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ABSTRACT 

Ventral Tegmental Area Regulation of Stress-Induced Reinstatement of Cocaine-
Seeking Behavior 

Jordan M. Blacktop, B.S. 

Marquette University, 2013 

 

No FDA approved medications currently exist for the prevention of drug craving, 
drug seeking, and relapse to cocaine use. Stress is a major factor in causing 
relapse in cocaine dependent individuals. Cocaine use is positively correlated with 
stress-induced craving and relapse outcomes. Corticotropin-releasing factor 
(CRF) is a 41-amino acid neuropeptide that plays an important role in the stress 
response and in the reinstatement rodent model of stress-induced relapse. CRF is 
released during stress in brain regions associated with the effects of drugs of 
abuse, notably the ventral tegmental area (VTA). This dissertation addresses key 
unknown mechanisms behind drug-induced neuroplasticity and how that 
neuroplasticity gates the ability of stress to cause relapse. Chapter two reports that 
stress and intra-VTA CRF administration produces robust reinstatement in animals 
allowed extended long-access (LgA) but not short-access (ShA) cocaine self-
administration. Moreover, LgA cocaine use increases susceptibility to stressor-
induced relapse in part by augmenting CRF receptor 1 (CRF-R1) dependent 
regulation of VTA neurocircuitry. Chapter three characterizes VTA dopamine 
neuron activation under conditions where stress reinstates cocaine seeking. 
Dopamine neuron activation was significantly increased in ShA but not LgA rats. 
However, when examined across groups only in rats that display relapse in 
response to stress is a significant increase in dopamine neuron activation 
observed. This suggests that stress-induced reinstatement is associated with 
increased activation of VTA dopamine neurons. Lastly, chapter 4 addresses the 
necessity of VTA glutamate and GABA receptors in footshock and intra-VTA CRF 
dependent reinstatement of cocaine seeking. Intra-VTA administration of NMDA, 
AMPA, and GABAA receptor antagonists fail to block reinstatement. In contrast, 
GABAB receptor antagonism blocked reinstatement by both footshock and intra-
VTA CRF suggesting GABAB activation is necessary for CRF actions in the VTA. 
The findings from this dissertation provide much needed insight into the 
neuroadaptations that occur in the VTA to regulate later stressor induced relapse 
in cocaine addicts. The hope is that these findings will help with the understanding 
and eventual long-term management of stressor-induced relapse in abstinent 
cocaine addicts. 
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CHAPTER 1 

 

BACKGROUND AND SIGNIFICANCE 

 

ADDICTION AND SOCIETY 

 The World Drug Report estimates that 5% of the world’s population uses 

illegal drugs, with the economic burden exceeding several hundred billion dollars 

annually (UNODC, 2010). Moreover, the National Drug Intelligence Center 

(NDIC) estimates that drug abuse costs the United States approximately 120 

billion dollars in lost productivity, 61 billion in drug-related crime, and 11 billion in 

drug addiction related healthcare (NDIC, 2011). Combining medical, criminal, 

economic, and social impact, addiction costs Americans upwards to half a trillion 

dollars a year (Jacobs, 2012). Importantly, drug addiction treatment has been 

shown to significantly decrease addiction associated-health and social costs by a 

far greater margin than the cost of implementing the treatment itself (Jacobs, 

2012).  

Treatment is much less expensive than its alternative, such as incarceration 

of these addicted persons (Jacobs, 2012). According to several conservative 

estimates, every $1 invested in addiction treatment programs yields a return of 

between $4 to $7 in reduced drug-related crime, criminal justice costs, and theft 

(Jacobs, 2012). Even more astonishing, when the savings related to health care 

are included, the total savings can exceed the costs by a ratio of 12 to 1 (Jacobs, 

2012). Thus, it makes humane, economical sense to invest in developing better 
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treatments for addiction. Not only will this help the addicted individual, it will also 

give back to society through less interpersonal conflicts, increased workplace 

productivity, and fewer drug-related accidents (Jacobs, 2012). In summary, more 

effective treatment can help reduce the costs of addiction on society while also 

rehabilitating the addicted individual. 

ADDICTION 

 Addiction is chronic relapsing neuropathy of the brain (O'Brien and 

McLellan, 1996) that results from long-term or even permanent changes to the 

circuitry of motivated behavior. The long-term or permanent changes in the 

circuitry of motivated behavior is referred to as drug-induced neuroplasticity. 

Drug-induced neuroplasticity in the circuitry of motivated behavior produces loss 

of control over drug intake, decreased drive for natural rewards, and increased 

relapse vulnerability even following periods of prolonged drug abstinence. 

Although, the initial decision to take the drug is a voluntary decision, as the 

motivation to use the drug takes over and the drug changes brain function, the 

person’s ability to exert control over drug intake is impaired (Volkow and Fowler, 

2000, Kalivas and Volkow, 2005, Jacobs, 2012).  

Human addicts do not maintain a steady state of use but instead increase 

the amount of drug used over time (Edwards, 1986, Gawin and Kleber, 1988, 

Gawin, 1991). As addiction develops there is transition to higher doses with 

longer bingeing duration (Ellinwood, 1977, Gawin and Kleber, 1986, Jekel et al., 

1986, Gawin and Ellinwood, 1988). Therefore, the transition from recreational 
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drug use to drug addiction involves gradual escalation of drug intake over time 

(Edwards, 1986, O'Brien, 1986, Marlatt et al., 1988, Gawin, 1991). This is 

referred to as loss of control over drug intake. Additionally, addicts report 

generalized anhedonia with decreased reward perception to normal everyday life 

experiences (food, sex, hobbies, etc.) (Hall, 1988). Perception of reward is now 

primarily oriented around use of the drug. As addiction progresses addicts use 

the drug to feel “normal” and to avoid the dysphoric effects of withdrawal that 

come with abstinence. 

WITHDRAWAL AND ABSTINENCE 

 Following cessation of drug use by human addicts a state of withdrawal 

can occur consisting of irritability, anxiety, anhedonia, and depression lasting 

from several hours to days (Gawin and Kleber, 1986). Recurrent cycles of drug 

binges followed by drug cessation with consequent severe dysphoria fuel the 

vicious cyclic nature of addiction. Following cessation of drug use there are three 

main stages that occur: (1) acute withdrawal, (2) early abstinence, (3) and 

protracted abstinence (Heilig et al., 2010). Acute withdrawal occurs 48-72 hours 

in humans a timecourse thought to correspond to 24-48 hours after cessation of 

drug use in rats (Heilig et al., 2010). Acute withdrawal is characterized by 

disruptions in sleep, increased anxiety, irritability, and crashing (Walsh et al., 

2009). Early abstinence occurs 3-6 weeks in humans a timecourse thought to 

correspond to 1-2 weeks after cessation of drug use in rats (Heilig et al., 2010). 

Early abstinence is characterized by craving, anxiety, uncertainty (Dudish-
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Poulsen and Hatsukami, 2000), severe depressive-like symptoms, and irritability 

(Gawin and Kleber, 1986). Protracted abstinence consists of abstinence past 3 

months in humans and greater than two weeks in animals (Kuhar and Pilotte, 

1996, Heilig et al., 2010). During protracted abstinence there is a decrease or 

absence of reward perception to normal pleasurable events (Gawin et al., 1986, 

Gawin, 1991, Heilig et al., 2010). 

PROTRACTED ABSTINENCE 

 During protracted abstinence, normally insignificant and/or stressful 

challenges can provoke dysphoria, craving, and relapse (Sinha et al., 1999, 

Heilig et al., 2010). Human clinical observations reveal that addicts experience 

anhedonia, depression, and dysphoria during prolonged periods of abstinence 

from drugs (Dole et al., 1966, Martin and Jasinski, 1969). Unlike the acute 

physical withdrawal symptoms that occur during the first 24-48 hours of drug 

abstinence, dysphoria can persist for extended periods of time during the 

protracted abstinence phase (Gawin, 1991, Ahmed and Koob, 1998, Aston-

Jones and Harris, 2004). Protracted abstinence from drug abuse has also been 

defined as a syndrome with “the persistence of a dysregulated reward system 

long after acute withdrawal” (Koob, 2010). Protracted abstinence is further 

characterized by low-level dysphoric symptoms due to drug abstinence with a 

persistent high relapse vulnerability. 
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TREATMENT DURING PROTRACTED ABSTINENCE 

 Non-pharmacological treatment for abstinent addicts involves teaching 

skills for adaptive coping to cravings triggered by cues, stress and other stimuli 

(Marlatt, 1990, Marlatt, 1996). Initial studies did attempt to use cue exposure 

therapy (Drummond, 1995) to treat human addicts. Initial studies reported cue 

exposure therapy unsuccessful (Marlatt, 1996), however, this line of research is 

ongoing. The current treatment standard consists of a combination of 

pharmacological intervention, depending on the drug of abuse, and cognitive 

behavioral therapy. Cognitive behavioral therapy (CBT) is thought to function by 

suppressing drug seeking through strengthening inhibitory control circuits, 

increasing non-drug reinforced incentive salience, and strengthen executive 

function, especially at times of high relapse risk (Marlatt, 1985). At all stages of 

drug abstinence in addicts there is persistent craving and high relapse 

susceptibility. 

DSM-V CRITERIA: SUBSTANCE USE DISORDER AND CRAVING 

 The Diagnostic and Statstical Manual of Mental disorders (DSM) is the 

American Psychological Association (APA) classification and diagnostic resource 

used to diagnose psychiatric disorders. As understanding of psychiatric disorders 

evolves so must the DSM. The DSM-V substance-related disorders has 

combined the DSM-IV abuse and dependence categories into one substance use 

disorder category. Within the criteria legal problems is removed and importantly 
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replaced with craving. Total criteria include: (1) hazardous use, (2) 

social/interpersonal problems related to use, 3) neglected major roles to use, (4) 

withdrawal, (5) tolerance, (6) use larger amounts/longer, (7) repeated attempts to 

quit/control use, (8) much time spent using, (9) physical problems related to use, 

(10) activities given up to use, (11) and craving (DSM-V, 2013). To qualify for a 

substance use disorder, two or more abuse criteria within 12-month period must 

occur (Hasin et al., 2013). Drug craving is a hallmark in the diagnosis of 

substance us disorders (O'Brien et al., 1998, Miller and Goldsmith, 2001, Waters 

et al., 2004, Weiss, 2005, Heinz et al., 2009). 

CRAVING 

 Craving is a strong desire or urge. Drug craving can be defined as an 

urgent abnormal/obsessive desire, longing, or yearning for the drug. Drug craving 

is associated with an unpleasant feeling that can be alleviated by use of the drug. 

This often is often observed as the chasing of drug-induced euphoria, 

comparable to that experienced upon initial drug use, which can be spurred upon 

by stimuli that induce craving for the drug.  Anti-craving medications are currently 

being investigated with the hope that they will help in the long-term management 

of addiction (O'Brien, 2005). Repeated cycles of drug-induced euphoria, drug 

abstinent-induced dysphoria, and drug craving makes addiction cyclic in nature. 

Craving facilitates the cyclic nature to the addiction process by facilitating 

relapse. Addicts currently abstinent from drug use are still at risk for relapse due 

to drug-induced neuroplasticity within the reward system. In essence, drugs of 
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abuse hijack the endogenous reward/motivation systems, providing a 

neurochemical framework for high relapse susceptibility. 

RELAPSE 

 Addiction is hard to treat because of compulsive drug seeking and high 

relapse vulnerability following periods of prolonged abstinence (Mendelson and 

Mello, 1996, O'Brien and McLellan, 1996, O'Brien, 1997). The high rate of 

relapse following abstinence from drug use is considered to be one of the 

fundamental obstacles to the long-term management of drug addiction (O'Brien, 

2005, Kalivas and O'Brien, 2008). Drug craving and relapse to both drug seeking 

and drug use can be triggered by: (1) exposure to the previously self-

administered drug (drug-induced relapse) (Meyer, 1979, Jaffe et al., 1989, de 

Wit, 1996), (2) stimuli associated with drug taking (cue-induced relapse) 

(Childress, 1992, Carter and Tiffany, 1999), and (3) exposure to stressors 

(stress-induced relapse). 

THEORETICAL ASPECTS OF ADDICTION 

 Common to all drugs of abuse is activation of the midbrain dopamine 

system (Snyder, 1986, Cooper, 1991) which have been implicated in reward, 

euphoria, satisfaction, cognition, alertness, and motivation  (Wise and Bozarth, 

1982, Robbins et al., 1989, Di Chiara, 1995). Drugs of abuse are not only 

rewarding but also reinforcing (White, 1989), increasing the likelihood that the 

behavior of using the drug will be repeated. These findings provided the 
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framework behind the dopamine reward hypothesis. The dopamine reward 

hypothesis states that dopamine plays an essential role in motivated behavior 

and the rewarding effects of drugs of abuse (Wise and Rompre, 1989). However, 

increases in dopamine are not only associated with reward but also prediction of 

reward and salience of reward related stimuli (Robinson and Berridge, 1993, 

Schultz, 1998).  

Drug-induced neuroplasticity has been posited to attribute incentive 

salience or wanting to drug-related stimuli that would otherwise be normally 

ambiguous (Robinson and Berridge, 1993). Drug use in essence changes the 

function of the reward system so that stimuli associated with drug use have 

increased incentive salience (Robinson and Berridge, 1993). Salience refers to 

the characteristics of stimuli that arouse and/or elicit an attentional response 

(Horvitz, 2000). Salience applies to reward, aversion, and new and unexpected 

stimuli that can affect the motivation to seek an anticipated reward, resulting in 

the facilitation of conditioned learning (Schultz, 2001, McClure et al., 2003). 

Importantly, incentive salience can transform drug-associated stimuli into an 

intense craving for the drug (Robinson and Berridge, 1993). 

Repeated drug exposure can also lead to adaptations in the reward 

circuitry that oppose or neutralize the effects of the drug. In this way, addiction 

has been hypothesized to involve neuroadaptations that combat the effects of the 

drug on the brain (Wikler, 1973, Solomon and Corbit, 1974).The opponent 

process theory of addiction states that the rewarding effects of drugs are 

automatically opposed by “anti-reward” signaling such that removal of withdrawal 
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and craving now drives drug use instead of the addition of euphoria (Solomon 

and Corbit, 1974, Koob and Le Moal, 2008). In other words, there is a shift from 

positive reinforcement to negative reinforcement. This theory of addiction centers 

around physiological homeostasis that has been disrupted upon continued drug 

use. Allostasis is the concept of changes in physiology that occur due to 

environmental-induced deviations from a normal homeostatic set point (Sterling, 

1988, McEwen and Stellar, 1993). The opponent process theory of addiction 

defines addiction as hedonic homeostatic dysregulation (Koob and Le Moal, 

1997). This is very similar to Newton’s third law of motion stating that for every 

action there is an equal and opposite reaction (Newton, 1686) but simply applied 

to the effects of the drug on neurophysiology.  

Since there is substantial evidence for the dopamine reward, the incentive 

salience, and the opponent process theories of addiction, it is likely that addiction 

itself would best be described as a powerful combination of all three theories. 

Euphoric vivid memories are made during the uncontrolled binges of drug use 

that can increase the incentive salience of drug associated cues (Gawin and 

Kleber, 1986, Gawin and Ellinwood, 1988). These cues can produce drug craving 

during abstinence facilitating relapse. During abstinence an addict is in a state of 

anhedonia that is exacerbated when coupled with drug craving produced by drug 

associated stimuli in the environment of the user. In essence, dopamine 

regulates the euphoric effects of the drug and incentive salience of drug related 

stimuli, while the opponent process produces the anhedonic state, which interact 

to trigger overwhelming drug craving induced by cues, drug, or stress. This 
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overwhelming drug craving provides the neurochemical framework for both loss 

of control over drug seeking/use and high relapse susceptibility.  

COCAINE AND SOCIETY 

 One drug of abuse that has a particularly high rate of developing addicts 

following recreational use is the euphoric psychostimulant cocaine. More than 23 

million Americans have used cocaine at some time, and the number of frequent 

users, at least weekly, has remained steady since 1991 at ~ 600,000 (O'Brien, 

2011). Approximately 16% of the United States general populace has used 

cocaine at least once in their life while 17% of those that try cocaine become 

addicted (Wagner and Anthony, 2002). These statistics are consistent with other 

studies reporting that 10 to 15% of those who try cocaine develop addiction 

within the first 10 years of first trying the drug (Wagner and Anthony, 2002). 

Crack cocaine has a substantially higher dependence/addiction and relapse rate 

compared to powdered intra-nasal cocaine. It has been estimated that 

approximately 63% of crack cocaine users develop dependence within 8 years of 

first trying the drug (Falck et al., 2008). These statistics suggest that 

approximately 1.6 to 2.7 percent of the United States general populace is 

addicted to cocaine (Wagner and Anthony, 2002).  

The number cocaine initiates has declined (SAMHSA, 2012). However, 

there are still 1,800 new initiates per day (SAMHSA, 2012). Moreover, the 

percentage of individuals that try cocaine and become addicted hasn’t changed, 

and the percent of cocaine addicts that are unemployed has increased 
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(SAMHSA, 2012). Cocaine is the primary abused substance reported for 13% of 

all admissions into substance abuse programs in the United States (SAMHSA, 

2009).  The decrease in initiates but stable number of cocaine addicts could be 

explained by the fact that federal agencies are seizing 30% less cocaine in the 

continental United States (NDIC, 2011) allowing for those addicted to continue to 

have access to cocaine. This is even more problematic when combined with 

recent reports that relapse rates following treatment for cocaine dependence 

typically exceed 45% within 6 to 12 months of treatment (Hall et al., 1991, McKay 

et al., 1998, McKay et al., 1999). Most importantly, there still remains no food and 

drug administration (FDA) approved pharmacotherapy for the treatment of 

cocaine addiction (de Lima et al., 2002, Lima et al., 2003, Vocci and Elkashef, 

2005). In summary, it is clear there is great need of improvement in treatment 

strategies to address the public health concern of cocaine addiction. 

MECHANISM OF ACTION OF COCAINE 

 Research in human subjects has demonstrated that cocaine elicits a 

profound feeling of euphoria producing a reinforcing positive mood state.  This 

has been described as a “rush” or “high” that is directly tied to a dramatic 

increase in dopamine concentrations in the nucleus accumbens (Koob and 

Bloom, 1988, Volkow et al., 1999a, Di Chiara, 2002). This rush can further be 

characterized by augmentation of confidence, well-being, alertness, emotion, 

hedonic drive (sex), communication, satiation, and disinhibition (Ellinwood, 1977, 

Van Dyke et al., 1982, Gawin and Kleber, 1985, Johanson and Fischman, 1989). 
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The reinforcing effects of cocaine correlate with its ability to block the dopamine 

transporter (DAT) at the synapse increasing concentrations of dopamine at 

critical brain sites (Ritz et al., 1987). Cocaine also blocks norepinephrine (NE) 

and serotonin (5-HT) reuptake (Ritz et al., 1990, O'Brien, 2011) having dramatic 

effects on mood and arousal states (Gawin and Kleber, 1984).  

COCAINE CRAVING AND THE HUMAN BRAIN 

 Functional imaging studies on human addicts have given insight into the 

areas of the brain that are dysfunctional and correlated with intense cocaine 

craving. Structural abnormalities indicative of decreased function have been 

found in the prefrontal cortex (PFC) of human cocaine addicts. These 

abnormalities include decreased perfusion, glucose metabolism, and gray matter 

(Volkow et al., 1991, Volkow et al., 1992, Volkow and Fowler, 2000, Franklin et 

al., 2002, Matochik et al., 2003, Volkow et al., 2004). The PFC is involved in 

executive function, decision making, risk/reward assessment, and impulse 

control. Therefore, it has been hypothesized that irresistible drug cravings and 

decreased impulse control that ultimately lead to relapse of drug use are the 

result of decreased prefrontal cortical activity (Kaufman et al., 2003, Hester and 

Garavan, 2004, Volkow et al., 2004, Ersche et al., 2008, Li et al., 2008). This has 

been collectively referred to as drug-induced hypofrontality. In addition to 

hypofrontality, cocaine craving is also associated with dysfunctional striatal-limbic 

responses (Sinha et al., 2005, Wong et al., 2006). These are two main 

downstream targets of the midbrain dopamine system and of glutamatergic 
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projections from the PFC. This indicates that aberrant dopamine and or 

corticostriatal signaling is a phenotype of addicts that is associated with drug 

craving (Sinha, 2013).   

Drug seeking is facilitated by impairment of prefrontal cortical mechanisms 

that in a healthy non-addicted individual, would inhibit harmful behaviors (Hyman 

et al., 2006). The medial prefrontal cortex (mPFC) is involved in both activation 

and suppression of drug-seeking behavior. Moreover, there appears to be 

aberrant communication between this brain region and midbrain dopamine 

neurons (Gu et al., 2010), and the nucleus accumbens (McFarland et al., 2003). 

This is thought to reflect devaluation of non-drug goals within the PFC (Montague 

et al., 2004), with drug-related goals undermining proper PFC function in the 

control of behavior (Paulus et al., 2005). Perhaps this streamlines drug-related 

motivation at the expense of natural motivation. In summary, drug craving is an 

unpleasant feeling and, when combined with aberrant dopamine signaling the 

ability to suppress drug use, is hindered, which facilitates relapse. This may be 

one mechanism involved in loss of control in drug seeking/intake seen in human 

addicts.  

STRESS AND COCAINE CRAVING IN HUMAN ADDICTS 

 One cause of intesnse cocaine craving that precipitates relapse in human 

addicts is stress exposure. Stress is unpredictable and unavoidable in today’s 

society for virtually everyone. For this reason, stress is a significant obstacle in 

maintaining abstinence because it facilitates the vicious cycle of addiction 
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(Ludwig and Wikler, 1974, Littman, 1977, Marlatt, 1978, Bradley et al., 1989, 

Wallace, 1989, Sinha et al., 1999, Sinha, 2001). Stress can take the form of a 

perceived threat (anxiety), loss of a family member, a divorce, job dissatisfaction, 

amongst other things. Stress is embedded throughout the entire process of 

addiction. Stress appears to be a core factor in the initial decision to try a drug, 

continued drug use, development of addiction, and relapse to drug use following 

abstinence.  

States of stress and stressor exposure have long been positively 

associated with relapse to drug seeking and drug use (Marlatt, 1980, Kreek and 

Koob, 1998, Koob and Kreek, 2007). Stressful stimuli increase cocaine craving in 

human addicts (Sinha et al., 1999, Back et al., 2010). Specifically, human 

cocaine users in a drug free state exposed to stressful imagery scripts display 

increased craving for drug, anxiety, heart rate, and even stress hormone levels 

(Sinha et al., 2000). Stress-induced cocaine craving is characterized by 

decreased activity in areas associated with control and regulation of 

emotion/distress (anterior cingulate cortex, hippocampus) (Sinha et al., 2005) 

with increased activity in areas associated with reward (caudate, dorsal striatum) 

(Sinha et al., 2005). Importantly, the magnitude of drug craving is positively 

correlated with the amount of cocaine previously used (Fox et al., 2005). 

A prior history of higher frequency cocaine use is associated with 

augmented stress-induced craving measured in a laboratory setting in cocaine-

dependent individuals (Fox et al., 2005, Back et al., 2010). This augmented 

stress-induced cocaine craving is correlated with higher relapse rates in 
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abstinent cocaine addicts (Sinha et al., 1999, Sinha et al., 2000, Sinha, 2001, 

Sinha et al., 2006, Sinha, 2008, 2009, Back et al., 2010). Stress perceived in the 

environment of a cocaine addict can cause relapse through craving because of 

an atypical stress response (Kreek, 1987). The addiction phenotype (Figure 1) 

involves a maladaptive stress response characterized by enhanced emotional 

responsiveness, drug craving, and decreased adaptive coping (Sinha, 2001). 

 

Figure 1: Addiction stress and relapse; neuroadaptations in brain stress and 

reward circuits results in a maladaptive stress response in human addicts (Sinha, 

2001).  

 

 

 

 

 

 

 

 

 

 

COCAINE ADDICTION AND THE SELF-ADMINISTRATION ANIMAL MODEL 
OF RELAPSE 

 

 Although, human brain imaging and anecdotal reports of craving have 

been useful in determining a key role of stress in the addiction process it is very 

difficult to determine what is exactly happening at those brain regions beyond 
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changes in receptor binding (PET) and cerebral blood flow (fMRI) (Malonek and 

Grinvald, 1996, Volkow et al., 2001). In order to study the intricacies of addiction, 

animal models have been developed. In humans, craving is based on anecdotal 

reports from human addicts themselves. In laboratory animals craving is inferred 

from the behavioral response in the form of drug seeking (lever pressing) 

following abstinence or extinction.  

As the duration of abstinence/withdrawal increases there are also 

increases in cue-induced craving in both subjective reports in humans and drug 

seeking in laboratory animals (Grimm et al., 2001, Bedi et al., 2011). This 

phenomenon is referred to as an incubation of drug craving (Grimm et al., 2001, 

Pickens et al., 2011). In contrast to cues, studies investigating incubation in 

response to both drug and stress have produced mixed results (Tran-Nguyen et 

al., 1998, Shalev et al., 2001, Deroche-Gamonet et al., 2003, Marinelli et al., 

2003, Lu et al., 2004, Shepard et al., 2004, Sorge et al., 2005).  

The reinstatement rodent model of relapse has provided a strong 

framework to investigate the neuromechanisms of relapse induced by cues, drug, 

and stress (Shaham et al., 2003). Reinstatement is simply a restoration of drug-

seeking behavior (Stewart, 1987a, Bouton, 1991, Catania, 1992). The 

reinstatement model allows researchers to characterize the processes in the 

brain that contribute to the maladaptive behavior of relapse in a way that cannot 

be studied in people. This dissertation primarily utilizes the rodent reinstatement 

model of relapse to further characterize the neuromechanisms of stress-induced 
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relapse to cocaine-seeking behavior. This model is described in further detail in 

the following section. 

The same stimuli that can provoke craving and relapse in human addicts 

can reinstate cocaine-seeking behavior in laboratory animals, even after periods 

of prolonged abstinence. In abstinent human cocaine addicts augmented drug 

craving and relapse probability can be triggered by exposure to: (1) the 

previously self-administered drug (Meyer, 1979, Jaffe et al., 1989, Preston et al., 

1992), (2) stimuli previously associated with drug use (Childress, 1992, Carter 

and Tiffany, 1999), and (3) exposure to acute stress (Sinha, 2001, Fox et al., 

2005). In the rodent reinstatement model of relapse vigorous active drug-seeking 

behavior can be induced by (1) priming injections of the drug (Gerber and 

Stretch, 1975), (2) cocaine predictive cues (Weiss et al., 2000), and (notable for 

this dissertation) (3) acute stress exposure (Erb et al., 1996, Ahmed and Koob, 

1997, 1998, Shaham et al., 1998, Shaham et al., 2000, Mantsch et al., 2008a, 

Mantsch et al., 2008b, Shalev et al., 2010). 

SELF-ADMINISTRATION MODEL  

 Drugs abused by humans will be self-administered by laboratory animals 

(Schuster and Thompson, 1969). Cocaine appears to have similar effects on 

brain function in both humans and rodents. As mentioned earlier, drugs of abuse 

exert their reinforcing effects through increased dopamine signaling (Snyder, 

1986, Koob and Bloom, 1988, Wise and Rompre, 1989, Cooper, 1991). When 

humans or laboratory animals self-administer cocaine there are large and fast 
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increases in nucleus accumbens (striatal) dopamine signaling (Hurd et al., 1989, 

Pettit and Justice, 1989, 1991, Laruelle et al., 1995, Wise et al., 1995, Breiter et 

al., 1997, Volkow et al., 1999b, Volkow et al., 2002), an effect that has long been 

associated with reward. Moreover, when dopamine terminals are depleted in the 

nucleus accumbens cocaine self-administration drops significantly (Pettit et al., 

1984), suggesting that increasing dopamine neurotransmission in the nucleus 

accumbens is essential for cocaine self-administration. 

The drug-self-administration model involves the laboratory animal learning to 

perform an operant task, such as lever pressing, to receive intravenous infusions 

of drug (Weeks, 1962). In this model the reinforcing properties of drugs can be 

measured in animals, such as rats,  equipped with intravenous catheters 

connected to lever-regulated pumps, which provide direct systemic 

administration of drug in response to operant lever pressing (O'Brien, 2011). 

These animals will work to obtain injections of the same drugs that are abused by 

humans in roughly the same order of potency (O'Brien, 2011). Moreover, 

evidence suggests that contingent drug-induced neuroplasticity, as seen in the 

self-administration model, can be distinct from noncontingent drug-induced 

neuroplasticity (Stewart, 1987b, Goudie, 1989, Stewart, 1992, Dworkin et al., 

1995, Hemby et al., 1997, Badiani et al., 1998, Robinson et al., 1998, Markou et 

al., 1999).  

Human addicts do not maintain a steady state of use but instead increase 

the amount of drug used over time (Edwards, 1986, Gawin and Kleber, 1988, 

Gawin, 1991), thus resulting in a gradual escalation of drug intake (Edwards, 
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1986, O'Brien, 1986, Marlatt et al., 1988, Gawin, 1991). This escalation of drug 

use is also closely associated with loss of control over drug intake (DSM-V, 

2013). Escalation is thought to represent evidence of drug-induced 

neuroplasticity. Loss of control over drug intake, as seen in the human condition 

(DSM-V, 2013), can be established, in the form of escalation, in animals allowed 

extended daily access to cocaine for self-administration (Ahmed and Koob, 1998, 

Mantsch et al., 2004, Mantsch et al., 2008a, Mantsch et al., 2008b). Extended 

cocaine self-administration access has been termed long-access (LgA) self-

administration. 

SHORT-ACCESS AND LONG-ACCESS MODELS OF COCAINE SELF-
ADMINISTRATION 

 

 Researchers have utilized short-access (ShA), 1-2 hours of cocaine self-

administration access per day, and long-access (LgA), 6-10 hours of cocaine 

self-administration access per day, models to study cocaine abuse/addiction. 

Long-access self-administration (14 x 6 hrs) results in very high levels of drug 

intake ( > 70 mg/kg/day), which are substantially higher than the total intake in 

short access animals (~ 15 mg/kg/day) (Mantsch et al., 2008a). Under both ShA 

and LgA conditions, rats learn—often on the first day of exposure—to lever-press 

for intravenous drug, such as cocaine. Short-access self-administration sessions 

produce stable, controlled, and regulated responding for drug (Ahmed and Koob, 

1999, Mantsch et al., 2008a). On the other hand, long-access (LgA) self-

administration produces a progressive escalation in cocaine self-administration 

(Figure 2) (Ahmed and Koob, 1997, 1998, 1999, Ahmed et al., 2003, Ahmed and 
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Koob, 2004, Mantsch et al., 2008a, Blacktop et al., 2011). Progressive escalation 

is simply a gradual increase in drug taking across consecutive self-administration 

sessions. Escalation of self-administration in laboratory animals thought to be 

analogous to the loss of control of drug taking seen in human addicts (Ahmed 

and Koob, 1998). 

Figure 2: Escalation of drug SA in long-access rats (LgA/closed circles) but not 
in short-access (ShA/open circle) or saline (Sal/closed triangle). The asterisk (*) 
indicates significant escalation from the previous SA session (Blacktop et al., 
2011). These findings are reproducing those originally reported by Ahmed and 
Koob (1998). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXTINCTION 

 The next step in the preclinical animal model of relapse after self-

administration is commonly extinction. In order to study relapse using the SA 

approach, it is first necessary to reduce drug-seeking behavior which can be 
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behavior to pre-training baseline levels allowing the researcher to test for 

reinstatement of drug seeking (Stretch et al., 1971, Stewart, 1987a). Simply, 

extinction is decreased self-administration behavior when the drug and its 

pharmacological effects have been removed (Yap and Miczek, 2008); i.e. 

replacing cocaine with saline (Figure 3) (Shalev et al., 2002). Importantly, during 

extinction the animal is presented with previously drug associated stimuli (self-

administration chamber with levers, lights, etc.) in the absence of the drug (Sorg, 

2012). Following 14 days of cocaine self-administration training, it takes about 10 

days of daily 2 hour extinction sessions before response rates drop back to their 

infrequent pre-training level (Mantsch et al., 2008a, Blacktop et al., 2011). 

Moreover, there are no differences in extinction rates between LgA and ShA 

animals. 

 
 
Figure 3: Extinction of drug-seeking behavior in short-access (ShA/open circle) 
and long-access rats (LgA/closed circles) compared to saline controls (Sal/closed 
triangle). Refer to chapter two figure 1B. (Blacktop et al., 2011). 
 
 
 
 
 

 
 

 

 

 

 

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

S hA  S A

LgA  S A

S a l S A

1 2 3 4 5 6 7 8 9 1 0

E x tin c tio n  D a y

R
e

s
p

o
n

s
e

s
/S

e
s

s
io

n



22 
 

Extinction is defined as a reduction in drug-seeking when the contingency is 

broken between the drug-seeking behavior or drug-predicting stimuli and drug 

reward (Millan et al., 2011). Extinction is an active learning process. During 

extinction, the animal is not unlearning that the active lever results in drug 

reinforcement, but learning that the previously active lever no longer results in 

drug reinforcement. This produces conflicting associations between the original 

drug-seeking associations and the extinction associations (Millan et al., 2011). 

Therefore, extinction doesn’t erase drug seeking but rather counteracts it.  

The major caveat to the self-administration model of relapse is that human 

addicts do not typically go through extinction. However, extinction may represent 

an important component of cognitive behavioral therapy. Cognitive behavioral 

therapy is thought to suppress drug seeking by strengthening inhibitory control 

circuits, increasing non-drug reinforced incentive salience, and strengthening 

executive function at times of high relapse risk (Marlatt, 1985). Although 

extinction and cognitive behavioral therapy are not the same they both are 

thought to function by strengthening neural circuits that inhibit drug seeking. 

REINSTATEMENT  

 Reinstatement refers to the restoration of a previously drug-reinforced 

behavior following its suppression, typically through extinction (Stewart, 1987a, 

Bouton, 1991, Catania, 1992). The dependent variables that are measured 

during a reinstatement session are non-reinforced responses on the lever that 

previously delivered drug (active lever) and responses on a second lever not 
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previously associated with drug infusions (inactive lever). Reinstatement is a 

significant increase in active lever responses representative of drug seeking, 

usually without a significant increase in inactive responses representative of 

nonspecific or generalized response activity (Catania, 1992, Shalev et al., 2002, 

Shaham et al., 2003). 

Reinstatement of drug seeking in the rodent model has been hypothesized to 

be the acute failure of extinction training to inhibit drug seeking (de Wit and 

Stewart, 1981, Crombag and Shaham, 2002). The important balance between 

driving and inhibiting drug seeking appears to involve different inputs from the 

medial prefrontal cortex to different regions of the nucleus accumbens (Cornish 

et al., 1999, McFarland and Kalivas, 2001, McFarland et al., 2003, McFarland et 

al., 2004, Fuchs et al., 2008, Peters et al., 2008, Van den Oever et al., 2010). 

This will be discussed in further detail in the following mesocorticolimbic 

dopamine system section and in chapter five.  In summary, the reinstatement 

model is not perfect but is still a very powerful tool for addiction research. The 

same drugs abused by humans will be administered by the rodent, and the same 

stimuli that precipitate relapse in humans reinstate drug seeking in the rodent. 

STRESS-INDUCED REINSTATEMENT 

 During stress-induced reinstatement a stressful stimulus is administered 

prior to an otherwise normal extinction session, usually within the self-

administration chamber. The most common external stimuli to induce stress-

induced reinstatement of drug seeking is unpredictable, uncontrollable, 

intermittent electric footshock delivered through the grid of the self-administration 
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chamber. Intermittent footshock reinstates drug seeking in rats previously trained 

to self-administer cocaine (Erb et al., 1996, Ahmed and Koob, 1997, Mantsch 

and Goeders, 1999, Sutton et al., 2000). Intermittent unpredictable footshock 

stress not only reinstates cocaine seeking but also reinstates drug seeking for 

most drugs of abuse, including heroin, nicotine, and alcohol (Erb et al., 1998, 

Shaham et al., 1998, Le et al., 2000, Bruijnzeel et al., 2009). 

 

Figure 4: Stress-induced reinstatement of extinguished cocaine-seeking 
behavior in LgA but not ShA rats, which his specific to the active lever (Mantsch 
et al., 2008a, Blacktop et al., 2011, Graf et al., 2011). 
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animals (Shelton, 2005). It should be noted that others do report stress-induced 

reinstatement in ShA animals (Erb et al., 1996, Shaham et al., 1998, Shaham et 

al., 2000). However, our findings that stress-induced reinstatement occurs more 

reliably in animals with long-access cocaine self-administration history is 

consistent with intake dependent stress reactivity in humans. Human studies 

report that higher frequency cocaine user’s exhibit augmented cocaine craving in 

response to stress, increasing the probability of relapse (Fox et al., 2005, Sinha 

et al., 2006).  

Although, escalation is observed in LgA animals and not ShA animals 

(Ahmed and Koob, 1998, Mantsch et al., 2008a, Blacktop et al., 2011), there is 

no evidence reporting escalation as the cause of stress-induced reinstatement to 

cocaine seeking. However, both escalation of drug intake and augmented 

reinstatement are intake-dependent and characterize human addiction. LgA 

animals also show augmented reinstatement by cocaine priming (Mantsch et al., 

2004, Madayag et al., 2011) and cocaine cues (Loweth et al., 2013) as compared 

to ShA animals. This suggests an intake-dependent neuroplastic change in the 

circuitry of motivated behavior that augments the ability of cocaine priming, 

cocaine cues, and footshock stress to reinstate cocaine in LgA relative to ShA 

animals. Intake dependent drug-induced changes in the circuitry of motivated 

behavior, as seen in the human condition, can be further characterized in the 

laboratory by comparing the neurological differences between drug naïve, ShA, 

and LgA access animals. Therefore, this dissertation characterizes the 

neuromechanisms regulating augmented stress-induced reinstatement of 
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extinguished cocaine-seeking behavior observed following LgA self-

administration with the goal of understanding the neuroplasticity responsible for 

the transition to addiction. 

STRESS 

 Stress is a general response to demands on the body (Selye, 1936) 

involving alterations in physiological homeostasis (Burchfield, 1979). Stress has 

been simplistically and controversially defined as a nonspecific response of the 

body to a demand that is characterized by the production of glucocorticoids and 

therefore hypothalamic-pituitary-adrenal (HPA) axis activation (Selye, 1936, 

1937). The HPA axis is comprised of the hypothalamus, anterior pituitary gland, 

and the adrenal cortex. A stressor causes the initial cascade of the HPA axis in 

the form of release of corticotropin releasing factor (CRF) from neurons in the 

paraventricular nucleus (PVN) of the hypothalamus which project to the external 

zone of the median eminence. These neurons release CRF into the 

adenohypophyseal portal circulation (Whitnall, 1993), where CRF activation of 

CRF receptors on anterior pituitary corticotrophs results in the synthesis, 

processing, and release of proopiomelanocortin (POMC). POMC is a large 

precursor protein which is proteolytically cleaved to produce several biologically 

active peptides including β-endorphin and adrenocorticotrophin hormone (ACTH) 

(Turnbull and Rivier, 1997, Goeders, 2007). POMC-derived ACTH then circulates 

throughout general circulation until it reaches the adrenal glands stimulating the 

biosynthesis of adrenocorticosteroids to be released from the adrenal gland 

(Figure 5). These adrenocorticosteroids are notably referred to as glucocorticoids 
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which consist of cortisol in humans and corticosterone in rodents (Vale et al., 

1981).  

 

Figure 5: Schematic illustrating simplified HPA axis signaling. Stress results in 

release of CRF from the PVN of the hypothalamus to the anterior pituitary 

activating CRF receptors resulting in ACTH release throughout the general 

circulation. ACTH stimulates the release of adrenocorticosteroids from the 

adrenal gland, notably corticosterone in rodents and cortisol in humans. 

Corticosterone provides negative feedback to the PVN. The bed nucleus of the 

stria terminalis (BNST) and central nucleus of the amygdala (CeA) are two key 

anatomical regions enriched in CRF containing neurons with afferents throughout 

the brain that can function in conjunction with or independently from HPA axis 

activity. 
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Two adrenocorticosteroid receptors have been identified, both of which 

bind corticosterone  and are expressed in the brain (Joels and de Kloet, 1994). 

One is normally fully occupied at basal levels of corticosterone due to its high 

affinity (Reul and de Kloet, 1985), and is referred to as the type I 

mineralocorticoid receptor (MR). The other glucocorticoid receptor has lower 

affinity for corticosterone and is more likely to be occupied during times of stress 

when the plasma levels of corticosterone are elevated (Reul and de Kloet, 1985). 

This is referred to as the GR type II receptor (glucocorticoid receptor). 

Circulating glucocorticoids released by the adrenal glands promote the 

mobilization of energy stores and augment sympathetic nervous system effects 

(Ulrich-Lai and Herman, 2009), alerting and maintaining homeostasis of an 

organism challenged by either environmental or physiological changes (Herman 

and Cullinan, 1997). Circulating glucocorticoids exert prominent negative 

feedback through activation of GR type II receptors at the PVN which inhibit 

further CRF release to maintain tolerable limits of glucocorticoid secretion 

(Herman and Cullinan, 1997). This appears not to be the only negative feedback 

mechanism, with others occurring from GR activation of neuronal inhibitory 

pathways that work in parallel with negative steroidal feedback (Dobrakovova et 

al., 1982, Jacobson et al., 1988, Jacobson and Sapolsky, 1991, Bradbury et al., 

1993, Diorio et al., 1993, Herman, 1993). 

The neurobiological stress response involves physiological homeostatic 

imbalances implicating both the HPA axis and the autonomic sympathetic 

nervous system (Selye, 1937, 1951, Korf et al., 1973, Dallman et al., 1987, 
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Abercrombie et al., 1988, Valentino et al., 1993, Herman and Cullinan, 1997). As 

first elegantly described by Axelrod and Reisine (1984) homeostatic demands 

(stress) involve release of ACTH from the anterior pituitary, glucocorticoids from 

the adrenal cortex, epinephrine from the adrenal medulla, and norepinephrine 

from sympathetic nerves (Axelrod and Reisine, 1984). Therefore, stressful stimuli 

can be conveyed to the brain activating both the HPA axis and autonomic neural 

systems with the goal of minimizing net cost while maintaining physiological 

homeostasis (Ulrich-Lai and Herman, 2009). 

The maintenance or re-establishment of homeostasis in response to 

stress also involves both autonomic and neuroendocrine stress signaling (Ulrich-

Lai and Herman, 2009).  This signaling involves the limbic forebrain, 

hypothalamus, and the brainstem allowing for the integration of a prior stress 

response to memory (Ulrich-Lai and Herman, 2009). This allows not only for the 

appropriate physiological response to homeostatic challenges, but also the ability 

to have a stress system that responds according to prior experience. In this light, 

stress is adaptive and good for the organism. Therefore, it is not surprising there 

are different categories of stress. Stress itself has been viewed as a variation in 

physiological homeostasis whereby hyperstress (overstress), hypostress 

(understress), distress (damaging stress), or eustress (good stress) have been 

characterized (Selye, 1983).  

In summary, stress can be defined broadly as actual or anticipated 

homeostasis disruption to an organism’s physiology involving the HPA axis, the 

autonomic nervous system, and key brain regions regulating these systems. In 
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addition to the study of acute stressors and their regulation of cocaine seeking, 

this dissertation will refer to stress as increased distress produced by prolonged 

variation in physiological homeostasis (e.g., long-access cocaine use) that 

results in a maladaptive physiological response (e.g., drug seeking in response 

to stress), and not simply activation of the HPA axis. 

STRESS AND COCAINE SELF-ADMINISTRATION 

 Stress is embedded in the entire process of cocaine addiction from the 

first decision to try the drug to repetitive relapses following extended periods of 

abstinence. Acute cocaine use is, in fact, physiologically stressful to an organism 

by way of activation of the HPA axis and autonomic nervous system (Rivier and 

Vale, 1987, Saphier et al., 1993, Goeders, 2002, Koob and Kreek, 2007). 

Cocaine self-administration stimulates the release of corticosterone and 

epinephrine from the adrenals in rats (Chiueh and Kopin, 1978, Moldow and 

Fischman, 1987) consistent with changes in physiological homeostasis and 

increased arousal (Axelrod and Reisine, 1984). Much of this section will focus on 

corticosterone and not epinephrine interactions with cocaine use because it is 

better studied and characterized.  

Corticosterone (Cort) is regulated by cocaine self-administration and 

cocaine self-administration is regulated by corticosterone. Daily administration of 

Cort facilitates the acquisition of stable cocaine self-administration (Mantsch et 

al., 1998). Cocaine self-administration increases plasma Cort levels, an effect 

blocked by GR type II receptor agonists (Mantsch et al., 1998) likely through 
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negative feedback. Cort levels at the end of a self-administration session are 

positively correlated with the amount of drug administered (Mantsch and 

Goeders, 2000). Moreover, cocaine self-administration and its escalation can be 

significantly attenuated by inhibiting corticosterone synthesis or surgically 

removing adrenal glands, the primary physiological source of Cort (Piazza et al., 

1994, Goeders and Guerin, 1996a, Goeders et al., 1998, Graf et al., 2011). 

Chronic stress during cocaine self-administration can produce Cort-dependent 

escalating patterns of intake in ShA animals, comparable to what is seen without 

chronic stress in LgA animals (Mantsch and Katz, 2007). Altogether, these 

findings suggest that corticosterone regulates cocaine-induced neuroplasticity 

which can in turn regulate cocaine self-administration. 

Stress-induced corticosterone secretion can regulate dopamine in the 

nucleus accumbens (Piazza and Le Moal, 1996), and rats will self-administer 

corticosterone under certain conditions (Deroche et al., 1993, Piazza et al., 

1993). This suggests that the mesocorticolimbic dopamine system and Cort 

signaling can interact to regulate motivated behavior. This interaction can 

become dysregulated as a result of extended-access cocaine self-administration. 

Rats that self-administer cocaine under LgA conditions display decreased 

corticosterone levels basally and in response to cocaine (Mantsch et al., 2003), 

augmented corticosterone levels in response to stress, and impaired negative 

feedback of the HPA axis (Mantsch et al., 2007). These changes may contribute 

to the augmented ability for footshock stress to induce reinstatement of 

extinguished LgA cocaine seeking (Mantsch et al., 2004). 
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Increased corticosterone (Cort) signaling has been implicated in both 

cocaine self-administration and footshock-induced reinstatement of cocaine-

seeking behavior. Early reports suggested that blockade of corticosterone 

synthesis and/or activation of type II glucocorticoid receptors attenuates cocaine 

self-administration and blocks footshock-induced reinstatement of extinguished 

cocaine seeking behavior (Sonino, 1987, Goeders et al., 1998, Mantsch and 

Goeders, 1999). These findings suggested that increased corticosterone 

signaling is necessary for both stable cocaine self-administration and later 

footshock stress-induced reinstatement of cocaine-seeking behavior (Goeders et 

al., 1998, Mantsch and Goeders, 1999). A more recent study found that 

corticosterone is not necessary for cocaine self-administration (Graf et al., 2011). 

However, Cort signaling appears to be necessary for the drug-induced 

neuroplasticity that is put in place at the time of LgA cocaine self-administration 

that contributes to escalation and augmented reinstatement (Mantsch et al., 

2008b), but is not necessary at the time of later footshock exposure for stress-

induced reinstatement (Graf et al., 2011). This suggests that the neuroplastic 

effects we see in the LgA model are dependent on glucocorticoid signaling during 

self-administration, and that another stress signal is acutely regulating later 

footshock-induced reinstatement. The key candidate for this is the corticotropin 

releasing factor (CRF) signaling system. 
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CORTICOTROPIN-RELEASING FACTOR SYSTEM SIGNALING 

 Corticotropin releasing factor (CRF) is an important regulator of the stress 

response and plays a central role in stress-induced reinstatement of drug-

seeking behavior (Shaham et al., 1997, Erb et al., 1998, Stewart, 2003, 

Spealman et al., 2004). Initial studies found CRF to have many different roles, 

but most were implicated in adapting the body’s behavioral, autonomic, and 

immune responses to stress (Beyermann, 1997). CRF system signaling is not 

only an integral regulator of hypothalamic-pituitary-adrenal (HPA) axis activity but 

there are numerous CRF pathways outside of the hypothalamus (Lymangrover 

and Brodish, 1973) where CRF acts as a central neuromodulator (Swanson et 

al., 1983, Nemeroff, 1997). The CRF signaling system is comprised of 4 ligands, 

a binding protein, and two receptors (Vale et al., 1981, Behan et al., 1995, 

Steckler and Holsboer, 1999, Ryabinin et al., 2002, Fekete and Zorrilla, 2007). 

Corticotropin releasing factor (CRF) is a 41-amino acid neuropeptide 

involved in hypothalamic-pituitary release of ACTH from the pituitary gland (Vale 

et al., 1981) and stress related neurotransmission throughout the brain (Swanson 

et al., 1983). CRF was first characterized in 1981 (Vale et al., 1981, Beyermann, 

1997) and shown to stimulate the secretion of ACTH-like and β-endorphin-like 

immunoreactivities in vitro and in vivo (Vale et al., 1981, Beyermann, 1997). In 

1983 CRF was successfully cloned and sequenced from the human CRF gene 

from which the human precursor was characterized (Shibahara et al., 1983, 

Beyermann, 1997). Isolation and sequence analysis of rat CRF was found to be 
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identical to the human peptide (Rivier et al., 1983). CRF is released at synaptic 

terminals due to depolarization (Smith et al., 1986) and is characterized by 

saturable, reversible, specific binding to its receptors (De Souza et al., 1985). 

The distribution of CRF neurons in the brain is consistent with its role in 

endocrine, physiological, and behavioral responses to stress. Although CRF is 

widely expressed throughout the brain, the highest concentrations of CRF 

containing cell bodies are found in the paraventricular nucleus of the 

hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), and the central 

nucleus of the amygdala (CeA) (Merchenthaler et al., 1982, Olschowka et al., 

1982, Swanson et al., 1983, Petrusz, 1992).  

