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ABSTRACT 
                       REVERSIBLE DEFICIENCIES IN FLAGELLAR BEATING  
                                             AND AXONEMAL ASSEMBLY 

 
 

Mei Wei, B.S. 
 

Marquette University, 2010 
 
 

Axonemal complexes in flagella are largely prepackaged in the cell body. As such, 
one mutation often results in the absence of the co-assembled components and permanent 
motility deficiencies. For example, a Chlamydomonas mutant defective in RSP4 in the 
radial spoke, which is critical for bend propagation, has paralyzed flagella that also lack 
the paralogue RSP6 and three additional radial spoke proteins. Intriguingly, recent studies 
showed that several mutant strains contain a mixed population of swimmers and 
paralyzed cells despite their identical genetic background. Here we report a cause 
underlying these variations. Two new mutants lacking RSP6 swim processively and other 
components appear normally assembled in early log phase indicating that, unlike RSP4, 
this paralogue is dispensable. However, swimmers cannot maintain the typical helical 
trajectory and reactivated cell models tend to spin. Interestingly the motile fraction and 
the spoke head content dwindle during stationary phase. Chemical cross-linking supports 
a model that RSP4/6 paralogues and the pair of the MORN-motif proteins in the spoke 
head form a symmetric module. These results suggest that (1) intact radial spokes are 
critical for maintaining the rhythm of oscillatory beating and thus the helical trajectory; 
(2) the symmetric module could guide tilt-return cycles of the spoke head against the 
central apparatus; (3) assembly of the axonemal complex with subtle defects is less 
efficient and the inefficiency is accentuated in compromised conditions, leading to 
reversible dyskinesia. Consistently, several organisms only possess one RSP4/6 gene. 
Gene duplication in Chlamydomonas enhances radial spoke assembly to maintain optimal 
motility in various environments. 
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Chapter 1: Introduction 
 
 

1.1 Significance of Motile Cilia and Flagella 

Motile cilia and flagella play crucial roles for eukaryotes. They enable simple organisms 

to execute directed movement that is critical for survival like feeding, mating and 

avoiding hazardous environment. The motility is also integral to normal functions of 

several vital systems in multicellular organisms. For example, a flagellum propels sperm 

to reach the egg. In the respiratory system, motile cilia sweep away mucus along with the 

trapped debris and pathogens. In the brain ventricles, ependymal cilia propel cerebral 

spinal fluid, guiding neuroblasts to migrate with the fluid flow (Sawamoto et al., 2006). 

Defective motility may lead to symptoms including infertility, chronic lung infection and 

hydrocephaly. These symptoms are collectively referred to as primary ciliary dyskinesia 

(PCD) (Lie and Ferkol, 2007). Identifying the key components and elucidating the 

motility mechanism are necessary to better understand this incredible biological machine 

and diagnose PCD, a serious yet rather common polygenic disorder due to the defect of 

this biological machine.  

 

1.2 The Motile Machinery: 9+2 Axonemes 

The majority of motile cilia and flagella are supported by a 9+2 axoneme, a highly 

conserved microtubule scaffold associated with remarkably elaborate molecular 

complexes (Figure 1-1). In the 9+2 axoneme, a central pair of singlet microtubules is 

surrounded by nine double microtubules, which form an elongated cylinder protruding 

from the basal body in the cell body. The dynein motor complexes anchor on the A  
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Figure 1-1. The cross section of the 9+2 axoneme. 
Electron microscopy (EM) of Chlamydomonas axoneme and the 
schematic diagram. 
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tubule of each outer doublet and project toward the neighboring outer doublet. In addition, 

the radial spoke, also anchored on the A tubule, projects inward toward the central 

apparatus. These axonemal complexes are positioned at precise locations in each 96-nm 

repeat.  

The oscillatory beating of motile cilia is based on the dynein-driven inter doublet 

sliding (Summer and Gibbons, 1971). The motors engage the adjacent outer doublet and 

walk toward the minus end of the outer doublet while hydrolyzing ATP. The dynein-

driven movement results in sliding between adjacent outer doublets. Constrained by the 

attachment to the basal body and by structural linkers between the doublets, the inter-

doublet sliding is converted to bending and ultimately oscillatory beating (Smith and 

Yang, 2004).  

In contrast to the motors, the mechanisms of radial spokes and the central 

apparatus are less clear. The central apparatus is composed of C1 and C2 microtubules 

and several associated projections interconnected by a barely visible central sheath 

(Figure 1-1B). The radial spoke, mostly appearing like a T or drumstick shaped, consists 

of a thin stalk that is anchored to the doublet microtubule, adjacent to dynein motors, and 

a bulbous head seeming juxtaposed to the central pair projections (Figure 1-1). 

Depending on the organism, radial spokes are present in doublets or triplets in each 96 

nm repeat along each outer doublet microtubule (Warner and Satir, 1974). Radial spokes 

and the central apparatus are crucial for the motility of 9+2 axonemes. Mutants lacking a 

significant portion of either structure are paralyzed (Witman et al., 1978). Consistently, 

they are retained in most motile cilia and flagella. Defects in these complexes have been 

found in a fraction of PCD patients. 
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1.3 The Role of the Central Apparatus and Radial Spokes 

In theory, dyneins on the 9 outer doublets are regulated to generate typical ciliary and 

flagellar bending. There are thousands of motors along the length and around the 

circumference of the axonemes.  If all of the dynein motors simultaneously undergo a 

power stroke, the flagella will become rigid. Only sequential activation of the motors can 

allow bend formation and propagation.   

Independent lines of evidence suggest that the central apparatus and radial spokes 

are regulatory complexes. One is the study of suppressor mutants. Although 

Chlamydomonas mutants missing radial spokes or the central apparatus are paralyzed, 

additional mutations rescue the paralysis of these mutants without restoring either 

structure (Huang et al., 1982). Importantly, the suppressor mutations occur in genes 

encoding outer dyneins (Huang et al., 1982; Porter et al., 1994), inner dyneins (Porter et 

al., 1992) or polypeptides from dynein regulatory complex that are located near the radial 

spoke and dynein motors (Piperno et al., 1992, 1994). It was predicted that absence of the 

central apparatus or radial spokes results in the inhibition of the dynein activity, while the 

suppressor mutations bypass the inhibition to restore motility (Huang et al., 1982; 

Piperno et al., 1992, 1994). Yet, flagellar waveform of these suppressor mutants is more 

symmetric, contrary to the asymmetric waveform of wild type (WT) flagella. It was 

postulated that the central apparatus and radial spokes convert symmetric waveform for 

backward swimming to asymmetric waveform for forward swimming (Brokaw et al., 

1982). 

Secondly, the paralyzed Chlamydomonas axoneme missing the central pair 

apparatus or radial spokes can be reactivated to beat in vitro as WT axonemes. However, 
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the reactivation conditions have to be modified such as reduction of ATP concentration 

from ~1 mM to µM level or applying ATP analogs (Yagi and Kamiya, 2000; Frey et al., 

1997; Omoto et al., 1996). Furthermore, 9+0 axoneme in nodal cilia or even those with 

3+0 axoneme are motile (Nonada et al., 1998; Prensier and Vivier, 1980). Yet the 

movements of 9+2 and 9+0 cilia and flagella differ. Nodal cilia lacking the central 

apparatus and radial spokes beat with low frequency with primitive 3-dimensional 

waveforms of shallow amplitude (Okada et al., 1999). Similarly the movement of 

reactivated paralyzed flagella is slow and less asymmetric (Omoto et al., 1996), while 

9+2 cilia and flagella tend to beat with planar waveforms of larger amplitude and at high 

frequency. 

Different beating may serve distinct purposes. High frequency beating with a 

planner waveform could sweep cell body or mucus. However, the powerful movement 

may be inappropriate for nodal cilia, which may establish a morphogen gradient that 

determines the development of left-right asymmetry (Nonaka et al., 2002).  

These collective findings suggest that the central apparatus and radial spokes 

operate as a higher-order system to control the primitive movements driven by the dynein 

motors on the 9 outer doublets (Kamiya, 2002).  

 

1.4 The Radial Spoke, a Postulated Mechano-transducer  

Several hypotheses are proposed to explain the control mechanism of the axoneme. Thin 

section electron microscopy (EM) of instantly fixed beating cilia showed that in the 

straight regions, the radial spokes are perpendicular to outer doublets and appear to attach 

to the central pair projections while at the region of bend, the radial spokes appear tilted. 
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Distal to the bend, the spokes heads appear reattaching to a more distal region of central 

pair projections while the base of spoke stalk always attaches to the outer doublet 

(Warner and Satir, 1974). It was predicted that radial spokes tilt against the central 

apparatus along the longitudinal axis of the axoneme as cilia bend. These morphological 

studies predict that the central apparatus transiently interacts with the radial spokes to 

regulate the bend formation and propagation. 

Interestingly, the asymmetric central apparatus rotates once per beat in many, but 

not all, motile cilia and flagella (Tamm and Tamm, 1981; Omoto et al., 1999). The 

rotation of the asymmetric central apparatus with different projections may induce spoke 

tilting relative to the circumferential axis as well, providing additional regulatory 

mechanism for the fine control of flagellar motility (Smith and Yang, 2004). The cycles 

of detachment and reattachment of the radial spokes with the central apparatus 

accompanying with the radial spoke tilting longitudinally and circumferentially may 

control dynein activity to generate a wide range of motility.  

As the only structure within axonemes that exhibits obvious asymmetry, the 

asymmetric central apparatus may specify dynein activity on subsets of doublet 

microtubules. Using in vitro microtubule sliding assay in Chlamydomonas, Wargo and 

Smith, 2003 showed that the C1 central microtubule is oriented toward the position of 

active microtubule sliding. This correlation is abolished in radial spoke mutants, 

suggesting that the C1 central microtubule regulates dynein activity on specific subsets of 

doublet microtubules through interactions with the radial spokes. The relationship 

between flagellar bends and orientation of the central apparatus is also revealed by 

observation of EM of rapidly fixed Chlamydomonas cells (Mitchell, 2003). In a similar 
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way, the central apparatus is parallel to the bend plane throughout the principal bends in 

both power stroke and recovery stroke of the beat cycle. C1 central microtubule always 

faces the outer edge of the curve.  

 Taken together, it was postulated that transient interaction between the 

asymmetric central apparatus and radial spokes transduces mechanical signals to activate 

dynein motors in specific subsets of outer microtubules (Smith and Yang, 2004). The 

mechanical signals may physically pull or push dynein motors and the outer doublets 

(Sakakibara et al., 2004).  

 

1.5 The Radial Spoke, a Postulated Chemical-transducer 

The central apparatus and radial spokes are also involved in the alteration of flagellar 

motility triggered by second messengers. Calcium and cNMP regulate ciliary and 

flagellar beating universally (Smith and Yang, 2004). For example, cAMP inhibits 

reactivation of Chlamydomonas axonemes (Hasegawa et al., 1987) while different 

calcium concentrations trigger distinct motility changes. In the presence of 10-8 M 

calcium, reactivated axonemes beat with a highly asymmetric and planar waveform. 

When the calcium concentration is increased from 10-8 to 10-4 M, the movement becomes 

quiescent followed by a switch from asymmetric waveform to symmetric waveform 

(Bessen et al., 1980; Kamiya and Witman, 1984). Since isolated axonemes are sensitive 

to second messengers, it is predicted that the regulatory elements responsive to the 

second messengers are built into the axoneme. The putative regulatory molecules include 

second-messenger dependent kinases and phosphatases, such as PKA (cAMP-dependent 
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Protein Kinase A), PKG (cGMP-dependent Protein Kinase), calmodulin and calcium-

binding proteins.   

The microtubule sliding assay of paralyzed axonemes revealed that some 

regulatory elements are located in the radial spokes. Despite the paralyzed axoneme of 

Chlamydomonas radial spoke mutants, these axonemes undergo dynein-driven 

microtubule sliding in the presence of protease. However the velocity is greatly reduced 

compared to WT axonemes (Smith and Sale, 1992; Smith, 2002).  

Interestingly, the reduced microtubule sliding velocity is restored upon 

reconstitution with dyneins from WT axonemes or addition of kinase inhibitors. PKA and 

casein kinase 1(CK1) inhibitors restore WT dynein activity to the axonemes from radial 

spoke mutants (Yang and Sale, 2000; Howard et al., 1994). These experiments predict 

that these kinases inhibit dynein activity and radial spokes function to release the 

inhibition. These findings are consistent with the observation that cAMP, the major 

activator of PKA, inhibits the reactivation of WT axonemes (Hasegawa and Kamiya, 

1987). Conversely, inhibitors against protein phosphatase 1 (PP1) and protein 

phosphatase 2A (PP2A) reverse the effect of PKA and CK1 (Habermacher et al., 1996; 

Yang and Sale, 2000). The prediction is supported by the discoveries that these two 

phosphatases were stably associated with the axonemes (Yang et al., 2000). 

The discovery of an A-kinase anchor protein (AKAP) in the radial spoke further 

supports the notion that radial spokes modulate dynein activities via PKA. It was found 

that radial spoke protein 3 (RSP3) binds to RII, the regulatory subunit of PKA in an 

overlay assay designed to reveal AKAPs (Gaillard et al., 2001). Furthermore, the PKA 

inhibitor improves the motile fraction of reactivated axonemes with mutations in the PKA 
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binding domain of RSP3 (Gaillard et al., 2006). The study predicts that the unanchored 

kinase inhibits the dynein motors and inhibition of the kinase rescues the motility. 

However, although much evidence suggested the presence of PKA in Chlamydomonas 

axoneme (Hasegawa et al., 1987; Howard et al., 1994; Yang and Sale, 2000; Smith 2002), 

the precise axonemal locations remained unknown.  

Several substrates of phosphoenzymes have been identified. Most of them are 

subunits in dynein motor complexes. In Paramecia, cAMP-mediated phosphorylation of 

one dynein chain significantly increases the swimming velocity in vitro (Hamasaki et al., 

1991; Smith and Yang, 2004). In Tetrahymena, phosphorylation of dynein motors greatly 

improves in vitro microtubule translocation velocity compared with its unphosphorylated 

counterpart. (Christensen et al., 2001; Smith and Yang, 2004).  

In Chlamydomonas, the activity of inner dynein arm subform I1, located adjacent 

to the radial spoke, is required for phosphoregulation of microtubule sliding (Porter and 

Sale, 2000). Although kinase inhibitors restore the slow sliding of radial spoke defective 

axonemes, these inhibitors do no affect the axonemes defective in both radial spokes and 

I1(Yang and Sale, 2000; Habermacher and Sale, 1997). Furthermore, IC138, an 

intermediate chain subunit of I1, is hyper-phosphorylated and I1 activity is inhibited in 

radial spoke mutants (Habermacher and Sale, 1997; Hendrickson et al., 2004). Mutants 

with hyper-phosphorylated IC138 or defective I1 is defective in photoresponse, a motility 

change due to the light stimulus and subsequent increased concentrations of calcium 

(King and Dutcher, 1997; Perrone et al., 2000). Taken together, these studies indicate that 

the radial spokes modulate dynein motors, I1 and IC138 in particular, via coupling a 

network of phosphoenzymes anchored to the axonemes.  
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Aside from the cAMP-dependent signaling, radial spokes and the central 

apparatus are implicated in calcium-dependent motility changes. In microtubule sliding  

assays, high calcium restores dynein activity of central pair defective axonemes, not 

radial spokeless mutants, to WT level (Smith, 2002). Consistently, calmodulin inhibitors 

reverse the effect of high calcium. Biochemical studies reveal calmodulin, a calcium 

binding protein, is a constitutive subunit in the radial spokes and central apparatus (Yang 

et al., 2001; Dymek et al., 2002). In addition, two spoke proteins, RSP2 and RSP23, 

contain calmodulin binding motifs and bind to calmodulin in a calcium-dependent and –

independent manner in vitro (Yang et al., 2004; Patel-King et al., 2004). In parallel, the 

central apparatus is also involved in the calcium-dependent regulation in the flagella of 

sea urchin sperm (Bannai et al., 2002; Nakano et al., 2003). These observations imply 

that calcium alters dynein-driven microtubule sliding and the central apparatus and radial 

spokes are involved in this calcium signaling pathway (Smith EF, 2002). Collectively, 

these independent lines of evidence support a model that radial spokes and the central 

apparatus modulate dynein activity via a network of phosphoenzymes and calcium 

sensors (Smith and Sale, 1992; Smith and Yang, 2004). 

