -0.160 21 P < 0.01 

 

F639W/G826W 0.222 0.422 0.775 0.552 0.353 0.130 21 P < 0.05 

 

M818W/F637W 0.0722 0.543 0.122 0.0503 -0.420 -0.493 21 P < 0.0001 

 

L819W/F637W -0.0605 0.543 0.551 0.611 0.00792 0.0684 20 P > 0.05 

 

V820W/F637W -0.0275 0.543 0.253 0.280 -0.290 -0.262 20 P < 0.005 

 

L819W/F638W -0.0605 0.0112 -0.0352 0.0253 -0.0471 0.0134 16 P > 0.05 

 

V820W/F638W -0.0275 0.0119 0.0667 0.0941 0.0548 0.0823 14 P > 0.05 

 

A821W/F638W -0.177 0.0119 -0.0829 0.0942 -0.0947 0.0823 14 P > 0.05 

Table 6.1. Mutant cycle analysis of ethanol concentration-response 

Values of ΔGX in kcal mol-1 are RT [ln(R1 IC50 – ln(R2 IC50)], where R1 and R2 refer to the NMDA 

receptor subunit combinations on the left and right sides, respectively, of the column headings (WT, wild-

type; N1, GluN1 mutant/GluN2B wild-type; N2, GluN1 wide-type/GluN2B mutant; N1/N2B, GluN1 

mutant/GluN2B mutant). Values of apparent free energy ΔΔGINT in kcal mol-1 are means ± S.E.M. ΔΔGINT. 

Degrees of freedom (df) and S.E.M were determined as described in Materials and Methods. Statistical 

significance of ΔΔGINT values were determined by using one sample t tests. 

Of the GluN1 M4 / GluN2B M3 mutant combinations, I tested interactions of 

three positions in GluN1 subunit with GluN2B(Phe637). Interestingly, I found significant 

interactions between GluN1(Met818) and GluN2B(Phe637), GluN1(Val820) and 
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GluN2B(Phe637), but not between GluN1(Leu819) and GluN2B(Phe637) (Figure 6.13; 

Table 6.1).  

 

Figure 6.13. GluN2B(Phe637) interacts with positions in the M4 domain of GluN1 subunit to regulate 

NMDA receptor ethanol sensitivity 

Graphs plot ethanol IC50 values vs. the tryptophan substitution at GluN2B(Phe637) for mutants at GluN1 

positions 818, 819 and 820, as indicated. Significant interactions detected by log-transformed IC50 values 

are indicated by asterisks (***P < 0.005, ****P < 0.0001; two-way ANOVA). 
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Interactions between three positions in the GluN1 subunit with GluN2B(Phe638) 

were tested. Both types of analysis indicated that there are no significant interactions 

between GluN2B (Phe638) and three positions at the GluN1 subunit tested in this study 

(Figure 6.14; Table 6.1). However, the cognate position of GluN2B (Phe638) in the 

GluN2A subunit, Phe637, expressed a strong interaction with GluN1 (Leu819) in a 

previous study in our laboratory (Ren et al., 2012). 

 

Figure 6.14. GluN2B(Phe638) does not show interaction with positions in the M4 domain of GluN1 

subunit with respect to ethanol sensitivity 

Graphs plot ethanol IC50 values vs. the tryptophan substitution at GluN2B(Phe638) for mutants at GluN1 

positions 819, 820 and 821, as indicated. There is no significant interaction detected by log-transformed 

IC50 values among these three pairs of residues. 
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Two sites of ethanol action are formed by residues in the GluN1 and GluN2B subunit. 

Results of studies on putative ethanol-sensitive positions in the M3 and M4 

domain of the GluN1 and GluN2B subunit, taken together with functional interactions 

between these positions with respect to ethanol action, point to two types of sites of 

ethanol action: two sites at the GluN1 M3/GluN2B M4 interfaces and the other two at the 

GluN1 M4/GluN2B M3 interfaces. The former type is composed of five amino acids, 

however, the latter one is only composed of three amino acids (Figure 6.15).  

 

Figure 6.15. Helical wheel plots of the ethanol sites formed by residues in different subunits 

Helical wheel plots of the ethanol sites formed by the GluN1 subunit M3 domain (red) and GluN2B subunit 

M4 domain (yellow), and formed by the GluN1 subunit M4 domain (grey) and GluN2B subunit M3 domain 

(blue).  
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Positions in the M3 and M4 domains of the GluN1 and GluN2B subunits interactively 

regulate glutamate potency. 

Previous studies showed that ethanol inhibits NMDA receptors primarily by 

decreasing mean open time of the ion channel, and studies from our laboratory reported 

that mutations at ethanol-sensitive positions in the NMDA receptor strongly influenced 

ion channel gating kinetics (Ronald et al., 2001; Ren et al., 2003a; Ren et al., 2003b; 

Smothers and Woodward, 2006; Ren et al., 2007; Ren et al., 2013). Studies from our 

laboratory also showed that interacting positions in different subunits with respect to 

ethanol sensitivity also exhibited interactive regulation of desensitization and 

deactivation (Ren et al., 2008; Ren et al., 2012). In this study, I tested three pairs of 

residues, which expressed significant interactions on ethanol action, to see if they could 

interact with each other to regulate glutamate potency. In addition, another pair of 

positions, GluN1(Leu819)/GluN2B(Phe638), was also studied. Although they did not 

show interaction with respect to ethanol sensitivity, it is not impossible that their effect 

on ethanol action and channel function differ.  

Among these combinations, I tested interactions with respect to effects on both 

glutamate peak current and steady-state current EC50 by using two-way analysis of 

variance on either peak EC50 values or steady-state EC50 values as well as mutant cycle 

analysis. Results of these studies showed that the GluN1(M818W) mutant and 

GluN2B(F637W) mutant showed significantly altered Ip EC50. However, dual mutations 

did not cause any alteration of glutamate Ip EC50 values. This indicates that there might 

be an interaction between these two positions with respect to Ip EC50 (Figure 6.16). By 

using both two-way ANOVA as well as the mutant cycle analysis method, significant 
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interactions with respect to glutamate peak current EC50 between GluN1(Gly638) and 

GluN2B(Met824), GluN1(Phe639) and GluN2B(Leu825), as well as GluN1(Met818) and 

GluN2B(Phe637), were observed (Table 6.2). Two of these also showed significant 

interaction with respect to steady-state glutamate EC50 (Table 6.3). 

