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ABSTRACT 
GENETIC IDENTIFICATION OF DEVELOPMENTAL PATHWAYS 

REGULATED BY CONSERVED MICRORNAS IN 
Caenorhabditis elegans 

 
 
 

John L. Brenner, B.Sc. 
 
 

Marquette University, 2012 
 
 

microRNAs (miRNAs) are  approximately 22 nucleotide non-coding RNAs 
that function to repress genes by binding to complementary sites in target 
mRNAs and play critical roles in development and disease. It is predicted that 
more than 60% of human genes are regulated by miRNAs, however, little is 
known about the individual functions of miRNAs. I used the nematode worm, 
Caenorhabditis elegans, as a model to identify developmental processes and 
pathways regulated by conserved miRNAs. Genetic examination of miRNA 
function is hindered by lack of obvious phenotypes attributed to loss of individual 
miRNA genes. Phenotypes attributable to loss of individual miRNA genes were 
identified by examining worms mutant for individual miRNA genes and alg-1, 
which encodes an Argonaute protein that functions in the miRNA pathway in C. 
elegans. This analysis identified functions for 80% of miRNA genes examined. 
miRNAs were found to regulate diverse processes, including embryonic 
development, directional migration of the gonad, and developmental timing. The 
goal of the second half of this study was to determine the mechanism whereby 
loss of members of the mir-51 miRNA family suppresses the developmental 
timing defects of alg-1 mutant worms. Genetic evidence indicates the mir-51 
family regulates the L2 to L3 transition through regulation of hbl-1 expression.  
Interestingly, the mir-51 family genetically interacts in pathways regulated by the 
let-7 and miR-35 families, as well as lsy-6, miR-240/786, and miR-1. Evidence 
herein indicates that the mir-51 family does not regulate these pathways through 
miRNA biogenesis or activity. Instead it is possible that the miR-51 family 
regulates multiple targets in diverse developmental pathways. 
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Chapter 1: Background and Significance 
 
 

Overview 
 
 
 microRNAs (miRNAs) are approximately 22 nucleotide non-coding RNAs 

that post-transcriptionally regulate target genes and are critical regulators in 

development and disease. miRNAs interact with target mRNAs in a sequence 

specific manner, and post-transcriptionally regulate target expression. The 

importance of miRNA regulation of gene expression is highlighted by the 

observation that fish, flies, worm, and mice fail to develop in the absence of 

critical miRNA biogenesis components (Grishok et al., 2001; Ketting et al., 2001; 

Bernstein et al., 2003; Wienholds et al., 2003; Lee et al., 2004b; Giraldez et al., 

2005). However, the individual functions of most miRNAs are not known. This 

introduction will review the current understanding of miRNA biogenesis, the 

mechanisms of miRNA post-transcriptional gene regulation, the strategies that 

have been used to identify miRNA targets and functions, and finally, the known 

functions for individual miRNAs. The central goal of this study was to identify 

functions for individual miRNA genes in development of the nematode worm 

Caenorhabditis elegans. 

 



2 

 

1.1 miRNA Biogenesis 
 
 
An outline of microRNA biogenesis is shown in Figure 1.1. The typical 

animal miRNA is produced by sequential processing of longer RNA precursors 

(Reviewed in Kim, 2005). First, RNA Polymerase II transcribes most miRNA 

genes as long, primary transcripts (pri-miRNA). Similar to protein coding 

transcripts, these pri-miRNAs are both capped and polyadenylated (Lee et al., 

2004a). While in the nucleus, the pri-miRNA is trimmed by the Drosha 

Microprocessor Complex to a 60-80 nucleotide hairpin, called the precursor 

miRNA (pre-miRNA) (Lee et al., 2003; Denli et al., 2004). A subset of pre-

miRNAs are not processed by Drosha but are instead the products of splicing 

(Ruby et al., 2007). The pre-miRNA is specifically exported to the cytoplasm 

(Lund et al., 2004), where it is recognized and cleaved by the enzyme Dicer 

(Bernstein et al., 2001; Grishok et al., 2001; 2001; Hutvágner et al., 2001; Ketting 

et al., 2001; Knight and Bass, 2001). This miRNA duplex is associated with a 

complex of proteins termed the miRNA-Induced Silencing Complex (miRISC) 

(Reviewed in Kim et al., 2009). The miRNA duplex is unwound, leaving the 

mature, approximately 22 nucleotide, single-stranded miRNA to serve as a guide 

for the miRISC to bind and regulate target transcripts. 
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Figure 1.1 Cartoon of miRNA biogenesis. RNA Pol II, RNA Polymerase 
II; Pri-miRNA, primary miRNA transcript; pre-miRNA, precursor miRNA; 
7mG, methylated cap. 
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1.2 An Argonaute family protein forms the core component of the miRISC 
 
 
A core component of the miRISC is an Argonaute protein. alg-1 and alg-2 

encode Argonaute proteins that are specific to the miRISC in C. elegans (Grishok 

et al., 2001). Knockdown of alg-1 and alg-2 by RNAi causes embryonic lethality 

and developmental defects similar to mutant worms lacking let-7 miRNA family 

members. Mature miRNA levels are reduced when alg-1 and alg-2 are knocked 

down (Grishok et al., 2001). In contrast, mutations in the other 25 Argonautes in 

C. elegans (Yigit et al., 2006) do not affect miRNA function. Conversely, loss of 

alg-1 and alg-2 do not obviously affect the function of the small interfering RNA 

(siRNA) pathway (Grishok et al., 2001). ALG-1 and ALG-2 complexes bind 

almost exclusively to miRNAs (Zhang et al., 2007; Corrêa et al., 2010), but 

miRNAs can also associate with RDE-1 (Steiner et al., 2007; Corrêa et al., 2010), 

the Argonaute required for exogenous siRISC function. RDE-1 complexes loaded 

with miRNAs are likely non-functional since loss of rde-1 does not result in 

phenotypes expected for loss or reduction of miRNA function in C. elegans and 

RDE-1 cannot compensate for loss of alg-1 and alg-2 (Grishok et al., 2001). 

miRNA loading specifically into a miRISC containing either ALG-1 or ALG-2 is 

therefore necessary for miRNA regulation of its targets in C. elegans. 
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1.3 Mechanism of post-transcriptional regulation by miRNAs.  
 
 
The consequence of a miRNA binding to its target mRNA is, most often, 

reduction in target protein levels. There are multiple mechanisms for miRNA-

mediated gene regulation, including inhibition of translation or destabilization of 

the target transcript (Reviewed in Filipowicz et al., 2008; Huntzinger and 

Izaurralde, 2011; Figure 1.2). Inhibition of translation is thought to occur through 

prevention of translation initiation or through a block of translation elongation. 

miRISC binding to a target prevents the initiation complex from assembling onto 

the transcript, likely through direct interactions with the 5’ cap (Humphreys et al., 

2005; Wang et al., 2006; Kiriakidou et al., 2007; Mathonnet et al., 2007; 

Thermann and Hentze, 2007; Wakiyama et al., 2007). miRNAs may block 

translation elongation as evidenced by miRNA targets residing in polysomes 

(Olsen and Ambros, 1999; Seggerson et al., 2002; Maroney et al., 2006; Nottrott 

et al., 2006; Petersen et al., 2006), but a precise mechanism for how the miRISC 

prevents the ribosome from elongating remains unknown. Large scale proteome 

and transcriptome analysis indicate that reduction of miRNA target protein levels 

is often coupled with a reduction in miRNA target transcript levels, indicating that 

miRNAs promote the degradation of their target transcript (Baek et al., 2008; 

Selbach et al., 2008; Hendrickson et al., 2009; Guo et al., 2010). Degradation 

begins with removal of the poly-A tail, which is mediated by enzymes recruited by 

the miRISC (Behm-Ansmant et al., 2006; Giraldez et al., 2006; Wu et al., 2006). 

The resulting transcript without the poly-A tail is then susceptible to 3’ to 5’ 

exonucleases. However, poly-A tail removal does not condemn a transcript to be 
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destroyed, as some deadenylated miRNA targets are relatively stable (Wu et al., 

2010). Each mechanism of post-transcriptional gene regulation by a miRNA may 

not be mutually exclusive. Instead, a miRNA binding to its target might begin with 

a block on translation initiation triggered by deadenylation and miRISC 

interaction with the 5’ cap, followed by degradation (Djuranovic et al., 2011). 

Although it is still not certain that miRNA mediated target regulation is a coupled 

process of translation block and mRNA decay, the typical effect seems to be a 

reduction in protein levels, and often reduction in transcript levels.    
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Figure 1.2 Cartoon Diagram for Mechanisms of miRNA mediated post 
transcriptional repression. miRISC interacts with target UTR, which: A) 
blocks translation elongation, B) blocks the initiation of translation, or C) 
promotes the destabilization of the transcript through recruitment of 
additional enzyme complexes. Small subunit refers to the 40S ribosomal 
subunit. 7mG refers to the modified 5’ cap of a mature transcript. The oval 
bound to the triangle and diamond is a cartoon representation of the 
miRISC, along with a miRNA attaching to the 3’ end of the target mRNA. 
Not drawn to scale. 
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1.4 Determinants of miRNA target recognition 
 

 
With few exceptions (Yekta et al., 2004; Davis et al., 2005), most animal 

miRNAs do not bind perfectly to their target mRNAs. Imperfect pairing precludes 

identification of miRNA targets through simple genomic searches for 

complementary sites. In order to identify miRNA targets, a number of algorithms 

have been created to identify putative binding sites in the 3’ UTRs of mRNAs 

(Reviewed in Bartel, 2009).  

 
1.4.1 The importance of the “seed” to miRNA target recognition 

 
 
A specific region of the miRNA, called the seed sequence, is a primary 

determinant of miRNA target recognition (Doench and Sharp, 2004; Brennecke 

et al., 2005; Nielsen et al., 2007). The seed sequence represents nucleotides 2-7 

of the mature miRNA sequence. Mispairing between a single nucleotide of the 

seed sequence and the target often eliminates miRNA mediated repression, 

whereas mispairing outside the seed sequence is often tolerated (Doench and 

Sharp, 2004; Brennecke et al., 2005; Nielsen et al., 2007). Mis-pairing in the 

seed sequence can be compensated by extensive pairing between the 3’ end of 

the miRNA and its target (Doench and Sharp, 2004; Brennecke et al., 2005; Krek 

et al., 2005; Grimson et al., 2007; Nielsen et al., 2007). Other factors also 

contribute to target recognition (Doench and Sharp, 2004; Brennecke et al., 

2005; Krek et al., 2005; Grimson et al., 2007; Nielsen et al., 2007). These factors 

include multiple binding sites within the 3’ UTR, structure and accessibility of the 

3’ UTR, and binding at the 3’ end of the miRNA (Bartel, 2009). 
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1.4.2 miRNAs are grouped into families 
 

 
MicroRNAs have been grouped together primarily based on sequence 

similarity at their 5’ end (Ambros et al., 2003; Grad et al., 2003; Lim et al., 2003). 

Since these miRNAs share a common seed sequence, they are predicted to 

regulate shared targets. In mouse, mir-133a-1 and mir-133a-2 are individually not 

essential, but mice lacking both of these miRNAs have severe heart defects 

resulting in early lethality or heart failure in older mice (Liu et al., 2008). These 

two miRNAs regulate the same targets, SRF and cyclin D, whose mis-regulation 

partially accounts for the cardiac defects in mice lacking mir-133a-1 and mir-

133a-2. However, mir-133a-1 and mir-133a-2 are identical in sequence allowing 

them to regulate identical targets. miRNA families often contain multiple 

members with unique sequences at their 3’ ends. Thus, although it is recognized 

that miRNA families can regulate shared targets and have similar functions, it is 

unknown to what extent they have non-overlapping functions. One known non-

overlapping function for members of a miRNA family is known in C. elegans, 

where let-7 but not its family members miR-48, miR-84, and miR-241 regulate lin-

41 (Reinhart et al., 2000; Abbott et al., 2005). Differences at the 3’ end of the 

miRNAs may account for the inability for miR-48, miR-84, and miR-241 to 

regulate lin-41 (Abbott et al., 2005). Identification of functions for individual 

members of miRNA families will allow for further analysis of possible non-

overlapping roles for miRNAs that share common 5’ seed sequences. 
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1.5 Identification of miRNA Targets 
 
 

The first miRNAs were discovered through genetic dissection of C. 

elegans mutants. Although forward genetic analyses revealed the function of 

additional miRNAs, the identification of let-7, which is perfectly conserved in 

humans (Pasquinelli et al., 2000), paved the way for biochemical attempts to 

identify the small RNAs present in animals. The first biochemical identification of 

miRNAs (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001) 

revealed the existence of many miRNAs without revealing their corresponding 

targets. 

 
1.5.1 Genetic Identification of miRNA targets 
 
 

The first miRNA targets were identified genetically in C. elegans. lin-4 

binds to sequences in the lin-14 mRNA to block production of LIN-14 (Lee et al., 

1993; Wightman et al., 1993). let-7 blocks production of LIN-41 through binding 

partially complementary sites in the lin-41 3’ untranslated region (UTR) (Reinhart 

et al., 2000; Slack et al., 2000). Identification of both targets was made possible 

through examination of mutant worms with obvious, penetrant phenotypes that 

were opposite to those of mutant worms lacking lin-4 or let-7 (Lee et al., 1993; 

Wightman et al., 1993; Slack et al., 2000). An additional developmental timing 

gene, lin-28, was also found to be a target of the lin-4 miRNA through 

identification of complementary sites within its 3’ UTR (Moss et al., 1997). 

Reverse genetic approaches have also been applied to identify individual 

miRNA function. However, as will be discussed in more detail later in this 
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chapter, loss of individual miRNA genes often has no negative consequence on 

development (Miska et al., 2007). Further work is then needed to identify 

developmental consequences attributable to the loss of individual miRNAs and 

identify biologically relevant targets. 

 
1.5.2 Computational identification of miRNA targets 
 
 

Computational approaches predict targets for many of the known miRNAs. 

As was observed with lin-4 and let-7, animal miRNAs typically do not bind with 

perfect complementarity to their targets (Lee et al., 1993; Wightman et al., 1993; 

Reinhart et al., 2000; Slack et al., 2000). Although there is significant overlap 

between lin-4 and let-7 to their targets, extensive pairing may not be necessary. 

Complementary binding of the seed sequence to its target may be sufficient to 

confer regulation (Bartel, 2009). Searching for perfect complementary binding 

sites between a miRNA seed sequence and a putative target is one way to 

determine if a specific gene is a target of a specific miRNA. However, this 

approach may generate many false-positives (Bartel, 2009). Instead, target 

prediction algorithms generate refined target lists by focusing on parameters of 

miRNA target binding beyond seed pairing, such as multiple binding sites within 

a 3’ UTR, structural accessibility to regions within the UTR, or compensatory 

binding between the 3’ end of the miRNA and its target (Bartel, 2009). Some of 

these predictions generate a broad landscape of putative miRNA targets. For 

example, greater than 60% of human protein coding genes are now predicted 

miRNA targets (Friedman et al., 2009). These predictions suggest many targets 
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can be regulated by a miRNA, but experimental evidence is still needed to 

validate these miRNA targets. 

 
1.5.3 Biochemical Identification of miRNA targets 
 
 

Multiple biochemical approaches have been used to identify miRNA 

targets. These approaches include identification of RNAs and/or proteins whose 

levels are decreased when a miRNA is overexpressed, identification of RNAs 

and/or proteins whose levels are increased when a miRNA is lost or antagonized, 

and identification of RNAs that immunoprecipitate with proteins associated with 

the miRISC (Thomas et al., 2010). 

First, transfection of miRNAs into cells that normally lack the miRNA has 

been used to identify targets. Microarray profiling of cells transfected with brain-

specific miR-124 revealed targets for the miRNA, and also revealed that a 

function of this miRNA is to reinforce a brain cell-specific expression profile (Lim 

et al., 2005). Quantitative proteomics further supports this role for miR-124 (Baek 

et al., 2008). However, expression of a miRNA into cells that don’t normally 

express it can generate indirect effects on gene expression. Also, overexpression 

of the transfected miRNA might allow it to interact with genes that are not targets 

in normal physiological contexts (Thomas et al., 2010). 

An alternative to determining the effect on the transcriptome or the 

proteome by miRNA overexpression is to examine the effect of loss or reduction 

of miRNA expression. This approach can also identify many targets, however, 

the effect on gene expression in the absence of miRNA function can be small 
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compared to the effect of overexpression (Linsley et al., 2007; Selbach et al., 

2008). Since the level of repression of a miRNA on its targets can be modest 

(Baek et al., 2008), this approach may not be sensitive enough to identify targets. 

miRNA targets have also been identified through high throughput 

sequencing of RNAs that immunoprecipitate with individual protein components 

of the miRISC machinery (Beitzinger et al., 2007; Easow et al., 2007; Karginov et 

al., 2007; Zhang et al., 2007; Hendrickson et al., 2009; Zhang and Emmons, 

2009; Zisoulis et al., 2010). mRNAs identified through this approach are likely to 

be targeted by miRNAs in vivo. Recent work using RIP-SEQ (RNA 

immunoprecipitation followed by sequencing), has identified approximately 100bp 

fragments of mRNAs that associate with the miRISC component ALG-1 (Zisoulis 

et al., 2010). Biochemical identification of targets has been coupled with 

computational approaches to enhance the accuracy of computational predictions 

(Hammell et al., 2008). 

Collectively, biochemical approaches reveal that many genes are miRNA 

targets, and also reveal that most miRNAs modestly reduce target gene 

expression (Baek et al., 2008; Selbach et al., 2008). However these approaches 

generally do not reveal the biological significance of the miRNA target 

relationship. Further work beyond these biochemical methods are needed to 

identify the physiological pathways in which a miRNA might regulate its target 

and the significance of the regulation. 
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1.6 Identification of miRNA Functions 
 
 
1.6.1 lin-4 and the let-7 family miRNAs control developmental timing in C. 
elegans. 

 
 

A set of cells in the worm called the lateral hypodermal seam cells go 

through several rounds of division in larval development (Figure 1.3). The timing 

and pattern of these divisions is precisely controlled in wild type worms. In each 

of the four larval stages (L1 - L4) the seam cells undergo a single round of 

asymmetric cell division with one daughter fusing with the hypodermal syncytial 

cell hyp7, wherease the other daughter cell maintains the stem cell like fate of 

the seam. In the L2 stage, the asymmetric division is preceded by a symmetric 

division that increases the total number of seam cells from 10 to 16. At the end of 

larval development, the seam cells terminally differentiate, fuse, and produce the 

adult specific cuticle structure called alae. Repetition or omission of any of these 

specific programs gives a heterochronic phenotype and worms that display these 

phenotypes are classified as developmental timing mutants (Ambros and Horvitz, 

1984). 

miRNAs regulate developmental timing in C. elegans. lin-4, as previously 

discussed, was identified due to its highly penetrant phenotype in the worm. In 

the absence of lin-4, LIN-14 remains high resulting in worms continually 

repeating the L1 stage program (Lee et al., 1993; Wightman et al., 1993, Figure 

1.3). lin-14 is completely epistatic to lin-4 (Ambros and Horvitz, 1987; Ambros, 

1989). Worms lacking lin-14 have an opposite phenotype to that of loss of lin-4, 

and skip the first larval program (Ambros and Horvitz, 1984, Figure 1.3). Another 
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miRNA, let-7, regulates the larval-to-adult switch in C. elegans (Reinhart et al., 

2000). Worms lacking let-7 repeat a later larval program, and the lateral seam fail 

to terminally differentiate at the L4-to-adult transition (Reinhart et al., 2000; 

Figure 1.3). This phenotype is opposite to that of worms lacking the let-7 target, 

lin-41, which skip a larval program, resulting in the seam terminally differentiating 

a single stage earlier (Reinhart et al., 2000; Slack et al., 2000; Figure 1.3). let-7 

family members, mir-48, mir-84, and mir-241, regulate the L2-to-L3 transition in 

worms (Abbott et al., 2005). Interestingly, worms lacking these miRNAs 

individually do not obviously display developmental timing defects, but worms 

lacking all three repeat the L2 specific symmetric division of the lateral seam cells 

(Abbott et al., 2005; Figure 1.3). This repetition of the L2 specific division results 

in an increase of the total number of seam cells in later development. Worms 

lacking mir-48, mir-84, and mir-241 fail to down-regulate their target, hbl-1, 

whose down-regulation is necessary to exit the L2 program (Abrahante et al., 

2003; Abbott et al., 2005). It is unknown if other miRNAs play a role in 

developmental timing. 
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Figure 1.3 Summary of developmental timing defects in the seam cell 
division pattern of lin-4 and let-7 family mutants and their targets. Each 
branch represents a division of the lateral hypodermal seam cells. 
Discontinuation of a line indicates terminal differentiation of the cell. The three 
horizontal lines represent the formation of the adult specific cuticle structure, 
alae. The pattern of seam cell division is shown for wild type, lin-4, let-7, mir-48 
mir-84 mir-241, lin-14, and lin-41 worms. 



17 

 

Table 1.1. Summary of functions identified for miRNAs in C. elegans 
miRNA gene/family Target(s) Observed function References 
lin-4 lin-14, lin-28 Developmental timing, 

lifespan, HSN axon 
outgrowth 

Ambros 1989 
Moss et al. 
1997 
Olsson-Carter 
and Slack, 
2010 
Wightman et al. 
1993 
Boehm and 
Slack, 2003 

let-7, mir-48, -84, -241 daf-12, hbl-1, let-60, 
lin-41 

Developmental timing, 
vulval cell fate specification 

Reinhart et al. 
2000 
Abbott et al. 
2005 
Abrahante et 
al. 2003 
Grosshans et 
al. 2005 
Johnson et al. 
2005 
Lin et al. 2003 

mir-61 vav-1 vulval cell fate specification Yoo and 
Greenwald, 
2005. 

lsy-6 cog-1 ASEL/R neuron fate 
specification 

Johnston and 
Hobert, 2003 

mir-273 die-1 ASEL/R neuron fate 
specification 

Chang et al. 
2004. 

mir-1 unc-29, unc-63, 
mef-2 

Synaptic transmission Simon et al. 
2008 

mir-51, -52, -53, -54, -55, 
-56 

cdh-3 embryogenesis, pharyngeal 
attachment 

Alvarez and 
Horvitz, 2010 
Shaw et al., 
2010 

mir-35, -36, -37, -38, -39, 
-40, -41, -42 

 embryogenesis Alvarez and 
Horvitz, 2010 

mir-240  defecation Miska et al. 
2007 

mir-786  defecation Miska et al. 
2007 

mir-58  Locomotion, body size, egg 
laying, dauer entry 

Alvarez and 
Horvitz, 2010 

mir-80, -81, -82  Locomotion, body size, egg 
laying, dauer entry 

Alvarez and 
Horvitz, 2010 
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1.6.2 Multiple miRNAs, including let-7 family members, regulate vulval cell 
fate specification in C. elegans. 
 

 
Vulva formation is preceded by specification of hypodermal cells called the 

Vulval precursor cells (VPCs). The specification of the VPCs is controlled, in part, 

through an inductive signal involving the LET-60/RAS signaling pathway and a 

lateral signal involving the LIN-12/Notch signaling pathway (Sternberg, 2005). 

The cell that will become the vulva, the 1˚ VPC, is high in LET-60/RAS activity 

but low in LIN-12/Notch activity. In contrast, the neighboring 2˚ VPCs both have 

low LET-60/RAS activity, but high LIN-12/Notch activity. The proper activity of 

these signaling pathways is important to properly specify the VPCs and lead to 

the formation of a single vulva (Sternberg, 2005).  

Two miRNAs function in vulval cell fate specification, miR-61 (Yoo and 

Greenwald, 2005) and the let-7 family member, miR-84 (Johnson et al., 2005). 

miR-61 is activated in 2˚ VPCs by LIN-12 and regulates vav-1 (Yoo and 

Greenwald, 2005). Downregulation of VAV-1 contributes to promoting the 2˚ 

VPCs by reinforcing LIN-12 activity (Yoo and Greenwald, 2005). miR-84 also 

functions in the 2˚ VPC. mir-84 is expressed in the 2˚ VPCs and regulates the let-

7 family target, let-60/RAS (Johnson et al., 2005). In this role, miR-84 reinforces 

the 2˚ VPC fate by maintaining low LET-60/RAS activity in these cells. 

Interestingly, loss of either of these miRNAs individually has no negative 

consequence on vulval cell fate specification (Miska et al., 2007), indicating they 

are auxiliary to other regulators of vulval cell fate specification. 
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1.6.3 miRNAs specify the left/right asymmetry in a pair of neurons in C. 
elegans. 

 
 
The cell fates between a pair of neurons in the head, the ASEL and 

ASER, are controlled by the miRNAs lsy-6 (Johnston and Hobert, 2003) and 

miR-273 (Chang et al., 2004). The lsy-6 miRNA is expressed solely in the ASEL 

and is required for its specification (Johnston and Hobert, 2003). Worms lacking 

lsy-6 specify two ASER neurons due to the lsy-6 target, cog-1, remaining high in 

the cell normally fated to become the ASEL. mir-273, in contrast, is expressed 

primarily in the ASER. mir-273 negatively regulates die-1, which is necessary for 

lsy-6 expression in the ASEL (Chang et al., 2004). Bilateral expression of miR-

273 is sufficient to promote the specification of two ASER, consistent with a lack 

of lsy-6 in the ASEL. Interestingly, loss of mir-273 has no effect on the bilateral 

specification of the ASEL and ASER (Chang et al., 2004), suggesting it is 

auxiliary to other regulators of ASER specification.  

 
1.6.4 The muscle-specific mir-1 regulates synaptic transmission in C. 
elegans. 
 
 

The muscle specific mir-1 is highly conserved in both sequence and 

expression pattern from C. elegans to humans (Nguyen and Frasch, 2006). mir-1 

is necessary for normal development in both flies and mice (Sokol and Ambros, 

2005; Zhao et al., 2007). In the worm, mir-1, although not essential for viability 

(Miska et al., 2007), regulates activity at the neuromuscular junction by regulating 

multiple muscle specific targets including subunits of the acetylcholine receptor, 

unc-29 and unc-63, and the MEF-2 transcription factor (Simon et al., 2008). 
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Misregulation of these targets allows mir-1 mutant worms to be partially resistant 

to levamisole, which causes paralysis in C. elegans. 

