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ABSTRACT 
MUTATIONAL-KINETIC ANALYSIS REVEALS THE ROLES OF  

ARGININES AND AROMATICS IN THE CORE OF THE  
GABAA RECEPTOR LIGAND-BINDING POCKET 

 
 

Phu N. Tran, B.S. 
 

Marquette University, 2011 
 
 

The γ-aminobutyric acid type A (GABA) receptor is a member of the cys-loop family of ligand-
gated ion channels that plays a crucial role in normal brain function by transducing the majority 
of inhibitory neurotransmission in the central nervous system.  The studies documented in this 
dissertation were aimed at validating and refining the current best model for the interaction of 
GABA with the GABAA receptor via structure-function perturbation analysis.  Mutational-
kinetic data was used in conjunction with homology modeling knowledge to draw up 
architectural and functional roles of the arginines and aromatics in GABA-binding pocket.  The 
results provide interesting new insights.   

Two positively charged arginine residues, which have been implicated in ligand binding, were 
profiled through serial mutagenesis, to get at the specific side chain properties required for the 
roles they serve.  The structural and functional contribution of four aromatic residues were 
examined through measuring the influence of their side chain on GABA binding rate with 
respect to changes caused by point mutations.  An interaction between two aromatic residues 
critical for proper ligand binding was discovered through a screen for functional coupling 
between them and four neighboring arginines.  These results were subsequently employed in an 
attempt to refine the current ligand-receptor interaction model, proposing specific roles for the 
amino acid residues studied.  

In the current best model of the GABAA receptor’s ligand-binding pocket, the amino moiety of 
GABA is coordinated by a cation-π interaction with β2Y97 and the carboxyl moiety coordinated 
by an interaction with either β2R207 or α1R67 (or possibly both).   Here, we incorporate the 
results of this dissertation to modify and add significant detail to this model.  The model 
proposed here includes the following features: a hydrophobic interaction between β2Y97 and 
β2F200, an inter-subunit cation-π interaction between β2Y97 and α1R132, a cation-π interaction 
between the amino group of GABA and β2F200, hydrogen bond(s) between the carboxyl end of 
GABA and the guanidinium group of α1R67, and an interaction between the side chain of 
β2R207 and the backbone carbonyl of β2Y97. 
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This dissertation documents experiments aimed to study the structure and function 

of the γ-aminobutyric acid type A (GABAA) receptor.  Specifically, the experiments 

presented here were designed to test, refine, and advance the current best model for how 

γ-aminobutyric acid (GABA) interacts with the ligand-binding site of the GABAA 

receptor.  This process involved identification of an amino acid residue of interest, 

mutation of the residue, assessment of the functional effects of the mutation, 

incorporation of the results into the structural model of the receptor, and the inference of 

functional roles of the residue in question from the new structural model. 

This approach was initially applied to two arginine residues implicated in GABA 

binding (Chapter III) and then extended to a cluster of four aromatic residues that are 

believed to be in the heart of the binding pocket (Chapter IV).  Finally, double mutant 

cycle analysis was applied to identify functional interactions between, and within, the 

studied arginines and aromatics (Chapter V).  This approach identified as well as ruled 

out a number of possible interactions among amino acid residues that line ligand-binding 

pocket of the GABAA receptor.  The results of these studies are used to validate and 

refine the current best model for the interaction of GABA with the GABAA receptor and 

produce a model that contains novel and detailed information about the molecular 

architecture of the ligand-binding pocket.     

 
The physiological and pharmacological relevance of GABAA receptor 

Two amino acids, glutamate and GABA, are neurotransmitters responsible for 

most of the fast excitatory (glutamate) and fast inhibitory (GABA) communication 

between nerve cells in the brain.  At a basic level, normal brain function may be thought 

of as a balance between excitation and inhibition mediated by glutamate and GABA 
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transmission, respectively.  It is thought that all nerve cells in the brain have receptors for 

the neurotransmitters glutamate and GABA (Johnston, 2003).  In addition, it is estimated 

that 40% of nerve cells release glutamate as an excitatory neurotransmitter, while a 

different 40% release GABA as an inhibitory neurotransmitter (Johnston, 2003; Bowery 

and Smart, 2006).   

Therefore, the homeostatic balance between these two amino acid transmitters is 

vital to normal brain function.  An excess of excitation over inhibition, for instance, 

results in an overexcited brain that can be manifested as anxiety, agitation, exhilaration, 

convulsions and even death.  On the other hand, an excess of inhibition over excitation 

can be manifested as depression, sedation, coma and death.  In fact, mutations that alter 

the proper function of the GABAA receptors, for example, have been implicated in 

Angelman’s syndrome (Dan and Boyd, 2003) and epilepsy (Baulac et al., 2001; Bowser 

et al., 2002).   

Additionally, there are many substances that can tip such a balance, if not used 

properly.  When improper usage of substances occurs, such as sleeping aid and anesthetic 

overdose, proper intervention may dictate whether the victim will survive.  Proper 

intervention often means administering some type of pharmacological agents to 

counteract the effects.  It is, therefore, particularly important to understand the 

mechanism of how these transmitters activate their target and how various substances 

modulate this activation process.  Such understanding will be of clinical relevance in 

terms of enabling more effective therapeutic interventions.  

Interestingly, the contribution of GABAA receptors to clinical medicine was 

established long before the role of GABA as a neurotransmitter had even been suggested. 
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As early as the 19th century, barbiturates were first used as anxiolytic hypnotics and 

anticonvulsants, and eventually as intravenous anaesthetics; however, it was not until the 

mid 20th century that their molecular targets, GABAA receptors, started to emerge.  In 

1967, evidence for GABA as an inhibitory transmitter in the CNS was finally achieved 

when Krnjevic and Schwartz demonstrated that application of GABA to cat cortical 

neurons caused activity that resembled inhibitory postsynaptic potential (IPSP).  The 

association of various modulators’ action with GABA receptors only became clear, when 

Haefely et al. (1975) first described the effects of an important class of modulators, the 

benzodiazepines.  It was discovered that benzodiazepines produce their effects by 

potentiating the response to GABA stimulation, and part of this potentiation is underlied 

by an increase in the mean open time of the intrinsic chloride channel, enabling more 

current to flow (Bianchi et al., 2009).  The advent of the benzodiazepines, in a way, 

opened the “door” for the discovery of more pharmacological agents that are known to 

modulate GABAA receptor function.  For instance, besides barbiturates and 

benzodiazepines, GABAA receptors are also modulated by an array of other compounds 

such as neurosteroids, flavonoids, and ethanol (see review by Johnston, 2005).   

Despite the vast amount of information about the function of GABAA receptors, 

and the compounds that interact with them, there are still many unknowns regarding the 

details of their structure and function and their interactions with modulators.  Therefore, 

it is important to continue GABAA receptor structure-function studies.  Knowledge 

gained from studying GABAA receptors will not only allow for more intelligent drug 

design targeting GABAA receptors but also contribute to better understanding of the 

general mechanisms of ligand-gated ion channels’ function and regulation.   
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Diversity of the GABAA receptors 

In mammals, 19 different GABAA receptor subunit genes have been cloned and 

grouped into seven families (α1-α6, β1-β3, γ1-γ3, δ, ε, θ, π, and ρ1-ρ3) by sequence 

similarity (Simon et al., 2004; Sieghart and Ernst, 2005).  Some members of α, β, and γ 

families (i.e. α5, β2, β3 and γ2) also exist in alternatively spliced forms, giving rise to even 

greater subunit diversity (Simon et al., 2004).  Such subunit diversity, however, may not 

result in a very large number of pentameric combinations because receptor assembly and 

distribution appears to follow some basic stoichiometric patterns (Luscher and Keller, 

2004).  During the folding and oligomerization processes, each subunit must recognize its 

neighbors via specific high-affinity interactions.  This recognition between a given 

subunit and its adjacent neighbor subunits is necessary for achieving the correct 

stoichiometry and order of subunits around the pore.  The stoichiometry and ordered 

arrangement of GABAA receptor subunits has been explored using biochemical, 

immunohistochemical, and electrophysiological methods. 

In early expression studies, it was recognized that combinations of α and β 

subunits are sufficient to form functional GABAA receptors (i.e. 2 α subunits and 3 β 

subunits to form a receptor).  However, the majority of native receptors contain a third 

subunit type.  For example, using western blots where the relative reactivity of the 

antibodies had been determined, Tretter et al., (1997) found that the ratio of subunits in 

recombinant receptors α1β3 and α1β3γ2 are 2α1:3β3 and 2α1:2β3:1γ2, respectively.  In a 

different quantitative study, which compared the maximal fluorescent signal from c-myc-

labeled subunits expressed as α1(c-myc)β2γ2, α1β2(c-myc)γ2, and α1β2γ2(c-myc) receptors, 
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the measured fluorescent signal was found to be twice as intense in expression with 

labeled α1(c-myc) or β2(c-myc) than in expression with labeled γ2(c-myc).  This finding 

supported a 2:2:1 stoichiometry (Farrar et al., 1999).  Another line of evidence for the 

2:2:1 stoichiometry came from studies that employed the expression of α-β and β-α 

concatenated subunits.  These concatenated complexes could not produce functional 

receptors when expressed alone or with α, but when β or γ was included functional 

expression resulted (Baumann et al., 2001).  The use of a variety of concatenated subunit 

combinations also demonstrated that the only subunit arrangement of α1β2γ2 receptors’ 

subunits that get trafficked to the cell surface was β2α1β2α1γ2 in a counterclockwise order 

(Baumann et al., 2002).  This subunit arrangement is consistent with the formation of the 

appropriate inter-subunit interfaces known to bind GABA (β/α interfaces) and 

benzodiazepines (α/γ interface) (Cromer et al., 2002).  All in all, data accumulated from 

different studies using quantitative immunoprecipitation (Tretter et al., 1997), 

fluorescence resonance energy transfer between epitope-tagged subunits (Farrar et al., 

1999) and electrophysiology of receptors with concatenated subunits (Baumann et al., 

2002; Boileau et al., 2005; Baur et al., 2006) revealed a stoichiometry of two α, two β and 

one γ subunit, arranging in a counterclockwise order of βαβαγ, as the dominant assembly 

of GABAA receptor subunits.  In addition, studies employing subunit-specific antibodies 

demonstrated that the most abundant GABAA receptor subtype in brain is formed from 

α1, β2 and γ2 subunits (McKernan and Whiting, 1996; Sieghart and Sperk, 2002; Whiting, 

2003; Benke et al., 2004).   

Receptors composed of alternate subunit combinations have also been identified.  

For examples, GABAA receptors are also commonly formed from other α, β and γ 
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combinations such as α2β3γ2 and α3β3γ2.  Less common, though no less functionally 

important, are receptors in which the third subunit is a δ subunit (e.g. α4β3δ or α6β3δ) 

instead of a γ subunit.  γ-containing receptors are thought to primarily localize at the 

synapse, while δ-containing receptors tend to localize extrasynaptically or 

perisynaptically (Sun et al., 2004).  In other receptor subtypes, the γ subunit may be 

replaced by either ε or π, while π and θ subunits may be capable of co-assembling with α, 

β and γ subunits to form receptors containing representatives from four families (Bonnert 

et al., 1999; Neelands and Macdonald, 1999; Neelands et al., 1999; Sieghart and Sperk, 

2002).  Additional variability comes from the fact that individual receptors may contain 

two different α or β subunit isoforms (Benke et al., 2004; Minier and Sigel, 2004; 

Boulineau et al., 2005).  

The diversity of pentameric combinations is also limited by the differential 

distribution of subunit types among brain regions and neuron groups (Fritschy and 

Mohler, 1995; Pirker et al., 2000).  For example, while some subunits such as the α1 and 

γ2 are ubiquitous, others such as α6, ε and π are much more restricted in their distribution.  

For example, α6 has been shown to express primarily in granule cells of the cerebellum 

and inferior colliculus (Luddens et al., 1990).  On the other hand, the ε and θ subunits are 

found mainly in modulatory regions or nuclei such as cholinergic, noradrenergic, 

serotonergic, dopaminergic, and histaminergic cell groups (Sinkkonen et al., 2000; 

Moragues et al., 2003; Sergeeva et al., 2005).  The π subunit is present at low levels in 

brain, but is strongly expressed in various other organs, including uterus and breast 

(Hedblom and Kirkness, 1997; Zafrakas et al., 2006). 
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The diversity of GABAA receptors is further enhanced by another subtype known 

as GABAA ρ (formerly referred to as the GABAC receptor).  This receptor subtype 

consists entirely of ρ subunits, which were first cloned from retina (Cutting et al., 1991).  

Unlike the majority of GABAA receptors, which are heteromeric pentamers, the ρ-

containing family of GABAA receptors can form homomeric pentamers consisting of 

entirely ρ1 subunits or from heteromeric receptors containing only combinations of ρ1, ρ2, 

and ρ3 subunits (Enz and Cutting, 1999; Sieghart and Sperk 2002).  Compared to other 

GABAA receptor subtypes, GABAA ρ receptors are known to have higher sensitivity for 

GABA, yet their currents are generally smaller (Enz and Cutting, 1999).  Also, 

pharmacologically, they are insensitive to such modulators as barbiturates, 

benzodiazepines as well as to the classical GABAA receptor antagonist bicuculline 

(Feigenspan et al., 1993; Feigenspan and Bormann, 1994).  It was this difference in 

substrate preference that initially caused them to be classified as GABAC receptors, 

However, the later characterization of their subunit composition and transduction 

mechanism revealed them to be a GABAA receptor subtype (Mohler, 2007).   

The diversity in function among subtypes of GABAA receptors potentially gives 

rise to a great array of targets for pharmacologic agents.  Presented with many similar 

targets, the one potential problem for drug design would be undesirable non-specific 

effects.  Therefore, to target a specific population of GABAA receptors effectively, it is 

crucial to first understand the functional parameters that set them apart.  Often, such 

functional parameters include the nature of ligand binding, the kinetics elicited, and the 

physiologically relevant effects.  While the kinetics and effects of activating certain 
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subpopulation of receptors can be readily measured, it is much more difficult to detect the 

nature of ligand-receptor interaction. 

 
GABAA receptor as a member of the cys-loop ligand gated ion channels family 

The GABAA receptor is a member of the cys-loop superfamily of ligand-gated ion 

channels (cl-LGICs), which includes nicotinic acetylcholine (nACh) and 5-

hydroxytryptamine type 3 (5-HT3) receptors (cation channels) and anionic GABA and 

glycine receptors (anion channels).  The members of this superfamily are characterized 

by a conserved motif in the extracellular amino-terminal domain in which two cysteine 

residues form a disulphide bridge (Simon et al., 2004).  The cl-LGICs are pentameric, 

often arising from the assembly of heterologous subunits that form a central ion channel, 

are activated by the binding of a small neurotransmitter molecule to the extracellular 

inter-subunit interfaces (Lester et al., 2004; Peters et al., 2005; Sine and Engel, 2006).  

Besides an extracellular amino terminal domain responsible for ligand binding, each 

subunit also has a carboxyl terminal part containing four trans-membrane domains (M1–

M4) that form the ion-selective channel (Figure 1.1).   

The binding of GABA molecules to the receptor’s extracellular domains must 

somehow be rapidly translated into movement of the appropriate parts of the pentameric 

complex to lead to opening of the channel.  It is known that binding of two GABA 

molecules at the extracellular interfaces between α and β subunits is necessary to fully 

activate the receptor (Figure 1.2).  The lack of a crystal structure for GABAA receptor has 

made it difficult to dissect the binding and gating processes involved in normal GABAA 

receptor function.  However, in recent years, models of receptor structure such as those 

arising from combining the atomic-scale model of the nicotinic acetylcholine receptor 



  

 

10 

(nAChR) from electric organ of electric ray, Torpedo marmorata, (Unwin, 2005) and the 

crystal structure of the soluble acetylcholine binding protein (AChBP) from snail, 

Lymnaea stagnalis, (Brejc et al., 2001; Celie et al., 2004) have helped advance our 

understanding for the molecular basis of GABAA receptor function.   

 

 
General description of the cl-LGICs’ ligand-interacting domain 

The structure of the nAChR, by far, is the best understood among cl-LGICs.  The 

nAChRs are found in the CNS and in neuromuscular junctions.  A major subtype of 

nAChRs, with a heteropentameric stoichiometry of (α1)2β1δγ is found at the 

neuromuscular junction in vertebrates and in the electric organs of fish (i.e. electric ray, 

Figure 1.1 Characteristics structural 
domains of a cl-LGIC subunit.  A) Linear 
illustration of the cl-LGICs subunit.  Each 
subunit possesses a large extracellular N-
terminal domain containing the disulfide 
bond (cys-loop) charateristic of the 
superfamily (*) and ligand-binding regions, 
followed by four transmembrane domains 
(squares).  Arrows indicate the 
extracellular (EC) and the intracellular (IC) 
domains.  B) Receptors are constructed as 
pentameric ion channels from the assembly 
of five subunits in a ring structure, creating 
an ion pore within. This image shows 
ribbon presentation of the receptor viewed 
from the side, based on a homology model.  
Only a small part of the intracellular 
domain is shown. 
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Torpedo californica).  In the CNS, nAChRs exist in many different subtypes; the most 

common of which is made up of two α4, one β2 and two other subunits.  It is also known 

that α7-α9 can form homopentamers (McGehee, 1999).  

Early studies involving immunoelectron microscopy provided limited structural 

information of the receptor complex (Klymkowsky and Stroud, 1979; Kistler and Stroud, 

1981).  However, more recent data coming from electron microscopy (EM) studies of 

Torpedo receptors (Unwin, 1995; Miyazawa et al., 1999), which were refined and 

compared (Unwin, 2005) with the AChBP crystal structure (Brejc et al., 2001), have 

allowed for a more detailed model of the nAChR’s extracellular domain.  This model was 

verified by Dellisanti et al. (2007) when they solved the crystal structure of the 

extracellular domain of nACh receptor α1 in complex with the α-bungarotoxin at 1.94 Å. 

In 2001, Brejc and colleagues reported the discovery of an acetylcholine binding 

protein from snails.  This protein was thought to act as a buffer for ACh in the synapse.  

It is homologous to the extracellular region of the nAChR α subunit and is also a 

pentamer.  This AChBP, which is water soluble, was crystallized and its structure was 

resolved to 2.7Å.   The sequence of AChBP aligns with the N-terminal extracellular 

ligand-binding domains of all cl-LGICs (Brejc et al., 2001).  AChBP has sequence 

identities between 15 – 25% with respect to GABAA, glycine, 5-HT3, and nAChR 

subunits (Sixma and Smit, 2003).  Although this level of identity in primary sequence is 

relatively low, the secondary structures are much more conserved.  Thus, the current 

homology models of the extracellular domain of receptors such as nACh and GABAA 

receptors are based on the known structure of AChBP. 
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Figure 1.2 GABAA receptor – subunits stoichiometry, arrangement, ligand binding sites, 
and modulator sites.  Depicted is the most common subunit stoichiometry of GABAA receptor, 
consisting of 2α, 2β, and one γ subunit.  These subunits have been shown to assemble in a 
counterclockwise order of βαβαγ (top arrow).  The endogenous agonist, GABA, binds at the two 
β/α interfaces, leading to channel opening and conduction of chloride.  This schematic 
representation of a GABAA receptor also illustrates the different sites of action for different 
classes of molecules that interact with GABAA receptor.  The agonist, GABA, and the antagonist, 
SR-95531, bind at both β/α inter-subunit interfaces.  Benzodiazepines bind at the α/γ inter-subunit 
interface (Sigel and Buhr, 1997; Boileau et al., 1998).  Propofol binds near the extracellular end 
of the third transmembrane domain on the β subunit (Bali and Akabas, 2004).  Pentobarbitol 
interacts with parts of the first three transmembrane domains of β subunits (Amin, 1999; Serafini 
et al., 2000).  Neurosteroids interact with the transmembrane domains at β/α inter-subunit 
interfaces and within a cavity of the α subunit (Hosie et al., 2006; Akk et al., 2008).  Volatile 
anesthetics and alcohols interact with the receptor at sites in the transmembrane domains (Mihic 
et al., 1997). 
 

A common theme, between the structure of AChBP’s and all cl-LGICs’ ligand-

binding sites, is an inter-subunit “pocket” lined with six characteristic discontinuous 

loops termed A-F.  Loops A through C are contributed by the one subunit and loops D 

through F are contributed by an adjacent subunit.  For example, in nACh receptors, 

photoaffinity studies have identified that the α-subunit contributes what has been termed 

the principal binding face (+), which consists of residues clustered in loops A, B, and C 

(Galzi et al., 1990; Dennis et al., 1988; Sine et al., 1994) and the neighboring subunit (γ 

or δ) contributes loops D, E, and F on what has been termed the complementary binding 
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face (-) (Chiara et al., 1999; Czajkowski and Karlin, 1995; Sine, 1997).  Across the cl-

LGICs, amino acid residues from these loops have consistently been identified to hold 

critical roles in ligand binding.  