The largest concentration of CRF cell bodies outside of the PVN is in the 

BNST, followed by the CeA (Figure 7) (Swanson et al., 1983). The BNST, in 

addition to having influences on HPA axis function (Herman et al., 1994), plays a 

critical role in anxiety involving interpretation of threatening or aversive stimuli 

(Walker et al., 2003). The central nucleus of the amygdala (CeA) plays a critical 

role in anxiety and conditioned fear (Davis, 1992b, a). The BNST and CeA may 

communicate with one another through reciprocal CRF inputs. Moreover, a CRF 

projection from the CeA to the BNST has been identified (Sakanaka et al., 1986) 

suggesting that increases in CRF found in the BNST following stress exposure 

(Lee and Davis, 1997) can be regulated by CeA activation (Erb and Stewart, 

1999). The BNST and CeA send CRF projections throughout the brain allowing 

for complex integration of stress specific CRF signaling. 
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CORTICOTROPIN RELEASING FACTOR 

 Corticotropin releasing factor (CRF) signaling is activated during times of 

stress and found to have many different roles. These roles include the integration 

of endocrine, autonomic, emotional, and behavioral responses of the organism 

(Brown et al., 1982b, Bilezikjian and Vale, 1987, Baldwin, 1990, Dunn and 

Berridge, 1990, Beyermann, 1997, Moreau, 1997). Central administration of 

corticotropin releasing factor (CRF) produces increases in: 1) ACTH release from 

the pituitary (Rivier et al., 1984), 2) glucocorticoid secretion (Rivest et al., 1989, 

Korte et al., 1993, Linthorst et al., 1997), 3) epinephrine and norepinephrine 

release (Brown et al., 1982a), 4) glucagon levels (Brown et al., 1982a), 5) and 

even dopamine and norepinephrine turnover rates in discrete brain regions 

(Matsuzaki et al., 1989). In summary, central CRF signaling is specifically 

involved in increases in both the physiological and the behavioral manifestation 

of a state of stress.  

CRF-induced stress-related behavior includes increased locomotion 

(Sutton et al., 1982, Veldhuis and De Wied, 1984, Eaves et al., 1985, Sherman 

and Kalin, 1986, Ehlers and Chaplin, 1987, Sherman and Kalin, 1987), 

hypophagia (Britton et al., 1982, Gosnell et al., 1983, Britton et al., 1986a, 

Ruckebusch and Malbert, 1986), and anxiogenic behavior (Britton et al., 1982). 

Anxiogenic behavior consists of decreased rearing, food pellet approaches, and 

exploratory behavior (Berridge and Dunn, 1986, 1987) along with increased 

grooming and freezing behavior (Britton et al., 1982, Berridge and Dunn, 1986, 
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1987). Ventricular CRF administration also augments the acoustic startle reflex, 

(Swerdlow et al., 1989) and diminishes social interaction (Dunn and File, 1987).  

In addition to producing pro-stress effects by itself, CRF can also 

exacerbate behavior in the presence of stress. In support, ventricular CRF 

administration augments freezing (Sherman and Kalin, 1988) and fighting (Tazi 

et al., 1987) behavior induced by inescapable footshock. On the other hand, 

ventricular administration CRF receptor antagonists block these effects of stress 

(Heinrichs et al., 1994, Menzaghi et al., 1994, Spina et al., 2000). In summary, 

global CRF administration to the brain of rodents mimics the behavioral response 

during stress (Dunn and Berridge, 1990) while global antagonism of CRF 

receptor signaling blocks stress-related behavioral responses (Heinrichs et al., 

1994, Menzaghi et al., 1994, Spina et al., 2000).   

UROCORTINS 

 Importantly CRF is not the only stress-related neuropeptide in the brain. 

Additional members of the CRF peptide family have been identified, including 

urocortins1-3 (Figure 6), which differ in their tissue distribution and receptor 

pharmacology (Vaughan et al., 1995, Hsu and Hsueh, 2001, Lewis et al., 2001, 

Reyes et al., 2001). The identification of CRF receptor agonists found in fish 

(urotensin), frog skin (sauvagine), and additional non-mammalian members 

(teleosts and amphibians) led to the discovery of additional mammalian CRF-

related peptides (Beyermann, 1997). The first stress related neuropeptide other 

than CRF to be discovered was a novel 40-amino acid peptide termed urocortin 
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one (Ucn1) (Beyermann, 1997). Ucn1 was named after its sequence similarity to 

both carp urotensin (63%, “uro”) and mammalian CRF (45% “cort”) (Koob, 2010). 

Ucn1 projection distribution both overlaps and has differential distribution with 

CRF throughout the brain (Zorrilla, 2005).  

Ucn1 is most heavily expressed in the edinger westphal nucleus (Vaughan 

et al., 1995). Two additional urocortin cloned ligand family members were 

discovered, termed Urocortin two (Ucn2) and Urocortin three (Ucn3). Ucn2, also 

called stresscopin-related peptide, is expressed in the hypothalamus, brain stem, 

and spinal cord (Hsu and Hsueh, 2001, Reyes et al., 2001, Yamauchi et al., 

2005, Fekete and Zorrilla, 2007). Ucn3, also called stresscopin, is expressed in 

the hypothalamus and amygdala (Hsu and Hsueh, 2001, Lewis et al., 2001, Li et 

al., 2002, Fekete and Zorrilla, 2007).  

Although, urocortins (1-3) share 20-45% sequence homology with CRF 

(Vaughan et al., 1995), the physiological functions of these stress related 

neuropeptides vary significantly. In contrast to CRF, urocortins do not regulate 

activation of the HPA-axis (Kageyama et al., 2003, Nemoto et al., 2009). 

Moreover, urocortin signaling has been shown to produce both a reduction in 

anxiety-related behavior and recovery from the effects of stress (Coste et al., 

2000, Valdez et al., 2003, Todorovic et al., 2007, Tanaka and Telegdy, 2008). 

These effects have been compared and found to be the exact opposite to those 

of CRF signaling (Schank et al., 2012). Paradoxically, urocortin signaling has 

additionally been reported to also produce pro-stress-like effects (Henry et al., 

2006, Land et al., 2008, Fekete et al., 2009, Pastor et al., 2011). With this in 
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mind, it is important to note that the most consistent finding when comparing 

CRF function to urocortin function is that CRF appears to regulate the initial 

reactions to stress while urocortin appears to regulate later stress adaptation 

(Weninger et al., 2000, Kozicz et al., 2001, Gaszner et al., 2004, Kozicz, 2007, 

2009, Neufeld-Cohen et al., 2010a, Neufeld-Cohen et al., 2010b, Kozicz et al., 

2011). 

 

Figure 6: Corticotropin releasing factor peptide family ligand amino acid 
sequences. CRF-R1 binds CRF and Ucn1 but not Ucn2 and Ucn3. CRF-R2 
binds all urocortins with higher affinity that CRF. Red are proline residues at 
position 11 and alanine residues at position 35 and 39 that are specific to CRF-
R2 specific ligands Ucn2 and Ucn3.  Blue are nonspecific CRF receptor invariant 
arginine at position 35 and 39 (Grammatopoulos, 2012).  

 
 
 

NEUROPEPTIDES ARE NEUROMODULATORS 

 Neuropeptides, such as CRF and Urocortins, are characterized by volume 

neurotransmission. Volume neurotransmission is distinct from other forms of 

neurotransmission because the transmitter can diffuse outside of the synaptic 

cleft at biologically relevant concentrations (Garris et al., 1994, Zoli and Agnati, 

1996, Barbour and Hausser, 1997, Gonon, 1997) a mode of signaling referred to 

as an ‘open’ synapse (Fuxe, 1991, Agnati et al., 1995, Zoli and Agnati, 1996).  
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Neuropeptides can act at longer distances from their release sites than classical 

neurotransmitters. The large dense core peptide-containing vesicles can be close 

to the neuropeptide receptors (Herkenham, 1987, Nusbaum, 2002) but most of 

these receptors are extrasynaptic (Zoli et al., 1999).  Peptide release occurs in 

the general vicinity of axon terminals (Lysakowski et al., 1999, Karhunen et al., 

2001, Nusbaum, 2002, Salio et al., 2006). Neuropeptides lack reuptake 

mechanisms (Zoli and Agnati, 1996) and the regulators of extracellular 

neuropeptide concentrations are enzymes which either degrade or convert the 

neuropeptide. These enzymes are located in the extracellular space or on 

nonsynaptic cell membranes (Burbach, 1993, Davis and Konings, 1993, Konkoy 

and Davis, 1996). Therefore the distance of neuropeptide action in the brain is 

determined by membrane bound peptidases (Nassel, 2009). 

Neuropeptides and classical neurotransmitters are often produced by the 

same neurons (Jan and Jan, 1983, Chan-Palay, 1984, Hokfelt et al., 1987, 

Zupanc, 1996, Merighi, 2002, Salio et al., 2006). Neuropeptides such as CRF 

can also be co-packaged and co-released with classical neurotransmitters 

(Waselus and Van Bockstaele, 2007, Reyes et al., 2011). However, 

neuropeptides are often released only at higher stimulus frequencies than 

classical neurotransmitters (Nassel, 2009). Therefore, neuropeptides such as 

CRF and Ucns are released in a less precise manner than their co-released 

classical neurotransmitter counterpart (Nusbaum, 2002). 

Peptidergic receptors, usually G-protein-coupled receptors (GPCRs), are 

commonly located perisynaptically on post- and pre-synaptic neurons. 
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Neuropeptides can activate their GPCR receptor presynaptically resulting in 

autoregulation, postsynaptically on the same target neuron, or even different 

target neurons than their co-packaged, co-released classical neurotransmitter 

partners (Nassel, 2009). In this way, the GPCR signaling cascades of 

neuropeptide receptor activation modulate the response to classical 

neurotransmitters (Nassel, 2009). For these reasons neuropeptides, such as 

CRF and Ucns, are considered neuromodulators of classical neurotransmitters. 

CORTICOTROPIN RELEASING FACTOR RECEPTORS 

 CRF and Ucns produce their effect through the coordinated action of two 

CRF receptor subtypes (Dautzenberg and Hauger, 2002). CRF receptors belong 

to the class B subtype of G protein-coupled receptors (GPCR) (Kehne and De 

Lombaert, 2002, Hartz et al., 2004). Class B receptors bind moderate-sized 

peptides involved in both endocrine and neuroendocrine functions (Ulrich et al., 

1998, Harmar, 2001). The extracellular domain of CRF receptors primarily 

interacts with C-terminal residues of CRF (Rijkers et al., 2004, Yamada et al., 

2004, Grace et al., 2007b). The N-terminal residues of CRF are required for both 

activation and the conformational changes of the receptors enabling their 

activation (Grace et al., 2004). Binding of a CRF receptor ligand agonist induces 

a conformational change and receptor activation where the G-protein (Gα-

subunit) undergoes an exchange of GDP (inactive state) for GTP (active state) 

(Hamm and Gilchrist, 1996, Bohm et al., 1997). Once GTP is bound to the Gα-

subunit, it dissociates from the Gβγ dimer, allowing for a variety of downstream 

signaling (Hillhouse and Grammatopoulos, 2006).  
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CRF receptors are seven transmembrane, G protein-coupled, and 

predominantly link to adenylate cyclase activation through Gαs. However, CRF 

receptors are highly promiscuous, having the ability to activate multiple Gα 

subunits, including Gαs, Gαo, Gαq/11, Gαi1/2, and Gαz (Grammatopoulos et al., 

1999, Grammatopoulos et al., 2001, Blank et al., 2003). The ability of GPCRs, 

such as CRF receptors, to couple to multiple G protein heterotrimers with 

different Gα-subunits results in diverse downstream signaling cascades and 

cellular responses (Hillhouse and Grammatopoulos, 2006). However, most 

physiological functions of CRF in the CNS involve the coupling of CRF to Gαs-

proteins (Grammatopoulos, 2012).  

Figure 7: Anatomical expression of CRF-R1, CRF-R2, CRF binding protein, and 
CRF throughout the rat brain (Behan et al., 1996a). 
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The Gαs pathway initiates intracellular events both in the cytoplasm, 

resulting in acute post-translational modification of target proteins by protein 

kinase A (PKA), and in the nucleus at the level of gene transcription regulation by 

cyclic adenosine monophosphate (cAMP) response element-binding proteins 

(Shaywitz and Greenberg, 1999, Tasken and Aandahl, 2004). CRF-induced 

phosphorylation/activation of CREB leads to downstream regulation of genes 

containing the Ca2+/cAMP response element (Rossant et al., 1999) such as c-fos 

(Boutillier et al., 1991).  Interestingly, which Gα subunit is activated also depends 

on the ligand that is binding to that receptor (CRF vs. Ucns) (Grammatopoulos et 

al., 2000).  

CORTICOTROPIN RELEASING FACTOR RECEPTOR 1 

 The first CRF receptor identified encoded a 415-amino acid comprised of 

seven putative membrane-spanning domains characteristic of Gs-coupled 

receptors, and was designated CRF receptor 1 (CRF-R1) (Chen et al., 1993). 

Species homologs for CRF-R1 have been isolated from the brains of both rat 

(Chang et al., 1993, Perrin et al., 1993) and mouse (Vita et al., 1993) which are 

98% identical over their full length of 415 amino acids (De Souza, 1997). CRF-R1 

shows reversible, saturable, high-affinity binding to CRF (KD ~ 150 pM) (De 

Souza, 1997). CRF-R1 is coupled to a G-protein and when incubated in the 

presence of CRF, stimulates the production of cAMP with an EC50 of ~ 1 nM (De 

Souza, 1997). The CRF-R1 driven cAMP/PKA pathway can diverge and activate 

multiple downstream signaling molecules (Grammatopoulos, 2012).  
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Desensitization occurs through Gαs/PKA induced phosphorylation of the 

CRF-R1 receptor, selectively impairing CRF-R1/Gαq coupling (Papadopoulou et 

al., 2004) and, indicative of yet even another level of complexity to CRF-R1 

signaling. CRF-R1 has α and β isoforms in addition to subtypes designated c-h, 

which have been detected in both human and rodent tissue (Bale and Vale, 

2004). However, many of these isoforms have been found to be nonfunctional 

(Chen et al., 1993, Ross et al., 1994, Grammatopoulos et al., 1999, Pisarchik 

and Slominski, 2001). cAMP produced by CRF activation of CRF-R1 receptor is 

competitively inhibited by CRF-R1 antagonists antalarmin and CP-376395 

(Webster et al., 1996, De Souza, 1997, Chen et al., 2004, Guo et al., 2005, Di 

Fabio et al., 2008). 

CRF-R1 is widely expressed throughout the brain with very high 

expression in the neocortex, cerebellum, and sensory relay structures (Figure 7) 

(Chalmers et al., 1995, Primus et al., 1997, Van Pett et al., 2000) such as the 

cortex, cerebellum, hippocampus, amygdala, olfactory bulb, lateral septum, 

thalamus, basal ganglia, the raphe nuclei, pituitary, brain stem, and spinal cord 

(De Souza, 1997, Van Pett et al., 2000, Korosi et al., 2006, Korosi et al., 2007, 

Justice et al., 2008). Expression of the CRF-R1 overlaps with the distribution of 

CRF and Ucn 1 (Behan et al., 1996a, Skelton et al., 2000, Koob, 2010).  

CRF and urocortin release can also regulate CRF-R1 gene expression 

through changes in transcription activity (Luo et al., 1995, Mansi et al., 1996, 

Brunson et al., 2002, Kasagi et al., 2002, Parham et al., 2004, Herringa et al., 

2006). CRF-R1 mRNA expression has been well characterized in the rodent 
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brain (Van Pett et al., 2000), however, due to insufficient commercially available 

CRF receptor antibodies (Refojo et al., 2011) CRF-R1 protein expression in 

specific brain regions have not been accurately assessed. This is also true for 

the CRF-R2 receptor. 

CORTICOTROPIN RELEASING FACTOR RECEPTOR 2 

 A second CRF receptor exists and is referred to as CRF-R2 (Lovenberg et 

al., 1995b). CRF-R2 is a 397-437 amino acid protein also expressed in the brain 

(Kishimoto et al., 1995, Lovenberg et al., 1995b, Kostich et al., 1998, 

Palchaudhuri et al., 1999, Van Pett et al., 2000, Korosi et al., 2007). CRF-R2 

activation in the presence of CRF stimulates the production of cAMP with an 

EC50 of 20 nM (Liaw et al., 1996). cAMP produced by CRF activation of CRF-R2 

receptors is competitively inhibited by CRF-R2 antagonists (Ruhmann et al., 

2002). However, CRF-R2 abundance is not as dense as that of CRF-R1 (Figure 

7) (Van Pett et al., 2000). CRF-R2 is confined to subcortical structures, showing 

relative high expression levels in the pituitary, lateral septum, hypothalamus, 

dorsal and median raphe, extended amygdala, and spinal cord (Chalmers et al., 

1995, Primus et al., 1997, Palchaudhuri et al., 1999, Bittencourt and Sawchenko, 

2000, Van Pett et al., 2000, Korosi et al., 2006, Korosi et al., 2007, Lukkes et al., 

2011). CRF-R2 has three functional isoforms α, β, and γ (Dautzenberg and 

Hauger, 2002) produced through alternative splicing of a single gene, resulting in 

different N-terminal domains (De Souza, 1997). 
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CRF-R2 isoforms differ in their N-terminal sequence and their distribution in 

different tissues and species. CRF-R2α and CRF-R2β are present in humans 

and rodents (Lovenberg et al., 1995a, Liaw et al., 1996). In contrast, CRF-R2γ 

has only been reported in humans (Kostich et al., 1998) and is predominantly 

expressed in the brain (Kostich et al., 1998). CRF-2α and CRF-2β are both 

expressed in the rodent brain (Lovenberg et al., 1995a, Kostich et al., 1998). 

However, CRF-2α is the predominant isoform in the brain (Kostich et al., 1998) 

and is potently and selectively antagonized by astressin-2B and antisauvagine-

30 (Ruhmann et al., 1998, Rivier et al., 2002).  

DIFFERENCES BETWEEN CRF-R1 AND CRF-R2 

 The different CRF receptors are produced from distinct genes with several 

splice variants (Bale and Vale, 2004). Different CRF receptor subtypes exhibit 

varying degrees of ligand affinities and sensitivity to G-protein coupling. There is 

70% sequence homology between CRF-R1 and CRF-R2 at the amino acid level 

(Lovenberg et al., 1995b) with greater than 80% homology at the transmembrane 

and intracellular domains (Lovenberg et al., 1995b). The third intracellular loop is 

the receptor region that interacts with G proteins and is identical between both 

CRF receptors (Perrin and Vale, 1999, Arai et al., 2001). However, these 

receptors exhibit considerable differences at the N-terminal extracellular domain 

(~ 47%) (Dautzenberg and Hauger, 2002, Grammatopoulos, 2012). The 

juxtamembrane region of the N-terminus and the second and third extracellular 

domains are important ligand action sites that determine ligand binding and 
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receptor specificity (Assil et al., 2001, Hofmann et al., 2001, Perrin et al., 2001, 

Dautzenberg et al., 2002, Perrin et al., 2003). 

CRF has at least tenfold higher affinity for CRF-R1 over CRF-R2 (cAMP EC50 

= 3 nM over 20 nM; Ki = 2 nM over 30 nM) (Chen et al., 1993, Lovenberg et al., 

1995b, Behan et al., 1996a), while Ucn1 has equal affinities for both receptors 

(cAMP EC50 = 0.3 nM-R1 and .2 nM-R2; Ki = 0.3 nM-R1 and 0.6 nM-R2) (Perrin 

et al., 1995, Reyes et al., 2001). Ucn 2 and 3 bind and activate CRF-R1 and 

CRF-R2 receptors with varying affinities (Bale and Vale, 2004, Boorse et al., 

2005, Fekete and Zorrilla, 2007). Although, Ucn1 binds to both CRF receptors 

with equal affinities (Reyes et al., 2001) Ucn2 and Ucn3 bind only to the CRF-R2 

receptor at physiological levels (cAMP EC50 = 0.1 nM-Ucn2 and 0.07 nM-Ucn3; 

Ki = 2 nM-Ucn2 and 5 nM-Ucn3) (Lewis et al., 2001, Zorrilla et al., 2003).  

In summary, CRF-R1 binds CRF as well as urocortin 1 with high affinity, but 

binds Ucn2 and Ucn3 with significantly lower affinity (Reyes et al., 2001). CRF-

R2 binds all urocortins with significantly higher affinity that CRF (Chen et al., 

1993, Lovenberg et al., 1995b, Vaughan et al., 1995, Hsu and Hsueh, 2001, 

Lewis et al., 2001, Reyes et al., 2001). In contrast to CRF-R1, CRF-R2 has 

higher affinity for urocortins 2 and 3 than for CRF suggesting that these 

urocortins and not CRF may be the endogenous ligand for the CRF-R2 receptor 

(De Souza, 1997).  

Ucn2 and Ucn3 are endogenous CRF-R2 specific agonists while both 

CRF and Ucn1 are nonspecific agonists (Figure 8). Recently, cortagine, a CRF-
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R1 agonist, was generated by the synthesis of chimeric peptides derived from 

human/rat CRF, ovine CRF, and sauvagine (Tezval et al., 2004). This chimeric 

peptide allows for further pharmacological characterization of CRF-R1 versus 

CRF-R2 function.  

 

Figure 8: CRF ligand and receptor specificity with their physiological and 
behavioral affects. CRF increases stress responsiveness through activation of 
CRF-R1, while activation of CRF-R2 has been hypothesized to be involved in 
coping with stress. (Bale and Vale, 2004).  

 

CORTICOTROPIN RELEASING FACTOR BINDING PROTEIN 

 CRF not only has high affinity for the CRF-R1 receptor but also for the 

corticotropin releasing factor-binding protein (CRF-BP). CRF-BP is a 37 kDa N-
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linked secreted glycoprotein that binds extracellular CRF. CRF-BP prevents CRF 

from activating its receptors (Suda et al., 1988, Woods et al., 1994, Herringa et 

al., 2004) while also promoting CRF clearance and degradation (Burrows et al., 

1998, Karolyi et al., 1999). CRF-BP is found throughout the rodent and primate 

brain, including in the hypothalamus, cortical regions, amygdala, bed nucleus of 

the stria terminalis (BNST), and raphe nuclei (Potter et al., 1991, Potter et al., 

1992, Chen et al., 1993, Potter et al., 1994, Behan et al., 1995, Cortright et al., 

1995). CRF-BP binds both CRF and urocortin 1 (Potter et al., 1991, Behan et al., 

1996b) and is highly conserved between humans and rats (Denver, 2009).  

CRF-BP binds both CRF and Ucn1 with high affinity (Ki = 0.2 nM-CRF and 

0.9 nM-Ucn1) (Orth and Mount, 1987, Boorse et al., 2005), and Ucn2 with lower 

affinity (Ki = 12 nM-Ucn2), but does not bind Ucn3 (Huising et al., 2008). CRF-BP 

affinity for both CRF and Ucn1 is several-fold higher than that of either CRF 

receptor (Huising et al., 2008). When CRF-BP binds CRF or Ucn1, a functional 

dimer complex is formed which is hypothesized to have multiple functions 

including uptake and degradation of the CRF-BP/CRF complex (Potter et al., 

1991, Behan et al., 1996b, Kemp et al., 1998, Sajdyk et al., 1999, Chan et al., 

2000, Roseboom et al., 2007). CRF-BP is often considered a functional CRF 

receptor antagonist due to its ability to sequester ligands and prevent CRF 

receptors from becoming activated (Huising et al., 2008).  

CRF-BP levels are ~ 10-fold higher than CRF levels in most brain regions and 

CRF-BP binds between 40-90% of endogenous CRF (Suda et al., 1988, Behan 

et al., 1996a). In this way, CRF-BP limits the concentrations of CRF and Ucn1 
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available to activate receptors by acting as a buffer for CRF system signaling 

(Behan et al., 1996b, Chan et al., 2000). Stress-induced CRF release can 

increase CRF-BP mRNA levels independently of corticosterone or CRF receptor 

function (Herringa et al., 2004, Herringa et al., 2006). Acute stress and ICV CRF 

administration both increase CRF-BP mRNA levels (Herringa et al., 2004, 

Herringa et al., 2006). This increased CRF-BP mRNA expression is not blocked 

by CRF receptor antagonists nor mimicked by administration of corticosterone 

(Herringa et al., 2006). These findings support the notion that when CRF is 

bound by CRF-BP there is an increase in CRF-BP transcription (Lombardo et al., 

2001, Roseboom et al., 2007). This increased CRF-BP transcription likely 

represents an acute compensatory homeostatic mechanism in response to 

increased CRF levels. 

In summary, CRF was originally discovered to have a central role in initiating 

the hypothalamic-pituitary-adrenal (HPA) axis response to stress, yet its role 

throughout the rest of the brain is very complex involving: CRF, Ucn1, Ucn2, 

Ucn3, CRF-BP, CRF-R1 and CRF-R2 (Vale et al., 1981, Behan et al., 1995, 

Steckler and Holsboer, 1999, Ryabinin et al., 2002, Fekete and Zorrilla, 2007). 

CORTICOTROPIN RELEASING FACTOR RECEPTOR FUNCTION 

 CRF receptors participate in the regulation and maintenance of 

homeostasis in response to stress (Preil et al., 2001, Bale et al., 2002, Bale and 

Vale, 2004, Janssen and Kozicz, 2013). Ventricular administration of CRF-R1 

antagonists inhibit stress-induced behaviors and decrease both basal and stress-
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induced HPA axis activation (Swerdlow et al., 1989, Heinrichs et al., 1992, Kalin, 

1998, Habib et al., 2000). Generally administration of CRF-R1 antagonists 

produces anxiolytic effects (Schulz et al., 1996, Deak et al., 1999, Okuyama et 

al., 1999, Risbrough et al., 2004). In contrast, CRF-R2 activation has been 

associated with an increase and a decrease in both stress responsiveness and 

stress-related behavior (Radulovic et al., 1999, Bale et al., 2000, Kishimoto et al., 

2000, Pelleymounter et al., 2000, Cullen et al., 2001, Takahashi et al., 2001, 

Bakshi et al., 2002, Valdez et al., 2002, Risbrough et al., 2004, Kehne and Cain, 

2010, Neufeld-Cohen et al., 2012).  

A coordinated functional dualism, where each receptor regulates different 

aspects of the stress response has been proposed. Specifically, it has been 

suggested that CRF-R1 activation results in the initiation of a physiological stress 

response, while activation of the CRF-R2 receptor facilitates recovery from stress 

(Janssen and Kozicz, 2013). However, this simple dualism of CRF receptor 

subtype function is likely too simplistic (Janssen and Kozicz, 2013). The 

coordinated action of these receptors along with their differential anatomical 

distribution (Chalmers et al., 1995, Van Pett et al., 2000) suggests more 

complexity than a simple functional dualism.  

Although there is conflicting evidence as to the role for CRF-R2 activation 

in the physiological and behavioral response to stress, there remains little 

question as to the function of the CRF-R1 receptor. CRF-R1 activation produces 

effects that cause and resemble the stress response (Koob and Thatcher-Britton, 

1985, Britton et al., 1986b, Rassnick et al., 1993, Menzaghi et al., 1994, 
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Rodriguez de Fonseca et al., 1996, Koob and Heinrichs, 1999, Cullen et al., 

2001, Spina et al., 2002).  

CRF AND COCAINE-SEEKING BEHAVIOR 

 The effects of CRF system signaling has been implicated in cocaine-

seeking behavior. Cocaine-intake dependent increases in CRF signaling have 

been reported in the extended amygdala (Sarnyai et al., 1995, Zhou et al., 1996, 

Gardi et al., 1997). The extended amygdala consists of basal forebrain regions 

that share cytoarchitecture and circuitry involved in feeding, reproduction, 

learning, cognition, punishment, and reward (Alheid, 2003).  The extended 

amygdala is made up of the central nucleus of the amygdala (CeA), bed nucleus 

of the stria terminalis (BNST), and the shell of the nucleus accumbens (Heimer 

and Alheid, 1991). These areas that make up the extended amygdala share 

similarities in immunohistochemistry, morphology, and connectivity (Alheid and 

Heimer, 1988). The extended amygdala plays a pivotal role in the behavioral, 

emotional, and physiological response of an organism to fear and anxiety 

(Duvarci et al., 2009, Regev et al., 2011, Park et al., 2012). 

Following drug exposure the extended amygdala regulates dysphoria during 

both withdrawal and protracted abstinence (Koob, 1999a). This dysphoria is 

regulated by norepinephrine and CRF signaling throughout the extended 

amygdala and can be exacerbated with exposure to acute stress (Rassnick et al., 

1993, Koob, 1994, Heinrichs et al., 1995, Rodriguez de Fonseca et al., 1997, 

Shaham et al., 1997, Erb et al., 1998, Shaham et al., 1998, Erb and Stewart, 
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1999, Richter and Weiss, 1999, Sinha et al., 1999, Erb et al., 2000, Stine et al., 

2002, Sinha et al., 2003, McFarland et al., 2004, Feltenstein and See, 2006, 

Smith and Aston-Jones, 2008, Brown et al., 2009, Mantsch et al., 2010, Brown et 

al., 2011, Graf et al., 2011, Jobes et al., 2011, Vranjkovic et al., 2012). 

LgA self-administration appears to recruit the CRF system. CRF 

immunoreactivity is increased in the extended amygdala following daily long-

access to cocaine for self-administration (Zorrilla et al., 2012). Moreover, 

ventricular administration of a CRF-R1 antagonist only attenuates cocaine self-

administration in rats tested under LgA conditions (Specio et al., 2008). This 

suggests that loss of control over drug intake is at least partly regulated by CRF 

signaling at the time of drug self-administration (Ahmed and Koob, 1998). In 

addition, withdrawal from cocaine produces increased CRF signaling and 

anxiogenic behavior which can be blocked by inhibiting CRF system signaling 

(Sarnyai et al., 1995). These findings suggest that recruitment of the CRF system 

plays an integral part in both escalating patterns of self-administration and 

withdrawal induced dysphoria. 

Increases in CRF function induced by high intake cocaine self-administration 

are not transient but persist throughout protracted abstinence (Koob and Le 

Moal, 2001). This may contribute to the augmented ability of footshock stress to 

induce reinstatement of extinguished cocaine seeking following LgA self-

administration (Mantsch et al., 2004, Blacktop et al., 2011, Graf et al., 2011). 

Thus, repeated cocaine self-administration changes CRF reactivity in the brain in 

a way that promotes later stress-induced reinstatement of extinguished cocaine 
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seeking (Erb et al., 1998, Shaham et al., 1998, Mantsch et al., 2008a, Blacktop et 

al., 2011, Graf et al., 2011). 

 Ventricular CRF administration is sufficient to reinstate extinguished cocaine 

seeking; an effect blocked by systemic CRF-R1 specific antagonists or central 

ICV CRF-R1/R2 nonspecific antagonists (Erb et al., 1998, Shaham et al., 1998, 

Erb et al., 2006b, Mantsch et al., 2008a, Graf et al., 2011, Buffalari et al., 2012). 

Notably, CRF-R1 antagonists attenuate footshock-induced reinstatement of not 

only cocaine- but also heroin-, alcohol, and nicotine-seeking (Erb et al., 1998, 

Shaham et al., 1998, Le et al., 2000, Bruijnzeel et al., 2009). Thus, the CRF 

system represents a common mechanism for stress-induced relapse to multiple 

common drugs of abuse. For these reasons, the CRF system has been 

hypothesized to represent a promising target for the development of medications 

that prevent stress from facilitating relapse in abstinent human drug addicts 

(Webster et al., 1996, Deak et al., 1999, Koob and Zorrilla, 2010). 

Stress-induced reinstatement of drug seeking can occur independently of 

acute stress-induced activation of the HPA axis at the time of reinstatement 

(Shaham et al., 1997, Erb et al., 1998, Le et al., 2000, Graf et al., 2011). 

Ventricular CRF administration is sufficient for reinstatement, while ICV delivery 

of a nonspecific CRF receptor antagonist blocks footshock-induced reinstatement 

of cocaine seeking. CRF- and stress-induced reinstatement is observed both in 

animals that have functioning or nonfunctioning corticosterone signaling (Erb et 

al., 1998, Lu et al., 2003b, Mantsch et al., 2008b, Graf et al., 2011). However, 

although glucocorticoids do not appear to be required for acute stress-induced 
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reinstatement, they are necessary for the neuroplastic changes to occur at the 

time of drug use (Mantsch et al., 2008b) hypothesized to gate the ability of later 

footshock stress to cause reinstatement (Graf et al., 2011). Corticosterone levels 

are increased as a result of cocaine self-administration (Goeders and Guerin, 

1996b, Deroche et al., 1997, Mantsch et al., 2000, Mantsch et al., 2003). This 

increase in corticosterone is hypothesized to induce neuroplastic changes in 

areas of convergence between stress and motivational neurocircuitry. This 

neuroplasticity may change brain function to where the circuitry of motivated 

behavior is more responsive to acute stress-induced CRF release. In summary, 

stress-induced reinstatement of extinguished cocaine seeking following LgA self-

administration is dependent on glucocorticoid secretion at the time of drug self-

administration, and CRF signaling by an acute stressor (footshock) at the time of 

reinstatement.  

CRF actions in both the central nucleus of the amygdala (CeA) and bed 

nucleus of the stria terminalis (BNST) are critical for footshock-induced 

reinstatement of extinguished cocaine seeking (Erb et al., 1996, Erb and Stewart, 

1999, Erb et al., 2001). As mentioned previously, the two brain regions outside of 

the paraventricular nucleus of the hypothalamus (PVN) that have the highest 

concentrations of CRF-containing cell bodies are the BNST and the CeA 

(Merchenthaler et al., 1982, Olschowka et al., 1982, Swanson et al., 1983, 

Petrusz, 1992). The BNST and CeA both send CRF-containing projections to the 

ventral tegmental area (VTA) (Beckstead et al., 1979, Phillipson, 1979a, Wallace 
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et al., 1989, Rodaros et al., 2007). We hypothesize that this circuitry enables 

CRF to regulate the effects of stress on the dopamine system. 

The VTA is the origin of midbrain dopamine neurons that make up the 

circuitry of motivated behavior.  In addition to CRF inputs, CRF-R1 and CRF-R2 

are also found in the VTA (De Souza, 1987, Perrin et al., 1993, Behan et al., 

1996a, Van Pett et al., 2000, Ungless et al., 2003, Korotkova et al., 2006, Wang 

et al., 2007, Wanat et al., 2008, Beckstead et al., 2009, Blacktop et al., 2011, 

Wanat et al., 2013). This positions the ventral tegmental area as a potential key 

neuroanatomical region involved in the complex integration of stress and reward 

related signaling.  

REINSTATEMENT NEUROCIRCUITRY 

 The mesocorticolimbic dopamine system consists of midbrain dopamine 

neurons in the ventral tegmental area (VTA; meso) and their terminal fields in the 

medial prefrontal cortex (mPFC; cortico), and nucleus accumbens (NA; limbic) 

(Figure 9) (Fields et al., 2007). The NA is involved in responding to rewarding 

and salient stimuli, while the PFC is involved in emotion, cognition, executive 

function, and inhibitory control processes (Everitt and Robbins, 2005). It is well 

established that central to addiction is neurotransmission within the 

mesocorticolimbic system (Di Chiara and Imperato, 1988, Wise and Rompre, 

1989). This includes the motivation processes that underlie the reinstatement of 

drug seeking.  
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 The upstream mechanisms of cocaine-, cue-, and stress-induced cocaine 

seeking can differ. For example, stress-induced reinstatement but not cocaine-

induced reinstatement is blocked by CRF receptor antagonists (Graf et al., 2011) 

suggesting distinct neuromechanisms (Capriles et al., 2003). In contrast, cue-

induced and stress-induced reinstatement are less easily differentiated because 

footshock stress-induced reinstatement only occurs when given in the drug-

taking context (Shalev et al., 2000). This is indicative that drug-related cues may 

be critically involved in CRF-dependent stress-induced relapse. However, 

cocaine-, cue-, and stress-induced reinstatement of cocaine seeking all have 

been suggested to share a common downstream neurocircuit (Figure 10). This 

putative circuit involves dopaminergic input from the VTA to the medial prefrontal 

cortex which in turn provides glutamate input to the nucleus accumbens core 

(McFarland and Kalivas, 2001, McFarland et al., 2004). 

 

Figure 9: Schematic illustrating simplified version of dopamine (blue), glutamate 
(red), and GABA (green) signaling in the mesocorticolimbic system. 
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Figure 10: Schematic illustrating that the PFC functions as a final relay station in 
the reinstatement of drug seeking (Kalivas and Volkow, 2005). The blue is 
illustrating the upstream extended amygdala component of stress-induced 
reinstatement (blue), the conversion of both cue (yellow) and stress triggers 
upon the VTA, and the final common pathway for all three stimuli (red) (drug, 
cue, and stress) in reinstatement. 

 

 

 

 

 

 

 

 

 

 

 

The medial prefrontal cortex (mPFC) functions as a main terminal field of the 

VTA as well as a final relay station in relapse evoked by drugs, cues, and stress 

(Kalivas et al., 2005, Kalivas and Volkow, 2005). In support, inactivation of this 

region blocks reinstatement of cocaine seeking by all three modalities 

(McFarland and Kalivas, 2001, McLaughlin and See, 2003, Fuchs et al., 2005). 

Drug seeking depends on activation (Ciccocioppo et al., 2001, Zavala et al., 



58 
 

2008) of a glutamate projection from the PFC to the nucleus accumbens core 

(Kalivas et al., 2005). This regulates the NA core output to the ventral pallidum 

which completes the pallido-thalamo-cortical circuit involved in motivated 

behavior (Kalivas et al., 1999). 

The nucleus accumbens (NA) is divided into two traditional subregions with 

differential functions. These regions are the nucleus accumbens (NA) core and 

the nucleus accumbens shell, which together form the ventral striatum. The NA 

core is often considered an extension of the dorsal striatum functioning in 

instrumental learning and cue-induced reinstatement (Ito et al., 2000, Cardinal 

and Everitt, 2004, Ito et al., 2004).The NA shell is characterized as a transitional 

zone between the striatum and the extended amygdala functioning in the 

reinforcing effects of drugs of abuse (Kalivas et al., 2005, Pierce and Kumaresan, 

2006). The NA core receives glutamate inputs from the dorsomedial prefrontal 

cortex (Gabbott et al., 2005, Reynolds and Zahm, 2005) while NA shell receives 

glutamate input from the ventromedial PFC (Gabbott et al., 2005, Reynolds and 

Zahm, 2005).  

The dmPFC is comprised of the anterior cingulate (AC) and dorsal prelimbic 

(dPL) cortices while the vmPFC is comprised of the ventral prelimbic (vPL) and 

infralimbic cortices (Van den Oever et al., 2010). In summary, the projections 

from mPFC to the NA are organized into a dorsal-ventral pattern, where the 

dorsal mPFC projects predominantly to the NA core while the vmPFC projects 

predominantly to the NA shell (Figure 11) (Heidbreder and Groenewegen, 2003, 
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Voorn et al., 2004). These two circuits have differential role in regulating drug-

seeking behavior. 

 

Figure 11: Schematic illustrating the mPFC subregions and their inputs to NA 
subregions producing the ‘Go, No Go’ circuit (Van den Oever et al.) involved in 
footshock-induced reinstatement (Capriles et al., 2003, Sanchez et al., 2003, 
McFarland et al., 2004). Glutamate inputs from the dorsal medial PFC (anterior 
cingulate [AC] + dorsal prelimbic cortex [PLd]; green) to the NA core is thought to 
be a final relay to induce drug seeking (McFarland et al., 2003). In contrast, 
glutamate projections from the ventral medial PFC (ventral prelimbic cortex [PLv], 
infralimbic cortex [IL]; red) to the NA shell are thought to suppress drug seeking 
(Peters et al., 2008). Together, these circuits make the “Go No Go” circuit 
involved in drug-seeking behavior (LaLumiere et al., 2012), both regulated 
through dopaminergic inputs from the VTA 
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The glutamate input from the dmPFC to the nucleus accumbens core has 

been proposed to be a final downstream circuit involved in the renewal of 

extinguished drug seeking induced by drugs, cues, and footshock stress (Cornish 

et al., 1999, Capriles et al., 2003, McFarland et al., 2003, McFarland et al., 2004, 

LaLumiere and Kalivas, 2008). A parallel circuit involves the glutamatergic input 

from the vmPFC to nucleus accumbens shell which suppresses drug seeking 

(LaLumiere et al., 2010, LaLumiere et al., 2012). This circuit appears to be 

involved in the extinction process. 

Extinction is a form of learning (Bouton, 2002). It has been proposed that the 

ventral medial prefrontal cortex and its glutamate input into the nucleus 

accumbens shell regulates suppression of drug seeking (Peters et al., 2008) 

through the formation of new extinction memories (LaLumiere et al., 2010). This 

is further supported by the findings that inactivation of either the infralimbic cortex 

or the nucleus accumbens shell reinstates drug seeking without drug, cue, or 

stress triggers (Peters et al., 2008).  

Following extinction of drug-seeking behavior, the glutamatergic neurons in 

the dorsal medial PFC that project to the NA core are highly responsive to 

reinstating stimuli (Van den Oever et al., 2010). This produces opposing 

regulation of drug seeking through two different circuits involving different 

subregions of the medial prefrontal cortex and nucleus accumbens (Cornish et 

al., 1999, McFarland and Kalivas, 2001, McFarland et al., 2003, McFarland et al., 

2004, Fuchs et al., 2008, Peters et al., 2008, Van den Oever et al., 2010, 
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LaLumiere et al., 2012). Notably, stress-induced reinstatement of cocaine 

seeking requires the activity of the ventral tegmental area, dorsal medial 

prefrontal cortex, and the nucleus accumbens core (Di Ciano and Everitt, 2001, 

McFarland and Kalivas, 2001, McLaughlin and See, 2003). Therefore, footshock 

stress-induced reinstatement of extinguished LgA cocaine seeking likely involves 

activation of the prelimbic nucleus accumbens core pathway, inhibition of the 

infralimbic nucleus accumbens shell pathway, or both. Since the VTA projects to 

both these circuits and receives CRF input from the extended amygdala, it is 

ideally positioned to regulate drug seeking in response to stress. 

 
THE VENTRAL TEGMENTAL AREA: CONVERGENCE OF STRESS AND 
MOTIVATIONAL NEUROCIRCUITRY 
 
 
 The VTA represents a convergence point where dopamine (Wise and 

Rompre, 1989, Kalivas, 1993, Wise et al., 1995), glutamate (Stuber et al., 2010, 

Tecuapetla et al., 2010), and GABA (Van Bockstaele and Pickel, 1995, Ikemoto 

et al., 1997a, Steffensen et al., 1998, Xi and Stein, 1998, Carr and Sesack, 

2000a, Doherty and Gratton, 2007) neurons interact to control motivated 

behavior. VTA dopamine, CRF, GABA, and glutamate neurotransmission have 

all been implicated in drug addiction and drug seeking (Brebner et al., 2002, 

Wang et al., 2005, Wang et al., 2007, Koob and Volkow, 2010). This implication 

includes stress-induced reinstatement of cocaine seeking. Points of convergence 

between reward- and stress-related circuitry, as seen in the VTA, provide 

potential neurobiological substrates for the therapeutic intervention in stress-

induced relapse.  
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VTA dopamine neurons have an integral role in reward- and 

motivationally-relevant behaviors (Wise and Rompre, 1989, Bjorklund and 

Dunnett, 2007, Schultz, 2007b, Matsumoto and Hikosaka, 2009b, Tsai et al., 

2009, Bromberg-Martin et al., 2010, Cohen et al., 2012, Kim et al., 2012). To this 

end, VTA dopamine neuron firing conveys rewarding and motivationally relevant 

information (White, 1996)- initiating, promoting, maintaining, and driving reward-

seeking behavior (Fields et al., 2007, Sun, 2011). In order to characterize the 

effects of intra-VTA drug-induced neuroplasticity on stress-induced relapse, it is 

important to first acknowledge the complexities of VTA neurocircuitry. 

The ventral tegmental area (VTA) is synonymous with area A10 of 

grouped dopamine neurons (Dahlstrom, 1964, Fallon and Moore, 1978, Moore 

and Bloom, 1979). The VTA/A10 region is comprised of three major nuclei: (1) 

the parabrachial pigmented (PBP), (2) parainterfascicular (PIF), and (3) 

paranigral (PN) nuclei (Figure 12) (Swanson, 1982). These nuclei are particularly 

rich in dopaminergic cell body concentrations (Dahlstrom, 1964, Fallon et al., 

1978, Moore and Bloom, 1978, Phillipson, 1979b, Halliday and Tork, 1986, 

Paxinos, 2007). The VTA is a midbrain structure that consists of approximately 

14,000 neurons comprised of a mixture of dopamine neurons (~65%) and GABA 

neurons (~35%) (Swanson, 1982, Oades and Halliday, 1987, Johnson and North, 

1992b). Subpopulations of these VTA dopamine and GABA neurons can 

subserve different functions (Guarraci and Kapp, 1999, Bjorklund and Dunnett, 

2007, Lammel et al., 2008, Margolis et al., 2008, Berridge et al., 2009, 

Matsumoto and Hikosaka, 2009b, Bromberg-Martin et al., 2010, Sesack and 
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Grace, 2010, Lammel et al., 2011, Cohen et al., 2012, Kim et al., 2012, Tan et 

al., 2012, van Zessen et al., 2012). 

VENTRAL TEGMENTAL AREA NEUROCIRCUITRY IS NOT HOMOGENOUS 

 The ventral tegmental area (VTA) should not be viewed as a homogenous 

structure in function, anatomy, or physiology. VTA dopamine neurons have 

unique subpopulations with different inputs, axonal projections, and unique 

neurochemical and electrophysiological properties (Bannon and Roth, 1983, 

White, 1996, Tzschentke, 2001, Margolis et al., 2006, Ikemoto, 2007, Lammel et 

al., 2008, Margolis et al., 2008, Lammel et al., 2011, Lammel et al., 2012). The 

heterogeneous nature of the VTA provides different neuronal populations that are 

essential for the expression of motivated behaviors and actions related to 

addiction (Wise, 2004, Fields et al., 2007, Ikemoto, 2007, Lammel et al., 2008, 

Lammel et al., 2011, Luscher and Malenka, 2011, Lammel et al., 2012). The 

functional heterogeneity of the VTA was first demonstrated along its rostral 

caudal axis in behavioral studies via local intracranial self-administration 

procedures (Carlezon et al., 2000, Rodd-Henricks et al., 2000, Ikemoto and 

Wise, 2002, Zangen et al., 2002, Bolanos et al., 2003, Olson et al., 2005, Rodd 

et al., 2005a, Rodd et al., 2005b, Ikemoto et al., 2006).  
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Figure 12: Schematic illustrating the area of interest for this dissertation, the 
posterior VTA. 12A & 12B are illustrating sagittal and coronal views of the VTA, 
respectively, with a close up illustrating PBP, PIF, and PN nuclei. 12C-E are 
illustrating high dopamine neuron expression in the area of interest using (12C) 
immunohistochemistry (IHC) for tyrosine hydroxylase (TH; marker for dopamine 
neurons in the VTA) in low mag (12D) high mag, and (12E) high mag using 
immunofluorescence for TH (Paxinos, 2004, Brischoux et al., 2009).  
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The VTA can be divided into rostral and caudal subregions constituting 

functionally distinct areas in their ability to regulate rewarding effects of drugs of 

abuse (Ikemoto et al., 1997a, Ikemoto et al., 1997b, 1998, Carlezon et al., 2000, 

Ikemoto and Wise, 2002, Zangen et al., 2002, Bolanos et al., 2003, Ikemoto et 

al., 2003, Olson et al., 2005, Rodd et al., 2005a). These distinct subregions are 

referred to as anterior, posterior, and tail regions of the VTA (Ikemoto et al., 

1998, Zangen et al., 2002, Olson et al., 2005, Perrotti et al., 2005, Ikemoto, 2007, 

Shabat-Simon et al., 2008, Kaufling et al., 2009). 

The anterior VTA (aVTA) is the region dorsal to the medial mamillary 

nucleus and medial to the substantia nigra pars compacta (SNC) (Zhao-Shea et 

al., 2011). The aVTA contains the ventral tegmental area rostral (VTAR) and the 

parabrachial pigmented area (PBP), but not midline nuclei (interfascicular 

nucleus [IF], rostral linear [RLi] nucleus) or the A10 dopamine neurons of 

supramamillary nucleus (Hokfelt et al., 1984a, Hokfelt et al., 1984b, Zhao-Shea 

et al., 2011). The posterior VTA (pVTA) is dorsal to the interpeduncular nucleus, 

medial to the SNC, and ventral to the red nucleus (Zhao-Shea et al., 2011). The 

pVTA is comprised of the parabrachial pigmented nucleus (PBP), 

parainterfascicular (PIF), and the paranigral nucleus (PN) (Fig. 12). The pVTA 

does not include the midline nuclei (IF, RLi), the caudal linear nucleus (CLi), or 

A10 dopamine neurons of the dorsal raphe nucleus (Hokfelt et al., 1984a, Hokfelt 

et al., 1984b, Zhao-Shea et al., 2011). The pVTA is the area of interest for this 

dissertation. The pVTA has a higher percentage of dopamine neurons than both 

the aVTA or tail of the VTA (tVTA) (Zhao-Shea et al., 2011). Moreover, the aVTA 
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and pVTA subregions respond differently to drugs of abuse (Boehm et al., 2002, 

Rodd et al., 2004, Rodd et al., 2005b, Ericson et al., 2008, Shabat-Simon et al., 

2008). Dopamine neurons of the pVTA are more responsive and critical for 

reinforcement as compared to the aVTA (Zhao-Shea et al., 2011). 

The tail of the VTA (tVTA), also called the rostromedial tegmental nucleus 

(RMTn), is the most caudal extent of the VTA limited to a subregion posterior to 

the paranigral nucleus and dorsolateral to the interpeduncular nucleus. The tVTA 

shifts dorsally and slightly laterally more caudally to become embedded within 

the superior cerebellar peduncle decussation (SCP) (Zhao-Shea et al., 2011). 

The tVTA has a low density of dopamine neurons, a high density of GABAergic 

neurons, and does not include the midline nuclei (Zhao-Shea et al., 2011). The 

tail of VTA has GABAergic output to the anterior and posterior VTA (Kaufling et 

al., 2010). This produces a microcircuit whereby GABAergic projections of the 

tVTA contact and inhibit a/pVTA dopamine neurons (Kaufling et al., 2010).  