 

 

 

Figure 6.16. Glutamate peak current EC50 of either single substitution or dual substitution mutants 

Bar graphs show the average EC50 values for glutamate activated peak currents recorded from cells 

expressing either wild-type, single tryptophan mutant receptors (upper) or dual tryptophan mutant receptors 

(lower). Asterisks indicate EC50 values that differ significantly from that of the wild-type GluN1/GluN2B 

subunit (**P < 0.01; ANOVA and Dunnett’s test). Results are the means ± S.E of 5-8 cells. The EC50 value 

for the wild-type receptor is shown by the black bar. 
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Mutant Pair 

(GluN1/GluN2B) 

ΔG1 

WT����N1 

ΔG2 

WT����N2B 

ΔG3 

WT����N1/

N2B 

ΔG4 

N1����N1/

N2B 

ΔG5 

N2B����N1/

N2B 

ΔΔGINT df Significance 

 

G638W/M824W -1.18 0.0540 -0.326 0.853 -0.380 0.799 20 P < 0.0001 

 

F639W/L825W -0.486 0.170 -0.0457 0.440 -0.216 0.270 20 P < 0.05 

 

M818W/F637W 0.276 -0.769 0.0468 -0.230 0.816 0.540 21 P < 0.001 

 

L819W/F638W 0.000881 0.131 0.241 0.240 0.110 0.109 17 P > 0.05 

Table 6.2. Mutant cycle analysis of glutamate peak current (Ip) EC50 

Values of ΔGX in kcal mol-1 are RT [ln(R1 IpEC50 – ln(R2 IpEC50)], where R1 and R2 refer to the NMDA 

receptor subunit combinations on the left and right sides, respectively, of the column headings (WT, wild-

type; N1, GluN1 mutant/GluN2B wild-type; N2, GluN1 wide-type/GluN2B mutant; N1/N2B, GluN1 

mutant/GluN2B mutant). Values of apparent free energy ΔΔGINT in kcal mol-1 are means ± S.E.M. ΔΔGINT. 

Degrees of freedom (df) and S.E.M were determined as described in Materials and Methods. Statistical 

significance of ΔΔGINT values were determined by using one sample t tests. 
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Mutant Pair 

(GluN1/GluN2B) 

ΔG1 

WT����N1 

ΔG2 

WT����N2B 

ΔG3 

WT����N1/

N2B 

ΔG4 

N1����N1/

N2B 

ΔG5 

N2B����N1/

N2B 

ΔΔGINT df Significance 

 

G638W/M824W -1.06 -0.641 -0.984 0.0765 -0.343 0.717 21 P < 0.05 

 

F639W/L825W -0.380 0.112 -0.0998 0.280 -0.212 0.168 20 P > 0.05 

 

M818W/F637W 0.397 -0.618 0.183 -0.214 0.801 0.404 21 P < 0.05 

 

L819W/F638W -0.0842 0.0426 -0.0293 0.0549 -0.0719 0.0123 17 P > 0.05 

Table 6.3. Mutant cycle analysis of glutamate steady-state current (Iss) EC50 

Values of ΔGX in kcal mol-1 are RT [ln(R1 IssEC50 – ln(R2 IssEC50)], where R1 and R2 refer to the NMDA 

receptor subunit combinations on the left and right sides, respectively, of the column headings (WT, wild-

type; N1, GluN1 mutant/GluN2B wild-type; N2, GluN1 wide-type/GluN2B mutant; N1/N2B, GluN1 

mutant/GluN2B mutant). Values of apparent free energy ΔΔGINT in kcal mol-1 are means ± S.E.M. ΔΔGINT. 

Degrees of freedom (df) and S.E.M were determined as described in Materials and Methods. Statistical 

significance of ΔΔGINT values were determined by using one sample t tests. 

Interaction of GluN1(Gly638) and GluN2B(Met824) in regulation of channel 

desensitization. 

Glutamate concentration-response experiments identified that tryptophan 

mutagenesis at GluN2B(Met824) significantly altered apparent desensitization, as 

assessed by using steady-state to peak current ratio, and tryptophan mutagenesis at 

GluN1(Gly638) did not. However, dual mutagenesis at these two positions significantly 

altered apparent desensitization, which is less than that of the single mutation at GluN2B 

subunit (Figure 6.17). Next, both two-way analysis of variance on steady-state to  
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Figure 6.17. Apparent desensitization values of single mutant and dual mutants 

Bar graph shows maximal steady-state to peak current ratios (Iss:Ip) for current activated by 300 µM 

glutamate and 50 µM glycine recorded from cell expressing wild-type, single substituent at 

GluN1(Gly638), GluN2B(Met824) and dual substitutions at GluN1(Gly638)/GluN2B(Met824) subunits. 

Statistically significant differences of maximal apparent desensitization from wild-type receptor are 

indicated by asterisks (**P < 0.01; ANOVA and Dunnett’s test).  

peak current ratios and mutant cycle analysis were used to study a possible interaction 

between these two positions in regulating ion channel desensitization. Both types of 

analysis indicated a significant interaction between them with respect to apparent 

desensitization (Figure 6.18).  
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Figure 6.18. Mutant cycle analysis of Iss:Ip for GluN1(Gly638) and GluN2B(Met824) 

Mutant cycle analysis of maximal steady-state to peak current ratios for dual mutant combination 

GluN1(Gly638)/GluN2B(Met824). Apparent free energy values associated with various mutations (ΔGx) 

are given in kcal mol-1. Asterisks indicate a statistically significant difference of the apparent interaction 

energy ΔΔGINT from zero energy determined using a one sample t test (****P < 0.0001). 

Discussion 

Functional interactions with respect to ethanol sensitivity between pairs of 

residues in the M3 domain of one subunit type and the M4 of the other subunit type were 

characterized in GluN2B-containing NMDA receptors. These pairs of residues could also 

interactively regulate ion channel function (agonist affinity and apparent desensitization).  