 Photoaffinity labeling experiments have also provided evidence for the location of 

the GABA-binding site, which is located at the interface of β and α subunits (Figure 1.2).  

Two separate studies labeled GABAA receptor subunits isolated from the brain with a 

tritiated homologue of GABA, [3H] muscimol (Casalotti et al., 1986; Deng et al., 1986).  

[3H] muscimol was found to incorporate into a band of 57 kD, corresponding to the β 

subunit and was also found to label a 52 kD band corresponding to the complementary α 

subunit when higher concentrations of purified receptor protein were analyzed.  

 
Mutagenic-based examinations of the GABA-binding pocket  

 Mutagenesis studies of the GABAA receptor have identified several amino acid 

residues that may be involved in GABA binding.  Consistently, almost all of these 

binding-related residues are found on the six discontinuous loops at the β/α inter-subunit 

interface.  A rather useful application of mutagenesis, for the initial screen of an amino 

acid residue’s involvement in receptor function, is the substituted-cysteine accessibility 

method (SCAM).  This method provides an approach for identifying the amino acid 

residues that line channels, transporters, or binding-site pockets in membrane-spanning 

proteins (Akabas et al., 1992; Chen et al., 1997; Karlin and Akabas, 1998).  Briefly, 

SCAM works on the premise that amino acid residues involved in ligand binding, for 

example, would face into the aqueous environment and therefore be more accessible than 

those not participating in ligand binding.  As such, residues are mutated to cysteine and 

subsequently tested for accessibility by measuring reaction with a sulfhydryl reactive 
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reagent.  The measured reactivity would indicate whether the residue is found on the 

aqueous surface within or near the ligand-binding site.  Generally, residues found to be 

accessible to the sulfhydryl reactive reagent would be said to potentially face the binding 

pocket.  On the other hand, the lack of reactivity may arise if the mutated residue is not 

accessible and does not react with the reagent.   

 

 

 

 

 

 
Figure 1.3 Chemical structures of the competitive antagonist (SR-95531) and the agonist 
(GABA) 
 

While the measured reactivity only indicates whether an amino acid residue is 

exposed to the aqueous environment, a further test involving the measured rate of 

reaction in the presence of agonist or antagonist would indicate whether a given residue 

lies near the ligand-binding site.  As such, several studies employing SCAM have 

identified a number of amino acid residues that line the binding pocket of GABAA 

receptors (Boileau et al., 1999; Boileau et al., 2002; Newell and Czajkowski, 2003; 

Wagner and Czajkowski, 2001; Holden et al., 2002; Kloda and Czajkowski, 2007).  

GABA and SR-95531 share a structural motif – a carboxyl group and an amino group 

separated by a length of a three-carbon chain (Figure 1.3).  This SCAM approach 

identified 20 residues for which the rate of reaction with sulfhydryl reagents was reduced 

in the presence of GABA (loop A: β2Y97C and β2L99C; loop B: β2T160C and β2D163C; 

loop C: β2S204C, β2Y205C, β2R207, and β2S209; loop D: α1F65C, α1R67C, and α1S69C; 
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loop E: α1K117C, α1L118C, α1E123C, α1L128C, α1T130C, and α1R132; loop F: 

α1V178C, α1V180C, and α1D183C).  Two residues, α1D63C (Loop D) and α1R120C 

(Loop E), were only protected by SR-95531.  Since SR-95531 is larger than GABA, 

these residues are considered less proximal to the actual GABA-binding site. 

One way to further assess the involvement of a residue in agonist-receptor 

interaction is by measuring the changes in a receptor’s function caused by its mutation.  

This approach can be referred to as the structure-function perturbation method (Ackers 

and Smith, 1986).  Typically, if a mutation results in a large rightward shift of the GABA 

concentration-response curve, the residue has a possible role in binding.  Although in this 

mutational-electrophysiological approach, a variety of expression systems, subunit 

isoforms, and side-chain substitutions have been utilized in different studies, the basic 

interpretation that a residue has a role in binding process if its mutation leads to a large 

significant change in EC50-GABA remains the norm. 

However, EC50 value is actually a macroscopic manifestation that is influenced by 

the integration of multiple microscopic processes such as ligand binding and unbinding, 

channel opening and closing, and desensitization and resensitization; therefore, 

concentration-response curves do not directly reveal information about these individual 

microscopic processes (Colquhuon, 1998).  As such, a finer analysis is needed to 

determine if a residue is directly involved in binding.  Wagner et al. (2004) provided the 

first detailed dissection of the biophysical role of a binding-pocket residue, applying the 

biophysical tools described by Jones et al., (1998), Jones et al., (2001), Sigworth, (1980), 

and Colquhoun and Hawkes, (1995).  They examined the effects caused by cysteine 

substitution of β2R207 using rapid-ligand application, single-channel recording, and 
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kinetic modeling.  It was found that β2R207C caused a 20-fold increase in the unbinding 

rate of GABA, an eight-fold decrease in the binding rate of GABA, and had no effect on 

any of the rates associated with gating.  They concluded that β2R207 is important for 

stabilizing the ligand-receptor complex, and suggested a possible direct interaction 

between the GABA molecule and β2R207.  

Additionally, given that cation-π interactions, which occur between a cation and 

the negative electrostatic potential on the face of an aromatic ring, are common at 

protein-protein interfaces (Gallivan and Dougherty, 1999; Crowley and Golovin, 2005) 

and especially protein-ligand interfaces (Zacharias and Dougherty, 2005), aromatic 

amino acid residues (π orbital donors), too, have emerged as central structure-function 

determinants at these interfaces.  The use of unnatural aromatic amino acid substitution 

has been used extensively to test for cation-π involvement of aromatic residues at the 

ligand-binding site of cl-LGICs.  Briefly, in vivo nonsense suppression methods allow 

synthetic amino acids (i.e. via engineered t-RNAs) to be incorporated during translation 

of a protein, allowing point mutation with an unnatural amino acid (Beene et al., 2002).  

This approach provides a powerful tool to get at the specific chemical properties of a 

side-chain.  The technique has been successfully applied in LGICs to explore cation-π 

interactions. 

 
Amino acid residues implicated in GABA-receptor interaction  

As mentioned above, aromatic residues are known to cluster at or near the binding 

pockets of cl-LGICs.  In nAChR this cluster of aromatic residues is referred to as the 

“aromatic box”.  These aromatic residues are associated with the six discontinuous 

binding pocket loops (Akabas, 2004).  The resulting “aromatic box”, which consists of 
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tyrosines and tryptophans from loops A, B, C, and D, may provide a hydrophobic barrier 

that excludes water from the binding pocket and, at the same time, serve as potential sites 

for direct docking of ligand.  At least one aromatic residue in nACh receptors (Zhong et 

al., 1998), 5-HT3 receptors (Beene et al., 2002), GABAA receptors (Padgett, et al., 2007) 

and GABAA ρ receptors (Lummis et al., 2005), and glycine receptors (Pless et al., 2008), 

has been shown to participate in cation-π interaction at the binding pocket.  

On the GABAA receptor, several aromatic residues have been shown to be at the 

binding pocket, including β2Y97, β2Y157, β2F200, β2Y205, and α1F65.  Padgett et al. 

(2007) explored whether β2Y97, β2157, and β2Y205 participate in cation-π interactions, 

using unnatural amino acid mutagenesis in which fluorinated aromatic side chains were 

substituted for the natural tyrosine side chains.  This technique takes advantage of the fact 

that fluorine is electron-withdrawing, and each fluorine added to the aromatic ring serves 

to further reduce the negative electrostatic potential on the face of the aromatic ring.  

They found that only β2Y97 demonstrated a direct relationship between the number of 

fluorines added and EC50-GABA.  Due to the strong correlation observed between cation-π 

ability at position 97 of β2 and EC50-GABA, they proposed that β2Y97 directly interacts 

with the primary amine of GABA via a cation-π bond.  From the lack of evidence for 

cation-π interaction at β2Y157 and β2Y205 they suggested that these residues require the 

electronegative groups at their C4 positions to function, perhaps via hydrogen bonds with 

neighboring side chains.  This proposal is consistent with an earlier study, which 

suggested that β2Y157 and β2Y205 are involved in GABA binding.  When these residues 

were conservatively substituted by phenylalanine, the receptors had a much-reduced 

sensitivity to GABA; EC50-GABA was increased by 50-fold compared to normal (Amin and 
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Weiss, 1993).  The same study also reported that an even further reduction in GABA 

sensitivity resulted when either tyrosine residues were mutated to such non-aromatic 

amino acids as serine and asparagines, hinting that these tyrosine side chains may be 

bifunctional. 

While these aromatic tyrosine residues may have significant contribution to 

GABA binding, the data reported by Padgett et al. (2007) was incomplete.  For instance, 

it emphasized only on what type of interaction may occur between aromatic residues with 

the amino end of the GABA molecule.  The interaction at GABA’s carboxyl end is still 

unaccounted for.  There is as high a chance for the carboxyl end of GABA to interact 

with surrounding residues as the amino end.  Therefore, it is expected that some non-

aromatic elements at the binding pocket may serve to secure the carboxyl end of GABA.   

A study by Wagner and Czajkowski (2001), using SCAM and patch clamping 

techniques, identified one arginine residue and two aromatic residues critical in GABA as 

well as SR-95531 (competitive antagonist) binding.  This study showed that β2R207C, 

β2Y205C, and β2F200C caused 70, 18,000, and 300 fold increases in EC50-GABA 

respectively.  However, no reaction was detected between biotin-tagged 

methanethiosulfonate, a thiol-reactive reagent used for cysteine residue labeling, and 

β2F200C.  They subsequently proposed that β2Y205 and β2R207 but not β2F200 line the 

GABA-binding pocket.  Wagner and colleagues (2004) provided evidence that β2R207 

directly influence the binding rate of GABA by measuring the changes in the GABA 

binding rate (kon-GABA) caused by mutating β2R207.  They proposed that β2R207 may help 

coordinate the carboxyl end of GABA. 
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Other arginines have been suggested to play a role in GABA binding.  SCAM was 

used to demonstrate that α1R67 lines the GABA-binding pocket and influences GABA 

affinity (Boileau et al., 1999).  α1R67 is also suggested to be a likely partner of the 

carboxyl end of GABA, through homology modeling (Cromer et al., 2002).  

Additionally, Westh-Hansen et al. (1999) found that a lysine substitution at α1R120 

(α1R120K) resulted in a 180-fold increase in EC50-GABA.  The critical roles of these 

arginines were demonstrated by a study involving their counterparts on the α5 subunit 

(α5R70 and α5R123).  In this study, mutation of α5R70 and α5R123 to lysines caused 

650- and 148-fold increases in EC50-GABA, respectively (Hartvig et al., 2000). 

 
Structural motifs crucial for GABA binding are conserved in other cl-LGICs  

A convenient way to assess functional conservation of key motifs among cl-

LGICs is to consider them in the context of the discontinuous loops that line each ligand-

binding pocket (Figure 1.4).  For reference, when considering a ligand-binding pocket 

formed at the interface of two adjacent subunits (i.e. β/α interface), loops A through C 

are located on the “principal” face (i.e. β subunit side) and loops D through F are located 

on the “complementary” face (i.e. α subunit side) (Figure 1.4).  In GABAA receptors, 

several aromatic and positively charged residues found on these loops have been both 

directly shown and indirectly implicated in ligand binding.  These residues are listed in 

Table 1.1.  Residues playing similar roles in ligand binding have also been identified in 

other cl-LGICs (Figure 1.5, Table 1.1).  
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Figure 1.4 Important elements at the GABA-binding pocket.  Side view of the extracellular 
domain of the β/α inter-subunit interface.  In purple are six discontinuous loops that line the inter-
subunit interface where GABA binds.  By orientation, loops A through C are contributed by β 
subunit (primary face, +) and loops D through F are contributed by α subunit (complementary 
face, –).  The aromatic residues (green) and the arginine residues (red) shown are explored in the 
studies documented here.  Note each subunit is asymmetric and therefore opposite sides of the α 
subunit and β subunit are involved in GABA binding.  The classic binding site loop nomenclature 
is used (Kash et al., 2004). 
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Figure 1.5 Sequence alignments of the extracellular domains of cl-LGICs and AChBP. 
Presented here is the alignment of the extracellular N-terminal domains of the α1, β2, γ2, and ρ1 
subunits of the human GABAA receptor, a mouse serotonin type 3A receptor subunit, the α1 
subunit of the human glycine receptor, the α1 subunit of the mouse nicotinic acetylcholine 
receptor, and the Lymnaea stagnalis acetylcholine binding protein (Brejc et al., 2001; O’Mara et 
al., 2005; Dellisanti et al., 2007).  Identity between these primary sequences ranges from 15-25%; 
however, the secondary structures align very well.  The six putative binding site loops are labeled 
A-F (Kash et al., 2004). Located on the discontinuous loops are a number of aromatic (green) and 
charged (red) residues implicated in GABA binding, which are also the focus of the studies 
presented in this dissertation. 
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Table 1.1 Discontinuous loop residues that play important roles in ligand binding, 
investigated here, and in other cl-LGICs. 

Loop GABAA GABAA ρ Gly AChBP nACh 5-HT3A 

A β2Y97 F138 F99 Y89 α1Y93  

B β2Y157 Y198 F159 W143 α1W149 W183 

C β2F200 

β2Y205 

β2R207 

Y241 

Y247 

R249 

Y202 

F207 

Y185 

Y192 

α1Y190 

α1Y198 

F226 

Y234 

D α1R67 R104 R65 W53 γW55 W90 

E α1R120 

α1R132 

R158 

R170 

R119 

R131 

R104 γL109 Y153 

F -- -- -- -- -- -- 

Bold = participates in cation-π bond that influence ligand binding.  Residues from homomeric 
receptors are not preceded by subunit name.  

 
In the original crystallization of AChBP, a HEPES (N-2-hydroxyethylpiperazine-

N9-2-ethanesulphonic acid) buffer molecule was found in the ligand-binding site (Brejc 

et al., 2001).  HEPES contains a positively charged quaternary ammonium group and this 

group stacks on W143 (loop B).  The other four aromatic residues, Y89 (loop A), Y185 

(loop C), Y192 (loop C), and W53 (loop D), form the remainder of the binding cavity, 

often referred to as the “aromatic box”, directing their π electrons or hydroxyl groups 

towards the agonist (Brejc et al., 2001).  The interactions between ligand and receptor 

were further revealed by the crystal structures of the AChBP in complex with nicotine 
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and carbamylcholine (both exogenous nAChR agonists) solved by Celie et al. (2004).  

These structures identified a number of amino acids that interact with the ligand.   

The principal face of the binding pocket makes the most contacts with the ligand. 

W143, which aligns with β2Y157 of the GABAA receptor, forms a cation-π interaction 

with both agonists.  Other residues that make aromatic contacts with the ligand include 

Y192 (GABAAR β2Y205) and Y185 (GABAAR β2F200).  No aromatic contact with the 

ligand was identified for Y89 (loop A), which roughly aligns with GABAAR β2Y97.  

However, Y89’s hydroxyl group has a close contact with the ligand.   

On the complementary side, W53 (GABAAR α1F65) makes limited aromatic 

contacts to nicotine.  L112 (GABAAR α1L128) and M114 (GABAAR T130) contribute 

hydrophobic contacts to the binding of both nicotine and carbamylcholine.  R104 

(GABAAR α1R120) was found to only make contacts carbamylcholine.  This loop E 

arginine was recently shown to participate in an inter-subunit state-dependent salt bridge, 

in GABAA receptor (Laha and Wagner, 2011).  

Additionally, Celie et al. (2004) noted that AChBP’s Y185 (loop C), which aligns 

with β2F200 of the GABAA receptor, forms hydrogen bond with K139 (adjacent to Loop 

B), upon ligand binding.  This ligand-dependent interaction may influence ligand affinity, 

either by reorienting the Y185 side chain or by stabilizing the loop C in its binding 

conformation.  Also, this intra-subunit interaction may help transduce ligand binding into 

channel gating (Celie et al., 2004).  This proposed role is based on observations of 

Y185’s equivalent in the nAChR (α1Y190).   

Nicotinic AChR α1Y190 has been demonstrated to be critical for acetylcholine 

binding affinity and desensitization (Sine et al., 1994).  By individually mutating α1Y190 
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as well as two other tyrosines (α1Y93 and α1Y198) to cysteine, histidine, isoleucine, 

phenylalanine, serine, threonine, and tryptophan, Sine et al. (1994) found that the 

hydroxyl group of the aromatic side chain is essential for functional contribution of 

α1Y93 and α1Y190, while the aromatic ring of the side chain is essential for α1Y198 

(GABAAR β2Y205).  It should be noted here that if the homology model of the GABAA 

receptor (Cromer et al., 2002) is accurate, it is expected that the side chain function 

would not be conserved for β2F200 of GABAA receptor because it lacks a hydroxyl 

group.  Another nAChR aromatic residue (α1W149, loop B) is known for the importance 

of the aromatic ring of its side chain.  This residue was shown to possess a cation-π 

interaction important for ligand interaction (Zhong et al., 1998), like W143 in AChBP.  

As seen in AChBP and nAChR, a tryptophan in the 5-HT3 receptor (W183 from 

the type A subunit) contributes a cation-π interaction that facilitates ligand binding 

(Beene et al., 2002).  5-HT3 receptors exist in two forms, either as homopentameric 5-

HT3A or as a heteropentameric combination of type A subunits with either B, C, D, or E 

subunits. (Sixma and Smit, 2003).  The homology model developed for the 5-HT3 

receptor (Reeves et al., 2003; Thompson et al., 2005) describes a ligand-binding pocket 

lined by many aromatic residues.  Besides the tryptophan (W183) that forms a cation-π 

interaction with the agonist, the 5-HT3 receptor’s binding site also contains one additional 

tryptophan (W90), a phenylalanine (F226) and several tyrosines (Y143, Y153, Y234) that 

contribute to the characteristic “aromatic box” of this receptor (Beene et al., 2002).  

Beene et al., 2004 also showed, through unnatural amino acid substitution, that Y143 

forms a hydrogen bond that is essential for receptor gating but does not affect binding, 

and that Y153 forms a hydrogen bond involved in both binding and gating of the 
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receptor.  The same study also demonstrated that the aromatic, not the hydroxyl, group of 

Y234 is essential for proper function of the 5-HT3 receptor.  This Y234 residue is 

conserved among cl-LGICs (i.e. aligns with β2205 of GABAA and α1Y198 of nACh 

receptors).  The model they derived suggests that Y143 is likely to hydrogen bond with 

the backbone carbonyl of W183, an interaction proposed elsewhere (Maksay et al. 2003).  

These different effects of various tyrosine side chains at the ligand-binding pocket will 

provide useful references for the investigation of GABAA receptor tyrosines (chapter IV). 

A cation-π interaction that mediates ligand binding has also been identified at 

GlyR binding site.  The GlyR cation-π aromatic is a phenylalanine (F159, loop B) that 

aligns with the cation-π aromatics identified in nACh (α1W149), 5-HT3 (W183), and 

GABAA ρ (Y198) receptors (Pless et al., 2008; Pless et al., 2011).  The exception is the 

GABAA receptor in which the aligned aromatic (β2Y157) does not appear to be involved 

in a relevant cation-π bond while a tyrosine on loop A (β2Y97) does (Padgett et al., 

2007).  

The way that GABAA receptor interacts with its ligand is not entirely different 

from those found in other cl-LGICs.  For example, similarities between GABAARs and 

GlyRs are found with the critical roles played, in ligand affinity, by various charged 

amino acid side chains.  Using site-directed mutagenesis combined with AChBP-base 

homology modeling, Grudzinska et al. (2005) identified key ligand-binding residues of 

recombinant homopentameric α1 and heteropentameric α1β GlyRs.  They located the 

major determinants of the ligand-binding site to two highly conserved, oppositely 

charged residues (α1R65 and α1E157) positioned on adjacent interfaces of the α and β 

subunits.  Interestingly, GlyR α1R65 aligns with GABAAR α1R67, a residue whose 
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contribution to structure and function at the GABA-binding site was explored and 

documented in chapter III.  GlyR α1E157 aligns with GABAAR β2E155, mutation of 

which was suggested to affect both binding and gating processes (Newell et al. 2004). 

Also, aligned with GlyR α1R65 and GABAAR α1R67 is an arginine (R104) from 

homopentameric GABAA ρ receptor.  Harrison and Lummis (2006) showed that mutating 

R104 to either alanine or glutamate causes at least a 10,000-fold increase in EC50-GABA.  