VTA AFFERENTS 

 The VTA is a hub of converging inputs allowing for the integration of 

diverse stimuli. Strong inputs to the VTA come from the prefrontal cortex, lateral 

septum, medial septum diagonal-band complex, accumbens shell, ventral 

pallidum, medial and lateral preoptic areas, paraventricular nucleus of the 

hypothalamus, medial and lateral hypothalamus, lateral habenula, laterodorsal 

tegmentum, pedunculopontine tegmental nucleus, dorsal raphe, periaqueductal 

gray, and mesencephalic and pontine reticular formation (Geisler and Zahm, 

2005). With regard to stress and addiction, the confluence of the 



67 
 

mesocorticolimbic dopamine system and the extended amygdala have been best 

characterized. The VTA receives both excitatory and inhibitory input from 

numerous areas (Geisler et al., 2007, Bromberg-Martin et al., 2010, Sesack and 

Grace, 2010, Jennings et al., 2013). 

GLUTAMATERGIC VTA AFFERENTS 

 Glutamatergic inputs onto VTA dopaminergic neurons regulate their firing 

and the release of dopamine in VTA targets (Overton and Clark, 1997). The VTA 

receives excitatory glutamate inputs from numerous areas such as the 

ventromedial prefrontal cortex, ventral subiculum, subthalamic nucleus, 

parabrachial nucleus from the nucleus of the solitary tract (NTS), 

pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, and the 

bed nucleus of the stria terminalis (Kalivas, 1993, Georges and Aston-Jones, 

2001, 2002, Stuber et al., 2008). 

One of the main glutamatergic afferent projections to the VTA is the 

prefrontal cortex (Christie et al., 1985, Sesack et al., 1989, Hurley et al., 1991, 

Sesack and Pickel, 1992, Lu et al., 1997). This glutamate input comes mainly 

from the infralimbic and prelimbic regions (Beckstead et al., 1979, Phillipson, 

1979a, Sesack et al., 1989, Sesack and Pickel, 1992, Geisler and Zahm, 2005, 

Frankle et al., 2006). Furthermore, excitation and inhibition of the PFC results in 

increased and decreased activity of the VTA, respectively (Gariano and Groves, 

1988, Svensson and Tung, 1989, Murase et al., 1993a, Tong et al., 1996). VTA 

PFC glutamate inputs selectively activate dopamine mesocortical neurons and 
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GABA-containing mesolimbic (accumbens) neurons (Sesack and Pickel, 1992, 

Carr and Sesack, 2000b). This is one mesocorticolimbic dopamine circuit that 

may become aberrant with drug-induced neuroplasticity. At least two different 

glutamate inputs into the VTA can signal reward or aversion (Figure 13). The 

laterodorsal tegmentum (LDT) and lateral habenula (LHb) have VTA afferents 

that preferentially project to different VTA dopamine neuron subpopulations. 

These dopamine populations then project to different target structures (nucleus 

accumbens lateral shell versus medial PFC) (Margolis et al., 2008, Lammel et al., 

2011, Lammel et al., 2012) eliciting reward and aversion, respectively (Lammel et 

al., 2012).  

 

Figure 13: Summary of circuitry proposed from Lammel et al., 2011. Rewarding 

versus aversive stimuli provide differential input upon midbrain dopamine 

neurons which in turn have different terminal field projections. 
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Reward involves excitation of VTA dopamine neurons that project to the 

nucleus accumbens shell (Lammel et al., 2011). Aversion involves excitation of 

the GABAergic tVTA neurons which then project to the a/pVTA signaling 

aversion by activating mesocortical dopamine projections through an unknown 

mechanism (Lammel et al., 2012). The tVTA also receives inputs from brain 

regions involved in aversive stimuli processing including the cingulate cortex 

(Devinsky et al., 1995, Vogt, 2005), septum (Sheehan et al., 2004), lateral 

habenula (Matsumoto and Hikosaka, 2009a, Sartorius et al., 2010, Winter et al., 

2011), periaqueductal gray (Jhou, 2005, Berton et al., 2007, McNally et al., 

2011), and extended amygdala (Davis et al., 2010). 

GABAERGIC VTA AFFERENTS 

 The VTA receives substantial inhibitory GABAergic inputs from areas such 

as the pedunculopontine tegmental nucleus (PPTg), laterodorsal tegmentum 

(LDT), lateral hypothalamus, diagonal band, lateral septum, periaqueductal gray, 

dorsal raphe nuclei, parabrachial nucleus (PB) from the nucleus of the solitary 

tract (NTS), nucleus accumbens shell, ventral pallidum, lateral habenula, 

rostromedial tegmental nucleus, and the bed nucleus of the stria terminalis 

(Oades and Halliday, 1987, Floresco et al., 2003, Geisler and Zahm, 2005, 

Grace et al., 2007a, Matsumoto and Hikosaka, 2007, 2009b, Smith et al., 2009, 

Bourdy and Barrot, 2012, Kudo et al., 2012, Jennings et al., 2013). The VTA 

receives extensive inhibitory feedback from the extended amygdala and basal 

ganglia which originating from the nucleus accumbens shell and the ventral 



70 
 

pallidum, respectively (Zahm and Heimer, 1990, Heimer et al., 1991, Zahm et al., 

1996, Usuda et al., 1998, Geisler and Zahm, 2005). 

VTA GABA neurons provide local inhibition of dopamine neurons (Grace and 

Bunney, 1985, Johnson and North, 1992b, Tan et al., 2010) where local contacts 

between these neuronal phenotypes have been reported (Omelchenko and 

Sesack, 2009). In addition to local GABAergic interneurons, there are GABA 

neurons of the tail of the VTA (rostromedial tegmental nucleus) which inhibit DA 

neurons in the more rostral VTA (Johnson and North, 1992b, Olson and Nestler, 

2007, Jhou et al., 2009, Kaufling et al., 2010). GABAergic local interneurons and 

projection neurons in the VTA not only regulate the excitatory state VTA 

dopamine and GABA neurons (Klitenick et al., 1992, Marinelli et al., 2006, Dobi 

et al., 2010) but also the excitatory state of VTA terminal fields including the PFC 

and NA (Pirot et al., 1992, Van Bockstaele and Pickel, 1995, Steffensen et al., 

1998, Carr and Sesack, 2000a).  

VTA AFFERENTS FROM THE BNST 

 One brain region upstream of the VTA that has received considerable 

attention is the bed nucleus of the stria-terminalis (BNST). The BNST sends both 

glutamatergic and GABAergic inputs into the VTA (Georges and Aston-Jones, 

2002, Kudo et al., 2012, Jennings et al., 2013). The BNST also has aversive and 

reward specific inputs into the VTA, similar to the LDT and LH glutamate inputs, 

but through different mechanisms (Figure 14). Specifically, two differential BNST 

afferents into the VTA have been characterized. GABAergic BNST inputs onto 

VTA GABA neurons produces anxiolytic/rewarding behavioral responses, while 
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glutamatergic BNST inputs onto VTA GABA neurons produces 

anxiogenic/aversive behavioral responses (Jennings et al., 2013).  

 

Figure 14: Summary of circuitry proposed from Jennings et al., 2013. Inhibition 
of VTA dopamine neurons by GABA input is aversive and anxiogenic while 
disinhibition is rewarding and anxiolytic. 

 

 

 

 

 

 

 

 

 

 

 

The hypothesis that decreasing GABA neuron activity in the VTA is rewarding 

is supported by the finding that anxiolytic/rewarding behavioral responses can be 

induced by directly inhibiting intra-VTA GABA neurons (Jennings et al., 2013). 

Importantly, it has been reported that footshock stress selectively activates BNST 

glutamate projection neurons that increase intra-VTA GABA neuron activity 

(Jennings et al., 2013). These findings suggest that footshock stress increases 

GABA neuron firing in the VTA through excitatory drive from the BNST. 

Furthermore, footshock-induced increases in VTA GABA neuron activation 
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signals aversion and anxiogenesis. In summary, the findings from Lammel et al., 

(2012) and Jennings et al., (2013) suggest that increasing GABA input or intra-

VTA GABA neuron activity produces aversive/anxiogenic behavioral responses. 

Alternatively, increasing glutamatergic input or disinhibiting VTA dopamine 

neurons both produce rewarding/anxiolytic behavioral responses (Lammel et al., 

2012, Jennings et al., 2013). 

VTA EFFERENTS 

 Neuroanatomical studies have characterized VTA projections using 

different criteria. One criteria used is medial/lateral topography of the mesolimbic 

projections to produce two different pathways (Fallon and Moore, 1978, 

Beckstead et al., 1979). These two pathways are: (1) the medial striatal 

projections to the medial nucleus accumbens shell, and (2) the lateral striatal 

projections to the lateral nucleus accumbens core and shell (Ikemoto, 2007). 

Another criteria used is dorsal/ventral topography to produce two distinct efferent 

pathways. These two pathways are:  (1) the dorsal dopamine neurons that 

express lower levels of the dopamine active transporter (DAT) and high levels of 

calbindin calcium binding protein, and (2) the ventral dopamine neurons that 

project primarily to the striatum and have high levels of DAT and low levels of 

calbindin (Gerfen, 1992, Haber et al., 1995, Bjorklund and Dunnett, 2007). The 

latest criteria characterizing VTA efferents uses the forebrain targets, physical 

characteristics, and firing patterns of VTA dopamine neurons to produce distinct 

efferent pathways. These two pathways are: (1) the slow firing dopamine 

neurons that project to the lateral nucleus accumbens shell and dorsolateral 
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striatum, and (2) fast firing dopamine neurons that express lower levels of DAT 

and project to the PFC, nucleus accumbens core, and the medial nucleus 

accumbens shell (Lammel et al., 2008). 

The majority of VTA dopamine neuron projections do not have overlapping 

target areas. This suggests that different VTA projections are separate and 

independent, but parallel (Fallon, 1981, Albanese and Minciacchi, 1983, Loughlin 

and Fallon, 1984, Lammel et al., 2008). For example, dopamine neurons of the 

medial posterior VTA project selectively to the nucleus accumbens core, medial 

nucleus accumbens shell, and to the medial prefrontal cortex. In contrast, 

dopamine neurons in the lateral posterior and anterior VTA project primarily to 

the nucleus accumbens lateral shell (Lammel et al., 2008). For these reasons, 

dopamine neurons that project to the medial prefrontal cortex and nucleus 

accumbens can be functionally distinct from one another, adding to the 

complexity of behavior that is preferentially regulated either by mesocortical or 

mesolimbic dopamine input.  

Heterogeneous groups of VTA neurons which project to different terminal 

fields can be further divided into dopaminergic and non-dopaminergic (GABA) 

populations (Swanson, 1982). VTA GABA neurons are not only local inhibitory 

interneurons that regulate the excitatory state of VTA DA neurons (Klitenick et 

al., 1992, Marinelli et al., 2006) but also projection neurons that have terminal 

fields in the medial prefrontal cortex and nucleus accumbens (Pirot et al., 1992, 

Van Bockstaele and Pickel, 1995, Steffensen et al., 1998, Carr and Sesack, 

2000a, Dobi et al., 2010). This makes GABA neurotransmission an essential 
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component to the mesocorticolimbic system and likely motivated behavior. In 

summary, the converging functional afferents, diverging efferents, and 

heterogeneous neuron populations of the VTA produces very complex 

neurocircuitry involved in motivated behavior. Although, the full complexity of 

VTA neurocircuitry is beyond the scope of this dissertation, there exists 

heterogenous circuits that control the differential response of the 

mesocorticolimbic system to different stimuli, including stress and reward. 

STRESS REGULATION OF MESOCORTICOLIMBIC DOPAMINE SIGNALING 

 Distinct subpopulations of VTA dopamine neurons respond differently to 

aversive stimuli.  Stressful stimuli can increase VTA dopamine neuron excitation 

and terminal field release of dopamine (Abercrombie et al., 1989, Mantz et al., 

1989, Guarraci and Kapp, 1999, Bassareo et al., 2002, Joseph et al., 2003, 

Young, 2004, Anstrom and Woodward, 2005, Brischoux et al., 2009, Matsumoto 

and Hikosaka, 2009b, Bromberg-Martin et al., 2010, Cohen et al., 2012). 

Paradoxically, others have reported that the majority of VTA DA neurons are in 

fact inhibited by aversive stimuli (Ungless et al., 2004, Roitman et al., 2008, 

Badrinarayan et al., 2012, Oleson et al., 2012). These findings suggest that VTA 

dopamine neurons can both be excited and inhibited by stressful stimuli. In 

support, it has been reported that whether a VTA dopamine neuron is excited or 

inhibited by footshock depends on their ventral versus dorsal location in VTA sub 

nuclei (Brischoux et al., 2009). 

Ventral VTA DA neurons have been reported to be preferentially excited 

by footshock stress while dorsal VTA DA neurons are inhibited (Brischoux et al., 
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2009). This roughly translates to the dorsal parabrachial (PBP) and the more 

ventral parainterfascicular (PIF) and paranigral (PN) nuclei, respectively. The 

functional heterogeneity in VTA DA neurons in response to stress has not only 

been reported in the ventral dorsal topography but also in the rostral caudal 

topography (Ikemoto et al., 1997a, Ikemoto et al., 1998, Carlezon et al., 2000, 

Bolanos et al., 2003, Olson et al., 2005). These different regions also have 

specific connectivity within the mesocorticolimbic system (Ikemoto, 2007).  

  Dopamine neurons projecting to the medial prefrontal cortex (mPFC) are 

hypothesized to be preferentially activated by aversive stimuli, while dopamine 

neurons that project to the nucleus accumbens shell are hypothesized to signal 

reward and salience (Lammel et al., 2011, Lammel et al., 2012). The first 

evidence supporting heterogeneous mesocortical versus mesolimbic VTA DA 

neuron function was provided by looking at the effects of footshock stress on this 

system (Thierry et al., 1976). Dopamine levels were found to be significantly 

increased in the prefrontal cortex, but only slightly in the nucleus accumbens of 

drug naïve rats that had undergone short periods of intermittent footshock stress 

(Thierry et al., 1976). These findings have been replicated using footshock and 

other stressors across a range of different techniques (Fadda, 1978, Lavielle, 

1978, Tassin et al., 1980, Herman et al., 1982, Bannon, 1983, Deutch et al., 

1985, Roth et al., 1988, Deutch et al., 1990, Deutch and Roth, 1990, Deutch et 

al., 1991, Lammel et al., 2011). Mesocortical VTA DA neurons possess distinct 

characteristics (Bannon et al., 1983, Roth, 1984) such the lack of autoreceptors 

to regulate neurotransmission (Chiodo et al., 1984). However, upon initial 
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investigation the absence of functional autoreceptors does not appear to be a 

critical determinant in the preferential responsiveness of mesocortical DA 

neurons to footshock stress (Roth et al., 1988). 

To summarize, there are conflicting results as to what stressful stimuli are 

doing to mesocorticolimbic dopamine neurotransmission in drug naïve animals, 

much less in cocaine experienced ones. These inconsistencies are likely the 

result of the complexity of the VTA neurocircuitry regulating both stress and 

reward. However, it is safe to say that we can no longer consider the VTA to be a 

homologous structure and its heterogeneity will need to be taken into 

consideration to fully characterize stress-induced reinstatement of drug seeking 

and other questions related to motivation and reward. Surely the complex 

circuitry of the VTA is converged upon by CRF release during stress in a way 

that regulates cocaine seeking. 

VENTRAL TEGMENTAL AREA AND CORTICOTROPIN RELEASING FACTOR  

 CRF inputs to the VTA arise from multiple sources including afferents from 

the paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria 

terminals (BNST), central nucleus of the amygdala (CeA), and (Beckstead et al., 

1979, Phillipson, 1979a, Swanson et al., 1983, Wallace et al., 1989, Rodaros et 

al., 2007). CRF-containing axons and varicosities had been identified in the VTA 

(Swanson et al., 1983) and are co-expressed with classical neurotransmitters 

(Tagliaferro and Morales, 2008). There are two types of CRF-containing neurons 

that project to the VTA, these are CRF-asymmetric (assumed glutamatergic) and 
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CRF-symmetric (assumed GABAergic) (Tagliaferro and Morales, 2008). The 

majority of CRF terminals contacting dopamine neurons in the VTA are 

asymmetric (Tagliaferro and Morales, 2008). However, CRF containing terminals 

make contact onto the dendrites of both dopamine and GABA neurons 

(Tagliaferro and Morales, 2008). The exact origin of these two types of terminal 

inputs has not been determined. 

CRF and both its receptors appear to be functionally expressed within the 

VTA (Ungless et al., 2003, Korotkova et al., 2006, Wanat et al., 2008). CRF-R1 

mRNA has been found in both dopaminergic and GABAergic neurons of the VTA 

(Korotkova et al., 2006, Refojo et al., 2011). It should be noted that the VTA does 

express CRF-R1 but at significantly lower levels than other brain regions in the 

rat (Van Pett et al., 2000, Sauvage and Steckler, 2001). In contrast, in situ 

hybridization has failed to detect CRF-R2 mRNA in the VTA (Chalmers et al., 

1995, Van Pett et al., 2000). This does not rule out a presynaptic mechanism for 

CRF-R2 in the VTA. Moreover, CRF-R2 mRNA has been detected in the VTA 

using single cell RT-PCR (Korotkova et al., 2006). Surprisingly, CRF-R2 mRNA 

levels were reported to greatly exceed those of CRF-R1 in VTA dopamine 

neurons (Korotkova et al., 2006). It should be noted that this was the only report 

to show expression of CRF-R2 mRNA in the VTA.  

In contrast to in situ hybridization, immunohistochemical analysis of CRF 

receptor subtype specific expression has been met with significant skepticism 

because commercially available antibodies for the CRF receptors have failed 

sensitivity and specificity tests (Refojo et al., 2011). The inability to reliably detect 
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CRF receptor protein expression has greatly stymied the progress of the field. 

Pre- versus post-synaptic localization of both CRF receptor subtypes within the 

VTA has up to this point been ambiguous. Nevertheless, electrophysiological 

studies have implicated both CRF receptor subtype function in the regulation of 

VTA DA neuron activity (Ungless et al., 2003, Korotkova et al., 2006, Wanat et 

al., 2008, Beckstead et al., 2009). In summary, even without reliable protein 

detection, the field still supports the notion that both CRF-R1 and CRF-R2 are in 

fact expressed in the VTA (Van Pett et al., 2000, Ungless et al., 2003, Korotkova 

et al., 2006, Wang et al., 2007, Wanat et al., 2008, Beckstead et al., 2009, 

Blacktop et al., 2011, Wanat et al., 2013). CRF systems are in a good anatomical 

location to regulate dopaminergic neurotransmission of the mesocorticolimbic 

system and therefore motivated behavior.  

CRF RECEPTORS AND STRESS-INDUCED REINSTATEMENT  

 CRF was originally hypothesized to be important to addiction-related 

actions in the VTA because the mesocorticolimbic dopamine system is implicated 

in both responsiveness to stress (Thierry et al., 1976) and cocaine self-

administration (Roberts et al., 1977). A common theme to repeated cocaine 

administration is increased responsiveness throughout the brain to CRF (Sarnyai 

et al., 1992, Sarnyai et al., 1993, 1995, Erb et al., 1996, 1998, Shaham et al., 

1998, Basso et al., 1999, Erb and Stewart, 1999, Koob, 1999b, Shaham et al., 

2000, Shalev et al., 2000, Erb et al., 2001, Sarnyai et al., 2001, Erb et al., 2003, 

Erb et al., 2006a, Pollandt et al., 2006, Fu et al., 2007, Koob and Kreek, 2007, 
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Koob, 2008, Mantsch et al., 2008a, Specio et al., 2008, Shalev et al., 2010, Graf 

et al., 2011). One very important area in which this is occurring is the VTA 

(Kalivas et al., 1987, Goeders et al., 1990, Wang et al., 2007, Blacktop et al., 

2011). Footshock stress which causes reinstatement of extinguished cocaine-

seeking (Erb et al., 1996, Shaham et al., 1998, Mantsch et al., 2008a) also 

causes CRF release in the VTA in both drug-naïve and drug-experienced 

animals (Wang et al., 2005, Wang et al., 2007). Cocaine exposure alters the 

function of CRF in the VTA in such a way that it facilitates drug seeking (Wang et 

al., 2005, Wang et al., 2007, Blacktop et al., 2011).  

GLUTAMATE AND VTA DOPAMINE NEURONS 

 The VTA receives both excitatory and inhibitory inputs (Watabe-Uchida et 

al., Geisler et al., 2007, Bromberg-Martin et al., 2010, Sesack and Grace, 2010). 

Stress and psychostimulants produce similar adaptations of excitatory (Ungless 

et al., 2001, Saal et al., 2003, Hahn et al., 2009) and inhibitory (Beckstead et al., 

2009, Padgett et al., 2012) neurotransmission in the VTA. Several mechanisms 

have been postulated to explain how stress reinstates drug-seeking behavior. 

One hypothesis is that stressors activate the mesocorticolimbic DA system, in a 

similar way to both drugs and cues previously associated with use, resulting in 

craving and therefore relapse (Robinson and Berridge, 1993, Shaham and 

Stewart, 1995). Consistent with this, excitatory drive on this circuit through 

glutamate neurotransmission in the VTA is a leading hypothesis as to how 

stress-induced CRF release facilitates reinstatement.  Glutamatergic afferent 
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projectionss are important to drug seeking through regulation of VTA dopamine 

neuron firing and release of downstream dopamine (Overton and Clark, 1997).  

VTA DA neurons possess pacemaker like properties and fire in two 

distinct modes. These modes are tonic and phasic firing with phasic firing 

producing the highest DA levels (Grace and Bunney, 1984a, b, Cooper, 2002). 

Baseline dopamine neuron activity is regulated by pacemaker conductance 

bringing the membrane potential from a hyperpolarized state to a depolarized 

state, thereby decreasing the spike threshold and increasing burst firing (Grace 

and Bunney, 1983, 1984a, Grace and Onn, 1989). Phasic firing is a brief 

transient increase in dopamine cell firing that results in either episodic burst firing 

allowing for temporal summation (Gonon, 1988, Wightman and Zimmerman, 

1990, Suaud-Chagny et al., 1992) or simultaneous firing of multiple cells 

projecting to the same target neurons allowing for spatial summation (Grace and 

Bunney, 1984a, b). In contrast, tonic firing is a slow pattern of dopamine neuron 

excitation resulting in dopamine concentration increases that can last from tens 

of seconds to days or longer (Grace, 1995, Goto and Grace, 2005).  

Glutamatergic inputs stimulate midbrain dopamine neurons, promoting 

burst firing rather than single spike firing (Grace and Onn, 1989, Taber et al., 

1995, Grillner and Mercuri, 2002, Floresco et al., 2003). Burst firing patterns of 

VTA DA neurons produce optimally efficient dopamine release at both terminals 

and somatodendritic sites (Wightman and Zimmerman, 1990). This results in the 

facilitation of supra-additive release or summation of dopamine, which saturates 

dopamine transporters limiting uptake. This optimization of VTA DA neuron firing 
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is ultimately responsible for the downstream behavioral responses to dopamine 

(Chergui et al., 1994, Floresco et al., 2003, Phillips et al., 2003) including the 

perception of both reward (Overton and Clark, 1997) and reward-predicting 

salient stimuli (Schultz, 1998). Endogenous burst activity of dopamine neurons is 

regulated by glutamate activation of the NMDA receptor (Johnson and North, 

1992b, Overton and Clark, 1992, Chergui et al., 1993, Deister et al., 2009, 

Zweifel et al., 2009), which requires removal of its magnesium block by AMPA 

receptor activation (Calabresi et al., 1992). To the extent that increased levels of 

terminal field DA release are responsible for stress-induced cocaine seeking, 

glutamate inputs onto VTA dopamine neurons represent a possible mechanism.  

CRF can augment glutamate signaling in the VTA. CRF-containing and 

glutamatergic VTA afferents can converge independently (Georges and Aston-

Jones, 2001, Rodaros et al., 2007, Zahm et al., 2011, Jennings et al., 2013) or 

glutamate and CRF can be co-released (Rodaros et al., 2007, Tagliaferro and 

Morales, 2008). Intra-VTA CRF can increase dopamine and glutamate 

concentrations as measured by HPLC tissue or microdialysis sample analysis 

(Kalivas et al., 1987, Lavicky and Dunn, 1993, Wang et al., 2005). In slice 

preparations from drug-naïve rats, ex vivo electrophysiology studies have 

reported increased excitatory drive on VTA dopamine neurons by CRF through: 

(1) CRF-R2/CRF-BP/PKC-dependent increases in NMDA receptor conductance 

(Ungless et al., 2003),  (2) CRF-R1/PKC-dependent increases in 

hyperpolarization-activated cation current IH (Wanat et al., 2008), and (3) mGluR-
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dependent increases in potassium-sensitive calcium channel conductance 

(Riegel and Williams, 2008).  

Drug-induced neuroplasticity can augment glutamate-induced excitation of 

VTA dopamine neurons. A single exposure to cocaine, amphetamine, morphine, 

nicotine, ethanol, and notably, acute stress can enhance glutamate synaptic 

transmission upon midbrain dopamine neurons (Ungless et al., 2001, Saal et al., 

2003). Drugs of abuse have consistently been reported to augment the function 

of ionotropic glutamate receptors on VTA dopamine neurons (Ungless et al., 

2001, Saal et al., 2003, Bellone and Luscher, 2006, Argilli et al., 2008, Chen et 

al., 2008, Bowers et al., 2010, Luscher and Malenka, 2011, Mameli et al., 2011).  

Cocaine- and stress-exposure induced neuroplasticity appears to target 

the AMPA receptor which in turn potentiates NMDA-mediated synaptic 

transmission by removing magnesium block (Ungless et al., 2010). Cocaine 

exposure has been reported to recruit a CRF-R1/PKA dependent mechanism 

that enhances NMDA and AMPA receptor signaling on VTA DA neurons (Hahn 

et al., 2009). These findings suggest that, following drug or stress exposure, the 

ability of CRF to augment glutamatergic signaling in the VTA is enhanced. 

However, these studies used ex vivo electrophysiology with brain slice 

preparations from animals that had received noncontingent cocaine 

administration followed by, at most, acute withdrawal without extinction.  

STRESS-INDUCED RELAPSE CRF AND GLUTAMATE 

 In a set of experiments by Wise and colleagues, the role of glutamate and 

CRF in the VTA was characterized during footshock-induced reinstatement of 
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cocaine seeking. Footshock stress produced a significant increase in intra-VTA 

CRF release in both drug-naïve and drug-experienced animals (Wang et al., 

2005). The importance of this CRF was highlighted by the finding that both 

footshock stress and reverse dialysis of CRF into the VTA was sufficient to 

reinstate extinguished cocaine-seeking behavior (Wang et al., 2005). 

Reinstatement was further characterized by increases in VTA glutamate and 

somatodendritic dopamine release, which were both blocked by a nonspecific 

CRF receptor antagonist (Wang et al., 2005). Furthermore, administration of 

kynurenic acid, a nonspecific ionotropic glutamate receptor antagonist (Stone, 

1993), blocked footshock- and intra-CRF-induced reinstatement, along with the 

simultaneous increases in somatodendritic dopamine release but not the 

increases in extracellular glutamate (Wang et al., 2005). These data indicate that 

reinstatement involves excitatory drive on VTA dopamine neurons through CRF-

dependent regulation of presynaptic glutamate release and subsequent 

ionotropic glutamate receptor activation on dopamine neurons. It was later 

reported that footshock and intra-VTA CRF-induced reinstatement and 

concomitant increases in glutamate and dopamine can be blocked by 

administration of CRF-R2 but not CRF-R1 specific antagonists (Wang et al., 

2007). These findings were unexpected for reasons outlined below.  

CRF has 10-fold higher affinity for the CRF-R1 than the CRF-R2 receptor 

(Perrin et al., 1995). CRF-R1 is much more widely distributed throughout the 

rodent brain than CRF-R2 (Van Pett et al., 2000). Moreover, the majority of 

experiments using ventricular administration of antagonists support the 
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conclusion that CRF-R1 and not CRF-R2 activation is necessary for footshock-

induced reinstatement of not only cocaine- but also heroin-, alcohol-, and 

nicotine-seeking (Erb et al., 1998, Shaham et al., 1998, Le et al., 2000, Bruijnzeel 

et al., 2009). Although, there is a well-established role for CRF-R1 function in 

footshock-induced reinstatement of drug seeking, Wise and colleagues defined a 

clear role for the CRF-R2 receptor. Importantly, site-specific versus global 

ventricular administration of drugs targeting CRF receptors could help explain 

these disparate findings. 

CRF receptor subtype-specific ligands (urocortins) that were sufficient to 

reinstate drug-seeking were also reported. Ligands sufficient to reinstate (CRF, 

Ucn1, and Ucn2) were not specific for a CRF-R receptor subtype but all bound to 

the CRF-BP (Wang et al., 2007).  Paradoxically, when CRF-R2 specific ligands 

prevented binding to the CRF-BP, they also prevented the sufficiency of these 

ligands to reinstate cocaine seeking (Wang et al., 2007). CRF-BP is considered 

to be a functional CRF receptor antagonist due to its ability to sequester ligands 

(e.g., CRF) and prevent them from activating CRF receptors (Huising et al., 

2008). Prevention of CRF binding to CRF-BP should increase the amount of free 

CRF available to activate endogenous CRF receptors. This would be 

hypothesized augment reinstatement and not block it.  

Wang et al., (2007) suggested that in order for intra-VTA CRF to reinstate 

cocaine seeking it needs to bind to the CRF-BP and activate CRF-R2.  Although 

these findings do not fit with the traditional role of CRF-BP they do support the 

hypothesis that a functional dimer with unique functions forms when CRF-BP 
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binds CRF (Potter et al., 1991, Behan et al., 1996b, Kemp et al., 1998, Sajdyk et 

al., 1999, Chan et al., 2000, Roseboom et al., 2007). Moreover, they are in 

congruence with a report by Ungless et al., (2003) of a CRF-R2/CRF-BP/PKC-

dependent enhancement of NMDAR signaling on VTA dopamine neurons. 

However, both CRF-R1 and CRF-R2 have both been implicated in facilitating 

glutamate neurotransmission in the VTA through NMDA and AMPA receptors on 

dopamine neurons (Ungless et al., 2003, Pollandt et al., 2006, Wang et al., 2007, 

Wanat et al., 2008, Hahn et al., 2009). Therefore, there still remains conflicting 

evidence as to which CRF receptor subtype provides excitatory drive of VTA 

dopamine neurons through increased ionotropic glutamate receptor 

conductance.  

In summary, there is strong evidence that CRF regulates VTA dopamine 

cellular activity in response to stress by facilitating glutamate signaling through 

ionotropic glutamate receptors on VTA dopamine neurons; an effect that appears 

to be enhanced following cocaine exposure (Ungless et al., 2003, Hahn et al., 

2009). This enhancement of excitatory signaling through ionotropic glutamate 

receptors is one mechanism that could be involved in footshock stress-induced 

reinstatement of extinguished cocaine seeking. The specific role of both CRF and 

ionotropic glutamate receptor subtypes in the VTA has not been sufficiently 

characterized in stress-induced reinstatement of extinguished cocaine seeking, 

particularly following LgA self-administration. The LgA self-administration model 

of stress-induced relapse involves intake-dependent neuroplastic changes that 

regulate escalation of drug intake and the emergent ability of footshock stress to 
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cause relapse. Characterizing the interactions between drug-induced 

neuroplasticity and stress signaling in the VTA under conditions that reinstate 

extinguished cocaine seeking under these conditions will contribute to the field 

substantially.However, it is likely that the processes responsible for stress-

induced relapse are more complex than simply increased excitatory drive on VTA 

DA neurons in response to a stressful stimulus.  

GABA AND VTA DOPAMINE NEURONS  

 Footshock stress also results in increased activity of GABAergic inputs 

into the VTA as well as increased activity of VTA GABA neurons (Lammel et al., 

2012, Tan et al., 2012). This increase in VTA GABA signaling may decrease the 

activity of neighboring dopamine neurons contributing to behaviors associated 

with aversion (Cohen et al., 2012, Kim et al., 2012, Tan et al., 2012, van Zessen 

et al., 2012). GABA inhibits neurons by activating two receptors, the ionotropic 

GABAA receptor and the metabotropic GABAB receptor. Fast inhibitory 

postsynaptic currents (IPSCs) are induced by GABAA receptor activation via 

intrinsic chloride channel influx (Rudolph et al., 2001),  while slower inhibitory 

outward currents are induced by GABAB receptor activation (Otis and Mody, 

1992). GABA exerts a direct GABAB receptor-mediated inhibitory influence by 

activation Gi/o protein-coupled receptors and hyperpolarization of neuronal 

membrane potentials through increases in inwardly rectifying potassium channel 

conductance (Lacey et al., 1988). 
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GABAA and GABAB receptors are both expressed in the VTA (Kalivas, 1993, 

Westerink et al., 1996, Westerink et al., 1998). In the VTA GABAA receptors are 

located predominantly, but not exclusively, on GABA neurons while GABAB 

receptors are predominantly (but not exclusively) located on dopamine neurons 

(Churchill et al., 1992, Klitenick et al., 1992, Xi and Stein, 1998, Magreta-Mitrovic, 

1999, Laviolette and van der Kooy, 2001, Laviolette et al., 2004). Therefore, 

GABAergic interneuron inhibition of VTA DA neurons is largely regulated by 

ionotropic GABAA receptors (Sugita et al., 1992, Kalivas, 1993) while direct 

GABA inhibition of dopamine neurons is largely regulated by metabotropic 

GABAB receptors (Xi and Stein, 1998, Margeta-Mitrovic et al., 1999). In the VTA, 

GABA can also act presynaptically via GABAB receptor activation on both GABA 

and glutamate terminals (Bonci and Williams, 1997, Manzoni and Williams, 1999, 

Wu et al., 1999, Giorgetti et al., 2002, Michaeli and Yaka, 2010) and 

postsynaptically upon dopamine and GABA neurons (Georges and Aston-Jones, 

2002, Giorgetti et al., 2002, Beckstead et al., 2009, Cohen et al., 2012, Tan et al., 

2012).  

Altogether, phasic firing of DA neurons can be induced by glutamate input 

and NMDA receptor activation, and inhibited by GABA inputs and activation of 

both GABAA and GABAB receptors. NMDA receptor activation facilitates phasic 

firing of VTA dopamine neurons (Johnson and North, 1992b, Overton and Clark, 

1992, Chergui et al., 1993, Deister et al., 2009, Zweifel et al., 2009) while both 

GABAA and GABAB receptor activation inhibits it (Lacey et al., 1988, Engberg et 

al., 1993, Seutin et al., 1994, Erhardt et al., 1998, Paladini et al., 1999a, Paladini 
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et al., 1999b, Paladini and Tepper, 1999, Wu et al., 1999, Erhardt et al., 2002). In 

addition to regulation of phasic firing GABAA and GABAB receptors provide tonic 

inhibition (Yim and Mogenson, 1980, Johnson and North, 1992b, a, Suaud-

Chagny et al., 1992, Laviolette and van der Kooy, 2001, Erhardt et al., 2002, 

Giorgetti et al., 2002, Chen et al., 2005). Therefore, there is an important balance 

between excitatory and inhibitory effects on phasic and tonic firing of VTA DA 

neurons determined by activity of NMDA, GABAA, and GABAB receptors.  

GABA AND DRUGS OF ABUSE 

 Many drugs of abuse can directly inhibit VTA GABA neurons, thereby 

increasing VTA dopamine neuronal activity and facilitating the reinforcing effects 

of these drugs which includes: opioids, benzodiazepines, nicotine, cannabinoids, 

and cocaine (Johnson and North, 1992a, Mansvelder et al., 2002, Szabo et al., 

2002, Steffensen et al., 2008, Bocklisch et al., 2013). This disinhibition can be 

mediated by increased GABA input on VTA GABA neurons and decreased 

responsiveness of VTA dopamine neurons to GABA (Johnson and North, 1992a, 

Beckstead et al., 2009, Arora et al., 2011, Bocklisch et al., 2013). Cocaine, on 

the other hand, provides excitatory drive on VTA dopamine neurons through both 

glutamatergic and, potentially, GABAergic mechanisms. These mechanisms 

include increased ionotropic glutamate receptor signaling on VTA DA neurons, 

increased GABA input on VTA GABA neurons, and decreased GABAB-receptor 

mediated inhibition of dopamine neurons (Sun, 2005, Beckstead and Williams, 

2007, Beckstead et al., 2009, Hahn et al., 2009, Arora et al., 2011, Bocklisch et 

al., 2013). GABAB-receptor inhibition of VTA DA neurons occurs primarily 
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through Gi protein-gated inwardly rectifying potassium (GIRK) channels that 

actually results in potassium ion efflux (Johnson and North, 1992b, Cruz et al., 

2004, Labouebe et al., 2007, Beckstead et al., 2009).  

In the case of repeated cocaine, both increased ionotropic glutamate 

receptor conductance (Ungless et al., 2001, Hahn et al., 2009, Ungless et al., 

2010) and decreased GABAA- and GABAB-induced inhibition of VTA dopamine 

neurons (Klitenick et al., 1992, Cameron and Williams, 1994, Kushner, 2001, 

Beckstead et al., 2009, Arora et al., 2011, Padgett et al., 2012, Graziane et al., 

2013) have been reported. Notably, it has been reported that cocaine self-

administration and increases in dopamine as a result of cocaine self-

administration are both significantly inhibited by activation of the GABAB receptor 

following systemic administration of GABAB receptor agonists (Brebner et al., 

2000, Fadda, 2003). Together, these mechanisms may facilitate a net shift in 

excitation of VTA dopamine neurons upon cocaine exposure. However, it is 

important to note that this shift is acute and does not extend into protracted 

abstinence, when reinstatement is typically assessed. 

GABA AND CRF INTERACTIONS IN THE VTA 

 Although much research has focused on effects of CRF on excitatory 

synaptic transmission in the VTA, footshock-induced reinstatement of cocaine 

seeking may be regulated by intra-VTA CRF in such a way that reflects inhibition 

of VTA dopamine neurons. Intra-VTA CRF administration can decrease the 

motivation to work for food rewards; an effect that occurs through CRF-induced 

inhibition of reward-evoked dopamine release (Wanat et al., 2013). This suggests 
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that in the VTA CRF can exert inhibitory effects upon dopamine signaling in a 

way that can affect operant behavior. Intra-VTA CRF has been shown to exert 

inhibitory effects via enhancement of GABAB-receptor regulated GIRK channel 

conductance on dopamine neurons (Beckstead et al., 2009). Specifically, 

activation of CRF-R1 receptors is necessary for CRF administration to augment 

this GABAB/GIRK-induced inhibition (Beckstead et al., 2009). Notably, CRF-

dependent enhancement of GABAB/GIRK-induced inhibition of VTA dopamine 

neurons is acutely diminished by drug exposure (Beckstead et al., 2009). 

Rewarding and aversive stressful stimuli can both reinstate extinguished 

cocaine seeking and by themselves have opposing effects on GABA regulation 

of VTA dopamine neuron activity. For example, cocaine increases VTA 

dopamine activity in part by decreasing GABAergic signaling in the VTA 

(Bocklisch et al., 2013) and induces conditioned place preference (Mueller and 

Stewart, 2000), while footshock stress decreases VTA dopamine activity by 

increasing GABAergic signaling in the VTA and induces conditioned place 

aversion (Tan et al., 2012). Both cocaine and footshock reinstate extinguished 

cocaine-seeking behavior (McFarland and Kalivas, 2001, McFarland et al., 

2004). Moreover, prior history of exposure to drugs of abuse can change VTA 

GABAergic neurotransmission substantially (Johnson and North, 1992a, Bonci 

and Williams, 1997, Nugent et al., 2007, Madhavan et al., 2010). The role of 

GABA in footshock-induced reinstatement of extinguished LgA cocaine seeking 

has not been investigated despite its clear involvement with both CRF and 

dopamine neuron signaling in the VTA. 
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BACKGROUND AND SIGNIFICANCE SUMMARY 

 The high propensity for relapse in drug-abstinent addicts has made 

relapse prevention a key target for pre-clinical research aimed at improving 

approaches for the long-term management of drug addiction. Further, 

understanding of the neurobiological processes that contribute to relapse is 

needed for the development of new and/or more effective treatment for drug 

addiction. Primary questions being asked about addiction are: 1) what are the 

primary triggers for relapse, 2) what brain systems regulate these triggers of 

relapse, and 3) what maintains the vulnerability for these triggers to cause 

relapse even following periods of prolonged drug abstinence? One unpredictable 

and unavoidable cause of relapse in human addicts is the occurrence of a 

stressful life event. Importantly, stress-induced relapse can be modeled using the 

long-access self-administration/reinstatement model in rodents. Specific 

questions being asked in this dissertation are: 1) what are the primary 

mechanisms of stress-induced reinstatement, 2) what part of the brain regulates 

stress-induced reinstatement, and 3) what maintains the vulnerability for stress to 

trigger reinstatement even after extinction of drug seeking? 

Very little is known about the neuromechanisms through which stress 

contributes to the relapse process. Previous work from our laboratory has 

demonstrated that intake-dependent neuroplasticity and its interactions with the 

stress-related neuropeptide, corticotropin-releasing factor, determines the ability 

of stress to facilitate reinstatement (Mantsch et al., 2008a, Graf et al., 2011). 

However, the exact brain region where CRF is interacting with this neuroplasticity 
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is unknown. Areas of convergence between motivational and reward 

neurocircuitry represent likely neurobiological substrates through which stress 

can facilitate relapse. A major area of convergence between motivational- and 

stress-related neurocircuitry is the ventral tegmental area (VTA). This area 

involves the convergence of resident dopamine neurons and inputs that release 

the stress-related neuropeptide corticotropin releasing factor (CRF). This 

dissertation will primarily characterize CRF-related neurobiological mechanisms 

within the VTA that contribute to stressor-induced reinstatement to cocaine use 

using the long-access (LgA) self-administration/reinstatement model of relapse in 

rats.  

Chapter two characterizes whether CRF actions in the VTA represent a 

primary mechanism of stress-induced reinstatement, and, if so, which CRF 

receptor CRF is acting through. This is accomplished using site specific 

pharmacological manipulations within the ventral tegmental area and the 

reinstatement approach in rats. The hypotheses of chapter two are that intra-VTA 

CRF administration is sufficient to reinstate drug seeking in high- (long-access) 

but not moderate intake (short-access) animals and that, CRF-R1, but not CRF-

R2, activation in the VTA is necessary and sufficient for this reinstatement.  

Chapter three examines whether stressor-induced reinstatement of long-

access (LgA) cocaine seeking involves an increase or a decrease in VTA 

dopamine neuron activation. This is done using dual immunohistochemistry to 

characterize stress-induced expression of an indicator of neuronal activation, c-

Fos (Sagar et al., 1988), with tyrosine hydroxylase a known marker for dopamine 
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neurons in the VTA (Hokfelt, 1984). It is hypothesized that a significant increase 

in dopamine neuronal activation will only be observed under conditions in which 

footshock stress reinstates cocaine seeking. Therefore, it is hypothesized that 

there will be a significant increase in intra-VTA dopamine neurons that co-

express c-Fos in response to footshock stress in long-access (which show 

stress-induced cocaine seeking) -but not short-access animals (which do not).  

Lastly, chapter 4 determines whether both stress- and intra-VTA CRF-

induced reinstatement is dependent on excitatory or inhibitory receptor activation 

in the VTA. More specifically, the necessity of VTA AMPA, NMDA, GABAA, and 

GABAB receptor activation in reinstatement of extinguished cocaine seeking will 

be tested. This is also accomplished using site-specific pharmacological 

manipulations within the VTA using the long-access reinstatement rodent model 

of relapse. It is hypothesized that both stress- and intra-VTA CRF-induced 

reinstatement of extinguished long-access cocaine-seeking behavior is 

dependent on excitatory and not inhibitory receptor activation within the VTA. 

Therefore, it is more specifically hypothesized that both NMDA and AMPA 

antagonists will block while both GABAA and GABAB antagonists will augment 

both stress- and intra-VTA CRF-induced reinstatement following LgA self-

administration. 
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CHAPTER 2 

 

 

AUGMENTED COCAINE SEEKING IN RESPONSE TO STRESS OR CRF 
DELIVERED INTO THE VENTRAL TEGMENTAL AREA FOLLOWING LONG-
ACCESS SELF-ADMINISTRATION IS MEDIATED BY CRF-R1 BUT NOT CRF-
R2 RECEPTORS 
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ABSTRACT 

Excessive cocaine use may increase susceptibility to stressor-induced relapse 

through alterations in brain corticotropin releasing factor (CRF) regulation of 

neurocircuitry involved in drug seeking. Reinstatement of cocaine seeking by a 

stressor (footshock) is CRF-dependent and is augmented in rats that self-

administered cocaine under long-access (LgA; 6 hrs daily) conditions for 14 days 

when compared to rats provided shorter daily cocaine access (ShA rats; 2 hrs 

daily).  Further, reinstatement in response to ventricular CRF administration is 

heightened in LgA rats.  This study examined the role of altered ventral 

tegmental area (VTA) responsiveness to CRF in intake-dependent increases in 

CRF- and stress-induced cocaine seeking.   Bilateral intra-VTA administration of 

CRF (250 or 500 ng/side) produced reinstatement in LgA but not ShA rats.   In 

LgA rats, intra-VTA CRF-induced reinstatement was blocked by administration of 

the CRF-R1 receptor antagonists antalarmin (500 ng/side) or CP-376395 (500 

ng/side) but not the CRF-R2 receptor antagonists astressin-2B (500 ng or 1 

µg/side) or ASV-30 (500 ng/side) into the VTA.  Likewise, intra-VTA antalarmin, 

but not astressin-2B, blocked footshock-induced reinstatement in LgA rats.  By 

contrast, neither intra-VTA antalarmin nor CP-376395 altered food-reinforced 

lever pressing.  Intra-VTA injection of the CRF-R1 receptor-selective agonist, 

cortagine (100 ng/side) but not the CRF-R2 receptor-selective agonist rat 

urocortin 2 (250 ng/side) produced reinstatement.  Excessive cocaine use 

increases susceptibility to stressor-induced relapse in part by augmenting CRF-

R1 receptor dependent regulation of addiction-related neurocircuitry in the VTA. 
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INTRODUCTION 

 Cocaine addiction is associated with a persistent susceptibility to drug 

relapse that emerges in an intake-dependent manner with repeated use.  

Understanding the neurobiological mechanisms that underlie drug relapse in 

cocaine addicts is critical to the development of effective treatment.  Much 

evidence suggests that stress contributes to relapse.  Stress promotes craving in 

abstinent human cocaine addicts (Sinha et al., 1999) and precipitates 

reinstatement in rodent relapse models (Erb et al., 1996, Ahmed and Koob, 

1997). The preclinical study of addiction-related drug-induced neuroplasticity has 

involved the use of the long-access self-administration approach (Ahmed and 

Koob, 1998) in which rats provided repeated daily long access to cocaine for self-

administration (6-10 hrs/daily; LgA rats) are compared to rats provided shorter 

daily drug access (1-2 hrs/daily; ShA rats).  We have reported that, compared to 

ShA rats, LgA rats are more susceptible to reinstatement by a stressor, 

footshock, suggesting that repeated cocaine use can produce intake-dependent 

alterations in how stress regulates neurocircuitry subserving motivation and 

relapse susceptibility (Mantsch et al., 2008a).  Our findings are consistent with 

reports that the magnitude of stress-induced craving is influenced by the amount 

of prior use in human addicts (Fox et al., 2005). 

The neuropeptide, corticotropin releasing factor (CRF), is a key mediator 

of stress-induced cocaine seeking (Shalev et al., 2010).  CRF receptor 

antagonists block stress-induced reinstatement (Erb et al., 1998, Shaham et al., 

1998, Graf et al., 2011) while delivery of CRF directly into the brain reinstates 
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cocaine seeking (Erb et al., 2006b, Mantsch et al., 2008a).  One key site at which 

CRF promotes reinstatement is the ventral tegmental area (VTA) (Wise and 

Morales, 2010) where CRF delivery precipitates reinstatement following self-

administration (Wang et al., 2005, Wang et al., 2007).  The VTA receives CRF-

containing projections from a number of brain regions (Rodaros et al., 2007), and 

in vivo microdialysis studies have found that, during footshock-induced 

reinstatement, VTA extracellular CRF levels are elevated (Wang et al., 2005). 

Both CRF-R1 and CRF-R2 receptor subtypes have been reported to be 

expressed in the VTA (Korotkova et al., 2006), but the receptor mechanism 

through which CRF regulates cocaine seeking remains unclear.  Wang et al., 

(2005; 2007) have reported that reinstatement by intra-VTA CRF involves an 

activation of CRF-R2 receptors that relies on an interaction with CRF binding 

protein, consistent with the mechanism through which CRF acutely enhances 

NMDA receptor-mediated currents in the VTA (Ungless et al., 2003).  However, 

others have found that stress-induced reinstatement and evoked increases in 

VTA and nucleus accumbens dopamine rely on CRF-R1 and not CRF-R2 

receptors (Shaham et al., 1998, Lu et al., 2001, Lu et al., 2003a). 

We have reported that reinstatement by centrally administered CRF is 

also augmented following LgA self-administration, suggesting that enhanced 

CRF responsiveness contributes to heightened stress-induced relapse (Mantsch 

et al., 2008a).  It has been shown that repeated cocaine administration recruits 

CRF-R1 receptor regulation of excitatory signaling in the VTA (Hahn et al., 2009).  

In this study, we examine intake-dependent augmentation of intra-VTA CRF-
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induced reinstatement and role of VTA CRF-R1 versus CRF-R2 receptors in 

reinstatement in response to intra-VTA CRF and stress. 

MATERIALS AND METHODS 

 Adult male Sprague–Dawley rats (Harlan Laboratories, St. Louis, MO) 

were housed individually under a 12 h/12 h reversed light/dark cycle (lights on at 

7:00 PM) in a temperature and humidity controlled AAALAC-accredited animal 

facility. All procedures were approved by the Marquette University IACUC and 

carried out in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals. 

Catheter and cannula implantation  

 For the reinstatement studies, rats were implanted with chronic indwelling 

jugular catheters under ketamine HCl (100 mg/kg, ip) and xylazine (2 mg/kg, ip) 

anesthesia as previously described (Mantsch et al., 2008a, Graf et al., 2011) and 

with bilateral 2.1-cm 23 gauge guide cannulae aimed at the VTA for intracranial 

injections. The tips of the guide cannulae were aimed 0.5 mm above the target 

injection site using the following coordinates determined from Paxinos and 

Watson (2000): 12˚ angle away from midline; A/P − 5.6 mm from bregma; M/L ± 

2.2 mm from midline; and D/V − 6.7 mm from the skull surface.  Placements for 

cannula targeting the VTA for rats from each of the experiments are depicted in 

Figure 15 (Paxinos, 2000). 