Does the GluN2 subunit type alter the effect of mutations at positions in the GluN1 

subunit on ethanol sensitivity? 

Studies showing similar subjective effects between alcohol and NMDA receptor 

antagonists support a direct inhibitory role of alcohol on NMDA receptor activity at 



129 
 

relevant pharmacological concentrations (Grant et al., 1991; Krystal et al., 1998, 2010; 

Hodge and Cox, 1998), and suggest the importance of determining the molecular sites of 

alcohol action on the NMDA receptor on developing therapies of alcohol addiction and 

alcoholism. Over years of studies, previous work in our and other laboratories have 

previously identified a number of residues in GluN1 and GluN2A M domains which 

could influence ethanol sensitivity on NMDA receptor. The GluN1(Phe639) position was 

first reported as an ethanol-sensitive position and substitution at this position did not 

affect agonist potency (Ronald et al., 2001). These authors reported the functional role of 

this position in not only GluN1/GluN2A NMDA receptors, but also GluN1/GluN2B 

NMDA and GluN1/GluN2C NMDA receptors. Our previous work also characterized the 

importance of this position on ethanol sensitivity of GluN1/GluN2A NMDA receptor 

(Ren et al., 2012). However, these two studies reported different results about the ethanol 

sensitivity change following tryptophan substitution at this position. Recent studies in this 

laboratory demonstrated significantly decreased ethanol sensitivity in the tryptophan 

mutant; however, the previous study showed either unchanged or slightly increased 

ethanol sensitivity by tryptophan substitution. The reason for this discrepancy is still not 

clear. It is possible that since recombinant NMDA receptors were expressed in different 

cell types, in some case they can yield different responses. The prior study was carried 

out in Xenopus oocytes, whereas, the study in our laboratory used HEK-293 cells. A 

more recent study in the Woodward laboratory transfected mutant receptors into HEK-

293 cells, and reported that alanine mutagenesis at GluN1(Phe639) significantly 

decreased ethanol sensitivity. They did not report the results of tryptophan mutagenesis, 
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but showed that other amino acids with large side chains, such as tyrosine, had no effect 

on receptor sensitivity to ethanol action (Smothers and Woodward, 2006).  

In this present study, a tryptophan mutation was introduced into two positions at 

the M3 domain of the GluN1 subunit, Gly638 and Phe639, and four positions in the M4 

domain of GluN1 subunit, Met818, Leu819, Val820 as well as Ala821. All of these 

GluN1 mutants were transfected into tsA201 cells combined with wild-type GluN2B 

subunits. Interestingly, only mutants with tryptophan substitution in the M3 domain 

showed significantly decreased ethanol sensitivity. Tryptophan substitution at positions in 

the GluN1 M4 domain had no effect on ethanol sensitivity, which was surprising given 

that their cognate positions are ethanol-sensitive in the GluN2A subunit (Ren et al., 

2003b; Honse et al., 2004). Further analysis of NMDA receptors carrying other amino 

acid substitutions at these positions may clarify whether they are ethanol-sensitive 

positions. In turn, results of ethanol sensitivity changes recorded from GluN1 mutants 

combined with the GluN2B wild-type subunits in this study agree with our previous 

study on GluN1 mutant subunit combined with GluN2A wild-type subunit, indicating 

that although there are differences in ethanol-sensitive positions between GluN2A and 

GluN2B subunits, ethanol–sensitive positions at GluN1 subunit perform the same 

functional role in ethanol inhibition between GluN2A and GluN2B-containing NMDAR 

(Ren et al., 2012). Further study should be conducted on other subtypes of NMDAR 

considering this observation, such as GluN2C and GluN2D-containing NMDA receptors. 

Is there any interaction with respect to ethanol sensitivity between positions in the 

M3 and M4 domain of adjacent subunits in the GluN2B-containing NMDA 

receptor? 
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Since ethanol can exert its action at multiple positions in the NMDA receptor as 

these previous studies have shown, it’s likely that those positions would interact 

functionally to regulate ethanol sensitivity. Smothers and Woodward (2006) 

demonstrated in their study that single GluN1(Phe639) alanine mutant significantly 

reduced NMDA receptor sensitivity to ethanol inhibition; however, when tryptophan 

substitutions at certain positions of GluN1 subunit M4 domain were individually added to 

the GluN1(Phe639) alanine mutant, the altered ethanol sensitivity caused by the 639 

mutant returned to that of the wild-type. These findings suggest that these residues may 

interact with each other to form ethanol action sites within the same subunit. 

Furthermore, our laboratory demonstrated that Phe637 and Met823 in the GluN2A 

subunit appear to functionally interact with each other to regulate ethanol sensitivity as 

well as ion channel function (Ren et al., 2008). All these interactions were reported 

within the same subunit type. We recently reported significant interactions with respect to 

ethanol action between pairs of residues in the M3 domain of one subunit type and the 

M4 domain of the other in the GluN2A subunit-containing NMDA receptor (Ren et al., 

2012), which were based on the proximity of each pair of residues in the structural model 

of the GluA2 subunit (Sobolevsky et al., 2009). This structural model also suggests 

putative interactions between positions in the M3 and M4 domains of the GluN1 and 

GluN2B subunit. After introducing tryptophan mutations into these positions, 

individually or in pairs, dual mutations at some putative interacting positions did not 

show altered ethanol sensitivity, despite the changes of ethanol sensitivity caused by 

single mutations at the M3 and M4 domains of the GluN1 and GluN2B subunits. These 

results suggest that mutations at these pairs of positions influence ethanol sensitivity in a 
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non-additive manner. Although this does not provide evidence about direct interactions 

between these positions to form ethanol action sites, observations in this study imply 

functional interactions between positions in M3 and M4 domain of GluN1 and GluN2B 

subunit that can influence ethanol sensitivity. 

Previous studies reported the suitability of mutant cycle analysis to indicate 

functional interactions between sets of residues on the basis that the free energy change 

for the double mutant is not equal to the sum of the changes in free energy of the two 

single mutations. Moreover, mutant-cycle analysis can be used to characterize structures 

that are inaccessible to X-ray crystallography (Horovitz, 1996; Kash et al., 2003; 

Venkatachalan and Czajkowski, 2008; Laha and Wagner, 2011; Ren et al., 2012). By 

using both two-way ANOVA and mutant cycle analysis of log-transformed ethanol IC50 

values, three putative ethanol action sites in GluN1/GluN2B interfaces were identified. 