In summary, these studies suggest that the radial spoke is a structure complex that 

transduces mechanical and chemical signals for modulating dynein-driven flagellar 

beating. The physical contact between the central apparatus and radial spokes appears to 

specify dyneins activity on specific subsets of double microtubules to generate oscillatory 

and planar waveforms typical of eukaryotic cilia and flagella. Specific signals may 

change the property of the radial spokes by phosphorylation and calcium binding to 

modulate flagellar motility.   
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1.6 The Composition and Assembly of Chlamydomonas Radial Spokes 

Elucidation of the mechanisms of motile cilia and flagella largely relied on 

Chlamydomonas reinhardtii, a biflagellate unicellular green alga. The combined 

experimental advantages have made Chlamydomonas as an unparalleled model organism 

to study motile cilia and flagella.   

Biochemical approaches that are possible for Chlamydomonas were taken to 

reveal the constituents in the radial spoke. Comparison of a two-dimensional (2-D) map 

of axonemal proteins prepared from WT and radial spoke mutants as well as isolated 

radial spokes have revealed that the radial spoke contains at least 23 proteins (Table 1-1) 

(Piperno et al., 1977, 1981; Yang et al., 2001; Patel-King et al., 2004). Comparison of the 

missing components in the mutant lacking the bulbous spoke head and the entire spoke 

complex concluded that five of these proteins (RSP1, 4, 6, 9, 10) are located in the spoke 

head whereas the rest are present in the stalk (Piperno et al., 1977; Huang et al., 1981). 

Within the radial spoke head, there are two pairs of homologous spoke head 

proteins. RSP1 and RSP10 share common MORN (for “membrane occupation and 

recognition nexus”) motifs and the former contains an extended C-terminus. RSP4 and 

RSP6 are encoded by tandomly aligned duplicated genes. They are highly similar, 

sharing 46% amino acid identity and are evolutionally conserved (Figure1-2) (Curry and 

Rosenbaum, 1992). They do not contain obvious known molecular domains. The two 

pairs of homologues are consistent with the ultrastructure revealed by freeze-etch EM of 

Tetrahymena cilia (Goodenough and Heuser, 1985). The ciliate’s spoke head appears to 

be a tetrameric module consisting of two central globules and two lateral hooks (Figure 

1-3).  
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                                 Table 1-1. Chlamydomonas radial spoke proteins. 
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Figure 1-2. The alignment of amino acid sequences of RSP4 and RSP6 
orthologues.  
Identical residues, in black shade; residues with similar properties, in gray shade. 
CRRSP4 and CRRSP6, Chlamydomonas RSP4 and RSP6; HS294004 and HS110412, 
two human orthologues. 
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Figure 1-3.  Freeze-etch EM of spoke heads in Tetrahymena 
cilia. 
(A) The image of the longitudinal fracture of the axoneme 
showed that each spoke head has a central domain (black 
arrow) and two lateral domains (white arrow). (B) In en face 
view, the spoke head appeared as a tetramer with two central 
globular units (black arrow) flanked by two lateral units (white 
arrow) (modified from Goodenough and Heuser, 1985).  
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Among the stalk proteins, RSP2, 5, 16, 23 are postulated to reside adjacent to the 

spoke head. In the RSP2 mutant pf24, RSP2, RSP16 and 23 are diminished while spoke 

head proteins are reduced (Huang et al., 1981). In contrast, the rest of the spoke stalk 

proteins are present in normal amounts. This suggests that RSP2, 16, 23 are located near 

the junction between the radial spoke head and spoke stalk. The prediction for RSP5 is 

based on the observation that RSP5 is coextracted with spoke head proteins by low ionic 

solution (Piperno et al., 1981). The rest of the spoke stalk proteins including RSP3, are 

proposed to be located toward the base of the spoke stalk. RSP3 is involved in binding 

radial spokes to the outer doublets. For example, pf14, a mutant defective in the RSP3 

gene, lacks the entire radial spoke (Piperno et al., 1981). Recombinant RSP3 binds to 

radial spokeless axonemes and the binding site is mapped to its N-terminus (Diener et al., 

1993).  

Molecular domains that are involved in the predicted chemical signaling of radial 

spokes are exclusively located in the spoke stalk (Figure 1-4). For example, RSP2 and 

RSP23 contain calmodulin-binding motifs. RSP23 also has an NDK domain that converts 

NDP to NTP. RSP8 and 14 have armadillo repeats that function in protein-protein 

interactions. Interestingly, the RIIa domain responsible for targeting RII and PKA to 

AKAPs are found in two radial spoke proteins, RSP7 and RSP11, yet they do not contain 

other signature features for cAMP binding or kinase catalysis. Nonetheless, RSP11 binds 

to recombinant RSP3 (Yang and Yang, 2006). Thus although RSP3 binds PKA RII in 

vitro, the mechanism that radial spokes regulate dynein activity via PKA is not straight 

forward. The molecular composition in the radial spoke suggests that the radial spoke 

head is a structural complex specialized for the transient interaction with the 
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Figure 1-4. Predicted functional domains of radial spoke proteins.  
The five spoke head proteins (RSP1, 4, 6, 9, 10) are highlighted in gray. MN, 
MORN domain; DPY, Dpy-30 motif; GAF, cyclic GMP, Adenylyl cyclase, 
FhlA domain; CAM, 1-8-14 calmodulin-binding motif; AKAP, A-Kinase 
Anchoring Protein motif; RIIa, RII alpha motif; EFH, EF-hand domain; PP1, 
peptidyl prolyl isomerase motif; LRR, leucine-rich repeat; DnaJ and DnaJ-C, 
DnaJ-J and DnaJ-C molecular chaperone homology domains; NDK, NDK 
domain; IQ, IQ calmodulin-binding motif. Coiled-coil domains are indicated 
by an open bar. The figure was modified from Yang and Smith, 2009.  
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central apparatus while the spoke stalk contains regulatory domains for the modulation of 

flagella motility.   

Like other axonemal proteins, radial spoke proteins are synthesized in the cell 

body and transported into the flagella by an intraflagellar transport (IFT). Qin et al., 2004 

demonstrated that the radial spoke proteins are largely preassembled as 12S precursor 

particles in the cell body. Anterograde IFT delivers the precursor to the flagellar tip 

where it is converted into the 20S mature radial spoke complex that is ultimately 

incorporated into microtubules. Moreover, the 20S radial spoke complex are 

disassembled from the axoneme and transported back to the cell body by retrograde IFT.  

 

1.7 Chlamydomonas Mutants with Defective Radial Spoke 

Chlamydomonas cells swim with a breast stroke-like beat. Mutagenesis studies have been 

conducted to select for strains displaying motilities that deviate from this typical 

movement, such as reduced beat frequencies, reduced bend amplitude, twitching and 

complete paralysis. Flagella from these mutants were found to be defective in dynein 

motors, central apparatus or radial spokes (Kamiya, 2002). Existing radial spoke mutants 

are summarized in Table 1-2.  

Studies on radial spoke mutants have revealed important information about radial 

spokes. The majority of mutants are defective in more than one radial spoke protein, 

suggesting that radial spokes and other axonemal complexes are assembled into a sub- 

complex and missing one molecule will result in the absence of the sub-complex. For  
 
example, in the two radial spoke head mutants pf1 and pf17 which are defective in the  
 
genes encoding RSP4 and RSP9 respectively, absence of one spoke head protein leads to 
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                        Table 1-2. Chlamydomonas radial spoke mutants. 
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the absence of the other four spoke head proteins, and cells are completely paralyzed 

(Huang et al., 1981). In the two conditional mutants, Pf25 and pf26ts which are defective 

in the genes encoding RPS11 and RSP6 respectively, their motility deficiencies are less 

severe. The cells are motile under certain conditions.  

The motility of pf26ts is affected by the temperature during flagella elongation. 

Shifting temperature afterwards does not affect motility (Huang et al., 1981). When cells 

generate flagella at the permissive temperature and are then shifted to the restrictive 

temperature, cells still exhibit WT motility. However, cells are paralyzed if flagella 

elongation occurs at the restrictive temperature. The flagella contain normal or reduced 

amounts of spoke head proteins, including mutated RSP6, that is slightly smaller and has 

a more basic isoelectric point (pI). This result suggests that at the restrictive temperature, 

the mutation in RSP6 causes a conformational change, interfering with the assembly of 

the radial spoke head.  

The motility of pf25 is sensitive to the culture conditions (Yang and Yang, 2006).  

The mutant is defective in RSP11 gene. The mutant axonemes lack RSP11 and have 

reduced amount of RSP8, an armadillo repeat protein. The mutant cells in the log phase 

culture appear WT-like but become entirely paralyzed in spent media. After being 

cultured in fresh media for 2 days, the culture is teeming with swimmers again. The 

reason for this dramatic swing in pf25 motility during the regular culture period is not 

known.  

The first aim of the dissertation is to understand the mechanisms underlying this 

reversible paralysis. Toward this goal, I investigated two Chlamydomonas mutants that 

also displayed this motility change. Surprisingly, both mutants were allelic with pf26ts, 
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but with rather different deficiencies in assembly and motility. The second aim is to use 

chemical cross-linking to reveal the molecular interactions in radial spokes that are 

critical for the oscillatory beating. Together, these findings revealed new insight in 

motility mechanism, assembly of axonemal complexes and the potential spectrum of cilia 

dyskinesia. 
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Chapter 2: Materials and Methods 
 
 
Chemical, medium, oligonucleotides, antibodies used in the study are summarized in 

tables at the end of this chapter. 

 

2.1 Cell Strains 
 
2.1.1 Chlamydomonas Strains and Culture Conditions 

Chlamydomonas reinhardtii WT strain cc124(-), cc620(+), cc621(-) and radial spoke 

mutant pf26ts were acquired from the Chlamydomonas Resource Center (Duke University, 

Durham, NC). Two novel radial spoke head mutants 1C12 and 45G7 were obtained from 

Dr. David R Mitchell at Upstate Medical University, Syracuse, NY. The 1C12 strain was 

recovered from screening for motility mutants following exposure to ultraviolet radiation. 

The 45G7 strain was identified from a screen of insertional mutagenesis using pMN24 

plasmid with the nitrogen reductase gene (NIT1) for metabolic selection (Mitchell and 

Sale, 1999). 

All cells were grown on Tris-Acetate-Phosphate (TAP) agar plates for 6-7 days. A 

loop of cells was inoculated into ~300 ml TAP or Sager’s liquid medium and cultured 

under aerated photoheterotrophic growth in 14/10 light/dark cycle (Harris, 2009).  

2.1.2 Strain Maintenance 

Chlamydomonas strains were maintained in TAP-agar stabs under light at room 

temperature. Bacterial stains were stored at -80°C in 50% glycerol (V/V).  

 

2.2 Molecular Biology and Genetics 
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2.2.1 Polymerase Chain Reaction (PCR)  

The 50-µl aliquot of PCR reaction mixture included 0.2 mM dNTPs, 10% DMSO, 0.2 

pmol/µl of each primer, DNA template (either ~0.1 ng/µl plasmids or 1-3 µl supernatant 

from boiled Chlamydomonas cells), 1.25 unit of pfu DNA polymerase and 1X pfu buffer. 

The cycling reactions were performed using a thermocycler (Minicycler, MJ research).  

The conditions, including 35 cycles between step 2-4 were as followed: step 1, 95°C for 3 

minutes; step 2, 95°C for 90 seconds; step 3, 55°C -68°C, depending on the annealing 

temperature of primers, for 90 seconds; step 4, 70°C for 3 minutes; step 5, 70°C for 10 

minutes; step 6, 4°C.   

2.2.2 Electrophoresis and Purification of DNA  

DNA samples with 1X loading buffer (0.04% bromphenol blue and 2.5% ficoll 400) were 

fractionated using 0.7-1% agarose gels made with 1X TAE buffer (0.04 M Tris base, 

0.1% acetic acid, 1 mM Na2EDTA, pH 8.5) and a trace amount of ethidium bromide. 

Electrophoresis in 1X TAE running buffer was carried out at 100 V. Hi Lo DNA marker 

(Bionexus) was included for the estimation of molecular weight and amount. DNA was 

visualized by a UV transilluminator (UVP). For cloning the DNA fragment of interest 

revealed by long-wavelength hand-held UV illuminator was excised from agarose gels 

and purified using a gel extraction kit as described by manufacture (Qiagen).   

2.2.3 Quantification of DNA 

DNA concentration was measured by the absorbance at 260 nm using a Nano Drop 

spectrophotometer (Thermo Scientific). 

2.2.4 Digestion of DNA with Restriction Enzymes 
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DNA was digested at a ratio of 2 µl restriction enzymes (5-20 units from New England 

Biolabs) per 1 µg DNA in respective buffers at 37°C for 2 hours. Enzymes were 

inactivated by incubating the mixture at 65°C for 20 minutes.  

2.2.5 DNA Ligation 

Plasmid DNA was digested with the appropriate restriction enzymes and then 

dephosphorylated by treatment with shrimp alkaline phosphatase (Prche Applied Science) 

for 1 hour at 37°C followed by heat inactivation. The linear plasmid DNA and band-

purified DNA inserts at a 1: 3 molar ratio were ligated with T4 DNA ligase (New 

England Biolabs) for 2 hours at room temperature. The ligation mixture was then used for 

transformation.  

2.2.6 Transformation of E.coli  

1 µl ligation mixture was added to 25 µl GC5 or GC10 competent cells (Gene Choice).  

After 30-minute incubation on ice, the mixture was heat shocked at 42°C for 45 seconds 

and returned to ice for additional 2 minutes. Following the addition of 1 ml LB medium 

and 1 hour recovery at 37°C, the mixture was evenly distributed to two LB agar plates 

containing appropriate selection antibiotics (50 µg/ml carbenicillin or 100 µg/ml 

kanamycin). For blue-white selection, a mixture containing 0.5 mg IPTG and 1 mg X-gal 

was spread on a LB plate first. The agar plates were then incubated at 37°C overnight and 

single colonies were transferred to new plates for screening.  

2.2.7 Slot Lysis Electrophoresis 

Slot lysis electrophoresis was performed to compare the size of plasmids in the 

transformants. Each bacterial colony was resuspended in 16 µl protoplasting buffer (30 

mM Tris-HCl pH 8, 20% sucrose, 5 mM EDTA, 50 mM NaCl, 50 µg/ml RNAase) and 
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the suspension was loaded into a lane containing 4 µl lysis buffer (89 mM Tris-HCl, pH 

8.0, 2.5 mM Na2EDTA, 89 mM boric acid, 0.04% bromphenol blue, 5% sucrose, 2% 

SDS) in 0.7% agarose gel containing 0.05% SDS. Electrophoresis was conducted at 20 V 

for 30 minutes and 120 V for 1 hour in 1X TAE buffer with 0.05% SDS. The gel was 

then stained with 0.5 µg/ml ethidium bromide. Plasmids containing the inserted fragment 

migrated slower than control plasmid without the cloned fragment. These candidate 

colonies were re-plated and inoculated into 5 ml LB medium with appropriate antibiotics 

and incubated overnight at 37°C. Plasmid DNA was isolated using a plasmid prep kit 

(Qiagen) and further analyzed by enzymatic digestion or PCR.    

2.2.8 Crude Chlamydomonas Genomic DNA Preparation 

A Chlamydomonas colony of approximately 5-10 µl was resuspended in 50 µl 10 mM 

EDTA and then incubated at 100°C for 5 minutes. The mixture was vortexed and 

centrifuged at 12,000 g for 1 minute. 1-3 µl of the supernatant was used in PCR reactions. 

2.2.9 Cloning of RSP6 Gene 

The DNA from BAC clones (Clemson University, Clemson, SC) was purified using 

Phase Prep BAC kit (Sigma-Aldrich) and digested with NotI restriction enzyme. A ~5.5 

kb fragment containing the RSP6 gene, the untranslational regions and additional ~1 kb 

flanking sequences was band-purified and cloned into pBluescript KS(+) vector 

(Stratagene). 