 
1.6.5 mir-35 family and mir-51 family regulate embryonic development in C. 
elegans. 
 
 
 Two miRNA families are required for embryonic development in C. 

elegans, the mir-35 family and the mir-51 family (Alvarez-Saavedra and Horvitz, 

2010). Worms lacking individual members of the mir-35 or mir-51 families 

develop normally (Miska et al., 2007). However, worms lacking either the entire 

mir-35 or mir-51 family arrest during embryogenesis (Alvarez-Saavedra and 

Horvitz, 2010), indicating the individual members of the family function 

redundantly in embryonic development. In further support that these miRNA 

families function redundantly, transgenic expression of any one family member is 

sufficient to rescue the embryonic lethality associated with loss of the entire 

family (Alvarez-Saavedra and Horvitz, 2010). A direct target of the mir-35 family 

is unknown. Misregulation of the mir-51 family target, cdh-3, is in part responsible 

for the failure of the pharynx to attach to the mouth in mir-51 family mutant 

worms (Shaw et al., 2010). However reduction of cdh-3 expression fails to 

suppress embryonic lethality observed in worms lacking the mir-51 family 

members, suggesting involvement of additional targets (Shaw et al., 2010). 
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1.7 In most cases, loss of individual miRNAs has no obvious consequence 
on development in C. elegans 
 
 
 The identification of the vast majority of miRNAs was achieved through 

cloning and sequencing small RNAs from animals. Thus, the function of most 

miRNAs is unknown. In order to identify the functions of individual miRNAs, 

deletion alleles were generated for the majority of the known miRNA genes in C. 

elegans (Miska et al., 2007). Interestingly, in most cases, loss of individual 

miRNA genes has no obvious effect on development (Miska et al., 2007).  

 
1.7.1 miRNAs function redundantly 
 

 
miRNA families can function together to regulate common targets. For 

example, the let-7 family members, mir-48, mir-84, and mir-241 function together 

to down-regulate their target, hbl-1, for normal progression from the L2 to the L3 

larval program (Abbott et al., 2005). While worms missing individual let-7 family 

member miRNAs do not repeat the L2 larval stage, double and triple mutant 

worms display penetrant developmental timing defects, indicating the family 

members redundantly regulate hbl-1. Similarly, the mir-35 and mir-51 families are 

collectively required for embryonic development in C. elegans. Loss of individual 

members of these families has no obvious adverse effect on embryonic 

development (Alvarez-Saavedra and Horvitz, 2010). Except for these families 

and the mir-58/80 family (Table 1.1), most miRNA families are not necessary for 

normal development in C. elegans (Alvarez-Saavedra and Horvitz, 2010). This 
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indicates redundancy between miRNA families alone cannot account for lack of 

developmental defects for mutants of individual miRNA genes. 

miRNAs unrelated by sequence may also regulate common targets. For 

example, the lin-28 3’ UTR contains binding sites for both the lin-4 and let-7 

family of miRNAs (Moss et al., 1997; Moss and Tang, 2003). Many other genes 

are predicted to contain multiple binding sites for miRNAs that do not belong to 

the same family. Therefore different miRNAs or different miRNA families could 

coordinately regulate a common target, such that loss of regulation at any one 

site could be tolerated. 

 
1.7.2 miRNAs have cell-specific functions 
 
 
 Certain cell-specific functions may have been missed in the phenotypic 

analysis carried out by Miska et al. (2007). For example, the analysis would not 

have identified a function for lsy-6, which specifies the ASEL neuronal fate, since 

worms lacking lsy-6 develop otherwise normally (Johnston and Hobert, 2003). 

Worms lacking lsy-6 also display a subtle chemosensation defect, which is also 

likely to have been missed in broad-based phenotypic assays. A function was not 

identified for mir-1 through phenotypic analysis (Miska et al., 2007), although it 

was later found that mir-1 regulates synaptic activity (Simon et al., 2008). For this 

reason, more cell specific assays could be employed to assess if individual 

miRNAs play a role in cell-specific functions. 
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1.7.3 miRNAs fine-tune target expression 
 
 
 miRNAs can behave like switches or like fine-tuners of target protein 

levels. lin-4 behaves as a “genetic switch” and virtually eliminates protein levels 

of its target, lin-14 (Lee et al., 1993; Wightman et al., 1993). In contrast, miR-8 in 

D. melanogaster “fine tunes” the protein levels of its target, atrophin. Both 

increase and loss of atrophin is detrimental to development, indicating that miR-8 

functions to maintain atrophin protein levels within an optimal range (Karres et 

al., 2007). Although loss of mir-8 has an obvious effect on Drosophila 

development, fine-tuning relationships may be less likely to result in obvious 

developmental defects. 

Recent evidence indicates that most miRNAs function to fine-tune the 

expression of their targets (Baek et al., 2008; Selbach et al., 2008; Hendrickson 

et al., 2009; Guo et al., 2010). Therefore, loss of an individual miRNA may result 

in modest changes in target expression. This modest misregulation may be 

insufficient to cause an obvious developmental defect. 

The ability of a miRNA to switch off or fine-tune target gene expression is 

likely not an intrinsic property of a miRNA (Mukherji et al., 2011). Instead the 

stoichiometry and pairing between a miRNA and its respective targets dictates 

the extent to which it can down-regulate its target (Mukherji et al., 2011). 

Therefore, if the expression of a miRNA target gene is low, a miRNA may act to 

keep target expression low or off. However, when target gene expression is 

elevated, the miRNA may elicit a smaller effect and act to only mildly diminish the 
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expression of its targets. Therefore, the loss of an individual miRNA could result 

in loss of both fine-tuning and switch regulation of target expression. 

 
1.8 Hypothesis and Goal 
 
 
 The hypothesis that miRNAs unrelated by sequence can regulate common 

targets or pathways can explain the lack of developmental defects in worms 

lacking individual miRNA genes. To test this and identify functions for individual 

miRNA genes, alg-1(gk214) was used as a genetically sensitized mutant 

background. alg-1 encodes an Argonaute protein that functions specifically in the 

miRNA pathway in C. elegans (Grishok et al., 2001).  Mature miRNAs are 

reduced in alg-1 mutant worms (Grishok et al., 2001), indicating that overall 

miRNA levels and likely activity is reduced. In order to reveal the function of 

individual miRNAs, 25 mutant worm strains were generated that are each 

homozygous for a different miRNA deletion allele and the gk214 allele of alg-1. A 

primary aim of this study was accomplished through phenotypic characterization 

of these mutant worms: to identify functions for individual miRNAs in 

development.  

The second aim of this study was to further characterize the mechanism 

whereby loss of an individual miRNA resulted in phenotypes identified in Aim 1. 

Chapter 2 contains the results from phenotypic analysis of these mir; alg-1 

mutant worms. Since 80% of the mir; alg-1 mutans displayed phenotypic 

differences relative to a control alg-1 strain, attention was focused on 

characterizing phenotypes attributed to loss of members of the mir-51 family. 
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Loss of members of the mir-51 family suppressed developmental timing defects 

of alg-1 mutant worms. This family was selected because loss of the mir-51 

family member, mir-52, resulted in the most robust suppression of alg-1 

developmental timing defects. The mir-51 family functioned in diverse 

developmental pathways in C. elegans, including developmental timing, neuronal 

and vulval cell fate specification, the defecation motor program, and synaptic 

transmission.  

The final aim of this study was to identify target genes of the mir-51 family 

that are required for suppression of developmental timing defects. Four genes, 

cul-1, lin-66, tlp-1, and vhp-1, were identified as candidate downstream targets of 

the mir-51 family. However, molecular experiments are inconclusive in the 

identification of these genes as direct targets of the mir-51 family in 

developmental timing. Instead, it is possible that the mir-51 family may regulate 

distinct target sets in diverse developmental pathways in C. elegans, possibly to 

fine-tune or buffer protein levels to an optimal range.  

The examination of these aims allowed for the identification of functions 

for individual miRNA genes by identifying phenotypes attributable to loss of 

individual miRNA genes. Further analysis of these phenotypes allows for 

dissection of specific developmental pathways regulated by miRNAs in C. 

elegans and the identification of biologically relevant targets of individual 

miRNAs. 
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Chapter 2: Identifying phenotypes attributable to the  
loss of individual miRNA genes in  
the nematode worm, C. elegans. 

 
 

2.1 Introduction  
 
 
 In most cases, no phenotypic defects have been identified associated with 

the loss of an individual miRNA gene in C. elegans (Miska et al., 2007). 

Functional redundancy among related miRNA genes, which share a 6 nucleotide 

5’ ‘seed’ sequence, can partially account for the lack of phenotypes (Alvarez-

Saavedra and Horvitz, 2010). It is also possible that unrelated miRNAs, which 

have distinct seed sequences, may regulate shared targets and pathways. For 

example, lin-28 has recognition sites for both the lin-4 and let-7 families of 

miRNAs (Lee et al., 1993; Reinhart et al., 2000). Therefore, we hypothesized that 

miRNAs unrelated by sequence could regulate common targets or pathways. To 

address this hypothesis and to identify phenotypes attributed to loss of individual 

miRNA genes, the alg-1(gk214) mutant background was utilized. alg-1 encodes 

an Argonaute protein that functions in the miRNA pathway (Grishok et al., 2001). 

gk214 is a loss-of-function allele that deletes 220 basepairs at the 5’ end of alg-1, 

which eliminates the first exon and part of an intron. Worms homozygous for 

gk214 display pleiotropic defects, including developmental timing defects, gonad 

migration defects, and embryonic lethality (Table 2.1). These phenotypes are 

likely due to reduced overall miRNA activity (Grishok et al., 2001). 25 strains with 

miRNA deletion alleles along with the gk214 allele were generated. These 

miRNA deletion alleles represent 31 miRNAs, which are either conserved 
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through mammals or display developmentally-regulated expression (Lim et al., 

2003). Strains carrying individual miRNA deletion alleles were first backcrossed 

with the wild type N2 to eliminate background mutations. Most of these mutants 

lack an individual miRNA gene, although a few lack the sequences for multiple 

mature miRNA sequences that are found in a cluster in the genome. For 

example, the nDf58 allele lacks a 1805 bp region containing mir-54, mir-55, and 

mir-56, referred to as mir-54/55/56, which are located in close proximity to one 

another in the genome, and may be derived from a common transcript (Shaw et 

al., 2010). These 25 mir; alg-1 mutants were examined for defects in 

developmental timing, gonad migration, embryonic lethality, adult lethality, and 

gross morphology defects. 24 of the 31 miRNAs examined in this way resulted in 

phenotypes (Table 1).  

 
2.2 Seven mir; alg-1 mutant strains display enhanced embryonic lethality 
 
 
 Each mir; alg-1 strain was examined for embryonic lethality. While 3% of 

alg-1 mutant worm embryos fail to hatch, seven mir; alg-1 mutant strains had 

significantly increased embryonic lethality (between 7-13%, Table 2.1). These 

seven mir; alg-1 strains represent eight miRNA genes: mir-51, mir- 57, mir-59, 

mir-77, mir-228, mir-240 mir-786, and mir-246. This analysis indicates these 

eight miRNAs may function in embryonic development.  
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Table 2.1. Phenotypic Characterization of miRNA mutants in alg-1 sensitized genetic background 

Strain Genotype 

Developmental 
Timing 

Gonad 
Migration 

Embryonic 
Lethality 

Adult 
Lethality 

% Incomplete 
alae 

formationa 
% 

Abnormalb 
% 

Unhatchedc 
% Dead 
at 72hrd 

N2 wild type 0% 0% 0% 0% 
RF54 alg-1(gk214) 61% 8% 3% 63% 
RF70 mir-1(n4102); alg-1(gk214) 57% 25%** 3% 53% 
RF129 mir-34(n4276) alg-1(gk214) 59% 13% 5% 72% 
RF420 mir-51(n4473); alg-1(gk214) 31%** 7% 8%* 51% 
RF411 mir-52(n4114); alg-1(gk214) 3%** 0% 6% 16%** 
RF398 mir-53(n4113); alg-1(gk214) 60% 17% 1% 57% 
RF410 mir-54/55(nDf45) alg-1(gk214) 4%** 11% 2% 12%** 
RF89 mir-54/55/56(nDf58) alg-1(gk214) 23%** 4% 3% 5%** 
RF133 mir-57(gk175); alg-1(gk214) 51% 5% 8%** 73% 
RF137 mir-59(n4604); alg-1(gk214) 69% 23%** 10%** 83%** 
RF153 mir-72(n4130); alg-1(gk214) 56% 2% 5% 48% 
RF81 mir-73/74(nDf47) alg-1(gk214) 75% 7% 3% 40%** 
RF178 mir-77(n4285); alg-1(gk214) 54% 8% 12%** 59% 
RF65 mir-83(n4638); alg-1(gk214) 51% 25%** 3% 77% 
RF141 mir-85(n4117); alg-1(gk214) 48% 4% 3% 54% 
RF77 mir-124(n4255); alg-1(gk214) 69% 18%* 2% 69% 
RF145 mir-228(n4382); alg-1(gk214) 39%** 5% 13%** 53% 
RF93 mir-234(n4520); alg-1(gk214) 53% 5% 3% 57% 
RF182 mir-235(n4504); alg-1(gk214) 56% 7% 0% 80%** 
RF85 mir-237(n4296) alg-1(gk214) 47% 12% 3% 75% 
RF163 mir-238(n4112);  

mir-239a/b(nDf62) alg-1(gk214) 22%** 3% 1% 11%** 
RF60 mir-240 mir-786(n4541) alg-1(gk214) 50% 13% 7%** 45%* 
RF186 mir-244(n4367); alg-1(gk214) 13%** 9% 5% 53% 
RF149 mir-246(n4636); alg-1(gk214) 44% 7% 8%** 71% 
RF368 mir-247 mir-797(n4505) alg-1(gk214)  41% 25%** 4% 57% 
RF343 mir-259(n4106); alg-1(gk214) 34%** 28%** 4% 59% 
* p < 0.05,  ** p < 0.01 by the chi-square test, as compared to alg-1 single mutants. 
a Alae were scored at the L4m using DIC microscopy. n > 39 (range: 39-204) worms scored for 
each strain 
b Gonad morphology was scored in young adult worms using DIC microscopy. n > 41 (range: 41-
262) worms scored for each strain 
c Embryos were transferred to a new plate and scored after 16-24 hours for the presence of 
unhatched embryos. n > 78 (range: 78-548) embryos scored for each strain. 
d Synchronized L1-stage worms were transferred to plates to initiate development. Lethality was 
scored 72 hours after plating at 20oC, n > 76 (range: 76-172) worms scored for each strain.  
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2.3 Six mir; alg-1 mutant strains display enhanced gonad migration defects 
 
 

Each mir; alg-1 strain was examined for defects in gonad morphology. In 

wild type worms, the distal tip cell guides gonad migration to form a U-shaped 

tube by late larval development (Figure 2.1). In 8% of alg-1 mutant worms, either 

the anterior or posterior gonad arm undergoes an additional turn, away from the 

midline (Figure 2.1, Table 2.1). These defects were found predominantly, but not 

exclusively in the posterior gonad arm. The penetrance of this phenotype is 

significantly increased up to 18-28% in six mir; alg-1 strains (Table 2.1).  These 

six mir; alg-1 strains represent 7 miRNA genes: mir-1, mir-59, mir-83, mir-124, 

mir-247 mir-797, and mir-259.   
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Figure 2.1. Developmental Timing and Gonad Migration Phenotypes of alg-
1. DIC images of alae in wild type (A) and alg-1(gk214) mutant (B) at the young 
adult stage. White triangles point to alae. Area between white arrows in B contain 
no alae. DIC images of posterior gonad arm in wild type (C) and alg-1(gk214) 
mutant (D) at the young adult stage. White line in C and D trace the migration 
path of the gonad arm, with the distal tip cell near the location of the arrowhead. 

 

 
2.4 Twelve mir; alg-1 strains display enhanced or suppressed 
developmental timing or adult lethality defects 
 
 
 Each mir; alg-1 strain was examined for adult lethality and developmental 

timing defects, as determined by alae formation. 63% of alg-1 mutants die early 

during adulthood (Table 2.1). This lethality is primarily due to a failure to exit the 

molting cycle as an adult and subsequent failure of embryos to exit the vulva. 

This results in a bag of worms phenotype (Table 2.2). Two strains, mir-59; alg-1 

and mir-235; alg-1 had enhanced lethality compared to alg-1 (Table 2.1), which 
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was confirmed to be due to failure to exit the molting cycle and display the bag-

of-worms phenotype (Table 2.2). In contrast, six other mir; alg-1 strains had a 

lower percentage of adult lethality compared to alg-1 (Table 2.1). Five of the six 

mir; alg-1 strains with reduced adult lethality also had reduced alae formation 

defects compared to alg-1 (Table 2.1). Alae, which form on the adult cuticle, can 

be used as a marker for the terminal differentiation of the seam cells (see Section 

1.5). In retarded developmental timing mutants, alae formation is delayed and do 

not form properly at the L4-to-adult transition (Ambros and Horvitz, 1984). 61% of 

alg-1 worms show retarded alae formation (Figure 2.1, Table 2.1). Three 

additional mir; alg-1 strains (for a total of 9 mir; alg-1 strains) showed reduced 

alae formation defects compared to alg-1 (Table 2.1), indicating that loss of these 

miRNAs partially suppressed the retarded developmental timing defect of alg-1 

mutants. These twelve mir; alg-1 strains represent 17 miRNA miRNAs: mir-51, 

mir-52, mir-54, mir-55, mir-56, mir-59, mir-73, mir-74, mir-228, mir-235, mir-238, 

mir-239a, mir-239b, mir-240, mir-786, mir-244, and mir-259.  
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Table 2.2. Analysis of enhancement or suppression of alg-1 lethality phenotype 

Strain Genotype 

% Total 
adult 

lethality 

% Adults 
 that enter 
lethargusa 

% 
Lethality 
of worms 
that enter 
lethargusb 

% Adult  
bursting 
at vulva 

% Non-
lethargic 

Bag   
of wormsc 

N2 wild type 3% 0% -- 3% 0% 

RF54 alg-1(gk214) 67% 68% 90% 3% 3% 

RF411 mir-52(n4114); alg-1(gk214) 17%** 0%** -- 5% 12% 

RF410 mir-54-55(nDf45) alg-1(gk214) 33%** 21%** 100% 3% 8% 

RF89 mir-54-56(nDf58) alg-1(gk214) 18%** 4%** 100% 3% 12% 

RF137 mir-59(n4604); alg-1(gk214) 87%** 88%** 92% 3% 4% 

RF81 mir-73-74(nDf47) alg-1(gk214) 55% 53%* 95% 2% 4% 

RF182 mir-235(n4504); alg-1(gk214) 70% 72% 90% 2% 3% 
RF163 mir-238(n4112);  

mir-239a-b(nDf62) alg-
1(gk214) 27%** 17%** 100% 1% 9% 

RF60 
mir-240 mir-786(n4541);alg-
1(gk214) 27%** 14%** 100% 7% 5% 

* p < 0.05, ** p < 0.01 by the chi-square test, as compared to alg-1 single mutants. 
a plates were examined every hour from 12 to 20 hours after the L4m for worms that entered lethargus as 
defined by cessation of pharyngeal pumping and reduced locomotion. 
b Worms that entered lethargus were transferred to a new plate and scored after 16 hours for lethality. Worms 
died 28-36 hours after the L4m with embryos that hatched within the adult worm. Represented as # of worms 
that entered lethargus and died / total # of worms that entered lethargus. 
c Worms that did not enter a supernumerary lethargus but died (36 hours after the L4m) with embryos that 
hatched within the adult worm (“bag of worms”) 

 
 
 
2.5 Rescue of observed mir; alg-1 phenotypes by transgenic expression of 
miRNA genes 

 
 
In order to validate that the phenotypes observed in mir; alg-1 strains are 

due specifically to loss of the miRNA gene, transgenic rescue experiments was 

performed. To accomplish this, extrachromosomal arrays that contained the 

genomic fragment for individual miRNA genes were generated. mir; alg-1 worms 

that were identified to have the extrachromosomal array, by expression of a 

fluorescent marker in the pharynx of the worm, were examined for defects in 
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gonad migration, and defects in alae formation at the L4 to Adult transition. In 

most cases, multiple extrachromosomal arrays for each miRNA gene were 

examined. Expression of the miRNA(s) from an extrachromosomal array which 

contained the miRNA stem and flanking sequences was sufficient to rescue the 

increased penetrance of gonad migration defects and alae phenotypes for most 

mir; alg-1 strains, summarized in Table 2.3. Criteria for rescue is detailed below. 

To examine the ability for a given miRNA expressed from an 

extrachromosomal array to rescue the observed gonad migration defects 

observed in Table 2.1, the percent of worms with gonad migration defects in mir; 

alg-1 strains carrying extrachromosomal arrays for different miRNA genes was 

compared to the percent of gonad migration defects observed in the mir; alg-1 

strain lacking the array (Table 2.4). For example, 25% of mir-1; alg-1 worms 

display gonad migration defects. This is reduced to 8% in mir-1; alg-1 worms 

expressing mir-1 from the xwEx65 extrachromosomal array (Table 2.4). This is 

similar to the percentage of alg-1 single mutant worms that display the gonad 

migration defect (Table 2.1, Table 2.4). This supports that loss of mir-1 is 

responsible for the gonad migration defects observed in mir-1; alg-1 worms. 

Similar results were found for rescue using extrachromosomal arrays for mir-59, 

mir-83, mir-124, mir-247 mir-797, and mir-259 (Table 2.4).  
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Table 2.3. Transgenic rescue of mutant phenotypes in mir; alg-1 strains. 

miRNA in 
transgene 

Genomic region used for 
transgene rescue Phenotype 

# lines 
rescued/total 

lines 
mir-1 T09B4, 22804-25946 Gonad migration 2/6 
mir-59 B0035, 14594-17759 Gonad migration 1/4 
mir-83 C06A6, 13348-16443 Gonad migration 1/3 
mir-124 C29E6, 5404-8667 Gonad migration 2/5 
mir-247 mir-786 C39E6, 16210-18288 Gonad migration 3/4 
mir-259 F25D1, 9049-10772 Gonad migration 1/1 
    
mir-54, -55, -56 F09A5, 17121-20817 Alae formation 1/1a 
mir-228 T12E12, 22144-24235 Alae formation 0/4 
mir-238 K01F9, 2771-5902 Alae formation 3/3 
mir-244 T04D1, 14821-17172 Alae formation 2/4 
mir-259 F25D1, 9049-10772 Alae formation 1/1 
a mjEx160 transgene provided by R. Shaw and E. Miska 
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Table 2.4. Transgenic rescue of mir; alg-1 gonad migration defects 

Strain 

gonad 
migration 
defects n p-valuea 

RF54 alg-1 8% 262  
RF70 mir-1; alg-1 25% 56  
RF388 mir-1; alg-1; xwEx60[mir-1] 16% 91 0.295 
RF389 mir-1; alg-1; xwEx61[mir-1] 9% 88 0.019 
RF390 mir-1; alg-1; xwEx62[mir-1] 23% 22 0.934 
RF391 mir-1; alg-1; xwEx64[mir-1] 23% 30 0.927 
RF392 mir-1; alg-1; xwEx65[mir-1] 8% 90 0.008 
RF393 mir; alg-1; xwEx66[mir-1] 14% 90 0.168 
RF137 mir-59; alg-1 23% 62  
RF381 mir-59; alg-1; xwEx51[mir-59] 17% 65 0.563 
RF382 mir-59; alg-1; xwEx52[mir-59] 20% 30 0.991 
RF383 mir-59; alg-1; xwEx53[mir-59] 16% 55 0.541 
RF421 mir-59; alg-1; xwEx76[mir-59] 9% 97 0.036 
RF65 mir-83; alg-1 25% 56  
mir-83; alg-1; xwEx72[mir-83]b 17% 81 0.376 
mir-83; alg-1; xwEx70[mir-83]b 17% 76 0.372 
RF414 mir-83; alg-1; xwEx73[mir-83] 2% 45 0.004 
RF77 mir-124; alg-1 18% 56  
RF384 mir-124; alg-1; xwEx54[mir-124] 7% 144 0.041 
RF385 mir-124; alg-1; xwEx55[mir-124] 21% 34 0.966 
RF386 mir-124; alg-1; xwEx57[mir-124] 15% 67 0.847 
RF387 mir-124; alg-1; xwEx58[mir-124] 18% 28 0.763 
RF394 mir-124; alg-1; xwEx59[mir-124] 6% 86 0.045 
RF368 mir-247 alg-1 25% 59  
RF426 mir-247/797 alg-1; xwEx78[mir-247/797] 3% 29 0.027 
RF427 mir-247/797 alg-1; xwEx79[mir-247/797] 5% 44 0.011 
mir-247/797 alg-1; Ex[mir-247/797]b 6% 17 0.160 
RF428 mir-247/797 alg-1; xwEx80[mir-247/797] 0% 29 0.007 
RF343 mir-259; alg-1 28% 60  
RF425 mir-259; alg-1; xwEx77[mir-259] 6% 32 0.026 
a χ2 test statistical analysis was performed comparing mir;alg-1 worms ± extrachromosomal array for given miRNA gene. 
P < 0.05 were considered significant. 
b worms of given genotype not given strain name 

 
 
 

Similar analysis was performed to determine if miRNA expression from an 

extrachromosomal array was able to rescue the alae formation phenotypes 

observed in mir; alg-1 mutant worms. The percent of worms with alae defects in 

mir; alg-1 strains carrying an extrachromosomal array for a given miRNA was 

quantified (Table 2.5). For example, 14% of mir-238; alg-1 mutant worms display 

incomplete alae at the L4-to-adult transition, which is increased to 52% in mir-
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238; alg-1 worms expressing mir-238 from the xwEx16 extrachromosomal array 

(Table 2.5). The 52% of mir-238; alg-1; xwEx16 worms displaying incomplete 

alae is similar to the 61% of alg-1 mutant worms observed to display incomplete 

alae (Table 2.5). This supports that loss of mir-238 specifically causes the 

difference in alae formation defects between mir-238; alg-1 and alg-1 mutant 

worms. Similar results were observed for rescue using extrachromosomal arrays 

for mir-54/55/56, mir-244, and mir-259 (Table 2.5). A transgene previously 

demonstrated to rescue loss of the whole mir-51 family of miRNAs (Shaw et al., 

2010) was used to rescue mir-54/55/56 alg-1 mutants. Since the mir-51 family 

has been shown to function redundantly (Alvarez-Saavedra and Horvitz, 2010; 

Shaw et al., 2010), rescue  for mir-51, mir-52, or mir-54/55 was not performed. 