The interaction pattern of the GluN1/GluN2A NMDA receptor and the GluN1/GluN2B 

NMDA receptor differ. We previously reported that GluN1(Leu819) and 

GluN2A(Phe637) could interactively regulate ethanol sensitivity (Ren et al., 2012); 

however, results in this thesis did not show an interaction between GluN1(Leu819) and 

the cognate position GluN2B(Phe638) with respect to ethanol sensitivity. This result is 

consistent with the observation that although GluN2A(Phe637) can regulate ethanol 

action on NMDA receptor (Ren et al., 2007), GluN2B(Phe638) does not. Moreover, 

GluN2A(Phe637) could interact with GluN1(Ala821) to regulate ethanol sensitivity, 

however, GluN2B(Phe638) does not. These differences further support the hypothesis 

that although the GluN2A and GluN2B subunit share highly homologous M3 and M4 

domain sequences, the action of ethanol on the two subunits differs. The ethanol-sensitive 
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position in the GluN2B subunit, Phe637, showed significant interaction with two 

positions in the M4 domain of the GluN1 subunit, Met818 and Val820, as determined by 

both analysis methods, but not with the position in between, Leu819. Furthermore, by 

comparing the two interactions, the apparent free energy of interaction for the former pair 

was twofold greater than the latter pair. These results suggest that the weaker interaction 

observed here may reflect not a direct side-chain interaction, but a functional interaction 

between two residues resulting from conformational restriction caused by long-distance 

interaction (Ren et al., 2008; Ren et al., 2012). 

Results of a previous study demonstrated two types of sites of ethanol action: two 

in the GluN1 M3/GluN2A M4 interfaces, and two in the GluN1 M4/GluN2B M3 

interfaces. Each of site is composed of five residues, two in the M3 domain and three in 

the M4 domain (Ren et al., 2012). In this current study, two sites of ethanol action at the 

GluN1 M3/GluN2B M4 interfaces were identified, each of them consisting of two amino 

acids in the M3 domain of the GluN1 subunit and three amino acids in the M4 domain of 

the GluN2B subunit. This is consistent with the previous study in the GluN2A subunit-

containing NMDA receptor. Furthermore, two ethanol action sites at the GluN1 

M4/GluN2B M3 were also found. However, compared to the two ethanol action sites in 

the GluN1 M4/GluN2A M3 interfaces, each of them consists of only three residues, 

Phe637 in the M3 domain of the GluN2B subunit, and two in the M4 domain of the 

GluN1 subunit. GluN2B(Phe638) is not an ethanol-sensitive position as described in the 

previous chapter, and did not interact with any of residues that are located closely in 

GluN1 subunit as well. The inability to detect any interaction between this position and 

other positions in the GluN1 subunit could account for the finding that tryptophan 
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mutagenesis at GluN2B(Phe638) did not alter ethanol sensitivity of NMDA receptor, 

despite having an ethanol-sensitive cognate position in the GluN2A subunit. The results 

of the current thesis also indicate that contributions of amino acids to ethanol action 

within these ethanol-sensitive sites are not equivalent. Mutations at residues in the M3 

domain of either subunit significantly altered NMDA receptor sensitivity to ethanol 

inhibition, except for GluN2B(F638W), whereas mutations of the M4 domain residues in 

either subunit did not affect ethanol sensitivity. This indicates that although the GluN1 

and GluN2B subunit contribute to both types of ethanol-sensitive sites, the roles of the 

M3 domain and the M4 domain in forming these sites are not equal. The greater effect of 

residues in the M3 domain on ethanol action compared to residues in the M4 domain may 

reflect the importance of the M3 domain in ion channel gating (Jones et al., 2002). Based 

on this assumption, residues in the M4 domain do not directly influence ion channel 

gating, but influence it indirectly by interaction with residues in the M3 domain (Ren et 

al., 2003a).  

Recent studies reported the crystallized structures of the GluN1/GluN2B NMDA 

receptor with either the allosteric inhibitor ifenprodil or partial agonists (Lee et al., 2014; 

Karakas and Furukawa, 2014). Based on these structures, it is not possible to form direct 

side-chain interactions between one pair of residues characterized previously, 

GluN1(Met818) and GluN2B(Phe637), that can functionally interact to regulate ethanol 

inhibition of the receptor. The distance between them after replacement with tryptophan 

is ~12 Å. One possible explanation can be that structures of GluN2B-containing NMDA 

receptor described in these studies were generated when the ion channel is closed, so they 

cannot represent the composition of the receptor when the ion channel is activated and 
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open. In order to resolve this possibility, cross-linking studies were performed and are 

presented in the next chapter. 

Can pairs of ethanol-sensitive positions interactively regulate ion channel functions?  

A number of studies have shown that mutations at certain ethanol-sensitive 

positions in the M3 and M4 domains of the GluN1 and GluN2A subunits can alter ion 

channel kinetics, such as agonist affinity, desensitization, and mean open time (Ronald et 

al., 2001; Ren et al., 2003a; Ren et al., 2003b; Smothers and Woodward, 2006; Ren et 

al., 2007; Ren et al., 2008; Ren et al., 2013). The M3 and M4 domains are both important 

for ion channel gating in the NMDA receptor (Jones et al., 2002; Sobolevsky et al., 2002; 

Ren et al., 2003a; Schorge and Colquhoun, 2003; Yuan et al., 2005; Blank and 

VanDongen, 2008; Chang and Kuo, 2008), and results in this thesis show that EC50 

values for glutamate-activated peak current and steady-state current were altered 

following the introduction of tryptophan residues into single positions or pairs of 

positions studied for ethanol sensitivity. Previous studies confirmed that mutant-cycle 

analysis can be used for analyzing the influence of interactions between pairs of residues 

on ion channel function (Venkatachalan and Czajkowski, 2008; Ren et al., 2012). In this 

thesis, by using both mutant-cycle analysis and two-way ANOVA, three pairs of residues 

characterized as interactively regulating ethanol sensitivity also appear to interact with 

each other to regulate glutamate peak current EC50, and two out of three pairs of residues 

could also interactively regulate glutamate steady-state current EC50. 