Self-Administration Training  
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 After recovery from surgery, rats were trained to self-administer cocaine 

(1.0 mg/kg/inf, iv; NIDA Drug Supply Program) by pressing a lever under a FR1 

schedule during daily 2-h sessions, within which the active (i.e., front) lever was 

extended into the chamber and the corresponding stimulus light was illuminated. 

Pressing the lever resulted in an iv infusion of drug or saline solution (200 μl over 

5 s) followed by a 25-s time-out period during which the stimulus light was 

extinguished but the lever remained extended. Responding on a second, inactive 

(i.e., back) lever was recorded but had no programmed consequences.  

Response requirements were gradually increased until rats displayed stable 

responding (within 10% of the 3-session mean) under an FR4 schedule at which 

time they entered into a 14-day period of self-administration testing. 

Effects of LgA Self-Administration on intra-VTA CRF-induced reinstatement  

 

 To examine intake-dependent effects of cocaine self-administration on 

later reinstatement by intra-VTA CRF, rats were assigned to ShA or LgA groups 

after self-administration training according to their access conditions for cocaine 

self-administration for the next 14 days.  ShA rats (n=6) continued to have 

access to cocaine for two hrs daily as described above.  LgA rats (n=8) had 

access to the same cocaine dose for six hrs daily.   Additionally a third group of 

rats with no prior history of cocaine self-administration had access to infusions of 

saline during 14 daily 2-h sessions and served as a control to examine non-

specific effects of intra-VTA CRF on lever pressing (n=6).  Following 14 days of 

self-administration, rats underwent extinction during ten consecutive 2-h sessions 
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within which the cocaine solution was replaced by saline.  After extinction, rats 

received a bilateral sham intra-VTA injection prior to testing for reinstatement in 

response to bilateral intra-VTA delivery of CRF (250 or 500 ng/side; 210 or 420 

µM; Sigma-Aldrich) or vehicle (0.9% NaCl) delivered in a volume of 0.25 µl/side 

over a 1-min period ten minutes prior to the reinstatement session.  Responding 

on both the cocaine and inactive levers were recorded during the 2-h 

reinstatement sessions which were otherwise identical to extinction conditions.  

The order of testing with the two CRF doses and vehicle varied across rats in 

each group to avoid potential sequence effects.  Rats underwent additional 

extinction sessions between reinstatement test sessions and were required to 

display less than 20 cocaine lever responses during an intervening extinction 

session in order to be tested again for reinstatement. 

Effects of CRF Receptor Antagonists on Intra-VTA CRF-Induced Reinstatement  

 To examine the role of CRF-R1 and CRF-R2 receptors in reinstatement by 

intra-VTA administration of CRF, the ability of CRF (500 ng/side) to reinstate 

cocaine seeking following a 15-min bilateral intra-VTA pretreatment (0.25 µl/side 

over 1 min) with the CRF-R1 receptor selective antagonists antalarmin (500 

ng/side; 4.8 mM; Sigma Aldrich; n=7) or CP-376395 (500 ng/side; 5.5 mM; Tocris 

Biosciences; n=6) or the CRF-R2 receptor-selective antagonists astressin-2B 

(500 ng and 1 µg/side; 495 and 990 µM; Sigma-Aldrich; n=6) or anti-sauvagine 

30 (ASV-30; 500 ng/side; 548 µM; Sigma-Aldrich; n=6) was determined in 

separate groups of LgA rats.  The astressin-2B and ASV-30 doses that were 
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used were based on those previously used for intracranial injections (Henry et 

al., 2006, Forster et al., 2008).  After 14 days of LgA self-administration and 

extinction, rats were tested twice for CRF-induced reinstatement in 

counterbalanced sequence: once following intra-VTA pretreatment with CRF 

receptor antagonist and once following pretreatment with vehicle.  In the case of 

the CRF-R2 receptor antagonist astressin-2B, rats were also treated with a 

second, higher antagonist dose (1 µg/side). 

Effects of CRF Receptor Antagonists on Stress-Induced Reinstatement 

 To examine the role of CRF-R1 and CRF-R2 receptor activation in the 

VTA in stress-induced reinstatement, separate groups of rats were tested for the 

ability of electric footshock, delivered though the stainless steel grid floors of the 

self-administration chambers, to reinstate cocaine seeking following bilateral 

intra-VTA delivery of the CRF-R1 receptor-selective antagonist antalarmin (500 

ng/side; n=7) or the CRF-R2 receptor-selective antagonist astressin-2B  (500 

ng/side; n=8).  During the 15-min footshock period, the houselight was 

illuminated and the levers were retracted and stimulus lights extinguished.  

Shocks (0.5 mA, 0.5” duration) were delivered an average of every 40 sec (range 

10-70 sec).  We have reported that these parameters produce robust 

reinstatement after long-access, but not short-access, self-administration 

(Mantsch et al., 2008a).  As was the case with intra-VTA CRF, rats were tested 

twice for footshock-induced reinstatement in counterbalanced fashion: once 

following intra-VTA pretreatment with CRF receptor antagonist and once 

following pretreatment with vehicle. 
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Food Self-Administration 

 In order to confirm that the effects of intra-VTA antalarmin and CP-376395 

on reinstatement were not attributable to non-specific motor impairments, rats 

were tested for effects on sucrose pellet-reinforced lever pressing (data not 

shown).  These rats were maintained at 90% of their free-feeding body weights 

and trained to self-administer 45 mg sucrose-sweetened food pellets (BioServ) 

by pressing a response lever under a FR4 schedule of reinforcement during 30-

min sessions.  Once stable response patterns were observed (responding within 

10% of the mean over 3 sessions), separate groups of rats were tested for the 

effects of intra-VTA delivery of antalarmin (500 ng/side; n=10) or CP-376395 

(500 ng/side; n=6), as described above, on responding.  Each rat was tested 

twice with intra-VTA treatment in counterbalanced sequence: once with the CRF-

R1 receptor antagonist and once with vehicle. 

Reinstatement by Intra-VTA Administration of CRF Receptor Agonist Drugs 

To further examine the role of CRF-R1 and CRF-R2 receptors in 

reinstatement, a separate group of LgA rats (n=5) was tested for reinstatement 

following bilateral intra-VTA administration of the CRF-R1 receptor-selective 

agonist, cortagine (100 ng/side; 90 µM; Phoenix Pharmaceuticals) (Tezval et al., 

2004), the CRF-R2 receptor-selective agonist rat Urocortin 2 (rUcn2; 250 

ng/side; 212.5 µM; Phoenix Pharmaceuticals) (Reyes et al., 2001), or vehicle (5 

mM acetic acid in sterile saline).  Following self-administration and extinction, 

each rat was tested with each intra-VTA treatment in counterbalanced sequence.  
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After the first test, rats were only tested again for reinstatement if they emitted 

less than 20 responses during an intervening extinction session. 

Histological Confirmation of Injection Sites  

 The accuracy of cannula implantation was confirmed postmortem in each 

rat after cardiac perfusion with 60-ml NaCl followed by 60-ml 2.5% buffered 

neutral formalin under sodium barbital anesthesia (55 mg/kg). Brains were 

removed and stored in 2.5% buffered formalin for at least one day. 200-µm 

sections were cut using a vibrotome, slide-mounted, and stained with cresyl 

violet for placement confirmation using a light microscope. Rats with injection 

sites outside of the VTA were excluded from data analysis. 

 

Statistical Analyses  

 Statistical analyses were conducted using Predictive Analytics SoftWare 

statistics software (SPSS, Inc.). Statistical significance was determined using 

ANOVA or Student’s t-tests followed, when appropriate, by further analyses of 

main effects using ANOVA and/or post-hoc testing using Bonferroni-corrected t-

tests. 
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Figure 15: Injection sites within the VTA  for: A) LgA rats (triangles), ShA rats 
(squares) and Sal rats (circles); B) LgA rats tested for CRF-induced 
reinstatement following CP-376395 (triangles), ASV-30 (circles), antalarmin 
(diamonds), and astressin-2B (squares) or LgA rats tested for EFS-induced 
reinstatement (stars); and  C) rats tested for effects on food-reinforced 
responding (open circles) and LgA rats tested for reinstatement by CRF receptor 
agonists (closed circles). 

 

 

 

RESULTS 

Effects of Self-Administration Access Condition on Reinstatement by Intra-
VTA CRF Self-Administration 

 As expected, escalated self-administration was observed in rats 

provided daily long access (6 hrs, LgA, n=8) but not short access (2 hrs, 

ShA, n=6) to cocaine for self-administration and was not observed in rats 

provided access to saline (n=6, Sal).  For analysis, the mean daily hourly 
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self-administration (infusions/hr) was compared across groups over the 14-

day time period (Figure 16A).  Two-way ANOVA examining effects of self-

administration condition (ShA, LgA, and Sal) and day (1-14, repeated 

measure) on the hourly number of self-administered infusions showed a 

significant overall main effect of self-administration condition (F2,16=23.561; 

P<0.001) but not day and a significant condition x day interaction 

(F26,208=2.708; P<0.01).  The daily number of self-administered infusions 

increased across the 14 days of self-administration in LgA but not ShA or Sal 

rats (one-way ANOVA: F13,78=2.520; P<0.01).  Post-hoc testing showed that 

self-administration was increased in LgA rats on days 5 and 9-14 compared 

to short-access rats (Bonferroni-corrected t-test; P<0.05 for each 

comparison).  The mean net cocaine intake over the 14 sessions was 

marked higher in LgA rats compared to ShA rats (t11=5.889; P<0.001) and is 

shown in the insert for Figure 16A. 

Extinction and Intra-VTA CRF-Induced Reinstatement 

 Responding did not differ between ShA and LgA rats during the ten 

extinction sessions prior to reinstatement testing (Fig 16B).  However, differences 

in reinstatement in response to intra-VTA CRF (250 or 500 ng/side) were 

observed (Figure 16C).  Reinstatement by intra-VTA CRF was only observed in 

rats with a history of LgA self-administration.  Two-way self-administration group 

(ShA, LgA, Sal) x reinstatement condition (Veh, 250 ng/side CRF, 500 ng/side 

CRF; repeated measure) ANOVA showed significant main effects of self-

administration group (F2,17=16.774; P<0.001) and reinstatement condition 
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(F2,34=7.934; P=0.001), and a significant group x reinstatement condition 

interaction (F4,34=5.969; P=0.001).    

CRF-induced increases in responding were only found in rats with a prior 

history of LgA self-administration (one-way repeated measures ANOVA; 

F2,14=10.639; P<0.01).  Post-hoc testing showed that responding following intra-

VTA administration of the 500 ng/side CRF dose was significantly increased 

compared to vehicle (P<0.05).   Additionally, responding on the previously active 

lever was significantly increased in LgA rats compared to ShA and Saline rats 

following intra-VTA delivery of either 250 ng/side CRF (one-way ANOVA, 

F2,19=4.179, P<0.05; significant increase in LgA vs. either ShA or Sal, P<0.05, 

Bonferroni-corrected t-test) or 500 ng/side CRF (one-way ANOVA,  F2,19=23.103, 

P<0.001; significant increase in LgA vs. either ShA or Sal, P<0.05).  By contrast, 

we failed to find reinstatement effects or self-administration group effects on 

responding on the previously inactive lever or a reinstatement x group interaction 

(Figure 16D). 

 
 
Figure 16:  Self-administration, extinction, and reinstatement of cocaine seeking 
by intra-VTA injections of CRF in rats that self-administered cocaine under short-
access (ShA; 14 x 2 h/day) and long-access (LgA; 14 x 6h/day) conditions and in 
saline self-administration control rats.  Data in Figure 16A represent the daily 
mean hourly numbers of self-administered infusions (±S.E.) in ShA, LgA, and Sal 
rats across the 14-day test period.  Escalation was observed in LgA, but not ShA 
or Sal rats (**P<0.05 overall effect) and self-administration was increased in LgA 
rats compared to ShA (and Sal) rats on days 5 and 9-14 of self-administration 
(*P<0.05).  The cumulative total cocaine intake (mg/kg ± S.E.) in ShA and LgA 
rats is shown in the insert for Figure 16A.  Intake was markedly and significantly 
increased in LgA rats (**P<0.001 vs. ShA rats).  Responding (± S.E.) during the 
final self-administration session (represented as the 2-h mean in LgA rats) and 
the ten consecutive 2h extinctions sessions is shown in Figure 16B. Significant 
differences in extinction responding between ShA and LgA rats were not found. 
Significant intra-VTA CRF-induced reinstatement was observed in LgA but not 
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ShA rats, and CRF-induced responding was significantly higher in LgA rats 
compared to ShA rats and Sal controls at both doses tested (*P<0.05; 16C) and 
increased compared to vehicle at the 500 (but not 250) ng/side CRF dose 
(#P<0.05).  Effects on responding on the previously inactive lever during 
reinstatement testing were not found (16D). 
 
 

 

Effects of Intra-VTA CRF-R1 Receptor Antagonists on CRF-Induced 
Reinstatement  
 
 
 Bilateral intra-VTA pretreatment with the CRF-R1 receptor-selective 

antagonist antalarmin or CP-376395 blocked reinstatement by intra-VTA CRF 

(500 ng/side) in LgA rats (Figure 17).  The effect of antalarmin on CRF-induced 
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reinstatement (n=7) is shown in Figure 17A and the effect of CP-376395 on CRF-

induced reinstatement (n=6) is shown in Figure 17B.  In both cases, 2-way 

repeated measures (CRF vs. extinction; antagonist vs. vehicle) ANOVA showed 

significant main effects of CRF delivery (F1,6=12.603, P<0.05 for antalarmin; 

F1,5=6.920, P<0.05 for CP-376395), but not antagonist treatment, and significant 

interactions between CRF-R1 antagonist pretreatment and CRF-induced 

reinstatement (F1,6=5.696, P=0.05 for antalarmin; F1,5=9.120, P<0.05 for CP-

376395).  Intra-VTA CRF produced significant reinstatement following 

pretreatment with vehicle (P<0.01 for each experiment), but not antalarmin or 

CP-376395, and responding following intra-VTA CRF administration was 

significantly lower following antalarmin or CP-376395 pretreatment compared to 

vehicle pretreatment (P<0.01). 

 

Figure 17: Effects of intra-VTA injections of CRF-R1 receptor antagonists on 
reinstatement by intra-VTA CRF delivery and footshock stress in LgA rats.  Data 
represent the effects of bilateral injections of antalarmin (500 ng/side; 17A; n=7) 
or CP-376395 (500 ng/side; 17B; n=6) or vehicle on reinstatement by bilateral 
intra-VTA delivery of CRF (500 ng/side) and the effects of bilateral injections of 
antalarmin (500 ng/side) on reinstatement (responses/2-h session ± S.E.) by 
electric footshock (EFS; 17C; n=6).  In all cases, significant reinstatement was 
observed in rats pretreated with vehicle (*P<0.05 vs. Ext) but not CRF-R1 
receptor antagonists and responding during reinstatement was significantly lower 
following CRF-R1 receptor antagonists compared to vehicle (#P<0.05 vs. Veh). 
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Effects of Intra-VTA CRF-R1 Receptor Antagonism on Stress-Induced 
Reinstatement 

 
 

Antagonism of CRF-R1 receptors in the VTA also blocked footshock-

induced reinstatement in LgA rats (n=6; Figure 17C).  Two-way (footshock vs. 

extinction; antalarmin vs. vehicle) repeated measures ANOVA showed a 

significant overall effect of footshock (F1,5=28.817, P<0.01), but not antalarmin 

pretreatment, and a significant antalarmin x footshock interaction (F1,5=6.294, 

P=0.05).  Footshock stress produced significant reinstatement following 

pretreatment with vehicle (P<0.01), but not antalarmin, and responding following 

EFS was significantly lower following antalarmin pretreatment compared to 

vehicle pretreatment (P<0.01). 
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Effects of Intra-VTA CRF-R1 Receptor Antagonists on Food-Reinforced Lever 
Pressing 

 

In order to confirm that the effects of intra-VTA antalarmin and CP-376395 

on reinstatement were not attributable to non-specific motor impairments, effects 

on sucrose pellet-reinforced lever pressing were examined.  Neither intra-VTA 

antalarmin (185.83 ± 28.86 resp/30-min session vs. 211.80 ± 13.41 resp/session 

for vehicle) nor intra-VTA CP-376395 (192.67 ± 23.73 resp/30-min session vs. 

203.10 ± 13.17 resp/session for vehicle) significantly decreased food-reinforced 

responding at doses that blocked CRF- or footshock-induced reinstatement.  

When interpreting these findings, it is important to note that in contrast to our 

self-administration rats, these rats had no history of cocaine intake and were 

food-restricted, possibly altering their sensitivity to CRF-R1 receptor antagonism. 

Effects of Intra-VTA CRF-R2 Receptor Antagonists on CRF- and Stress-Induced 
Reinstatement 

 

 The effects of bilateral intra-VTA pretreatment with CRF-R2 receptor-

selective antagonists astressin-2B or ASV-30 on reinstatement by intra-VTA CRF 

(500 ng/side) are shown in Figures 18A and 18B.   The effects of the astressin-

2B on CRF-induced reinstatement (n=6) are shown in Figure 18A. 

 

 

 

 



111 
 

Figure 18: Effects of intra-VTA injections of CRF-R2 receptor antagonists on 

reinstatement by intra-VTA CRF delivery and footshock stress in LgA rats.  Data 

represent the effects of bilateral injections of astressin-2B (500 ng and 1 µg/side; 

18A; n=6) or ASV-30 (500 ng/side; 18B; n=6) or vehicle on reinstatement by 

bilateral intra-VTA delivery of CRF (500 ng/side) and the effects of bilateral 

injections of astressin-2B (500 ng/side) on reinstatement (responses/2-h session 

± S.E.) by electric footshock (EFS; 18C; n=8).  In all cases, significant 

reinstatement was observed in rats pretreated with vehicle or CRF-R2 receptor 

antagonists (*P<0.05 vs. Ext), while CRF-R2 receptor antagonist pretreatments 

failed to attenuate reinstatement by intra-VTA CRF or shock. 

 

We initially tested rats for the effect of astressin-2B at the 250 ng/side 

dose.  However, since this dose of astressin-2B did not attenuate reinstatement, 

we also tested rats with a 2-fold higher dose of astressin-2B (500 ng/side; 18A).  

Two-way repeated measures ANOVA examining the effects of both astressin-2B 

doses on reinstatement showed a significant overall effect of CRF-induced 

reinstatement (F1,5=52.077, P=0.001), but not astressin-2B pretreatment, and no 

significant astressin-2B x CRF reinstatement interaction.  Significant intra-VTA 

CRF-induced reinstatement was observed in rats pretreated with vehicle or either 

astressin-2B dose (P<0.01 for each comparison) and reinstatement was not 

significantly different following astressin-2B delivery when compared to vehicle 
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administration.  Likewise, intra-VTA pretreatment with ASV-30 failed to alter 

reinstatement by intra-VTA CRF (n=6; Figure 18B).  Two-way repeated 

measures ANOVA showed a significant overall effect of CRF-induced 

reinstatement (F1,5=8.462, P<0.05), but not ASV-30 pretreatment, and no 

significant ASV-30 x CRF reinstatement interaction.  Significant intra-VTA CRF-

induced reinstatement was observed in rats pretreated with vehicle or ASV-30 

(P<0.01) and reinstatement was not different following ASV-30 delivery when 

compared to vehicle administration. 

Effects of Intra-VTA CRF-R2 Receptor Antagonism on Stress-Induced 
Reinstatement 

 

Intra-VTA pretreatment with the CRF-R2 receptor-selective antagonist 

astressin-2B also failed to alter footshock-induced reinstatement (n=8; Fig 18C).  

As was the case with CRF-induced reinstatement, ANOVA showed a significant 

overall effect of footshock reinstatement (F1,7=20.587, P<0.01), but not astressin-

2B pretreatment, and no significant interaction.  Significant footshock-induced 

reinstatement was observed in rats pretreated with vehicle or astressin-2B 

(P<0.01) and reinstatement was not different following astressin-2B delivery 

when compared to vehicle. 

Reinstatement by Intra-VTA Administration of the CRF Receptor Agonists 

To further examine the role of VTA CRF-R1 and CRF-R2 receptors in 

reinstatement, the ability of bilateral intra-VTA injection of the selective CRF-R1 
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receptor agonist, cortagine (100 ng/side) or the selective CRF-R2 receptor 

agonist, rat Urocortin 2 (rUCN2; 250 ng/side), to reinstate cocaine seeking was 

examined in a separate group of LgA rats (n=5). Reinstatement was observed 

following intra-VTA delivery of cortagine but not rUCN2 (Figure 19).   

Figure 19:  Reinstatement by intra-VTA administration of the CRF-R1 receptor-
selective agonist, cortagine, and the CRF-R2 receptor-selective agonist, rUcn2, 
in LgA rats (n=5).  Cortagine (100 ng/side), but not rUcn2 (250 ng/side) or vehicle 
reinstated extinguished cocaine seeking (*P<0.05 vs. vehicle and the preceding 
extinction session).  Data represent responding on the cocaine lever 
(responses/2-h session ± S.E.) during extinction (ext) or following bilateral intra-
VTA cortagine or vehicle (Veh). 

 

 

 

 

 

 

A 2-way repeated measure ANOVA with reinstatement condition 

(extinction vs. intra-VTA treatment) and drug treatment (cortagine vs. vehicle) as 

factors showed a significant overall main effect of reinstatement (F1,4=17.316, 

P<0.05), but not cortagine treatment, and a significant reinstatement x cortagine 

treatment interaction (F1,4=7.626, P=0.05).  By contrast, an identical analysis 

examining rUCN2-induced reinstatement failed to show effects of rUcn2 
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treatment or reinstatement testing or a rUcn2 x reinstatement testing interaction. 

Intra-VTA cortagine treatment increased responding compared to the preceding 

extinction session (P<0.05) and compared to vehicle-treated rats (P<0.05). 

DISCUSSION  

 We have reported that self-administration under LgA/high-intake 

conditions augments later reinstatement by footshock stress and ventricular 

CRF (Mantsch et al., 2008a) and that footshock-induced reinstatement 

following LgA self-administration is CRF-dependent (Graf et al., 2011).  

These findings are consistent with prior reports that stress-induced 

reinstatement of drug seeking following self-administration of cocaine (Erb et 

al., 1998), heroin (Shaham et al., 1997), alcohol (Le et al., 2000) or nicotine 

(Bruijnzeel et al., 2009) involves CRF, as does stress-induced reinstatement 

of palatable food-seeking behavior (Ghitza et al., 2006).  

Our current findings demonstrate that heightened CRF responsiveness in 

the VTA likely contributes to intake dependent increases in vulnerability to stress-

induced relapse that emerge with repeated drug use.  Previous studies have 

reported that VTA CRF levels are increased during stress-induced reinstatement 

and that stress-induced cocaine seeking involves CRF actions in the VTA (Wang 

et al., 2005, Wang et al., 2007). Here we report that, similar to stress-induced 

reinstatement, reinstatement by intra-VTA CRF was augmented and, in fact was 

only observed, in rats with a history of self-administration under long-

access/high-intake conditions.  Further, we find that cocaine seeking induced by 



115 
 

CRF delivery into the VTA or by footshock is mediated by VTA CRF-R1 and not 

CRF-R2 receptors, a finding that contrasts with previous reports implicating CRF-

R2 receptors in the VTA in stress-induced reinstatement (Wang et al., 2005, 

Wang et al., 2007). 

A circuit involving the regulation of VTA dopaminergic neurons that project 

to the dorsal medial prefrontal cortex has been implicated in stress-induced 

relapse (McFarland et al., 2004).  According to this model, inputs from several 

regions, including the bed nucleus of the stria terminalis (BNST), the central 

nucleus of the amygdala (CeA), and the nucleus accumbens (NA) shell positively 

regulate mesocortical dopamine neurons in the VTA, thereby promoting cocaine 

seeking through activation of corticostriatal glutamatergic inputs into the NA core.   

It has been reported that the VTA receives CRF-containing afferents from two of 

these regions, the CeA and BNST (Rodaros et al., 2007) and dual 

immunolabeling studies indicate that these CRF-containing projections are 

primarily glutamatergic (Tagliaferro and Morales, 2008).  CRF containing 

afferents form synapses on dopaminergic and GABAergic cells in the VTA 

(Tagliaferro and Morales, 2008) and the activity of both cell types is altered upon 

local CRF application (Korotkova et al., 2006).  In the case of dopaminergic cells, 

CRF-positive synapses on are primarily asymmetric (Tagliaferro and Morales, 

2008), suggesting that CRF-releasing glutamatergic projections into the VTA, 

likely originating in the BNST and CeA, positively regulate the activity of 

dopaminergic cells.  Accordingly, delivery of CRF into the VTA stimulates local 

and terminal field dopamine release (Kalivas et al., 1987, Wang et al., 2005).  
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Although CRF-R1 receptors are abundant in the VTA, their expression on 

dopaminergic cells has been reported to be limited (Korotkova et al., 2006). 

However, preliminary findings from the Seasholtz laboratory reports more CRF-

R1 expression in dopamine than GABA neurons. This suggests that actions of 

CRF on dopaminergic cells may contribute to its effects on cocaine seeking.  

GABAergic and dopaminergic cells in the VTA likely express CRF-R1 receptors 

(Korotkova et al., 2006), however, the picture is less clear for CRF-R2 receptors.  

Despite pharmacological evidence for CRF-R2 receptor expression in the VTA 

(Wang et al., 2007), examination of the VTA using in situ hybridization suggests 

that there is little or no cell body expression (Van Pett et al., 2000).  However, 

CRF-R2 receptor expression has been reported as determined by reverse 

transcription-PCR (Korotkova et al., 2006).  The purported ability of CRF-R2 

receptors to locally regulate glutamate release suggests a potential presynaptic 

localization of CRF-R2 receptors on glutamate terminals (Wang et al., 2007).  A 

clear understanding of the localization of CRF-R2 receptors in the VTA awaits 

the availability of better antibodies for immunohistochemical characterization. 

The precise mechanism of CRF regulation of dopaminergic cells in the VTA is 

also unclear and has been reported to involve both CRF-R1 receptor-mediated 

activation of protein kinase C (Wanat et al., 2008) and possibly protein kinase A 

(PKA) (Riegel and Williams, 2008) signaling and/or CRF-R2 facilitation of NMDA 

receptor function (Ungless et al., 2003).  The CRF-R2 receptor effects on 

signaling also appear to require CRF interaction with CRF binding protein 
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(Ungless et al., 2003, Wang et al., 2007) and may also involve presynaptic 

enhancement of glutamate release (Wang et al., 2005, Wang et al., 2007). 

While our data implicate CRF actions in the VTA in stress-induced 

reinstatement, others have reported that CRF can act elsewhere within this 

circuit, including at sites upstream from the VTA, to regulate cocaine seeking, 

most notably in the BNST, where CRF receptor antagonism blocks stress-

induced cocaine seeking (Erb and Stewart, 1999).  As the CRF actions in the 

BNST involve projections from the CeA (Erb et al., 2001) and both regions send 

CRF containing efferents to the VTA (Rodaros et al., 2007), it is likely that CRF 

exerts actions at multiple sites in the circuit that contribute to stress-induced 

cocaine seeking. 

Similar to what we previously reported with stress-induced reinstatement 

(Mantsch et al., 2008a), reinstatement by intra-VTA CRF appeared to represent 

an emergent phenomenon in that it was only observed following LgA self-

administration.  This finding is consistent with a report by Wang et al. (2005), who 

found that while footshock-induced increases in VTA CRF were observed in the 

VTA, the ability of CRF to regulate dopamine and glutamate levels in the VTA 

required a history of cocaine self-administration.  The apparent augmentation of 

CRF responsiveness is also consistent with reports that CRF responsiveness in 

a number of brain regions is heightened following repeated cocaine 

administration (Erb et al., 2005, Liu et al., 2005, Pollandt et al., 2006, Orozco-

Cabal et al., 2008, Francesconi et al., 2009, Guan et al., 2009). Although the 

effects of LgA cocaine self-administration on CRF-R1 receptor-mediated actions 
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in the VTA have not been examined, some insight into potential mechanisms 

underlying heightened CRF regulation of cocaine seeking can be provided by 

studies involving repeated experimenter-delivered cocaine.  In the VTA, CRF-R1 

receptor activation has been reported to produce both excitatory effects on 

dopamine neurons via potentiation of NMDA and AMPA receptor-mediated 

neurotransmission (Hahn et al., 2009), and inhibitory effects via enhancement D2 

dopamine- and GABAB-receptor mediated regulation of G-protein activated 

inwardly rectifying potassium channels (Beckstead et al., 2009).  With repeated 

cocaine exposure, the excitatory effects of CRF-R1 activation are augmented 

(Hahn et al., 2009), while the inhibitory effects diminish (Beckstead et al., 2009), 

likely resulting in a net shift towards positive CRF-R1 receptor regulation of 

dopaminergic cells in the VTA.  Further, CRF binding in the VTA, as measured 

using autoradiography, is increased with repeated cocaine delivery (Goeders et 

al., 1990). 

Our findings that VTA CRF-R1 receptors mediate CRF- and stress-

induced cocaine seeking are inconsistent with previous reports suggesting 

involvement of CRF-R2 receptors in the VTA, apparently through a mechanism 

that also involves CRF binding protein (Wang et al., 2005, Wang et al., 2007).  

However, others have reported that stress-induced reinstatement is inhibited by 

systemic or ventricular delivery CRF-R1, but not CRF-R2, receptor antagonists 

(Shaham et al., 1998, Lu et al., 2001) and that CRF-R1 but not -R2 receptor 

antagonism can reduce evoked increases in VTA and NAc dopamine (Lu et al., 

2003a, Lodge and Grace, 2005).  The reason for the discrepancy between our 
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findings and those of Wang et al. is unclear but may involve different modes of 

CRF and receptor antagonist delivery (microinjection vs. reverse dialysis), 

different CRF receptor antagonist and agonist doses, different rat strains, and 

differential experimental histories.  Most importantly, it may be that the regulation 

of cocaine seeking by CRF-R1 receptors in VTA requires a prior history of very 

high levels of cocaine intake (daily cocaine intake reported by Wang et al. was 

approximately 33 mg/kg compared to more than 70 mg/kg in our LgA rats), 

consistent with reports that the selective CRF-R1 antagonists only reduce 

cocaine self-administration following escalation in LgA rats (Specio et al., 2008). 

The ability of stressful life events to precipitate drug use through actions 

involving CRF-R1 receptors in the VTA may represent an emergent 

consequence of excessive cocaine use.  Identification of the precise mechanisms 

through which VTA CRF-R1 receptor activation produces cocaine seeking and 

the neuroadaptations that contribute to heightened susceptibility to CRF-

dependent reinstatement should provide important insight into how stressor 

responsiveness changes in cocaine addicts in a way that promotes further use. 
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CHAPTER 3 

 
EFFECTS OF COCAINE SELF-ADMINISTRATION ON BASAL AND STRESS-
INDUCED ACTIVATION OF DOPAMINE CELLS IN THE VTA IN RATS: 
RELATIONSHIP TO STRESS-INDUCED COCAINE SEEKING 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 
 

ABSTRACT 

The ventral tegmental area (VTA) is a key site for stress-induced regulation of 

illicit drug use.  Here we investigate the relationship between stress-induced 

cocaine seeking, measured using the self-administration (SA)/reinstatement 

approach in rats, and activation of VTA dopamine (DA) cells.  Previous work has 

demonstrated that footshock-induced reinstatement is more pronounced and DA 

alterations are more evident in rats that have a history of cocaine SA under daily 

long-access (LgA) conditions.  We examined basal and stress-induced Fos 

expression in DA (tyrosine hydroxylase/TH-positive) cells in the VTA using dual 

immunohistochemistry following testing for footshock-induced reinstatement or 

under basal conditions in rats with a history of LgA (14 x 6 hrs/day), short-access 

(ShA; 14 x 2 hrs/day) and saline (Sal) SA.  Despite overall differences in TH-

positive cell Fos expression across groups (ShA, but not LgA rats had more Fos-

expressing TH-positive cells vs. saline controls), significant stress-induced 

increases in DA cellular Fos reactivity were not observed in any SA access 

group.  However, when examined across groups, the percentage of TH-positive 

cells expressing Fos following stress-induced reinstatement was positively 

correlated with reinstatement magnitude.  Compared to non-stress and saline 

controls and non-reinstating rats, the number and percentage of VTA Fos-

expressing TH-positive cells were significantly increased in rats that displayed 

stress-induced reinstatement.  These data suggest that stress-induced cocaine 

use is associated with the activation of DA cells in the VTA and likely with 

elevated DA levels in target regions. 
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INTRODUCTION 

 It is well established that stress contributes to relapse to drug use in 

cocaine users (Marlatt, 1980). Reports that stressful life events promote relapse 

are paralleled by findings that, in a laboratory setting, audiotaped scripts 

describing past stressful events can elicit craving in cocaine-dependent 

individuals (Sinha et al., 1999). Notably, prior history of higher-frequency cocaine 

use is associated with augmented stress-induced craving (Fox et al., 2005), with 

measures of stress-induced craving positively correlated with higher relapse 

rates (Sinha et al., 2006). Thus, the ability of stress to regulate cocaine use may 

intensify with excessive use as a result of intake-dependent drug-induced 

neuroadaptations. 

In rats, stress-induced relapse can be examined by determining the 

ability of electric footshock to reinstate extinguished cocaine seeking following 

intravenous self-administration (SA) (Shaham et al., 2003).  As is the case with 

stress-induced craving in humans, the ability of footshock to reinstate cocaine 

seeking is dependent on use history.  We have reported that reliable footshock-

induced reinstatement is observed in rats with a history of daily long-access 

(LgA) SA (14 x 6 hrs daily), a condition that results in high levels of drug intake 

and escalating patterns of use, but not in rats that undergo daily testing under 

short-access (ShA) SA conditions (14 x 2 hrs daily) (Mantsch et al., 2008a).  

Understanding the mechanisms that underlie stress-induced reinstatement and 
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its intake-dependent augmentation in rats could guide the development of 

treatment aimed at relapse prevention. 

VTA dopamine (DA) cells have been implicated in stress-induced cocaine 

seeking.   Extracellular DA in the VTA, likely reflecting somatodendritic release, is 

elevated during footshock-induced reinstatement following SA in rats (Wang et 

al., 2005), while transient inhibition of the VTA prevents stress-induced cocaine 

seeking (McFarland et al., 2004).    In particular, DA projections to the medial 

prefrontal cortex (mPFC) appear to mediate stress-induced cocaine seeking, as 

administration of DA D1 receptor antagonists into the mPFC prevent 

reinstatement (Capriles et al., 2003, Sanchez et al., 2003, McFarland et al., 

2004).   Although these findings suggest that stressors activate DA cells in the 

VTA to promote drug use, studies examining the effects of stressors on VTA DA 

neuronal activity and mesocorticolimbic DA neurotransmission have produced 

mixed results, with reports of both increases and decreases in cellular activity 

(Ungless et al., 2004, Brischoux et al., 2009) and terminal field DA release 

(Deutch et al., 1985, Abercrombie et al., 1989, Kalivas and Duffy, 1995, Tidey 

and Miczek, 1996, Di Chiara et al., 1999, Roitman et al., 2008, Oleson et al., 

2012).   

One approach for studying neurocircuitry that contributes to cocaine 

seeking involves examination of the expression of the immediate early gene c-

Fos.  For example, cue-induced reinstatement of cocaine seeking is associated 

with increased Fos immunoreactivity in the VTA (Kufahl et al., 2009) and in 

regions from which it receives projections (Briand et al., 2010, Mahler and Aston-
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Jones, 2012).  Stressors also increase VTA Fos expression (Deutch et al., 1991), 

and augment the subsequent induction of VTA Fos expression by other stimuli, 

including abused drugs (Nikulina et al., 2004, Miczek et al., 2011).  However, the 

exact relationship between stress-evoked increases in Fos expression in VTA DA 

cells and stress-induced cocaine seeking is unclear. 

We have found that augmented stress-induced reinstatement in rats with a 

history of LgA cocaine SA involves increased VTA responsiveness to 

corticotropin releasing factor (CRF) (Blacktop et al., 2011), suggesting that 

heightened stressor-induced reactivity of the mesocorticolimbic DA system may 

determine relapse susceptibility.   In this study we investigate this possibility by 

examining stress-induced activation of VTA DA cells, defined by the 

number/percentage of Fos expressing tyrosine hydroxylase- (TH) positive cells, 

in rats with a history of ShA or LgA SA or control rats with a history of access to 

saline for SA.  We hypothesize that footshock-induced increases in the number 

of Fos-expressing TH-positive cells would be more pronounced after LgA SA and 

therefore would correspond to the magnitude of stress-induced reinstatement.   

MATERIALS AND METHODS 

Subjects 

 Adult male Sprague–Dawley rats (Harlan Laboratories, St. Louis) were 

housed individually under a 12-h/12-h reversed light/dark cycle (lights on at 7:00 

PM) in a temperature and humidity controlled AAALAC-accredited animal facility. 
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All procedures were carried out in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals. 

Catheter Implantation and Self-Administration 

 Rats were implanted with jugular catheters under ketamine HCl (100 

mg/kg, ip) and xylazine (2 mg/kg, ip) anesthesia (Mantsch et al., 2008a, Blacktop 

et al., 2011, Graf et al., 2011). After recovery, rats were assigned to a cocaine 

SA or saline control (Sal) group.  Rats in the SA groups were trained to self-

administer cocaine (1.0 mg/kg/inf, iv; NIDA) by pressing a lever under a FR1 

schedule during daily 2-h sessions, within which the active lever was extended 

into the chamber and the corresponding stimulus light was illuminated.  Rats in 

the Sal group were tested under identical conditions except that saline was 

available.  Lever pressing resulted in an iv infusion of drug or saline solution (200 

μl over 5 s) followed by a 25-s time-out period during which the stimulus light was 

extinguished but the lever remained extended. Response requirements were 

increased until rats displayed stable responding (within 10% of the 3-session 

mean) under an FR4 schedule was observed, at which time rats were assigned 

to groups according to their SA conditions for the next 14 days: ShA rats (n=20) 

continued to have access to cocaine for two hours daily; LgA rats (n=20) were 

provided access to the same cocaine dose for six hours daily.  Sal rats (n=20) 

continued to have access to saline for SA.  
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Stress-Induced Reinstatement 

 Following SA testing, ShA and LgA rats underwent extinction training for 

ten consecutive 2-h sessions during which the cocaine solution was replaced by 

saline. Sal rats continued to have saline access over this 10-day period.  After 

extinction, ShA, LgA and Sal rats were further divided into subgroups according 

to their test conditions prior to sacrifice.  Half of the rats in each group 

(n=10/subgroup) were placed in the chambers and underwent testing for 

footshock-induced reinstatement.  Over a 15-min period prior to the 

reinstatement session, intermittent shocks (0.5 mA, 0.5” duration, average every 

40 sec; range 10-70 sec) were delivered through the grid floors of the chambers.  

During the shock period, the houselight was illuminated, the levers were 

retracted, and stimulus lights were extinguished.  After the shock period, the 

response levers were extended into the chamber, the houselight was 

extinguished and the stimulus light above the previously active lever was 

illuminated.  Reinstatement was defined as responding on the lever previously 

reinforced by cocaine during the 2-h session, which was otherwise identical to 

extinction sessions.  We have reported that these shock parameters produce 

robust reinstatement after LgA, but not ShA, SA and do not increase responding 

in Sal rats (Mantsch et al., 2008a, Blacktop et al., 2011, Graf et al., 2011)).  Non-

shocked control rats (n=10/ subgroup) were placed into the chambers for fifteen 

minutes with no shock exposure prior to undergoing an additional extinction 

session.   
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Tissue Processing 

 Immediately following the 2-h reinstatement/control session, rats were 

perfused transcardially with 300 ml of 0.5 M potassium phosphate buffered saline 

(KPBS) followed immediately by 300 ml of 4% paraformaldehyde in potassium 

phosphate buffer pH 6.8. Brains were removed and post-fixed in 4% 

paraformaldehyde overnight at 4°C, then stored in 30% sucrose until they sank, 

which occurred within 48 hours. Brains were then cut into a series of 40-µm 

sections with a sliding microtome and placed immediately into cryoprotectant at -

20°C to prevent freezing during storage.  

Immunohistochemistry 

 Fos is an indicator of neuronal activation (Sagar et al., 1988) and TH is a 

marker for DA neurons (Hokfelt, 1984). Therefore, co-localization of nuclear Fos 

and cytoplasmic TH is indicative of a recently activated DA neuron. In order to 

detect co-labeling, contrasting compartmentalized labeling of Fos and TH is 

necessary.  The immunohistochemical approach described was optimized for this 

purpose in preliminary experiments using acute ip treatment of 5 mg/kg D-

amphetamine, a treatment shown to significantly induce Fos in VTA neurons 

(Rotllant et al., 2010). 

Sequential identification of co-labeled Fos and TH positive neurons via 

color immunoperoxidase staining was conducted using a protocol modified from 

Hoffman et al., (2008). Four consecutive sections containing the VTA (~ -5.52 to -
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5.76 mm A/P from bregma) were collected from each rat in each treatment 

condition. Free floating sections were washed in 0.5 M KPBS and incubated in 

1% hydrogen peroxide in KPBS for 15 min to block endogenous peroxidase 

activity. Sections were washed again and incubated in primary polyclonal rabbit 

anti-Fos antibody (sc-52, Santa Cruz Biotechnology; 1:10,000) in KPBS 

containing 0.4% triton X-100 first for one hr at room temperature then 24 hr at 

4°C. The next day sections were washed again then incubated for one hour in 

biotinylated goat anti-rabbit IgG secondary antibody (Vector Laboratories; 1:600) 

in KPBS containing 0.4% triton X-100. Sections were washed once again then 

incubated for one hr in A/B solution (Vectastain Elite ABC kit; Vector 

Laboratories). After another series of washes, sections were incubated in 0.175 

M sodium acetate (pH 7.0). Activity was visualized with nickel diaminobenzidine 

(DAB substrate kit; Vector Laboratories) and the reaction was terminated after 20 

min by washing first in 0.175 M sodium acetate then KPBS (Hoffman et al., 

2008). 

After Fos processing, sections were treated with blocking solutions to 

block nonspecific avidin and biotin binding sites (Avidin/Biotin Blocking Kit; 

Vector Laboratories). Sections were incubated in avidin blocking solution for 15 

min, washed, incubated in biotin blocking solution for 15 min, and then washed. 

This step is critical for specific biotinylated goat anti-mouse antibody binding to 

the mouse anti-TH primary antibody. Following the avidin biotin blocking step, 

sections were incubated in primary monoclonal mouse anti-TH antibody (MAB-

318, Chemicon; 1:300,000) in KPBS containing 0.4% triton X-100 first for 1 hr at 
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room temperature, then 24 hr at 4°C. Sections were washed then incubated for 

one hour in biotinylated goat anti-mouse IgG secondary antibody (Vector 

Laboratories; 1:600) in KPBS containing 0.4% triton X-100. Sections were 

washed again then incubated in for one hour in A/B solution (Vectastain Elite 

ABC kit; Vector Laboratories). After another series of washes, sections were 

incubated in 0.1 M Tris buffer (pH 7.5). Activity was visualized with DAB (DAB 

substrate kit; Vector Laboratories) as described for Fos. Following termination of 

the last reaction after 4 mins with 0.1 M Tris buffer (PH 7.5), sections were 

mounted onto superfrost plus glass slides (VWR International) and allowed to air 

dry overnight, dehydrated, xylene cleared and coverslipped. 

Counting of labeled cells 

 Bilateral photomicrographs of four consecutive 40-µm sections VTA 

sections (~ -5.52 to -5.76 A/P coordinates; (Paxinos, 2004)) containing the 

parabrachial (PBP), parainterfascicular (PIF), and paranigral nuclei (PN) of the 

VTA were acquired at 20X using a Zeiss Axioscop microscope (Axioscop-2; 

Zeiss, Thornwood, NY) and Axiovision software (Zeiss) by an experimenter blind 

to treatment condition.  Selection of this area was based on earlier findings that 

CRF-R1 receptor antagonist administration into this region prevents footshock-

induced reinstatement while CRF delivery into this region reinstates (Paxinos, 

2004, Blacktop et al., 2011). The DA neurons in this VTA subregion are most 

responsive (Fos) to rewarding stimuli and have the highest percent of DA 

neurons (Zhao-Shea et al., 2011). 
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Fos immunoreactive (ir) neurons were identified by a dark purple/black 

oval-shaped immunoprecipitate in the nucleus. TH-ir neurons were identified by 

light brown cytoplasmic staining. This allowed for the identification of TH-ir cells 

with or without Fos-ir. TH-ir/Fos-ir neurons were identified as cells with dark 

purple/black nuclear Ni-DAB staining surrounded by light brown cytoplasmic DAB 

staining. The numbers of TH-ir, Fos-ir, and TH/Fos-ir neurons in the VTA were 

counted in each series of sections by an experimenter blind to the treatment 

condition.  In addition to the number, the percentage of TH-ir cells that co-

expressed Fos was calculated.  

Data Analysis 

 In order to ensure similar withdrawal periods across conditions, all rats 

were perfused no more than two weeks after the last SA session.  As a result, 

cocaine seeking was not fully extinguished in some rats at the time of testing.   

SA rats displaying more than 25 responses during the final extinction session 

prior to sacrifice (i.e., non-extinguished rats) were removed from the analyses.  A 

total of ten rats (five ShA and five LgA) were excluded based on this criterion (60-

10 = n of 50).  Statistical analyses were conducted using Predictive Analytics 

SoftWare statistics software (SPSS).  Differences in SA among Sal, ShA and 

LgA rats were assessed using 2-way SA condition x test day (repeated measure) 

ANOVA.  Reinstatement in each group was defined as a significant increase in 

responding relative to the prior extinction session using paired Student’s t-tests.  

Differences in the numbers of Fos-ir, TH-ir, and TH-ir/Fos-ir cells and percentage 
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of TH-ir cells expressing Fos across SA groups and in response to footshock 

were determined using 2-way SA condition x stress condition ANOVA followed 

by post-hoc testing using Bonferroni-corrected t-tests.  The relationship between 

reinstatement and Fos reactivity was assessed using linear regression analysis.  

Since, in contrast to earlier finding (Mantsch et al 2008), about 30% of ShA rats 

showed footshock-induced reinstatement while about 40% of LgA rats did not, 

we examined differences in Fos reactivity between rats that reinstated, rats that 

did not reinstate, and rats not exposed to shock, as well as Sal controls, using 

one-way ANOVA followed by post-hoc testing using Bonferroni-corrected t-tests.  

For this analysis, reinstatement was defined as an increase in responding by at 

least ten responses relative to the prior extinction session.  For all analyses, 

significance was defined as P<0.05. 

RESULTS 

Cocaine SA and Extinction 

 SA on days one and 14 of testing in rats provided 14 days of ShA (2 hrs) 

or LgA (6 hrs) to cocaine or Sal access is shown in Figure 20A.   To permit 

comparison across groups, hourly SA was assessed and is shown in Figure 20B.  

Two-way SA group x day ANOVA comparing day one and 14 infusions in ShA, 

LgA and Sal rats, showed a significant SA group x test day interaction 

(F2,47=3.67; P<0.05).  Post-hoc testing showed that the number of hourly 

infusions was significantly increased in LgA, but not ShA or Sal, rats on day 14 

vs. day one (P<0.05) and that on day 14, but not day one, SA was greater in LgA 
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vs. ShA rats (P<0.05).  Thus, as has been reported (Ahmed and Koob, 1998, 

Mantsch et al., 2004), escalated SA was observed in LgA, but not ShA rats.  ShA 

and LgA rats did not significantly differ in extinction responding (Figure 20C). 

 

Figure 20: Self-administration and extinction responding in ShA, LgA, and Sal 
control rats.  Data represent A) the mean total (infusions/session) and B) hourly 
(infusions/hr) self-administration (SA) on days 1 and 14 of daily SA and C) 
extinction (responses/2 hrs) of cocaine seeking in rats tested under short-access 
(ShA; 14 x 2 hrs/day) or long-access (LgA; 14 x 6 hrs/day) conditions or under 
saline control (Sal) conditions.  Escalation of SA was determined based on 
differences in hourly SA.  Two-way ANOVA followed by post-hoc testing showed 
that escalation was observed in LgA (P<0.05 day 14 vs. day) but not ShA and Sal 
rats and that SA on day 14 was increased in LgA rats compared to ShA rats 
(P<0.05).  Differences between ShA and LgA rats in extinction responding were 
not observed. 

 

Footshock-Induced Reinstatement of Cocaine Seeking 

 Footshock-induced reinstatement in ShA, LgA and Sal rats is shown in 

Figure 21.   Responding on the active lever on the final day of extinction and 

following footshock is shown in Fig. 21A.  Significant reinstatement was observed 

in LgA (increased responding vs. extinction; paired 2-tailed t8=3.126; P<0.05) but 

not ShA rats.  However, in contrast to previous findings that footshock-induced 
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reinstatement was observed in virtually all LgA rats and no ShA rats (Mantsch et 

al., 2008a), in this study, reinstatement was observed in 30% of ShA rats and 

only 60% of LgA animals.  The mean change in lever pressing in each group 

relative to the previous extinction session is shown in Figure 21B.  One-way 

ANOVA failed to show an overall effect of SA group on footshock-induced 

reinstatement. 

 

Figure 21: Footshock-induced reinstatement of cocaine seeking in ShA and LgA 
rats.    Data represent A) responding on the active lever on the final day of 
extinction (Fig. 21A; white bar) and following footshock, prior to Fos 
measurement, in ShA (grey bar) and LgA (black bar) rats and B) Footshock-
induced increases in active lever presses in ShA and LgA animals as compared 
to saline controls.  Although significant reinstatement was observed in LgA, but 
not ShA, rats (*P<0.05 vs. extinction), significant differences in the magnitude of 
reinstatement were not observed across SA groups and individual variability in 
reinstatement was observed in each group. 
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Effects of SA Condition on Fos Expression in VTA DA Cells 

 Table 1 shows the numbers of TH- and Fos-ir cells in the VTA following 

footshock or under control conditions in ShA, LgA and Sal rats.  Two-way 

ANOVA failed to show significant main effects of SA condition or footshock on 

the numbers of TH- or Fos-ir VTA cells or significant group x footshock 

interactions.  However, although no differences were observed, there was much 

within-group variability.  For this reason, when examining Fos reactivity, both the 

total number of Fos-/TH-ir and percentage of TH-ir cells showing Fos-ir were 

assessed. 