2.2.10 Constructions of His-tagged RSP6 Transgenes 

PCR and a three-piece ligation strategy were taken to insert 6His codons at the C-

terminus of RSP6 gene. First, PCR with the sense primer upstream of the NcoI site (#6S 

in Table 2-3) and anti-sense primer (#6A) with a built-in SpeI restriction site was 
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performed to generate a 2.7 kb fragment upstream to the stop codon (Figure 2-1, left 

column). The downstream fragment with 6His codons were generated by two consecutive 

PCR (Figure 2-1, middle column). In the first round PCR, a 1.4 kb fragment was 

amplified using sense primer (S#6) containing 4His codons and the stop codon as well as 

the adjacent 18 non-coding sequence and anti-sense primer downstream with a SphI 

convenient restriction site (A#7). The PCR product was used as the template in the 

second round PCR using a new primer (A#8) that included a SpeI restriction site and 2 

additional His codons. The final two 2.7 kb and 1.4 kb PCR products were cloned in 

PGEMT Easy and pBluescript vectors respectively. The N-terminal NcoI/SpeI fragment 

and the SpeI/SphI fragment were released to replace the NcoI-SphI fragments in RSP6 

gene to generate the construct expressing the C-terminus-tagged RSP6 (pRSP6-6His).  

To engineer the construct expressing 2Gly-6His tagged RSP6 ( pRSP6-2Gly-

6His), identical procedure was applied except that nucleotides encoding 2 glycines were 

added to the sense primer (A#9) for the second-round PCR of the SpeI-SphI fragment. 

To create a 3HA-18His tagged RSP6 construct (pRSP6-3HA-18His), a 3HA-

12His fragment was released by SpeI digest from a plasmid p3HA-12His in the lab and 

ligated into the SpeI site of the pRSP6-6His plasmid. 

2.2.11 Preparation of Autolysin 

Autolysin is a protease produced by mating gametes. It was used to remove the 

cell wall prior to transformation. To prepare the lytic enzyme, cc620(+) and cc621(-) of 

opposite mating types were grown on TAP plates for at least 5 days until cells became 

confluent. 25 ml TAP(-N) media was then added to each plate and cells were scraped off 

using sterile spatula and transferred to 50 ml conical tubes. After cell densities were  
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Figure 2-1. Three-piece cloning strategy for generation of 6His tagged RSP6 
genomic construct (pRSP6-6His).   
The fragment upstream to the stop codon (NcoI/ SpeI) was amplified by PCR with 
an anti-sense primer containing a built-in SpeI site (left column). The 3' end 
fragment (SpeI-SphI) was generated by two consecutive PCR using sense primers 
with His codons and a SpeI site (middle column). These two fragments were 
cloned into in PGEMT Easy and pBluescript vectors and released with NcoI/ SpeI 
and SpeI/SphI respectively. The band-purified fragments were ligated into the 
corresponding sites in the RSP6 gene (right column). The double-stranded ellipse 
depicted the RSP6 gene (black) in pBluescript. Red arrows represented primers.   
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determined using a hemocytomer, the cell resuspensions were centrifuged at 2200 rpm 

for 10 minutes with IEC clinical centrifuge. The pellets were resuspended in TAP(-N) to 

a final concentration of 1x108 cells/ml. The cell suspensions were placed in a sterile Petri 

dish on a shaker under light. After 3-4 hours, small amounts of the two mating-type 

cultures were mixed and the mating efficiency was assessed under light microscopy 

based on the numbers of quadriflagellates. If mating occurred effectively, equal cell 

numbers of opposite mating types were mixed and incubated under light for 1 hour until 

more than 80% cells were quadriflagellates. The mating mixture was then transferred to a 

50 ml conical tube and centrifuged at 2200 rpm for 15 minutes. Aliquots of the 

supernatant were stored at -80°C for future usage. 

2.2.12 Transformation of Chlamydomonas 

Cells were grown in ~300 ml liquid medium under 14/10 light/dark cycle for two days 

and under constant light for additional 24 hours. Cells were harvested with centrifugation 

at 1500 rpm for 5 minutes  and then treated with autolysin at 1X107 cells/ml for 1-2 hours 

until >50% of cells were lysed by 0.5% Nonidet-P40. Aliquots of ~0.3X108 cells were 

then pelleted in 15-ml conical tubes at 1000 rpm for 5 minutes and resuspended in TAP 

medium at 1X108 cells/ml. 1.5-3 µg of plasmid containing RSP6 gene (or plasmid 

containing His tagged RSP6 gene), 0.5-1 µg of pSI103, 100 µl of 20% PEG 8000 and 

300 mg of glass beads were added into the cell suspension. The mixture was vortexed at 

speed 8 (Mini-Vortexer, VWR) for 45 seconds followed by dilution with 10 ml TAP 

medium. The supernatant was decanted to a new tube was spun in a clinical centrifuge 

with speed 3 for 5 minutes. Cell pellets were gently resuspended in 5 ml TAP medium 

and shaken slowly under constant light. After 24 hours, cells were harvested, resuspended 
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in 500 µl TAP medium and plated on TAP plates with 10 µg/ml paromomycin. Plates 

were placed under constant light for 4 days when colonies became visible. For screening 

transformants, cells from single colonies were transferred to a fresh plate. Upon 

confluence in 3-4 days, a fraction of cells were resuspended in TAP medium in 96-well 

plates for motility analysis. The transformation rate is about 10-15%. 

 

2.3 Cell Biology 

2.3.1 Motility Analysis  

The percentage of swimming cells was determined by observing aliquots of the cell 

culture at 200X magnification with an Olympus BH-2 compound microscope. The light 

source was filtered through a 62-mm filter with a 625-nm cutoff (HOYA, Japan) to 

prevent light induced motility anomalies. At least 200 cells from more than 6 randomly 

selected fields were counted. Swimmers were defined as cells that actively translocated 

from the original spot. Immotile cells that were obviously stuck to glass surfaces were 

excluded. The number of swimmers divided by the total cells was the percentage of 

swimmers. As motile cells moved in and out of fields quickly, the number of swimmers 

was an estimate and thus standard deviations were not included in the percentage. To 

reveal swimming trajectories and determine velocity, time-lapse microscopy was 

performed at 200X magnification with the red filter. The images were captured with a 

CoolSnap CCD camera (Photometrics) at a rate of 20 frame/sec for 5 seconds (Yang and 

Yang, 2006). Individual cells were tracked by MetaMorph software and the mean 

velocity was derived from 20 swimmers tracked from at least 30 sequential images.  

2.3.2 Reactivation of Cell Model 
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Cells were gently spun down with an IEC clinical centrifuge at speed #3 for 1 minute. 

The cell pellet was resuspended in wash buffer (10 mM Hepes, 4% sucrose, 0.5 mM 

EGTA) to a final concentration of 3 X 106 cells/ml. Aliquots of 75 µl were removed and 

added to 500 µl of demembranation buffer (30 mM Hepes, 5 mM MgSO4, 1 mM 

dithiothreitol (DTT), 1 mM EGTA, 50 mM  potassium acetate, 1% PEG 8000, 0.1% 

Nonidet-P40). After 30-60 seconds, the cessation of motility was confirmed by light 

microscopy. To reactivate the motility, 500 µl of the reactivation buffer (30 mM Hepes, 5 

mM MgSO4, 1 mM DTT, 2 mM EGTA, 50 mM potassium acetate, 1% PEG 8000, 1 mM 

ATP) was added to the demembranated cells. The reactivated mixture was observed 

immediately under a light microscope and the motile cells were quantified.  

2.3.3 Electron Microscopy 

Axonemes were collected by centrifugation at 15,000 rpm for 20 minutes. The pellet was 

fixed with a primary fixative (1% tannic acid, 1% glutaraldehyde, 0.1 M cacodylate pH 

7.4) for 1 hour on ice. The supernatant was removed and the pellet was washed with 0.1 

M cacodylate buffer twice for 5 minutes each. The pellet was then fixed with a secondary 

fixative (1% osmium tetroxide, 0.1 M cacodylate pH 7.4) on ice for 1 hour and washed 

twice again with 0.1 M cacodylate buffer. Afterwards the pellet was dehydrated 

sequentially, 2 times 5 minutes /each with 50, 70, 80, 95 and 100% ethanol. The pellet 

was then infiltrated with a mixture containing 10 ml epoxy resin (5 ml EMBed-812, 2.25 

ml DDSA, 3 ml NMA and 0.18 ml DMP-30) and 1 ml propylene oxide for 24 hours at 

room temperature. Subsequently, the pellet was transferred to fresh epoxy resin in a mold 

for incubation at 60°C for 48 hours. The polymerized blocks were sectioned and 

processed and the images were taken as described (Yang et al., 2008). 
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2.4 Biochemistry 

2.4.1 Extraction and Fractionation of Axonemal Proteins 

Chlamydomonas cells were harvested by centrifugation at 1,500 g for 5 minutes using a 

TA10 rotor and Allegra'' 25R centrifuge (Beckman Coulter). Cell pellets were 

resuspended in 20 ml HMDS (10 mM Hepes, 5 mM MgSO4, 1 mM DTT, 4% sucrose). 

Cells were deflagellated with 50 mM dibucaine, at a ratio of 1 ml/L cell culture, followed 

by the addition of protease inhibitors, including 0.1 mM PMSF, 0.5 TIU/ml aprotinin, 

and 0.5 mM EGTA. Flagella and cell bodies were separated by centrifugation with the 

clinical centrifuge at speed #4 for 7 minutes. To remove the residual cell bodies, the 

supernatant was underlayed with 5 ml 20% sucrose and centrifuged at 1500 g for 7 

minutes. The supernatant at the upper layer was centrifuged at 12,000 g for 10 minutes 

using TA14 rotor and Allegra 25R centrifuge. The flagella were resuspended in Buffer A 

(10 mM Hepes, 5 mM MgSO4, 1 mM DTT, 0.5 mM EDTA, 30 mM NaCl, 0.1 mM 

PMSF and 0.5 TIU/ml aprotinin) and demembranated with 0.5% Nonidet-P40 for 20 

minutes. The axonemes were recovered by centrifugation at 12,000 g centrifugation for 

10 minutes. The pellet was resuspended in Buffer A and a small fraction was tested with 

Protein Assay Reagent (Bio-Rad) to determine the protein concentration. For SDS-PAGE, 

axonemes were resuspended in buffer A at 2-5 mg/ml.  

To extract radial spoke complexes, axonemes were resuspended in 0.6 M 

potassium iodide (KI) in buffer A at a protein concentration of 5 mg/ml for 30 minutes on 

ice. The mixture was centrifuged at 12,000 g for 10 minutes and the supernatant was 

dialyzed in buffer A for 30 minutes on ice and then clarified by centrifugation at 12,000g 

for 10 minutes. An aliquot of 0.7 ml supernatant was overlayed on an 11-ml 5-20% 
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continuous sucrose gradient.  Following velocity sedimentation at 36,000 rpm (SW41 

rotor, Beckman Coulter) for 10-16 hours at 4°C, fractions were collected using the Econo 

peristaltic pump (Bio-Rad). Aliquots of fractions were fixed with 5X sample buffer for 

SDS-PAGE.  

2.4.2 Chemical Cross-linking  

Axonemes, 2 mg/ml in buffer A, were incubated with crosslinkers with final 

concentrations 0.05-5 mM for 1 hour at room temperature. In the case of 

bis(maleimido)ethane (BMOE), the reaction was terminated by 20 mM DTT or L-

cysteine for 15 minutes. For the rest of the crosslinkers the reactions were terminated by 

20 mM Tris, pH 8. The cross-linked axonemes were mixed with 5X sample buffer for 

western analyses or further processed for Ni-NTA affinity purification.  

2.4.3 Ni-NTA Affinity Purification 

Axonemes treated with crosslinkers were harvested at 12,000 g centrifugation for 10 

minutes and then resuspended in 1 ml denaturing lysis buffer (8 M urea, 100 mM 

NaH2PO4, 10 mM Tris base, pH 8). The soluble fraction was incubated with 50-100 µl 

Ni-NTA (Qiagen) in a 1.5 ml purification column (Bio-Rad) for 1 hour at room 

temperature. The flow through was collected and the matrix was washed extensively with 

washing buffer (8 M urea, 100 mM NaH2PO4, 10 mM Tris base, 20 mM imidazole, pH 

6.3). The His-tagged proteins were eluted with 50 µl elution buffer (8 M urea, 100 mM 

NaH2PO4, 10 mM Tris base, 250 mM imidazole, pH 4.5) five times.  

2.4.4 SDS-PAGE  

SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) was performed using 1X running 

buffer (27 mM Tris base, 0.1% SDS, 170 mM glycine) as described by Laemmli (1970, 
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1973). Unless specified, 8 cm X 7 cm mini-gels were used to fractionate a 5 µl aliquot of 

molecular weight marker (Fermentas) and samples that were mixed with 5X 

electrophoresis sample buffer (10% SDS, 50% glycerol, 0.3 M Tris pH 6.8, 5% β-

mercaptoethanol, 0.05% bromophenol blue) and boiled at 100°C for 5 minutes. 

Electrophoresis with Protean III mini-gel apparatus (Bio-Rad) was carried out at 190 V, 

for 0.5-1.5 hours.  

2.4.5 Western Blotting  

After SDS-PAGE, the molecules were transferred to nitrocellulose membrane with 0.45 

µm pore size (Pall Corporation) using transfer buffer (0.38 M glycine, 50 mM Tris base, 

10% SDS, 20% methanol) at 100 V for 30-60 minutes in a mini-gel transfer apparatus 

(Bio-Rad). The membrane was then stained with Ponceau S solution (0.2% Ponceau S, 

3% trichloroacetic acid, 3% sulfosalicylic acid) for 2 minutes followed by destaining in 

double distilled water (ddH2O). Subsequently, the membrane was blocked with blotto, 

5% non-fat milk pH 7.4 in 1X TBS (0.14 M NaCl, 2.6 mM KCl, 25 mM Tris base) for 2 

hours at room temperature. The blot was then incubated with a primary antibody at room 

temperature or 37°C for 2 hours. The concentration of antibodies varied depending on the 

titer. The blot was washed three times with 1X TBS, 5 minutes each, followed by 

incubation with appropriate secondary antibodies (1: 5000 dilution in blotto), depending 

on the animals that generate the primary antibody. After incubation for 2 hours, the blot 

was washed again with 1X TBS as mentioned above. 

The protein bands decorated by antibodies were revealed by the enhanced 

chemiluminescence (ECL). The blot was immerged in the mixture of equal volume 

solution 1 (0.5 ml 1 M Tris base pH 8.8, 50 µl 44 mg/ml luminol, 22 µl 15 mg/ml p-
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coumaric acid, 4.4 ml H2O) and solution 2 (0.5 ml 1 M Tris base pH 8.8, 3 µl H2O2, 4.5 

ml H2O) for 1 minute and then exposed to autoradiography film (Denville scientific) for 

various durations and developed with an automatic film processor CP1000 (AGFA 

healthcare).  

2.4.6 Silver Staining 

To reveal all protein bands, the gels were fixed in 45% methanol and 7% acetic acid for 

30 minutes and rinsed in ddH2O three times, five minutes each. The gels were then 

sensitized for 3 minutes in 0.2 g/L sodium thiosulfate pentahydrate and rinsed again in 

ddH2O three times, 30 seconds each. The gels were then impregnated in 0.2 g/100ml 

silver nitrate for 1 hour followed by washing with ddH2O three times, 1 minute each. The 

gels were developed in 6% sodium carbonate, 0.018% formaldehyde and 4 mg/L sodium 

thiosulfate. When the adequate intensity of staining was achieved, the gels were 

transferred to a stop solution containing 45% methanol and 7% acetic acid for at least 10 

minutes.   