In the present study, an interaction with respect to maximal steady-state current to 

peak current ratio (Iss:Ip), a measure of macroscopic desensitization, was found between 

one pair of residues in adjacent subunits, GluN1(Gly638) and GluN2B(Met824). 
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Tryptophan substitution at GluN2B(Met824) markedly increased macroscopic 

desensitization, but desensitization of the GluN1(Gly638) tryptophan mutant was not 

statistically different from that of the wild-type receptor. However, co-expressing these 

two mutant subunits into cells largely reversed the effect of the GluN2B(M824W) mutant 

on the maximal steady-state current to peak current ratio, indicating the presence of a 

functional interaction between these two positions with respect to ion channel 

desensitization. A significant interaction between these positions with respect to 

desensitization was also observed by using mutant cycle analysis of maximal steady-state 

current to peak current ratio. These results suggest that the side chains of these two 

residues are able to functionally interact, and at least when tryptophan is introduced into 

both positions, the interaction between them can regulate ion channel gating. Unlike other 

glutamate-gated ion channels, NMDA receptor desensitization reflects multiple distinct 

processes and appears to be more complex (Dingledine et al., 1999). In this present study, 

experimental conditions were designed to minimize the influence of other forms of 

current decay relative to the true ion channel desensitization based on our previous 

studies (Ren et al., 2003a; Ren et al., 2007; Ren et al., 2012; Ren et al., 2013). Therefore, 

the results reported here could reflect the regulation of ion channel gating by a functional 

interaction between the side chains of these two residues. 
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VII.  CROSS-LINKING OF POSITIONS THAT INTERACT TO REGULATE 

ETHANOL SENSITIVITY AND ION CHANNEL FUNCTIONS 

Introduction 

In the previous chapter, functional interactions with respect to ethanol sensitivity 

and ion channel functions between pairs of residues in the M3 domain of one subunit 

type and the M4 domain of the other were characterized by using two-way ANOVA and 

mutant cycle analysis. However, these observations are not sufficient to unveil direct 

interactions between the side chains of residues at these positions, and whether these 

residues contribute to a unitary alcohol binding cavity. Recent studies have presented X-

ray crystal structures of the GluN1/GluN2B NMDA receptor with either an allosteric 

inhibitor or partial agonists (Lee et al., 2014; Karakas and Furukawa, 2014). Based on 

these structures, at least of one pair of residues characterized in the previous chapter are 

not close enough to each other to directly interact to regulate ethanol sensitivity and 

channel function. However, an ion channel blocker, allosteric antagonists, and partial 

agonists of the NMDA receptor were used to obtain the crystal structures of these 

receptors, so the structures reported are of the receptor in the resting state, but not in the 

activated state. It is likely that the distance between proposed interacting residues can 

change upon the activation of the NMDA receptor. 

In order to resolve this question, cysteine substitutions were introduced into this 

pair of positions, and whether disulfide bonds can form between the position in the M3 

domain of one subunit type and the position in the M4 domain of the other subunit type 

was tested by applying redox-active agents. Previous studies have demonstrated 
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modifications of NMDA receptor channel kinetics by redox-active agents. Reducing 

agents potentiated the response of the receptor to agonist, while oxidation with certain 

agents decreased the magnitude of the response (Aizenman et al., 1989; Tang and 

Aizenman, 1993). Studies also showed that by replacing certain residues in the glycine 

receptor with cysteine, application of redox agents changed the glycine response of these 

mutant receptors compared to wild-type receptors (Lobo et al., 2008). Since the positions 

I studied in this chapter are localized in the membrane-associated regions, which are vital 

to ion channel gating (Low et al., 2003; Yuan et al., 2005; Sobolevsky et al., 2007; 

Sobolevsky et al., 2009), formation of disulfide bonds in these regions may change ion 

channel function. However, whether oxidizing agents can reduce or potentiate the 

responses of mutant NMDA receptors to glutamate is still unknown. After application of 

either the oxidizing agents hydrogen peroxide (H2O2) or copper phenanthroline 

(CuPhen), or the reducing agent dithiothreitol (DTT), I studied their effects on the 

response of the receptor to agonist and on the ethanol sensitivity of the receptors.  

Results 

Oxidizing agents significantly reduce glutamate-activated current amplitude in cells 

expressing NMDA receptors with dual cysteine substitution at a position in the M3 

domain of one subunit and a position in the M4 domain of the other subunit, and a 

reducing agent could exert opposite effects 

In the previous interaction study, three pairs of positions, 

GluN1(Phe638)/GluN2B(Met824), GluN1(Phe639)/GluN2B(Leu825), and 

GluN1(Met818)/GluN2B(Phe637), were found to functionally interact to affect both 
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ethanol sensitivity and channel function. In this study, cysteine substitutions were 

initially introduced into one of these pairs, GluN1(Met818)/GluN2B(Phe637), by site-

directed mutagenesis, and whether application of redox agents could form disulfide bonds 

between these positions and further alter channel function was studied. Dual cysteine 

substitutions at this pair of positions yielded functional receptors after transfection into 

tsA-201 cells. The function of a putative disulfide bond formed between them on 

glutamate-activated NMDA receptor current was tested initially with 0.1% H2O2 

application. Pronounced decreases in current amplitude were noticed after applying the 

oxidizing agent. This may indicate the formation of a disulfide bond between these two 

positions, which changed ion channel function. In order to further test the formation of a 

disulfide bond, 10 mM DTT was subsequently applied to break disulfide bonds. The 

result demonstrated that glutamate-activated current amplitude was increased by DTT 

treatment (Figure 7.1).  