The same study found that mutating residue R158 of GABAA ρ (which aligns with 

GABAAR β2R120) to alanine, glutamate, or lysine resulted in nonfunctional receptors, 

and mutating GABAA ρ R170 (which aligns with GABAAR α1R132) caused either total 

loss of function (R170D, R170A) or 10-fold increase in EC50-GABA (R170K).  

Additionally, Harrison and Lummis (2006) found that mutating R249 of GABAA ρ 

receptor caused relatively milder effects on EC50-GABA (R249A: 15-fold increase, R249D: 

4-fold increase, and R249K: 289-fold increase).  The homopentameric GABAA ρ 

receptor also resembles other GABAA receptors (heteropentamers) in terms of the 

aromatic residues responsible for cation-π interaction at the ligand-binding pocket.  

Lummis et al. (2005) demonstrated that Y198 (loop B) of ρ GABAA receptor participates 

in a cation-π interaction critical for GABA binding.   

Table 1.1 is by no means an exhaustive list of residues that play important roles at 

the ligand-binding pocket of GABAA receptor and other cl-LGICs.  The list, however, 

reflects the relevance of studying the contributions of these residues in the GABAA 

receptor.  The major aim of this dissertation is to refine and add to the current best model 

of the GABAAR ligand-binding pocket.  To this end, three studies, presented in the 

following chapters, aim to: (i) examine the roles of arginine residues in GABA binding 
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via serial mutagenesis and kinetic analysis; (ii) examine the roles of aromatic side chains 

in GABA binding via serial mutagenesis and kinetic analysis; (iii) identify possible 

interactions between aromatic and arginine residues using double mutant cycle analysis.   

This work has resulted in the creation of a refined model for the GABAA receptor ligand-

binding pocket in which specific interaction and roles are proposed for β2F200, β2Y97, 

β2R207, α1R67, and α1R132.  Notably, we propose a tight structural and functional 

interaction between β2F200 and β2Y97, a novel coordination of the amino group of 

GABA via a cation-π interaction with β2F200, and provide the most comprehensive 

evidence yet for an interaction between α1R67 and the carboxyl group of GABA. 
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II. MATERIALS AND METHODS 
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Engineering GABAA receptor mutant using site-directed mutagenesis 

In order to effectively drive the expression of the desired GABAA receptor 

subtype, the gene of each subunit was cloned into pcDNA3.1 vectors (Invitrogen, 

Carlsbad, CA) under the control of a high level expression human cytomegalovirus 

(CMV) promoter.  The resulting plasmids were used in combinations to achieve 

expression of heterologous GABAA receptors.  For example, to express receptors 

containing α1, β2, and γ2S subunits, plasmids containing the sequences encoding each 

subunit were introduced to expression vessels (i.e. HEK293 cells).  

PCR-based site-directed mutagenesis (QuikChange, Stratagene, La Jolla, CA) was 

utilized to introduce point mutations we wanted to investigate.  Briefly, for each 

mutation, we designed two complementary oligonucleotides, typically 40 to 50 bp.  

These oligonucleotides covered the codon of interest and incorporated a specific 

mismatch that changed the codon.  The QuikChange method utilizes an ultra-high fidelity 

polymerase (Pfu-Ultra).  In one reaction, with both primers, the polymerase amplified the 

entire plasmid.  Following the PCR reaction, DpnI, which digests methylated DNA, was 

added in order to eliminate the original template, leaving only the mutant products.  After 

DpnI digestion, 2 µl of the mixture was used for transformation into competent E. coli 

cells.  These cells were plated onto a LB-ampicillin (50 μg/ml) agar plate.  The ampicillin 

selected for cells that took up the pcDNA3.1 vector, which contains an ampicillin 

resistance gene.  After 18 hours of incubation several colonies were picked and used to 

inoculate 3 mL LB cultures with ampicillin (50 μg/ml).  Plasmid DNA from these 

cultures was then isolated using Wizard Plus SV mini-preps (Promega, Madison, WI).   

Minipreps often yielded 100 µl of pure plasmid at a concentration between 80 ng/µl to 
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250 ng/µl.  The coding region of each mutant plasmid was sequenced with forward and 

reverse primers to ensure the intended mutation was achieved and no additional 

undesireable changes occurred.  

 
Transient expression of GABAA receptors in HEK-293 cells 

Human embryonic kidney (HEK-293) was used for heterologous expression of 

GABAA receptors.  These cells were maintained in Minimum Essential Medium Eagle 

with Earle’s salts (Mediatech, Manassas, VA) supplemented with 10% newborn calf 

serum (Thermo Scientific, Waltham, MA) and Penicillin-Streptomycin-Glutamine 

(Mediatech) in a 37o C incubator under a 5% CO2 atmosphere.   They generally remained 

in optimal condition up to 50 passages.  For experiments, cells were plated onto 35 mm 

dishes coated with poly-L-lysine and were transfected 18 to 24 hours later using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA).   

Lipofectamine consists of cationic lipids, which interact with the phosphate 

backbone of the nucleic acid.  This interaction is via the cationic head groups of the lipids 

and does not result in the formation of micelles or liposomes surrounding the nucleic 

acid.  The cationic lipids also mediate the interaction of the nucleic acid with the 

negatively charged cell membrane. The complex enters the cell through endocytosis. 

 Receptors consisting of α1 and β2 subunits, or α1, β2, and γ2 subunits were used 

throughout this study.  For α1β2 receptors, the following amounts of cDNA were 

transfected: 500ng enhanced green fluorescent protein (eGFP), 1.5 µg of α1, 1.5 µg β2.  

For α1β2γ2 receptors the following amounts of cDNA were transfected: 500ng eGFP, 1 µg 

of α1, 1 µg of β2, and 3 µg of γ2S.  eGFP serves as a marker for identifying cells that are 

transfected.  A generally high correlation exists between expression of eGFP and 
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expression of GABAA receptors (unpublished); the exact mechanism is not understood.  

Cells were recorded from 48-72 hours post-transfection. 

Electrophysiology 

All recordings for this study were collected from outside-out patches excised from 

HEK-293 cells.  Patches were held at -60 mV.  Experiments were conducted at room 

temperature.  The outside-out configuration is achieved by obtaining a tight seal with a 

cell, followed by break-in using negative pressure, and then slowly drawing back the 

pipette, stretching the membrane until a portion re-seals over the tip as it separates from 

the cell.  Recordings were made using borosilicate glass pipettes filled with (in mM): 140 

KCl, 10 EGTA, 2 MgATP, 20 phosphocreatine and 10 HEPES, pH 7.3.  GABAA receptor 

agonists and antagonists were dissolved in the perfusion solution, which contained (in 

mM): 145 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 4 mM Glucose, pH 7.4.  For 

extracellular solutions that contained >30 mM GABA, the concentration of NaCl was 

reduced to 95 mM, and a combination of sucrose and GABA was added to compensate 

for the reduced osmolarity.  Final volume was carefully maintained to accurately obtain 

the desired concentration of GABA.  The pipette solution was adjusted in conjunction, 

reducing the KCl concentration to 90mM, and adding 50mM K-gluconate to maintain a 

constant Cl- driving force.  GABA, propofol and SR-95531 were obtained from Sigma-

Aldrich Chemicals, St Louis, Mo.  Data were collected at 10-20 kHz using an Axopatch 

200B amplifier (Axon Instruments, Foster City, CA) and an ITC-1600 digitizer 

(InstruTech, Port Washington, NY), controlled by Axograph X software (Axograph 

Scientific, Sydney, AUS).  Currents were low-pass filtered at 2-5 kHz with a four-pole 

Bessel filter, and digitized at a rate no less than twice the filter frequency. 
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In vivo, GABA mediated synaptic transmission normally takes place in less than a 

millisecond and the post-synaptic current decays in tens of milliseconds.  In order to 

study the receptor kinetics during such an event, it is necessary to apply and remove 

agonist on a similar time scale.  Rapid-solution exchange was accomplished by using a 

four-barreled flowpipe array (Vitrodynamics, Rockaway, NJ) mounted on a piezoelectric 

bimorph (Vernitron, Bedford, OH) (Figure 2.1). 

 

Figure 2.1 Rapid-ligand application protocol.  After pulling an outside-out patch, the electrode 
is lifted up to the flow-pipes, which are already positioned in the bath solution. While the 
electrode remains stationary, the flow-pipes can be rapidly shifted from side to side, exposing the 
patch at the tip of the electrode to the solution flowing out of any one of the four barrels. In a 
typical three-pipe protocol, the sequence of exposure is GABA (saturating concentration), wash, 
test (subsaturating GABA or saturating GABA plus SR), and back to wash. 
 

The four pipes are fused in a linear arrangement and manually pulled down to 100 

to 200 µm openings separated by septa of less than 10 µm.  A computer-controlled 

current source stimulates the bimorph to shift the position of the flowpipes with high 

precision, and causes enough displacement to expose a patch to solutions from all four 

pipes without moving the electrode.  The exchange time (the time it takes to completely 

clear the liquid junction interface between two pipes) is measured by examining open tip 
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potentials during a shift.  Open tip potentials are the result of differences in the mobility 

of sodium and potassium ions, which are at different concentrations in the internal pipette 

solution compared to the external solution.  In order to distinguish the agonist solution 

from the wash solution, a small amount of NaCl is added to the agonist solution, raising 

the Na+ concentration 5 mM.  This difference gives rise to the open tip potential.  The 10-

90% exchange time less than 200 µs would be considered good exchange time.  Good 

exchange is routinely checked between patches. 

 
Concentration-response experiments 

To obtain concentration-response curves, current responses evoked by a series of 

GABA concentrations are compared to the current response evoked by a saturating 

concentration of GABA.  The protocol begins with the electrode and patch in wash 

solution, then the pipes shift, exposing the electrode to the solution containing a 

saturating concentration of GABA.  After 500 ms the pipes shift back and the electrode is 

in wash solution for 12 to 15 seconds in order to recover from desensitization.  Next, the 

flowpipes shift the opposite direction, exposing the electrode to a solution containing a 

sub-saturating concentration of GABA.  After 500 ms the pipes shift back and the 

electrode is in the wash solution for 12 to 15 seconds.  This protocol is repeated 5 to 15 

times and an ensemble average for the two solutions is taken.  During a stable patch the 

sub-saturating solution can be changed by switching the solution with open flow directed 

through a 4:1 (inflow:outflow) manifold preceding the flowpipe.  Although three or four 

concentrations can sometimes be tested on a single patch, only one concentration was 

tested on the majority of patches due to difficulty in maintaining patch stability.  

Therefore, each concentration-response curve relies on data from several patches. 
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 For each concentration, the peak current was measured in Axograph X and 

normalized to the peak current for the saturating concentration on the same patch.  For a 

given concentration the normalized values for each patch were averaged and were plotted 

against the log of the concentration of GABA using Prism 4 software (GraphPad 

Software, Inc., San Diego, CA).  Non-linear regression of the plot was performed using a 

variable slope sigmoidal curve (Y = Ymin + (Ymax – Ymin) / (1+10^((LogEC50 -

X)*HillSlope))).   This identified the concentration that gives a half-maximal response, 

termed EC50. 

 
Analysis of macroscopic kinetics: Desensitization and Deactivation  

During rapid-ligand application distinct desensitization and deactivation phases of 

the current response are observed.   The desensitization phase of current responses during 

a 500 ms application of a saturating concentration of GABA was used for analysis 

(Figure 2.2 A).  The ensemble average of such responses was taken for a given patch and 

was used for analysis.  The ensemble average was fit using Axograph X.  The time of 

onset of desensitization was set to zero, and the region of desensitization was fit with a 

bi-exponential equation (Y= A1 x e-t/τ1 + A2 x e-t/τ2 + C), where t is time, Y is the total 

current amplitude at a given time, τ1 is the time constant of the fast component of decay, 

A1 is the relative amplitude of the fast component, τ2 is the time constant of the slow 

component of decay, A2 is the relative amplitude of the slow component, and C is a 

constant that accounts for the amplitude of current that remains. 

The deactivation phase following a 2-4 ms application of a saturating 

concentration of GABA was analyzed (Figure 2.2 B).  Ensemble averages were used.  

The time of GABA removal was set to zero, and the region of deactivation was fit with a 
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bi-exponential equation (Y= A1 x e-t/τ1 + A2 x e-t/τ2).  Since deactivation decays back to 

baseline, no constant was added. 

For both deactivation and desensitization, a weighted time constant (τw) was also 

calculated for each analysis.  τw = (A1/(A1 + A2)) x τ1 + (A2/(A1+A2)) x τ2.  This value 

allows for a simplified comparison of major changes that may occur in macroscopic rates 

of either phase.  For desensitization, the extent of desensitization is also taken into 

consideration.  This value is represented by the percent remaining.   

 

Figure 2.2 Example of a recording from wild-type receptors using a saturating GABA 
application for 500 ms and 2-4 ms.  A) Current evoked by long (500 ms) pulse of saturating 
GABA has three distinct phases.  First, when the patch has GABA solution applied, there is rapid 
activation as chloride ions flow across the membrane through the open channels.  Activation is 
determined both by binding (kon-GABA ) and gating.  The next phase is macroscopic desensitization, 
which is influenced by multiple microscopic transition states.  While still in GABA, receptors 
begin to close even though GABA is bound.  When the GABA solution is removed, the last 
phase, deactivation, occurs.  Current dissipates as channels close and GABA unbinds.  This is a 
complex process, which is determined by transitions in and out of desensitization and gating until 
unbinding is completed.  B) Typically, a purer deactivation is obtained following a brief (2-4 ms) 
pulse of GABA.  This brief application closely resembles the synaptic release of GABA. 
 

Antagonist unbinding experiments 

During antagonist unbinding experiments, the current that is evoked by GABA 

following a pre-equilibration in SR-95531 (a competitive antagonist) is measured.  
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Outside-out patches containing GABAA receptors were first exposed to a saturating 

concentration of GABA in order to establish a control response.  After returning to the 

wash solution for 12 to 15 seconds, SR-95531 was applied for 750 ms, and then rapidly 

switched to a solution containing saturating GABA.  This procedure was repeated 5 to 15 

times (for each patch), and ensemble averages were used for analysis.  The entire 

experiment was repeated several times, pre-equilibrating in the same concentration of 

SR-95531, to obtain a statistical n patches.  The whole process is repeated for different 

concentrations of SR to obtain a concentration response. 

The evoked current following pre-equilibration in SR-95531 (Iant) is shaped by the 

convolution of the time course of antagonist unbinding and the waveform of the control 

current, Ictrl (evoked with no pre-equilibration in antagonist) (Figure 2.3 A).  

Mathematically Iant is the convolution of Ictrl and the function (a(t)) that describes the rate 

at which receptors become available due to the unbinding of SR-95531 (Jones et al., 

1998).  Therefore, a(t) can be obtained by deconvolving Ictrl from Iant.  The following 

relationship expresses this operation, where F(f(x)) is the Fourier transform of f(x): 

  A(t) = F-1(F(Iant)/F(Ictrl)) 

Integration of a(t) then gives A(t), the fraction of receptors available for binding GABA 

as a function of time.  This is the deconvolved curve and reflects the time course of 

antagonist unbinding.   This curve was fit in Axograph X with the function: 

  A(t) = [P∞ - (P∞ - P0)exp(-t/τu)]N, 

where P0 and P∞ are the probabilities of being available initially (at t=0) and at steady 

state (as t →∞), N is the number of antagonist binding sites per receptor, and τu is the 
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time constant of antagonist unbinding (Jones et al., 1998).  koff-SR was obtained by taking 

the reciprocal of τu.    

 

Figure 2.3 Antagonist unbinding and race experiments.  A) Current evoked by a control pulse 
of GABA alone is overlayed with current evoked by GABA following pre-equilibration in SR-
95531.  B) Current resulted from simultaneous application of GABA and SR-95531 is compared 
to current evoked GABA alone. 

The experiment was repeated several times, pre-equilibrating in different 

concentrations of SR-95531.  The fraction of receptors available at t = 0 was plotted 

against the log of the concentration of SR-95531 (Prism 4).  This plot was fit with the 

normalized Hill equation for an antagonist: 

  B∞=1/(KD-SR/[SR-95531]N + 1). 

The best curve fits were always achieved with N=1, indicating that one SR-95531 

compound is bound.  This provided an accurate estimate of KD-SR.  After directly 

measuring koff-SR and KD-SR, the kon-SR was calculated. 

kon-SR = KD-SR / koff-SR   
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 Measuring the microscopic binding rate of GABA 

 The microscopic binding rate of GABA (kon-GABA) was measured using an 

established method, the race experiment, involving competition of GABA with an 

antagonist of known kinetics.  GABA was co-applied with the competitive antagonist 

SR-95531.  SR-95531 binds in the GABA binding pocket but does not induce any 

activation.   The ratio of channels that bind antagonist to those that bind GABA depends 

on the concentrations and relative binding rates of each.  The resulting activation is 

dependent on the percent of channels that bind GABA and are hence open.  The GABA 

binding rate was determined using the ratio of the peak current generated in the presence 

and absence of antagonist.  This ratio is termed Irace, and has the following relationship to 

kon-GABA:   

kon-GABA= ([SR-95531]kon-SR)/([GABA](1/Irace – 1)). 

 

 Alternating pulses of a solution containing only GABA with a solution containing 

GABA and SR-95531 were applied in order to observe Irace (Figure 2.3 B).  Incubation in 

wash solution (12 to 15 seconds) separated each application.  The only uncontrolled 

parameters were Irace (measured here), and the binding rate of SR-95531 (kon-ant), which 

was measured separately.  

 
Double-mutant cycle analysis 

Double mutant cycle analysis was performed on EC50 values, deactivation rates, 

and binding rates.  ΔΔG'o was calculated as RT ln (kmutant/kwild-type), where R is the ideal 

gas constant (1.987 calories/mole) and T is the absolute temperature (296 K).  Although 

EC50 and deactivation rates do not provide true kinetic rate constants, comparison of 

macroscopic parameters have been previously utilized to support side-chain interactions 
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and establish coupling coefficients (Kash et al., 2003; Price et al., 2007; Gleitsman et al., 

2008).  If two mutations have independent effects ΔΔG'o
(1,2) = ΔΔG'o

(1) + ΔΔG'o
(2) .  Any 

value of the coupling energy [ΔΔG'o
coupling  = (ΔΔG'o

(1) + ΔΔG'o
(2)) - ΔΔG'o

(1,2) )] that 

deviates from zero could indicate a dependence between two residues.  Due to the 

methodological inability to determine a true standard deviation in the sample population 

for several of our measured parameters (i.e. EC50 or KD), we consider a coupling energy 

of |0.5| kcal/mol or greater sufficiently indicates two residues are dependent.  This value 

is consistent with confirmed interaction energies between two side-chains (Hidalgo and 

MacKinnon, 1995; Ranganathan et al., 1996; Horovitz, 1996).  A significant coupling 

energy may not exclusively result from a direct interaction between two residues, but 

could result from secondary interactions through a third side-chain, or could be the result 

both residues contributing to the same structural element. 
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III.  SERIAL MUTAGENESIS OF α1R67 AND β2R207 
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Introduction 

 
In earlier site-directed mutagenesis studies, two arginine residues, α1R67 and 

β2R207, have been implicated in GABA binding (Boileau et al., 1999; Holden and 

Czajkowski, 2002; Wagner and Czajkowski, 2004).  Work from our lab further showed 

that these two arginine residues, when individually mutated to alanine, caused 142 and 25 

fold increases in EC50-GABA, respectively.  However, no specific information about their 

interactions with either GABA or other binding pocket structures has been identified.   

Here, we sought to understand how these arginines contribute to the structure and 

operation of the GABAA receptor’s binding pocket.  We addressed this question by 

mutating each arginine to a series of amino acid residues (Figure 3.1) and measuring 

changes in the function of GABAA receptor.  We quantified the effects of a mutation on 

receptor function by measuring the alterations in concentration response (i.e. affinity for 

GABA) and macroscopic kinetic parameters, such as desensitization and deactivation, 

from which we may draw binding and gating implications.

 

Figure 3.1 A selection of amino acids mutagenically introduced at α1R67 and β2R207. 

 



  

 

42 

Results 

 
In order to achieve consistent expression, all of the mutations were initially 

expressed in the background of α1β2-GKER, which also served as our control construct 

(Laha and Wagner, 2011; Bollan et al., 2003); this receptor shows no difference in its 

macrokinetic profile compared to α1β2 receptor (Table 3.1).   For readability, the mutant 

constructs α1R67Aβ2-GKER and α1β2-GKERR207A, for example, will be referred to as 

R67A and R207A; this same nomenclature will also be used with other mutant 

constructs.  In later experiments in which γ2-containing receptors were expressed, the full 

labels, such as α1R67Aβ2-GKERγ2 and α1β2-GKERR207Aγ2, will be used. 