Extrachromosomal arrays generated for mir-228 failed to rescue the alae 

formation phenotype of mir-228; alg-1 worms (Table 2.5).  

Since the enhancement of embryonic lethality was modest in mir; alg-1 

strains described above (≤ 10% increase), rescue of this phenotype via 

expression of the miRNA from an extrachromosomal array was not attempted. 
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Table 2.5. Transgenic rescue of mir; alg-1 alae formation phenotype 

Strain 

% Incomplete 
Alae formation 
at L4-to-Adult n p-valuea 

RF54 alg-1 61% 204  
RF89 mir-54/55/56 alg-1 23% 57  
RF403 mir-54/55/56 alg-1; mjEx160[mir-54/55/56] 60% 35 0.001 
RF145 mir-228; alg-1 37% 68  
mir-228; alg-1; xwEx[mir-228]b 16% 19 0.146 
mir-228; alg-1; xwEx[mir-228]b 28% 18 0.665 
mir-228; alg-1; xwEx[mir-228]b 32% 37 0.818 
mir-228; alg-1; xwEx[mir-228]b 32% 22 0.869 
RF161 mir-238; alg-1 14% 43  
RF251 mir-238; alg-1; xwEx14[mir-238] 39% 41 0.018 
RF252 mir-238; alg-1; xwEx15[mir-238] 38% 42 0.022 
RF253 mir-238; alg-1; xwEx16[mir-238] 52% 44 0.000 
RF186 mir-244; alg-1 13% 48  
RF396 mir-244; alg-1; xwEx74[mir-244] 8% 39 0.705 
RF395 mir-244; alg-1; xwEx74[mir-244] 18% 34 0.739 
RF416 mir-244; alg-1; xwEx74[mir-244] 89% 9 0.000 
RF417 mir-244; alg-1; xwEx75[mir-244] 95% 19 0.000 
RF343 mir-259; alg-1 34% 59  
RF425 mir-259; alg-1; xwEx77[mir-259] 61% 31 0.023 
a χ2 test statistical analysis was performed comparing mir;alg-1 worms ± extrachromosomal array for given miRNA gene. 
P < 0.05 were considered significant. 
b worms of given genotype not given strain name 
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Chapter 3: The mir-51 family likely functions upstream of hbl-1 to 
specify the L2 to L3 transition in C. elegans 

 
 
3.1 Introduction 
 
 

80% of the miRNAs examined in the previous chapter caused quantifiable 

differences in phenotypes of alg-1 mutant worms (Table 1). One interesting 

finding was that loss of different miRNAs suppressed the alae formation defects 

of alg-1 mutants. These miRNAs included members of the mir-51 family (mir-51, 

mir-52, and mir-54/55/56), mir-228, the mir-238 family (mir-238; mir-239a/b), mir-

244, and mir-259. Further examination of the mir-51 family in developmental 

timing was chosen since loss of one family member, mir-52, showed the 

strongest suppression of alg-1 developmental timing defects (Table 2.1).  

This observed suppression of developmental timing defects by loss of mir-

51 family members was unexpected. The mir-51 family is part of the larger miR-

99/100 family that shows deep conservation from cnidarians through humans 

(Grimson et al., 2008). The mir-51 family is comprised of six members in C. 

elegans, miR-51 through miR-56. Loss of the entire mir-51 family in C. elegans 

results in embryonic lethality (Alvarez-Saavedra and Horvitz, 2010; Shaw et al., 

2010). Loss of multiple members of the mir-51 family results in pleiotropic effects 

including larval lethality and slow growth (Alvarez-Saavedra and Horvitz, 2010; 

Shaw et al., 2010). The mir-51 family are expressed broadly and abundantly 

throughout the life of the worm (Lim et al., 2003; Ruby et al., 2006; Kato et al., 

2009a; Shaw et al., 2010). These features are unlike those of many 

developmental timing genes. In this chapter, genetic interactions between mir-51 
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family members and known developmental timing genes were examined in order 

to better identify a mechanism whereby loss of mir-51 family members can 

suppress alg-1 developmental timing phenotypes. 

 
3.2 Loss of mir-51 family members partially suppress retarded 
developmental timing phenotypes 

 
 
3.2.1 Loss of mir-51 family members, individually or multiply, has no effect 
on developmental timing 

 
 
In order to determine the mechanism whereby loss of mir-51 family 

members results in suppression of alg-1 developmental timing defects, worms 

individually mutant for mir-51 family members were examined for developmental 

timing phenotypes. Mutants lacking individual members of the mir-51 family 

mutants did not display developmental timing abnormalities such as alae 

formation defects or defects in seam cell divisions (Table 3.1 and Table 3.2). 

Furthermore, worms lacking 5 of 6 members of the mir-51 family, mir-52 through 

mir-56, did not display alae defects (Table 3.1 and Table 3.2), despite displaying 

other mutant phenotypes including larval lethality and slow growth (Alvarez-

Saavedra and Horvitz, 2010). This indicates the mir-51 family is not required for 

normal progression of developmental time.  
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Table 3.1. Genetic interactions of mir-51 family with retarded developmental timing mutants 

Straina 
seam 
cellsb 

Alae at L4 to adult transition Lethality 

complete gapped none n 
% 

burst 

% bag 
of 

worms n 
RG733 wild type 16.0 100 0 0 20 0 0 208 
RF481 wild type 16.1 100 0 0 20 0 0 109 
RF491 mir-51 16.2 100 0 0 20 0 0 151 
RF499 mir-52 15.9 100 0 0 20 0 0 181 
RF483 mir-53 16.1 100 0 0 20 0 0 176 
RF399 mir-54/55/56 16.1 99 1 0 98 0 0 228 
RF692 mir-52/53/54/55/56 --c 100 0 0 16 -- -- -- 
RF554 mir-48/84/241 22.6 0 100 0 40 56 37 111 
RF556 mir-52; mir-48/84/241 17.7e 49k 51 0 39 3k 77 90 
RF553 mir-48/84/241 22.7 0 100 0 37 66 26 125 
RF555 mir-51; mir-48/84/241 21.8 0 100 0 37 42l 41 112 
RF557 mir-53; mir-48/84/241 22.2 0 100 0 38 49l 39 134 
RF558 mir-54/55/56; mir-
48/84/241 

20.6f 21l 79 0 38 25l 57 141 

VT1064 mir-48/84 -- -- -- -- -- 0 69 236 
RF451 mir-51; mir-48/84 -- -- -- -- -- 0 30n 101 
RF469 mir-52; mir-48/84 -- -- -- -- -- 0 5n 148 
RF454 mir-53; mir-48/84 -- -- -- -- -- 0 62 106 
RF451 mir-54/55/56; mir-48/84 -- -- -- -- -- 0 2n 93 
MT7626 let-7ts @25˚C -- 0 50 50 16 100 -- 103 
RF447 mir-51; let-7 @25˚ -- 0 80 20 20 100 -- 119 
RF448 mir-52; let-7ts @25˚ -- 7 73 20 15 96 -- 114 
RF449 mir-53; let-7 @25˚ -- 0 53 47 17 99 1 92 
RF442 mir-54/55/56; let-7 @25˚ -- 7 21 71 14 99 1 91 
RF568 lin-46 @15˚ 19.4 5 95 0 40 -- -- -- 
RF569 mir-52; lin-46 @15˚ 17.8h 23m 77 0 39 -- -- -- 
RF504 lin-46 @15˚ 18.1 19 81 0 59 -- -- -- 
RF594 mir-51; lin-46 @15˚ 17.6 38 62 0 37 -- -- -- 
RF599 mir-53; lin-46 @15˚ 18.1 24 76 0 21 -- -- -- 
RF505 mir-54/55/56; lin-46 
@15˚ 

17.4 8 92 0 39 -- -- -- 

RF619 mir-48/241 19.1 5 95 0 21 31 49 144 
RF730 mir-48/241; 
mjEx160[mir-54/55/56] 

22.1g 9 91 0 32 66d 24d 136d 

VC894 puf-9 -- 29 71 0 34 -- -- -- 
RF578 mir-52; puf-9 -- 34 66 0 50 -- -- -- 
RF620 mir-52; mir-48/241 16.6i 85 15 0 20 -- -- -- 
RF625 mir-48/241; puf-9 19.2 0 100 0 19 -- -- -- 
RF626 mir-52; mir-48/241; puf-9 16.2j 0 100 0 17 -- -- -- 
a Full genotype information, include alleles used, can be found in Table 7.1. 
b seam cells counted in L4-stage worms using wIs78 or wIs79[scm::gfp], n ≥ 18 (range 19 - 30). 
c indicates results not determined. 
d population scored for lethality is a mix of worms ± for mjEx160. 
e indicates significant difference compared to RF554 mir-48/84/241 (student’s t-test, p < 0.05), which contain wIs79. 
f indicates significant difference compared to RF553 mir-48/84/241 (student’s t-test, p < 0.05), which contain wIs78. 
g indicates significant difference comparing worms from the same strain ± for mjEx160 (student’s t-test, p < 0.05). 
h indicates significant difference compared to RF568 lin-46 (student’s t-test, p < 0.05). 
I indicates significant difference compared to RF619 mir-48/241 (student’s t-test, p < 0.05). 
j indicates significant difference compared to RF625 mir-48/241; puf-9 (student’s t-test, p < 0.05). 
k indicates significant difference compared to RF554 mir-48/84/241 (χ2, p < 0.05) which contain wIs79. 
l indicates significant difference compared to RF553 mir-48/84/241 (χ2, p < 0.05) which contain wIs78. 
m indicates significant difference compared to RF568 lin-46 (χ2, p < 0.05). 
n indicates significant difference compared to VT1064 mir-48/84 (χ2, p < 0.05). 
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3.2.2 Loss of mir-51 family members suppresses retarded developmental 
timing phenotypes of let-7 family mutants 
 

 
Since alg-1 developmental timing defects are similar to those associated 

with the loss of the let-7 family miRNAs (Grishok et al., 2001), the effect of loss of 

individual mir-51 family members on let-7 family timing defects was examined to 

determine if a similar suppression occurs outside the alg-1 mutant background 

(Table 3.1). The let-7 family members, mir-48, mir-84, and mir-241, function 

together to control the timing of the L3 stage program through down-regulation of 

their target, hbl-1 (Abbott et al., 2005). In the L2 stage, a subset of hypodermal 

seam cells undergo two rounds of cell division resulting in an increase in the 

number of seam cells from 10 to 16. In mutants lacking mir-48, mir-84 and mir-

241 (hereafter referred to as mir-48/84/241), the L2 stage program is repeated 

thereby producing extra seam cells (Abbott et al., 2005). At the L4-to-adult 

transition, mir-48/84/241 mutant worms fail to produce cuticles with complete 

adult alae formation. In addition, many of these mutant worms burst at the L4 to 

adult transition or fail to exit the molting cycle, which leads to the “bag-of-worms” 

phenotype (Abbott et al., 2005). mir-52; mir-48/84/241 had fewer seam cells than 

mir-48/84/241 worms, indicating a suppression of the L2 reiteration phenotype. 

Additionally, loss of mir-52 suppressed the alae formation defects and bursting 

phenotypes of mir-48/84/241: 100% of mir-48/84/241 mutants displayed 

incomplete alae and 56% of mir-48/84/241 mutant worms burst at the L4-to-Adult 

transition reduced to 51% and 3% in mir-52; mir-48/84/241, respectively (Table 

3.1). However, 77% of mir-52; mir-48/84/241 worms showed the bag of worms 
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phenotype, indicating an extra adult-stage molt. This likely reflects a partial 

suppression of the mir-48/84/241 phenotype, rather than an inability to suppress 

molting since loss of mir-52 strongly suppressed the ectopic molting phenotype 

of alg-1 worms (Table 2.2) as well as mir-48/84 double mutant worms (Table 

3.1). 

mir-48/84/241 developmental timing defects were suppressed by loss of 

other mir-51 family members, though to a lesser extent than mir-52 (Table 3.1). It 

is likely that the differences in the ability to suppress the mir-48/84/241 

phenotype observed between family members reflects differences in their overall 

expression levels since mir-52 and mir-54/55/56 are expressed at higher levels 

compared to mir-51 and mir-53 (Lim et al., 2003; Ruby et al., 2006; Kato et al., 

2009a). 

let-7 regulates later stages in developmental timing relative to its family 

members mir-48, mir-84, and mir-241. At 25˚C, let-7(n2853) mutants display a 

repetition of a late larval program with failure to form complete alae and lethality 

due to bursting at the vulva at the L4 to adult transition (Reinhart et al., 2000; 

Table 3.1). Loss of mir-51 family members had no significant effect on the 

phenotype of let-7ts worms (Table 3.1). This indicates that later larval stages are 

insensitive to loss of mir-51 family members. Interestingly, a few mir-52; let-7ts 

and mir-54/55/56 let-7ts worms survived into adulthood at 25˚C, whereas no let-

7ts worms survived in this characterization (Table 3.1). These small differences 

were not significant, but it may reflect modest suppression.  
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These data indicate that early timing events are most sensitive to loss of 

mir-51 family members. 

 
3.2.3 Expression of mir-51 family members from an extrachromosomal 
array enhances retarded developmental timing phenotypes of let-7 family 
mutants 
 

 
While loss of mir-51 family members resulted in suppression of retarded 

developmental timing defects, we wondered if the opposite was true: can 

elevated expression of mir-51 family members enhance retarded developmental 

timing defects? To test this, the effect of elevated expression of mir-51 family 

members on mir-48 mir-241 (mir-48/241) mutant worms, which display slightly 

less penetrant developmental timing defects relative to mir-48/84/241 mutants 

(Abbott et al., 2005), was examined. To elevate the expression of mir-51 family 

members, mjEx160, which is an extrachromosomal array with the genomic 

fragment for mir-54/55/56 that was previously shown to rescue the embryonic 

lethality of mir-51 family mutant worms (Shaw et al., 2010) and the 

developmental timing phenotypes in mir-54/55/56 alg-1 mutant worms (Table 

2.5), was used. mjEx160 enhanced developmental timing defects of mir-48/241 

mutant worms: mir-48/241 worms had 19.1 seam cells on average which was 

increased to 22.1 in mir-48/241; mjEx160 worms (Table 3.1). This indicates 

elevated expression of mir-51 family members enhances the L2 repetition 

phenotype. This also indicates that this early timing event is sensitive to both loss 

and increase of mir-51 family expression. 

  



44 

 

3.2.4 Loss of mir-52 partially suppresses lin-46, but not puf-9, retarded 
developmental timing phenotypes 

 
 

Since loss of mir-51 family members suppressed the retarded 

developmental timing defects of let-7 family mutants, it is possible that loss of 

mir-51 family members is also able to suppress the phenotypes of two additional 

mutants, lin-46 and puf-9, that display retarded developmental timing defects 

(Pepper et al., 2004; Nolde et al., 2007). lin-46 functions in parallel to the let-7 

family to control the timing of the L3 program (Pepper et al., 2004; Abbott et al., 

2005). lin-46 mutants fail to properly execute the L3 stage program and show 

reiteration of the L2 program at 15˚C (Pepper et al., 2004). Loss of mir-52 

partially suppressed lin-46 developmental timing defects: mir-52; lin-46 mutant 

worms had fewer seam cells and displayed weaker alae defects compared to lin-

46 mutant worms (Table 3.1). Loss of the other mir-51 family members had no 

significant effect on lin-46 (Table 3.1). puf-9 is a pumilio family homolog that 

negatively regulates hbl-1 in a 3‘UTR dependent fashion (Nolde et al., 2007). puf-

9 mutant worms failed to form complete alae at the L4 to adult transition. Loss of 

mir-52 did not suppress the puf-9 alae defects (Table 3.1). This suggests that 

puf-9 may function downstream of the mir-51 family to regulate developmental 

timing.  

To test whether puf-9 was necessary for mir-52-mediated suppression of 

the let-7 family developmental timing defects, worms multiply mutant for mir-52, 

puf-9, and let-7 family miRNAs, mir-48 and mir-241 (mir-48/241) were examined. 

mir-52; mir-48/241 mutant worms had reduced seam cell numbers in L4 
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compared to mir-48/241 mutant worms (Table 3.1). puf-9 was not required for 

mir-52 mediated suppression of the extra seam cell phenotype of mir-48/241 

mutant worms (Table 3.1). However, puf-9 activity was required for the mir-52-

mediated suppression of alae formation defects: mir-52; mir-48/241; puf-9 mutant 

worms failed to form complete alae at the L4 to adult transition (Table 3.1). 

Together, these data indicate that the mir-51 family functions to regulate the 

execution of the L3 stage program, acting either downstream or in parallel to the 

let-7 family miRNAs and lin-46.    

 
3.3 Loss of mir-51 family members can enhance precocious developmental 
timing phenotypes 
 

 
Suppression of retarded developmental timing defects by loss of mir-51 

family members suggests that this family of miRNAs acts to oppose normal 

progression through larval development. To further examine this possibility, the 

genetic interactions between mir-51 family members and a set of precocious 

developmental timing genes were examined (Table 3.2). It is predicted that, if the 

mir-51 family acts to oppose larval transitions, then loss of mir-51 family 

members should result in enhancement of precocious developmental timing 

defects. Consistent with this, loss of mir-52 enhanced the precocious 

development of mir-48(ve33), hbl-1, and lin-14 mutant worms (Table 3.2). First, 

mir-48(ve33) mutant worms display early accumulation of miR-48 and precocious 

formation of adult-specific alae in L4 stage worms (Li et al., 2005). Loss of mir-52 

enhanced the precocious alae phenotype of mir-48(ve33) worms (Table 3.2).  

Second, hbl-1 is a central regulator of the L2 to L3 cell fate decision (Abrahante 
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et al., 2003; Lin et al., 2003). Loss of mir-52 enhanced the precocious alae 

phenotype of hbl-1(ve18) mutants: 76% of hbl-1(ve18) mutants displayed either 

complete or gapped alae in the L4 stage compared to 97% of mir-52; hbl-1 

worms (Table 3.2). Enhancement of hbl-1(ve18) may reflect reduced activity of 

hbl-1 itself, since ve18 is a reduced function, not a null, allele (Abrahante et al., 

2003). lin-14 functions to regulate both L1 to L2 and L2 to L3 cell fate decisions 

(Ambros and Horvitz, 1987). At 25˚C, 34% of lin-14(n179) worms form complete 

alae during larval development compared to 76% of mir-52; lin-14(n179) worms 

(Table 3.2).  Loss of no other mir-51 family member significantly enhanced the 

precocious development of mir-48(ve33), hbl-1(ve18), and lin-14(n179ts), except 

for mir-51 which significantly enhanced mir-48(ve33) (Table 3.2). In contrast to 

the enhancement of the precocious phenotypes described above, enhancement 

of the precocious phenotypes of lin-41, lin-42, or lin-28 was not observed (Table 

3.2). This enhancement of the precocious development observed in mir-

48(ve33), hbl-1(ve18), and lin-14(n179ts) mutant worms is consistent with the 

mir-51 family functioning to oppose the execution of L3 stage program.  
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Table 3.2. Genetic interactions of mir-51 family with precocious developmental timing mutants 
 Precocious Alaeb 
Straina complete gapped none n 
RF481 wild type 0 0 100 12 
RF499 mir-52 0 0 100 13 
RG733 wild type 0 0 100 9 
RF491 mir-51 0 0 100 14 
RF483 mir-53 0 0 100 15 
RF399 mir-54/55/56 0 0 100 13 
RF692 mir-52/53/54/55/56 0 0 100 15 
RG490 mir-48(ve33) 0 55 45 47 
RF582 mir-51; mir-48(ve33) 0 85d 15 34 
RF583 mir-52; mir-48(ve33) 0 88d 12 34 
RF584 mir-53; mir-48(ve33) 0 76 24 34 
RF587 mir-54/55/56; mir-48(ve33) 0 43 57 28 
RF534 hbl-1 0 76 24 41 
RF535 mir-52; hbl-1 2e 95 2 44 
RF510 hbl-1 7 77 17 30 
RF530 mir-51; hbl-1 20 71 9 35 
RF512 mir-53; hbl-1 11 77 11 35 
RF511 mir-54/55/56; hbl-1 3f 80 17 30 
RF563 lin-14 @25˚C 34 66 0 29 
RF588 mir-52; lin-14 @25˚C 76g 20 4 25 
RF500 lin-41 0 37 63 35 
RF536 lin-41 0 11 89 38 
RF529 mir-51; lin-41 0 41 59 32 
RF537 mir-52; lin-41 0 14 86 36 
RF539 mir-53; lin-41 0 27 73 37 
RF501 mir-54/55/56; lin-41 0 11 89 37 
RF538 lin-42 0 89 11 37 
RF541 mir-52; lin-42 3 93 3 29 
RF508 lin-42 13 80 7 46 
RF527 mir-51; lin-42 8 83 8 36 
RF526 mir-53; lin-42 3 86 11 36 
RF509 mir-54/55/56; lin-42 6 91 3 33 
VT517 lin-28c 5 90 5 20 
RF572 mir-51; lin-28c 0 95 5 20 
RF573 mir-52; lin-28c 0 100 0 20 
RF574 mir-53; lin-28c 5 95 0 20 
RF575 mir-54/55/56; lin-28c 0 100 0 20 
a full genotype information, including alleles used, can be found in Table 7.1. 
b alae were scored in L3 molt or early L4-stage worms, except where otherwise noted 
c alae were scored in the L2 molt 
d significantly different compared to RG490 mir-48(ve33) (χ2, p < 0.05). 
e significantly different compared to RF534 hbl-1 (χ2, p < 0.05). 
f significantly different compared to RF510 hbl-1 (χ2, p < 0.05). 
g significantly different compared to RF563 lin-14 (χ2, p < 0.05). 
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3.4 Loss of mir-51 family members suppresses hbl-1 mis-expression in mir-
48/84/241 mutant worms 
 

 
Genetic interactions between mir-51 family members and let-7 family 

members as well as hbl-1(ve18) suggest that the mir-51 family may act upstream 

of hbl-1 expression. hbl-1 is robustly expressed in the hypodermis during 

embryonic and early larval development, then is subsequently down-regulated 

through its 3’ UTR by the late L3 stage (Abrahante et al., 2003). The down-

regulation of hbl-1 in the hypodermis requires the let-7 family members, mir-48, 

mir-84, and mir-241 (Abbott et al., 2005). Therefore it is possible that the 

observed suppression of developmental timing defects in mir-52; mir-48/84/241 

reflects a suppression of hbl-1 mis-regulation. Indeed, loss of mir-52 partially 

suppressed the hbl-1 misexpression phenotype of mir-48/84/241 mutant worms: 

in 91% of mir-48/84/241 worms, hbl-1::gfp::hbl-1 expression remained high in L3, 

whereas only 62% of mir-52; mir-48/84/241 displayed high hbl-1::gfp::hbl-1 

expression (Figure 3.1A-E). Consistent with the mir-51 family having redundant 

function, loss of mir-54/55/56 also suppressed the hbl-1 misexpression 

phenotype of mir-48/84/241 mutant worms (Figure 3.1E). This indicates that the 

mir-51 family acts in opposition to the let-7 family activity, and acts upstream of 

hbl-1 expression.    
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Figure 3.1. Loss of mir-52 or mir-54/55/56 restores hbl-1 regulation in mir-
48/84/241 mutants. (A-E) Effect of mir-52 and mir-54/55/56 on hbl-1::gfp::hbl-1 
expression. Representative fluorescent image of hbl-1::gfp::hbl-1 transgene 
expression in (A) mir-48/84/241, with expression on in hyp7 nuclei, and (B) mir-
52; mir-48/84/241 mutant worms, with expression off in hyp7 nuclei, at the L3 
stage with corresponding DIC images (C and D, respectively). White arrow in A 
pointing to a hyp7 nuclei. (E) Percentage of worms with hbl-1::gfp::hbl-1 
expression in hypodermis of L3 stage worms, n ≥ 33 (range 33 – 37). * indicates 
significant difference (χ2, p < 0.01). 
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3.5 The mir-51 family does not regulate lin-28 expression 
 
 

Like hbl-1, lin-28 is also a critical regulator of L3 cell fate decisions. 

Interestingly, loss of mir-51 family members had no effect on the precocious 

development of lin-28 (Table 3.2), which is consistent with the mir-51 family 

functioning upstream of lin-28. To test if the mir-51 family functions upstream of 

lin-28 to regulate the execution of the L3 stage program, worms multiply mutant 

for mir-52, lin-46, lin-28, and mir-48/84/241 were examined. lin-28; lin-46; mir-

48/84/241 mutant worms continually repeat the L2 stage-specific symmetric 

seam cell division (Abbott et al., 2005). Loss of mir-52 had no effect on the extra 

seam cell phenotype of lin-28; lin-46; mir-48/84/241 mutant worms (Figure 3.2A). 

This is consistent with the mir-51 family acting upstream or in parallel to lin-28 to 

regulate the execution of the L3 stage program. 