 

Figure 7.1. Redox modulation of GluN1(M818C)/GluN2B(F637C) 

Current traces show reduction due to oxidizing function of H2O2 in GluN1(M818C)/GluN2B(F637C), and 

potentiation due to reducing function of DTT in this mutant. Reducing and oxidizing agents were applied 

for 2 min to allow them to exert their effects. 
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Redox agents did not exert any change of current amplitude in GluN1(C744A/M818C) 

/GluN2B(F637C) receptors 

Although the results in Figure 7.1 suggest that a disulfide bond was formed 

between GluN1(M818C) and GluN2B(F637C), these changes could be a result of 

endogenous redox sites in the GluN1 subunit. By using site-directed mutagenesis, a 

previous study determined that two cysteine residues in the GluN1 subunit of the NMDA 

receptor, Cys744 and Cys798, were responsible for the majority of redox modulation of 

GluN1/GluN2B NMDA receptors (Sullivan et al., 1994). In order to exclude this possible 

source of redox effect in our results, one position was replaced by alanine. Currents in 

cells expressing dual cysteine mutagenesis at GluN1(Met818) and GluN2B(Phe637) 

combined with alanine mutagenesis at GluN1(Cys744) were recorded after extracellular 

application of either of the oxidizing agents (H2O2, CuPhen) or the reducing agent (DTT). 

However, neither H2O2 nor DTT treatment caused significant changes in glutamate-

activated current amplitude (Figure 7.2). 
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Figure 7.2. Redox agents do not exert any effect on current amplitude of 

GluN1(C744A/M818C)/GluN2B(F637C) 

Current traces show no change in current amplitude of GluN1(C744A/M818C)/GluN2B(F637C) upon 

application of either the oxidizing agent H2O2, 0.1% (left) or the reducing agent DTT, 10 mM (right). 

Reducing and oxidizing agents were applied for 2 min to allow them to exert their effects. 

Intracellular application of DTT did not exert any effect on either channel function or 

ethanol sensitivity of GluN1(M818C)/GluN2B(F637C) NMDA receptors 

Recent studies from our laboratory provided evidence that the positions in GluN2C 

subunit corresponding to the positions in GluN2B subunit are sufficiently proximal to 

interact, and that they appear to constitutively form disulfide bonds in dual cysteine 

mutants following intracellular application of DTT (unpublished data). It is thus possible 

that extracellularly-applied DTT can not reach the dual cysteine substitution site from the 

extracellular space, and if these positions could constitutively form disulfide bonds, an 

oxidizing agent could not exert any effect on them. To rule out this possibility, I applied 

DTT intracellularly while GluN1(M818C)/GluN2B(F637C) NMDA receptors were 

activated with maximal concentration of glutamate. Since DTT was applied 

intracellularly, it was not necessary to study the receptor with the GluN1(C744A) 

substitution. I measured current change within 8 minutes and recorded current once per 

minute based on the diffusion rate of DTT from the pipet to the targeting site at receptor. 
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However, DTT did not exert any effect on current amplitude (Figure 7.3). I also tested 

whether DTT could alter ethanol sensitivity of the NMDA receptor by measuring the 

percentage inhibition by 100 mM ethanol. However, there was no direct evidence to 

demonstrate alteration of ethanol sensitivity induced by DTT application (Figure 7.4). 

  

Figure 7.3. Changes in current amplitude of GluN1(M818C)/GluN2B(F637C) by intracellular 

application of DTT within 8 minutes 

A cell containing GluN1(M818C)/GluN2B(F637C) mutant receptors was activated by 10 µM glutamate 

and 50 µM glycine and recorded once per minute from 1 min to 8 min. DTT was applied intracellularly via 

the patch-pipet. 
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Figure 7.4. Changes in 100 mM ethanol inhibition of GluN1(M818C)/GluN2B(F637C) by 

intracellular application of DTT within 8 minutes 

A cell containing GluN1(M818C)/GluN2B(F637C) mutant receptors was activated by 10 µM glutamate 

and 50 µM glycine and inhibited by 100 mM ethanol, then recorded once per minute from 1 min to 6 min. 

DTT was applied intracellularly via the patch-pipet. 

Discussion 

The functional interaction with respect to ethanol sensitivity and ion channel 

function between pairs of residues in the M3 domain of one subunit type and the M4 of 

the other subunit type were characterized by using two-way ANOVA and mutant cycle 

analysis in chapter VI. In this chapter, I tested if they are physically interacting with 

each other. GluN1(Met818) and GluN2B(Phe637) are ~12 Å apart from each other, 
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which indicates that it is possible for them to form a direct side-chain interaction. In order 

to test this possibility, cross-linking studies were performed by introduction of cysteine 

residues in dual positions. However, we could not obtain clear evidence that redox agents 

formed disulfide bonds between them, because neither oxidizing agents nor reducing 

agents were able to alter NMDA receptor currents.  

Previous studies in our laboratory have demonstrated interactions between 

positions in different membrane-associated (M) domains of the GluN2A subunit, and 

between positions in the M3 domain of one subunit type and the M4 of the other subunit 

type (Ren et al., 2008; Ren et al., 2012). In a previous study on the interaction between 

GluN2A(Phe637) and GluN2A(Met823), the observations did not indicate a direct 

interaction between the side chains at these positions (Ren et al., 2008). So one plausible 

explanation for the results of cross-linking studies described in this thesis could be that 

rather than direct side-chain interaction between these positions, functional interactions 

happened between them. It is possible that the wild-type methionine at position 818 in the 

GluN1 subunit may form a contact with other residues in its environment to place a 

conformational constraint on the M4 domain movement. This constraint was then 

released after tryptophan substitution at this position. This may also explain why the 

GluN2B(F637W) mutant showed significantly altered ethanol sensitivity, but the addition 

of the GluN1(M818W) mutant restored regular ethanol inhibition seen in the wild-type 

receptor. It may also be possible that these two positions can still directly interact with 

each other, since the crystal structure only represents the receptor structure in the closed 

state. The inability to observe altered ion channel gating following cysteine mutations 

and redox agent application may also have resulted from impaired delivery of these 



145 
 

agents. It is possible that the oxidizing agent was not able to achieve an effective 

concentration in the environment surrounding the side chains. Future studies can be 

performed using other agents. 
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VIII.  EFFECTS OF NMDA RECEPTOR MUTANTS ON ION CHANNEL GAT-

ING AND ETHANOL SENSITIVITY IN CENTRAL NERVOUS SYSTEM 

NEURONS 

Introduction 

Expressing NMDA receptors in different cell types can in some cases yield 

different responses. In one study, it has been demonstrated that zinc could augment 

NMDA receptor-mediated synaptic responses in the CA1 region of rat hippocampal 

slices, and this process is mediated by Src family tyrosine kinases (Kim et al., 2002). 