Each construct studied was transiently expressed in HEK-293 cells, in order to 

record GABA-evoked currents from outside-out patches.  Initial evaluation typically 

involved determination of EC50-GABA, characterization of macroscopic desensitization 

(current decay during a 500ms pulse of saturating GABA), and characterization of 

macroscopic deactivation (current decay after a 2-4 ms pulse of saturating GABA).  EC50-

GABA was determined by fitting concentration-response plots with a form of the Hill 

equation.  Desensitization and deactivation waveforms were fit with a bi-exponential 

decay function, from which a weighted time constant (τw) was calculated (see methods).  

Data from multiple patches were averaged for statistical relevance.  

 
Effects of serial point mutations at α1R67 on the apparent affinity of GABA 

α1R67 was systematically mutated into polar charged (R67K, R67E, R67D), polar 

uncharged (R67N, R67Q), and hydrophobic (R67L, R67F, R67Y) residues.  Compared to 

R67A, which causes a 154-fold reduction in GABA affinity (EC50-GABA = 926 µM), all 
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other mutations cause even greater alterations in receptor function (Figure 3.2 A); these 

effects range from a 2173-fold reduction in GABA affinity to complete abolishment of 

GABAA receptor function.  At closer examination, a pattern can be detected between the 

side chain property of each amino acid substitution and its effect on GABAA receptor’s 

function. 

 

Figure 3.2 Mutations at α1R67 and β2R207 shift the concentration response curve of GABA 
to the right.  A) Concentration-response curves of α1R67 mutants are right-shifted with respect to 
wild-type.  R67D and R67N mutations yield GABA-insensitive receptors.  Concentration-
response curves for R67F, R67L, and R67Y mutations could not be completed because a 
saturating concentration could not be experimentally reached.  B) Concentration-response curves 
of β2R207 mutants are right-shifted with respect to wild-type.  Saturating concentrations could 
not be reach for R207F and R207Y.  ND indicates that a concentration-response curve could not 
be obtained. 
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Regarding the polar charged mutations, R67E and R67K cause quantitatively 

similar reduction in GABA affinity (2173-fold and 2378-fold respectively).  Compared to 

these mutations, R67D causes much more severe alteration in GABA affinity, resulting in 

complete disruption of GABA-evoked current.  This loss of GABA-evoked current could 

have arisen from either a complete local disruption of the GABA binding pocket or a 

global disruption in which the mutant receptor fails to assemble properly.  A good test to 

determine which type of disruption actually takes place is to measure propofol-evoked 

current.  Since propofol binds at a site distinct from GABA binding site (Bali and 

Akabas, 2004), it would generally be expected to evoke current independent of the local 

disruption of the GABA binding pocket.  If propofol fails to evoke current, it would be 

likely that the disruption is more global.  It turns out, R67D shows propofol-evoked 

current, indicating that the disruption caused by the mutation is localized at the GABA-

binding pocket.   

The two polar uncharged mutations, R67N and R67Q, cause very different 

magnitudes of effect on GABA-evoked response.  R67Q causes a 1309-fold increase in 

EC50-GABA, while R67N yields no GABA-evoked current.  Propofol test of R67N showed 

robust current (Figure 3.3 C).  As with R67D, the effect seen with R67N appears to result 

from local disruption of the GABA-binding pocket rather than global disruption of 

receptor assembly. 

 The hydrophobic mutations (R67F, R67L, R67Y) collectively caused the most 

severe alterations in GABA-evoked response.  R67F and R67Y greatly reduce the size of 

GABA-evoked current, with the average current size much less than that of wild-type 

(mean peak current: wild-type = -113.0 ± 12.3 pA, n = 46; R67F = -6.6 ± 1.3 pA, n =4; 
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R67Y = -3.9 ± 0.6 pA, n = 8).  In fact, the peak currents elicited were so small for R67F 

and R67Y that a concentration response curve could not be completed.  Similarly, R67L 

appears to severely disrupt GABA-evoked current; it was subsequently tested positive for 

propofol-evoked current that was more robust than the current elicited by GABA (Figure 

3.3 C). 

 
 
Figure 3.3 Point mutations at β2R207 accelerates macroscopic deactivation, while point 
mutations at α1R67 accelerates macroscopic deactivation and slowed macroscopic 
desensitization.  A) Wild-type and α1R67 mutant currents induced by long (500 ms, top row) and 
short (2-4 ms, bottom row) pulses of saturating GABA.  B) β2R207 mutant currents induced by 
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long (500 ms, top row) and short (2-4 ms, bottom row) pulses of saturating GABA.  C) α1R67 
mutants that did not respond robustly to GABA.  R67D, and R67N exhibit peak response to 
propofol (gray trace, 300 µM) but not GABA (black trace, 100 mM).  R67F and R67Y exhibit 
GABA-evoked current but with drastically reduced current size, making it impossible to obtain an 
accurate concentration-response curve (black trace and gray trace represents response to 300 µM 
and 100 mM GABA respectively).  R67L results in much reduced sensitivity to GABA (black, 
160 mM) but peak response for propofol (gray, 100 µM). 
 

Correlation between properties of side chain and severity of functional defect  

 Interestingly, when each group of mutations (i.e. polar charged and polar 

uncharged) is considered in isolation, it appears that the amino acid substitutions 

possessing a longer side chain tend to cause less severe disruption in GABAA receptor 

function.  For examples, R67E has a longer (one extra carbon) side chain and causes less 

disruption than R67D.  Similarly, R67Q is longer and less disruptive than R67N.  In 

comparing similar side chains, it is not entirely accurate to assume that possessing one 

extra carbon would mean that a side chain could always reach a longer distance.  Rather, 

it is perhaps more accurate to consider the difference that one extra carbon adds to the 

total volume of the side chain.  Table 3.1 lists the volume of some selected amino acid 

residues. 

 Also, it appears that amino acid substitutions with high relative hydrophobicity 

(R67L, R67F, R67Y) collectively cause the most severe disruption of GABAA receptor 

function.  However, though less hydrophobic aspartate (R67D) causes more severe 

reduction of GABA affinity compared to glutamate (R67E), which has higher relative 

hydrophobicity.  The same is seen between asparagine (R67N) and glutamine (R67Q); 

glutamine has higher relative hydrophobicity but causes less alteration on GABA affinity.  

This observation is not surprising because the two pairs of residues compared here are not 

hydrophobic.  Rather, they are categorized as neutral or hydrophilic residues.  Therefore, 
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the relative degree of alteration may have more to do with the physical dimension of a 

side chain at position 67 of the α1 subunit.  It appears that a large polar side chain is 

preferred at position 67 of the α1 subunit. 

 
Effects of serial point mutations on the macroscopic kinetics of GABA-evoked current 

 The EC50-GABA or apparent affinity GABA was obtained from concentration 

response curve looking at peak current amplitude.   Therefore, in order to understand how 

the physical and chemical properties of the amino acid side chain at position 67 of the α1 

subunit contribute to GABAA receptor function, we looked more closely at the 

macroscopic phases (i.e. activation, desensitization and deactivation) of the GABA-

evoked current.  It was observed that most α1R67 mutants (R67A, R67K, R67E, and 

R67Q) cause significantly faster deactivation (Figure 3.3 A, Table 3.1).  At the same 

time, these mutations also slowed the rate of desensitization as well as the extent of 

desensitization.  The weighted time constant (τW) of desensitization is significantly 

increased for R67A, R67K, R67E, and R67Q, and the percent desensitized (100 - % 

remaining) is reduced for R67K, R67E, and R67Q (Table 3.1). 

Additionally, it was observed that activation rate is significantly decreased for all 

α1R67 mutations that show robust GABA-evoked current (Figure 3.4 A, B).  Activation 

rate is a macroscopic parameter that represents the initial response to ligand application.  

In a simple 3-state kinetic model (Figure 3.4 C), this parameter is influenced by binding, 

gating, and desensitization events.  However, in the presence of high GABA 

concentration, gating and desensitization become the dominant forces driving this 

activation rate; therefore, a decrease in either gating or desensitization rate can slow 
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activation.  Apparently, the slowed activation rate observed here is consistent with the 

reduction in desensitization and gating.   

 
 
Figure 3.4 Mutations at α1R67 decrease the GABA-induced activation rate.  A) Raw traces of 
currents induced by saturating GABA, showing the activation phase and part of early (fast) 
desensitization phase.  Red trace represents the single-exponential fit of the activation phase.  
Compared to wild-type, α1R67 mutants (R67A, R67K, R67E, R67Q) exhibit slower activation 
rate and the absence of early desensitization.  B) Plots of activation rate with respect to GABA 
concentration indicate that saturation was reached for wild-type and mutants.  A quality fit to the 
equation (Y = (Rmax * [GABA]) / (KD + [GABA]), where Rmax is the maximum activation rate) 
could not be achieved for the mutants.  C) A simple kinetic scheme used to illustrate parameters 
that influence the time course of activation and macroscopic desensitization. 
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Table 3.1 Summary of the effects on macroscopic deactivation and desensitization caused by 
serial mutations to α1R67 and β2R207. 
 
 Deactivation  Desensitization Activation 

 τw (ms) n Vol 

(Å3) 
τw (ms) 

% 

Remain 
n 

τActivation 

(ms) 

 

n 

α1β2 92 ± 7 19 173.4 66 ± 15 30 ± 13 20 na na 

α1β2-GKER 92 ± 8 15 173.4 88 ± 11 28 ± 2 25 0.65 ± .09 13 

R67A 3.7 ± 0.7*& 7 88.6 180 ± 26*& 31 ± 3 34 1.14 ± .24 18 

R67E 1.4 *& 2 138.4 251 ± 35*& 57 ± 4 10 1.63 ± .27 10 

R67Q 2.3 ± 0.1*& 6 143.8 256 ± 31*& 54 ± 4 20 1.71 ± .71 12 

R67K 3.3 ± 0.1*& 11 168.6 253 ± 26*& 56 ± 2 15 1.76 ± .36 14 

R207A 7.9 ± 0.6*& 3 88.6 58 ± 14 37 ± 15 7 na na 

R207N 3.5 ± 0.6*& 6 114.1 79 ± 9 18 ± 2 8 0.61 ± .13 12 

R207E 4.3 ± 0.5*& 7 138.4 50 ± 4 13 ± 1 12 0.72 ± .06 12 

R207Q 8.8 ± 0.7*& 8 143.8 76 ± 24 26 ± 3 10 0.60 ± .11 10 

R207K 9.2 ± 1.2*& 11 168.6 49 ± 7 16 ± 1 15 0.81 ± .28 13 

R207Y 3.8 ± 0.5*& 8 193.6 76 ± 11 30 ± 3 8 0.69 ± .13 7 

* different from α1β2 (P < 0.01); & different from α1β2-GKER (P < 0.01);  ANOVA with Dunnets 
post-test; V represents volume of corresponding amino acid residue (Zamyatin, 1972). 

 
Serial mutagenesis of β2R207 reveals relative tolerance but with subtle correlation to 
side chain properties’ influence on GABAA receptor function  
 
 As with studying α1R67, β2R207 was systematically mutated into polar charged 

(R207K, R207E), polar uncharged (R207N, R207Q), and hydrophobic (R207F, R207Y) 

residues.  However, the pattern of effects seen here is different from that seen with α1R67 

mutations.  Generally, for most of the mutations made to β2R207, the effects on GABAA 

receptor function are not as severe as those observed for the same mutations to α1R67.  
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 However, as seen with the α1R67 mutations, there is a similar trend, though 

subtle, which correlates to the extent of alteration in GABA-evoked response and the side 

chain property of the substituting amino acid residue.  Particularly, regarding the amino 

acid substitutions that are polar, those with larger side chains tend to cause less disruption 

(i.e. smaller increase in EC50-GABA).  For example, R207Q causes a 33-fold increase in 

EC50-GABA as compared to a 74-fold increase caused by R207N (Figure 3.2 B).   

More interesting, perhaps, are the hydrophobic substitutions, R207F and R207Y. 

These mutations yield different extents of effects on GABAA receptor function.  R207F 

yields smaller peak GABA-evoked current (Mean Ipeak = -17 ± 2.6 pA, n = 12), while 

R207Y yield more robust current (Mean Ipeak = -47 ± 6.8 pA, n = 9).  It should also be 

noted that 12 out 44 patches (27%) pulled for R207F gave currents, while 13 out of 15 

patches (87%) pulled for R207Y yielded currents.  This difference is consistent with the 

above trend that amino acid substitution with larger side chain causes less disruption.  

The fact that larger polar side chains are closer to wild-type in size may help explain for 

their lesser disruption. 

 
Mutations at β2R207 alter macroscopic deactivation but not desensitization 

 Closer examination of how mutations at β2R207 change GABAA receptor 

function reveals that the deactivation phase of a GABA-evoked current (500 ms pulse) is 

accelerated (Figure 3.3 B, Table 3.1).  Unlike α1R67 mutations, however, β2R207 

mutations cause no change in the desensitization phase of GABA-evoked current (Table 

3.1).  Also, no change in activation rate was recorded for β2R207 mutants.  From these 

results, it is clear that β2R207 plays a different role compared to α1R67. 
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Figure 3.5 γ2-containing receptors yield more robust currents for both wild-type and 
mutants. A) Concentration-response curves of γ2-containing wild-type (α1β2-GKERγ2) and mutants 
(see graph).  α1R67 and β2R207 mutations co-expressed with γ2 consistently exhibit right-shifted 
concentration response compared to wild-type.  B) Summary of the effects of co-expressing with 
γ2 subunit: co-expression with γ2 increases average current size and decreases a mutation’s effect 
of GABA affinity. 
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Co-expression with γ2 subunit yields more robust currents 

 Up until this point, the GABAA receptors studied were expressed in the form of 

β2α1β2α1β2 pentameric assembly.  In this arrangement, a mutation introduced to the 

β2R207 position would end up at three different inter-subunit interfaces, instead of two.  

Therefore, an attempt was made to limit the mutation to only two inter-subunit interfaces 

by introducing third kind of subunit, γ2.  In the presence of γ2 subunits, the GABAA 

receptor will be arranged as β2α1β2α1γ2.   

 It was observed that α1β2γ2 receptors yield larger GABA-evoked current 

compared to α1β2 receptors (Figure 3.5 B).  However, α1β2γ2 receptors have higher EC50-

GABA (Figure 3.5 A).  Additionally, mutations introduced to γ2-containing receptors cause 

less shift in GABAA receptor function. 
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Discussion 

 
As a whole, the mutants R67D, R67E, R67K, R67F, R67L, R67N, R67Q, and 

R67Y yield greater disruption of GABAA receptor’s function compared to R67A 

mutation.  The severe effects seen here lead to a logical conclusion that the existence of 

an arginine at position 67 of the α1 subunit is specific and critical, if not absolutely 

necessary, for proper function of the GABAA receptor.  In fact, primary sequence 

homology indicates that this arginine residue is conserved between all six isoforms of α 

subunits and this conservation extends to other receptors from the cl-LGIC family.   

On the other hand, β2R207 mutations tend to cause less debilitating effects on 

GABAA receptor function.  This difference in effects could result from either the tolerant 

nature of the local environment where the side chain of β2R207 is located or the degree of 

contribution that β2R207 has to the overall function of GABAA receptor.  For example, 

β2R207 mutations only affected the deactivation phase of GABA-evoked current, while 

α1R67 mutations altered both deactivation and desensitization phases.   

Apparently, α1R67 influences, if not participates in, more processes that underlie 

proper function of GABAA receptor, as compared to β2R207.  Both α1R67 and β2R207 

contribute to the binding of GABA to the receptor, a role inferred from the fact that their 

mutations accelerated deactivation.  Deactivation is a macroscopic kinetic parameter that 

is influenced mainly by how fast GABA binds and unbinds.  On top of that, α1R67 

mutations also slowed the desensitization phase.  Macroscopic desensitization involves 

the integration of multiple microscopic kinetics such as ligand binding and unbinding, 

channel gating, desensitization and resensitization (Colquhoun, 1998).  Therefore, it 

follows that α1R67 is involved in more processes than just GABA binding.  
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IV.  DISSECTING THE STRUCTURAL AND FUNCTIONAL CONTRIBUTION 
OF BINDING POCKET TYROSINES: β2Y97, β2Y157, and β2Y205 
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Introduction 

 
In cl-LGICs, ligand binds at inter-subunit interfaces, and among the residues 

lining the walls of these interfaces is a group of aromatics.   These aromatic residues are 

shown to cluster together at the ligand-binding site in the crystal structure of the AChBP 

(Brejc et al., 2001).  Acetylcholine binding protein (AChBP) is homologous to the 

extracellular domain of the cl-LGICs, including glycine receptor, serotonin receptor (5-

HT3), acetylcholine receptor, and GABAA receptor (Brejc et al., 2001).  As a result, the 

model structure of the extracellular domain of these cl-LGICs has been constructed based 

on the known characteristics of AChBP and various details derived from mutational-

electrophysiological studies of each receptor type (Cromer et al., 2002; Grudzinska et al., 

2005; Harrison and Lummis, 2006; Dellisanti et al., 2007; Padgett et al., 2007; Pless et 

al., 2008).  In AChBP, the characteristic aromatic amino acid residues have collectively 

been referred to as the “aromatic box”.  These aromatic residues are associated with six 

discontinuous loops, termed A to F (Akabas, 2004).  This “aromatic box” is thought to 

acts as a hydrophobic barrier that facilitates the access of a charged ligand by minimizing 

the interference of water.  Since these aromatic residues are highly conserved between 

AChBP and all cl-LGICs, the obvious question is whether they also play similar roles in 

ligand binding.  As reviewed previously (chapter I), accumulated experimental data 

suggest that the general influence of these aromatics on ligand binding is well conserved; 

mutating these aromatics results in altered receptor function.   

One prominent way for ligand to interact with binding site residues is through 

cation-π interaction, a type of interaction involving the cationic group of the ligand and 

the π orbitals of an aromatic side chain.  Currently, one aromatic residue in each cl-LGIC 
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has been identified to be involved in cation-π interaction.  For examples, such cation-π 

interaction has been suggested for the positively charged amino group of the ligand and 

an aromatic on loop B of the nACh receptor (α1W149), the 5-HT3 receptor (W183), 

GABAA ρ receptor (ρY198), Gly receptor (F159) (Zhong et al., 1998; Beene et al., 2002; 

Lummis et al., 2005; Pless et al., 2008), and on loop A of GABAA receptor (β2Y97) 

(Padgett et al., 2007).   

These “aromatic box” residues include several tyrosines that have been 

demonstrated to not participate in cation-π bond.  For example, β2Y157 and β2Y205 of 

the GABAA receptor do not participate in cation-π interaction.  Tyrosines are different 

from other aromatics (tryptophan and phenylalanine) in that their side chain possesses a 

hydroxyl group.  This hydroxyl group can participate in hydrogen bonds.  In the GABAA 

receptor, β2Y157 and β2Y205 do not participate in cation-π interaction critical for ligand 

binding (Padgett et al., 2007).  While unnatural aromatic amino acid substitution has been 

used to test the importance of the aromatic component of each tyrosine in ligand binding, 

the functional contribution of the hydroxyl group has been assessed by simply making a 

phenylalanine substitution and measuring changes in receptor function (Amin and Weiss, 

1993).  It was found that the mutant receptors, α1β2Y157Fγ2 and α1β2Y157Fγ2, exhibited 

a 50- and 56-fold increases in EC50-GABA, respectively.   

 Accumulated data from the above study and later studies (Boileau et al., 2002; 

Padgett et al., 2007) have implicated β2Y157, β2Y205, and β2Y97 of GABAA receptor in 

ligand binding.  However, “direct” evidence for their involvement is still lacking.  For 

example, Padgett et al. (2007) demonstrated that one of these, β2Y97, participates in a 

cation-π bond that mediates ligand binding and that β2Y157 and β2Y205 do not 
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participate in functionally important cation-π interactions.  Padgett et al. (2007) proposed 

that β2Y97 directly interacts with the primary amine of GABA.  Due to the lack of 

evidence for cation-π interaction, they suggested that β2Y157 and β2Y205 require the 

electronegative groups at their C4 positions to function, perhaps via hydrogen bonds with 

neighboring side chains.  This suggestion is consistent with an earlier study, which 

demonstrated decreased sensitivity to GABA when β2Y157 and β2Y205 were 

conservatively substituted by phenylalanine (Amin and Weiss, 1993).  The same study 

also reported that an even further reduction in GABA sensitivity resulted when either 

tyrosine residues were mutated to such non-aromatic amino acids as serine and 

asparagine, hinting that these tyrosine side chains may be bifunctional.  In other words, 

both the hydroxyl and the aromatic elements of these tyrosine side chains contribute to 

proper function of the GABAA receptor.  Generally, the participation of a given amino 

acid residue in ligand binding can often be inferred from the effect on ligand affinity 

caused by its mutation.  However, such inferred evidence would not be as accurate and 

conclusive as the directly measured change in GABA binding rate.  As such, the present 

study seeks to directly measure the contribution of each tyrosine’s aromatic and hydroxyl 

elements to ligand binding, by quantifying the changes in measured GABA binding rate 

resulting from mutating each tyrosine.  
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Results 

 
In the present study, β2Y97, β2Y157, and β2Y205 were first individually mutated 

to alanine and co-expressed with wild-type α1 and γ2 subunits for functional assessment, 

since the mutations were all on the β2 subunit.  α1β2-GKERγ2 was used as wild-type 

reference; this receptor showed no difference in its macrokinetic profile compared to 

α1β2γ2.  β2Y97, β2Y157, and β2Y205 were subsequently mutated to phenylalanines.  For 

readability, the mutant receptors will be referred to as Y97A, Y97F, Y157A, Y157F, 

Y205A, and Y205F, corresponding to the point mutation they contain.  