If the mir-51 family functions upstream of lin-28, then it might be that mir-

51 family members indirectly regulate lin-28 expression. We used a lin-

28::gfp::lin-28 transgene to determine whether the mir-51 family functions to 

promote lin-28 expression. However, no difference was observed in lin-

28::gfp::lin-28 expression between mir-48/84/241 and mir-52; mir-48/84/241 

worms (Figure 3.2B,C). Thus, mis-regulation of lin-28 does not account for the 

observed suppression of developmental timing defects in mir-52; mir-48/84/241 

worms. These data together are consistent with the mir-51 family functioning in 

parallel to lin-28, lin-46 and the let-7 family, but upstream of hbl-1 to regulate the 

execution of the L3 stage program. 
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Figure 3.2. mir-52 does not alter lin-28 expression. (A) mir-52 has no effect on 
seam cell number of lin-28; lin-46; mir-48/84/241 mutant worms when scored in 
L3 or L4 stages. (B, C) Representative fluorescent image of lin-28::gfp transgene 
expression at the L2 molt stage in (B) mir-48/84/241 and (C.) mir-52; mir-
48/84/241 with corresponding DIC images, (D and E, respectively). (F) 
Percentage of worms of given genotype scored with visible lin-28::gfp 
expression. No significant difference was observed between strains (χ2, p > 
0.05). 
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Chapter 4: The mir-51 family interacts genetically in many miRNA-
dependent developmental pathways 

 
 

4.1 Introduction 
 
 
 Loss of mir-51 family members results in suppression of developmental 

timing defects of alg-1 mutant worms (Table 2.1). Suppression of alg-1 mutant 

developmental timing defects by loss of mir-51 family members may reflect a 

specific function for this family to regulate targets in the developmental timing 

pathway. Experiments in the previous chapter indicate that the mir-51 family acts 

in the developmental timing pathway, primarily in the L2 to L3 transition. 

However, this role in developmental timing may be indirect. For example, the 

developmental timing defects observed in mutants of individual miRISC 

components, alg-1 or ain-1, are due to lower overall miRNA activity, including the 

lin-4 and let-7 family miRNAs (Grishok et al., 2001; Ding et al., 2005). Also unlike 

other developmental timing genes, the mir-51 family are expressed broadly and 

abundantly throughout the life of the worm (Lim et al., 2003; Ruby et al., 2006; 

Kato et al., 2009a; Shaw et al., 2010). Loss of the entire mir-51 family in C. 

elegans results in embryonic lethality (Alvarez-Saavedra and Horvitz, 2010; 

Shaw et al., 2010). Loss of multiple members of the mir-51 family results in 

pleiotropic effects including larval lethality and slow growth (Alvarez-Saavedra 

and Horvitz, 2010; Shaw et al., 2010). These phenotypes indicate that the mir-51 

family regulates multiple downstream targets and pathways. Together these 

observations may indicate a broader function for the mir-51 family in miRNA 

activity or biogenesis. If the mir-51 family has a broader role in miRNA activity, 
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then it is predicted that loss of mir-51 family members could suppress other 

miRNA mutant phenotypes that are distinct from developmental timing, including 

lsy-6 regulation of neuronal asymmetry, let-7 family regulation of vulva cell fate 

specification, mir-240/786 regulation of defecation, mir-35 family regulation of 

embryonic development and mir-1 regulation of neuromuscular function, which 

represent the known pathways affected by loss of miRNAs in C. elegans. The 

effect of loss of mir-51 family members on these known miRNA pathways was 

examined to test this prediction. 

 
4.2 mir-51 family members genetically interact with lsy-6 to specify the 
ASEL neuron    

 
 
The lsy-6 miRNA specifies the ASEL cell fate through down-regulation of 

its target, cog-1 (Johnston and Hobert, 2003). lsy-6 repression of cog-1 is 

necessary for lim-6::gfp reporter expression in the ASEL (Johnston and Hobert, 

2003; Figure 4.1A). 100% of worms homozygous for ot149, a loss-of-function 

allele of lsy-6, display mutant lim-6::gfp expression (Figure 4.1B; Johnston and 

Hobert, 2003). In contrast, only 14% of worms homozygous for the lsy-6(ot150) 

allele display this mutant lim-6::gfp expression (Figure 4.1B). Although the 

molecular nature of the lsy-6(ot150) allele is unknown, the phenotype suggests it 

represents a lsy-6 reduced function. Therefore the lsy-6(ot150) allele is referred 

to as lsy-6rf and lsy-6(ot149) as lsy-6lf for loss-of-function. lsy-6rf is significantly 

enhanced by alg-1. 14% of lsy-6rf worms have mutant lim-6::gfp expression 

compared to 27% of lsy-6rf; alg-1 worms (Figure 4.1B). This is consistent with 

further reduced lsy-6 activity. Neither mir-238 nor mir-244, two miRNA genes 
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found to suppress developmental timing defects of alg-1 mutant worms (Table 

2.1), had an effect on the mutant lim-6::gfp expression in lsy-6rf; alg-1. In 

contrast, mir-54/55/56 significantly suppressed mutant lim-6::gfp expression in 

lsy-6rf; alg-1: 27% of lsy-6rf; alg-1 mutant worms displayed mutant lim-6::gfp 

compared to 16% of lsy-6rf; alg-1; mir-54/55/56 (Figure 4.1B).  

 Since mir-54/55/56 are part of the larger mir-51 family, the role of another 

mir-51 family member, mir-52, on ASEL specification was examined. mir-52 had 

no significant effect on lsy-6rf (Figure 4.1C). Since such a low proportion of lsy-

6rf mutants display the mutant lim-6::gfp expression, worms heterozygous for two 

lsy-6 alleles, lsy-6lf and lsy-6rf, hereafter referred to lsy-6rf/lsy-6lf, were used to 

achieve a genetic background with optimally compromised lsy-6 activity. 85% of 

these lsy-6rf/lsy-6lf worms fail to express lim-6::gfp in the ASEL compared to 

100% of worms homozygous for lsy-6lf (Figure 4.1C). Loss of mir-52 partially 

suppressed mutant lim-6::gfp expression in lsy-6rf/lsy-6lf: 85% of lsy-6rf/lsy-6lf 

worms displayed mutant lim-6::gfp compared to 61% of mir-52; lsy-6rf/lsy-6lf 

worms (Figure 4.1C). This observed suppression is consistent with lsy-6 activity 

being elevated in the absence of mir-51 family members and may indicate a 

broader role for this family in regulation of miRNA biogenesis or activity. 
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Figure 4.1. Loss of mir-51 family members suppress ASEL mis-specification 
in lsy-6 mutants. (A, B) mir-52 suppresses ASEL specification defects of lsy-
6(rf)/lsy-6(lf) worms. (A) Cartoon of lim-6::gfp expression. lim-6::gfp is normally 
expressed in the ASEL, but remains off in the ASER. In lsy-6lf worms, lim-6::gfp is 
not expressed in the ASEL. A, anterior; P, posterior; L, left; R, right. (B, C) Worms 
of indicated genotypes were scored for lim-6::gfp expression in late larval and 
young adult stages, n ≥ 169. * indicates significant difference (χ2, p <  0.01). All 
strains above the horizontal line in B and the horizontal line on the left in C are 
homozygous for lsy-6rf allele, with the strain represented by the dashed line being 
otherwise wild type. Strains above the right horizontal line in C are heterozygous for 
two alleles of lsy-6: lsy-6rf and lsy-6lf, with the strain represented by the dashed line 
being otherwise wild type. 
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4.3 mir-51 family members genetically interact with let-60/RAS in vulva 
specification 
 

 
Like neuronal cell fate specification, vulva cell fate specification is also 

regulated by miRNAs. The let-7 family regulates let-60/RAS which plays an 

essential role in vulva development (Johnson et al., 2005). Each vulva precursor 

cell is sensitive in the levels of let-60. The primary (1˚) VPC has high levels of let-

60, which promotes the formation of a mature vulva. Worms with a gain-of-

function mutation in let-60 often produce multiple vulvas (Muv) due to ectopically 

high LET-60 activity in cells normally fated to produce secondary (2˚) VPCs 

(Sternberg, 2005). Overexpression of let-7 family members has been shown to 

partially suppress let-60gf Muv phenotype (Johnson et al., 2005). If the mir-51 

family negatively regulates miRNA biogenesis or activity, then loss of mir-51 

family members should suppress the let-60gf Muv phenotype, consistent with 

increased let-7 family levels or activity. 

Consistent with reduced let-7 family activity, alg-1 enhanced let-60gf Muv 

phenotype (Figure 4.2B). Consistent with enhanced let-7 family activity, loss of 

mir-54/55/56, but not miRNA genes that were also found to suppress alg-1 

developmental timing defects (Table 2.1), mir-238 or mir-244, suppressed the 

alg-1-dependent enhancement of let-60gf.  54% of alg-1; let-60gf worms display 

the Muv phenotype compared to 40% of mir-54/55/56; alg-1; let-60gf worms 

(Figure 4.2B). Interestingly, loss of mir-54/55/56 enhanced the Muv phenotype of 

let-60gf (Figure 4.2C). This is not consistent with increased let-7 family activity. In 

contrast, mir-52 partially suppressed the multivulva phenotype of let-60gf worms 
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(Figure 4.2C), which is consistent with a role in microRNA activity. This suggests 

ectopic LET-60 levels are reduced in mir-52; let-60gf animals, whereas it 

suggests that LET-60 levels are increased in mir-54/55/56; let-60gf worms. This 

may reflect distinct activities of individual mir-51 family members in the control of 

vulva development. The loss of mir-52 resulting in suppression of the Muv 

phenotype of let-60gf worms is consistent with let-7 family activity being elevated 

in vulva precursor cells. This may indicate a broad role for mir-52 in negatively 

regulating miRNA biogenesis or activity. Loss of mir-54/55/56 resulting in 

enhancement of the Muv phenotype of let-60gf worms is not consistent with 

elevated let-7 family activity in vulva precursor cells. This may indicate that the 

mir-51 family does not have a broad role in negatively regulating miRNA 

biogenesis or activity.  
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Figure 4.2. The mir-51 family functions in vulva cell specification.  (A) Left 
panel - A wild type worm with one normal vulva, white arrow. Right panel - A let-
60gf worm with one normal vulva, white arrow, and one ectopic vulva, black 
arrow. Bars represent 100 µm. (B) mir-54/55/56, but not mir-238 or mir-244 
suppress the multiple vulva (Muv) phenotype of alg-1; let-60gf worms. (C.) mir-52 
partially suppresses, while mir-54/55/56 enhances the multivulva phenotype of 
let-60gf worms. For both B ad C, strains were maintained at 20˚ prior to 
synchronized L1 worms of the indicated genotype were allowed to develop at 
25˚C for 2-3 days and then scored as young adults for presence of multiple vulva 
(Muv), n ≥ 100. * indicates significant difference (χ2, p < 0.01). Strains above the 
top horizontal line in B are homozygous for alg-1, above the bottom horizontal 
line are homozygous for let-60gf, with strains represented by dashed lines being 
otherwise wild type. All strains in C are homozygous for let-60gf, with the strain 
represented by the dashed line being otherwise wild type. 
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4.4 mir-52 genetically interacts with mir-240/786 to regulate the defecation 
motor program 

 
 

 mir-240/786 is necessary for the normal rhythmicity of the defecation 

motor program (Miska et al., 2007). Worms initiate a defecation motor program, 

which comprises three events: a posterior body contraction, an anterior body 

contraction and an enteric muscle contraction resulting in an expulsion, 

approximately every 50 seconds (Thomas, 1990). In worms carrying the n4541 

mutation, which deletes both mir-240 and mir-786 sequences, defecation cycle 

time is dramatically increased and the time between cycles is irregular (Miska et 

al., 2007; Figure 4.3). Loss of mir-52, but not other members of the mir-51 family, 

significantly reduced mean defecation cycle time of mir-240/786 worms (Figure 

4.3). The mechanism whereby loss of mir-240/786 results in defecation cycle 

defects is unknown, but partial suppression of this phenotype by loss of mir-52 

may reflect a broader role for miR-52 in negatively regulating miRNA activity.  
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Figure 4.3. Loss of mir-52 mildly suppresses defecation cycle defect of mir-
240/786 mutant worms. Graph represents mean time between consecutive 
pBoc contractions for n ≥ 5 worms. * indicates significant difference compared to 
wild type (student’s t-test, p < 0.01). ** Indicates significant difference compared 
to mir-240/786 mutants (student’s t-test, p < 0.01). All strains above horizontal 
line are mir-240/786, with the strain represented by the dashed line being 
otherwise wild type. Error bars represent ± Standard Error of the Mean. 
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4.5 Loss of mir-54/55/56 enhances embryonic lethality of mir-35 family 
mutants 

 
 
The mir-35 family consists of mir-35 through mir-42. The family members 

are redundantly required for embryonic development (Alvarez-Saavedra and 

Horvitz, 2010). Mutants lacking mir-35 thru mir-41 exhibit temperature sensitive 

embryonic lethality. Loss of mir-54/55/56 did not significantly suppress the 

embryonic lethality phenotype of mir-35/41 mutants, but rather enhanced this 

phenotype (Figure 4.4). This is not consistent with the activity of the remaining 

mir-35 family member, mir-42, being elevated in the absence of mir-51 family 

members. 

 

 
FIgure 4.4. Loss of mir-54/55/56 enhances embryonic lethality of mir-35 
family mutant. mir-54/55/56 enhances the embryonic lethality of mir-35 thru 41 
mutant worms. L4 worms of the indicated genotypes were shifted to 25˚ and the 
next day embryos from these worms were collected. After 24 hours, unhatched 
embryos were counted. Percent of unhatched out of total embryos plated are 
listed for each genotype scored (n > 148). * indicates significant difference (χ2, p 
<  0.01). 
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4.6 mir-52 modestly suppresses mir-1 resistance to levamisole 
 
 
mir-1 is necessary for normal neuromuscular function (Simon et al., 2008). 

mir-1 mutants display a resistance to levamisole-induced paralysis due to an 

increase in levels of its targets, UNC-29 and UNC-63 (Simon et al., 2008). Loss 

of mir-52 modestly increased the sensitivity of mir-1 worms to levamisole. After 

140 minutes on 200 µM levamisole mir-52; mir-1 worms were slightly less 

resistant to levamisole-induced paralysis compared to mir-1 mutant worms 

(Figure 4.5). In addition, mir-52 worms are more sensitive to levamisole 

compared to wild type (Figure 4.5). 

 
 

 
Figure 4.5. Loss of mir-52 modestly suppresses mir-1 mutant worm 
resistance to levamisole. mir-52 modestly increases sensitivity to levamisole. 
Graph shows percent of total worms paralyzed after transfer to NGM plates 
supplemented 200 µM with levamisole. * indicates significant difference 
compared to wild type at the indicated time point (χ2, p <  0.05). ** indicates 
significant difference compared to mir-1 at the indicated time point (χ2, p <  0.05). 
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4.7 Loss of mir-51 family members does not effect mature miRNA levels 
 
 
The observation that loss of mir-52 suppressed multiple miRNA-

dependent phenotypes in diverse pathways is consistent with the mir-51 family 

acting broadly to regulate the miRNA pathway. Therefore, mir-52 might act to 

broadly regulate miRNA biogenesis. To examine if the mir-51 family regulates the 

miRNA pathway, levels of a set of miRNAs that display different expression and 

biogenesis characteristics were quantitated. Specifically, the levels of mature 

miRNAs for let-7, a developmentally-regulated miRNA that functions in the 

developmental timing pathway in the hypodermis (Reinhart et al., 2000), miR-58, 

a highly abundant miRNA (Kato et al., 2009a), miR-244, a miRNA that is 

expressed at lower levels primarily in hypodermal seam cells (Martinez et al., 

2008b), and miR-62, a miRtron that displays Drosha independent biogenesis 

(Ruby et al., 2007), were examined. The mature levels of these miRNAs are 

unchanged in mir-52 mutants as well as in mutant worms lacking 5 of 6 members 

of the mir-51 family, mir-52 through mir-56, mir-52/53/54/55/56 (Figure 4.6). mir-

52/53/54/55/56 mutant worms display inpenetrant embryonic lethality, slow 

growth, and mating defects (Alvarez-Saavedra and Horvitz, 2010; Shaw et al., 

2010) indicating that mir-51 family targets are sufficiently misregulated to result in 

observed mutant phenotypes. However, no change in mature miRNA levels was 

observed. These results indicate that the mir-51 family does not function to 

broadly regulate miRNA biogenesis. 
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Figure 4.6. Loss of mir-51 family members does not alter mature miRNA 
expression. Expression of let-7, miR-62, miR-244, and miR-58 in wild type, mir-
52, and mir-52/53/54/55/56 mutant worms relative to the average of two control 
RNAs, U18 and sn2343. The graph represents the level of mature miRNAs 
relative to wild type. No differences in mature miRNA expression was observed 
(student’s t-test, p > 0.24). 
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4.8 Loss of mir-52 has no effect on the ability of lsy-6 to regulate its target, 
cog-1 

 
 
Loss of mir-51 family members had no obvious effect on the mature levels 

of a panel of miRNAs (Figure 4.6), suggesting the mir-51 family does not act 

broadly to regulate miRNA biogenesis. Instead the mir-51 family may act broadly 

to regulate miRNA activity. Previous analysis with the hbl-1::gfp reporter (Figure 

3.1) is consistent with this model. However, this result cannot distinguish 

between the mir-51 family acting broadly to regulate the miRNA pathway versus 

acting specifically to regulate the developmental timing pathway. To distinguish 

between these models and determine if the regulation of miRNA targets was 

affected by loss of mir-52, the activity of ectopically expressed lsy-6 in the 

repression of a cog-1::gfp::cog-1 reporter (Johnston and Hobert, 2003) was 

examined. Ectopic expression of lsy-6 under control of the cog-1 promoter allows 

for examination of the activity of lsy-6 miRNA in cells where it is normally not 

found, including uterine and vulva cells (Johnston and Hobert, 2003).  40% of 

worms with ectopic expression of the lsy-6 miRNA still show visible cog-1::gfp 

expression in uterine cells (Figure 4.7A-E). If mir-52 negatively regulates miRNA 

activity, then loss of mir-52 would result in fewer worms showing cog-1::gfp 

expression in uterine cells. However, loss of mir-52 had no effect on the ability of 

ectopic lsy-6 to downregulate expression of cog-1 (Figure 4.7E). These data 

indicate that lsy-6 activity is not enhanced in the absence of mir-52, thereby 

suggesting that the mir-51 family does not function broadly to regulate the activity 

of miRNAs. 
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Figure 4.7. Loss of mir-52 has no effect on the ability of lsy-6 to regulate its 
target, cog-1. (A-E) Effect of mir-52 on lsy-6 mediated regulation of cog-
1::gfp::cog-1 expression. Representative fluorescent image of cog-1::gfp::cog-1 
transgene expression in (A) wild type worms and (C.) worms with cog-1::lsy-6 
transgene with corresponding DIC images (B and D, respectively). White 
triangles point to uterine cells. Bars represent 10µm. (E) Percentage of worms of 
given genotype without cog-1::gfp expression in either uterine cell, n ≥ 20 (range 
20 – 68). Worms were scored in mid-to-late L4 stage. 
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Chapter 5: Identification of miR-51 Family Targets 
 
 
5.1 Identification of miR-51 family targets in developmental timing 
 
 

The analysis from the previous two chapters indicates the mir-51 family 

acts in broad developmental pathways in C. elegans. Evidence from the previous 

chapter also indicates that the mir-51 family likely does not act to broadly 

regulate miRNA biogenesis or activity. Therefore the mechanism whereby the 

mir-51 family acts in these broad developmental pathways remains unclear.  

miRNAs typically act to down-regulate their direct targets. If the mir-51 

family mediates suppression of developmental timing defects through 

misregulation of a key target, then knocking down that target should result in loss 

of suppression. 

In an attempt to identify a direct target or targets of the mir-51 family, three 

different target prediction algorithms were used: Targetscan (version 4.2), PicTar, 

and mirWIP (Lall et al., 2006; Hammell et al., 2008; Friedman et al., 2009). This 

analysis collectively identified 319 genes that are predicted to be regulated by the 

mir-51 family. Only those mRNAs that immunoprecipitated with the ALG-1 protein 

(Zisoulis et al., 2010) were selected. 127 of 319 predicted targets of the mir-51 

family contained ALG-1 binding sites (Zisoulis et al., 2010). Of those 127 

candidates, 51 predicted targets were found to contain a perfect recognition site 

for the first six nucleotides of the mir-51 family seed sequence within the ALG-1 

binding site. To test whether these genes are downstream targets of the mir-51 

family, RNAi was used to knockdown the activity of these 51 candidates genes in 



68 

 

mir-52; mir-48/84/241 worms. In these worms, activity of key target genes is 

expected to be elevated due to the loss of miR-52. Their knockdown should 

therefore result in developmental timing defects similar to mir-48/84/241 worms, 

indicating a loss of mir-52 mediated suppression. 

Four candidate target genes for the mir-51 family were identified. 

Knockdown of these genes, lin-66, vhp-1, cul-1, and tlp-1, resulted in an increase 

in the number of mir-52; mir-48/84/241 worms that display a bursting phenotype 

(Figure 5.1). The effect of RNAi knockdown of lin-66, vhp-1, cul-1, and tlp-1 on 

seam cell divisions and alae formation in mir-52; mir-48/84/241 worms was 

determined (Table 5.1). 
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Figure 5.1. Identifying predicted miR-51 family targets using RNAi 
knockdown. (A) Schematic for narrowing target predictions to screen by RNAi. 
(B) Percent of mir-52; mir-48/84/241 worms that burst at the L4 to adult transition 
following RNAi knockdown of 51 predicted miR-51 family targets , n ≥ 64. * marks 
the 4 RNAi clones that caused over 50% bursting as marked by the dashed line. 
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Table 5.1. Effect of RNAi knockdown of candidate miR-51 family targets on developmental 
timing. 

    Alaec 
line Straina RNAi Seamb Complete Gapped None 
1 RF481 wild-type empty vector 16.0 100% 0% 0% 
2  lin-66 19.5* 53% 47% 0% 
3  vhp-1 16.0 0% 22% 78% 
4  cul-1 --d 36% 64% 0% 
5  tlp-1 15.9 95% 5% 0% 
6 RF551 mir-52 empty vector 16.0 100% 0% 0% 
7  lin-66 17.4* 80% 20% 0% 
8  vhp-1 16.1 6% 0% 94% 
9  cul-1 -- 57% 43% 0% 

10  tlp-1 15.9 90% 10% 0% 
11 RF554 mir-48/84/241 empty vector 21.4 0% 95% 5% 
12  lin-66 25.7* 0% 40% 60% 
13  vhp-1 22.0 0% 0% 100% 
14  cul-1 -- 0% 100% 0% 
15  tlp-1 22.7 0% 70% 30% 
16 RF556 mir-52; mir-48/84/241 empty vector 17.9 20% 80% 0% 
17  lin-66 21.9* 21% 79% 0% 
18  vhp-1 19.2* 0% 0% 100% 
19  cul-1 -- 15% 85% 0% 
20  tlp-1 18.4 0% 100% 0% 

a full genotype information can be found in Table S1. 
b average number of GFP+ seam cells in L4 stage, n ≥ 12 (range 12 - 40). 
c percentage of scored worms with adult alae at the L4 to adult transition, n ≥ 7 (range 7 - 40). 
d unable to score worms accurately for seam cell number 
* significantly different compared to empty vector control (student’s t-test p < 0.01). 
 

Knockdown of lin-66, vhp-1 and cul-1 in wild-type worms caused defects 

in alae formation (Table 5.1). Knockdown of tlp-1 only rarely caused alae 

formation defects (Table 5.1). Knockdown of lin-66 resulted in increased number 

of seam cells in wild-type worms, consistent with earlier work (Morita and Han, 

2006). This indicates that lin-66, vhp-1, and cul-1 activities are all required for 

developmental timing in hypodermal cells. Loss of mir-52 suppressed the alae 

formation defects caused by knockdown of lin-66 and cul-1 (Table 5.1, lines 7 

and 9) but not defects caused by knockdown of vhp-1 nor tlp-1 (Table 5.1, lines 8 

and 10). 
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To determine if the activities of candidate targets were required for the 

observed suppression of mir-48/84/241 developmental timing defects, the effect 

of RNAi of the four targets in mir-48/84/241 and mir-52; mir-48/84/241 was 

examined (Table 5.1, lines 11-20). If the suppression phenotype is due to 

elevated levels of targets, then knockdown of target activity would result in no 

suppression and therefore would result in similar defects in these two strains. 

Knockdown of lin-66, vhp-1, and tlp-1 all enhanced the alae defects of mir-

48/84/241 worms while only knockdown of lin-66 enhanced the extra seam cell 

defect (Table 5.1). Loss of mir-52 suppressed the defects observed in mir-

48/84/241 following target knockdown for cul-1, lin-66, and tlp-1. Although loss of 

mir-52 suppressed the extra seam cell defects, the alae formation defects 

following vhp-1 were the same between mir-48/84/241 and mir-52; mir-48/84/241 

worms (Table 5.1, compare lines 13 and 18), indicating that the suppression of 

alae defects by loss of mir-52 requires vhp-1 activity. The partial suppression of 

developmental timing defects in mir-52; mir-48/84/241 following knockdown of 

cul-1, lin-66, and tlp-1 may reflect the regulation of multiple targets by the mir-51 

family miRNAs or that these targets function in parallel to the mir-51 family and 

are not direct targets. 

The suppression of developmental timing phenotypes in mir-52; mir-

48/84/241 is reduced following knockdown of lin-66, vhp-1, cul-1, and tlp-1 by 

RNAi, providing genetic evidence that these genes may be direct targets of the 

mir-51 family. If so, then their regulation would be expected to require the 

putative mir-51 family miRNA binding site in the 3’ UTRs of these genes. To test 
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this, worms that express gfp-PEST transgenes (Frand et al., 2005) under the 

control of the col-10 promoter, followed by the sequence for the 3‘UTR of lin-66, 

vhp-1, cul-1, and tlp-1, were generated. The col-10 promoter drives expression 

specifically in the hypodermis during embyronic and larval development. The mir-

51 family of miRNAs are expressed in multiple tissues throughout development, 

including the hypodermis (Shaw et al., 2010). Therefore, if lin-66, vhp-1, cul-1, 

and tlp-1 are direct miRNA targets, then it would be expected to see a reduction 

of gfp expression compared to a control col-10::gfp-PEST trangene under the 

regulation of the unc-54 3’ UTR. In addition, this 3’ UTR dependent down-

regulation would also require the predicted miR-51 family binding site. The 

reporters for cul-1, lin-66 and tlp-1 have reduced gfp expression relative to the 

unc-54 control transgene (Figure 5.2A, C, G, K). The transgene regulated by the 

vhp-1 3’ UTR showed no detectable reduction compared to the unc-54 control 

(Figure 5.2A, M), suggesting that vhp-1 is not negatively regulated by its 3‘UTR 

in the hypodermis. If the reduction in GFP expression for the lin-66, cul-1, and 

tlp-1 reporters is dependent on the presence of miR-52, then it is predicted that 

loss of mir-52 would result in elevated GFP expression of these reporters. 