However, another study showed the opposite result in spinal neurons (Xiong et al., 1999).  

As the majority of studies in this thesis were conducted by using tsA-201 cells, a 

transformed cell line derived from kidney fibroblasts, as the cell model, it is important to 

exclude the possibility that the characteristics of mutants demonstrated in our studies are 

cell-specific and may not be relevant to the actual function of these mutants in the central 

nervous system. The first step to study this question in our laboratory was to use neurons 

cultured from GluN2A subunit knockout mice; however, this approach proved to be 

unnecessary, since neurons cultured from wild-type animals early in development have 

low levels of GluN2A subunit (Mitani et al., 1998; Liu et al., 2010). In this study, 

cerebral cortical neurons from P2/P3 rats were used for expression of constructed 

receptors. Following delivery of recombinant mutant NMDA receptors into these neurons 

via electroporation, they were used in ethanol concentration-response experiments.  
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Results 

Apparent desensitization of GluN1/GluN2A(M823W) mutant NMDA receptor expressed 

in central nervous system (CNS) neurons 

As described in a previous study, the GluN2A(M823W) mutant NMDA receptor 

showed significantly increased apparent desensitization compared with wild-type 

receptors (Ren et al., 2003b). The initial study on the function of mutant receptors in 

neurons used this mutant. GluN1 and GluN2A(M823W) subunits were transfected into 

P2 or P3 rat cortical neurons by electroporation. In order to avoid the possibility that 

application of glutamate activated other endogenous glutamate-gated receptor types, such 

as AMPA receptors and kainate receptors, a maximal concentration of NMDA was used 

in this study as the agonist instead of glutamate. To validate that neurons at this 

developmental period do not express NMDA receptors, neurons transfected with GFP but 

not any exogenous NMDA receptor were also recorded under the same conditions. These 

neurons did not show any NMDA-activated current. Strychnine, 1 µM, was added in 

order to eliminate any current from glycine receptor. Currents due to native GluN2B 

subunit-containing NMDA receptors were blocked using the selective antagonist 

ifenprodil. As shown in Figure 8.1, neurons following transfection expressed GFP. 
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Figure 8.1. Expression of GFP indicates successful transfection of constructed NMDA receptors into 

a cortical neuron 

Arrow points to a cortical neuron which exhibits different features compared with glial nearby in this view 

(left). This neuron was successfully transfected with GFP since it glows green under fluorescent 

illumination (right), indicating likely co-expression of exogenous NMDA receptors.  

Comparison of wild-type GluN1/GluN2A NMDA receptor expressed in HEK293 cells and 

in CNS neurons 

I first compared the basic features of wild-type NMDA receptors expressed in 

non-neuronal cells as well as in neurons. As shown in Figure 8.2, wild-type NMDA 

receptors expressed in different cell types show similar ion channel characteristics, such 

as a small degree of desensitization upon activation by 300 µM glutamate and 50 µM 

glycine, as well as concentration-dependent ethanol inhibition (100 mM: ~35%; 250 mM: 

~65%). 
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Figure 8.2. The characteristics of wild-type GluN1/GluN2A NMDA receptor observed in HEK 293 

cells are also present in neurons 

Records are currents activated by 300 µM glutamate and 50 µM glycine with 100 mM ethanol inhibition in 

either HEK293 cells (upper) or cortical neurons (lower) expressing wild-type NMDA receptors.  

Comparison of GluN2A(M823W) mutant NMDA receptor expressed in HEK293 cells and 

in CNS neurons 

Mutant receptors expressed in cortical neurons showed the most prominent 

feature characterized in HEK 293 cells in our previous study (Ren et al., 2003a), that is 

significantly increased desensitization compared to the wild-type receptor (wild-type 

receptor: ~20%; GluN2A mutant: ~95%; Figure 8.2, 8.3). 
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Figure 8.3. The characteristics of the GluN2A(M823W) mutant NMDA receptor observed in HEK 

293 cells are also present in neurons 

Records are currents activated by 300 µM glutamate and 50 µM glycine with 100 mM ethanol inhibition in 

either HEK293 cells (upper) or cortical neurons (lower) expressing GluN2A(M823W) NMDA receptors. 

Ethanol sensitivity of GluN1/GluN2A(M823W) mutant NMDA receptors expressed in 

CNS neurons. 

In order to characterize the ethanol sensitivity of GluN2A(M823W) mutant 

NMDA receptors expressed in rat cortical neurons, both 100 mM and 250 mM ethanol 

were used to inhibit NMDA-activated current since cortical neurons are more fragile 
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compared to tsA-201 cells and could not bear the whole panel of ethanol concentrations 

(Figure 8.3). Ethanol inhibition of GluN2A(M823W) mutant NMDA receptors was not 

significantly altered compared with wild-type receptors, which was consistent with the 

results in HEK 293 cells (100 mM: ~32 % inhibition; 250 mM: ~60% inhibition).  

Ethanol sensitivity of GluN1/GluN2B(F637W) mutant NMDA receptors expressed in CNS 

neurons 

Besides comparing the characteristics of GluN2A mutant subunits expressed in 

HEK293 cells and cortical neurons, I also tested whether the significantly decreased 

ethanol sensitivity of GluN2B(F637W) mutant receptors found in tsA-201 cells is a cell 

type-specific phenomenon. I expressed either wild-type GluN1/GluN2B NMDA 

receptors or GluN1/GluN2B(F637W) mutant NMDA receptors in rat cortical neurons and 

compared their ethanol sensitivity. However, no significant difference in ethanol 

sensitivity was noticed between wild-type receptors and mutant receptors (100 mM: 

~35%; 250 mM: ~65%). Results are average percentage of inhibition in 4-6 cells.  