 

Table 1: Total numbers of TH-positive (TH+) and Fos-positive (Fos+) cells in the 
VTA (±S.E.) following footshock (Shock) or under control (No Shock) conditions 
in rats with a history of Saline, ShA or LgA SA. 

 

 

 
The number and percentage of TH-ir cells co-expressing Fos under 

footshock reinstatement or control conditions following Sal, ShA or LgA SA are 

shown in Figures 22A (number of cells) and 22C (percentage of cells).  Two-way 

ANOVA revealed a significant overall effect of SA condition on both the number 

(F
2,43

=3.612;P<0.05) and percentage (F
2,43

=4.591;P<0.05) of TH-ir cells that 

SA CONDITION:            Saline       ShA          LgA 
 Ctrl EFS Ctrl EFS Ctrl EFS 
TOTAL TH+  
VTA CELLS 

367.33 
±64.74 

280.90 
±61.42 

316.00 
±79.29 

465.44 
±64.74 

234.00 
±79.29 

255.89 
±64.74 

 
TOTAL FOS+  

VTA CELLS 

310.78 
±130.59 

354.3 
±104.45 

504.00 
±159.94 

573.56 
±130.59 

282.00 
±159.94 

451.78 
±130.59 
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were also Fos-ir. However significant overall effects of footshock or SA condition 

x footshock interactions were not observed.  Figures 22B (number of Fos-ir DA 

cells) and 22D (percentage of Fos-ir DA cells) represent the data collapsed 

across shock conditions.  Post-hoc analyses showed that, overall, both the 

number and percentage of Fos-ir VTA DA cells were increased in ShA, but not 

LgA rats, compared to Sal controls (P<0.05), suggesting that 1) DA cells are 

activated in rats with a history of ShA SA, regardless of whether or not rats are 

exposed to shock and 2) the activation of DA cells is blunted or absent in LgA 

rats. 

 

Figure 22:  Fos-expressing DA cells in the VTA following footshock in ShA, LgA, 
and Sal rats.  Data represent the number (A and B) and percentage (C and D) of 
TH-positive cells co-expressing Fos in the VTA of Sal, ShA, and LgA rats.  
Panels A and C depict Fos expression in DA cells in rats tested under extinction 
conditions (Ext) and in rats that underwent testing for footshock-induced 
reinstatement of cocaine seeking (Shock).  Two-way ANOVA showed significant 
main effects of SA condition (P<0.05) but not footshock on both the numbers and 
percentages of Fos-expressing DA cells and failed to show a significant 
interaction between SA condition and footshock.  Overall differences across 
treatment conditions are shown in panels B and D.  Post-hoc testing showed that 
overall increases in both the number (B) and percentage (D) of Fos-expressing 
DA cells were increased in ShA, but not LgA, rats compared to Sal controls 
(P<0.05). 
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Representative photomicrographs showing immunoperoxidase staining for 

nuclear Fos and cytoplasmic TH in Sal (23A/D.), ShA (23B/E), and LgA (23C/F) 

rats are presented in Figure 23. Figures 23D, 23E, and 23F are higher 

magnification photomicrographs of the area within the black perimeter in 23A, 

23B, and 23C, respectively. Figure 23G illustrates the area of interest in the VTA 

used for analysis, which includes the PBP, PIF, and PN of the VTA. 
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Figure 23: Photomicrographs showing Fos-, TH-, and combined Fos-/TH- 
immunoreactive cells in the VTA from representative sections from ShA, LgA, 
and Sal rats.  The photomicrographs display the midbrain magnified at 20X from 
sections labeled using anti-Fos and anti-TH antibodies from a Sal control rat (A) 
or rats that underwent ShA (B) or LgA (C) SA testing. D, E, and F are higher 
magnification photomicrographs of the area within the black perimeter in A, B, 
and C, respectively. TH-positive only cells are indicated by white arrows, and TH-
positive cells with Fos-positive nuclei are indicated by black arrows.   Panel G 
shows the target area (box) including the parabrachial (PBP), parainterfascicular 
(PIF), and paranigral nuclei (PN) of the VTA at -5.76 mm posterior to bregma 
using the RMC (magnocellular part of the red nucleus) as an anatomic reference 
(Paxinos and Watson, 2004).  The reticule in panel A represents 100 µm.  
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Relationship between Fos Expression in VTA DA Cells and Shock-Induced 
Reinstatement 
 
 

Since there was variability in footshock-induced reinstatement in both ShA 

and LgA rats, we conducted linear regression to examine the relationship 

between the magnitude of cocaine seeking following footshock and the number 

of VTA Fos-ir DA cells (Figure 24).  A significant positive correlation was 

observed between the number of TH-ir/c-fos-ir cells and EFS-induced 

reinstatement defined as either the total number of responses during testing 

(R2=0.279; F1,19= 6.976; P<0.05; Figure 24) or the increase relative to the prior 

extinction session (R2=0.245; F1,19= 5.854; P<0.05; not shown).  The relationship 

between VTA DA cell Fos expression and footshock-induced cocaine seeking 

was stronger in ShA rats (R2=0.449; P<0.05), but was also present, although not 

statistically significant, in LgA rats (R2=0.314; P=0.09).  By contrast, no significant 

correlations between TH-ir/Fos-ir cell numbers in the VTA and cocaine seeking in 

the absence of footshock were observed.  

 
 
Figure 24: Scatter plot with regression line depicting the relationship between 
stress-induced cocaine seeking and the activation of DA cells in the VTA.   When 
rats with a history of ShA and LgA SA were combined, a significant positive 
correlation was observed between the total number of Fos-labeled TH-positive 
cells in the VTA and active lever responding during testing for footshock-induced 
reinstatement (R2=0.279; P<0.05).  Closed circles represent LgA rats.  Open 
circle represent ShA rats. 
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To further the examine the relationship between the activation of DA cells 

in the VTA and stress-induced cocaine seeking, we compared Fos-ir in TH-

positive cells among rats that 1) demonstrated footshock-induced reinstatement 

(increase ≥ 10 responses vs. extinction), 2) failed to demonstrate reinstatement, 

and 3) were not exposed to footshock - in each case regardless of if they had 

undergone ShA or LgA SA.  Immunoreactivity in these rats was also compared to 

shocked and non-shocked Sal rats.  Differences in footshock-induced cocaine 

seeking between “reinstated” and “non-reinstated” rats are shown in Figure 25.   

Due to an imbalanced design, differences in the numbers and percentages of 

Fos-ir and/or TH-ir cells in the VTA were analyzed using one-way ANOVA 

comparing the following groups: 1) rats with a history of SA (ShA or LgA) but not 

exposed to footshock; 2) rats with a history of SA (ShA or LgA) that displayed 

footshock-induced reinstatement; 3) rats with a history of SA (ShA or LgA) that 
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did not display footshock-induced reinstatement; 4) Sal control rats the received 

footshock; and 5) Sal control rats that did not receive footshock. 

 

Figure 25:  Footshock-induced cocaine seeking in rats classified according to 
footshock-induced reinstatement.   Rats were classified as reinstated and non-
reinstated according to whether or not they displayed footshock-induced 
reinstatement (see Materials and Methods).  Active lever presses (± S.E.) under 
extinction conditions and during testing for footshock-induced reinstatement in 
responders and non-responders is shown in panel A (*P<0.001 vs. extinction).  
The magnitude of reinstatement defined as the mean increase in responding 
relative to the prior reinstatement session (± S.E.) is shown in panel B. 
 
 
 
  

 

 

 

 

 

 

 

 

 Table 2 shows the numbers of TH-ir and Fos-ir cells in the VTA in each of 

the groups.  One-way ANOVA failed to show differences across conditions in TH-

positive or Fos-positive cell numbers.  However, since there was much within-

group variability, when examining Fos reactivity, both the total number of Fos-

/TH-ir and percentage of TH-ir cells showing Fos-ir were assessed. 
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Table 2: Total numbers of TH-positive (TH+) and Fos-positive (Fos+) cells in the 
VTA (±S.E.) following footshock (Shock) in saline control rats (Sal SA), cocaine 
self-administering rats that displayed footshock-induced reinstatement (Coc 
SA/Resp), and self-administering rats that did not reinstate (Coc SA/Non-Resp) 
and in cocaine self-administering rats (Coc SA) and saline controls (Sal SA) that 
did not receive footshock (No Shock). 
 
SA CONDITION:     SHOCK               NO SHOCK 

 Sal SA Coc SA/ 
Resp 

Coc SA/ 
Non-Resp 

Sal SA Coc SA 

TOTAL 
TH+ 
VTA 

CELLS 

280.90 
±43.63 

476.56 
±97.74 

307.90 
±62.14 

367.33 
±63.44 

275.00 
±59.03 

TOTAL 
FOS+ 

VTA 
CELLS 

354.3 
±110.32 

620.56 
±138.06 

414.70 
±140.49 

310.78 
±87.26 

393.00 
±117.47 

 

 

The number and percentage of VTA DA cells expressing Fos under each 

condition are depicted in Figure 26.  One-way ANOVA showed significant group 

effects on both the number of Fos-expressing TH-positive cells (F2,28=5.346; 

P<0.05; 26A) and the percentage of TH-positive cells expressing Fos 

(F2,28=6.690; P<0.01; 26B).  Post-hoc testing showed that both the number and 

percentage of VTA cells that displayed dual TH-/Fos-ir were significantly 

increased in rats in which reinstatement was observed, but not in non-reinstating 

rats or rats not exposed to footshock, compared to Sal controls (P<0.05).  Thus, 

DA cells in the VTA were only activated when footshock produced cocaine 

seeking. 
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Figure 26:  Fos-expressing DA cells in the VTA following footshock in rats 
classified based on the expression of footshock-induced cocaine seeking.  Data 
represent the number (panel A) and percentage (panel B) of TH-positive cells co-
expressing Fos in the VTA following footshock (Shock) in saline control rats 
(Sal), cocaine self-administering rats that displayed footshock-induced 
reinstatement (Coc/Reinst), and self-administering rats that did not reinstate 
(Coc/Non-Reinst) and cocaine self-administering rats (Coc) and saline controls 
(Sal) that did not receive footshock (No Shock).  Shock only increased the 
number of Fos-expressing DA cells in the VTA in rats that expressed footshock-
induced cocaine seeking (Coc/Resp rats; P<0.05 vs. Sal rats). 

 
 

Representative photomicrographs showing staining for VTA nuclear Fos 

and cytoplasmic TH in cocaine experienced animals that did not receive 

footshock (Fig. 27A/D), cocaine experienced that received footshock and 

reinstated (Fig. 27B/E), and experienced animals that received footshock and did 

not reinstate (Fig. 27C/F) are shown in Figure 27. Figures 27D, 27E, and 27F are 

higher magnification photomicrographs of the area within the black perimeter in 

27A, 27B, and 27C, respectively. 
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Figure 27: Photomicrographs showing footshock-induced increases Fos-, TH-, 
and dual Fos-/TH- immunoreactive cells in the VTA in reinstating but not non-
reinstating rats.  The photomicrographs display the VTA magnified at 20X from 
sections labeled using anti-Fos and anti-TH antibodies from a representative rat 
that self-administered but did not receive footshock (A), a rat that displayed 
footshock-induced reinstatement (B) and a rat that did not engage in cocaine 
seeking following footshock exposure (C).  D, E, and F are higher magnification 
photomicrographs of the area within the black perimeter in A, B, and C, 
respectively. TH-positive only cells are indicated by white arrows, and TH-
positive cells with Fos-positive nuclei are indicated by black arrows. 
 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

DISCUSSION 

 Evidence suggests that activation of the VTA is involved in stress-induced 

relapse to cocaine use.  However, the exact relationship between stress-induced 

cocaine seeking and the activity of DA cells in the VTA is not well understood.  

Here we demonstrate that stress-induced reinstatement following cocaine SA 

and extinction in rats is associated with the recruitment of VTA DA cells VTA, as 

defined by Fos expression in TH-positive cells.   In rats with a history of cocaine 

SA, regardless of whether it was ShA or LgA, footshock stress only increased the 

number of Fos-expressing DA cells in the VTA when it reinstated cocaine 

seeking.  Furthermore, the magnitude of footshock-induced reinstatement was 

positively correlated with both the number and percentage of Fos-expressing DA 

cells.  The association between stress-induced cocaine seeking and activation of 

DA cells is consistent with reports that extracellular VTA DA levels are increased 

during footshock-induced cocaine seeking following SA (Wang et al., 2005). 

Furthermore, it has been reported that 1) pharmacological manipulations of the 

VTA disrupt stress-induced reinstatement of cocaine seeking (McFarland et al., 

2004, Blacktop et al., 2011); and 2) DA D1 receptor antagonist administration into 

the mPFC prevents stress-induced reinstatement (Capriles et al., 2003, Sanchez 

et al., 2003, McFarland et al., 2004), suggesting that there is a causal 

relationship between stress-induced activation of DA cells in the VTA, particularly 

those that project to the mPFC, and stress-induced cocaine seeking. 
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 Since we previously reported that footshock reinstates cocaine seeking in 

LgA but not ShA rats (Mantsch et al., 2008a), the initial objective of this study 

was to compare stress-induced activation of DA cells between rats with a history 

of ShA and LgA cocaine SA and saline controls.  Not only were there no 

differences in the numbers or percentages of Fos-expressing TH-positive cells in 

the VTA  following footshock across ShA, LgA, and Sal rats, but footshock-

induced increases in DA cell activation were not observed in any SA group.  The 

lack of differences was likely attributable in part to a greater variability in 

footshock effects than was previously reported.  In contrast our prior findings, 

30% of the ShA rats tested and only 60% of LgA rats tested displayed footshock-

induced reinstatement and the overall magnitude of reinstatement did not differ 

between ShA and LgA rats.  These differences were not the result of altered 

intake, as regression analyses found that cocaine intake over the 14-day SA 

period failed to predict Fos reactivity (data not shown).  It is not clear why we 

failed to observe the clear differences in drug seeking between ShA and LgA rats 

that we previously found.  Nonetheless, these findings indicate that while prior 

intake is one predictor of stress-induced cocaine seeking, other factors (e.g., pre-

existing individual differences) that dictate the ability of stress to engage VTA DA 

cells are also important determinants. 

While stress-induced activation of DA cells in the VTA did not differ with SA 

history, overall Fos expression in DA cells did.   In ShA rats, the number of Fos-

expressing TH-positive cells was higher than in Sal controls.  Since these rats 

were re-introduced into an environment in which they previously self-
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administered cocaine prior to Fos measurement, it is likely that the exposure to 

the SA context accounted for the overall increase in DA cell activation.  

Consistent with this interpretation, it has been reported that Fos expression in the 

VTA (Kufahl et al., 2009) and in regions that project to the VTA (Mahler and 

Aston-Jones, 2012) is increased by exposure to cocaine-conditioned stimuli that 

reinstate drug seeking.  Alternatively, simply having a history of prior drug 

exposure may produce long-term basal increases in Fos expression in TH-

positive cells.   

In contrast to ShA rats, the overall number of Fos-positive DA cells in the VTA 

in LgA rats was no different than Sal controls.  One interpretation of this finding is 

that, with repeated LgA SA, overall deficits in DA cell function emerge and mask 

the processes that elevate DA activity in ShA rats.  This interpretation is in line 

with reports that basal extracellular NA DA levels are decreased following 

extended or continuous access SA in rats (Weiss et al., 1992b).  Thus, while we 

were unable to detect cocaine access-/intake-dependent changes in stressor-

reactivity in the DA system, the overall activity of DA cells appears to be 

progressively reduced as cocaine intake increases, consistent with the theory 

that hedonic deficits attributable to dysfunction of dopaminergic systems emerge 

with excessive use and contribute to the onset of addiction (Koob, 2009). 

 Based on the lack of differences in stress-induced activation of DA cells 

across SA conditions and the unexpected variability in the magnitude of 

footshock-induced reinstatement, we compared the number of Fos-expressing 

TH-positive cells in the VTA in rats that displayed reinstatement with those that 
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did not, regardless of whether they were ShA or LgA rats.  Footshock only 

activated VTA DA cells in rats that displayed cocaine seeking.  The finding that 

footshock failed to produce a response in rats with no prior SA history (Sal 

control rats) or in rats in which footshock failed to evoke cocaine seeking, is 

somewhat surprising.  Studies examining the effects of stressors and aversive 

stimuli on mesocorticolimbic DA neurotransmission have yielded mixed results, 

with reports of both increases and decreases in VTA DA cell activity (Ungless et 

al., 2004, Brischoux et al., 2009) and terminal field DA release (Deutch et al., 

1985, Abercrombie et al., 1989, Kalivas and Duffy, 1995, Tidey and Miczek, 

1996, Di Chiara et al., 1999, Roitman et al., 2008, Oleson et al., 2012).  The 

observation that increases in DA cell Fos expression were only observed in a 

subgroup of SA rats, suggests that either 1) ability of stress to regulate DA cells 

in the VTA is influenced by prior history of drug use and/or 2) DA cell activation 

requires footshock exposure in a context associated with drug SA.  In either 

case, the regulation of DA cells by stress is clearly determined by additional 

factors that were not controlled for in this study, as reactivity was not solely 

predicted by SA history.  

The possibility that cocaine SA recruited the ability of footshock to regulate 

DA cells, is supported by a report that shock-induced increases in extracellular 

VTA DA are only observed in animals that have acquired SA (Wang et al., 2005) 

and a report that footshock-induced increases in VTA Fos expression are 

observed following morphine-induced conditioned place preference, but not in 

morphine-naïve rats (Ahmadi et al., 2008).  It should, however, be noted that 
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stress-induced activation of DA cells using Fos as a marker has been previously 

reported in rats with no history of cocaine SA, albeit only in a subgroup of DA 

cells that project to the mPFC (Deutch et al., 1991).    

 The prospect that footshock-induced activation of DA cells is context 

dependent and therefore relies on other inputs into the VTA is also intriguing.  

The VTA receives projections from a number of structures, many of which 

respond to both drug-associated stimuli and stress and some of which do not 

(Briand et al., 2010, Mahler and Aston-Jones, 2012).  We hypothesize that, in 

some cases, stress-activated VTA afferent projections that are otherwise 

insufficient to activate DA cells, may evoke DA responses when inputs relaying 

context-related information are concurrently active.  In support of this hypothesis, 

it has been reported that, in situations where stress itself does not reliably induce 

cocaine seeking, it can effectively evoke cocaine seeking in the presence of 

other stimuli, including drug-associated cues (Buffalari and See, 2009). 

 While our findings suggest that activation of DA cells in the VTA is 

associated with stress-induced cocaine seeking, the terminal regions to which 

these cells project was not determined.  The VTA provides DA projections to a 

number of forebrain regions, including the NA and the mPFC.  Although stress 

has been reported to elevate DA in both structures (Deutch et al., 1985, 

Abercrombie et al., 1989, Kalivas and Duffy, 1995, Tidey and Miczek, 1996, Di 

Chiara et al., 1999), stress-induced stimulation of these projections does not 

appear to be uniform (Deutch et al., 1991, Brischoux et al., 2009, Refojo et al., 

2011, Chaudhury et al., 2013).  It has been reported that footshock selectively 
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increases Fos expression in DA cells that project to the mPFC (Deutch et al., 

1991).  This finding is interesting in light of reports that mPFC DA D1 receptor 

activation is required for stress-induced cocaine seeking (Capriles et al., 2003, 

Sanchez et al., 2003, McFarland et al., 2004).  Future studies will determine if 

stress-induced cocaine seeking is selectively associated with activation of 

mesocortical DA projections. 

 The mechanisms through which stress activates DA cells in the VTA likely 

involves a number of stress-responsive processes, including actions of the 

neuropeptide CRF.  CRF is released into the VTA during footshock-induced 

reinstatement (Wang et al., 2005) and has been reported to promote excitatory 

regulation of DA cells (Ungless et al., 2003, Wanat et al., 2008, Hahn et al., 

2009).  We and others have reported that intra-VTA CRF delivery is sufficient to 

evoke cocaine seeking (Wang et al., 2005, Blacktop et al., 2011) and that 

antagonism of VTA CRF receptors prevents footshock-induced reinstatement 

(Wang et al., 2005, Blacktop et al., 2011).  Like footshock-induced cocaine 

seeking, the ability of intra-VTA CRF to induce reinstatement is augmented in rats 

with a history LgA cocaine SA (Blacktop et al., 2011).  Further, the ability of CRF 

to increase VTA DA levels requires a history of cocaine SA (Wang et al., 2005).  

The likely involvement of CRF in the stress-induced activation of DA cells in the 

VTA does not rule out potential contributions by other stress-responsive systems.  

Indeed, it has recently been reported that kappa opioid receptor antagonist 

administration into the VTA can prevent stress-induced cocaine seeking 

(Graziane et al., 2013). 



150 
 

In conclusion, we report that the activation of DA cells in the VTA is 

associated with stress-induced cocaine seeking and likely contributes to stress-

induced relapse to cocaine use.  Understanding the mechanisms through which 

DA cells are engaged and the downstream processes that lead to drug use may 

facilitate the development of new and more effective approaches for the 

management of addiction. 
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CHAPTER 4 

 

ROLE OF GABA AND GLUTAMATE RECEPTORS IN AUGMENTED COCAINE 
SEEKING IN RESPONSE TO STRESS OR CRF DELIVERED INTO THE 
VENTRAL TEGMENTAL AREA FOLLOWING LONG-ACCESS SELF-
ADMINISTRATION 
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ABSTRACT 

In the rodent model of relapse, excessive cocaine use increases susceptibility to 

stressor-induced reinstatement of drug-seeking behavior. Reinstatement of 

extinguished cocaine seeking by footshock stress is dependent on extended LgA 

cocaine self-administration, corticotropin releasing factor (CRF), and augmented 

CRF receptor 1 (CRF-R1) regulation of addiction-related neurocircuitry in the 

ventral tegmental area (VTA).  Moreover, stress-induced reinstatement is 

associated with increased dopamine neuron activation in the VTA, likely resulting 

in elevated DA levels in downstream target regions. CRF may alter DA cell 

activity either directly or indirectly through regulation of GABA or glutamate 

mechanisms to induce cocaine seeking. This study examined the role of intra-

VTA GABA and glutamate receptors in the reinstatement of extinguished cocaine 

seeking by footshock or intra-VTA CRF delivery. Bilateral intra-VTA 

administration of the GABAA receptor antagonist bicuculline (1.0 and 10.0 

ng/side), GABAB receptor antagonist 2-hydroxysaclofen (2 µg/side), NMDA 

receptor antagonist AP-5 (1.0, 3.0, and 10 µg/side), AMPA receptor antagonist 

NBQX (1.0, 3.0, and 10.0 µg/side), and the nonspecific ionotropic glutamate 

receptor antagonist kynurenic acid (24.0 µg/side) were tested for their ability to 

block footshock- and intra-VTA CRF-induced reinstatement of extinguished LgA 

cocaine-seeking behavior. 2-hydroxsaclofen and kynurenic acid but not AP-5 nor 

NBQX blocked reinstatement. These findings reveal that GABAB receptor 

signaling and nonspecific ionotropic glutamate signaling are both necessary for 

CRF actions in the VTA to reinstate extinguished LgA cocaine-seeking behavior.  
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INTRODUCTION 

 Drug addiction research is aimed to better understand the 

neuromechanisms of relapse to aid in the development of medications that 

prevent drug craving, drug seeking, and relapse. However, there are currently no 

FDA approved medications for the treatment of cocaine addiction (Vocci and 

Elkashef, 2005). Stress is a major factor in causing relapse in cocaine dependent 

individuals. Clinical evidence in humans and experimental animal models report 

that stressful events and activation of stress neurocircuitry regulates cocaine use, 

cocaine craving, and relapse to cocaine use (Marlatt, 1980, Wallace, 1989, 

Goeders and Guerin, 1994, Erb et al., 1996, Sinha et al., 1999, Grimm et al., 

2001, Karlsgodt et al., 2003, Sinha et al., 2006).  

Corticotropin releasing factor (CRF) is a 41-amino acid neuropeptide that 

plays an important role in both the stress response and stress-induced 

reinstatement of extinguished cocaine-seeking behavior (Shaham et al., 1997, 

Erb et al., 1998, Shalev et al., 2010). CRF is released during footshock stress 

producing its effects through the coordinated action of two G-protein coupled 

receptors, CRF-R1 and CRF-R2, in brain regions associated with the effects of 

drugs of abuse, notably the ventral tegmental area (VTA) (Van Pett et al., 2000, 

Dautzenberg and Hauger, 2002, Wang et al., 2005, Wang et al., 2007, Blacktop 

et al., 2011). We have previously reported that reinstatement of extinguished 

cocaine seeking by footshock stress and intra-VTA CRF administration is 

dependent on excessive LgA cocaine use, and that CRF-R1 activation in the 

VTA is necessary and sufficient for reinstatement (Blacktop et al., 2011). 
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Regulation of cocaine seeking by CRF-R1 receptors appears to require a prior 

history of very high levels of cocaine intake as seen in the long-access rodent 

model of relapse (Ahmed and Koob, 1998, Specio et al., 2008, Blacktop et al., 

2011). However, very little is known about the mechanism of action of CRF-R1 in 

the VTA during reinstatement. 

Excitatory drive on VTA dopamine neurons through glutamate 

neurotransmission is a leading hypothesis as to how intra-VTA CRF promotes 

reinstatement.  Glutamatergic afferents to VTA dopamine neurons can produce 

somatodendritic dopamine release, indicative of phasic firing (Rice et al., 1997, 

Adell and Artigas, 2004), which has been repeatedly implicated in drug-seeking 

behavior (Vorel et al., 2001, Wang et al., 2005, You et al., 2007). Following drug 

exposure intra-VTA CRF can augment ionotropic glutamate receptor signaling on 

VTA dopamine neurons (Ungless et al., 2001, Saal et al., 2003, Ungless et al., 

2003, Wanat et al., 2008, Hahn et al., 2009). In support of an excitatory role, we 

have previously reported that the magnitude of footshock stress-induced 

reinstatement is positively correlated with increased VTA dopamine 

responsiveness at the time of the reinstatement session (Chapter 3). However, 

emerging evidence suggests that inhibitory GABA signaling in the VTA may also 

be involved in stress-induced relapse. 

Footshock stress increases VTA GABA neuron activity (Lammel et al., 

2012, Tan et al., 2012) which can transiently suppress neighboring DA neurons 

(Jhou et al., 2009, Tan et al., 2012). VTA GABA neuron activation is sufficient to 

not only reduce reward consumption (van Zessen et al., 2012) but also produce 
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conditioned place aversion (Tan et al., 2012). Intra-VTA CRF can augment 

inhibition of VTA dopamine neurons through the coordinated action of CRF-R1 

and GABAB receptors (Beckstead et al., 2009) and  decrease the motivation to 

work for food rewards through inhibition of reward-evoked dopamine release 

(Wanat et al., 2013). In other brain regions binge pattern self-administration can 

augment CRF-R1 dependent GABAergic signaling (Nie et al., 2009). 

Furthermore, GABAA receptor regulation of VTA dopamine neuron activity has 

been recently reported to be essential in stress-induced reinstatement (Graziane 

et al., 2013). In summary, intra-VTA CRF appears to induce inhibitory and 

excitatory effects upon dopamine signaling to regulate reward seeking.  

The goal of this set of experiments is to characterize the role of intra-VTA 

glutamate and GABA receptor activation in both footshock- and intra-VTA CRF-

induced reinstatement. Particularly, the role of ionotropic glutamate receptor 

subtypes to build upon the work of Wise and colleagues. It is hypothesized that 

reinstatement will be dependent on ionotropic glutamate receptor activation. 

Specifically, we want to confirm the role of intra-VTA NMDA versus AMPA 

receptor activation in reinstatement. Additionally, further characterization of what 

little is known about GABA receptor signaling in footshock- and intra-VTA CRF-

induced reinstatement of extinguished LgA cocaine seeking. 

MATERIALS AND METHODS  

 Adult male Sprague–Dawley rats (Harlan Laboratories, St. Louis, MO) 

were housed individually under a 12 h/12 h reversed light/dark cycle (lights on at 
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7:00 PM) in a temperature and humidity controlled AAALAC-accredited animal 

facility. All procedures were approved by the Marquette University IACUC and 

carried out in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals. 

Catheter and cannula implantation 

 For the reinstatement studies, rats were implanted with chronic indwelling 

jugular catheters under ketamine HCl (100 mg/kg, ip) and xylazine (2 mg/kg, ip) 

anesthesia and with bilateral 2.1-cm 23 gauge guide cannulae aimed at the VTA 

for intracranial injections as previously described  (Mantsch et al., 2008a, 

Blacktop et al., 2011, Graf et al., 2011). The tips of the guide cannulae were 

aimed 0.5 mm above the target injection site using the following coordinates 

determined from Paxinos and Watson (1998): 12° angle away from midline; A/P 

− 5.6 mm from bregma; M/L ± 2.2 mm from midline; and D/V − 6.7 mm from the 

skull surface. Placements for cannula targeting the VTA for rats from each of the 

experiments are depicted in Figure 28.  

Self-Administration Training  

 After recovery from surgery, rats were trained to self-administer cocaine 

(1.0 mg/kg/inf, iv; NIDA Drug Supply Program) by pressing a lever under a FR1 

schedule during daily 2-h sessions, within which the active (i.e., front) lever was 

extended into the chamber and the corresponding stimulus light was illuminated. 

Pressing the lever resulted in an iv infusion of drug or saline solution (200 μl over 
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5 s) followed by a 25-s time-out period during which the stimulus light was 

extinguished but the lever remained extended. Responding on a second, inactive 

(i.e., back) lever was recorded but had no programmed consequences. 

Response requirements were gradually increased until rats displayed stable 

responding (within 10% of the 3-session mean) under an FR4 schedule at which 

time they entered into a 14-day period of self-administration testing. 

Long-Access, Extinction, and Reinstatement 

 To examine GABA and glutamate receptor signaling in intake-dependent 

intra-VTA CRF- and footschock-induced reinstatement of extinguished LgA 

cocaine-seeking-behavior, rats were assigned to LgA groups following 

acquisition which had access to cocaine for six hrs daily for the next 14 days. 

Following 14 days of LgA self-administration, rats underwent extinction during ten 

consecutive 2-h sessions within which the cocaine solution was replaced by 

saline. After 14 days of LgA self-administration and extinction, rats were tested 

twice for footshock- and twice for intra-VTA CRF-induced reinstatement in 

counterbalanced sequence: once following intra-VTA pretreatment with an 

antagonist and once following pretreatment with vehicle (aCSF; Tocris 

Biosciences). All microinfusions delivered a volume of 0.25 μl/side over a 1-min 

period ten minutes prior to the reinstatement session.  

Stress-induced reinstatement, was tested for the ability of electric 

footshock, delivered though the stainless steel grid floors of the self-

administration chambers, to reinstate cocaine seeking. During the 15-min 
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footshock period, the houselight was illuminated and the levers were retracted 

and stimulus lights extinguished. Shocks (0.5 mA, 0.5” duration) were delivered 

an average of every 40 sec (range 10-70 sec). We have reported that these 

parameters produce robust reinstatement after long-access, but not short-

access, self-administration (Mantsch et al., 2008). As was the case with 

footshock, rats were tested twice for intra-VTA CRF-induced reinstatement in 

counterbalanced fashion: once following intra-VTA pretreatment with an 

antagonist and once following pretreatment with vehicle. Responding on both the 

active and inactive levers were recorded during the 2-h reinstatement sessions 

which were otherwise identical to extinction conditions. The order of testing with 

drug and vehicle pretreatment to both footshock and intra-VTA CRF-induced 

reinstatement varied across rats in each group to avoid potential sequence 

effects. Rats underwent additional extinction sessions between reinstatement 

test sessions and were required to display less than 20 cocaine lever responses 

during an intervening extinction session in order to be tested again for 

reinstatement. 

Effects of GABA Receptor Antagonists on both Footshock and Intra-VTA CRF-
induced Reinstatement in LgA Animals 
 
 
 The ability of both footshock and intra-VTA CRF (500 ng/side; 420 µM; 

Sigma Aldrich) delivery to reinstate extinguished LgA cocaine seeking was tested 

following a 10-min bilateral intra-VTA pretreatment (0.25 μl/side over 1 min) of 

the GABAA receptor selective antagonist, bicuculline, and the GABAB receptor 

selective antagonist, 2-hydroxysaclofen. The more water soluble and stable form 

of a selective GABAA receptor antagonist (-)-bicuculline methiodide (1.0 and 10.0 
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ng/side; 7.85 and 78.5 µM; Tocris Bioscience; n=19) was utilized as a 

pretreatment to both footshock and intra-VTA CRF-induced reinstatement of 

extinguished LgA cocaine seeking. Bicuculline doses were chosen from primary 

literature demonstrating behavioral effects through intra-VTA GABAA receptor 

blockade (Sandner et al., 1996, David et al., 1997, Trojniar and Klejbor, 1999, 

Grubb et al., 2002). Higher doses of bicuculline were omitted due to seizure 

activity. GABAA receptor pharmacological blockade can induce DA neuron burst 

firing (Paladini et al., 1999b, Paladini and Tepper, 1999).Intra-cerebral injection 

of GABAergic antagonists such as bicuculline have been reported to elicit 

convulsions at high doses (Florio and Longo, 1972). Convulsions were not 

observed at a 1.0-1.5 ng dose (David et al., 1997). 

The more water soluble and stable form of a prototypical GABAB receptor 

antagonist 2-hydroxysaclofen (2 µg/side; 30 mM; Tocris Bioscience; n=14) prior 

to both footshock and intra-VTA CRF-induced reinstatement of extinguished LgA 

cocaine-seeking was additionally characterized. The 2-Hydroxysaclofen dose 

was chosen from primary literature demonstrating behavioral effects through 

intra-VTA GABAB receptor blockade (Xi and Stein, 1999, Ackerman et al., 2003, 

Miner et al., 2010). 

 
Effects of Ionotropic Glutamate Receptor Antagonists on both Footshock and 
Intra-VTA CRF-induced Reinstatement in LgA Animals 
 
 
 The ability of both footshock and intra-VTA CRF (500 ng/side; Sigma 

Aldrich) delivery to reinstate cocaine seeking was tested following a 10-min 

bilateral intra-VTA pretreatment (0.25 μl/side over 1 min) with an NMDA, AMPA, 
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and nonspecific ionotropic glutamate receptor antagonist. The more active and 

water soluble form of a selective and competitive NMDA receptor antagonist D-

AP5 was administered at three different doses (1.0, 3.0, and 10 µg/side; 20.3, 

60.9, and 203 mM; Tocris Bioscience; n=23). Doses were initially chosen from 

primary literature demonstrating behavioral effects through intra-VTA NMDA 

receptor blockade (Ranaldi et al., 2011) and scaled up proportionately due to 

failure to attenuate reinstatement (Park et al., 2002, Famous et al., 2007).  The 

more water soluble form of a potent, selective, and competitive AMPA receptor 

antagonist NBQX disodium salt (1.0, 3.0, and 10.0 µg/side; 10.5, 31.5, 105 mM; 

Tocris Bioscience; n=26) was determined in separate groups of LgA rats.  

A pilot study in another separate group of LgA rats with the more water 

soluble form of the nonspecific ionotropic glutamate receptor antagonist 

kynurenic acid sodium salt (24.0 µg/side; 454 mM; Tocris Bioscience; n=3) was 

administered to measure the ability of both footshock and intra-VTA CRF to 

reinstate. At this dose kynurenic acid antagonizes both the NMDA (Kessler et al., 

1989, Stone, 1993) and the AMPA/Kainate family of ionotropic glutamate 

receptors (Stone, 1993). 

Food Self-Administration  

 In order to confirm that the effects of intra-VTA 2-hydroxysaclofen and 

kynurenic acid on reinstatement were not attributable to non-specific motor 

impairments, rats were tested for effects on sucrose pellet-reinforced lever 

pressing. These rats were maintained at 90% of their free-feeding body weights 

and trained to self-administer 45 mg sucrose-sweetened food pellets (BioServ) 
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by pressing a response lever under a FR4 schedule of reinforcement during 30-

min sessions. Once stable response patterns were observed (responding within 

10% of the mean over 3 sessions), separate groups of rats were tested for the 

effects of intra-VTA delivery of 2-hydroxysaclofen (2 µg/side; n=7) or kynurenic 

acid (multiple doses; n=7), as described above, on responding. Each rat was 

tested two or three times with intra-VTA treatment in counterbalanced sequence 

with the 2-hydroxysaclofen, kynurenic acid, or vehicle. 2-hydroxysaclofen and 

kynurenic acid were administered in separate groups of rats. 

Histological Confirmation of Injection Sites  

 The accuracy of cannula implantation was confirmed postmortem in each 

rat after cardiac perfusion with 60-ml NaCl followed by 60-ml 2.5% buffered 

neutral formalin under sodium barbital anesthesia (55 mg/kg). Brains were 

removed and stored in 2.5% buffered formalin for at least one day. 200-μm 

sections were cut using a vibrotome, slide-mounted, and stained with cresyl 

violet for placement confirmation using a light microscope. Rats with injection 

sites outside of the VTA were excluded from data analysis. 

Statistical Analyses  

Statistical analyses were conducted using Predictive Analytics SoftWare 

statistics software (SPSS, Inc.). Statistical significance was determined using 

paired students t-test, 1-way ANOVA, and 2-way ANOVA followed, when 

appropriate, by further analyses of main effects and interactions using 

Bonferroni-corrected t-test post-hoc testing. 
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Histology 

 The histological confirmation of all injection sites in animals included in 

data analysis is shown in the Figure 28. All placements are in the VTA and 

depicted by cohort. 

Figure 28: Schematic depiction of injection sites within the VTA for different 
treatment conditions in LgA rats including: A) bicuculline B) 2-hydoxysaclofen C) 
2-hydroxysaclofen food controls, D) AP-5, E) NBQX, and F) kynurenic acid. 
Open circles represent the injection site upon coronal brain section images from 
the atlas of Paxinos and Watson (2005). 
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RESULTS  

Cocaine Self-Administration and Extinction  

 Cocaine self-administration (SA) on days one and 14 of testing in rats 

provided 14 days of LgA (6 hrs) along with the first and last day of extinction 

training is shown is shown in Table 1 for animals pretreated with bicuculline, 2-

hydroxysaclofen, AP-5, NBQX, and kynurenic acid. Cocaine SA and extinction 

did not vary across groups.  The mean and standard error data are shown in 

Table 3. 

Table 3: Total number of infusions on days 1 and 14 of LgA cocaine self-

administration and the total number of responses on the active lever on extinction 

days 1 and 10 (±S.E.) in animals that were tested with intra-VTA pretreatments of 

bicuculline, 2-hydroxysaclofen, AP-5, NBQX, and kynurenic acid to both 

footshock- and intra-VTA CRF-induced reinstatement. Self-administration 

infusions and extinction responses did not significantly vary amongst animals 

treated with different antagonists. 

 

Reinstatement 
Group 

SA Day 1 
(Inf ± S.E.) 

SA Day 14 
(Inf ± S.E.) 

EXT Day 1 
(Resp ± S.E.) 

Final EXT 
Day 
(Resp ± S.E.) 

Bicuculline 81.25 (±4.14) 92.67 (±7.75) 47.0 (±8.49) 11.33 (±1.35) 

Saclofen 72.63 (±3.68) 83.38 (±3.78) 66.0 (±10.70) 7.88  (±1.60) 

AP-5 84.65 (±5.22) 88.30 (±4.01) 49.15 (±8.28) 6.8 (±1.58) 

NBQX 84.24 (±5.88) 87.88 (±4.16) 77.18 
(±13.55) 

10.53 (±1.52) 

Kynurenic Acid 80.42 (±4.77) 84.17 (± 
5.28) 

69.75 (±9.27) 10.42 (±0.97) 
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Effects of Intra-VTA GABA Receptor Antagonists on Footshock and CRF-
Induced Reinstatement 
 
 
 As the effects of GABA antagonists administered into the VTA on stress 

and CRF-induced reinstatement have not been previously tested, we initially 

investigated the effects of intra-VTA administration of the GABAA receptor 

antagonist, bicuculline, and the GABAB antagonist, 2-hydroxylsaclofen on 

reinstatement in response to footshock or intra-VTA CRF delivery (500 ng/side; 

Sigma-Aldrich).  

 
Effects of Intra-VTA GABAA Receptor Antagonists on Footshock and CRF-
Induced Reinstatement 
 

 
 We initially tested rats for the effects of intra-VTA bicuculline at a dose of 1 

ng/side (David et al., 1997, Trojniar and Klejbor, 1999).  As this dose failed to 

produce effects on reinstatement, we subsequently tested rats for the effects of a 

10-fold higher bicuculline dose (10 ng/side) (Sandner et al., 1996, Grubb et al., 

2002, Ackerman et al., 2003).  Notably, higher doses than 10 ng/side tend to 

generate aberrant electrical activity and promote seizures (unpublished 

observation). Therefore, we did not test higher concentrations of bicuculline.  The 

effects of intra-VTA bicuculline on reinstatement are shown in Figure 29.  Neither 

bicuculline dose significantly attenuated reinstatement when administered into 

the VTA prior to testing with footshock or intra-VTA CRF.  Since within subject 

testing for the effects of bicuculline on reinstatement was conducted in different 

groups of rats for each dose, we performed separate 2-way repeated measures 

ANOVA examining the effects of each dose (1 ng, 29A and 29D and 10 ng, 29B 
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and 29E) on reinstatement in response to each stimulus (footshock, 29A and 29B 

and CRF, 29D and 29E).  

Two-way repeated measures reinstatement x drug pretreatment ANOVAs 

showed either overall reinstatement main effects of or near-significant trends for 

reinstatement testing in response to either footshock (1 ng/side bicuculline: 

F1,5=9.967; P<0.05; 10 ng/side bicuculline: F1,5=54.921; P=0.001) or intra-VTA 

CRF (1 ng/side bicuculline: F1,6=35.698; P<0.01; 10 ng/side bicuculline: 

F1,5=12.317; P<0.05).  However, in no cases were significant main effects of 

bicuculline or interactions between bicuculline pretreatment and reinstatement 

testing condition observed.  To permit analysis of reinstatement across dose 

conditions, we also consolidated veh-pretreated rats into one group and 

conducted one-way ANOVA assessing changes in cocaine lever responding 

relative to the prior extinction session following either footshock or intra-VTA CRF 

(29C and 29F).  Despite some variability across groups, significant overall effects 

of bicuculline pretreatment were not observed in either case.   Notably, to 

address the small sample size in some of the groups and within-group variability, 

additional rats are currently undergoing testing. 

Figure 29: Effects of intra-VTA injections of the GABAA receptor antagonist 
bicuculline on reinstatement by footshock stress and intra-VTA CRF delivery in 
LgA rats. Data represent the effects of bilateral injections of 1ng/side bicuculline 
on reinstatement induced by footshock (29A; n=6) or intra-VTA CRF (29D; n=7) 
or 10ng/side bicuculline on reinstatement by footshock (29B; n=5) or intra-VTA 
CRF (500 ng/side; 29E; n=5).  Overall reinstatement main effects of or near-
significant trends for reinstatement testing in response to either footshock (1 
ng/side bicuculline: F1,5=9.967; P<0.05; 10 ng/side bicuculline: F1,5=54.921; 
P=0.001) or intra-VTA CRF (1 ng/side bicuculline: F1,6=35.698; P<0.01; 10 
ng/side bicuculline: F1,5=12.317; P<0.05) were observed. Significant overall 
effects of bicuculline pretreatment or interactions between bicuculline 
pretreatment and reinstatement were not observed (29C and 29F). 
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Effects of Intra-VTA GABAB Receptor Antagonists on Footshock and CRF-
Induced Reinstatement 
 
 
 
 The effects of intra-VTA 2-hydroxysaclofen (2-HS) on reinstatement were 

tested at a single dose (2 µg/side) (Xi and Stein, 1999, Ackerman et al., 2003, 

Miner et al.) and are shown in Figure 30. The effects of 2-HS were assessed 

using a) 2-way repeated measures 2-HS treatment x reinstatement test condition 

ANOVA (30A and 30C) examining total cocaine lever responding and b) a paired 

t-test examining differences in reinstatement relative to the previous extinction 
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session following intra-VTA 2-HS or vehicle.  2-HS effects on footshock-induced 

reinstatement are shown in 30A and 30B.Two-way ANOVA examining effects of 

intra-VTA 2-HS footshock cocaine seeking showed a significant main effect of 

footshock (F1,7=14.322;P<0.01) but not intra-VTA 2-HS pretreatment and a 

significant footshock x 2-HS interaction (F1,7=6.666;P<0.05).  Post-hoc testing 

(Bonferroni-corrected t-test) showed that footshock-induced reinstatement in rats 

pretreated with intra-VTA vehicle (P<0.05 vs. extinction) but not 2-HS and that 

cocaine seeking was greater following vehicle than after 2-HS (P<0.05).  To 

further examine difference in shock-induced reinstatement conditions, we also 

used a paired t-test to compare differences in the magnitude of reinstatement 

(change in responding vs. prior extinction session).  Intra-VTA 2-HS significantly 

decreased footshock-induced reinstatement (t7=2.582; P<0.05). 

2-HS effects on reinstatement in response to intra-VTA CRF delivery are 

shown in panels 30C and 30D.  Two-way ANOVA examining effects of 2-HS on 

CRF-induced cocaine seeking showed significant main effects of CRF 

(F1,6=12.655;P<0.05) and intra-VTA 2-HS pretreatment (F1,6=8.897;P<0.05) and 

a significant CRF x 2-HS interaction (F1,6=10.206;P<0.05; 30C).  Post-hoc testing 

showed that intra-VTA CRF induced reinstatement in rats pretreated with intra-

VTA vehicle (P<0.05 vs. extinction) but not 2-HS and that cocaine seeking was 

greater following vehicle than after 2-HS (P<0.05).   A paired t-test comparing 

differences in the magnitude of reinstatement showed that intra-VTA 2-HS 

significantly decreased CRF-induced reinstatement (t6=3.195;P<0.05; 30D). 
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To ensure that the attenuation of reinstatement by intra-VTA 2-HS was not 

attributable to impairment of motor activity that would prevent rats from displaying 

lever pressing behavior, an additional group of rats was trained to lever press 

under a FR4 schedule of sucrose-sweetened pellet (45 mg) reinforcement 

followed by testing for the effects of intra-VTA vehicle or 2-HS administration 

(30E and 30F).  2-HS failed to alter lever-pressing in these rats.  Two-way 

repeated measures ANOVA showed no main effect of or interaction involving 

intra-VTA 2-HS.  Likewise A paired student’s t-test failed to show a significant 

reduction in food reinforced responding following intra-VTA 2-HS. 

 

 

Figure 30: Effects of intra-VTA injections of GABAB receptor antagonists on 
reinstatement by footshock stress and intra-VTA CRF delivery in LgA rats.  Data 
represent the effects of bilateral injections of 2-hydroxysaclofen (2-HS; 2 µg/side) 
as a pretreatment to footshock stress (30A/B; n=7) or intra-VTA CRF delivery 
(500 ng/side; 30C/D; n=7).  In all cases, significant reinstatement was observed 
in rats pretreated with vehicle (*P<0.05 vs. Ext) but not 2-HS in both footshock 
and intra-VTA CRF-induced reinstatement, with cocaine seeking being greater 
following vehicle than after 2-HS (P<0.05). 2-HS failed to significantly alter or 
reduce food reinforced responding following intra-VTA 2-HS administration 
(30E/F; n= 7). 
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Effects of Intra-VTA Glutamate Receptor Antagonists on Footshock and CRF-
Induced Reinstatement 
 
 
 Since other reports suggest a role for glutamatergic neurotransmission in 

the VTA in reinstatement in response to footshock or CRF (Wang et al., 2005, 

Wang et al., 2007) and CRF actions in the VTA (Ungless et al., 2003), we also 
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examined the effects of intra-VTA delivery of antagonists at NMDA (AP-5) and 

AMPA (NBQX) receptors on reinstatement. 

Effects of Intra-VTA NMDA Receptor Antagonists on Footshock and CRF-
Induced Reinstatement 
 

 
 The effects of intra-VTA AP-5 administration on footshock-induced 

reinstatement are shown in Figure 31.  Since a number of rats were not tested 

under both vehicle and AP-5 conditions, mixed 2-way ANOVA with shock (vs. 

ext) as a repeated measure and intra-VTA AP-5 (vs. veh) as a between subjects 

measure was conducted at each dose.  Initially AP-5 was tested at a dose of 1 

µg/side (Cornish et al., 2001, Covington et al., 2008, Ranaldi et al., 2011).  As 

this dose failed to attenuate reinstatement, we subsequently tested rats for 

effects of higher AP-5 doses (3 and 10 µg/side).  In all cases, intra-VTA AP-5 

failed to block footshock-induced reinstatement. For each dose tested, a 

significant main effect of footshock was observed (1 µg/side dose: F1,7=11.086; 3 

µg/side dose: F1,7=9.776; 10 µg/side dose: F1,4=18.434; P<0.05 for each), but no 

main effects of AP-5 pretreatment and no AP-5 x footshock interactions. 

Additionally, one-way ANOVA was conducted to examine the magnitude 

of footshock reinstatement across AP-5 dose conditions.  No effect of treatment 

was observed (31D).  To confirm that our inability to block reinstatement was not 

due to the AP-5 dose, we tested two rats at 30 µg/side, a very large intracranial 

dose (Dunn et al., 2005).  Footshock-induced reinstatement was observed, even 

at this dose (mean increase vs. extinction of 45.5 responses; data not shown).  

Intra-VTA AP-5 did not significantly alter inactive lever pressing at any dose 
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tested with footshock (Table 4), nor did it induce cocaine seeking, when tested 

alone, when tested in two rats (not shown). 

Figure 31: Intra-VTA AP-5 failed to block footshock-induced reinstatement at all 
doses tested which included 1 µg/side (31A; n=4), 3 µg/side (31B; n=5), and 10 
µg/side (31C; n=3).  For each dose tested, a significant main effect of footshock 
was observed (1 µg/side dose: F1,7=11.086; 3 µg/side dose: F1,7=9.776; 10 
µg/side dose: F1,4=18.434; P<0.05 for each) but no main effects of AP-5 
pretreatment and no AP-5 x footshock interactions. No effect of treatment was 
observed on the magnitude of footshock reinstatement across AP-5 dose 
conditions (31D). 
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Table 4: Total number of inactive lever presses (±S.E.) in LgA rats receiving 

intra-VTA pretreatments of 1, 3, and 10 µg/side doses of either AP-5 or NBQX to 

footshock- and intra-VTA CRF-induced reinstatement. 