 
Effects of mutating binding pocket tyrosines on EC50-GABA and receptor macrokinetics  

Functional significance of β2Y97, β2Y157, and β2Y205 was verified by assessing 

the effects of Y97A, Y157A, and Y205A on GABA affinity and macroscopic 

desensitization and deactivation.  While Y97A only causes a 13-fold increase in EC50-

GABA, Y157A causes more than a 400-fold increase, and Y205A completely disrupts 

GABAA receptor function (Figure 4.1).  To assess the functional contribution of the 

hydroxyl group on each tyrosine’s side chain, phenylalanine substitutions were 

introduced, allowing only the benzene ring component to be maintained.  It was observed 

that each phenylalanine substitution causes less disruption (i.e. less increase in EC50-

GABA) than an alanine mutation at the same residue.  It was also observed that mutating 

β2Y97 causes relatively less severe effects than mutating either β2Y157 or β2Y205.  

Y97F only increases EC50-GABA by 4-fold, while Y157F and Y205F increase EC50-GABA 

by 21 and 22-fold, respectively (Figure 4.1).  
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Figure 4.1 Peak concentration-response curves of tyrosine mutants are right-shifted with 
respect to wild-type.  Y97A causes a 13-fold increase, while Y97F only causes a 4-fold increase 
in EC50-GABA.  Y157A causes more than 400-fold increase, while Y157F causes 21-fold increase 
in EC50-GABA.  Y205F causes a 22-fold increase in EC50-GABA, while Y205A completely disrupts 
both GABA-evoked and propofol-evoked current. 
 
 When macroscopic desensitization and deactivation were examined, it was found 

that mutations made to the three tyrosine residues all result in an increased rate of 

deactivation but no significant changes in either the rate or extent of desensitization 

(Figure 4.2, Table 4.1).  Mutating β2Y97 causes less alteration in macroscopic 

deactivation compared to either mutating β2Y157 or β2Y205 (Table 4.1).  Since a full 

GABA-evoked response could not be achieved for Y157A and Y205A, only the 

macrokinetic effects of Y157F and Y205F were assessed.  Y97F causes less increase in 

deactivation rate (i.e. less decrease in τw of deactivation) than Y157F and Y205F (Table 

4.1).  Regarding macroscopic desensitization, Y97F, Y157F, and Y205F cause no 

significant changes in τW.   
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Figure 4.2 Mutating β2Y97, β2Y157, and β2Y205 to either alanine or phenylalanine results 
in more rapid macroscopic deactivation.  In upper row are representative currents evoked by 
long (500 ms, bar) and lower row are representative currents evoked by short (4 ms, arrow head) 
pulses of saturating GABA.  Macroscopic desensitization and deactivation are quantified by 
fitting each phase with an exponential decay function.  Results are summarized in table 4.1. 
 

Table 4.1 Point mutations at β2Y97, β2Y157, and β2Y205 increase rate of deactivation 
 

 
Deactivation  

(2-4 ms pulse) 

Desensitization  

(500 ms pulse) 

 τw (ms) n τw (ms) % Remaining n 

WT  37.4 ± 5.4 14  130 ± 11  39 ± 2% 39 

Y97A  11.8 ± 2.7*  7  136 ± 20  33 ± 22% 12 

Y97F 14.7 ± 1.6* 5 58 ± 9 19 ± 2% 10 

Y157A ND  ND ND  

Y157F 8.5 ± 2.1* 5 96 ± 10 33 ± 1.4% 17 

Y205A ND  ND ND ND 

Y205F 5.2 ± 0.4* 8 160 ± 18 41 ± 2% 11 

* different from WT (α1β2-GKERγ2) (P < 0.01); ANOVA with Dunnets post-test; ND = could not be 
determined. 
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Figure 4.3 Antagonist unbinding and race experiments.  A) Sample raw traces recorded from 
antagonist unbinding experiments.  Solution exchange protocol was designed to go in the 
sequence of 500 ms in saturating GABA solution, 15 seconds in wash, then 500 ms in a test 
concentration of SR-95531 followed immediately by 500 ms in saturating GABA solution, back 
to wash for 15 seconds, and the cycle repeats.  The resulting raw data was analyzed to determine 
the microscopic kinetics, KD, koff, and kon, for SR-95531.  The sample raw traces show current 
resulted from control GABA (blue) and pre-equilibration (red).  B) Deconvolution of GABA-
evoked currents after SR-95531pre-equilibration from control currents (no pre-equilibration) 
reveals the time course of SR-95531 unbinding.  Deconvolved signals were fit to the equation 
A(t) = [P∞ - (P∞ -P0)exp(-t/τu)]N, where A(t) is the fraction of available receptors (antagonist not 
bound at any site), P0 and P∞ are the probabilities that a single binding site is available initially at 
t = 0 and at steady state as t→∞, τu is the time constant of antagonist unbinding from each site 
(koff-SR = 1/τu), and N is the number of binding sites (Jones et al., 2001).  C) Concentration 
response curves, for the equilibrium antagonist occupancy in the absence of GABA A(t = 0), 
were fit to the normalized hill equation I/Imax = 1 - 1/[(KD-SR/[SR-95531])N + 1].  D) Sample raw 
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traces recorded from race experiments.  Solution exchange protocol was designed to alternate 
between control (only GABA, 500ms, blue) and test (GABA and SR-95531 simultaneously, 
500ms, red) every 15 seconds.  The known concentrations of GABA and SR and the ratio of 
GABA+SR : GABA only (IRace ) were used to calculate kon-GABA (see methods). 
 
 
Effects on GABA binding rate 

While changes in EC50-GABA and macroscopic deactivation provide good 

indications that the tyrosine residues are involved in GABA binding, they do not qualify 

as “direct” evidence.  Basically, EC50 value encompasses both binding and gating 

parameters (Colquhoun, 1998), and at a lower level of complexity, macroscopic 

deactivation and desensitization are influence by multiple microscopic transition states. 

Fortunately, one microkinetic parameter we can readily measure is the binding rate of 

GABA (kon-GABA), which can serve as the “direct” evidence for a residue’s participation in 

GABA binding.   

Table 4.2 Summary of results from antagonist unbinding and race experiments 

 

KD-SR  

(µM) 

koff-SR  

(s-1) 

kon-SR  

(M-1s-1) 

kon-GABA  

(M-1s-1) 
n 

Wild-type 0.14 15.9 ± 0.8 (1.14 ± 0.10) x 108 (7.40 ± 0.40) x 106 6 

Y97A 7.68 832.1 ± 91.5 (1.08 ± 0.12) x 108 (2.17 ± 0.11) x 106 4 

Y97F 1.67 188.91 ± 9.66 (1.13 ± 0.06) x 108 

 

(5.66 ± 0.62) x 106 5 

Y157F 0.26 44.43 ± 1.62 

 

(1.71 ± 0.06) x 108 

 

(1.60 ± 0.31) x 106 4 

Y205F 0.87 121.01 ± 7.94 

 

(1.39 ± 0.09) x 108 

 

(6.0 ± 0.44) x 105 4 

 
kon-GABA was measured as previously described in chapter II.  Briefly, this process 

first involves determining the binding rate for a competitive antagonist, in this case SR-

95531.  Once the binding rate for SR-95531 (kon-SR) is obtained, the binding rate of 

GABA can be determined by performing an experiment in which GABA and SR-95531 
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are co-applied, known as race experiment.  The resulting co-application current is 

compared to the current evoked by application of GABA alone.  The extent to which the 

peak current is reduced by the presence of antagonist depends on the relative binding 

rates of the two compounds and the relative concentrations available.  Since kon-SR has 

been determined by antagonist unbinding experiment, kon-GABA can be calculated as kon-

GABA = [SR-95531] kon-SR/([GABA](1/Irace -1)) (Jones et al., 1998).  Irace is the ratio of the 

peak response of co-application to the peak response of GABA alone.  Data from the 

present study are summarized in figure 4.3. 

It was observed that Y97A reduces binding rate GABA (kon-GABA) about 3.4-fold 

and Y97F only reduces kon-GABA about 1.3-fold (Table 4.2).  Y157F decreases kon-GABA by 

about 4.6-fold.  Y205F decreases kon-GABA by 12-fold.  Comparing these changes in kon-

GABA, it is clear that eliminating the hydroxyl group on β2Y205 causes the most reduction 

in kon-GABA.  Therefore, the inferred result is that the hydroxyl group of β2Y205 plays a 

relatively more significant role in GABA binding than that of β2Y97 and β2Y157.   
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Discussion 

 
As mentioned, cation-π interactions at ligand-binding site play a prominent role in 

facilitating ligand-receptor interaction.  Such cation-π interactions have been suggested 

for the positively charged amino group of the ligand and an aromatic on loop B of the 

nACh receptor (Zhong et al., 1998), the 5-HT3 receptor (Beene et al., 2002), GABAA ρ 

receptor (Lummis et al., 2005), but on loop A of GABAA receptor (Padgett et al., 2007).   

Cation-π interactions have been demonstrated for at least one tyrosine at the ligand-

binding pocket of GABAA and GABAA ρ (formerly known as GABAC) receptors 

(Padgett et al., 2007; Lummis et al., 2005).  In addition to cation-π interaction capability, 

tyrosine residues also possess a hydroxyl group that can potentially participate in 

hydrogen bonding. 

This study aimed to assess the relative significance of the hydroxyl group from 

each of the three tyrosines at the GABA-binding pocket by mutating each tyrosine to 

phenylalanine and measuring the direct effects on kon-GABA.  The results show that the 

hydroxyl group on β2Y97 makes no significant contribution, while the hydroxyl groups 

on β2Y157 and β2Y205 greatly influence binding rate GABA.  This difference is relevant 

on two counts.  First, it is consistent with the observation that mutating β2Y97 causes 

much less change in gross receptor function (i.e. EC50-GABA).  Second, the benzene ring of 

β2Y97, not the hydroxyl group, has previously been demonstrated to participate in 

interaction critical for ligand binding (Padgett et al., 2007).  Also, the benzene rings of 

β2Y157 and β2Y205 were previously tested negative for binding-determining cation-π 

interaction (Padgett et al., 2007).   
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Surprisingly, mutations at β2Y97 do not result in very big changes in kon-GABA.  

This small change on kon-GABA somewhat contradicts the proposed role of β2Y97 in ligand 

binding shown by Padgett et al. (2007).  They proposed a ligand-receptor interacting 

model in which the amino group of GABA forms a cation-π bond with the aromatic face 

of β2Y97.  If this model were entirely accurate, removing the aromatic at position 97 of 

β2 (i.e. β2Y97A) would have caused a greater shifted in EC50-GABA than demonstrated 

here.   Consistent with the model proposed by Padgett et al. (2007), however, the 

hydroxyl group of β2Y97 is not crucial for GABA binding.  
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V.  A TIGHT INTERACTION BETWEEN β2Y97 AND β2F200 OF THE GABAA 

RECEPTOR THAT MEDIATES GABA BINDING 
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Introduction 

 
A profusion of studies have contributed to our understanding of the interaction 

between GABAA receptors and their endogenous ligand, γ-aminobutyric acid (GABA).  

From these, it is clear that the GABA binding site is located at the interface of the α and 

β subunits (Cromer et al., 2002; Kash et al., 2004), and a multitude of amino acid 

residues that are located at this interface and mediate GABA affinity have been identified 

(Lummis, 2009).  In addition, the general architecture of the binding site has been 

determined through homology modeling (Cromer et al., 2002).  However, details of the 

molecular interactions that underlie the ligand-receptor interaction remain elusive. 

A particularly intriguing possibility is that the positively charged amino group of 

GABA may interact with an aromatic residue in the GABA-binding pocket via a cation-π 

bond.  Padgett et al. (2007) tested for this using unnatural amino acid substitution and 

found that a tyrosine in the binding pocket, β2Y97, participates in a cation-π bond that is 

immediately involved in GABA affinity.  As a result they, very reasonably, concluded 

that β2Y97 directly interacts with the amino group of GABA.  However, the possibility 

remains that β2Y97’s cation partner is, instead, one of the multiple arginine residues 

located in the GABA binding pocket.  These include α1R67, α1R120, α1R132, and 

β2R207, all of which have been shown to mediate GABA binding  (Westh-Hansen et al., 

1999; Holden and Czajkowski, 2002; Laha and Wagner, 2011; Wagner et al., 2004).  

Therefore, we set out to test for this interaction. 

Here, we utilized double-mutant cycle analysis to test for potential interactions 

between β2Y97 and each of α1R67, α1R120, α1R132, and β2R207, by quantifying 

functional coupling in the context of changes in free energy resulting from mutating 
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amino acid residues in singles and in pairs (Figure 5.1).  We also tested for functional 

coupling between each arginine and β2F200, another aromatic residue located in the 

GABA-binding pocket that has been shown to influence GABA affinity (Wagner and 

Czajkowski, 2001).  Our results identified functional coupling between two of the 

arginines (α1R132, β2R207) and both β2Y97 and β2F200.  Furthermore, we demonstrate 

an even tighter coupling between β2Y97 and β2F200.  We conclude that β2Y97 and 

β2F200 form a single functional unit that is critical for GABA binding.   The Y97/F200 

pair could interact with the ammonium moiety of GABA via a cation-π bond and its 

position may be fine tuned via secondary interactions with β2R207 and/or α1R132.    

 

 

 

Figure 5.1 Homology models of the 
GABAA receptor show arginines located 
proximal to the aromatics.  A) Top view 
looking in from the extracellular side 
through the channel pore.  Structurally, 
GABAA receptor is pentameric, with the 
five subunits pseudo-symmetrically 
arranged around a central ion pore.  The 
most abundant GABAA receptor subtype, 
found in the brain, has a stoichiometry of 
two α subunits, two β subunits, and one γ 
subunit arranged counter-clockwise as 
βαγβα (Benke et al., 1994; McKernan and 
Whiting; 1996; Baumann et al., 2002).  
Residues were mutated at both β/α 
interfaces (arrow heads). B) Side view of 
the extracellular domain at a single β/α 
interface.  β2Y97, β2F200, β2R207, α1R67, 
α1R120, and α1R132 are thought to project 
their side chains toward the center of the 
β/α inter-subunit interface.  
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Results 

 
The present study sought to employ double mutant cycle analysis to identify 

potential cation-π interactions between arginines (α1R67, α1R120, α1R132, and β2R207) 

and aromatics (β2Y97 and β2F200) located in the GABAA receptor ligand-binding pocket.  

The targeted amino acid residues were mutated singly and in pairs.  In order to achieve 

consistent expression, all of the mutations were expressed in a background of α1β2-

GKERγ2s, which also served as our control construct (Bollan et al., 2003; Laha and Wagner, 

2011).   For readability, the mutant constructs will be referred to as R67A, R120A, 

R132A, R207A, Y97A, F200I, R120A-Y97A, R120A-F200I, R132A-Y97A, R132A-

F200I, R207A-Y97A, R207A-F200I, Y97A-F200I, and Y97A-F200I-R207A to indicate 

the corresponding single, double, or triple mutant receptor.  

 
Each mutation tested increases EC50-GABA and accelerates deactivation  

Each of the arginines and aromatics of interest was mutated to alanine and 

transiently expressed in HEK-293 cells, in order to record GABA-evoked currents from 

outside-out patches.  Initial evaluation included determination of EC50-GABA, 

characterization of macroscopic desensitization (current decay during a 500ms pulse of 

saturating GABA), and characterization of macroscopic deactivation (current decay after 

a 2-4 ms pulse of saturating GABA).  EC50-GABA was determined by fitting concentration-

response plots with a form of the Hill equation. Desensitization and deactivation 

waveforms were fit with a bi-exponential decay function, from which a weighted time 

constant (τw) was calculated.  
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Figure 5.2 Effects of α1R67 and β2R207 mutations on macroscopic deactivation and 
desensitization.  β2Y97A, β2F200A/I, and β2R207A all accelerate deactivation, while α1R67A, 
α1R120, and α1R132 cause both increased deactivation rate and decreased desensitization rate.  
Sample raw signals of long (ensemble average of 10 to 15 traces) and short (ensemble average of 
20 to 30 traces) GABA-evoked currents are shown for wild-type, single mutants, and selected 
double mutants.  While all mutants exhibit significantly accelerated rate of deactivation, only 
R67A, R120A, and R132A yield significantly slowed desensitization.  Horizontal bar on wild-
type long trace and arrowhead on wild-type short trace depict long (500 ms) and short (2-4 ms) 
pulses of GABA application respectively. 

 
EC50-GABA for every mutant tested displayed a significant rightward shift ranging 

from 288 µM (4-fold, R132A) to 12.6 mM (173-fold, F200A) compared to control (EC50-

GABA α1β2-GKERγ2s = 73 µM) (Figure 5.3).  Alanine substitution also significantly 

accelerated the time-course of deactivation for each of the mutants tested, with τw ranging 

from 10.3 ms (3.7-fold, R207A) to 1.7 ms (22-fold, R67A) (Table 5.1, Figure 5.2).  These 
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effects on EC50-GABA and deactivation are entirely consistent with the previously 

published results that each of the residues tested mediates GABA binding. 

Table 5.1: Effects of single and double mutants on GABA affinity, deactivation, and 
desensitization parameters. 
 

 Deactivation Desensitization 

 EC50-GABA (mM) τW (ms) n τW (ms) n 

Wild-type 0.073 37.4 ± 5.4 14 130 ± 11 39 

R67A 4.8 1.7 ± 0.1 * 9 262 ± 36 * 18 

R120A 0.85 3.0 ± 0.3 * 7 274 ± 38 * 23 

R132A 0.288 6.9 ± 0.4 * 9 283 ± 31 * 11 

R207A 0.696 10.3 ± 1.2 * 10 177 ± 30 20 

Y97A 1.06 3.9 ± 0.4 * 9 152 ± 24 16 

F200A 12.6 2.1 ± 0.2 * 7 151 ± 24 11 

F200I 6.5 3.0 ± 0.2 * 12 146 ± 20 19 

R67A-Y97A na na na na na 

R67A-F200I na na na na na 

R120A-Y97A 17.89 1.4 ± 0.1* 8 337 ± 65 * 10 

R120A-F200I na na na na na 

R132A-Y97A 2.31 3.1 ± 0.1* 7 299 ± 54* 8 

R132A-F200I 12.93 1.6 ± 0.1* 7 244 ± 62* 7 

R207A-Y97A 3.26 2.2 ± 0.2 * 7 131 ± 21 11 

R207A-F200I 22.65 1.6 ± 0.1 * 8 188 ± 18 31 

Y97A-F200I 5.04 2.1 ± 0.1 * 14 175 ± 17 15 

One-way ANOVA with Dunnett’s post-test was used to assess for significant difference between 
mutant and wild-type parameters (* indicates p < 0.05).   
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Effects on desensitization were less uniform.  Alanine substitution at Y97, F200, 

and R207 had no effect on the desensitization time-course.  However, R67A, R120A, and 

R132A all displayed significantly slower desensitization.  The effect on desensitization 

for R120A has been previously reported (Laha and Wagner, 2011), and although we 

found it quite interesting that each of the other two arginines on the α1 subunit showed a 

similar effect, we did not pursue this further.  

In later experiments that depend on the competitive antagonist SR-95531, it was 

found that the β2F200A mutation could not be used because it causes a debilitating 

reduction in SR-95531 affinity.  Therefore, a milder mutation, β2F200I, was tested.  

β2F200I was found to adequately support SR-95531 binding and had less severe effects 

on EC50-GABA and deactivation than β2F200A, making it very useful for the double-

mutant cycle analysis studies that followed.  