Consistent with this, the expression of the cul-1 3’ UTR transgene was modestly 

increased compared to wild type worms (Figure 5.2D). Although there appeared 

to be a modest difference in the expression of the lin-66 3’UTR transgene 

expression in the mir-52 mutant background (Figure 5.2H), quantitative analysis 

of these worms indicated no significant difference between the mean expression 

of the lin-66 3’UTR transgene in wild type compared to mir-52 mutant worms. 
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This indicates that lin-66 is not significantly regulated by miR-52. GFP expression 

for the tlp-1 reporter did not appear significantly different in mir-52 mutant worms 

relative to wild-type worms (Figure 5.2L), indicating that tlp-1 is not regulated by 

miR-52.  

cul-1 contains a single predicted binding site for the mir-51 family of 

miRNAs. To test if this binding site is necessary for the observed differences in 

gfp expression between wild type and mir-52 mutant worms, a gfp reporter 

transgene that lacked the 6 nucleotides corresponding to the recognition 

sequence for the mir-51 family seed sequence in the cul-1 (cul-1∆) UTR was 

created. Expression of this reporter in both wild type and mir-52 mutant worms 

was examined. The reporter under control of the cul-1∆ 3’UTR was down-

regulated compared to the unc-54 control (Figure 5.2A, E), indicating additional 

regulatory sites present in the cul-1 3’UTR. However, there were no differences 

between the expression of the reporter under the control of the cul-1∆ 3’UTR 

between wild-type and mir-52 mutant worms (Figure 5.2E, F). This indicates the 

deleted nucleotides are necessary for miR-52 dependent regulation of the cul-1 

reporter.  
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Figure 5.2. 3’utr reporter transgene analysis of cul-1, lin-66, tlp-1, and vhp-1. Representative 
fluorescent images of L3 staged worms for wild type (A, C, E, G, I, K, M) with corresponding DIC 
images (A’, C’, E’, G’, I’, K’, M’) and mir-52 mutant worms (B, D, F, H, J, L, N) with corresponding 
DIC images (B’, D’, F’, H’, J’, L’, N’). All worms examined showed similar expression of col-
10::gfp::unc-54 in either wild type (A) or in mir-52 (C). Images in A and C taken with a 10 ms 
exposure time. 86% of wild type worms had col-10::gfp::cul-1 expression similar as in (C), n = 7. 
86% of mir-52 worms had col-10::gfp::cul-1 expression as in (D), n = 7. Images of C and D taken 
with a 50 ms exposure time. 56% of wild type worms showed col-10::gfp::cul-1Δ expression as in 
(E), n = 9. 75% of mir-52 mutant worms showed col-10::gfp::cul-1Δ as in (F), n = 8. Images in E 
and F were taken with a 100 ms exposure time. 38% of wild type worms showed col-10::gfp::lin-
66 expression as in (G), n = 8. 43% of mir-52 worms showed col-10::gfp::lin-66 expression as in 
(H), n = 7. Images of G and H taken with a 50 ms exposure time. 80% of wild type worms showed 
col-10::gfp::lin-66Δ expression as in (I), n = 6. 83% of mir-52 worms showed col-10::gfp::lin-66Δ 
expression as in (J), n = 6. Images in I and J were taken with a 10 ms exposure time.80% of wild 
types worms showed col-10::gfp::tlp-1 expression as in (K), n = 5. 86% of mir-52 worms showed 
col-10::gfp::tlp-1 expression as in (L), n = 7. Images of M and O taken with a 40 ms exposure 
time. All worms examined showed similar expression of col-10::gfp::vhp-1 in either wild type (M) 
or mir-52 worms (N). Images in M and N taken with a 50 ms exposure time. All DIC images (A’-
N’) taken with a 3 ms exposure time. Bars represent 10 µm. 
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The effect of deleting the 6 nucleotide complementary site for the miR-51 

family in the UTR of lin-66 was also examined in both wild type and mir-52 

mutant worms. GFP expression from the reporter under the control of the lin-66∆ 

3’UTR was down-regulated relative to the unc-54 control (Figure 5.2A, I). 

Surprisingly, gfp reporter expression under the control of the lin-66∆ 3’UTR was 

found to be elevated in mir-52 mutant worms compared to wild type worms 

(Figure 5.2I, J). This indicates that the deleted nucleotides may allow miR-52 to 

regulate the lin-66 UTR. The sequence does not contain other recognition sites 

for the miR-52 seed sequence, which may indicate that this effect is indirect. 

Since miRNAs can function to promote the degradation of target 

transcripts (Bartel, 2009), mRNA levels for cul-1, lin-66, tlp-1, and vhp-1 in wild 

type, mir-52, and mir-52/53/54/55/56 mutant worms were measured using 

quantitative RT-PCR. vhp-1 levels were significantly increased in mir-

52/53/54/55/56 mutants, while cul-1, and lin-66, transcript levels remained 

unchanged (Figure 5.3). tlp-1 transcript levels were undetected in wild type, or in 

either mir-52, or mir-52/53/54/55/56 mutant worms (data not shown). The 

increase in vhp-1 transcript levels is consistent with vhp-1 being negatively 

regulated by the mir-51 family, though this regulation was not observed using gfp 

reporter transgenes (Figure 5.2M, N). 
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Figure 5.3. vhp-1 transcript level is elevated in the absence of multiple mir-
51 family members. Expression of cul-1, lin-66, and vhp-1 in wild type, mir-52, 
and mir-52/53/54/55/56 mutant worms relative to the average of two control 
RNAs, ama-1 and cdc-42. The graph represents fold change in expression 
relative to wild type. Error bars represent the standard deviation for fold change 
calculated between two biological replicates. * indicates significant difference 
(student’s t-test, p < 0.05).  
 
 
 
5.2 Overexpression of lin-66, cul-1, vhp-1 is not sufficient to suppress 
retarded developmental timing defects 

 
 
Combined genetic, reporter gfp, and quantitative RT-PCR data does not 

clearly indicate that cul-1, lin-66, or vhp-1 are the relevant target of miR-52 in 

developmental timing. If indeed one of these genes is a relevant target of miR-52 

in developmental timing, then it is predicted that up-regulation of one of these 

targets could suppress retarded developmental timing phenotypes similar to the 

loss of mir-52. To test this, transgenes containing the coding sequences for cul-1, 

lin-66, and vhp-1 were generated. Expression of cul-1, lin-66, and vhp-1 from 

these arrays should result in elevated expression relative to wild type. The effect 

of these transgene arrays on the retarded development of worms lacking mir-48 



77 

 

and mir-241 (mir-48/241) was examined. Expression of cul-1, lin-66, or vhp-1 

from a transgene array had no effect on the formation of alae of mir-48/241 

mutant worms (Figure 5.4A). This indicates that expression of these genes 

individually from high-copy transgenes is not sufficient to suppress retarded 

developmental timing phenotypes. Intriguingly, both mir-48/241 mutant and wild-

type worms carrying these arrays often displayed pleiotropic defects, including 

embryonic lethality and body morphology defects (Figure 5.4B-F). This suggests 

that expression levels of cul-1, lin-66, and vhp-1 are significantly increased in 

these transgene-containing worms to generate abnormal phenotypes. Therefore 

it is unlikely that overexpression of any one of these genes individually is 

responsible for suppressed developmental timing phenotypes of mir-52; mir-

48/241.  
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Figure 5.4. Overexpression of cul-1, lin-66, or vhp-1 does not suppress 
developmental timing defects, but can cause pleiotropic defects. (A) 
Percent of worms with incomplete alae at the L4 to adult transition in mir-48/241 
mutant worms that carry the corresponding array, +, or do not carry the array, -, 
as determined by expression of sur-5::gfp, n ≥ 16 (range 16 – 37). There is no 
difference in alae formation between worms that carry the array compared to 
worms that do not (χ2, p > 0.05) (B) Percent of unhatched embryos in wild type 
worms that carry the corresponding array, +, or do not carry the array, -, as 
determined by the expression of sur-5::gfp, n ≥ 60 (range 60 – 166). * Indicates a 
significant difference between worms that carry the array compared to worms 
that do not (χ2, p < 0.05). (C) Quantification of post-embryonic defects observed 
in worms carrying the corresponding array as determined by expression of sur-
5::gfp, n ≥ 30 (range 30 – 105). Worms were assessed as slow growth if stage 
was younger than the 4th larval stage three days after hatching. Any worm with 
abnormal body shape were assessed as having gross body morphology defects. 
(D-F) Representative DIC images of worms with gross body morphology defects 
overexpressing cul-1 (D) or vhp-1 (E, F). White arrows in F point to branchpoints 
in the cuticle structure called alae. 
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5.3 mir-52 regulates distinct target sets in multiple miRNA-regulated 
developmental pathways 

 
 

 RNAi knockdown was used to determine if a candidate set of predicted 

mir-51 family targets were required for the suppression of developmental timing 

defects by the loss of mir-51 family members. Four genes, lin-66, vhp-1, cul-1, 

and tlp-1 appeared to be required, in part, for the mir-52-mediated suppression of 

mir-48/84/241 developmental timing defects. It is also possible that one or all of 

these predicted targets could also be required for the mir-52-mediated 

suppression of other miRNA dependent phenotypes. To test, RNAi was used to 

knockdown the levels of lin-66, vhp-1, cul-1, and tlp-1 in mir-52; let-60gf worms 

(Figure 5.5A). cul-1 activity is required for the observed suppression of the Muv 

phenotype in mir-52; let-60(ga89ts) worms. mir-52; let-60gf; cul-1(RNAi) worms 

displayed a stronger Muv phenotype than mir-52; let-60gf worms on empty vector 

control RNAi. This supports that cul-1 acts downstream or in parallel of mir-52 to 

regulate vulva cell fate specification. Interestingly, RNAi knockdown of vhp-1 

further suppressed the Muv phenotype of mir-52; let-60gf worms (Figure 5.5A). 

This suggests a more complex role for vhp-1 in the vulva specification pathway. 

RNAi knockdown of lin-66, or tlp-1 had no effect on the vulva specification 

pathway (Figure 5.5A).  
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Figure 5.5. RNAi of cul-1, lin-66, tlp-1, and vhp-1 in developmental pathways regulated by 
mir-52. (A) Percent of let-60ts and mir-52; let-60ts worms with multiple vulva (multivulva), after 
RNAi knockdown of cul-1, lin-66, tlp-1, and vhp-1, along with empty vector RNAi control, n ≥ 25 
(range 25 – 163). * Indicates significant difference compared to let-60ts on empty vector control 
(χ2, p < 0.01). **Indicates significant difference compared to mir-52; let-60ts on empty vector 
control (χ2, p < 0.01). (B) Percent of lsy-6rf (reduced function); rrf-3 and mir-52; lsy-6rf; rrf-3 
worms with mutant lim-6::gfp expression following knockdown of cul-1, lin-66, tlp-1, and vhp-1 
with empty vector RNAi control, n ≥ 82 (range 82 – 382). (C) Average cycle time between pBoc 
contractions of mir-240/786 and mir-52; mir-240/786 worms following RNAi knockdown of cul-1, 
lin-66, tlp-1, and vhp-1 with empty vector RNAi control, n ≥ 6, minimum 3 cycles per worm. 
*Indicates significant increase compared to mir-240/786 on empty vector control (student’s t-test, 
p < 0.001). **Indicates significant increase compared to mir-52; mir-240/786 on empty vector 
control (student’s t-test, p < 0.00001). SD, standard deviation. 
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 Next RNAi was used to knockdown lin-66, vhp-1, cul-1, and tlp-1 

expression in mir-52; lsy-6rf; rrf-3 worms. An rrf-3 Ioss of function mutation was 

used to increase the effectiveness of RNAi in neurons (Simmer et al., 2002). 

While 29% of lsy-6rf; rrf-3 worms displayed a mutant lim-6::gfp expression 

pattern with a failure of ASEL specification, only 9% of mir-52; lsy-6rf; rrf-3 worms 

showed this mutant expression pattern, which is unchanged following knockdown 

of lin-66, vhp-1, cul-1, and tlp-1 (Figure 5.5B).  

 Lastly RNAi was used to knockdown lin-66, vhp-1, cul-1, and tlp-1 in mir-

52; mir-240/786 worms to determine if any of these genes are required for the 

mir-52 mediated suppression of mir-240 mir-786 defecation defects. The 

suppression of the mir-240/786 defecation phenotype required vhp-1 and cul-1 

activity. Knockdown of vhp-1 and cul-1 significantly increased the average 

defecation cycle time of mir-52; mir-240/786 worms (Figure 5.5C). Knockdown of 

tlp-1 or lin-66 reduced the average defecation cycle time of mir-52; mir-240/786 

worms (Figure 5.5C). 
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Chapter 6: Discussion 
 

 
6.1 Overview 

 
 
The goal of this research was to identify developmental pathways 

regulated by conserved or developmentally regulated miRNAs in Caenorhabditis 

elegans. To accomplish this, strains were generated that were homozygous for 

individual miRNA deletion alleles and alg-1(gk214). Although worms mutant for 

individual miRNA genes have no obvious developmental abnormalities (Miska et 

al., 2007), 80% of the mir; alg-1 worms display observable phenotypic 

differences compared to alg-1 single mutants. This analysis identified 

phenotypes attributable to loss of individual miRNA genes for 25 of the 31 

miRNAs examined. Furthermore, this suggests roles for these miRNAs in 

developmental timing, embryonic development and gonad migration. 

Among the observations of the mir; alg-1 worms was that loss of mir-51 

family members suppressed developmental timing defects of alg-1 worms. 

Further genetic analysis of the mir-51 family revealed that this family functions 

upstream of hbl-1 to regulate execution of the L3 stage program in 

developmental timing. Since the mir-51 family displays broad and abundant 

expression (Lim et al., 2003; Ruby et al., 2006; Kato et al., 2009a; Shaw et al., 

2010), it is possible that this family may regulate pathways other than 

developmental timing mir-51 family members genetically interacted in diverse, 

miRNA-dependent developmental pathways in C. elegans, including specification 

of neuronal asymmetry, specification of vulval cell fate, the defecation motor 
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program, and synaptic activity. Loss of mir-51 family members had no effect on 

the mature levels of let-7, miR-58, miR-62, or miR-244, and loss of mir-52 had no 

effect on lsy-6 regulation of its target in uterine cells, indicating that the mir-51 

family likely does not regulate these broad pathways through a common 

mechanism of regulating miRNA biogenesis or activity. Instead, it is likely that 

mir-51 family regulates distinct targets in diverse developmental pathways.  

 
6.2 Use of alg-1 as a sensitized genetic background to reveal miRNA 
function. 

 
 
The alg-1(gk214) allele was used as a genetically sensitized background 

to reveal the functions of individual miRNA genes. 25 of the 31 miRNAs analyzed 

in this background resulted in quantifiable developmental phenotypes. This 

supports that these 25 miRNAs act in pathways that regulate developmental 

programs including embryogenesis, developmental timing, and gonad 

morphogenesis. This study identified a limited number of phenotypes attributed 

to loss of miRNA genes, which may indicate that this background is only 

sensitive to miRNA loss in a subset of developmental pathways. Further 

reduction of miRNA activity by knocking down alg-2, which encodes an 

Argonaute that also functions in the miRNA pathway, may increase the sensitivity 

of this background. However, loss of alg-1 and alg-2 results in embryonic lethality 

(Grishok et al., 2001). Further analysis is needed to specify how these miRNAs 

regulate different developmental programs. 

Interestingly, this analysis indicates that miRNAs may act together to 

regulate these different developmental pathways. One model is that these 
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miRNAs regulate overlapping targets in a developmental pathway. For example, 

mir-1, mir-124, and mir-259 were each found to enhance the gonad migration 

defects of alg-1. By Targetscan (Lewis et al., 2005; Jan et al., 2011), each share 

a predicted target, lin-26. lin-26 encodes a zinc-finger transcription factor that is 

necessary to specify epidermal cell fates in C. elegans (Labouesse et al., 1994), 

but a role in gonad morphogenesis is unknown. Therefore, Targetscan and 

additional prediction algorithms provide a platform to identify shared targets of 

these miRNAs to assess if misregulation of these shared targets leads to a 

similar phenotypic result. Alternatively, these miRNAs could regulate distinct 

targets that converge in a developmental pathway. 

The developmental timing pathway is strongly compromised in the alg-1 

mutant background. 17 of the miRNAs analyzed in this study were found to 

significantly enhance or suppress the developmental timing phenotypes of alg-1 

mutant worms. Surprisingly, since loss of a subset of individual miRNA genes 

resulted in suppression of alg-1 developmental timing defects, then these 

miRNAs may act in opposition to the let-7 family in developmental timing. 

The mechanism whereby loss of miRNAs results in suppression of alg-1 is 

unknown. One model is that these miRNAs regulate specific components of the 

timing pathway. For example, mir-238 is predicted, by Targetscan (Lewis et al., 

2005; Jan et al., 2011), to bind known developmental timing genes daf-12 (Antebi 

et al., 1998) and lin-29 (Rougvie and Ambros, 1995). Alternatively, these miRNAs 

could regulate specific targets in the miRNA pathway. In this model, loss of 

miRNA regulation of miRNA pathway genes results in elevated miRISC activity. 
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In support of this, alg-2 is a predicted target of mir-228 and mir-259. It is also 

possible that the observed suppression is due to a more general effect on 

miRISC availability. In the absence of abundantly expressed miRNAs, such as 

mir-52 (Lim et al., 2003; Ruby et al., 2006; Kato et al., 2009a), limiting miRISC 

can be utilized by the remaining miRNAs, such as the let-7 family. However, it 

does not account for the observed suppression of all mir; alg-1 worms, as loss of 

some abundantly expressed miRNAs did not result in suppression in all cases. 

Also, strong suppression for miRNAs that are relatively weakly expressed, such 

as mir-238 and mir-259 (Ruby et al., 2006), was observed. 

The use of the alg-1 genetic background revealed functions for individual 

miRNAs, and also suggested that unrelated miRNAs may regulate common 

pathways. The ability for unrelated miRNAs to regulate common targets or 

pathways may explain the lack of developmental phenotypes in worms lacking 

individual miRNA genes (Miska et al., 2007) or whole miRNA families (Alvarez-

Saavedra and Horvitz, 2010). The use of the alg-1 background can be expanded 

to additional miRNAs not included in this study. In addition to using genetically 

sensitized backgrounds, environmental stresses can reveal individual miRNA 

function (Kato et al., 2009b; de Lencastre et al., 2010). Alternatively, genetic 

backgrounds with more cell-specific phenotypes can be used. For example, as is 

discussed in more detail later, worms homozygous for the ga89 gain-of-function 

allele of let-60/RAS display a weakly penetrant multiple vulva phenotype, which 

is sensitive to loss of mir-51 family members. Mutations in genes involved in the 

Ras pathway, such as gap-1, which encodes a G-protein activating protein that 
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activates the GTPase domain of LET-60/RAS, affect the penetrance of the 

multivulva phenotype of let-60(ga89), while not displaying a multivulva phenotype 

in an otherwise wild type background (Eisenmann and Kim, 1997). Since a 

primary function for miRNAs may be to confer robustness to developmental 

programs (Hornstein and Shomron, 2006), then miRNA function might be 

revealed under conditions of environmental or genetic fluctuation, such as the let-

60(ga89) mutant background. 

A broad analysis of all individual miRNAs may prove exhaustive for 

analysis in a specific genetic background such as let-60. Previous analysis of the 

spatial expression pattern of individual miRNAs (Martinez et al., 2008b) can 

assist in chosing individual miRNAs to examine in specific genetic backgrounds. 

For example, a gfp reporter for mir-235 shows expression in vulva cells (Martinez 

et al., 2008b). mir-235 and other miRNAs that are expressed in the vulva could 

be examined in the let-60(ga89) mutant background for an effect on vulva cell 

fate specification. Genetic examination of individual miRNAs that display spatially 

restricted expression patterns will allow for further placement of individual 

miRNAs in developmental pathways and assist in identification of their individual 

functions. 
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6.3 The mir-51 family regulates diverse developmental pathways in C. 
elegans 

 
 
The goal of the analysis presented in Chapter 3 and Chapter 4 was to 

identify a mechanism whereby loss of mir-51 family members suppressed 

developmental timing phenotypes of alg-1 mutant worms. Genetic data indicated 

that the mir-51 family acts to oppose the execution of the L2 to L3 transition in 

developmental timing (Figure 5.1). Loss of mir-51 family members suppressed 

the retarded developmental timing defects of worms lacking genes that regulate 

early timing events: mir-48, mir-84, and mir-241 and lin-46. However loss of mir-

51 family members had no effect on retarded developmental timing defects of 

later acting timing genes, let-7 and puf-9. Furthermore, loss of mir-51 family 

members enhanced the precocious developmental timing defects for genes 

necessary for early fates: hbl-1, lin-14, and mir-48(ve33). However loss of mir-51 

family members had no effect on the later acting lin-41. Lastly, misexpression of 

hbl-1 in mir-48/84/241 is suppressed by loss of mir-51 family members. This 

indicates the L2 to L3 developmental timing program is the most sensitive to loss 

of mir-51 family members. 
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Figure 6.1 Genetic Model for mir-51 family in developmental timing. Lines in 
gray represent the proposed genetic role for the mir-51 family in developmental 
timing. 

 

The mir-51 family members are atypical developmental timing genes. 

First, the mir-51 family is broadly and abundantly expressed throughout 

development (Lim et al., 2003; Kim, 2005; Ruby et al., 2006; Kato et al., 2009a; 

Shaw et al., 2010). In contrast, lin-4 and let-7 show developmentally regulated 

expression (Wightman et al., 1993; Reinhart et al., 2000; Lee et al., 2004a). 

Second, mutant worms lacking individual or multiple members of the mir-51 

family do not display developmental timing defects (Table 3.1 & 3.2; Alvarez-

Saavedra and Horvitz, 2010). Therefore, the mir-51 family miRNAs are not 

themselves developmental timing genes, but instead they may act in the 

execution phase of the larval transition. 

Surprisingly, mir-51 family members genetically interacted with additional 

miRNA genes that have broad individual functions. These miRNAs regulate 

diverse pathways including neuronal asymmetry, let-60/RAS-dependent vulval 

cell specification, the defecation motor program, and synaptic activity. Loss of the 

mir-51 family member, mir-52, resulted in partial suppression of neuronal fate 
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defects of lsy-6rf/lsy-6lf worms, vulval specification defects of let-60gf worms, 

defecation cycle defects of mir-240/786 worms, and levamisole resistance of mir-

1 worms. In contrast, other miRNA genes that were also found to suppress 

developmental timing defects of alg-1, mir-238 and mir-244, had no effect on 

neuronal fate defects or vulval specification defects. The ability of mir-52 to 

genetically interact in diverse pathways could reflect regulation of an individual 

target that functions broadly, or regulation of multiple, pathway specific targets. A 

direct miR-51 family target in developmental timing was not conclusively 

identified. Identification of direct miR-51 family targets will distinguish between 

these models. 

An alternative model to explain the observed suppression of miRNA-

dependent phenotypes by loss of mir-52 is that loss of this abundant miRNA (Lim 

et al., 2003; Ruby et al., 2006; Kato et al., 2009a) frees up a limited pool of 

available miRISC. In this model, miRNAs compete for a limited pool of available 

miRISC. When an abundant miRNA is lost, then other miRNAs are able to utilize 

the available miRISC to regulate their targets. Suppression of mutant phenotypes 

in alg-1 by loss of the abundantly expressed mir-52 fits with this model. In genetic 

backgrounds where miRISC components are lost, such as in alg-1, miRISC is 

limiting. miRNA precursors accumulate in worms with reduced alg-1 (Grishok et 

al., 2001; Lund et al., 2004) or in human cells with reduced Argonautes 

(Diederichs and Haber, 2007). Increased expression of human Argonaute is 

capable of increasing the levels of exogenously expressed miRNAs (Diederichs 

and Haber, 2007). Also consistent with limited RISC availability in human cells, 
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siRNA transfection results in elevation of miRNA targets (Khan et al., 2009). It is 

unknown if miRISC is limiting in a wild type worm. miRNA precursors are 

generally low in abundance in wild type worms for most miRNAs (Grishok et al., 

2001; Lau et al., 2001; Lee and Ambros, 2001). The presence of these miRNA 

precursors could indicate competition for miRISC loading of these precursors, or 

could indicate the steady-state level of miRNA precursor during miRNA 

biogenesis. If this model were true, then it might be expected that mature miRNA 

levels would be elevated in the absence of an abundant miRNA. However, the 

mature miRNA levels of let-7, miR-58, miR-62, and miR-244 are unchanged in 

mir-52 or in mir-52/53/54/55/56 worms. Additionally, if this model were true, then 

it is predicted that miRNA activity would be elevated in the absence of mir-52. 

However, loss of mir-52 had no effect on the ability of ectopic lsy-6 to regulate its 

target, cog-1 in uterine cells. Neither of these results is consistent with loss of 

mir-52 mediating suppression via freeing up miRISC. This also suggests that 

miRISC is not limited in wild type backgrounds. Further examination of miRISC 

competition and availability in wild type backgrounds is needed to determine if 

miRISC availability may contribute to mir-51 family-dependent phenotypes. 