2.4.7 Two-dimensional Gel Electrophoresis 

SDS and β-mercaptoethanol were added to axoneme samples to final concentrations of 2 

and 1% respectively. After boiling for 5 minutes, 15 µl of the samples was mixed with 5 

µl 10% Nonidet-P40 and 30 µl first-dimensional sample buffer (9.5 M ultrapure urea, 8% 

Nonidet-P40, 0.8% ampholine pH 3.5-9.5, 5% β-mercaptoethanol) and loaded on top of 

the 14-mm tube gels from the mixture containing 0.5 ml acrylamide (28.3% acrylamide 

and 1.62% bisacrylamide), 0.75 ml 10% Nonidet-P40, 0.24 ml ampholine pH 3.5-9.5, 0.8 

ml H2O, 2.06 g ultrapure urea, 5 µl 12.5% ammonium persulfate and 3 µl TEMED. The 

tubes were inserted into a Protean II xi electrophoresis cell (Bio-Rad). After overlaying 
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the sample with buffer containing 5 M urea, 1% ampholine pH 3.5-9.5, the upper and 

lower chambers were filled with acidic running buffer (0.01 M H3PO4) and basic running 

buffer (0.02 M NaOH) respectively. Electrophoresis was run at 200 V for 2 hours, 500 V 

for 2 hours and 800 V for 16 hours. After isoelectric focusing, the tube gel was ejected 

into 2X SDS-PAGE sample buffer for at least 30 minutes. The acidic half of the tube gel 

was loaded into a 1.5-mm thick mini-gel for regular SDS-PAGE.   

2.4.8 Protein Concentration Determination 

A Bradford-based method was used to determine protein concentrations. To establish the 

standard curve, 0, 2, 4, 6, 8, 10 µl of 1 mg/ml bovine serum albumin (BSA) was added to 

1 ml 1:5 diluted Protein Assay Reagent (Bio-Rad). Unknown samples of 2 µl each was 

treated identically. The absorbance of each sample was measured at 595 nm using a 

spectrophotometer (Thermo Spectronic). The absorbance of BSA standards was plotted 

as a function of its concentration and the standard graph was used to determine the 

concentration of unknown samples.  
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Table 2-1: Chemicals used in this study. 
 

Vendor    Chemical 

Amresco    Yeast extract   
    Dithiothreitol (DTT)    
    Isopropyl-β-D-thio-galactoside (IPTG)   
Bio-Rad    Acrylamide 
Biolab Inc.    dNTPs   
Calbiochem    Nonidet-P40 
Celliance    Aprotinin   
EM Sciences    Osmium tetroxide  
            Propylene oxide  
    2,4,6-(Tri(Dimethylaminoethyl)phenol) (DMP30) 
    Dodecenyl succinic anhydride (DDSA) 
    Nadic methyl anhydride (NMA) 
    EMBed-812  
Invitrogen    Urea 
JT Baker    Methanol   
    Potassium hydrogen phosphate (K2HPO4)  
    Potassium dihydrogen phosphate (KH2PO4)   
    Tris base    
Fisher Scientific    Potassium iodide (KI)    
Mallinckrodt    Sucrose 
Midwest Sci.    Agarose     
    Tryptone   
MP Biomedicals    Paromomycin   
Shelton Scientific    Bromphenol blue   
Spectrum Chemical     
Mfg. Corp. 

 

   Dibucaine   
 

Stratagene    Pfu DNA polymerase 
TCI America 
 

   Luminol   
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Sigma    Acetic acid 
    Adenosine triphosphate (ATP) 
    Agar 
    Ammonium chloride (NH4Cl) 
    Ammonium heptamolybdate ((NH4) 6Mo7O24) 
    Ammonium Persulfate 
    Ammonium nitrate (NH4NO3) 
    Bisacrylamide 
    Boric acid (H3BO3) 
    Bovine serum albumin (BSA) 
    Calcium chloride dehydrate (CaCl2-2H2O) 
    Cobalt chloride hexahydreate (CoCl2-6H2O) 
    Coumaric acid 
    Cupric sulfate pentahydrate (CuSO4-5H2O) 
    L-Cysteine 
    Dimethyl sulfoxide (DMSO) 
    Ethidium bromide 
    Ethylenediaminetetraacetic Acid (EDTA) 
    Ethylene glycol tetraacetic acid (EGTA) 
    Ferric chloride hexadhydrate (FeCl3-6H2O) 
    Ferrous sulfate (FeSO4) 
    Ficoll 400 
    Formaldehyde 
    Glycerol 
    Glycine 
    Glutaraldehyde 
    4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes) 
    Hydrogen peroxide (H2O2) 
    Imidazole 
    β-mercaptoethanol (BME) 
    Manganese sulfate (MnSO4) 
    Manganese chloride (MnCl2) 
    Magnesium Sulfate Heptahydrate (MgSO4-7H2O) 
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    Magnesium Chloride Hexahydrate (MgCl2-6H2O) 
    Phenylmethanesulfonylfluoride (PMSF) 
    Phosphoric acid (H3PO4) 

    Polyethylene glycol (PEG 8000)  
    Ponceau S 
    Potassium acetate (KCH3COO) 
    Potassium chloride (KCl) 
    Ribonuclease  
    Sodium citrate (Na3C6H5O7·2H2O)  
    Sodium Dodecyl Sulfate (SDS)    
    Sodium chloride (NaCl) 
    Sodium hydroxide (NaOH)  
    Sodium acetate (NaCH3COO) 
    Silver nitrate (AgNO3) 
    Sodium carbonate (Na2CO3) 
    Sodium phosphate (NaH2PO4) 
    Sodium thiosulfate pentahydrate (Na2S2O3) 
    Sulfosalicylic acid 
    Tannic acid  
    Tetramethylethylenediamine (TEMED) 
    Trichloroacetic acid 
    Zinc sulfate heptahydrate (ZnSO4-7H2O) 
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Table 2-2: Composition of medium used in this study. 
 

Medium                                   Composition 
 

TAP medium 
(Tris-acetate-phosphate) 

20 mM Tris base, 0.6 mM K2HPO4, 0.4 mM KH2PO4, 7.5 mM 
NH4Cl, 0.34 mM CaCl2-2H2O, 0.41 mM MgSO4-7H2O, 76.5 µM 
ZnSO4-7H2O, 184 µM H3BO3, 25.6 µM MnCl2-4H2O, 6.8 µM 
CoCl2-6H2O, 6.3 µM CuSO4-5H2O, 17.9 µM FeSO4-7H2O, 6.2 µM 
(NH4)6Mo7O24,  pH 7 
For plates, 1.5% agar was added. 

TAP-N medium 
(Nitrogen-free TAP) Same recipe as TAP medium except NH4Cl was not added 

 
 
 

Sager medium 

 
1.7 mM Na citrate, 0.37 mM FeCl3-6H2O, 0.36 mM CaCl2-2H2O, 
0.08 mM MgSO4-7H2O, 0.34 mM MgCl2-6H2O, 0.9 mM K2HPO4, 
0.7 mM KH2PO4, 3.7 mM NH4NO3, 12 mM Na acetate, 16 µM 
H3BO3,  3.5 µM ZnSO4-7H2O, 2 µM MnSO4, 0.84 µM CoCl2-6H2O, 
0.25 µM CuSO4-5H2O, 0.82 µM (NH4)6Mo7O24     
   

  
  1% tryptone, 0.5% yeast extract, 1% NaCl,  pH 7.4 LB medium 
  For plates, 1.5% agar was added. 
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Table 2-3: Oligonucleotides used in this study. 

       Name                                                              Sequences 

          #1S                                                     CAGTCATTTCTGGACAGAATCGCTGC 

          #1A                                                    GTCAGGCAGGCTGCAGGTACGTGAG 

          #2S                                                     CTCACGTACCTGCAGCCTGCCTGAC 

          #2A                                                    CCTCGCACTCGAACTGGATTAAGCACG 

          #3S                                                     CGTGCTTAATCCAGTTCGAGTGCGAGG 

          #3A                                                    CCTCTAGCACCGCTGTAGGCCTAAGC 

          #4S                                                     CGAGCTGTCCGCCAACGACGAGTGG 

          #4A                                                    GCTCCTCAGCCTCAGCTAACCACACC 

          #5S                                                    CCAGCACTATAGGCATGTTCATGCACTGC 

         #5A                                                    GCAGCGATTCTGTCCAGAAATGACTG 

        NIT-S                                                  GCTTAGGCCTACAGCGGTGCTAGAGG 

        NIT-3'                                                 GTCAAAGCACCTGTGTACCTCGCGAG 

        NIT-5'                                                GCACCTGTACATGTACCCATTCACTG 

         #6A                                                   AGTAGCCTAGACTTCTAGACATCTTACCAGGC 

         #6S                                                    TAACTAGTCTCGTCCTCCTCCTCCGGC 

         #7A                                           CACCACCACCAC TAG GCAAGCCCAGGAGGGAAG 

         #7S                                           TACGGTATCCAGACGCAGGTCG 

         #8A                                          AACTAGTCACCACCACCACCACCACTAGGCAAGC   

 

        #9A                                                  AACTAGTGGCGGCCACCACCACCACCACCACTAGGCAAG

S: Sense primer; A: Anti-sense primer 
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Table 2-4: Antibodies used in this study. 

Antigen              Host Reference 

RSP1 Rabbit Yang et al., 2008 

RSP2 Rabbit Yang et al., 2001 

RSP3 Rabbit Yang et al., 2001 

RSP5 Rabbit Qin et al., 2004 

RSP6 Rabbit Yang et al., 2008 

RSP7 Rabbit Yang et al., 2006 

RSP8 Rabbit Yang et al., 2006 

RSP9 Rabbit Yang et al., 2006 

RSP10 Rabbit Yang et al., 2006 

RSP11 Rabbit Yang et al., 2006 

RSP12 Rabbit Yang et al., 2006 

RSP16 Rabbit Yang et al., 2005 

RSP23 Rabbit Yang et al., 2008 

IC140 Rabbit Yang and Sale, 1998 

HA Rabbit Covance Inc. 

Radial Spoke Chicken Yang et al., 2005 

His Rabbit Qiagen 

Secondary antibodies   

   Anti-chicken IgY-peroxidase            Rabbit Sigma 

Anti-rabbit IgG-peroxidase            Goat 
 

Sigma 
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Chapter 3: Chlamydomonas Mutants Display Reversible Deficiencies in       
Flagellar Beating and Axonemal Assembly 

 

 

3.1 Introduction 

The anomalies of most flagellar mutants are described and considered as irreversible and 

irreparable. The only way known to partially restore the motility of live mutant cells is 

through extragenic suppressor mutations (Huang et al., 1982) or direct mechanical 

stimulation (Hayashibe et al., 1997). Yet the phenotypes of a few Chlamydomonas 

mutant strains are not so cut-and-dried. The vegetative cells of the dynein arm mutant 

pf13 are paralyzed while the gametic ones are motile (Huang et al., 1979; Brokaw and 

Kamiya, 1987). Some strains with subtle biochemical and morphological deficiencies in 

radial spokes contain mixed populations of swimmers and paralyzed cells (Huang et al., 

1982; Frey et al., 1997; Gaillard et al., 2006; Yang and Yang, 2006). Notably, it was 

demonstrated that in pf25, which is defective in RSP11 and RSP8, the ratio of swimmers 

and paralyzed cells fluctuates according to the culture conditions. Cells in a log phase 

culture can appear WT-like but become entirely paralyzed in spent media. After being 

cultured in fresh media for 1-2 days, the culture is teeming with swimmers again. Thus, 

certain types of dyskinesia appear reversible. Biochemical differences are not evident in 

motile or immotile populations of pf13 or pf25 strains (Luck and Piperno, 1988; Yang 

and Yang, 2006). 

In vitro studies have shown that phosphorylation can modulate the motility level 

of axonemes. Inhibition of cAMP-dependent protein kinase (PKA) increases the 

reactivation rate of WT axonemes (Hasegawa et al., 1987). In the same fashion, a motile 
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mutant with two a. a. residues replaced in RSP3 has an equal ratio of swimmers and 

paralyzed cells. A similar ratio is found in the reactivated cell model while inhibition of  

PKA increases the motile fraction of cell models (Gaillard et al., 2006). However, 

inhibition of kinase activity cannot mobilize the paralyzed pf25 cells in the spent media 

(Yang and Yang, 2006), suggesting that distinct mechanisms influence the reversible 

paralysis of pf25 in vivo. 

 The cultures of two new mutants also contain cells displaying a range of motility 

defects. This study found that both strains displayed reversible paralysis and revealed the 

genetic defects and the cause underlying reversible paralysis.  

 

Results 

3.2 RSP6 is a Nonessential Paralogue in the Radial Spoke Head 

3.2.1 Discovery of Two Novel Radial Spoke Head Mutants 

Screening of ultraviolet radiation mutagenesis and insertional mutagenesis respectively 

recovered two strains, 1C12 and 45G7, with abnormal motility. The cells, when 

resuspended from agar plates into liquid medium, were largely paralyzed with few cells 

moving locally. To test if the severe motility deficiency was due to defective radial 

spokes or the central apparatus, mutants were crossed with the suppressor mutant sup-pf1 

defective in outer dynein arms by Dr. David R. Mitchell. The paralysis was rescued, 

suggesting that the strains were defective in radial spokes or central apparatus. 

3.2.2 Protein Deficiency in 1C12 Flagella  

To test if 1C12 was a radial spoke mutant, axonemes for western blots were harvested 

from the mutant and WT cells from aerated stationary phase liquid cultures. Curiously, 
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some mutant cells swam quite well. Among the radial spoke proteins tested, only RSP6 

was absent in 1C12 axonemes but other radial spoke proteins including spoke head 

proteins were present (Figure 3-1A). Although the spoke head proteins (RSP1, 9 and 10) 

and the spoke chaperone in the stalk (RSP16) of 1C12 were less abundant than those in 

the wild type (WT) control as shown in Figure 3-1A, the reduction in most preparations 

was not evident. This finding was unexpected because the only other spoke head mutants, 

pf1, defective in RSP4, and pf17, defective in RSP9, lacked all 5 proteins in the radial 

spoke head and were entirely paralyzed (Table 3-1). On the other hand, in the axonemes 

of the RSP6 temperature sensitive mutant pf26ts, spoke head components, including the 

mutated RSP6 were present. This reduction in spoke head amounts also occurred in pf26ts 

(Huang et al. 1981). 

The RSP4/6 molecules are much bigger than RSP9 and 10, two of the other three 

spoke head components. We reasoned that if the bulbous spoke head only consisted of 

the 5 molecules (Table 3-1) as postulated (Curry and Rosenbaum, 1993), morphological 

defects due to loss of RSP6 should be visible by electron microscopy (EM). To test this, 

axonemes of WT and 1C12 from liquid cultures were processed for EM. However, the 

bulbous spoke head did not appear smaller but seemed less defined in the cross section 

(Figure 3-1B). The presence of spoke head is consistent with the motile RSP6-minus cells, 

yet missing RSP6 did not result in deformed radial spokes. This could be due to the 

insufficient resolution of EM for radial spokes or that the bulbous spoke head actually 

consists of more than the 5 radial spoke proteins defined based on mutants (Curry and 

Rosenbaum, 1993). 
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Figure 3-1. Characterization of a new mutant strain 1C12.  
(A) Western analyses of axonemes revealed that radial spokes in 1C12 
axonemes lacked RSP6 only. Each protein was revealed by antibodies raised 
against individual molecules. Anti-RSP6 antibody cross-reacted with RSP4 and 
hence RSP4 band appeared weaker than RSP6. In this particular preparation, the 
spoke head proteins, RSP 1, 9 and 10 and the stalk chaperone HSP40 (RSP16) 
were less abundant in the 1C12 axonemes than those in the WT control. This 
difference was not evident in most preparations. (B) Cross section of WT and 
1C12 axonemes by EM. No obvious morphological defect can be found in any 
radial spoke in the 1C12 axoneme. The samples were prepared from the early 
stationary phase liquid culture. 
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Table 3-1. The molecules in the head module of Chlamydomonas radial 

            spoke and the available mutants. 
 

 

 

 

 

 

a. Yang et al., 2006. 
b. Piperno et al., 1981. 
c. Huang et al., 1981. 
d. Each box represents a MORN (MN) motif. 
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3.2.3 Genetic Defect of 1C12 

To test if the RSP6 gene was defective in 1C12, RSP6 genomic DNA was amplified by 

PCR from 1C12 cells. Sequencing of the amplified RSP6 gene fragments from 1C12 

showed that AC at #141-142 coding sequence in the first exon was replaced by T (Figure 

3-2A). The elimination of 1 bp caused a frame shift after the 47th a.a. and a premature 

termination after a.a. #58 (Figure 3-3). Considering that the entire molecule is 459 a.a. 

long and is highly similar to RSP4, the new polypeptide of only the first 47 a.a. is most 

likely nonfunctional.  