 
Double-mutant cycle analysis of EC50-GABA reveals little coupling between the arginines 
from the α1 subunit and β2Y97 or β2F200 
 

This study aimed to assess the relationships between residues using the method of 

double-mutant cycle analysis.  Double-mutant cycle analysis quantifies the extent of 

coupling between two residues by comparing the changes in free energy (ΔΔG) resulting 

from single mutations and the corresponding double mutation, to measure the likelihood 

of two residues interacting (Horovitz, 1996).  One parameter that has been commonly 

used for double-mutant cycle analysis, in the study of proteins such as LGICs, is the 

apparent affinity for ligand, or EC50 (Kash et al., 2003; Price et al., 2007; Gleitsman et al., 

2008).  To this end, the effects of the above mutations were initially quantified by 
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conducting concentration-response experiments for the purpose of determining EC50-

GABA.  

 

Figure 5.3 EC50-GABA double-mutant cycle analysis identified pairs of amino acid residues 
that are functionally coupled.  EC50-GABA was obtained through concentration-response 
experiments in which the peak currents from a series of sub-saturating concentrations of GABA 
were compared to the peak currents at saturating GABA.  The concentration-response plot was fit 
with a form of the Hill equation to obtain an EC50 value.  A-D) Concentration response curves for 
wild-type (EC50-GABA = 73 µM), Y97A (EC50-GABA = 1.06 mM), and F200I (EC50-GABA = 6.50 
mM); unique to each plot are the curves for specific arginine single mutant and the corresponding 
two double mutants containing that particular arginine (EC50-GABA: R67A = 4.8 mM; R120A = 
850 µM; R132A = 288 µM; R207A = 696 µM; R120A-Y97A = 17.89 mM; R132A-Y97A = 2.31 
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mM; R132A-F200I = 12.93 mM; R207A-Y97A = 3.26 mM; R207A-F200I = 22.65 mM).  E) The 
double mutant Y97A-F200I concentration-response plot is identical to that of the single mutant 
F200I; both are right-shifted compared to wild-type.  F) Double-mutant cycle analysis schematic 
and a summary of the coupling energies determined. 
 

As a single mutation, R67A caused the largest shift in EC50-GABA, and when 

combined with either Y97A or F200I even more severe shifts were observed (Figure 5.3 

A).  Curve fits to concentration-response data for either double mutant was not possible 

because the data never approached saturation.  In addition, for either double mutant, 

propofol-evoked currents (1 mM) displayed peak amplitudes greater than twice those 

evoked by 160 mM GABA (the highest concentration tested, data not shown), suggesting 

that EC50-GABA for either of these constructs is greater than 160 mM.  Because we were 

not able to accurately quantify EC50-GABA for these constructs we could not subject them 

to double-mutant cycle analysis.  However, the fact that the double mutations are so 

debilitating is suggestive that no functional coupling exists between α1R67 and either 

β2Y97 or β2F200, and it is unlikely that these residues share a cation-π interaction.   

As was seen for R67A, when R120A was co-expressed with F200I, the effect on 

EC50-GABA was too severe to be quantified and the two residues are not likely to be 

functionally coupled.  On the other hand, R120A-Y97A receptors displayed a measurable 

EC50-GABA (17.9 mM).  This value, along with the EC50-GABA values for R120A (850 µM) 

and Y97A (1.06 mM), were used to drive double-mutant cycle analysis, which resulted in 

a coupling energy of 0.23 kcal/mol (Figure 5.3 B, F).  It should be noted that, double-

mutant cycle analysis works on the premise that if two residues are perfectly independent, 

we would expect the coupling energy to be 0 kcal/mol.  As such, any value that deviates 

from zero may indicate coupling.  The further a coupling energy deviates from 0 kcal/mol 

the less functionally independent the two residues are from one another.  A coupling 
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energy of |0.5 kcal/mol| or greater would indicate possible interaction between two amino 

acid residues (Horovitz, 1996; Kash et al. 2003).  Therefore, α1R120 does not appear to 

be coupled to β2Y97 and it is not likely to participate in a cation-π bond with either 

aromatic residue. 

The double-mutant cycle analyses of R132A, with respect to the Y97A and F200I, 

yielded modest coupling energies of -0.35 kcal/mol and -0.41 kcal/mol for R132-Y97 and 

R132-F200 pairs respectively (Figure 5.3 C, F).  These coupling energies are less than 

|0.5 kcal/mol| but are large enough that it should be considered a possibility for cation-π 

interactions.  Interestingly, α1R132 appears to be coupled to β2Y97 and β2F200 with 

same magnitude.   

 
Double-mutant cycle analysis of EC50-GABA reveals a ternary functional interaction 
between β2R207, β2Y97, and β2F200 
 

When R207A was co-expressed with Y97A or F200I, the significant coupling 

energies resulted (-0.67 kcal/mol and -0.56 kcal/mol for the R207-Y97 and R207-F200 

pairs respectively, Figure 5.3 D, F).  These coupling energies indicate that β2R207 is 

more tightly coupled to the aromatics, and it is possible that β2R207 interacts with one or 

the other via a cation-π bond. 

We find it interesting that, as was also seen for α1R132, β2R207 is coupled to both 

β2Y97 and β2F200 to the same degree.  This result would be predicted if β2Y97 and 

β2F200 are tightly linked structurally, effectively acting as a single functional unit.  If this 

is the case, then double-mutant cycle analysis of the two aromatics should give a strong 

coupling energy.  Indeed, the Y97A-F200I double mutation revealed a highly significant 

coupling energy (-1.72 kcal/mol) between β2Y97 and β2F200 (Figure 5.3 E, F).  Taken 
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together, the strong coupling energies of β2R207/β2Y97, β2R207/β2F200, and 

β2Y97/β2F200 suggest that these three residues act together as single functional ternary 

complex to mediate GABA binding. 

 

 
 
Figure 5.4. Functional coupling between β2R207 and one of the two aromatic residues exists 
only in the presence of the other aromatic residue.  Top row shows concentration response 
curves comparing the effects on GABA affinity caused by double mutants and triple mutant in the 
background of a single mutant control.  Bottom row shows the double-mutant cycle analyses and 
the resulting coupling energies.  A) β2R207 is not functionally coupled to β2Y97 when β2F200 is 
mutated.  B) β2R207 is not functionally coupled to β2F200 when β2Y97 is mutated.  C) β2Y97 and 
β2F200 remains coupled when β2R207 is mutated. 
 

Triple mutant cycle analyses revealed unequal partnerships among ternary complex 
members: β2R207, β2Y97, and β2F200 
 

To further dissect the relationship between members of the ternary complex, we 

performed triple mutant cycle analyses.  In other words, we carried out double mutant 

cycle analysis measuring coupling of two residues on the background of a third mutant.   
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The only new data needed to perform this analysis was EC50-GABA for the triple mutant, 

Y97A-F200I-R207A.   This construct displayed robust GABA-evoked current and caused 

a 305-fold decrease in GABA affinity, (EC50-GABA = 22.2 mM).  When double-mutant 

cycle analysis was applied to β2Y97 and β2F200 in a R207A background, strong coupling 

was still observed (ΔΔGCoupling = -0.92 kcal/mol, Fig. 5.4 C).  However, coupling of 

β2R207 with β2Y97 disappeared when tested on the F200I background (ΔΔGCoupling = 

0.14 kcal/mol, Figure 5.4 A), as did coupling of β2R207 with β2F200 on Y97A 

background (ΔΔGCoupling = 0.21kcal/mol, Figure 5.4 B).  These coupling energies indicate 

that the presence of both β2Y97 and β2F200 is necessary for β2R207’s participation in the 

ternary complex.  On the other hand, the presence of β2R207 is not absolutely necessary 

for the interaction between β2Y97 and β2F200, despite a slight reduction in coupling 

energy.  

 
Coupling between β2R207, β2F200, and β2Y97 mediates GABA binding 

While EC50-GABA is a useful parameter for driving double-mutant cycle analysis, it 

represents a complex interaction between several microscopic processes (i.e. ligand 

binding/unbinding, channel opening/closing, desensitization/resensitization) (Colquhoun, 

1998; Gleitsman et al., 2008).  Therefore, we thought it would be informative to directly 

measure the GABA binding rate (kon-GABA) for each construct and repeat double-mutant 

cycle analysis using this microscopic parameter.  

kon-GABA was measured as previously described by Jones et al. (2001).  Briefly, this 

process first involves determining the binding rate for a competitive antagonist, in this 

case SR-95531.  Once the binding rate for SR-95531 (kon-SR) is obtained, the binding rate 

of GABA can be determined by performing an experiment in which GABA and SR-
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95531 are co-applied, known as a race experiment.  The resulting co-application current 

is compared to the current evoked by application of GABA alone.  The extent to which 

the peak current is reduced by the presence of antagonist depends on the relative binding 

rates of the two compounds and the relative concentrations available.  Since kon-SR has 

been determined by antagonist unbinding experiment, kon-GABA can be calculated as kon-

GABA = [SR-95531] kon-SR/([GABA](1/Irace -1)) (Jones et al., 1998).  Irace is the ratio of the 

peak response of co-application to the peak response of GABA alone.   

 

 

Figure 5.5. Functional coupling between β2Y97, β2F200, and β2R207 at the microkinetic 
level (kon-GABA). A-G) Sample raw traces recorded from race experiments.  Solution exchange 
protocol was designed to alternate between control (only GABA, 500ms, gray) and test (GABA 
and SR-95531 simultaneously, 500ms, black) every 15 seconds.  The known concentrations of 
GABA and SR and the ratio of GABA+SR : GABA only (IRace ) were used to calculate kon-GABA 
(see methods).  H) Summary of the coupling energies determined from applying the kon-GABA 
values to double mutant cycle analysis. 
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The effects of each single mutant and double mutant receptor on the kinetics of 

SR-95531 and kon-GABA are summarized in Table 5.2.   Alanine substitution at β2R207 had 

no effect on KD-SR.  On the other hand, mutation of β2F200 and β2Y97 strongly affected 

SR-95531 affinity causing 55 and 20-fold increases in KD-SR respectively.   This result 

supports the idea that β2Y97 and β2F200 are a tightly coupled functional group.  Results 

from application of the kon-GABA values to double-mutant cycle analysis generally agreed 

with those seen from EC50-GABA (Figure 5.5).  β2Y97 and β2F200 remain coupled 

(ΔΔGCoupling = 1.09 kcal/mol), as do β2R207 and β2F200 (ΔΔGCoupling = 0.56 kcal/mol).   

The coupling energy for β2R207 and β2Y97 dropped slightly below 0.5 kcal/mol 

(ΔΔGCoupling = 0.40 kcal/mol) but is high enough that a potential interaction that mediates 

GABA binding remains possible.  Because these results show that the identified ternary 

interaction mediates GABA binding, it is likely that the interaction exists in the unbound 

state of the receptor.  

Table 5.2: Summary of results from antagonist unbinding and race experiments 

 

KD-SR 

(µM) 

koff-SR  

(s-1) 

kon-SR  

(M-1s-1) 

kon-GABA  

(M-1s-1) 

ΔΔGCoupling 

(kcal/mol) 

Wild-type 0.14 15.9 ± 0.8 1.14 ± 0.10 x 108 7.40 ± 0.40 x 106 -- 

Y97A 7.68 832.1 ± 91.5 1.08 ± 0.12 x 108 2.17 ± 0.11 x 106 -- 

F200I 2.79 331.0 ± 34.6 1.19 ± 0.12 x 108 2.85 ± 0.14 x 105 -- 

R207A 0.13 22.7 ± 3.6 1.71 ± 0.27 x 108 9.16 ± 0.35 x 105 -- 

Y97A-F200I 8.79 1159.5 ± 159 1.32 ± 0.18 x 108 5.39 ± 0.41 x 105 1.09 

R207A-Y97A 0.97 151.7 ± 44.9 1.57 ± 0.46 x 108 5.30 ± 0.63 x 105 0.40 

R207A-F200I 2.87 394.2 ± 56.2 1.37 ± 0.20 x 108 9.28 ± 0.46 x 104 0.56 
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Discussion 

 
Cation-π bonding has been demonstrated to be a universal structural motif in 

proteins.  In a cation-π bond the π orbital electrons from aromatic amino acid side chain 

(Trp, Tyr, Phe) interact with a cation.  The cation may be provided by a basic residue 

(Arg, Lys, His) on the same subunit as the aromatic residue (Gallivan and Dougherty, 

1999), a basic residue from a different subunit (Crowley and Golovin, 2005), or a 

positively charged exogenous ligand (Zacharias and Dougherty, 2002).  Cation-π bonds 

have been demonstrated to be key players in ligand binding for many, if not all, members 

of the LGIC family (Zhong et al., 1998; Beene et al., 2002; Pless et al., 2008).   

At least five aromatic residues from the GABAA receptor (α1F65, β2Y97, β2Y157, 

β2F200, and β2Y205) have been implicated in ligand binding (Sigel et al., 1992; Boileau 

et al., 1999; Boileau et al., 2002; Amin and Weiss, 1993; Wagner and Czajkowski, 2001).  

Padgett et al. (2007) demonstrated that one of these, β2Y97, participates in a cation-π 

bond that mediates ligand binding and that α1F65, β2Y157, and β2Y205 do not participate 

in functionally important cation-π interactions.  The remaining aromatic, β2F200, remains 

untested for cation-π interaction.  

In this study we employed double-mutant cycle analysis to screen for possible 

cation-π interactions between either β2Y97 or β2F200 and each of the arginines present in 

the GABA-binding pocket (α1R67, α1R120, α1R132, and β2R207).  Our results identify 

α1R132 and β2207 as potential cation-π partners for each of the aromatics, and rule out 

α1R67, and α1R120.  In addition, a strong and consistent coupling was identified between 

the two aromatics themselves, suggesting that β2Y97 and β2F200 directly interact.   
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β2Y97 and β2F200 as a tight aromatic pair 

The clearest result from this study is that β2Y97 and β2F200 work together as a 

single functional unit.  When double-mutant cycle analysis, using EC50-GABA, was 

employed to test for coupling between β2R207 and either β2Y97 or β2F200, the results 

were comparable (ΔΔGCoupling: R207/Y97 = -0.67 kcal/mol, R207/F200 = -0.56 kcal/mol).  

Similarly, α1R132 was found to be equally coupled to each aromatic residue (ΔΔGCoupling: 

R132/Y97 = -0.35 kcal/mol, R132/F200 = -0.41 kcal/mol).  These results strongly 

suggest that β2Y97 and β2F200 work in concert.  This hypothesis is supported by the fact 

that the two residues are strongly coupled to each other when the mutational effects on 

EC50-GABA (ΔΔGCoupling Y97/F200 = -1.72 kcal/mol), kon-GABA (ΔΔGCoupling Y97/F200 = 

1.09 kcal/mol) and koff-SR (ΔΔGCoupling = -1.59 kcal/mol) are used to drive the double-

mutant cycle analysis.  Furthermore, mutation of either residue had qualitatively similar 

effects on every parameter we measured: EC50-GABA, koff-SR, kon-SR, kon-GABA, and the time 

courses of macroscopic deactivation and desensitization.   

Another line of evidence supporting a tight interaction between β2Y97 and 

β2F200 comes from the fact that coupling between β2R207 and each aromatic was 

completely abolished when tested in a background where the other aromatic residue had 

been mutated.  In other words, whatever interaction β2R207 might share with β2Y97 

disappears when β2F200 is mutated, and whatever interaction β2R207 shares with β2F200 

disappears when β2Y97 is mutated.  Conversely, the coupling energy between β2Y97 and 

β2F200 is only modestly reduced by mutation of β2R207.   

Taken altogether, these results suggest that β2Y97 and β2F200 form a single 

functional unit, that then interacts with β2R207 and, possibly, α1R132.  It is possible that 
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these interactions between β2R207 and α1R132 and the Y97/F200 complex occur via a 

cation-π bond(s) with either aromatic, but it is also possible that the interaction of β2Y97 

and β2F200 positions other elements (i.e. neighboring side chains or backbone carbonyls) 

for interactions with either of the arginines.  

 
The role of arginines from the α1 subunit   

Of the arginines from the α1 subunit that were tested, we found that α1R132 can 

potentially interact with either β2Y97 or β2F200 but that neither α1R67 nor α1R120 is 

likely to participate in cation-π interactions with either of the two aromatics.  When 

expressed as a single mutation, α1R132A has relatively moderate effects on EC50-GABA (4-

fold increase) and the weighted time constant of deactivation (5-fold decrease), 

suggesting that it might act to help position the more critical Y97/F200 pair.  The lack of 

an interaction between α1R120 and the aromatics is not particularly surprising.  

According to the homology model, α1R120 is relatively distant from the aromatics and it 

has been proposed to participate in a state-dependent inter-subunit salt bridge with 

β2D163 (Cromer et al., 2002; Laha and Wagner, 2011).  The fact that α1R67 does not 

interact with the aromatics examined here but is located nearby and, on its own, severely 

affects GABA affinity suggest that it plays a critical role in GABA binding that is 

independent of the Y97/F200 pair. 

Another interesting result from this study is that there appears to be a general role 

for all arginines on the α1 subunit in the process of macroscopic desensitization.  R67A, 

R120A, and R132A receptors all display slowed desensitization with weighted time 

constants about twice as long as seen in wild-type receptors (Table 5.1).  This effect has 

previously been reported for α1R120Aβ2γ2 receptors (Laha and Wagner, 2011) but is 
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demonstrated for the first time here for α1R132 and α1R67.  Desensitization of GABAA 

receptors is a macro-molecular phenomenon that depends on inter-subunit 

communications (Goldschen-Ohm et al., 2010).  As arginine side chains are very long 

and charged, it is easy to envision them as providing communication links between 

subunits.  In fact, an inter-subunit salt bridge has already been proposed for α1R120 

(Cromer et al 2002, Laha and Wagner, 2011) and here we demonstrate that α1R132 may 

participate in an inter-subunit cation-π bond.  
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VI.  DISCUSSION AND CONCLUSION 
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The studies documented in this dissertation were designed to further our 

understanding of the architecture of the GABA-binding site on the GABAA receptor.  A 

refined blueprint of the GABA-binding pocket would involve identifying the various 

interactions (i.e. inter-subunit interactions, intra-subunit interactions, and interactions 

with GABA) that exist in the binding pocket.  This refined understanding is necessary 

toward building a more complete biophysical model of the GABAA receptor.  As such, 

the main approach used here involves reviewing the current best model of the GABA-

binding pocket, verifying current elements and identifying new elements involved in 

GABAA receptor function, especially those involved in the ligand-receptor interaction, 

and incorporating new data to achieve a refined and more detailed model.  

 
Implications of functional effects found upon mutation of binding pocket arginines  

Due to the nature of their side chain, arginines have been found to play many 

important roles in protein structure and function.  The arginine side chain contains a 

guanidinium group that makes it the most polar side chain in proteins.  This guanidinium 

group allows the arginine side chain to participate in up to 5 hydrogen bonds.  This 

positively charged side chain is also capable of participating in salt bridge and cation-π 

interactions.  These various bonds enable the arginine side chain to interact with such 

elements as negatively charged substrates and cofactors, other neighboring side chains 

(i.e. aspartate, glutamate, and aromatics), and backbone carbonyls (Borders et al., 1994).  

Due to the diversity of various elements that can interact with an arginine side chain, it is 

not difficult to envision different arginines on the same protein play rather different roles 

or a single arginine being involved in multiple functionally diverse molecular 

interactions.  For example, one arginine can form hydrogen bonds with the backbone 
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carbonyl to stabilize protein tertiary structure, while another arginine can form a salt 

bridge with a negatively charged substrate (i.e. substrate-enzyme interaction) or even a 

negatively charged ligand (i.e. ligand-receptor interaction).  In cl-LGICs, the roles of 

arginines are, therefore, diverse and important.  

Previous site-directed mutagenesis studies in which α1R67 and β2R207 were 

mutated to cysteines and alanines suggested that these two arginine residues are 

positioned at the GABA-binding pocket and play important roles in the binding of GABA 

(Boileau et al., 1999; Holden and Czajkowski, 2002; Wagner et al., 2004) but no specific 

information about their interactions with either GABA or other binding pocket structures 

have been identified.  Here we sought to understand how these arginines contribute to the 

structure and operation of the GABAA receptor’s binding pocket.  We addressed this 

question by mutating each arginine to a series of amino acid residues and measuring 

changes in the function of the GABAA receptor.  We quantified the effects of a mutation 

on receptor function by measuring the alterations in concentration response (i.e. affinity 

for GABA) and macroscopic kinetic parameters, such as desensitization and deactivation, 

from which we may draw binding and gating implications.  In addition, when possible we 

also directly measured the effects on the GABA binding rate, kon-GABA, to provide more 

precise quantification of how much a particular residue influences GABA binding.  