An alternative model to explain a role for the mir-51 family in diverse 

developmental pathways is that this family negatively regulates a gene that acts 

to promote miRNA biogenesis or activity. No change in mature miRNA levels 

between wild type and mir-52 or mir-52/53/54/55/56 worms suggests that miRNA 

biogenesis is unchanged in the absence of mir-51 family members (as discussed 

above). Furthermore, loss of mir-52 had no effect on ectopic lsy-6 activity in 
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uterine cells, suggesting the mir-51 family does not broadly regulate miRNA 

biogenesis or activity. It remains possible that the mir-51 family regulates miRNA 

biogenesis and/or activity in a cell-specific fashion. Identification of direct targets 

of the mir-51 family may reveal if the mir-51 acts in specific pathways to regulate 

miRNA biogenesis or activity. 

Since evidence provided in this study is inconsistent with the mir-51 family 

functioning broadly through regulation of miRNA biogenesis or activity, it is 

possible that the mir-51 family regulates many, distinct targets in diverse 

developmental pathways in C. elegans. Identification of direct targets of the miR-

51 family will be key to testing this model. 

 
6.4 The mir-51 family in vulval cell specification 

 
 
One unexpected finding in this study is that loss of mir-52 suppressed the 

multivulva phenotype of let-60(ga89gf), while loss of mir-54/55/56 enhanced the 

multivulva phenotype of let-60(ga89gf). These opposing interactions could 

indicate distinct activities for members of the mir-51 family members in vulva cell 

fate specification. The interaction between mir-51 family members and let-60 was 

examined since let-60 is a let-7 family target and that let-60(ga89gf) multivulva 

phenotype is sensitive to let-7 family expression (Johnson et al., 2005) and 

miRNA activity (Hammell et al., 2009). The loss of mir-52 suppressing let-

60(ga89gf) is consistent with elevated let-7 family activity, while loss of mir-

54/55/56 suppressing let-60(ga89gf) is not. The multivulva phenotype in let-

60(ga89gf) worms is due to ectopically high LET-60 activity in cells that were not 
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induced to adopt the primary (1˚) Vulva precursor cell fate (VPC). Activation of 

EGF/Ras/MAP kinase pathway is critical for specification of the 1˚ VPC and likely 

coordinates the lateral signal received by cells neighboring the 1˚ VPC, called the 

secondary (2˚) VPCs (Sternberg, 2005). LIN-12 activity is elevated in the 2˚ 

VPCs and lin-12 is both necessary and sufficient for 2˚ VPC specification 

(Sternberg, 2005). Interestingly, lin-12 contains two predicted binding sites for the 

mir-51 family according to Targetscan (Lewis et al., 2005; Jan et al., 2011). The 

observation that loss of mir-52 partially suppressed let-60(ga89gf) multivulva 

phenotype is consistent with elevated LIN-12 preventing formation of ectopic 

vulva in 2˚ VPCs. If lin-12 is a target of the mir-51 family, then why does loss of 

mir-54/55/56 enhance the multivulva phenotype of let-60(ga89gf)? Worms 

homozygous for some lin-12 gain-of-function alleles display a multivulva 

phenotype and is due to elevated lin-12 activity (Greenwald et al., 1983; 

Greenwald and Seydoux, 1990). Therefore the differences between mir-52 and 

mir-54/55/56 might be related to differences in lin-12 misregulation in each 

mutant background. Differences in individual miRNA expression and differences 

between the sequences at the 3’ end of each miRNA within the family could 

result in each miRNA contributing unequally to regulation of a common target. 

Consistent with being a possible miRNA target, the lin-12 RNA 

immunoprecipitates with the miRISC protein, AIN-1 (Zhang et al., 2007). 

However, lin-12 RNA did not immunoprecipitate with ALG-1 (Zisoulis et al., 

2010). By Targetscan, lin-12 is one of six total predictions for the mir-51 family 

which contains more than one binding site for this family within its 3’ UTR and 
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both sites show relatively high seed pairing (Lewis et al., 2005; Jan et al., 2011). 

However, lin-12 is not a predicted target of the mir-51 family by mirWIP (Hammell 

et al., 2008). This may indicate that, although the mir-51 family sites are 

conserved, the UTR may be inaccessible based on predicted structure. 

Therefore, it remains unclear if lin-12 is a direct target of the miR-51 family. 

Future experiments can be directed at determining if lin-12 is a mir-51 family 

target and if differential misregulation of lin-12 is responsible for the difference in 

penetrance of the multivulva phenotype between mir-52; let-60(ga89gf) and mir-

54/55/56; let-60(ga89gf).  

 
6.5 The mir-51 family in specification of neuronal asymmetry 
 
 

The mutant ASEL to ASER phenotype in worms homozygous for lsy-

6(ot150rf) is sensitive to reduced miRNA activity (Hammell et al., 2009). Loss of 

mir-51 family members resulted in suppression of ASEL mis-specification defects 

of lsy-6rf/lsy-6lf and lsy-6rf; alg-1 mutant worms. This is consistent with elevated 

lsy-6 activity in these worms (Johnston and Hobert, 2003). This elevation of lsy-6 

activity in the absence of mir-51 family members, in addition to the models 

already presented, could be mediated through regulation of die-1 (Didiano et al., 

2010). die-1 is expressed in the ASEL and promotes lsy-6 expression (Chang et 

al., 2004). The die-1 3’UTR is regulated by miR-273, which is specifically 

expressed in the ASER. Although mir-273 is not necessary to keep die-1 

repressed in the ASER, ectopically high expression of mir-273 in the ASEL can 

cause it to adopt the ASER fate via die-1 repression (Chang et al., 2004). 
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Interestingly, the mir-51 family is partially related in sequence to mir-273 (Didiano 

et al., 2010). Although mir-273 and the mir-51 family are not necessary for the 

bilateral specification of the ASEL and ASER (Didiano et al., 2010), loss of the 

mir-51 family could result in elevated die-1 expression in the ASEL. Elevated 

expression of die-1 in the ASEL may have no effect in a wild type background, 

but could assist in promoting the ASEL fate in worms heterozygous for lsy-

6(ot150rf)/lsy-6(ot150lf). Future experiments will be directed at determining if die-

1 misregulation mediates the observed suppression of lsy-6(ot150rf)/lsy-

6(ot150lf) by loss of mir-52. 

 
6.6 The direct targets of the mir-51 family 
 

 
The mir-51 family genetically interacted in multiple, diverse pathways. 

However, the mechanism whereby it acts in each of these pathways is unknown. 

The phenotypes observed in this analysis are expected to be due to elevation of 

protein levels of direct miR-51 family targets. In order to identify direct, 

downstream targets of the miR-51 family involved in developmental timing RNAi 

was used to knockdown the activity of a set of predicted miR-51 family targets 

whose RNAs had previously been identified to immunoprecipitate with ALG-1 

(Zisoulis et al., 2010). This analysis indicated that three genes, lin-66, tlp-1, and 

vhp-1, may act downstream of the mir-51 family in developmental timing. 

However data from reporter transgene experiments and RT-PCR experiments do 

not conclusively support that any of these genes are direct miR-51 family targets 
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whose misregulation mediates suppression of retarded developmental timing 

defects. 

This approach to identifying direct targets of the mir-51 family in 

developmental timing required that the gene be a predicted target of this family 

by either Targetscan (Lewis et al., 2005; Jan et al., 2011) or mirWIP (Hammell et 

al., 2008), and had to have been immunoprecipitated with ALG-1 (Zisoulis et al., 

2010). This generated a list of 51 candidates that were likely miR-51 family 

targets. It is possible that restricting analysis to these 51 candidates resulted in a 

failure to identify a relevant target of the mir-51 family in developmental timing. 

This analysis can be expanded to include genes not examined in this study.  

Analysis of these 51 candidate genes identified four candidates, cul-1, lin-

66, tlp-1, and vhp-1. Knockdown of cul-1, lin-66, and vhp-1 in wild-type worms 

resulted in retarded alae formation or extra seam cell divisions indicating that the 

activities of these genes are necessary for the proper execution of developmental 

fate decisions. Although knockdown of tlp-1 had no effect on wild type alae 

formation, it significantly enhanced the alae formation defects of mir-52; mir-

48/84/241 worms. These results indicate that they may function as a downstream 

target of the mir-51 family or alternatively may function in parallel to mir-51 family 

members to regulate developmental timing. Analysis of reporter transgenes and 

qPCR, however, do not provide sufficient evidence to distinguish between these 

models. Furthermore, overexpression of cul-1, lin-66, or vhp-1 is not sufficient to 

account for the observed suppression. This suggests that these genes are not 

the critical targets of the mir-51 family in developmental timing. Alternatively, it 
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may indicate that the observed suppression of developmental timing defects 

requires the misexpression of multiple mir-51 family targets. Misregulation of cul-

1, lin-66, tlp-1, and vhp-1, along with other yet identified targets, may contribute 

to the observed suppression of developmental timing phenotypes. 

cul-1 encodes a cullin protein that interacts with Skp1 related proteins and 

is required for cell cycle progression (Kipreos et al., 1996; Nayak et al., 2002). 

Loss of cul-1 results in hyperplasia of all tissues with abnormally small cells due 

to fast G1 to S phase progression (Kipreos et al., 1996). CUL-1 acts in a complex 

with DRE-1 and SKR-1 and functions in parallel with daf-12 activity (Fielenbach 

et al., 2007). Interestingly, knockdown of cul-1 by RNAi causes both precocious 

seam cell fusion but also retarded alae formation (Fielenbach et al., 2007), 

suggesting complex regulation of targets in the developmental timing pathway by 

CUL-1. These results showed that the cul-1 3’ UTR was sufficient to mediate 

repression of the col-10::gfp transgene. This repression required both the 

presence of mir-52 and the predicted mir-51 family binding site, indicating it is a 

direct target of the mir-51 family. In the absence of miR-51 family members, 

elevated cul-1 activity could act to slow or delay cell cycle progression thereby 

promoting cell cycle exit, terminal differentiation, and alae formation in seam cells 

at the L4 to adult transition. No effect was observed on the L2 reiteration 

phenotype, which indicates that misexpression of cul-1 alone cannot account for 

the observed suppression of developmental timing defects by loss of mir-51 

family members. 
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lin-66 is required for the temporal down-regulation of lin-28 in the 

regulation of the L2 to L3 transition though its molecular function remains 

unknown (Morita and Han, 2006). Suppression of the mir-48/84/241 timing 

defects by loss of mir-52 is reduced following lin-66 RNAi. The lin-66 3’ UTR is 

sufficient to direct the repression of a col-10::gfp reporter. However, this reporter 

is not significantly misexpressed in the absence of mir-52, which indicates it may 

not be a direct target of the mir-51 family. The presence of the remaining family 

mir-51 members may be sufficient to maintain the downregulation of this reporter 

in the absence of mir-52. If LIN-66 levels were elevated in the absence of mir-51 

family members, then the levels of LIN-28 should be reduced in a 3’ UTR-

dependent manner. No reduction was observed in lin-28::gfp::lin-28 expression in 

worms scored at the L2 to L3 transition, which suggests that LIN-66 may not be 

significantly elevated in the absence of mir-52 at this stage. It is possible that 

LIN-66 levels may be elevated at later stages in the absence of mir-51 family 

members. If so, elevated LIN-66 levels may contribute to the observed 

suppression of developmental timing defects in the absence of mir-51 family 

members. 

tlp-1 encodes a transcription factor that functions in the T cell lineage to 

specify asymmetric cell fates and control cell fusion (Zhao et al., 2002). A role for 

tlp-1 in developmental timing is unknown, and tlp-1 expression, although largely 

absent from the seam cells, is expressed in posterior cell lineages of the 

hypodermis (Zhao et al., 2002).  Knockdown of tlp-1 had no effect on 

developmental timing of wild type worms, however knockdown of tlp-1 did 
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significantly enchance the alae formation defects of mir-52; mir-48/84/241 

worms. This suggests that tlp-1 may function in the terminal differentiation of the 

seam cells. Based on its role in cell fusion in the T cell lineage (Zhao et al., 

2002), elevated TLP-1 may promote the terminal differentiation and fusion of the 

seam cells in the absence of mir-51 family members. The tlp-1 3’UTR was 

sufficient to down-regulate a col-10::gfp reporter, but loss of mir-52 had no 

significant effect on its expression. It is possible that the remaining mir-51 family 

members are sufficient to down-regulate the tlp-1 UTR. tlp-1 transcripts were not 

detected in RNA isolated from adult hermaphrodites by qPCR. tlp-1 may be a 

target of the miR-51 family that functions to mediate the suppression of 

developmental timing phenotypes. However, since knockdown of tlp-1 had no 

effect on the L2 reiteration phenotype, then misexpression of tlp-1 alone cannot 

account for the suppression of developmental timing defects by loss of mir-51 

family members.  

Lastly, vhp-1 encodes a MAPK phosphatase that regulates stress 

resistance and axon regeneration (Kim et al., 2004; Mizuno et al., 2004; Nix et 

al., 2011) through the regulation of its downstream targets, pmk-3 and kgb-1 (Nix 

et al., 2011). In the germline, VHP-1’s target, KGB-1, promotes the degradation 

of DCR-1 and GLH-1 (Orsborn et al., 2007; Beshore et al., 2011). DCR-1 is an 

RNaseIII riboendonuclease that is required for miRNA biogenesis (Grishok et al., 

2001). However, no changes in miRNA levels were observed in mir-51 family 

mutants, which may be expected if DCR-1 levels were elevated. GLH-1 is a 

DEAD box RNA helicase that is a P granule component (Orsborn et al., 2007), 
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which are complexes of protein and RNA aggregates in the germline and may 

function like somatic P bodies (Buchan and Parker, 2009). Reduced activity of 

GLH-1 results in defects in P granule localization (Beshore et al., 2011). VHP-1 

may function to modulate the activity of P bodies in somatic cells through the 

regulation of KGB-1. Elevated levels of VHP-1 would result in lower activity of 

KGB-1 and subsequently enhance P body-dependent mRNA degradation or 

storage. Because genetic interactions consistent with elevated miRNA activity 

were observed in some, but not all, miRNA dependent pathways, this regulation 

of miRNA activity by VHP-1 may only occur in specific cells or at specific times in 

development. This would be similar to the activity of the TRIM-NHL protein, NHL-

2, and the DEAD-box RNA helicase, CGH-1, that function to modulate miRISC 

activity acting as a cofactor for a subset of miRNAs, including the let-7 family 

(Hammell et al., 2009). Although the vhp-1 3’ UTR does not mediate repression 

of the col-10::gfp transgene, elevated levels of vhp-1 mRNA were detected in the 

mir-51 family multiply mutant worms (mir-52/53/54/55/56). It is possible that 

binding sites for miR-51 family regulation lie outside of the 3’ UTR used in this 

analysis. Interestingly, an ALG-1 binding site (Zisoulis et al., 2010) was identified 

in the first exon of the coding region of vhp-1. 

 It is unlikely that misregulation of any of these genes alone is sufficient to 

result in the observed suppression of developmental timing defects by loss of 

mir-51 family members. First, knockdown of any of the four did not fully eliminate 

the suppression of developmental timing defects by loss of mir-52. If any of these 

were solely responsible, then it is expected that knockdown would completely 
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eliminate this effect. Second, expression of cul-1, lin-66, or vhp-1 from a 

transgene array, which is expected to increase the levels of these genes, did not 

result in suppression of phenotypes. Therefore, misregulation of these, and likely 

additional, targets may mediate suppression of developmental timing defects. 

 In addition to developmental timing, the mir-51 family functioned in vulva 

and neuronal cell fate specification, regulation of the defecation cycle, and 

regulation of neuromuscular function. The targets of the mir-51 family in these 

pathways remain unknown. Interestingly, knockdown of cul-1 and vhp-1 affected 

the penetrance of multivulva phenotype and mean defecation cycle time, 

consistent with these genes having a function in these pathways. The 

mechanism whereby either gene might function in these pathways is unclear. 

vhp-1 may interact in these pathways through regulation of kgb-1 as discussed 

above. However, reduction of vhp-1 resulted in reduced penetrance of the 

multivulva phenotype of both let-60(ga89gf) and mir-52; let-60(ga89gf) worms, 

which is inconsistent with our prediction if KGB-1 levels were elevated, and thus 

DCR-1 levels reduced, in vulva precursor cells. This observation also indicates 

that misregulation of vhp-1 likely cannot account for the role of the mir-51 family 

in vulval cell fate specification. Further analysis is needed to determine the role of 

cul-1 in vulval cell fate specification and the defecation cycle. Future work can 

also be directed at determining if other targets of the mir-51 family are necessary 

for the observed phenotypes in these broad developmental pathways. 

 cdh-3 is a confirmed target of the mir-51 family (Shaw et al., 2010) that 

was not examined in this analysis by RNAi knockdown since it was not identified 
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as a target pulled down by ALG-1. cdh-3 is a target of the mir-51 family during 

embryogenesis, whereas ALG-1 bound transcripts were identified from late larval 

stage worms (Zisoulis et al., 2010), possibly explaining the lack of cdh-3 from 

their analysis. cdh-3 encodes a cadherin protein, which is part of a large family of 

proteins that are important for epithelial morphogenesis (Pettitt et al., 1996). 

Worms carrying a presumptive loss-of-function of cdh-3 display weakly penetrant 

tail tip defects (Pettitt et al., 1996). In worms lacking the mir-51 family, cdh-3 

levels are elevated, which leads to failure of the pharynx to properly attach to 

surrounding tissue, resulting in early embryonic lethality (Shaw et al., 2010). 

However, misexpression of cdh-3 alone does not account for the pleiotropic 

phenotypes observed in the absence of multiple members of the mir-51 family 

(Shaw et al., 2010). This indicates that additional mir-51 family targets are 

sufficiently misexpressed in absence of multiple family members to result in 

observable phenotypes, such as slow growth and larval lethality. It is unlikely that 

misexpression of cdh-3 alone can account for the phenotypes observed in this 

study. Cadherins typically function to form cell-to-cell contacts in adherens 

junctions (Sopko and McNeill, 2009), and it is unclear how cdh-3 might function 

in the diverse pathways described in this study. Although a role for cdh-3 in these 

diverse developmental pathways can not be ruled out, it is unlikely that 

misexpression of cdh-3 alone can account for all the observed phenotypes in the 

absence of mir-51 family members. 

 Based on the current understanding of both the known mir-51 family 

target, cdh-3, and the predicted targets analyzed in this study, it is possible that 
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the mir-51 family regulates distinct targets sets in diverse developmental 

pathways in C. elegans, and the phenotypes observed in this study are due to 

misregulation of multiple targets. Future work can be directed at identifying all 

genes misregulated in the absence of mir-51 family members. Since the mir-51 

family functions in diverse developmental pathways throughout development, 

then identification of genes misexpressed in the absence of mir-51 family 

members at various developmental stages will be necessary to identify the 

relevant targets of the mir-51 family. 

 
6.7 The mir-51 family likely fine-tunes target gene expression in C. elegans 
 
 

Based on the analysis of predicted mir-51 family targets, it is possible that 

the mir-51 family acts to regulate multiple and distinct target sets in C. elegans. 

But what does this regulation entail, and what types of relationships do the mir-51 

family miRNAs have with their targets?  

The type of regulation mediated by the mir-51 family is not like that of lsy-

6, which acts like a genetic switch to shut down the expression of a target in a 

specific cell. lsy-6 is expressed specifically in the ASEL and acts to regulate a 

specific target, cog-1, to mediate the proper specification of this cell (Johnston 

and Hobert, 2003). Similarly, miR-124 is expressed specifically in neuronal cells 

of the mammalian brain and targets non-neuronal genes, which is thought to 

reinforce the proper expression profile of these cells (Lim et al., 2005). In 

contrast, the mir-51 family is expressed in most, if not all, tissue types throughout 

C. elegans (Martinez et al., 2008b; Zhang and Emmons, 2009; Shaw et al., 



103 

 

2010). This broad expression pattern makes it unlikely that the mir-51 family 

functions to reinforce the cell fate of an individual cell type. Instead, the mir-51 

family may regulate a broad set of targets in distinct cell types. Additionally, the 

target sets may be distinct between cell types. 

It is also unlikely that the mir-51 family acts to switch off the expression of 

their targets genes. lin-4, for example, is expressed beginning in larval 

development and functions to down-regulate and eliminate LIN-14 levels (Lee et 

al., 1993; Wightman et al., 1993). This temporal expression of lin-4 allows it to 

function as a switch. In contrast, the mir-51 family is abundantly expressed 

throughout C. elegans development starting in embryogenesis (Lim et al., 2003; 

Ruby et al., 2006; Kato et al., 2009a). This temporal expression makes this family 

less well suited to act as a temporal switch during developmental transitions, 

such as the L2 to L3 transition. However it is possible that the mir-51 family could 

act to switch off gene expression very early in development, possibly right after 

the maternal-to-zygotic transition which immediately precedes the onset of 

abundant mir-51 family expression. A role for the mir-51 family in early 

embryogenesis is unknown, and most defects in worms lacking the whole mir-51 

family are observable in the later stages of embryogenesis (Alvarez-Saavedra 

and Horvitz, 2010; Shaw et al., 2010). It is possible that mir-51 family targets that 

are misexpressed during early embryogenesis do not mediate an effect until later 

stages. Aside from this small window in development, it is unlikely that the mir-51 

family serves as a switch in later stages of development. Instead the mir-51 
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family may act in later developmental decisions to primarily fine-tune or buffer the 

expression levels of its target genes.  

Recent evidence from Mukherji et al. (2011) indicates that miRNA 

regulation is not an inherent property of the miRNA. Instead the level of 

repression effected by a miRNA represents the cumulative effect of the extent of 

miRNA pairing to its target, including both number of sites and strength of 

binding, and the stoichiometry between the miRNA and its target (Mukherji et al., 

2011). The abundance and broad spatial expression pattern of the mir-51 family 

suggests that it is likely to be co-expressed with its targets, and may therefore act 

as a switch to strongly repress its targets. However, close examination of genes 

predicted to be targets of the mir-51 family show that very few of these genes 

contain multiple sites complementary to the mir-51 family seed. Of the 293 

conserved targets predicted by Targetscan (Lewis et al., 2005; Jan et al., 2011), 

only six have more than one conserved binding site for the miR-51 family. This 

may preclude strong repression by the abundant mir-51 family.  

Many genes that are switched off by miRNAs contain multiple binding 

sites in its 3’UTR for a given miRNA. Furthermore, robust repression by miRNAs 

depends on cooperation of miRNA regulation at multiple sites (Wu et al., 2010). 

lin-14 has seven sites within its 3’UTR for lin-4 (Lee et al., 1993; Wightman et al., 

1993). In addition, many of these sites can be considered strong binding sites, 

with full complementarity between the miRNA seed sequence and the UTR. In 

contrast, the mir-51 family predicted targets do not contain any genes with more 

than two conserved target sites within their 3’UTR. Therefore, based on 
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Targetscan predictions, only a handful of genes are predicted to be strongly 

repressed by the mir-51 family. 

Although the results from the Targetscan predictions for the mir-51 family 

do not obviously point to a target that may be switched off by this family, it cannot 

exclude the possibility of the mir-51 family strongly repressing six of its targets. 

These six genes contain two target sites for the miR-51 family, which might be 

sufficient to mediate strong repression. The known miRNA target cog-1, for 

example, has two predicted sites for lsy-6, of which one is necessary for strong 

repression by lsy-6 (Johnston and Hobert, 2003). lsy-6 can switch off cog-1 

despite the presence of only two complementary sites. However, a primary 

feature of the two sites in cog-1 is that the seed binds with full complementarity 

and the 3’ end of the miRNA also may pair considerably (Johnston and Hobert, 

2003). This is generally lacking from the mir-51 family target predictions. Six 

genes have two sites, and only one gene, lin-12, has both sites classified as 

‘8mers’ with full complementarity to the mir-51 family seed and conserved 

neighboring nucleotides adjacent to the seed (Bartel, 2009). Interestingly, as was 

mentioned previously, lin-12 was not identified as a gene pulled down by ALG-1 

(Zisoulis et al., 2010), and therefore it is unclear if it is a genuine miRNA target. 

Additionally, high LIN-12 activity, and presumably expression, is necessary in 

vulva precursor cells (Sternberg, 2005) where the mir-51 family members are 

expressed (Martinez et al., 2008a; Zhang and Emmons, 2009; Shaw et al., 

2010). It is expected that the miR-51 family would interact with the lin-12 

transcript in these cells. This may reflect insufficient pairing at the 3’ end between 
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miR-51 family members and lin-12, or inaccessibility to the target sites. The other 

five predicted targets that contain two conserved sites are a mix of ‘8mer’ and 

‘7mer’ or ‘6mer’ sites, and may also have the potential to be strongly repressed 

by the miR-51 family. 

While only six of the predicted targets of the miR-51 family contain 

multiple sites, seventy-seven predicted targets contain a single ‘8mer’ site. Such 

a high number of genes with an individual conserved site may suggest that the 

miR-51 family can interact with a large number of genes. Furthermore, since 

these sites show conservation among various species of Caenorhabditis, it may 

indicate these sites have been preferentially retained through evolution. 

Unfortunately little is known about the consequence of having a single miR-51 

family site present in a UTR. The mir-51 family target, cdh-3 is among these 

seventy-seven target predictions, and the individual site is sufficient to mediate 

down-regulation by the miR-51 family (Shaw et al., 2010). The quantitative effect 

of the miR-51 family on CDH-3 is unknown. Although it seems unlikely that it 

generally switches off cdh-3, since cdh-3 expression is observed in many cell 

types in later development (Pettitt et al., 1996), where members of the mir-51 

family are also expressed (Shaw et al., 2010). 

Based on the expression profile of mir-51 family members and their broad 

function in diverse developmental pathways, it may be that this family regulates 

distinct sets of target genes, likely acting to buffer or fine-tune the levels of these 

genes to an optimal range. The mir-51 family seems well suited to perform this 

role in diverse cell types. It is abundantly expressed, making it highly likely that a 
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miR-51 family member will bind any genuine direct target. For this reason, it is 

unlikely for UTRs to acquire multiple sites for the miR-51 family though evolution, 

since multiple sites for an abundantly expressed miRNA would likely eliminate its 

expression. However, retention of a single site might be favorable to fine-tune 

gene expression, or possibly to prevent stochastic expression. This subtle role 

for the mir-51 family would allow it to function in diverse developmental 

pathways, possibly serving as a general mechanism in the canalization of these 

developmental programs (Hornstein and Shomron, 2006). 
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Chapter 7: Methods 
 
 
7.1 General Methods and Strains.  
 
 

All strains were maintained under standard conditions as previously 

described (Wood, 1988). Worms were kept on NGM plates seeded with E. coli 

strain AMA1004 (Casadaban et al., 1983). The wild type strain used was var. 