To test whether the motility and genetic defect of 1C12 was due to the mutated 

RSP6 gene, transformation rescue of 1C12 with WT RSP6 gene was carried out. To 

recover RSP6 genomic DNA, the DNA end sequences of BAC clones that were mapped 

to the region of the RSP6 gene in Chlamydomonas genome v.2.0 (http://genome.jgi-

psf.org/Chlre2/Chlre2.home.html) were first analyzed. From all of the clones that 

included the entire RSP6 gene, the shortest clone, #7P14, was chosen. A 5.5 kb fragment 

that included the untranslated regions and additional ~1 kb flanking sequence at 5' and 3' 

ends was subcloned into a pBluescript vector. The recombinant plasmid containing the 

RSP6 gene was co-transformed into mutant 1C12 cells with the plasmid pSI103 that 

confers paromomycin (PMM) resistance (Yang et al., 2008). Transformants were first 

grown on PMM agar plates to select colonies that contain the pSI103 plasmids. The 

PMM-resistant transformants were resuspended from agar plates into liquid medium for 

motility analysis. Among 126 colonies examined, 12 contained mostly motile cells, a 

10% rescue rate. In contrast, the parental 1C12 cells were paralyzed. The fact that most 

colonies contained paralyzed cells suggests most colonies only contained pSI103. 

  

http://genome.jgi-psf.org/Chlre2/Chlre2.home.html
http://genome.jgi-psf.org/Chlre2/Chlre2.home.html
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Figure 3-2. The deficiencies of 1C12 flagella were caused by mutations in 
the RSP6 gene.  
(A) A representative result revealed the mutation in 1C12. Sequence 
comparison of RSP6 genomic DNA amplified by WT and 1C12 revealed that 
there was a A to T single base pair replacement and a deletion in the following 
C in the first exon of RSP6 gene in 1C12. The nucleotides shown in the figure 
is from 136 bp to 147 bp. (B) Western analyses revealed that RSP6 was 
restored in two representative transformants (H4 and H5) to the WT level. The 
positive and negative controls were WT and 1C12 respectively. The protein 
loading control was dynein intermediate chain, IC140. 
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Figure 3-3. Summary of the mutations in the three RSP6 mutants. 
A single-nucleotide deletion in the first exon in 1C12 resulted in premature 
termination after 58 a.a. In the case of 45G7, insertion of nitrate reductase gene 
(NIT1) in the fifth intron resulted in deletion of three fifth of the 3' end. An 
additional G in the last exon in the pf26ts RSP6 gene caused frame shift of the 
C-terminus and a more basic RSP6 in pf26ts axoneme (Huang et al., 1981). The 
results were obtained by PCR of RSP6 genomic DNA, followed by cloning in 
some cases and sequencing. The mutations were confirmed by repeated PCR 
and sequencing. The black bars in (B) depict exons and the two gray bars 
represent 5' and 3' UTR respectively. The lines between black bars represent 
introns. 
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The rescue rate is about 10%. To confirm the presence of RSP6 in the rescued colonies, 

axonemes were prepared from two representative transformants (H4 and H5, Figure 3-

2B), 1C12, and WT control for western blot analysis. As expected, RSP6 amounts in the 

transformants' flagella were restored to WT levels. Therefore, 1C12 is a spoke head 

mutant defective in RSP6. H4 and H5 transformants were used as WT control (WT*) for 

motility analysis. Characterization of this mutant revealed that despite high sequence 

similarity, the functions of RSP4 and RSP6 differ: RSP4 is essential for assembly while 

RSP6 is not.  

3.2.4 Protein Deficiency in 45G7 Flagella  

Like 1C12, 45G7 axonemes also only lacked RSP6 in the spoke head. The rest of the 

radial spoke proteins, including spoke head proteins, were present but in reduced amounts 

in some preparations (Figure 3-4).  

3.2.5 Genetic Defect of 45G7 

45G7 strain was recovered from random insertional mutagenesis using the plasmid 

pMN24 with the nitrogen reductase gene (NIT1) for metabolic selection. To test if the 

absence of RSP6 was directly due to the disruption of the gene by the insertion of pMN24, 

the entire RSP6 gene was PCR-amplified (Figure 3-5A). All of the PCR products were 

obtained from the reactions using WT genomic DNA and 5 primer pairs (Figure 3-5B). In 

contrast, the PCR reactions using 45G7 genomic DNA generated the fragments only from 

the #1, #2 and #3 primer pairs. This suggested that pMN24 inserted either in the sense or 

antisense direction after the fifth exon. 

As 45G7 grew in nitrogen-minus media, the NIT-1 gene in pMN24 at the 

insertional site must be functional. To reveal the precise insertional site, PCR was carried 
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 Figure 3-4. Western analyses of axonemes showed that RSP6 was 
absent in 45G7.  
Axonemes were isolated from 45G7 and probed with antibodies against 
different radial spoke proteins. Controls were from WT and pf14 lacking 
radial spokes. Compared to WT control, RSP4 in 45G7 was not detected 
in this particular preparation. And the rest of the radial spoke head 
proteins RSP1, 9, and 10 in the 45G 7 axonemes were present but may be 
reduced in this blot.  
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Figure 3-5. Mapping the insertional site of pMN24 in 45G7. 
 (A) Diagram depicts primer pairs #1- #5 for PCR of RSP6 gene. The black bars 
represented exons and black lines between black bars represented introns. The 
two gray bars represent 5' and 3' UTR and black lines at the two ends represent 
flanking sequences. S, sense primers and A, antisense primers. (B) PCR revealed 
the insertional site of the selection plasmid at the C-terminus of RSP6 gene in 
45G7. 45G7 and WT genomic DNA were used as templates for PCR 
amplification with primer pairs #1- #5. Note PCR using #4 and #5 primer pairs 
and 45G7 genomic DNA failed to generate the expected fragments. 
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out using a sense primer in the fifth exon of the RSP6 gene (NIT-S) and primer on the 3' 

end (NIT-3') or 5' end (NIT-5') of the NIT1 gene using 45G7 genomic DNA as the 

template (Figure 3-6A). A 300-bp product was amplified from the reaction using the 

NIT-3' primer (Figure 3-6B), suggesting that NIT-1 and RSP6 genes were oriented in 

opposite orientations. Sequencing of this 300 bp fragment revealed the 3' end of NIT1 

gene on the fifth intron of the RSP6 gene (Figure 3-6C). The insertion at this position 

disrupted the RSP6 gene and likely resulted in the deletion of the downstream sequences 

(Figure 3-5B).   

An in-frame stop codon in the fifth intron upstream of the insertional site could 

terminate translation. The truncated protein, if expressed, is predicted to be 21 kDa with 

pI 4.44. Western blot analyses with anti-RSP6 failed to detect any truncated RSP6. 

Independently, 2-D gel electrophoresis was performed to compare axonemes from 45G7 

and WT. RSP11, which has a similar molecular weight (MW) and an isoelectric point (pI) 

with the predicted truncated RSP6, served as a marker. Protein staining of the 2-D gel did 

not reveal any new polypeptides around RSP11 in 45G7 axonemes (Figure 3-7), 

suggesting that truncated RSP6 was not present in 45G7 axonemes and cannot account 

for the assembly of the partial spoke head in motile 45G7 flagella (Figure 3-4). 

To test if a mutation in RSP6 gene resulted in the phenotype of 45G7, the mutant 

was transformed with WT RSP6 genomic DNA and the selection plasmid pSI103 that 

contains a paromomycin (PMM)-resistant cassette. The antibiotic-resistant colonies were  

resuspended in liquid medium and screened for motility. Among 136 colonies, the 

motility of 16 colonies was rescured to WT level. The rest colonies were still paralyzed. 

To test whether RSP6 was restored, axonemes were prepared from the three 
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Figure 3-6. The selective plasmid pMN24 was inserted into the fifth intron of 
RSP6 gene in 45G7.  
(A) Schematic diagrams depict two possible orientations of pMN24 in the RSP6 
gene, (I) 3'-5', (II) 5'-3' direction. Black bars on the triangles represented the 
selective gene NIT1. The two arrows in each diagram represent the primer pair 
used in PCR experiment. (B) PCR showed that the primers at 3' end of NIT-1 
generated a 300 bp product, indicating that the selection gene was inserted in 3'-5' 
direction (I). (C) Sequencing of the 300 bp PCR product confirmed the disruption 
of the RSP6 gene by the insertion of NIT1 gene in 45G7 strain. 
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Figure 3-7. Two-dimensional gel electrophoresis showed the profile 
of radial spoke proteins in 45G7.   
Axonemal proteins from WT (left) and 45G7 (right) were separated by 
two-dimensional gel electrophoresis according to pI and MW, and then 
revealed by silver staining. Radial spoke proteins (RSP1-7, 9-11) are 
numbered. If truncated RSP6 was present, it would have migrated near 
RSP11 (arrow). RSP6 was absent in 45G7 (empty arrowhead). “+” 
indicates the basic end and “-” indicates the acidic end. Horizontal bars 
indicate molecular markers of 130, 95, 72, 56, 26 kDa from top to 
bottom.  
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motile transformants (A11, B5 and C6) and 45G7. Axonemes of WT and pf14 served as 

positive and negative controls, respectively. Western blots showed that RSP6, absent in 

45G7 and pf14, was present in the three transformants at a level similar to that in WT 

(Figure 3-8).  

3.2.6 Characterization of pf26ts

To determine the genetic defect of the RSP6 temperature sensitive mutant pf26ts, the 

RSP6 gene in this mutant was PCR-amplified for sequencing. Sequencing of PCR 

products from two separate reactions revealed an additional G in the last exon of the 

RSP6 gene (Figure 3-9). The frame shift resulted in the replacement of the last 31 a.a. of 

pI 3.8 with 55 mis-sense residues of pI 11.8 (Figure 3-3), consistent with the more basic 

mutated RSP6. This suggested that the altered C-termini interfered with the conformation 

of the spoke head at the restrictive temperature. 

Examination of pf26ts from two laboratories showed distinct motility phenotypes. 

The cells from one strain were largely motile while cells from the other strain contained 

mixed population of swimmers and immotile cells. Neither exhibited temperature 

sensitive phenotypes. The changes of phenotypes were either due to different culture 

conditions or additional mutations accumulated during storage. This strain was not 

analyzed further. 

Taken together, characterization of the three strains showed that although RSP4 

and RSP6 are highly similar in sequence and length, only RSP4 is essential for the 

assembly of spoke head and motility whereas the requirement for RSP6 is not as absolute. 
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Figure 3-8. Transformation of the RSP6 gene restored RSP6 to the 
45G7 axonemes.  
Axonemes were prepared from three transformants, 45G7, pf14 and WT 
and probed for RSP6 and RSP16, which served as a positive control. 
Three different amounts of 45G7 axonemes were loaded. As shown by 
the arrow, anti-RSP6 sometimes recognized an unknown protein that was 
also present in radial spokeless mutant pf14. 
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Figure 3-9. Sequencing of the 3' end of RSP6 gene revealed 
the mutation in pf26ts.  
Sequencing of the 3' end PCR products revealed an additional G 
at the 3' end of RSP6 gene in the pf26ts mutant.  
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3.3 Duplicated RSP4/6 Genes are not Universal 

Chlamydomonas RSP4 and RSP6 are encoded by two duplicated genes tandemly aligned 

in linkage group V. They share 48% identical a.a. residues distributed throughout the 

molecules (Curry et al., 1992). Two copies of highly conserved RSP4/6 genes are also 

present in human and mouse (Eriksson et al., 2001; Castleman et al., 2009). As the 

significance of the two duplicated genes appeared different, we questioned if duplicated 

RSP4/6 is universal after all. To test this, the BLASP program at National Center for 

Biotechnology Information (NCBI) was used to conduct a search using the essential 

Chlamydomonas RSP4 as a query. Although only the genomes of selected organisms 

were analyzed, it is evident that mammals (Figure 3-10, brackets) and many protists 

harbor two or more copies. The branches of phylogeny trees and multiple sequence 

alignment showed that the two genes from Chlamydomonas (arrowheads) were much 

more similar to each other than to any one of the human orthologues. Crucially, only one 

RSP4/6 gene was found in the other branches of eukaryotes, including zebrafish, beetle, 

Drosophila and sea urchin. As the Drosophila genome is sequenced, it is clear that the 

duplicated RSP4/6 gene is not universal and not essential. Consistently, only a single 

RSP4/6 protein is present in the purified Ciona radial spoke complex (Satouh et al., 2005). 

Thus the ancestral eukaryote likely only had a single RSP4/6 gene. It is possible that two 

identical proteins are assembled into the spoke head. For the organisms that contain the 

duplicated RSP4/6 gene, one copy may have diverged resulting in a slightly different 

function. 
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Figure 3-10. Phylogeny tree revealed that two duplicated genes for RSP4 
and RSP6 are not present in every organism with motile cilia and flagella.  
For example, Drosophila melanogaster (arrow) only contains one RSP4/6 gene, 
while the two RSP4/6 orthologous genes in mammals form two distinct sub-trees 
(brackets). Notably, Chlamydomonas RSP4 and RSP6 (arrowheads) are most 
homologous to each other rather than to either of the mammalian sub-trees. For 
clarity, redundant sequences were deleted and scientific names for organisms 
were replaced by common names. 
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3.4 The Motility of RSP6 Mutants is Overtly Sensitive to Culture Conditions  

Liquid cultures for axoneme preparation and EM were usually harvested from early 

stationary phase with a density of ~2 X 107 cells/ml 4 days after inoculation from agar 

plates. A small number of RSP6-minus cells swam. Strikingly, the culture harvested two 

days earlier for transformation appeared almost like WT culture. We postulated that the 

motility of the RSP6-minus cells was overtly sensitive to the culture condition, like pf25, 

which is deficient in RSP11 and RSP8 (Yang and Yang, 2006). To test this, 1C12 cells 

were inoculated from the 7-day old algal plate stock to liquid medium and the motility 

(Figure 3-11A) and cell density (Figure 3-11B) were measured for 4 consecutive days 

(D1-D4). The rescued 1C12 transformants served as a control (WT*). As predicted, 1C12 

cells generated full-length flagella within 1 hour after resuspension but the cells were 

paralyzed (D0, Figure 3-11A). Occasionally, several cells jiggled or moved locally. The 

motility level did not change significantly within the same day. The percentage of 

swimmers gradually increased in the next two days during early log phase as shown by 

the cell density plot (D1 and D2, Figure 3-11B) and then declined as the culture 

approached or reached the stationary phase (D3 and D4). Although the absolute 

percentages and density plots varied in each preparation, all exhibited a similar bell-shape 

curve in motility changes. Replacing exhausted medium with fresh medium reduced the 

deterioration level in the next day, similar to the result using pf 25 cells (Yang and Yang, 

2006), suggesting that the motility of 1C12 cells was sensitive to media conditions. In 

contrast, flagellated WT* cells were always motile.   

To clarify if the mixed populations of distinct motility were due to additional 

mutations, the 1C12 cell cultures was placed under light for 1 hour to separate  
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Figure 3-11. The changing motility phenotypes of 1C12 cells. 
(A) Representative histogram demonstrating changes in the percentage of 
swimmers during 5 consecutive days of the liquid culture of 1C12 (open 
bars) and rescued 1C12 control (WT*, gray bars). Freshly resuspended 
1C12 cells from agar plates (Day 0) were paralyzed. Motility improved 
during the early log phase and then declined as the culture reached the 
stationary phase. The percentages of 1C12 swimmers during the culture 
period were lower than WT swimmers (p<0.05, student’s t test). (B) A 
representative plot of cell densities of WT* (triangle) and 1C12 cells 
(square). The density at the inoculation date was too low to determine. At 
the fourth day, the culture reached stationary phase. Each data point was 
the average from four measurements. 
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motile and immotile cells. The top fraction that was enriched with motile cells and the 

bottom fraction that contained more paralyzed cells were separated and replated on agar 

plates. The suspension of single colonies from both fractions still exhibited similar bell-

shape curves in motility changes, similar to the result using pf25 cells (Yang and Yang, 

2006) . Thus, the mixed motility was an inherent phenotype caused by the absence of 

RSP6 molecule in the radial spoke. 