 
Intra-
VTA 
Drug 

 
Reinstatement 

“Inactive” Lever Responses (± S.E.) 

Veh 1 µg/side 3 µg/side 10 µg/side 

AP5 Shock 7.09 
(±2.80) 

5.67 
(±1.77) 

3.25 
(±2.92) 

10.00 
(±4.00) 

CRF 6.13 
(±2.57) 

--- 2.00 
(±0.77) 

2.67 (±2.18) 

NBQX Shock 4.60 
(±2.28) 

14.00 
(±2.31) 

16.33 
(±9.24) 

8.00 (±3.81) 

CRF 6.42 
(±2.24) 

--- 7.20 
(±1.96) 

9.75 (±3.29) 

 

The effects of intra-VTA AP-5 administration on reinstatement in response 

to intra-VTA CRF are shown in Figure 32.  For these experiments, only the 3 and 

10 µg/side AP-5 doses were tested.  Neither dose blocked reinstatement in 

response to intra-VTA CRF.  Effects were assessed using 2-way ANOVA.  In 

both cases, main effects of CRF were observed (3 µg/side dose: F1,8=30.958; 10 

µg/side dose: F1,5=10.016; P<0.05 for each; 32A/B), but main effects of AP-5 

pretreatment or AP-5 x CRF interactions were not.    

One-way ANOVA also failed to show that the magnitude of intra-VTA 

CRF-induced reinstatement varied across AP-5 dose conditions (32C).  As was 

the case with shock-induced reinstatement, 30 µg/side AP-5 (a very high dose) 

also failed to block CRF-induced reinstatement (mean increase vs. extinction = 

41.5 responses).  Inactive lever pressing during the sessions was not altered by 

AP-5 (Table 4). 
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Figure 32: Intra-VTA AP-5 failed to block CRF-induced reinstatement at all 
doses tested which included 3 µg/side (32A; n=6), and 10 µg/side (32B; n=5).  
For each dose tested, main effects of CRF were observed (3 µg/side dose: 
F1,8=30.958; 10 µg/side dose: F1,5=10.016; P<0.05 for each), but main effects of 
AP-5 pretreatment or AP-5 x CRF interactions were not. 

 

 
Effects of Intra-VTA AMPA Receptor Antagonists on Footshock and CRF-
Induced Reinstatement 
 
 
 The effects of intra-VTA NBQX administration on shock-induced 

reinstatement are shown in Figure 33.  As with AP-5 pretreated rats, mixed 2-

way ANOVA with shock (vs. ext) as a repeated measure and intra-VTA NBQX 

(vs. veh) as a between subjects measure was conducted at each dose.  Initially 

NBQX was tested at a dose of 1 µg/side (Nolan et al., 2010, Millan and McNally, 

2011).  However, since this dose failed to attenuate reinstatement, we 

subsequently tested rats for effects of higher NBQX doses (3 and 10 µg/side).  

Intra-VTA NBQX produces dose-dependent effects on reinstatement with no 

effects at the 1 µg/side dose and an apparent augmentation at the higher doses.   

At the 1 µg/side dose, a significant main effect of footshock was observed (1 

0 3

0

2 0

4 0

6 0

E x t C R F *

In tra -V T A  A P -5  D o s e

( g /s id e )

R
e

in
s

ta
te

m
e

n
t

R
e

s
p

o
n

s
e

s
/2

-h
 S

e
s

s
io

n
)

0
1
0

0

2 0

4 0

6 0

E x t C R F *

In tra -V T A  A P -5  D o s e

( g /s id e )

R
e

in
s

ta
te

m
e

n
t

R
e

s
p

o
n

s
e

s
/2

-h
 S

e
s

s
io

n
)

0 3
1
0

0

2 0

4 0

6 0

In tra -V T A  A P -5

 D o s e  ( g /s id e )

C
R

F
-i

n
d

u
c

e
d

 R
e

in
s

ta
te

m
e

n
t

(i
n

c
r
e

a
s

e
 v

s
. 

p
r
io

r
 E

X
T

)

C .B .A .



174 
 

µg/side dose: F1,6=20.120; P<0.05), but no main effects of NBQX pretreatment 

and no NBQX x footshock interaction (33A). At the 3 µg/side dose, a significant 

main effect of footshock (F1,5=40.457; P=0.001) and a significant interaction 

between footshock and intra-VTA NBQX pretreatment (F1,5=9.627; P<0.05) were 

observed.  Post-hoc testing showed that not only was significant reinstatement 

observed in both groups (P<0.05 vs. extinction) but that shock-induced 

reinstatement of cocaine seeking following intra-VTA NBQX was increased 

compared to vehicle controls (P=0.05; 33B).  At the highest NBQX dose tested 

(10 µg/side), a similar pattern was present.  However, while a significant main 

effect of shock was observed (F1,10=7.717; P<0.05), a significant shock x NBQX 

pretreatment interaction was not (33C).  Additionally, one-way ANOVA was 

conducted to examine the magnitude of footshock reinstatement across AP-5 

dose conditions.  However, despite dose-dependent increases in reinstatement 

magnitude following intra-VTA NBQX delivery, a significant overall effect was not 

observed (33D).  Although also not significant, dose-dependent increases in 

responding on the previously inactive lever were also observed (Table 4). 

 The effects of intra-VTA NBQX administration on reinstatement in 

response to intra-VTA CRF are shown in Figure 34.  As was the case with AP-5, 

for these experiments, only the 3 and 10 µg/side NBQX doses were tested.  

Neither NBQX dose blocked reinstatement in response to intra-VTA CRF.   
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Figure 33: Intra-VTA NBQX failed to block footshock-induced reinstatement at all 

doses tested which included 1 µg/side (33A; n=4), 3 µg/side (33B; n=3), and 10 

µg/side (33C; n=6). In all cases, significant reinstatement was observed in rats 

pretreated with vehicle or the AMPA receptor antagonists (*P<0.05 vs. Ext). At 

the 3 µg/side dose, NBQX increased reinstatement compared to vehicle controls 

(P=0.05). A significant interaction between footshock and intra-VTA NBQX 

pretreatment of 3 µg/side (F1,5=9.627; P<0.05) was observed. A significant 

overall effect of reinstatement magnitude and NBQX delivery was not observed 

at the 1, 3, or 10 µg/side dose (33D). 
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magnitude of intra-VTA CRF-induced reinstatement varied across AP-5 dose 

conditions.  Although reinstatement magnitude tended to increase with NBQX 

dose, one-way ANOVA failed to show a statistically significant overall effect of 

intra-VTA NBQX pretreatment on the magnitude intra-VTA CRF-induced 

reinstatement (34C).  Significant effects on previously inactive lever pressing 

during the reinstatement session were not observed (Table 2). 

 

Figure 34: Intra-VTA NBQX failed to block CRF-induced reinstatement at all 
doses tested which included 3 µg/side (34A; n=4), and 10 µg/side (34B; n=9).  
For each dose tested, main effects of CRF were observed (3 µg/side dose: 
F1,8=71.892; 10 µg/side dose: F1,16=12.880; P<0.05 for each), but main effects of 
NBQX x CRF interactions were not. A statistically significant overall effect of 
intra-VTA NBQX pretreatment on the magnitude intra-VTA CRF-induced 
reinstatement was not observed at any dose tested (34C). 

 

Since intra-VTA NBQX tended to increase reinstatement in response to 
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and tested them for reinstatement in response to 10 µg/side intra-VTA NBQX by 

itself (Figure 35).   

 

Figure 35: In the absence of footshock or CRF delivery NBQX (10 µg/side) 
increased mean active lever responses by 32, although the difference did not 
reach statistically significance (t3=1.860; P=.160) (35A; n=4). Mean increases in 
responding by NBQX alone, NBQX and CRF, or CRF alone suggest that NBQX 
didn’t prevent nor block reinstatement by CRF (35B). 

 

 

 

 

 

 

 

Although the difference was not statistically significant (t3=1.860; P=.160), 
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seeking was observed, suggesting that NBQX was neither preventing nor 

masking reinstatement. 

To test the possibility that blockade of both AMPA and NMDA receptors in 

the VTA is necessary to reveal a role for glutamatergic neurotransmission in 

stress and CRF-induced cocaine seeking, we conducted a preliminary study in 

which we tested rats for the effects of intra-VTA kynurenic acid (KA) delivery on 

reinstatement.  In addition to other pharmacological properties, KA antagonizes 

both AMPA and NMDA receptors.  In fact, Wang et al (2005) have reported that 

intra-VTA delivery of KA can prevent reinstatement of cocaine seeking in 

response to both footshock and intra-VTA CRF administration. The effects of 

intra-VTA KA administration on reinstatement in response to footshock (36A and 

36B) intra-VTA CRF (36C and 36D) are shown in Figure 36. 

Effects of KA on footshock-induced reinstatement were tested in four rats 

using a 24 µg/side KA dose (Vorel et al., 2001).  A two-way repeated measure 

KA pretreatment x footshock condition ANOVA showed a significant overall effect 

of intra-VTA KA pretreatment (F1,3=20.461; P<0.05) but not shock on cocaine 

seeking and a significant KA pretreatment x shock condition interaction 

(F1,3=11.788; P<0.05).  Post-hoc testing showed that cocaine seeking following 

shock was significantly reduced following intra-VTA KA compared to intra-VTA 

vehicle control conditions (36A; P<0.05).  Further, a paired t-test comparing the 

magnitude of shock-induced reinstatement in KA-pretreated rats with that in 

vehicle treated controls showed a significant KA-induced reduction (t3=3.433; 

P<0.05; 36B).   
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Figure 36: Effects of intra-VTA injections of kynurenic acid (KA) on reinstatement 
by footshock stress and intra-VTA CRF delivery in LgA rats. Data represent the 
effects of bilateral injection of KA (24 µg/side) as a pretreatment to footshock 
stress (36A/B; n=4), intra-VTA CRF delivery (500 ng/side; 36C/D; n=3), or KA in 
absence of footshock or CRF (36E; n=4). Reinstatement by shock was 
significantly reduced following intra-VTA KA compared to intra-VTA vehicle 
control conditions (36A; P<0.05), and significantly reduced the magnitude of 
shock-induced reinstatement as compared to vehicle controls (t3=3.433; P<0.05; 
36B). KA attenuated CRF-induced cocaine seeking but failed to reach 
significance due to a small sample size (36C/D). KA alone produces activational 
instead of suppressive effects in active lever pressing in the absence of shock or 
CRF (36E). 
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The effects of 24 µg/side intra-VTA KA on reinstatement in response to 

intra-VTA CRF were tested in only three rats and are shown in 36C and 36D.  

Because of the small sample size, statistically significant effects were not 

observed.  However, as was the case with footshock, KA attenuated CRF-

induced cocaine seeking.  Although preliminary studies investigating the effects 

of intra-VTA KA on sucrose-pellet reinforced responding suggest that this dose of 

KA may impair lever pressing, intra-VTA administration of KA alone in rats with a 

history of cocaine SA produced an increase in lever pressing, suggesting that it 

either reinstated cocaine seeking or produced an activational rather than 

suppressant effect (36E).  Notably KA-induced increases in previously inactive 

lever pressing were observed (increase from 5.67 responses to 23).  

Nonetheless, we have begun testing for the effects of lower intra-VTA KA doses 

on stress- and CRF-induced cocaine seeking. 

DISCUSSION 

 Stress during periods of drug abstinence contributes to relapse in cocaine-

dependent individuals. In the rodent model of relapse, excessive cocaine use 

increases susceptibility to stressor-induced reinstatement of drug-seeking 

behavior.  We previously reported that the reinstatement of extinguished cocaine 

seeking by a stressor (footshock) is corticotropin releasing factor (CRF) 

dependent, and is characterized by increased VTA dopamine neuron 

responsiveness during the reinstatement session. Furthermore, excessive 

cocaine use increases susceptibility to later stressor-induced relapse at least in 
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part by augmenting CRF-R1 receptor-dependent regulation of addiction-related 

neurocircuitry in the ventral tegmental area (VTA).  The VTA represents a 

convergence point whereby dopamine, glutamate, GABA, and CRF neurons 

interact to regulate motivated behavior including stress-induced reinstatement. 

Footshock stress can cause GABA release into the VTA and activate VTA 

GABA neurons (Tan et al., 2012, Jennings et al., 2013). Ionotropic GABAA 

receptors and metabotropic GABAB receptors are present in the VTA (Kalivas, 

1993, Westerink et al., 1996, Westerink et al., 1998). GABAA receptors are 

located predominantly, but not exclusively, on GABA neurons while GABAB 

receptors are predominantly located on dopamine neurons (Churchill et al., 1992, 

Klitenick et al., 1992, Xi and Stein, 1998, Magreta-Mitrovic, 1999, Laviolette and 

van der Kooy, 2001, Laviolette et al., 2004). Therefore, GABAergic interneuron 

inhibition of VTA DA neurons is regulated by ionotropic GABAA receptors (Sugita 

et al., 1992, Kalivas, 1993), while direct GABA inhibition of dopamine neurons is 

regulated by metabotropic GABAB receptors (Xi and Stein, 1998, Margeta-

Mitrovic et al., 1999). Additionally, GABAB receptors are located on presynaptic 

GABA and glutamate terminals in the VTA inhibiting neurotransmitter release 

(Bonci and Williams, 1997, Shen and Johnson, 1997, Manzoni and Williams, 

1999, Wu et al., 1999, Giorgetti et al., 2002, Michaeli and Yaka, 2010). 

Intra-VTA GABAA receptors have been implicated in neuroadaptations 

regulating effects of stress and cocaine on midbrain dopamine neurons (Giorgetti 

et al., 1998, Tan et al., 2012). Moreover, intra-VTA GABAA receptors can 

regulate aversion, reward, and relapse (David et al., 1997, Ikemoto et al., 1997a, 
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Ikemoto et al., 1997b, Tan et al., 2012, Graziane et al., 2013). For these reasons 

we characterize the role of GABAA receptors in the LgA rodent model of relapse.  

Intra-VTA administration of the GABAA antagonist (1 and 10 ng/side) fails to 

significantly attenuate both footshock- and intra-VTA CRF-induced reinstatement 

of extinguished LgA cocaine seeking.  The initial dose of 30 ng/side was chosen 

based of primary literature (Sandner et al., 1996) but produced potent seizure 

like effects. The 10 ng/side dose is the highest concentration that didn’t produce 

these effects and is therefore utilized. The potent effects of bicuculline are 

presumably due to powerful disinhibition of dopamine neurons through blocking 

GABAA receptors on resident VTA GABA interneurons (Churchill et al., 1992, 

Kalivas, 1993, Laviolette and van der Kooy, 2001, 2004); which control the 

excitability of VTA dopamine neurons (Grace and Bunney, 1979, Waszczak and 

Walters, 1980, Wirtshafter and Klitenick, 1989, Oakley et al., 1991, Westerink et 

al., 1996, Westerink et al., 1998, Xi and Stein, 1998, Laviolette and van der 

Kooy, 2001, 2004). These results are indicative that intra-VTA GABAA receptor 

activation is not necessary for footshock- and intra-VTA CRF-induced 

reinstatement of LgA cocaine seeking. 

In contrast to GABAA receptors, GABAB receptors are functionally and 

anatomically preferentially expressed by VTA DA neurons (Xi and Stein, 1998, 

Margeta-Mitrovic et al., 1999, Laviolette and van der Kooy, 2001, Margolis et al., 

2012). Therefore, in addition to the role of GABAA receptors we also characterize 

the role of GABAB receptors. This lead to the novel finding from this set of 

experiments. GABAB receptor antagonism (2-hydroxysaclofen; 2 µg/side) blocks 
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both footshock- and intra-VTA CRF-induced reinstatement of extinguished LgA 

cocaine-seeking behavior. 

Moreover, GABAB and CRF-R1 can have coordinated function on VTA 

dopamine neurons. We have previously shown that CRF-R1 activation in the 

VTA is necessary and sufficient for reinstatement of extinguished LgA cocaine 

seeking (Blacktop et al., 2011). Notably, others have found that intra-VTA CRF-

R1 activation can facilitate GABAB inhibition of VTA dopamine neurons 

(Beckstead et al., 2009). This inhibition of VTA dopamine neurons occurs 

through GABAB-receptor coupling to G protein activated inwardly rectifying 

potassium (GIRK) channels (Beckstead et al., 2009). CRF robustly increases 

GABAB activated GIRK-induced IPSCs on VTA dopamine neurons through CRF-

R1 activation (Beckstead et al., 2009).  

These findings are consistent with the notion that GABAB receptors, GIRK 

channels, CRF, and CRF-R1 receptors synergistically inhibit VTA dopamine 

neurons. This is one possible postsynaptic mechanism by which stress facilitates 

reinstatement of extinguished LgA cocaine-seeking behavior. However, under 

these conditions GABAB receptor blockade would be expected to increase VTA 

dopamine neuron activity not inhibit it. Although this is a possibility, it is not the 

only mechanism by which the GABAB receptor can regulate dopamine neuron 

excitation. 

Presynaptic GABAB receptor activation can inhibit release of both 

glutamate and GABA in the VTA (cite) (Bonci and Williams, 1997, Manzoni and 

Williams, 1999, Wu et al., 1999, Giorgetti et al., 2002, Michaeli and Yaka, 2010). 
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Repeated psychostimulant administration can augment the ability of GABAB 

receptors to inhibit postsynaptic dopamine neurons and recruit the ability of 

GABAB receptors to inhibit presynaptic glutamate release in the VTA (Giorgetti et 

al., 2002). This suggests that following drug exposure the GABAB receptor 

functions to inhibit VTA neuron excitation by decreasing glutamate input.  

These previous findings suggest that GABAB receptor antagonism could 

be blocking reinstatement by: (1) decreasing inhibitory drive of the motive circuit 

by decreasing GIRK IPSCs on VTA dopamine neurons (Giorgetti et al., 2002, 

Beckstead et al., 2009), (2) increasing GABA and/or glutamate release in the 

VTA by decreasing GABAB mediated inhibition of neurotransmitter release on 

presynaptic GABA and/or glutamate neurons (Bonci and Williams, 1997, Shen 

and Johnson, 1997, Manzoni and Williams, 1999, Wu et al., 1999, Giorgetti et al., 

2002, Michaeli and Yaka, 2010), (3) or even coding for optimal phasic firing of 

VTA dopamine neurons (Beckstead et al., 2004, Ford et al., 2009). It is important 

to note that the mechanism may or may not involve coordinated actions of 

GABAB and CRF-R1. GABAB receptor blockade may be producing downstream 

effects independent of CRF dependent processes to regulate relapse. However, 

GABAB receptor activation is necessary for CRF actions in the VTA to produce 

reinstatement. 

Repeated cocaine self-administration can recruit the ability for footshock 

stress and intra-VTA CRF to provide excitatory drive on VTA dopamine neurons 

through presynaptic glutamate release and subsequent ionotropic glutamate 

receptor conductance on dopamine neurons (Ungless et al., 2003, Wang et al., 
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2005, Wanat et al., 2008, Hahn et al., 2009). Stress-induced CRF release in the 

VTA occurs in both drug-naïve and drug-experienced animals. However, only in 

drug-experienced animals has the recruitment of presynaptic glutamate and 

postsynaptic somatodendritic dopamine signaling been reported (Wang et al., 

2005). Footshock-induced reinstatement and the recruited concurrent increases 

in somatodendritic dopamine but not glutamate concentrations can be blocked by 

administration of a nonspecific ionotropic glutamate receptor antagonist (Wang et 

al., 2005). For these reasons we also characterize the role of ionotropic 

glutamate receptor subtypes in reinstatement.  

Intra-VTA administration of AP-5 or NBQX failed to significantly attenuate 

reinstatement to both footshock stress and direct VTA CRF delivery. Intra-VTA 

CRF receptor activation can excite both dopaminergic and GABAergic neurons in 

the VTA (Korotkova et al., 2006), both of which express NMDA and non-NMDA 

ionotropic glutamate receptors (Kalivas et al., 1989, Seutin et al., 1990, Wang 

and French, 1995). Moreover, glutamate can activate these receptors on both 

dopamine and GABA neurons (Christie et al., 1985, Sesack and Pickel, 1992, 

Steffensen et al., 1998). Perhaps the inability of NMDA or AMPA receptor 

antagonists to block reinstatement is due to an opposition between dopamine 

and GABA neurons both expressing NMDA and AMPA receptors. This would 

produce opposition not allowing for direct control of phenotypic excitatory drive 

within the VTA.  

Alternatively, the inability to block cocaine seeking by AP-5 and NBQX 

may suggest that reinstatement is dependent on the coordinated action of both 
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AMPA and NMDA receptors consistent with magnesium block dependent 

neuroplasticity to regulate drug seeking. For these reasons we test the role of the 

nonspecific ionotropic glutamate receptor antagonist kynurenic acid (KA). A 

preliminary pilot study reports that KA (24 µg/side) significantly attenuates 

footshock stress-induced reinstatement and with more subjects will likely block 

intra-VTA CRF-induced reinstatement. This may suggest that the coordinated 

action of both NMDA and AMPA receptors are necessary. Alternatively, 

reinstatement may be dependent on kainate receptor activation.  

Kainate ionotropic glutamate receptors are substantially understudied, 

present in the VTA, and known to regulate intra-VTA dopamine neuron activity 

(Wang and French, 1993a, Barrera et al., 2005). AP-5 and NBQX do not target 

the kainate receptor. In contrast, kynurenic acid (KA) blocks both the kainate 

receptor (Alt et al., 2004) and stress-induced reinstatement. Initial investigation of 

KA (24 µg/side) reports significant reductions in food reinforced responding in 

drug naïve rats trained in sucrose pellet reinforcement behavior (data not 

shown). However, KA (24 µg/side) does not affect the ability of drug-experienced 

animals to press the lever in the absence of drug, stress, or intra-VTA CRF. In 

fact, KA produced an activational effect not a suppressive one (Figure 36E).  

Kynurenic acid, in addition to being an antagonist at the NMDA, AMPA, 

and kainate ionotropic glutamate receptors, is an antagonist at alpha(α)7 nicotinic 

receptors (Hilmas et al., 2001, Stone, 2007). Alpha 7 nicotinic receptors are 

present in the VTA and reported to regulate not only dopamine neuron excitation 

(Calabresi et al., 1989, Pidoplichko et al., 1997, Schilstrom et al., 2000) but also 



187 
 

drug self-administration (Corrigall and Coen, 1994). Therefore, the ability of KA to 

block reinstatement also holds the possibility to be regulated by alpha 7 nicotinic 

receptors. 

When interpreting these findings, it is important to note that in contrast to 

our self-administration rats, sucrose trained rats have no history of cocaine intake 

and are food-restricted, possibly altering their sensitivity to NMDA, AMPA, 

kainate, or alpha 7 nicotinic receptor antagonism. This may suggest differential 

responses of drug naïve and drug-experienced animals to the same intra-VTA 

KA dose. Alternatively, KA may be inhibiting sucrose-seeking and drug-seeking 

through a similar motivational mechanism without altering their ability to press the 

lever. Moreover, it is still possible that the effects of KA on reinstatement are 

attributable to locomotor impairments.  

Moreover, glutamate could be regulating reinstatement through 

metabotropic but not ionotropic receptors. Metabotropic glutamate receptor 

(mGluR) activation in the VTA has been shown to regulate cocaine-induced 

plasticity involving potentiation of excitatory input onto VTA dopamine neurons 

(Bellone and Luscher, 2006). Specifically, activation of mGluR receptors reverses 

cocaine-induced insertion of calcium permeable AMPA receptors into the 

membrane of VTA dopamine neurons; termed mGluR-LTD (Bellone and Luscher, 

2005, 2006, Mameli et al., 2007, Luscher and Huber, 2010). In addition to 

regulating cocaine-induced AMPA neuroplasticity, mGluR current can be 

enhanced by CRF release in the VTA (Riegel and Williams, 2008). However, 

mGluR expression levels in the VTA have been reported to be unchanged 
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following extended access to cocaine (Ben-Shahar et al., 2009, Ghasemzadeh et 

al., 2011). 

In summary, the findings from this series of experiments involving 

ionotropic glutamate receptors is difficult to interpret. To this end, the exact role 

of AMPA and NMDA receptors in stress-induced reinstatement of extinguished 

LgA cocaine-seeking remains unclear. Current studies are being conducted to 

look at the role of an NMDA/AMPA receptor specific antagonist cocktail (3 µg of 

both AP-5 and NBQX per side). There are possible roles for kainate, alpha 7 

nicotinic, and metabotropic glutamate receptors in stress-induced reinstatement 

that were not addressed by the current set of experiments. 

The current findings suggest that GABAB but not GABAA, NMDA, or AMPA 

receptors by themselves are necessary for both footshock- and intra-VTA CRF-

induced reinstatement of extinguished LgA cocaine seeking. These results are 

surprising, it was hypothesized that both NMDA and AMPA antagonists would 

block reinstatement while GABAA and GABAB antagonists would augment it. 

However, only 2-hydroxysaclofen, the GABAB receptor antagonist, reliably 

blocked reinstatement by both footshock stress and intra-VTA CRF delivery. This 

does not suggest that GABAA, NMDA, or AMPA receptors are not involved in 

stress-induced reinstatement, but rather likely reflects the inability to isolate 

neuronal phenotype specific activation by these receptors. However, the novel 

finding of this set of experiments is that GABAB receptor activation is necessary 

for both footshock- and intra-VTA CRF-induced reinstatement.  
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The ability of stressful life events to precipitate drug use through actions 

involving GABAB receptors in the VTA may or may not represent an emergent 

consequence of excessive cocaine use. Identification of the precise mechanisms 

behind the necessity of GABAB receptor activation in footshock- and intra-VTA 

CRF-induced reinstatement of extinguished LgA cocaine seeking should provide 

important insight into how stress responsiveness in cocaine addicts promotes 

cocaine craving and relapse. 
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CHAPTER 5 

GENERAL DISCUSSION: VENTRAL TEGMENTAL AREA REGULATION OF 
STRESS-INDUCED REINSTATEMENT OF COCAINE-SEEKING BEHAVIOR 
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SUMMARY OF FINDINGS BY CHAPTER 

 This dissertation addresses key unknown mechanisms behind addiction-

related drug-induced neuroplasticity and how such neuroplasticity gates the 

ability of stress to cause relapse. The high relapse rates in drug abstinent addicts 

have made preventing relapse central for the long-term management of drug 

addiction. In order to better understand how to prevent relapse, we must further 

understand the neurobiological processes that contribute to it. Primary questions 

of importance related to relapse are: 1) what are the primary triggers for relapse, 

2) what systems of the brain regulate these triggers of relapse, and 3) what 

maintains the vulnerability for these triggers to cause relapse even following 

periods of prolonged drug abstinence? Stressful life events are unpredictable and 

unavoidable causes of relapse in human addicts. In this dissertation stress-

induced relapse was modeled using the long-access cocaine self-

administration/stress-induced reinstatement rodent model. General questions 

addressed in this dissertation are: 1) what are the primary mechanisms of stress-

induced reinstatement, 2) what part of the brain regulates stress-induced 

reinstatement, and 3) what maintains the vulnerability for stress to trigger 

reinstatement even after extinction of drug seeking? 

Very little is known about the neuromechanisms through stress contributes 

to the relapse process. Previous work from our laboratory has demonstrated that 

intake dependent neuroplasticity occurs with repeated cocaine use. This 



192 
 

neuroplasticity, in turn, interacts with the stress-related neuropeptide 

corticotropin-releasing factor (CRF) to facilitate stress-induced reinstatement of 

cocaine-seeking behavior. Importantly, stress-induced reinstatement only occurs 

in animals with a prior history of daily long-access but not short-access cocaine 

use (Mantsch et al., 2008a, Blacktop et al., 2011, Graf et al., 2011). This 

suggests that stress-induced reinstatement in our animal model is dependent on 

cocaine intake-dependent neuroplasticity. The exact brain regions where this 

neuroplasticity and the neuropeptide CRF are interacting to regulate 

reinstatement are not fully defined. To this end, areas of convergence between 

motivational- and stress-related neurocircuitry provide opportunity for the study of 

the neuromechanisms by which stress facilitates relapse. A major area of 

convergence between motivational- and stress-related neurocircuitry examined in 

this dissertation is the ventral tegmental area (VTA). This area was examined 

because it represents a site where there is convergence of resident motivational-

related dopamine neurons and inputs that release the stress-related 

neuropeptide corticotropin releasing factor (CRF) (Wise and Rompre, 1989, 

Korotkova et al., 2006, Tagliaferro and Morales, 2008, Wanat et al., 2008, Hahn 

et al., 2009, Almela et al., 2012, Wanat et al., 2013). Novel CRF-related 

neurobiological mechanisms within the ventral tegmental area that contribute to 

stressor-induced reinstatement of cocaine seeking are described.  
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CHAPTER 2 

 Chapter two characterizes whether CRF actions in the VTA represent a 

primary mechanism responsible for stress-induced reinstatement, and, if so, 

which CRF receptor CRF is acting through. This was accomplished using site-

specific pharmacological manipulations within the VTA and the rodent 

reinstatement model of relapse. The hypotheses of chapter are that intra-VTA 

CRF administration is sufficient to reinstate drug seeking in high- (long-access) 

but not moderate-intake (short-access) animals and that CRF-R1, but not CRF-

R2, activation in the VTA is necessary and sufficient for reinstatement.  

Chapter two reports that CRF actions in the VTA do in fact represent a 

primary mechanism underlying stress-induced reinstatement. Intra-VTA CRF-

administration is sufficient to reinstate drug seeking in a similar way to footshock 

stress and this is only observed following long-access self-administration. 

Footshock stress and intra-VTA CRF administration produces robust 

reinstatement following LgA but not ShA cocaine self-administration. Footshock 

stress- and intra-VTA CRF-induced reinstatement are both dependent on CRF-

R1 receptor activation and not CRF-R2 receptor activation. Moreover, intra-VTA 

administration of a CRF-R1 but not CRF-R2 specific agonist is sufficient to 

reinstate drug seeking in a similar way to intra-VTA CRF administration. 

Therefore, intra-VTA CRF-R1 activation is necessary and sufficient for 

reinstatement of extinguished long-access cocaine-seeking behavior.  
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Altogether, the results of chapter two are indicative that excessive cocaine 

use increases the susceptibility to stressor-induced relapse at least in part by 

augmenting CRF-R1 dependent regulation of addiction-related neurocircuitry in 

the VTA. Importantly, these findings reveal a site specific neuromechanism that 

regulates stress-induced reinstatement of cocaine-seeking behavior. The findings 

of chapter 2 also suggest that CRF actions, by way of CRF-R1 activation in the 

VTA, may be one way through which stressful life events facilitate relapse in 

human addicts. 

CHAPTER 3 

 Chapter three characterizes whether stressor-induced reinstatement of 

cocaine-seeking behavior involves an increase or a decrease in VTA dopamine 

neuron activation. This was done utilizing dual immunohistochemistry to detect 

stress-induced expression of an indicator of neuronal activation, c-Fos (Sagar et 

al., 1988), with tyrosine hydroxylase, a known marker for dopamine neurons in 

the VTA (Hokfelt, 1984). It was hypothesized that a significant increase in 

dopamine neuron activation would only be observed under conditions in which 

footshock stress reinstates cocaine seeking. Therefore, it was hypothesized that 

a significant increase in intra-VTA dopamine neurons that co-express c-Fos in 

response to footshock stress would occur in long-access but not short-access 

animals. This hypothesis was guided by previous findings from our laboratory 

reporting that footshock stress only reinstates drug-seeking in animals with a 
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history of long-access but not short-access cocaine self-administration (Mantsch 

et al., 2008a, Blacktop et al., 2011, Graf et al., 2011).  

In contrast to previous findings, and the original hypotheses, it was found 

that 30% of short-access and 60% of long-access animals receiving footshock 

showed reinstatement of cocaine-seeking behavior. This is a disproportionately 

high percentage of ShA and low percentage of LgA rats relative to our previous 

reports. Independent of whether the animals received footshock or not animals 

with a history of short-access cocaine self-administration displayed increased, 

while animals with a history of long-access displayed decreased, VTA dopamine 

neuron activation. Surprisingly, the overall number and percent of dopamine 

neurons expressing Fos were found to be significantly increased in ShA but not 

LgA rats. Despite overall differences in dopamine (TH-positive) neuron activation 

(Fos positive) across groups, significant footshock stress-induced increases in 

dopamine cellular c-Fos reactivity were not observed in any cocaine self-

administration access group.  

Although, stress-induced reinstatement tends to be increased in LgA 

animals, an increase in c-Fos immunoreactivity was not observed under any 

condition. Interestingly, when LgA and ShA animals were combined, the 

percentage of TH-positive cells co-expressing c-Fos following stress-induced 

reinstatement was positively correlated with reinstatement magnitude. Further 

analysis of reinstatement and dopamine neuron activation was conducted on 

animals that did or did not reinstate in response to footshock (i.e. combining both 

ShA and LgA subjects). When examining across these groups and comparing to 
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non-stress, saline controls, and non-reinstating rats, the number and percentage 

of VTA Fos-expressing TH-positive cells was significantly increased in rats that 

displayed stress-induced reinstatement.  In other words, footshock stress 

produces a significant increase in VTA dopamine neuron activation only in 

animals that reinstated. Importantly, this suggests that stress-induced 

reinstatement of cocaine seeking is correlated with increased VTA dopamine 

neuron activation and that individual differences in VTA dopamine neuron 

activation by stress may also contribute to stress-induced reinstatement. The 

findings of chapter three suggest that stressful life events may cause relapse in 

human addicts by increasing VTA dopamine neuron activation, and that 

individual differences in the stress response of the addict can regulate the 

susceptibility to relapse. 

CHAPTER 4 

 Lastly, chapter 4 characterizes whether both stress- and intra-VTA CRF-

induced reinstatement of extinguished cocaine-seeking behavior is dependent on 

excitatory or inhibitory receptor activation in the VTA. More specifically, the 

necessity of AMPA, NMDA, GABAA, and GABAB receptor activation in this 

reinstatement was examined. This was also examined using site-specific 

pharmacological manipulations within the VTA and the rodent reinstatement 

model of relapse. It was hypothesized that both stress- and intra-VTA CRF-

induced reinstatement of extinguished long-access cocaine-seeking behavior 

would be dependent on excitatory (glutamate) but not inhibitory (GABA) receptor 
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activation within the VTA. Therefore, it was more specifically hypothesized that 

both NMDA and AMPA antagonists would block while both GABAA and GABAB 

antagonists would augment both stress- and intra-VTA CRF-induced 

reinstatement in long-access animals. These hypotheses are supported by 

earlier reports implicating excitatory glutamatergic activation of VTA dopamine 

neurons in CRF-dependent stress-induced reinstatement of cocaine-seeking 

behavior (Wang et al., 2005, Wang et al., 2007). 

In contrast to our original hypotheses, multiple doses of intra-VTA delivery 

of NMDA and AMPA receptor specific antagonists alone failed to block, while 

both GABAA and GABAB specific antagonists alone failed to augment 

reinstatement by either footshock stress or intra-VTA CRF delivery. Even more 

surprisingly, intra-VTA administration of a GABAB receptor specific antagonist 

alone blocked both footshock- and intra-VTA CRF-induced reinstatement in rats 

with a history of long-access self-administration in a similar way to CRF-R1 

antagonism described in chapter 2. Not only is this finding contrary to our original 

hypotheses but it is novel and implicates inhibitory GABAB receptor signaling in 

reinstatement of extinguished LgA cocaine seeking. These findings may also 

suggest that stressful life events precipitate relapse by engaging activation of the 

GABAB receptor in the ventral tegmental area. 

In summary the findings from chapters two through four suggest that: 1) 

stress is a primary trigger for relapse to cocaine use, 2) the CRF and dopamine 

systems within the ventral tegmental area regulate stress triggered relapse, 3) 

long-term vulnerability to stress-induced relapse involves drug-induced 



198 
 

neuroplasticity which in turn interacts with CRF and, possibly, dopamine systems 

within the VTA, 4) stress-induced relapse is correlated with increased activation 

of VTA dopamine neurons, and 5) stress-induced relapse is dependent on CRF-

R1 and GABAB receptor activation within the VTA. The findings from this 

dissertation provide much needed insight into the cocaine-induced 

neuroadaptations that occur within the VTA and which systems interact with 

those neuroadaptations to regulate later stressor-induced relapse in cocaine 

addicts. The hope is that these findings will make current drug addiction 

therapies more effective or help with the development new drug therapies for the 

long-term management of cocaine addiction. The following chapter will discuss 

the significance of the findings from chapters two through four in further detail. 

CRF RECEPTOR SUBTYPES AND THE VTA  

 CRF and both its receptors appear to be functionally expressed within the 

VTA (Ungless et al., 2003, Korotkova et al., 2006, Wanat et al., 2008). CRF-R1 

mRNA has been found in both dopaminergic and GABAergic neurons of the VTA 

(Korotkova et al., 2006, Tagliaferro and Morales, 2008, Refojo et al., 2011). 

Although, the VTA does express CRF-R1 mRNA it does so at much lower levels 

than in other brain regions (Sauvage and Steckler, 2001). For this reason, CRF-

R1 expression may be increased following LgA cocaine self-administration. 

Although not reported in this dissertation, a current collaborative study between 

our laboratory and the Seasholtz laboratory at the University of Michigan is being 

conducted. This study is utilizing double in situ hybridization for CRF-R1 or CRF-
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BP mRNA in dopamine and GABA neurons in rats with a history of ShA or LgA 

self-administration and in saline controls. Preliminary reports show a greater 

proportion of CRF-R1 mRNA in dopamine neurons than in GABA neurons within 

the VTA. 

Although the distribution of CRF receptor subtype mRNA expression has 

been extensively studied (Van Pett et al., 2000), the neurochemical identity of 

neurons expressing CRF-R1 protein remains largely unknown. A clear 

understanding of the localization of CRF receptor subtype receptors in the VTA 

awaits the availability of better antibodies for immunohistochemical 

characterization. This is largely due to difficulties generating CRF-R subtype 

specific antibodies (Chen et al., 2000, Campbell et al., 2003). Although, there are 

reports of CRF receptor subtype protein expression in the rat brain (Lukkes et al., 

2011) the general consensus is that commercially available CRF-R1 antibodies 

are insufficient in sensitivity and specificity to detect endogenous physiological 

levels of CRF-R1 protein in the brain (Refojo et al., 2011). Unfortunately, this has 

made characterizing CRF-R1 protein expression in the VTA under conditions in 

which it regulates relapse difficult. 

CRF RECEPTOR SIGNALING IN THE VTA AND STRESS 

 Potent anxiogenic effects have been reported following ventricular 

administration of CRF (Britton et al., 1982, Sutton et al., 1982, Gosnell et al., 

1983, Veldhuis and De Wied, 1984, Eaves et al., 1985, Berridge and Dunn, 

1986, Britton et al., 1986a, Britton et al., 1986b, Ruckebusch and Malbert, 1986, 
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Sherman and Kalin, 1986, Berridge and Dunn, 1987, Dunn and File, 1987, Ehlers 

and Chaplin, 1987, Sherman and Kalin, 1987, Swerdlow et al., 1989, Dunn and 

Berridge, 1990); see corticotropin releasing factor section in chapter one. In 

contrast to ventricular administration, the role of intra-VTA CRF has been under-

characterized. However, early reports have implicated intra-VTA CRF in 

increased locomotor activity (Kalivas et al., 1987) with chronic cocaine 

administration increasing CRF binding, as measured using autoradiography, 

within the VTA (Goeders et al., 1990). These findings are consistent with indirect 

observations from our laboratory in which intra-VTA CRF administration in drug-

experienced animals produces increased locomotor activity, anxiogenic like 

behaviors (i.e. increased grooming, agitation, and aggression), and reinstatement 

of cocaine seeking. 

CRF-R1 SIGNALING IN THE VTA AND STRESS 

 The finding that CRF-R1 regulates stress-induced relapse is consistent 

with its primary role in the stress response of an organism. CRF-R1 expression is 

more abundant and consistently reported in the VTA as compared to CRF-R2 

(Van Pett et al., 2000, Sauvage and Steckler, 2001, Refojo et al., 2011). 

Moreover, CRF has a tenfold higher affinity for CRF-R1 over CRF-R2 (Perrin et 

al., 1995), and is the receptor subtype that results in ACTH release and HPA-axis 

activation. CRF-R1 activation produces anxiogenic pro-stress effects (Bale and 

Vale, 2004) with CRF-R1 antagonists producing anxiolytic anti-stress effects 

(Schulz et al., 1996, Deak et al., 1999, Okuyama et al., 1999). Paradoxically, 
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selective deletion of CRF-R1 in midbrain dopaminergic neurons increases 

anxiety-like behavior and reduces dopamine release in the terminal fields of the 

VTA (Refojo et al., 2011). This suggests that CRF-R1 activation in the VTA can 

increase medial prefrontal dopamine concentrations and regulate stress-related 

behavior. This is consistent with stress-induced increases in mesocortical 

dopamine release (Thierry et al., 1976, Lavielle, 1978, Herman et al., 1982, Sorg 

and Kalivas, 1993). However, the finding that CRF-R1 activation in the VTA can 

be anxiolytic (Refojo et al., 2011) is not consistent with our findings that CRF-R1 

antagonist administration into the VTA blocks footshock stress-induced 

reinstatement (Blacktop et al., 2011).  

Similarly, the central function of the CRF-R2 receptor is not as well 

understood and has been implicated in both stress-protective and stress-coping 

effects (Bale et al., 2000, Valdez et al., 2002). Even less is known about the 

exact role of the CRF-R2 receptor within the ventral tegmental area. Therefore, 

the exact role of intra-VTA CRF release and activation of its receptors in 

anxiogenic and anxiolytic behavior in both drug naïve and drug-experienced 

animals needs to be investigated. It is possible that anxiogenic behavior induced 

by CRF administration into the VTA is augmented or even recruited following 

cocaine self-administration. Alternatively, anxiogenic effects of CRF may be 

mediated elsewhere in the CNS with intra-VTA CRF regulating other important 

aspects of stress reactivity (e.g., coping behaviors). These explanations are 

consistent with the emergent ability of intra-VTA CRF to cause reinstatement that 

is reported in chapter two. 
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LONG-ACCESS VERSUS SHORT-ACCESS COCAINE-INDUCED 
NEUROPLASTICITY 

 

 The amount of cocaine used is positively correlated with stress-induced 

cocaine craving in human addicts (Fox et al., 2005). Cocaine-induced 

neuroplasticity appears to involve increased stress responsiveness and cocaine 

craving (Sinha et al., 1999). In preclinical animal models of drug addiction and 

relapse, the long-access (LgA) approach has been utilized to examine drug-

induced neuroplasticity (Ahmed and Koob, 1998, 1999, Mantsch et al., 2008a, 

Blacktop et al., 2011, Graf et al., 2011). Reinstatement is augmented in response 

to cocaine (Mantsch et al., 2004, Madayag et al., 2011), cocaine cues following 

long-access cocaine self-administration (Kippin et al., 2006), and stress (Mantsch 

et al., 2008a, Blacktop et al., 2011, Graf et al., 2011). 

Reinstatement by footshock stress, ventricular CRF administration, and 

intra-VTA CRF administration appears to represent an emergent intake 

dependent phenomenon (Mantsch et al., 2008a, Blacktop et al., 2011, Graf et al., 

2011). Specifically, reinstatement by acute footshock stress exposure, ventricular 

CRF administration, and intra-VTA CRF administration is more reliably observed 

following high intake long-access (LgA; 14 x 6 hrs/day; ~70 mg/kg/day) but not 

short-access (ShA; 14 x 2 hrs/day; ~15 mg/kg/day) cocaine self-administration 

(Mantsch et al., 2008a, Blacktop et al., 2011, Graf et al., 2011). These findings 

suggest that the emergent ability of stress and CRF delivery to reinstate cocaine 

seeking is the likely consequence of cocaine-induced neuroplasticity in the 

circuitry of motivated behavior. This hypothesis is further supported by the 
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findings that CRF signaling (Richter and Weiss, 1999, Zorrilla et al., 2001, Specio 

et al., 2008, Zorrilla et al., 2012) is augmented following extended LgA cocaine 

self-administration. Altogether, this would suggest that the circuitry of motivated 

behavior becomes hypersensitized to CRF signaling following long-access 

cocaine self-administration. 

ROLE OF CRF RECEPTOR SUBTYPES IN THE VTA IN STRESSOR- AND 
INTRA-VTA CRF-INDUCED REINSTATEMENT OF EXTINGUISHED LONG-
ACCESS COCAINE-SEEKING BEHAVIOR 

 

 Excessive long-access cocaine self-administration increases the 

susceptibility to stressor-induced relapse at least in part by augmenting CRF-R1 

dependent regulation of addiction-related neurocircuitry in the VTA (Blacktop et 

al., 2011). The chapter two findings that VTA CRF-R1 receptors are necessary 

and sufficient for reinstatement of cocaine seeking is further supported by 

previous studies which found that footshock stress-induced reinstatement is 

inhibited by systemic or ventricular delivery of CRF-R1 but not CRF-R2 receptor 

antagonists (Shaham et al., 1998, Lu et al., 2001). However, these findings are 

inconsistent with previous reports of Wise and colleagues suggesting the 

involvement of intra-VTA CRF-R2 instead of CRF-R1 receptors along with an 

unknown mechanism involving the CRF-binding protein (Wang et al., 2005, 

Wang et al., 2007). 

Wise and colleagues reported that reinstatement, increased glutamate 

transmission, and increased somatodendritic dopamine signaling were all 

prevented by administration of a CRF-R2 antagonist and not a CRF-R1 
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antagonist (Wang et al., 2007). Furthermore, CRF receptor agonists found to be 

sufficient to cause reinstatement included ligands that bound to both the CRF-R1 

and CRF-R2 receptors (Wang et al., 2007). However, every agonist that 

reinstated also bound to the CRF-BP while ineffective agonists did not (Wang et 

al., 2007, Wise and Morales, 2010). For these reasons, the authors hypothesized 

a distinct role for both the CRF-R2 receptor and the CRF-BP in intra-VTA CRF 

dependent reinstatement of cocaine seeking. 

In contrast to Wang et al. (2007), chapter two reports that the CRF-R1 

specific agonist, cortagine, was sufficient while the CRF-R2 specific agonist, rat 

Urocortin 2 (rUcn2), was insufficient  to reinstate cocaine-seeking when 

administered into the VTA (Blacktop et al., 2011). Cortagine does not bind to the 

CRF-BP (Tezval et al., 2004) while rUcn2 does (Jahn et al., 2004). These 

findings suggest that the involvement of CRF-BP in reinstatement is yet another 

inconsistency between our findings reported in chapter two and those of Wise 

and colleagues. 

DISPARATE FINDINGS & METHODOLOGIES: CHAPTER TWO AND WISE 
AND COLLEAGUES 

 

 The reason for the inconsistencies between our findings and those of 

others is unclear but may involve differential experimental methodologies. These 

include the mode of delivery of CRF and CRF antagonist/agonists (microinjection 

vs. reverse dialysis), CRF receptor antagonist/agonist doses (90 µM to 5.5 mM 

vs. 1 to 10 µM), different rat strains (Sprague Dawley vs. Long-Evans), 

differential experimental cocaine histories (6 hrs vs. 4 hrs), and most notably the 
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amount of total cocaine intake. The daily cocaine reported in our LgA animals 

was greater than 70 mg/kg compared to 33 mg/kg (Wang et al., 2007, Blacktop 

et al., 2011). It is possible that regulation of cocaine seeking by CRF-R1 

receptors in VTA requires a prior history of very high levels of cocaine intake. In 

our hands excessive cocaine intake has been required for stress-induced 

reinstatement (Mantsch et al., 2008a). This is supported by previous findings 

reporting CRF-R1 only reduces cocaine self-administration following escalation in 

LgA rats (Specio et al., 2008).  

The method of intra-VTA CRF delivery (microinjection vs. reverse dialysis) 

may have determined which CRF receptor was necessary for reinstatement. 

Agonist stimulation of CRF-R1 results in the desensitization of CRF-R1 signaling, 

as a consequence of both second messenger-dependent protein kinase activity 

and G protein-coupled receptor kinase phosphorylation (Oakley et al., 2007). 

This promotes β-arrestin recruitment to CRF-R1 facilitating endocytosis (Holmes 

et al., 2006, Oakley et al., 2007). Following CRF binding CRF-R1 receptors are 

internalized and degraded (Reyes et al., 2006, Reyes et al., 2008).  

CRF has a tenfold higher affinity for CRF-R1 over CRF-R2 (Perrin et al., 

1995) producing differential effects of β-arrestin recruitment and therefore 

internalization. Specifically, preferential CRF-R1 over CRF-R2 internalization 

occurs in the micromolar range (Oakley et al., 2007, Hauger et al., 2013), as 

utilized by Wise and colleagues during reverse dialysis. At this concentration 

there is only weak β-arrestin recruitment to the CRF-R2 receptor but strong 

recruitment to the CRF-R1 receptor (Oakley et al., 2007, Hauger et al., 2013). 
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Considering that reverse dialysis is a more extended approach it is possible that 

preferential internalization of the CRF-R1 receptor occurred. Although our dose 

of CRF (420 µM) is significantly greater than the 10 µM used by Wang et al., 

(2007) it was acutely administered. Therefore, our dose likely readily activated 

both receptors but likely did not cause internalization prior to the phase of 

reinstatement testing during which cocaine seeking was observed. In contrast, 

reverse dialysis at the 10 µM concentration may have caused preferential CRF-

R1 internalization throughout the reinstatement session. In summary, 

endogenous CRF-R1 signaling was likely intact in our experiments and may not 

have been in others at the time of reinstatement. This may explain the CRF 

receptor subtype discrepancies between chapter two and Wise and colleagues.  

CRF RECEPTOR G-PROTEIN COUPLING 

 The complexities of CRF receptor subtype-dependent behaviors is 

enhanced considering the promiscuity of their G-protein coupling. CRF receptors 

may change their downstream signaling pathway in the ventral tegmental area 

(VTA) following high intake of cocaine. This possible change in G-protein 

coupling could account for differences observed in which CRF-receptor subtype 

is regulating drug seeking in the VTA (Wang et al., 2007, Blacktop et al., 2011). 