Bristol N2 (Brenner, 1974). A full list of strains used in this study is in Table 7.1. 

All strains were kept at 20˚C unless otherwise indicated. miRNA mutant strains 

were first outcrossed to wild type N2. For the generation of multiply mutant 

strains, the miRNA deletion allele were identified by performing PCR with primers 

that amplified the genomic region flanking the deletion mutation. Sequences for 

primers used in genotyping reactions can be found in Table 7.2. 

 

Table 7.1. Strains used in this study 
Strain Genotype 
N2 wild type wild type 
RF54 alg-1 alg-1(gk214)X 
RF70 mir-1; alg-1 mir-1(n4102)I; alg-1(gk214)X 
RF129 mir-34; alg-1 mir-34(n4276) alg-1(gk214)X 
RF420 mir-51; alg-1 mir-51(n4473)IV; alg-1(gk214)X 
RF411 mir-52; alg-1 mir-52(n4114)IV; alg-1(gk214)X 
RF398 mir-53; alg-1 mir-53(n4113)IV; alg-1(gk214)X 
RF410 mir-54/55 alg-1 mir-54/55(nDf45) alg-1(gk214)X 
RF89 mir-54/55/56 alg-1 mir-54/55/56(nDf58) alg-1(gk214)X 
RF133 mir-57; alg-1 mir-57(gk175)II; alg-1(gk214)X 
RF137 mir-59; alg-1 mir-59(n4604)IV; alg-1(gk214)X 
RF153 mir-72; alg-1 mir-72(n4130)II; alg-1(gk214)X 
RF81 mir-73/74 alg-1 mir-73/74(nDf47) alg-1(gk214)X 
RF178 mir-77; alg-1 mir-77(n4285)II; alg-1(gk214)X 
RF65 mir-83; alg-1 mir-83(n4638)IV; alg-1(gk214)X 
RF141 mir-85; alg-1 mir-85(n4117)II; alg-1(gk214)X 
RF77 mir-124; alg-1 mir-124(n4255)IV; alg-1(gk214)X 
RF145 mir-228; alg-1 mir-228(n4382)IV; alg-1(gk214)X 
RF93 mir-234; alg-1 mir-234(n4520)II; alg-1(gk214)X 
RF182 mir-235; alg-1 mir-235(n4504)I; alg-1(gk214)X 
RF85 mir-237 alg-1 mir-237(n4296) alg-1(gk214)X 
RF163 mir-238; mir-239a/b alg-1 mir-238(n4112)III;  
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Table 7.1. Strains used in this study 
Strain Genotype 

mir-239a/b(nDf62) alg-1(gk214)X 
RF60 mir-240/786 alg-1 mir-240 mir-786(n4541) alg-1(gk214)X 
RF186 mir-244; alg-1 mir-244(n4367)I; alg-1(gk214)X 
RF149 mir-246; alg-1 mir-246(n4636)IV; alg-1(gk214)X 
RF368 mir-247/797 alg-1 mir-247 mir-797(n4505) alg-1(gk214)X  
RF343 mir-259; alg-1 mir-259(n4106)V; alg-1(gk214) 
RF392 mir-1; alg-1; Ex[mir-1 rescue] mir-1(n4102)I; alg-1(gk214)X; xwEx65 
RF421 mir-59; alg-1; Ex[mir-59 rescue] mir-59(n4604)IV; alg-1(gk214)X; xwEx76 
RF414 mir-83; alg-1; Ex[mir-83 rescue] mir-83(n4638)IV; alg-1(gk214)X; xwEx73 
RF384 mir-124; alg-1; Ex[mir-124 rescue] mir-124(n4255)IV; alg-1(gk214)X; xwEx54 
RF394 mir-124; alg-1; Ex[mir-124 rescue] mir-124(n4255)IV; alg-1(gk214)X; xwEx59 
RF426 mir-247/786 alg-1; Ex[mir-247 rescue] mir-247 mir-786(n4505) alg-1(gk214)X; 

xwEx78 
RF427 mir-247/786 alg-1; Ex[mir-247 rescue] mir-247 mir-786(n4505) alg-1(gk214)X; 

xwEx79 
RF428 mir-247/786 alg-1; Ex[mir-247 rescue] mir-247 mir-786(n4505) alg-1(gk214)X; 

xwEx80 
RF425 mir-259; alg-1; Ex[mir-259 rescue] mir-259(n4106)V; alg-1(gk214)X; xwEx77 
RF403 mir-54/55/56 alg-1; mjEx160[mir-54/55/56 
rescue] 

mir-54/55/56(nDf58) alg-1(gk214)X; 
mjEx160 

RF251 mir-238; alg-1; Ex[mir-238 rescue] mir-238(n4114)III; alg-1(gk214)X; xwEx14 
RF252 mir-238; alg-1; Ex[mir-238 rescue] mir-238(n4114)III; alg-1(gk214)X; xwEx15 
RF253 mir-238; alg-1; Ex[mir-238 rescue] mir-238(n4114)III; alg-1(gk214)X; xwEx16 
RF416 mir-244; alg-1; Ex[mir-244 rescue] mir-244(n4367)I; alg-1(gk214)X; xwEx74 
RF417 mir-244; alg-1; Ex[mir-244 rescue] mir-244(n4367)I; alg-1(gk214)X; xwEx75 
MT7626 let-7ts let-7(n2853)X 
RF448 mir-52; let-7ts mir-52(n4114)IV; let-7(n2853)X 
RF554 mir-48/84/241 mir-48 mir-241(nDf51)V; mir-84(n4037) 

wIs79X 
RF556 mir-52; mir-48/84/241 mir-52(n4114)IV; mir-48 mir-241(nDf51)V; 

mir-84(n4037) wIs79 X 
RF730 mir-48/241; mjEx160[mir-54/55/56] mir-48 mir-241(nDf51)V; mjEx160 
RF504 lin-46 wIs78IV; lin-46(ma164)V 
RF568 lin-46 lin-46(ma164)V;wIs79X 
RF594 mir-51; lin-46 mir-51(n4473) wIs78IV; lin-46(ma164)V 
RF569 mir-52; lin-46 mir-52(n4114)IV; lin-46(ma164)V; wIs79X 
RF599 mir-53; lin-46 mir-53(n4113) wIs78IV; lin-46(ma164)V 
RF505 mir-54/55/56; lin-46 wIs78IV; lin-46(ma164)V; mir-

54/55/56(nDf58)X 
VT1064 mir-48/84 mir-48(n4097) maIs105V; mir-84(n4037)X 
RF451 mir-51; mir-48/84 mir-51(n4473)IV; mir-48(n4097) maIs105V; 

mir-84(n4037)X 
RF469 mir-52; mir-48/84 mir-52(n4114)IV; mir-48(n4097) maIs105V; 

mir-84(n4037)X 
RF454 mir-53; mir-48/84 mir-53(n4113)IV; mir-48(n4097) maIs105V; 

mir-84(n4037)X 
RF451 mir-54/55/56; mir-48/84 mir-48(n4097) maIs105V; mir-84(n4037) 

mir-54/55/56(nDf58)X 
VC894 puf-9 puf-9(ok1136)X 
RF578 mir-52; puf-9 mir-52(n4114); puf-9(ok1136)X 
RF619 mir-48/241 mir-48/241(nDf51)V; wIs79X 
RF620 mir-52; mir-48/241 mir-52(n4114)IV; mir-48/241(nDf51) wIs79X 
RF625 mir-48/241; puf-9 mir-48 mir-241(nDf51)V; puf-9(ok1136) 

wIs79X 
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Table 7.1. Strains used in this study 
Strain Genotype 
RF626 mir-52; mir-48/241; puf-9 mir-52(n4114)IV; mir-48/241(nDf51)V; puf-

9(ok1136) wIs79X 
RG490 mir-48(ve33) mir-48(ve33)V 
RF582 mir-51; mir-48(ve33) mir-51(n4473)IV; mir-48(ve33)V 
RF583 mir-52; mir-48(ve33) mir-52(n4114)IV; mir-48(ve33)V 
RF584 mir-53; mir-48(ve33) mir-53(n4113)IV; mir-48(ve33)V 
RF587 mir-54/55/56; mir-48(ve33) mir-48(ve33)V; mir-54/55/56(nDf58)X 
RF510 hbl-1 wIs78IV; hbl-1(ve18)X 
RF534 hbl-1 hbl-1(ve18) wIs79X 
RF530 mir-51; hbl-1 mir-51(n4473) wIs78IV; hbl-1(ve18)X 
RF535 mir-52; hbl-1 mir-52(n4114)IV; hbl-1(ve18) wIs79X 
RF512 mir-53; hbl-1 mir-53(n4113) wIs78IV; hbl-1(ve18)X 
RF511 mir-54/55/56; hbl-1 wIs78IV; hbl-1(ve18) mir-54/55/56(nDf58)X 
RF563 lin-14 lin-14(n179) wIs79x 
RF588 mir-52; lin-14 mir-52(n4114)IV; lin-14(n179) wIs79X 
RF500 lin-41 lin-41(ma104)I; wIs78IV 
RF536 lin-41 lin-41(ma104)I; wIs79X 
RF529 mir-51; lin-41 lin-41(ma104)I; mir-51(n4473) wIs78IV 
RF537 mir-52; lin-41 lin-41(ma104)I; mir-52(n4114)IV; wIs79X 
RF539 mir-53; lin-41 lin-41(ma104)I; mir-53(n4113) wIs78IV 
RF501 mir-54/55/56; lin-41 lin-41(ma104)I; wIs78IV; mir-

54/55/56(nDf58)X 
RF508 lin-42 lin-42(n1089)II; wIs78IV 
RF538 lin-42 lin-42(n1089)II; wIs79X 
RF527 mir-51; lin-42 lin-42(n1089)II; mir-51(n4473) wIs78IV 
RF541 mir-52; lin-42 lin-42(n1089)II; mir-52(n4114)IV; wIs79X 
RF526 mir-53; lin-42 lin-42(n1089)II; mir-53(n4113) wIs78IV 
RF509 mir-54/55/56; lin-42 lin-42(n1089)II; wIs78IV; mir-

54/55/56(nDf58)X 
VT517 lin-28 lin-28(n719)I 
RF572 mir-51; lin-28 lin-28(n719)I; mir-51(n4473)IV 
RF573 mir-52; lin-28 lin-28(n719)I; mir-52(n4114)IV 
RF574 mir-53; lin-28 lin-28(n719)I; mir-53(n4113)IV 
RF575 mir-54/55/56; lin-28 lin-28(n719)I; mir-54/55/56(nDf58)X 
RG733 wild type wIs78[scm::gfp]IV 
RF481 wild type wIs79[scm::gfp]X 
RF491 mir-51 mir-51(n4473) wIs78 
RF499 mir-52 mir-52(n4114)IV; wIs79X 
RF483 mir-53 mir-53(n4113) wIs78IV 
RF399 mir-54/55/56 wIs78IV; mir-54/55/56(nDf58)X 
RF692 mir-52/53/54/55/56 mir-52(n4100) mir-53(n4114)IV; mir-

54/55/56(nDf58)X 
RF447 mir-51; let-7 mir-51(n4473)IV; let-7(n2853)X 
RF449 mir-53; let-7 mir-53(n4113)IV; let-7(n2853)X 
RF442 mir-54/55/56; let-7 let-7(n2853) mir-54/55/56(nDf58)X 
RF553 mir-48/84/241 wIs78IV; mir-48 mir-241(nDf51)V; mir-

84(n4037)X 
RF555 mir-51; mir-48/84/241 mir-51(n4473) wIs78IV; mir-48 mir-

241(nDf51)V; mir-84(n4037)X 
RF557 mir-53; mir-48/84/241 mir-53(n4113) wIs78IV; mir-48 mir-

241(nDf51)V; mir-84(n4037)X 
RF558 mir-54/55/56; mir-48/84/241 wIs78IV; mir-48 mir-241(nDf51)V; mir-

84(n4037) mir-54/55/56(nDf58)X 
RF486 hbl-1::gfp::hbl-1 ctIs39[hbl-1::gfp::hbl-1]IV 
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Table 7.1. Strains used in this study 
Strain Genotype 
RF473 mir-52; hbl-1::gfp::hbl-1 mir-52(n4114) ctIs39[hbl-1::gfp::hbl-1]IV 
RF487 mir-54/55/56; hbl-1::gfp::hbl-1 ctIs39IV; mir-54/55/56(nDf58)X 
RF464 mir-48/84/241; hbl-1::gfp::hbl-1 ctIs39IV; mir-48 mir-241(nDf51)V; mir-

84(n4037)X 
RF494 mir-52; mir-48/84/241; hbl-1::gfp::hbl-1 mir-52(n4114) ctIs39IV; mir-48 mir-

241(nDf51)V; mir-84(n4037)X 
RF467 mir-54/55/56;mir-48/84/241; hbl-1::gfp::hbl-
1 

ctIs39IV; mir-48 mir-241(nDf51)V: mir-
84(n4037) mir-54/55/56(nDf58)X 

VT1102 lin-28; lin-46; mir-48/84/241 lin-28(n719)I; lin-46(ma164) mir-48 mir-
241(nDf51)V; mir-84(n4037) wIs79X 

RF689 mir-52; lin-28; lin-46; mir-48/84/241 lin-28(n719)I; mir-52(n4114)IV; lin-
46(ma164) mir-48 mir-241(nDf51)V; mir-
84(n4037) wIs79X 

VT808 lin-28::gfp maIs808 
VT1138 mir-48/84/241; lin-28::gfp mir-48 mir-241(nDf51)V; mir-84(n4037)X; 

maIs108[lin-28::gfp] 
RF691 mir-52; mir-48/84/241; lin-28::gfp mir-52(n4114)IV; mir-48 mir-241(nDf51)V; 

mir-84(n4037)X; maIs108 
SD551 let-60gf let-60(ga89)IV 
RF319 let-60gf; alg-1 let-60(ga89)IV: alg-1(gk214)X 
RF321 let-60gf; mir-54/55/56 alg-1 let-60(gk214)IV; alg-1(gk214) mir-

54/55/56(nDf58)X 
RF320 let-60gf; mir-238; alg-1 mir-238(n4114)III; let-60(ga89)IV; alg-

1(gk214)X 
RF370 let-60gf; mir-244; alg-1 mir-244(n4367)I; let-60(ga89)IV; alg-

1(gk214)X 
RF462 mir-52; let-60gf mir-52(n4114) let-60(ga89)IV 
RF440 let-60; mir-54/55/56 let-60(ga89)IV; mir-54/55/56(nDf58)X 
OH3646 lsy-6rf; lim-6::gfp otIs114I; lsy-6(ot150)V 
RF323 lsy-6rf; alg-1; lim-6::gfp otIs114I; lsy-6(ot150)V; alg-1(gk214)X 
RF325 lsy-6rf; mir-54/55/56 alg-1; lim-6::gfp otIs114I; lsy-6(ot150)V; alg-1(gk214) mir-

54/55/56(nDf58)X 
RF324 lsy-6rf; mir-238; alg-1; lim-6::gfp otIs114I; mir-238(n4112)III; lsy-6(ot150)V; 

alg-1(gk214)X 
RF397 lsy-6rf; mir-244; alg-1; lim-6::gfp mir-244(n4367) otIs114I; lsy-6(ot150)V; alg-

1(gk214)X 
RF531 mir-51; lsy-6rf; lim-6::gfp otIs114I; mir-51(n4473)IV; lsy-6(ot150)V 
RF532 mir-52; lsy-6rf; lim-6::gfp otIs114I; mir-52(n4114)IV; lsy-6(ot150)V 
RF546 mir-53; lsy-6rf; lim-6::gfp otIs114I; mir-53(n4113)IV; lsy-6(ot150)V 
RF367 mir-54/55/56; lsy-6rf; lim-6::gfp otIs114I; lsy-6(ot150)V; mir-

54/55/56(nDf58)X 
OH3645 lsy-6lf; lim-6::gfp otIs114I; lsy-6(ot149)V 
RF565 lsy-6lf; lim-6::gfp otIs114I; lsy-6(ot149) wwIs5V 
RF590 mir-52; lsy-6lf; lim-6::gfp otIs114I; mir-52(n4114)IV; lsy-6(ot149) 

wwIs5V 
RF61 mir-240/786 mir-240 mir-786(n4541)X 
RF542 mir-51; mir-240/786 mir-51(n4473)IV; mir-240 mir-786(n4541)X 
RF543 mir-52; mir-240/786 mir-52(n4114)IV; mir-240 mir-786(n4541)X 
RF544 mir-53; mir-240/786 mir-53(n4113)IV; mir-240 mir-786(n4541)X 
RF552 mir-54/55/56; mir-240/786 mir-240 mir-786(n4541) mir-

54/55/56(nDf58)X 
MT14119 mir-35 thru 41 mir-35/36/37/38/39/40/41(nDf50)II 
RF210 mir-54/55/56; mir-35 thru 41 mir-35/36/37/38/39/40/41(nDf50)II; mir-

54/55/56(nDf58)X 



112 

 

Table 7.1. Strains used in this study 
Strain Genotype 
RF753 mir-1 mir-1(n4102)I 
RF754 mir-52; mir-1 mir-1(n4102)I; mir-52(n4114)IV 
PS3662 cog-1::gfp syIs63IV 
OH7310 cog-1::gfp; cog-1prom::lsy-6hairpin syIs63 otIs193IV 
RF622 mir-52; cog-1::gfp; cog-1prom::lsy-6hairpin mir-52(n4114) syIs63 otIs193IV 
RF663 lsy-6; rrf-3; lim-6::gfp otIs114I; rrf-3(pk1426)II; lsy-6(ot150)V 
RF662 lsy-6; mir-52; rrf-3; lim-6::gfp otIs114I; rrf-3(pk1426)II; mir-52(n4114)IV; 

lsy-6(ot150)V; rrf-3(pk1426)II 
RF45 mir-1 mir-1(n4102)I 4x outcrossed 
RF124 mir-34 mir-34(n4276)X 4x outcrossed 
VT1553 mir-57 mir-57(gk175)II 4x outcrossed 
VT1555 mir-59 mir-59(n4604)IV 4x outcrossed 
RF154 mir-72 mir-72(n4130)II 
RF48 mir-73/74 mir-73/74(nDf47)X 4x outcrossed 
RF164 mir-77 mir-77(n4285)II 4x outcrossed 
RF1 mir-83 mir-83(n4638)IV 4x outcrossed 
RF125 mir-85 mir-85(n4117)II 4x outcrossed 
RF46 mir-124 mir-124(n4255)IV 4x outcrossed 
RF127 mir-228 mir-228(n4382)IV 4x outcrossed 
RF47 mir-234 mir-234(n4520)II 4x outcrossed 
RF165 mir-235 mir-235(n4504)I 4x outcrossed 
RF57 mir-237 mir-237(n4296)X 4x outcrossed 
RF157 mir-238 mir-238(n4112)III 4x outcrossed 
RF158 mir-239a/b mir-239a/b(nDf62)X 4x outcrossed 
RF166 mir-244 mir-244(n4367)I 4x outcrossed 
RF126 mir-246 mir-246(n4636)IV 4x outcrossed 
RF24 mir-247/797 mir-247 mir-797(n4505)X 4x outcrossed 
RF326 mir-259 mir-259(n4106)V 4x outcrossed 
RF716 cul-1+++ xwEx135 
RF717 cul-1+++ xwEx136 
RF718 cul-1+++ xwEx137 
RF732 mir-48/241; cul-1+++ mir-48 mir-241(nDf51)V; xwEx135 
RF707 lin-66+++ xwEx128 
RF708 lin-66+++ xwEx129 
RF709 lin-66+++ xwEx130 
RF710 lin-66+++ xwEx131 
RF733 mir-48/241; lin-66+++ mir-48 mir-241(nDf51)V; xwEx131 
RF719 vhp-1+++ xwEx138 
RF720 vhp-1+++ xwEx139 
RF721 vhp-1+++ xwEx140 
RF722 vhp-1+++ xwEx141 
RF723 vhp-1+++ xwEx142 
RF734 mir-48/241; vhp-1+++ mir-48 mir-241(nDf51)V; xwEx138 
RF642 col-10::gfp::unc-54 utr xwEx94 
RF643 col-10::gfp::unc-54 utr xwEx95 
RF644 col-10::gfp::unc-54 utr xwEx96 
RF667 mir-52; col-10::gfp::unc-54 utr mir-52(n4114)IV; xwEx96 
RF645 col-10::gfp::vhp-1 utr xwEx97 
RF646 col-10::gfp::vhp-1 utr xwEx98 
RF647 col-10::gfp::vhp-1 utr xwEx99 
RF668 mir-52; col-10::gfp::vhp-1 utr mir-52(n4114)IV; xwEx97 
RF648 col-10::gfp::cul-1 utr xwEx100 
RF649 col-10::gfp::cul-1 utr xwEx101 
RF650 col-10::gfp::cul-1 utr xwEx102 
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Table 7.1. Strains used in this study 
Strain Genotype 
RF662 mir-52; col-10::gfp::cul-1 utr mir-52(n4114)IV; xwEx102 
RF653 col-10::gfp::tlp-1 utr xwEx103 
RF654 col-10::gfp::tlp-1 utr xwEx104 
RF655 col-10::gfp::tlp-1 utr xwEx105 
RF663 mir-52; col-10::gfp::tlp-1 utr mir-52(n4114)IV; xwEx105 
RF660 col-10::gfp::lin-66 utr xwEx109 
RF661 col-10::gfp::lin-66 utr xwEx110 
RF680 mir-52; col-10::gfp::lin-66 utr mir-52(n4114)IV; xwEx109 
RF677 col-10::gfp::lin-66Δ utr xwEx118 
RF678 col-10::gfp::lin-66Δ utr xwEx119 
RF679 col-10::gfp::lin-66Δ utr xwEx120 
RF686 mir-52; col-10::gfp::lin-66Δ utr mir-52(n4114)IV; xwEx118 
RF670 col-10::gfp::cul-1Δ utr xwEx111 
RF671 col-10::gfp::cul-1Δ utr xwEx112 
RF672 col-10::gfp::cul-1Δ utr xwEx113 
RF684 mir-52; col-10::gfp::cul-1Δ utr mir-52(n4114)IV; xwEx111 
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Table 7.2. primers used for miRNA allele detection 

gene allele description primer - WT/deletion (5’) 

mir-1 n4102 

primer - 
WT/deletion (5’) GCAAAGAAATATTAAAGTTGTGCTG 
primer - 
WT/deletion (3’) ATCATTCTCGCTCTCTCTAGTTCTCTT 
primer - WT 
only (3’) GACGGAGGAATGAGTAGAAAAAGAC 

mir-34 n4276 

primer - 
WT/deletion (5’) CTAGACGAGTTTAACAACAACAACAAA 

primer - 
WT/deletion (3’) AGTAAGAGGACAGGAACAGG 

primer - WT 
only (5’) ACAAGTTGATCTTTTCCTTCTCTTTTT 

primer - WT 
only (3’) ACTTTTTCCAGTTACAGTGTCAAACTT 

mir-51 n4473 

primer - 
WT/deletion (5’) TTAATACTTATCAGAAAACTGATGTGG 
primer - 
WT/deletion (3’) GATTGTTGTTTTTGTAATATTTTCTCG 
primer - WT 
only (5’) TATTACTAAACGCATGTCAGAAGTTTG 

mir-52 n4114 

primer - 
WT/deletion (5’) AAGGTTCGACGTTTCTCCTG 
primer - 
WT/deletion (3’) GTTTATGAACGCCGCTTGG 
primer - WT 
only (5’) TTCCGTGCTTGACAGCGAAGC 

mir-53 n4113 

primer - 
WT/deletion (5’) AACCTGGGAGTATAAGAATGAAAGG 
primer - 
WT/deletion (3’) TCTCTGCGTATCTTTGTCTACATTG 
primer - WT 
only (3’) ATGCATCAAAATTGGTCAGTTATTC 

mir-54-55 nDf45 

primer - 
WT/deletion (3’) TATATGAGCAGGGCTGCCCAGCGTTC 

primer - 
WT/deletion (3’) CGCGCTCTGACTAGGATATGAGACGACGA 

primer - WT 
only (5’) GATGTGGTATGTGTCTCTCCACAC 

primer - WT 
only (3’) AAATCTAGACATGCTTCGCAATAAG 

mir-54-56 nDf58 

primer - 
WT/deletion (5’) TATATGAGCAGGGCTGCCCAGCGTTC 
primer - 
WT/deletion (3’) GAACTAAAGTATGTTGCTAGTGGCAACCA 
primer - WT 
only (3’) CAGTAGGTGAGTTGGAACGGAGCCAG 
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Table 7.2. primers used for miRNA allele detection 

gene allele description primer - WT/deletion (5’) 

mir-57 gk175 

primer - 
WT/deletion (5’) CCGACAAATCCTCAAAGCAT 
primer - 
WT/deletion (3’) AGACGTGATTTCTTGGCTCC 
primer - WT 
only (5’) TCCCAGAATAAAAGAAGAAGTTCAG 

mir-59 n4604 

primer - 
WT/deletion (5’) CTAGGTAATCTAGGCGTTCACACGATTAAC 
primer - 
WT/deletion (3’) GTTACCATGGTTTGCAAATAGCTTGTC 
primer - WT 
only (3’) GTCACCTTGCTTCTTCTTCTTCTTTTCTTC 

mir-72 n4130 

primer - 
WT/deletion (5’) TTTAGGATTTAAAGGATTAAATACATTTCC 
primer - 
WT/deletion (3’) CTACGAAGTTTGTATGCCTACAGTAACC 
primer - WT 
only (3’) GCAGAATAGTAGTAGTAGAATAGGGGAATC 

mir-73-74 nDf47 

primer - 
WT/deletion (5’) GTCATTTCTACTTTTAATATTTGGGAAAGG 
primer - 
WT/deletion (3’) ACTAATCTTGAGCCTAATATGGATAAAAAG 
primer - WT 
only (5’) GATTAATCCTCTATATTTTCCTCCCTTC 