The velocity of motile 1C12 cells that can translocate significantly in a lateral 

direction was measured as well using the MetaMorph software. Surprisingly, the velocity 

was only slightly slower than WT* cells (Figure 3-12). Moreover, the velocity of both 

1C12 and WT swimmers did not fluctuate dramatically over the three days. Therefore, 

absence of RSP6 did not significantly affect the velocity of motile 1C12 cells.  

Interestingly, the motility level of 1C12 cells was sensitive to temperature. The 

motility of pf26ts was determined by the temperature at which flagellar assembly occurred. 

Shifting temperature afterwards did not affect motility (Huang et al., 1981). In contrast, 

the 1C12 swimmers with motile flagella generated at room temperature (~24°C) became 

completely paralyzed within 1 hour at 32°C (Table 3-2). The motile fraction decreased at 

28°C as well. Paralysis did not recover on the same day after the temperature returned to  

24°C. Thus, although RSP6 is not essential, the RSP6-minus cells easily become 

paralyzed at higher temperature or in spent media. 

 

3.5 Motile RSP6 Mutant Cells Cannot Maintain a Helical Trajectory 

As 1C12 swimmers at the permissive temperature and in the early log phase appeared 

almost like WT* control, video microscopy and image analyses were performed to 
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Figure 3-12. 1C12 swimmers were only slightly slower 
than WT cells. 
 The velocity of 1C12 (open bars) and WT* (gray bars) was 
measured on three consecutive days. The swimming velocity 
of 1C12 cells was slower than WT cells on the three days 
(p<0.05, student’s t test). Each data point was obtained from 
the average of 20-30 individual cells. 

 

 

 

 

 

 

 

 

 

 

 

 

  



                                                                                                                                                         
  

66

 

         Table 3-2. Temperature-sensitive paralysis of 1C12 swimmers.  

 

 

 

 

 
The percentage of swimmers showed temperature-sensitive paralysis of RSP6-
minus cells. 1C12 swimmers, either from the log-phase or stationary-phase 
culture, became completely paralyzed within 1 hour after transferring to the water 
bath at 32°C. The motile fraction was greatly reduced at 28°C as well. Each 
number was obtained from the average of six randomly chosen fields. 
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analyze their movement. Both WT rescue (WT*) and 1C12 were very light sensitive, 

turning toward the illumination source and thus sticking to the glass slide or cover slip. 

To prevent the light-induced movement, a 625 nm-cutoff filter was inserted in the optic 

path to remove short wavelength stimulating light and the image was recorded by a light-

sensitive CCD camera. As shown by the tracked motion, most WT* cells maintained 

helical trajectories fairly well under the filtered illumination (Figure 3-13, left panel). 

Contrarily, except the few cells that move locally, the 1C12 processive swimmers in the 

log phase actually changed direction frequently, failing to maintain helical trajectories 

(right panel). Consistently, the velocity was only slightly slower (compare the length of 

the tracks). The light sensitivity of WT* and 1C12 precluded the possibility of waveform 

analysis as high-speed video-microscopy requires bright light to compensate short 

exposure durations (Yang et al., 2008). 

 

3.6 The Axonemal Defect of 1C12 Cells is Exacerbated in Spent Media   

To further assess motility, in vitro reactivation of cell models was conducted. WT* and 

1C12 cells from the early log-phase (day 2, D2) and early stationary-phase (day 4, D4) 

culture were first permeabilized with a detergent. Cells became completely paralyzed 

after the removal of flagellar membrane and intraflagellar fractions. The cell models were 

reactivated with 0.5 mM MgATP. Without flagellar membrane and intraflagellar 

fractions, the axonemal structure can be directly assessed in this experiment. For the day 

2 culture, the percentages of motile reactivated cells for mutant and WT* control 

prepared from the log-phase culture were similar, although the mutant group evidently 

contained more spinners (Figure 3-14). Interestingly, although 1C12 cells were all  
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 Figure 3-13. 1C12 cells failed to maintain helical trajectories.  
Many WT* cells display helical trajectory. In contrast, the 1C12 
swimmers from log-phase culture changed directions frequently 
without a discernable trajectory. Yet the distance that processive 
1C12 swimmers transversed was not significantly different from that 
of WT* cells. 
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Figure 3-14. The effect of media on the motility of WT and 1C12 
mutant cells. 
Motile fractions of live cells and reactivated cell with a buffer containing 
detergent and 0.5-mM ATP were determined for the log phase and 
stationary phase cultures. The reactivated motile cells were further 
classified into swimmers that transverse processively and spinners that 
rotated around a fixed spot. Spinners were more prominent in 1C12 cell 
model and in older cultures of WT*. Notably, despite complete paralysis in 
early stationary phase, a fraction of reactivated 1C12 cell models still can 
spin. Each data point was the average from four measurements.  
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paralyzed at D4, 20% of the cell models were motile, albeit spinning only. The motile 

fraction of reactivated WT* cell model from the log phase was slightly lower but the ratio 

of spinners increased significantly. Thus, RSP6-minus cells have a higher propensity to 

spin while their axonemes in paralyzed cells could enable cell models to swim but could 

not allow live cells to move at all. Furthermore, there were more spinners of WT cells at 

stationary phase than those in log-phase, suggesting that spent media also reduced the 

reactivation level of WT* axonemes albeit less prominently as 1C12 axonemes.  

This in vitro reactivation system was also used to test if the reversible paralysis is 

caused by phosphorylation. Previous research shows that PKA inhibitors (PKI) enhance 

the dynein-driven sliding velocity and increased the motile permeabilized cells upon 

reactivation (Hasegawa et al., 1987; Gaillard et al., 2006). However, the percentage of 

reactive 1C12 cells was similar between the group with or without PKI (Figure 3-15). 

Thus, the paralysis of 1C12 cells in spent media appeared unrelated to mis-regulated 

PKA activity.  

 

3.7 Drastic Reduction of Spoke Heads in Flagella from Spent Media Cultures 

To test whether the paralysis of RSP6-minus spoke heads was due to an exacerbated 

assembly defect of the spoke head, spokes were extracted from axonemes with 0.6 M KI 

buffer and separated by velocity sedimentation through a 5-20% sucrose gradient. Since a 

major fraction of WT radial spokes precipitated following a routine 16-hour 

centrifugation (Yang et al., 2005), a shorter centrifugation period was tested. As expected, 

the peaks of radial spokes sedimented in fractions #5 and #7 respectively following a 12- 

or 10-hour centrifugation (Fig. 3-16). The 12-hour centrifugation period was chosen for  
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Figure 3-15. The effect of PKI on the reactivated cell model. 
Paralyzed 1C12 cells at the stationary phase were demembranated 
and then reactivated in the presence of 0.5 mM ATP or ATP+PKI 
of indicated concentrations. Each data point was the average from 
four measurements.
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Figure 3-16. The duration of centrifugation significantly influenced the 
sedimentation profile of the radial spoke particles.  
Western blots of sucrose gradient fractions (1-21, bottom to top) of KI 
extracts from WT axonemes following centrifugation for 16, 12, or 10 hours 
were probed with the antibody raised against the isolated radial spoke 
complex. The radial spoke peak (arrowhead) sedimented deeper into the 
gradient after longer centrifugation. Note that this polyclonal antibody 
recognized multiple large radial spoke proteins including RSP1, RSP2, and 
RSP23 that migrated at similar positions in SDS-PAGE.  
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the presence of the entire radial spoke peak in the gradient and a better separation among 

peaks.        

To prepare a large quantity of flagella for sucrose gradient, the cells were 

harvested from 8-liter stationary phase cultures after 6 days in liquid culture. The cells 

were entirely paralyzed. The fractions were probed for RSP1, 4, 6 in the spoke head and  

RSP3 in the stalk as a control. As anticipated, all four radial spoke proteins in the rescued 

1C12 (WT*) gradient sedimented as 20S particles with the peak in fraction #7 (Figure 3-

17A). Surprisingly, RSP4 and RSP1 were barely detectable in the gradient of the mutant 

(upper panel, compare with WT* #7 fraction). Furthermore, the major fraction of the 

residual RSP1 and RSP4 sedimented near the top of the gradient (fraction #19), indicative 

of dissociation. On the contrary, the stalk protein RSP3 was not reduced and sedimented 

as a slightly smaller particle (compare two arrowheads in the two gradients). Thus, RSP6-

minus spoke heads in such preparations decreased drastically and were unstable. 

We reasoned that the diminished spoke head content was an extended scenario of 

the reduced spoke head that was observed occasionally from the 4-day-old small liquid 

culture (Figure 3-1A) at the stationary phase and the deficiency revealed by western blots 

might be more prominent and reproducible if axonemes were prepared from older 

cultures. To test this, axonemes were prepared one day later, from the late stationary 

phase (Day 5) liquid culture, and from 7-day old agar plates (the stock that were usually 

used for inoculation of liquid cultures). The cells from both preparations were entirely 

paralyzed. The controls were the early log-phase 1C12 liquid culture with about 80% 

swimmers and WT* cultures. RSP3, a stalk protein, provided a loading control. The  

spoke contents in WT* axonemes prepared from the three types of cultures were not 
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Figure 3-17. Western blots showed drastic reduction of radial spoke 
head domain in flagella of mutant cells grown in spent medium.  
(A) Radial spoke extracted from WT* axonemes, as shown by the bands of 
RSP1, 3, 4 and 6 sedimented around fraction 7 as 20S intact particles 
(arrowhead) in the sucrose gradient. Compared to fraction 7, RSP1 and 4 
from the 1C12 gradient were drastically reduced. Furthermore, a major 
fraction of these two proteins sedimented near the top of the gradient, 
indicative of dissociation. In contrast, stalk proteins in 1C12, represented by 
RSP3, were not reduced and sedimented as a slightly smaller particle 
(compare the two arrowheads). (B) The spoke head proteins were drastically 
reduced in the axonemes from 1C12 harvested from 7-d old agar plates (AP) 
and late stationary phase liquid culture (LS, Day 5). All cells were entirely 
paralyzed. However, these proteins from the early log phase (EL) with many 
swimmers were comparable with WT* samples that were not notably 
affected by the media conditions. (C) Temperature-induced paralysis was not 
caused by drastic dissociation of radial spoke heads. 1C12 axonemes were 
prepared from the log-phase culture, either maintained at 24°C or shifted to 
32°C for 1 hour. 
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obviously affected. In contrast, as predicted, the amount of head proteins RSP1 and RSP4 

were barely detectable in mutant axonemes prepared either from agar plates (AP, Figure 

3-17B) or the late stationary phase culture (LS), but appeared normal in the early log 

phase culture (EL) with an abundance of swimmers. Thus the motility as well as the 

spoke head assembly of RSP6 mutants was much more sensitive to media conditions than 

was WT. 

To test if the paralysis at the restrictive temperature was also due to dissociation 

of the spoke head, we compared axonemes prepared from duplicated early log-phase 

1C12 cultures, one maintained at 24°C and the other placed at 32°C for 1 hour in which 

cells were entirely paralyzed. Western blots showed that spoke head amounts, 

represented by RSP1, were similar (Figure 3-17C), indicating that the temperature-

induced paralysis was not due to a drastic dissociation of the RSP6-minus spoke head. 

 

Collectively, these results showed that RSP6, unlike its paralogue RSP4, is nonessential 

for the assembly of the spoke head or motility. However, it promotes the assembly of the 

spoke head when the media become exhausted and enables the swimmers to maintain the 

typical helical trajectory. The irregular trajectory of RSP6-minus cells strongly suggests 

frequent asynchrony of these cells is due to a dysfunctional RSP6-minus spoke head 

module that can not interact with the central apparatus consistently during oscillatory 

beating.  
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Chapter 4: Molecular Interactions of Radial Spoke Head Proteins 

 

4.1 Introduction 

Recent studies strongly support the hypothesis that the transient engagement between the 

radial spokes and central apparatus coordinate the sequential activation of subsets of 

dynein motors distributed throughout the axonemes (Yang et al., 2008). Lacking the 

entire spoke head abolishes the direct interactions leading to paralyzed flagella. Yet 

missing only RSP6 in the radial spoke results in irregular trajectories. To elucidate the 

underlying defective machinery and thus the normal transient interaction, it will require 

the identification of the molecules that are directly involved in the engagement and the 

topography of the interacting moieties. The molecules involved in the interaction will be 

critical for oscillatory beating and human candidate genes of primary ciliary dyskinesia. 

Toward this goal, we tested the approach of chemical cross-linking to identify 

candidate proteins involved in the interaction. The results show the limitations of this 

approach and a new chemical crosslinker that is suitable for the study of axonemal 

complexes.  

 
Results 

4.2 C-terminal Tagged RSP6 Successfully Rescued the Defect in 1C12  

To improve the detection of cross-linked products in the spoke head region, the strategy 

was to express 3HA-6His tagged RSP6. In theory, the His tag will allow Ni-NTA 

enrichment of the cross-linked products that are often of low abundance. Secondly, the 

3HA tag, with 3 epitopes for the high affinitive HA antibody could help to detect cross-

linked products if the cross-linking abolishes the antibody epitopes. The potential 
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downside is that the tag sequence, if positioned inappropriately, may interfere with the 

translational machinery or the assembly of the tagged protein.  

The tag sequence was first added to the N-terminus of RSP6 since the C-terminus 

is more conserved among the orthologues than the N-terminus. In addition, the human 

RSP6 orthologue contains an additional 45 a.a. at the N-terminus, suggesting that a N-

terminal tag to Chlamydomonas RSP6 will be tolerated (Figure 1-2). Lastly, the 

temperature sensitive mutant pf26ts has a mutation at the C-terminus leading to an 

additional 23 a.a. at the C-terminus (Figure 3-3) and motility defects at the restrictive 

temperature.  

The coding sequence for 3HA-6His tag was amplified by PCR and inserted into 

the NcoI site at the start codon of the RSP6 genomic construct (Figure 4-1A). The 

plasmid containing the 3HA-6His tagged RSP6 gene was confirmed by restriction digest 

and sequencing. The plasmid was transformed into 1C12 along with the selection plasmid 

pSI103. PMM-resistant transformants were then resuspended into liquid medium for 

motility analysis. Among 200 colonies from three transformations, none exhibited a 

higher percentage of motile cells than the parental 1C12 strain, contrary to the expected 

10-20 clones.  

To differentiate if the tag interferes with the production or assembly of RSP6, 

PCR was performed first to identify the transformants harboring the tagged RSP6 gene. 

In theory, two PCR products will be obtained from transformants receiving the tagged 

RSP6 gene, one from the endogenous gene and one from the tagged RSP6 gene, 

respectively. Among 40 transformants tested, 28 transformants incorporated tagged RSP6  

gene into the genomes. However, western blots did not reveal any tagged RSP6 in these 
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Figure 4-1. C-terminal tagged RSP6 was restored to 1C12 axoneme.  
(A) The strategies for tagging RSP6 genes. The black bars represent exons and the 
two gray bars represent 5' and 3' UTR respectively. The lines between black bars 
represent introns. (B) Western analyses of axonemes prepared from motile 1C12 
transformants rescued by the three different C-terminal tagged RSP6 genes. Note 
the tagged RSP6 was present in the three groups of transformants. Anti-RSP6 
cross-reacted with RSP4 with identical sizes in all strains (upper panel). However, 
the three different tagged RSP6 molecules were larger than WT RSP6. The tagged 
RSP6 molecules were confirmed by anti-His western blot (bottom panel). The 
smaller bands (asterisk) were likely generated from an in-frame ATG downstream 
to the start codon.  
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transformants regardless of axonemes or cell bodies. Thus, the addition of a tag sequence 

at the very N-terminus of RSP6 gene likely interfered with the translation of the tagged 

RSP6 gene. This tag sequence may not be suitable for N-terminal tagging. 

We then generated three RSP6 genes tagged at the C-terminus. The first one 

expressed RSP6-6His. In case the positively charged tag interferes with the assembly of 

the acidic RSP6, the second construct expressed an additional two glycine (Gly) residues 

preceding the 6His tag. The additional small neutral amino acids were predicted to 

position the positive tag farther away from RSP6 molecule. The third plasmid contained a 

3HA-18His tag sequence. The long tag may improve the sensitivity of western blots and 

Ni-NTA affinity purification. 