As documented in Chapter III, each mutation made at α1R67 significantly alters 

the GABA-elicited response of the GABAA receptor regardless of side chain chemistry. 

Every substitution that did not disrupt functional expression caused measurable severe 

and similar rightward shifts in EC50-GABA, acceleration of the rate of deactivation, and 

slowing of desensitization.  These observations led to a logical conclusion that the 
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existence of an arginine at position 67 of α1 subunit is specifically critical for proper 

function of GABAA receptor.   

 
Figure 6.1 A selection of amino acids mutagenically introduced at α1R67 and β2R207. 
 

Comparing the effects of mutating α1R67 to different residues revealed the 

specific criteria or properties a residue must possess in order to facilitate proper receptor 

function at position 67 of the α1 subunit.  Individually, the mutations to K, E, D, Q, N, L, 

F, Y, and A (Figure 6.1) all significantly disrupted receptor function with the small non-

polar alanine having the relatively mildest effects, the larger polar residues (lysine, 

glutamate, glutamine) having greater effects, and smaller polar residues (aspartate and 

asparagine) and larger hydrophobic residues (leucine, phenylalanine, and tyrosine) almost 

completely eradicating GABA-evoked current.  It is notable that the long polar side 

chains (K, E, Q) had similar effects on function regardless of charge, with even the 

“conservative” lysine substitution having a greater effect on function than alanine 
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substitution did.  There is something very specific about the nature of the arginine side 

chain (and perhaps it’s ability to form multiple hydrogen bonds) that is required for 

GABA binding such that virtual removal of the side chain (alanine substitution) is less 

disruptive than any other substitution made.  It is also possible that alanine substitution 

introduces a void that may allow a neighboring side chain to swing in and compensate.  

Additionally, double mutant cycle analysis (Chapter V) identified no binding 

pocket residue that is functionally coupled to α1R67.  Though the number of amino acid 

pairs tested in chapter V was by no mean exhaustive, every double mutant containing 

α1R67 tested caused near-ablation of GABAA receptor function.  Such severe double 

mutant effect and the strong effect of mutating α1R67 alone (Chapter III) on both GABA 

binding, desensitization, and even expression signifies multiple important roles of α1R67 

in GABA-receptor interaction.  With the given results, it is tempting to propose that 

α1R67 coordinates the carboxyl group of GABA.  Indeed we will argue for this 

interpretation.  However, it should be noted that α1R67 is not the only arginine at the 

binding pocket.  Other arginines must also be considered.  It is nevertheless clear that 

α1R67 plays a singularly important role in the function of the GABAA receptor. 

Interestingly, this arginine residue is conserved between all six isoforms of 

GABAA α subunit and this conservation extends to other receptors from the cl-LGIC 

family (Chapter I).  For example, mutating the arginine at this position in the 

homopentameric GABAA ρ receptor (R104) to alanine or glutamate results in a more than 

10,000-fold increase in EC50-GABA (Harrison and Lummis, 2006).  Also, in the 

homopentameric α1 glycine receptor, mutating the equivalent arginine (R65) to lysine or 

alanine causes a 215-fold or a >1,300-fold increase in EC50 of glycine respectively 



  

 

89 

(Grudzinska et al., 2005).  R104 and R65 have both been proposed to be involved in 

proper docking of the carboxyl end of GABA and glycine to GABAA ρ receptor and 

glycine receptor respectively. 

Relative to the α1R67 mutations, the β2R207 mutations have smaller effects on 

EC50-GABA and the rate of deactivation, and do not affect desensitization or activation 

rates at all.   In other words, β2R207 is likely to have little or no effect on GABA receptor 

gating and plays a less primary role in GABA binding than α1R67.  Additionally, unlike 

α1R67, β2R207 (loop C) is not as conserved among cl-LGICs, being present only in the 

GABAA receptor β and ρ subunits.  When R249, the aligned residue in GABAA ρ 

receptor, is mutated to alanine or lysine the EC50-GABA was increased by 15- or 28-fold 

respectively (Harrison and Lummis, 2006).  These values are comparable to changes seen 

when mutating β2R207 of the α1β2 GABAA receptor.   

Combining the difference in conservation and the variety of interactions that an 

arginine side chain possesses, one can argue that the different effects seen in mutating 

α1R67 and β2R207 reflect the dissimilar interactions they partake in.  This notion is 

consistent with current understanding of two other GABAA receptor arginines (α1R120, 

α1R132).  Laha and Wagner (2011) reported that α1R120 participates in a state-dependent 

inter-subunit salt bridge with β2D163 of the GABAA receptor (i.e. energetically coupled 

during GABA unbinding).  Like α1R67, when α1R120 was mutated to alanine and co-

expressed with β2-GKER (Laha and Wagner, 2011) or with both β2-GKER and γ2, a 

significant increase in macroscopic deactivation rate and decrease in macroscopic 

desensitization rate were observed (Table 5.1).  As with α1R67, α1R120 is conserved 

across most of the cl-LGIC family.  Functionally, however, its contribution diverges 



  

 

90 

between different receptors.  This arginine in GABAA ρ receptor (R158) is thought to be 

critical for GABA binding but not as important in glycine receptor (R119) (Harrison and 

Lummis, 2006; Grudzinska et al., 2005).  

As seen with α1R67 and α1R120, mutation of α1R132 to alanine slowed 

desensitization effects and accelerated deactivation (Table 5.1).  The effect on 

desensitization was identical to that seen for α1R67, α1R120 but the effect on deactivation 

was noticeably less severe.  It is possible that the increase in deactivation rate of α1R132 

mutation is mainly due to reduced desensitization (Jones and Westbrook, 1995) whereas 

the greater speeding of deactivation seen for α1R67, α1R120 is may be due to both a 

reduced rate of desensitization and an increased rate of unbinding.  Again, multiple 

functional roles for these particular arginines seem apparent.  

To put it all in perspective, point mutations made to the four binding pocket 

arginines (α1R67, α1R120, α1R132, β2R207) cause different degrees of increment in EC50-

GABA of the GABAA receptor.  Many of these changes in EC50 value have also been 

recorded in other anionic cl-LGICs (homopentameric GABAA ρ and glycine receptors).  

Positionally, α1R67, α1R120, and α1R132 are conserved among anionic cl-LGICs with 

α1R67 also being relatively conserved in cationic cl-LGICs (i.e. an arginine in 5-HT3A 

receptors and a lysine in nACh receptors), while β2R207 is not conserved in non-GABA 

receptors.  Here, we also looked at the mutational effects of these arginines on 

macroscopic kinetics parameters of GABAA receptor.  While β2R207 mutations only 

cause significant increase in the rate of macroscopic deactivation, α1R67, α1R120, and 

α1R132 mutations cause both significant increase in macroscopic deactivation rate and 

significant decrease in macroscopic desensitization rate.  Desensitization effects indicate 
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that the α1 arginines, which line the complementary (-) face of the binding pocket, 

contribute not only to binding but also to other mechanistic steps (i.e. microscopic 

transitions) that underlie GABAA receptor’s response to GABA.   

The ligands that bind anionic cl-LGICs, GABA and glycine are similar in that 

they are zwitterions, containing a positively charged amino end and a negatively charged 

carboxyl end.  The presence of a carboxyl group sets GABA and glycine apart from other 

endogenous cl-LGIC ligands (acetylcholine, serotonin).  This difference in ligand 

structure may be a source for the differences in the specific details of ligand-receptor 

interactions among cl-LGICs.   

 

Figure 6.2 Endogenous ligands of cl-LGICs 

However, one feature shared by the endogenous ligands (acetylcholine, GABA, 

glycine, and serotonin) of all members of the cl-LGIC family is a positively charged 

nitrogen (Figure 6.2).  In early studies, the localization of several negatively charged 

amino acid side chains at the binding pocket led to the reasonable prediction that the 

positive charge of the ligand would be stabilized by an acidic amino acid residue 

(aspartate or glutamate).  However, data have accumulated to indicate that this is not the 

likely scenario.  Particularly, the idea of acidic residues anchoring the positive end of 

ligand was initially challenged when the three-dimensional structure of 

acetylcholinesterase, an enzyme that binds and hydrolyzes acetylcholine, was resolved at 
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2.8 Å (Sussman et al., 1991).  This structure showed that the quaternary ammonium 

moiety of acetylcholine was bound, not to a negatively charged site, but to a pocket 

consisting of aromatic residues.  Later crystallography studies showed similar results in 

AChBP and nAChR (Brejc et al., 2001; Celie et al., 2004; Dellisanti et al., 2007).  Since 

then, evidence has been accumulating to show that aromatic residues are involved in the 

agonist binding process of the cl-LGICs.  Thus, as arginine residues clearly play 

important roles in proper function of GABAA receptor, especially with respect to GABA-

receptor interaction, aromatic residues, too, play no less important roles.  

 
Implications of functional effects found upon mutation of binding pocket aromatic 
residues 
 

It has been demonstrated, in many previous studies, that the “aromatic box” 

amino acid residues play important roles in ligand binding.  These aromatic residues are 

known to cluster at or near the binding pockets of cl-LGICs, and it is hypothesized that 

they provide a hydrophobic barrier that excludes water from the binding pocket to 

facilitate docking of ligand (Padgett et al., 2007).  For example, in AChBP and all cl-

LGICs, at least one of these aromatic residues has been identified to participate in a 

cation-π interaction that directly correlates to ligand affinity (Zhong et al., 1998; Beene et 

al., 2004; Lummis et al., 2005; Padgett et al., 2007; Pless et al., 2008).  In the GABAA 

receptor, cation-π bonding has been established for β2Y97, whose cation partner is 

suggested to be the amino end of the GABA (Padgett et al., 2007).  For the remaining 

aromatic box residues of the GABAA receptor that were demonstrated not to participate 

in a cation-π bond mediating binding (α1F65, β2Y157, β2Y205) or not tested (β2F200), 

relevant interactions in which they participate remain to be explored.  Therefore, the 
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experiments, documented in chapter IV and chapter V, were designed to home in on the 

potential partners of these aromatics residues.   

One of the goals of the experiments presented in chapters IV and V was to assess 

the relative significance of the hydroxyl group from each of the three tyrosines at the 

GABA-binding pocket by mutating each tyrosine to a phenylalanine and measuring the 

direct effects on kon-GABA.  This approach provided direct quantification for the 

contribution of these hydroxylated aromatics in GABA binding.  At the same time, 

mutating these tyrosines to alanines confirmed the importance of their aromaticity in 

maintaining the integrity of the hydrophobic barrier.  Then, the double mutant cycle 

analyses (Chapter V) were used to subsequently screen the binding-pocket arginines for 

possible cation partner of β2Y97, a tyrosine whose hydroxyl group plays no significant 

role.  Binding pocket arginines were also tested for possible interactions with β2F200, a 

loop C aromatic whose significance might have been overlooked.   

The results from chapter IV show that the hydroxyl group on β2Y97 makes no 

significant contribution, while the hydroxyl groups on β2Y157 and β2Y205 greatly 

influence binding rate of GABA.  This difference is relevant on two counts.  First, it is 

consistent with the observation that mutating β2Y97 has a quantitatively smaller effect on 

EC50-GABA.  Second, the benzene ring of β2Y97, not the hydroxyl group, has previously 

been demonstrated to participate in interaction critical for ligand binding (Padgett et al., 

2007).  On top of that, the benzene rings of β2Y157 and β2Y205 were previously tested 

negative for binding-determining cation-π interactions (Padgett et al. 2007).  

It is interesting that the mutations of β2Y97 (β2Y97A, β2Y97F) do not result in 

very big changes in kon-GABA (Table 4.2).  This small change on kon-GABA  contradicts the 
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role of β2Y97 in ligand binding, if previous proposal were entirely true.  Padgett et al. 

(2007) proposed a ligand-receptor interacting model in which the amino group of GABA 

forms cation-π bond with the aromatic face of β2Y97.  If this model were entirely 

accurate, removing the aromatic at position 97 of β2 (i.e. β2Y97A) would be expected to 

have a more severe impairment in receptor’s ability to bind GABA.  Our results are 

consistent with this prediction in that mutating β2Y97 to alanine reduces kon-GABA  by 3-

fold and that β2Y97F causes no significant change in kon-GABA.  It is clear that the aromatic 

component of β2Y97 is important for GABA binding.  It is possible that the consequence 

of Y97A has more to do with the GABA unbinding rate (koff-GABA) than kon-GABA .  Perhaps, 

the role played by β2Y97 in GABA binding is less direct than previously thought. 

Severe impairment in the receptor’s ability to bind GABA was recorded for a 

previously overlooked aromatic residue (β2F200) on the principle face of the binding 

pocket.  We found that mutating β2F200 to a non-aromatic hydrophobic residue 

(β2F200I) causes a 26-fold decrease in kon-GABA.  Also, through utilizing kon-GABA-based 

double mutant cycle analysis, we discovered that the effects of mutating β2Y97 and 

β2F200 on kon-GABA, though different, are not independent (i.e. their simultaneous mutation 

does not cause an additive effect).  Significant energetic coupling indicates that they are 

tightly linked in function.  We, therefore, propose that they are structurally linked. 

Double mutant cycle analysis also identified that β2Y97 and β2F200 are 

individually coupled to β2R207 to the same degree.  β2Y97 and β2F200 are also weakly 

coupled (i.e. low coupling energy) to β2R132.  Two other binding pocket arginines 

(α1R67, α1R120) were found not coupled to either β2Y97 or β2F200.  Thus far, there are 

two distinct groups of binding pocket arginines – those functionally coupled to β2Y97 
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and β2F200 (α1R132 and β2R207) and those functionally independent from β2Y97 and 

β2F200 (α1R67 and α1R120).  As functional coupling may reflect interaction (Kash et al., 

2003), these findings deserve careful considerations in refining the model of GABA-

receptor interaction.  

The effects of mutating β2Y157 and β2Y205 are consistent with those seen in an 

earlier study, which suggested that β2Y157 and β2Y205 are involved in GABA binding.  

When these residues were conservatively substituted by a phenylalanine, the receptors 

had a much-reduced response to GABA; EC50-GABA was increased by 50-fold, compared 

to normal (Amin and Weiss, 1993).  The same study also reported that an even further 

reduction in GABA sensitivity resulted when either tyrosine residues were mutated to 

such non-aromatic amino acids as serine and asparagines, hinting that these tyrosine side 

chains may be bifunctional.  In other words, both the aromatic ring and the hydroxyl 

group of β2Y157 and β2Y205 hold relevant roles in GABA-receptor relationship.  For 

example, it is possible that while the aromaticity of their side chain helps maintain the 

integrity of the hydrophobic barrier, the hydroxyl group forms a hydrogen bond that 

facilitates GABA binding.  The logical undertaking that follows would be to identify 

hydrogen bond partners for these tyrosines.  Though this would have been a logical 

endeavor, it was not the most efficient, for the scope of this dissertation.  Particularly, the 

pool of potential hydrogen bond partners of β2Y157 and β2Y205 is larger and less 

defined than the pool of potential cation partners of β2Y97 and β2F200 to be explored 

effectively during the duration of this dissertation.   

Nevertheless, having determined that the hydroxyl groups of β2Y157 and β2Y205 

participate in GABA binding, we would now be more confident in assigning potential 
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interactions for them.  Also, useful insights can be drawn from previous models of 

GABAA receptor and other cl-LGICs’ binding pocket.  In the GABAA receptor binding 

pocket model synthesized by Padgett et al. (2007), β2Y157 was suggested to interact via 

hydrogen bond with backbone -NH of α1T130, an interaction that was also suggested by 

the previous homology model generated by Cromer et al. (2002).  In both models, 

however, the orientation of β2Y205 was not clear; Cromer et al. (2002) only generally 

stated that β2Y205 and two other residues, β2T160 and β2T202, could participate in some 

sort of hydrogen bond network. 

Attempts were made to study one other aromatic box residue, α1F65.  When this 

residue was mutated to alanine, GABA-induced response of the receptor was not 

sufficiently robust for meaningful analysis; mostly, GABA-induced response was near-

ablated.  When mutated to a different hydrophobic residue (α1F65C), by Boileau et al. 

(1999), a 70-fold increase in EC50-GABA was observed.  Apparently, the presence of a 

phenylalanine at this position is quite critical.  However, the lack of characterizable 

response for α1F65A made it impossible to examine how α1F65 contributes to receptor 

function and how it may interact with the surrounding residues.  We did not envision new 

information to arise from mutating α1F65 to other residues.  Plus, Padgett et al. (2007) 

demonstrated that α1F65 does not participate in cation-π bond.  Therefore, this aromatic 

residue was not studied any further. 

 
A model of the binding pocket centered on GABA-receptor interaction 

The current best model of the GABAA receptor’s ligand-binding pocket is derived 

from the homology model that has been developed based on the crystal structure of the 
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molluscan AChBP (Brejc et al., 2001; Cromer et al., 2002; O’mara et al., 2005) combined 

with the results of artificial amino acid substitution studied from the Lummis lab (Padgett 

et al., 2007; Harrison and Lummis, 2006), and SCAM and kinetic studies from the  

Czajkowski and Jones labs (Boileau et al, 1999; Wagner and Czajkowski, 2001; Boileau 

et al., 2002; Holden and Czajkowski, 2002; Wagner et al., 2004).  In this model 

(described in Padgett et al., 2007) the amino moiety of GABA is coordinated by a cation-

π interaction with β2Y97 and the carboxyl moiety coordinated by an interaction with 

either β2R207 or α1R67 (or possibly both).   Here, we incorporate the results of this 

Figure 6.3 Interpretation of our results 
at the GABA binding pocket: a model 
of GABA binding pocket based on the 
homology structure proposed by 
Cromer et al. (2002).  A) Side-view of 
β/α interface showing the side chains of 
all the residues mutated in this study.  
GABA has been manually placed in its 
proposed orientation between R67 and 
F200/Y97.  B) Zoomed view of panel A 
with backbone removed.  The alpha 
carbon of each residue has not been 
moved from its original position in the 
homology model  (Cromer et al, 2002).  
Several of the side chains have been 
rotated to alternate stable positions 
(using the mutate function in Swiss PDB 
viewer).  The side chain of F200 has 
been slightly rotated using the torsion 
function in Swiss PDB viewer (see text). 
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dissertation to modify and add significant detail to this model.  The model proposed here 

includes the following features: a hydrophobic interaction between β2Y97 and β2F200, an 

inter-subunit cation-π interaction between β2Y97 and α1R132, a cation-π interaction 

between the amino group of GABA and β2F200, hydrogen bond(s) between the carboxyl 

end of GABA and the guanidinium group of α1R67, and an interaction between the side 

chain of β2R207 and the backbone carbonyl of β2Y97 (Figure 6.3).  The rationale for 

each feature is discussed below.   

 
β2Y97/β2F200/GABA 

One major finding from our study is that β2Y97 and β2F200 display a tight 

functional coupling that facilitates binding of GABA.  We propose that this tight coupling 

is underlied by a direct interaction between the two aromatic residues.  Our rationale 

includes several consistent observations.  First, both β2Y97 and β2F200 were found 

energetically coupled to β2R207 (i.e. similar coupling energies).  Second, β2Y97 and 

β2F200 are both coupled to α1R132 with similar but weak coupling energies.  Third, in 

order for β2Y97 to be functionally coupled to β2R207, β2F200 must be intact and vice 

versa (see triple mutant cycles in Chapter V).  Fourth, both β2Y97 and β2F200 show no 

coupling to either α1R67 or α1R120.  Lastly, β2Y97 and β2F200 are energetically coupled 

for every parameter we considered.  For example, β2Y97 and β2F200 are coupled when 

measurements of EC50-GABA, kon-GABA, and koff-SR were used to drive double mutant cycle 

analysis. 

According to the homology model built by Cromer et al. (2002), the distance 

between the aromatic rings of β2Y97 and β2F200 ranges from 6-9 angstroms when the 
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side chains are rotated through their stable conformations.  This distance is too great to 

support direct aromatic-aromatic interaction and may appear to be evidence against the 

tight Y97/F200 interaction proposed here.  However, the nature of aromatic-aromatic 

interaction is still poorly understood.  The three lowest energy models are depicted in 

figure 6.4.  Though aromatic-aromatic interactions are commonly thought to be 

“stacking”, it is actually more common to find them interacting at right angles with each 

other.  For example, a previous study looking at aromatic interactions in proteins found 

that about 60 percent of aromatic side chains participate in aromatic-aromatic pairs, with 

the phenyl ring centroids separated by distance of 4.5-7 Å and dihedral angles around 90 

degrees being the most common pairing features (Burley and Petsko, 1985).  The same 

study also found that 80 percent of these side chains are involved in networks of three or 

more interacting aromatic side chains.  The typical free energy contributed by each pair 

ranges between -0.6 and -1.3 kCal/mol, depending on how buried the pair is within the 

protein.  Therefore, it is very likely that not only do β2Y97 and β2F200 interact, but also 

they interact at in a perpendicular manner. 