Therefore, characterizing downstream signaling cascades for both CRF receptor 

subtypes following extended cocaine access may be informative as to how 

cocaine history is changing CRF responsiveness in the VTA. In support, CRF 

receptors are known to couple to multiple G-proteins including Gs, Gi, and Gq 



207 
 

proteins (Grammatopoulos et al., 1999, Grammatopoulos et al., 2000, 

Grammatopoulos et al., 2001, Blank et al., 2003, Wietfeld et al., 2004, Berger et 

al., 2006). Different receptor states or conformations can have different G-protein 

couplings and different G protein couplings can have different affinities for 

different conformational states (Kenakin, 2002). The active allosteric 

conformational states of the CRF-R1 receptor are thought to determine the G-

protein coupling preference (Nielsen et al., 2000, Assil et al., 2001, Kenakin, 

2002, Hoare et al., 2003, Hoare et al., 2004, Wietfeld et al., 2004, Berger et al., 

2006). 

 It is well established that Gs activates PKA, Gi inhibits PKA, while Gq 

activates PKC all of which have different complex downstream signaling 

cascades. Chronic cocaine administration followed by acute withdrawal can 

produce a shift from CRF-R2 dependent Gs to Gq coupling in other brain regions 

(Liu et al., 2005). The promiscuous signaling of CRF receptors may help explain 

why CRF-R1, CRF-R2, PKA, and PKC have all been implicated in neuroplasticity 

of VTA dopamine neurons (Ungless et al., 2003, Wanat et al., 2008, Beckstead 

et al., 2009, Hahn et al., 2009). Therefore, there is the possibility that CRF-R1 

may change its receptor coupling in the VTA following high cocaine intake. 

Future studies need to address the coupling and downstream signaling of the 

CRF-R1 receptor in the VTA in both cocaine naïve and long-access cocaine-

experienced animals. 
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INTRACRANIAL CHEMICAL INJECTIONS: CHAPTERS TWO AND FOUR 

 Intracranial chemical injections (ICIs) play a critical role in the investigation 

and localization of neuromechanisms involved in drugs of abuse and relapse. 

However, there are significant caveats of the methodologies used that need to be 

taken into consideration. Pharmacological controls are necessary to assess non-

receptor-mediated local actions of the drug, anatomical controls are necessary to 

rule out drug efflux to distal sites of action, and behavioral controls are necessary 

to separate the neuromechanism of interest from generalized activational or 

suppressive effects of the administered drugs (Wise and Hoffman, 1992). 

The ventricular hypothesis involves the sphere of influence of ICI having 

and that sphere having the potential to spread from the site of ICI administration 

to the ventricular system (Routtenberg, 1972). Therefore, the anatomical region 

of interest along with spread must be considered when using site specific 

intracranial chemical injections. ICI material spreads through extracellular space 

(Bondareff and Pysh, 1968, Bondareff et al., 1970, Bondareff et al., 1971) with 

removal of ICI material occurring via blood vessels located near or at the 

injection site (Grossman and Stumpf, 1969). 

In fact, liquid application has less spread and more immediate effects than 

crystalline application of drug (Routtenberg and Olds, 1966, Stein and Levitt, 

1971). However, liquid administration has its own challenges. For example, a 

large injection volume, such as 1 µl, produces damage at the injection site in the 

form of a large vacuole at the site of the cannula tip (Routtenberg and Olds, 
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1966, Routtenberg, 1972). This is not surprising since a 1 µl volume is occupying 

1 mm3 within the brain (Routtenberg, 1972). To circumvent this, others have tried 

using much smaller volumes (ex. 0.05 µl) which failed to produce repeatable 

results (Routtenberg, 1972). Therefore, a compromise was made setting the 

standard for ICI volume methodology. The compromise involved a volume with 

minimal damage yet repeatable administration which occurred at either 0.5 or 

0.25 µl (Routtenberg and Simpson, 1971, Routtenberg, 1972). The spread of 

these smaller volumes was determined using dye and radiolabeled phosphorus 

with the same methodologies (ex. rate, cannula diameter, volume) and similar 

characteristics to the drug being administered (ex. pH, osmolarity, viscosity)  

(Maclean, 1957, Myers, 1966). These studies reported minimal restricted spread 

when 0.5 or 0.25 µl volumes are used. For these aforementioned reasons the 

0.25 µl volume was used for this dissertation.  

A 1 µl injection has an approximate spread radius of 0.6 mm producing a 

sphere of 1.2 mm in diameter (Lomax, 1966). Although 1 µl ICI showed 

considerable more spread than the 0.5 and 0.25 µl ICI (Routtenberg and 

Simpson, 1971, Routtenberg, 1972) it can be used as a conservative ratiometric 

estimate of spread for these smaller volumes. Using this volume to spread ratio a 

0.25 µl ICI, as administered in this dissertation, can be calculated to have a 

spread radius of 0.15 mm and a sphere of 0.30 mm in diameter. Considering the 

VTA in the rat has a conservative bilateral radius of 0.5 mm (Paxinos, 2007) it is 

reasonable to assume that upon histological confirmation of an injection site the 

spread will be likely localized to the VTA, within reason. It is important to note 
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that without a certain amount of spread ICI’s would be much less effective. The 

optimal amount of spread is necessary for three dimensional diffusion into the 

area of interest that has not been damaged upon insertion of cannula. In this 

way, diffusion can be an advantage and not a disadvantage for experimention.  

 

Figure 37: Depiction of the area of spread by a microinjection in the VTA. The 
black circle is demonstrating a 1 mm2 area representing the VTA area of interest, 
and the red circle is representing the calculated spread for a 0.25 µl injection of ~ 
0.30 mm in diameter (Paxinos, 2007). 
 

 

 

 

 

 

 

In addition to spread, there is damage to the site where the cannulae are 

placed within the brain. Tissue damage (e.g., reactive astrocytes, increased 

extracellular space) can, in turn, effect the neurochemistry of the injection site 

which can interact with the effects of the drugs being administered (Stavraky, 

1961, Miller et al., 1964, Routtenberg, 1968, Weiss and Heller, 1969, 

Routtenberg, 1971). These effects can be minimized by using smaller gauge 

cannulae, using a dummy probes that are longer than the actual microinjector, 

and allowing ample recovery time from surgery. 
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To further minimize complications, the effect of injector cannula insertion 

by itself must be taken into account. The insertion of injector cannulae alone has 

been shown to effect behavior (Goddard, 1965). If this is suspected or of concern 

sham microinjections can be used as a control. In addition to cannula insertion, 

the rate of volume infusion can affect the rate of spread, amount of tissue 

damage, time course of the drug effect, and even the behavioral outcome (Booth, 

1968, Routtenberg, 1971, Routtenberg and Simpson, 1971). A very slow rate of 

infusion (1 µl over 1-hr) and a very fast rate of infusion (1 µl over 1-minute; 0.5 µl 

over 10-sec) have been assessed for behavioral efficacy; with faster infusion 

rates producing most reliable results (Booth, 1968, Routtenberg, 1971, 

Routtenberg and Simpson, 1971). Therefore, the balance between latency of 

desired effect and possible tissue damage due to the rate of delivery must be 

considered. However, to reduce the possibility of ICI liquid from traveling back up 

the cannulae (i.e. path of least resistance) the injector cannula should be held in 

place for a period of time after the cessation of the injection. Repeatability of rate 

specific volumes can be applied using Hamilton syringes. For these reasons, 

0.25 µl was infused over a period of 1-minute with a Hamilton syringe, with the 

injector cannula being left in for an additional minute past cessation of the 

injection.  

Another factor that needs to be taken into consideration is the number of 

microinjections being applied to one injection site. The ideal number of intra-

cranial microinjections is one (Olds et al., 1964, Routtenberg, 1972). However, 

one injection may become impractical under certain paradigms. This is especially 
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true for long-access cocaine self-administration followed by extinction, which 

requires reinstatement testing following both vehicle and pharmacological pre-

treatments. To minimize damage to the injection site and the confound of this 

damage interacting with treatment-order bias, treatment conditions must be 

counter balanced with a maximum of 3-4 microinfusions per site. Alternatively, 

the experimenter can design between-group experimental methods at the 

expense of time and resources. In summary, the majority of methodological 

issues discussed cannot be entirely avoided but merely minimized. It is important 

to note that every method, when critically analyzed, will have its weaknesses.  

However, it is important not to lose sight of the powerful advantages that 

ICI gives the experimenter. ICI avoids complications of first pass metabolism and 

the difficulty of the blood-brain barrier. ICI is reproducible and the properties of 

the liquid being applied can be tightly controlled (ex. pH, osmolarity, spread, rate, 

any other important properties of an aqueous solution) (Routtenberg, 1972). This 

includes dose-response testing that includes both very low and high 

concentrations of drug. Moreover, findings from different research groups can be 

compared with a certain amount of reproducibility. Intracranial injections give the 

experimenter a much needed, albeit blunt, instrument with the ability to access 

presynaptic, postsynaptic, and astrocytic targets. This gives the experimenter the 

ability to characterize neuromechanisms at the tripartite synapse in freely 

behaving animals in vivo. It is particularly useful in determining which brain sites 

and receptors regulate behavior, such as drug seeking. 
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COCAINE ABSTINENCE AND STRESSOR RESPONSIVENESS 

 Longer periods of abstinence can produce heightened responsiveness to 

stressors (Erb et al., 1996, Sorge and Stewart, 2005) and dopamine neuron 

activation by CRF is greatly affected by prior cocaine exposure and the stage of 

drug abstinence (Beckstead et al., 2009). Footshock-induced reinstatement of 

cocaine seeking is relatively suppressed in the first 24 hrs after withdrawal from 

cocaine in animals provided prolonged cocaine self-administration (Sorge and 

Stewart, 2005). The findings that footshock is relatively ineffective in inducing 

reinstatement in the early withdrawal period appears to be specific to animals 

with a history of prolonged drug exposure. Interestingly, early withdrawal is when 

the anxiogenic effects are the highest (Weddington et al., 1990, Markou and 

Koob, 1991, 1992, Miller et al., 1993, Barros and Miczek, 1996) – thus, there is a 

functional disconnect between cocaine seeking and withdrawal-induced anxiety. 

Suppressed responding to footshock 24 hrs after withdrawal from cocaine is not 

observed in animals that self-administer cocaine for only 2 h per day (Sorge and 

Stewart, 2005). This suggests that LgA animals are fundamentally different than 

ShA animals during early abstinence following extinction training.  

Diminished footshock-induced reinstatement observed during early 

cocaine withdrawal normalizes within 48 hrs (Erb et al., 2004, Rudoy and Van 

Bockstaele, 2007). Furthermore, footshock-induced reinstatement can became 

progressively augmented over time (Sorge and Stewart, 2005) with stressor 

responsiveness being significantly greater in animals with prolonged cocaine 
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exposure (Sorge and Stewart, 2005). To this end, the amount of cocaine 

exposure is positively correlated with the magnitude of stress-induced 

reinstatement (active lever pressing) following forced abstinence and extinction 

training (Mantsch et al., 2008a). Augmented reinstatement magnitude in 

extended access cocaine self-administration animals was further supported by 

chapter two of this dissertation reporting augmented footshock- and intra-VTA 

CRF-induced reinstatement in LgA but not ShA animals. 

C-FOS AND NEURON ACTIVATION 

 Due to insufficient antibodies for both the CRF-R1 and CRF-R2 receptors 

protein cannot be characterized in the VTA following LgA conditions. Therefore, 

we characterized dopamine neuron activation following footshock in the VTA 

following different cocaine self-administration histories (saline/cocaine naive, 

short-access cocaine, long-access cocaine; ± footshock). Characterizing c-Fos 

protein expression, a marker for neuronal activation, with tyrosine hydroxylase 

(TH), a marker for dopamine cells in the VTA, allowed us to determine dopamine 

neuron activation under conditions in which footshock does and does not 

reinstate cocaine seeking. 

Immediate early genes (IEGs) are the first set of genes activated by 

external signals and do not require de novo protein synthesis (Sheng and 

Greenberg, 1990, Herrera and Robertson, 1996) making their induction both 

rapid and transient. IEGs are thought to function by encoding/activating 

transcription factors that will modify the expression of other genes, referred to as 
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target genes (TG) (Franza et al., 1988, Sheng and Greenberg, 1990). The most 

widely studied IEG in the CNS has been c-Fos (c-fos = mRNA, c-Fos = protein) 

(Herrera and Robertson, 1996, Kovacs, 2008). Importantly, in most cases, 

increased neuronal activity in vivo induces c-f/Fos expression in the nucleus of 

neurons (Curran et al., 1984, Dragunow and Robertson, 1987a, b, Hunt et al., 

1987, Morgan et al., 1987). To this end, c-f/Fos is used as a generic marker for 

neuronal activation following a diverse array of different stimuli (Sagar et al., 

1988, Cole et al., 1989, Dragunow and Faull, 1989). This provides a cellular 

method to label polysynaptically activated neurons within functional brain 

pathways (Sagar et al., 1988). 

Fos is reported in the nuclei of neurons in both normal and pathological 

states (Dragunow and Robertson, 1987b, a, Hunt et al., 1987, Morgan et al., 

1987) being transiently expressed in neurons after synaptic stimulation (Sagar et 

al., 1988). This makes the time course of Fos expression critical. The peak 

expression of c-fos mRNA is ½-1 hr after the cessation of the stimulus of interest, 

while the peak expression of c-Fos protein is 1-3 hr after cessation of the 

stimulus of interest (Sonnenberg et al., 1989, Chan et al., 1993, Imaki et al., 

1993, Ding et al., 1994, Ikeda et al., 1994, Cullinan et al., 1995, Kovacs and 

Sawchenko, 1996a, b, Kovacs, 1998). Fos expression then gradually disappears 

from the nucleus after 4-6 hrs after the stimulus of interest (Sonnenberg et al., 

1989, Chan et al., 1993, Imaki et al., 1993, Ding et al., 1994, Ikeda et al., 1994, 

Cullinan et al., 1995, Kovacs and Sawchenko, 1996a, b, Kovacs, 1998).  



216 
 

Neuronal c-f/Fos expression can be induced by neurotropic factors, 

neurotransmitters, depolarization, and an increase in intracellular Ca2+ either 

through influx or release from intra-cellular/nuclear stores (Greenberg and Ziff, 

1984, Szekely et al., 1987, Didier et al., 1989, Morgan and Curran, 1989, Szekely 

et al., 1989, Doucet et al., 1990, Sheng and Greenberg, 1990, Vaccarino et al., 

1992, Bading et al., 1993, Ghosh et al., 1994, Gaiddon et al., 1996). Mechanisms 

of c-f/Fos induction include PKA/cAMP/CaM Kinase/CRE activation (e.g., Gs-

GPCRs) (Sassone-Corsi et al., 1988, Gonzalez and Montminy, 1989, Sheng and 

Greenberg, 1990, de Groot and Sassone-Corsi, 1993, Bito et al., 1996); 

PKC/ras/MAPK/ERK activation (ex. growth factors, Gq-GPCRs, and calcium 

detection via voltage dependent Ca2+ channel influx) (Treisman, 1992, Hill and 

Treisman, 1995), and ligand gated Ca2+ NMDAR/MAPK activation (Greenberg et 

al., 1986, Morgan and Curran, 1986, Bading et al., 1993, Ghosh et al., 1994).  

Fos is the most widely used functional anatomical marker for activated 

neurons within the CNS for several reasons: 1) it is expressed at low levels in the 

intact brain under basal conditions (Curran, 1988, Kovacs, 2008), 2) it is typically 

induced in response to several extracellular signals, including ions, 

neurotransmitters, growth factors, and drugs (Kovacs, 2008), 3) the response is 

transient (Kovacs, 2008), and 4) detection of c-fos mRNA or c-Fos protein is 

simplistic (Kovacs, 2008).  

However, the canonical mRNA and protein labelling technique used has 

low temporal resolution and does not provide information about the connectivity 

of the activated neuron in vivo (Kovacs, 2008). Neuronal activation can occur 
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without induction of IEGs and markers for neuronal activation such as c-f/Fos are 

not expressed in chronically activated neurons (Kovacs, 2008). Under basal 

conditions c-f/Fos levels are very low (Hughes et al., 1992, Fenelon et al., 1993, 

Kaczmarek and Chaudhuri, 1997, Kovacs, 1998). Moreover, different stimuli can 

activate the same IEGs at the same time (Kovacs, 2008). This suggests that it is 

much more likely that afferent inputs and/or changes in external stimuli induce c-

f/Fos expression rather than tonic activation (Luckman et al., 1994). This 

suggests that c-f/Fos expression is very informative under the appropriate 

circumstances.  

c-fos mRNA and its protein product c-Fos are reliable markers for 

identifying activated cells and central nervous system circuits that respond to: 

daily rhythm (Maywood et al., 1995, Recio et al., 1996, Duffield et al., 1998, 

Vuillez et al., 1998), sleep/wake cycle (Novak et al., 2000), oestrus (Funabashi et 

al., 1997, Hairston et al., 2003), mating (Tetel et al., 1993, Wersinger et al., 1993, 

Cameron et al., 2004), lactation (Fenelon et al., 1993, Hoffman et al., 1994, Pape 

et al., 1996), drug of abuse (Graybiel et al., 1990, Young et al., 1991, Curran et 

al., 1996, Rotllant et al., 2010, Fanous et al., 2011, Zhao-Shea et al., 2011), and 

various stressors. 

C-FOS INDUCTION AND STRESSORS 

 The various stressors known to induce c-f/Fos include those involved in 

drug seeking paradigms such cold (Pacak and Palkovits, 2001), restraint 

(Cullinan et al., 1995, Imaki et al., 1995, Dayas et al., 2001, Viau and 
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Sawchenko, 2002), predator exposure (Chang et al., 2001, Bennett et al., 2002, 

Figueiredo et al., 2003), novelty (Emmert and Herman, 1999), forced swim 

(Duncan et al., 1993, Cullinan et al., 1995, Cullinan et al., 1996) and most 

notably, footshock (Campeau et al., 1991, Smith et al., 1992, Adolfsson et al., 

1998, Bale et al., 2000, Morrow et al., 2001).  

Stress-induced c-Fos activation can result from a complex interaction 

between catecholamines, glutamate, and CRF (Dragunow et al., 1990, Campeau 

et al., 1991, Arnold et al., 1992, Pezzone et al., 1992, Smith et al., 1992, 

Covenas et al., 1993, Harbuz et al., 1993, Imaki et al., 1993, Pezzone et al., 

1993, Wan et al., 1993, Wan et al., 1994). Footshock stress has been shown to 

cause reinstatement of cocaine seeking and CRF release within the brain under 

conditions shown to increase c-Fos expression; an effect prevented by pre-

treatment with a CRF-R antagonist (Arnold et al., 1992, Erb et al., 2005, Wang et 

al., 2005, Wang et al., 2007). This suggests that CRF receptor activation can 

induce c-Fos expression in the brain in response to a stressor. Cocaine and 

amphetamine exposure both induce c-Fos expression in the nucleus accumbens, 

prefrontal cortex, and VTA (Graybiel et al., 1990, Young et al., 1991, Colussi-Mas 

et al., 2007, Rotllant et al., 2010, Fanous et al., 2011). Moreover, previous 

cocaine exposure can increase footshock-induced c-Fos expression in the VTA 

(Morrow et al., 2001). Therefore, it is reasonable to hypothesize that intra-VTA 

CRF released via footshock stress will increase c-Fos expression in an intake 

dependent manner (i.e. short-access vs. long-access). 
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Stressful stimuli both induce c-Fos expression in (Deutch et al., 1991, Ma 

et al., 1993b, a) and increase firing of (Guarraci and Kapp, 1999, Anstrom and 

Woodward, 2005, Anstrom et al., 2009, Brischoux et al., 2009) VTA dopamine 

neurons. Importantly, c-Fos immunolabeling has been used to characterize 

footshock-induced neuronal activity (Van Pett et al., 2000) and reinstatement of 

drug seeking (Zhao et al., 2006). Therefore, it is possible that co-localization of c-

Fos with VTA dopamine neurons in response to footshock stress will be 

significantly greater under LgA self-administration conditions, as compared to 

ShA conditions. This could be attributed to a functional change following LgA 

self-administration, whereby footshock stress and intra-VTA CRF can now 

reinstate cocaine-seeking behavior. If footshock stress-induced reinstatement 

involves increased dopamine neuron activity in the VTA, it is logical to 

hypothesize that an increase in c-Fos immunoreactivity in dopamine neurons by 

footshock stress will only occur in LgA animals. 

FOOTSHOCK-INDUCED VTA DOPAMINE NEURON ACTIVATION  

 In chapter three a disproportionately high percent of short-access (ShA; 

30%) and low percent of long-access (LgA; 60%) animals reinstated in response 

to footshock stress. This is in comparison to chapter two reporting negligible 

reinstatement in ShA rats. These discrepancies cannot be easily explained but 

likely reflect the possibility that stress-induced reinstatement does not only occur 

following LgA cocaine self-administration but rather that a much higher 

percentage of rats reinstate in response to stress with extended-access to 
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cocaine. Nonetheless, while prior intake is one predictor of stress-induced 

cocaine seeking, other factors may also dictate the ability of stress to activate 

VTA dopamine neurons. This is consistent with others reporting stress-induced 

reinstatement under ShA conditions (Erb et al., 1996, Shalev et al., 2000). 

However, some of these other reports utilized three 2-h sessions per day to 

reliably induce reinstatement by footshock. Therefore, it is still likely that cocaine 

intake is in fact positively correlated with stress-induced reinstatement 

magnitude.  

Individual responsiveness to stress likely facilitated relapse in our short-

access (ShA) animals instead of drug intake. The reason for this conclusion is 

that, there was not a correlation between cocaine intake and reinstatement 

magnitude in ShA rats. Although, the findings of chapter two indicate that prior 

intake is one predictor of stress-induced cocaine seeking, chapter three suggests 

that other factors (e.g., pre-existing individual differences in stress reactivity) can 

also dictate the ability of stress to activate VTA dopamine neurons. Future 

studies characterizing these individual differences may give further insight into 

the factors regulating the propensity to relapse as a result of stressor exposure 

following periods of abstinence in human cocaine addicts.  

Chapter three also reports increased and decreased dopamine neuron 

activation in ShA and LgA animals, respectively. Surprisingly, overall number and 

percentage of dopamine neurons expressing c-Fos was significantly increased in 

ShA but not LgA rats relative to saline (Sal) controls. In fact, the c-Fos 

expression in TH-positive cells in LgA animals more closely resembled that of 



221 
 

Sal-treated animals. Despite overall differences in dopamine (TH-positive) 

neuron activation (Fos positive) across groups, significant footshock stress-

induced increases in dopamine cellular c-Fos immunoreactivity was not observed 

in any self-administration access group (Sal, ShA, and LgA). These findings are 

surprising in that they suggest that LgA rats display less dopamine neuron 

activation in the self-administration environment as compared to ShA rats. 

The basal levels of dopamine neuron activation in ShA versus LgA 

suggests that, in ShA animals, dopamine neurons show increased activation to 

the drug self-administration environment. Alternatively, in LgA animals there is 

either: (1) decreased activation to the drug self-administration environment, or 

there is an (2) extended up-regulation of an inhibitory tone imprint that can be 

removed by salient stressful stimuli in the drug self-administration context. ShA 

animals show increased, while LgA animals show decreased, dopamine neuron 

activation while in the drug self-administration context. This may also reflect a 

loss in dopamine neuron function in LgA animals. However, animals that 

reinstate in response to footshock stress exhibit increased VTA dopamine neuron 

activation. Moreover, the findings that inhibitory drive (i.e. GABAB receptor 

activation; Chapter 4) may be facilitating relapse is not consistent with increased 

c-Fos responsiveness during relapse in cocaine experienced animals unless it is 

coding for optimal phasic firing of VTA dopamine neurons (Beckstead et al., 

2004, Ford et al., 2009) in response to salient drug environmental cues during 

stress. 
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Although, chapter three reports that LgA animals appear to be less 

responsive to the drug self-administration context than ShA animals (i.e., Fos 

expression in TH-positive cells in the VTA under stress-free conditions is lower), 

the self-administration context appears to be an important component for 

reinstatement of cocaine seeking (Shalev et al., 2000). Drug self-administration 

context cues have been shown to reinstate extinguished cocaine seeking and 

induce c-Fos expression in VTA dopamine neurons of ShA animals (Kufahl et al., 

2009). Alternatively, LgA cocaine self-administration could be inhibiting the 

activation of dopamine cells in this brain region independent of the drug self-

administration context. For example, in the reinstatement rodent model of 

relapse, extinction is necessary to measure increases in drug-seeking behavior 

by stress and may affect VTA dopamine neuron excitation differentially in LgA 

animals as compared to ShA animals. Extinction neurocircuitry is another factor 

to take into consideration when comparing long-access and short-access 

animals. Extinction training may have divergent effects on VTA dopamine neuron 

activation in response to stress in an intake-dependent manner. Alternatively, 

others have supported context-independent effects of extended access to 

cocaine in the absence of extinction training on mesocorticolimbic dopamine 

neurotransmission. Specifically, extended-access to cocaine has been found to 

be associated with decreased mesocorticolimbic dopamine system activity during 

protracted withdrawal independent of context (Weiss et al., 1992a, Weiss et al., 

1992b).  
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In chapter three, when all rats were included in the analysis (i.e., short-

access and long-access rats combined), a positive overall correlation between 

the number and percentage of TH-positive cells co-expressing c-Fos and 

reinstatement magnitude (active lever presses) was observed.  Moreover, when 

reinstating rats were compared to non-stress, saline controls, and non-reinstating 

rats, the number and percentage of VTA TH-positive cells co-express c-Fos was 

significantly increased in rats that display stress-induced reinstatement. This 

suggests that footshock stress-induced reinstatement of cocaine-seeking 

behavior is positively correlated activation of VTA dopamine neurons.  

COCAINE-INDUCED NEUROPLASTICITY AND VTA DOPAMINE NEURON 
ACTIVATION BY STRESS 

 

 Drug experience may recruit the ability of footshock stress to increase Fos 

expression in the VTA, which may be dependent on intact upstream extended 

amygdala neurocircuitry (Ahmadi et al., 2008). To this end, drug experience is 

likely necessary for stress-induced activation of VTA dopamine neurons by CRF 

(Wang et al., 2005, Wang et al., 2007). Accordingly, CRF- and glutamate-

dependent somatodendritic release of dopamine has been reported to be 

dependent on cocaine experience in rats (Wang et al., 2005, Wang et al., 2007). 

However, the same studies found that footshock-induced CRF release was found 

to be comparable in both drug-naïve and drug-experienced animals (Wang et al., 

2005). This suggests that VTA dopamine neurons are more readily activated by 

CRF following drug exposure.  In contrast, evidence suggests that VTA CRF 

inputs express more CRF and are more active following drug exposure (Richter 
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and Weiss, 1999, Harris and Aston-Jones, 2003b, Zorrilla et al., 2012), these 

findings suggest that VTA neurons or downstream processes are likely more 

responsive to CRF as a result of drug-induced neuroplasticity.  

Fos immunoreactivity is significantly increased in the extended amygdala 

at the time of drug seeking during protracted withdrawal (Harris and Aston-Jones, 

2003b). Following extended cocaine self-administration CRF immunoreactivity is 

also increased in the extended amygdala (Zorrilla et al., 2012), further supporting 

increased neuron activation by stress in upstream targets that release CRF into 

the VTA. Moreover, elevated anxiety during drug abstinence may reflect 

increased sensitivity to stress that is not evident in resting baseline conditions 

(Aston-Jones and Harris, 2004). This is congruent with elevated stress sensitivity 

in addiction (Kreek and Koob, 1998, Sinha et al., 1999, Mantsch et al., 2008a). In 

summary, the finding from chapter three that footshock-induced VTA dopamine 

neuron activation is positively correlated with reinstatement magnitude likely 

reflects increased VTA dopamine neuron activation by CRF. In support, chronic 

cocaine administration increases CRF binding in the VTA (as measured by 

autoradiography) (Goeders et al., 1990), preliminary reports from a collaborative 

effort with the Seasholtz lab suggest a greater proportion of CRF-R1 mRNA in 

dopamine neurons than in GABA neurons within the VTA (unpublished findings), 

cocaine experience increases the excitatory effects and decreases the inhibitory 

effects of CRF actions upon VTA dopamine neurons (Ungless et al., 2003, Wang 

et al., 2005, Korotkova et al., 2006, Wang et al., 2007, Wanat et al., 2008, 

Beckstead et al., 2009, Hahn et al., 2009), CRF antagonists inhibit evoked 
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mesolimbic (measured by in vivo microdialysis) dopamine release (Lodge and 

Grace, 2005), and selective deletion of the CRF-R1 gene in VTA dopamine 

neurons decreases dopamine release in the prefrontal cortex (Refojo et al., 

2011). 

HETEROGENEOUS VTA DOPAMINE NEURON POPULATIONS: RESPONSE 
TO FOOTSHOCK STRESS 

 

 Aversive events and stressors have often been associated with reductions 

in the activity of mesolimbic dopamine projections and increases in the activity of 

mesocortical dopamine projections (Thierry et al., 1976, Herman et al., 1982, 

Deutch et al., 1985, Roth et al., 1988, Deutch et al., 1990, Deutch et al., 1991, 

Ungless et al., 2004, Ungless et al., 2010, Wanat et al., 2013). VTA dopamine 

neurons can be activated or inhibited by footshock stress (Brischoux et al., 

2009). Approximately, half of VTA dopamine neurons that are inhibited by 

footshock stress display excitation at the offset of the stimulus (Brischoux et al., 

2009). This suggests the possibility that the offset of an aversive stimulus may 

excite VTA dopamine neurons contributing to the increase in dopamine neuron 

Fos expression seen in reinstatement of cocaine seeking reported in chapter 3.  

Figure 38: Demonstration of different VTA dopamine responses to footshock 
stress from Brischoux et al., (2009); peristimulus time histogram averaged across 
6 footshocks + SEM; 500-ms bins. A) Excitatory response to footshock stress B) 
Inhibitory response to footshock stress followed by a rebound in activity. Both A 
and B conditions could result in increased c-Fos in VTA dopamine neurons. 
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An increase in footshock-induced Fos immunoreactivity in VTA dopamine 

neurons could reflect an increase in activation by footshock stress or possibly 

removal of footshock stress. Behavioral reports suggest that the offset of an 

aversive stimulus can act as a reward (Tanimoto et al., 2004) and can excite 

dopamine neurons (Daw et al., 2002) especially at the onset of appetitive events. 

Therefore, removal of the footshock may result in activation of the same 

dopamine neuron subpopulation that is inhibited by footshock stress (Daw et al., 

2002, Tanimoto et al., 2004, Brischoux et al., 2009, Ungless et al., 2010). 

Footshock removal-induced activation of VTA dopamine neurons as a key 

mechanism in Fos induction and reinstatement is much more likely if footshock is 

producing uniform inhibition of VTA dopamine neurons as reported by others 

(Ungless et al., 2004). However, this conclusion cannot be made without 

characterization of VTA dopamine neuron activation in response to footshock 

using high temporal resolution techniques (ex. voltammetry) in saline, ShA, and 

LgA animals. 
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The dysphoric effects of footshock stress in combination with the 

presentation of salient drug-associated cues (cocaine self-administration context) 

may produce overwhelming drug craving and motivation to use, in turn, resulting 

in reinstatement of drug seeking. Coinciding with the termination of footshock 

stress is both the extension of levers (both active and inactive) and the 

presentation of drug-associated cues (houselight), albeit extinguished cues, 

which may themselves activate VTA dopamine neurons in a manner that is 

dependent on prior cocaine self-administration history. Alternatively, a stressor, 

in the drug self-administration context, and in the presence of extinguished 

cocaine-assocaited cues may all be necessary for reinstatement of cocaine 

seeking that is characterized by increased Fos expression in VTA dopamine 

neurons. 

Due to the low temporal resolution (1-3 hrs) of c-Fos immunoreactivity the 

increased in c-Fos in VTA dopamine neurons in animals that reinstate in 

response to footshock stress may be induced by: 1) the actual stressor, 2) 

removal of the stressor, 3) presentation of the active lever, 4) chamber light 

activation, or 5) any combination of these factors. Equally important, it is possible 

that all of these factors together are needed to get footshock-induced 

reinstatement, which in turn may contribute to c-Fos induction in VTA dopamine 

neurons.  
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COORDINATED ACTION OF CRF ON MESOLIMBIC AND MESOCORTICAL 
SYSTEMS: CRF AN OPPORTUNISTIC NEUROMODULATOR IN THE VTA 
 
 
 While the VTA sends dense dopaminergic projections to the NAc, 

dopamine neurons activated by stress preferentially project to the medial 

prefrontal cortex (Thierry et al., 1976, Tassin et al., 1980, Herman et al., 1982, 

Deutch et al., 1985, Lammel et al., 2011, Lammel et al., 2012). When measuring 

dopamine activation at the level of the VTA it is very difficult to determine which 

cell populations are regulated by CRF and contribute to stress-induced 

reinstatement of cocaine seeking. This is particularly important when considering 

the selective heterogeneous regulation (mesocortical over mesolimbic) of the 

mesocorticolimbic dopamine system by stress and CRF. 

Dopamine is essential for information processing in the prefrontal cortex 

(Goldman-Rakic et al., 2000) and alterations of dopamine function within these 

systems have been implicated in drug addiction (Volkow et al., 1996, Volkow and 

Fowler, 2000, McFarland et al., 2004, Kalivas and Volkow, 2005, Peters et al., 

2008). Optimal dopamine receptor signaling on both pyramidal and non-

pyramidal cells within the mPFC is required for proper functional output (Penit-

Soria et al., 1987, Vincent et al., 1993, Gaspar et al., 1995, Seamans et al., 

1995, Fritts et al., 1998, Gulledge and Jaffe, 1998, Seamans et al., 1998, 

Gulledge and Jaffe, 2001, Wang and O'Donnell, 2001, Dong and White, 2003). 

When the PFC dopamine system signaling becomes dysregulated, a disruption 

of informational processing results (Sawaguchi and Goldman-Rakic, 1991, 

Williams and Goldman-Rakic, 1995, Zahrt et al., 1997, Seamans et al., 1998, 
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Seamans et al., 2001, Seamans and Yang, 2004) which has been implicated in 

stress-induced reinstatement of cocaine seeking (McFarland et al., 2004).  

The mesocortical DA projection arises primarily from the ventral tegmental 

area (VTA) and terminates mainly on pyramidal neurons in deep layers V and VI 

of medial PFC (mPFC) (Berger et al., 1976, Bjorklund et al., 1978, Emson and 

Koob, 1978, Berger et al., 1991, Carr et al., 1999). These neurons project back to 

the VTA and to the nucleus accumbens, and as a result, mesocortical dopamine 

input can also modulate VTA dopamine neuronal activity and mesolimbic 

dopamine inputs and NAc MSN dopamine responsiveness (Sesack and Pickel, 

1992, Taber et al., 1995, Carr and Sesack, 2000b, Geisler et al., 2007).  

STRESS SELECTIVELY ACTIVATES MESOCORTICAL OVER MESOLIMBIC 
DOPAMINE NEURONS 
 
 
 Stress, by way of CRF release in the VTA, may be modulating the 

mesocorticolimbic circuit in such a way that, upon drug context informational 

processing, drug seeking is engaged (Mantsch et al., 2014). To accomplish this, 

intra-VTA CRF might be acting as a coordinator of mesocorticolimbic function 

silencing dopamine neuronal activity in the absence of drug-associated stimuli 

while opportunistically promoting signaling in the presence of drug-associated 

stimuli   (Mantsch et al., 2014). This may take the form of increased mesocortical 

and decreased mesolimbic dopamine signaling during periods of stress and upon 

exposure to the drug self-administration context. 
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Figure 39: Mesocorticolimbic connectivity. Schematic demonstrating dopamine 
terminal fields in both the medial prefrontal cortex and nucleus accumbens, 
glutamate input to the nucleus accumbens from the medial prefrontal cortex, and 
GABAergic feedback from the nucleus accumbens to the VTA. 

 
 
 
 
 
 
 
 
 
 
 

 

 

Exposure to certain stressors, notably footshock, selectively activate VTA 

dopamine neurons that project to the medial prefrontal cortex and not the 

nucleus accumbens (Thierry et al., 1976, Westerink and Korf, 1976, Fadda, 

1978, Lavielle, 1978, Tissari et al., 1979, Blanc et al., 1980, Fadda et al., 1980, 

Tassin et al., 1980, Herman et al., 1982, Reinhard et al., 1982, Bannon and Roth, 

1983, Deutch et al., 1985, Roth et al., 1988). Importantly, stress has been shown 

to selectively increase Fos expression in neurons of the VTA that project to the 

medial prefrontal cortex and not in the nucleus accumbens, as defined using 

retrograde tracers (Deutch et al., 1991). This is consistent with the hypothesis 

that stress preferentially targets the medial prefrontal cortex while dopamine 

neurons that project to the nucleus accumbens signal reward and salience 
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(Thierry et al., 1976, Tassin et al., 1980, Herman et al., 1982, Deutch et al., 1985, 

Lammel et al., 2011, Lammel et al., 2012). 

The selective regulation of mesocortical versus mesolimbic dopamine 

neurons in the VTA is currently under investigation by numerous groups with the 

goal of functionally and anatomically characterizing how each cell type 

differentially responds to stress and reward. However, the current literature 

suggests the intra-VTA nuclei/region of origin for the various mesolimbic versus 

mesocortical dopamine neurons that are differentially activated by both stress 

and/or reward is very convoluted (Bannon and Roth, 1983, Murase et al., 1993a, 

Murase et al., 1993b, Schultz, 1998, Ungless et al., 2004, Brischoux et al., 2009, 

Lammel et al., 2011, Lammel et al., 2012). In summary, ther is currently no clear 

organization model that defines where these dopamine neurons originate. 

Nonetheless, there are dopamine neurons that are preferentially activated by 

stress that project to the medial prefrontal cortex and dopamine neurons that are 

preferentially activated by reward that project to the nucleus accumbens.  

 
Figure 40: Differential effects of footshock stress on mesocortical versus 
mesolimbic neurotransmission. Schematic illustrating preferential activation of 
VTA dopamine neurons projecting to the medial prefrontal cortex and not the 
nucleus accumbens. Magnitude is indicated by width of the arrow. CRF-R1 is 
hypothesized to be on dopamine neurons projecting to the prefrontal cortex. 
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Figure 41: Effects of footshock stress on animals that reinstate. Proposed 
mechanism behind reinstatement and increased c-Fos in TH neurons by 
footshock in those animals. The dopamine neurons that are activated by 
footshock stress increase prelimbic cortex dopamine concentrations, providing 
excitatory glutamate input into the “Go” nucleus accumbens core circuit. 
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EFFECTS OF DRUG EXPOSURE ON STRESS-INDUCED MEDIAL 
PREFRONTAL DOPAMINE RELEASE 
 
 
 In drug-naïve animals, footshock stress increases dopamine levels in the 

medial prefrontal cortex (Sorg and Kalivas, 1993). However, prior daily pre-

treatment with amphetamine or cocaine decreases footshock-induced dopamine 

release in the PFC (Robinson et al., 1985, Sorg and Kalivas, 1993). Importantly, 

the time course of the footshock can dictate whether mesocortical dopamine 

levels increase or decrease in drug experienced animals. Early on (5-10 min) 

after footshock onset dopamine signaling is increased, but decreases to baseline 

or even lower levels with continued footshock exposure (20-30 min) (Robinson et 

al., 1987, Kalivas and Duffy, 1989). This is in stark contrast to marked increases 

in prefrontal dopamine signaling in cocaine naïve animals receiving footshock for 

20 minutes in duration (Thierry et al., 1976, Roth et al., 1988). Moreover, 

repeated footshock decreases cocaine challenge-induced increases in prefrontal 

dopamine concentrations (Sorg and Kalivas, 1993). These data suggest that 

repeated stress or cocaine exposure can induce tolerance in mesocortical 

dopamine release to footshock or a cocaine challenge, respectively (Sorg and 

Kalivas, 1993). This is important when considering that footshock stress in the 

experiments described in this dissertation involved cocaine-experienced rats, 

lasted 15 minutes, and, in some cases, was counterbalanced, and repeatedly 

delivered.  

Fos data described in chapter 3 would suggest that footshock increases 

VTA dopamine activity only when reinstatement occurs and that reinstatement 
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may involve increases in VTA dopamine neuron activation. However, it is unclear 

if stress alone is activating dopamine cells or if it is enhancing the ability of the 

self-administration context to produce activation. To investigate this, the effect of 

footshock stress of VTA dopamine neuron activation in the absence of the drug 

context in both drug naïve and drug experienced animal’s needs to be examined. 

Likewise, footshock-induced c-Fos induction in the prefrontal cortex needs to be 

characterized in drug-naïve and drug-experienced animals inside and outside the 

drug self-administration context. 

Although, the exact effect of stress on mesolimbic dopaminergic 

neurotransmission is still up for debate, recent evidence suggests that VTA CRF 

signaling may decrease NAc dopamine (Wanat et al., 2013). This decreased 

mesolimbic response is likely signaling dysphoria, while increased dopamine in 

the prefrontal cortex and its regulation of glutamatergic projections to the nucleus 

accumbens core may be more important for drug craving and relapse (Figure 

41). Decreased mesolimbic dopamine in parallel with increased mesocortical 

dopamine may regulate different aspects of the stress response, differentially 

contributing to relapse. Increased mesocortical dopamine originates from the 

VTA and terminates in both the prelimbic and infralimbic cortices in the rat 

(Berger et al., 1976, Van Eden et al., 1987). Mesocortical dopamine may also 

regulate the mesolimbic dopamine stress response. Depletion of dopaminergic 

signaling in the prefrontal cortex has been reported to both increase and 

decrease the mesolimbic dopamine response to stress (Deutch et al., 1990, 

Feenstra et al., 1992, King et al., 1997, Harden et al., 1998, Moghaddam, 2002). 
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Stress may be selectively activating mesocortical and inhibiting 

mesolimbic VTA dopamine projection neurons but how does CRF-R1 activation 

contribute? It has been reported that deletion of CRF-R1 in VTA dopaminergic 

neurons reduces stress-induced dopamine release selectively in the prefrontal 

cortex (Refojo et al., 2011). This suggests that in the VTA CRF-R1 may be 

selectively express in dopamine neurons that project to the prefrontal cortex. 

Therefore, CRF-R1-dependent stress-induced reinstatement of extinguished 

long-access cocaine-seeking behavior may be the result of increasing dopamine 

release in the medial prefrontal cortex via CRF-R1 activation in the VTA.  

 
 
Figure 42: CRF-R1 antagonist effects upon footshock stress on mesocortical 
versus mesolimbic dopamine neurotransmission. CRF-R1 antagonism is 
hypothesized to block mesocortical increases in dopamine by stress, and 
increase mesolimbic dopamine levels. 
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Figure 43: Proposed effects of CRF-R1 antagonism on mesocortical input. CRF-

R1 antagonism is hypothesized to decrease stress-induced increases in 

mesocortical prelimbic dopamine concentrations, blocking relapse by inhibiting 

glutamate input into the nucleus accumbens core “Go” circuit. 

 

In summary, there are increases and decreases in VTA dopamine neuron 

activation in ShA and LgA animals in the self-administration context in the 

absence of stress relative to sline control rats, respectively. Importantly, saline 

controls did not exhibit significant changes in VTA dopamine neuron activity in 

response to footshock stress. The data from chapters 2 and 3 suggest that 

footshock-induced reinstatement in either ShA or LgA animals is positively 

correlated with increased activation of VTA dopamine cells that may target the 

medial prefrontal cortex through a CRF-R1 dependent mechanism. The apparent 

differential regulation of dopamine neuronal activity by different cocaine self-

administration histories (ShA versus LgA) upon exposure to the drug-taking 
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context is intriguing. This suggests the possibility that dopamine neuron 

activation in LgA animals is fundamentally different than in ShA animals. 

Previous studies have implicated the importance of context in cocaine 

experienced animals on both VTA dopamine neuron activation and footshock-

induced reinstatement (Shalev et al., 2000, Kufahl et al., 2009). Future studies 

should characterize dopamine neuron activation by footshock stress outside of 

the drug self-administration context in both short-access and long-access 

cocaine experienced animals that have undergone extinction training. 

REWARD AND DOPAMINE SIGNALING  

 Rewarding stimuli, including drugs of abuse, increase VTA dopamine cell 

firing, thereby increasing downstream dopamine release in the nucleus 

accumbens (Wise and Rompre, 1989, Wise, 1996, Moisan and Rompre, 1998, 

Hernandez and Shizgal, 2009). Increase dopamine in the nucleus accumbens is 

strongly associated with both reward perception and motivated behavior 

(Mogenson et al., 1980) such as drug seeking. Increased dopaminergic activity 

within the prefrontal cortex, especially for cocaine, is also associated with 

motivation (Gariano and Groves, 1988, Chang et al., 1998, Tzschentke, 2000), 

suggesting that burst firing of VTA dopamine neurons target both the nucleus 

accumbens and the prefrontal cortex (Gariano and Groves, 1988). The rewarding 

value of a stimulus is signaled by a shift from tonic to phasic burst firing of VTA 

dopamine neurons (Gonon, 1988, Schultz, 2007a). Burst firing activity of VTA 

dopamine neurons optimizes terminal field release of dopamine concentrations 
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that are significantly greater than those evoked by spikes within a non-bursting 

mode (Gonon, 1988, Nissbrandt et al., 1994). 

VTA DOPAMINE NEURON BURST FIRING: REGULATION BY GLUTAMATE 
AND GABA 

 

 Ventral tegmental area dopamine neuron burst firing activity is regulated in 

an opposing manner by excitatory glutamatergic and inhibitory GABAergic inputs. 

Glutamatergic inputs increase (West et al., 2003) while inhibitory GABAergic 

inputs decrease (Di Chiara et al., 1979, Stanford and Lacey, 1996, Steffensen et 

al., 1998) VTA dopamine neuron burst firing activity. Glutamate-induced 

increases in burst firing are dependent on NMDAR and AMPAR activation while 

GABA-induced decreases in burst firing are dependent on GABABR and 

GABAAR activation (Johnson et al., 1992, Klitenick et al., 1992, Overton and 

Clark, 1992, Chergui et al., 1993, Ikemoto et al., 1997a, Overton and Clark, 

1997, Paladini et al., 1999b, Laviolette and van der Kooy, 2001, Erhardt et al., 

2002, Georges and Aston-Jones, 2002, Zweifel et al., 2008, Deister et al., 2009, 

Tan et al., 2012). 

In the VTA, glutamatergic nerve terminals synapse upon both dopamine 

and GABA neurons (Carr and Sesack, 2000b, Omelchenko et al., 2009, Dobi et 

al., 2010). NMDA and AMPA receptors are located on both VTA dopamine and 

GABA neurons, with NMDA and AMPA receptor agonists increasing dopamine 

and GABA neuron activation (Kalivas et al., 1989, Seutin et al., 1990, Mereu et 

al., 1991, Suaud-Chagny et al., 1992, Chergui et al., 1993, Wang and French, 

1993b, a, Wang et al., 1994, Wang and French, 1995, Tong et al., 1996, White, 
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1996, Gronier and Rasmussen, 1998, Giorgetti et al., 2001, Schultz, 2007a). 

GABA interneuron activation in the VTA can in inhibit dopamine neurons (Grace 

et al., 2007a). In this way, glutamate regulates the output of VTA DA neurons 

through the ratio of direct excitatory and indirect inhibitory activity mediated by 

glutamate receptor activation on dopamine and GABA neurons, respectively. 

THE VENTRAL TEGMENTAL AREA, GLUTAMATE, REWARD, AND DRUG 
SEEKING 

 

 A significant role for midbrain glutamate transmission in cocaine addiction-

related process has been reported ranging from drug-induced neuroplasticity in 

the VTA, to reward, to the regulation of drug-seeking behavior in response to 

stress, cue, and drug (Boyson et al., Kalivas and Duffy, 1998, Ungless et al., 

2001, Vorel et al., 2001, Carlezon and Nestler, 2002, Tzschentke and Schmidt, 

2003, Dunn et al., 2005, Sun, 2005, Wang et al., 2005, Wang et al., 2007, Chen 

et al., 2008, Covington et al., 2008, Yap and Miczek, 2008, Wise, 2009, Nolan et 

al., 2010, Lane et al., 2011).  

Glutamate stimulates intra-VTA DA cell firing acting through several 

ionotropic receptors including NMDA- and AMPA-receptors (Gonon, 1988, Seutin 

et al., 1990, Wang and French, 1993b, a, Ungless et al., 2001, Sziraki et al., 

2002, Harris et al., 2004, Zweifel et al., 2009, Jalabert et al., 2011, Lammel et al., 

2012). For example, these receptors meiate synaptic plasticity in the VTA in the 

form of LTP and LTD. The AMPA receptor regulates fast and short 

depolarization, while the NMDA receptor regulates longer lasting depolarization 

(Mereu et al., 1991, Johnson and North, 1992b).  
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Activation of both mesolimbic and mesocortical dopamine pathways are 

dependent on ionotropic glutamate receptor activation. In vivo glutamate and 

glutamate receptor agonist application into the VTA increases dopamine 

signaling in the nucleus accumbens and the medial prefrontal cortex (Kalivas et 

al., 1989, Suaud-Chagny et al., 1992, Chergui et al., 1993, Wang et al., 1994, 

Jedema and Moghddam, 1996, Karreman et al., 1996, Westerink et al., 1996, 

Schilstrom, 1998, Giorgetti et al., 2001, Tye et al., 2013) with increased 

dopamine in the NAc and mPFC being blocked by NMDA and AMPA receptor 

antagonism in the VTA (Westerink et al., 1996, Mathe et al., 1998, Schilstrom et 

al., 1998, Westerink et al., 1998, Giorgetti et al., 2001, Lammel et al., 2012).  

Paradoxically, both activation and inhibition of VTA NMDA receptors can 

increase nucleus accumbens dopamine release (French et al., 1993, Karreman 

et al., 1996, Mathe et al., 1998, Kretschmer, 1999). Moreover, rats can be trained 

to self-administer the NMDA antagonist AP-5 into the VTA suggesting there are 

potential positive motivational properties associated with blocking the NMDA 

receptor in the VTA (Webb et al., 2012). Intra-VTA NMDAR antagonism has also 

been shown to increase reward signal via intracranial stimulation (Bergeron and 

Rompre, 2013, Ducrot et al., 2013). Therefore, NMDA receptor blockade in the 

VTA has been shown to be reinforcing by multiple groups. 

Less is known about VTA AMPAR activation and reward. Intra-VTA AMPA 

receptor specific antagonism (NBQX) (Sheardown et al., 1990) can dose 

dependently reduce reward elicited by intracranial stimulation (Miliaressis et al., 

1986, Ducrot et al., 2013). However, intra-VTA AMPA receptor antagonism has 
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been reported to increase operant responding for conditioned reinforcement, and 

induce conditioned place preference both of which reflect a positive motivational 

property (Harris and Aston-Jones, 2003a, Harris et al., 2004, Nolan et al., 2010). 