Discussion 

Because NMDA receptor activity in the neuronal environment is regulated by 

interactions with intracellular proteins such as scaffolding proteins and kinases, it is 

possible that NMDA receptor ion channel function and behavior could differ among 

different cell types (Dingledine et al., 1999; Yagi, 1999; Levitan, 1994; McBain and 

Mayer, 1994). It is difficult to utilize cortical neuronal cultures from NMDA receptor 

knockout mice since the NMDA receptor is vital for normal CNS function (Dingledine et 

al., 1999; Paoletti and Neyton, 2007). Previous studies have demonstrated that there are 
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developmental changes in localization and expression efficiency among different NMDA 

receptor subunit types, such that GluN1 and GluN2B subunits display high levels of 

expression within the first week, while the GluN2A subunit is barely detectable at the 

first week (Li et al., 1998). So it is reasonable to study the function of our recombinant 

GluN2A-containing NMDA receptor in neuronal cultures by transfecting them into P2/P3 

rat neurons. However, it is impossible to utilize the same method to test the function of 

GluN2B-containing NMDA receptors. A possible explanation for this result may be that 

although GluN2A subunit-containing NMDA receptor expression level is very low in the 

P2/P3 period, GluN2B subunit-containing NMDA receptor expression level is constant 

from P2 to P21. So the cortical neurons used in this study may contain high levels of the 

native GluN2B subunit, which could obscure the current from activation of exogenous 

GluN2B mutant NMDA receptors. The only mutant GluN2A subunit tested in this 

chapter, M823W, showed the same desensitization pattern as results collected from HEK 

293 cells (Ren et al., 2003a).  

It was surprising that I did not observe significant effects on alcohol sensitivity of 

the mutant receptors expressed in neurons or in GluN2A(M823W) subunits expressed in 

HEK 293 cells.  In addition to the possibility of background expression of native 

receptors in cultured neurons, there may be other explanations for this.  It should first be 

noted that while the GluN2A(M823W) mutant dramatically alters macroscopic 

desensitization (Ren et al., 2003a), its effect on alcohol sensitivity is more subtle (Ren et 

al., 2003b), especially compared to other mutants (Ren et al., 2012).  Thus it may be 

difficult to obtain significant differences using only two ethanol concentrations in a small 

number of cells.  Furthermore, a lesser ability to control the conditions in distal processes 
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of neurons may render receptors in these regions more susceptible to modulation by 

processes such as phosphorylation.  

Although the sample number in this study is limited, and only one mutant type 

expressed in cortical neurons was characterized, this mutant did show a similar ion 

channel gating pattern as well as pattern of ethanol action compared to the same construct 

expressed in HEK-293 cells. It is important to notice that studies performed in our 

laboratory using neurons cultured from GluN2A subunit knockout mice have 

demonstrated little or no influence of cell type on NMDA receptor ion channel gating or 

ethanol sensitivity. Because it is difficult to limit the effect of endogenous GluN2B 

subunits in cells expressing transfected GluN2B constructs, future studies could address 

whether GluN1 subunit mutants show similar alterations on ion channel gating and 

ethanol action when co-transfected with the GluN2A subunit into neurons. 
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GENERAL CONCLUSIONS 

Because alcohol addiction is an enormous problem in U.S. society, it is very 

important to generate novel therapeutic methods. There are currently a small number of 

available drugs designed to reduce cravings for alcohol, such as naltrexone (Ganellin and 

Triggle, 1996). However, these drugs may help to reduce heavy drinking, but not to 

maintain abstinence (Spagnolo et al., 2014). Previous studies have pointed out a role of 

the GluN2B subunit in alcohol action (Miyakawa et al., 1997; Kash et al., 2009; Wills et 

al., 2011), and the ability to selectively regulate alcohol sensitivity of the GluN2B 

subunit could be a powerful tool in the treatment of alcohol addiction. However, there is 

still very little information about the molecular mechanisms of alcohol action on the 

GluN2B subunit. Studies in this thesis provide key information about the interaction 

between the GluN2B subunit and the ethanol molecule by identifying ethanol-sensitive 

positions in the GluN2B subunit, which may in turn help to identify novel therapeutic 

treatments for alcohol addiction. In addition to characterization of ethanol-sensitive 

positions in the GluN2B subunit, this study also aided in developing a better structural 

model of the M3 and M4 domains of the GluN2B subunit, understanding the relationship 

between structure and function of these domains, and determining the effects of alcohol 

on these domains. 

Studies in the present dissertation initially demonstrated that mutations at a 

phenylalanine (Phe637) in the third transmembrane domain of the GluN2B subunit could 

alter NMDA receptor ethanol sensitivity, apparent glutamate potency, apparent agonist 

affinity, and apparent desensitization. These results indicate that this position is important 

for both ethanol action and ion channel function. In addition to studying the main 



155 
 

ethanol-sensitive position in the GluN2B subunit, this dissertation also compared the 

GluN2A and GluN2B subunits with respect to ethanol-sensitive positions and their 

functions on ion channel gating. Although the GluN2A and GluN2B subunit M3 and M4 

domains are highly homologous, there are both important similarities and differences in 

the action of ethanol on these subunits.  

Subsequent experiments showed that individual tryptophan substitution at a 

number of positions in the M3 and M4 domains of GluN1/GluN2B NMDA receptor 

could alter ethanol sensitivity. Moreover, upon introduction of dual tryptophan 

substitutions into adjacent positions in the GluN1 and GluN2B subunits, functional 

interactions with respect to ethanol sensitivity between pairs of residues in the M3 

domain of one subunit type and the M4 domain of the other subunit type were 

characterized by using two-way ANOVA and mutant cycle analysis. In addition, these 

pairs of residues could also interactively regulate ion channel function (agonist affinity 

and apparent desensitization). 

To exclude the possibility that the M domain mutations we have identified alter 

NMDA receptor function in a cell-specific manner that may not be relevant to the 

function of the CNS, I recorded from cultured P2-P3 rat cortical neurons. One GluN2A 

mutant, M823W, did show a similar ion channel gating pattern as well as ethanol action 

pattern compared to the same construct expressed in HEK-293 cells. Since it is difficult 

to limit the effect of endogenous GluN2B subunits in cells expressing transfected 

GluN2B mutant constructs, future studies will address whether GluN1 subunit mutants 

show similar alterations on ion channel gating and ethanol action when co-transfected 

with the GluN2A subunit into CNS cortical neurons.   
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