mir-77 n4286 

primer - 
WT/deletion (5’) AAGAATTGAGAAAACTGATATATAGTGCAA 
primer - 
WT/deletion (3’) GTATAATTTACCTTTGACAATTTGGAATAA 
primer - WT 
only (3’) AAACTCTACCTTTGTCTAACTCCAATAACT 

mir-83 n4638 

primer - 
WT/deletion (5’) TCTAAGGTCCTTTCCATTTCTTTCT 
primer - 
WT/deletion (3’) AAAACAGAGCTTTTCTCGTTGTCTA 
primer - WT 
only (5’) CAAACAGCACATACCTCTTTCTTTT 

mir-85 n4117 

primer - 
WT/deletion (5’) TATTTTAAAAGAGATTATCAAGATGCTTTG 
primer - 
WT/deletion (3’) AGAATAAAAGTGTAGAACGTGGAATATACA 
primer - WT 
only (3’) AGAAGAAGATCATGTAAGAATTCATTTTC 

mir-124 n4255 

primer - 
WT/deletion (5’) CTCTCTTCTACCAAACAACCAGTATTC 
primer - 
WT/deletion (3’) AAGTGTTTGTTCTAAAATTCAAGTCGT 
primer - WT 
only (5’) CTTTAGTGGACATCTAAGTCTTCCAAC 

mir-228 n4382 primer - 
WT/deletion (5’) TTTGCTGTTCTCACGTATATAGAAAATAAT 
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Table 7.2. primers used for miRNA allele detection 

gene allele description primer - WT/deletion (5’) 
primer - 
WT/deletion (3’) GAAATTATTAAACTTGTTCAATTTTTACGG 
primer - WT 
only (3’) AATAAAAGAATTTTTGAAGGCAGTAGTAGT 

mir-234 n4520 

primer - 
WT/deletion (5’) TACCAACAAAAAGAACGGGC 
primer - 
WT/deletion (3’) TTTGATTTTGCTGACGAAGC 
primer - WT 
only (3’) GCACATTTGAAACGACAGG 

mir-235 n4504 

primer - 
WT/deletion (5’) AATGAGCATGCTTTTACACTATAAATCTAC 
primer - 
WT/deletion (3’) ATACTAGTTCAGAACAATTTTAGTCCTGTG 
primer - WT 
only (3’) CTATCTATTCCTTATTCTTCCAAGTGCTAT 

mir-237 n4296 

primer - 
WT/deletion (5’) GAATGTACAAAAAGTTAATGCCGACTC 
primer - 
WT/deletion (3’) AAGATTTAAAAATGAGAGATCACATGG 
primer - WT 
only (3’) CCGTCGACGATTATCTAACACTTACTA 

mir-238 n4112 

primer - 
WT/deletion (5’) CATTAACAATATATAGGTTTTGCTCGTAAG 
primer - 
WT/deletion (3’) TTATAAAGTAAACTTGGAGAACTACAACCA 
primer - WT 
only (3’) TTAGATTCAGATATGTAACCAATCAAAAGT 

mir-239a/b nDf62 

primer - 
WT/deletion (5’) AAATTTGAAGTAAATTGGACAATAACAATA 
primer - 
WT/deletion (3’) GTTATACTTGCTCTGATAATGAAATGGTAG 
primer - WT 
only (3’) TAAAATATACTAGACTTGGTGCACTTTTTC 

mir-240 mir-
786 n4541 

primer - 
WT/deletion (5’) TCTGCAAGTACAATAAGAGAGAAAACA 
primer - 
WT/deletion (3’) TCTACATCAACATTTTGCATAAAGAAC 
primer - WT 
only (3’) AAAAAGTTTCTAACAACGAAATAGCAA 

mir-244 n4367 

primer - 
WT/deletion (5’) ATGTATCCTTAAAAACAAATGTAGCAGTTA 
primer - 
WT/deletion (3’) TAGTACTGTAATTGTTGTTCAAACCTTTTT 
primer - WT 
only (3’) CCTAAAAACGCAAAAATAGAATACACTTTA 

mir-246 n4636 

primer - 
WT/deletion (5’) GTTGATTGGTTAAATGATGAAAGTACACTA 
primer - 
WT/deletion (3’) TACAGTAATGTTTTGAAATGTTTTGTTATG 
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Table 7.2. primers used for miRNA allele detection 

gene allele description primer - WT/deletion (5’) 
primer - WT 
only (3’) ATTTAGTTGTGAACAAAGAAAAATGATAAA 

mir-247 mir-
797 n4505 

primer - 
WT/deletion (5’) AAGATGTTTTCTTTTCCACTACCAGT 
primer - 
WT/deletion (3’) ATTTGAATTTCTCTCCTGACTCTGTT 
primer - WT 
only (5’) AATTCAAAACAACACCTGTGAATATG 

mir-259 n4106 

primer - 
WT/deletion (5’) ATCACTTGATATCTACGTCAAAAAGAGTAT 
primer - 
WT/deletion (3’) ATTAATACGAATGATTTATTATCAGCACAT 
primer - WT 
only (3’) TCAAATTATACTTCTTTGATCTTCTCAAAA 

 
 
7.2 Molecular Biology 
 
 

All basic molecular biology techniques including PCR, restriction enzyme 

digestion of DNA, DNA purification, gel purification of DNA, DNA ligation, 

preparation of E. coli competent cells, transformation of E. coli, and plasmid DNA 

extractions were done according to Abbott Lab protocols or to manufacturers 

specifications where applicable. 

 
7.3 Synchronization of worm cultures 
 
 

Worm cultures were synchronized using the hypochlorite treatment as 

described in the Abbott Lab protocol manual. Typically, four plates containing 

high populations of embryos and/or gravid worms were collected by adding 2 mL 

of sterile water to each plate and collection of liquid from each plate into a 15 mL 

conical centrifuge tube. After centrifugation at slow speed, worm/embryo mix was 

treated with approximately 6 mL of bleach solution (0.1% hypochlorite, 1.25 M 

sodium hydroxide) for no more than 6 minutes with vigorous shaking using a 
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vortex. After bleaching, remaining “pellet” was washed at least twice with 15 mL 

of sterile water, and excess liquid was discarded from the pellet. After wash, 5-7 

mL of S Medium was added and the resulting mix was transferred to a sterile 

petri plate and placed on a shaker at low speed. Worms were collected the next 

day. Concentration of L1s was estimated by counting L1s from a 2 µl drop.  

 
7.4 Microscopy 
 
 
 Fluorescence and DIC microscopy was performed using a Nikon Eclipse 

80i equipped with a Photometrics CoolSNAP HQ2 monochrome digital camera 

and RS Image software (Roper Scientific) or NIS Elements software (Nikon). 

Worms were anesthetized in 1mM levamisole and mounted onto a glass slide 

with a small pad made with 2% agarose in M9 media. 

 
7.5 Extraction of total RNA from C. elegans 
 
 
 1000 Late L4 and L4 molt worms were collected for wild type, mir-52, and 

mir-52/53/54/56 mutant worms in M9 Media. After collection worms were washed 

twice with fresh M9, allowed to incubate at room temperature (RT) for 15 min, 

and washed again with M9. Excess media was removed and volume was 

estimated. 1 volume of Trizol (Invitrogen) was added to the worm slurry and 

mixed using a pellet mixer (VWR). Trizol was added to a final 1 mL volume. 

Samples were frozen at −80˚C at this step. After samples thawed, 1/6th total 

volume of chloroform was added, followed by vortexing for 30 sec to 1 min. 

Samples were allowed to incubate for 3 min at RT prior to centrifugation at 10k x 
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g for 15 min at 4˚C. Aqueous layer was transferred to a new tube and volume 

was estimated. Equal volume of chloroform was added, samples were vortexed 

then centrifuged at 12k x g for 5 min at RT.  Aqueous layer was transferred to a 

new tube, volume was estimated, and an equal volume of isopropanol and 20 ng 

glycogen was added. Sample was allowed to incubate at −20˚C for 1 hour prior 

to centrifugation at 10k x g for 10min at 4˚C. The supernatant was discarded and 

the RNA pellet was washed using 1 mL of 75% Ethanol in DEPC water solution. 

The pellet was allowed to dry at RT for 10min prior to resuspension in 200 µl 

preheated 68˚C DEPC Water. RNA samples were DNase treated (DNA-free Kit, 

Ambion) per manufacturers specifications. 1/10th volume of 3M sodium acetate, 

pH 5.2 and 1 volume phenol:chloroform was added. The sample was vortexed 

for 30 sec to 1 min, allowed to incubate at RT for 5 min, then centrifuged at 12k x 

g for 5 min at RT. Aqueous layer was transferrred to a new tube, equal volume of 

chloroform was added, the sample was vortexed, allowed to incubate at RT for 5 

min, then centrifuged at 12k x g for 5 min. Aqueous layer was transferred to a 

new tube, 1.5 volumes of isopropanol and 20ng of glycogen was added. before 

incubation at −20˚C for 1 hour.  Sample was allowed to incubate at −20˚C for 1 

hour prior to centrifugation at 10k x g for 10min at 4˚C. The supernatant was 

discarded and the RNA pellet was washed using 1 mL of 75% Ethanol in DEPC 

water solution. The pellet was allowed to dry at RT for 10min prior to 

resuspension in 30-50 µl preheated 68˚C DEPC Water. RNA quality and quantity 

was determined using NanoDrop ND-1000 Spectrophotometer. RNA quality was 
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also assessed by gel electrophoresis with 100-1000 ng of total RNA loaded onto 

a 2% Agarose Gel in TBE Buffer plus ethidium bromide. 

 
7.6 qRT-PCR  
 
  
 For analysis of cul-1, lin-66, and vhp-1 transcript levels, reverse 

transcription of 500 ng of total RNA was prepared using the iScript cDNA 

synthesis kit (BioRad). cDNA was diluted with TE buffer before use or storage at 

−20˚C. 10 ng total RNA was used in 20 µl qPCR using iQ Sybr green Super Mix 

(BioRad). Primers, listed in Table 7.3, were used at a final concentration of 

400nM. Primer efficiency was determined to be above 90% for each primer pair 

at various concentrations of cDNA obtained from wild type worms. Primer 

specificity was confirmed in each reaction by melting temperature analysis. Data 

was analyzed using 2-ΔΔC
t method with the mean of ama-1 and cdc-42 as 

reference (Livak and Schmittgen, 2001; Hoogewijs et al., 2008). 10 ng of total 

RNA was used to analyze the levels of mature miRNAs with Applied Biosystems 

Taqman miRNA assays following manufacturers protocol. Data was analyzed 

using 2-ΔΔC
t method with the mean of U18 and sn2343 as reference. Statistical 

analysis was performed comparing the mean fold change in expression from two 

independent biological replicates relative to wild type using student’s t-test.  
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Table 7.3 Primers for molecular biology experiments 

Use 
Location/ 

Descriptiond 
Amplico

n size Sequence 

mir-1 rescue T09B4, 
22804-25946 3143 bp 

ATCTGCAGATTTCACATCCTTCGAACTTCTTC 
ATCCCGGGTTTTTAATGTGTTTGTCAGGTGT
G 

mir-59 rescue B0035, 14594-
17759 3166 bp 

ATCCCGGGAGCTCTAGGTAATCTAGGCGTTC
A 
ATCTGCAGTCCTCCTTTAGTTCAGCTTTCACT 

mir-83 rescue C06A6, 
13348-16443 3096 bp 

ACTGGTCGACCGTTGCTCTCAATTCTAAAAA
CCT 
ACTGCTGCAGATATTTGAAAGGAAAAAGGGT
TCC 

mir-124 rescue C29E6, 5404-
8667 3264 bp 

ATCCCGGGCCAGTTTCTCATTATCTTCGGATT 

ATCTGCAGGGTTTGTCTGATCTTCATCACATC 

mir-247/797 
rescue 

X: 4757213 - 
4755181 2079 bp 

CACCATATTCACAGGTGTTGTTTT 

TTGGAAGAAGAAAAATCAATCAAA 

mir-259 rescue F25D1, 9049-
10772 1724 bp 

ATCACTTGATATCTACGTCAAAAAGAGTAT 

CTTTAAAAGTCTTCTGGAAAAAGTGG 

mir-228 rescue T12E12, 
22144-24235 2092 bp 

ATCAAGCTTTTCCAAAACAGTTCCAAATTTCT 

ATCAAGCTTTAGGTGGCCGAGTTTTTGTATT 

mir-238 rescue K01F9, 2771-
5902 3132 bp 

ATCCCGGGTTCAATTTTCCAATCAACAATCAG 

ATCTGCAGTACTCAATCGTGCAATTTCTTCAT 

mir-244 rescue T04D1, 
14821-17172 2352 bp 

ACTGATGCGGCCGCTATTTTTGCGTTTTTAG
GCTTAGG 
ACTGATGCGGCCGCGAAGAAGTCCAAACATC
CTTGATT 

cul-1 3'UTR III: 10474775 - 
10475541 767 bp 

GTACCTCGCCTAATTCATTTCATT 

TCGAAGAAAATTACACAAAAACGA 

lin-66 3'UTR IV: 13892325 - 
13893051 727 bp 

GGTAACTGAGTGATTGTACATACCAAA 

TAAGGGAGAGAGCGAGAGACATA 

tlp-1 3'UTR IV: 13701131 - 
13701749 619 bp 

TGTTTTTCTAGCATTTTTCTGTCTG 

TTGAATTTTGTTTGATACTTTTAGTGG 

vhp-1 3'UTR II: 5340231 - 
5341828 1598 bp 

TTTTGTGAACATCATTCTCTAGTCCA 

CGTCACGCCCTTCTTCAATA 

cul-1+++ III: 10469397 - 
10475541 6145 bp 

TTTCTTCCATACTGATTCTGACCA 

TCGAAGAAAATTACACAAAAACGA 
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Table 7.3 Primers for molecular biology experiments 

Use 
Location/ 

Descriptiond 
Amplico

n size Sequence 

lin-66+++ IV: 13884127 - 
13893051 8925 bp 

TCAATGAACACTTTTCTCGAACAT 

TAAGGGAGAGAGCGAGAGACATA 

tlp-1 qPCR 

Bridges exon 
3 and 4 of 
T23G4.1 83 bp 

TGGCAAGCCATGTTAAGAAA 

Within exon 4 
of T23G4.1 AGCTTTTCCCGTTGATGTTG 

cul-1 qPCR 

Bridges exon 
4 and 5 of 
D2045.6 108 bp 

CGGAAGAGCGTGATTAGTGC 

Within exon 6 
of D2045.6 GAATCGACCGGAAAGTTGTG 

lin-66 qPCR 

Bridges exon 
6 and 7 of 
B0513.1 145 bp 

GTTTCTCGCCATCCAATCAT 

Within exon 7 
of B0513.1 AAAGGGTCATAGTAGCGCTGAG 

vhp-1 qPCR 

Within exon 5 
of F08B1.1a 105 bp 

ATTATGCGCTACATGAAAATGG 

Within exon 6 
of F08B1.1a TTCAAGCAATTGTCCCATAAAA 

B0513.1/lin-66 
RNAi 

IV: 13888187 - 
13892331 5857 bp 

TGTCTTACGAAATGAATAGTCTCTT 

AGTTACCAATACGGAGTGAGTT 

C06E1.3 RNAib III: 8581168 - 
8583238 2071 bp 

TGAAACTCAAAGAGGGATCATGT 

TTCCTTAGGTTAATGTGAGCCAA 

C08B11.1/zyg-
11 RNAia 

II: 8018734 - 
8019916 1183 bp 

CAACTCCACTCGACTCGTCA 

CTCCAAGAGCTTTTCGCAAG 

C16E9.4/inx-1 
RNAib 

X: 6947911 - 
6948565 655 bp 

CACATGGAAGACGCTCTTGA 

CTTTTTCACCGACTGCCTGT 

C18F3.2/sax-7 
RNAia 

IV: 8077840 - 
8078931 1092 bp 

ACTCCACCTCATATCGTGCC 

CAGCCGGATAAAAATCCAGA 

C45E5.6/nhr-46 
RNAia 

IV: 5748852 - 
5749910 1059 bp 

TCTGAGCCCGAAGAGTTTGT 

ATGTCATTGTTGCACGGTGT 

F56F3.1/pqn-
45 RNAia 

III: 4472662 - 
4473833 1172 bp 

ATGGAACCACAGGTTGGTGT 

AAACGTGGCTAATCCAATGC 

F58H1.5 RNAia V: 11960146 - 
11962444 2299 bp 

CGTTGCTGCTCTTTCAGTTTTAT 

TTCCATTGTAAACTTGGAGCTGT 



123 

 

Table 7.3 Primers for molecular biology experiments 

Use 
Location/ 

Descriptiond 
Amplico

n size Sequence 

H01A20.1/nhr-3 
RNAia 

X: 14558660 - 
14559803 1144 bp 

GAGGCATCCGGAAGACATTA 

GGGTTTCGATCGACAAAAGA 

Y64G10A.6 
RNAia 

IV: 14277864 - 
14280226 2363 bp 

TCATTATGAAATTTGGGATTTCG 

TTCCCTGTATCTCCTACTCACCA 

Y65B4BL.5/acs
-13 RNAic 

I: 511215 - 
512142 928 bp 

AAGGTGAGGGAAAATGGAAATAA 

ACCGGTTTCAATACATTTGTGAC 

ZK131.11 
RNAia 

II: 13814452 - 
13817223 2772 bp 

TGTTTCAAGTTTTCCTTCTTCCA 

GATTTAAGAAGATGGGGATGAGG 

ZK673.2 RNAib II: 10448222 - 
10449118 897 bp 

TAATGGAATAATCGCCGAGG 

TCGAGTGCTTTTGAGTGGTG 
a Primers from Kamath et al., 2003 
b primers from Sönnichsen et al., 2005 
c primers from Fraser et al., 2000) 
d location is given as position within cosmid sequence or genomic position by linkage group. 

 
 
7.7 Transgene Rescue experiments  
 
 
 To create transgenic animals, germline transformation was performed as 

described (Mello et al., 1991; Mello and Fire, 1995). Injection mixes contained 5-

25 ng/µl of the rescue plasmid, 25-100ng/µl of a co-injection marker (myo-

2prom::gfp or myo-2prom::dsRed) containing plasmid, and pRS413 plasmid for a 

final DNA concentration of 150 ng/µl. Transgenic animals expressing GFP or 

dsRed in the pharynx were assayed for alae formation or for gonad migration 

defects. 

  



124 

 

7.8 Transgene 3’ UTR reporter experiments  
 
 
 The syIs63 transgene was used to monitor cog-1 repression in the 

presence of ectopic lsy-6 expression driven from a transgene array expressing 

cog-1prom::lsy-6hairpin as described in Johnston and Hobert (2003). This array was 

chromosomally integrated to generate otIs193 (kindly provided by L. Cochella 

and O. Hobert).  

For col-10prom::gfp-PEST::3’UTR constructs, the cul-1, lin-66, tlp-1, and 

vhp-1 3’UTRs were amplified by PCR using primers listed in Table 7.3. PCR 

products were inserted into the pAM1 vector containing gfp-PEST (Pro-Glu-Ser-

Thr) (Frand et al., 2005). pAM1 was created by subcloning the gfp-PEST 

sequence from pAF207 (Frand et al., 2005) into the bluescript vector, prior to 

adding the col-10prom sequence upstream of the gfp-PEST sequence. col-

10prom::gfp-PEST::3’UTR constructs for cul-1Δ and lin-66Δ were generated using 

Quikchange site directed mutagenesis (Stratagene) to remove the 6 nucleotide 

miR-51 family seed recognition sequence. Injection mixes contained 20 ng/µl of 

the col-10prom::gfp-PEST::3’UTR construct along with 5-10 ng/µl of myo-

2prom::dsRed and 75-80 ng/µl 1kb DNA Ladder (New England Biolabs) for a final 

DNA concentration of 105 ng/µl. Multiple lines were identified for each reporter. 

Strains representing the different isolated lines are listed in Table 7.1. One 

representative transgenic line was used to compare GFP expression between 

wild type and mir-52(n4114) mutant worms.  
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7.9 RNAi experiments  
 
 
 Bacteria for RNAi experiments were isolated from the Ahringer RNAi 

library (Kamath et al., 2003). Bacterial clones were confirmed by sequencing, 

except for analyses performed in Appendix Figure 1. For clones not isolated from 

the RNAi library, genomic DNA was amplified using gene-specific primers 

previously used (Fraser et al., 2000; Kamath et al., 2003; Sönnichsen et al., 

2005), cloned into the EcoRV site of pPD129.36 (Timmons and Fire, 1998), and 

transformed into E. coli strain HT115. RNAi bacteria was used to seed NGM 

plates supplemented with IPTG (1 mM) and ampicillin (100 µg/ml). Plates were 

allowed to incubate at room temperature for 24-48 hours before use. For analysis 

of mir-51 family targets, synchronized L1s were transferred to RNAi bacteria and 

scored at the L4 molt. For additional experiments with RNAi of cul-1, lin-66, tlp-1, 

and vhp-1, L4 worms were plated onto RNAi bacteria and the progeny of these 

worms were scored. 

 
7.10 DNA Sequencing 
 
 

All DNA sequencing was performed by Functional Biosystems Company 

(Madison, WI). 
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APPENDIX 
 
 

Identification of targets of miR-238 
 
 
Results/Discussion 
 
 

mir-238; alg-1 mutant worms displayed significantly less alae formation 

defects and adult lethality compared to alg-1 mutants (Table 1). In order to 

identify and validate targets of mir-238, PicTar and Targetscan (version 3.0) 

algorithms were used to compile a list of 78 targets. To determine if these 

predicted targets function downstream of mir-238 to mediate suppression of alg-

1, RNAi was used to knockdown the activity of these 78 genes in mir-238; alg-1 

worms. In these worms, activity of key target genes is expected to be elevated 

due to the loss of miR-238. Their knockdown should therefore result in defects 

similar to alg-1 worms, indicating a loss of mir-238 mediated suppression. 

Knockdown of 8 candidates by RNAi enhanced the lethality of mir-238; alg-1 

mutants to greater than 50% (Appendix Figure 1A): lin-29, ZK131.11a, B0464.6, 

C43G2.1, hif-1, mrp-1, hpk-1, and daf-12. The effect of RNAi knockdown on 

these 8 genes on viability of wild type, mir-238, alg-1, and mir-238; alg-1 worms 

was examined. Only knockdown of one of 8 had significant impact on viability of 

mir-238 worms, hpk-1 (Appendix Figure 1B). Knockdown of these 8 genes had 

no obvious impact on lethality of alg-1 mutant worms. All, except C43G2.1, 

significantly increased the lethality observed in mir-238; alg-1 (Appendix Figure 

1B). These results are consistent with lin-29, ZK131.11a, B0464.6, hif-1, mrp-1, 
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hpk-1, and daf-12 functioning downstream of mir-238 to mediate suppression of 

alg-1. The identity of these RNAi clones has not been confirmed. 

Further work is needed to support these results, including characterization 

of the effect of knockdown of these genes on formation of adult specific alae. 

Evidence is also needed to support that any of these genes are direct targets of 

miR-238. Two of these genes have previously characterized roles in 

developmental timing, lin-29 and daf-12. lin-29 is necessary to specify adult cell 

fates in the hypodermis (Rougvie and Ambros, 1995). LIN-29 levels may be 

increased in mir-238; alg-1 compared to alg-1 worms. However, this effect might 

be indirect through regulation of genes that function upstream of lin-29. For 

example, let-7  promotes lin-29 expression through repression of lin-41 (Reinhart 

et al., 2000). Further analysis is needed to determine if miR-238 regulates the lin-

29 UTR. 

  



128 

 

 

  

Appendix Figure 1. Identifying 
miR-238 targets using RNAi 
knockdown. (A) Effect of RNAi 
knockdown on adult lethality of mir-
238; alg-1 mutant worms for 78 
predicted targets of mir-238 (n > 68). 
Synchronized L1s were plated onto 
RNAi bacteria and scored for total 
lethality after 3 days. * in A marks 
those RNAi clones which resulted in 
greater than 50% total lethality of mir-
238; alg-1 worms. (B) 8 genes 
identified in first experiment were 
retested for their effect on lethality of 
wild type, mir-238, alg-1, and mir-238; 
alg-1 worms (n > 45). * in B marks 
significant difference in total lethality 
compared to same strain on empty 
vector control (χ2, p < 0.05). 
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daf-12 regulates both entry into the dauer diapause and developmental 

timing (Antebi et al., 1998). If mir-238 regulates daf-12, then it is expected that 

DAF-12 would be elevated in mir-238; alg-1 worms. Elevated DAF-12 in the 

presence of dafachronic acid promotes the expression of the let-7 family of 

miRNAs (Bethke et al., 2009). Increased expression of the let-7 family members 

in alg-1 mutant worms may alleviate the developmental timing defects in these 

worms, including the lethality due to ectopic entry into the molting cycle as adults. 

Future work can be directed at determining if levels of let-7 family members are 

upregulated in mir-238 mutant worms and whether miR-238 regulates the daf-12 

3’ UTR. 

None of the other six genes have characterized roles in developmental 

timing. hif-1 encodes a transcription factor whose expression is induced in 

stressful conditions, including low oxygen, and promotes a long lifespan in C. 

elegans (Mehta et al., 2009). mrp-1 encodes the C. elegans homolog to the 

multidrug resistance protein, found to be highly expressed in many human 

cancers, which plays a role in early development for entry into the dauer 

diapause (Yabe et al., 2005). hpk-1 encodes a kinase with homology to the dual-

specificity protein kinase DYRK1A/minibrain but its function is unknown in C. 

elegans (Raich et al., 2003; Manning, 2005). The functions of ZK131.11a, and 

B0464.6 are unknown. However, since knockdown of these genes enhance the 

adult lethality of mir-238; alg-1 worms, its possible these genes have yet 

undescribed roles in developmental timing. Future work can be directed at 
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determining if these targets are direct targets of miR-238, and identifying their 

role, if any, in developmental timing. 
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