           The three tagged RSP6 constructs were individually co-transformed with the 

selection plasmid pSI103 into the 1C12 strain respectively. The PMM-resistant clones 

were screened for motility first. Interestingly, many clones from all of the three groups 

exhibited ~100% swimmers like WT strains (Table 4-1). Thus, the C-terminus is suitable 

for tagging.  

           To show that the tagged RSP6 was restored, axonemes were prepared from two 

representative transformants from each group and an untagged WT strain. Western blots 

probed with anti-RSP6 and anti-His showed that the tagged RSP6 was present in all 

tested transformants (Figure 4-1B). As expected, RSP6-6His was larger than untagged 

RSP6 (Figure 4-1B, upper panel). The additional two glycines did not increase the 

protein size significantly, whereas RSP6-3HA-18His appeared much larger, co-migrating 

with RSP4.  

          Anti-His also revealed a weak smaller band in all transformants, but not the WT 
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Table 4-1: Transformation of 1C12 cells with RSP6 gene carrying one of the three 
tags at the C-terminus.    
 
 
 6His 2Gly-6His 3HA-18His 

Total Clones 145 70 130 

*Rescued Clones 12 13 9 

Rescue rate 8% 18% 7% 
 
*, the clones containing ~ 100% motile cells were designated as rescued clones. 
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(Figure 4-1B, lower panel). The one from 3HA-18His clones was larger than those 

 from the other two groups. Based on the size of these second products, they were likely 

generated from an alternate in-frame ATG encoding M128 residue. These smaller bands 

were not recognized by anti-RSP6. Thus the epitope of anti-RSP6 that did not detect any 

N-terminal truncated RSP6 in 45G7 and 1C12 axonemes was near the N-terminus. This 

finding supported the prediction that the axonemes in these RSP6 mutants do not contain 

truncated RSP6 polypeptides (Chapter 3).  

 

4.3 BMOE Successfully Cross-linked RSP6 to Axonemal Proteins 

The strain containing RSP6-3HA-18His was chosen for cross-linking because using this 

strain, the cross-linked complexes can be detected by anti-HA. Several crosslinkers with 

different arm lengths and reactive groups were tested (Table 4-2). In general, the cross-

linking from the long-arm crosslinkers (e.g., EGS, DTSSP) is less selective than those 

with a short space arm (e.g., EDC, DFDNB) that were often used in cross-linking studies 

of axonemes. However, the long-arm crosslinker may cross-link RSP6 to central pair 

proteins. BMOE that only reacts with the sulfhydryl group in cysteine could be useful for 

RSP6 that contains 7 cysteine residues (Figure 4-2). Moreover, products cross-linked 

with reversible crosslinkers (DTSSP and EGS) could be cleaved, allowing the separation 

of individual cross-linked proteins.  

Axonemes containing RSP6-3HA-18His were treated with each crosslinker of 

increasing concentrations. Cross-linking was assessed by western analyses probed for 

RSP6, His or HA. Six crosslinkers (Table 4-2) did not generate distinct cross-linked 

RSP6 bands in SDS-PAGE at the concentrations examined. Two examples were shown  
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Table 4-2. Crosslinkers used in the study. 
 

Crosslinker Arm length       Reactive  groups Cleavable 

0        -NH2, -COOH        - EDC 

0.3 nm          -NH2, -NH2        - DFDNB 

1.2 nm          -NH2, -NH2        + DTSSP 

           1.1 nm          -NH2, -NH2        - DSS 

0.9 nm          -NH2, -SH        - MBS 

       + EGS 1.6 nm           -NH2, -NH2

       - *BMOE 0.8 nm           -SH, -SH 
 
*, the only crosslinker that cross-linked RSP6 into resolvable products in SDS-PAGE.   
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MAADVGQALAFLQQVKTTQGASIYEGLKAALAKVLED
RPVNAVEALETSVLSTPPAANLSVPLVPAASAAAAAA
AVAKASLFGDPEPVLDPESGEPIDPDAPNEFECEDVE
GDGDLLDGLGVGLGRQEMYAAMLAVKRLGEDAKRGVS
TVRFFGKFFGTQADYYVFETTLQSNPDMPEAPEGTIP
LEPYGEGVNAYIYFVSNTLGGPLQQLPYVTPEQIKAS
RLLRRYLTGRLDAPVSAFPAFPGNEANYLRALIARIS
AATVCCPRGFFTADDDSAELSANDEWVPLKGREMALP
VNWSHRYAHLKGQGRTVTHKRDPPDEEEEPEKNFWTA
EEMEAGPPPLATLDTDAPLPAATGDKVPPPAWSPVFA
SASVTTRNQVAGVRSNRWPGAVCACAGRHFTSMYVGW
GIKAGGEWSPCPPPPPVPQWGAPAAGVEGGQQLLLEC
NDLPPKPAPPEEEDE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-2. Amino acid sequence of Chlamydomonas RSP6.  
The seven cysteine (C) residues are highlighted in red. 
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 Figure 4-3. Western blots revealed distinct tagged RSP6 
oligomers cross-linked by BMOE.  
Axonemes from RSP6-3HA-18His strain were incubated with 
crosslinkers including DFDNB (A), DTSSP (B) or BMOE (C) with 
increasing concentrations. The blots of cross-linked axonemes were 
probed for -HA. Note, BMOE cross-linked RSP6 into 5 products of 
distinct sizes, “#1-#5” while the other two did not generate 
discernable products in the SDS-PAGE. The molecular weights 
were indicated on the right of the C panel. 
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in Figure 4-3A and B. As the concentrations of DFDNB and DTSSP were increased, the 

intensity of RSP6 band, revealed by anti-HA, decreased while no larger bands emerged. 

The absence of resolvable cross-linked product from these crosslinkers appears to be due 

to cross-linking of multiple molecules instead of abolished epitope, since none of the 

three antibodies can detect any RSP6 cross-linked complex.   

Nonetheless, DTSSP-cross-linked axonemes containing tagged RSP6 or untagged 

RSP6 (control) were denatured and the supernatant was subjected to Ni-NTA purification. 

The rationale is that this reducible crosslinker can be cleaved, thus the cross-linked 

proteins can then be separated by SDS-PAGE and revealed by silver stain. The proteins 

specifically cross-linked to RSP6 were supposed to be present in tagged RSP6 axonemal 

sample but absent in the control. However, silver protein gels failed to identify distinct 

bands that were cross-linked and pulled down specifically (Figure 4-4).   

Interestingly, the sulfhydryl crosslinker BMOE, as revealed by HA antibody, 

generated at least 5 distinct cross-linked products larger than RSP6 (Figure 4-3C). The 

cross-linking level largely plateaued at 0.4 mM BMOE (Figure 4-5A). A band smaller 

than RSP6 was possibly generated from intra-molecular cross-linking (Figure 4-3C). The 

multiple cross-linked products were consistent with the 7 cysteine residues in RSP6. The 

tag does not contain any cysteine residue. Therefore, BMOE selectively cross-linked 

RSP6 to individual proteins while the other compounds cross-linked RSP6 to a huge 

multi-protein complex.  

Contrary to the HA antibody, anti-RSP6 only recognized two of the five cross-

linked bands (#1 and #2, Figure 4-5B) and the band intensity was rather low. Anti-His 

failed to detect any RSP6 cross-linked product. The lower sensitivity of anti-His and anti- 
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Figure 4-4. Ni-NTA purification of cross-linked tagged RSP6  
under denatured conditions.   
DTSSP-cross-linked axonemes were solubilized in denature 
buffer. The extract was processed for Ni-NTA affinity. The 
samples were assessed by silver stained SDS-PAGE. Control was 
untagged WT strain. Pre, extract of cross-linked axonemes; FT, 
flow through; W, wash; E, elute.  
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A                                                            B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4-5. HA antibody (A) is more sensitive than anti-RSP6 (B) in 

detecting cross-linked products.  
Axonemes containing RSP6-3HA-18His were incubated with BMOE of 
increasing concentrations. HA blots revealed 5 cross-linked products 
while RSP6 antibody only detected the #1 (arrow) and #2 (arrowhead) 
products. The molecular weights were indicated on the right. 
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RSP6 in revealing RSP6 cross-linked products are likely due to lower affinity, loss of 

epitopes or smaller amounts of cross-linked products. This shows the value of a 3HA tag 

for this approach.       

 

4.4 Intra-molecular Complex Cross-linking  

Considering the close proximity of radial spokes to the central apparatus, RSP6 may be 

cross-linked to proteins in the central apparatus or the radial spokes. If the cross-linking 

occurs within radial spokes, cross-linking of isolated radial spokes may result in the same 

bands. To test this, axonemes from RSP6-3HA-18His were extracted with 0.6 M KI. The 

extract containing solubilized radial spoke complex was sedimented through a sucrose 

gradient and the 20S radial spoke fractions were treated with BMOE. HA western blots 

revealed only cross-linked product #1 in the isolated radial spokes (Figure 4-6). Thus, 

this band likely contained another radial spoke protein. The rest of the cross-linked bands 

(#2-#5 in Figure 4-5A) may contain the central pair proteins. Alternatively, KI extraction 

may alter the conformation of the radial spokes.   

To differentiate these two possibilities, axonemes of the central apparatus mutant 

pf18 and the control, untagged WT, were treated with BMOE and the cross-linking result 

was revealed by anti-RSP6 instead (Figure 4-7). In theory, any band from cross-linked 

RSP6 and central pair protein will be absent in the cross-linked axoneme missing the 

central apparatus. 

However, none of the central apparatus mutants actually lacks all central pair 

proteins. Electron microscopy (EM) revealed that amorphous material remained in the 

center of pf18 axonemes. Since detergents during flagellar demembranation destabilize  
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Figure 4-6. The #1 cross-linked product was resulted from intra- 
radial spoke cross-linking.  
Isolated radial spokes from sucrose gradient fractions of KI extract 
from RSP6-3HA-18His axonemes were treated with increasing 
concentrations of BMOE. The cross-linked products were revealed 
by western blot probed with anti-HA. Only one cross-linked product 
(#1, by arrow) was generated in significant amount.  
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A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-7. Similar cross-linked RSP6 products in BMOE-treated 
axonemes of WT (A) and pf18 (B) strain that lacks the central apparatus.  
Axonemes, after treatment with 0.25% and 1% NP-40, were reacted with 
BMOE of indicated concentrations and the cross-linked products were 
identified by RSP6 western blots. Note Anti-RSP6 cross-reacted with RSP4. 
Control (C) was cross-linked axonemes containing RSP6-3HA-18His. Tagged 
RSP6 in the control co-migrated with RSP4. The #1 (arrowhead) and #2 
(asterisk) cross-linked products from tagged axoneme appeared slightly larger 
than those from untagged WT axonemes. Cross-linking results in WT and pf18 
axonemes prepared from two detergent concentrations were similar, 
suggesting that both bands were from intra-radial spoke cross-linking. The 
molecular weights are indicated on the right. 
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central pair components (Mitchell, 2009), flagella were treated with 0.25% and 1% 

detergent (Nonidet-P40) respectively. An additional control was cross-linked tagged 

axonemes (Figure 4-7, lane C). Two BMOE-cross-linked complexes in WT axoneme 

corresponded to the slightly larger #1 and #2 cross-linked tagged RSP6 in the control 

(arrowhead and asterisk in Figure 4-7A). These two RSP6 cross-linked bands in WT were 

also present in pf18 (Figure 4-7B). These results suggest that at least #1 and #2 bands 

resulted from intra-radial spoke cross-linking and show the limitation without the tag.       

To identify the rarer #3-#5 cross-linked products, tagged and untagged WT 

axonemes (control) were treated with 0.4 mM BMOE and then denatured by urea-

containing buffer. The supernatant was subjected to Ni-NTA purifications. The samples 

were separated by SDS-PAGE. Silver stain showed that Ni-NTA purification indeed 

enriched RSP6 and #2 cross-linked complex (Figure 4-8, arrowhead and asterisk). 

However, many additional bands prevent unequivocal identifications of the other cross-

linked complex. Most bands also appeared in the WT axoneme albeit with lower 

intensities. Our previous experience suggested that radial spoke proteins exhibited 

affinity to Ni-NTA possibly because of the acidic pI (Table 1-1) and thus some of these 

non-specific bands may actually be radial spoke proteins. Because of difficulties in 

identifying cross-linked products and possible intra-radial spoke cross-linking, mass 

spectrometry will not be performed to identify the unknown proteins in #3-5.  

 

4.5 Identification of Unknown Proteins Cross-linked to RSP6 with Western Blots 

The candidate protein approach was taken to reveal the proteins cross-linked to RSP6. 

The blots of cross-linked axoneme were probed with other radial spoke antibodies. The  
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Figure 4-8. Ni-NTA purification of cross-linked tagged RSP6 under denatured 
conditions.   
Protein samples were assessed by HA western blot (A) and silver stain (B). Only 
RSP6 (arrowhead) and #2 cross-linked RSP6 (asterisk) can be unequivocally 
identified in the elute. Control was untagged WT strain. Pre, extract of cross-linked 
axonemes; FT, flow through; W, wash; E, elute.  
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antibody was chosen based on the sizes of these cross-linked complexes derived from the 

log plot (Table 4-3). The log of a protein’s molecular mass is proportional to the distance 

it will migrate (Neville, 1971).    

Candidate proteins that could be cross-linked to RSP6 are spoke head proteins 

(RSP1, 4, 9, 10) and stalk proteins that are predicted to be adjacent to the spoke head 

(RSP2, 5, 16, 23). Note all these proteins contain at least two cysteine residues (Table 4-

4). In contrast, RSP3 that is essential for the assembly of the entire spoke (Diener et al., 

1993), does not contain any cysteine.  

Cross-linked axoneme blots were first probed with the RSP5 antibody (Figure 4-

9A and B). This antibody recognized a band (labeled with arrow) of the same size of 

tagged RSP6 in tagged axonemes, regardless if treated with crosslinker or not. But it was 

absent in the untagged WT axoneme (Figure 4-9B). Since anti-RSP5 was raised against 

His-tagged RSP5 recombinant protein, the band was actually the RSP6-3HA-18His 

detected by anti-His in the RSP5 serum. Similarly, anti-RSP16 that was also raised 

against His tagged RSP16 recognized the tagged RSP6 as well. Thus although His tag is 

supposed to be of low antigenicity, it is still antigenic and poses unexpected problems in 

this approach. 

BMOE cross-linked the 120 kDa RSP2 into a 150 kDa product (asterisk, Figure 4-

9C). The band did not appear to contain RPS6 or RSP10 (see below). The other 

possibility is RSP9. However, the affinity of RSP9 antibody was too low to detect any 

cross-linked band (not shown). 

 

4.6 RSP6 was cross-linked to RSP10 and RSP1 
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     Table 4-3: Estimated molecular masses of the five cross-linked RSP6 complexes  
       and involved partners. 

 Size of Cross-linked  
product (kDa) Size of partners (kDa) 

RSP6 67  

RSP6-3HA-18His 85  

#1 115 30 

#2 185 100 

#3 205 120 

#4 220 135 

#5 280 195 
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Table 4-4: The molecular masses and the numbers of cysteines in the radial spoke 
proteins.  
 

 Molecular Mass (kDa) Cysteines 

 RSP6 67 7 

RSP6-3HA-18His 85  7 

RSP4 76  5 

RSP1 123  6 

RSP10 24  2 

RSP9 26  3 

RSP2 118  3 

RSP5 69 6 

RSP16                     34 3 

                RSP23                    102 1 

                 RSP3                     86 
 

0 
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          A                                                           B                            

C 

 
Figure 4-9. RSP5 and RSP2 antibodies did not definitively recognize 
any of the RSP6 cross-linked products. 
WT and tagged axonemes treated with BMOE were subjected to 16% (A), 
7% (B) and 8% (C) SDS-PAGE and probed for HA (left panel in A and B), 
RSP5 (right panel in A and B) and RSP2 (C). Arrow, tagged RSP6; 
Arrowhead, RSP5; Asterisk, one possible RSP2 cross-linked complex. 
Anti-RSP5, that was raised against His-tagged RSP5 fusion protein, 
recognized RSP5 (arrowhead) as well as the His-tagged RSP6 (arrow). The 
non-specific bands from RSP2 in non-crosslinked sample prevented the 
interpretation of the other cross-linked products. The molecular weights 
were indicated on the left.  
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To determine if BMOE cross-linked RSP10 to RSP6, cross-linked axonemes were 

subjected to western analyses (Figure 4-10). A ~120 kDa RSP10-containing complex 

appeared in cross-linked tagged axoneme (asterisk on the 4th lane, Figure 4-10A),  

corresponding to the #1 RSP6 cross-linked band (arrowhead). Consistently, the cross-

linked WT axoneme contained a smaller 95 kDa cross-linked band that included RSP10 

and untagged RSP6 (asterisk on the 2th lane in Figure 4-10A, Figure 4-7A). Aside from 

the RSP10-RSP6 complex, the RSP10 antibody also revealed a ~130 kDa complex 

(diamond, Figure 4-10A) in cross-linked axonemes, either with tag or untagged RSP6. 