β2F200 is located at the apex of Loop C, a region that aligns very poorly with the 

AChBP (Cromer et al., 2002) and whose actual structure is likely to differ significantly 

from the AChBP structure (Ernst et al., 2003).   In addition, Loop C appears to be quite 

flexible (Wagner and Czajkowski, 2001; Bourne et al., 2010).  Therefore, we believe our 

results (Chapter V) have provided a new constraint on the homology model and that 

future versions of the model should attempt to translate the alpha carbon of β2F200 a few 

angstroms so that its interaction with β2Y97 be clearer.   
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Figure 6.4 Three lowest energy benzene dimers.  Two separate studies found the edge to face 
interaction to be the most stable (Jorgensen and Severance, 1990; Hobza et al., 1996). 
 

The interaction between β2Y97 and β2F200 could leave two alternate faces 

available for cation-π bonding with the amino group of GABA.  Because β2F200 has 

significantly stronger effect on kon-GABA, we propose that it serves as a docking point for 

the amino group of GABA.  Plus, the flexible nature of loop C may allow it to readily 

change conformation upon “catching” the amino end of GABA with the aromatic face of 

β2F200.  This scenario leaves β2Y97 available for potential cation-π interaction with 

β2R207 or α1R132.  The homology model ideally positions α1R132 for this interaction.  

Therefore, in our model we chose to depict it thusly, and show β2R207 contributing via 

interaction(s) with the backbone carbonyl of β2Y97, which it perfectly reaches according 

to the homology model. 
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A proposed ionic interaction between α1R67 and the GABA carboxylate 

Models for coordination of the carboxyl moiety of GABA have suggested a 

possible interaction with α1R67 or β2R207 (Wagner et al., 2004, Padgett et al., 2007).  

The main evidence for these interactions has been that mutation of either residue to 

alanine causes significant increases in EC50-GABA, slowing of the GABA binding rate, and 

acceleration of the GABA unbinding rate.  In addition, they are the only two positively 

charged residues located in the binding pocket that have these effects.  The proposal 

presented here is supported by the fact that, of the four arginines tested here, mutation of 

α1R67 to alanine has the largest effects EC50-GABA.  Also, previous work in our lab found 

that α1R67A causes the greatest shift in both the GABA binding rate and the GABA 

unbinding rate (unpublished data).  Furthermore, α1R67A and β2F200I, as single 

mutations, have the most severe effects on EC50-GABA and these effects appear fully 

additive in the R67A-F200I double mutant.  This result supports a model in which α1R67 

and β2F200 serve as critical and independent sites for GABA docking.  Furthermore, as 

mentioned above, α1R67 is conserved among cl-LGICs.  Functionally, this arginine has 

been shown to play an important role in both glycine and GABAA ρ receptors 

(Grudzinska et al., 2005; Harrison and Lummis, 2006). 

Perhaps, in the process of refining the model of ligand-receptor interaction, one 

can draw useful insights from how the same ligand interacts with distinct classes of 

known target proteins (i.e. transporters and enzymes).  For example, insights can be 

gained from other proteins that bind GABA, for example.  The binding site of the GABA 

transporter, GAT-1, contains several tryptophan residues that appear to play a crucial role 

in binding of GABA.  One of these tryptophan residues is highly conserved among amino 
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acid transporters, and has been proposed to interact with the amino group of GABA 

(Kleinberger-Doron and Kanner, 1994).  A different study looking at the interaction at 

the active site of GABA aminotransferase, the enzyme responsible for GABA 

degradation in the CNS, synthesized a model in which the carboxyl group of GABA was 

proposed to interact with an arginine and a lysine residue (Tone et al., 1995).  While 

these interactions may not be identical to those in the GABAA receptor (i.e. GABAA 

binding pocket has no tryptophan), it is clear that distinct groups of amino acid residues 

coordinate the two ends of the GABA molecule.  The idea of the amino end and the 

carboxyl end of GABA interacting with aromatic and basic residues, respectively, is 

consistent with the model we proposed here. 

 
A proposed cation-π  interaction between β2Y97 and α1R132 

We propose that a cation-π interaction takes place between α1R132 and β2Y97. 

Results from double-mutant cycle analysis of EC50-GABA (Chapter V) indicate that β2Y97 

and β2F200 are functionally coupled to α1R132.   Functional coupling alone is not proof 

of direct physical interaction.  However, we believe that there is sufficient additional 

evidence to support this claim.  Specifically, the homology model shows that α1R132 and 

β2Y97 are ideally positioned for an inter-subunit cation-π interaction and β2Y97 is known 

to be involved in a cation-π interaction but the cation partner has not been identified.  

Other possible cation partners for β2Y97 include α1R67, β2R207 and the amino moiety of 

GABA.  Our data indicates no functional coupling between α1R67 and β2Y97; we argue 

that β2R207 is interacting with a backbone amino group; and we propose that the amino 

moiety of GABA is interacting with β2F200.  Additionally, in models that describe 

binding of glycine to GlyR and GABA to GABAA ρ receptors, arginines that align with 
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α1R132 are suggested to be coordinated by an aromatic side chain (Grudzinska et al., 

2005; Harrison and Lummis, 2006).  Finally, whether the arginine at this position is 

mutated in GABAA αβ type, GABAA ρ type, or GlyR, generally mild effects on EC50 

values are seen; such is indicative of a residue that may act as an accessory (helping to 

position a binding element) as opposed to the large effects one would expect if a residue 

were responsible for direct coordination of the ligand.  

  
A proposed ionic interaction between β2R207 and the backbone carbonyl of β2Y97 

As a single mutant, β2R207A causes the least change in EC50-GABA compared to 

β2Y97A and β2F200A or β2F200I (β2R207A: 10-fold increase; β2Y97A: 15-fold 

increase; β2F200A: 173-fold increase; F200I: 89-fold increase).  However, double mutant 

cycle analysis showed that β2R207 is functionally coupled to β2Y97 and β2F200.  Triple 

mutant cycle analysis (Figure 5.4) further revealed that β2R207 is actually coupled to the 

β2Y97/β2F200 pair.  In the context of “functional coupling reflects interaction”, both 

β2Y97 and β2F200 are required for proper interaction with β2R207.  Regarding the 

influence on kon-GABA , β2R207A causes less reduction of kon-GABA  compared to either 

α1R67A (unpublished data) or β2F200I (Table 5.2).  Combining the observation that 

β2R207 is not required to maintain the interaction between β2Y97 and β2F200 with the 

published homology model, in which β2R207 is favorably positioned for backbone 

interaction (Cromer et al., 2002), we propose that the role played by β2R207 is to 

augment the function the β2Y97/β2F200 pair.  Specifically, we believe that β2R207 

interacts with the backbone carbonyl of β2Y97, positioning the β2Y97/β2F200 pair for 
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proper interaction with GABA’s amino group.  Such a role would also explain for the 

reduction in kon-GABA seen with β2R207 (Table 5.2). 

All in all, the model proposed is consistent with the bulk of results to date.  Many 

of the elements described provide a solid basis on which further investigations can be 

founded.  I acknowledge that some of the details provided for the model remain 

speculative.  Nevertheless, this work has lead to an important refinement in the model 

describing the interaction between the GABAA receptor and its endogenous ligand, 

GABA, and has moved us a major step closer to a full understanding of the GABA-

GABAA receptor interaction.  
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Introduction 

 
  GABAA receptors are the major inhibitory receptors in the CNS.  By providing 

inhibitory neuronal transmission, the GABAA receptors play an important role in normal 

neuronal processing.  GABAA receptors have been common targets for therapeutic agents 

treating such disorders as epilepsy and anxiety.  Also, GABAA receptors are known to be 

modulated by a number of substances such as barbiturates, benzodiazepines, anesthetics, 

and possibly ethanol.  While the basis of modulation by benzodiazepines and general 

anesthetics are well understood, little progress has been made in deciphering how ethanol 

may modulate the function of GABAA receptors, in the past two decades.  The reason for 

this slow progress has to do with the controversial reports from studies that confirm and 

studies that dismiss the presence of ethanol modulation of GABAA receptors.  

 
Ethanol as a potential functional modulator of GABAA receptors 

While anaesthetics, barbiturates, and benzodiazepines have become useful 

therapeutic agents, the role of ethanol has been difficult to define.  These important 

therapeutic agents act allosterically to increase the opening frequency of the GABAA 

receptors and, in so doing, provide a mechanism for inducing anxiolytic and sedative 

effects (Bowery and Smart, 2006).  The many effects of ethanol have also put it on the 

list as a potential GABAA receptor modulator.  For example, at increasing doses, ethanol 

can cause impaired reaction time and judgment, motor incoordination, coma, and even 

death.  All of these effects are consistent with increased GABAA receptor function.  

However, experimental investigations dealing with ethanol modulation of GABAA 

receptor function have reported controversial results. 
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 There have been a handful of reports that alcohol, at sobriety-impairing 

concentrations (3-30 mM), enhances GABA-induced currents in a subset of cultured 

neurons (Aguayo, 1990; Aguayo et al., 2002) and also in certain neurons in slices 

(Palmer and Hoffer, 1990).  In addition, by measuring 36Cl- flux in synaptoneurosomes, a 

number of studies assayed that the current flow through GABAA receptors was increased 

by ethanol (as reviewed by Allan and Harris, 1987).  However, most of these effects were 

not reproducible by other scientists in the field, using similar or alternative approaches 

(Borghese et al., 2006; Yamashita et al., 2006; Casagrande et al., 2007).   

Some experiments in which recombinant GABAA receptors were selectively 

expressed reported that low concentrations of ethanol did not affect GABAA receptor 

isoforms that contain the γ2 subunit (Wallner et al., 2003; Wei et al., 2004).  

Electrophysiological recording techniques like patch clamp of single neurons, from 

cultures and from slices preparations, found that most synaptic (γ2-containing) GABAA 

receptors were not affected by low to sobriety-impairing doses (3-30 mM) of ethanol and 

have very little, if any, effect at concentrations above 100mM (Weiner and Valenzuela, 

2006).  Such negative results contradicted earlier reports of ethanol’s positive modulation 

of GABAA receptors.  Therefore, some scientists have considered the possibility that the 

site of ethanol modulation is extrasynaptic, or even intracellular. 

 Since δ-containing receptors (i.e. α4β3δ) are known to have higher affinity for 

such agonists as GABA, THIP, and muscimol as well as known modulators such as 

general anaesthetics and neurosteroids  (Adkins et al., 2001; Wohlfarth et al., 2002), they 

are thought to be more responsive to ethanol as well.  Indeed, it has been reported that 

GABAA receptors containing the δ subunit, in particular α4β3δ and α6β3δ receptors, are 
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highly modulated by ethanol (Sundstrom-Poroma et al., 2002; Wallner et al., 2003).   

Glykys et al. (2007) showed that low sobriety-impairing ethanol concentrations (20–30 

mM) affected the behavior of wild-type and α4-deficient mice but not δ-deficient mice, 

further demonstrating that δ subunit is important for ethanol modulation.  However, many 

labs, including our own, have not been able to detect the effects of ethanol on δ-

containing receptors, using similar approaches.  All in all, reports from several studies 

indicated that δ-containing receptors were potentiated by low (3-30 mM) intoxicating 

concentrations of ethanol (Glykys et al., 2007; Sundstrom-Porama et al., 2002; Wallner et 

al., 2003).  In contrast, several other studies were unable to detect low dose ethanol 

sensitivity of δ-containing GABAA receptors (Borghese et al., 2006; Casagrande et al., 

2007; Yamashita et al., 2006), indicating that, like γ2-containing GABAA receptors, 

ethanol modulation of extrasynaptic or perisynaptic δ-containing receptors is also 

variable.   

  Published recently is a study by Qi et al. (2007), which reported modulation of 

α1β2γ2 GABAA receptors by ethanol when receptor phosphorylation was blocked.  Qi and 

colleagues explored the intracellular signaling mechanisms as a potential source for 

variable results from earlier ethanol studies.  They found that ethanol modulation is 

dependent on the phosphorylation state of the γ2 subunit of the GABAA receptors.  

Specifically, results from this study led to the conclusion that protein kinase C epsilon 

(PKCε) regulates the sensitivity of α1β2γ2 receptors to ethanol and benzodiazepines 

through phosphorylation of a serine (S327) located in the large intracellular loop of γ2 

subunit.  In other words, dephosphorylation of the S327 on γ2 subunit will render the 

α1β2γ2 receptor sensitive to low concentrations (3-30 mM) of ethanol.  Another study 
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(Choi et al., 2008) also found that protein kinase C delta (PKCδ) regulates ethanol 

potentiation of δ-containing GABAA receptors.  Unlike γ2 receptors, δ receptors require 

the presence of phosphorylation for ethanol effect.  Overall, both of the above studies 

offered a potential way to consistently observe ethanol’s effects on GABAA receptors – 

by controlling the phosphorylation state of the GABAA receptors.  Yet, the ultimate goal 

is not only being able to measure the effect of ethanol on GABAA receptors but also 

finding therapeutic means to treat both acute ethanol intoxication and chronic 

dependence. 

In order to come up with effective strategies to counter the physiological effects 

of ethanol, assuming that ethanol-elicited effects are mediated by ethanol directly acting 

on GABAA receptor, it would be crucial to also understand how ethanol affects the 

kinetics of GABAA receptor.  Any attempt to control ethanol effect through blocking or 

enhancing of PKCε or PKCδ, for instance, would be problematic in vivo because it would 

be impossible to target specific kinases without affecting other processes.  Logically, it 

would be simpler to reverse the effects of ethanol on receptor kinetics using agonist or 

modulator derivatives that specifically target the GABAA receptors.  Thus, it is the 

objective of the present study to examine the effects of ethanol of the kinetics of GABAA 

receptors.  A step beyond the focus of this study is to screen various GABAAR-specific 

for anti-ethanol effects.   
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Results 
 

The objective of the present study was to verify and describe how ethanol directly 

modulates GABAA receptors.  We approached this study with the premise that if ethanol 

directly modulates the α1β2γ2 GABAA receptor, rapid ligand application patch clamp will 

get at the underlying mechanism of modulation.  Therefore, the experiments were 

designed to: 1) demonstrate, through isolated outside-out patch, that ethanol directly 

modulates GABAA receptors, and 2) gain more details regarding the underlying 

mechanism(s) of such direct modulation. 

Our initial attempts to measure ethanol modulation of GABAA receptors yielded 

mostly negative results.  We looked at α1β2γ2 and α1β2δ receptors’ response to ethanol.  

Less than 20% of the patches from α1β2γ2 cells had current that was potentiated by 50mM 

ethanol (Figure A.1 A) and none of the patches from α1β2δ cells showed potentiated 

current.  Worse, the degree of potentiation of α1β2γ2 was not consistent from patch to 

patch, for a given dose of ethanol.  The cause of this variability was thought to be the 

different amounts of α1β2 receptors, which are ethanol insensitive, present in each patch.  

Note that α1β2 receptors are assembled by two α1 and three β2 subunits; they are 

functional GABAA receptors known to be insensitive to ethanol.  For example, when the 

HEK293 cells are transfected with the cDNAs of α1, β2, γ2 subunits, two types of subunit 

assembly may occur: 2α1+2β2+1γ2 and 2α1+3β2.  So, when the α1β2γ2 receptors are 

dominant, ethanol potentiation is observed, otherwise no potentiation would be observed.  

Additionally, as suggested by Qi et al. (2007), the lack of potentiation could be caused by 

phosphorylation of γ2 subunit.   
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Figure A.1 Ethanol does not directly modulate α1β2γ2 GABAA receptor.  A) The expected 
potentiation of sub-saturating GABA-induced response by ethanol (not real data): blue - only 3 
µM GABA, red - 3 µM GABA and ethanol (mM) co-applied. The degree of potentiation depends 
on the concentration of ethanol used.  B) Ethanol (100 mM) does not modulate α1β2γ2 GABAA 
receptors: from the same patch, current elicited by 3 µM GABA (blue) is not different from 
current elicited by 3 µM GABA with of 100 mM ethanol coapplication (red); n = 13.  C) 
Incubation of cells in staurosporine fails to reveal ethanol modulation.  Ethanol coapplication 
(red) is not different from GABA only current (blue); n = 30.  D) Elimination of the previously 
proposed phosphorylation sites on γ2 subunit also does not result in ethanol modulation.  Current 
elicited by 10 µM GABA only (blue) is not different from current elicited by 10 µM GABA plus 
100 mM ethanol (red); n = 8.  E) Coapplication of 100 mM ethanol does not change macroscopic 
desensitization; n= 5.  F) Coapplication of 100 mM ethanol does not change macroscopic 
deactivation; n = 7. 
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In the subsequent experiments, two major changes were made to improve the 

chance of capturing ethanol modulation of α1β2γ2.  First, the cDNAs ratio transfected was 

changed from 1.5 µg(α1) : 1.5 µg(β2) : 1.5 µ(γ2) to 1.5 µg(α1) : 1.5 µg(β2) : 4.5 µg(γ2) to 

improve the fraction of receptors that are α1β2γ2.  Second, prior to patch clamp 

experiment, the transfected HEK cells were incubated in 20nM staurosporine, a general 

kinase inhibitor, for 60 minutes to eliminate the basal phosphorylation.  Disappointingly, 

after these two changes in the protocol, still no ethanol modulation of the α1β2γ2 receptor 

was observed (Figure A.1 B, C).   

Then, in an attempt to better control for phosphorylation, S327 residue on γ2 

subunit was mutated to alanine (γ2S327A), as shown by Qi et al. (2007).  Transfection 

with a ratio of 1.5 µg(α1) : 1.5 µg(β2): 4.5 µg(γ2S327A) was used to yield mainly 

α1β2γ2S327A receptors.  α1β2γ2S327A can serve as a phosphorylation-controlled wild-

type for ethanol.  As with α1β2γ2 receptors, α1β2γ2S327A receptors were not potentiated 

by ethanol (Figure A.1 D).   

A final strategy used to eliminate phosphorylation was the used of protein 

phosphatase (PP2A).  The catalytic subunit of PP2A was introduced to the intracellular 

solution (electrode) at 10 nM to control for any residual phosphorylation on the 

intracellular side of the patch.  This approach, too, failed to reveal ethanol modulation of 

the α1β2γ2 GABAA receptors.   

Throughout the study, measures were taken to ensure enough ethanol exposure.  

First, we initially used ethanol concentration of 30 mM, which was subsequently replaced 

by 100 mM.  Second, excised patches were exposed to a solution exchange protocol in 

which the first pulse exposed the patch to a control concentration of GABA (i.e. 500 ms 
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in 3 uM GABA), return to wash for 20 seconds, and two consecutive pulses exposed the 

patch to ethanol (i.e. 500 ms in 100 mM ethanol) and immediately to ethanol/GABA 

combination (500 ms in solution containing 3 uM GABA and 100 mM ethanol).  The 

cycle repeats after a 20-second wash.   

 Part of this study’s objective was to measure how ethanol influences the kinetic 

parameters of GABA-elicited current.  Since no modulation was observed, it was 

expected that ethanol would not change the macroscopic deactivation and desensitization 

phases of a GABA-evoked current.  Indeed, ethanol did not cause any change in the 

kinetics of the GABA-evoked current (Figure A.1 E, F).  
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Discussion 

 
Our initial attempts to measure ethanol modulation of GABAA receptors yielded 

mostly negative results.  We looked at α1β2γ2 and α1β2δ receptors’ response to ethanol.  

Less than 20% of the patches from α1β2γ2 cells had current that was potentiated by 50mM 

ethanol and none of the patches from α1β2δ cells showed potentiated current.  Worse, the 

degree of potentiation of α1β2γ2 was not consistent from patch to patch, for a given dose 

of ethanol.  The cause of this variability was thought to be the different amounts of α1β2 

receptors, which are ethanol insensitive, present in each patch.  Another possible source 

of the infrequent and variable potentiation was propofol contamination.  Review of the 

experiment history showed that for those days in which we saw potentiation, the pipes 

used for ligand application were used in experiments involving propofol perfusion in the 

previous day.  Thus the possibility exist that propofol not ethanol caused the inconsistent 

cases potentiation. 

In summary, the primary goal of this study was to examine how ethanol, at 

physiologically relevant doses, modulates GABA-induced current.  Specifically, we 

looked at how ethanol altered the kinetics of the GABAA receptors.  We detected no 

modulation of the α1β2γ2 GABAA receptor.  Thus, our results suggest that ethanol does 

not modulate the GABAA receptor at least not through a direct mechanism. 