Increased reinforcement measures and operant responding by intra-VTA AMPA 

receptor blockade can occur (Ducrot et al., 2013).  

NMDA, AMPA, AND COCAINE SEEKING 

 Glutamate release into the VTA appears to play a central role in cocaine 

seeking. In support, increases in extracellular glutamate concentrations in the 

VTA precedes and coincides with active lever pressing in rats responding during 

extinction (You et al., 2007), and intra-VTA administration of the glutamate 

receptor agonist NMDA can reinstate cocaine-seeking behavior (Vorel et al., 

2001). Moreover, cocaine seeking in response to drug exposure can be 

attenuated by intra-VTA treatment with both an NMDA and AMPA receptor 

antagonist (You et al., 2007, Schmidt et al., 2009). Specifically, cocaine seeking 

can be significantly decreased by intra-VTA administration with AP5 (NMDA 

antagonist), CNQX (AMPA antagonist), both AP5 and CNQX simultaneously, and 

kynurenic acid a nonspecific ionotropic glutamate receptor antagonist (Vorel et 

al., 2001, Wang et al., 2005, You et al., 2007, Schmidt et al., 2009).  This 

suggests that, under some circumstances, cocaine seeking may be dependent 

on stimulation of both NMDA and AMPA receptors in the VTA. 

The hypothesis that intra-VTA AMPAR antagonism would decrease 

cocaine seeking has been previously tested by other groups. Our results that 

NMDA and AMPA receptor blockade failed to block intra-VTA CRF- and 
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footshock stress-induced of cocaine-seeking behavior failed to support this 

hypothesis. Moreover, our results suggest that AMPAR antagonism causes 

general activating effects, and may enhance reinstatement, similar to previously 

reported effects on the capacity of cocaine conditioned stimuli to function as 

conditioned reinforcers as reported by others (Nolan et al., 2010). The 

discrepancy between Nolan et al. (2010) and You et al. (2007) could be due to 

differences in methodology. You et al. (2007) administered drug to the VTA via 

reverse dialysis whereas Nolan et al., (2010) administered drug via 

microinjection. You et al. (2007) used CNQX, while Nolan et al. (2010) used 

NBQX. NBQX has been demonstrated to be a more effective blocker of AMPA 

receptors than CNQX (Yu and Miller, 1995), and CNQX, even though considered 

an AMPA receptor antagonist, has significant blocking action at the glycine site of 

NMDA receptors (Sheardown et al., 1990, Yu and Miller, 1995, Mead and 

Stephens, 1999). Lastly, You et al. (2007) had the majority of their cannulae sites 

at -5.6 mm from bregma, while Nolan et al. (2010) had most cannulae sites 

between -5.8 to -6.3 mm from bregma consistent with the location of high 

GABAergic populations (Perrotti et al., 2005, Olson and Nestler, 2007, Kaufling 

et al., 2009). Interestingly, methodologies and data from chapter 4 of this 

dissertation are most similar and consistent to Nolan et al. (2010), whose finding 

that AMPAR antagonism in the VTA enhanced cocaine seeking are similar to our 

own with stress- and intra-VTA CRF-induced reinstatement. Altogether, the 

current data suggest that reward is more complex than simple ionotropic 

glutamate receptor activation of mesolimbic dopamine neurons. This complexity 
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most certainly also applies to drug seeking induced by aversive events such as 

footshock stress. 

IONOTROPIC GLUTAMATE RECEPTORS AND REINSTATEMENT 

 Exposure to drugs of abuse, such as cocaine, produces neuroplastic 

changes involving ionotropic glutamate receptor function in the VTA. This 

plasticity includes enhanced AMPA and NMDAR signaling (Ungless et al., 2001, 

Schilstrom et al., 2006). Moreover, CRF itself appears to also enhance ionotropic 

glutamate receptor signaling in cocaine-experienced animals (Ungless et al., 

2003, Wang et al., 2005) suggesting that cocaine use can augment the ability of 

stress to facilitate ionotropic glutamate receptor function in the VTA.  

The mechanism of action of intra-VTA CRF-R1 receptor-dependent 

reinstatement of extinguished cocaine seeking was hypothesized to involve 

augmented excitatory drive on VTA dopamine neurons either through 

enhancement of glutamate release and/or ionotropic glutamate receptor signaling 

on VTA DA neurons (Sun, 2005, Wang et al., 2005, Hahn et al., 2009). More 

specifically, it was hypothesized that if the reinstating effects of CRF in the VTA 

involve an increase in in mesocorticolimbic dopamine system by way of 

glutamatergic signaling, then blockade of either AMPA or NMDA ionotropic 

glutamate receptors should prevent reinstatement in response to footshock 

stress or intra-VTA delivery of CRF. To test this hypothesis, the necessity of 

intra-VTA NMDAR and AMPAR function in both footshock- and intra-VTA CRF-

induced reinstatement of extinguished cocaine-seeking behavior was tested 
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using the ionotropic glutamate receptor antagonists reported in Chapter 4 of this 

dissertation.  

Surprisingly, neither intra-VTA AMPA nor NMDA receptor blockade alone 

blocked reinstatement at the doses tested. It remains unclear if intra-VTA 

AMPAR- or NMDAR- receptor activation is involved in intra-VTA CRF-dependent 

stress-induced reinstatement of cocaine-seeking behavior. The findings from this 

series of experiments involving ionotropic glutamate receptors is difficult to 

interpret. To this end, the exact role of AMPA and NMDA receptors in stress-

induced reinstatement of extinguished LgA cocaine-seeking remains unclear. It is 

possible that inactivation of both AMPA and NMDA receptors is necessary to 

block reinstatement. Current studies are being conducted to look at the ability of 

whether an NMDA/AMPA receptor specific antagonist cocktail (3 µg of both AP-5 

and NBQX per side) can block reinstatement. Another possible interpretation of 

the inability of NMDA or AMPA receptor antagonists, by themselves, to block 

reinstatement may be due to an opposition between dopamine and GABA 

neurons both expressing NMDA and AMPA receptors. This would produce 

opposition inhibiting excitation of both dopamine and GABA neurons within the 

VTA. Alternatively, glutamate may be regulating reinstatement not through AMPA 

or NMDA receptors but through either kainate or metabotropic glutamate 

(mGluRs) receptors, both of which are not targeted by either AP-5 or NBQX. 
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OPPOSITION BETWEEN NEURONAL PHENOTYPES BOTH EXPRESSING 
NMDA AND AMPA RECEPTORS 
 
 
 Slice electrophysiology studies have demonstrated that intra-VTA CRF 

receptor activation can excite both dopaminergic and GABAergic neurons in the 

VTA (Korotkova et al., 2006), both of which express NMDA and AMPA ionotropic 

glutamate receptors (Kalivas et al., 1989, Seutin et al., 1990, Wang and French, 

1995) and receive excitatory inputs (Christie et al., 1985, Sesack and Pickel, 

1992, Steffensen et al., 1998, Lammel et al., 2012, Jennings et al., 2013). 

Therefore, one explanation for the unexpected inability of antagonists to block 

reinstatement using intra-VTA AMPAR or NMDAR antagonists is that the 

combined effects on both neuronal phenotypes resulted in opposing effects on 

behavior.  

MESOLIMBIC AND MESOCORTICAL AFFERENT NEURONS BOTH EXPRESS 
NMDA AND AMPA RECEPTORS 
 
 
 Stress appears to specifically target the prefrontal cortex increasing both 

dopamine and glutamate concentrations (Thierry et al., 1976, Tassin et al., 1980, 

Herman et al., 1982, Deutch et al., 1985, Abercrombie et al., 1989, Cenci et al., 

1992, Moghaddam, 1993, Moghaddam et al., 1994, Karreman and Moghaddam, 

1996, Bagley and Moghaddam, 1997, Lammel et al., 2011, Lammel et al., 2012). 

Blockade of both NMDA and AMPA receptors in the VTA blocks stress-induced 

increases in medial prefrontal dopamine signaling (Kalivas et al., 1989, Jedema 

and Moghaddam, 1994, Takahata and Moghaddam, 2000).  
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The VTA is a major site for glutamatergic regulation of cortical dopamine 

increases in response to stress (Kalivas et al., 1989, Enrico et al., 1998, 

Takahata and Moghaddam, 1998, Wang et al., 2005). If reinstatement by 

footshock stress and intra-VTA CRF delivery is dependent on increased 

dopamine in the prefrontal cortex, then blockade of either the NMDA or AMPA 

receptor should block reinstatement. However, this is not what occurred in the 

studies described in chapter four. By blocking AMPA or NMDA receptors on all 

cell phenotypes inactivation of the whole mesocorticolimbic dopamine system 

(i.e. cell that project to multiple downstream regions) likely occurred. This stands 

in likely contrast to the selective regulation of the PFC by CRF in the VTA and 

stress and may prevent activation of circuits that constrain drug seeking as well 

as pathways that promote it. Paradoxically, reinstatement by both footshock and 

intra-VTA CRF delivery not only still still occurred following intra-VTA antagonist 

delivery, but in some cases it was augmented. Not only does this suggest that 

AMPA and NMDA receptor activation is not necessary for reinstatement but it 

may suggest that reinstatement involves selective inactivation of isolated 

components of the mesocorticolimbic system. 

Elevations in both CRF and glutamate in the VTA by footshock stress 

have been found to be TTX-sensitive (Wang et al., 2005) suggesting that they 

are the consequence of afferent nerve terminal release. Activation of 

postsynaptic ionotropic glutamate receptors has been found to produce 

increases in somatodendritic dopamine release, an effect that is likely dependent 

on presynaptic CRF receptor activation, as it is blocked by CRF antagonist 
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administration into the VTA (Wang et al., 2005). These findings indicate that 

footshock-induced reinstatement is dependent on both CRF and ionotropic 

glutamate receptor activation in the VTA (Wang et al., 2005). CRF receptor 

blocked footshock-induced increases in glutamate but not dopamine suggesting 

that CRF receptor activation is increasing presynaptic glutamate release (Wang 

et al., 2005, Wang et al., 2007). However, CRF excites postsynaptic dopamine 

neurons (Ungless et al., 2003, Wanat et al., 2008, Hahn et al., 2009) suggesting 

that postsynaptic of dopamine neurons express CRF receptors. To this end, CRF 

antagonists would be expected to block stress-induced dopamine release in the 

terminal fields of the VTA. Importantly, stress-induced reinstatement and 

concomitant increases in dopamine but not glutamate concentrations were 

blocked by intra-VTA application of kynurenic acid, a nonspecific ionotropic 

glutamate receptor antagonist (Wang et al., 2005). Altogether, this seems to 

suggest that footshock-induced reinstatement of cocaine seeking is dependent 

on postsynaptic ionotropic glutamate receptor activation of VTA dopamine 

neurons as a result of CRF-dependent increases in VTA glutamate release. 

KYNURENIC ACID BEHAVIORAL PHARMACOLOGY 

 Although a role for glutamatergic excitation of VTA dopamine neurons has 

been proposed, we report that neither NMDA (AP-5) nor AMPA (NBQX) receptor 

antagonists, across a wide range of doses, prevents stress- or intra-VTA CRF-

induced reinstatement. Previously, Wang et al., (2005) showed that intra-VTA 

administration of the nonspecific ionotroptic glutamate receptors antagonist, 
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kynurenic acid (KA), was sufficient to block both stress- and intra-VTA CRF-

induced reinstatement, along with concomitant increases in somatodendritic 

dopamine concentrations in the VTA (Wang et al., 2005). 

Preliminary findings from chapter four suggest that KA (24 µg/.25µl per 

side) significantly attenuates both footshock- and intra-VTA CRF-induced 

reinstatement of extinguished cocaine-seeking behavior. These findings replicate 

those reported by Wang et al., (2005). The ability of KA but not AP-5 or NBQX to 

prevent reinstatement is unexpected but may be attributed to the unique 

pharmacological properties of KA. Kynurenic acid (KA) is referred to as a broad 

spectrum antagonist of ionotropic glutamate receptors with a preferential 

selectivity at the strychnine-insensitive glycine site of the NMDA receptor (IC50 

=15 µM) (Birch et al., 1988, Danysz et al., 1989, Kessler et al., 1989, Stone, 

1993) over the NMDA recognition site (Szalardy et al., 2012). In addition, the 

compound is an antagonist at the glutamate recognition-site of the NMDA 

receptor at moderate concentrations (IC50 = 200-500 µM) (Kessler et al., 1989). 

Kynurenic acid also blocks the AMPA receptor at high concentrations 

(micromolar to millimolar range), but at lower concentrations (nanomolar to 

micromolar) it facilitates AMPA receptor signaling (Stone, 1993, Prescott et al., 

2006, Rozsa et al., 2008). In addition to blocking the NMDA and AMPA receptor 

it also blocks the ionotropic kainate receptor at moderate doses (IC50 = 200 to 

600 µM) (Alt et al., 2004). Moreover, kynurenic acid at low concentrations, 

(micromolar or submicromolar) is also a competitive antagonist at α7 nicotinic 

receptors (IC50 ~ 7 µM) (Hilmas et al., 2001, Stone, 2007) and therefore may also 
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prevent excitatory regulation of VTA DA cells via ACh. Stimulation of the α7 

nicotinic receptor in the VTA increases the firing of VTA dopamine neurons 

(Schilstrom et al., 2003). Lastly, in addition to inhibiting the α7 nicotinic receptor 

kynurenic acid also inhibits GABAA receptors at very high concentrations with an 

IC50 of 3 mM (Bruijnzeel et al., 2009).  

Prior reports that reverse dialysis of kynurenic acid blocks stress-induced 

reinstatement of cocaine seeking and somatodendritic dopamine release (Wang 

et al., 2005) used at a concentration of 1 mM at which kynurenic acid is likely 

blocking all three ionotropic glutamate receptors (NMDA, AMPA, and Kainate). In 

chapter four we report (24 µg/side; 454 mM) bilateral microinjections of KA 

blocks stress-induced reinstatement. Although this dose is extremely high, it is 

only roughly twice the concentration previously reported to block reinstatement of 

cocaine-seeking induced by ventral subiculum stimulation (Vorel et al., 2001). 

Microinfusions inherently have higher concentrations than those used for 

microdialysis due to the fact that they are an acute bolus injection. Nonetheless, 

smaller doses are currently being tested for their ability to block reinstatement. 

Notably, the 24 µg/side intra-VTA KA dose that blocked reinstatement also 

produced substantial nonspecific motor impairments in drug naïve animals 

trained to lever press unde a schedule of food pellet reinforcement (data not 

shown). Side effects consisted of head weaving, turning behavior, and ataxia. 

These effects were observed all the way down to an 11 mM concentration (0.6 

µg/side). Our finding that kynurenic acid dose dependently reduces food 
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reinforced responding is consistent with previous studies that injected kynurenic 

acid (3.2 and 5.6 µg/0.5 µl; 34 and 59 mM) into the VTA (Sun, 2005).  

In contrast, the 24 µg/0.25µl per side dose of kynurenic acid did not affect 

the ability of cocaine SA experienced animals to lever press during reinstatement 

conditions (i.e. responding did not drop below extinction levels). This suggests 

that perhaps drug experience can change how an animal responds to intra-VTA 

KA delivery through changes in ionotropic glutamate receptor signaling. 

Alternatively, KA could decrease sucrose-seeking in a similar way to cocaine-

seeking independent of motor impairments.  

Although we tested for the effects of intra-VTA AP-5 and NBQX delivery 

individually on reinstatement, we never tested for the effects of combinated VTA 

AMPAR and NMDAR blockate. Activation of both AMPA and NMDA receptors 

may be necessary for reinstatement. Due to the nonspecific pharmacological 

effects of KA along with the inability of AP-5 and NBQX to individually block 

reinstatement current studies are underway to characterize the role of a AP-

5/NBQX (3 µg of each drug/side) cocktail to examine the potential contribution of 

a coordinated action of these receptors in the VTA to stress-induced cocaine 

seeking. However, unreported data from a pilot study suggests that a very low 

dose of 0.5 µg per side of both AP-5 and NBQX (cocktail) fails to block 

reinstatement by both footshock and intra-VTA CRF delivery.  

Altogether, the inability of NMDA or AMPA receptor antagonists to block 

both footshock- and intra-VTA CRF-induced reinstatement is not supportive of 

excitatory drive on VTA DA neurons through AMPA or NMDA glutamate 
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receptors alone as a mechanism for intra-VTA CRF-dependent reinstatement. 

However, it also does not rule this possiblility out. It is clear that additional 

experiement are needed. 

ALTERNATIVE EXCITATORY MECHANISMS OF INTRA-VTA CRF 

 Kynurenic acid is commonly referred to as a nonspecific excitatory 

ionotropic receptor antagonist (Birch et al., 1988). Kynurenic acid is an 

antagonist for kainate ionotropic glutamate receptors (Alt et al., 2004) and alpha 

7 nicotinic receptors (Hilmas et al., 2001, Stone, 2007) in addition to the AMPA 

and NMDA ionotropic glutamate receptors. For this reason and the finidng that 

kynurenic acid appears to block stress-induced reinstatement while antagonist’s 

specific for NMDA (AP-5) and AMPA (NBQX) receptors do not potentially reveals 

another mechanism through which CRF and stress regulate VTA function. The 

possibility that kynurenic acid may be blocking reinstatement through excitatory 

mechanisms mediated by either kainate ionotropic glutamate receptors and/or 

alpha 7 nicotinic acetylcholine receptors should be considered and represent 

another area for further investigation. 

KAINATE RECEPTOR REGULATION OF VTA DA NEURON EXCITABILITY 

 Ionotropic glutamate receptors are named after their agonists NMDA, 

AMPA, and kainate (Watkins and Evans, 1981, Monaghan et al., 1989, Young 

and Fagg, 1990). NMDA receptors mediate slow excitatory responses while 

AMPA and kainate receptors mediate fast excitatory responses (Collingridge and 

Lester, 1989, Cossart et al., 1998). Although, kainate ionotropic glutamate 
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receptors are widely expressed throughout the brain (Bettler et al., 1990, 

Egebjerg et al., 1991, Werner et al., 1991, Herb et al., 1992, Wisden and 

Seeburg, 1993, Bahn et al., 1994, Feldmeyer and Cull-Candy, 1994) and known 

to regulate excitatory neurotransmission (Chittajallu et al., 1996, Castillo et al., 

1997), they are substantially understudied, and their role in brain 

neurophysiology is largely unknown (Feldmeyer and Cull-Candy, 1994). Kainate 

receptors are present in the VTA and known to regulate intra-VTA dopamine 

neuron activity as well as dopamine release (Mayer et al., 1984, Kalivas and 

Stewart, 1991, Wang and French, 1993a, White, 1996, Westerink et al., 1998, 

Barrera et al., 2005, Ye et al., 2005). This suggests that the ability of kynurenic 

acid to block reinstatement may be regulated by kainate ionotropic glutamate 

receptor activation. 

ACH RECEPTOR REGULATION OF VTA DA NEURON EXCITABILITY 

 In the brain, alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) can 

excite neurons at both pre- and postsynaptic sites by increasing calcium 

permeability (Berg and Conroy, 2002). α7-nAChRs are present in the VTA at 

somatodendritic sites on dopamine and GABA neurons as well as on presynaptic 

glutamate terminals (Jones and Wonnacott, 2004). In support, VTA α7-nAChRs 

can facilitate LTP by enhancing release from presynaptic glutamatergic terminals 

(Mansvelder and McGehee, 2000). α7-nAChRs not only regulate VTA dopamine 

neuron excitation (Calabresi et al., 1989, Pidoplichko et al., 1997, Mansvelder 

and McGehee, 2000, Schilstrom et al., 2000, Mansvelder et al., 2002) but also 
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drug self-administration (Corrigall and Coen, 1994). Therefore, the ability of 

kynurenic acid to block reinstatement may also be regulated mediated by α7-

nAChRs. 

MGLUR RECEPTOR REGULATION OF VTA DA NEURON EXCITABILITY 

 Alternatively, glutamate may still be an integral part of intra-VTA CRF-

dependent reinstatement of cocaine seeking but may be regulating dopamine 

cells through metabotropic instead of ionotropic receptors. Group 1 metabotropic 

glutamate receptors (mGluR1 and mGluR5) (Conn and Pin, 1997) are expressed 

on dopamine neurons in the VTA (Kane et al., 2005). Group 1 metabotropic 

glutamate receptor activation in the VTA can facilitate and inhibit burst firing of 

VTA dopamine neurons (Fiorillo and Williams, 1998, Zheng and Johnson, 2002), 

producing both excitatory and inhibitory effects on VTA dopamine neurons by 

way of group 1 mGluR stimulation. Whether or not group 1 mGluR activation is 

excitatory or inhibitory depends on both pattern and frequency of afferent input 

(Fiorillo and Williams, 1998). 

MGLUR RECEPTOR INVOLVEMENT IN DRUG-INDUCED NEUROPLASTICITY 

 Group 1 mGluRs have been shown to regulate cocaine-induced plasticity 

involving potentiation of excitatory input onto VTA dopamine neurons (Bellone 

and Luscher, 2006). Specifically, activation of group 1 mGluR receptors reverses 

cocaine-induced insertion of calcium permeable AMPA receptors into the 

membrane of VTA dopamine neurons; a process termed mGluR-LTD (Bellone 
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and Luscher, 2005, 2006, Mameli et al., 2007, Luscher and Huber, 2010). In 

addition to regulating cocaine-induced AMPA neuroplasticity, group 1 mGluR 

currents can be enhanced by CRF release into the VTA (Riegel and Williams, 

2008). However, mGluR expression levels in the VTA have been reported to be 

unchanged following extended access to cocaine for SA (Ben-Shahar et al., 

2009, Ghasemzadeh et al., 2011). 

GABA RECEPTORS AND VTA DOPAMINE SIGNALING  

 Burst firing patterns of intra-VTA dopamine neurons optimize and 

potentiate release of dopamine at both terminal and somatodendritic sites 

(Gonon, 1988, Wightman and Zimmerman, 1990, Nissbrandt et al., 1994). In this 

way, somatodendritic dopamine elevation in the VTA is indicative of burst firing of 

midbrain dopamine neurons (Bjorklund and Lindvall, 1975, Geffen et al., 1976, 

Kalivas and Duffy, 1991, Rice et al., 1997, Jaffe et al., 1998, Adell and Artigas, 

2004). This burst firing is essential for reward perception, reward seeking, reward 

expectancy, and salience (Nishino et al., 1987, Schultz et al., 1997, Berridge and 

Robinson, 1998, Tsai et al., 2009, Zweifel et al., 2009).  

As previously mentioned, VTA DA neuron burst firing is primarily by both 

excitatory glutamatergic NMDA receptor activation and inhibitory GABAB-receptor 

activation. NMDA receptor activation stimulates burst firing while GABAB receptor 

activation inhibits burst firing (Overton and Clark, 1992, Overton and Clark, 1997, 

Erhardt et al., 2002). Therefore, the burst firing of midbrain dopamine neurons is 

tightly controlled by the coordinated actions of NMDA and GABAB receptors 
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(Erhardt and Engberg, 2002). Since, in our hands, NMDA receptor blockade, 

which would be expected to inhibit VTA burst firing, did not affect reinstatement, 

the next candidates that may contribute to the control of dopamine neuron burst 

firing are GABA receptors. In addition to GABAB receptors, VTA dopamine 

neuron activity can be inhibited upon activation of GABAA receptors on dopamine 

neurons (Tan et al., 2012, Graziane et al., 2013) and excited by GABAA 

receptors on GABAergic interneurons that provide tonic inhibition of dopamine 

cells and, thereby also regulate phasic firing (Kalivas et al., 1990, Johnson and 

North, 1992a, Xi and Stein, 1998). 

INTRA-VTA GABA MECHANISMS AND REINSTATEMENT OF DRUG 
SEEKING 
 
 
 VTA synaptic plasticity implicated in stress-induced reinstatement of 

cocaine seeking includes both long term potentiation (LTP) and long term 

depression (LTD) of GABAergic synapses onto VTA DA neurons that emerges 

following repeated drug exposure (Nugent et al., 2007, Pan et al., 2008, Dacher 

and Nugent, 2011, Dacher et al., 2013). Recent findings suggest that LTP and 

LTD at GABAergic synapses upon VTA DA neurons display Hebbian 

characteristics effecting postsynaptic dopamine neurons in the VTA (Nugent et 

al., 2007, Nugent et al., 2009, Dacher et al., 2013, Graziane et al., 2013, 

Kodangattil et al., 2013). 

GABAERGIC DRUG-INDUCED NEUROPLASTICITY 

 Acute exposure to nicotine, ethanol, cocaine, or stress has been shown to 

block LTP at GABAergic synapses on VTA dopamine neurons, thereby removing 
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an inhibitory brake on the dopaminergic system (Morita et al., Nugent et al., 

2007, Nugent et al., 2009, Niehaus et al., 2010). However, this mechanism is 

dependent on postsynaptic NMDA receptor activation which produces nitric oxide 

which undergoes retrograde diffusion, and initiates presynaptic GABA release, 

thereby activating GABAA receptors on postsynaptic VTA dopamine neurons 

(Nugent et al., 2007, Nugent et al., 2009). Stress appears to remove this 

inhibitory brake on dopamine neurons by releasing dynorphin and activating the 

kappa opioid receptor in the VTA to block LTP GABA and facilitate relapse 

(Graziane et al., 2013). Blockade of the kappa receptor with Nor-BNI can block 

stress-induced reinstatement and rescue LTP GABA (Graziane et al., 2013). This 

mechanism is acute and appears to synergize with increased glutamatergic drive 

of the circuit. However, it is unlikely that this is the mechanism we are observing 

with GABAB receptor blockade. Chapter four reports that antagonism of both 

NMDA and GABAA receptors fail to inhibit or augment both footshock stress- and 

intra-VTA CRF-induced reinstatement in LgA animals. Moreover, blockade of 

GABAB receptor signaling is most likely removing an inhibitory break instead of 

rescuing one to block relapse. 

CONVERGENCE OF CRF-R1 AND GABAB IN DRUG-INDUCED 
NEUROPLASTICITY 
 
 
 CRF-R1 activation can facilitate both excitatory NMDA and AMPA 

receptor signaling as well as inhibitory GABAB signaling (Beckstead et al., 2009, 

Hahn et al., 2009) in VTA dopamine neurons. Following repeated cocaine 

exposure, the excitatory effects of CRF are augmented (Hahn et al., 2009) and 
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the inhibitory effects of CRF are diminished (Beckstead et al., 2009), likely 

resulting in a net shift toward excitatory CRF-R1 receptor-mediated regulation of 

VTA dopamine neurons. Therefore, it was originally hypothesized that, if the 

reinstating effects of CRF involves decreased inhibitory drive through GABA 

receptor signaling, then blockade of GABA receptors should augment cocaine 

seeking in response to both footshock and intra-VTA CRF administration. In 

contrast to this hypothesis, GABAB receptor antagonism blocked reinstatement in 

response to both footshock and intra-VTA CRF delivery. The only antagonist 

other than CRF-R1 antagonists (Antalarmin and CP-376395) to reliably block 

reinstatement without producing secondary locomotor effects was the GABAB 

receptor antagonist, 2-hydroxysaclofen. This suggests that GABAB receptor 

activation is regulating the neurocircuitry of the VTA in such a way to facilitate 

stress-induced reinstatement of cocaine-seeking. It also suggests that 

reinstatement involves an increase and not a decrease in GABAergic signaling in 

the VTA and supports reports in the literature demonstrating inhibition of VTA 

dopamine neurons by aversive stimuli (Schultz and Romo, 1987, Mantz et al., 

1989, Mirenowicz and Schultz, 1996, Guarraci and Kapp, 1999, Ungless et al., 

2010). 

GABAB AS A PHARMACOLOGICAL TARGET TO TREAT ADDICTION 

 Paradoxically, GABAB receptor agonists and other compounds that 

activate inhibitory G protein-coupled inwardly-rectifying potassium (GIRK) 

channels have been proposed as therapeutic candidates to help treat alcoholism 

and drug addiction (Brebner et al., 2002, Kobayashi et al., 2004, Walker and 
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Koob, 2007). For example, GABAB receptor agonists decrease the reinforcing 

effects of cocaine (Roberts et al., 1996, Roberts and Koob, 1997, Brebner et al., 

1999), self-administration of cocaine as measured using self-administration, 

(Brebner et al., 1999, Brebner et al., 2000, Backes and Hemby, 2008), and 

increases in terminal field dopamine levels (Kalivas et al., 1990, Klitenick et al., 

1992, Westerink et al., 1996). The finding that GABAB antagonism blocks both 

footshock- and intra-VTA CRF is consistent with the idea that GABAB antagonists 

rather than GABAB agonists could serve as potential medications. It should be 

noted that we tested for the ability of the GABAB receptor agonist (baclofen; 2 

µg/side) injected into the VTA to cause relapse in the absence of stress or CRF. 

The result was substantial motor impairment, consistent with global neuronal 

inhibition, both pre- and postsynaptically as predicted (personal communication 

with John T. Williams). However, conclusions cannot be deduced from one 

subject and lower doses of baclofen should be tested due to its potent effects 

before drawing firm conclusions regarding the effects of GABAB receptor 

activation in the VTA. 

POSSIBLE MECHANISMS OF VTA GABAB ANTAGONISM 

 In a set of elegant studies, Westerink et al., (1996, 1998) characterized 

intra-VTA pharmacological manipulations on downstream mesolimbic and 

mesocortical dopamine concentrations using dual-probe microdialysis in drug 

naïve animals. Examination of effects on the mesocortical system revealed that 

intra-VTA administration of a GABAB agonist decreased dopamine 

concentrations in the PFC, while a GABAB antagonist increased dopamine 
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concentrations in the PFC (Westerink et al., 1998). Likewise, examination of 

effects on the mesolimbic system revealed that intra-VTA administration of a 

GABAB agonist decreased nucleus accumbens dopamine concentrations 

(Westerink et al., 1996), while a GABAB antagonist did not significantly change 

dopamine concentrations in the nucleus accumbens (Westerink et al., 1996). 

This suggests that intra-VTA GABAB receptor antagonism preferentially 

increases dopamine in the prefrontal cortex in drug naïve rats (Westerink et al., 

1996, Westerink et al., 1998). This conclusion should be met with some caution 

because the function of intra-VTA GABAB receptor blockade in drug naïve 

animals may or may not be similar to SA-experienced animals who’ve undergone 

extinction, and are exposed to stress with an environment associated with 

cocaine availability. 

GABAB ANTAGONISM IN THE VTA SELECTIVELY TARGETS 
MESOCORTICAL PROJECTING NEURONS 

 

 Since GABAB receptor antagonism was the only manipulation that likely 

preferentially targeted the mesocortical dopamine neurons (Westerink et al., 

1996, Westerink et al., 1998), it should not be surprising that it was the only drug 

sufficient to block stress-induced reinstatement. Considering that GABAB 

receptor antagonism increases (not decreases) dopamine levels in the medial 

prefrontal cortex (mPFC), how can it be that this manipulation blocks stress-

induced reinstatement, which is likely dependent on increased mPFC dopamine 

release? A possible explanation is related to the anatomical organization of the 

medial prefrontal cortex.  
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As previously mentioned in Chapter 1, reinstatement is driven by an 

increase in prelimbic medial prefrontal cortex glutamate input into the nucleus 

accumbens core (Cornish et al., 1999, Cornish and Kalivas, 2000, McFarland 

and Kalivas, 2001, McFarland et al., 2003, McFarland et al., 2004, Kalivas and 

Volkow, 2005, LaLumiere and Kalivas, 2008). By contrast, glutamate projections 

from the ventromedial prefrontal cortex to the nucleus accumbens shell are 

thought to suppress drug-seeking behavior following extinction (Fuchs et al., 

2008, Peters et al., 2008, Peters et al., 2009). 

Projections from mPFC to the NA are organized into a dorsal-ventral 

pattern. The dorsal mPFC projects predominantly to the nucleus accumbens core 

and is a final common pathway for reinstatement of drug seeking, while the 

ventral mPFC projects to the nucleus accumbens shell and suppresses 

reinstatement of drug seeking (Cornish et al., 1999, Heidbreder and 

Groenewegen, 2003, Voorn et al., 2004, Peters et al., 2008, LaLumiere et al., 

2010, LaLumiere et al., 2012). Interestingly, the target region for dialysis in 

Westerink et al., (1998) is consistent with the ventral medial prefrontal cortex. 

Therefore, increasing dopamine in infralimbic cortex via intra-VTA GABAB 

receptor antagonism would be hypothesized increase dopamine in the infralimbic 

cortex and therefore block reinstatement of drug-seeking by both footshock and 

intra-VTA CRF delivery.  
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Figure 44: Corticolimbic subregion specific neurociruitry. Illustration of the “Go” 
circuit of the glutamatergic projection from the prelimbic cortex to the nucleus 
accumbens core that is associated with reinstatement, and the “No Go” circuit of 
the glutamatergic projection from the infralimbic cortex to the nucleus accumbens 
shell that is associated with extinction/reinstatement prevention. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

INTRA-VTA GABAB ANTAGONISM INCREASES PFC DOPAMINE: POSSIBLE 

COMPETITIVE ROLE INHIBITING COCAINE-SEEKING 

 

 The prelimbic as well as the infralimbic cortices both receive extensive 

VTA dopaminergic inputs (Berger et al., 1976, Bjorklund et al., 1978, Emson and 

Koob, 1978, Van Eden et al., 1987, Westerink et al., 1998, Carr et al., 1999). 
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Dopamine inputs into the prelimbic cortex are essential for stress-induced 

reinstatement of cocaine-seeking behavior to occur; D1 receptor blockade in the 

prelimbic cortex blocks footshock-induced reinstatement (Capriles et al., 2003, 

Sanchez et al., 2003, McFarland et al., 2004). Pathways involved in the inhibition 

(infralimbic cortex) of drug seeking (Peters et al., 2008, Peters et al., 2009) can 

inhibit pathways involved in the activation (prelimbic) of drug seeking (McFarland 

and Kalivas, 2001, McFarland et al., 2003, McFarland et al., 2004) through a 

feedforward mechanism (Ferrante et al., 2009). To this end, evidence suggests 

that activation of the infralimbic cortex inhibits prelimbic cortex output (Ji and 

Neugebauer, 2012). Since GABAB antagonism increases dopamine in the 

infralimbic cortex, it may inhibit prelimbic output. Perhaps the ability of 2-

hydroxysaclofen to block both footshock and intra-VTA CRF-induced 

reinstatement of extinguished LgA cocaine-seeking is related to its ability to 

increase dopamine in the infralimbic cortex which competitively inhibits the 

glutamatergic input to the nucleus accumbens core from the prelimbic cortex. 

With this in mind, it is also important to note that activation of both the prelimbic 

and infralimbic cortices also regulate ventral tegmental area dopamine neuron 

activity (Patton et al., 2013).  

Figure 45: Schematic representing competitive signaling between prelimbic and 

infralimbic cortices in drug-seeking behavior. Activation of the infralimbic can 

inhibit pyramidal neuron output in the prelimbic cortex which is essential for drug-

seeking behavior. In this way infralimbic cortex activation may inhibit prelimbic 

cortex output and facilitate extinction while prelimbic cortex activation may inhibit 

infralimbic cortex output and facilitate reinstatement. 
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Figure 46: Proposed effects of GABAB antagonism on mesocortical input. 
GABAB antagonism may block reinstatement by increasing mesocortical 
dopamine input into the infralimbic cortex, increasing glutamate input into the 
nucleus accumbens shell “No Go” circuit. 
 

 

GABAB AND G PROTEIN-COUPLED INWARDLY RECTIFYING POTASSIUM 
CHANNELS 

 

 GABAB receptors are thought to localize primarily to VTA DA neurons (Xi 

and Stein, 1998, Margeta-Mitrovic et al., 1999, Wu et al., 1999, Laviolette and 
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van der Kooy, 2001, Wirtshafter and Sheppard, 2001, Giorgetti et al., 2002, 

Beckstead et al., 2004, Laviolette et al., 2004, Laviolette and van der Kooy, 2004, 

Labouebe et al., 2007, Beckstead et al., 2009, Margolis et al., 2012). However, 

there is emerging evidence that GABAB receptors can also be expressed on 

GABA neurons where they can induce inhibitory currents (Cruz et al., 2004, 

Padgett et al., 2012). In the VTA, GABAB receptors are also expressed 

presynaptically on GABAergic and glutamatergic neuronal terminals (Bonci and 

Williams, 1997, Manzoni and Williams, 1999, Wu et al., 1999, Giorgetti et al., 

2002, Michaeli and Yaka, 2010). Presynaptic GABAB receptors can decrease 

presynaptic glutamate and GABA release in the rat VTA by inhibiting Ca2+ 

conductance (Olpe et al., 1977, Pinnock, 1984, Lacey et al., 1988, Seabrook et 

al., 1990, Bonci and Williams, 1997, Shen and Johnson, 1997, Wu et al., 1999, 

Giorgetti et al., 2002, Michaeli and Yaka, 2010). 

GABAB RECEPTOR-MEDIATED GIRK CHANNEL CONDUCTANCE IN THE 
VTA 

 

One prominent inhibitory signaling mechanism that is regulated by GABAB 

receptors is G protein-coupled inwardly rectifying potassium (GIRK/Kir3) 

channels (Johnson and North, 1992b, Beckstead et al., 2004). GIRK channels 

can be activated through GABAB-receptor activation of Gi/o G-proteins which 

increases membrane conductance, thereby producing inhibitory postsynaptic 

currents (IPSCs) through potassium ion efflux (Misgeld et al., 1995, Watts et al., 

1996) and inhibiting neuronal activity (Dascal, 1997, Beckstead et al., 2004, Cruz 

et al., 2004, Ford et al., 2006, Labouebe et al., 2007).  
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GABAB RECEPTOR-MEDIATED GIRK CHANNEL REGULATION OF VTA 
DOPAMINE NEURON EXCITABILITY 

 

 GABAB activation of GIRK conductance hyperpolarizes dopamine neurons 

on a millisecond time scale (Beckstead et al., 2004) which is consistent with its 

role in channel conductance. Moreover, it contributes to the pause of DA 

excitation following action potential bursts, thereby strongly inhibiting midbrain 

dopamine cell firing (Lacey et al., 1987, Pucak and Grace, 1994, Davila et al., 

2003, Beckstead et al., 2004, Koyrakh et al., 2005). GABAB receptor-regulated 

GIRKs not only play an inhibitory role but also a facilitatory role in phasic burst 

firing of VTA dopamine neurons. Specifically, GABAB receptor-regulated GIRKs 

allow for optimal coding of phasic bursts by inducing the pause before and after 

the burst (Beckstead et al., 2004, Ford et al., 2009). Therefore, GABAB receptors 

may be necessary for optimal phasic bursts at the time of stress-induced relapse. 

This suggests that GABAB receptors could be inhibiting phasic firing or 

paradoxically optimizing phasic firing at the time of stress-induced reinstatement.  

DRUG-INDUCED NEUROPLASTICITY AND GABAB RECEPTOR-MEDIATED 
GIRK SIGNALING IN THE VTA 

 

 Inhibitory Gi/o G protein-coupled receptors (GPCRs), such as the GABAB 

receptor, have been implicated in both acute and chronic effects of drug-induced 

neuroadaptations (Nestler et al., 1990, Filip and Frankowska, 2007, Vlachou and 

Markou, 2010). Psychostimulant administration has been shown to decrease 

GABAB receptor-regulated GIRK channel conductance on both VTA DA and 

GABA neurons leading to enhanced dopamine signaling or GABA signaling, 
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respectively (Giorgetti et al., 2002, Beckstead et al., 2009, Arora et al., 2011, 

Padgett et al., 2012).  

GABAB receptor mRNA expression doesn’t appear to change as a result of 

cocaine exposure (Nestler et al., 1990, Arora et al., 2011). In contrast, decreased 

GIRK expression in conjunction with decreased GABAB receptor-mediated 

inhibition has been reported at somatodendritic sites of VTA dopamine neurons 

(Arora et al., 2011). Moreover, this inhibition of GABAB signaling is blocked by 

intracellular calcium chelation, independently from NMDA and AMPA receptor 

calcium entry (Malenka and Bear, 2004, Beckstead and Williams, 2007). 

Therefore, decreased GABAB GIRK conductance in VTA neurons is a drug-

induced neuroadaptation that is independent of ionotropic glutamate receptor 

calcium entry (Beckstead et al., 2004). 

Notably, neuroadaptations decreasing GABAB regulated inhibition of VTA 

dopamine neurons have only been observed during acute withdrawal from non-

contingent drug administration (Beckstead et al., 2009, Padgett et al., 2012). 

These studies utilized ex vivo slice electrophysiology in post mortem brain slices 

where neuronal circuitry is not intact and in the presence of numerous drugs to 

isolate GABAB receptor function (Beckstead et al., 2009, Padgett et al., 2012). 

However, psychostimulant-induced changes in GABAB receptor coupling and 

neurotransmission have also been reported in vivo.  

Diminished functional coupling of the GABAB receptor to Gi/o G proteins has 

been observed during times of inhibited GABAB signaling in vivo following 

repeated cocaine administration (Striplin and Kalivas, 1992, 1993, Kushner, 
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2001). Importantly, both GABAB signaling and G protein-coupling recovers within 

two weeks of the last exposure to cocaine (Striplin and Kalivas, 1992, 1993, 

Arora et al., 2011). Our ability to block stress-induced relapse with a GABAB 

receptor antagonist within at least 14 days since the last cocaine exposure is 

more consistent with intact GABAB regulation of dopamine neuron excitability.  

One of the only studies characterizing drug-induced neuroplastic effects of 

intra-VTA GABAB signaling in vivo was done using intra-VTA microdialysis in 

animals that had received noncontingent repeated amphetamine administration 

(Giorgetti et al., 2002). Repeated amphetamine administration was reported to 

produce an increase, rather than a decrease, in GABAB inhibitory tone in the VTA 

(Giorgetti et al., 2002). Specifically, intra-VTA GABAB receptor antagonism 

produced a dose-dependent increase in somatodendritic dopamine release 

without affecting glutamate concentrations in drug-naïve animals (Giorgetti et al., 

2002). In contrast, GABAB antagonism in animals receiving repeated 

amphetamine displayed an augmented ability to increase somatodendritic 

dopamine release, and an emergent ability for it to presynaptically increase 

presynaptic release (Giorgetti et al., 2002). This suggests that somatodendritic 

dopamine release in the VTA is normally under tonic inhibition by GABAB 

receptors and that presynaptic inhibition of glutamate release in the VTA by 

GABAB can be recruited by drugs of abuse. These results are opposite of 

expected based on our findings that GABAB receptor antagonism blocked intra-

VTA CRF-induced reinstatement and reports of the effects of CRF receptor 

antagonism in the VTA in response to repeated contingent cocaine self-
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administration. Wang et al., (2005) reported that CRF receptor blockade prevents 

a recruited increase in both presynaptic glutamate release and somatodendritic 

dopamine release, inconsistent with a potential GABAB receptor-mediated 

mechanism for our studies. 

In summary, the net effect of intra-VTA GABAB receptor blockade on 

dopaminergic neurotransmission likely involves increased presynaptic release of 

both GABA and glutamate, increased somatodendendritic dopamine release, and 

increased dopamine release in the prefrontal cortex but not the nucleus 

accumbens (Westerink et al., 1996, Shen and Johnson, 1997, Westerink et al., 

1998, Giorgetti et al., 2002, Beckstead et al., 2009). The exact role of GABAB 

receptor activation during stress-induced reinstatement still remains 

undetermined. However, emerging evidence from chapter four suggests that 

GABAB receptor function in the VTA can regulate cocaine-seeking, particularly 

during stress. 

POSSIBLE CRF AND GABAB INTERACTIONS IN THE VTA 
 
 
 Importantly, coordinated function between CRF-R1 and GABAB receptors 

has been proposed in the regulation of VTA dopamine neuron activity. This 

coordinated function may involve both presynaptic and postsynaptic 

mechanisms. In terms of a presynaptic mechanism, the GABAB receptor shares 

a common sushi domain structure with the N-terminus of the CRF-R1 receptor 

suggesting these receptors may interact to augment inhibition of presynaptic 

release (Blein et al., 2004, Perez-Garci et al., 2006, Perrin et al., 2006, Grace et 

al., 2007b). These sushi repeats on the N-terminus of the GABAB receptor are 
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important determinants of the formation of heterocomplexes (Vigot et al., 2006). 

Although, molecular biologists suggest the possibility, there still remains lack of 

evidence for a coordinated inhibition of presynaptic release between CRF-R1 

and GABAB receptors. 

There is also evidence of a coordinated postsynaptic mechanism implicating 

both GABAB and CRF-R1 receptors. Specifically, intra-VTA CRF signaling can 

act postsynaptically on CRF-R1 receptors to enhance GABAB regulated GIRK 

conductance on DA neurons (Beckstead et al., 2009).  This enhancement likely 

occurs through CRF-R1 Gs activation of PKA (Sadja et al., 2001, Raveh et al., 

2009, Grammatopoulos, 2012). An increase in GIRK channel activity can be 

induced by protein kinase A (PKA) following the activation of a GPCR linked to 

Gαs G-proteins (Figure 38). CRF-R1 receptors appear to be necessary for CRF 

actions on GIRK currents whereas CRF-R2 receptors appear not to be 

(Beckstead et al., 2009). 

 
Figure 47: The G protein-coupled potassium (GIRK) channel signaling complex 
viewed from the intracellular side of the membrane. GIRK channels are gated 
following the activation of GPCRs associated with G proteins Gi/o (pertusses 
toxin-sensitive) that release Gβγ dimers to gate the channel directly (blue). A 
reduction in membrane activity can be induced by activation Gq coupled 
receptors (green). In contrast, an increase in GIRK channel activity can be 
induced by activation of Gαs dependent protein kinase A (PKA) (yellow), which is 
the predominant coupling for CRF receptors in the CNS (Grammatopoulos, 
2012). Both PLC and PKA can be soluble not having to be directly associated 
with the GIRK channel complex to affect conductance (Sadja et al., 2001, Raveh 
et al., 2009). 



270 
 

 
 
 

 

 

 

 

 

 

 

 

 

It is interesting to speculate that reinstatement under LgA conditions involves 

an increase in CRF-R1 and GABAB receptor coupling. As intriguing as this 

possibility is, there is no direct evidence that CRF-R1 and GABAB receptors form 

a heterocomplex to regulate motivated behavior. The observation that both 

GABAB antagonism (Gi coupled) and CRF-R1 antagonism (Gs coupled) block 

reinstatement suggests it is not simplay a case of convergence of a specific G-

protein signaling cascade. Considering the complexities of CRF-R1 and GABAB 

receptor-mediated secondary messaging both Gs and Gi are good candidates to 

provide augmentation of GIRK conductance on dopamine neurons. Unlike CRF 

receptors (Liu et al., 2005) GABAB receptor coupling is unlikely to change within 

the VTA as a result of drug abuse (Zhang et al., 2007). However, it is more likely 

that CRF-R1 Gs activation of PKA activity is facilitating GIRK conductance, since 
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Gs coupling is the predominant coupling for CRF receptors in the CNS 

(Grammatopoulos, 2012).   

 
In summary, CRF-R1 and GABAB receptor antagonists block footshock- and 

intra-VTA CRF-induced reinstatement of cocaine-seeking behavior following LgA 

SA. The finding that CRF-R1 is necessary and sufficient for reinstatement 

suggests that intra-VTA CRF-R1 signaling is recruited following LgA cocaine self-

administration. This may take the form of increased CRF release, increased CRF 

receptor responsiveness, increased CRF receptor expression, or even changes 

in G protein-coupling. The ability for GABAB antagonism to block footshock- and 

intra-VTA CRF-induced reinstatement implicates inhibitory GABA regulation of 

the circuit. This may take the form of increased inhibition of postsynaptic 

dopamine neurons by GIRK IPSCs, inhibiting presynaptic glutamate or GABA 

release, or even changes in GABAB/GIRK expression.  

As mentioned in chapter one, increasing GABA input or intra-VTA GABA 

neuron activity produces aversive/anxiogenic behavioral responses, while 

increasing glutamatergic input or disinhibiting VTA dopamine neurons both 

produce reward/anxiolytic behavioral responses (Lammel et al., 2012, Jennings 

et al., 2013). Aversive stimuli target the medial prefrontal cortex while rewarding 

stimuli targets the nucleus accumbens (Lammel et al., 2011). Following drug-

induced neuroplasticity, CRF signaling is likely recruited at both CRF-

glutamatergic and CRF-GABAergic synapses (Tagliaferro and Morales, 2008). 

These inputs are hypothesized to provide complex and highly coordinated 

regulation of the VTA in response to stress. In this way, CRF acting as a 
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neuromodulator is likely setting the stage for glutamatergic and GABAergic inputs 

to manage activity of the mesocorticolimbic system in such a way to facilitate 

relapse. 

Notably, the majority of studies reporting excitatory regulation of VTA 

dopamine neurons by CRF receptors have involved animals under conditions 

that most resemble our ShA animals. It is possible that, under ShA SA 

conditions, CRF blockade may prevent excitatory drive on VTA dopamine 

neurons to prevent relapse. Alternatively, under LgA SA conditions, GABA 

signaling may be recruited to combat excessive cocaine-induced excitatory drive 

of the circuit. This inhibitory tone may be present into the protracted abstinence 

phase. Prevention of overwhelming drug craving and motivation to use which 

results in reinstatement of drug seeking may be prevented by blocking aversive 

drive of the motive circuit, via CRF-R1 and GABAB receptors, when in the self-

administration context and under stress. 

CONCLUDING REMARKS  

 Importantly, both a decrease and an increase in dopamine signaling can 

precipitate relapse in human addicts (Volkow et al., 2006, Laskowitz et al., 2012). 

Addiction involves a transition from chasing drug-induced euphoria (positive 

reinforcement) to eventually using the drug to avoid dysphoria (negative 

reinforcement) (Solomon and Corbit, 1974, Gawin and Kleber, 1986, Koob et al., 

2004, DSM-V, 2013). Future studies are needed to further characterize the 

intricacies of excitatory and inhibitory regulation of mesocortical versus 

mesolimbic circuits, how these circuits are changed by drug-induced 
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neuroplasticity, and how these changes promote relapse. It is my hope that the 

findings and discussions reported in this dissertation will help with the 

understanding and eventual long-term management of stressor-induced relapse 

in abstinent cocaine addicts. 
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