Thus, BMOE also crosslinked RSP10 to a non-RSP6 protein, possibly the RSP6 

paralogue, RSP4.  

To test whether RSP6 was cross-linked to RSP1, different concentrations of 

BMOE were added to axoneme with RSP6-3HA-18His and the cross-linking result was 

detected by western blot with anti-HA and anti-RSP1. Interestingly, several RSP1 cross-

linked complexes appeared after addition of BMOE and one of these band co-migrated 

with the #3 RSP6 cross-linked band (Figure 4-11). It suggested that RSP6 is in close 

proximity to RSP1.  

 

4.7 Discussion 

In summary, the 0.8-nm long BMOE cross-linked RSP6 to at least RSP10 and RSP1.  

Note RSP4 and RSP6 are paralogues while both RSP1 and RSP10 contain MORN motifs. 

The cross-linking of these molecules supports a topographic model that will be discussed 

further in the next chapter. As no unequivocal evidence implicating central pair proteins  

in the rest RSP6 cross-linked products, the urgency of identify them with mass  
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B  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10. RSP6 and RSP10 were cross-linked by BMOE. 
 BMOE-treated axonemes were fractionated by 7% (A) and 14% (B) SDS-
PAGE respectively and probed for the 27 kDa RSP10 (arrow, left panels) 
and HA (right panels). Asterisks, cross-linked 95 kDa complex containing 
RSP10 and untagged RSP6 in WT axonemes vs the 120 kDa complex in the 
cross-linked axonemes with tagged RSP6; arrowhead, #1 tagged RSP6 cross-
linked product; diamond, a cross-linked 130-kDcomplex containing RSP10 
and a non-RSP6 protein. The molecular weights were indicated on the right. 
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 Figure 4-11. The #3 RSP6 cross-linked product contains 

RSP1.  
BMOE-treated tagged RSP6 axonemes were probed for HA 
(left panel) and RSP1 (right panel). Asterisk, the co-migrated 
bands; arrowhead, tagged RSP6; arrow, RSP1. The molecular 
weights were indicated on the right. 
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spectrometry is low. 

Several factors may explain this problem. Despite the proximity between the 

central apparatus and radial spokes under EM, it is possible only a fraction of radial 

spokes actually contact the central apparatus at any moment. Furthermore, the 

preparation of axonemes may dislocate the interacting proteins. Moreover, cysteine 

residues in both molecules may not be properly positioned near each other and antibodies 

are not sensitive enough to detect the presence of RSP6 cross-linked complexes by 

western analyses. Moreover, cross-linking preferentially occurs within the structural 

modules first rendering huge inter-cross-linking products too large to resolve in SDS-

PAGE. Lastly, Ni-NTA purification of cross-linked axonemal samples was not as 

specific as desired and did not enrich the larger cross-linked products. 

The short crosslinkers, EDC and DFDNB, are the most commonly used 

crosslinkers for the study of axonemes. However, they failed to cross-link RSP6 into 

resolvable products in SDS-PAGE. In contrast, long-arm length crosslinker resulted in 

large axonemal complexes that cannot be resolved in SDS-PAGE. Yet BMOE succeeded 

to cross-link proteins within the spoke head module, indicating that this rather long 

crosslinker is effective and selective because of its specific interaction with cysteine 

residues. On the other hand, this specificity excludes its usage in proteins that don’t have 

cysteines. 
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Chapter 5: Discussion 
 

The study on the mutants and molecular interactions of the spoke head shed light on the 

the 9+2 axoneme and primary ciliary dyskinesia. 

 

5.1 Distinct Roles of RSP4 and RSP6 

The phenotypes of two new RSP6 mutants are different from the typical motility mutants 

that display steady-state deficiencies in motility, morphology and composition. They also 

differ from the first RSP6 mutant, pf26ts, whose flagella contain the mutated RSP6 and 

the other spoke head proteins and whose motility will not change once flagella have 

assembled. The flagella of the new RSP6 mutants most likely do not contain any RSP6 

polypeptides as shown by the nature of their mutations, transformation rescue (Figure 3-2) 

and western analyses of axonemes (Figure 3-1). Yet the rest of the spoke head 

components can still assemble and the flagella are motile when cells are in the log phase 

and at room temperature. Hence, despite the high similarity of RSP4 and RSP6, only 

RSP4 is essential for spoke head assembly and motility.  

In line with this conclusion, the duplicated RSP4/6 genes found in green algae and 

mammals are not universal (Figure 3-10). Several organisms, including Drosophila 

melanogaster, sea urchin and Ciona intestinalis have only one copy of the RSP4/6 gene.  

Interestingly, the fly genome sequence has been completed and the purified radial spoke 

in Ciona intestinals also only contains a single RSP4/6 band (Satouh et al., 2005). For 

those organisms that have only a single RSP4/6 gene, the gene product may function as a 

homodimer, since RSP4 and RSP6 extracted by concentrated KI buffer do not associate 
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with RSP1 but remain co-sedimenting with each other, likely as a heterodimer (Kelekar 

et al., in press). 

The 2nd RSP4/6 paralogue is used differently in different organisms. Although 

nonessential for the motility of green algae in the ideal laboratory condition, RSP6 

ensures motility when the conditions deviate, at slightly higher temperature or in spent 

media. In fact, such deviations, not the laboratory condition, are the norm in the natural 

habitat. In this sense, the second paralogue is essential to confer a competitive edge 

against evolutionary pressure. For human and mouse, both northern blots (Eriksson et al., 

2001) and EST profiles showed that one of the two RSP4/6 genes, RSHL1, is only 

expressed in testis. Contrarily, the other gene encoding RSPH4A is expressed in all 

tissues with motile cilia and flagella and is a causative gene for primary ciliary dyskinesia 

(Castleman et al., 2009). Thus RSPH4A, likely equivalent to RSP4, is essential for all 

motile cilia and flagella in mammals while RSHL1 may enhance fertility. 

The distinct roles of RSP4 and RSP6 suggested that the two paralogues are not 

interchangeable and RSP4 cannot substitute for RSP6. Consistently, the amount of RSP4 

in 1C12 axoneme was not more abundant than that in WT (Figure 3-1; 3-17). The tight 

control of translation may also prevent the paralogues from replacement.  Radial spoke 

proteins are synthesized with similar kinetics (Remillard and Witman, 1982). Moreover, 

the existing protein pool in the cell body is maintained at a level sufficient to generate 

flagella of half the normal length (Rosenbaum et al., 1969). Therefore, there may not be 

redundant RSP4 molecules in 1C12, either in rich or spent media, to replace RSP6.   

 
5.2 The Reversible Paralysis and Media-dependent Spoke Head Assembly          
 
Deficiency of RSP6-minus Mutants 
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The most perplexing phenotypes of RSP6 mutants and the RSP11 mutant pf25 are mixed 

populations of cells with drastically different motility despite identical genetic 

backgrounds, and a 2-day lag to reach maximal percentage of swimmers. Although 

axonemal protein kinase inhibits the dynein-driven sliding of radial spoke mutant 

axonemes (reviewed by Wirschell et al., 2007) and inhibition of PKA activity enhances 

the reactivation rate of WT axonemes (Hasegawa et al., 1987) and the reactivated cell 

model of a motile RSP3 mutant (Gaillard et al., 2006), paralyzed pf25 or pf26 cells will 

not become motile after treatment with the kinase inhibitor staurosporine, which is 

effective in vivo (e.g. Zhang and Snell, 1994). The possibilities of preferential selection 

of motile cells or second mutations have also been ruled out (Yang and Yang, 2006).  

It is not due to the progression of cell cycles either, since replacement of the exhaust 

culture with fresh media can prevent the paralysis of 1C12 cells. Therefore, the motility 

swing can be best explained by the varied assembly deficiencies detected by western 

blots (Figures 3-1 and 3-17B), with reductions of spoke head proteins being apparent 

when most mutant cells become immotile. We reason that the lag of obvious assembly 

defects is because of the stringent requirement of radial spokes for oscillatory beating and 

the limited sensitivity of western analyses.  

One question is how media affect the radial spoke assembly of RSP6-minus 

mutant but not WT (Figure 3-17B). The availability of nutrients and the reduced 

assembly efficiency of the defective complexes can adequately explain different facets of 

the changing phenotypes. One possibility is that the spoke head without RSP6 are less 

stable.  However it is hard to explain that the instability increases only in the spent media 

and there is no evidence that the general disassembling rate increases in such a condition 
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either. We postulate that without RSP6, the other spoke head components assemble at a 

reduced rate. The inefficiency is negligible in healthy cells but becomes evident when 

nutrients are restricted, in spent media or on agar plates in which nutrients diffuse 

passively. Under the deprived conditions, a myriad of cellular reactions are critically 

reduced and yet the assembly of all components into WT radial spokes remains coupled, 

albeit slower. However, the assembly of spoke heads without RSP6 becomes even slower 

than that of spoke stalks, leading to the delivery of a mixed population of spokes, with or 

without the spoke head content, into flagella. The stalk by itself, once assembled into the 

axonemes, can not be repaired as spoke head by itself may not be delivered into the 

flagella. Consequently, the motility does not improve until next day when new flagella 

generate after cell division and flagellar components are replenished. One day in rich 

media is insufficient for starved cells to recover fully and thus the percentage of 

swimmers does not reach the peak level until 2 days after resuspension (Fig 3-11A). 

Furthermore, as vegetative algal cells usually multiply four fold each day during the log 

phase and then the rate tapers toward the stationary phase (Harris, 2009), the cell density, 

the available nutrients and the nutritional state of every cell may vary after logarithmic 

growth. 

The media-dependent assembly deficiency likely is not unique to RSP6 or radial 

spoke mutants. Although western blots are not adequate to reveal changes in the 

axonemal content of WT (Figure 3-17) or pf25 (Yang and Yang, 2006), reactivation rates 

of WT cells at different culture ages are not the same. The motile fraction prepared from 

older WT culture (D4) is only slightly lower than that from earlier culture (D2) but the 

fraction of spinners is significantly higher (Figure 3-14). It was noted that helical-
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swimming cell models gradually became spinning as one axoneme tend to become 

inactivated until eventual quiescence (Kamiya and Witman, 1984), even though the cause 

of the transition was unknown. As reactivated cell models that lack RSP6 tend to spin, 

the increased reactivated spinners from older WT culture (WT at D2 and D4, Figure 3-14) 

may reflect subtle axonemal defects. Likewise, structural defects may underlie the 

ineffectiveness of the kinase inhibitor to enhance reactivation of damaged WT axonemes 

(Hasegawa et al., 1987) and RSP6-minus cell models. By the same token, the subtle 

axonemal defects in conjunction with the deficiency in two radial spoke proteins may be 

sufficient to paralyze old pf25 cells.  

It is quite interesting that immotile mutant cells can be reactivated to spin, 

consistent with the fact that sufficient radial spokes are still present. Apparently, some 

factors in vivo hinder the residual motility of a defective axoneme. Ample ATP in vitro 

or removal of the hydrated flagellar glycoproteins that increase the stroke load 

(Nakamura et al., 1996) are the two possibilities. 

 

5.3 Molecular Model of the Spoke head Module 

Studies of Chlamydomonas radial spoke mutants strongly suggest that the head module is  

assembled as a subcomplex which then associates with the stalk via RSP2 and possibly 

RSP2-coassembled molecule, like spoke HSP40 (RSP16) or RSP23. The connection 

between these two modules of a complex that transduce force is rather intriguing. 

Interestingly, spoke HSP40 and the other spoke head proteins decrease in RSP6-minus 

axonemes (Figure 3-1). Perhaps, this chaperone directly interacts with RSP2 on one end 

(Yang et al., 2008) and spoke head molecules on the other. 
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Note, the planar waveform of reactivated sea-urchin axonemes became three 

dimensional after incubation with anti-RSP4/6 antibody (Gingras et al., 1998), while 

twitching RSP16-minus flagella resemble that of various central pair mutants (Randall et 

al., 1964; Witman et al., 1978; Dutcher et al., 1984; Yokoyama et al., 2004). These 

phenotypes support the current model that bend propagation of a planar waveform, 

typical of the 9+2 axoneme, is founded on a mechanical feedback transduced between the 

central apparatus, radial spokes and 9 outer doublets that inherently beat in three 

dimensions (Yang et al., 2008). The failure of RSP6-minus mutant cells to maintain 

helical trajectories further underscores the importance of a precise feedback system in 

maintaining rhythmic beating and thus a helical trajectory. The question is why RSP6-

minus radial spoke cannot support persistent helical trajectories.  

Based on previous studies on the morphology of Tetrahymena radial spokes 

(Figure 1-3) as well as the cross-linking results from Chlamydomonas (Chapter 4), we 

postulate a symmetric topographic model for the spoke head, with RSP4/6 and RSP1/10 

opposing to its paralogues (Fig. 5-1A and B). The bulbous Tetrahymena spoke head is 

composed of two central globules and two lateral hooks (Goodenough and Heuser, 1985). 

Consistently, Chlamydomonas spoke head has two pairs of homologous proteins RSP4 

and RSP6, RSP1 and RSP10. Furthermore, this study provides evidence that RSP6 is 

cross-linked to RSP1 and RSP10 while RSP10 seems to be cross-linked to RSP4 as well.   

The symmetric arrangement with two homologous pairs of spoke head proteins 

may enable the radial spoke to engage the central apparatus in three dimensions 

reversibly and repetitively around the circumference and along the length of axonemes.  

We envision that one pair of the paralogues is involved in the longitudinal tilt while the  
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Figure 5-1. Schematic models depicting the topography of the 
spoke head (A and B) and the tilt-return by RSP4/6 during each 
beat cycle (C).  
In A and B, RSP9 is postulated to be located underneath the rest of the 
spoke head proteins and bundle them into a stable complex. In C, the 
ellipses represent different central pair projections. The black T 
represents the radial spoke. The red arrows represent tilt directions. 
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other for circumferential tilt. Flagella with intact spoke heads in place enable cells to 

swim in a helical trajectory. RSP6-minus radial spokes, or radial spokes lacking a few 

spoke heads cause glitches of this repeated movement (Figure 5-1C) leading to 

asynchrony and subsequent beat re-initiation and changes in trajectory directions. When 

media become exhausted and the metabolism is suppressed, further deficiencies result in 

frequent asynchrony, sporadic stalling and hence local moving cells. Those flagella in 

which spoke deficiencies exceed a threshold level become immotile. Yet the reduction is 

not significant enough to be reliably revealed in protein gels (Huang et al., 1981) or 

western blots that are influenced by protein loads and antigen-antibody affinities unless 

the axonemes are prepared from the older cultures than usually used, in which spoke 

heads are decreased drastically.   

 

This progressive investigation has revealed a spectrum of phenotypes due to the defective 

radial spokes or central apparatus, such as paralysis, sporadic stalling in stroke initiation 

and propagation and reduced beat frequency. This study adds irregular trajectory and 

reversible paralysis to the list due to a milder defect. This study of the subtly defective 

radial spokes further underscores the role of the control system in orchestrating flagellar 

beating. Together these studies show the radial spokes and central apparatus employ 

critical and multiple mechanisms to regulate oscillatory beating and a subtle defect is 

sufficient to alter oscillatory beating. The condition-dependent drastic deterioration in 

assembly and motility of axonemes with mild defects appears to be a general 

phenomenon and should be considered in assessing the polygenic primary ciliary 

dyskinesia. 
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